
Alma Mater Studiorum - Università di Bologna

DOTTORATO DI RICERCA IN

INFORMATICA

Ciclo XXVI

Settore Concorsuale di afferenza: 01/B1

Settore Scientifico disciplinare: INF01

Knowledge Patterns for the Web:
extraction, tranformation and reuse

Presentata da: Andrea Giovanni Nuzzolese

Coordinatore Dottorato: Relatore:

Maurizio Gabbrielli Paolo Ciancarini

Esame finale anno 2014

To my family.

iv

Abstract

This thesis aims at investigating methods and software architectures for discovering

what are the typical and frequently occurring structures used for organizing knowl-

edge in the Web. We identify these structures as Knowledge Patterns (KPs), i.e.,

small, well connected units of meaning which are task-based, well-grounded, and

cognitively sound. KPs are an abstraction of frames as introduced by Fillmore [51]

and Minsky [101]. KP discovery needs to address two main research problems: the

heterogeneity of sources, formats and semantics in the Web (i.e., the knowledge

soup problem) and the difficulty to draw relevant boundary around data that al-

lows to capture the meaningful knowledge with respect to a certain context (i.e.,

the knowledge boundary problem). Hence, we introduce two methods that provide

different solutions to these two problems by tackling KP discovery from two differ-

ent perspectives: (i) the transformation of KP-like artifacts (i.e., top-down defined

artifacts that can be compared to KPs, such as FrameNet frames [11] or Ontology

Design Patterns [65]) to KPs formalized as OWL2 ontologies; (ii) the bottom-up

extraction of KPs by analyzing how data are organized in Linked Data. The two

methods address the knowledge soup and boundary problems in different ways. The

first method provides a solution to the two aforementioned problems that is based

on a purely syntactic transformation step of the original source to RDF followed

by a refactoring step whose aim is to add semantics to RDF by select meaningful

RDF triples. The second method allows to draw boundaries around RDF in Linked

Data by analyzing type paths. A type path is a possible route through an RDF that

v

takes into account the types associated to the nodes of a path. Unfortunately, type

paths are not always available. In fact, Linked Data is a knowledge soup because of

the heterogeneous semantics of its datasets and because of the limited intentional as

well as extensional coverage of ontologies (e.g., DBpedia ontology 1, YAGO [133]) or

other controlled vocabularies (e.g., SKOS [99], FOAF [28], etc.). Thus, we propose

a solution for enriching Linked Data with additional axioms (e.g., rdf:type ax-

ioms) by exploiting the natural language available for example in annotations (e.g.

rdfs:comment) or in corpora on which datasets in Linked Data are grounded (e.g.

DBpedia is grounded on Wikipedia). Then we present K∼ore, a software architec-

ture conceived to be the basis for developing KP discovery systems and designed

according to two software architectural styles, i.e, the Component-based and REST.

K∼ore is the architectural binding of a set of tools, i.e., K∼tools, which implements

the methods for KP transformation and extraction. Finally we provide an example

of reuse of KP based on Aemoo, an exploratory search tool which exploits KPs for

performing entity summarization.

1http://dbpedia.org/ontology

vi

http://dbpedia.org/ontology

Acknowledgements

Now that my Ph.D. is going to an end and this dissertation is finalized it is time

to write acknowledgements. I know that, as it usually happens in writing acknowl-

edgements, I will miss someone whose support has been very important during these

years, but I am sure that they will understand that these acknowledgements are also

for them.

First of all, I would like to thank Pamela for her love that has made my life

marvelous. This achievement is mine and yours as well.

I would like to thank my parents that always and unconditionally endured, sup-

ported and encouraged me in everything.

A big thanks to my brother Paolo who introduced me in Computer Science some

years ago and gave me, together with his wife Erika, my wonderful nephew Aurora.

I would like to express my deep gratitude to my tutors, prof. Aldo Gangemi and

dr. Valentina Presutti, who have involved me in their extraordinary research group

and who have patiently guided and encouraged me during my Ph.D.

I would like to offer my special thanks to my advisor, prof. Paolo Ciancarini, for

his frank, valuable and constructive suggestions and useful critiques to my research

activities.

I wish to acknowledge prof. Paola Mello for having always been ready to discuss

with me about my Ph.D. topics.

My grateful thanks are also extended to the referees, i.e., prof Enrico Motta, prof.

Lora Aroyo and prof. Robert Tolksdorf, for their precious and careful comments and

vii

advises.

I would also like to extend my thanks to all the people that during these years

have been part of my research group, namely, Alberto Musetti, Francesco Draicchio,

Silvio Peroni, Angelo Di Iorio, Enrico Daga, Alessandro Adamou, Eva Blomqvist,

Diego Reforgiato, Sergio Consoli, Daria Spampinato and Stefania Capotosti.

Special thanks go to the people who shared with me this hard but amazing

Ph.D. program, namely, Ornela Dardha, Alexandru Tudor Lascu, Giulio Pellitta,

Francesco Poggi, Roberto Amadini and Gioele Barabucci.

Another big thanks to Michele, Katia and Alfonso for their cheerfulness and the

great fun we have had so far and we will still have.

Last but not least, I would like to thank all my friends that during these years

have been simply friends.

viii

Contents

Abstract v

Acknowledgements vii

List of Tables xiii

List of Figures xv

List of Publications xxi

1 Introduction 1

2 Background 7

2.1 The Semantic Web . 7

2.2 Ontologies and Ontology Design Patterns 12

2.2.1 Ontology Design Patterns . 13

2.2.2 Pattern-based methodologies 20

2.3 Ontology Mining . 21

2.4 Knowledge patterns . 25

ix

3 Knowledge Patterns for the Web 27

3.1 A definition for Knowledge Pattern 27

3.2 Knowledge Patterns in literature . 29

3.3 Sources of Knowledge Patterns . 34

3.3.1 KP-like repositories . 35

3.3.2 The Web of Data . 39

4 Knowledge Pattern transformation from KP-like sources 43

4.1 Method . 43

4.2 A case study: transforming KPs from FrameNet 49

4.2.1 FrameNet . 50

4.2.2 Result . 51

4.2.3 Evaluation . 62

5 Knowledge Pattern extraction from the Web of Data 65

5.1 Method . 66

5.1.1 Data analysis . 67

5.1.2 Boundary induction . 69

5.1.3 KP formalization . 71

5.2 A case study: extracting KPs from Wikipedia links 73

5.2.1 Matherial . 73

5.2.2 Obtained results . 74

5.2.3 KP discovery . 75

5.2.4 Evaluation . 79

x

6 Enrichment of sources for Knowledge Pattern extraction 85

6.1 Enriching links with natural language 86

6.1.1 Natural language deep parsing of text 88

6.1.2 Graph-pattern matching . 88

6.1.3 Word-sense disambiguation 90

6.1.4 Ontology alignment . 90

6.2 Automatic typing of DBpedia entities 91

6.2.1 Material . 92

6.2.2 Typing entities . 94

6.2.3 Evaluation . 101

6.2.4 ORA: towards the Natural Ontology of Wikipedia 106

6.3 Identifying functions of citations . 108

6.3.1 The CiTalO algorithm . 110

6.3.2 Evaluation . 114

7 A software architecture for KP discovery and reuse 117

7.1 Requirements . 117

7.2 The architectural binding . 120

7.2.1 Background on the Component-based architectural style . . . 121

7.3 K∼ore: design . 122

7.3.1 Source Enricher . 124

7.3.2 Knowledge Pattern Extractor 128

7.3.3 Knowledge Pattern Refactor 129

7.3.4 Knowledge Pattern Repository 131

7.4 Implementation . 132

7.4.1 The OSGi framework . 132

7.4.2 The K∼tools . 134

xi

8 Aemoo: Exploratory search based on Knowledge Patterns 139

8.1 Approach . 139

8.1.1 Identity resolution and entity types 141

8.1.2 Knowledge Patterns . 141

8.1.3 Explanations and semantics of links 142

8.2 Usage scenarios . 143

8.2.1 Scenario 1: Knowledge Aggregation and Explanations. 143

8.2.2 Scenario 2: Exploratory search. 144

8.2.3 Scenario 3: Curiosity. 145

8.3 Under the hood: design and implementation of Aemoo 146

8.4 Evaluation . 147

9 Conclusion and future work 153

A Refactor Rule Language 159

References 163

xii

List of Tables

4.1 Tables Person (a), University (b) and Role (c) for a sample database

about people and their roles in universities. 45

4.2 Number of obtained and expected individuals after the A-Box refac-

toring. 62

5.1 Indicators used for empirical analysis of wikilink paths. 69

5.2 Dataset used and associated figures. 74

5.3 Sample paths for the subject type Album: number of path occurrences,

distinct subject resources, and popularity percentage value. Paths are

expressed as couples [SubjectType,ObjectType] because in the db-

pedia page links en dataset the only property used is dbpo:wikiPageWikiLink. 78

5.4 DBPO classes used in the user-study and their related figures. 80

5.5 Ordinal (Likert) scale of relevance scores. 81

5.6 Average coefficient of concordance for ranks (Kendall’s W) for the

two groups of users. 81

5.7 Inter-rater agreement computed with Kendall’s W (for all values p <

0.0001) and reliability test computed with Cronbach’s alpha 82

5.8 Mapping between wlCoverageDBpedia intervals and the relevance score

scale. 83

5.9 Average multiple correlation (Spearman ρ) between users’ assigned

scores, and pathPopularityDBpedia based scores. 83

xiii

5.10 Multiple correlation coefficient (ρ) between users’s assigned score, and

pathPopularityDBpedia based score. 83

6.1 Graph patterns and their associated type inferred triples for indi-

vidual entities. Order reflects priority of detection. [r] ∈ R =

{wt:speciesOf, wt:nameOf, wt:kindOf, wt:varietyOf, w:typeOf, wt:qtyOf,

wt:genreOf, wt:seriesOf}); [anyP] ∈ {∗} − R. 98

6.2 Graph patterns and their associated type inferred triples for class enti-

ties. [r] ∈ R = {wt:speciesOf, wt:nameOf, wt:kindOf, wt:varietyOf,

w:typeOf, wt:qtyOf, wt:genreOf, wt:seriesOf}); [anyP] ∈ {∗} − R. . . 99

6.3 Normalized frequency of GPs on a sample set of ∼800 randomly se-

lected Wikipedia entities. 100

6.4 Performance evaluation of the individual pipeline step. 103

6.5 Performance evaluation of the overall process. 103

6.6 Results of the user-based evaluation, values are expressed in percent-

age and indicate precision of results. Inter-rater agreement (Kendall’s

W) is .79, Kendall’s W ranges from 0 (no agreement) to 1 (complete

agreement). 106

6.7 Graph patterns and their associated type inferred triples. Order re-

flects priority of detection. [anyP] ∈ {∗}. 112

6.8 The way we marked the citations within the 18 Balisage papers. . . . 115

6.9 The number of true positives, false positives and false negatives re-

turned by running CiTalO with the eight different configurations. . . 116

7.1 Classification of the basic architectural styles. 121

xiv

List of Figures

1.1 The semantic mash-up proposed by Sig.ma for the entity “Arnold

Schwarzenegger”. 2

1.2 Information from the Google Knowledge Graph for the entity “Arnold

Schwarzenegger”. 3

2.1 Status of the Semantic Web stack implementation as of 2013. 9

2.2 The latest graphical snapshot taken by the Linking Open Data com-

munity. 11

2.3 The two faces of the coin consisting in the reuse process [110]. 15

2.4 ODPs families as defined by [118]. 18

2.5 The N-ary relation logical pattern expressed with UML notation. . . 19

2.6 The Agent-Role content pattern expressed with UML notation. 20

2.7 The eXtreme Design methodology [115]. 21

3.1 An example of a KP for representing cooking situation and its possible

manifestation over data. 30

3.2 The façades of a knowledge pattern [66]. 33

3.3 Graphical representation of the methodology for KP transformation

and extraction. 35

3.4 Three examples of different schemata which describe a common con-

ceptualization about entities and their roles. 38

xv

4.1 The result of the reengineering applied to the sample database shown

in Table 4.1. 46

4.2 An example of an ontology describing concepts about the structure

of relational databases. The ontology is represented by adopting an

UML notation. 47

4.3 Sample RDF graph resulting after the refactoring step on the RDF

data about people, universities and roles. 48

4.4 Semion tranformation: key concepts. 50

4.5 The “Inherits from” relation mapped to RDF with a common trans-

formation recipe. Literals are identified by the icons drawn as green

rectangles . 53

4.6 Example of reengineering of the frame “Abounding with” with its

XSD definition. 54

4.7 Rule which allows to express frame-to-frame relation as binary relations. 55

4.8 The “Inherits from” frame-to-frame relation between the frames “Abound-

ing with” and “Locative relation” after the refactoring. 55

4.9 A fragment of the FrameNet OWL schema. 56

4.10 Diagram of the transformation recipe used for the production of

knowledge patterns from FrameNet LOD. 60

5.1 Core classes of the knowledge architecture ontology represented with

an UML notation. 67

5.2 Path discovered from the triple dbpedia:Andre Agassi dbpprop:winnerOf

dbpedia:Davis Cup. 70

5.3 Distribution of pathPopularityDBpedia: the average values of popu-

larity rank i.e., pathPopularity(Pi,k,j, Si), for DBpedia paths. The

x-axis indicates how many paths (on average) are above a certain

value t of pathPopularity(P, S). 77

xvi

6.1 An example of limited extensional coverage, which prevents the iden-

tification of a type path between the entities dbpedia:Vladimir Kramnik

and dbpedia:Russia.” . 87

6.2 FRED result for the definition “Vladimir Borisovich Kramnik is a

Russian chess grandmaster.” . 89

6.3 An example of the enrichment of the entity dbpedia:Vladimir Kramnik

based on its natural language definition available from the property

dbpo:abstract. 92

6.4 Pipeline implemented for automatic typing of DBpedia entities based

on their natural language descriptions as provided in their correspond-

ing Wikipedia pages. Numbers indicate the order of execution of a

component in the pipeline. The output of a component i is passed as

input to the next i+ 1 component. 94

6.5 First paragraph of the Wikipedia page abstract for the entity “Vladimir

Kramnik”. 96

6.6 FRED result for the definition “Chess pieces, or chessmen, are the

pieces deployed on a chessboard to play the game of chess.” 97

6.7 FRED result for the definition “Fast chess is a type of chess game in

which each side is given less time to make their moves than under the

normal tournament time controls of 60 to 180 minutes per player.” . . 100

6.8 Pipeline implemented by CiTalO. The input is the textual context in

which the citation appears and the output is a set of properties of the

CiTO ontology. 110

6.9 RDF graph resulting from FRED for input “It extends the research

outlined in earlier work X” . 113

6.10 Precision and recall according to the different configuration used. . . 116

7.1 UML component diagram of K∼core. 125

xvii

7.2 UML component diagram of the Natural Language Enhancer. 128

7.3 Sub-components of the Knowledge pattern extractor. 130

7.4 Sub-components of the Knowledge pattern extractor. 131

7.5 UML component diagram of the Natural Knowledge Pattern Repository.131

7.6 OSGi Service Gateway Architecture 134

8.1 Aemoo: initial summary page for query “Immanuel Kant”. 143

8.2 Aemoo: browsing relations between “Immanuel Kant” and scientists. 145

8.3 Aemoo: breadcrumb and curiosity . 146

8.4 Number of correct answers per minute for each task and tool. 148

8.5 SUS scores and standard deviation values for Aemoo, RelFinder and

Google. Standard deviation values are expressed between brackets

and shown as black vertical lines in the chart. 149

8.6 Learnability and Usability values and standard deviations. Standard

deviation values are expressed between brackets and shown as black

vertical lines in the chart. 150

xviii

List of Publications

The following is the list of peer-reviewed articles that have been published at con-

ferences and workshops so far during the Ph.D. program.

• A. G. Nuzzolese, A. Gangemi, V. Presutti, P. Ciancarini. Towards the

Natural Ontology of Wikipedia. In International Semantic Web Conference

(Posters & Demos). CEUR-WS, pp. 273-276, Sydney, New South Wales,

Australia. 2013

• A. Gangemi, F.Draicchio, V. Presutti, A. G. Nuzzolese, D. Reforgiato. A

Machine Reader for the Semantic Web. In International Semantic Web Con-

ference (Posters & Demos). CEUR-WS, pp. 149-152, Sydney, New South

Wales, Australia. 2013

• A. G. Nuzzolese, A. Gangemi, V. Presutti, F.Draicchio, A. Musetti, P.

Ciancarini. T̀ıpalo: A Tool for Automatic Typing of DBpedia Entities. In

Proceedings of the 10th Extended Semantic Web Conference. Springer, pp.

253-257, Montpellier, France. 2013

• F.Draicchio, A. Gangemi, V. Presutti, A. G. Nuzzolese. FRED: From Nat-

ural Language Text to RDF and OWL in One Click. In Proceedings of the

10th Extended Semantic Web Conference. Springer, pp. 263-267, Montpellier,

France. 2013

xix

• A. Di Iorio, A. G. Nuzzolese, S. Peroni. Identifying Functions of Citations

with CiTalO. In Proceedings of the 10th Extended Semantic Web Conference.

Springer, pp. 231-235, Montpellier, France. 2013

• A. Di Iorio, A. G. Nuzzolese, S. Peroni. Characterising Citations in Schol-

arly Documents: The CiTalO Framework. In Proceedings of the 10th Extended

Semantic Web Conference. Springer, pp. 66-77, Montpellier, France. 2013

• A. Di Iorio, A. G. Nuzzolese, S. Peroni. Towards the automatic identification

of the nature of citations. In Proceedings of the 3rd Workshop on Semantic

Publishing (SePublica 2013) of the 10th Extended Semantic Web Conference.

CEUR-WS, pp. 63-74, Montpellier, France. 2013

• A. G. Nuzzolese, V. Presutti, A. Gangemi, A. Musetti, P. Ciancarini. Ae-

moo: exploring knowledge on the web, In: Proceedings of the 5th Annual ACM

Web Science Conference. ACM, pp. 272-275, Paris, France, 2013.

• A. Gangemi, A. G. Nuzzolese, V. Presutti, F. Draicchio, A. Musetti, P.

Ciancarini. Automatic typing of DBpedia entities. In: J. Heflin, A. Bernstein,

P. Cudré-Mauroux, editors, Proceedings of the 11th International Semantic

Web Conference (ISWC2012). Springer, pp. 65-91, Boston, Massachusetts,

US, 2012.

• A. G. Nuzzolese. Knowledge Pattern Extraction and their usage in Ex-

ploratory Search. In: J. Heflin, A. Bernstein, P. Cudré-Mauroux, editors,

Proceedings of the 11th International Semantic Web Conference (ISWC2012).

Springer, pp. 449-452, Boston, Massachusetts, US, 2012.

• A. G. Nuzzolese, A. Gangemi, V. Presutti, P. Ciancarini. Type Inference

through the Analysis of Wikipedia Links. In: C. Bizer, T. Heath, T. Berners-

Lee, and M. Hausenblas, editors, Proceedings of the WWW workshop on Linked

Data on the Web (LDOW2012). CEUR-WS, Lyon, France, 2012

xx

• A. G. Nuzzolese, A. Gangemi, V. Presutti, P. Ciancarini. Encyclope-

dic knowledge patterns from wikipedia links. In: L. Aroyo, N. Noy, C.

Welty, editors, Proceedings of the 10th International Semantic Web Confer-

ence (ISWC2011). Springer, pp. 520-536, Bonn, Germany, 2011.

• A. G. Nuzzolese, A. Gangemi, and V. Presutti. Gathering Lexical Linked

Data and Knowledge Patterns from FrameNet. In M. Musen, O. Corcho,

editors, Proceedings of the 6th International Conference on Knowledge Capture

(K-CAP), pp. 41-48. ACM, Banff, Alberta, Canada, 2011.

xxi

xxii

Chapter 1

Introduction

In the vision of the Semantic Web agents are supposed to interact with Web knowl-

edge in order to help humans in solving knowledge-intensive tasks. Though Linked

Data is a breakthrough in Semantic Web it is still hard to build contextualized views

over data, which would allow to select relevant knowledge for a specific purpose, i.e.,

to draw relevant boundaries around data. Let’s suppose we are interested in events

involving Arnold Schwarzenegger in the artistic context. For example, the movies

in which Arnold Schwarzenegger starred before starting his political career.

There are state of the art tools that provide semantic mash-ups, for example

Sig.ma 1 [136] provides a view on the knowledge available in the Web of Data

about Arnold Schwarzenegger as shown in Figure 1. The mash-up proposes all

the RDF triples from Linked Data for the selected topic (i.e., Arnold Schwarzeneg-

ger). However, it is difficult to select the RDF triples that are important in Arnold

Schwarzenegger’s artistic context.

In fact, a system should be able to recognize “starring” situations over the knowl-

edge about Arnold Schwarzenegger available on the Web. Such situations are repre-

sented as structures that relate entities and concepts according to a unifying view,

e.g., Arnold Schwarzenegger having the role of actor in movies during a time period.

1Sig.ma: http://sig.ma

http://sig.ma

2 Chapter 1. Introduction

Figure 1.1: The semantic mash-up proposed by Sig.ma for the entity “Arnold
Schwarzenegger”.

Such structures can be exploited for supporting a variety of tasks at the knowledge

level (in the sense of Newell [103]), such as decision support, content recommenda-

tion, exploratory search, content summarization, question answering, information

visualization, interface design, etc. These knowledge structures have been identified

and described by Fillmore [51] and Minsky [101], who proposed to conceptualize

them as frames. Frames, known as Knowledge Patterns (KPs), have been repro-

posed in Semantic Web [66]. A KP can be informally defined as “a formalized

schema representing a structure that is used to organize our knowledge, as well as

for interpreting, processing or anticipating information”. KPs would allow to view

Linked Data under a common unifying view. In our opinion the need of unifying

views is getting popular also in the mainstream Web. For example Google Search is

starting to provide mash-up snapshots about search topics by exploiting the Knowl-

Chapter 1. Introduction 3

edge Graph. Figure 1 shows the summarization proposed for the entity “Arnold

Schwarzenegger” by Google Search.

Figure 1.2: Information from the Google Knowledge Graph for the entity “Arnold
Schwarzenegger”.

The aim of this thesis is to formalize and implement methods for enabling KP

discovery from the Web of Data. The main problems we have to address are two

and have been identified in the KP vision proposed by[66], i.e.:

• the knowledge soup problem. The Web of Data is a knowledge soup because

because of the heterogeneous semantics of its datasets: real world facts (e.g.

geo data), conceptual structures (e.g. thesauri, schemes), lexical and linguistic

4 Chapter 1. Introduction

data (e.g. wordnets, triples inferred from NLP algorithms), social data about

data (e.g. provenance and trust data), etc.;

• the boundary problem. How to establish the boundary of a set of triples that

makes them meaningful, i.e. relevant in context, so that they constitute a

KP? How do the very different types of data (e.g. natural language struc-

tures, RDFa, database tables, etc.) that are used by semantic web techniques

contribute to carve out that boundary?

Our research is mainly empiric, as KPs are empirical objects [52, 66]. Further-

more, with Linked Data, for the first time in the history of knowledge engineering,

we have a large set of realistic data, created by large communities of practice, on

which experiments can be performed, so that the semantic web can be founded as

an empirical science. This means that the methods we formalize in this dissertation

enable us to make KPs emerge from the Web of Data by looking for recurrent data

organization schemata. Discovered KPs will be formalized as OWL2 ontologies and

published into a catalogue (i.e. ontologydesignpatterns.org) for reuse. The reuse

is generally the main requirement at the base of the need for patterns in software

engineering as well in knowledge engineering. Whereas there are existing resources

that make available artifacts that can be compared to KPs we want to provide a

method that allows their formalization as OWL2 ontologies. We call these artifacts

KP-like artifacts and they are, for example, FrameNet [11] frames, Ontology De-

sign Patterns [65] (ODPs) in the ODP portal 2, or Components in the Component

Library [13] (CLIB). KP-like artifacts are generally defined with a top-down ap-

proach, hence their nature is not empiric. An important research direction that KP

discovery will enable is the validation of top-down defined KPs with respect to those

emerging in bottom-up fashion from data.

The structure of the dissertation is the following:

Chapter 2 - Background. This Chapter outlines the seminal work, bodies of

standards, including a quick introduction to the Semantic Web. Mentions of related

2ODP portal: http://www.ontologydesignpatterns.org.

http://www.ontologydesignpatterns.org

Chapter 1. Introduction 5

work are also featured in other chapters.

Chapter 3 - Knowledge Patterns for the Web. Knowledge Patterns (KPs)

are extensively introduced in this Chapter. Here we provide a definition for KP, we

outline the literature about KPs and we identify the sources that we want to use for

KP discovery.

Chapter 4 - Knowledge Pattern transformation from KP-like sources.

We propose a method for the transformation of KP-like artifacts expressed in het-

erogeneous formats and semantics to KP formalized as OWL2 ontologies.

Chapter 5 - Knowledge Pattern extraction from the Web. Linking things

to other things is a typical cognitive action performed used by humans on the Web

for organizing knowledge. In this chapter we show how to use links among Linked

Data for KP extraction.

Chapter 6 - Enrichment of sources for Knowledge Pattern extraction.

In some cases Linked Data cannot be sufficient for KP extraction. For example,

the limited extensional as well intentional coverage of Linked Data ontologies and

vocabularies is a problem that is part of the knowledge soup of the Web of Data.

In this chapter we present a method for solving this issue by exploiting the richness

of the natural language used for describing things il Linked Data. For example,

descriptions available in annotations or in textual corpora that are eventually related

to Linked Data (e.g., Wikipedia 3.

Chapter 7 - A software architecture for KP discovery and reuse. In this

Chapter we focus on K∼ore and K∼tools. K∼ore is a software architecture we have

designed for addressing KP discovery. K∼tools are a set of tools that implement

K∼ore.

3Wikipedia: http://en.wikipedia.org/.

http://en.wikipedia.org/

6 Chapter 1. Introduction

Chapter 8 - Aemoo: Exploratory search based on Knowledge Patterns.

We present a tool, i.e., Aemoo [108] 4 which implements an exploratory search system

based on the exploitation of KPs. Hence, we provide an example of KP reuse in

KP-aware appliaction.

Chapter 8 - Conclusion and future work. In this Chapter we outline final

remarks and ideas for future work.

4Aemoo: http://www.aemoo.org

http://www.aemoo.org

Chapter 2

Background

In this Chapter we introduce the background that this work is based on.

2.1 The Semantic Web

In the early sixties the concept of Semantic Network Model (SNM) emerged from dif-

ferent communities like cognitive sciences [38], linguistics [120] and psychology [39].

A SNM was conceptually introduced as a means for representing semantically struc-

tured knowledge. In 2001, Berners-Lee, Hendler and Lassila published an arti-

cle [18] that followed the direction outlined by SNMs and anticipated an ongoing

and foreseen transformation of the Web as it was known then. Namely, this vi-

sion extended the network of hyperlinked human-readable Web pages by inserting

machine-readable metadata about pages and how they were related to each other.

The term coined for this vision was Semantic Web, meaning in the authors’ own

words:

a web of data that can be processed directly and indirectly by machines.

The Semantic Web is a vision for a Web in which computers become capable

of analyzing all the data, the contents, the links, and the transactions between

people and computers. Clearly, this vision implies lending the Web to machine-

processing techniques that target human needs. Web laypersons would benefit from

8 Chapter 2. Background

this extended Web by being able to retrieve, share and combine information more

easily than on the traditional Web, unaware that this greater ease is guaranteed by

the ability to unify the data behind the information presented to them. In fact, the

Semantic Web brings structure to the meaningful content of Web pages, creating

an environment where software agents roaming from page to page can readily carry

out sophisticated tasks for users. For example, an agent coming to the clinic’s Web

page will know not just that the page has keywords such as “treatment, medicine,

physical, therapy” (as might be encoded in HTML) but also that a certain Dr.

Hartman works at this clinic on Mondays, Wednesdays and Fridays and that a

script takes a date range in yyyy-mm-dd format and returns appointment times.

Another simple example is about a customer who is searching for a record album

to purchase. The album is found to be sold by a digital music store as MP3 and

by an online retail store on CD and vinyl, and also three second-hand copies are

sold on an online auction service. In a traditional Web these would be six distinct

objects, while a Semantic Web, the user would be given a unique identifier of that

album that is valid for the whole Web, and use it in order to be notified of any

digital downloads, retail availability, second-hand copies, auctions, or special editions

in any version and country. Besides this consumer-centered example, the endless

application areas and strategies of the Semantic Web also involve the unification of

knowledge for life sciences and healthcare, but also coordinating distributed service-

oriented architectures (SOA) for processes in eGovernment as well as molecular

biology. For an overview of the active and potential application areas and scenarios

of the Semantic Web and related technologies, we refer to existing surveys and in-use

conference proceedings in literature [30, 49, 25, 72].

Architecturally the Semantic Web is thought to be an extension of the traditional

Web. Figure 2.1 shows a reference implementation of the Semantic Web stack at

the time of this writing. The W3C has issued technological recommendations that

cover mainly syntactical and interchange standards, its cornerstones being:

• a schema of uniform identifiers for all the things that can be represented and

referenced, i.e. the Uniform Resource identifier (URI) [17];

Chapter 2. Background 9

Figure 2.1: Status of the Semantic Web stack implementation as of 2013.

• a data interchange format based on a simple linguistic paradigm (RDF) [93];

• a vocabulary for the above interchange format that allows a simple organiza-

tion form for knowledge (RDFS) [27];

• languages for representing complex knowledge (OWL) [2] and inference rules

for execution (SWRL) [82] and interchange (RIF) [85];

• a language for querying data in the agreed interchange format (SPARQL)

[119].

Many of the above formalisms incorporate the XML markup language as the

base syntax for structuring them1, plus a body of knowledge representation formats

and query languages.

1In response to the asserted redundancy of XML notation, standardization work is underway
for setting JSON as an alternate exchange syntax for serializing RDF, thus leading to proposals
such as RDF/JSON and JSON-LD [144].

10 Chapter 2. Background

As it turns out, the higher-order layers of the stack covering user interaction, pre-

sentation, application (one example being the support for compressed RDF datas-

treams), trust and provenance are going largely uncovered, and so is the vertical,

cross-layer security and privacy component. This has raised concerns over the short-

term feasibility of a secure [109] and interactive [76] Semantic Web. However, efforts

within and outside the W3C are being undertaken for establishing de facto standards

with the potential for becoming recommendations and completing the Semantic Web

stack reference implementation.

Figure 2.1 shows the architectural stack, which includes a set of high-level knowl-

edge representation structures. This set of structures allowed for ontologies in all of

its revisions since 2001, alongside rule languages and as an extension of taxonomies.

Ontologies were always somehow legitimated as an integrating and essential way to

construct formal structures that could serve as a logical backbone to all the refer-

ences published by peers on the Web. This notion of ontologies and their evolving

trend towards networked, interconnected structures has encouraged us to further

study and support this field in the present work.

The Semantic Web stack is but a portion of the Semantic Web vision conceived by

Berners-Lee et al.: it describes the basis of any possible protocol suite that conforms

to its technological specifications, but does not cover the principles by which data

should be generated, formats aside. To that end, a method for publishing data

accordingly was outlined and called Linked Data (LD). The principles behind

this method are as simple as using HTTP URIs for identifying things, responding

to standard lookups (e.g. SPARQL or URI dereferencing) with standard formats

(e.g. RDF) and curating cross-links between things [16]. In order to encourage the

adoption of these principles and maintain a harmonic data publishing process across

the Web, the Linking Open Data (LOD) community project brings guidelines and

support to Linked Data publishing and performs analysis and reporting on the state

of affairs of the so-called “Linked Data cloud” 2.

2Linked Data: http://linkeddata.org

http://linkeddata.org

Chapter 2. Background 11

Figure 2.2: The latest graphical snapshot taken by the Linking Open Data com-
munity.

The most recent report from the LOD group is summarized by the picture in

figure 2.2, where each node represents a dataset published by the LD principles, and

a directed arc between two nodes indicates that a reasonable amount of entities in

one dataset is described with relations that link them to entities in the other dataset.

The purpose of reproducing the LOD cloud in so small a scale in this dissertation

is clearly not to illustrate who the players and participants in the LOD cloud are,

but to provide a visual overview of how distributed and interlinked it is, as well as

the apparent linking trend to a limited range of datasets. Related figures report 295

datasets and over 31 billion statements, or triples, over 42% of which coming from

the eGovernment domain and 29% from the geographic and life science domains,

totaling over 53 million cumulative outgoing links [20].

12 Chapter 2. Background

2.2 Ontologies and Ontology Design Patterns

Historically ontology, listed as part of metaphysics, is the philosophical study of the

nature of being, becoming, existence, or reality, as well as the basic categories of

being and their relations. Ontology deals with questions concerning what entities

exist or can be said to exist, and how such entities can be grouped, related within

a hierarchy, and subdivided according to similarities and differences.

While the term ontology has been rather confined to the philosophical sphere in

the recent past, it is now gaining a specific role in a variety of fields of Computer

Science, such as Artificial Intelligence, Computational Linguistics, and Database

Theory and Semantic Web. In Computer Science the term loses part of its meta-

physical background and, still keeping a general expectation that the features of

the model in an ontology should closely resemble the real world, it is referred as a

formal model consisting of a set of types, properties, and relationship types aimed

at modeling objects in a certain domain or in the world. In early ’90s Gruber [68]

gave an initial and widely accepted definition:

an ontology is a formal, explicit specification of a shared conceptuali-

sation. An ontology is a description (like a formal specification of a

program) of the concepts and relationships that can formally exist for an

agent or a community of agents

According to Guarino [71] a conceptualization

contains many “world structures”, one for each world. It has both ex-

tensional and intentional components

The initial definition of ontology was further elaborated upon by Gruber, who

in 2009 wrote [69]:

...an ontology defines a set of representational primitives with which to

model a domain of knowledge or discourse. The representational prim-

itives are typically classes (or sets), attributes (or properties), and re-

lationships (or relations among class members). The definitions of the

Chapter 2. Background 13

representational primitives include information about their meaning and

constraints on their logically consistent application.

