
Alma Mater Studiorum - Università di Bologna
DEI - Dipartimento di Ingegneria dellEnergia Elettrica e dellInformazione

“Guglielmo Marconi”

Dottorato di Ricerca in Automatica e Ricerca Operativa

Ciclo XVI

Settore concorsuale di afferenza: 01/A6 - RICERCA OPERATIVA

Settore scientifico disciplinare: MAT/09 - RICERCA OPERATIVA

Decomposition Methods and Network

Design Problems

Tiziano Parriani

Coordinatore Relatore

Prof. Daniele Vigo Prof. Andrea Lodi

Esame Finale 2014

Contents

1 Introduction 1

1.1 Preface . 1

1.2 Content of the Thesis . 2

1.2.1 Chapter 2 . 2

1.2.2 Chapter 3 . 3

1.2.3 Chapter 4 . 4

1.2.4 Chapter 5 . 5

2 Partial Aggregation for Generalized Bundle Methods, An Application
to the Multicommodity Min-Cost Flow Problem 7

2.1 Introduction . 7

2.2 Decomposition Approaches in Linear Programming 8

2.2.1 A Primal Point of View . 8

2.2.1.1 Column Generation . 10

2.2.2 A dual point of view . 11

2.2.3 The stopping criteria . 13

2.2.4 Block-angular structured problem 13

2.2.5 Stabilization and Generalized Bundle Methods 14

2.3 Partially Aggregated Bundles, An Application to the Multicommodity
Flow Problem . 17

2.3.1 Partially Aggregated Bundles . 17

2.3.2 The Multicommodity Min-Cost Flow Problem 20

2.4 Computational Results . 24

2.4.1 Preliminary Notes . 24

2.4.2 Notations . 25

2.4.3 Results . 26

2.4.3.1 The Mnetgen Instances 26

2.4.3.2 “JLF” instances . 30

2.4.3.3 “Dimacs2pprn” Instances 32

2.4.3.4 The Planar and Grid instances 39

2.4.3.5 PRT instances . 41

2.4.3.6 “Waxman” instances 42

2.5 Conclusions and Future Works . 45

3 Solving the optimum system traffic assignment problem for Personal
Rapid Transit networks using the Frank-Wolfe algorithm 51

3.1 Introduction . 51

3.2 Methodology . 54

3.2.1 Link costs with minimum safe distance spacing 54

3.2.2 Bilinear programming model . 56

3.2.3 Solution method: Frank Wolfe algorithm 58

3.3 Computational Experiments . 59

3.3.1 Instances description . 59

3.3.2 Implementation of algorithm . 60

3.4 Conclusions . 62

4 Single-commodity Robust Network Design Problem: Complexity, In-
stances and Heuristic Solutions 67

4.1 Introduction . 67

4.2 Related Literature . 69

4.3 Complexity . 71

4.3.1 All balances different from 1 and -1 72

4.3.2 Hypercubes . 73

4.3.2.1 All balances equal to 1, 0, or -1 74

4.3.2.2 All balances equal to r, 0, or −r, r integer and > 1 . . 74

4.3.3 Challenging Instances . 76

4.4 Heuristic Algorithm . 76

4.4.1 Constructive Phase . 77

4.4.1.1 Construction of a Feasible Solution 77

4.4.2 Neighborhood Search Phase . 79

4.4.3 Proximity Search Phase . 79

4.5 Computational Results . 81

4.6 Conclusions and Future Research . 86

5 A Decomposition Based Heuristical Approach for Solving Large Stochas-
tic Unit Commitment Problems Arising in a California ISO Planning
Model 97

5.1 Introduction . 97

5.1.1 Model Description and Prior Computational Performance 98

5.1.2 Contributions . 98

5.2 Dual Decomposable Schemes for Stochastic Optimization Problems . . . 99

5.2.1 Stochastic Optimization: An overview 99

5.2.2 The Progressive Hedging Algorithm 100

5.3 mPH: A PH-based Heuristic for Two-stage Stochastic Problems 102

5.3.1 Linear subproblems . 102

5.3.2 Guided MIP Solves for feasible solutions 104

5.4 Computational Results . 105

5.4.1 Results . 105

5.5 Conclusions . 108

Keywords

• Combinatorial Optimization

• Dantzig-Wolfe Decomposition

• Frank-Wolfe Algorithm

• Generalized Bundle Methods

• Heuristic

• Local Search

• Multicommodity Network Flows

• Progressive Hedging

• Robust Network Design

• Traffic Assignment

• Two-stage Programming

• Unit Commitment

A Nazzareno

Ringraziamenti

Sono molte le persone che sento di dover ringraziare.

Purtroppo questi ringraziamenti non potranno essere letti dalla persona che più di

tutti li merita, Alberto Caprara. È grazie a lui se conosco il piacere della ricerca e la

soddisfazione della scoperta. È grazie ad Alberto se sono qui ora a scrivere questa tesi.

Ringrazio di cuore il mio advisor, Andrea Lodi, per avermi guidato con sapienza verso

questo importante traguardo.

Ringrazio Antonio Frangioni per avermi saputo consigliare, motivare e migliorare

costantemente. La sua disponibilità in questi anni è stata pari soltanto alla sua com-

petenza e precisione.

Ringrazio Valentina Cacchiani. Fra i tanti motivi per cui Valentina merita questi

ringraziamenti mi piace ricordare l’appoggio che ha saputo darmi nei primi mesi di

dottorato.

Ringrazio tutte le persone da cui ho potuto apprendere i molti modi, tutti belli, di

fare ricerca: Emiliano Traversi; Joerg Schweizer; Daniel Schmidt, Frauke Liers e Mike

Jünger; Guojing Cong.

Ringrazio i miei compagni di viaggio e di “corridoio”, Paolo Tubertini ed Eduardo

Álvarez-Miranda. Senza di loro il dottorato non sarebbe stato la bellissima esperienza

che è stata.

Ringrazio Chiara, che ha saputo consigliarmi, motivarmi e migliorarmi già molto tempo

prima che io iniziassi il dottorato.

E ringrazio i miei genitori, per avermi sempre e comunque sostenuto in tutte le mie

scelte, per avermi dato tutto l’appoggio di cui ho avuto di bisogno e spesso molto di

più. In fondo, è grazie a loro se sono qui a scrivere queste pagine.

That’s one giant leap for a man,

one small step for mankind.

Chapter 1

Introduction

1.1 Preface

This thesis comprises the research activity I have done during my Ph.D., under the

supervision of Professor Alberto Caprara, Professor Andrea Lodi, and - even though

not formally - Antonio Frangioni.

My first attempts of doing research started two-years before the Ph.D., when Alberto

and Emiliano Traversi accepted to supervise my Master’s theses. Column generation

and decomposition methods, applied to flows on networks, have been the very first

topics of my research. Once I started the Ph.D., further studies related to decom-

position approaches have been motivated by the necessity of efficiently solving real

world train timetabling problems, formulated as multicommodity flows. Decomposi-

tion approaches applied to multicommodity networks flows gained a primary role in

my research activity.

I extended my studies to system traffic assignment problems in which a set of commodi-

ties must be routed through a network at minimum cost. Solutions of this problem are

useful for network orientation and design, especially in relation with public transporta-

tion systems as the Personal Rapid Transit. Network design problems accompanied

my studies on decomposition approaches for great part of my Ph.D., since my partic-

ipation in the Programma Vigoni, by the German-Italian University Centre, gave me

the opportunity to study robust network design problems.

I had the occasion to see a “real-world” application of my theoretical studies during my

research period at IBM, the third summer of my Ph.D.. At IBM, two-stage stochastic

unit commitment problems are solved to support the state of California plan of pro-

ducing 33% of its electric energy from renewable resources, I am glad to have had the

opportunity of partecipating to this commitment.

1

2 Chapter 1 Introduction

1.2 Content of the Thesis

The content of this thesis is divided in four chapters. An abstract is below presented for

each chapter. Chapters correspond to research contributions (article, technical report,

or conference presentation) whose status at the moment of writing is mentioned below.

The notation varies among the chapters as each chapter is thought to be a self-contained

manuscript whose comprehension does not strictly rely on any of the other chapters.

1.2.1 Chapter 2

The chapater refers to the Technical Report OR-14-10, “Partial aggregation for Gen-

eralized Bundle Methods, An Application to the Multicommodity Min-Cost Flow Prob-

lem“, co-authored with Alberto Caprara and Antonio Frangioni1. An overview of the

contribution of this chapter has been presented at the 12th INFORMS Telecommuni-

cations Conference with the title “A study of trade-offs in decomposition approaches to

multicommodity network flows”. Other aspect of the same topic, and earlier studies,

has also been presented in chronological order at the 42nd Annual Conference of the

Italian Operational Research Society, with the title “A Comparison of the Natural Ex-

isting Approaches for Solving Multicommodity-Flow Problems”; during the poster ses-

sion at the Mixed Integer Programming workshop, at the 21st International Symposium

on Mathematical Programming, and at the 17th Combinatorial Optimization Work-

shop, with the title “An Analysis of Natural Approaches for Solving Multicommodity-

Flow Problems”.

The chapter overviews the concepts of decomposition in linear programming. Decom-

position based approaches are recalled from primal and dual point of view, emphasizing

the equivalence between the Dantzig-Wolfe decomposition, the Kelley’s cutting plane

approach, and the Benders’ decomposition. Especially in presence of unstable dual

solutions, slow convergence issues may arise that may result in poor overall perfor-

mances for this class of approaches. Several stabilization tools has been proposed in

bibliography to reduce the oscillatory behaviour of the reduced master problem dual

solutions. The notion of generalized bundle method is recalled as an unified theory

that encloses the different stabilization strategies.

Convergence can be speeded-up consistently by also using disaggregated formulations

for the reduced master problem. We investigate the possibility of building partially

disaggregated reduced master problems. This extends the idea of aggregated-versus-

disaggregated formulation to a gradual choice of alternative level of aggregation.

We applied the partial aggregation to the linear multicommodity minimum cost flow

problem. The possibility of having only partially aggregated bundles opens a wide

1Department of Computer Science - University of Pisa

Chapter 1 Introduction 3

range of alternatives with different trade-offs between the number of iterations and

the required computation for solving it. We explore this trade-off on several sets of

instances and compare the computational results with the ones obtained by directly

solving the node-arc formulation. Results suggest that an appropriate selection of

the master problem problem formulation may make decomposition approaches more

competitive.

1.2.2 Chapter 3

This chapter refers to the work “Solving the optimum system traffic assignment problem

for Personal Rapid Transit networks using the Frank-Wolfe algorithm”, co-authored

with Joerg Schweizer2, Emiliano Traversi3, and Federico Rupi2 (Technical Report DEI,

OR-13-17). Some rudimentary studies related with this project can also be found in

my Master’s theses, “Modelli e Metodi per l’Orientamento di Grafi“ (in Italian), su-

pervised by Alberto Caprara, Emiliano Traversi and Joerg Schweizer.

The chapter describes a static traffic assignment method, including a minimum link

cost model, for a class of emerging public transport systems called Personal Rapid

Transit (PRT). PRT is a fully automated public transportation system where small-

size vehicles run on exclusive guideways. Vehicles are available on-demand at stations

and passengers can book individual trips, which are all non stop and without transfers.

As vehicles have only room for few passengers, higher capacities must be achieved by

short, but safe headways. Due to its automated, on-demand service, a centralized PRT

control system is not only able to route individual vehicles to their destination on the

fastest route, but also to reroute empty vehicles to stations with waiting passengers.

The proposed PRT traffic assignment is based on continuous optimization and takes

into account the following considerations: (1) the weighted sum of the travel times of

all vehicles has to be minimized; (2) the information of the position of all vehicles as

well as the origin and destination of all passengers are known by the central control;

(3) the minimum safe distance vehicle control policy determines the flow-dependent

link costs and ultimately limits link capacity; (4) the flow of empty vehicles must

counterbalance the flow of vehicles occupied by passengers.

An iterative solution process to the route assignment problem is proposed, based on the

well-known Frank Wolfe algorithm. The algorithm starts from a known initial feasible

solution. A linear multicommodity min-cost flow problem is solved to optimality by us-

ing the decomposition techniques presented in the first chapter. The obtained solution

is proved to be feasible for the traffic assignment problem and provided as input to the

algorithm. The convergence of this algorithm is then demonstrated theoretically and

2Department of Electrical, Electronic and Information Engineering - University of Bologna
3Computer Science Laboratory of Paris - North University (LIPN)

4 Chapter 1 Introduction

numerically using two large scale network examples with uniform demand. Finally, the

speed of convergence is studied in terms of iterations and computing time.

1.2.3 Chapter 4

This chapter is related with the article “Single-commodity Robust Network Design

Problem: Complexity, Instances and Heuristic Solutions”, co-authored with Eduardo

Álvarez-Miranda2, Valentina Cacchiani2, Andrea Lodi2, and Daniel Schmidt4. The pa-

per is currently under the second round of reviews in European Journal of Operational

Research and extends a previous work entitled “Models and Algorithms for Robust

Network Design with Several Traffic Scenarios”, by the same authors and Tim Dor-

neth, Michael Jünger4 and Frauke Liers5, published in Combinatorial Optimization,

LNCS series, Volume 7422, 2012, pp 261-272.

In this work, we address a single-commodity Robust Network Design problem in which

an undirected graph with edge costs is given together with a discrete set of balance

matrices, representing different supply/demand scenarios. The goal is to determine

the minimum cost installation of capacities on the edges such that the flow exchange

is feasible for every scenario.

Previously conducted computational investigations on the problem motivated the study

of the complexity of some special cases and we present complexity results on them,

including hypercubes. In turn, these results lead to the definition of new instances

(random graphs with {-1,0,1} balances) that are computationally hard for the nat-

ural flow formulation. These instances are then solved by means of a new heuristic

algorithm for RND, which consists of three phases. In the first phase the graph rep-

resenting the network is reduced by heuristically deleting a subset of the arcs, and a

feasible solution is built. The second phase consists of a neighborhood search on the

reduced graph based on a Mixed-Integer (Linear) Programming (MIP) flow model.

Finally, the third phase applies a proximity search approach to further improve the

solution, taking into account the original graph. The heuristic is tested on the new

instances, and the comparison with the solutions obtained by CPLEX on a natural

flow formulation shows the effectiveness of the proposed method.

Note This chapter appears in the Ph.D. thesis of Eduardo Álvarez-Miranda (Ph.D.

Program in Automatic Control and Operational Research, Cycle XVI, Dipartimento di

Ingegneria dell’Energia Elettrica e dell’Informazione, Università di Bologna, 2014).

2Department of Electrical, Electronic and Information Engineering - University of Bologna
4Computer Science Department - University of Koln
5Department of Mathematics - University of Erlangen-Nürnberg

Chapter 1 Introduction 5

1.2.4 Chapter 5

This chapter is related with the paper “An Efficient Approach for Solving Large

Stochastic Unit Commitment Problems Arising in a California ISO Planning Model”

co-authored with Guojing Cong6, Carol Meyers7, and Deepak Rajan7. At the moment

of writing, the paper has been accepted and will be published in the Proceedings of

the 2014 IEEE PES General Meeting. This work is the result of my research period

at the Thomas J. Watson Research Center - IBM. A complementary result entitled

A framework for solving mixed-integer programming problems with decomposition and

generic approaches, with Guojing Cong and me as inventors, has been submitted to the

United States Patent and Trademark Office (Research Disclosure YOR8-2013-1124).

The chapter describes our experience in obtaining significant computational improve-

ments in the solution of large scale stochastic unit commitment problems. The model

we use is a stochastic version of a planning model used by the California Independent

System Operator, covering the entire WECC western regional grid. We solve daily

hour-timestep stochastic unit commitment problem using a new progressive hedging

approach that features linear subproblems and heuristic approaches for finding feasible

solutions.

With respect to a brute-force approach based on the use of state-of-the-art commer-

cial software, For stochastic problems with 5 scenarios, the algorithm produces near-

optimal solutions with a 6 times improvement in serial solution time, and over 20

times when run in parallel; for previously unsolvable stochastic problems, we obtain

near-optimal solutions within a couple of hours. We observed that, although being

demonstrated for stochastic unit commitment problems, the algorithm is suitable for

being applied to generic stochastic optimization problems.

6Advanced Computing Technology Center - IBM
7Lawrence Livermore National Laboratory

Chapter 2

Partial Aggregation for

Generalized Bundle Methods, An

Application to the

Multicommodity Min-Cost Flow

Problem1

2.1 Introduction

As a natural extension of the single-commodity case, multicommodity network flow

problems has been of interest since the early 1960’s (see, e.g., [17, 18, 35]). The

wide area of applications for this class of problems goes from telecommunication to

scheduling problems, from train timetabling to transportation problems (see e.g. [37,

19, 1]). Besides the number of applications, interest around multicommodity flows

problems is also due to the typical block-angular structure of the constraint matrix

that motivated the very first studies of decomposition approaches. As the dimension

of the problem rises, and even considering the abilities of nowadays state-of-the-art of

commercial software, the direct resolution of the corresponding linear program may

results in very poor performance in terms of computing time. In order to reduce the

computation required to solve real-world problems, the idea of exploiting the structure

of the constraint matrix of a linear program found a first application to multicommodity

flow problems.

1Technical Report “Partial aggregation for Generalized Bundle Methods, An Application to the
Multicommodity Min-Cost Flow Problem”, A. Caprara, A. Frangioni, T. Parriani Tech. Rep. DEI,
OR-14-10.

7

8
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

In Paragraph 2.2 an overview of decomposition methods in linear programming is

given. Decomposition-based approaches are recalled from primal and dual point of

view, emphasizing the equivalence between the Dantzig-Wolfe decomposition, the Kel-

ley’s cutting plane approach, and the Benders’ decomposition. Despite being applied

with success in many contests, slow convergence issues may arise in this class of ap-

proaches resulting in poor overall performances. Several stabilization tools has been

proposed in bibliography to reduce the oscillatory behaviour of the reduced master

problem dual solutions. The notion of generalized bundle method is recalled, as an

unified theory that encloses the different stabilization strategies.

Convergence can be speeded-up consistently also using a disaggregated formulation of

the reduced master problem. In Paragraph 2.3 the main contribution of this chapter

is presented, as we investigate the possibility of building partially aggregated bundles

starting from disaggregated pricer solutions. An application to the linear multicom-

modity minimum cost flow problem is presented, and the possibility of choosing among

alternative partially aggregated formulations for the reduced master problem is stud-

ied.

In Paragraph 2.4 computational results are presented. Tests has been performend on

a pool of instances with different topologies and with different definition of commodi-

ties. Results of several alternative stabilized and partially aggregated formulations are

compared with the direct resolution of the natural linear formulation for the problem.

Finally, on the basis of the observed resuts, in Paragraph 2.5 we draw the conclusions

and mentions interesting prospective for future work.

2.2 Decomposition Approaches in Linear Programming

2.2.1 A Primal Point of View

In [17] Lester R. Ford, Jr. and Delbert R. Fulkerson introduced a formulation for the

maximal multi-commodity network flow problem that makes use of a “very large”

number of variables. They also suggested the use of an iterative process, today known

as as “column generation”, for solving the proposed formulation. George B. Dantzig

and Philip S. Wolfe generalized the idea to linear programming [14, 15] and today this

very well known approach is commonly referred to as Dantzig-Wolfe decomposition

(DW) approach. We here recall its basic principles.

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 9

Any linear program

(LP) max cTu (2.1)

s.t.

Du ≤ d (2.2)

Au ≤ b (2.3)

u ∈ Rn
+ , (2.4)

can be written also as:

max cTu (2.5)

s.t.

Au ≤ b (2.6)

u ∈ U (2.7)

where U is the feasibility region defined by the so called “easy” constraints (2.2). On

the opposite, constraints (5.3) are commonly referred to as “complicating” constraints.

This is due to the fact that the approach is effective when LP become a much easier

optimization problem once (5.3) are relaxed. A common situation (that also applies

to the multicommodity flow problem, as discussed later) is the one in which, for (5.3)

relaxed, LP fully decomposes into a number of independent and easier linear problems.

Assuming for the sake of simplicity that U is non-empty and bounded, it is possible to

write an equivalent formulation for LP in terms of the the set of extreme points of the

polyhedron U := {u ∈ Rn
+|Du ≤ d}, which we will denote as Pu. In fact, any vector

u ∈ U can be written as a convex combination of the extreme points of U :

u =
∑
j∈Pu

θju
j ,

∑
j∈Pu

θj = 1 , 0 ≤ θj ≤ 1 j ∈ Pu . (2.8)

This immediately leads to the Dantzig-Wolfe reformulation of LP

(MP) max cT

∑
j∈Pu

θiu
j

 (2.9)

s.t. ∑
j∈Pu

θj = 1 (2.10)

A

∑
j∈Pu

θju
j

 ≤ b (2.11)

θj ≥ 0 ∀j ∈ Pu . (2.12)

Extending the theory to more general assumptions is relatively straightforward: if U is

10
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

empty then LP is infeasible, while if U is unbounded it is sufficient to define a vector

u ∈ U as a convex combination of not only the extreme points but also the extreme

rays of U [14].

The number of variables in MP easily becomes intractable for non-trivial problems

and “the proposed method would be of little interest or value if it were not possible

effectively to reduce this number” (cf. [15]). The idea at this point is to solve a

formulation of the problem in which only a subset of all the possible variables are

present: the “reduced master problem” (RMP). Once the RMP has been solved, dual

information are used to decide wheter the solution is optimal also for MP or if one or

more new variables should be “generated” and the RMP should be solved again in an

iterative process. Such procedure takes the name of “column generation”.

2.2.1.1 Column Generation

The column generation is a general framework that can be applied to any linear pro-

gram, but it is effective in practice when the number of variables is, generally speaking,

very large. MP formulations, originated by the application of the DW approach to sev-

eral different classes of problems, have been by far the the most successful application

for the column generation (rif.).

Given a subset of extreme points P u ∈ Pu, we define the RMP:

(RMP) max cT

∑
j∈Pu

θju
j

 (2.13)

s.t.

(y)
∑
j∈Pu

θj = 1 (2.14)

(x) A

∑
j∈Pu

θju
j

 ≤ b (2.15)

θj ≥ 0 ∀j ∈ P u . (2.16)

From the point of view of the simplex algorithm [13], in RMP we are forcing all the

variables θi for which uj ∈ P u
′
=̇Pu \ P u to be out of the optimal basis. The reduced

cost of a generic θi is given by rj =̇ (cT − xA)uj − y, where y is the dual variable

associated with constraint (2.14) and x is the vector of the dual variables associated

with constraints (2.15). Letting (yi, xi) be an optimal dual solution for the RMP in a

generic iteration i, if

rji = (cT − xiAj)uj − yi ≤ 0 ∀j : uj ∈ P ′u (2.17)

then the corresponding primal solution ui =
∑

j∈Pu θiu
j is optimal for the original

problem. Otherwise, any column j for which rji > 0 is a good candidate for entering in

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 11

the basis and therefore can be generated (i.e., added to the RMP). The RMP is then

solved again in an iterative process that terminates when condition (2.17) is satisfied.

At least theoretically, it is possible to store all the extreme points in U and evaluate at

each iteration their reduced costs. Anyway, such procedure is not of practical interests

in most of the cases as the size of |Pu| is, generally speaking, intractable.

A “pricer” is then defined as a linear program that, given as input a (partial) dual

solution for RMP, xi, returns a vertex uj with the most negative reduced cost. Recalling

(2.8) the (aggregated) subproblem can be formulated as:

f(x) = max (c− xA)u (2.18)

s.t.

Du ≤ d (2.19)

u ∈ Rn
+ (2.20)

If f(xi) ≤ yi then condition (2.17) is satisfied and there is no column that can enter

the basis with a positive reduced cost, so θi is optimal for MP. Otherwise, the vertex

uji optimal for f(xi) is than the most promising candidate and is generated in RMP.

In theory, column generation converge to the optimal solution in a finite number of

iterations. In [15] is shown how this property can be derived directly form the conver-

gence theory of the simplex algorithm. In practice, the required number of iteration

is generally speaking much lower than the total number of vertexes of U . While the

computation required to solve the reduced master problem depends on the number of

vertexes inserted, the column generation procedure is effective when the pricer is easy

in the sense that is computationally convenient to solve many time the pricer instead

of solving directly the original problem.

2.2.2 A dual point of view

If from a “primal point of view” the DW can be seen in extreme synthesis as a huge-

scale reformulation of the problem solved by column generation, from a “Lagrangian

dual point of view” the DW is known to be equivalent to Kelley’s cutting plane method.

In fact, since A(
∑

j∈Pu θju
j) ≤ b⇔

∑
j∈Pu(Auj − b)θj ≤ 0 , the dual of MP can be

written as:

min y (2.21)

s.t.

y ≥ cTuj + xT (b−Auj) j ∈ Pu (2.22)

x ≥ 0 (2.23)

12
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

which is equivalent to:

(Π) minx≥0

{
f(x) = maxj∈Pu{ cTuj + xT (b−Auj) }

}
(2.24)

Note at this point that Π is the Lagrangian dual of the original problem LP with

x as the vector of Lagrangian multipliers associated to the constraints (2.2). Kelley’s

cutting plane method is now applied to solve Π by iteratively solving an approximation

of the original function that considers only a limited subset B of the elements in Pu:

(ΠB) minx≥0 maxj∈B c
Tuj + xT (b−Auj) . (2.25)

The subset B, as for the DW, is iteratively built using an “oracle” that takes as input

a “tentative point” xi, optimal for ΠB in a generic iteration i, and that returns the

solution (f(xi), ui) optimal for

f(x) = maxu∈U (cT − xTA)u (+ xT b) (2.26)

which clearly corresponds to DW pricer. Note that the component xT b does not de-

pend on u and generally is not considered in the optimization process.

