Kinematic models of interseismic deformation from inversion of GPS and InSAR measurements to estimate fault parameters and coupling degree

Anderlini, Letizia (2014) Kinematic models of interseismic deformation from inversion of GPS and InSAR measurements to estimate fault parameters and coupling degree, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Geofisica, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6554.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (17MB) | Anteprima

Abstract

We have used kinematic models in two Italian regions to reproduce surface interseismic velocities obtained from InSAR and GPS measurements. We have considered a Block modeling, BM, approach to evaluate which fault system is actively accommodating the occurring deformation in both considered areas. We have performed a study for the Umbria-Marche Apennines, obtaining that the tectonic extension observed by GPS measurements is explained by the active contribution of at least two fault systems, one of which is the Alto Tiberina fault, ATF. We have estimated also the interseismic coupling distribution for the ATF using a 3D surface and the result shows an interesting correlation between the microseismicity and the uncoupled fault portions. The second area analyzed concerns the Gargano promontory for which we have used jointly the available InSAR and GPS velocities. Firstly we have attached the two datasets to the same terrestrial reference frame and then using a simple dislocation approach, we have estimated the best fault parameters reproducing the available data, providing a solution corresponding to the Mattinata fault. Subsequently we have considered within a BM analysis both GPS and InSAR datasets in order to evaluate if the Mattinata fault may accommodate the deformation occurring in the central Adriatic due to the relative motion between the North-Adriatic and South-Adriatic plates. We obtain that the deformation occurring in that region should be accommodated by more that one fault system, that is however difficult to detect since the poor coverage of geodetic measurement offshore of the Gargano promontory. Finally we have performed also the estimate of the interseismic coupling distribution for the Mattinata fault, obtaining a shallow coupling pattern. Both of coupling distributions found using the BM approach have been tested by means of resolution checkerboard tests and they demonstrate that the coupling patterns depend on the geodetic data positions.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Anderlini, Letizia
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze matematiche, fisiche ed astronomiche
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
block-modeling; GPS; InSAR; ramp estimation; interseismic coupling; fault creeping; Alto Tiberina fault; Mattinata fault; long-term slip rates; joint inversion; smoothing factor;
URN:NBN
DOI
10.6092/unibo/amsdottorato/6554
Data di discussione
7 Maggio 2014
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^