Computational ontologies in the context of information systems are artifacts that

encode a description of some world (actual, possible, counterfactual, impossible, de-

sired, etc.), for some purpose. They have a (primarily logical) structure, and must

match both domain and task: they allow the description of entities whose attributes

and relations are of concern because of their relevance in a domain for some pur-

pose, e.g. query, search, integration, matching, explanation, etc. [65] Ontology in

classical knowledge bases are typically composed by a terminological component and

an assertional component, i.e., TBox, and ABox respectively. The TBox specifies

the terminology used for modeling a specified conceptualisation of the world. The

ABox expresses TBox-compliant statements that describe the population of that

world. The distinction between TBox and ABox is not strict and still an open issue

in knowledge representation being a matter of distinguishing between intensional,

i.e., part of the TBox, and extensional, i.e., part of the ABox, knowledge [131].

Ontologies can be distinguished in terms of the level of knowledge they cap-

ture and represent. Traditionally there are two macro-categories of ontologies: (i)

foundational or top-level ontologies and (ii) domain or lower-level ontologies.

2.2.1 Ontology Design Patterns

Before introducing the notions of design patterns and ontology design patterns it

is useful to focus on the main motivation that drove forward design patterns and,

then, ontology design patterns. This motivation is the need for reusable solution

archetypes at design time. The concept of reuse has been deeply investigated in

literature, especially in Software Engineering [110, 84, 86]. The main benefit of

reuse is to improve the quality of a work by reducing the complexity of the task and

thereby possibly also the time and effort needed to perform it. The concept of reuse

plays a crucial role in software engineering processes and it is a practice that a good

designer should adopt for optimizing the quality of the software. Sutcliffe in [110]

14 Chapter 2. Background

gives an overview about the concept of reuse: why it is so desirable, but also why it

is a so hard to achieve. The author states that the real motivators for reuse are:

• to share good ideas;

• to save time and costs by developing products from ready-made components;

• to improve the design process by reuse of good ideas and templates;

• to improve quality by certified, reliable components.

The main cause of failure of a reuse process seems to depend on social and be-

havioural aspects related to the designer, e.g., the lack of motivation among design-

ers. The effects of the lack of reuse might result devastating and compromise the

final success of a software. For example, it is disheartening the tendency towards

“reinventing the wheel” of many designer based on the belief that re-design solu-

tions is inherently better suited, socially convenient, more secure or more controlled

than reusing existing solutions. The reuse process according to Sutcliffe [110] is like

a coin whose faces are the “design by reuse” process and the “’design for reuse”

process (cf. figure 2.3). On one hand, the design for reuse is the process which

expects the generation of reusable artifacts and the population of knowledge base

of reusable artifacts by users (typically domain experts). On the other hand, the

design by reuse is the process which expects the reuse of the artifacts that com-

ply with certain requirements and are available in a shared knowledge repository of

components. Hence, both processes are complementary as they contribute together

in the achievement of the reuse of knowledge,

The term design pattern was introduced in the seventies by the architect and

mathematician Christopher Alexander. Alexander in [4] argues that a good archi-

tectural design can be achieved by means of a set of rules that are packaged in the

form of patterns, such as “courtyards which live”, “windows place”, or “entrance

room”. Design patterns are then assumed as archetypal solutions to common and

frequently occurring design problems. In this idea the notion of reuse of patterns is

implicit. In fact, the architectural task that designers have to address can be easily

Chapter 2. Background 15

(a) The design for reuse process.

(b) The design by reuse process.

Figure 2.3: The two faces of the coin consisting in the reuse process [110].

16 Chapter 2. Background

solved by reusing and applying solutions that have commonly accepted, validated

and recommended for the same problem.

Software Engineering [57, 143, 96] has eagerly borrowed this notion of design

patterns (especially in the scope of software reuse) in order to support good design

practice, to teach how to design good software, and to provide standards for software

design. Some authors state that design patterns exist because they emerge from the

experience and the practice of designers in a sort of bottom-up fashion. For example,

Gamma et al. [57] argue that

. . . It is likely that designer do not think about the notation they are

using for recording the design. Rather, they look for patterns to match

against plans, algorithms, data structures, and idioms they have learned

in the past. Good designer, it appears, rely on large amount of desing

experience, and this experience is just as important as the notations for

recording designs and the rules for using those notations. . .

We bear out this observation as a general hypothesis we espouse in this thesis is the

cognitive grounding of using patterns for organizing knowledge by humans. Evidence

of these patterns can emerge from a variety of different cognitive tasks, such as

software design, ontology design, knowledge organization, knowledge interaction,

etc.

Coming back to the notion of design patten in literature, we observe how the

intended meaning of a design pattern coming from different area, e.g., architecture,

software engineering, etc.), is stated as a reusable solution to a commonly occurring

design problem within a given domain or context. It is important to remark that

design patterns in software engineering do not specify implementation details, but

give only to the designer an abstract solution schema, which in turn can be adopted

for implementing a multiplicity of software systems that share the same design prob-

lems. This ensure wide applicability and reuse of patterns in software engineering

especially for object-oriented design.

Ontologies are artifacts that encode a description of some world. Like any arti-

fact, ontologies have a lifecycle: they are designed, implemented, evaluated, fixed,

Chapter 2. Background 17

exploited, reused, etc. Despite the original ontology engineering approach, when

ontologies were seen as “portable” components [68], and its enormous impact on

SemanticWeb and interoperability, one of the most challenging areas of ontology

design is reusability [65]. Presutti et al. [118] define an ontology design pattern

(ODP) as

. . . a modeling solution to solve a recurrent ontology design problem. It

is an dul:InformationObject that dul:expresses a DesignPatternSchema

(or skin). Such schema can only be satisfied by DesignSolutions. Design

solutions provide the setting for oddata:OntologyElements that play some

ElementRole(s) from the schema. . . .

In the definition above dul and oddata identify the namespace prefixes which belong

to the DOLCE+DnS ontology 3 [60] and to the C-ODO ontology 4 [61] respec-

tively. An information object is a piece of information encoded in some language,

and a design pattern schema is the description of an ontology design pattern. Sev-

eral types of ODPs have been identified so far [118, 65], and basically they can be

grouped into six families (cf. Figure 2.4): Structural OPs, Correspondence OPs,

Content OPs (CPs), Reasoning OPs, Presentation OPs, and Lexico- Syntactic OPs.

Lexico-syntactic patterns allows to generalize and extract some conclusions about

the meaning expressed by language constructs. They connect language constructs,

mainly in natural language, to ontological constructs and consist of certain types of

words that follow a specific order. They are formalized basing on some notations

used for describing the syntax of languages, e.g., the BNF notation, and have been

proposed by Hearst [74]. Structural pattern can be either logical patterns or archi-

tectural patterns. Logical patterns are aimed at specifying certain logical structures

that help to overcome design expressivity problems directly connected with the lack

or the limitation of the primitives of the representation language, e.g., it does not

directly support certain logical constructs. If the representation language is OWL,

3DOLCE+DnS: http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
4C-ODO: http://www.loa.istc.cnr.it/ontologies/OD/odSolutions.owl

http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
http://www.loa.istc.cnr.it/ontologies/OD/odSolutions.owl

18 Chapter 2. Background

Figure 2.4: ODPs families as defined by [118].

the canonical example of a logical pattern is the n-ary relation pattern (cf. fig-

ure 2.5), which overcomes the intrinsic limitation of the OWL language primitives

of representing only binary relations. Architectural patterns are defined in terms of

composition of logiacal patterns and they address the problem of helping designer

in expressing how the ontology they are modeling should look like. Example of ar-

chitectural patterns are the Taxonomy and the Modular Architecture. Presentation

patterns deal with usability and readability of ontologies from a user perspective.

They include naming conventions an annotation schemas for ontologies, and are to be

seen as good practices on how to document ontologies and their elements. Reasoning

patterns provide facilities in order to obtain certain kind of reasoning over ontolo-

gies, such as classification, subsumption, innheritance, etc. Reasoning patterns have

been also called normalizations by Vrandečić [141]. Correspondence patterns can be

reengineering patterns or mapping patterns, where reengineering patterns focus on

correspondences between different formalisms for transforming some source model,

Chapter 2. Background 19

Figure 2.5: The N-ary relation logical pattern expressed with UML notation.

even a non-ontological model, into another ontology representation. Mapping pat-

terns on the other hand are related to the possible correspondences between two or

more ontologies, as investigated by Scharffe et al. [125]. Content patterns encode

conceptual, rather than logical design patterns. In other words, while logical pat-

terns solve design problems independently of a particular conceptualization, content

patterns propose patterns for solving design problems for the domain classes and

properties that populate an ontology, therefore addressing content problems [58].

modeling. Content Patterns help in solving problems coded as specific tasks (or

use case) in specific domains. A certain domain may deal with several use cases,

which can be seen as different scenarios. Similarly a certain use case can be found

in different domains, e.g., different domains with a same “expert finding” scenario.

A typical way of capturing use cases is by means of so called competency ques-

tions [70]. Competency questions are aimed at validating the association between

content patterns and specific tasks. The relation between competency questions and

contente patterns is strict. In fact, Gangemi and Presutti [65] define content pat-

terns based on their ability to address a specific set of competency questions, which

represent the problem they provide a solution for. An example of a content pattern

20 Chapter 2. Background

is the agent role (cf. figure 2.6). The pattern states allows to model ontologies that

require to classify agents by their roles and to. The agent role content pattern is a

specialization of the object role pattern.

Figure 2.6: The Agent-Role content pattern expressed with UML notation.

2.2.2 Pattern-based methodologies

ODPs enable pattern-based methodologies in ontology engineering. These method-

ologies formalize approaches and provides facilities aimed at the extensive re-use of

ODPs for modeling ontologies. For example, ODPs can reused by means of their

specialization or composition according to their types and to the scope of the new

ontology that is going to be modeled.

The Ontology Pre-Processor Language (OPPL) [45] is a domain-specific language

based on the Manchester OWL Syntax [80]. OPPL allows to specify modeling

instructions (macros) in order to manipulate ontologies in terms of add/remove

axioms on to/from entities. The result of the composition of this axioms on entities

are called modelling modules, i.e., ODPs, that can be applied or re-used in ontology

modeling processes.

The eXtreme Design (XD) methodology [115, 22] is another state of the art

pattern-based design methodology that adopts competency questions as a reference

source for the requirement analysis. XD associate ODPs with generic use cases (cf.

figure 2.7) in the solution space. Instead, the problem space is composed of local use

cases that provide descriptions of the actual issues. Use cases represent problems to

Chapter 2. Background 21

which ODPs provide solutions for. Both global and local use cases are competency

questions expressed in natural language. The separation of use cases and the way

in which the latter are expressed make possible to match local use cases against

global use cases. This matching conveys suitable ODPs to be exploited for solving

modelling problems.

Figure 2.7: The eXtreme Design methodology [115].

Finally, the Pattern-based Ontology Building Method for Ambient Environments

(POnA) [91] consists of four engineering phases: Requirements, Design, Implemen-

tation and Test. Each phase is subdivided into activities, contains decision points,

and provides clearly defined outcomes. The re-use of ODPs is integrated into the

design phase. Again, the more suitable ODPs for modeling an ontology for a specific

problem are selected during the design phase by exploiting competency questions.

Competency questions that outline problems are matched against those associated

to Prototypical Ontology Design Patterns (PODPs), which are grounded to ODPs.

2.3 Ontology Mining

Research focusing on feeding the Web of Data is typically centered on extract-

ing knowledge from structured sources and transforming it into Linked Data. No-

tably, [88] describes how DBpedia is extracted from Wikipedia, and its linking to

other Web datasets.

22 Chapter 2. Background

Another perspective is to apply knowledge engineering principles to linked data

in order to improve its quality. [132] presents YAGO, an ontology extracted from

Wikipedia categories and infoboxes that has been combined with taxonomic relations

from WordNet. Here the approach can be described as a reengineering task for

transforming a thesaurus, i.e. Wikipedia category taxonomy, to an ontology, which

required accurate ontological analysis.

Relevant research has been conducted in Ontology learning and population typ-

ically by hybridizing Natural Language Processing (NLP) and Machine Learning

(ML) methods. These approaches usually require large corpora, sometimes manu-

ally annotated, in order to induce a set of probabilistic learning rules. [42] provides

an exhaustive survey of Ontology Mining (OM) techniques. OM includes Ontology

Learning (OL). OL research aims to develop algorithms that extract ontological el-

ements from different kinds of input, i.e. “learning” since many approaches apply

some kind of machine learning (ML), and semi-automatically compose an ontology

from those elements.

Maedche [92] and Cimiano [32] argue that OL is composed of a set of methods

and algorithms which enable to extract more expressive elements and include them

in a proposed ontology.

Most of the OL rely on techniques developed in other research fields, e.g., Nat-

ural Language Processing, Machine Learning, Data Mining, etc. Some of the most

important basic ideas are presented below in brief.

The text expressed as natural language is a typical input for extracting ontologi-

cal terms. Most commonly NLP-based methods start by extracting terms according

to their frequency of occurrence in the texts, although this frequency count is usually

modified to represent some notion of relevance. For example Navigli et al. [102] use

a classical TFIDF-measure [10] (term frequency, inverse document frequency) from

Information Retrieval (IR) in order to filter out words that are common in all texts,

thus not domain specific, concepts that are only used in one single document and

not in the whole corpus, and terms that are simply not frequent enough.

Different approaches to term detection are those based on recognizing existing

Chapter 2. Background 23

linguistic patterns that are part of important linguistic constructs [145] and those

based on discovering multi-word terms. About the latter a relevant example is [54]

that proposes C/NC-value method, which enables to assess the “termhood” of a set

of words by studying both its frequency in the text, but also its occurrence as a

subset of of other candidate terms, the number of such occurrences, and the length

of the candidate term. The NC-value in addition incorporates the term contexts,

surrounding words, in the assessment. By using such methods not only single word

terms but compound terms can be extracted, as candidate lexical realisations of

concepts.

Another important problem of OM is the synonym detection, i.e., the problem

of clustering terms into sets of synonyms. WordNet [48] is the most used resource

for synonym detection. WordNet collects terms in so called “synsets”. A synset is

a collection of terms that have a similar meaning in a certain context. Until re-

cently concept formation has been mostly seen as the process of term clustering and

synonym detection. Recent approaches have however attempted to extract more

complex concept definitions from text. An example of such a method is the LExO

method suggested by Völker [138] where complex concept definitions and restric-

tions are extracted from natural language definitions and descriptions of terms, for

example in sentences extracted from dictionaries.

Another problem in OM that is the taxonomy induction. The taxonomy in-

duction is the task of inducing a taxonomy for example starting from a natural

language text or from a given ontology, i.e. extract subsumption relations between

the formed concepts. One of the first solution proposed to taxonomy induction is

SVETLAN [43], which divides a text into into so called thematic units, i.e. different

contexts. The sentences in the texts are parsed and specific patterns of words are

extracted, the nouns in these sentence-parts are then aggregated into groups de-

pending on their use with the same verb and the thematic unit or group of thematic

units it belongs to. Gamallo et al. [56] use a similar method, where sentences are

parsed, syntactic dependencies extracted, which can then be translated into seman-

tic relations using predefined interpretation rules. Formal concept analysis (FCA)

24 Chapter 2. Background

is another approach that has been used in addition to the similarity and clustering

techniques listed above, as for example presented by Cimiano et al. [33], and Völker

and Rudolph [140]. In order to apply FCA for hierarchy induction the verbs used

in connection with the terms, representing the concepts, to be ordered are collected

as attributes of the term. Applying FCA on these attribute vectors will construct a

concept lattice, which is transformed to a concept hierarchy, where the leaves are the

terms and the intermediate nodes are named by the verbs applicable to the terms

below the node in the concept hierarchy.

A very common approach to relation extraction is the used of lexico-syntactic

patterns. Such patterns were first proposed in 1992 by Hearst [74], and are to-

day usually referred to as “Hearst-patterns”. For example a subsumption rela-

tion is recognized in the sentence “animals such as cats and dogs” (we can con-

clude that cats are a kind of animal) by matching a lexicosyntactic pattern like

NP0{NP1, NP2, ...(and | or)}NPn, where NPi stands for an arbitrary noun phrase.

Similar patterns could also be developed for other types of relations, and even for

domain specific relations. Another popular pattern, or rather heuristic, is the com-

monly used so called “head heuristic”, sometimes also denoted “vertical relations

heuristic”. This heuristic is very simple but quite useful for OM. The basic idea

is that modifiers are added to a word in order to construct more specific terms,

i.e. the term “graduate student” consists of the term “student” and the modifier

“graduate”. Using the head heuristic we can derive that a “graduate student” is

a kind of “student”. Text2Onto [34] is a system which generates a class taxonomy

and additional axioms from textual documents and it is intended to support both

constructing ontologies and maintaining them. The idea is to get better extraction

results and to reduce the need for an experienced ontology engineer by using sev-

eral different extraction approaches and then combining the results. FRED [117] is

an online tool and an algorithm for converting text into internally well-connected

and quality linked-data-ready ontologies in web-service acceptable time. It imple-

ments a novel approach for ontology design from natural language sentences by

combining Discourse Representation Theory (DRT), linguistic frame semantics, and

Chapter 2. Background 25

Ontology Design Patterns (ODP). The tool is based on Boxer which implements a

DRT-compliant deep parser. The logical output of Boxer enriched with semantic

data from Verbnet or Framenet frames is transformed into RDF/OWL by means

of a mapping model and a set of heuristics following ODP best-practice of OWL

ontologies and RDF data design

2.4 Knowledge patterns

We adopt a notion of KP that derives from the notion of frame [101] and is defined

by [66]. A KP can briefly be defined as “a formalized schema representing a struc-

ture that is used to organize our knowledge, as well as for interpreting, processing

or anticipating information”. [66] argues that Knowledge Patterns (KPs) are basic

elements of the Semantic Web as an empirical science, which is the vision motivating

our work. [23, 114] present experimental studies on KPs, focusing on their creation

and usage for supporting ontology design with shared good practices. Such KPs are

usually stored in online repositories5. Contrary to what we present in this work,

KPs are typically defined with a top-down approach, from practical experience in

knowledge engineering projects, or extracted from existing. Examples are the Com-

ponent Library [13], which provides formal representations of frames; the FrameNet

project [11], a lexical resource that collects linguistic frames, each described with

its semantic roles, and lexical units (the words evoking a frame); and the Ontology

Design Patterns portal 6, which provides a collection of ontology patterns and a

collaborative platform for discussing about them.

Knowledge Patterns will be extensively discussed in next chapter (cf. Chapter 3)

5E.g. the ontology design patterns semantic portal, http://www.ontologydesignpatterns.org
6http://www.ontologydesignpatterns.org

h

26 Chapter 2. Background

Chapter 3

Knowledge Patterns for the Web

This Chapter is aimed at clarifying what we mean by Knowledge Pattern (KP).

Hence, we:

• provide a definition for KP. This definition is the result of work we did in [106]

(cf. Section 3.1);

• introduce the various definitions for KP available in literature (cf. Section 3.2);

• discuss the sources we want to use for KP discovery, i.e., KP-like artifacts

already available (e.g. FrameNet frames) and Linked Data (cf. Section 3.3).

3.1 A definition for Knowledge Pattern

The Web is the largest knowledge repository ever designed by humans and also a

melting pot of incompatible platforms, multiple structuring levels, many presen-

tation formats, myriads of conceptual schemata for data, and localized, peculiar

content semantics. This heterogeneity has been referred to as the knowledge soup

of the Web [66].

In the vision of the Semantic Web [18] agents are supposed to help humans in

accessing, interacting and exploiting Web knowledge. Linked Data [19] is a break-

through in the Semantic Web providing access and query support to a number of

structured data sets based on URIs [17] and RDF [73]. Nonetheless, it is hard to

28 Chapter 3. Knowledge Patterns for the Web

build contextualized views over data, which would allow to select relevant knowledge

for a specific purpose, i.e., to draw relevant boundaries around data.

In the example about Arnold Schwarzenegger introduced in Chapter 1 we argued

about the need for knowledge structures (i.e., KPs) able to select relevant knowledge

and to relate entities and concepts according to a unifying view. The aim of this

work is to identify methods for the discovery of KPs from the knowledge soup found

in the Web.

The following is the definition that we introduced elsewhere [106] and that we

will use in this thesis to refer to KPs.

Definition 1 A Knowledge Pattern is a small, well connected and frequently occur-

ring unit of meaning, which provides a symbolic schema with a semantic interpreta-

tion. The unit of meaning a KP identifies results

1. task-based;

2. well-grounded;

3. cognitively sound.

The first requirement comes from the ability of associating ontologies, vocabular-

ies or schemas with explicit tasks. These tasks are often called competency questions

[70] and are the basis for a rigorous characterization of the problems that a schema

is able to solve. Hence, if a schema is able to answer a typical question that an

expert or a user would like to make, it is a useful schema.

The second requirement is related to the fact that KPs are recurrent emerging

schemata used for organizing knowledge in the Web. They are grounded in every

manifesation of a schemata of which they provide a formalization. This manifesation

can be expressed in a variety of Web formats, such as an RDF graph, a textual doc-

ument, an XML file, etc. Hence, KPs provide a symbolic schema, formal semantics

consisting in the meaning of the pattern as well as access to big data.

The third requirement comes from the expectation that schemas that more

closely mirror the human ways of organizing knowledge are better. Unfortunately,

Chapter 3. Knowledge Patterns for the Web 29

evidence for this expectation is only episodic until now for RDF or OWL vocabularies[66].

Nevertheless, a recent crowdsourced experiment [53] seems to prove the cognitive

soundness of FrameNet [11] frames. FrameNet frames are defined with a top-down

approach and the experiment shows that the same frames as in FrameNet can emerge

in a bottom-up fashion by crowdsourcing through the annotation of the frame el-

ements. In Figure 3.1 it is depicted an example of a KP for representing cooking

situations. Such KP, represented by using an UML notation, allows us to express

the main concepts that are typically associated to cooking situations, such as cook,

recipe, ingredient, etc. Additionally the KP has different and heterogeneous mani-

festations over data, such as a picture of a cook in a cooking act, a recipe in natural

language, or an HTML page with RDFa [1] about a recipe. A KP has its own logical

form and representation, which allows (i) to extensionally access the heterogeneous

manifestations of a KP over data, and (ii) to give an intensional interpretation to

heterogeneous symbolic patterns that formalize similar conceptualizations with re-

spect to a KP. Addressing semantic heterogeneity requires to provide homogeneous

access to heterogeneous resources by focusing on the “knowledge-level”, as it was

introduced by Newell [103], who contrasted it to the basic “symbol level” of data

and content. We believe that enabling the exploitation of KPs in the Web opens

new perspectives towards the realization of the vision of the Semantic Web figured

out by Tim Berners-Lee [18]. Hence, we focus on analyzing the Web knowledge in

order to make KP empirically emerge.

3.2 Knowledge Patterns in literature

A general formal theory for Knowledge Patterns (KPs) still does not exist. Different

independent theories have been developed so far and KPs have been proposed with

different names and flavours across different research areas, such as linguistics [51],

artificial intelligence [101, 13], cognitive sciences [15, 55] and more recently in the

Semantic Web [66]. According to [66] it is possible to identify a shared meaning

for KPs across these different theories, that can be informally summarized as “a

30 Chapter 3. Knowledge Patterns for the Web

Figure 3.1: An example of a KP for representing cooking situation and its possible
manifestation over data.

Chapter 3. Knowledge Patterns for the Web 31

structure that is used to organize our knowledge, as well as for interpreting, pro-

cessing or anticipating information”. In linguistics KPs were introduced as frames

by Fillmore in 1968 [51] in his work about case grammar. In a case grammar, each

verb selects a number of deep cases which form its case frame. A case frame de-

scribes important aspects of semantic valency, verbs, adjectives and nouns. Fillmore

elaborated further the initial theory of case frames and in 1976 he introduced frame

semantics [52]. According to the author a frame is

any system of concepts related in such a way that to understand any one

of them you have to understand the whole structure in which it fits; when

one of the things in such a structure is introduced into a text, or into a

conversation, all of the others are automatically made available.

A frame is comparable to a cognitive schema. It has a prototypical form than can

be applied to a variety of concrete cases that fit this prototypical form. According

to cognitive science theories [15] humans are able to recognize frames, to apply them

several times, in what are called manifestations of a frame, and to learn new frames

that became part of they background. Hence, frames (aka KPs) are cognitively rele-

vant, since they are used by humans to successfully interact with their environment,

when some information structuring is needed. This holds for perceiving, searching,

browsing, understanding a scene, planning an event, talking about some facts, etc.

For example, if a human enters a room with people sitting around a table, and a

person speaking to the group while projecting some slides, that human would im-

mediately recognize that there is a working meeting going on in the room. On the

other hand, if, when entering a room, the setting is constituted by people sitting and

eating around a table, and a person having some packed gifts at hand, the human

would typically recognize a birthday party situation. The cognitive mechanism that

makes a human easily and quickly recognize those situations is based on her ability

to associate them to more abstract patterns that she has learned by experience.

In computer science frames were introduced by Minsky [101], who recognized

that frames convey both cognitive and computational value in representing and

32 Chapter 3. Knowledge Patterns for the Web

organizing knowledge. The notion of frame, aka knowledge pattern, was formalized

by Minsky [101] as:

a remembered framework to be adapted to fit reality by changing details

as necessary. A frame is a data-structure for representing a stereotyped

situation, like being in a certain kind of living room, or going to a child’s

birthday party.

In knowledge engineering the term Knowledge Pattern was used by Clark [36].

However, the notion of KP Clark introduces is slightly different from frames as

introduced by Fillmore and Minsky. In fact, according to Clark, KPs are first order

theories which provide a general schema able to provide terminological grounding

and morphisms for enabling mappings among knowledge bases that use different

terms for representing the same theory. Though Clark recognizes KPs as general

templates denoting recurring theory schemata, his approach is similar to the use of

theories and morphisms in the formal specification of software. Moreover, Clark’s

KPs lack the cognitive value as it is for frames. This makes difficult to use this

formalization of KPs for representing contextual relevant knowledge.

More recently Knowledge Patterns have been reproposed in the context of the

Semantic Web by Gangemi and Presutti in [66]. Their notion of KPs encompasses

those proposed by Fillmore and Minsky and goes further envisioning KPs as the

research objects of the Semantic Web as an empirical science. The empirical nature

of KPs was envisaged by Fillmore in [52], who stated that frame semantics comes

out of traditions of empirical semantics rather than formal semantics. Gangemi

and Presutti argue that a KP can be modeled as a polymorphic relation that takes

arguments from a number of façades, i.e., a type of knowledge that can be associated

with a frame, and can be used to motivate, test, discover, and use it.

Figure 3.2 shows a representation of a KP with its façades. Namely, they are [66]:

• Vocabulary : a set of terms that can be structured with informal relations,

for example, for a KP about researchers, the following set of terms could be

activated: Person, Role, ResearchInterest, ResearchGroup, Name;

Chapter 3. Knowledge Patterns for the Web 33

Figure 3.2: The façades of a knowledge pattern [66].

• Formal representation: axioms that provide a formal semantics to the vocab-

ulary;

• Inferential structure: rules that can be applied to infer new knowledge from

the formal representation of the KP;

• Use case: requirements addressed by the KP. They can be expressed in various

forms e.g., including one or more competency questions [70];

• Data that can be used to populate an ontology whose schema is a formal

representation for the KP;

• Linguistic grounding : textual data that express the meaning of the KP;

• Interaction structure: mappings between elements in the formal representation

of a KP, and interface or interaction primitives;

• Relations to other KPs;

34 Chapter 3. Knowledge Patterns for the Web

• Annotations: provenance data, comments, tags, and other informal descrip-

tions not yet covered by any existing façades.

3.3 Sources of Knowledge Patterns

We want to design and develop methods for discovering KPs from the Web soup.

We distinguish between two main sources of KPs in the Web:

• sources that already provide formalizations of KP-like artifacts. These are typ-

ically designed with a top-down approach and are expressed in heterogeneous

formats, such as, frames in FrameNet [11], Ontology Design Patterns [65], or

components in the Component Library [13]. We refer to methods based on

these kind of sources as KP transformation. In fact, these methods are aimed

at homogenizing existing alternative conceptual representations of a KP-like

artifact under a unifying view, i.e. a KP. a common ;

• the Web of Data aka Linked Data [19], which provides large datasets designed

by communities of experts, described with RDF and linked among them by

exploiting URIs. We refer to methods based on these kind sources as KP

extraction because they are grounded on bottom-up approaches that require

empirical analysis for identifying recurrent and contextual relevant structures

by observing how data are organized in order to infer what is part of a certain

KP.

Figure 3.3 shows the basic idea of this distinction. The box named Source enrichment

shown in figure identifies the methods that deal with the heterogeneity of The Web

of Data. This heterogeneity is about semantics, formats and also about Linked Data

that are not necessarily clean, optimized, or extensively structured. In next sections

we detail the approach we have used for KP transformation and extraction. Then we

remand to Chapter 4 for details about KP transformation, to Chapter 5 for details

about KP extraction, and to Chapter 6 for details about source enrichment.

Chapter 3. Knowledge Patterns for the Web 35

Figure 3.3: Graphical representation of the methodology for KP transformation
and extraction.

3.3.1 KP-like repositories

Some existing resources either already provide KPs, e.g., in different formats or

languages, or provide artifacts from which KPs could emerge. The first problem

with existing schemas deals with the heterogeneity of formats used for expressing

schemas, i.e. RDF, OWL, UML, XSD, RDBMS schemas, etc., and possible solutions

in order to to represent them homogeneously. The second goes back to the knowledge

boundary problem [66] and has to answer to simple questions like: “what part of

a certain schema is really meaningful?”. Our aim is to investigate methods able to

solve these two problems. Our method for performing the transformation of existing

schemas to KPs will be discussed in detail in chapter 4. Now we want to help readers

36 Chapter 3. Knowledge Patterns for the Web

to better understand what are the possible sources of KPs.

Typically KP-like artifacts available in existing sources are modelled in a top-

down fashion. This means that they are typically designed by domain experts, which

tries to formalize the semantics of a certain domain moving by refinements of the

intentional layer, i.e., the T-Box, towards the extensional one, e.g., the A-Box. A

canonical example of sources of KP-like artifacts are the repositories of ontologies,

i.e., locations where the content of ontologies is stored [137]. The main goal of

organizing ontologies in repositories and making them available is their reuse for

ontology engineering. There are many ontology repositories at the state of the art

that differ one from the other depending on specific functions they provide. In fact,

some repositories are only flat container aimed only at storing ontologies, others

directly provide support for their reuse, some others are thought for collaboratively

building ontologies, etc. Besides these differences, which may result effective in

ontology engineering, we hypothesize they all can be rich source for gathering KPs.

Examples of these repositories are:

• ontologydesignpatterns.org (ODP.org) [116] 1 is a repository of OWL on-

tologies targeted at the lifecycle management of ontology design patterns. It

provides services for publishing and reusing ontology design patterns and it

is the reference ontology repository for the XD tools 2, which implements the

XDpattern-based methodology [115]. New ODPs can be published into the

repository, being included into an official catalogue of patterns, after they

have been submitted by a registered users and positively reviewed by other

users.

• The Component Library (CLIB) [14] 3 is a repository targeted at allow-

ing users with little experience in knowledge engineering to build knowledge

bases by instantiating and composing components. Components are general

concepts formally expressed in the Knowledge Machine language (KM) [35]

1http://www.ontologydesignpatterns.org
2http://stlab.istc.cnr.it/stlab/XDTools
3http://www.cs.utexas.edu/users/mfkb/RKF/tree/

Chapter 3. Knowledge Patterns for the Web 37

(which in turn is defined in first-order logic) as coherent collections of axioms

that can be given an intuitive label, usually a common English word. The

composition of components is achieved by specifying relations among instan-

tiated components. The main division in the Component Library is between

entities, i.e., things that are, and events, i.e., things that happen. Events are

states and actions. States represent relatively static situations brought about

or changed by actions. Entities can be associated to values by properties or

connected to Events by a small set of relations inspired by the case roles in

linguistics [12].

• FrameNet [11] is a XML lexical knowledge base, consisting of a set of frames,

which are based on a theory of meaning called frame semantics. A frame in

FrameNet is a collection of facts that specify characteristic features, attributes,

and functions of a denotatum, and its characteristic interactions with things

necessarily or typically associated with it.

As previously stated, the main issue in KP transformation is about dealing with the

heterogeneity of formats and semantics used for representing conceptual schemata

in the various source repositories. For example Figure 3.3.1 shows three different

schemata represented as UML class diagrams, which describe a common conceptual-

ization that can be used as the formal representation façade (see Figure 3.2) of a KP

able to describe the knowledge about entities and their roles over time. However:

• the TimeIndexedPersonRole Content Pattern (cf. Figure 3.4(a)) provides a

formal description of the domain with the OWL logical language;

• the semantics of the Agent-Role component (cf. Figure 3.4(b)) is operational

and defined with KM;

• the semantics of the Performers and roles frame (cf. Figure 3.4(c)) is more

informal as FrameNet is a lexical knowledge base which represents frames by

using XML [26].

38 Chapter 3. Knowledge Patterns for the Web

(a) The TimeIndexedPersonRole Content Pattern from ontologydesignpatterns.org

(b) The Agent-Role component from the CLIB

(c) The Performers and roles frame from FrameNet

Figure 3.4: Three examples of different schemata which describe a common con-
ceptualization about entities and their roles.

Chapter 3. Knowledge Patterns for the Web 39

We want to overcome this issue by designing and developing a method for en-

abling KP transformation to OWL2 ontologies without loss of semantics with respect

to the original source.