During the iterative process, a finite set of tentative points and the corresponding

optimal solutions (f(xi), ui) are therefore collected to form ΠB. In other words, in-

stead of the “true” function f(x) we minimize its “cutting plane model” fB(x), i.e.,

it polyhedral lower approximation built up with the information in B. Introducing

zi =̇ b − Aui ∈ ∂f(xi), one can write B = { (xi, f(xi), zi) } and, by simple substitu-

tion of ui with the corresponding zi, the (aggregated) cutting-plane model can now be

written more conveniently as:

fB(x) = max
{
f(xi) + zi(x− xi) : (xi, f(xi), zi) ∈ B

}
≤ f(x) (2.27)

while a tentative point is the optimal solution of

minx
{
fB(x)

}
= minv,x

{
v : v ≥ f(xi) + zi(x− xi) (xi, f(xi), zi) ∈ B

}
.

Recognizing the equivalence between the DW and Kelley’s cutting plane method is

useful for the understanding of an unified convergence theory that covers both the

classes of approaches under the same concepts. For similar reasons, despite it may

seem at this point an useless change of notation, it helps writing (2.27) instead of

(2.26) for identifying the cutting plane model.

The equivalence it is well known to be extendible also to Benders’ decomposition, when

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 13

this is applied to the dual of LP :

min γTd+ xT b (2.28)

DTγ +ATx = c (2.29)

γ, x ≤ 0 . (2.30)

Following the nomenclature proper of Benders’ decomposition, variables γ take here

the name of “easy” variables while variables x are the “complicating” ones. We now

recall that Benders’ decomposition can be applied even if a more complex function

g(x) is present is place of xT b. The feasibility region X itself can be much more

complex than R, therefore there are several situation that, in general combinatorial

optimization, motivates this dichotomy of variables, as mentioned in [29]. Anyway,

limiting the discussion to continuous and linear optimization the correspondence with

DW easy and complicating constraints is clear. In fact, the Benders’ reduced master

problem for matches exactly with ΠB while the Benders’ subproblem:

min γTd (2.31)

s.t.

DTγ = c− xA (2.32)

γ ≤ 0 (2.33)

is again dually equivalent to f(x).

2.2.3 The stopping criteria

2.2.4 Block-angular structured problem

As already mentioned, there might be several reasons that motivate the identifica-

tion of a subset of constraints as complicating. One of the most common situations

in continuous optimization, the same that originally motivated the development of

decomposition-based approaches, is the one in which the complicating constraints cou-

ple a finite subset of otherwise independent and easy problems (see Fig. 2.1). In this

case complicating constraints usually take the name of “joint” or “coupling” while the

coefficient matrix can be arranged to a so called “block-angular” structure [50].

In many application, an obvious arrangement of the coefficients in “blocks” derives

naturally from the definition of the problem itself. Nevertheless, as will be discussed

more in detail in the following paragraphs, it may be computationally convenient in

some cases an aggregation, or a disaggregation, of the naturally defined blocks. Even

when blocks definition is not obvious, it is still possible to derive the structure through

the direct application of algebraic analysis on the coefficient matrix [27, 5, 8, 28].

14
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

(LP)

u1 u2 . . . u|K|

c1 c2 . . . c|K|

s.t.

A1 A2 . . . A|K| b

D1

D2

. . .

D|K|

d1

d2

. . .

d|K|

Figure 2.1: Block-angular structured LP .

The fully decomposable problem in which coupling constraints are relaxed is by defi-

nition the DW pricer. Letting k ∈ K be the set of “blocks” in LP , f(x) is therefore

decomposed in k fully independent components fk(x), with:

fk(x) = max
{

(ck − xAk)uk : uk ∈ Uk
}
∀ k ∈ K . (2.34)

2.2.5 Stabilization and Generalized Bundle Methods

Although decomposition algorithms have been used with success in many applications,

slow convergence is known to be a key issue that often threatens the overall perfor-

mances of the approach, as it translates into a large number of iterations and to the

necessity of adding many column (cuts) to reach optimal solutions. A first motivation

behind this behavior might be detected in a “bad” definition of the initial set of vari-

ables/cuts. It comes natural to think in fact, especially from a cutting plane point of

view, that a bad initial cut-set will produce far-from-optimum solutions and, conse-

quently, poor quality tentative points provided to the pricer. In practice, however, it

is hard to construct a “good enough” initial bundle: indeed, especially in presence of

primal degeneracy, even if the pricer were invoked on the very optimal solution there

would in fact be no guarantee that it would return the whole set of cuts that are nec-

essary to prove its optimality. It is more likely in fact that after a new cut is added

the solution of ΠB moves away from the previous one, and that the previous solution

will be definitely loss during the evaluation of the next tentative point. Moreover, the

next solution may be far from the optimal one, and the quality of cuts generated by

the pricer on that point will be lower. This effect can be countered by employing sta-

bilization approaches in which a good solution for Π, among those obtained so far, is

chosen as “stability center”, and the distance from this center is bounded (as in [44]) or

penalized ([42]); the stability center is changed if a “better” dual point is found. Many

different types of stabilization techniques have been analysed in the literature (see,

e.g., [2, 20, 30, 33, 38, 40, 46]. Among those, we here recall the well known bundle

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 15

method and its generalization, namely, generalized bundle methods which combines

several of the stabilization approaches under an unified convergence analysis.

Bundle methods go back to the 70’s and are known to be among the most efficient im-

plementable algorithms for convex non-differentiable optimization. We present them

in our context, i.e., where the function to be minimized is a Lagrangian function of a

(convex) problem.

Naming x the stability center, bundle methods penalize the displacement from x with

a so called “stabilizing” term proportional to ||x − x||2. In summary therefore, the

bundle method asks to find a new tentative point xtest ≥ 0 by minimizing, for some

prescribed parameter t > 0 the function:

fB(x) +
1

2t
||x− x||2

When the stabilizing term is considered in the objective function we have a stabilized

reduced master problem. Generalized bundle methods, introduced in [20], considers

the use of a more generic closed convex function Dt(d), The stabilized (dual) reduced

master problem becomes:

(ΠB,x,t) = φt(x) = inf
d
{fB(x+ d) +Dt(d)} . (2.35)

The stabilizing termDt may be simply kept fixed during the iterative process (assuming

that it has suitable properties [20]), in practice on-line tuning of t to reflect the actual

“quality” of the approximation fB of f is known to be very important. General rules

can be given to ensure that the corresponding algorithm is convergent.

The apparent difficulty behind the generalization of the stabilizing term to any closed

convex function rely on the necessity of obtaining its dual formulation to compose the

pricer. The key idea consists here in using the concepts of convex conjugate and of

Fenchel duality (see, e.g., [34]) instead of the “canonical” one. Recalling the definition

of convex conjugate:

f∗(z) = sup(zTx− f(x)), z ∈ Rn (2.36)

Given that xi = f∗(zi), we have that zi is a subderivative of f in xi and, if f is

differentiable in xi, that ∂f(xi) = zi.

Naming v(Π) the optimal value for Πx,t, we thus have that f∗(0) = v(Π) and that the

(apparently weird) dual problem

(∆) infz{f∗(z) : z = 0} (2.37)

is equivalent to Πx,t, i.e., v(Π) = −v(∆). One can thus construct the Fenchel’s dual

of any convex program by computing the conjugate of the objective function and

16
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

f(x)

∂f(x)

x− f(x)

(a)

f(x)

∂f(x)

0x− f(x)

(b)

Figure 2.2: Examples of convex conugate for a differentiable function: The conjugate
for z = 1 and the conjugate for z = 0 are shown in Fig. 2.2.a and2.2.b, respectively.
The maximum for f∗(z) is obtained in the point for which ∂f(x) = z, when z = 0

such point corresponds to the minimum for f .

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 17

evaluating it in 0; doing this for (2.35) reveals the stabilized reduced master problem:

(∆B,x,t) infz{f∗B(z)− zx+D∗t (−z)} . (2.38)

With fB = f , (2.38) is the dual of Π and for Dt = 0 it matches exactly with the RMP.

It can be in fact seen as a (generalized) augmented Lagrangian of (2.37) where the

constraints z = 0 are replaced with the linear term −xz (with Lagrangian multipliers

x) and the nonlinear term D∗t (−z) in the objective function. The Lagrangian relaxation

of (2.37) with respect to the constraints z = 0, using x as Lagrangian multipliers,

(∆x) f(x) = − infz{f∗(z)− zx} (2.39)

is, finally, a pricer for ∆B,x,t: in fact,

− inf{f∗(z)− zx} = sup zx− f∗(z) = (f∗)∗(x) = f(x) .

Any convex closed convex function can now be “translated” in his dual to compose the

primal formulation of the reduced master problem.

D′t = 1
2 t||.||

2
2

D′′t = IB∞(1
t
) D′′′t = 1

t ||.||1

D′∗t = 1
2t ||.||

2
2 D′′∗t = 1

t ||.||1 D′′′∗t = IB∞(1
t
)

Figure 2.3: Well known differentiable and non-differentiable stabilization terms and
their convex conjugates.

2.3 Partially Aggregated Bundles, An Application to the

Multicommodity Flow Problem

2.3.1 Partially Aggregated Bundles

For what said so far, a single cut returned by the pricer is added to the model of f(x)

after each iteration of the generalized bundle method. However, the very first applica-

tion of the DW approach came with an “arch-chain” formulation for multicommodity

18
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

flow problems that assumes the generation of a variable for each commodity at each it-

eration ([17, 48]). In this (that is the typical) case, being the pricer decomposed among

a set of K subproblems (see fig. 2.1) it comes natural to compose the bundle directly

using the “disaggregated” functions fk(x) (see (2.34)). In other words, a separate or-

acle is available for each component k ∈ K providing fk(xi) and zkj ∈ ∂fk(xi), so that

f(xi) =
∑

k∈K f
k(xi) (+xib) and zi =

∑
k∈K z

k
i (+b). Thus, one can keep |K| separate

disaggregated bundles Bk and use them to construct |K| independent models fkB, one

for each component. For the same set of tentative points xi probed, the disaggregated

cutting plane model

fB(x) =
∑
k∈K

(
fkB(x) = max { fk(xi) + zki (x− xi) : (xi, f

k(xi), z
k
i) ∈ Bk }

)
(2.40)

gives a much better approximation of the original function than the aggregated one.

This of course comes at the cost that the disaggregated primal and dual reduced master

problem

(∆B,x,t) infz{
∑

k∈K f
k
B
∗
(z)− zx+D∗t (−z)} (2.41)

and

(ΠB,x,t) = inf
d
{
∑
k∈K

fkB(x+ d) +Dt(d)} , (2.42)

have a significantly larger number of variables and/or constraints than their aggregated

counterparts, and therefore can be much more costly to solve. However, the use of the

disaggregated model improves the convergence speed so much as to amply compensate

the increased cost due to the larger size of the corresponding master problems [4, 6, 16,

36, 47, 24]. Given the availability of several possible strategies to stabilize the reduced

master problem, the focus of this work is thus on the the choice of the model fB.

Let us consider any possible partition C =
{
ζς : ς = 1, . . . , |C|

}
of the (index set of)

blocksK; this automatically defines “partially aggregated” pricer solutions uςi = [uki]k∈ζς
for each ς ∈ C, and the corresponding partition of the vector c = [cς]ς∈C and of the

matrix A = [Aς]ς∈C . Consequently, one has

zςi =̇ −Auςi , f
c(x)=̇((cς)T − xTAς)uςi ∀ς ∈ C (2.43)

resulting in:

f(x) =
∑
ς∈C

f ς(x) (+xb) and zi =
∑
ς∈C

zςi (+b) ; (2.44)

note that f is thus decomposed in |C|+ 1 components, separately counting the linear

term xb with its constant (sub)gradient b. We can now partially aggregate the solutions

of the subproblems and collect them in a set of partially aggregated bundles Bς .

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 19

Proposition 2.1. The “partially aggregated model”:

fB(x) = xb+
∑
ς∈C

(
f ςB(x) = max { f ς(xi) + zςi (x− xi) : (xi, f

ς(xi), z
ς
i) ∈ B

ς }
)
.

(2.45)

is a valid model for f(x).

Proof. Any partially aggregated pricer solution uςi corresponds to a vertex uj ∈ P ςu
of the feasibility region U ς defined by all the easy constraints of the blocks k ∈ ζς .

Following the steps of paragraph 2.2.2 backwards we can write the “partially aggregated

reduced master problem” as:

(RMP′) max cT

∑
ς∈C

∑
j∈P ςu

θju
j

 (2.46)

s.t. ∑
j∈P ςu

θj = 1 ∀ς ∈ C (2.47)

A

∑
ς∈C

∑
j∈P ςu

θju
j

 ≤ b (2.48)

θj ≥ 0 ∀ς ∈ C ∀ j ∈ P ςu (2.49)

which is equal to the disaggregated reduced master problem with additional constraints

that forces all the θj associated to the same partially aggregated variable to have the

same value. Therefore, the feasibility region defined by RMP′ is strictly contained in

the one defined by the disaggregated reduced master problem and, from a dual point

of view, it holds fB(x) ≤ f(x) for fB(x) defined as in 2.45 .

The result can be easily seen by a different angle; the aggregated master problem ba-

sically is nothing else than the disaggregated one where one forces all the multipliers

corresponding to the same iteration to be equal. While this clearly restricts the fea-

sible region, it has the benefit to reduce the number of free variables and therefore

the actual size of the master problem. However, nothing prevents us from only partly

playing the same game: only multipliers belonging to the same iteration and compo-

nent are restricted to be equal, but they can differ from the ones of the same iteration

and a different component. The choice of the model is therefore not simply between

“aggregated” and “disaggregated”; a larger spectrum of possibilities exist that one may

want to explore in search of the best possible trade-off between the convergence speed

and the cost of the reduced master problem solution. As our results will show, exploit-

ing this trade-off can allow to reduce computation times significantly in our application.

20
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

2.3.2 The Multicommodity Min-Cost Flow Problem

The Multicomnmodity Min-cost Flow (MMCF) problem may be formulated as follows.

Given a directed graph G = (N,A), where N is the set of nodes and A is the set of

arcs, and given a set of commodities K, we have for each commodity k ∈ K a balance

vector bk = [bki]i∈N indicating the net amount of flow required by every node: nodes

with positive balance are “sources”, nodes with negative balance are “destinations”,

and nodes with zero balance are “transshipment”. All the balances must be satisfied.

For each arc (i, j) ∈ A and for each commodity is defined an “individual capacity”

ukij that restricts the amount flow of k routed on (i, j). For each arc is also defined a

cost ckij and a “mutual capacity”, uij , that restricts the total amount of flow routed on

the arc. The problem is to minimize the overall routing cost satisfying the capacity

constraints. A compact formulation for the problem can be easily derived from the

single-commodity min cost flow problem, and writes

min
∑

k∈K
∑

(i,j)∈A c
k
ijw

k
ij (2.50)

s.t. ∑
(j,i)∈Aw

k
ji −

∑
(i,j)∈Aw

k
ij = bki i ∈ N , k ∈ K (2.51)∑

k∈K w
k
ij ≤ uij (i, j) ∈ A (2.52)

0 ≤ wkij ≤ ukij (i, j) ∈ A , k ∈ K (2.53)

where the mutual capacity constraints (2.52) couples a set of |K| otherwise fully in-

dependent problems given by the flow conservation and the individual capacity con-

straints. Recognizing in (2.52) the complicating constraint for this class of problem, de-

composition based techniques have always been seen as a natural approach for MMCF

problems (see e.g. [7, 12, 21, 22, 26, 36, 41]). Naming x = [xij](i,j)∈A ≥ 0 the vector

of Lagrangian multipliers, the pricer (see 2.26):

f(x) = min
∑

k∈K
∑

(i,j)∈A(ckij + xij)w
k
ij (2.54)

s.t. ∑
(j,i)∈Aw

k
ji −

∑
(i,j)∈Aw

k
ij = bki i ∈ N , k ∈ K (2.55)

0 ≤ wkij ≤ ukij (i, j) ∈ A , k ∈ K (2.56)

is in fact fully decomposable in k single-commodity min-cost flow problems, for which

plenty of efficient solution algorithms exist [23, 26]. The aggregated master problem

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 21

for the MMCF is, in turn,

(MCCF-MP1) min
∑

s∈S
(∑

k∈K c
kwks

)
θs (2.57)

s.t. ∑
s∈S

(∑
k∈K w

k
ij,s

)
θs ≤ uij (i, j) ∈ A (2.58)∑

s∈S θs = 1 (2.59)

θs ≥ 0 s ∈ S (2.60)

where S is the set of the extreme points of the feasibility region defined by constraints

(2.55) and (2.56) and wks is the vector of the flows for commodity k in solution s. Such

formulation, anyway, differs from the popular (and very first) “arc-path” reformula-

tion ([48]) that rather has the structure of (2.40). In fact, identifying K (the set of

independent blocks in a generic decomposable pricer) in K (the set of commodities), it

comes more natural to formulate the reduced master problem in a disaggregated form

(MCCF-MP0) min
∑

k∈K
∑

s∈Sk
(
ckwks

)
θs (2.61)

s.t. ∑
k∈K

∑
s∈Sk w

k
ij,sθs ≤ uij (i, j) ∈ A (2.62)∑

s∈Sk θs = 1 ∀k ∈ K (2.63)

θs ≥ 0 s ∈ S (2.64)

where Sk is the set of extreme points for the flow of commodity k. Now, it is well-known

(e.g. [36]) that for any MMCF problem one can construct an equivalent formulation

(known as “ODP formulation”) in terms only of single-Origin single-Destination com-

modities (OD). In fact for any given graph G and for any given set K of general

multi-origin multi-destination commodities, it is always possible to add one or more

super-sinks to G in order to create an equivalent “extended” graph in which all the

commodities in K are multi-source single-destination (or “destination specific”). Then,

any destination-specific commodity can then easily be split in a set of OD in such a way

that the resulting ODP is equivalent to the original one in the sense that provide the

same optimal solution. In this case, a commodity k can be uniquely characterized by

its origin sk, its destination tk and the amount bk of product pk that has to be shipped

between them. One could also assume without loss of generality that commodities

can be uniquely defined by their OD pair, with no mention to the specific product

(just add extra origin and/or destination nodes that only serve to differentiate for the

product); if furthermore individual capacity constrains are not tight, i.e., ukij ≥ uij in

(2.56), the extreme points Sk correspond to sk-tk paths. Thus, denoting by P the set

of all required ODs, a solution of the pricing problem now consists in a set of paths pπς ,

π ∈ P ; denoting by Sπ the set of all paths for the OD-pair π, and by S their union,

22
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

one has the corresponding reformulation of MMCF

(MCCF-MP−1) min
∑

π∈P
∑

ς∈Sπ c
ςθς (2.65)

s.t. ∑
π∈P

∑
ς∈Sπ w

ς
ijθς ≤ uij (i, j) ∈ A (2.66)∑

ς∈Sπ θς = 1 π ∈ P (2.67)

θς ≥ 0 ς ∈ S (2.68)

where cς is the cost of path ς and wςij is the amount of flow to be shipped for the

OD π in the arc (i, j) if the arc belongs to the path pπς , and 0 otherwise. In other

words, possibly by a simple scaling of the variables one obtains the well-known arc-

path formulation of MMCF. Note that this specific shape naturally occurs in a number

of practical MMCF problems, such as these coming from routing in telecommunication

networks, and for these then (MMCF-MP0) coincides with (MMCF-MP−1). In other

words, one can see (MMCF-MP−1) as the “truly disaggregated model, and (MMCF-

MP0) as a “partial aggregation” of (MMCF-MP−1) in which all the OD sharing the

same destination (and the same product) are aggregated to form a single component.

This leads to the consideration that any other possible partial aggregation of OD

results in a valid model for f(x). That is, one may arbitrarily define an arbitrary set

C of (indexes of) subsets P κ partitioning P ; then, for each κ ∈ C one may define Sκ

as the set of all possible sets of paths obtained by taking precisely one path in each

Sπ for each π ∈ P κ. Then, for each ζ ∈ Sκ it is natural to define cζ =̇
∑

ς∈ζ c
ς and

wζij =̇
∑

ς∈ζ w
ς
ij , leading to the partly aggregated formulation

(MCCF-MPC) min
∑

κ∈C
∑

ζ∈Sκ c
ζθζ (2.69)

s.t. ∑
κ∈C

∑
ζ∈Sκ w

ζ
ijθζ ≤ uij (i, j) ∈ A (2.70)∑

ζ∈Sκ θζ = 1 κ ∈ C (2.71)

θζ ≥ 0 ζ ∈ S (2.72)

Note that once all the OD has been aggregated in the original set of |K| commodities

(if any such thing exist), is still possible to aggregate a group of multi-origin multi-

destination commodities into a single component; clearly, (MMCF-MP1) is the limit

situation opposite to (MMCF-MP−1).

However, it is important to remark that “super-disaggregating” the commodities in

(MMCF-MP−1) is only possible in a natural way under two conditions:

1. individual capacity constrains are not tight;

2. commodities are naturally destination-specific (or, for that matter, origin-specific)

ones.

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 23

Both things are needed; indeed, while it is possible to make any problem a destination-

specific one, this implies creating commodity-specific capacities on the “artificial” arcs

thusly created. Thus, if the problem has multiple destinations, individual capacities

need to be created even if they were not originally present. However, it is still possible

to “super-disaggregate” a problem even if there are individual capacity constraints;

it is “just” necessary to consider them as complicating constraints and move them to

the master. This makes it possible to apply a reformulation like (MMCF-MP−1), and

more in general like (MMCF-MPC), to any MMCFḞor (MMCF-MP−1), for instance,

assume that the flows belonging to any arbitrary subset P ′ of P (e.g. corresponding to

one original commodity k ∈ K that has been disaggregated) share a specific capacity

u′ij < uij on any arc (i, j); then, one only have to add the constraint

∑
π∈P ′

∑
ς∈Sπ w

ς
ijθς ≤ u′ij (2.73)

to the master problem. An example of this construction is provided in Fig. 2.4.

w1 w2

c1 c2

s.t.

A1 A2 u

D1

I

D2

I

u

b1

u1

b2

u2

[a]

w1,1 w1,2 w2,1 w2,2

c1 c1 c2 c2

s.t.

A1 A1 A2 A2

D1

I

D1

I

D2

I

D2

I

u

b1,1

u1

b1,2

b2,1

u2

b2,2

[a]

Figure 2.4: An visual example, the structure of LP for an MMCF with two com-
modities ([a]) and the correspondent, OD based, formulation ([b]). Assuming that
each original commodity is split in two, the individual capacity constraints becomes
complicating as they couples otherwise independent blocks composed by the flow con-

servation constraints.

Of course, in case one is disaggregating an original set K of commodities and each arc

(i, j) ∈ A has “tight” individual capacities ukij for each k ∈ K, this would amount at

adding |K| · |A| constraints to the master problem, which is likely to have a relevant

impact from the computational viewpoint. However, one benefit is that in doing so the

pricing problem become shortest-path ones, as opposed to the significantly more costly

Min-Cost Flow ones that need to be solve if individual capacities are left in the sub-

problem. This clearly has computational trade-offs that are hard to predict in theory

and therefore need to be explored computationally (and to the best of our knowledge

never have). Thus, the treatment of individual capacity constraints provide another

way to generate different decomposition approaches for MMCF. Indeed, when “active”

24
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

individual capacity constraints are present one has the choice (but is not forced to)

of increasing the “decomposability” (number of subproblems) of the formulation, and

reducing the complexity of the subproblems, at the cost of increasing the master prob-

lem size. This is a general principle: easy constraints can be treated as complicating

(but not viceversa) in a decomposition approach.

2.4 Computational Results

2.4.1 Preliminary Notes

Tests has been performed on an Intel(R) Xeon(R) CPU with 3.10GHz and 16GB

of RAM, under a GNU/Linux and using the C++ generalized bundle code developed

by Antonio Frangioni (see [2, 6, 12, 25] for other usages) and available at: http:

//www.di.unipi.it/~frangio/.

The pricer consists in a min-cost flow solver from the MCFClass project ([26]), slightly

modified as follows in order to generate several partially aggregated alternative for-

mulations. Recalling that the set of commodities K corresponds to the number of

subproblems among which the pricer is decomposed we name K the number of OD

commodities that forms the equivalent ODP formulation (following the trasformation

in [36]). A value −1 ≥ η ≥ 1, η ∈ R is given as input to the pricer and the number of

partially aggregated components is calculated as:

|C| =

max
{⌈

(1− η)|K|
⌉
, 1
}

if η ≥ 0

max
{⌈
− η|K|

⌉
, |K|

}
if η < 0

(2.74)

Partial aggregation is then performed in order to ensure a number of components

equal to |C|. If |C| = |K| then a disaggregated component is returned by the pricer of

each OD and the reduced master problem is composed by |K| disaggregated bundles.