3.3.2 The Web of Data

The Web is evolving from a global information space of linked documents to one

where both documents and data are linked. Underpinning this evolution is a set of

best practices for publishing and connecting structured data on the Web known as

Linked Data [19]. The Linked Open Data (LOD) project is bootstrapping the Web

of Data by converting into RDF and publishing existing datasets available under

open licenses.

The Web of Data is an ideal platform for empirical knowledge engineering research,

since it has the critical amount of data for making KPs emerge. These KPs can be

then reused in the knowledge engineering practice and for the design, maintenance,

and consumption of data. Linked data and social web sources such as Wikipedia

give us the chance to empirically study what are the patterns in organizing and

representing knowledge, i.e., what are the knowledge patterns. Linked Data contains

rich structured data, which are generally grounded on well defined and sometimes

consistent ontologies, such as DBpedia [88]. Furthermore, Linked Data provides a

rich linking structure composed by RDF statements, i.e., subject-predicate-object

triples, that connect entities to other entities and literals (i.e., strings, numbers,

and any other data type) internally in a single dataset and among datasets. The

latter point enables connections among communities of experts and domains that

before Linked Data evolved independently. We want to exploit the linking structure

made available by Linked Data in order to define a method which allows us to draw

contextual-relevant boundaries around data (i.e., RDF triples).

Unfortunately, the quality of Linked Data is unpredictable. In fact, it is possible

to deal with incomplete data, wrong datatypes or partial intensional or extensional

coverage with respect to a give reference ontology, e.g., Yago and the DBpedia on-

tology for DBpedia. For example, it would be hard to answer a simple question

40 Chapter 3. Knowledge Patterns for the Web

like “What are the entities typed as PhD-Student?” if the coverage of a certain

class PhD-Student is extensionally limited, i.e., entities that should be typed as

PhD-Students are indeed untyped. This issue is part of the knowledge soup prob-

lem we want to address. Hence, we think that KP extraction can be classified as

a specialization of the techniques used in ontology mining [42]. Ontology mining

identifies all the activities aimed at discovering ontological hidden knowledge from

non-formal data sources by using inductive approaches based on data mining and

machine learning techniques. The following are relevant works in the area of on-

tology mining. [41] proposes an extension of the k-Nearest Neighbor algorithm for

Description Logic KBs based on the exploitation of an entropy-based dissimilarity

measure, while [21, 47] makes use of Support Vector Machine (SVN) [31] rather

than k-Nearest Neighbor to perform automatic classification. SVM performs in-

stance classification by implicitly mapping (through a kernel function) training data

to the input values in a higher dimensional feature space where instances can be

classified by means of a linear classifier. [139] proposes an approach to generating

ontologies from large RDF data sets referred to as Statistical Schema Induction

(SSI). SSI acquires firstly the terminology, i.e., the vocabulary used in the data set,

by posing SPARQL queries to the repository’s endpoint. The second step of SSI is

the construction of transaction tables for the various types of axioms that the user

would like to become part of the ontology. Based on those transaction tables are

mined the association rules that allow to translate the tables into OWL 2 EL ax-

ioms. Further extensional approaches to generating or refining ontologies based on

given facts can be found in the area of Formal Concept Analysis (FCA) or Relational

Exploration, respectively. OntoComP [9] supports knowledge engineers in the acqui-

sition of axioms expressing subsumption between conjunctions of named classes. A

similar method for acquiring domain and range restrictions of object properties has

been proposed later by [122]. In both cases, hypotheses about axioms potentially

missing in the ontology are generated from existing as well as from interactively

acquired assertions. Finally, FRED [117] is an online tool for converting text into

internally well-connected and quality linked-data-ready ontologies in web-service-

Chapter 3. Knowledge Patterns for the Web 41

acceptable time. It implements a novel approach for ontology design from natural

language sentences by combining Discourse Representation Theory (DRT), linguis-

tic frame semantics, and Ontology Design Patterns (ODP). The tool is based on

Boxer which implements a DRT-compliant deep parser. The logical output of Boxer

enriched with semantic data from Verbnet or Framenet frames is transformed into

RDF/OWL by means of a mapping model and a set of heuristics following ODP

best-practice [65] of OWL ontologies and RDF data design.

42 Chapter 3. Knowledge Patterns for the Web

Chapter 4

Knowledge Pattern transformation from

KP-like sources

In this Chapter we present:

• a method we have defined for transforming KP-like artifacts from heteroge-

neous sources to KPs expressed as OWL2 ontologies. This method addresses

the knowledge soup and boundary problems by applying a purely syntactic

transformation step of a KP-like artifact to RDF followed by a refactoring

step whose aim is to add semantics and to make a KP emerge by selecting

meaningful RDF triples (cf. Section 4.1);

• a case study we conducted in [104] for transforming FrameNet frames to KPs.

This case study is based on the method defined in this Chapter and allowed

us to transform 1024 frames to Linked Data and KPs formalized as OWL2

ontologies (cf. Section 4.2)

4.1 Method

The method we have developed for transforming existing KP-like repositories to

OWL KPs is based on Semion, a methodology and a tool (cf. Section 7.4.2) for

transforming non-RDF data sources to RDF that we have presented in [105]. The

Semion methodology consists of two main steps:

44 Chapter 4. Knowledge Pattern transformation from KP-like sources

1. a purely syntactic and completely automatic transformation of the data source

to RDF datasets according to an OWL ontology that represents the data source

structure, i.e. the source meta-model. For example, the OWL ontology for a

relational database would include the classes “table”, “column”, and “row”.

The ontology can be either provided by the user, or reused from a repository of

existing ones. The transformation is free from any assumptions on the domain

semantics. This step allows us to homogenize heterogeneous sources to RDF;

2. a semantic refactoring that allows us to express the RDF triples according to

specific domain ontologies, e.g., SKOS, DOLCE, FOAF, the Gene Ontology,

or anything indicated by the user. This last action results in a RDF dataset,

which expresses the knowledge stored in the original data source, according to

a set of assumptions on the domain semantics, as selected and customized by

the user. When applied to KP transformation this step allows us to identify

to what extent RDF triples coming from step 1 can be part of a KP.

In order to exemplify the approach, let us consider a very simple example of a rela-

tional database that stores information about people and their roles in universities

as that represented in Table 4.1. The table Person stores information about peo-

ple with their first name, last name and two references (i.e., foreign keys) to their

university and their role in the university respectively. The table University stores

information about the ID of a university (UID) and its name. The table Role stores

information about the ID of a role (RID) and its title.

Figure 4.1 shows two samples of RDF graphs obtained by applying the reengi-

neering step over the sample database. More in detail, on one hand Figure 4.1(a)

shows a sample of the database schema after its transformation to RDF, on the other

Figure 4.1(a) shows the data in the database after their conversion to RDF. The

RDF objects are distinguished in the graphs by prefixing the following notation to

labels inside boxes: (i) orange circles for classes, (ii) purple diamonds for individuals,

and (iii) green rectangles for literals. Both schema and data are expressed as RDF

triples whose terminological layer is determined by an ontology able to capture the

Chapter 4. Knowledge Pattern transformation from KP-like sources 45

(a) The table about people.

First Name Last Name University Role
Paolo Ciancarini 1 1
Oscar Corcho 2 2
Fabio Vitali 1 2
Anna Lisa Gentile 3 3
Andrea Giovanni Nuzzolese 1 4

(b) The table about universities.

UID Name
1 University of Bologna
2 Universidad Politécnica de

Madrid
3 University of Sheffield

(c) The table about roles.

RID Title
1 Full Professor
2 Associate Professor
3 Research Associate
4 Ph.D. Student

Table 4.1: Tables Person (a), University (b) and Role (c) for a sample database
about people and their roles in universities.

semantics of the original data schema and data. An example of such an ontology

is shown in Figure 4.2. This ontology is only one of the several admitted, as it is

thought to be one of the input parameter of the reengineering step 1. The ontology

allows to represent schema objects, i.e., tables, columns and keys, data objects, i.e.,

single data in field and rows, and their relations.

The refactoring step is the result of a non-trivial knowledge engineering work

that requires a good knowledge of the target domain semantics. For that reason the

refactoring is semi-automatic as it requires the design of transformation rules by a

user. More exhaustively, the refactoring is performed by means of transformation

rules of the form “condition → consequent” whose aim is to apply a transforma-

tion (specified in the consequent) in the RDF graph only if the condition is satis-

fied with respect to the knowledge expressed in the source graph. A set of rules

which co-occur for the finalization of a transformation process is called a transfor-

mation recipe. During the refactoring step transformation recipes are interpreted

as SPARQL CONSTRUCT that allow to model RDF triples to a desired format.

We have defined a language for expressing transformation rules in order to have a

simpler syntax than SPARQL. The Backus-Naur Form (BNF) of such a language

1By default the Semion tool provides reengineering modules for XML and RDBMS. It needs to
be extended in order to handle other formats. Refer to Chapter 7 for details.

46 Chapter 4. Knowledge Pattern transformation from KP-like sources

(a) A sample of RDF derived from the database schema.

(b) A sample of RDF derived from the database data.

Figure 4.1: The result of the reengineering applied to the sample database shown
in Table 4.1.

is available in Appendix 9. The following is an example of the rules needed for

modeling RDF data of the previous example in order to obtain a terminological

component (TBox) able to capture the semantics of people playing a certain role in

a university.

...

is(dbs:Table, ?x) -> is(owl:Class, ?x) .

is(dbs:Column, ?x) -> is(owl:ObjectProperty, ?x) .

Chapter 4. Knowledge Pattern transformation from KP-like sources 47

Figure 4.2: An example of an ontology describing concepts about the structure of
relational databases. The ontology is represented by adopting an UML notation.

is(dbs:Row, ?x) -> is(owl:NamedIndividual, ?x) .

has(dbs:hasRow, ?x, ?y) . is(dbs:Table, ?x) . is(dbs:Row, ?x) -> is(?x, ?y)

...

The rules have to be read in the following way:

• everything before the arrow (->) is the precondition, i.e., the head of the

rule, to verify in order to apply the consequent (everything after the arrow),

i.e. the body of the rule;

• isA relations are expressed with the atom is(·, ·), where the first argument is

the type and the second the individual to which the type has to be assigned

or verified;

• object properties and datatype properties are expressed by means of has(·, ·, ·)
atoms, where the first argument specifies the property, the second the subject

and the third the object;

• variables are indicated with the suffix ?.

48 Chapter 4. Knowledge Pattern transformation from KP-like sources

The semantics of these rules is the following:

• the first rule allows to model each individual of the class dbs:Table 2 as an

owl:Class;

• the second rule models each individual of the class dbs:Column as an owl:ObjectProperty;

• the third rule models each individual of the class dbs:Row as an owl:NamedIndividual;

• the fourth rule allows to add rdf:type statements between individual and

classes if the precondition holds. The precondition verifies the existence of a

relation dbs:hasRow between an individual that represents a table and another

that represents a row.

As sample of the RDF resulting from the refactoring step over RDF data from the

previous example is that shown in Figure 4.3. This graph is modeled by representing

the individuals Paolo Ciancarini, University of Bologna and Full Professor

as an instances of the classes Person, University and Role respectively.

Figure 4.3: Sample RDF graph resulting after the refactoring step on the RDF
data about people, universities and roles.

The refactoring step can be iterated as many times as needed. We believe that a

good configuration of the Semion methodology in order to extract KPs from KP-like

sources is that one depicted in Figure 4.4. This configuration assumes that KP-like

2The prefix dbs: stands for the namespace http://www.ontologydesignpatterns.org/ont/

semion/dbs.owl#, which is the ontology used in the example.

http://www.ontologydesignpatterns.org/ont/semion/dbs.owl#
http://www.ontologydesignpatterns.org/ont/semion/dbs.owl#

Chapter 4. Knowledge Pattern transformation from KP-like sources 49

artifacts populate the assertional component (ABox) of the original source. If this

assumption does not hold, e.g., the KP-like artifacts populate the terminological

component (TBox), this configuration can be easily remapped by removing one of

the refactoring step. The figure has to be read in the following way:

• the first container represents the original source, the others represent the result

of a step in the Semion methodology;

• each container is divided into three components, i.e., (i) the meta-model box

(MBox), e.g., the language used for representing schema elements, (ii) the

TBox, e.g., a specific schema for a relational database, and (iii) the ABox,

e.g., the data in a database;

• the arrows among containers represent the transformations.

The configuration is the following:

• the reengineering, which performs the syntactic transformation of the original

source;

• the ABox refactoring, which gathers RDF data modeled according to an on-

tology expressing the semantics of the TBox in the original source;

• the TBox refactoring, which is the process of gathering a new ontology schema

(a TBox), which actually is a KP, from data (ABox).

In next section we explain how we have used this particular configuration of the

Semion methodology for transforming FrameNet frames to KPs.

4.2 A case study: transforming KPs from FrameNet

This case study comes a work we presented in [104]. In sub-section 4.2.1 we give an

overview about FrameNet and in sub-section 4.2.2 we discuss the results obtained

from the transformation of frames into KPs.

50 Chapter 4. Knowledge Pattern transformation from KP-like sources

Figure 4.4: Semion tranformation: key concepts.

4.2.1 FrameNet

FrameNet [11] is an XML lexical knowledge base, consisting of a set of frames, which

have proper frame elements and lexical units, which pair words (lexemes) to frames.

As described in the FrameNet Book [123]:

a lexical unit (LU) is a pairing of a word with a meaning. Typically,

each sense of a polysemous word belongs to a different semantic frame,

a script-like conceptual structure that describes a particular type of sit-

uation, object, or event along with its participants and properties. For

example, the Apply Heat frame describes a common situation involv-

ing a Cook, some Food, and a Heating Instrument, and is evoked by

words such as bake, blanch, boil, broil, brown, simmer, steam, etc. We

call these roles frame elements (FEs) and the frame-evoking words are

LUs in the Apply heat frame.

Chapter 4. Knowledge Pattern transformation from KP-like sources 51

FrameNet has a rich internal structure and makes some cognitive and semantic

assumptions that makes it unique as a lexical resource. The basic assumptions are

reported here:

• frame elements are mostly unique to their frame;

• a frame usually has only some of its roles actually lexicalized in texts;

• frames can be lexicalized or not: non-lexicalized ones typically encode schemata

from cognitive linguistics;

• frames, as well as frame elements, are related between them, e.g. through the

subframe compositional relation, through inheritance relations, etc.

The semantic part of FrameNet is enriched by semantic types assigned to frames (e.g.

Artifact), frame elements (e.g. Sentient), and lexical units (e.g. Biframal LU).

FrameNet also contains a huge amount of manual annotations (annotation sets) of

sentences from textual corpora with frames, frame elements and lexical units, which

make word valences (syntactic and semantic combinatory of words) emerge.

4.2.2 Result

The approach followed for the creation of a LOD dataset from FrameNet3 is both

derived from the transformation method implemented by Semion [105] and based

on an iterative evaluation of the quality of the output produced with respect to the

semantics of FrameNet formalized into a “gold standard” ontology4 that we have

used for the evaluation. Based on that, the transformation of FrameNet v.1.5 from

XML to RDF consisted of two steps: (i) the syntactic transformation of the XML

source to RDF according to the OWL meta-model that describes the structure of

the source5, (ii) the design and the application of a refactoring recipe for the ABox

3The dataset can be accessed through the SPARQL endpoint at http://bit.ly/fnsparql,
as framenet dataset

4http://ontologydesignpatterns.org/cp/owl/fn/framenet.owl
5http://www.ontologydesignpatterns.org/ont/iks/oxml.owl

52 Chapter 4. Knowledge Pattern transformation from KP-like sources

refactoring on the RDF produced in the first step. The recipe was derived gen-

eralizing and revising some of the common transformation practices from existing

tools (i.e. XML2OWL [24], TopBraid Composer6, Rhizomik ReDeFer [121]). For

example we used the following mappings: (i) a xsd:ComplexType is mapped to

an owl:Class, (ii) a xsd:SimpleType is mapped to an owl:DatatypeProperty

and (iii) a xsd:Element is mapped either to an owl:ObjectProperty or to a

owl:DatatypeProperty. Further details can be found in [24]. As an example,

according to the syntax of the rules for the Semion refactoring, we have that the

mapping (i) is expressed as

is(oxsd:ComplexType, ?type)

->

is(owl:Class, ?classNode)

and maps any individual of the class oxsd:ComplexType to a owl:Class. We refer

to the Semion wiki7 for more information about the tool and the syntax of the rules.

The relevance of a syntactic transformation and a following refactoring can be clar-

ified saying that it is designed as a semi-automatic approach which allows, via the

refactoring rules, to better address the domain semantics of the original source. As

an example, we can consider a simple frame-to-frame relation like

Inherits from(Abounding with, Locative relation)

which expresses the fact that the frame Abounding with inherits the schematic

representation of a situation involving various participants, properties, and other

conceptual roles from the frame Locative relation. This relation is expressed in the

XML FrameNet notation as:

<frame name="Abounding_with" ... ID="262">

...

6http://www.topbraidcomposer.com
7http://stlab.istc.cnr.it/stlab/Semion

Chapter 4. Knowledge Pattern transformation from KP-like sources 53

<frameRelation type="Inherits from">

<relatedFrame>

Locative_relation

</relatedFrame>

</frameRelation>

...

</frame>

and, with most of the existing tools, it is transformed to the RDF schematized

in Figure 4.5. It is easy to notice how the Inherits from frame-to-frame relation

is realized through the reification of the relation RelatedFrame i, that expresses its

type and the related frames, i.e. Inherits from and Locative relation, which

are expressed as literals.

Figure 4.5: The “Inherits from” relation mapped to RDF with a common trans-
formation recipe. Literals are identified by the icons drawn as green rectangles

Instead, by adopting the syntactic transformation of Semion, we have produced

firstly an RDF graph, which is depicted in Figure 4.68.

In the figure, fntbox:Frame is no longer an owl:Class, but an oxsd:Element and

fnabox:Abounding with is an oxml:XMLElement related to fntbox:Frame through

oxsd:hasElementDeclaration.

8oxsd and oxml are the default ontologies of Semion for XSD and XML data structures.

54 Chapter 4. Knowledge Pattern transformation from KP-like sources

Figure 4.6: Example of reengineering of the frame “Abounding with” with its XSD
definition.

After having syntactically converted FrameNet from XML to RDF, we applied

the general recipe with the Semion Refactorer, in order to derive a LOD dataset for

FrameNet. As the recipe is based on a general conversion from XML to OWL, the

result was far from being a good formalization of the semantics of FrameNet. For

that reason, we have incrementally refined the recipe in order to fill the gap between

the semantics expressed by the output produced by the refactoring and the gold

standard we had previously defined. We remark that the aim of the refactoring is to

transform one RDF source to another trying to preserve either explicit or implicit

domain semantics of the original source without information loss.

For example, the rule which allows to avoid the reification of frame-to-frame rela-

tions is shown in Figure 4.7. The rule shown in Figure 4.7 transforms all the frame-

to-frame relations into binary relations between frames. The rule extracts the type

of the relation from the nodeValue associated with the type attribute of a frame.

Then it creates a new object property as a sub-property of hasFrameRelation,

and resolves the name of the related frame that is expressed as a literal in the

relatedFrame element, as shown in the XML code before. We remark that the

model accessed by rules is not anymore the original XML source, but its syntactic

translation to RDF. Figure 4.8 shows the RDF of the inherits from relation be-

tween the frames Abounding with and Locative relation obtained by applying

the refactoring recipe with Semion. Figure 4.9 shows the core fragment of the OWL

schema of FrameNet used as a vocabulary for the data from FrameNet.

Chapter 4. Knowledge Pattern transformation from KP-like sources 55

Figure 4.7: Rule which allows to express frame-to-frame relation as binary rela-
tions.

Figure 4.8: The “Inherits from” frame-to-frame relation between the frames
“Abounding with” and “Locative relation” after the refactoring.

The complete refactoring recipe9 is composed by 58 transformation rules in forward-

chaining inference mode.

An important feature of FrameNet as a dataset in the LOD cloud, that will be

investigated as part of our ongoing work, is the mapping of its frames and frame

elements to other lexical resources, e.g. WordNet. WordNet is available as a LOD

dataset since 2006 as a result of the W3C working draft [126]. Such mappings can

9http://stlab.istc.cnr.it/stlab/FrameNetKCAP2011# tab=ABoxRefactoring

56 Chapter 4. Knowledge Pattern transformation from KP-like sources

Figure 4.9: A fragment of the FrameNet OWL schema.

be obtained from VerbNet [127], a lexical resource that incorporates both semantic

and syntactic information about English verb semantics. The VerbNet 3.1 XML

database provides mappings between VerbNet classes, FrameNet frames, and Word-

Net synsets.

Chapter 4. Knowledge Pattern transformation from KP-like sources 57

For example, from the VerbNet mappings converted to RDF:10

vnclass:accompany skos:exactMatch

wndata:synset-accompany-verb-2

vnclass:accompany skos:exactMatch

frame:Cotheme

The VerbNet dataset excerpt is intended to demonstrate linkings between lexical

resources. An official release will be published in the near future.

In addition to the production of FrameNet as a LOD lexical dataset that can be

accessed and queried over the Web of Data, our aim is to provide an interpretation

of frames as Knowledge Patterns (KPs). In other words, following [66], we promote

frames to relevant units of meaning for knowledge representation.

With reference to Figure 4.4, we have called this process TBox refactoring, because

a new ontology schema (a TBox), is obtained starting from data (ABox).

The main problem with TBox refactoring is deciding the formal semantics to assign

to the classes from the FrameNet LOD dataset schema. Since this is a relatively ar-

bitrary process, SemionRules and recipes are useful to configure alternative choices

or to compare the different assumptions made by knowledge engineers. Here we

present a refactoring experience that exemplifies the design method behind such

process, and how Semion is useful in supporting it. The recipe exemplified here is

part of a larger project carried out together with FrameNet developers in Berkeley

in order to optimize the refactoring from lexical frames to KPs: as such, it certainly

bears validity, but it is mainly intended as a methodological and pragmatical de-

scription of refactoring recipes (also called correspondence patterns in [134]).

Besides the basic assumptions reported in Section 4.2.1, this process is guided by

the FrameNet Book [123], which is quite explicit about possible formal semantic

10prefixes: skos: http://www.w3.org/2004/02/skos/core#; vn-
class: http://www.ontologydesignpatterns.org/ont/vn/class/; wn-
data: http://www.w3.org/2006/03/wn/wn20/instances/; frame:
http://www.ontologydesignpatterns.org/ont/framenet/ frame/

58 Chapter 4. Knowledge Pattern transformation from KP-like sources

choices:

The most basic summarization of the logic of FrameNet is that Frames

describe classes of situations, the semantics of LUs are subclasses of

the Frames, and (...) FEs are classes that are arguments of the Frame

classes. An annotation set for a sentence generally describes an instance

of the subclass associated with an LU as well as instances of each of its

associated FE classes (...) The term “Frame Element” has two meanings:

the relation itself, and the filler of the relation. When we describe the

Coreness status of an FE (...) we are describing the relation; when we

describe the Ontological type on an FE (...) we mean the type of the

filler.

According to these statements, a fragment of the Desiring frame is transformed

into OWL as follows (in Manchester syntax):

Ontology: odpfn:desiring.owl

Annotations:

cpannoschema:specializes odp:situation.owl

Class: desiring:Desiring

SubClassOf:

desiring:hasEvent some desiring:Event,

desiring:hasExperiencer some desiring:Experiencer,

desiring:hasDegree some desiring:Degree,

desiring:hasReason some desiring:Reason,

Class: desiring:covet.v

SubClassOf: desiring:Desiring

Class: desiring:Event

SubClassOf: semtype:State_of_Affairs

Class: desiring:Experiencer

SubClassOf: semtype:Sentient

Notice that the uniqueness (locality) of frame elements and lexical units for a

frame is obtained simply by means of a specific namespace (denoted by the desiring

Chapter 4. Knowledge Pattern transformation from KP-like sources 59

prefix in the example, see below for possible namespace policies), while a frame is

interpreted as an owl:Class, lexical units as its subclasses, frame elements as both

an owl:Class (e.g. Event) and an owl:ObjectProperty (e.g. hasEvent), the relation

between a frame and a frame element as a rdfs:subClassOf an owl:Restriction, and

the semantic type assignments to frame elements as additional subclass axioms. All

knowledge patterns derived from frames are considered specialization of the generic

pattern odp:situation.owl11, which generalizes the situation semantics suggested

by Berkeley linguists.

A central role in FrameNet is played by inheritance assumptions. In [123], inheri-

tance is viewed as

the strongest relation between frames, corresponding to is-a in many

ontologies. With this relation, anything which is strictly true about the

semantics of the Parent must correspond to an equally or more specific

fact about the Child. This includes Frame Element membership of the

frames (except for Extrathematic FEs), most Semantic Types, frame

relations to other frames, relationships among the Frame Elements, and

Semantic Types on the Frame Elements.

This means that additional axioms must be wrapped into ontologies derived from

frames, e.g. these two sample axioms are derived from the inheritsFrom relation

between the Aesthetics and Desirability frames as well as from the subFE relation

between some of their frame elements:

Ontology: odpfn:aesthetics.owl

Annotations:

cpannoschema:specializes odpfn:desirability.owl

Class: aesthetics:Aesthetics

SubClassOf: desirability:Desirability

Class: aesthetics:Degree

SubClassOf: desirability:Degree

11odp:http://www.ontologydesignpatterns.org/cp/owl/,
odpfn:http://www.ontologydesignpatterns.org/cp/owl/fn/

60 Chapter 4. Knowledge Pattern transformation from KP-like sources

The implementation of TBox refactoring is performed as a Semion refactoring,

where the recipe includes rules for the mapping between FrameNet LOD dataset

and KPs. Figure 4.10 shows an overview of TBox refactoring for deriving KPs from

frames. The notation attempts to make rules intuitively understandable: arrows

Figure 4.10: Diagram of the transformation recipe used for the production of
knowledge patterns from FrameNet LOD.

between the clouds represent mappings from entities in the cloud “FrameNet as

LOD” to entities in the cloud “Knowledge Pattern”, classes are represented as circles,

individuals as triangles, object properties as diamonds, and structural properties as

labeled arcs. Each Frame is mapped both to an owl:Ontology that identifies the

KP and to an owl:Class. The mapping takes into account the refactoring of the

frame URI intended either as an ontology or as a class. Each FrameElement maps

both to an owl:Class and to an owl:ObjectProperty. Again frame elements follow

a renaming policy for the two interpretations, but in this case the situation is more

complex. In fact, URI policy can follow from different interpretations:

1. Locality of frame elements within their frames (compatible to locality state-

Chapter 4. Knowledge Pattern transformation from KP-like sources 61

ments in the Book, with some exceptions that cannot be discussed here). E.g.

given the frame:

http://someuri/Judgment.owl#Judgment

we obtain the frame element:

http://someuri/Judgment.owl#Cognizer

interpreted as a class and

http://someuri/Judgment.owl#hasCognizer

interpreted as an object property;12

2. Globality of frame elements, abstracted from their contextual binding to a

frame, e.g. given the frame:

http://someuri/Judgment.owl#Judgment

we obtain the frame element:

http://someuri/class/Cognizer

interpreted as a class and

http://someuri/property/hasCognizer

interpreted as an object property.

Lexical units are refactored as subclasses of the classes derived from the frames they

are lexicalizations of, e.g.

lexunit:cool.a SubClassOf: desirability:Desirability

Lexemes are refactored as individuals of the class semantics:Expression; each lex-

ical unit is related to a lexeme through the property semantics:isExpressedBy.

Finally, each frame has owl:someValuesFrom restrictions accounting for the seman-

tic roles implicit in frame elements (see example above).

Locality and globality alternatives required two refactoring recipies each of one com-

posed by 4 rules in forward-chaining inference mode. The complete TBox refactoring

recipe can be found in the wiki page13.

12An OWL2 alternative is also possible, with multiple interpretations for the same con-
stant.

13http://stlab.istc.cnr.it/stlab/FrameNetKCAP2011# tab=TBoxRefactoring

62 Chapter 4. Knowledge Pattern transformation from KP-like sources

4.2.3 Evaluation

We carried out two evaluations of the transformation method implemented by Semion:

• one based on a “gold standard” ontology14 that was formalized with respect

to the semantics of FrameNet and that we used as the terminological layer for

representing frames in the A-Box refactoring;

• another based on the isomorphism of the method, i.e., the capability of the

method to be reversible.

The first evaluation was performed by transforming the original FrameNet source

expressed as XML to Linked Data and observing the compliance of the generated

RDF with respect the gold standard ontology. We remark that the gold standard

ontology reflects the semantics of FrameNet, hence we expected to collect the same

number of frames, frame elements, lexical units, etc. as in the original XML source.

The results obtained are excellent as the number of obtained RDF objects after the

A-Box refactoring followed the expectations (cf. Table 4.2).

FrameNet OWL class # of individuals in
FrameNet LOD

#
of individuals as in
the original source

fntbox:Label 340,856 340,856
fntbox:Layer 185,896 185,896
fntbox:AnnotationSet 29,928 29,928
fntbox:SentenceCount 11,942 11,942
fntbox:FrameElement 9,633 9,633
fntbox:LexUnit 9,515 9,515
fntbox:Lexeme 8,030 8,030
fntbox:Sentence 5,946 5,946
fntbox:Frame 1,024 1,024
fntbox:FECoreSet 240 240
fntbox:CorpDoc 78 78
fntbox:Document 78 78
fntbox:FullTextAnnotation 78 78
fntbox:Header 78 78
fntbox:SemType 74 74

Table 4.2: Number of obtained and expected individuals after the A-Box refactor-
ing.

14http://ontologydesignpatterns.org/cp/owl/fn/framenet.owl

Chapter 4. Knowledge Pattern transformation from KP-like sources 63

Additionally, we performed an inverse refactoring aimed at evaluating the isomor-

phism of our method. This was tested by first inverting the T-Box refactoring, hence

by generating FrameNet LOD (we refer to the result of this step as to FrameNet

LOD−1) from the Knowledge Patterns and then by inverting the A-Box refactor-

ing, hence by generating FrameNet XML (we refer to the result of this step as to

FrameNet XML−1) from FrameNet LOD−1. Both the inverse refactoring steps were

applied by reverting the directions of the rules. This was obtained by interpreting

the head of the original rule as the body and vice versa. After having completed the

inverse refactoring we compared FrameNet LOD−1 with respect to FrameNet LOD

and FrameNet XML−1 with respect to FrameNet XML.

The first comparison was performed by means of a SPARQL query aimed at

identifying possible differences among the two RDF graphs consisting in the two

versions of FrameNet LOD. The query executed was the following:

SELECT *

FROM <framenet-lod>

WHERE{?s ?p ?o

MINUS{

SELECT ?s ?p ?o

FROM <framenet-lod-inverse>

WHERE{?s ?p ?o}

}

}

where <framenet-lod> and <framenet-lod-inverse> identify the RDF graphs

available in the triplestore for FrameNet LOD and FrameNet LOD−1 respectively.

The query expresses a negation between the two graphs by means of the MINUS

operator available from SPARQL1.1.

The execution of the SPARQL query above generated an empty result set, which

means that FrameNet LOD and FrameNet LOD−1 are the same RDF graph and then

the T-Box refactoring is isomorphic.

64 Chapter 4. Knowledge Pattern transformation from KP-like sources

The second comparison was performed by first generating a single XML file from

the collection of XML files available in the original version of FrameNet and then

detecting the difference between the latter and FrameNet XML−1. The difference

were obtained by applying the X-Diff algorithm [142], which uses an unordered model

(only ancestor relationships are significant) to compute the difference between two

XML documents. The result of X-Diff was that no change was performed from

FrameNet XML and FrameNet XML−1 meaning that the two XML documents were

equivalent, hence the A-Box isomorphic.

Chapter 5

Knowledge Pattern extraction from the

Web of Data

In this Chapter we present:

• a method we have defined for extracting KPs from Linked Data. This method

is grounded on the hypothesis that the linking structure of Linked Data con-

veys a rich knowledge that can be exploited for an empirical analysis aimed

at drawing boundaries around data and consequently formalizing patterns of

frequently occurring knowledge organization schemata, i.e. KPs (cf. 5.1).

• a case study we conducted in [106] for extracting KPs from links in the english

Wikipedia 1. The result of the case study are 184 Encyclopedic Knowledge

Patterns (EKPs). These KPs are called Encyclopedic for emphasizing that

they are grounded in encyclopedic knowledge expressed as linked data, i.e.

DBpedia 2 [88], and as natural language text, i.e. Wikipedia (cf. Section 4.2).

• an evaluation of extracted EKPs based on a user study whose aim is to validate

the cognitive value of EKPs in providing an intuitive schema for organizing

knowledge (cf. Section 4.2).

1DBpedia provides a dataset for Wikipedia links (i.e., dbpedia page links en)
2DBpedia: http://dbpedia.org

http://dbpedia.org

66 Chapter 5. Knowledge Pattern extraction from the Web of Data

5.1 Method

In recent years, the Web has evolved from a global information space of linked

documents to one where both documents and data are linked. Underpinning this

evolution is a set of best practices for publishing and connecting structured data on

the Web. These best practices are known as Linked Data [19] principles and they

can be paraphrased in the following way:

• Use URIs to denote things;

• Use HTTP URIs so that these things can be referred to and looked up by

people and user agents;

• Provide useful information about the thing when its URI is dereferenced, lever-

aging standards such as RDF, SPARQL;

• Include links to other related things (using their URIs) when publishing data

on the Web.

The aim of Linked Data is to bootstrap the Web of Data by identifying existing

data sets that are available under open licenses, converting them to RDF according

to [19], and publishing them on the Web. Thus, Linked Data provide a large set

of realistic data, created by large communities of practice, on which experiments

can be performed. By analyzing Linked Data we want to empirically understand

what are the typical and frequently occurring patterns, i.e., KPs, used for organizing

knowledge. We hypothesize that the linking structure of Linked Data can be used

for our purpose as linking things to other things is a typical action done by humans

for describing something in the Web.