If |K| < |C| < |K| a number of components |Ck|, |C|/|K| ≤ |Ck| ≥ |C|/|K| + 1 , is

associated to each commodity. Subsets of OD belonging to the same commodity k are

randomly aggregated in such a way that the number of OD in a given components is

between |Kk|/|Ck| and |Kk|/|Ck| + 1 where |Kk| is the number of OD in commodity

k. A similar criteria is applied when |C| ≤ |K|, where commodities are grouped in a

such a way that each components aggregate a number of commodities between |K|/|C|
and |K|/|C| + 1. Note that if the commodities are already defined as OD, any η < 0

will results in a number of component |C| equal to the original number of commodities.

The MPSolver, as it is in the mentioned code, can deal with any partially aggregated

bundle the pricer is able to provide.

Partially aggregated stabilized DW decomposition approaches has been compared with

the direct resolution of the LP formulation by CPLEX 12.51. We refer to the latter

http://www.di.unipi.it/~frangio/
http://www.di.unipi.it/~frangio/

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 25

as “direct” approach. We tuned the parameter for the direct approach by performing

tests among a subset of the instances presented here. The best performances has been

obtained using the dual simplex algorithm with general scaling for network extraction

(CPX_PARAM_NETFIND parameter set to CPX_NETFIND_SCALE). Quite surprisingly, the

network simplex algorithm performances were poor if compared to the dual simplex as

well as to the automatic parameter setting.

Same CPLEX version has been used to solve the reduced master problem. In this

case, no parameter tuning has been done, and all the results presented here have been

obtained with automatic choice of algorithm and parameter settings. A “boxstep”

stabilization has been applied to all the (partially aggregated) reduced master problems

and the resulting linear program has been solved using CPLEX 12.51. For all the

methods, optimality tolerance is set to 1e−6.

2.4.2 Notations

If not otherwise specified, all times are reported in seconds. In the tables, columns

“CPX a.” and “CPX t.” are referred to the direct approach. More precisely, numbers

in column “CPX a.” (CPLEX automatic settings) report the total computing time for

the standard parameter settings while numbers in column “CPX t.” (CPLEX with

tuning of parameter) report the total computing time for dual simplex and general

scaling. For each η ∈ [−1, 1] included in the table is then showed the overall time for

solving the reduced master problem, on column “Rmp”, and for solving the pricer,

in column “Pr.”. Bold columns named “Tot.” shows instead the overall time to

solution. We refer to the times in column “Rmp” and “Pr.”, and to their sums,

as “net” times in the sense that those numbers directly measure the computation

required by combinatorial optimization algorithm to provide the solutions of relative

linear problems. The difference between the total time and the net time should tend

to zero. Anyway, for some classes of instances a significant part of the time measured

is spent outside the linear optimization. We assume that this “overhead” time can be

strongly reduced by sharpening the data structures in the code. Therefore, keeping

in mind that data storing and/or management outside the LP solver must be handled

with attention especially when the number of commodities becomes high, we rather

focus our attention on net times. Togheter with net and total execution times, the

number of iteration is showed in columns named “It.”. A single iteration time limit

has be fixed to 3600 seconds for the decomposition based approaches, while a global

time limit of 6400 seconds has been set for the direct approach. “TL” in the tables

indicates that the time limit has been reached for the corresponding instance. Similarly,

an iteration limit of 100000 has been set, with “IL” indicating that the limit has been

reached. When instances appearing in a table with similar characteristics are grouped

in a single row, columns named “Slv.” eventually report the number of instances solved

26
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

to optimality for a given group. Averages also considers times and iteration numbers

for instances not solved to optimality for time or iteration limit.

For what concerns the tables that summarize the characteristics of a given set of

instances, numbers in column “Mut.%” display the percentage of mutual capacity

constraints (2.52) that are “active” in the sense that are tight at the optimum for the

direct approach.

Finally, for what concern networks Figures, if not differently specified black squares

represents nodes with a non-zero balance for at lest one commodity, and the length of

the arcs does not reflect their costs.

2.4.3 Results

MMCF problems cover a wide area of possible applications, typically with network

topologies and commodities definition different one from the others. The test bed

presented here aim to give an as much as possible comprehensive representation of

MMCF problems arising in different contest.

2.4.3.1 The Mnetgen Instances

The “Mnetgen” is a well known random generator of MMCF instances and Mnetgen

generated instances has been already used for testing the effectiveness of several solvers

(see among the others [7, 20, 21, 10, 43]). We performed our tests using some of the

instances belonging to the “standard” set also available at "http://www.di.unipi.it/

optimize/Data/MMCF.html". We included in our tests a total number of 204 instances

with up to 256 nodes. In a Mnetgen instance all the commodities are multi-source

multi-destination, in particular each commodity have a non-zero balance for all the

nodes in the graph (see Fig. 2.5 on the left).

"http://www.di.unipi.it/optimize/Data/MMCF.html"
"http://www.di.unipi.it/optimize/Data/MMCF.html"

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 27

||x− x∗||2

Figure 2.5: Relatively to a 256-16 Mnetgen instance: an automatically generated layout,
on the left, and the normalized distance between the dual solution of the (unstabilized
disaggregated) reduced master problem and the optimal dual solution, after every iteration,

on the right.

As appear clear looking at Tables 2.1 and 2.2, this class of instances turns out to

be particularly difficult if approached using decomposition methods. The structure

of the graph, together with the presence of quite few and complex commodities, can

be addressed as one of the reasons that make Mnetgen instances more adapt to a

direct, brute-force, approach. Moreover, as displayed on the right side of Fig. 2.5,

degeneracy may result here in reduced master problem dual solution strong oscillatory

behaviours, when stabilization is absent. We already mentioned how this is a known

origin o slow-converge in column generation. The extremely high number of iterations

required by the aggregated model confirms such considerations and has been already

showed (see e.g. [21]) how most effective stabilization terms may results in very strong

improvements of the overall performances. Even considering the “boxstep” method, we

feel that there is room for significant improvements simply by fine parameter tuning.

Anyway, the focus of this work is conversely to show how disaggregation can improve

the trade off between convergence speed and the computing time for single iteration.

Among the partial aggregation levels tested here (η = 0, 0.2, 0.4, 0.6, 0.8, 1), the best

overall performances has been obtained in fact for η = 0. We measured a big “jump”

going from η = 0.8 to η = 1. This has been observed also for other classes of instances,

especially for what concern the number of iterations, and seems suggest that small

improvements of the quality of model fB are in some case enough for a consistent

speed up of the convergence.

Note that almost the entire computing time is spent to solve the reduced master

problem. This is at least partially due to an high percentage of tight mutual capacity

constraints. We measured that the percentage of active mutual capacity constraints

28
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

rises together with the number of commodities, going from roughly the 8% for the 64-4

instance and reaching almost the 40% for the 256-256 instances.

C
h

a
p

ter
2

P
artial

A
g
greg

a
tio

n
fo

r
G

en
eralized

B
u

n
d

le
M

eth
o
d

s,
A

n
A

p
p
lication

to
th

e
M

u
ltico

m
m

o
d

ity
M

in
-C

o
st

F
low

P
rob

lem
29

Average time to solution and number of iterations
η = 0 η = 0.2 η = 0.4

Instance CPX a. CPX t. Pr. Rmp Tot. It. Slv. Pr. Rmp Tot. It. Slv. Pr. Rmp Tot. It. Slv.
64-4 0.01 0.01 0 0.01 0.02 12.92 12 0 0.01 0.02 13.25 12 0.01 0.01 0.02 15.17 12
64-8 0.01 0.01 0.01 0.01 0.03 14.42 12 0.01 0.01 0.04 17 12 0.01 0.01 0.04 20.25 12
64-16 0.02 0.02 0.02 0.03 0.11 19.25 12 0.02 0.05 0.14 24.09 12 0.02 0.07 0.17 30.34 12
64-32 0.05 0.05 0.04 0.13 0.37 22.34 12 0.04 0.18 0.48 29.25 12 0.05 0.2 0.51 33.5 12
64-64 0.17 0.17 0.07 1.18 1.88 21.84 12 0.06 1.35 2.16 26.25 12 0.09 0.9 1.72 31.34 12
128-4 0.01 0.01 0.02 0.03 0.09 32.92 12 0.01 0.03 0.1 34.25 12 0.01 0.04 0.11 41.75 12
128-8 0.03 0.03 0.04 0.18 0.36 47.59 12 0.04 0.22 0.42 54.42 12 0.05 0.23 0.47 67.59 12
128-16 0.07 0.07 0.08 1.68 2.16 50.09 12 0.09 1.69 2.33 69.75 12 0.1 1.23 1.83 79.09 12
128-32 0.32 0.33 0.21 17.69 19.24 56.34 12 0.26 24.21 26.15 74.42 12 0.27 22.96 24.89 89.09 12
128-64 0.93 0.88 0.31 53.58 56.65 45.09 12 0.38 57.29 61.04 57 12 0.43 57.38 60.85 67.67 12
128-128 1.63 1.7 0.49 86.82 91.47 34.92 12 0.59 111.17 117.47 43.09 12 0.66 112.46 118.44 51.59 12
256-4 0.04 0.04 0.08 5.89 6.47 115.84 12 0.09 6.09 6.68 118 12 0.11 8.13 8.84 169.17 12
256-8 0.07 0.07 0.22 32.12 33.91 140.42 12 0.3 47.81 50.09 183.84 12 0.37 77.52 80.09 251.92 12
256-16 0.28 0.28 0.49 136.8 141.7 147.59 12 0.7 208.49 215.28 217.84 12 0.81 236.05 243.12 270.42 12
256-32 1.08 1.08 0.8 350.39 359.12 116 12 1.08 571.55 583.3 159 12 1.27 609.88 621.68 199.5 12
256-64 1.7 1.86 1.23 613.11 629.28 82.34 12 1.47 843.56 862.25 106.09 11 1.71 882.12 900.04 130.5 11
256-128 4.57 3.99 1.69 583.79 606.59 53.67 12 1.97 761.25 786.78 68.42 12 2.12 804.48 825.11 77.42 12
256-256 10.43 8.4 2.63 758.88 797.85 42.46 11 2.94 831.95 874.08 52.19 11 3.3 933.25 973.65 62 11

All 1.19 1.06 0.47 146.8 152.63 58.52 215 0.56 192.61 199.38 74.71 214 0.63 208.16 214.53 93.56 214

Table 2.1: Average times and number of iterations to optimality for Mnetgen instances: direct approach and partially aggregated bundles with η = 0, 0.2, 0.4.
Average time to solution and number of iterations

η = 0.6 η = 0.8 η = 1
Instance CPX a. CPX t. Pr. Rmp Tot. It. Slv. Pr. Rmp Tot. It. Slv. Pr. Rmp Tot. It. Slv.

64-4 0.01 0.01 0.02 0.04 0.02 18.42 12 0.01 0.01 0.02 29.25 12 0.01 0.01 0.02 40.59 12
64-8 0.01 0.01 0.01 0.01 0.05 24.17 12 0.01 0.03 0.07 39.42 12 0.02 0.03 0.08 80.25 12
64-16 0.02 0.02 0.03 0.06 0.18 34.84 12 0.03 0.08 0.21 48.75 12 0.07 0.15 0.35 120 12
64-32 0.05 0.05 0.05 0.21 0.54 43.17 12 0.06 0.27 0.58 60.34 12 0.31 0.91 1.63 280.42 12
64-64 0.17 0.17 0.08 0.8 1.74 39.25 12 0.14 0.94 1.69 57.92 12 1.12 5.96 8.43 583.75 12
128-4 0.01 0.01 0.03 0.1 0.14 56.25 12 0.03 0.07 0.16 75.59 12 0.03 0.08 0.16 77.92 12
128-8 0.03 0.03 0.08 0.47 0.49 72.25 12 0.07 0.38 0.68 117.84 12 0.13 0.67 1.1 227.25 12
128-16 0.07 0.07 0.22 4.54 2.14 99.09 12 0.21 2.02 2.85 156.09 12 0.86 11.59 13.9 812.67 12
128-32 0.32 0.33 0.41 34.33 28.1 124.75 12 0.58 32.97 35.92 215.75 12 7.07 273.93 289.8 2763.75 12
128-64 0.93 0.88 0.64 79.68 70.95 88.92 12 0.94 101.35 106.39 164.75 12 22.5 889.14 935.87 4779.84 9
128-128 1.63 1.7 0.59 123.91 153.69 68.09 12 1.21 158.34 165.31 106 12 34.88 993.25 1058.76 2848.92 9
256-4 0.04 0.04 0.53 112.63 12.55 219 12 0.27 25.77 27.04 471.59 12 0.24 24.27 25.48 520.17 12
256-8 0.07 0.07 0.48 101.35 91.59 281.67 12 0.96 294.11 298.71 632.92 12 2.05 708 714.91 1685.34 10
256-16 0.28 0.28 0.43 90.66 459.03 377.5 12 1.98 853.13 864.64 669.92 11 4.87 1124.3 1136.62 1998.42 10
256-32 1.08 1.08 0.39 80.51 880.81 280.5 11 2.29 958.74 970.81 392.59 9 11.21 1782.09 1805.73 1937.75 6
256-64 1.7 1.86 0.36 71.02 1431.71 180.92 8 2.88 1132.63 1148.88 230.92 9 14.86 1777.76 1806.03 1336.17 6
256-128 4.57 3.99 0.33 61.54 962.49 95.59 10 3.48 1151.04 1170.21 142.84 9 20.12 1776.07 1811.94 1003.84 6
256-256 10.43 8.4 0.3 52.05 1091.96 66.82 9 4.64 1093.33 1119.17 100 9 33.4 1760.53 1818.35 860.19 6

All 1.19 1.06 0.78 281.87 288.23 120.38 206 1.1 322.51 328.52 205.89 203 8.54 618.26 634.95 1216.03 182

Table 2.2: Average times and number of iterations to optimality for Mnetgen instances: direct approach and partially aggregated bundles with η = 0.6, 0.8, 1.

30
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

2.4.3.2 “JLF” instances

This set of instances, grouped in six subsets with similar topologies (see Fig. 2.6),

replicates the test bed introduced by Jones et al. in [36] (see also [21, 43]).

For this set of instances we performed the experiments for η going from −1 to 1, and

as shown in Tables 2.3 and 2.4 the fully disaggregated model leads to better overall

performances in terms of net computational time, with respect to the other levels of

aggregation. This seems to confirm that conclusions in [36] are valid even disposing

of more powerful machines and even applying boxstep stabilization. Nevertheless,

consideration similar to what said for Mnetgen case can be done for what concern the

possibility of improving the effectiveness of the stabilization tool. Most of the JLF

instances are rather small for the today standards, with execution times that in some

cases are below the centisecond. Is anyway impressive the gap between aggregated

(η = 1) and disaggregated η = −1 models performances, especially for some cases

as the “veh8” instance. Note that, the number of iteration tends to remain similar

for some η windows while tends to “jump” for some particular values, most of the

time going from η = 0.8 to η = 1 or going from η = −0.2 to η = 0. We recall

that the number of disaggregated components in the bundles grows linearly with η.

This behaviour is particularly interesting as one may tray to exploit the fact that η

can be increased within a “flat” window, obtaining a reduction of the complexity of

the reduced master problem without compromising the convergence speed. In fact

also looking this particular set of instances, in some sporadic cases as for chen5, we

observed a slight but encouraging better net time for some η > −1.

Anyway, as happening for the Mnetgen test bed and with similar considerations about

the potential of stabilization tools, the direct approach appears to be the best choice.

The reasons behind such outcome can be found in a limited number of commodities,

at least for some instances, and in an extremely high percentage of active mutual

capacity constraints. In fact, recalling that the JLFproblems does not define individual

capacities, on average approximatively 65% of the mutual capacity constraints are

tight, and in some cases (e.g. the “chen” and ”psp” instances) this value reaches

values near to 100%.

C
h

a
p

ter
2

P
artial

A
g
greg

a
tio

n
fo

r
G

en
eralized

B
u

n
d

le
M

eth
o
d

s,
A

n
A

p
p
lication

to
th

e
M

u
ltico

m
m

o
d

ity
M

in
-C

o
st

F
low

P
rob

lem
31

Average time to solution and number of iterations
η = −1 η = −0.8 η = −0.6 η = −0.4

Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
term 0.03 0.03 0 0.17 0.75 11 0.01 0.11 0.33 11.5 0.01 0.1 0.33 11.5 0.01 0.07 0.22 12

alk.HALF 0.2 0.2 0.16 2.22 17.03 28 0.21 3.45 12.8 42 0.28 3.69 13.04 42 0.29 5 19.16 58
alk.TWO 3.01 2.91 3.12 374.49 1332.22 107 4.28 1778.53 2335.18 146 4 1799.92 2315.17 141 4.25 2189.81 2485.43 151

assad 0.01 0.01 0 0.01 0.01 11.67 0 0 0.01 11.67 0 0.01 0.01 11.67 0.01 0 0.01 12.34
veh8 0.06 0.06 0.03 0.97 2.73 23 0.05 1.5 2.79 30 0.06 1.46 2.74 30 0 1.34 2.27 31
chen 0.01 0.04 0.01 2.98 4.08 70.29 0.01 3.19 4.03 99.58 0.01 3.15 3.98 99.58 0.02 2.25 2.87 117.86
All 0.19 0.19 0.18 21.03 72.9 39.53 0.25 95.08 125.32 53.64 0.24 96.2 124.25 53.37 0.25 116.44 133.07 61.79

Table 2.3: Average times in seconds for JLF instances, partial aggregation with η from −1 to −0.4.
Average time to solution and number of iterations

η = −0.2 η = 0 η = 0.2 η = 0.4
Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
term 0.03 0.03 0.01 0.05 0.12 13 0.01 0.04 0.1 23.5 0.01 0.03 0.1 27.34 0.01 0.04 0.11 29.5

alk.HALF 0.2 0.2 0.38 23.34 36.25 87 3.88 1426.96 1472.86 743 7.31 TL TL TL 9.09 TL TL TL
alk.TWO 3.01 2.91 4.12 TL TL TL 6.81 TL TL TL 7.52 TL TL TL 7.88 TL TL TL

assad 0.01 0.01 0.01 0 0.01 12.34 0 0.01 0.01 12.34 0.01 0.01 0.02 21 0 0.01 0.02 22
veh8 0.06 0.06 0.1 4.1 6.02 60 1.29 487.08 506.35 1232 1.28 488.71 508.53 1232 2.81 866.68 893.55 2562
chen 0.01 0.04 0.02 1.9 2.36 212 0.03 2.19 2.72 266.15 0.03 2.53 3.22 354.15 0.04 2.91 3.49 405
psp 0.02 0.02 - 0.14 3.07 3.98 603.5 0.13 2.93 3.86 610.67 0.17 3.02 3.97 862.5
All 0.15 0.15 0.25 186.25 193.26 223.63 0.53 220.88 225.37 318.21 0.69 283.6 289.35 373.88 0.85 320.64 326.55 470.22

Table 2.4: Average times in seconds for JLF instances, partial aggregation with η from −0.2 to −0.4.
Average time to solution and number of iterations

η = −0.6 η = 0.8 η = 1
Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
term 0.03 0.03 0.01 0.06 0.12 39.5 0.01 0.07 0.17 59.17 0.04 0.19 0.39 130.67

alk.HALF 0.2 0.2 8.95 TL TL TL 10.09 TL TL TL 12.4 TL TL TL
alk.TWO 3.01 2.91 9.01 TL TL TL 11.24 TL TL TL 26.44 TL TL TL

assad 0.01 0.01 0 0.01 0.02 20.34 0 0.02 0.02 29.67 0.01 0.02 0.04 61
veh8 0.06 0.06 2.87 826.92 853.36 2562 3.73 961.71 984.31 3246 3.44 1007 1030.4 3246
chen 0.01 0.04 0.06 4.41 5.09 572.15 0.08 8.39 9.29 920.43 0.3 32.95 35.36 2709.58
psp 0.02 0.02 0.2 2.96 4.18 1142 3.23 73.84 86.69 1251.8 3.3 77.07 90.63 1444.8
All 0.15 0.15 0.9 319.94 325.15 596.4 1.8 343.63 351.15 745.1 2.58 352.21 361.17 1382

Table 2.5: Average times in seconds for JLF instances, partial aggregation with η from 0.6 to 1.

32
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

[b]

[a]

[e]

[c]

[d]

Figure 2.6: Automatically generated layouts for some of the JLF instances: [a] veh8, [b]
alkHALF, [c] chen2 (same topology for “PSP” and “DSP”), [d] assad1.6k, and [e] 10term.50.

2.4.3.3 “Dimacs2pprn” Instances

This two groups of instances has been generated using the Dimacs2pprn Generator

developed by Jordi Castro (see ([9, 11]) and available at http://www.di.unipi.it/

optimize/Data/MMCF.html#d2p. The generator takes as input a single-commodity

min-cost flow instance and constructs a MMCF instance with k copies of the original

commodity having deficits and capacities “scaled” of a random quantity and having

randomly twisted costs. Commodities are therefore here defined as OD, and sources

and destinations corresponds to the same nodes for all the commodities (see also

Fig. 2.7). In turn, the single commodity instances has been synthesized by using

two different generators, hence we have:

http://www.di.unipi.it/optimize/Data/MMCF.html#d2p
http://www.di.unipi.it/optimize/Data/MMCF.html#d2p

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 33

- GoTo-Dimacs2pprn: instances belonging to this group has been built upon two

single-commodity flow problems created with the “Grid-on-Torus” network gen-

erator implemented by A. Goldberg and available at http://www.zib.de/en/services/

web-services/mp-testdata/generators.html (see [31, 45, 9] for a more detailed de-

scription). GoTo-Dimacs2pprn randomly generated MMCF instances taking part

in our test bed have 100, 400 or 800 commodities with default size parameter

(see dmx2pprn.C) and with factor parameter set as in Table 2.6. On the whole,

a number of 35 GoTo-Dimacs2pprn instances composes the test bed.

Instances Arcs Nodes Commodities fctr Instances # Av. Mut.%
Goto6 6 1-100 1024 64 100 1000 5 13.09
Goto6 6 1-400 1024 64 400 4000 5 13.7
Goto6 6 1-800 1024 64 800 8000 5 13.97
Goto8 8 1-10 2048 256 10 100 5 14.12
Goto8 8 1-100 2048 256 100 1000 5 14.42
Goto8 8 1-400 2048 256 400 4000 5 14.83
Goto8 8 1-800 2048 256 800 16000 5 5.01

Table 2.6: The GoTo-Dimacs2pprn instance set.

- RMFGen-Dimacs2pprn instances: the RMFGen is a random max flow, single-

commodity, instance generator developed by Goldfarb and Grigoriadis (see [32]).

The generated network is divided in “frames”, in each frame all the nodes are

connected with their neighbours. Nodes of a frame are then connected one to

one with the nodes of next frame using a random permutation of those nodes.

The origin is the lower left node of the first frame while the destination is

the upper right node of the last frame (see Fig. 2.7). Demands, capacities

and costs of the arcs are integer and randomly distributed between two limit

values (see also the readme distributed along with the generator source code

at http://www.di.unipi.it/optimize/Data/MMCF.html#d2p). Dimacs2pprn

generator has been fed with four RMFGen instances having 64, 128, 256 or 512

nodes (see Table 2.7). For each RMFGen instance, four groups of MMCF prob-

lems has been generated with increasing number of commodities. Each group

counts three instances with same parameters setting but with different seeds

for Dimacs2pprn random choices. On the whole, a number of 48 RMFGen-

Dimacs2pprn instances composes the test bed.

http://www.zib.de/en/services/web-services/mp-testdata/generators.html
http://www.zib.de/en/services/web-services/mp-testdata/generators.html
http://www.di.unipi.it/optimize/Data/MMCF.html#d2p

34
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

Instances Arcs Nodes Commodities fctr Instances # Av. Mut.%
R-4-4-512 240 64 512 10 3 7.04
R-4-4-1024 240 64 1024 10 3 10.42
R-4-4-2048 240 64 2048 20 3 10.42
R-4-4-4096 240 64 4096 20 3 29.17
R-4-8-2048 496 128 2048 100 3 4.23
R-4-8-4096 496 128 4096 200 3 4.29
R-4-8-8192 496 128 8192 200 3 7.67
R-4-8-16384 496 128 16384 400 3 8.78*
R-7-6-2048 1008 256 2048 100 3 10.66
R-7-6-4096 1008 256 4096 500 3 5.13
R-7-6-8192 1008 256 8192 500 3 8.7
R-7-6-16384 1008 256 16384 1000 3 9.43
R-8-8-2048 2240 512 2048 10 3 6.19
R-8-8-4096 2240 512 4096 100 3 0.57
R-8-8-8192 2240 512 8192 100 3 2.02*
R-8-8-16384 2240 512 16384 200 3 1.94*

Table 2.7: The RMFGen-Dimacs2pprn instance set. The symbol (*) means that optimal
solutions are unknown so “Mut. %” has been evaluated for the best (suboptimal) solution

at time limit.

Figure 2.7: Automatically generated layout for a “R-7-6-2048” instance, on the top and
a “goto6 6 1” instance, at the bottom.