The method we have designed is based on three phases:

1. data analysis;

2. boundary induction;

3. KP formalization.

We detail these phases in the next subsections.

Chapter 5. Knowledge Pattern extraction from the Web of Data 67

Figure 5.1: Core classes of the knowledge architecture ontology represented with
an UML notation.

5.1.1 Data analysis

The data analysis phase is based on a specialization of the method defined by Pre-

sutti et al. in [113] that presents an approach aimed at modeling, inspecting, and

summarizing datasets, by drawing the so-called dataset knowledge architecture, This

relies on the notions of paths, i.e., distinct ordered type-property sequences that can

be traversed in an RDF graph. The analysis allows to build an abstraction over a

dataset that highlights its knowledge organisation and core components. This ab-

straction is built by gathering and consequently representing RDF paths according

to the knowledge architecture ontology 3. Figure 5.1 shows the core of such an on-

tology in which a Path is seen as the composition of path elements represented as

individuals of PathElement. These are basically views over RDF triples which al-

low to gather the Property and the Universe (i.e., the couple identifying the types

associated to the subject and to the object) of a triple.

The representation of the dataset according to the knowledge architecture on-

tology enables to build a prototypical querying layer that in our case is used for

3http://www.ontologydesignpatterns.org/ont/lod-analysis-properties.owl

http://www.ontologydesignpatterns.org/ont/ lod-analysis-properties.owl

68 Chapter 5. Knowledge Pattern extraction from the Web of Data

gathering path statistics in a dataset.

As we want to extract terminological components, i.e., the KPs, in a bottom-up

fashion from data, we extend the notion of property path4. We call this extension

type path, whose definition is the following

Definition 2 (Type path) A type path is a property path (limited to length 1 in

this work, i.e. a triple pattern), whose occurrences have (i) the same rdf:type for

their subject nodes, and (ii) the same rdf:type for their object nodes. It is denoted

here as:

Pi,k,j = [Si, pk, Oj]

where Si is a subject type, p is a property, and Oj is an object type of a triple.

We extract KPs by analysing type paths (see Definition 3), however in order

to formalize them, we perform a heuristic procedure to reduce multi-typing, and

to avoid redundancies. In practice, given a triple s p o, we construct its path as

follows:

• the subject type Si is set to the most specific type(s) of s;

• the object type Oj is set to the most specific type(s) of o;

• the property pk is the property used in the triple.

For example, the triple:

dbpedia:Andre Agassi dbpprop:winnerOf dbpedia:Davis Cup

would count as an occurrence of the following path:

PAgassi,winnerOf,Davis = [dbpo:TennisPlayer, dbpprop:winnerOf, dbpo:TennisLeague]

4In SPARQL1.1 (http://www.w3.org/TR/sparql11-property-paths/) property paths can have
length n, given by their route through the RDF graph.

Chapter 5. Knowledge Pattern extraction from the Web of Data 69

Figure 5.2 depicts such a procedure for the path PAgassi,winnerOf,Davis. The

path (represented in Figure 5.2(b)) comes from the following observations (cf. Fig-

ure 5.2(a)):

• dbpo:TennisPlayer is the subject type because it is the most specific type of

dbpedia:Andre Agassi, i.e., dbpo:TennisPlayer v dbpo:Person;

• dbpo:TennisLeague is the object type because it is the most specific type

of dbpedia:Davis Cup, i.e., dbpo:TennisLeague v dbpo:SportsLeague v
dbpo:Organisation

• dbpprop:winnerOf is the property of the path because it is the property which

links dbpedia:Andre Agassi to dbpedia:Davis Cup.

5.1.2 Boundary induction

Knowledge patterns are not only symbolic patterns: they also have an interpretation,

be it formal, or cognitive [66]. Hence, we need a boundary, which enables to select a

set of triples that make a KP meaningful. In order to choose the boundary we have

defined a set of indicators that provide path related statistics. These indicators are

described in Table 5.1.

Indicator Description
nRes(C) number of resources typed with a certain class C, |{ri rdf:type C}|
nSubjectRes(Pi,k,j) number of distinct resources that participate in a path as subjects, |

{(si rdf:type Si) ∈ Pi,k,j = [Si, pk, Oj]}|
pathPopularity(Pi,k,j, Si) The ratio of how many distinct resources of a certain type participate as subject

in a path to the total number of resources of that type. Intuitively, it indi-
cates the popularity of a path for a certain subject type, nSubjectRes(Pi,k,j =
[Si, pk, Oj]) divided by nRes(Si)

nPathOcc(Pi,k,j) number of occurrences of a path Pi,k,j = [Si, pk, Oj]
nPath(Si) number of distinct paths having a same subject type Si, e.g. the number of

paths having dbpo:TennisPlayer as subject type
AvPathOcc(Si) sum of all nPathOcc(Pi,k,j) having a subject type Si divided by nPath(Si)

e.g. the avarage number of occurrences of paths having dbpo:Philosopher as
subject type

Table 5.1: Indicators used for empirical analysis of wikilink paths.

70 Chapter 5. Knowledge Pattern extraction from the Web of Data

(a) RDF graph extracted from DBpedia representing the triple dbpedia:Andre Agassi

dbpprop:winnerOf dbpedia:Davis Cup and the types and the related taxonomies asso-
ciated to the subject and the object of the triple.

(b) Path discovered. The types and the property are represented as individuals of
classes of the knowledge architecture ontology via OWL2 punning.

Figure 5.2: Path discovered from the triple dbpedia:Andre Agassi

dbpprop:winnerOf dbpedia:Davis Cup.

We choose the boundary of a KP by defining a threshold t for pathPopularity(Pi,k,j, Si).

Namely, the pathPopularity(Pi,k,j, Si) is the ratio of how many distinct resources of

a certain type participate as subject in a path to the total number of resources of that

type. For example the pathPopularity(Pi,k,j, Si) for the path PAgassi,winnerOf,Davis

(indicated as P ∗ for space reasons) is calculated in the following way 5:

pathPopularity(P ∗, STennisP layer) =
nSubjectRes(P ∗)

nRes(TennisP layer)

5This example is based on real data extracted from DBpedia 3.6

Chapter 5. Knowledge Pattern extraction from the Web of Data 71

=
443

1630

= 0.2717

In fact, the number of distinct TennisPlayer individuals that participate in the

path PAgassi,winnerOf,Davis is 443 and the number of resources typed with the class

TennisPlayer is 1630. Intuitively, the pathPopularity(Pi,k,j, Si) gives an idea about

how much is frequent a certain type path in data.

Accordingly, we give the following definition of KP (Si) for a type Si
6.

Definition 3 (KP Boundary) Let Si be a type (i.e. rdf:type) of a Web re-

source, Oj (j = 1, .., n) a list of types, Pi,j = [Si, p, Oj] and t a threshold value.

Given the triples:

subj pred obj

subj rdf:type Si

obj rdf:type Oj

we state that KP (Si) is a set of paths, such that

Pi,j ∈ KP (Si) ⇐⇒ pathPopularity(Pi,j, Si) ≥ t (5.1)

In Section 5.2 we will show an approach for the selection of a good value for t

that we used for the extraction of KPs from Wikipedia links.

5.1.3 KP formalization

Based on the previous steps we can store paths and their associated indicators in

a dataset, according to the knowledge architecture ontology. Then, we are able

to generate the KPs by performing a refactoring of the knowledge architecture

data into OWL2 ontologies. Given a certain namespace kp: and an KP (Si) =

6We assume that a type is associated to a resource with a rdf:type statement.

72 Chapter 5. Knowledge Pattern extraction from the Web of Data

[Si, p1, O1], . . . , [Si, pn, On], we formalize it in OWL2 by applying the following trans-

lation procedure:

• the name of the OWL file is kp: followed by the local name of S e.g.,

kp:TennisPlayer.owl. Below we refer to the namespace of a specific KP

through the generic prefix kpS:;

• Si and Oj j = 1, . . . , n are refactored as owl:Class entities (they keep their

original URI);

• pj keep their original URI and are refactored as owl:ObjectProperty entities;

• for each Oj we create a sub-property of pi+n, kpS :Oj that has the same

local name as Oj and the kpS: namespace; e.g. kp:TennisPlayer.owl#

TennisLeague.

• for each kpS :Oj we add an owl:allVauesFrom restriction to Si on kpS :Oj,

with range Oj.

For example, if PathAgassi,winnerOf,Davis (cf. Figure 5.2) is part of an EKP, it gets

formalized as follows:

Prefix: dbpo: <http://dbpedia.org/ontology/>

Prefix:

kpS: <http://www.ontologydesignpatterns.org/kp/TennisPlayer.owl#>

Ontology: <http://www.ontologydesignpatterns.org/kp/TennisPlayer.owl>

Class: dbpo:TennisPlayer

SubClassOf:

kpS:TennisLeague only dbpo:TennisLeague

Class: dbpo:TennisLeague

ObjectProperty: kpS:TennisLeague

SubPropertyOf: dbpo:Organisation

...

kp:TennisPlayer.owl#TennisLeague
kp:TennisPlayer.owl#TennisLeague

Chapter 5. Knowledge Pattern extraction from the Web of Data 73

5.2 A case study: extracting KPs from Wikipedia

links

Wikipedia 7 is a peculiar source for KP extraction. In fact, it is particularly suitable

because it has an RDF dump in Linked Data, i.e., DBpedia [88] 8 and is built ac-

cording to some design guidelines that make KP investigation easier. The guidelines

are the following:

• each wiki page describes a single topic;

• each topic corresponds to a single resource in DBpedia;

• wikilinks relate wiki pages. Hence each wikilink links two DBpedia resources;

• each resource in DBpedia can be associated to a type (with an rdf:type

statement);

For these reasons we have used Wikipedia (and DBpedia) as a case study for KP

extraction.

5.2.1 Matherial

We have extracted KPs from a subset of the DBpedia wikilink dataset (dbpe-

dia page links en), and have created a new dataset (DBPOwikilinks) including only

links between resources that are typed by DBpedia ontology version 3.6 (DBPO)

classes (15.52% of the total wikilinks in dbpedia page links en). DBPOwikilinks

excludes a lot of links that would create semantic interpretation issues, e.g. im-

ages (e.g. dbpedia:Image:Twitter 2010 logo.svg), Wikipedia categories (e.g.

dbpedia:CAT:Vampires in comics), untyped resources (e.g. dbpedia:%23Drogo),

etc. DBPO includes 272 classes, which are used to type 10.46% of the resources

involved in dbpedia page links en. We also use dbpedia instance types en, which con-

tains type axioms, i.e. rdf:type triples. This dataset contains the materialization

7Wikipedia: http://en.wikipedia.org
8DBpedia: http://dbpedia.org

74 Chapter 5. Knowledge Pattern extraction from the Web of Data

of all inherited types. Table 5.2 summarizes the figures described above. The reason

of the usage of absolute values in table is twofold (i) to give to the reader an idea

about the size of data managed and (ii) to keep the distiction among the datasets.

Dataset Description Indicator Value
DBPO DBpedia ontology Number of classes 272

dbpedia instance types en
Resource types i.e.
rdf:type triples

Number of resources having
a DBPO type

1,668,503

rdf:type triples 6,173,940

dbpedia page links en Wikilinks triples
Number of resources used in
wikilinks

15,944,381

Number of wikilinks 107,892,317

DBPOwikilinks

Wikilinks involving
only resources
typed with DBPO
classes

Number of resources used in
wikilinks

1,668,503

Number of wikilinks 16,745,830

Table 5.2: Dataset used and associated figures.

5.2.2 Obtained results

We have extracted 33,052 paths from the English wikilink datasets, however many

of them are not relevant either because they have a limited number of occurrences,

or because their subject type is rarely used. In order to select the paths useful for

KP discovery (our goal) we have considered the following criteria:

• Usage in the wikilink dataset. The resources involved in dbpedia page links en

are typed with any of 250 DBPO classes (out of 272). Though, we are in-

terested in direct types9 of resources in order to avoid redundancies when

counting path occurrences. For example, the resource dbpedia:Ludwik Fleck

has three types dbpo:Scientist;dbpo:Person;owl:Thing because type as-

sertions in DBpedia are materialized along the hirerachy of DBPO. Hence,

only dbpo:Scientist is relevant to our study. Based on this criterion, we

keep only 228 DBPO classes and the number of paths decreases to 25,407.

9In current work, we are also investigating indirectly typed resource count, which might lead
to different KPs, and to empirically studying KP ordering.

Chapter 5. Knowledge Pattern extraction from the Web of Data 75

• Number of resources typed by a class C (i.e., nRes(C)). Looking at the

distribution of resource types, we have noticed that 99.98% of DBPO classes

have at least 30 resource instances. Therefore we have decided to keep paths

whose subject type C has at least nRes(C)=30.

• Number of path occurrences having a same subject type (i.e., nPathOcc(Pi,k,j)).

The average number of outgoing wikilinks per resource in dbpedia page links en

is 10. Based on this observation and on the previous criterion, we have decided

to keep paths having at least nPathOcc(Pi,k,j)=30*10=300.

After applying these two criteria, only 184 classes and 21,503 paths are retained.

For example, we have discarded the path [Album,Drug] 10, which has 226 occur-

rences, and the type dbpo:AustralianFootballLeague, which has 3 instances.

5.2.3 KP discovery

At this point, we had each of the 184 classes used as subject types associated with a

set of paths, each set with a cardinality ranging between 2 and 191 (with 86.29% of

subjects bearing at least 20 paths). Our definition of KP requires that its backbone

be constituted of a small number of object types, typically below 10, considering

the existing resources of models that can be considered as KPs (see later in this

subsection for details). In order to generate KPs from the extracted paths, we

need to decide what threshold should be used for selecting them, which eventu-

ally creates appropriate boundaries for KPs. In order to establish some meaningful

threshold, we have computed the ranked distributions of pathPopularity(Pi,k,j, Si)

for each selected subject type, and measured the correlations between them. Then,

we have fine-tuned these findings by means of a user study (cf. Section 5.2.4),

which had the dual function of both evaluating our results, and suggesting rele-

vance criteria for generating the KP resource. Our aim is to build a prototypical

ranking of the pathPopularity(Pi,k,j, Si) of the selected 184 subject types, called

10In this use case we represent paths as couples [SubjetType,ObjectType] because in the
dbpedia page links en dataset the only property used is dbpo:wikiPageWikiLink.

76 Chapter 5. Knowledge Pattern extraction from the Web of Data

pathPopularityDBpedia, which should show how relevant paths for subject types are

typically distributed according to the Wikipedia crowds, hence allowing us to pro-

pose a threshold criterion for any subject type. We have proceeded as follows.

1. We have chosen the top-ranked 40 paths (Pi,k,j) for each subject type (Si),

each constituting a pathPopularity(Pi,k,j, Si). Some subject types have less

than 40 paths: in such cases, we have added 0 values until filling the gap. The

number 40 has been chosen so that it is large enough to include not only paths

covering at least 1% of the resources, but also much rarer ones, belonging to

the long tail.

2. In order to assess if a prototypical ranking pathPopularityDBpedia would make

sense, we have performed a multiple correlation between the different

pathPopularity(Pi,k,j, Si). In case of low correlation, the prototypical ranking

would create odd effects when applied to heterogeneous rank distributions

across different Si. In case of high correlation, the prototype would make

sense, and we can get reassured that the taxonomy we have used (DBPO in

this experiment) nicely fits the way wikilinks are created by the Wikipedia

crowds.

3. We have created a prototypical distribution pathPopularityDBpedia that is rep-

resentative for all Si distributions. Such a distribution is then used to hypoth-

esize some thresholds for the relevance of Pi,k,j when creating boundaries for

KPs. The thresholds are used in Section 5.2.4 to evaluate the proposed KPs

with respect to the rankings produced during the user study.

In order to measure the distribution from step 2, we have used the Pearson

correlation measure ρ, ranging from -1 (no agreement) to +1 (complete agreement),

between two variables X and Y i.e. for two different Si in our case. The correlation

has been generalized to all 16,836 pairs of the 184 pathPopularity(Pi,k,j, Si) ranking

sets (184 ∗ 183/2), in order to gather a multiple correlation. The value of such

multiple correlation is 0.906, hence excellent.

Chapter 5. Knowledge Pattern extraction from the Web of Data 77

Figure 5.3: Distribution of pathPopularityDBpedia: the average values of popularity
rank i.e., pathPopularity(Pi,k,j, Si), for DBpedia paths. The x-axis indicates how
many paths (on average) are above a certain value t of pathPopularity(P, S).

Once reassured on the stability of pathPopularity(Pi,j,j, Si) across the different

Si, we have derived (step 3) pathPopularityDBpedia, depicted in Figure 5.3.

In order to establish some reasonable relevance thresholds, pathPopularityDBpedia

has been submitted to K-Means Clustering, which generates 3 small clusters with

popularity ranks above 22.67%, and 1 large cluster (85% of the 40 ranks) with pop-

ularity ranks below 18.18%. The three small clusters includes seven paths: this

feature supports the buzz in cognitive science about a supposed amount of 7 ± 2

objects that are typically manipulated by the cognitive systems of humans in their

recognition tasks [100, 98]. While the 7± 2 conjecture is highly debated, and possi-

bly too generic to be defended, this observation has been used to hypothesize a first

threshold criterion: since the seventh rank is at 18.18% in pathPopularityDBpedia,

this value of pathPopularity(Pi,j, Si) will be our first guess for including a path in

an KP. We propose a second threshold based on FrameNet [11], a lexical database,

grounded in a textual corpus, of situation types called frames. FrameNet is currently

the only cognitively-based resource of potential knowledge patterns (the frames, cf.

[104]). The second threshold (11%) is provided by the average number of frame el-

78 Chapter 5. Knowledge Pattern extraction from the Web of Data

Path nPathOcc(Pi,k,j) nSubjectRes(Pi,k,j) pathPopularity(Pi,k,j, Si) (%)
[Album,Album] 170,227 78,137 78.89
[Album,MusicGenre] 108,928 68,944 69.61
[Album,MusicalArtist] 308,619 68,930 69.59
[Album,Band] 125,919 62,762 63.37
[Album,Website] 62,772 49,264 49.74
[Album,RecordLabel] 56,285 47,058 47.51
[Album,Single] 114,181 29,051 29.33
[Album,Country] 40,296 25,430 25.67

Table 5.3: Sample paths for the subject type Album: number of path occurrences,
distinct subject resources, and popularity percentage value. Paths are expressed as
couples [SubjectType,ObjectType] because in the dbpedia page links en dataset
the only property used is dbpo:wikiPageWikiLink.

ements in FrameNet frames (frame elements roughly correspond to paths for KPs),

which is 9 (the ninth rank in pathPopularityDBpedia is at 11%). The mode value of

frame elements associated with a frame is 7, which further supports our proposal for

the first threshold. An example of the paths selected for a subject type according to

the first threshold is depicted in Tab. 5.3, where some paths for the type Album are

ranked according to their pathPopularity(Pi,k,j, Si). In Subsection 5.2.4 we describe

an evaluation of these threshold criteria by means of a user study.

Threshold criteria are also used to enrich the formal interpretation of KPs. Our

proposal, implemented in the OWL2 KP repository, considers the first threshold as

an indicator for an existential quantification over an OWL restriction representing

a certain path. For example, [Album,MusicGenre] is a highly-popular path in the

Album KP. We interpret high-popularity as a feature for generating an existential

interpretation, i.e.: Album v (∃MusicGenre.MusicGenre). This interpretation sug-

gests that each resource typed as an Album has at least one MusicGenre, which is

intuitively correct. Notice that even if all paths have a pathPopularity(Pi,j, Si) of

less that 100%, we should keep in mind that semantic interpretation over the Web

is made in open-world, therefore we feel free to assume that such incompleteness

is a necessary feature of Web-based knowledge (and possibly of any crowd-sourced

knowledge).

Chapter 5. Knowledge Pattern extraction from the Web of Data 79

We have stored paths and their associated indicators in a dataset, according

to an OWL vocabulary called knowledge architecture11. Then, we have formalized

the KPs as OWL2 ontologies by applying the translation recipe explained in Sec-

tion 5.1.3. The result of the formalization is a collection of 184 KPs called Encyclo-

pedic Knowledge Patterns 12(EKPs). This name emphasizes that they are grounded

in encyclopedic knowledge expressed as linked data, i.e. DBpedia, and as natural

language text, i.e. Wikipedia.

5.2.4 Evaluation

Although our empirical observations on DBpedia could give us means for defining a

value for the threshold t (see Definition 3 and Section 5.2.2), we still have to prove

that emerging KPs provide an intuitive schema for organizing knowledge. Therefore,

we have conducted a user study for making users identify the KPs associated with

a sample set of DBPO classes, and for comparing them with those emerging from

our empirical observations.

User study

We have selected a sample of 12 DBPO classes that span social, media, commercial,

science, technology, geographical, and governmental domains. They are listed in

Table 5.4. For each class, we indicate the number of its resources, the number of

paths it participates in as subject type, and the average number of occurrences of

its associated paths. We have asked the users to express their judgement on how

relevant were a number of (object) types (i.e., paths) for describing things of a

certain (subject) type. The following sentence has been used for describing the user

study task to the users:

We want to study the best way to describe things by linking them to other

things. For example, if you want to describe a person, you might want

11http://www.ontologydesignpatterns.org/ont/lod-analysis-path.owl
12EKP are available on line at http://ontologydesignpatterns.org/ekp/

h
http://ontologydesignpatterns.org/ekp/

80 Chapter 5. Knowledge Pattern extraction from the Web of Data

DBPO class type nRes(S) nPath(Si) AvPathOcc(Si)
Language 3,246 99 29.27
Philosopher 1,009 112 18.29
Writer 10,102 172 15.30
Ambassador 286 85 15.58
Legislature 453 83 25.11
Album 99,047 172 11.71
Radio Station 16,310 151 7.31
Administrative Region 31,386 185 11.30
Country 2,234 169 35.16
Insect 37,742 98 9.16
Disease 5,215 153 12.10
Aircraft 6,420 126 10.32

Table 5.4: DBPO classes used in the user-study and their related figures.

to link it to other persons, organizations, places, etc. In other words,

what are the most relevant types of things that can be used to describe a

certain type of things?

We asked the users to fill a number of tables, each addressing a class in the

sample described in Table 5.4. Each table has three columns:

• Type 1 indicating the class of things (subjects) to be described e.g. Country;

• A second column to be filled with a relevance value for each row based on

a scale of five relevance values, Table 5.5 shows the scale of relevance values

and their interpretations as they have been provided to the users. Relevance

values had to be associated with each element of Type 2;

• Type 2 indicating a list of classes of the paths (i.e. the object types) in which

Type 1 participates as subject type. These were the suggested types of things

that can be linked for describing entities of Type 1 e.g. Administrative

Region, Airport, Book, etc.

By observing the figures of DBPO classes (cf. Table 5.4) we realized that the

entire list of paths associated with a subject type would have been too long to be

proposed to the users. For example, if Type 1 was Country, the users would have

been submitted 169 rows for Type 2. Hence, we decided a criterion for selecting

Chapter 5. Knowledge Pattern extraction from the Web of Data 81

Relevance
score

Interpretation

1 The type is irrelevant;
2 The type is slightly irrelevant;
3 I am undecided between 2 and 4;
4 The type is relevant but can be

optional;
5 The type is relevant and should

be used for the description.

Table 5.5: Ordinal (Likert) scale of
relevance scores.

User group Average inter-rater
agreement

Group 1 0.700
Group 2 0.665

Table 5.6: Average coef-
ficient of concordance for
ranks (Kendall’s W) for the
two groups of users.

a representative set of such paths. We have set a value for t to 18% and have

included, in the sample set, all Pi,j such that pathPopularity(Pi,k,j, Si) ≥ 18%.

Furthermore, we have also included an additional random set of 14 Pi,j such that

pathPopularity(Pi,k,j, Si) < 18%.

We have divided the sample set of classes into two groups of 6. We had ten users

evaluating one group, and seven users evaluating the other group. Notice that the

users come from different cultures (Italy, Germany, France, Japan, Serbia, Sweden,

Tunisia, and Netherlands), and speak different mother tongues. In practice, we

wanted to avoid focusing on one specific language or culture, at the risk of reducing

consensus.

In order to use the KPs resulting from the user study as a reference for next

steps in our evaluation task, we needed to check the inter-rater agreement. We have

computed the Kendall’s coefficient of concordance for ranks (W), for all analyzed

DBPO classes, which calculates agreements between 3 or more rankers as they rank

a number of subjects according to a particular characteristic. Kendall’s W ranges

from 0 (no agreement) to 1 (complete agreement). Table 5.6 reports such values

for the two groups of users, which show that we have reached a good consensus in

both cases. Additionally, Table 5.7 reports W values for each class in the evaluation

sample.

82 Chapter 5. Knowledge Pattern extraction from the Web of Data

DBPO class Agreement Reliability DBPO class Agreement Reliability
Language 0.836 0.976 Philosopher 0.551 0.865
Writer 0.749 0.958 Ambassador 0.543 0.915
Legislature 0.612 0.888 Album 0.800 0.969
Radio Station 0.680 0.912 Administrative Region 0.692 0.946
Country 0.645 0.896 Insect 0.583 0.929
Disease 0.823 0.957 Aircraft 0.677 0.931

Table 5.7: Inter-rater agreement computed with Kendall’s W (for all values p <
0.0001) and reliability test computed with Cronbach’s alpha

Evaluation of emerging DBpedia KPs

Through correlation with user-study results we want to answer the following ques-

tion: how good is DBpedia as a source of KPs? The second step towards deciding

t for the generation of KPs has been to compare DBpedia KPs to those emerging

from the users’ choices. DBpedia KP (Si) would result from a selection of paths

having Si as subject type, based on their associated pathPopularity(Pi,k,j, Si) val-

ues (to be ≥ t). We had to compare the pathPopularity(Pi,k,j, Si) of the paths

associated with the DBPO sample classes (cf. Table 5.4), to the relevance scores

assigned by the users. Therefore, we needed to define a mapping function between

pathPopularity(Pi,k,j, Si) values and the 5-level scale of relevance scores (Table 5.5).

We have defined the mapping by splitting the pathPopularityDBpedia distribu-

tion (cf. Figure 5.3) into 5 intervals, each corresponding to the 5 relevance scores

of the Likert scale used in the user-study. Table 5.8 shows our hypothesis of such

mapping. The hypothesis is based on the thresholds defined in Section 5.2.2. The

mapping function serves our purpose of performing the comparison and identifying

the best value for t, which is our ultimate goal. In case of scarce correlation, we

expected to fine-tune the intervals for finding a better correlation and identifying

the best t. Based on the mapping function, we have computed the relevance scores

that DBpedia would assign to the 12 sample types, and calculated the Spearman

correlation value (ρ) wich ranges from −1 (no agreement) to +1 (complete agree-

ment) by using the means of relevance scores assigned by the users. This measure

gives us an indication on how precisely DBpedia wikilinks allow us to identify KPs

as compared to those drawn by the users. As shown in Table 5.9, there is a good

Chapter 5. Knowledge Pattern extraction from the Web of Data 83

pathPopularityDBpedia interval Relevance score
[18, 100] 5
[11, 18[4
]2, 11[3
]1, 2] 2
[0, 1] 1

Table 5.8: Mapping between wlCoverageDBpedia intervals and the relevance score
scale.

User group Correl. with
DBpedia

Group 1 0.777
Group 2 0.717

Table 5.9: Average
multiple correlation (Spear-
man ρ) between users’
assigned scores, and
pathPopularityDBpedia

based scores.

DBPO class Correl.
users /
DBpe-
dia

DBpedia type Correl.
users /
DBpe-
dia

Language 0.893 Philosopher 0.661
Writer 0.748 Ambassador 0.655
Legislature 0.716 Album 0.871
Radio Station 0.772 Administrative Region 0.874
Country 0.665 Insect 0.624
Disease 0.824 Aircraft 0.664

Table 5.10: Multiple correlation co-
efficient (ρ) between users’s assigned
score, and pathPopularityDBpedia based
score.

correlation between the two distributions. Analogously, Table 5.10 shows the multi-

ple correlation values computed for each class, which are significantly high. Hence,

they indicate a satisfactory precision.

We can conclude that our hypothesis is supported by these findings, and that

Wikipedia wikilinks are a good source for KPs. We have tested alternative values

for t, and we have found that our hypothesized mapping (cf. Table 5.8) provides the

best correlation values among them. Consequently, we have set the threshold value

for KP boundaries (cf. Definition 3) as t = 11%.

84 Chapter 5. Knowledge Pattern extraction from the Web of Data

Chapter 6

Enrichment of sources for Knowledge

Pattern extraction

In this Chapter we present:

• a method for enriching the limited intensional as well as extensional coverage

of Linked Data with respect to ontologies and controlled vocabularies. Such a

method exploits the natural language for generating new axioms like rdf:type

from entity definitions. In fact, Linked Data is rich of natural language, for

example annotations (e.g. rdfs:comment) or corpora on which datasets are

grounded on (e.g. DBpedia is grounded on Wikipedia).

• a case study (conducted in [64]) about the automatic typing of DBpedia enti-

ties based on entity definitions available in Wikipedia abstracts. The result of

the case study is an algorithm and a tool (cf. Section 7.4.2) called T̀ıpalo 1;

• an evaluation of T̀ıpalo based on a golden standard and a user study that

shows a good accuracy in selecting the right types (with related taxonomies

and WordNet synsets in order to gather the most correct sense) for an entity

(cf. Section 6.2.3).

• a case study (conducted in [83, 44]) about the automatic identification of

the nature of citations in scholarly articles. In fact citations can be seen as

1CiTalO: http://wit.istc.cnr.it/stlab-tools/tipalo

http://wit.istc.cnr.it/stlab-tools/tipalo

86 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

links between articles and we want to be able to capture the reasons behind

their usage. The result of this case study is an algorithm and a tool (cf.

Section 7.4.2) called CiTalO 2;

• an evaluation of CiTalO based on a user study that shows how our algorithm

still needs improvements (cf. Section 6.3.2).

6.1 Enriching links with natural language

In previous chapters we have discussed about how to gather Knowledge Patterns

either from existing KP-like sources or from Linked Data. In the method introduced

in chapter 4 we have identified two main steps for KP transformation, i.e., (i) the

reengineering of the source to pure RDF triples compliant to the original schema and

data; (ii) the refactoring, a customized, task-oriented way to address KP semantics.

Besides the format transformation, the reengineering step is a method for source

enriching as it allows to generate RDF triples from non-RDF structured data.

The method introduced in chapter 5 is based on the notion of type paths (i.e., se-

quences of connected triple patterns whose occurrences have (i) the same rdf:type

for their subject nodes, and (ii) the same rdf:type) for their object nodes) and

allows to extract KPs by analyzing the linking structure of Linked Data. Unfortu-

nately, the usage of ontologies and controlled vocabularies in Linked Data is limited.

For example, the ontological coverage of the two de facto reference ontologies for

DBpedia, DBpedia, i.e., DBPO 3 and YAGO [133], is partial. This partiality is both

extensionally (number of typed resources), and intensionally (conceptual complete-

ness), since they rely on Wikipedia categories, and infoboxes (that are not included

in all Wikipedia pages).

For example, it is not possible to identify a type path between the two entities

dbpedia:Vladimir Kramnik and dbpedia:Russia from the RDF graph depicted

in Figure 6.1. In fact, neither a type is associated to dbpedia:Vladimir Kramnik

2CiTalO: http://wit.istc.cnr.it:8080/tools/citalo
3http://dbpedia.org/ontology/

http://wit.istc.cnr.it:8080/tools/citalo

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 87

nor a type from such an entity can be inferred from the universe of the property

dbpo:country as no restriction for domain and range are provided for this property.

Figure 6.1: An example of limited extensional coverage, which prevents the iden-
tification of a type path between the entities dbpedia:Vladimir Kramnik and
dbpedia:Russia.”

If we want to extend our KP extraction method in order to take into account

HTML hyperlinks, the problem is even more complex. In fact, hyperlinks are unla-

beled and there is no ontological coverage that can be exploited for the identification

of type paths. Hence, we need techniques aimed at enhancing links in the case of

lack of type information.

Our hypothesis are the following:

Hypothesis 1 The natural language available in annotations of Linked Data re-

sources, e.g., rdfs:comment, rdfs:label, etc., can be exploited for enriching these

resources with additional metadata, e.g., rdf:type.

Hypothesis 2 The natural language that surrounds an hypelinks can be exploited

for enhancing them and their linked entities to RDF.

According to the hypothesis 1 and 2 the natural language should convey a rich

knowledge that might be exploited in order to enrich data with additional metadata

that we need for KP extraction. We have identified a method based on the following

steps:

1. Natural language deep parsing of text;

2. Graph-pattern matching;

3. Word-sense disambiguation;

88 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

4. Ontology alignment.

In next sections we give details about these steps.

6.1.1 Natural language deep parsing of text

This step maps the natural language to a logical form, i.e. OWL. In order to accom-

plish this task we use FRED4 [117]. FRED performs ontology learning by relying

on Boxer [40], which implements computational semantics, a deep parsing method

that produces a logical representation of NL sentences in DRT. FRED implements

an alignment model and a set of heuristics for transforming DRT representations

to RDF and OWL representations. In the context of our method, FRED is in

charge of “reading” an entity NL definition, and producing its OWL representation,

including a taxonomy of types. For example, let us suppose to enrich the entity

dbpedia:Vladimir Kramnik by adding rdf:type axioms by interpreting the natu-

ral language available from dbpo:abstract properties. Hence, given the following

abstract

Vladimir Kramnik is a Russian chess grandmaster.

FRED returns the OWL graph depicted in Figure 6.2.