For what concern the GoTo-Dimacs2pprn instances, results are summarized in Table

2.8 and 2.9. In general, we can see that for this set of instances a decomposition method

on a properly disaggregated bundle ensures rather good performances if compared with

the direct approach. This can find a motivation in the rather easy structure of the

relatively many commodities. As for the JLF and Mnetgen case, a more disaggregated

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 35

bundle gives in general better performances. Nevertheless, the overall (net) execution

times are often quite similar for η ≤ 0.5, and we feel that further investigation on larger

instances might be interesting to better understand which level of partial aggregation

allows in general better performances.

Seems anyway remote the possibility of obtaining competitive results by using a fully

aggregated bundle, as the number of iterations is in this case extremely higher then

any other η setting. Is quite interesting the case of the Goto8-8-1-800 instance set.

The high number of commodities forming the instances of this set leads to high com-

putational time for the direct approach. On the other hand, the as well high “fctr”

parameter, and consequently the low percentage of active mutual capacity constraints,

make this instances rather easy for decomposition based approaches.

3
6
C

h
a
p

ter
2

P
a
rtia

l
A

gg
regation

for
G

en
eralized

B
u

n
d

le
M

eth
o
d

s,
A

n
A

p
p
lication

to
th

e
M

u
lticom

m
o
d

ity
M

in
-C

ost
F

low
P

rob
lem

Average time to solution and number of iterations
η = 0 η = 0.2 η = 0.4

Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
Goto6 6 1-100 0.72 0.68 0.12 0.83 1.29 24.6 0.14 1.03 1.54 29.8 0.16 1.1 1.65 34.6
Goto6 6 1-400 15.9 14.22 0.3 0.79 2.23 15.25 0.32 0.94 2.23 16.5 0.36 1.16 2.39 18.5
Goto6 6 1-800 112.43 64.1 0.5 1.02 3.96 12.4 0.55 1.24 3.96 14 0.61 1.6 3.94 15.2
Goto8 8 1-10 0.13 0.12 0.09 2.79 3.26 75.2 0.11 4.51 5.15 104.4 0.18 6.46 7.28 136.6
Goto8 8 1-100 9.04 5.64 0.29 2.91 3.71 21 0.37 4.27 5.33 27.2 0.41 4.43 5.6 31
Goto8 8 1-400 194.22 105.14 0.88 4.12 6.74 15.6 1 6.61 9.37 17.6 1.1 9.5 12.32 19.6
Goto8 8 1-800 331.75 326.01 1.84 2.17 7.08 11.4 1.94 2.42 6.98 12 2.13 3.36 7.83 13.2

All 97.21 75.45 0.58 2.13 4.09 25.36 0.64 3.06 5.02 32.09 0.72 4.03 5.96 38.98

Table 2.8: Average times to optimality for GoTo instances: direct approach and partially aggregated bundles with η = 0, 0.2, 0.4

Average time to solution and number of iterations
η = 0.6 η = 0.8 η = 0.1

Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
Goto6 6 1-100 0.72 0.68 0.21 1.38 2.05 43.6 0.36 0.99 2.05 69.2 3.01 10.46 20.51 925.8
Goto6 6 1-400 15.9 14.22 0.42 1.77 2.98 21.75 0.67 4.95 6.6 31.75 16.66 26.55 79.56 1272
Goto6 6 1-800 112.43 64.1 0.69 2.56 4.62 16.8 0.98 7.47 9.96 24.6 44.3 43.83 183.14 1709.2
Goto8 8 1-10 0.13 0.12 0.2 7.66 8.59 164 0.38 17.11 18.71 300.6 0.69 20.81 23.88 722
Goto8 8 1-100 9.04 5.64 0.6 4.95 6.59 45 1.02 11.1 14.14 79.2 18.79 287.15 340.27 2113.8
Goto8 8 1-400 194.22 105.14 1.37 14.21 17.38 22.8 2.02 20.73 25.49 35.6 92.87 364.88 613.74 2690.4
Goto8 8 1-800 331.75 326.01 2.38 5.24 9.7 15 3.14 9.96 15.52 19.8 115.25 43.58 250.27 729.2

All 97.21 75.45 0.85 5.5 7.55 47.74 1.24 10.49 13.4 81.53 42.39 116.46 219.92 1457.06

Table 2.9: Average times to optimality for GoTo instances: direct approach and partially aggregated bundles with η = 0.6, 0.8, 1

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 37

For what concern the RMFGen-Dimacs2pprn instances, results are summarized in

Table 2.10 and 2.11. The number of iterations for this class of instances results par-

ticularly similar among different values of η < 1. As already observed for other classes

of instances, slow convergence issues are instead particularly evident for the fully ag-

gregated bundle. We observe an interesting reduction for reduced master problem

optimization times as the η increases. This means that in this case the smaller sizes

of the corresponding program, and consequently the reduced amount of computation

required to solve it, overcompensate the increased number of iterations. This is sur-

prisingly true also for η = 1. Nonetheless, the net times related with the optimization

of the pricer play here a central role, covering in some cases even more than 90% of the

overall net time. As the number of iteration increases, being the time for single itera-

tion quite constant, the required time for pricing increases in turn. We can therefore

observe that the best trade-off between reduced master problem time (that decreases

when η is increases) and pricing time (that on the opposite increases when η is in-

creased) can be obtained in some situation by partial aggregation of the bungle. We

recall that being the commodities already defined as single-source single-destination,

makes no sense any η < 0.

3
8
C

h
a
p

ter
2

P
a
rtia

l
A

gg
regation

for
G

en
eralized

B
u

n
d

le
M

eth
o
d

s,
A

n
A

p
p
lication

to
th

e
M

u
lticom

m
o
d

ity
M

in
-C

ost
F

low
P

rob
lem

Average time to solution and number of iterations
η = 0 η = 0.2 η = 0.4

Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
R-4-4-512 1.96 1.55 0.05 0.09 0.43 6.67 0.04 0.04 0.3 6.67 0.06 0.02 0.21 6.67
R-4-4-1024 9.17 6.38 0.1 0.19 1.4 7 0.11 0.22 1.14 7.34 0.13 0.2 0.93 8
R-4-4-2048 43.1 30.38 0.21 0.48 5.1 7.34 0.25 0.47 4.16 8 0.25 0.36 2.65 8
R-4-4-4096 321.51 220.22 0.49 1.36 21.95 8 0.55 1.42 18.47 9 0.57 1.32 11.43 9
R-4-8-2048 11.43 7.4 0.4 0.34 2.97 5 0.38 0.26 2.2 5 0.39 0.21 1.61 5
R-4-8-4096 33.96 21.66 0.76 0.52 9.57 5 0.77 0.5 6.78 5 0.76 0.46 4.57 5
R-4-8-8192 2077.04 1337.62 2.14 1.95 65.44 7 2.24 1.95 48.11 7.34 2.42 1.9 34.37 8
R-4-8-16384 TL 6064.75 4.22 3.7 336.53 7 4.43 4.03 223.15 7.34 4.84 4.12 124.46 8
R-7-6-2048 203.51 149.05 1.27 0.6 5.32 5.67 1.34 0.61 4.64 6 1.33 0.52 3.71 6
R-7-6-4096 248.69 186.89 2.22 0.73 12.09 5 2.21 0.67 9.14 5 2.22 0.67 6.89 5
R-7-6-8192 2765.73 1992.45 4.46 1.69 39.17 5 4.45 1.62 28.08 5 4.45 1.5 19.3 5
R-7-6-16384 TL TL 8.9 3.14 143.82 5 8.92 3.14 94.62 5 8.9 2.9 60.25 5
R-8-8-2048 3836.17 2697.98 3.27 1.6 15.13 10 3.4 1.77 12.95 10.34 3.5 1.87 11.05 10.67
R-8-8-4096 1453.48 1021.34 3.14 0.69 15.81 5.34 3.13 0.67 12.29 5.34 3.13 0.63 9.51 5.34
R-8-8-8192 TL TL 8.42 2.6 82.15 7 8.84 2.6 63.44 7.34 8.85 2.36 43.23 7.34
R-8-8-16384 TL TL 16.88 5.01 381.36 7 16.86 5.44 233.62 7 18.51 5.4 147.67 7.67

Average 2288.92 2059.55 3.56 1.54 71.14 6.44 3.62 1.59 47.69 6.67 3.77 1.53 30.12 6.86

Table 2.10: Average times to optimality for RMFGen-Dimacs2pprn instances: direct approach and partially aggregated bundles with η = 0, 0.2, 0.4
Average time to solution and number of iterations

η = 0.6 η = 0.8 η = 0.1
Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
R-4-4-512 1.96 1.55 0.06 0.01 0.17 7 0.06 0.02 0.14 7.67 0.24 0.01 0.47 35
R-4-4-1024 9.17 6.38 0.11 0.12 0.63 8.34 0.14 0.03 0.39 9.34 0.89 0.02 1.61 58.67
R-4-4-2048 43.1 30.38 0.26 0.36 1.85 8.67 0.29 0.21 1.06 9.34 2.1 0.02 3.78 68.34
R-4-4-4096 321.51 220.22 0.6 1.37 7.08 9.67 0.68 1.47 4.24 11 8.99 0.06 14.99 139.67
R-4-8-2048 11.43 7.4 0.38 0.13 1.11 5 0.38 0.08 0.81 5 0.59 0.01 0.95 7.67
R-4-8-4096 33.96 21.66 0.76 0.39 2.94 5 0.75 0.21 1.8 5 0.86 0 1.38 5.67
R-4-8-8192 2077.04 1337.62 2.41 1.83 18.75 8 2.72 1.71 10.55 9 18.8 0.04 29.95 61.67
R-4-8-16384 TL 6064.75 4.85 3.98 62.4 8 5.23 3.53 27.45 8.67 37.63 0.05 60.52 62
R-7-6-2048 203.51 149.05 1.42 0.44 3.17 6.34 1.57 0.34 2.9 7 12.06 0.06 16.9 54
R-7-6-4096 248.69 186.89 2.36 0.62 5.63 5.34 2.37 0.45 4.33 5.34 3.71 0.01 5.23 8.34
R-7-6-8192 2765.73 1992.45 4.76 1.48 14.28 5.34 5.36 1.43 11.16 6 27.06 0.03 38.21 30.34
R-7-6-16384 TL TL 9.5 2.81 39.62 5.34 10.69 2.8 25.79 6 68.33 0.04 96.78 38.34
R-8-8-2048 3836.17 2697.98 3.97 2.12 10.59 12 4.67 3.34 11.65 14 92.66 8.69 157.17 271
R-8-8-4096 1453.48 1021.34 3.53 0.61 8.46 6 3.53 0.46 6.78 6 10.21 0.43 17.78 17.34
R-8-8-8192 TL TL 9.66 2.61 32.43 8 10.92 2.61 24.98 9 109.02 1.96 186.21 88.67
R-8-8-16384 TL TL 19.38 5.43 91.24 8 21.86 6.29 59.21 9 248.05 5.08 468.97 100.67

Average 2288.92 2059.55 4 1.52 18.77 7.28 4.45 1.56 12.08 8 40.08 1.03 68.81 66.53

Table 2.11: Average times to optimality for RMFGen-Dimacs2pprn instances: direct approach and partially aggregated bundles with η = 0.6, 0.8, 1

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 39

2.4.3.4 The Planar and Grid instances

This set of instances, available at http://www.di.unipi.it/optimize/Data/MMCF.html#Plnr

has been introduced in [39] and are built upon two similar classes of topologies, planar

and grid, inspired by telecommunication networks (see also [3]).

- Planar instances: nodes are in this case randomly chosen as points in a plane

and arcs link neighbour nodes in such a way that the resulting graph is planar

(see Fig.2.8). The origin and destination nodes are randomly chosen, arc costs

are euclidean distances while demands and capacities are uniformly distributed

in given intervals.

- Grid instances: nodes in the graph are connected to form a a regular grid. Thus,

there are four incoming and four outgoing arcs for every internal node. The costs

of the arcs, the commodities, and the demands are generated as for the planar

networks.

Results for this class of instances are summarized in Tables 2.12 and 2.13. Net execution

times confirm the convenience of disaggregated bundle approaches with respect to the

direct approach and with respect to partially or totally aggregated bundles. The

peculiar behaviour of this class of instances consists in the fact that the number of

iterations, going from η = 0.8 to η = 0, does not decrease enough to justify the

reduction in terms of computational time. In some cases, we even observe a weird

situation in which aggregated bundles reduces the number of iterations to optimality.

This may be due to the presence of the stabilization that may be more effective for

some aggregation level than others. In any case, we may find of interest, as future work,

a further investigation on this class of instances to better understand this behaviour.

Note finally how the tuned direct approach, with dual simplex and network scaling,

does not seem to be very effective when compared to the use of automatic setting.

Figure 2.8: Automatically generated layout for “grid3” instance on the left and “planar50”
instance on the right.

http://www.di.unipi.it/optimize/Data/MMCF.html#Plnr

4
0
C

h
a
p

ter
2

P
a
rtia

l
A

gg
regation

for
G

en
eralized

B
u

n
d

le
M

eth
o
d

s,
A

n
A

p
p
lication

to
th

e
M

u
lticom

m
o
d

ity
M

in
-C

ost
F

low
P

rob
lem

Time to solution
η = 0 η = 0.2 η = 0.4

Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
grid1 0.01 0.01 0 0.01 0.01 8 0 0 0.01 8 0 0 0.01 8
grid2 0.03 0.02 0 0 0.03 8 0 0 0.02 8 0 0.01 0.02 8
grid3 0.04 0.04 0.01 0.01 0.03 7 0.01 0 0.02 7 0 0 0.02 8
grid4 0.11 0.11 0.02 0 0.06 9 0 0.02 0.08 11 0.03 0 0.06 11
grid5 0.41 0.41 0.04 0.01 0.14 12 0.03 0.01 0.16 13 0.02 0 0.11 11
grid6 8.78 10.37 0.09 0.73 1.17 15 0.1 0.6 0.96 14 0.11 0.5 0.83 17
grid7 54.74 55.96 0.24 1.83 2.93 12 0.27 2.56 3.66 13 0.28 1.87 2.94 15
grid8 1745.65 1954.88 0.7 17.03 20.62 18 0.78 18.29 21.53 19 0.76 18.78 21.64 20
grid9 TL TL 1.15 34.34 41.59 15 1.23 48.2 54.6 16 1.36 54.56 60.31 18
grid10 TL TL 2.32 51.08 73.63 15 2.52 59.43 78.16 16 2.59 68.68 83 17
grid12 TL TL 7.44 42.71 145.02 11 7 56.31 118.49 10 7.25 48.93 97.1 11
grid14 TL TL 24.37 72.16 830.92 10 28.36 133.03 776.8 11 28.79 129.52 532.14 12

planar30 0.03 0.03 0 0 0.04 10 0.01 0 0.04 10 0 0.01 0.03 10
planar50 0.49 0.51 0.07 0.12 0.41 12 0.05 0.06 0.3 12 0.05 0.02 0.21 13
planar80 10.33 10.81 0.2 0.77 2.56 17 0.19 0.92 2.24 16 0.19 0.78 1.69 17
planar100 43.9 45.62 0.36 1.07 5.96 14 0.38 1.14 4.24 13 0.34 1.03 3.07 13
planar150 4239.98 4346.06 1.62 21.23 50.72 17 1.65 24.53 43.8 17 1.61 23.58 36.27 17
planar300 TL 5127.75 6.77 13.04 64.92 13 7.31 15.36 54.28 14 7.01 15.13 41.74 14
Averages 2117.36 2064.03 2.53 14.23 68.94 12.39 2.78 20.03 64.42 12.67 2.8 20.19 48.96 13.34

Table 2.12: Average times to optimality for Planar and Grid instances: direct approach and partially aggregated bundles with η = 0, 0.2, 0.4
Time to solution

η = 0.6 η = 0.8 η = 0.1
Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
grid1 0.01 0.01 0 0 0.01 8 0 0 0.01 10 0 0.01 0.02 28
grid2 0.03 0.02 0.01 0 0.02 10 0 0 0.02 13 0.01 0.03 0.08 84
grid3 0.04 0.04 0 0.01 0.02 8 0.01 0 0.02 10 0.04 0.02 0.09 44
grid4 0.11 0.11 0.01 0 0.04 11 0.01 0.01 0.05 13 0.1 0.06 0.38 100
grid5 0.41 0.41 0.02 0.01 0.14 14 0.05 0.01 0.15 15 0.32 0.24 1.18 132
grid6 8.78 10.37 0.11 0.33 0.71 20 0.1 0.39 0.81 26 3.94 10.4 20.14 751
grid7 54.74 55.96 0.27 1.7 2.54 14 0.36 2.35 3.28 18 22.89 245.5 299.73 1169
grid8 1745.65 1954.88 0.88 23.2 25.93 23 1.25 36.72 40.3 33 TL TL TL TL
grid9 TL TL 1.52 76.69 81.85 20 2.47 166.72 174.07 32 TL TL TL TL
grid10 TL TL 2.75 93.18 104.02 18 3.65 190.97 202.05 24 TL TL TL TL
grid12 TL TL 7.28 56.31 86.48 11 8.59 107.32 131.84 13 TL TL TL TL
grid14 TL TL 26.39 135 292.97 11 28.73 227.1 321.16 12 TL TL TL TL

planar30 0.03 0.03 0 0 0.02 10 0.01 0 0.03 16 0.05 0.03 0.11 70
planar50 0.49 0.51 0.04 0.04 0.15 13 0.07 0 0.13 14 0.36 0.07 0.79 105
planar80 10.33 10.81 0.18 0.7 1.34 16 0.22 0.4 0.91 18 11.73 5.55 30.18 1071
planar100 43.9 45.62 0.37 1.48 2.88 13 0.44 2.1 3.15 15 37.64 5.41 82.22 1400
planar150 4239.98 4346.06 1.81 26.87 35.6 19 2.19 33.76 39.97 23 TL TL TL TL
planar300 TL 5127.75 7.56 16.9 36.73 15 7.36 20.04 33.14 14 1554.18 628.19 3090.86 2967
Averages 2117.36 2064.03 2.74 24.03 37.31 14.12 3.09 43.78 52.84 17.73 235.23 119.65 293.82 660.09

Table 2.13: Average times to optimality for Planar and Grid instances: direct approach and partially aggregated bundles with η = 0.6, 0.8, 1

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 41

2.4.3.5 PRT instances

The four “PRT” instances in this set derive from system traffic assignment problems for

Personal Rapid Transit networks (see 3) . Linear MMCF PRT instances are obtained

by fixing the otherwise flow-dependant cost of the arcs to a specific value. A generic in-

stance is composed by |K|−1 single-origin single-destination commodities, representing

full vehicle travels, and one multi-source multi-destination commodity representing the

demands of empty vehicles. Table 2.14 summarizes the characteristics of the instances

(see also Fig. 2.9 for a visual representation of the network topologies).

Instances Network Nodes Arcs Commodities Mut.%

Koln307-65 Cologne 558 1039 308 4.33
Koln1578-10 Cologne 558 1039 1579 2.11

Portland1803-10 Portland 120 355 1804 5.07
Portland3583-5 Portland 120 355 3584 4.78

Table 2.14: The PRT instance set.

Figure 2.9: Geographical layout of Cologne and Portland networks, respectively on the
left and on the right of the figure. Sources and destinations are randomly distributed among

the nodes of the network. The lengths of the arcs reflects their costs.

Looking at tables 2.15, 2.16 and 2.17 we can see how for this set of instances bundle

approaches are able to provide strong time reductions with respect to the direct ap-

proach. There is not a clear convenience behind full bundle disaggregation. In fact, the

rather constant number of iterations measured for η going from -1 to 0.8 reflects into

a quite significant reduction of reduced master problem net optimization time. De-

spite the very high number of iteration required to reach optimality, fully aggregated

bundles are the most convenient choice if only master time is considered, . Anyway

a large amount of the total net time is spent to solve the pricer. Such time increases

together with the number of iterations, and a full aggregate bundle turns out to be not

42
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

the most convenient choice. A partial aggregation with η = 0.8 is instead very inter-

esting, ensuring a number of iteration that is just slightly above the number obtained

for η = 0.

Time to solution
η = 0 η = 0.2

Instance CPX a. CPX t. Pr. Rmp Tot. Pr. Rmp Tot.
Koln307-65 61.35 48.755 0.98 1.08 3.6 0.88 0.97 2.91
Koln1578-10 1054.78 890.35 3.61 2.64 17.48 3.61 2.39 13.96

Portland1803-10 173.564 138.57 0.58 1.49 9.71 0.49 1.16 6.21
Portland3583-5 431.53 399.01 1.09 3.18 30.65 1.08 3.26 23.97

Averages 430.31 369.18 1.57 2.1 15.36 1.52 1.95 11.77

Table 2.15: Average times to optimality for PRT instances: direct approach and partially
aggregated bundles with η = 0, 0.2.

Time to solution
η = 0.5 η = 0.8 η = 1

Instance Pr. Rmp Tot. Pr. Rmp Tot. Pr. Rmp Tot.
Koln307-65 1.01 1.05 2.89 1.04 0.96 2.63 26.4 2.82 36.91
Koln1578-10 3.59 1.95 9.6 4.11 2.07 8.3 49.95 0.82 61.94

Portland1803-10 0.56 0.88 3.72 0.58 0.61 2.01 8.19 0.28 12.37
Portland3583-5 1.04 2.18 11.5 1.25 1.57 5.3 14.39 0.19 21.44

Averages 1.55 1.52 6.93 1.75 1.31 4.56 24.74 1.03 33.17

Table 2.16: Average times to optimality for PRT instances: aggregated bundles with
η = 0.5, 0.8, 1.

Number of iterations
Instance η = 0 η = 0.2 η = 0.5 η = 0.8 η = 1

KOLN10-65 22 19 22 23 604
KOLN50-10 14 14 14 16 203

Portland500-10 11 10 11 12 173
Portland1000-5 11 11 11 13 154

Averages 14.5 13.5 14.5 16 283.5

Table 2.17: Computational results for PRT instances: average number of iterations for
all the level of partial aggregation tested.

2.4.3.6 “Waxman” instances

Several MMCF instances has been obtained starting from “Waxman” network topolo-

gies (the name derives from [49]), created by using the Fast Network Simulation Setup

(FNSS) toolchain available at "http://fnss.github.io/". A number of 15 “Waxman-01”

topologies (see FNSS documentation at http://fnss.github.io/doc/core/index.html for

more details) has been generated in three sets that groups the networks by num-

ber of nodes; alpha parameter has always kept equal to 0.4, beta equal 0.1 and

L to 1. Topologies of the same group differs only for the random seed given as

input to the waxman_1_topology method. For each topology, the FNSS method

static_traffic_matrix, is then invoked with mean=0.8, stddev=0.05, max_u=0.9

to randomly generate single-origin single destination commodities. The number of

commodities in the generated MMCF instance is very high, often close to to all the

possible origin-destination pairs. Other instances are then created by randomly group-

ing single-origin single-destination commodities to form multi-origin multi-destination

commodities. This procedure is completely unrelated to what mentioned before about

the work of Jones et al. ([36]), hence the derived multi-origin multi-destination in-

stances are not equivalent to the initial single-origin single destination instance. See

Table 2.18 for more details about the instances.

"http://fnss.github.io/"
http://fnss.github.io/doc/core/index.html

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 43

Instances Inst.s. # Av. Comm.s # Nodes Av. Arcs Av. Mut.%
WMOMDt 50 32 5 32 50 101.6 1.32
WMOMDt 50 128 4 128 50 98.5 1.96

WODt 50 5 1647.20 50 107.01 1.96
WMOMDt 100 128 3 128 100 400 1.96
WMOMDt 100 512 4 512 100 415 4.06
WMOMDt 100 2048 5 2048 100 410.4 4.49
WMOMDt 100 8192 3 8192 100 410.67 5.37

WODt 100 5 9624.40 100 410.93 4.1
WMOMDt 150 128 4 128 150 875 2
WMOMDt 150 512 4 512 150 875 0.93
WMOMDt 150 2048 4 2048 150 875 0.06
WMOMDt 150 8192 2 8192 150 897 0.79

WODt 150 5 22250.66 150 901.29 0.84

Table 2.18: The Waxman instance set.

Figure 2.10: Automatically generated layout for a ‘wMOMDt 100 128” instance.

Looking at Tables 2.19 and 2.20 we observe how the relatively small sizes of the graphs,

combined with the high, or in some cases very high, number of commodities make this

class of instances particularly adapt for aggregated bundles. We observe how the fully

aggregated bundle (η = 1) always provides the best average performances for what

concern the net reduced master problem time. In fact, the high number of iterations

is well compensated by the presence of a smaller and easier reduced master problem.

Nevertheless, as happening also for other classes of instances, the time needed for

pricing the solution plays a central role. The choice of using a partial aggregation

is often convenient considering the reduction of time spent for pricing. Especially in

presence of a very high number of commodities, as for the instance WODt 150, partial

aggregation with η = 0.4 or η = 0.6 gives very good balances between number of itera-

tions, and consequently pricer overall times, and reduced master problem overall times.

4
4
C

h
a
p

ter
2

P
a
rtia

l
A

gg
regation

for
G

en
eralized

B
u

n
d

le
M

eth
o
d

s,
A

n
A

p
p
lication

to
th

e
M

u
lticom

m
o
d

ity
M

in
-C

ost
F

low
P

rob
lem

Average time to solution and number of iterations
η = 0 η = 0.2 η = 0.4

Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.
WMOMDt 50 32 0.01 0.01 0 0 0.01 1.6 0.01 0 0.01 1.6 0 0 0 1.6
WMOMDt 50 128 0.04 0.04 0.01 0 0.02 2.5 0.01 0 0.02 2.5 0.01 0.01 0.02 2.5

WODt 50 1.13 1.16 0.02 0.11 0.42 2.6 0.02 0.08 0.3 2.6 0.02 0.04 0.18 2.6
WMOMDt 100 128 0.36 0.37 0.02 0.02 0.06 3 0.03 0.01 0.06 3 0.03 0 0.06 3
WMOMDt 100 512 2.54 2.22 0.09 0.05 0.26 3 0.08 0.04 0.24 3 0.08 0.03 0.2 3
WMOMDt 100 2048 9.29 9.46 0.23 0.29 1.6 3 0.24 0.26 1.26 3 0.25 0.22 0.96 3
WMOMDt 100 8192 28.82 32.01 0.34 0.25 4.09 1.67 0.35 0.26 2.96 1.67 0.37 0.28 2.13 1.67

WODt 100 31.12 31.81 0.31 0.31 13 2.6 0.32 0.32 8.75 2.6 0.33 0.31 5.5 2.6
WMOMDt 150 128 0.91 0.93 0.04 0.01 0.06 1.25 0.04 0.01 0.06 1.25 0.04 0.01 0.06 1.25
WMOMDt 150 512 4.84 5.17 0.14 0.07 0.32 2 0.15 0.08 0.31 2 0.14 0.05 0.28 2
WMOMDt 150 2048 18.3 19.03 0.44 0.37 1.74 2.5 0.46 0.36 1.56 2.5 0.45 0.31 1.28 2.5
WMOMDt 150 8192 89.3 101.88 2.13 0.78 30.31 5 2.17 0.82 22.5 5 2.1 0.76 12.44 4.5

WODt 150 136.74 187.66 1.16 0.52 47.62 2.4 1.21 0.5 32.13 2.4 1.21 0.44 19.51 2.4
Averages 23.85 29.45 0.32 0.2 7.47 2.28 0.33 0.2 5.19 2.28 0.33 0.17 3.2 2.27

Table 2.19: Average times to optimality for Waxman instances: direct approach and partially aggregated bundles with η = 0, 0.2, 0.4
Average time to solution and number of iterations

η = 0.6 η = 0.8 η = 0.1
Instance CPX a. CPX t. Pr. Rmp Tot. It. Pr. Rmp Tot. It. Pr. Rmp Tot. It.

WMOMDt 50 32 0.01 0.01 0 0 0.01 1.6 0 0 0.01 1.6 0.01 0 0.01 2
WMOMDt 50 128 0.04 0.04 0.01 0 0.02 2.5 0.01 0 0.02 2.75 0.02 0.01 0.03 6

WODt 50 1.13 1.16 0.02 0.01 0.1 2.6 0.02 0.01 0.06 2.6 0.07 0.01 0.16 9
WMOMDt 100 128 0.36 0.37 0.04 0.01 0.07 3.34 0.03 0.01 0.06 3.67 0.07 0.01 0.14 13.34
WMOMDt 100 512 2.54 2.22 0.09 0.02 0.17 2.75 0.08 0.02 0.16 2.75 0.28 0.01 0.45 12.25
WMOMDt 100 2048 9.29 9.46 0.25 0.12 0.69 3 0.25 0.07 0.52 3.2 0.69 0.01 1.15 9.8
WMOMDt 100 8192 28.82 32.01 0.35 0.29 1.45 1.67 0.36 0.23 1 1.67 0.99 0.01 1.94 5

WODt 100 31.12 31.81 0.32 0.31 3.05 2.6 0.32 0.26 1.52 2.6 5.41 0.08 14.6 39
WMOMDt 150 128 0.91 0.93 0.04 0.01 0.06 1.25 0.04 0 0.06 1.25 0.04 0 0.05 1.5
WMOMDt 150 512 4.84 5.17 0.15 0.04 0.26 2 0.16 0.03 0.28 2.25 0.18 0.01 0.25 2.75
WMOMDt 150 2048 18.3 19.03 0.46 0.25 1.11 2.5 0.48 0.15 0.95 2.5 0.59 0.01 0.93 3.25
WMOMDt 150 8192 89.3 101.88 2.24 0.72 9.31 5 2.21 0.68 5.85 5 7.7 0.02 15.05 16.5

WODt 150 136.74 187.66 1.31 0.43 12.4 2.6 1.39 0.43 6.24 2.6 17.36 0.08 54.79 34.6
Averages 23.85 29.45 0.34 0.15 2.09 2.3 0.35 0.13 1.18 2.37 2.66 0.02 7.49 11.04

Table 2.20: Average times to optimality for Waxman instances: direct approach and partially aggregated bundles with η = 0.6, 0.8, 1

Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to
the Multicommodity Min-Cost Flow Problem 45

2.5 Conclusions and Future Works

It is a common strategy to reduce the overall computing time of an iterative approach

based on decomposition by finding a good compromise between convergence speed and

time for single iteration. The attention is generally focussed on the reduced master

problem, while the pricer is often an easy optimization problem efficiently solved by

existing algorithms. This is a valid strategy for the MMCF, in which the pricer can be

decomposed among easily solvable single-commodity flow problems. Conversly, long-

tail effects and slow convergence issues typically affects column generation for this class

of problem. The inclusion of stabilization tools generally aim to strongly reduce the

number of iteration without compromising the ability of efficiently solving the reduced

master problem. Similarly disaggregate formulation corresponds to larger and more

difficult reduced master problem but allows the construction of a better model for f(x).

This in general translates to a lower number of cutting planes to reach optimality.

Partial aggregation opens new alternatives in this contest. Acknowledged the possibil-

ity of formulating the reduced master using any level of aggregation without changing

de definition of the (decomposable) pricer, a wide range of gradual alternative between

complete disaggregation and full aggregation can be explored. A combined use of par-

tial aggregation and stabilization tools provide a vast spectrum of trade-offs between

convergence speed and time for iteration.

We explored only part of the possible alternatives allowed by the definition of par-

tially aggregated bundles. The results shows how a correct choice of the formulation

for the reduced master problem is crucial in most of the cases. Often, the choice of

disaggregating the bundle is the best choice. A full disaggregation is not anyway the

best choice in all the situation. In some cases partial aggregation reduces the overall

execution time with respect to the two extreme levels of aggregation (MCCF−MP−1)

and (MCCF −MP1). Boxstep stabilization is used without fine parameter tuning.

More accurate stabilization strategies may change the presented scenario, more likely

in favour of aggregated formulation.

We thus feel that further studies are necessary to fully understand the potential of

this new alternatives. In particular, more sophisticated stabilization methods, or even

a better parameter tuning for the boxstep tool used here, may have a big impact on

the performances of the decomposition approaches proposed. Parameter tuning for the

direct approach allowed a marked reduction of the computing time. We fell that pa-

rameter tuning can likewise improve the ability of solving the reduced master problem

and consequently the overall performances of decomposition approaches. The possi-

bility of changing the solver itself should be taken into account as well. Besides, the

possibility of dynamically aggregate components of the bundle on the basis of infor-

mation collected during the iterative process may open new interesting opportunities.

46
Chapter 2 Partial Aggregation for Generalized Bundle Methods, An Application to

the Multicommodity Min-Cost Flow Problem

Finally, the test bed could be further expanded to give a complete overview of all the

possible situations in which practitioner may want to use the approaches proposed.

Bibliography

[1] Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows:

theory, algorithms, and applications. 1993.

[2] A. Astorino, A. Frangioni, M. Gaudioso, and E. Gorgone. Piecewise Quadratic

Approximations in Convex Numerical Optimization. SIAM Journal on Optimiza-

tion, 21(4):1418–1438, 2011.

[3] Frédéric Babonneau, Olivier Du Merle, and J-P Vial. Solving large-scale linear

multicommodity flow problems with an active set strategy and proximal-accpm.

Operations Research, 54(1):184–197, 2006.

[4] L. Bacaud, C. Lemaréchal, A. Renaud, and C. Sagastizábal. Bundle Methods in

Stochastic Optimal Power Management: A Disaggregated Approach Using Pre-

conditioners. Computational Optimization and Applications, 20:227–244, 2001.

[5] Martin Bergner, Alberto Caprara, Fabio Furini, Marco E Lübbecke, Enrico

Malaguti, and Emiliano Traversi. Partial convexification of general mips by

dantzig-wolfe reformulation. In Integer Programming and Combinatoral Optimiza-

tion, pages 39–51. Springer, 2011.

[6] A. Borghetti, A. Frangioni, F. Lacalandra, and C.A. Nucci. Lagrangian Heuristics

Based on Disaggregated Bundle Methods for Hydrothermal Unit Commitment.

IEEE Transactions on Power Systems, 18(1):313–323, February 2003.

[7] P. Cappanera and A. Frangioni. Symmetric and Asymmetric Parallelization of a

Cost-Decomposition Algorithm for Multi-Commodity Flow Problems. INFORMS

Journal on Computing, 15(4):369–384, 2003.

[8] Alberto Caprara, Fabio Furini, and Enrico Malaguti. Uncommon dantzig-wolfe

reformulation for the temporal knapsack problem. INFORMS Journal on Com-

puting, 25(3):560–571, 2013.

[9] Jordi Castro. A specialized interior-point algorithm for multicommodity network

flows. SIAM journal on Optimization, 10(3):852–877, 2000.

[10] Jordi Castro. Solving difficult multicommodity problems with a specialized

interior-point algorithm. Annals of Operations Research, 124(1-4):35–48, 2003.

47

48 BIBLIOGRAPHY

[11] Jordi Castro and Narcis Nabona. An implementation of linear and nonlinear mul-

ticommodity network flows. European Journal of Operational Research, 92(1):37–

53, 1996.

[12] T.G. Crainic, A. Frangioni, and B. Gendron. Bundle-based Relaxation Methods

for Multicommodity Capacitated Fixed Charge Network Design Problems. Dis-

crete Applied Mathematics, 112:73–99, 2001.

[13] George B Dantzig, Alex Orden, and Philip Wolfe. The generalized simplex method

for minimizing a linear form under linear inequality restraints. Pacific Journal of

Mathematics, 5(2):183–195, 1955.

[14] George B Dantzig and Philip Wolfe. Decomposition principle for linear programs.

Operations Research, pages 101–111, 1960.

[15] George B Dantzig and Philip Wolfe. The decomposition algorithm for linear

programs. Econometrica: Journal of the Econometric Society, pages 767–778,

1961.

[16] O. du Merle, J.-L. Goffin, and J.-P. Vial. On Improvements to the Analytic Center

Cutting Plane Method. Computational Optimization and Applications, 11(1):37–

52, 1998.

[17] Jr. Ford, L. R. and D. R. Fulkerson. A suggested computation for maximal multi-

commodity network flows. Management Science, 5(1):pp. 97–101, 1958.

[18] LR Ford Jr, DR Fulkerson, and Arthur Ziffer. Flows in networks. Physics Today,

16:54, 1963.

[19] A. Frangioni. Dual-Ascent Methods and Multicommodity Flow Problems. PhD

thesis, TD 5/97, Dipartimento di Informatica, Università di Pisa, Pisa, Italy,

1997.

[20] A. Frangioni. Generalized Bundle Methods. SIAM Journal on Optimization,

13(1):117–156, 2002.

[21] A. Frangioni and G. Gallo. A Bundle Type Dual-Ascent Approach to Linear

Multicommodity Min Cost Flow Problems. INFORMS Journal on Computing,

11(4):370–393, 1999.

[22] A. Frangioni and B. Gendron. A Stabilized Structured Dantzig-Wolfe Decompo-

sition Method. Mathematical Programming, to appear, 2013.

[23] A. Frangioni and C. Gentile. Experiments with a Hybrid Interior Point/Combina-

torial Approach for Network Flow Problems. Optimization Methods and Software,

22(4):573 – 585, 2007.

BIBLIOGRAPHY 49

[24] A. Frangioni and E. Gorgone. Generalized Bundle Methods for Sum-Functions

with “Easy” Components: Applications to Multicommodity Network Design.

Mathematical Programming, to appear, 2014.

[25] A. Frangioni, A. Lodi, and G. Rinaldi. New Approaches for Optimizing Over the

Semimetric Polytope. Mathematical Programming, 104(2-3):375–388, 2005.

[26] A. Frangioni and A. Manca. A Computational Study of Cost Reoptimization for

Min Cost Flow Problems. INFORMS Journal on Computing, 18(1):61–70, 2006.

[27] Matthew Galati. Decomposition methods for integer linear programming. Lehigh

University, 2010.

[28] Gerald Gamrath and Marco E Lübbecke. Experiments with a generic dantzig-wolfe

decomposition for integer programs. In Experimental algorithms, pages 239–252.

Springer, 2010.

[29] Arthur M Geoffrion. Generalized benders decomposition. Journal of optimization

theory and applications, 10(4):237–260, 1972.

[30] J.-L. Goffin and J.-P. Vial. Convex Nondifferentiable Optimization: a Survey

Focussed on the Analytic Center Cutting Plane Method. Optimization Methods

and Software, 17(5):805–867, 2002.

[31] Andrew V Goldberg and Michael Kharitonov. On implementing scaling push-

relabel algorithms for the minimum-cost flow problem. Network Flows and Match-

ing: First DIMACS Implementation Challenge, 12:157–198, 1993.

[32] Donald Goldfarb and Michael D Grigoriadis. A computational comparison of the

dinic and network simplex methods for maximum flow. Annals of Operations

Research, 13(1):81–123, 1988.

[33] J. Gondzio, P. González-Brevis, and P. Munari. New Developments in the Primal-

dual Column Generation Technique. Technical Report ERGO-11-001, School of

Mathematics, The University of Edinburgh, 2011.

[34] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algo-

rithms I—Fundamentals, volume 306 of Grundlehren Math. Wiss. Springer-Verlag,

New York, 1993.

[35] TC Hu. Multi-commodity network flows. Operations Research, 11(3):344–360,

1963.

[36] K.L. Jones, I.J. Lustig, J.M. Farwolden, and W.B. Powell. Multicommodity Net-

work Flows: The Impact of Formulation on Decomposition. Mathematical Pro-

gramming, 62:95–117, 1993.

50 BIBLIOGRAPHY

[37] Jeff L Kennington. A survey of linear cost multicommodity network flows. Oper-

ations Research, 26(2):209–236, 1978.

[38] K.C. Kiwiel. A Bundle Bregman Proximal Method for Convex Nondifferentiable

Optimization. Mathematical Programming, 85:241–258, 1999.

[39] Torbjörn Larsson and Di Yuan. An augmented lagrangian algorithm for large

scale multicommodity routing. Computational Optimization and Applications,

27(2):187–215, 2004.

[40] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods.

Mathematical Programming, 69:111–147, 1995.

[41] C. Lemaréchal, A. Ouorou, and G. Petrou. A Bundle-type Algorithm for Routing

in Telecommunication Data Networks. Computational Optimization and Applica-

tions, 44(3):385–409, 2009.

[42] Claude Lemaréchal and Robert Mifflin. Nonsmooth optimization, volume 3. Perg-

amon Press Oxford, UK, 1978.

[43] John W Mamer and Richard D McBride. A decomposition-based pricing proce-

dure for large-scale linear programs: an application to the linear multicommodity

flow problem. Management Science, 46(5):693–709, 2000.

[44] R. E. Marsten, W. W. Hogan, and J. W. Blankenship. The boxstep method for

large-scale optimization. Operations Research, 23(3):pp. 389–405, 1975.

[45] S THOMAS MCCORMICK and LI LIU. An experimental implementation of the

dual cancel and tighten algorithm. Network Flows and Matching: First DIMACS

Implementation Challenge, 12:247, 1993.

[46] A. Ouorou. A Proximal Cutting Plane Method Using Chebychev Center for Non-

smooth Convex Optimization. Mathematical Programming, 119(2):239–271, 2009.

[47] A. Ouorou. The Proximal Chebychev Center Cutting Plane Algorithm for Convex

Additive Functions. Mathematical Programming, to appear, 2013.

[48] JA Tomlin. Minimum-cost multicommodity network flows. Operations Research,

14(1):45–51, 1966.

[49] Bernard M Waxman. Routing of multipoint connections. Selected Areas in Com-

munications, IEEE Journal on, 6(9):1617–1622, 1988.

[50] Roman L Weil and Paul C Kettler. Rearranging matrices to block-angular form

for decomposition (and other) algorithms. Management Science, 18(1):98–108,

1971.

Chapter 3

Solving the optimum system

traffic assignment problem for

Personal Rapid Transit networks

using the Frank-Wolfe algorithm1

3.1 Introduction

Personal Rapid Transit (PRT) is a novel form of fully automated, guided, public trans-

portation. With PRT, up to 6 persons travel in small, individually controlled and

electrically driven vehicles on an exclusive network of narrow guideways. Vehicles are

available at stations on-demand and trips can be booked individually, similar to a taxi.

Stations are usually off-line as to allow a non-stop trip between origin and destination.

On-vehicle switching and globally-controlled routing allows such systems to operate as

true, seamless networks, without the need to transfer. PRT may provide a genuine al-

ternative to the private car as individual passengers or small groups can travel together

by choice in a private atmosphere and in seated comfort.

From the user’s perspective, PRT is accessible at dedicated stations. Destination

selection and ticket purchase is done at stations (or beforehand through the Internet).

At the station, either vehicles are already available or the system routes empty vehicles

to a station, on demand. Once a vehicle becomes available, the passenger enters

and reaches his/her destination non-stop. As soon as the vehicle is cleared at the

destination, it will be re-used if passengers are present; otherwise, empty vehicles are

routed to stations with passengers or to a nearby depot.

1Technical Report “Solving the optimum system traffic assignment problem for Personal Rapid
Transit networks using the Frank-Wolfe algorithm”, J. Schweizer, T. Parriani, E. Traversi, F. Rupi,
Tech. Rep. DEI, OR-13-17.

51

52
Chapter 3 Solving the optimum system traffic assignment problem for Personal

Rapid Transit networks using the Frank-Wolfe algorithm

Even though the concepts of PRT have been known since the 60’s, it took until 2010

before the first two small-scale PRT systems became operational: the 2getthere PRT

in Masdar, Abu Dhabi, UEA and the ULTra PRT at terminal 5 at Heathrow airport,

London, UK. In Suncheon Bay, south Korea, Vectus-PRT is expected to open a 40km

long track by fall 2013.

The analyses of PRT networks have been mainly performed by micro-simulators which

mimic the movement of individual vehicles and users [8, 18, 17]. Also conventional

static traffic assignment methods have been used in studies, such as the all-or-nothing

assignment, see [7] for an overview of traffic assignment methods.

However, the traffic assignment for PRT must take into account the specific character-

istics of a PRT system: (i) PRT systems require an occupied vehicle routing and an

empty vehicle routing. The occupied vehicle management (OVM) routes the vehicles

from origin to destination along the fastest route and the empty vehicle management

(EVM) counterbalances the full vehicle flows while minimizing trip times. (ii) As both

vehicle managements are centralized it is legitimate to assume a system optimal so-

lution for the vehicle routing in case the managements have a priori information of

the transport demand and the demand is uniformly distributed over a considered time

interval. This means, the total travel time of all trips of both, empty and full vehicles,

can be minimized. (iii) In general, the travel time over a transport link depends on the

vehicle flow, similar to road traffic. If the vehicle flow on a link is far below the capacity

limit then vehicles do not interact and run at the line-speed limit. But approaching

the capacity limit, the PRT vehicles will try to maintain a minimum safe distance,

that is the distance necessary to stop without colliding with the vehicle in front, which

is braking at a predefined maximum failure deceleration rate.

Note that the proposed traffic assignment will find the optimal traffic flows of a PRT

network by minimizing the total travel time, while taking into account the reuse of all

vehicles (no parking space required) and the flow-dependent, physically minimum trip

time on each link.

The assumption that the entire transport demand is a priori known and uniformly

distributed is idealistic because neither the destination nor the exact departure time

is a priori known. In a running PRT system, the routing is performed in real time,

when the passenger decided to travel and communicates its destination to the system.

However, for planning purposes and in particular during the network design process,

the static traffic assignment is a useful tool as it quickly identifies bottlenecks and

estimates the minimum number of required vehicles, which is a significant costs factor.

Once the network topology is identified the performance needs to be verified by micro-

simulations. It has been shown that random arrival times and real-time routing of

a microscopic simulation increase the empty vehicle flows with respect to the static

traffic assignment [19].

Chapter 3 Solving the optimum system traffic assignment problem for Personal
Rapid Transit networks using the Frank-Wolfe algorithm 53

In literature a large number of deterministic and stochastic assignment methods is

known that could be adapted to assign the traffic of full and empty vehicles to a PRT

network. As for instance the probabilistic assignment methods described in [15, 16]

model the temporal and spacial occupation of resources as Markovian random pro-

cesses. In theory, this framework would be ideally suited for a transport network that

is “driven” by a random demand. But there are very high dimensions and conver-

gence problems for larger networks, in particular when loaded at capacity limits, see

discussion in [19]. The optimization model by [17] has been developed to determine

the total minimum static empty vehicle flows on a PRT network for a given constant

demand. The authors were interested in determining the maximum transport demand

that a PRT network can absorb with a limited number of vehicles. But the flows and

capacity limits on single links have not been taken into consideration, see [19].

The PRT traffic assignment model used in this chapter has been formulated in [19, 13].

It is a model that minimizes total travel time for empty and occupied vehicle trips and

is fast to resolve in case of uncongested networks, using constant trip times (or fixed

link costs) for all network links. In order to verify the feasibility of the results, the

assigned link flows can be compared against the maximum possible flow at a fixed line

velocity. However, this assignment methods does not take into account that physically

possible flow on a link can vary with the velocity.

In the present work we propose an extension to the assignment problem described in [19]

for the case of a congested network, where vehicles try to maintain a minimum safe

distance: a central control can route more vehicles through particular links in order to

shorten the path for many origin-destination-pairs, but at the cost of decreasing vehicle

speed and increases travel time due to congestion effects. We solve this trade-off by

using the so called “system optimal” assignment method, following the second principle

of Wardop [1]. While this assignment method has been used to calculate optimal tolls

for road networks, here the link-costs (i.e travel time) are solely determined by the

maximum line-speeds and flow-dependent line speeds of the network links. In contrast

with the toll system for road vehicles, where link-flows can be reduced by increasing

their respective monetary costs [3, 4, 5, 6], in a fully automated system the flows can

be imposed by the centralized routing. The changing link costs, due to a change in

flow-dependent link velocities, is therefore a consequence, and not the cause.

We show that this approach is indeed suitable to minimize the total travel time of all

passengers by exploiting the physical capacities limits of the network. The resulting lin-

ear programming (LP) problem can then be solved with the Frank-Wolfe algorithm [2]

as suggested in [7].

In the next section we derive the cost function of a PRT link where vehicles run at a

minimum safe distance, define the linear programming model (LP model) of the as-

signment and present the Frank Wolfe algorithm used to solve the specific LP problem.

54
Chapter 3 Solving the optimum system traffic assignment problem for Personal

Rapid Transit networks using the Frank-Wolfe algorithm

Section 3.3 shows the results of traffic assignments to different networks and in partic-

ulate demonstrates the convergence speed of the proposed algorithm . In Sec. 3.4 we

summarize the main findings of this work and comment the advantages and limits of

the proposed methods.

3.2 Methodology

In this section we develop first the flow dependent function of the link travel times

before presenting the LP model and the modified Frank Wolfe algorithm, including

the prove of convergence.

3.2.1 Link costs with minimum safe distance spacing

If the automatically controlled vehicles are able to maintain a minimum safe distance in

all situations then the vehicle flows on a link can reach the physical link capacity. Here

we will derive the link cost, which is the time that it takes a vehicle to cross a link while

maintaining a minimum safe distance to the vehicle in front. As intermediate step we

determine first the speed as a function of the link flow. Thereafter we calculate the

exact travel time and finally we approximate it with a piecewise linear cost function

which will be used in the traffic assignment model. Two successive vehicles keep a

minimum safe distance if the follower vehicle can stop without collision, even if the

preceding vehicle stops instantly.

This condition is often referred to as the “brick wall stopping criteria”. Assuming a

break actuation delay time τ , an emergency brake deceleration aE and a vehicle of

length L running at speed v, then this condition is satisfied if the nose-to-nose time

headway is greater than τ + v
2aE

+ L
v . Given this minimum time interval, the speed

dependent vehicle flow f(v) in vehicles per second becomes

f(v) =
1

L
v + v

2a + τ
. (3.1)

The link-capacity q is the maximum flow at the critical speed v = vcrit =
√

2aEL,

hence

q = f(vcrit) =
1

τ +
√

2L
aE

.

The lower bound of the vehicle speed is v > vcrit, because lower velocities would cause

instabilities in the traffic flow which can lead to still stands. Solving Eq. 3.1 for v > vcrit

Chapter 3 Solving the optimum system traffic assignment problem for Personal
Rapid Transit networks using the Frank-Wolfe algorithm 55

we obtain

v(f) =
1

f

(√
−2aE f2 L+ a2

Ef
2 τ2 − 2a2

Ef τ + a2
E − aEfτ + aE

)
. (3.2)

The upper velocity bound is given by the maximum line speed Va allowed on link a.