6.1.2 Graph-pattern matching

Once the natural language has been mapped to a logical form, it is possible to

recognize specific typical forms of the language, i.e., definitions, facts, etc. This

forms are recognized by applying a list of known graph-patterns (GPs) on FRED

output. GPs can be expressed by means of SPARQL queries. For example the

following graph pattern 5:

4FRED is available online at http://wit.istc.cnr.it/stlab-tools/fred
5wt: http://www.ontologydesignpatterns.org/ont/wikipedia/type/

http://wit.istc.cnr.it/stlab-tools/fred
http://www.ontologydesignpatterns.org/ont/wikipedia/type/

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 89

Figure 6.2: FRED result for the definition “Vladimir Borisovich Kramnik is a
Russian chess grandmaster.”

CONSTRUCT {?type rdfs:subClassOf ?subclass}

WHERE {

wt:Vladimir_Kramnik owl:sameAs ?x .

?x rdf:type ?type .

?type rdfs:subClassOf+ ?subclass

}

returns the type and its related taxonomy from the logical representation of the

abstract associated to the entity dbpedia:Vladimir Kramnik. The result taxonomy

is the following:

wt:RussianChessGrandmaster rdfs:subClassOf wt:ChessGrandmaster

wt:ChessGrandmaster rdfs:subClassOf wt:Grandmaster

The identification of the GPs is task-specific. We will see how to model graph

patterns for identifying candidate terms for the tasks of typing DBpedia entities (cf.

Section 6.2.2) and citations in scholarly articles (cf. Section 6.3.1).

90 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

6.1.3 Word-sense disambiguation

After having identified the concepts expressing the types of an entity and their

taxonomical relations, we have to gather their correct sense: we need word-sense

disambiguation. A possible way to achieve this goal is to identify alignments between

the type terms and WordNet terms. A first solution involves tools like UKB [3], a

tool which returns the WordNet synset for a term, looking for the one that fits best

the context given by the entity definition. UKB provids good results in terms of

precision and recall although its speed performance needs improvement in order to

apply it on large datasets, e.g., DBpedia. A second solution is to select the most

frequent WordNet sense for a given term, which is very efficient in terms of speed,

but shows lower precision and recall. This step allows us to assign a WordNet type

(corresponding to the identified synset) to an entity. Referring to the above example

(i.e., definition of Vladimir Kramnik), the word-sense disambiguation would allow

to produce the following additional triples6:

wt:Grandmaster owl:equivalentTo wn30syn:synset-grandmaster-noun-1

Where the synset wn30syn:synset-grandmaster-noun-1 identifies in WordNet

a player of exceptional or world class skill in chess or bridge.

6.1.4 Ontology alignment

So far the typing process produces a set of newly defined concepts, and disam-

biguates them to a WordNet sense. The final step consists in linking such concepts

to other Semantic Web ontologies, in order to support shared interpretation and

linked data enrichment. The alignment task can be performed in several ways, such

as by providing manual mappings between WordNet synsets and other ontologies

6wn30syn: = http://purl.org/vocabularies/princeton/wn30/instances/

http://purl.org/vocabularies/princeton/wn30/instances/

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 91

or by exploiting more sophisticated tools like the Alignment API [46], which allows

to discover, expressing and sharing ontology alignments. The need of aligning on-

tologies is simple and can be summarized as the need to achieve interoperability

among heterogeneous systems within the Semantic web. However, as the ontologies

underlying two systems are not necessarily compatible, they may in turn need to be

reconciled. In order to exemplify this task we provide an example of an alignment

among wt:Grandmaster, WordNet synsets and some foundational ontology classes

from Dolce [60]. The alignment produces the following triples:

wt:Grandmaster rdfs:subClassOf dul:Person

wt:Grandmaster rdfs:subClassOf wn30:supersense-noun person

meaning that the term “grandmaster” associated with the WordNet sense

wn30syn:synset-grandmaster-noun-1 (as provided by the WSD) is aligned to

the class dul:Person of Dolce 7 ontology. Analogously, the same term is aligned

to the WordNet super sense “person”. Finally it is easy to associate the entity

wt:VladimirKramnik to dbpedia:Vladimir Kramnik for example with a named

entity recognizer 8 (NER). Hence, a final RDF graph for our example can be that

depicted in Figure 6.3.

6.2 Automatic typing of DBpedia entities

In this section we present a case study which applies the method described in the

previous section for automatically typing DBpedia entities. The contribution of the

case study are (i) a natural ontology of Wikipedia 9 (cf. Section 6.2.4) and (ii)

an algorithm and a tool (cf. Section 7.4.2), T̀ıpalo, which is the result of a work

presented in [64] and that allow to generate RDF types with related taxonomies

7Dolce: http://www.ontologydesignpatterns.org/ont/d0.owl.
8FRED has an internal NER that links recognized entities to DBpedia.
9It is natural as it is extracted from natural language definitions of DBpedia entities.

http://www.ontologydesignpatterns.org/ont/d0.owl.

92 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

Figure 6.3: An example of the enrichment of the entity
dbpedia:Vladimir Kramnik based on its natural language definition available from
the property dbpo:abstract.

given given a certain entity in DBpedia. We refer to Chapter 7 for architectural and

implementation details about T̀ıpalo.

6.2.1 Material

In the context of this case study, we have used and produced a number of resources.

Wikipedia and DBpedia

Wikipedia is a collaboratively built multilingual encyclopedia on the Web. Each

Wikipedia page usually refers to a single entity, and is manually associated to a

number of categories. Entities referenced by Wikipedia pages are represented in

DBpedia, the RDF version of Wikipedia. Currently, English Wikipedia contains

4M articles10, while DBpedia wikilink dataset counts ∼15M distinct entities (as of

version 3.6). One main reason for this big difference in size is that many linked

resources are referenced by sections of Wikipedia pages, hence lacking explicit cate-

gorization or infoboxes. However they have a URI, and a NL description, hence they

10Source: http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 93

are a rich source for linked data. Out of these ∼15M resources, ∼2.7 are typed with

YAGO classes and ∼1.83M are typed with DBpedia classes. We use Wikipedia page

contents as input for the definition extraction step (cf. Figure 6.4), for extracting

entity definitions.

WordNet 3.0 and WordNet 3.0 supersense RDF

WordNet11 is a large database of English words. It groups words into sets of syn-

onyms, called synsets, each expressing a different concept. Although WordNet in-

cludes different types of words such as verbs and adjectives, for the sake of this

work we limit the scope to nouns. Words that may express different meanings, i.e.

polysemous words, are related to different synsets. In this work, we use the Word-

Net 3.0 RDF porting12 in order to identify the type of an entity. Hence when such

type is expressed by a polysemous word we need to identify the most appropriate

one. To this aim we exploit a WSD engine named UKB [3]. Furthermore, WordNet

3.0 includes relations between synsets and supersenses, which are broad semantic

categories. WordNet contains 41 supersenses, 25 of which are for nouns. We have

produced a resource named WordNet 3.0 Supersense RDF 13 that encodes such align-

ments as RDF data. This RDF dataset is used by the graph-pattern matching step

for producing triples relating entities and supersenses.

OntoWordNet (OWN) 2012

OWN 2012 is a RDF resource that updates and extends OWN[63]. OWN is an

OWL version of WordNet, which includes semantic alignments between synsets and

DULplus types. DULplus14, extends DUL15, which is the OWL light version of

DOLCE + DnS [59] foundational ontology. OWN 2012 contains mappings between

859 general synsets and 60 DULplus classes. Such mappings have been propagated

11WordNet, http://wordnet.princeton.edu/
12http://semanticweb.cs.vu.nl/lod/wn30/
13http://www.ontologydesignpatterns.org/wn/wn30/wordnet-supersense.rdf
14Dolce Ultra Lite Plus ontology, http://www.ontologydesignpatterns.org/ont/wn/

dulplus.owl
15Dolce Ultra Lite ontology, http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

http://www.ontologydesignpatterns.org/ont/wn/dulplus.owl
http://www.ontologydesignpatterns.org/ont/wn/dulplus.owl
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

94 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

through the transitive closure of the hyponym relation in order to cover all ∼82000

synsets. In the context of this work, we have updated OWN to the WordNet 3.0

version, and performed a revision of the manual mapping relations. Furthermore, we

have defined a lightweight foundational ontology called Dolce Zero16, whose classes

generalize a number of DULplus classes used in OWN. We have used a combination

of 23 Dolce Zero and DULplus classes for building a sample Wikipedia ontology. The

reduction to 23 classes has been made in order make it comparable to the WordNet

supersense set, and to simplify the task of evaluators.

6.2.2 Typing entities

Figure 6.4: Pipeline implemented for automatic typing of DBpedia entities based
on their natural language descriptions as provided in their corresponding Wikipedia
pages. Numbers indicate the order of execution of a component in the pipeline. The
output of a component i is passed as input to the next i+ 1 component.

For this case study the method has been adapted in order to result as a pipeline

of components and data sources, described below, which are applied in the sequence

illustrated in Figure 6.4. We omit the description about steps 2, 4, 5 in the figure

since they have been already described in Section 6.1.3. The step 5 is realized

by exploiting the alignments between WordNet synsets and WordNet Super-senses

16http://www.ontologydesignpatterns.org/d0.owl

http://www.ontologydesignpatterns.org/d0.owl

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 95

available from WordNet 3.0 Supersense RDF and between WordNet synsets and

DULplus available form OntoWordNet 2012. Instead, in next paragraphs we give

details about:

• how we actually capture entity definitions (step 1);

• how we have designed the graph patterns (step 3).

Definition extraction

The first step is the definition extraction, which consists in extracting the definition

of a DBpedia entity from its corresponding Wikipedia page abstract. Instead of

using the dbpedia short abstracts en dataset of DBpedia, which provides abstract of

DBpedia entities by means of dbpo:abstract datatype properties, we prefer to use

HTML Wikipedia pages as we also need some markup for identifying the subject

entity (the entity to which the Wikipedia page is referred to) within a sentence. We

identify the shortest text including information about the entity type. Typically, an

entity is defined in the first sentence of a Wikipedia page abstract, but sometimes the

definition is expressed in one of the following sentences, can be a combination of two

sentences, or even implicit. We rely on a set of heuristics based on lexico-syntactic

patterns [75] and Wikipedia markup conventions in order to extract such sentences.

A useful Wikipedia convention is the use of bold characters for visualizing the name

of the referred entity in the page abstract: for example consider the Wikipedia page

referring to “Vladimir Kramnik”17 and the first paragraph of its abstract, depicted in

Figure 6.5. Let us represent such paragraph as a sequence of n sentences {s1, ..., sn}.
Typically, the bold words referring to the entity (bold-name) are included in a sen-

tence si, (i = 1, ..., n) that provides its definition according to a syntactic form of the

type: “bold−name <copula><predicative nominal||predicative adjective>” (where

<copula> is usually a form of the verb to be) e.g., “Vladimir Borisovich Kramnik

is a Russian chess grandmaster”. However, this is not always the case: sometimes,

the sentence si containing the bold-name does not include any <copula>, while a

17http://en.wikipedia.org/wiki/Vladimir_Kramnik

http://en.wikipedia.org/wiki/Vladimir_Kramnik

96 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

Figure 6.5: First paragraph of the Wikipedia page abstract for the entity “Vladimir
Kramnik”.

<copula> can be found together with a co-reference to the entity, in one of the fol-

lowing sentences sj. In such cases, we extract the entity definition by concatenating

these two sentences i.e. si + sj. If the abstract does not contain any bold-name, we

inspect s1: if it contains a <copula> we return s1, otherwise we concatenate s1 with

the first of the next sentences e.g., si, containing a <copula> (i.e. s1 + si). If none of

the above is satisfied, we return s1. We also apply additional heuristics for dealing

with parentheses, and other punctuation. For the example in Figure 6.5 we return

s1: Vladimir Borisovich Kramnik is a Russian chess grandmaster, which contains

the bold-name as well as a <copula>.

Graph-pattern matching

This step requires to identify, in FRED output graph, the paths providing typing

information about the analyzed entity, and to discard the rest. Furthermore, we want

to distinguish the case of an entity that is represented as an individual e.g. Vladimir

Kramnik, from the case of an entity that is more appropriately represented as a

class e.g., Chess piece. FRED output looks differently in these two situations as

well as depending on the type of definition e.g., including a copula or parenthetic

terms. For example, consider the entity Chess piece, which is a class entity, and

is defined by “Chess pieces, or chessmen, are the pieces deployed on a chessboard

to play the game of chess.”. FRED output graph for such definition is depicted

in Figure 6.618. In this case, the graph paths encoding typing information comply

18For space reasons, we include only the portion of the graph of interest in this context. Readers
interested in visualizing the complete graph can submit the sentence to FRED online http://wit.

http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 97

Figure 6.6: FRED result for the definition “Chess pieces, or chessmen, are the
pieces deployed on a chessboard to play the game of chess.”

with a different pattern from the one in Figure 6.2. The role of the graph-pattern

matching is to recognize a set of graph patterns that allow to distinguish between an

entity being a class or an individual, and to select the concepts to include in its graph

of types. To implement a graph-pattern matching mechanism, we have identified

a set of graph patterns (GP), and defined their associated heuristics by following

similar criteria as lexico-syntactic patterns [75], extended with the exploitation of

RDF graph topology and OWL semantics. Currently, we use 10 GPs: 4 of them

identifying class entities, and 6 for individual entities. Firstly, the GP matching step

distinguishes if an entity is either an individual or a class entity: given an entity

e, it is an individual if it participates in a graph pattern of type e owl:sameAs

x, it is a class if it participates in a graph pattern of type x rdf:type e. As

empirically observed, these two situations are mutually exclusive. After performing

this distinction, the the algorithm follows a priority order for GP detection and

executes the heuristics associated with the first matching GP. Tables 6.1 and 6.2

respectively report the GP sets and their associated heuristics by following the

priority order used for detection, for individual entities and class entities.

The rationale behind GP priority order resides in ontology design choices as well

as in the way the current implementation of T̀ıpalo works. Sometimes, an entity

definition from Wikipedia includes typing information from a “domain-level” as well

as a “meta-level” perspective. For example, from the definition19 “Fast chess is a

type of chess game in which each side is given less time to make their moves than

under the normal tournament time controls of 60 to 180 minutes per player”. We

istc.cnr.it/stlab-tools/fred.
19http://en.wikipedia.org/wiki/Fast_chess

http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://wit.istc.cnr.it/stlab-tools/fred
http://en.wikipedia.org/wiki/Fast_chess

98 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

ID graph pattern (GP) inferred
axioms

gp1 e owl:sameAs x && x domain:aliasOf y && y
owl:sameAs z && z rdf:type C

e
rdf:type

C
gp2 e rdf:type x && x owl:sameAs y && y

domain:aliasOf z && w owl:sameAs z && w
rdf:type C

e
rdf:type

C
gp3 e owl:sameAs x && x [r] y && y rdf:type C e

rdf:type

C
gp4 e owl:sameAs x && x rdf:type C e

rdf:type

C
gp5 e dul:associatedWith x && x rdf:type C e

rdf:type

C
gp6 (e owl:sameAs x && x anyP y && y rdf:type C) ‖

(e anyP x && x rdf:type C)
e
rdf:type

C

Table 6.1: Graph patterns and their associated type inferred triples for individual
entities. Order reflects priority of detection. [r] ∈ R = {wt:speciesOf, wt:nameOf,
wt:kindOf, wt:varietyOf, w:typeOf, wt:qtyOf, wt:genreOf, wt:seriesOf}); [anyP] ∈
{∗} − R.

can derive that “Fast chess” is a type (meta-level type) as well as a chess game

(domain-level type). This situation makes FRED output include a GP detecting

“type” as a type i.e., gp8, as well as a GP detecting “chess game” as a type i.e.,

gp7, as depicted in Figure 6.7. In this use case our goal is to type DBpedia entities

only from a domain-level perspective. Furthermore, this graph pattern matching for

this experiment executes only one heuristics: that associated with the first GP that

matches in FRED output graph. Given the above rationale, gp7 is inspected before

gp8. The same rationale applies to GP for individual entities, illustrated in Table

6.1. For the dbp:Fast chess20 example, the type selector detects that the entity is

20dbp: http://dbpedia.org/resource/

http://dbpedia.org/resource/

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 99

ID graph pattern (GP) inferred ax-
ioms

gp7 x rdf:type e && x owl:sameAs y && y [r]
z && z rdf:type C

e
rdfs:subClassOf

C
gp8 x rdf:type e && x owl:sameAs y && y

rdf:type C
e
rdfs:subClassOf

C
gp9 x rdf:type e && e dul:associatedWith y

&& y rdf:type C
e
rdfs:subClassOf

C
gp10 (x rdf:type e && x owl:sameAs y && y

[anyP] z && z rdf:type C) ‖ (x rdf:type

e && y [anyP] x && y rdf:type C)

e
rdfs:subClassOf

C

Table 6.2: Graph patterns and their associated type inferred triples for class en-
tities. [r] ∈ R = {wt:speciesOf, wt:nameOf, wt:kindOf, wt:varietyOf, w:typeOf,
wt:qtyOf, wt:genreOf, wt:seriesOf}); [anyP] ∈ {∗} − R.

a class and the first GP detected is gp7, hence it produces the additional triples:

dbp:Fast chess rdfs:subClassOf wt:ChessGame

wt:ChessGame rdfs:subClassOf wt:Game

The execution of the algorithm on a sample set of randomly selected ∼800

Wikipedia entities has shown that the most frequent GPs are gp4 and gp8, which is

not surprising, since they are the most common linguistic patterns for definitions.

Table 6.3 reports the frequency of each GP on the sample set.

The graph-pattern matching algorithm for this use case implements an additional

heuristics: it detects if any of the terms referring to a type in the graph can be

referenceable as a DBpedia entity. For example, the term “chess” in the definition

of “Fast chess” is resolvable to dbpo:Chess. In such case, the GP matching step of

the algorithm produces the following triple:

dbpo:Fast chess rdfs:subClassOf dbpo:Chess

100 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

Figure 6.7: FRED result for the definition “Fast chess is a type of chess game
in which each side is given less time to make their moves than under the normal
tournament time controls of 60 to 180 minutes per player.”

GP frequency (%)
gp1 0
gp2 0.15
gp3 3.98
gp4 79.34
gp5 0
gp6 0.31
gp7 1.11
gp8 11.46
gp9 0
gp10 3.65

Table 6.3: Normalized frequency of GPs on a sample set of ∼800 randomly selected
Wikipedia entities.

This additional heuristics improves the internal linking within DBpedia, resulting

in higher cohesion of the resource graph.

By following the defined heuristics, we are able to select the terms that refer to

the types of an entity e, and to create a namespace of Wikipedia types that captures

the variety of terms used in Wikipedia definitions21.

21Wikipedia class taxonomy, wt: = http://www.ontologydesignpatterns.org/ont/

wikipedia/type/

http://www.ontologydesignpatterns.org/ont/wikipedia/type/
http://www.ontologydesignpatterns.org/ont/wikipedia/type/

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 101

6.2.3 Evaluation

We evaluate our work considering the accuracy of types assigned to the sample set

of Wikipedia entities, and the soundness of the induced taxonomy of types for each

DBpedia entity. The accuracy of types has been measured in two ways:

• in terms of precision and recall against a gold standard of 100 entities;

• by performing a user study. The soundness of the induced taxonomies has

been assessed in a user study.

Building a sample set of Wikipedia pages

We have performed our experiments on a sample set of ∼800 randomly selected

Wikipedia pages. From the 800 set, we have removed all pages without an abstract

text, e.g. redirect pages, categories, and images. The resulting sample includes 627

pages with the following characteristics: (i) each page has a corresponding DBpedia

entity, (ii) each DBpedia entity has either a DBpedia type, a YAGO type, or no

type, (ii) 67.62% of the corresponding DBpedia entities have a YAGO type, 15.47%

have a DBPO type, and 30% of them have no type.

Building a gold standard

We have built a manually annotated gold standard of Wikipedia entity types based

on the sample set used for our experiments. To support this process we have devel-

oped a web-based tool named WikipediaGold22 that manages argumentation among

users in order to support them in discussing and reaching agreement on decisions

(agreement was considered reached with at least 70% users giving the same answer).

Ten users with expertise in ontology design (four senior researchers and six PhD stu-

dents in the area of knowledge engineering) have participated in this task, and have

reached agreement on 100 entities. We have used such 100 entities as a gold standard

for evaluating and tuning our method. The gold standard can be retrieved from the

22Available online at http://wit.istc.cnr.it/WikipediaGold, demonstrating video at http:
//wit.istc.cnr.it/stlab-tools/video/

http://wit.istc.cnr.it/WikipediaGold
http://wit.istc.cnr.it/stlab-tools/video/
http://wit.istc.cnr.it/stlab-tools/video/

102 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

cited Wikipedia Ontology page, and it can be useful for future development and for

comparing our work with possible other approaches to this same task.

WikipediaGold is based on a simple user task, repeated iteratively: given an

entity e e.g., dbp:Vladimir Ramnik, WikipediaGold visualizes its definition e.g.,

“Vladimir Borisovich Kramnik is a Russian chess grandmaster.” and asks users to:

• indicate if e refers to a concept/type or to a specific instance. Users can

select either “is a” or “is a type of” as possible answers. This value allows

us to evaluate if our process is able to distinguish entities which are typical

individuals, from those that are typical classes;

• copy and paste the terms in the definition that identifies the types of e, or

indicate a custom one, if the definition does not contain any. In our example,

a user could copy the term “Russian chess grandmaster”. This information is

meant to allow us evaluating the performances of the type selector ;

• select the most appropriate concepts for classifying e from two lists of terms.

The first list includes 21 WordNet supersenses, and the second list includes

23 classes from DULplus and Dolce Zero. Each type is accompanied by a

describing gloss and some examples to inform the user about its intended

meaning. In the example, users can select the type “Person” available in both

lists. The two lists of concepts are available online at the Wikipedia ontology

page.

For each answer, users can optionally include a comment motivating their choice.

When there is disagreement among users about an entity, WikipediaGold submits

it again to users who have already analyzed it. In these cases a user can see other

users’ choices and comments, and decide if either to keep her decision, or to change

it. In both cases, a comment motivating own decision must be entered.

Evaluation against the gold standard

Our evaluation is based on measuring precision and recall of the output of the three

main steps of the process, against the gold standard: (i) graph-pattern matching

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 103

Step precision recall F-measure (F1)
Graph-pattern matching .93 .90 .92
Word-sense disambiguation
(most frequent sense)

.77 .73 .75

Word-sense disambiguation
(UKB)

.86 .82 .84

Ontology alignment (Supersense) .73 .73 .73
Ontology alignment (DUL+/D0) .80 .80 .80

Table 6.4: Performance evaluation of the individual pipeline step.

(step 3), (ii) word-sense disambiguation (WSD) (step 4), and (iii) ontology alignment

(step 5). We also measure precision and recall of the overall process output.

Typing process precision recall F-measure (F1)
WordNet types .76 .74 .75

Supersenses .62 .60 .61
Dul+/D0 .68 .66 .67

Table 6.5: Performance evaluation of the overall process.

The results shown in Table 6.4 indicate the performances of the individual com-

ponents. The graph-pattern matcher stands out as the most reliable step (F1 = .92),

which confirms our hypothesis that a rich formalization of definitions and a good

design of graph patterns are a healthy approach to entity typing. The WSD task has

been performed with two approaches: we analyze its performance by executing UKB

as well as a most-frequent-sense-based (MFS) approach. The WSD based on UKB

shows to perform better (F1 = .84) than the approach based on the most frequent

sense in WordNet (F1 = .75), suggesting that Wikipedia definitions often include

polysemous senses, and that the used language tends to be specialized i.e., polyse-

mous terms are used with different senses. The ontology alignment performs better

with DULplus/Dolce Zero types than with WordNet supersenses, which shows an

improvement with respect to the state of the art considering that WordNet super

senses are considered an established and reliable semantic resource when used as a

top-level ontology for WordNet.

Table 6.5 illustrates the performance of the overall automatic typing process. As

104 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

expected, the steps that map the extracted types to WordNet types, super senses,

and top-level ontologies tend to decrease the initial high precision and recall of the

type selector. In fact, when put into a pipeline, errors typically reinforce previous

ones, producing in this case an overall decrease of F1 from .92 of the type selection

step to .75 of the combined type selection and WSD, to .67 with the addition of

DULplus/Dolce Zero alignment (type matcher). However, the modularity of our

process enables to reuse the results that are actually useful to a certain project, e.g.

discarding a step that performs worse.

The good performances observed in our evaluation experiments make us claim

that using our algorithm (T̀ıpalo 23) brings advantages when compared to the most

prominent existing approaches i.e., DBpedia project [88] and YAGO [133] to DBpe-

dia entity typing, for the following reasons: (i) T̀ıpalo potentially ensures complete

coverage of Wikipedia domains (intensional coverage) as it is able to capture the

reachness of terminology in NL definitions and to reflect it in the resulting ontology,

while DBpedia and YAGO depend both on the limited intensional completeness

of infobox templates and Wikipedia categories, (ii) T̀ıpalo is independent from the

availability of structured information such as infobox templates and Wikipedia cat-

egories, hence ensuring higher extensional completeness as most Wikipedia entities

have a definition while many of them lack infoboxes.

A direct comparison of our results with DBpedia and YAGO approaches occurred

to be unfeasible in the scope of this paper because the two approaches differ from

ours on important aspects: they use different reference type systems; they rely on

Wikipedia categories or infobox templates while we rely on the NL descriptions used

for defining Wikipedia entities by the crowds, hence it is difficult (if not impossible)

to compare the derived vocabularies; finally, the granularity of their type assign-

ments is heterogeneous. These cases make it hard to define criteria for performing

a comparison between the accuracy of the automatically assigned types. Hence, we

could not consider either DBpedia or YAGO suitable gold standards for this specific

task, which motivates the construction of a specific gold standard.

23T̀ıpalo is also the name of the tool that implements such algorithm.

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 105

Evaluation by user study

In order to further verify our results, we have conducted a user study. We have im-

plemented a second Web-based tool, named WikipediaTypeChecker 24, for supporting

users in expressing their judgement on the accuracy of T̀ıpalo types assigned to the

sample set of Wikipedia entities.

WikipediaTypeChecker asks users to evaluate the accuracy of T̀ıpalo types, the

soundness of the induced taxonomies, and the correctness of the selected meaning

of types, by expressing a judgement on a three-valued scale: yes, maybe, no. Users’

task, given an entity with its definition, consists of three evaluation steps. Consider

for example the entity dbp:Fast chess: in the first step, users evaluate the accuracy

of the assigned types by indicating the level of correctness of proposed types. In

this example, for the entity “Fast chess” three types are proposed: “Chess game”,

“Game”, and “Activity”; in the second step users validate the soundness of the

induced taxonomy of types for an entity. In this example, the proposed taxonomy

is wt:ChessGame rdfs:subClassOf wt:Game; in the third step users evaluate the

correctness of the meaning of individual types (i.e. WSD). For example, the proposed

meaning for “Chess game” is “a board game for two players who move their 16 pieces

according to specific rules; the object is to checkmate the opponent’s king”. Five

users with expertise in knowledge engineering have participated in the user study

(three PhD students and two senior researchers). For each entity and for each

evaluation step, we have computed the average value of judgements normalized to

an interval [0,1], which gives us a value for the precision of results. The results are

shown in Table 6.6, with a (high) inter-rater agreement (Kendall’s W) of .7925. These

results confirm those observed in the evaluation against a gold standard (cf. Tables

6.4 and 6.5). In this case, we have split the evaluation of the correctness of extracted

types between assigned types (.84), and induced taxonomy (.96): their combination

24Available online at http://wit.istc.cnr.it/WikipediaTypeChecker, demonstrating video
at http://wit.istc.cnr.it/stlab-tools/video

25Kendall’s W is a coefficient of concordance used for assessing agreement among raters. It
ranges from 0 (no agreement) to 1 (complete agreement), and is particularly suited in this case
as it makes no assumptions regarding the nature of the probability distribution and handles any
number of distinct outcomes.

http://wit.istc.cnr.it/WikipediaTypeChecker
http://wit.istc.cnr.it/stlab-tools/video

106 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

Task Type extraction Taxonomy induction WSD
Correctness .84 .96 .81

Table 6.6: Results of the user-based evaluation, values are expressed in percent-
age and indicate precision of results. Inter-rater agreement (Kendall’s W) is .79,
Kendall’s W ranges from 0 (no agreement) to 1 (complete agreement).

is comparable to the precision value observed for the type selector against the gold

standard (.93). The performance of the WSD task is a bit lower (.81 against .86

precision).

6.2.4 ORA: towards the Natural Ontology of Wikipedia

T̀ıpalo has been used for automatically generating a natural ontology of Wikipedia,

i.e., an ontology that is extracted by exploiting the natural language definitions of

Wikipedia entities. Hence, it reflects the richness of terms used and agreed by the

crowds. The extraction of the ontology has been run on a Mac Pro Quad Core Intel

Xeon 2.8Ghz with 10Gb RAM and took 15 days (which can be easily reduced by

parallelizing the activity by means of grid computing composed by machines with

similar or more powerful characteristics). The process resulted in 3,023,890 typed

entities and associated taxonomies of types. Most of the missing results are due to

the lack of matching T̀ıpalo heuristics, which means that by improving T̀ıpalo we will

improve coverage (this is part of our current work). The resulting ontology includes

585,474 distinct classes organized in a taxonomy with 396,375 rdfs:subClassOf

axioms; 25,480 if these classes are aligned through owl:equivalentClass axioms to

20,662 OntoWordNet synsets by means of a word-sense disambiguation process. The

difference between the number of disambiguated classes (25,480) and the number of

identified synsets (20,662) means that there are at least 4,818 synonym classes in

the ontology. We expect the number of actual synonyms to be greater. Hence, we

are planning to investigate some sense-similarity-based metric in order to reduce the

number of distinct classes in the ontology by merging synonyms or at least providing

explicit similarity relations with confidence scores between classes.

In order to prevent polysemy deriving from merging classes with same names

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 107

but aligned to different synsets, it has been adopted a criterion of uniqueness for

the generation of the URIs of these classes. For example, let us consider the entity

dbpedia:The Marriage of Heaven and Hell26. For this entity T̀ıpalo generates the

following RDF:

dbpedia:The_Marriage_of_Heaven_and_Hell

a wt:Book .

wt:Book

owl:equivalentClass wn30-instance:synset-book-noun-2 .

Similarly, for the entity dbpedia:Book of Revelation27 T̀ıpalo generates the

following RDF:

dbpedia:Book_of_Revelation

a wt:CanonicalBook .

wt:CanonicalBook

rdfs:subClassOf wt:Book .

wt:Book

owl:equivalentClass wn30-instance:synset-book-noun-10 .

The two wt:Book classes refers to two distinct concepts. Hence, they cannot

be merged during the generation of the ontology. We solve this by appending the

ID of the closest synset in the taxonomy to the URI of a new generated class: this

approach guarantees to prevent polysemy and to identify synonymity at the same

time. Finally, all the classes aligned to OntoWordNet have been also aligned to

WordNet supersenses and a subset of DOLCE+DnS Ultra Lite classes by means of

rdfs:subClassOf axioms. The following example shows a sample of the ontology

which has been derived by typing the two entities used as examples previously:

26The definition of dbpedia:The Marriage of Heaven and Hell is: “The Marriage of Heaven
and Hell is one of William Blake’s books.”

27The definition of dbpedia:Book of Revelation is: textit“The Book of Revelation is the last
canonical book of the New Testament in the Christian Bible.”

108 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

dbpedia:The_Marriage_of_Heaven_and_Hell

a wt:Book_102870092 .

dbpedia:Book_of_Revelation

a wt:CanonicalBook_106394865 .

wt:CanonicalBook_106394865

rdfs:subClassOf wt:Book_106394865 ;

rdfs:label "Canonical Book"@en-US .

wt:Book_102870092

owl:equivalentClass wn30-instance:synset-book-noun-2 ;

rdfs:label "Book"@en-US .

wt:Book_106394865

owl:equivalentClass wn30-instance:synset-book-noun-10 ;

rdfs:subClassOf wn30-instance:supersense-noun_communication ,

d0:InformationEntity ;

rdfs:label "Book"@en-US .

ORA is available for download 28. We claim that this ontology provides an impor-

tant resource that can be used as alternative or complement for YAGO and DBPO,

and that it can enable more accurate usage of DBpedia in Semantic Web based ap-

plications such as: mash-up tools, recommendation systems, and exploratory search

tools (see for example Aemoo [108]), etc. Currently, we are working at refining ORA

and to align it to DBPO and YAGO.

6.3 Identifying functions of citations

References are tools for linking research. Whenever a researcher writes a paper she

uses bibliographic references as pointers to related works, to sources of experimental

data, to background information, to standards and methods linked to the solution

being discussed, and so on. Similarly, citations are tools for disseminating research.

Not only on academic conferences and journals. Dissemination channels also include

28http://stlab.istc.cnr.it/stlab/ORA

http://stlab.istc.cnr.it/stlab/ORA

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 109

publishing platforms on the Web like blogs, wikis, social networks. More recently,

semantic publishing platforms are also gaining relevance [129]: they support users

in expressing semantic and machine-readable information. From a different perspec-

tive, citations are tools for exploring research. The network of citations is a source

of rich information for scholars and can be used to create new and interesting ways

of browsing data. A great amount of research is also being carried on sophisti-

cated visualisers of networks of citations and powerful interfaces allowing users to

filter, search and aggregate data. Finally, citations are tools for evaluating research.