Finally the link cost ĉa(fa) to cross a link of length la with a uniform maximum velocity

Va and a link flow of fa is given by

ĉa(fa) =

la

Va
for fa ≤ f(Va)

la

v(fa)
for fa > f(Va)

(3.3)

with f(·) from Eq. 3.1 and v(·) from Eq. 3.2. Note that the maximum velocity on a

link is not necessarily uniform, for example in presence of sharp curves. Such details

can be taken into consideration by using an average link velocity or by splitting the

link by inserting additional nodes. An example cost function with realistic vehicle- and

link parameters is shown in Fig. 3.1.

0 500 1000 1500 2000
Link flow fa [veh/h]

0

50

100

150

200

250

Tr
av

el
co

st
[s

]

pa qa

βa

γa

ĉa(fa)

ca(fa)

Figure 3.1: Exact link costs ĉa(fa) and piecewise linear link costs ca(fa) versus link
flow fa for link a of length la = 1000m and a maximum line-velocity of Va = 40km/h.
The vehicle parameters are: τ = 0.50s, aE = 3.00m/s2, L = 3m the critical speed
vcrit = 15.27km/h, the capacity q = 1880veh/h. For this set of parameters the
constants characterizing the piecewise linear function are pa = 1373veh/h, qa =

1880veh/h, βa = 90s and γa = 235s.

The piecewise-linear approximation ca(fa) of the cost function ĉa(fa) can be con-

structed by using the vehicle flow at line speed as break point pa and the capacity

56
Chapter 3 Solving the optimum system traffic assignment problem for Personal

Rapid Transit networks using the Frank-Wolfe algorithm

qa as upper flow limit. With pa = f(Va), qa = f(vcrit), βa = la/Va, γa = la/vcrit the

bilinear cost function can be defined as

ca(f) =

βa for fa ≤ pa

βa +
γa − βa
qa − pa

(fa − pa) for fa > pa

(3.4)

See again Fig. 3.1 for comparing the approximation ca(fa) with exact solution ĉa(fa).

For sake of conciseness, we introduce inclination εa of the congested part:

εa =
γa − βa
qa − pa

.

In reality, if vehicle flows exceed qa then the traffic would collapse into a traffic jam,

corresponding to a cost that tends to infinity. However, the bi-linear function in Eq. 3.4

would result in a proportional increase of travel time.

3.2.2 Bilinear programming model

Here we recall the system optimum bilinear programming model as reported in [19]. As

previously mentioned, the vehicle flows on the links are found by minimizing the trip

time of all passengers, taking into account the empty- and occupied vehicle flows as

well as the link costs derived in Sec. 3.2.1. The proposed mathematical programming

model for the the centralized occupied- and empty vehicle routing must satisfy the

following conditions:

• The full vehicles flows must be assigned such that a given demand between each

origin-destination pair of the network is satisfied.

• The full vehicle flow must be counterbalanced by an empty vehicle flow.

For the latter we add in each station vehicles-flow conservation constraints by defining

a fictitious demand of empty vehicles for each station. This fictions demand represents

the algebraic difference between the number of exiting and entering full vehicles at each

station, modeled as network nodes with demand. Then we ensure the flow-equilibrium

by adding a multi-origin/multi-destination empty vehicle flow to the model.

The transport problem is defined as follows: Let G = (V,A) be the directed network

graph where V and A are the sets of PRT network nodes and links, respectively.

Each link a = (i, j) ∈ A is associated with the bilinear travel cost function ca. Let

S ⊂ V be the sub-set of nodes associated with stations and let R ⊆ V × V be a set

Chapter 3 Solving the optimum system traffic assignment problem for Personal
Rapid Transit networks using the Frank-Wolfe algorithm 57

of routes r = (sr, tr) ∈ R, each represented by the pairs of station nodes. The total

travel demand within the observation period are D trips and dr is called the fractional

demand, representing the number of passengers traveling from origin sr to destination

tr along route r, such that D =
∑

r∈R dr.

We now define Dres
i as the residual demand of node i defined as follows:

Dres
i =

∑
r∈R:sr=i

dr −
∑

r∈R:tr=i

dr, ∀i ∈ V (3.5)

where Dres
i > (<)0 means that there is a demand (surplus) of vehicles in node i. Let

us further introduce the variable yra, representing the fractional part of the flow on

route r using link a. The occupied vehicle flow on link a is the sum of all fractional

flows yra multiplied by the route demand dr. The total vehicle flow fa on link a is the

sum of of the occupied vehicle flow and the empty vehicle flow wa, thus

fa =
∑
r∈R

(dry
r
a) + wa . (3.6)

It can be shown that the number of vehicles N on the network which is necessary to

serve a particular demand D is determined by

N =
∑
a∈A

ca(fa)fa .

The objective function used in the system-optimum (SO) bilinear programming model

represents the total costs, the travel time of all full and empty vehicles:

min
∑

a∈A cafa (3.7)

∑
a∈δ+(i) y

r
a −

∑
a∈δ−(i) y

r
a =

1 if i = sr

−1 if i = tr

0 otherwise

, ∀i ∈ V,∀r ∈ R (3.8)

∑
a∈δ+(i)wa −

∑
a∈δ−(i)wa = Dres

i , ∀i ∈ V (3.9)∑
r∈R d

ryra + wa = fa, ∀a ∈ A, (3.10)

ca ≥ βa + εa(fa − pa), ∀a ∈ A (3.11)

ca ≥ βa, ∀a ∈ A (3.12)

ca ≤ γa, ∀a ∈ A (3.13)

wa, ca, fa ≥ 0 ∀a ∈ A (3.14)

yra ≥ 0, ∀a ∈ A,∀r ∈ R (3.15)

The constraints (3.8) (resp. (3.9)) guarantee flow conservation of full (rep. empty)

vehicles. Constraints (3.11) and (3.12) are used to describe the function (3.4) and

constraints (3.13) fix the upper bound for ca, as derived in Sec. 3.2.1.

58
Chapter 3 Solving the optimum system traffic assignment problem for Personal

Rapid Transit networks using the Frank-Wolfe algorithm

This bilinear representation is typical in operational research and it is useful to develop

Linear Programming based Heuristic methods. But the problem can be rewritten and

solved via the reduced gradient method of Frank and Wolfe as shown below.

3.2.3 Solution method: Frank Wolfe algorithm

The (continuous) bilinear problem (3.7)-(3.15) can be solved directly by a generic solver

for non linear continuous problems, like IPOPT[23]. Preliminary tests showed that our

method is drastically better and allows to quickly solve the instances studied. In order

to solve them to optimality we exploit the following property:

Observation 1. Problem (3.7)-(3.15) is a convex problem (i.e. the objective function

is convex over the feasible region).

Proof. the statement can be proven by showing that every component cafa is convex

over the feasible region defined by the constraints (3.8)-(3.15).

Each term ca is the maximum value among the two values given by βa and βa+εa(fa−
pa). Because fa is non-negative, we can rewrite

cafa = max{βafa, εaf2
a + (βa − εapa)fa} .

The first term is linear and hence convex. Also the second term is convex because

εa is non-negative. This allows to conclude that also cafa is convex, because it is the

maximum of two convex functions.

Observation 1 allows us to use a Frank-Wolfe (FW) algorithm [2] for solving the above

stated SO assignment problem: For each iteration n of the FW algorithm the flows fna
and costs cna are determined. As n → ∞ the flows fna converge to the optimal solu-

tion, minimizing (3.7), while satisfying the constraints (3.8)-(3.15). The initialization

(step 0) and iteration n (steps 1-4) are as follows:

Step 0: Set iteration counter n = 0. Set upper bound UB = +∞ and scale parameter

λ0 = +∞.

Compute an initial feasible solution (f0
a , c

0
a) which can be done efficiently by

fixing c0
a = βa and solving the linear problem (3.7)-(3.10), (3.14)-(3.15). This is

equivalent to performing an all-or-nothing assignment, assuming an uncongested

network (all flows fa < pa).

Step 1: Updating the best solution obtained so far: UB =
∑

a∈A c
n
af

n
a .

Compute the first order approximation of the objective function in (cna , f
n
a), see

note 2, and if it is equal to zero then STOP.

2Note that the first order approximation of the function
∑
a∈A cafa in the point (c∗a, f

∗
a) corresponds

to
∑
a∈A c

∗
a f
∗
a +

∑
a∈A (c∗afa + f∗a ca) .

Chapter 3 Solving the optimum system traffic assignment problem for Personal
Rapid Transit networks using the Frank-Wolfe algorithm 59

If λn = 0 then STOP.

Set n = n+ 1.

Step 2: Use the first order approximation of the objective function of the previous

iteration fn−1
a and cn−1

a as objective function of the following approximated prob-

lem:

min
∑

a∈A c
n−1
a fa + fn−1

a ca (3.16)

(3.8)− (3.15) .

Note that problem (3.16),(3.8)-(3.15) is a multi-commodity flow problem and

hence can be solve with ad-hoc algorithm, in addition to using a generic LP

solver. At this step the optimal solution to problem (3.16), (3.8)-(3.15) gives

also a valid lower bound to the optimal solution. Let LB be this bound, at each

iteration we can hence compute the open gap remained:

Gap = 100× UB − LB
UB

.

Step 3: Let (cnaf
n
a) be the optimal solution to problem (3.16),(3.8)-(3.15), find the

optimum step length λn by solving the problem

λn = min
0≤λ≤1

∑
a∈A

(cn−1
a + λ(cna − cn−1

a))(fn−1
a + λ(f

n
a − fn−1

a)) . (3.17)

Solving problem (3.17) corresponds to optimize the original objective function

over the segment joining the two points (cnaf
n
a) and (cn−1

a fn−1
a). Since the feasible

region is a convex space, this means that all the points in the segment are feasible,

which in turn reduces problem (3.17) to solve a second degree polynomial, which

can be done analytically.

Step 4: Set cna = cn−1
a + λ(ca − cn−1

a), fna = fn−1
a + λ(fa − fn−1

a) and go to Step 1.

3.3 Computational Experiments

3.3.1 Instances description

The assignment algorithm has been applied to two network instances, Köln and the

central district of Portland. The two cities have been chosen because they represent

two different network topologies, and it has been interesting how the SO assignment

distributes the flows in both cities. Portland has an almost regular street grid as it is

typical for US cities, while the Köln graph is irregular as it represents a historically

grown European city. The transport graph of both cities has been extracted from the

60
Chapter 3 Solving the optimum system traffic assignment problem for Personal

Rapid Transit networks using the Frank-Wolfe algorithm

major road network of each city using OpenStreet as data source. The OSMOSIS pack-

age has been employed to extract the main streets subgraph and SUMO (Simulation

of Urban Mobility) generated the the directional transport network graph.

The link speeds have been assumed to be the same as speed limits for cars (taken from

Openstreet data), the demand has been assumed to be uniform between randomly

selected origins and destinations. Table 3.1 summarizes the information about the

instances used: The Köln graph hae 1039 links and 558 nodes, while the much smaller

Portland graph has only 355 links and 190 nodes. In order to simulate different net-

work saturation levels, three sets of (uniform) demand-levels have been tested for each

network instance. In absents of realistic information on the travel demand and in order

to test the assignment for different demand scenarios, we have generated OD demand

matrix in the following way: first the OD-pairs have been randomly selected from the

set of all nodes of each graph. Then, a constant number of D trips between all selected

OD-pairs has been assumed in order to mimic different demand levels.

In particular, the demand levels have been adjusted as to obtain a reasonable mix of

links with congested and non-congested links.

Instance OD Pairs D

KOLN-162-50 162 50
KOLN-307-65 307 65
KOLN-1578-10 1578 10
PORT-361-50 361 50
PORT-1803-10 1803 10
PORT-3583-5 3583 5

Table 3.1: Instances characteristics.

3.3.2 Implementation of algorithm

We implemented the algorithm described in Section 3.2.3 in C++. In order to obtain the

first feasible solution needed in Step 0, a minimun-cost linear Multi-Commodity Flow

(MCF) problem is solved using the well known Dantzig-Wolfe decomposition approach,

together with column generation (see e.g. [20, 21, 22]) where CPLEX 12.5 is used to

solve both, the reduced master problem and the pricing problem. We use CPLEX 12.5

also to solve problem (3.16), (3.8)-(3.15). We have been running the algorithm on a

computer with Intel R© Pentium R© 4, with 3.20GHz and 2GB of RAM, single core.

In Table 3.2 and Table 3.3 the obtained results are analyzed in more detail. We report

the values of the best solution (”UB”), open Gap at each iteration and the cumulative

computational time. The row corresponding to the iteration ”0” reports the results

obtained after solving the initial MCF problem.

Chapter 3 Solving the optimum system traffic assignment problem for Personal
Rapid Transit networks using the Frank-Wolfe algorithm 61

KOELN-162-50 KOELN-307-65 KOELN-1578-10
It. UB Gap % Time [s] UB Gap % Time [s] UB Gap % Time [s]

0 9905.8 1.5 49050.6 9.2 27131.3 27.6
1 9298.5 32.49 19.2 41158 45.45 562.7 18489.1 53.85 10845.7
2 7884.2 9.57 21.7 34984.2 6.2 590.7 17150.2 6.54 11240.9
3 7725.5 0.26 23.9 34635.1 3.3 606.8 16646.4 4.03 11397.9
4 7720 0.2 24.9 34169.5 0.41 620.3 16576.1 0.83 11518.7
5 7717.8 0.06 25.5 34158.5 0.38 630.7 16541.8 0.18 11593.1
6 - - - 34152.8 0.14 633 16535.2 0.21 11679.1
7 - - - 34146.8 0.07 637.5 16528.8 0.02 11721.5

Table 3.2: Köln Network, computational results.

PORT-361-50 PORT-1803-10 PORT-3583-5
It. UB Gap % Time [s] UB Gap % Time [s] UB Gap % Time [s]

0 4441.1 2.6 3129.8 13 3205.4 26.6
1 3831.9 88.61 59 2645.1 77.77 894.2 2687.5 81.02 4177.6
2 2739.2 34.21 70.7 1958.7 31.98 1099 1965.2 33.56 5012.8
3 2635.2 24.99 80.8 1792 4.21 1261.7 1789.3 4.42 5650.1
4 2341.9 6.73 86.9 1775.8 3.25 1393.4 1775.4 3.2 6066
5 2326.2 2.12 91.4 1769.6 0.7 1488.8 1766.4 0.64 6344
6 2319.5 0.68 93.9 1767.9 0.66 1553.1 1764.8 0.8 6586.6
7 2316.2 0.58 96.2 1766.9 0.23 1581 1763.8 0.18 6732.5
8 2314.5 0.35 98 1766.3 0.28 1603.6 1763.5 0.16 6875.8
9 2313.5 0.2 99.4 1765.7 0.15 1633.9 1763.2 0.09 7002.1
10 2312.6 0.19 101 1765.6 0.15 1666.8 - - -
11 2312.3 0.13 102 1765.4 0.08 1691.2 - - -
12 2312.2 0.08 103.1 - - - - - -

Table 3.3: Portland Network, computational results.

In each column of Figure 3.2, ”Init” represents the amount of time spent to find the

first feasible solution in Step 0. ”It.1” and ”It.s>1” represent, respectively, the amount

of time spent for the first iteration of the Frank Wolfe algorithm and the amount of

time spent for all successive iterations. Times are reported in percentage of the total

time required to solve the problem.

It is easy to see that the first iteration of the Frank Wolfe algorithm is the most critical

one, both in terms of gap reduction and in terms of computational time.

The strong improvement in the first iterations is typical for a first order method like

Frank Wolfe algorithm. On the other hand, it is more interesting to analyze the time

needed or solving each iteration. The complexity of each iteration is always the same

and can be reduced to solve the problem (3.16),(3.8)-(3.15) with a generic LP solver.

The difference in terms of time can be explained by the fact that starting from the

second iteration, only the objective function (3.16) changes (accordingly to the new first

order approximations), which enables the re-optimization of the LP solver to be more

effective after the first iteration. Additional tests show clearly that after deactivating

the pre-solver this advantage in terms of computing time disappears, showing a more

balanced, but slower behavior .

62
Chapter 3 Solving the optimum system traffic assignment problem for Personal

Rapid Transit networks using the Frank-Wolfe algorithm

0.87 0.923
0.245 0.116 0.075 0.428 0.471 0.4030.058 0.014 0.002 0.025 0.008 0.004

% of total tim
e

It. 1 It.s >1 Init

0.697 0.87 0.923 0.547 0.521 0.593
KEOLN-162-50 KEOLN-307-65 KEOLN-1578-10 PORT-361-50 PORT-1803-10 PORT-3583-5

% of total tim
e

Figure 3.2: Percentage of total time spent for providing the first feasible solution,
for running the first iteration of the Frank Wolfe algorithm and for running all the

other iterations.

Finally, Table 3.4 shows the percentage of congested links (i.e. with fa > pa) for each

iteration. The non negligible share of saturated links means that many demand flows

from origin to destination have been effectively split into one or more route flows.

Iteration 1 2 3 4 5 6 7 8 9 10 11 12
KOELN-162-50 5.1 5.1 3.3 3.6 3.6 - - - - - - -
KOELN-307-65 19.6 14.9 15.2 14.1 15.3 15.3 15.4 - - - - -
KOELN-1578-10 10.8 10.1 10.3 10.8 9.8 10.3 10.1 - - - - -
PORT-361-50 69.1 51.1 62.1 51.1 62.8 65.9 62.1 63.6 63.6 63.6 62.8 63.6
PORT-1803-10 54.4 46.1 38.7 53 56.4 57.1 57.8 59.2 59.2 59.2 59.2 -
PORT-3583-5 51.1 47.3 35.5 53.7 59.2 56.4 56.4 57.1 57.1 - - -

Table 3.4: Percentage of congested links by iteration for both networks.

3.4 Conclusions

The particular requirements of a system optimal traffic assignment for PRT networks

has been motivated and specified. A Bi-linear programming problem and algorithm has

been proposed to assign traffic flows in a PRT network, taking into account the occupied

and empty vehicle flows as well as the minimum safe headways vehicle control policy.

As the PRT control is centralized, the system optimum traffic assignment minimizes

the travel time of both, empty and occupied vehicles.

The convergence of the algorithm has been demonstrated analytically. The algorithm

has been evaluated with two city-wide PRT network instances in terms of convergence

and computing time. The algorithm allows for an optimal and rapid traffic assignment

Chapter 3 Solving the optimum system traffic assignment problem for Personal
Rapid Transit networks using the Frank-Wolfe algorithm 63

which is useful for the network design. Furthermore it allows to determine the minimum

number of vehicles necessary to generate the optimum flows and satisfy a given demand.

There are more potential applications for the proposed algorithm: it can be used to

optimize the topology or graph orientation of large scale PRT networks as proposed

in [13]. The traffic assignment could also be used as flow predictor in a closed loop

real time vehicle-management system in order to optimize the dispatching of vehicles.

Bibliography

[1] Wardop, J.G., Some theoretical aspects of road traffic research. Proc. Inst. Civ.

Eng. 2:325-378.

[2] Frank H. and Wolfe P. (1956). An Algorithm for quadratic programming, Naval

Research Logistics Quarterly, 3 (1956), pp. 95-110.

[3] Beckmann M.J. (1965). On optimal tolls for highways, tunnels and bridges Vehic-

ular Traffic Science, American Elsevier, New York (1965), pp. 331-341.

[4] Dafermos S.C. and Sparrow F.T.(1971). Optimal resource allocation and toll pat-

terns in user-optimized transportation network Journal of Transportation Eco-

nomics and Policy, 5 (1971), pp. 198-200.

[5] Sheffi Y. (1985). Urban Transportation Networks: Equilibrium Analysis with

Mathematical Programming Methods Prentice-Hall, Englewood Cliffs, NJ (1985)

[6] Yang H., Huang H.J. (1998). Principle of marginal-cost pricing: How does it work

in a general network? Transportation Research, 32A (1998), pp. 45-54

[7] Cascetta E (2001). Transportation systems engineering: theory and methods.

Kluwer Academic Publisher

[8] Andréasson, I (1994). Vehicle Distribution in Large Personal Rapid Transit Sys-

tems. Transportation Research Record, No. 1451, pp 95-99, Transportation Re-

search Board, Washington, D.C.

[9] Kaspi, M. and Tanchoco, J.M.A. (1990). Optimal flow path design of unidirec-

tional AGV systems. International Journal of Production Research, 28, 1023-1030.

[10] Langevin, A., Riopel, D., Savard G., Bachmann, R. (2004). A multi-commodity

network design approach of automated guided vehicle systems. INFOR, Vol 2, 2,

113-123.

[11] Benders, J.F. (1962). Partitioning procedures for solving mixed variables program-

ming problems. Num. Math, 4, 238-252.

[12] Magnanti, T.L., Mireault, P., Wong, R.T.(1986) Tailoring Benders domposition

for uncapacitated network design. Mathematical Programming Study 26, 112-154

65

66 BIBLIOGRAPHY

[13] Traversi, E, Caprara, A, Schweizer, J (2009). An Application of Network Design

with Orientation Constraints. In: Proceedings of the 7th Cologne-Twente Work-

shop on Graphs and Combinational Optimization. Gargnano, Italy, 13-15 May

2008, s.l: s.n, p. 16 - 21

[14] Danesi, A, Lupi, M, Rudi, A, Rupi, F, Schweizer, J, (2009) Economical feasibility

study of a Personal Automated Transport for leisure, holidays and special events.

In SIDT 2009, International Conference, Milano, Italy, 29/30 June 2009.

[15] Spivey M.Z, Powell W.B, The Dynamic Assignment Problem, TRANSPORTA-

TION SCIENCE, Vol. 38, No. 4, November 2004, pp. 399-419

[16] Anil Y., Kaan O., Evacuation Network Modeling via Dynamic Traffic Assignment

with Probabilistic Demand and Capacity Constraints, Journal of the Transporta-

tion Research Board, No. 2196, pp 11-20, ISSN: 0361-1981

[17] Lees-Miller J.D, Hammersley J.S, Wilson R.E, Theoretical Maximum Capacity

as a Benchmark for Empty Vehicle Redistribution in Personal Rapid Transit,

Journal of the Transportation Research Board, No. 2146, pp 76-83, Transportation

Research Board, ISSN: 0361-1981

[18] Koskinen K., Luttinen T., Kosonen I., Developing a microscopic simulator for per-

sonal rapid transit (PRT) systems, Transportation Research Board 86th Annual

Meeting, Washington, D.C., 2007

[19] Schweizer J., Danesi A., Rupi F., Comparison of static vehicle flow assignment

methods and microsimulations for a personal rapid transit network, J. Adv.

Transp. 2012; 46:340-350

[20] Tomlin J. A., Minimum-Cost Multicommodity Network Flows. Operations Re-

search, 1966, 45-51.

[21] Lübbecke M. E., Desrosiers J., Selected topics in column generation. Operations

Research, 2005, 53.6: 1007-1023.

[22] Frangioni A., Gallo G., A bundle type dual-ascent approach to linear multicom-

modity min-cost flow problems. INFORMS Journal on Computing, 1999, 11.4:

370-393.

[23] Wächter, A., Biegler, L. T., On the implementation of an interior-point filter

line-search algorithm for large-scale nonlinear programming. Mathematical Pro-

gramming, 2006, 106.1: 25-57.

Chapter 4

Single-commodity Robust

Network Design Problem:

Complexity, Instances and

Heuristic Solutions1

4.1 Introduction

Network design problems arise in many different areas, such as transportation and

telecommunication. Recently, the class of robust network design problems has received

increasing attention. The term robust can represent the capability of the network to

cope with disruptions or to deal with different traffic scenarios in different times of the

day, as is the case of our work.

We study the single-commodity Robust Network Design problem (RND) defined as

follows. We are given an undirected graph G = (V,E), a cost vector (ce) (e ∈ E) and

an integer balance matrix B = (bqi) (i ∈ V , q = 1, . . . ,K). The q-th row bq of B is

called the q-th scenario.

For a given scenario, we call a node with nonzero balance a terminal. More specifically,

a node i with positive balance is called a source and we call the balance of i its supply.

A node with negative balance is called a sink and its balance is called demand.

1Published - “Models and Algorithms for Robust Network Design with Several Traffic Scenar-
ios”, E. Álvarez-Miranda, V. Cacchiani, T. Dorneth, M. Jünger, F. Liers, A. Lodi, T.Parriani, D.
Schmidt, Combinatorial Optimization, LNCS series, Volume 7422, 2012, pp 261-272 ; Under review
- “Single-commodity Robust Network Design Problem: Complexity, Instances and Heuristic Solutions”,
E. Álvarez-Miranda, V. Cacchiani, A. Lodi, T.Parriani, D. Schmidt, “European Journal of Operational
Research”.

67

68 Chapter 4 Single-commodity Robust Network Design Problem

Let us denote by (i, j) and (j, i) the arcs (directed from i to j and from j to i, respec-

tively) corresponding to edge e = {i, j} ∈ E. In addition, let us call f qi,j ∈ Z+ the

integral amount of flow that is sent along arc (i, j) from i to j in scenario q and by f q

the corresponding flow vector.

RND calls for determining integer capacities (ue) ∈ Z|E|+ (e ∈ E) with minimal costs

cTu such that, for each q (q = 1, . . . ,K), there is a directed network flow f q in G

that is feasible with respect to the capacities and the balances of the q-th scenario. In

particular, the flow f q (q = 1, . . . ,K) must fulfill the following constraints:

1. f qi,j + f qj,i ≤ ue for all edges e = {i, j} ∈ E, which imposes that the sum of the

flows going along every edge (in both directions) must respect the installed edge

capacity, for every scenario,

2.
∑
{i,j}∈E(f qi,j − f

q
j,i) = bqi for all nodes i ∈ V , which implies that the flow must

satisfy the required integer balances.

An overall natural model for RND reads as follows

min
∑
{i,j}∈E

cijuij (4.1)

∑
j:{j,i}∈E

f qji −
∑

j:{i,j}∈E

f qij = bqi ∀i ∈ V, q = 1, . . . ,K (4.2)

f qij + f qji ≤ uij ∀{i, j} ∈ E, q = 1, . . . ,K (4.3)

f qij ≥ 0 ∀{i, j} ∈ E, q = 1, . . . ,K (4.4)

uij ∈ Z+, ∀{i, j} ∈ E (4.5)

where the objective function (4.1) is to minimize the total cost of the installed capaci-

ties. Constraints (4.2) ensure flow-conservation in each scenario and impose to satisfy

the required balances. Constraints (4.3) model that the capacity of an edge is at least

as large as the flow it carries. Integral flows are enforced through integrality of the

capacity variables, as all balances are integral [17].

As described in [9], an example of a practical application of the considered problem is

the following: some clients wish to download some program stored on several servers.

For a client, it is not important which server he or she is downloading from, as long

as the demand is satisfied. In other words, we consider servers that store identical

data: examples are video on demand or large datacentre in which one mirrors his data

over several locations. This is opposed to multi-commodity network design, in which

point-to-point connections are considered, i.e. each client requests a specific server. In

addition, we consider the robust version of the problem: at different times of the day,

the demands may change (e.g. different clients show up), and the goal is to design

a network that is able to route all flow in all different scenarios. In particular, we

consider a finite list of demands, i.e. we sample different times of the day.

Chapter 4 Single-commodity Robust Network Design Problem 69

Contribution. Preliminary computational investigations have been performed on clas-

sical graphs from the literature with random balances [9] and on special hypercubes

with {−1, 0, 1} balances [2]. The results in both papers have shown that the for-

mer instances are surprisingly easy for a general-purpose Mixed-Integer Programming

(MIP) solver on the natural flow-formulation (4.1)–(4.5), while the latter instances

are structurally difficult. The first contribution is in studying the complexity of some

RND special cases2 associated with the above instances and enlightening the reasons

of the observed computational behavior. Second, based on the complexity results, we

propose a new family of randomly generated RND instances that are computationally

challenging for the natural flow formulation already for |V | = 50 and K = 10. Third,

motivated by those instances (available upon request from the authors), we propose

new and general heuristic approaches that provide high-quality approximated solutions

for large graphs (tests are reported for |V | up to 500) in short computing times3.

Organization of the chapter. Section 4.2 reviews the (vast) related literature by point-

ing out differences and similarities. In Section 4.3 we present the complexity results

we achieved on special classes of instances, while Section 4.4 describes the proposed

heuristic algorithm and its performance is reported in Section 4.5. Finally, in Section

4.6 we draw conclusions and describe ideas for future research.

4.2 Related Literature

The work on classical (i.e., non-robust) network design goes back as far as the early

1960s where it was studied by Chien [11] and Gomory and Hu [16, 15]. Since then,

network design has evolved to a vast field of research which we cannot fully discuss in

the scope of this article. We rather refer to [10] for a complete overview and restrict

ourselves to a few exemplary related works that are of direct importance for us here.

The common theme of network design problems is installing optimum-cost capacities

in a given network topology such that a set of traffic requests can be routed through the

network. In practice, however, the traffic requests are not exactly known in advance.

This can be due to measuring errors or simply because they cannot be predicted [6].

Here, the robustness comes in: Following an idea by Soyster [29], Ben-Tal and Ne-

mirowski [5] coined the term of an uncertainty set that is added to the model and

contains all possible (or likely) scenarios against which the robustness should protect.

Since then, robust network design has been very actively studied. The notions of net-

work topology, cost, capacity, traffic request and routing can vary – as well as the exact

way in which the problem is robustified.

2The RND problem is strongly NP-hard [27].
3A preliminary version of the heuristic approaches described here was introduced in [2] where the

first phase of the investigation on RND, which was the topic of the “Vigoni 2011-2012” project between
the University of Köln and the University of Bologna, was summarized.

70 Chapter 4 Single-commodity Robust Network Design Problem

We here study a worst-case robust model in the sense of [5]. This means that our

solutions must be feasible for all the scenarios from the uncertainty set. The uncertainty

set is finite and explicitly given as part of the input (an idea that goes back to [23]).

We use an undirected graph as the network topology and allow dynamic routing (each

scenario may be routed on different paths). Furthermore, we assume linear costs for the

capacities and integer multiples of a unit capacity may be installed on each edge. Each

node specifies its traffic request by a scalar number that gives its supply or demand and

each such traffic request may be routed on an arbitrary number of paths (the routing

is splittable) as long as each edge carries an integer amount of flow in total. Therefore,

the underlying flow model is a standard single-commodity, splittable network flow in

our case.

To the best of our knowledge, only two prior publications on this specific problem exist.

The problem was first studied by Buchheim, Liers and Sanità [9]. They gave an exact

branch-and-cut algorithm that solves a flow-model MIP through sophisticated general-

purpose cutting planes. Lately, Álvarez-Miranda et al. [2] introduced a capacity-based

MIP-model, and discussed a preliminary set of results of the biennial “Vigoni 2011-

2012” between the universities of Köln and Bologna.

Atamtürk [3] considers a variant of the non-robust single-commodity network design

problem where integer multiples of a facility with fixed capacity can be installed on

each arc. Ortega and Wolsey [24] report on the performance of general MIP solvers

on various network design problems and develop an exact algorithm for the single-

commodity fixed-charge network design problem (all arcs may be bought at a fixed-

charge and then be used at full capacity).

A close variant of single-commodity RND is the multi-commodity robust network design

problem. Here, the traffic requests specify the amount dij of flow that should be

exchanged among all pairs of nodes i and j. In particular, this defines fixed source/sink

pairs – which is not the case in our problem. Also, each commodity has a single source

(or sink). While this condition can also be established in the single-commodity case,

it requires the use of fixed-capacity edges and therefore, our single-commodity variant

is not a true special case of the multi-commodity problem. Sanità showed in her

doctoral thesis [27] that the multi-commodity variant is NP-hard even if there are

only three scenarios, all scenarios use a unique source node and all demands are from

{−1, 0, 1}. This immediately implies that the single-commodity variant is NP-hard as

well. The thesis contains many further complexity results; among others Sanità gives

a O(log |V |)-approximation for the multi-commodity robust network design problem

with unsplittable routing and shows that removing the integrality constraint from the

capacities makes the problem polynomial time solvable. This is also true for the single-

commodity RND. The multi-commodity RND was also first considered as a classical

(non-robust) problem [8].

Chapter 4 Single-commodity Robust Network Design Problem 71

A vast variety of problems exists in the multi-commodity case. The case where the

uncertainty set is finite was studied by Minoux [23], though fractional capacities are

assumed in [23], and in Labbé et al. [20]. Duffield et al. [12] introduced the Hose un-

certainty model in which the uncertainty set is defined by inflow and outflow bounds

on all nodes. Ben-Ameur and Kerivin [4] observed that this type of uncertainty set

is a polytope and developed an exact approach that additionally assumes static rout-

ing (i.e., in all scenarios, the flow must be routed along the same subset of paths).

This configuration is also known as the Virtual Private Network problem. An exact

approach for this problem was given in [1] under the additional constraint that each

commodity may only use a single path (unsplittable routing).

In the case of dynamic routing, an exact approach by Mattia [21] exists. Bertsimas

and Sim [7] introduced Γ-robustness as a general model for robustification. Exact

approaches that apply this type of robustness to multicommodity network design are

presented in [19].

Finally, one of the most basic network design problems, the Steiner Tree problem,

is the special case of the single-commodity robust network design problem where for

each pair i, j of Steiner nodes, there exists a scenario in which exactly i and j are

terminals with supply/demand of 1/ − 1. If not all the Steiner node scenarios are

present, the single-commodity RND instance is instead a special case of the survivable

network design problem. Note, however, that, in general, RND does not consider the

requirement of disjointness that is in Survivable Network Design. We refer the reader

to [18] for an extensive survey on this subject.

4.3 Complexity

In this section, we characterize the complexity of some RND special cases. The RND

case in which we have a single scenario (K = 1) corresponds to a standard polynomial

time minimum cost flow problem. Already for K = 3, RND is NP-hard (see [27]):

the reduction comes from the 3-Dimensional Matching Problem for the special case of

RND in which there is the same source in each scenario and balances are {−1, 0, 1}.

Motivated by the computational investigations in [9, 2], in the following, we analyze

some special cases:

• RND with balances different from 1 and -1;

• RND on hypercubes with all balances equal to 1, 0, or -1;

• RND on hypercubes with all balances equal to r, 0, or −r, with r integer and

> 1.

72 Chapter 4 Single-commodity Robust Network Design Problem

The analysis is intended to show some classes of hard instances and some classes of

easier instances. According to the results that we present in the following subsections,

we are able to get a better understanding of empirical results in [9, 2], and we propose

a family of randomly generated instances that are challenging for the natural flow

formulation already for |V | = 50 and K = 10.

4.3.1 All balances different from 1 and -1

Because instances defined on random graphs with random integer balances on the

(randomly chosen) terminals turn out to be surprisingly easy for a general-purpose

MIP solver on the natural flow-formulation (4.1)–(4.5), a natural question to ask is if

this special case remains NP-hard. The following theorem answers positively through

a reduction from Hamiltonian cycle ([28]).

In order to prove that RND, defined on graph G = (V,E) (|V | ≥ 3), with balances

different from 1 and -1, is NP-hard, let us define the following RND instance IR. We

use G without modification and install a cost of 1 on each edge. We choose some

arbitrary numbering of the nodes. We install |V | − 1 scenarios. In scenario i, only

nodes 1 and i + 1 are terminals; the node 1 gets a balance of 2 while the node i + 1

has a balance of −2.

Theorem 1. A graph G = (V,E) (with |V | ≥ 3) has a Hamiltonian cycle C if and

only if the described RND instance IR has a solution with cost equal to |V |.

Proof. If G has a Hamiltonian cycle C, we build a feasible solution for IR by installing

a capacity of 1 on each edge of C. In each scenario i, both unique terminals 1 and

i+ 1 lie on C. The node i+ 1 decomposes C into two paths P1, P2 from 1 to i+ 1 (one

clockwise, one counterclockwise). We can route one unit of flow on P1 and one unit of

flow on P2, satisfying the demands of scenario i. Thus, our solution for IR is feasible

and additionally, it has cost of |C| = |V |.

On the other hand, suppose we have a solution for IR of cost |V |. By our choice of

scenarios (we have a single source at node 1 and all other nodes are terminals in some

scenario), each node must be connected to node 1. Therefore, any feasible solution

for IR must have a support S that induces a connected component of G containing all

nodes. S must contain at least |V | − 1 edges, otherwise it cannot be connected. If S

contains exactly |V | − 1 edges, a capacity of 2 must be installed on each edge in S in

order to route all demands. However, such a solution has cost of 2 · |V | − 2 > |V | and

therefore S must contain at least |V | edges. If some node in G[S] has a degree of 1,

then we must install a capacity of 2 on its unique incident edge. By the same argument

as before, the remaining nodes |V | − 1 nodes must be connected by at least |V | − 1

edges. Then again, the cost of the solution is at least |V | − 1 + 2 > |V |. Therefore, all

nodes in G[S] must have a degree of at least 2 and because we can have at most |V |

Chapter 4 Single-commodity Robust Network Design Problem 73

edges in S, each node must have exactly degree 2. Together with our observation that

G[S] is connected and contains all nodes, we have a Hamiltonian cycle.

4.3.2 Hypercubes

The authors defined a structurally difficult class of instances in [2], based on d-

dimensional hypercubes. In the following we repeat the construction.

Definition 2. A d-dimensional hypercube Hd is the result of the following recursive

construction: H0 is the graph that consists of a single node. For d > 0, Hd is obtained

by duplicating the nodes and edges of Hd−1 and connecting each node v to its copy v′

with an additional edge {v, v′}.

Definition 3. We say that two nodes v, w are diagonally opposite on Hd iff the short-

est path from v to w in Hd has maximum length, i. e., length d.

Notice that for every node v in Hd there is exactly one node vo that is diagonally

opposite to v. It is well-known that Hd has Nd := 2d nodes and Md := d · 2d−1 edges.

We can now define a class of instances on d-dimensional hypercubes as follows. For

d ∈ Z+, consider the following instance Id of the RND problem on Hd. Observe that

Hd is composed of two hypercubes Hs, Ht of dimension d− 1. Add 2d−1 scenarios to

Hd. In scenario 1 ≤ q ≤ 2d−1, assign a supply of 1 to the q-th node vq (in some fixed

numbering) of Hs and a demand of −1 to its diagonally opposite node voq which lies in

Ht by our construction. Set all other balances of scenario q to zero and set the costs

for each edge to 1. Figure 4.1 shows the construction.

1 1

1 2

12

1 2

34

3 4

12

7 8

56

3 4

12

1 2

34

5 6

78

Figure 4.1: The hypercubes in 1, 2, 3 and 4 dimensions. Copied nodes are displayed
in gray. The node numbering refers to the scenarios.

We denote the instance obtained in this way by H1
d. Scaling all balances in H1

d by

r ∈ Z+, we obtain the instance Hrd.

74 Chapter 4 Single-commodity Robust Network Design Problem

4.3.2.1 All balances equal to 1, 0, or -1

It is shown in [2] that this class of instances is difficult for MIP-based solution ap-

proaches as the integrality gap (i.e., the ratio of an optimum integral solution value

and an optimum fractional solution value) of H1
d converges to 2 as d → ∞. We refer

the reader to [2] for details.

4.3.2.2 All balances equal to r, 0, or −r, r integer and > 1

We characterize the integrality gap for r > 1. The optimum values for integer and

fractional solutions are the same, i.e. the integrality gap is 1. We need a series of

Lemmata to prove this result, stated and proven at the end of this section.

It is a well-known fact that Hd is hamiltonian for any d ≥ 2 and we shall use this fact

on several occasions. In particular, we can obtain a feasible integer solution for H2
d by

installing a capacity of 1 on each edge of a Hamiltonian cycle in H2
d.

Lemma 4. For any d ≥ 2, there is a feasible integer solution for H2
d with costs 2d.

To derive the cost of this solution, recall that Hd has 2d nodes. Similarly, we can state

a feasible integer solution for H3
d.

Lemma 5. For any d ≥ 3, there is a feasible integer solution for H3
d with costs 3 ·2d−1.

Proof. Let d ≥ 3. Then Hd decomposes into two copies H1, H2 of Hd−1 and a set of

edges F connecting H1 and H2. We install a capacity of 1 on each edge in F . Since

d− 1 ≥ 2, we find Hamiltonian cycles C1, C2 in H1 and H2, respectively, and install a

capacity of 1 on each edge of C1 and of C2.

This solution is feasible: For any scenario i ∈ {1, . . . , q}, let si, ti be the corresponding

terminal pair. We need to route three units of flow from si to ti. To do that, let s′i ∈ H2

and t′i ∈ H1 be the unique nodes such that e1 = {si, s′i} ∈ F and e2 = {t′i, ti} ∈ F .

Also, let e3 = {u, v} ∈ F with u ∈ H1 and v ∈ H2 be an arbitrary connecting edge

that is different from e1 and e2. Mark here that F contains at least four edges because

d ≥ 3. Figure 4.2 shows an example for the situation on H3
4. Now, by sending one

unit of flow over each of e1, e2, e3, we have reduced the instance to two instances on

Hd−1: The first instance is defined on H1; here, si has a balance of 2 and both u and

t′i have a balance of −1. However, these balances can be routed along the Hamiltonian

C1. In the second instance, which is defined on H2, the sink ti has a balance of −2

and both s′i and v have a balance of 1. Again, these balances can be routed along the

Hamiltonian cycle C2.

Both C1 and C2 contain exactly 2d−1 edges, each with capacity 1. There are 2d−1

edges in F , all of them having capacity 1. This gives a total cost of 3 · 2d−1.

Chapter 4 Single-commodity Robust Network Design Problem 75

si

u

t′i

s′i

v

ti

Figure 4.2: An example for H3
4.

We show next that we can construct an integer feasible solution for any Hrd using the

two previous ones.

Lemma 6. Let d ≥ 2 and let r = 2m+ 3n with m ∈ Z+ and n ∈ {0, 1}. If there exists

an integer feasible solution for H2
d with cost at most c2 and an integer feasible solution

for H3
d with cost at most c3, then there exist an integer feasible solution for Hrd with

cost at most

m · c2 + n · c3.

Proof. We can decompose Hrd into m copies of H2
d and, if r is odd, a single copy of

H3
d. The copies have costs of c2 and c3 each, respectively. For the i-th copy and

i = 1, . . . ,m + n, we have an integer capacity vector ui that allows for routing all

scenarios. Then, u =
∑m+n

i=1 ui is an integer capacity vector that admits a routing of

all scenarios of Hrd and has exactly cost mc2 + nc3.

To calculate the integrality gap for our solutions, we also need the value of an optimum

fractional solution. Such a solution can be obtained by installing r/d units of capacity

on each edge of Hd and since Hd has d · 2d−1 edges, this gives the following result.

Lemma 7. An optimum fractional solution for Hrd has a value of r · 2d−1.

Proof. Check that a solution that installs r/d units of capacity on each edge satisfies

the complementary slackness optimality conditions of the cut-set formulation [2] for

the problem. The corresponding dual solution has a variable ξS for all meaningful cuts

S ⊆ V [Hd]. It sets ξS := 1/2 if |δ(S)| = d and ξS = 0. The remaining part of the

proof is straight-forward if we observe that for d ≥ 3, we have |δ(S)| = d if and only if

|S| = 1. The full proof is shown in the Appendix.

76 Chapter 4 Single-commodity Robust Network Design Problem

We can now prove that the optimum values for integer and fractional solutions are the

same:

Theorem 8. For d ≥ 3 and r ≥ 2, an optimum integer solution for Hrd has value

r · 2d−1. In particular, the integrality gap for Hrd is 1.

Proof. Let r = 2m + 3n with m ∈ Z+ and n ∈ {0, 1}. Putting together Lemma 6

with Lemma 4 and Lemma 5, we obtain that there is an integer solution for Hrd with

value cr := m · 2d + n · 3 · 2d−1. If r is even, we have n = 0 and m = r/2. Therefore,

cr = r · 2d−1. On the other hand, if r is odd, we have n = 1 and m = (r− 3)/2. Then,

cr = (r− 3)/2 · 2d + 3 · 2d−1 = r · 2d−1− 3 · 2d−1 + 3 · 2d−1 = r · 2d−1. By Lemma 7, this

is optimal.

4.3.3 Challenging Instances

In the previous sections we have shown that, although computationally easy [9, 2],

RND instances defined on random graphs with random balances are difficult in theory.

The explanation of this is suggested by the fact that structurally hard instances like

those defined on hypercubes and {−1, 0, 1} balances become theoretically easy when

balances are in r, 0, or −r, with r integer and r > 1. have an integrality gap of

value one. Building on top of those results, we concentrate on instances on random

graphs with balances {−1, 0, 1} that turn out to be computationally challenging for

the natural flow formulation already for |V | = 50 and K = 10. An effective heuristic

approach for this family is described and computationally evaluated in Section 4.4 and

Section 4.5, respectively.

4.4 Heuristic Algorithm

In this section, we present our heuristic algorithm, which, although general, is designed

having in mind the class of hard instances introduced in the precious section, i.e.,

random graphs with balances of {−1, 0, 1}. It consists of three phases. In the first

phase (constructive phase, CP), the graph is reduced by heuristically deleting a subset

of the arcs, and a feasible solution is built. The second phase (neighborhood search

phase, NSP) consists of a neighborhood search on the reduced graph in order to improve

the solution found: in particular, the MIP flow-formulation is solved, within a time

limit, by the general-purpose MIP solver Cplex. Finally, the third phase (proximity

search phase, PSP) consists of iteratively applying a local search (by solving a carefully

constructed MIP) to further improve the solution, taking into account the original

graph, and is based on the recent work [13].

In the following, we describe the three phases in detail.

Chapter 4 Single-commodity Robust Network Design Problem 77

4.4.1 Constructive Phase

Initially, the graph we are dealing with is reduced, and then a solution is built. Our goal

is to reduce the graph so that we are able to quickly compute a feasible solution, and

we can warm start the NSP described in 4.4.2. At the same time, the graph reduction

should not be too “aggressive”, because the NSP should be able to improve the solution

found. In other words, we need to find a trade-off between reducing the computing

time and reducing the solution space. Note that, since the (nonzero) balances are 1

or -1 in our problem, it is not common to have large capacity values installed on the

edges. Therefore, solutions differ mainly because of the different set of edges on which

capacity is installed. Our goal is to select a “large enough” set of edges for our reduced

graph.

The following steps are executed in the CP:

1. Consider the scenarios from 1 to K and multiply all balances by a given constant

F ;

2. construct a feasible solution for the new obtained RND instance (see Section

4.4.1.1);

3. reduce the graph by deleting all the edges that are not used in the solution found

(and the nodes such that they do not have any incident edge after edge deletion)

and obtain graph G = (V ,E);

4. set back the balances to 1 and -1, and construct a feasible solution (see Section

4.4.1.1) for the original RND instance on the reduce graph G.

Step 1 is used to define the search space that we want to use in the NSP. Indeed,

by increasing the absolute value of the balances, more edges are likely to be used in

the solution computed in step 2 and they constitute the neighborhood of the solution

computed in step 4. The next section describes how to compute a feasible solution for

an RND instance.

4.4.1.1 Construction of a Feasible Solution

In the case of a single scenario, an algorithm for the Minimum Cost Flow (MCF)

problem can be used to solve RND as follows: we define a directed graph having the

same set of nodes as G and two arcs for each edge of G (one for each direction) with

infinite upper bounds on the capacities. The flows that we obtain by solving the MCF

problem on the defined graph determine the edge capacities, i.e., the RND solution.

In the case of K scenarios, ordered from 1 to K, in a generic scenario q we can use for

free the capacities that have already been installed on the edges in scenarios 1, . . . , q−1.

78 Chapter 4 Single-commodity Robust Network Design Problem

A straightforward heuristic algorithm consists of iteratively solving a MCF problem

for each scenario (in the order from 1 to K), updating the capacities that can be used

for free after each MCF execution. In particular, we define an auxiliary directed graph

Gdir = (V,A) having the same set of nodes of G and the set of arcs defined as follows.

For each edge e = {i, j} ∈ E, we introduce four arcs ae1, ae2, ae3 and ae4: ae1 and ae2 are

directed from i to j, while ae3 and ae4 are directed from j to i. Two arcs are needed

for each direction in order to take into account, in a generic scenario q, the previous

scenarios 1, . . . , q−1: one arc has an upper bound on its capacity equal to the capacity

already installed on the corresponding edge in the previous scenarios 1, . . . , q − 1 and

has zero cost; the other arc has an infinite upper bound on its capacity and has cost

equal to the cost of the corresponding edge. More precisely, for each arc a ∈ A, we

initialize the upper bounds UBa on the capacities and the costs ca as UBae1 := ∞,

UBae2 := 0, UBae3 :=∞ and UBae4 := 0; cae1 := ce, cae2 := 0, cae3 := ce, cae4 := 0. A MCF

problem is then solved for each scenario and the upper bounds are updated according

to the capacities installed on each arc.

The described algorithm follows a greedy approach. It would be useful if, when solving

scenario q, we could know what happens in the next scenarios q+ 1, . . . ,K so that we

could choose accordingly the best capacity installation. In addition, a MCF solution

for a generic scenario q that installs capacity on more edges (at the same cost) should

be preferred: indeed, it is more likely that free capacity can be used in scenarios

q + 1, . . . ,K. Therefore, a MCF solution with integer flows split over disjoint paths

should be preferred with respect to a MCF solution that sends flows along a single

path.

Based on these two observations, we derive an improvement of the described heuristic

algorithm. We apply a preprocessing in which we divide each scenario q = 1, . . . ,K in

R sub-scenarios gq1, . . . , g
q
R, where R is an integer positive number. We consider the sub-

scenarios in the order gq1, (q = 1, . . . ,K), gq2, (q = 1, . . . ,K), up to gqR, (q = 1, . . . ,K).

In this way, the generic sub-scenario gql of scenario q can already take into account the

partial solution computed for all the scenarios 1, . . . ,K. The balances are defined as

follows: b
gq1
v = bbqv/Rc, b

gq2
v = bbqv/(R − 1)c, up to b

gqR
v = bqv, v ∈ V . This means that

the complete MCF solution of a generic scenario q will more likely have a split integer

flow over disjoint paths, because each sub-scenario might use different subsets of arcs.