Quantitative metrics on bibliographic references, for instance, are commonly used

for measuring the importance of a journal (e.g. the impact factor) or the scientific

productivity of an author (e.g. the h-index). Furthermore, being links citations can

be exploited for investigating Citational Knowledge Patterns. This work begins with

the basic assumption that all these activities can be radically improved by exploit-

ing the actual nature of citations. Let us consider citations as means for evaluating

research. Could a paper that is cited many times with negative reviews be given a

high score? Could a paper containing several citations of the same research group be

given the same score of a paper with heterogeneous citations? How can a paper cited

as plagiarism be ranked? These questions can be answered by looking at the nature

of the citations, not only their existence. On top of such characterisation, it will also

be possible to automatically analyse the pertinence of documents to some research

areas, to discover research trends and the structure of communities, to build sophis-

ticated recommenders and qualitative research indicators, and so on. There are in

fact ontologies for describing the nature of citations in scientific research articles

and other scholarly works. In the Semantic Web community, the most prominent

one is CiTO (Citation Typing Ontology) 29 [112]. CiTO is written in OWL and

is connected to other works in the area of semantic publishing. It is then a very

good basis for implementing sophisticated services and for integrating citation data

with linked data silos. In this section we present CiTalO a tool that implements the

method presented in previous section. The contribution about CiTalO is the result

29CiTO: http://purl.org/spar/cito.

110 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

of works presented in [83, 44]. We refer to chapter 7 for the details about the design

and the implementation of CiTalO .

6.3.1 The CiTalO algorithm

In this section, we introduce CiTalO, an algorithm 30 that infers the function of

citations by using the method described in Section 6.1.3 plus sentiment-analysis.

This method is applied in a pipeline whose input is the textual context containing

the citation and the output is a one or more properties of CiTO [112]. Figure 6.8

shows the Citalo algorithm.

Figure 6.8: Pipeline implemented by CiTalO. The input is the textual context
in which the citation appears and the output is a set of properties of the CiTO
ontology.

Inasmuch as in previous section we have already explained how steps 1.1 (i.e.,

natural language deep parsing of text) and 3 (i.e., word-sense disambiguation) are

performed, we will give only details about the steps that differ or introduce novelty

with respect to the previous approach. Namely these steps are those numbered

30Details about the CiTalO tool can be found in Section 7.4.2

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 111

1.2 (i.e., sentiment analysis), 2 (i.e., graph-pattern matching) and 4 (i.e., ontology

alignment).

Sentiment-analysis to gather the polarity of the citational function

The aim of the sentiment-analysis in our context is to capture the sentiment polarity

emerging from the text in which the citation is included. The importance of this

step derives from the classification of CiTO properties according to three different

polarities, i.e., positive, neuter and negative. This means that being able to recognise

the polarity behind the citation would restrict the set of possible target properties

of CiTO to match.

Citation type extraction through pattern matching

The second step consists of extracting candidate types for the citation, by looking

for patterns in the FRED result. In order to collect these types we have designed 6

graph-based heuristics and we have implemented them as SPARQL queries. These

patterns are described in Table 6.7 where the rationale differs from that used in

T̀ıpalo because the order of patterns is irrelevant as they are all evaluated allowing

to collect multiple typing inferences.

For example, given the following sentence which contains a citation:

It extends the research outlined in earlier work X.

where X is the cited work, FRED returns the graph shown in Figure 6.9. Based

on the graph-patterns in Table 6.7 gp1, gp2 and gp5 match and allow to identify as

candidate types the terms Outline (gp1), Extend (gp5), EarlierWork (gp1), Work

(gp2), and Research (gp5).

We still have to extract statistics on graph-patterns for citations that allow to

identify what are the most frequently matching patterns. Anyway, we are investi-

gating new patterns and we are continuously updating the catalogue.

112 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

ID graph pattern (GP) inferred
axioms

gp1 e anyP wt:X && e rdf:type t wt:X

rdf:type

t
gp2 e anyP wt:X && e rdf:type x && x

rdfs:subClassOf+ t
wt:X

rdf:type

t
gp3 (e anyP+ wt:X ‖ wt:X anyP+ e) && e rdf:type

dul:Event && e rdf:type t && t != dul:Event

wt:X

rdf:type

t
gp4 (e anyP+ wt:X ‖ wt:X anyP+ e)+ && e

rdf:type dul:Event && e rdf:type x && x
rdfs:subClassOf+ t && t != dul:Event

wt:X

rdf:type

t
gp5 (e anyP+ wt:X ‖ wt:X anyP+ e)+ && e rdf:type

dul:Event && (e boxer:theme x ‖ e boxer:patient
x) && x rdf:type t

wt:X

rdf:type

t
gp6 (e anyP+ wt:X ‖ wt:X anyP+ e)+ && e rdf:type

dul:Event && (e boxer:theme x ‖ e boxer:patient
x) && x rdf:type y && y rdfs:subClassOf+ t

wt:X

rdf:type

t

Table 6.7: Graph patterns and their associated type inferred triples. Order reflects
priority of detection. [anyP] ∈ {∗}.

Alignment to CiTO

The final step consists of assigning CiTO types to ciations. We use two ontologies for

this purpose: CiTOFunctions and CiTO2Wordnet. The CiTOFunctions ontology 31

classifies each CiTO property according to its factual and positive/neutral/nega-

tive rhetorical functions, using the classification proposed by Peroni et al. [112].

CiTO2Wordnet 32 maps all the CiTO properties defining citations with the appro-

priate Wordnet synsets (as expressed in OntoWordNet). This ontology is part of

the contribution of this case study ans it was built in three steps:

• identification step. We have identified all the Wordnet synsets related to each

of the thirty-eight sub-properties of cites according to the verbs and nouns

used in property labels (i.e. rdfs:label) and comments (i.e. rdfs:comment)

31CiTOFunctions: http://www.essepuntato.it/2013/03/cito-functions.
32CiTO2Wordnet ontology: http://www.essepuntato.it/2013/03/cito2wordnet.

http://www.essepuntato.it/2013/03/cito-functions
http://www.essepuntato.it/2013/03/cito2wordnet

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 113

Figure 6.9: RDF graph resulting from FRED for input “It extends the research
outlined in earlier work X”

for instance, the synsets credit#1, accredit#3, credit#3, credit#4 refers

to the property cito:credits;

• filtering step. For each CiTO property, we filtered out those synsets of which

the gloss 33 is not aligned with the natural language description of the property

in consideration. For instance, the synset credit#3 was filtered out since the

gloss “accounting: enter as credit” means something radically different to the

CiTO property description “the citing entity acknowledges contributions made

by the cited entity”;

• formalisation step. Finally, we linked each CiTO property to the related

synsets through the property skos:closeMatch. An example in Turtle is:

cito:credits skos:closeMatch synset:credit-verb-1 .

The final alignment to CiTO is performed through a SPARQL CONSTRUCT query

that uses the output of the previous steps, the polarity gathered from the sentiment-

33In Wordnet, the gloss of a synset is its natural language description.

114 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

analysis phase, OntoWordNet and the two ontologies just described. In the case of

empty alignments, the CiTO property citesForInformation is returned as base case.

In the example, the property extends is assigned to the citation.

6.3.2 Evaluation

The evaluation consisted of comparing the results of CiTalO with a human classi-

fication of the citations. The test bed we used for our experiments includes some

scientific papers (written in English) encoded in XML DocBook, containing citations

of different types. The papers were chosen among those published in the proceedings

of the Balisage Conference Series. In particular, we automatically extracted citation

sentences, through an XSLT document 34, from all the papers published in the sev-

enth volume of Balisage Proceedings, which are freely available online 35. For our

test, we took into account only those papers for which the XSLT transform retrieved

at least one citation, i.e., 18 papers written by different authors. The total number

of citations retrieved was 377, for a mean of 20.94 citations per paper. Notice that

the XSLT transform was quite simple at that stage. It basically extracted the cita-

tion sentence around a citation, i.e., the sentence in which that citation is explicitly

used, preparing data for the actual CiTalO pipeline. We first filtered all the citation

sentences from the selected articles, and then we annotated them manually using

the CiTO properties. Since the annotation of citation functions is actually an hard

problem to address (it requires an interpretation of author intentions) we mark only

the citations that are accompanied by verbs (extends, discusses, etc.) and/or other

grammatical structures (uses method in, uses data from, etc.) carrying explicitly

a particular citation function. We considered that rule as a strict guideline as also

suggested by Teufel et al. [135]. We marked 106 citations of out the 377 originally

retrieved, obtaining at least one representative citation for each of the 18 paper used

(with a mean of 5.89 citations per paper). We used 21 CiTO properties out of 38

to annotate all these citations, as shown in table 6.8. Interesting similarities can be

34Available at http://www.essepuntato.it/2013/sepublica/xslt.
35Proceedings of Balisage 2011: http://balisage.net/Proceedings/vol7/cover.html.

http://www.essepuntato.it/2013/sepublica/xslt
http://balisage.net/Proceedings/vol7/cover.html

Chapter 6. Enrichment of sources for Knowledge Pattern extraction 115

found between such a classification and the results of [135]. In this paper, the neutral

category Neut was used for the majority of annotations by humans; similarly the

most neutral CiTO property, cito:citesForInformation, was the most prevalent

function in our dataset too. The second most used property was usedMethodIn in

both analyses.

of Citations CiTO property
53 citesForInformation
15 usesMethodIn
12 usesConclusionsFrom
11 obtainsBackgroundFrom
8 discusses
4 citesAsRelated, extends, includesQuotation-

From, citesAsDataSource, obtainsSupportFrom
< 4 credits, critiques, useConclusionsFrom, cite-

sAsAuthority, usesDataFrom, supports, up-
dates, includesExcerptFrom, includeQuotation-
Form, citesAsRecommendedReading, corrects

Table 6.8: The way we marked the citations within the 18 Balisage papers.

We run CiTalO on these data (i.e. 106 citations in total) and compared results

with our previous analysis 36 We also tested eight different configuration of CiTalO,

corresponding to all possible combinations of three options:

• activating or deactivating the sentiment-analysis module;

• applying or not the proximal synsets 37 to the word-disambiguation output;

The number of true positives (TP), false positives (FP) and false negatives (FN)

obtained comparing CiTalO outcomes with our annotations are shown in table 6.9.

We calculated the precision and the recall obtained by using each configuration.

As shown in figure 6.10, Filtered and Filtered+Sentiment have the best precision

36All the source materials we used for the test is available online at http://www.essepuntato.
it/2013/sepublica/test. Note that a comparative evaluation with other approaches, such as
Teufel’s, was not feasible at this stage since input data and output categories were heterogeneous
and were not directly comparable.

37We used the same the RDF graph of proximal synsets introduced in [64]

http://www.essepuntato.it/2013/sepublica/test
http://www.essepuntato.it/2013/sepublica/test

116 Chapter 6. Enrichment of sources for Knowledge Pattern extraction

(.348) and the second recall (.443). Instead All and All+Sentiment have the second

precision (.313) and the best recall (.491). There is no configuration that emerges

as the absolutely best one from these data. They rather suggest an hybrid approach

that also takes into account some of the discarded synsets. It is evident that the

worst configuration were those that took into account all the proximal synsets. It

looks that the more synsets CiTalO uses, the less the citation functions retrieved

conform to humans’ annotations.

Configuration TP FP FN
Filtered (with or without Sentiment) 47 88 59
Filtered + Proximity 40 137 66
Filtered + Proximity + Sentiment 41 136 65
All (with or without Sentiment) 52 114 54
All + Proximity (with or without Sentiment) 45 174 64

Table 6.9: The number of true positives, false positives and false negatives returned
by running CiTalO with the eight different configurations.

Figure 6.10: Precision and recall according to the different configuration used.

Chapter 7

A software architecture for KP discovery

and reuse

In this Chapter we present:

• K∼ore, a software architecture to serve as the basis for the implementation

of systems aimed at KP extraction, transformation and reuse. K∼ore design

benefits of the combination of the Component-based and REST architectural

styles that enable a Service-oriented architecture with high modularity, exten-

sibility and customization (cf. Section 7.2);

• K∼tools, a set of tools implementing K∼ore. K∼tools were used in all the use

cases presented in this work (cf. Section 7.4.2).

7.1 Requirements

The methods we have described in previous chapters are the basis for the design

and the implementation of a software system aimed at providing tools for KP trans-

formation, KP extraction and source enrichment. The system requirements have

been collected from two main perspectives: (i) the perspective of the methods used,

i.e., any requirements explicitly emerging from the definition of the methods, (ii)

the case study perspective, i.e., any requirements explicitly emerging by analyzing

118 Chapter 7. A software architecture for KP discovery and reuse

how to address the concrete case studies presented in previous chapters. These two

perspectives led to the requirements elicitation process [130].

The high-level requirements that so far have driven the design and the imple-

mentation of the system are divided into the classical dichotomy between functional

and non-functional requirements: The functional requirements are the following:

• HLR-01: Format reengineering - the system has to provide mechanisms that

enable the conversion to RDF of non-RDF sources that provides KP-like arti-

facts. An example of non-RDF source of KP-like artifacts is FrameNet which

is an XML lexical knowledge base, consisting of a set of frames ;

• HLR-02: Refactoring - the system has to implement functions for RDF refac-

toring. This requirements is highly related to HLR-01. This is because typi-

cally the refactoring is applied to data coming from the reengineering of KP-

like artifacts. In fact, HLR-01 and HLR-02 identify the Semion methodol-

ogy [105] that has been explained in chapter 4 and successfully used for gath-

ering KPs from FrameNet;

• HLR-03: Detecting invariances over data - given a certain RDF dataset in the

Web the system has to provide functions which allow to to empirically identify

invariances in the organization of data in the dataset. The method used for

the identification of the invariances has to be transparent to the system. This

allows, depending on the scenario, to switch from different techniques, e.g.,

machine learning, statistics, natural language processing, etc., by choosing

from time to time the most suitable one;

• HLR-04: Drawing boundaries around data - once invariances over data have

been gathered the system has to give interpretation to these invariances. In

fact, the invariances are expressed by symbols, but according to [66], KPs are

not only symbolic patterns: they also have an interpretation, be it formal, or

cognitive. Hence, giving an interpretation to emerging invariances means to

provide de facto the meaning of a KP. This is compliant to what has been

called by Gangemi and Presutti in [66] the knowledge boundary problem;

Chapter 7. A software architecture for KP discovery and reuse 119

• HLR-05: KP storage and querying - the system has to be able to collect KPs

in a dedicated storage. The storage has to support query mechanisms in order

to facilitate KP reuse;

• HLR-06: source enrichment : The system has to provide functionalities in

order to overcome problems related to Linked Data that are not necessarily

clean, optimized, or extensively structured;

• HLR-07: Rest services - the system has to expose its core functions as HTTP

REST [50] services. This allows to made available all the core services of the

system as CRUD 1 [95] operations over the Web. In fact, it is a generally

accepted that REST Web Services should implement CRUD operations in

the HTTP protocol for all of their resources, modulo specific constraints for

granting access to themIt is a generally accepted notion that RESTful Web

Services should implement CRUD operations in the HTTP protocol for all of

their resources, modulo specific constraints for granting access to them.

We will refer to the functional requirements as to core requirements (CRs) as they

basically identify core functions in the system.

The non-functional requirements are the following:

• HLR-08: adaptivity - the system should be adaptive to any possible source

and format available in the Web both for KP transformation/extraction and

source enrichment. This means that it could be easily extended to accept new

formats in which external data for KP gathering are expressed.

• HLR-09: components - KP transformation, KP extraction, source enrichment

and the storage should be implemented as independent components within the

system. These components should be compliant with the loose coupling prin-

ciple, i.e., each component has, or makes use of, little or no knowledge of the

definitions of other separate components. On the contrary, all the elements

1The acronym CRUD stands for create, read, update and delete.

120 Chapter 7. A software architecture for KP discovery and reuse

belonging to a single component should result highly cohesive. High cohe-

sion is typically associated with several desirable traits of software including

robustness, reliability, reusability, and understandability.

• HLR-10: customization of components - each component of the system should

provides interfaces for customization. This enables users to configure the com-

ponents as better as possible according to a specific use case. For example,

a user may want to configure the system in order to extract KPs from nat-

ural language. This would require to properly configure the component for

the source enrichment in order to select functions for that specific enrichment,

e.g., language recognition, named-entity recognition and resolution, relation

extraction, event and situation recognition, etc.;

• HLR-11: scalability the system should be able both to handle a growing

amount of work for KP gathering and to accept and to keep alive different

customizations of its components without losing performance.

7.2 The architectural binding

A software architectural style is a specific method of construction, characterized by

the features that make it notable. It defines: (i) a family of systems in terms of a

pattern of structural organization; (ii) a vocabulary of components and connectors,

with constraints on how they can be combined [128]. With respect to architectural

patterns, architectural styles are more general. In fact, they do not provide a general

schema to be used in order to address a problem, rather they provide the basis for

configuring software architectures. Hence, an architectural style, defines a family

of systems in terms of a pattern of structural organization. More specifically, an

architectural style determines the vocabulary of components and connectors that

can be used in instances of that style, together with a set of constraints on how

they can be combined. These can include topological constraints on architectural

descriptions. Other constraints-say, having to do with execution semantics-might

Chapter 7. A software architecture for KP discovery and reuse 121

also be part of the style definition [67]. the former is more general and does not

require a problem to solve for its appearance. The basic styles can be classified in

four main categories as illustrated in table 7.1 [111]:

Category Style
Communication Service-Oriented Architecture (SOA),

Message Bus
Deployment Client/Server, N-Tier, 3-Tier
Domain Domain Driven Design
Structure Pipe&Filer, Component-Based,

Object-Oriented, Layered Architecture

Table 7.1: Classification of the basic architectural styles.

The architectural styles we have used for modelling our software are the Component-

based and REST, as they better meets the requirements described in the previous

section.

7.2.1 Background on the Component-based architectural style

The component-based architectural style describes a software engineering approach

to system design and development. It focuses on the decomposition of the design into

individual functional or logical components that expose well-defined communication

interfaces containing methods, events, and properties. This provides high level of

abstraction, even higher than object-oriented design principles, and does not focus

on issues such as communication protocols and shared states. The key principle

of the component-based style is the use of components that are software packages,

web services, web resources, or modules that encapsulates a set of related functions

and data. In the component-based style, each component addresses the following

properties [111]:

• Reusability. Components are usually designed to be reused in different sce-

narios in different applications. However, some components may be designed

for a specific task.

122 Chapter 7. A software architecture for KP discovery and reuse

• Replaceability. Components may be readily substituted with other similar

components.

• Non context specificity. Components are designed to operate in different

environments and contexts. Specific information, such as state data, should

be passed to the component instead of being included in or accessed by the

component.

• Extensibility. A component can be extended from existing components to

provide new behavior.

• Encapsulability. Components expose interfaces that allow the caller to use

its functionality, and do not reveal details of the internal processes or any

internal variables or state.

• Independece. Components are designed to have minimal dependencies on

other components. Therefore components can be deployed into any appropri-

ate environment without affecting other components or systems.

The main benefit of designing software by adopting the Component-based archi-

tectural style derives from the principle of encapsulation. In fact, each component

exposes its functionalities to the rest of the system by providing an interface, which

specifies the services available and hides implementation details to other compo-

nents. Hence, with regard to system-wide co-ordination, components communicate

with each other via interfaces. This makes it easy to add new components, to substi-

tute them and to modify the configuration of the communication among components,

which means to make customizable the system behaviour.

7.3 K∼ore: design

K∼ore 2, the architecture we have designed, is targeted at KP discovery and reuse,

e.g., KP can be used by KP-aware applications. A KP-aware application is a system

2The name is the composition of the words Knowledge and cORE, as the system provides core
functionalities for experimenting with KPs.

Chapter 7. A software architecture for KP discovery and reuse 123

or an agent on the Web which provides knowledge interaction services to humans or

to other systems by exploiting KPs for organizing, exchanging knowledge, and rea-

soning over knowledge. Examples of such KP-aware application are intelligent rec-

ommendation systems, more sophisticated question answering systems, exploratory

search tools with cognitive grounding, agents based systems, cognitive architectures,

etc. We provide an example of such a KP-aware application in Chapter 8, in which

we describe Aemoo, a tool for entity summarization and exploratory search that

applies KPs as lenses over data.

K∼ore is designed by addressing the requirements (see Section 7.1) and it con-

sists of a set of integrated standalone components according to the architectural

style adopted, i.e., the component-based style. The core functionalities that K∼ore

addresses are:

• KP transformation from KP-like repositories;

• KP extraction from the Web;

• enrichment of sources of KPs in the Web that do not provide rich data for KP

investigation but that for some reason can be elected as potential sources of

KPs;

• storage and querying of KPs for realizing a knowledge base of patterns for

their reuse in the Web.

In Figure 3.3 (cf. Section 3.3) we anticipated the general schema of the methodology

for extracting and tranforming KPs. Following that intuition, Figure 7.1 shows the

UML component diagram representing the architecture of the system with its core

components. We propose this architecture as a reference solution to be adapted to

specific tasks which require to deal with KPs. Our architecture benefits of all the

properties which come from the Component-based and REST architectural styles

used for its design. Hence, it is particularly suited to be customized depending on a

specific scenario by providing implementations to the high-level interfaces exposed

by the components or configuring the communication interfaces among components.

124 Chapter 7. A software architecture for KP discovery and reuse

We remark how each component in Figure 7.1 is a single and high-level view of a more

detailed reality, consisting in sub-components. Furthermore, the Component-based

architectural style is combined with the Representational State Transfer (REST)

architectural style [50] applied to Web services in order to enable access to the

functionalities that are exposed by the system through the HTTP protocol.

7.3.1 Source Enricher

Our hypothesis for KP extraction and transformation mainly relies on the fact that

we deal with rich data expressed as RDF. According to our assumptions and ob-

servations, even RDF is not rich enough if the subjects and the objects of available

triples miss type axioms (extensional incompleteness). Unfortunately many data

sets in Linked Data (e.g. DBpedia) are extensionally incomplete. The situation

is even more complex is we take into account that most of the Web knowledge is

contained either in a variety of structured repositories of different formats and com-

pliant to different schemas or in HTML pages which require to handle with natural

language.

The Source Enricher is the component responsible for the enhancement of these

kind of sources. As we distinguish between structured data and natural language

the design of the Source Enricher follows this distinction. In fact, it is specialized

by a two sub-components (cf. Figure 7.1)

• the Reengineer ;

• the Natural Language Enhancer.

The Reengineer

The reengineer allows to transform non-RDF structured data to RDF. For example,

if we want to extract KPs from XML we are firstly supposed to ask the reengineer to

express XML data as RDF. The aim of the reengineer is to prepare non-RDF data

so that they can be used for KP investigation. The transformation is performed

without fixing any assumption on the domain semantics of original data, but only

Chapter 7. A software architecture for KP discovery and reuse 125

Figure 7.1: UML component diagram of K∼core.

126 Chapter 7. A software architecture for KP discovery and reuse

applying a conversion driven by the meta-model of the original source type provided

as an OWL ontology. Hence, the reengineer is provided of a list of meta-model

expressed as OWL for each source type, e.g., RDBMS, XML, XSLT, etc. This list

can be extended and customized according to specific sources that are eventually not

originally provided. Each source meta-model is used by the reengineer for tuning the

transformation of the elements of the original source to RDF. For example, the OWL

meta-model for a relational database would include the classes “table”, “column”,

and “row”;

The Natural Language Enhancer

The Natural Language Enhancer is a peculiar specialization of the Source Enricher.

It consists of four components aimed at extracting RDF annotations from natural

language. These components and the way they communicate through their inter-

faces are the result of the studies conducted for automatically typing Wikipedia

entities [64] and for identifying the nature of citations in scholarly publishing [44]

(cf. Chapter 6). Accordingly, each sub-component of the Natural Language En-

hancer and their relations derive from the main steps identified in the method for

source enrichment described in Section 6.1.3. Namely:

• the Ontology learner. It is the architectural counterpart of the step of

deep parsing of text in our method (see in Section 6.1.3). It basically provides

functionalities to obtain a logical form, e.g., an OWL ontology, from a text in

natural language;

• the Graph-pattern Matcher. It allows to recognize known patterns from a

graph being the logical representation of the original text in natural language.

The list of graph-patterns is part of the configurable data that are passed

to the component. This is completely within the scope of the non-context

specificity of the Component-based architectural style and allows to adapt this

component basically by properly configuring the graph-patterns. For example,

the list of patterns can be configured for recognizing specific lexico-syntactic

Chapter 7. A software architecture for KP discovery and reuse 127

patterns (e.g., for identifying definitions, facts, descriptions, etc.) from the

logical representation of the natural language. This component corresponds

to the step of graph-pattern matching in the method for source enrichment;

• the Word-sense Disambiguator. This component provides interfaces to

the system for addressing word-sense disambiguation (WSD) tasks. The WSD

is performed for discriminating about the meaning associated to the labels

of the classes and the properties generated by the Ontology Learner. For

example, this is useful in order to provide alignments to other ontologies by

means of a mediator lexical knowledge base such as WordNet [48]. The Word-

sense Disambiguator is aimed at providing support to the step of word-sense

disambiguation in our method for source enrichment;

• the Ontology Aligner. It supports methods for ontology alignments in order

to provide mappings between terms of the logical representation of a text and

terms into existing ontologies in the Web. This component provides interfaces

for building new ontology alignment systems or to encapsulate existing ones,

e.g. the Alignment API [46]. The Ontology Aligner corresponds to the step

identified by the ontology alignment.

Figure 7.2 shows the UML component diagram of the Natural Language En-

hancer. The components are organized in a pipe&filter fashion, but the architecture

benefits of the flexibility and adaptivity of the component model. The Natural

Language Enhancer is externally seen as a single component, namely as an instanti-

ation of the Source Enrichment of the K∼ore architecture. This allows to maximize

the freedom dor internally configuring the components, both in terms of what they

compute and how they interact among them. Hence, the configuration of single

components (e.g., the configuration of the graph-patterns or the configuration of

the alignments) combined with the configuration of communication ports enable

several implementations for handling with natural language. Additionally, in our

opinion the architecture realized by the Natural Language Enhancer could a refer-

ence architecture for designing components for natural language interpretation in

128 Chapter 7. A software architecture for KP discovery and reuse

Figure 7.2: UML component diagram of the Natural Language Enhancer.

cognitive architectures [87]. A cognitive architecture proposes artificial computa-

tional processes that act like certain cognitive systems, most often, like a person,

or acts intelligent under some definition. Cognitive architectures form a subset

of general agent architectures, that attempt to model not only behavior, but also

structural properties of the modelled system 3.

7.3.2 Knowledge Pattern Extractor

The Knowledge Pattern Extractor is the component aimed at extracting KPs by

providing a software architecture based on the method described in Chapter 5 and

used in the corresponding case study (cf. Section 5.2), which explains how to ex-

tract KPs from Wikipedia links. That method is based on the identification of type

paths 4 plus their statistical analysis by means of the measure defined as pathPop-

ularity 5. The notion of path used for the sake of design of this component is wider

3cf. http://en.wikipedia.org/wiki/Cognitive_architecture
4We remark that type paths are paths whose occurrences have (i) the same rdf:type for their

subject nodes, and (ii) the same rdf:type for their object nodes.
5The ratio of how many distinct resources of a certain type participate as subject in a path to

the total number of resources of that type. Intuitively, it indicates the popularity of a path for a
certain subject type.

http://en.wikipedia.org/wiki/Cognitive_architecture

Chapter 7. A software architecture for KP discovery and reuse 129

that that of type path. In fact, in this context we adopt property paths instead of

type paths for enabling the system to be reusable and customizable according to

different methods and statistical measures or algorithms. Similarly, the Knowledge

Pattern Extractor defines a top-level interface for the measure to use for the statis-

tical analysis of property paths. This allows to take advantage of the properties of

extensibility and encapsulability, typical of Component-base architectural styles. In

fact, it is possible to extend the component by defining additional measures or by

implementing common interfaces that are in turn the only known signature of the

component with respect to other the rest of the system. Internally the Knowledge

Pattern Extractor is composed by four sub-components, namely (cf. figure 7.4):

• the Property path identifier, which identifies the property paths of a certain

length from a given data set;

• the Property path storage, which stores the property paths identified by the

Property path identifier;

• the Property path analyzer, which applies a specific statistical measure defined

by a user, e.g., the path popularity, on the property paths that can be retrieved

from the store;

• the KP drawer, which formalizes KPs by drawing boundaries around sets of

property paths. This is performed by configuring the threshold criterion to

apply to property paths after they have been analyzed by the Property path

analyzer.

7.3.3 Knowledge Pattern Refactor

The transformation of KPs available into KP-like repositories is performed by the

component of the system called Knowledge Pattern Refactor. Because most of the

repositories of KP-like artifacts provides them in heterogeneous formats different

from OWL, this component is designed to work in cooperation with the Reengineer,

130 Chapter 7. A software architecture for KP discovery and reuse

Figure 7.3: Sub-components of the Knowledge pattern extractor.

which is the specialization of the Source enricher for transforming structured data to

RDF. Once data are expressed as RDF, the Knowledge Pattern Refactor is designed

to apply methods for the transformations of the RDF data, as they converted by the

reengineer, into a form able to capture the semantics of the original KPs. This can

be perfomed by actual implementations of this components that provide functional-

ities for reconizing invariances and drawing boundaries over RDF data. In the next

section we are going to give an example of implementation of the Refactor based

on the method we used for transforming FrameNet [11] to KPs [104] (see Chap-

ter 4). The transformation methods are conceptually organized by the Refactor

into transformation recipes, that are basically transformation patterns [65]. Recipes

are uniquely identified internally by the Recipe manager and can be re-used several

times in order to transform similar KPs to OWL. Figure 7.4 shows the two compo-

nents of the Knowledge Pattern Refactor, i.e., the Refactor and the Recipe manager.

The former applies transformation recipes that are managed by the latter.

Chapter 7. A software architecture for KP discovery and reuse 131

Figure 7.4: Sub-components of the Knowledge pattern extractor.

7.3.4 Knowledge Pattern Repository

The Knowledge Pattern Repository is aimed at providing basic functionalities for

indexing, storing and retrieving the Knowledge Patterns that have been discovered

by the system. Figure 7.5 shows the UML component diagram of the Knowledge

Figure 7.5: UML component diagram of the Natural Knowledge Pattern Reposi-
tory.

Pattern Repository. The components are the following:

132 Chapter 7. A software architecture for KP discovery and reuse

• the Repository Manager. It provides to access through the the interface

IStorage to the functionalities defined by the other components of K∼ore.

• the Repository. It provides classes and methods for abstracting to the system

the storage mechanisms of KPs with respect to the physical store, e.g., a

RDBMS, a triple store, a file system, etc.

• the Knowledge Pattern Indexer. This component provides interfaces that

enable the indexing of KPs int the KP store. The index allows to speed up

KP fetching in the store and also to design caching mechanisms.

• the Knowledge Pattern Provider. The Provider is the responsible for KP

fetching and their serialization to specific formats, e.g., OWL/XML, OWL/-

Functional, RDF/XML, etc. Therefore, it interacts with the Knowledge Pat-

tern Index component, which in turn is able to retrieve KPs by interacting

with the Repository component.

7.4 Implementation

The system is implemented as a modular set of Java [8] components. Each com-

ponent is accessible via its own RESTful Web interface. From this viewpoint, all

the features can be used via RESTful service calls. Components do not depend on

each other. However they can be easily combined if needed. All components are

implemented as OSGi [5, 6, 7] bundles, components and services.

7.4.1 The OSGi framework

OSGi is a base framework for defining software components, their grouping as bun-

dles and activity lifecycle. The version of the OSGi specification we refer to is

number 4.2 released in 2009, as it was the latest complete specification at the time

this research work started covering the software architecture aspect. In addition, the

enterprise specification that compounded this release was the first one to introduce a

Chapter 7. A software architecture for KP discovery and reuse 133

particular interface-based service binding for components, called declarative services,

which reconnects us to the service paradigm adopted. Although the OSGi specifica-

tion provides a complete framework that can be implemented in the Java language,

much of its core vocabulary and architecture also hold in platform-independent con-

texts. Any framework that implements the OSGi standard provides an environment

for the modularization of applications into smaller bundles. Each bundle is a tightly

coupled, dynamically loadable collection of classes, jars, and configuration files that

explicitly declare their external dependencies (if any) [5]. The architectural stack of

OSGi is depicted in Figure 7.6, which is divided into:

• Bundles: a group of Java classes and additional resources equipped with a

detailed manifest file on all its contents, as well as additional services needed

to give the included group of Java classes more sophisticated behaviors, to the

extent of deeming the entire aggregate a component;

• Services: they connects bundles in a dynamic way by offering a publish-find-

bind model for Plain Old Java Interfaces (POJI) or Plain Old Java Objects

(POJO);

• Services Registry: an API which provides functionalities for the manage-

ment of services;

• Life-Cycle: it provides the API for the run-time management of bundles.

The API allow to be dynamically install, uninstall start, stop, and update

bundles in the OSGi framework.

• Modules: they allow to define policies for defining encapsulation and depen-

dencies.

By default our system uses the Apache Felix OSGi environment 6.

6Apache Felix OSGi environment: http://felix.apache.org/

http://felix.apache.org/

134 Chapter 7. A software architecture for KP discovery and reuse

Figure 7.6: OSGi Service Gateway Architecture

7.4.2 The K∼tools

K∼ore provides a reference architecture for developing a system for KP discovery

and reuse. It is implemented and realeased as an API 7 which interfaces and methods

for developing actual components and group them as Apache Felix OSGi bundles.

On top of the API provided by K∼ore we have implemented a set of independent

tools, called K∼tools 8, used for performing the experiments described in the use

cases presented in Chapters 4,5,6.

Semion

The Reengineer and the Refactor are the reference Component-based architectures

that we have used for developing the Semion tool 9 [105]. The Reengineer is im-

plemented in the Semion tool by applying reengineering patterns, namely, OWL

ontologies that describe how objects from an non-RDF source have to be converted

into RDF by taking into account the meta-description (again an OWL ontology)

of the structure of the original source. This allows to obtain pure RDF triples

7Refer to http://stlab.istc.cnr.it/stlab/K~ore for information about licencing and down-
load.

8Refer to http://stlab.istc.cnr.it/stlab/K~tools for information about licencing and
download.

9Semion: http://stlab.istc.cnr.it/stlab/Semion

http://stlab.istc.cnr.it/stlab/K~ore
http://stlab.istc.cnr.it/stlab/K~tools
http://stlab.istc.cnr.it/stlab/Semion

Chapter 7. A software architecture for KP discovery and reuse 135

compliant to the meta description of the original source (refer to Section 4.2 for

details).

The Semion tool also provides an implementation of the Refactor architecture.

Here the refactoring of RDF graphs is implemented through the execution of refac-

toring patterns. The refactoring patterns are organized into recipes and expressed

according to the Refactor Rule Language 10. The Refactor Rule language has no ref-

erence rules engine that can directly execute rules expressed in that syntax. Hence,

recipes of rules need to be converted into syntaxes that can be executed by available

rule engines. For this purpose, the Semion Refactor implements the Adapter design

pattern, which allow to translates the Java classes that represent original rules into a

compatible classes that implement different rule languages. By default, the Refactor

adapts rules expressed in its native language to the following languages:

• SWRL [82] through the OWL API 11 [79] binding. This allows to execute the

recipes by means of reasoning with an inference engine for the Semantic Web,

such as Pellet [37] or Hermit [81];

• SPARQL CONSTRUCT [119] through the adapter to Apache Jena 12 [97] and

to Apache Clerezza 13;

The reason of the definition of a new language for expressing rules derives from

the need of having a language that might result simpler than SWRL or SPARQL to

non-experts users. Both the Semion Reengineer and Refactor of K∼tools became

part of the Apache Stanbol project 14 since its incubation in the Apache Software

Foundation in 2011 and are currently part of the main stream project.

10Refer to Appendix 9 for the BNF syntax of the rule language and to Section 4.2 for examples
of such language.

11The OWL API: http://owlapi.sourceforge.net/
12Apache Jena: http://jena.apache.org/
13Apache Clerezza: http://clerezza.apache.org/
14Apache Stanbol: http://stanbol.apache.org/

http://owlapi.sourceforge.net/
http://jena.apache.org/
http://clerezza.apache.org/
http://stanbol.apache.org/

136 Chapter 7. A software architecture for KP discovery and reuse

PathPopularityDBpedia

PathPopularityDBpedia is the implementation of the Knowledge Pattern Extractor of

K∼ore. It allows to:

• create a dataset of type paths from DBpedia;

• calculate pathPopularity values (cf. Section 5.1.2) for each type paths;

• formalize KPs from type paths by applying boundary induction based on a

configurable threshold.

T̀ıpalo and CiTalO

So far, we have two different implementation of the Natural Language Enhancer

that come from two consequently different configurations and extensions of the its

components.

The first tool is T̀ıpalo 15, used for automatically typing Wikipedia entities based

on their natural language definitions [107], that we have described in Section 6.2.

T̀ıpalo extends and configures the components Natural Language Enhancer in the

following way:

• it uses FRED [117] as the implementation of the Ontology Learner. FRED

performs ontology learning by relying on Boxer [40], which implements com-

putational semantics, a deep parsing method that produces a logical represen-

tation of NL sentences in DRT;

• it implements a graph-pattern matcher based on SPARQL aimed at identifying

and selecting terms from the graph returned by FRED that can be used as

candidate types for a Wikipedia entity. The graph-patterns are expressed as

SPARQL CONSTUCT queries and they are logically described in Tables 6.1

and 6.2;

15T̀ıpalo: http://wit.istc.cnr.it/stlab-tools/tipalo

http://wit.istc.cnr.it/stlab-tools/tipalo

Chapter 7. A software architecture for KP discovery and reuse 137

• it extends the Word-sense Disambiguator by embedding UKB [3], which is a

third part software for addressing word-sense disambiguation tasks based on

the Personalized Page-Rank algorithm;

• it configures the Ontology Aligner in order to provide alignments to OntoWord-

Net [62] and a subset of Dolce+DnS classes [60]. The alignments are aimed at

providing foundational grounding to the selected types that have been disam-

biguated.

The second tool is CiTalO 16, used for identifying the type of citations in scholarly

publishing [44] (cf. Section 6.3). CiTalO uses the same architecture as T̀ıpalo except

a different configuration of some components, such as:

• it configures the Graph-pattern Matcher with respect to different graph-patterns

(see Section 6.3);

• it customize the architecture by enabling a new component for sentiment ana-

lyisis based on the Alchmemy API 17;

• it configures the Ontology Aligner in order to return properties of the CiTO

ontology [112] that add semantics to the citations in scholarly publications.

The alignments are computed thanks to a mapping expressed by means of

skos:closeMatch axioms between the CiTO ontology and OntoWordNet.

16CiTalO: http://wit.istc.cnr.it:8080/tools/citalo
17Achemy API: http://www.alchemyapi.com/

http://wit.istc.cnr.it:8080/tools/citalo
http://www.alchemyapi.com/

138 Chapter 7. A software architecture for KP discovery and reuse

Chapter 8

Aemoo: Exploratory search based on

Knowledge Patterns

The contributions presented in the Chapter are the following:

• a software called Aemoo that implements a KP-aware application for support-

ing knowledge exploration and entity summarization on the Web based on

Knowledge Patterns (cf. Sections 8.1 and 8.2);

• a user study aimed at evaluating the effectiveness and the usability of Aemoo

in exploratory search task with respect to Google Search and RelFinder [77].

8.1 Approach

The Web is a huge source of knowledge and one of the main research challenges is

to make such knowledge easily and effectively accessible to Web users. Applications

from the Web of Data, social networks, news services, search engines, etc., attempt

to address this requirement, but it is still far from being solved, due to the many

challenges arising, e.g. from the heterogeneity of sources, different representations,

implicit semantics of links, as well as the sheer scale of data on the Web.

Existing semantic mashup and browsing applications, such as [136, 77, 78],

mostly focus on presenting linked data coming from different sources, and visu-

alizing it in interfaces that mirror the linked data structure. Typically, they rely on

140 Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns

semantic relations that are explicitly asserted in the linked datasets, or in explicit

annotations, e.g., microdata, without exploiting additional knowledge, e.g. coming

from hypertext links, which makes both the data provided and its visualization and

navigation quite limited. In practice, the problem of delivering tailored and contex-

tualized knowledge remains unsolved, since retrieved knowledge is returned without

tailoring it to any context-based rationale.

Other applications focus on text enrichment by performing identity resolution

of named entities. Examples are: Zemanta1, Stanbol Enhancer2 and Calais3. Such

applications are useful for enhancing text with hypertext links to related Web pages

and pictures, and sometimes they provide information about the type of the identi-

fied entities, which can be useful for designing simple faceted interfaces. However,

their approach does not seem inspired by relevance rationales, e.g. their results are

provided without any explanation or criterion of why a piece of news, or a set of

resources, is to be considered relevant.

To the best of our knowledge no existing approach attempts to organize or fil-

ter knowledge before presenting it by drawing a meaningful boundary around the

retrieved data in order to limit the visualized results to what is meaningful/useful.

Instead, Aemoo 4 is an application that supports knowledge exploration on the Web

based on knowledge patterns, and that exploits Semantic Web technologies as well

as the structure of hypertext links for enriching query results with relevant related

knowledge coming from diverse Web sources. In addition, Aemoo organizes and

fiters the retrieved knowledge in order to show only relevant information to users,

and providing the motivation of why a certain piece of information is included.

We define Aemoo a KP-aware application because KPs are part of its background

knowledge and it is able to use and interact with the Web at the knowledge level

(in the sense defined by Newell [103]). The approach used by Aemoo is described

the following subsections.

1http://www.zemanta.com/
2http://stanbol.apache.org
3http://www.opencalais.com/
4Aemoo: http://aemoo.org

http://aemoo.org

Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns 141

8.1.1 Identity resolution and entity types

Aemoo exploits DBpedia for identity resolution and to gather Wikipedia knowledge

about an entity. Such task is performed in two main situations: (1) when a user

types a query; (2) when collecting and filtering relevant knowledge.

User queries are processed and matched against DBpedia entities (1) for identify-

ing the identity of the resource referred to in a query. As a result users are provided

with a list of possible options (autocompletion), among which they can perform a

selection (the selected entity is called hereon “subject”).

Aemoo currently uses three main resources (that can be easily extended): Wikipedia,

Google News, and Twitter. All entities that are linked from the Wikipedia page of

the subject are used for filling the set of nodes associated with it. Additionally, it

processes the current stream of Twitter messages and available articles provided by

Google News in order to identify entities that co-occur with mentions of the subject.

For example, consider a user that selects “Steve Jobs” as a subject, and Aemoo pro-

cessing the following tweet: “Steve Jobs leaving his place at Apple to Tim Cook”.

Aemoo will resolve the identity of “Tim Cook” and “Apple” and would add them

to the appropriate set nodes of entities related to Steve Jobs.

Aemoo retrieves the types of the resolved entities, according to the DBpedia

taxonomy of types. The type is used for providing users with additional information

about the subject (it is indicated on the top-left), and as a criterion for assigning

an entity to a certain set node.

8.1.2 Knowledge Patterns

Types are also used as a criterion for filtering the knowledge to be presented. Aemoo

approach is based on the application of Encyclopedic Knowledge Patterns (EKPs)

(cf. Section 5.2) used as a means for designing a meaningful knowledge summary

about a subject. Aemoo builds entity summaries by applying EKPs as lenses on data

associated with that entity: the concept map of a subject is built by only including

the elements i.e., types, of the EKP associated with that subject type. For example,

142 Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns

given the subject “Paris”, which has type dbpo:City5, and the EKP associated with

dbpo:City that includes the types: dbpo:City, dbpo:Country, dbpo:University,

and dbpo:OfficeHolder, Aemoo summary for Paris shows a concept map including

a set node for each of these types, and each set contains entities of that type that

are linked from the Paris Wikipedia page.

EKPs are also used for identifying “curiosities” about a subject. Aemoo uses

long-tail links (that are normally taken out by the EKP lens) for building a different

perspective over the knowledge related to an entity, which includes peculiar facts

instead of core knowledge.

8.1.3 Explanations and semantics of links

All entities included in a subject summary are related to it by a hypertext link, or

because they co-occur with the subject in a news article or a tweet. The meaning

of such relations is implicit but explained by the text surrounding the anchor or

the co-occurrence reference. Aemoo exploits this aspect by extracting such pieces of

text and showing them in association with each specific link. Additionally, Aemoo

takes advantage of the statistics about semantic relations asserted in DBpedia: it

shows to users a list of relations that typically hold between the types of two linked

entities together with their frequency data.

In summary, Aemoo performs KP-based knowledge exploration, which makes it

especially novel. It exploits the structure of linked data, and organizes it by means

of EKPs for supporting exploratory search. The use of EKPs allows Aemoo to draw

meaningful boundaries around data. In this way, Aemoo performs both enrichment

and filtering of information, based on the structure of EKPs, which reflects the most

common way to describe entities of a particular type. Users are guided through their

navigation: instead of being presented with a bunch of triples or a big unorganized

graph they navigate through units of knowledge and move from one to the other

without losing the overview of an entity.

5dbpo: stands for http:/dbpedia.org/ontology

Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns 143

Figure 8.1: Aemoo: initial summary page for query “Immanuel Kant”.

8.2 Usage scenarios

In this section we describe Aemoo usage and interface through three simple scenarios.

8.2.1 Scenario 1: Knowledge Aggregation and Explanations.

Pedro is a high school student, his homework today is to write a report about Im-

manuel Kant (IK). He types “Immanuel Kant” in the search interface, and Aemoo

returns a summary page about him (cf. Figure 8.1). On the left side of the page, Pe-

dro can read that IK is a philosopher, together with some general information about

him, and a thumbnail image. This information will be enriched as a consequence of,

and during, his navigation. At the same time, a concept map built around IK (as

a central squared node) has appeared in the center-right of the page. The circular

nodes represent sets of resources of a certain type (the type is shown as the label on

the node), we refer to them as set nodes. Additionally, icons on set nodes indicate

the source from which its contained information is taken, e.g. Wikipedia.

The set nodes change depending on the type of the inspected entity (Philosopher

in this case), according to the knowledge pattern associated with it (cf. Section 8.1).

144 Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns

Such types are the ones that a user would intuitively expect to see in a summary

description of a Philosopher, according to the empirical study described in [106].

An infotip appearing when hovering over a link between IK and a set node, shows

a list of possible semantic relations that can explain that specific link type, according

to their frequencies in DBpedia (cf. Figure 8.1). Such list is not exhaustive, it only

shows existing DBpedia relations (extracted from Wikipedia infoboxes) that hold

between two specific types. For example, the relations between IK and cities could

be birthPlace or placeOfBirth if we considered only DBpedia asserted relations.

This example shows the limit of the current DBpedia relation coverage, in fact

cities can be related to Immanuel Kant also for other reasons than being his place of

birth, which can be explained in Aemoo by additional information in the explanation

section (left-bottom side of the interface).

IK links to a set of scientists, which is interesting information for our user Pedro,

who wants to know more about this relation. By hovering on a set node e.g.,

Scientist, he triggers the visualization of a list of resources contained in the set,

meaning that those resources are connected to IK (cf. Figure 8.2. By hovering on

a specific entity of the set e.g., Jean Piaget, new information is visualized under

the “Explanations” section (left-bottom). Such information explains the meaning

of that connection. In the example, Jean Piaget is linked to IK because his work

was influenced by Kant’s.

Explanations come from different possible sources i.e., Wikipedia, Twitter, and

Google news. The sources to be used can be chosen by users through a set of

checkbox put in the top-right corner of the interface.

8.2.2 Scenario 2: Exploratory search.

Pedro, however, would like to collect some more information about Jean Piaget,

hence, he clicks on that entity in the list. Aemoo changes context from IK to

Jean Piaget, showing a new summary page for the scientist. Pedro can perform

exploratory search by inspecting set nodes and lists associated with Jean Piaget,

and possibly other entities. Figure 8.3 shows the situation after some exploration

Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns 145

Figure 8.2: Aemoo: browsing relations between “Immanuel Kant” and scientists.

steps. Through the breadcrumb (located at the center-bottom of the interface)

Pedro can go back and forth, and revisit his exploration path and its associated

knowledge.

8.2.3 Scenario 3: Curiosity.

Eva is an editorial board member of a TV program that dedicates each episode to a

different country. Now she has to edit the episode about Italy. She uses Aemoo, as

described above, for building a summary about the country that can be useful for

the introductory part of the show. However, she wants to find peculiar information

that make the episode more interesting to her audience. Aemoo helps on this task

through the “curiosity” functionality, that can be triggered by clicking on the link

between the search field and the concept map (cf. Figure 8.3). Aemoo will change

perspective and will provide a new summary for the same entity. In fact, Eva will be

presented with additional knowledge about Italy, which was not previously included

in the summary. What is now shown are “special” facts about Italy, things that

are not commonly used to describe a country. Knowledge is again visualized as a

146 Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns

Figure 8.3: Aemoo: breadcrumb and curiosity

concept map, and enriched with news and tweets just as it happens for the previous

summary, but this time the set nodes are selected with a different criterion: they are

types of resources that are unusual to be included in the description of a country,

hence possibly peculiar.

8.3 Under the hood: design and implementation

of Aemoo

Aemoo is released as a web application: it consists of a server side component

implemented as a Java-based REST service, and a client side component based on

HTML and JavaScript. The client side interacts with third party components via

REST interfaces through AJAX.

The server side exposes a REST service for retrieving EKP-based graphs as

well as “curiosity graphs” about entities. Its input is an entity URI, e.g. dbpe-

dia:Barack Obama6. Its output is an RDF graph corresponding to the summariza-

6dbpedia: stands for http://dbpedia.org/resource/

Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns 147

tion based on the EKP associated with the entity type. The RDF graph is obtained

by generating a SPARQL CONSTRUCT from the selected EKP.

The client side component handles the graphical visualization of Aemoo through

the JavaScript InfoVis Toolkit7, a Javascript library that supports the creation of

interactive data visualizations for the Web. Abstracts and thumbnails are retrieved

by querying the DBpedia SPARQL endpoint exposed as a REST service.

Aemoo also detects relations between the inspected entity and other entities

from Twitter 8 as well as from Google News9. Tweets and news are retrieved using

their respective REST services. For performing identity resolution on user queries,

tweets, and news we use Apache Stanbol Enhancer10. Entities recognized in tweets

and news are dynamically added to the graph map. Explanations are extracted from

the text surrounding wikilinks in the subject Wikipedia page, the text of tweets and

news, and are associated with provenance information.

8.4 Evaluation

We carried out a series of user-based evaluation tests to assess the efficiency, ef-

fectiveness and user satisfaction of Aemoo with respect to some exploratory search

tools. We identified two tools that support exploratory search tasks, i.e., Google

Search and RefFinder [77]. Google Search is the most-used search engine on the

World Wide Web, handling more than three billion searches each day. RelFinder is

a tool that shows in a graph-based interface the relations it finds between two or

more entities in Linked Data. A user can explore entities or focus on specific rela-

tions by interacting with this graph. We asked 5 groups of users (for a total number

of 32 users) to perform three different kind of exploratory search tasks. Each group

performed the three tasks on two tools, i.e., Aemoo and one between Google and

RelFinder. The order in which each user evaluated the two tools was homogeneously

7http://thejit.org/
8https://search.twitter.com/search.json
9https://ajax.googleapis.com/ajax/services/search/news

10http://stanbol.apache.org/

148 Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns

alternated among users in order to avoid evaluation biases with respect to the tool

used as first. Hence, there is the same number of users who started the evaluation

by using Aemoo as the first tools and the same number of users who started the

evaluation by using Google or RelFinder as first. The tasks asked to the users are

the following:

• to make a summary on a specific topic, i.e., to make a summary on the topic

”Alan Turing”;

• to find specific relations between an entity and a category of entities, i.e., What

are the places related to “Snow White”?

• to provide an explanation about existing relations between two entities, i.e.,

Why “Snow White” is related to “Charlize Theron”?

The three tasks are thought to cover typical exploratory search scenarios as

identified by Marchionini [94] and to balance the comparison taking into account

the differences among tools in order to avoid to privilege one tool with respect to

the others. Figure 8.4 shows the number of correct answers per minute given by

users for each task and tool. On average Aemoo performs better than the other

Figure 8.4: Number of correct answers per minute for each task and tool.

Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns 149

two tools, but it is due to its efficiency in look-up tasks (it outperforms the other

tools in the second task). Instead, in the first task, which is about summarization,

RelFinder performs slightly better than Aemoo and Google and, finally, in the third

task Google performs slightly better than Aemoo and RelFinder.

After the completion of the three tasks we asked the users to rate the system from

ten perspectives on a five-point Likert scale [90] aimed at capturing System Usability

Scale (SUS) [29]. Figure 8.5 depicts the comparison of the SUS results among the

three tools in the cases they are used as first tool, as second tool and the overall

average. SUS values are weighted on a scale between 0 and 100. Values between

Figure 8.5: SUS scores and standard deviation values for Aemoo, RelFinder and
Google. Standard deviation values are expressed between brackets and shown as
black vertical lines in the chart.

brackets represent standard deviations and they are also reported into the chart as

vertical error bars in black. It emerges that in Aemoo the user experience (70.06)

is perceived significantly better than in RelFinder (56.71). Instead, the best user

experience is perceived with Google (73.67), but most of the users reported Google

as their favorite search engine during a pre-questionnaire aimed at understanding

users’ skills. Furthermore, the average SUS score reported by Aemoo surpasses the

target of 68, which is required to demonstrate a good level of usability [124] and

so does the SUS score reported by Google. Contrariwise, RelFinder fails to surpass

150 Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns

(a) Learnability.

(b) Usability.

Figure 8.6: Learnability and Usability values and standard deviations. Standard
deviation values are expressed between brackets and shown as black vertical lines in
the chart.

this target. It is reasonable that SUS values of a tool used as second tool are better

than those of the same tool used as first because each task performed by a user is

repeated twice (one time per tool). Hence, the second time a user is more familiar

with a task and this affects the usability. In addition to the main SUS scale, we are

Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns 151

also interested in examining the sub-scales of pure Usability and pure Learnability

of the system that have been proposed some years ago by Lewis and Sauro [89].

Figure 8.6 shows values and the standard deviations for the these two orthogonal

structures of the SUS. Namely, Figure 8.6(a)) depicts Learnability scores and their

related standard deviations and Figure 8.6(b) reports Usability scores and their

related standard deviations. Again, Aemoo is significantly perceived easier to learn

and more usable than RelFinder, that is actually the reference competitor of Aemoo

for this evaluation.

As part of our future work we want to evaluate the final surveys we proposed

to the users after the SUS questionnaire for analyzing their satisfaction in using

the systems. We are proceeding with the open coding (extracting relevant sentences

from the text, i.e., codes) and axial coding (the rephrasing of the codes so as to have

connections emerge from them and generate concepts), and we are analysing their

frequency so as to let more relevant concepts emerge. These concepts associated to a

satisfaction score will help us in better understanding what are the most prominent

or the missing features of the tools.

152 Chapter 8. Aemoo: Exploratory search based on Knowledge Patterns

Chapter 9

Conclusion and future work

The realization of the Web of Data (aka Semantic Web) partly depends on the

ability to make meaningful knowledge representation and reasoning. Recently [66]

has introduced a vision of a pattern science for the Semantic Web as the means

for achieving this goal. Such a science envisions the study of, and experimentation

with, Knowledge Patterns (KPs): small, well connected units of meaning which

are (i) task-based, (ii) well-grounded, and (iii) cognitively sound. Linked data and

social web sources such as Wikipedia give us the chance to empirically study what

are the KPs in organizing and representing knowledge. Furthermore, KPs can be

used for evaluating existing methods and models that were traditionally developed

with a top-down approach, and open new research directions towards new reasoning

procedures that better fit the actual Semantic Web applications need.

In this work we have treated the problem of extracting, transforming and reusing

KPs in the Web. This means we have provided solutions to two main challenging

issues, i.e.,

• the knowledge soup problem;

• the knowledge boundary problem.

The knowledge soup is the heterogeneity of formats and semantics used in the Web

of Data for representing knowledge. For example Linked Data contain datasets with

154 Chapter 9. Conclusion and future work

real world facts (e.g. geo data), conceptual structures (e.g. thesauri, schemes), lexi-

cal and linguistic data (e.g. wordnets, triples inferred from NLP algorithms), social

data about data (e.g. provenance and trust data), etc. The knowledge boundary

problem is about the need of drawing relevant boundaries around data that allow

to select the meaningful knowledge that identifies a certain KP. For example, this

means to select a set of triples in an RDF graph able to give a unifying view with

respect to a certain context. In order to deal with these issues we have proposed an

approach that tackles KP discovery from two different perspectives:

• the transformation of top-down modelled KP-like artifacts from existing sources

in the Web (e.g. FrameNet [11]);

• the bottom-up extraction of KPs based on the analysis of how the knowledge

in Linked Data is typically organized.

We enclose the first perspective in a solution based on the Semion methodology [105]

(cf. Chapter 4). This allows to transform KP-like artifacts available in the Web in

heterogeneous formats and semantics thanks to a two step-based approach aimed

at (i) performing a purely syntactic transformation of the original source to RDF,

i.e, the reengineering step, and (ii) adding semantics to RDF data in order to make

KPs emerge, i.e., the refactoring step. Based on this solution we have discussed a

case study that we presented in [104] about the transformation of FrameNet frames

to KPs. The result of this case study is twofold: (i) an RDF dataset available as

Linked Data 1 and linked to WordNet and other lexical datasets; (ii) a collection of

1024 KPs 2 formalized as small OWL2 ontologies. From this case study we learn

that the customization is key with KP-like artifacts because there are use cases

for maintaining the semantics of the original resource, often a purely intensional

one (similar to the practice of using SKOS with thesauri), as well as for morphing

the original semantics to something closer to the extensional formal semantics of

web ontologies. In between these two ends, there are several intermediate cases

1The dataset is avaliable at http://ontologydesignpatterns.org/ont/framenet/fndata v5.rdf.zip
2Available at http://ontologydesignpatterns.org/ont/framenet/kp.

http://ontologydesignpatterns.org/ont/framenet/kp

Chapter 9. Conclusion and future work 155

and exceptions, which make the case for tools that minimize hard-coding of the

transformation semantics, and preserve the opportunity to learn and share good

practices for transforming KP-like artifacts to linked data and domain knowledge.

With regard to this case study our ongoing work concentrates on the refinement of

the RDF dataset with the Berkeley FrameNet group, the generation of new links

to lexical datasets as well as other relevant LOD datasets (e.g. DBpedia), the

creation of the FrameNet valence dataset, which will be a substantial (about 35

million triples) resource for hybridizing Semantic Web and Linked Data, and the

refinement of the recipe to produce and automatically publish FrameNet-based KPs

on the ODP portal. These KPs implement a large section of the rich KP structure

envisaged by [66], with formal axioms, lexically motivated vocabulary, textual corpus

grounding, and data grounding.

We enclose the second perspective in a solution based on the analysis of path

types (cf. Chapter 5). A type path is a sequence of connected triple patterns whose

occurrences have (i) the same rdf:type for their subject nodes, and (ii) the same

rdf:type for their object nodes. Type paths allow to analyze data and the linking

structure among data by looking for recurrent structures from an intensional point

of view. We have defined a measure for drawing boundaries around data based

on the notion of pathPopularity. Informally, the pathPopularity is a contextualized

indicator that allows to determine how popular, i.e., frequent, is a certain path in

a dataset. We have shown in a case study how it is possible to extract KPs by

applyping this solution to Wikipedia links 3. Such case study was presented in [106]

and allowed us to collect 184 KPs, called Encyclopedic as they are able to capture

encyclopedic knowledge having been extracted from Wikipedia, the largest collabo-

ratively built encyclopedia. There are many directions that the kind of research we

did with EKPs opens up. For example, investigating how to make relevant “long

tail” features (c.f. Section 5.2.3) emerge for specific resources and requirements is

one of the research directions we want to explore. This is useful for evolving Ae-

moo to meaningfully take into account the peculiar knowledge for building entity

3represented as Linked Data in the dbpedia page links en dataset of DBpedia

156 Chapter 9. Conclusion and future work

summaries. Another obvious elaboration of EKP discovery is to infer the object

properties that are implicit in a wikilink. This task is called relation discovery. An

approach we want to investigate is the hybridization between the EKPs and the Sta-

tistical Knowledge Patterns (SKPs) [146] that provide patterns of object relations

among DBpedia classes. Other approaches we want to investigate are the induction

of relations from infobox properties, from top superclasses, or by punning of the

object type, i.e., treating the object type as an object property.

Inasmuch as the limited usage of ontologies and controlled vocabularies in Linked

Data restricts the KP extraction method based on type paths, we have proposed a

solution for the enrichment of Linked Data with additional metadata, e.g., rdf:type

axioms, based on the exploitation of natural language annotations (cf. Chapter 6).

Based on this method we have proposed two case studies, i.e.:

• the Tı̀palo algorithm, which allows to infer an entity type by analyzing the

natural language definition available in its abstract. Tı̀palo allowed us to ex-

tract a initial version of a natural ontology of Wikipedia, i.e., ORA, that we

want to use for further refining the extraction of KPs from Wikipedia. Cur-

rently, we are working at refining ORA for limiting synonymy among classes

and to align it to DBpedia Ontology 4 and YAGO [133].

• the CiTalO algorithm, which allows to infer the type of citations in scholarly

articles. In this context, citation are interpreted as links among articles. We

are currently working on the evaluation of the CiTO ontology, which is used

for labeling citations with a property able to capture the citational meaning,

and on the investigation of lexico-syntactical patterns for citations that can

be converted to graph-patterns to use in our method (cf. Section 6.1.3)

An important research direction we want to carry on concerns the validation

of top-down defined KPs (e.g., KPs from FrameNet) with respect to bottom up

emerging KPs. In fact, the nature of KPs is mainly empirical [52, 66], hence the

validity of top-down KPs should be empirically proved. So far, evidence about this is

4http://dbpedia.org/ontology

http://dbpedia.org/ontology

Chapter 9. Conclusion and future work 157

only episodic, even if [53] has recently shown correlations between frame elements as

defined in FrameNet frames and frame elements defined by users in a crowdsourced

experiment.

The three solutions proposed have been implemented in a software architec-

ture, i.e., K∼ore, based on the hybridization of the Component-based and REST

software architectural styles. K∼ore provides API for experimenting with KP trans-

formation, extraction and reuse. These API composes the framework of tools, i.e.,

K∼tools, that we used for implementing the case studies illustrated so far. We be-

lieve that K∼ore can be a valid solution for supporting the development of cognitive

architectures [87] and our ongoing work is oriented in this direction.

Finally, we have presented Aemoo, a tool that uses KPs for providing entity sum-

maries in the context of exploratory search. We have defined Aemoo as a KP-aware

application as it exploits KPs at the knowledge level, as defined by Newell [103].

An initial evaluation shows promising results that we want to investigate farther.

Hence, we are planning a user-based evaluation aimed at comparing the effectiveness

and the usability of the summary proposed by Aemoo with respect to that proposed

by the Google Knowledge Graph.

158 Chapter 9. Conclusion and future work

Appendix A

Refactor Rule Language

<DEFAULT> SKIP : {

" "

}

<DEFAULT> SKIP : {

"\r"

| "\t"

| "\n"

}

<DEFAULT> TOKEN : {

<LARROW: "->">

| <COLON: ":">

| <EQUAL: "=">

| <AND: ".">

| <COMMA: ",">

| <REFLEXIVE: "+">

| <SAME: "same">

| <DIFFERENT: "different">

| <LESSTHAN: "lt">

| <GREATERTHAN: "gt">

| <IS: "is">

| <NEW_NODE: "newNode">

| <LENGTH: "length">

| <SUBSTRING: "substring">

| <UPPERCASE: "upperCase">

| <LOWERCASE: "lowerCase">

| <STARTS_WITH: "startsWith">

| <ENDS_WITH: "endsWith">

| <LET: "let">

160 Appendix A. Refactor Rule Language

| <CONCAT: "concat">

| <HAS: "has">

| <VALUES: "values">

| <NOTEX: "notex">

| <PLUS: "sum">

| <MINUS: "sub">

| <NOT: "not">

| <NAMESPACE: "namespace">

| <LOCALNAME: "localname">

| <STR: "str">

| <APOX: "^">

| <UNION: "union">

| <CREATE_LABEL: "createLabel">

| <SPARQL_C: "sparql-c">

| <SPARQL_D: "sparql-d">

| <SPARQL_DD: "sparql-dd">

| <PROP: "prop">

| <IS_BLANK: "isBlank">

| <FORWARD_CHAIN: "!">

}

<DEFAULT> TOKEN : {

<LPAR: "(">

| <RPAR: ")">

| <DQUOT: "\"">

| <LQUAD: "[">

| <RQUAD: "]">

}

<DEFAULT> TOKEN : {

<NUM: (["0"-"9"])+>

| <VAR: (["0"-"9","a"-"z","A"-"Z","-","_","."])+>

| <VARIABLE: "?" (["0"-"9","a"-"z","A"-"Z","-","_"])+>

| <URI: "<" (["0"-"9","a"-"z","A"-"Z","-","_",".","#",":","/","(",")"])+ ">">

| <STRING: "\"" (["0"-"9","a"-"z","A"-"Z","-","_",".",":","/","#","\\","?"," ","!","$","%"])+ "\"">

| <SPARQL_STRING: "%" (["0"-"9","a"-"z","A"-"Z","-","_",".",":","/","#","\\","?"," ","!","$","%",

"{","}","(",")","\"","<",">","=","+","\n","\t","&","|",","])+ "%">

| <BNODE: "_:" (["0"-"9","a"-"z","A"-"Z","-","_","."])+>

}

NON-TERMINALS

start ::= expression expressionCont

expressionCont ::= (<AND> expression)

Appendix A. Refactor Rule Language 161

|

expression ::= prefix expressionCont

prefix ::= getVariable (equality | rule)

| <FORWARD_CHAIN> getVariable rule

| <REFLEXIVE> getVariable rule

equality ::= <EQUAL> (getURI)

rule ::= <LQUAD> ruleDefinition <RQUAD>

ruleDefinition ::= atomList <LARROW> atomList

| <SPARQL_C> <LPAR> <SPARQL_STRING> <RPAR>

| <SPARQL_D> <LPAR> <SPARQL_STRING> <RPAR>

| <SPARQL_DD> <LPAR> <SPARQL_STRING> <RPAR>

atomList ::= atom atomListRest

|

atomListRest ::= <AND> atomList

|

atom ::= classAtom

| individualPropertyAtom

| datavaluedPropertyAtom

| letAtom

| newNodeAtom

| comparisonAtom

| unionAtom

unionAtom ::= <UNION> <LPAR> atomList <COMMA> atomList <RPAR>

createLabelAtom ::= <CREATE_LABEL> <LPAR> stringFunctionAtom <RPAR>

propStringAtom ::= <PROP> <LPAR> stringFunctionAtom <COMMA> stringFunctionAtom <RPAR>

endsWithAtom ::= <ENDS_WITH> <LPAR> stringFunctionAtom <COMMA> stringFunctionAtom <RPAR>

startsWithAtom ::= <STARTS_WITH> <LPAR> stringFunctionAtom <COMMA> stringFunctionAtom <RPAR>

stringFunctionAtom ::= (concatAtom | upperCaseAtom | lowerCaseAtom | substringAtom | namespaceAtom |

localnameAtom | strAtom | stringAtom | propStringAtom | createLabelAtom)

strAtom ::= <STR> <LPAR> iObject <RPAR>

namespaceAtom ::= <NAMESPACE> <LPAR> iObject <RPAR>

localnameAtom ::= <LOCALNAME> <LPAR> iObject <RPAR>

stringAtom ::= uObject

concatAtom ::= <CONCAT> <LPAR> stringFunctionAtom <COMMA> stringFunctionAtom <RPAR>

upperCaseAtom ::= <UPPERCASE> <LPAR> stringFunctionAtom <RPAR>

lowerCaseAtom ::= <LOWERCASE> <LPAR> stringFunctionAtom <RPAR>

substringAtom ::= <SUBSTRING> <LPAR> stringFunctionAtom <COMMA> numericFunctionAtom

<COMMA> numericFunctionAtom <RPAR>

numericFunctionAtom ::= (sumAtom | subtractionAtom | lengthAtom | numberAtom)

lengthAtom ::= <LENGTH> <LPAR> stringFunctionAtom <RPAR>

sumAtom ::= <PLUS> <LPAR> numericFunctionAtom <COMMA> numericFunctionAtom <RPAR>

subtractionAtom ::= <MINUS> <LPAR> numericFunctionAtom <COMMA> numericFunctionAtom <RPAR>

numberAtom ::= (<NUM> | <VARIABLE>)

classAtom ::= <IS> <LPAR> iObject <COMMA> iObject <RPAR>

newNodeAtom ::= <NEW_NODE> <LPAR> iObject <COMMA> dObject <RPAR>

letAtom ::= <LET> <LPAR> iObject <COMMA> stringFunctionAtom <RPAR>

162 Appendix A. Refactor Rule Language

individualPropertyAtom ::= <HAS> <LPAR> iObject <COMMA> iObject <COMMA> iObject <RPAR>

datavaluedPropertyAtom ::= <VALUES> <LPAR> iObject <COMMA> iObject <COMMA> dObject <RPAR>

sameAsAtom ::= <SAME> <LPAR> stringFunctionAtom <COMMA> stringFunctionAtom <RPAR>

lessThanAtom ::= <LESSTHAN> <LPAR> iObject <COMMA> iObject <RPAR>

greaterThanAtom ::= <GREATERTHAN> <LPAR> iObject <COMMA> iObject <RPAR>

differentFromAtom ::= <DIFFERENT> <LPAR> stringFunctionAtom <COMMA> stringFunctionAtom <RPAR>

reference ::= getURI

| getVariable <COLON> getVariable

varReference ::= getURI

| getVariable <COLON> getVariable

getURI ::= <URI>

getVariable ::= <VAR>

getString ::= <STRING>

getInt ::= <NUM>

uObject ::= (variable | reference | getString | getInt)

iObject ::= variable

| reference

dObject ::= (literal | variable)

literal ::= (getString typedLiteral | getInt typedLiteral)

typedLiteral ::= (<APOX> <APOX> reference |)

variable ::= <NOTEX> <LPAR> <VARIABLE> <RPAR>

| <VARIABLE>

| <BNODE>

notAtom ::= <NOT> <LPAR> comparisonAtom <RPAR>

isBlankAtom ::= <IS_BLANK> <LPAR> iObject <RPAR>

comparisonAtom ::= (sameAsAtom | lessThanAtom | greaterThanAtom | differentFromAtom | notAtom

| startsWithAtom | endsWithAtom | isBlankAtom)

References

[1] RDFa in XHTML: Syntax and Processing, W3C recommendation, 2008.

[2] OWL 2 Web Ontology Language Document Overview. W3C Recommenda-

tion, 10 2009.

[3] E. Agirre and A. Soroa. Personalizing PageRank for Word Sense Disam-

biguation. In Proceedings of the 12th conference of the European chapter of

the Association for Computational Linguistics (EACL-2009), Athens, Greece,

2009. The Association for Computer Linguistics.

[4] C. Alexander. The timeless way of building. 1979.

[5] T. O. Alliance. OSGi Service Platform Release 4 Version 4.2, Compendium

Specification. Committee specification, Open Services Gateway initiative

(OSGi), September 2009.

[6] T. O. Alliance. OSGi Service Platform Release 4 Version 4.2, Core Specifi-

cation. Committee specification, Open Services Gateway initiative (OSGi),

September 2009.

[7] T. O. Alliance. OSGi Service Platform Release 4 Version 4.2, Enterprise Spec-

ification. Committee specification, Open Services Gateway initiative (OSGi),

March 2010.

[8] K. Arnold and J. Gosling. The Java Programming Language. Addison Wesley,

1996.

164 References

[9] F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing description

logic knowledge bases using formal concept analysis. In Proceeding of the In-

ternational Joint Conferences on Artificial Intelligence, pages 230–235, 2007.

[10] R. Baeza-Yates, B. Ribeiro-Neto, et al. Modern information retrieval, volume

463. ACM press New York, 1999.

[11] C. F. Baker, C. J. Fillmore, and J. B. Lowe. The Berkeley FrameNet Project.

In Proc. of the 17th international conference on Computational linguistics,

pages 86–90, Morristown, NJ, USA, 1998.

[12] K. Barker, T. Copeck, S. Szpakowicz, and S. Delisle. Systematic construction

of a versatile case system. Natural Language Engineering, 3(4):279–315, 1997.

[13] K. Barker, B. Porter, and P. Clark. A library of generic concepts for com-

posing knowledge bases. In Proceedings of the 1st international conference on

Knowledge capture, pages 14–21. ACM, 2001.

[14] K. Barker, B. Porter, and P. Clark. A Library of Generic Concepts for

Composing Knowledge Bases. In Proceedings of the International Conference

on Knowledge Capture, pages 14–21, Victoria, British columbia, 2001. ACM

Press, New York.

[15] L. W. Barsalou. Perceptual symbol systems. Behavioral and brain sciences,

22(04):577–660, 1999.

[16] T. Berners-Lee. Design issues: Linked Data. Technical report, World Wide

Web Consortium (W3C), July 2006.

[17] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifier

(URI): Generic Syntax. RFC 3986 (Standard), 2005. Available at http:

//www.ietf.org/rfc/rfc3986.txt.

[18] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific

American, 284(5):34–43, May 2001.

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt

References 165

[19] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data-The story so far. In-

ternational Journal on Semantic Web and Information Systems, 4(2):1–22,

2009.

[20] C. Bizer, A. Jentzsch, and R. Cyganiak. State of the LOD cloud. Technical

report, Freie Universität Berlin, September 2011.

[21] S. Bloehdorn and Y. Sure. Kernel Methods for Mining Instance Data in On-

tologies. In K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. J. B.

Nixon, J. Golbeck, P. Mika, D. Maynard, G. Schreiber, and P. Cudré-Mauroux,

editors, Proceedings of the 6th International Semantic Web Conference and

the 2nd Asian Semantic Web Conference (ISWC 2007 + ASWC 2007), vol-

ume 4825 of Lecture Notes in Computer Science, pages 58–71, Busan, Korea,

November 2007. Springer Verlag.

[22] E. Blomqvist, V. Presutti, E. Daga, and A. Gangemi. Experimenting with

extreme design. In P. Cimiano and H. S. Pinto, editors, EKAW, volume 6317

of Lecture Notes in Computer Science, pages 120–134. Springer, 2010.

[23] E. Blomqvist, K. Sandkuhl, F. Scharffe, and V. Svátek. Proc. of the Workshop

on Ontology Patterns (WOP 2009), collocated with the 8th International Se-

mantic Web Conference (ISWC-2009), Washington D.C., USA, 25 October,

2009., volume 516. CEUR Workshop Proceedings, 2009.

[24] H. Bohring and S. Auer. Mapping xml to owl ontologies. In Proceedings

of 13. Leipziger Informatik-Tage (LIT 2005), Sep. 21-23, Lecture Notes in

Informatics (LNI), September 2005.

[25] M. Bramer and V. Terziyan. Industrial Applications of Semantic Web: Pro-

ceedings of the 1st International IFIP/WG12.5 Working Conference on Indus-

trial Applications of Semantic Web, ... Federation for Information Processing).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

166 References

[26] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Ex-

tensible markup language (xml). World Wide Web Journal, 2(4):27–66, 1997.

[27] D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0:

RDF Schema. W3C Recommendation, World Wide Web Consortium (W3C),

February 2004.

[28] D. Brickley and L. Miller. FOAF vocabulary specification. Technical report,

FOAF project, May 2007. Published online on May 24th, 2007 at http:

//xmlns.com/foaf/spec/20070524.html.

[29] J. Brooke. SUS: A quick and dirty usability scale. Usability evaluation in

industry, pages 189–194, 1996.

[30] J. Cardoso, M. Hepp, and M. D. Lytras, editors. The Semantic Web: Real-

World Applications from Industry, volume 6 of Semantic Web And Beyond

Computing for Human Experience. Springer, 2007.

[31] N. Christianini and J. Shawe-Taylor. Support Vector Machines and Other

kernel-based Learning Methods. Cambridge University Press, 2000.

[32] P. Cimiano. Ontology Learning and Population from Text: Algorithms, Eval-

uation and Applications. Springer, 2006.

[33] P. Cimiano, A. Hotho, and S. Staab. Learning Concept Hierarchies from Text

Corpora using Formal Concept Analysis. J. Artif. Intell. Res.(JAIR), 24:305–

339, 2005.

[34] P. Cimiano and J. Völker. Text2Onto. In Natural language processing and

information systems, pages 227–238. Springer, 2005.

[35] P. Clark and B. Porter. KM - The Knowledge Machine 2.0: Users Manual.

Boeing Phantom Works/University of Texas at Austin, 1999.

[36] P. Clark, J. Thompson, and B. Porter. Knowledge Patterns. In A. G. Cohn,

F. Giunchiglia, and B. Selman, editors, KR2000: Principles of Knowledge

http://xmlns.com/foaf/spec/20070524.html
http://xmlns.com/foaf/spec/20070524.html

References 167

Representation and Reasoning, pages 591–600, San Francisco, 2000. Morgan

Kaufmann.

[37] Clark & Parsia, LLC. Pellet: OWL 2 Reasoner for Java, 2011.

[38] A. Collins and M. Quillian. Retrieval time from semantic memory. Journal of

Verbal Learning and Verbal Behavior, 8:240–248–, 1969.

[39] A. M. Collins and E. F. Loftus. A spreading activation theory of semantic

processing. Psychological Review, 82:407–428, 1975.

[40] J. R. Curran, S. Clark, and J. Bos. Linguistically motivated large-scale nlp

with c&c and boxer. In Proceedings of the ACL 2007 Demo and Poster Ses-

sions, pages 33–36, Prague, Czech Republic, 2007.

[41] C. d’Amato, N. Fanizzi, and F. Esposito. Query Answering and Ontology

Population: an Inductive Approach. In M. Hauswirth, M. Koubarakis, and

S. Bechhofer, editors, Proceedings of the 5th European Semantic Web Con-

ference (ESWC 2008), volume 5021 of Lecture Notes in Computer Science,

Tenerife, Spain, June 2008. Springer Verlag.

[42] C. d’Amato, N. Fanizzi, and F. Esposito. Inductive Learning for the Semantic

Web: What does it buy? Semantic Web, 1(1):53–59, 2010.

[43] G. De Chalendar and B. Grau. SVETLAN’or how to Classify Words using their

Context. In Knowledge Engineering and Knowledge Management Methods,

Models, and Tools, pages 203–216. Springer, 2000.

[44] A. Di Iorio, A. G. Nuzzolese, and S. Peroni. Identifying Functions of Citations

with CiTalO. In P. Cimiano, M. Fernández, V. Lopez, S. Schlobach, and

J. Völker, editors, The Semantic Web: ESWC 2013 Satellite Events, volume

7955 of Lecture Notes in Computer Science, pages 231–235. Springer Berlin

Heidelberg, 2013.

168 References

[45] M. Egaña, R. Stevens, and E. Antezana. Transforming the Axiomisation of

Ontologies: The Ontology Pre-Processor Language. In Proceedigns of OWLED

2008 DC OWL: Experiences and Directions, Washington, DC, USA, 2008.

[46] J. Euzenat. An API for Ontology Alignment. In S. A. McIlraith, D. Plex-

ousakis, and F. van Harmelen, editors, Proceedings of the 3rd International

Semantic Web Conference (ISWC), volume 3298 of Lecture Notes in Com-

puter Science, pages 698–712, Berlin, Heidelberg, November 2004. Springer.

[47] N. Fanizzi, C. d’Amato, and F. Esposito. Statistical Learning for Inductive

Query Answering on OWL Ontologies. In A. P. Sheth, S. Staab, M. Dean,

M. Paolucci, D. Maynard, T. W. Finin, and K. Thirunarayan, editors, Proceed-

ings of the 7th International Semantic Web Conference (ISWC 2008), volume

5318 of Lecture Notes in Computer Science, pages 195–212, Karlsruhe, Ger-

many, October 2008. Springer.

[48] C. Fellbaum, editor. WordNet: an electronic lexical database. MIT Press,

1998.

[49] D. Fensel, C. Bussler, Y. Ding, V. Kartseva, M. Klein, M. Korotkiy, B. Ome-

layenko, and R. Siebes. Semantic Web application areas. In Proc. 7th

Int. Workshop on Applications of Natural Language to Information Systems

(NLDB 2002), Stockholm, Sweden, 2002.

[50] R. T. Fielding. REST: Architectural Styles and the Design of Network-based

Software Architectures. Doctoral dissertation, University of California, Irvine,

2000.

[51] C. Fillmore. The case for the case. In E. Bach and R. Harms, editors, Uni-

versals in Linguistic Theory. Rinehart and Winston, New York, 1968.

[52] C. J. Fillmore. Frame semantics and the nature of language*. Annals of the

New York Academy of Sciences, 280(1):20–32, 1976.

References 169

[53] M. Fossati, C. Giuliano, and S. Tonelli. Outsourcing framenet to the crowd. In

Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics, pages 742–747.

[54] K. T. Frantzi, S. Ananiadou, and J. Tsujii. The c-value/nc-value method

of automatic recognition for multi-word terms. In Research and Advanced

Technology for Digital Libraries, pages 585–604. Springer, 1998.

[55] V. Gallese and T. Metzinger. Motor ontology: the representational reality of

goals, actions and selves. Philosophical Psychology, 16(3):365–388, 2003.

[56] P. Gamallo, M. Gonzalez, A. Agustini, G. Lopes, and V. S. De Lima. Mapping

syntactic dependencies onto semantic relations. In Proceedings of the ECAI

Workshop on Machine Learning and Natural Language Processing for Ontology

Engineering, pages 15–22, 2002.

[57] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Abstrac-

tion and reuse of object-oriented design. Springer, 1993.

[58] A. Gangemi. Ontology Design Patterns for Semantic Web Content. In The

Semantic Web–ISWC 2005, pages 262–276. Springer, 2005.

[59] A. Gangemi. Norms and plans as unification criteria for social collectives.

Autonomous Agents and Multi-Agent Systems, 17(1):70–112, 2008.

[60] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweet-

ening ontologies with DOLCE. In Knowledge engineering and knowledge man-

agement: Ontologies and the semantic Web, pages 166–181. Springer, 2002.

[61] A. Gangemi, J. Lehmann, V. Presutti, M. Nissim, and C. Catenacci. C-

ODO: an OWL Meta-model for Collaborative Ontology Design. In N. F. Noy,

H. Alani, G. Stumme, P. Mika, Y. Sure, and D. Vrandecic, editors, CKC,

volume 273 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

170 References

[62] A. Gangemi, R. Navigli, and P. Velardi. The ontowordnet project: Extension

and axiomatization of conceptual relations in WordNet. In R. Meersman

and Z. Tari, editors, Proc. of On the Move to Meaningful Internet Systems

(OTM2003) (Catania, Italy), pages 820–838. Springer-Verlag, 2003.

[63] A. Gangemi, R. Navigli, and P. Velardi. The OntoWordNet Project: exten-

sion and axiomatization of conceptual relations in WordNet. In in WordNet,

Meersman, pages 3–7. Springer, 2003.

[64] A. Gangemi, A. G. Nuzzolese, V. Presutti, F. Draicchio, A. Musetti, and

P. Ciancarini. Automatic Typing of DBpedia Entities. In International Se-

mantic Web Conference (1), volume 7649 of Lecture Notes in Computer Sci-

ence, pages 65–81. Springer, 2012.

[65] A. Gangemi and V. Presutti. Ontology Design Patterns. In S. Staab and

R. Studer, editors, Handbook on Ontologies, 2nd Edition. Springer Verlag,

2009.

[66] A. Gangemi and V. Presutti. Towards a Pattern Science for the Semantic

Web. Semantic Web, 1(1-2):61–68, 2010.

[67] D. Garlan and M. Shaw. An introduction to software architecture. In V. Am-

briola and G. Tortora, editors, Advances in Software Engineering and Knowl-

edge Engineering, volume I. River Edge, NJ: World Scientific Publishing Com-

pany, 1993.

[68] T. Gruber. A translation approach to portable ontology specifications. Knowl-

edge acquisition, 5(2):199–220, 1993.

[69] T. R. Gruber. Ontology. In Encyclopedia of Database Systems, pages 1963–

1965. Springer-Verlag, 2009.

[70] M. Gruninger and M. S. Fox. The role of competency questions in enterprise

engineering. In Proc. of the IFIP WG5.7 Workshop on Benchmarking - Theory

and Practice, pages 83–95, Trondheim, Norway, 1994.

References 171

[71] N. Guarino. Formal Onthology in Information Systems: Proceedings of the

First International Conference (FIOS’98), June 6-8, Trento, Italy, volume 46.

IOS press, 1998.

[72] B. J. Hansen, J. Halvorsen, S. I. Kristiansen, R. Rasmussen, M. Rustad, and

G. Sletten. Recommended application areas for semantic technologies. Techni-

cal report, Norwegian Defence Research Establishment (FFI), February 2010.

[73] P. Hayes. RDF Semantics. W3C recommendation, W3C, Feb. 2004. Available

at http://www.w3.org/TR/2004/REC-rdf-mt-20040210/.

[74] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora.

In Proceedings of the 14th conference on Computational linguistics-Volume 2,

pages 539–545. Association for Computational Linguistics, 1992.

[75] M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In

COLING, pages 539–545, 1992.

[76] T. Heath, J. Domingue, and P. Shabajee. User interaction and uptake chal-

lenges to successfully deploying semantic web technologies. In Third Interna-

tional Semantic Web User Interaction Workshop (SWUI 2006), Athens, GA,

USA, 2006.

[77] P. Heim, S. Hellmann, J. Lehmann, S. Lohmann, and T. Stegemann.

RelFinder: Revealing relationships in RDF knowledge bases. In Proceed-

ings of the 3rd International Conference on Semantic and Media Technologies

(SAMT), volume 5887 of Lecture Notes in Computer Science, pages 182–187.

Springer, 2009.

[78] P. Heim, J. Ziegler, and S. Lohmann. gFacet: A browser for the web of data.

In S. Auer, S. Dietzold, S. Lohmann, and J. Ziegler, editors, Proceedings of the

International Workshop on Interacting with Multimedia Content in the Social

Semantic Web (IMC-SSW’08), pages 49–58. CEUR-WS, 2008.

http://www.w3.org/TR/2004/REC-rdf-mt-20040210/

172 References

[79] M. Horridge and S. Bechhofer. The owl api: A java api for owl ontologies.

Semantic Web, 2(1):11–21, 2011.

[80] M. Horridge, N. Drummond, J. Goodwin, A. Rector, R. Stevens, and H. Wang.

The manchester owl syntax. In OWLED2006 Second Workshop on OWL Ex-

periences and Directions, Athens, GA, USA, 2006.

[81] I. Horrocks, B. Motik, and Z. Wang. The hermit owl reasoner. In I. Horrocks,

M. Yatskevich, and E. Jiménez-Ruiz, editors, ORE, volume 858 of CEUR

Workshop Proceedings. CEUR-WS.org, 2012.

[82] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

SWRL: A Semantic Web rule language combining OWL and RuleML. W3C

Member Submission, World Wide Web Consortium (W3C), May 2004.

[83] A. D. Iorio, A. G. Nuzzolese, and S. Peroni. Towards the automatic identifi-

cation of the nature of citations. In SePublica, pages 63–74, 2013.

[84] I. Jacobson, M. Griss, and P. Jonsson. Software reuse: architecture, process

and organization for business success. ACM Press/Addison-Wesley Publishing

Co., 1997.

[85] M. Kifer. Rule interchange format: The framework. In RR, pages 1–11, 2008.

[86] C. W. Krueger. Software Reuse. ACM Computing Surveys (CSUR), 24(2):131–

183, 1992.

[87] P. Langley, J. E. Laird, and S. Rogers. Cognitive architectures: Research

issues and challenges. Cognitive Systems Research, 10(2):141–160, 2009.

[88] J. Lehmann, C. Bizer, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and

S. Hellmann. DBpedia - A Crystallization Point for the Web of Data. Journal

of Web Semantics, 7(3):154–165, 2009.

References 173

[89] J. R. Lewis and J. Sauro. The Factor Structure of the System Usability Scale.

In M. Kurosu, editor, HCI (10), volume 5619 of Lecture Notes in Computer

Science, pages 94–103. Springer, 2009.

[90] R. Likert. A technique for the measurement of attitudes. Archives of psychol-

ogy, 1932.

[91] W. Maass and S. Janzen. A Pattern-based Ontology Building Method for Am-

bient Environments . In E. Blomqvist, K. Sandkuhl, F. Scharffe, and V. Svatek,

editors, Proceedings of the Workshop on Ontology Patterns (WOP 2009), col-

located with the 8th International Semantic Web Conference (ISWC-2009),

Washington D.C., USA, 25 October, 2009., volume 516. CEUR Workshop

Proceedings, 2009.

[92] A. Maedche and S. Staab. Ontology learning for the semantic web. IEEE

Intelligent Systems, 16:pp. 72–79, March-April 2001.

[93] F. Manola and E. Miller. RDF primer. W3C Recommendation, World Wide

Web Consortium (W3C), February 2004.

[94] G. Marchionini. Exploratory search: from finding to understanding. Commun.

ACM, 49(4):41–46, Apr. 2006.

[95] J. Martin. Managing the data-base environment. (The James Martin books

on computer systems and telecommunications). Prentice-Hall, 1983.

[96] R. C. Martin. Agile software development: principles, patterns, and practices.

Prentice Hall PTR, 2003.

[97] B. McBride. Jena: a semantic web toolkit. IEEE Internet Computing, 6(6):55–

59, 2002.

[98] M. Migliore, G. Novara, and D. Tegolo. Single neuron binding properties and

the magical number 7. Hippocampus, 18(11):1122–1130, 2008.

174 References

[99] A. Miles and S. Bechhofer. Skos simple knowledge organization system refer-

ence, Aug. 2009.

[100] G. A. Miller. The magical number seven, plus or minus two: some limits on

our capacity for processing information. Psychological Review, 63(2):81–97,

1956.

[101] M. Minsky. A Framework for Representing Knowledge. In P. Winston, editor,

The Psychology of Computer Vision. McGraw-Hill, 1975.

[102] R. Navigli, P. Velardi, and A. Gangemi. Ontology learning and its application

to automated terminology translation. Intelligent Systems, IEEE, 18(1):22–31,

2003.

[103] A. Newell. The Knowledge Level. AI Magazine, 2(2):1–20, 33, Summer 1981.

[104] A. G. Nuzzolese, A. Gangemi, and V. Presutti. Gathering Lexical Linked Data

and Knowledge Patterns from FrameNet. In Proc. of the 6th International

Conference on Knowledge Capture (K-CAP), pages 41–48, Banff, Alberta,

Canada, 2011.

[105] A. G. Nuzzolese, A. Gangemi, V. Presutti, and P. Ciancarini. Fine-tuning

triplification with Semion. In V. Presutti, V. Svatek, and F. Sharffe, ed-

itors, Wks. on Knowledge Injection into and Extraction from Linked Data

(KIELD2010), pages 2–14, Lisbon, Portugal, October 2010.

[106] A. G. Nuzzolese, A. Gangemi, V. Presutti, and P. Ciancarini. Encyclope-

dic Knowledge Patterns from Wikipedia Links. In L. Aroyo, N. Noy, and

C. Welty, editors, Proceedings fo the 10th International Semantic Web Con-

ference (ISWC 2011), pages 520–536. Springer, 2011.

[107] A. G. Nuzzolese, A. Gangemi, V. Presutti, F. Draicchio, A. Musetti, and

P. Ciancarini. T̀ıpalo: A tool for automatic typing of dbpedia entities. In

P. Cimiano, M. Fernández, V. Lopez, S. Schlobach, and J. Völker, editors,

References 175

ESWC (Satellite Events), volume 7955 of Lecture Notes in Computer Science,

pages 253–257. Springer, 2013.

[108] A. G. Nuzzolese, V. Presutti, A. Gangemi, A. Musetti, and P. Ciancarini.

Aemoo: Exploring knowledge on the web. In Proceedings of the 5th Annual

ACM Web Science Conference, pages 272–275. ACM, 2013.

[109] R. Pal. Secure Semantic Web ontology sharing. Master’s thesis, University of

Southampton, January 2011.

[110] G. Papamargaritis and A. Sutcliffe. Applying the domain theory to design for

reuse. BT technology journal, 22(2):104–115, 2004.

[111] Patterns&Practices. Microsoft Application Architecture Guide. Microsoft Cor-

poration, 2nd edition, 2009.

[112] S. Peroni and D. Shotton. Fabio and cito: ontologies for describing biblio-

graphic resources and citations. Web Semantics: Science, Services and Agents

on the World Wide Web, 2012.

[113] V. Presutti, L. Aroyo, A. Gangemi, A. Adamou, B. A. C. Schopman, and

G. Schreiber. A knowledge pattern-based method for linked data analysis. In

M. A. Musen and O. Corcho, editors, K-CAP, pages 173–174. ACM, 2011.

[114] V. Presutti, V. K. Chaudhri, E. Blomqvist, O. Corcho, and K. Sandkuhl. Proc.

of the Workshop on Ontology Patterns (WOP 2010) at ISWC-2010 Shangai,

China, November 8th, 2010. CEUR Workshop Proceedings, 2010.

[115] V. Presutti, E. Daga, A. Gangemi, and E. Blomqvist. eXtreme Design with

Content Ontology Design Patterns. In E. Blomqvist, K. Sandkuhl, F. Scharffe,

and V. Svátek, editors, WOP, volume 516 of CEUR Workshop Proceedings.

CEUR-WS.org, 2009.

[116] V. Presutti, E. Daga, A. Gangemi, and A. Salvati. http: //ontologydesign-

patterns.org [ODP]. In C. Bizer and A. Joshi, editors, International Semantic

176 References

Web Conference (Posters & Demos), volume 401 of CEUR Workshop Pro-

ceedings. CEUR-WS.org, 2008.

[117] V. Presutti, F. Draicchio, and A. Gangemi. Knowledge extraction based on

Discourse Representation Theory and linguistic frames. In Knowledge Engi-

neering and Knowledge Management (EKAW 2012), pages 114–129. Springer,

2012.

[118] V. Presutti, A. Gangemi, S. David, G. A. de Cea, M. Surez-Figueroa,

E. Montiel-Ponsoda, and M. Poveda. NeOn Deliverable D2. 5.1. A Library

of Ontology Design Patterns: reusable solutions for collaborative design of

networked ontologies. NeOn Project. http://www. neon-project. org, 2008.

[119] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C

Recommendation, World Wide Web Consortium (W3C), January 2008.

[120] M. R. Quillian. Word Concepts: A Theory and Simulation of Some Basic

Semantic Capabilities. Behavioral Science, 12:410–430, 1967.

[121] Rhizomik. ReDeFer. http://rhizomik.net/html/redefer, 2011. (accessed 15-

02-2011).

[122] S. Rudolph. Acquiring generalized domain-range restrictions. Formal Concept

Analysis, pages 32–45, 2008.

[123] J. Ruppenhofer, M. Ellsworth, M. R. L. Petruck, C. R. Johnson,

and J. Scheffczyk. FrameNet II: Extended Theory and Practice.

http://framenet.icsi.berkeley.edu/book/book.html, 2006.

[124] J. Sauro. A practical guide to the system usability scale: Background, bench-

marks & best practices. Measuring Usability LCC, 2011.

[125] F. Scharffe and D. Fensel. Correspondence patterns for ontology alignment. In

Knowledge Engineering: Practice and Patterns, pages 83–92. Springer, 2008.

References 177

[126] G. Schreiber, M. van Assem, and A. Gangemi. RDF/OWL Rep-

resentation of WordNet. W3C Working Draft, W3C, June 2006.

http://www.w3.org/TR/2006/WD-wordnet-rdf-20060619/.

[127] K. K. Schuler. VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon.

PhD thesis, University of Pennsylvania, 2006.

[128] M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging

Discipline. Prentice Hall, 1996.

[129] D. Shotton. Semantic publishing: the coming revolution in scientific journal

publishing. Learned Publishing, 22(2):85–94, 2009.

[130] I. Sommerville and P. Sawyer. Requirements engineering: a good practice

guide. John Wiley & Sons, Inc., 1997.

[131] J. F. Sowa. Conceptual structures: information processing in mind and ma-

chine. 1983.

[132] F. Suchanek, G. Kasneci, and G. Weikum. Yago - A Large Ontology from

Wikipedia and WordNet. Elsevier Journal of Web Semantics, 6(3):203–217,

2008.

[133] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A Core of Semantic

Knowledge. In 16th international World Wide Web conference (WWW 2007),

pages 697–706, New York, NY, USA, 2007. ACM Press.

[134] O. Sváb-Zamazal, V. Svátek, and F. Scharffe. Pattern-based ontology trans-

formation service. In KEOD, pages 42–47, 2009.

[135] S. Teufel, A. Siddharthan, and D. Tidhar. Automatic classification of citation

function. In EMNLP ’06: Proceedings of the 2006 Conference on Empiri-

cal Methods in Natural Language Processing, pages 103–110, Morristown, NJ,

USA, 2006. Association for Computational Linguistics.

178 References

[136] G. Tummarello, R. Cyganiak, M. Catasta, S. Danielczyk, R. Delbru, and

S. Decker. Sig.ma: Live views on the web of data. Web Semantics: Science,

Services and Agents on the World Wide Web, 8(4):355 – 364, 2010. Semantic

Web Challenge 2009, User Interaction in Semantic Web research.

[137] K. Viljanen, J. Tuominen, E. Mäkelä, and E. Hyvönen. Normalized Access to

Ontology Repositories. In ICSC, pages 109–116, 2012.

[138] J. Völker. Learning expressive ontologies, volume 2. IOS Press, 2009.

[139] J. Völker and M. Niepert. Statistical Schema Induction. In Proc. of the

Eighth Extended Semantic Web Conference (ESWC2011), Part I, pages 124–

138. Springer, 2011.

[140] J. Völker and S. Rudolph. Lexico-logical acquisition of OWL DL axioms. In

Formal Concept Analysis, pages 62–77. Springer, 2008.

[141] D. Vrandečić. Ontology evaluation. Springer, 2009.

[142] Y. Wang, D. J. DeWitt, and J.-Y. Cai. X-Diff: An effective change detection

algorithm for XML documents. In Data Engineering, 2003. Proceedings. 19th

International Conference on, pages 519–530. IEEE, 2003.

[143] P. Wolfgang. Design patterns for object-oriented software development. Read-

ing, Mass.: Addison-Wesley, 1994.

[144] D. Wood. The state of RDF and JSON. http://www.w3.org/blog/SW/2011/

09/13/the-state-of-rdf-and-json/.

[145] S.-H. Wu and W.-L. Hsu. Soat: a semi-automatic domain ontology acquisition

tool from chinese corpus. In Proceedings of the 19th international conference on

Computational linguistics-Volume 2, pages 1–5. Association for Computational

Linguistics, 2002.

[146] Z. Zhang, A. L. Gentile, E. Blomqvist, I. Augenstein, and F. Ciravegna. Sta-

tistical knowledge patterns: Identifying synonymous relations in large linked

http://www.w3.org/blog/SW/2011/09/13/the-state-of-rdf-and-json/
http://www.w3.org/blog/SW/2011/09/13/the-state-of-rdf-and-json/

References 179

datasets. In H. Alani, L. Kagal, A. Fokoue, P. T. Groth, C. Biemann, J. X. Par-

reira, L. Aroyo, N. F. Noy, C. Welty, and K. Janowicz, editors, International

Semantic Web Conference (1), volume 8218 of Lecture Notes in Computer

Science, pages 703–719. Springer, 2013.

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	List of Publications
	Introduction
	Background
	The Semantic Web
	Ontologies and Ontology Design Patterns
	Ontology Design Patterns
	Pattern-based methodologies

	Ontology Mining
	Knowledge patterns

	Knowledge Patterns for the Web
	A definition for Knowledge Pattern
	Knowledge Patterns in literature
	Sources of Knowledge Patterns
	KP-like repositories
	The Web of Data

	Knowledge Pattern transformation from KP-like sources
	Method
	A case study: transforming KPs from FrameNet
	FrameNet
	Result
	Evaluation

	Knowledge Pattern extraction from the Web of Data
	Method
	Data analysis
	Boundary induction
	KP formalization

	A case study: extracting KPs from Wikipedia links
	Matherial
	Obtained results
	KP discovery
	Evaluation

	Enrichment of sources for Knowledge Pattern extraction
	Enriching links with natural language
	Natural language deep parsing of text
	Graph-pattern matching
	Word-sense disambiguation
	Ontology alignment

	Automatic typing of DBpedia entities
	Material
	Typing entities
	Evaluation
	ORA: towards the Natural Ontology of Wikipedia

	Identifying functions of citations
	The CiTalO algorithm
	Evaluation

	A software architecture for KP discovery and reuse
	Requirements
	The architectural binding
	Background on the Component-based architectural style

	Kore: design
	Source Enricher
	Knowledge Pattern Extractor
	Knowledge Pattern Refactor
	Knowledge Pattern Repository

	Implementation
	The OSGi framework
	The Ktools

	Aemoo: Exploratory search based on Knowledge Patterns
	Approach
	Identity resolution and entity types
	Knowledge Patterns
	Explanations and semantics of links

	Usage scenarios
	Scenario 1: Knowledge Aggregation and Explanations.
	Scenario 2: Exploratory search.
	Scenario 3: Curiosity.

	Under the hood: design and implementation of Aemoo
	Evaluation

	Conclusion and future work
	Refactor Rule Language
	References