The improved heuristic algorithm iteratively solves a MCF problem for each sub-

scenario gql (l = 1, . . . , R, q = 1, . . . ,K). Let us call uRND the RND solution that

we compute with the improved heuristic algorithm. At h = 0, uRND is initialized to be

the zero vector. Let fh∗ be the MCF solution obtained at iteration h corresponding to

sub-scenario gql . The flows in fh∗ along the arcs with infinite upper bound determine

the additional capacities that must be installed on the corresponding edges: for each

e = {i, j} ∈ E, uRNDe = uRNDe + fh∗ae1
+ fh∗ae3

. Note that, in each sub-scenario, there will

Chapter 4 Single-commodity Robust Network Design Problem 79

always be an optimal solution using, for each edge, only arcs in one of the two direc-

tions: it is a single commodity flow, so we could simply do flow cancellation on cycles.

In addition, the values uRND are used to update the upper bounds on the capacities,

before considering the following sub-scenario: UBae2 := uRNDe and UBae4 := uRNDe .

When all the sub-scenarios have been considered, the algorithm returns the solution

found uRND.

Note that in step 2 the described algorithm is used to define the reduced graph G: all

the edges such that uRND = 0 are deleted from G and the nodes that do not have

anymore incident edges are removed as well. Step 4 is instead used to obtain a first

feasible solution to our problem and is executed on the reduced graph G. Let us call

uCP the solution obtained at the end of the constructive phase.

4.4.2 Neighborhood Search Phase

This phase consists of solving an MIP flow-formulation for RND (4.1)–(4.5) on the

reduced graph G defined in the previous section.

Then, NSP explores the neighborhood of solution uCP by allowing the use of different

edges belonging to G and by allowing the installation of different capacities on the

edges. The neighborhood is explored by solving the proposed model, initialized with

uCP , by Cplex within a given time limit. Let us call uNSP the obtained improved

solution and cNSP its cost. Since we consider the reduced graph, this phase is able to

quickly obtain an improved solution, as it will be seen in Section 4.5.

4.4.3 Proximity Search Phase

Recently, Fischetti and Monaci [13] investigated the effects of replacing the objective

function of a 0-1 Mixed-Integer Convex Programming problem with a “proximity” one,

i.e., with minimizing the distance from a feasible solution of the problem, with the aim

of enhancing the heuristic behavior of a black-box solver. In particular, they consider

the Hamming distance:

∆(x, x̃) :=
∑

j∈J :x̃=0

xj +
∑

j∈J :x̃=1

(1− xj), (4.6)

where xj ∈ {0, 1}, ∀j ∈ J , and x̃ is a feasible solution to the considered problem. The

idea consists of starting with an initial feasible solution x̃ with cost f(x̃), and iteratively

searching for an improved solution by adding a cutoff constraint that imposes the cost

of the improved solution to be smaller than f(x̃) by at least a quantity θ. The search

is performed by solving with a black-box solver the new model with objective function

that minimizes the Hamming distance from x̃, until a termination condition is reached,

namely, until the first improved solution has been found. If no improved solution is

80 Chapter 4 Single-commodity Robust Network Design Problem

found, θ is reduced. The process is then iterated by using the improved solution

found as new x̃. The algorithm is terminated when a given time limit is reached.

The method can be enhanced by providing an incumbent solution to each iteration of

proximity search. This is obtained by adding an auxiliary continuous variable z which

is used to keep the cutoff constraint feasible:

f(x) ≤ f(x̃)− θ + z (4.7)

and has a large cost M in the objective function. In this way, x̃ is a (very costly)

feasible solution for the MIP it defines. As soon as z becomes 0, an improved solution

is found.

We apply this idea to RND, i.e. we deal with an MIP. We start with initial solution

uNSP and we consider the original graph G (instead of the reduced one) in order to

have a higher probability of improving uNSP . Since capacities assume integer (and

not only binary) values, we need to modify the definition of distance presented in [13].

Instead of expressing the distance as |u− uNSP |, uij integer ∀{i, j} ∈ E, we fix upper

bounds on the capacity variables, based on the values of uNSPij , as follows. For each

edge {i, j} ∈ E such that uNSPij > 0, the upper bound is set to uNSPij . For all the

remaining edges the upper bound is the set to be infinite. The distance is then defined

as ∑
{i,j}∈E:uNSPij =0

uij +
∑

{i,j}∈E:uNSPij >0

(uNSPij − uij). (4.8)

By imposing upper bounds on the capacity variable, we limit the search space and,

consequently, the computing time, by using the solution found uNSP . At the same

time we leave the possibility of installing capacity on edges that were not used in

the previous solution. Note that, by imposing upper bounds on the capacities, the

proximity search becomes a heuristic method for RND. Given this distance measure

definition, we iteratively solve the following proximity search model

Chapter 4 Single-commodity Robust Network Design Problem 81

min
∑

{i,j}∈E:uNSPij =0

uij −
∑

{i,j}∈E:uNSPij >0

uij +Mz (4.9)

∑
{i,j}∈E

cijuij − zθ ≤ cNSP − θ, (4.10)

∑
j:{j,i}∈E

f qji −
∑

j:{i,j}∈E

f qij = bqi ∀i ∈ V, q = 1, . . . ,K (4.11)

f qij + f qji ≤ uij ∀{i, j} ∈ E, q = 1, . . . ,K(4.12)

uij ≤ uNSPij ∀{i, j} ∈ E : uNSPij > 0 (4.13)

f qij ≥ 0 ∀{i, j} ∈ E, q = 1, . . . ,K(4.14)

uij ∈ Z+ ∀{i, j} ∈ E (4.15)

z ∈ {0, 1}, (4.16)

where the auxiliary variable z is to guarantee feasibility of uNSP . The objective func-

tion (4.9) calls for minimizing the distance from the previous solution uNSP and for

obtaining a solution with z = 0, i.e., an improved solution that respects the cutoff

constraint (4.10). Constraint (4.10) imposes to obtain a reduction in the cost of the

improved solution of at least θ. Constraints (4.11) and (4.12) correspond to the RND

problem constraints. Constraints (4.13) impose the upper bounds on the capacity

variables. Finally, constraints (4.14)–(4.16) impose variables’ bounds. Note that z is

defined as binary as it turned out in our computational experiments that it is very

effective to impose branching priority on z, in order to quickly obtain a solution with

z = 0.

Model (4.9)-(4.16) is solved by Cplex until the first feasible solution with z = 0 is

obtained. In our experiments θ was set to 1. Therefore, if z = 1 the process is stopped.

On the first feasible solution found, Cplex polishing (see, Rothberg [25]) is applied until

the first improved solution is found. Formulation (4.9)–(4.16) is then solved again by

replacing uNSP with the improved solution. The proximity search phase is executed

until a given time limit is reached. When the time limit is reached, PS returns the

best solution found uPSP .

4.5 Computational Results

In this section, we report the computational results that we achieved on instances gen-

erated on random graphs with balances {−1, 0, 1}. Instances are generated as follows:

n nodes are randomly located in a unit Euclidean square. Two nodes are connected

with an edge if the Euclidean distance is less than α/
√
n where α is a parameter set

to 2 in our generator. The edge cost for capacity installation is proportional to the

82 Chapter 4 Single-commodity Robust Network Design Problem

Euclidean distance. For each scenario, 25%, 50% or 100% of the nodes are randomly

selected to be terminals. We consider 5 or 10 scenarios.

The heuristic was developed in C language, and Cplex version 12.5 with 4 threads

was used as a general purpose solver. The tests were executed on a PC 1.73 GHz,

6 GB Ram. The computing times are expressed in seconds. The algorithm CS2 by

Goldberg [14] was used for solving the Minimum Cost Flow. The following parameter

setting is used for the heuristic: a time limit of 300 seconds is given to NSP and a time

limit of 600 seconds is given to PSP. The total time limit for the heuristic is fixed to

900 seconds, because the computation time of the CP is negligible. We fix F = 100,

R = 10, θ = 1 and M = 100uNSP , based on parameter tuning.

An important feature of our heuristic algorithm is that it is robust to parameter setting,

i.e. the efficacy of the algorithm is not really dependent on the specific parameter

values, as long as balances are increased and scenarios are split in sub-scenarios (i.e.,

F > 1 and R > 1). In particular, the difference between average gaps, computed with

respect to the solutions obtained by Cplex 5h, for different combinations of F and R

(with F > 1 and R > 1) are negligible (below 1%). Among all combinations, the one

that has the best balance between gap and standard deviation is given by R = 10 and

F = 100. The other parameter used in our heuristic algorithm is θ. We choose θ = 1 as

a conservative value, i.e. a value that allows us to obtain good solutions on average on

all the instances. In particular, we observed that, on the small instances (with 50 to 100

nodes), larger values for θ do not produce high quality solutions. When the instances

get larger, a more aggressive policy (e.g. with θ = 100) can give better results. We

decided to keep a conservative value, in order to avoid parameter overtuning.

In Figure 4.3, we show the results obtained, with a time limit of 900 seconds, by the

proposed method after each of the three phases described in Section 4.4. In particular,

we show one graphic for each class of instances (from 50 nodes to 500 nodes). In this

graphic, the comparison is presented with respect to the solutions obtained after the

constructive phase and we show in black the percentage improvement of the solutions

obtained after the neighborhood search phase (NSP) and in gray the percentage im-

provement of the solutions obtained after the proximity search phase (PSP). On the

right of the figure, we also show the average and standard deviation for each class of

instances. As it can be seen, both the NSP and the PSP are effective in obtaining im-

provements for all instances but six, on which only PSP is able to improve the solution

found uCP after the constructive phase. The detailed results are reported in Table 4.2

in the Appendix.

In the following, we present a comparison of the results obtained by the proposed

heuristic (indicated as RND Heur.) with those obtained by Cplex applied to the MIP

flow model (4.1)-(4.5) on the original graph G. In particular, we show the results

obtained when Cplex is run with a time limit of five hours (Cplex 5h) in default

setting, and the results obtained with Cplex in the effective heuristic configurations

Chapter 4 Single-commodity Robust Network Design Problem 83

1 2 3 4 5 620

10

0

10

20

50
 n

od
es

Inst. Inst.s 1-620
15
10

5
0
5

10
15
20 Av. and st.dev.

7 8 9 10 11 12
15
10

5
0
5

10
15

10
0

no
de

s

Inst. Inst.s 7 - 1220
15
10

5
0
5

10
15
20

13 14 15 16 17 18
15
10

5
0
5

10
15

20
0

no
de

s

Inst. Inst.s 13 - 1820
15
10

5
0
5

10
15
20

19 20 21 22 23 24
15
10

5
0
5

10
15

30
0

no
de

s

Inst. Inst.s 19 - 2420
15
10

5
0
5

10
15
20

25 26 27 28 29 30
10

5
0
5

10

40
0

no
de

s

Inst. Inst.s 25 - 3020
15
10

5
0
5

10
15
20

31 32 33 34 35 36
10

5
0
5

10

50
0

no
de

s

Inst.

NSP PSP

Inst.s 31 - 3520
15
10

5
0
5

10
15
20

Figure 4.3: Comparison of the results obtained after NSP and after PSP with those
obtained after CP.

suggested in [13] (Cplex Pol. 900s), i.e., solution polishing is applied, and the time

limit is set to 900 seconds. The proposed method, Cplex 5h and Cplex Pol. 900s are

initialized with the solution uCP constructed as explained in Section 4.4.1.

In Table 4.1, we report the results obtained by Cplex 5h, which will be used as our

benchmark for comparison. In particular, we report the data on the instances, the

solution (uCP) obtained at the end of the constructive phase and used for initializing

each of the methods, the best lower bound (LB) and the best upper bound (UB)

obtained by Cplex 5h, the duality gap (Gap%), the number of branch and bound

nodes (BBn), and the computing time. As it can be seen from Table 4.1, the time

limit is reached for all instances but the three smallest ones for which Cplex is able to

prove optimality. For the remaining instances, the duality gaps are often quite large

and for seven instances Cplex is not even able to improve the initial solution.

In order to measure the performance of the proposed method, we show in Figure 4.4 the

comparison between the results we obtain in 900 seconds of time limit and the results

obtained by Cplex 5h and by Cplex Pol. 900s. The detailed results are reported

in Table 4.3 in the Appendix. In particular, we show one graphic for each class of

instances (from 50 nodes to 500 nodes). In this graphic, the comparison is presented

84 Chapter 4 Single-commodity Robust Network Design Problem

Cplex 5h
Inst. n t% K uCP LB UB Gap% BBn Time

1 50 25 5 22904 22438 22438 0.00 1977 6
2 50 50 5 60921 52947 52952 0.01 602223 2666
3 50 100 5 79487 66334 66340 0.01 968741 4634
4 50 25 10 52835 44129 47272 6.65 464679 18000
5 50 50 10 66781 55277 57861 4.47 374536 18000
6 50 100 10 88323 70085 71526 2.01 544735 18000
7 100 25 5 39255 36741 37031 0.78 960936 18000
8 100 50 5 89264 76498 78702 2.80 430334 18000
9 100 100 5 81126 74331 74822 0.66 675507 18000
10 100 25 10 86929 67148 71192 5.68 63827 18000
11 100 50 10 115437 92265 97246 5.12 44262 18000
12 100 100 10 132233 112062 114624 2.24 76558 18000
13 200 25 5 98497 77288 85676 9.79 67461 18000
14 200 50 5 142509 113158 122062 7.29 53440 18000
15 200 100 5 169962 139302 144508 3.60 75979 18000
16 200 25 10 134999 98358 114995 14.47 11630 18000
17 200 50 10 173335 133819 148087 9.63 9406 18000
18 200 100 10 219903 175660 184992 5.04 14684 18000
19 300 25 5 92259 73805 83302 11.40 28125 18000
20 300 50 5 139954 115164 128296 10.24 22212 18000
21 300 100 5 183689 150048 162860 7.87 22284 18000
22 300 25 10 148349 103953 148349 29.93 2927 18000
23 300 50 10 201301 151200 199456 24.19 2198 18000
24 300 100 10 271340 214577 268072 19.96 2603 18000
25 400 25 5 109241 87877 98297 10.60 14881 18000
26 400 50 5 217300 175286 190328 7.90 12671 18000
27 400 100 5 291469 234266 252987 7.40 18336 18000
28 400 25 10 158033 117143 158033 25.87 1191 18000
29 400 50 10 253648 191242 253648 24.60 1239 18000
30 400 100 10 325512 255769 325512 21.43 1278 18000
31 500 25 5 106191 75197 98778 23.87 7576 18000
32 500 50 5 189269 159465 177572 10.20 10186 18000
33 500 100 5 261922 216832 241684 10.28 8584 18000
34 500 25 10 214149 153247 214149 28.44 325 18000
35 500 50 10 262379 196930 262379 24.94 315 18000
36 500 100 10 323275 249201 323275 22.91 564 18000

Table 4.1: Results obtained with Cplex on the MIP flow formulation in five hours
of time limit.

with respect to the solutions obtained by Cplex 5h and we show in black the percentage

gap of the solutions obtained by Cplex Pol. 900s and in gray the percentage gap of the

solutions obtained by RND Heur. On the right of the figure, we also show the average

and standard deviation for each class of instances.

As it is evident from Figure 4.4, the three methods obtain comparable results for

instances with up to 100 nodes. However, as the instances get larger, the proposed

method becomes more effective than the other ones, and it is able to improve the results

obtained by the other two methods. In particular, compared to Cplex Pol. 900s that

has the same time limit, the proposed method always obtains better solutions for

Chapter 4 Single-commodity Robust Network Design Problem 85

1 2 3 4 5 6
1.5
1.0
0.5
0.0
0.5
1.0
1.5

50
 n

od
es

Inst. Inst.s 1-610

5

0

5

10 Av. and st.dev.

7 8 9 10 11 12
2
1
0
1
2

10
0

no
de

s

Inst. Inst.s 7 - 1210

5

0

5

10

13 14 15 16 17 18
10

5
0
5

10

20
0

no
de

s

Inst. Inst.s 13 - 1810

5

0

5

10

19 20 21 22 23 24
20
10
0

10
20

30
0

no
de

s

Inst. Inst.s 19 - 2410

5

0

5

10

25 26 27 28 29 30
15
10

5
0
5

10
15

40
0

no
de

s

Inst. Inst.s 25 - 3010

5

0

5

10

31 32 33 34 35 36
6
4
2
0
2
4
6

50
0

no
de

s

Inst.

Cplex Pol.900s RND Heur.900s

Inst.s 31 - 3510

5

0

5

10

Figure 4.4: Comparison of the proposed heuristic RND (time limit of 15 minutes)
with Cplex Pol. 900s and with Cplex 5h.

instances with at least 300 nodes. It obtains solutions with a cost less or equal than

those obtained by Cplex Pol. 900s for 27 out of 36 instances, and is at most 1.05%

worse for a single instance. The improvement is significant (between 3% and more

than 14%) for 14 out of 36 instances. Even compared to Cplex run for five hours,

the proposed method performs on average better on instances with at least 200 nodes,

especially when we have 10 scenarios. It is able to obtain better or equal solutions for

20 out of 36 instances. The average percentage improvement with respect to Cplex 5h

and Cplex Pol. 900s is 2.38% and 2.90%, respectively.

In order to further validate the results presented in Figure 4.4, we performed ex-

tensive computational experiments on instances with n = 300 and n = 400 nodes.

In particular, we considered five instances for each sub-class, defined by selecting

t ∈ {25%, 50%, 100%} and k ∈ {5, 10}. This gives a total testbed of 60 instances.

In Figure 4.5, we show the comparison between the three methods. The comparison

is presented with respect to the solutions obtained by Cplex in five hours. We show

in black the percentage gap of the solutions obtained by Cplex Pol. 900s and in gray

the percentage gap of the solutions obtained by RND Heur in 900s. Compared to

Cplex Pol. 900s, that has the same time limit, the proposed method always obtains

86 Chapter 4 Single-commodity Robust Network Design Problem

better solutions, and, compared to Cplex 5h, performs better on all instances with 10

scenarios, confirming the effectiveness of the proposed approach.

5-25 5-50 5-100 10-25 10-50 10-100
10

5

0

5

10

30
0

no
de

s

Inst.

Cplex Pol.900s RND Heur.900s

5-25 5-50 5-100 10-25 10-50 10-100

10

5

0

5

10

40
0

no
de

s

Inst.

Cplex Pol.900s RND Heur.900s

Figure 4.5: Comparison of the three methods on additional instances with 300 and
400 nodes.

4.6 Conclusions and Future Research

We have presented a single-commodity robust network design problem and we have

shown complexity results for special classes of instances, including hypercubes. By

the complexity analysis, we have shown that instances with random integer balances

different from 1 and -1 are NP-hard, even if computationally easy ([9, 2]). In order

to explain why, we have shown that instances defined on hypercubes with balances in

{−r, 0, r} (r integer, r > 1) are theoretically easy, while instances defined on hyper-

cubes with balances in {−1, 0, 1} are structurally hard. This has motivated us to study

instances (defined on random graphs) with balances of {−1, 0, 1}. We have developed

a heuristic algorithm composed of three phases.

The first one reduces the instance graph and constructs a feasible solution, the second

one solves an MIP flow-formulation of the problem on the reduced graph for a given

time limit, in order to improve the solution found, and the last phase applies a modified

version of the recent technique of proximity search to further improve the solution. We

have tested the proposed method on randomly generated instances with balances of

{−1, 0, 1}, and we have compared the obtained results with those obtained by Cplex

both in 5 hours (default version) or by using the polishing algorithm to enhance its

heuristic behavior (for 900 seconds). The results show that our method is comparable

with the other ones for instances with up to 100 nodes, but obtains better solutions

for larger instances. Future research can be devoted to extend the proposed algorithm

Chapter 4 Single-commodity Robust Network Design Problem 87

to the multi-commodity case. In addition, the proposed method takes into account

the balances of all the scenarios, but a less conservative approach could be considered,

for example, by taking into account the probability of each scenario. Other extensions

could be to tackle related variants of robust network design, such as Survivable Network

Design: mostly the constructive phase needs to be modified, as long as a good MIP

formulation exists. Additional parameter tuning might be necessary as well.

Appendix

Proof of Lemma 7

We now provide a full version of the proof of Lemma 7. Let us denote by V d and Ed

the set of nodes and edges of Hd, respectively.

Proof of Lemma 7. If we define the set

S :=
{
S ⊂ V d | S is connected and separates at least one vq from its partner voq

}
,

we can find an optimum fractional solution forHrd with the following linear program [2].

min
∑
e∈Ed

ue∑
e∈δ(S)

ue ≥ r for all S ∈ S

ue ≥ 0 for all e ∈ E
(CAP)

If d = 2, it holds that |S| = d = 2 for all S ∈ S. Consequently, if we set ue = r/2 for all

e ∈ Ed, all primal constraints are satisfied with equality and the solution is optimal.

If d ≥ 3, we introduce dual variables ξS for all S ∈ S and obtain the following dual

program:

max
∑
S∈S

r · ξS∑
S∈S:
{i,j}∈S

ξS ≤ 1 for all {i, j} ∈ Ed

ξS ≥ 0

(CAP ∗)

We consider the following pair of primal and dual solutions:

ue := r/d for all e ∈ Ed ξS :=

0, if |δ(S)| > d

1/2, if |δ(S)| = d
for all S ∈ S.

88 Chapter 4 Single-commodity Robust Network Design Problem

To prove our claim, we need to show that u and ξ are feasible and satisfy complementary

slackness. Feasibility of u follows by the first part of Lemma 9: For all S ∈ S, we have

|δ(S)| ≥ d and thus
∑

e∈δ(S) ue = |δ(S)|(r/d) ≥ r. Observe that by the second part of

Lemma 9 equality holds if and only if |δ(S)| = d. Thus, we have (
∑

e∈δ(S) ue−r)·ξS = 0

for all S ∈ S, yielding primal complementary slackness. To see why ξ is feasible

for (CAP ∗) we need to show that∑
S∈S:
{i,j}∈S

ξS =
∑
S∈S:
|δ(S)|=d
{i,j}∈S

ξS ≤ 1 for all {i, j} ∈ Ed.

By applying Lemma 9, we can rewrite this as

∑
S∈S:
|δ(S)|=d
{i,j}∈S

ξS =
∑
S∈S:
|S|=1
{i,j}∈S

ξS = ξ{i} + ξ{j} = 1 for all {i, j} ∈ Ed

which also yields that (
∑

S∈S:e∈S ξS − 1) · ue = 0 for all e ∈ Ed, i.e., we have dual

complementary slackness. Finally, both solutions yield the desired objective value of∑
e∈Ed r/d = d · 2d−1 · (r/d) = r · 2d−1.

The following lemma provides the missing piece for the above proof.

Lemma 9. Let d ≥ 3. Then in Hd, |δ(S)| ≥ d for all ∅ (S (V d. Moreover, equality

is attained if and only if |S| = 1 or |S| = |V d| − 1.

Proof. The first part of the lemma is well-known: Saad and Schultz [26, Propositions

3.2 and 3.3] proved that for any two nodes i, j of a d-dimensional hypercube, there

are at least d node disjoint paths between i and j. By Menger’s Theorem [22], this

implies that |δ(S)| ≥ d for all ∅ (S (V d. Also, if S contains a single node i, then

|δ(S)| = |δ(i)| = d. It remains to show that the inequality is strict if 2 ≤ |S| ≤ |V d|−2.

Without loss of generality, we can assume that |S| ≤ 1
2 |V

d| since δ(S) = δ(V \ S).

Now, choose an arbitrary decomposition of Hd into two (d−1)-dimensional hypercubes

H1 = (V1, E1), H2 = (V2, E2) such that neither of S1 := S ∩ V1 and S2 := S ∩ V2 is

empty. This is possible because S contains at least two and at most |V |/2 nodes. It

also implies that neither S1 = V1 nor S2 = V2, as otherwise S2 or S1 would be empty,

respectively.

For i = 1, 2, the node set Si defines a cut δi(Si) in Hi. Since Si 6= ∅ and Si 6= Vi,

we know that |δi(Si)| ≥ d − 1, since Hi is a (d − 1)-dimensional hypercube. Also,

δ1(S1), δ2(S2) ⊆ δ(S) and therefore |δ(S)| ≥ 2 · (d− 1) > d for d ≥ 3.

Chapter 4 Single-commodity Robust Network Design Problem 89

Tables

In Table 4.2, we show the results obtained by the proposed method after each of the

three phases described in Section 4.4. In particular, we show the instance name (Inst.),

the number n of nodes in the graph G, the percentage t% of nodes that are terminals,

the number K of considered scenarios, the solution (uCP) obtained at the end of the

constructive phase, the solution uNSP obtained after the neighborhood search phase

(and the corresponding percentage improvement ImpruCP% with respect to uCP) and

the final solution uPSP provided by our method by applying proximity search (and

the corresponding percentage improvement ImpruNSP% with respect to uCP). We do

not report the computing times, as the time limit of 900 seconds is reached for all

instances.

In Table 4.3, we report the value of the best solution obtained by each method, and, for

Cplex Pol. 900s and for RND Heur., we show the percentage gap GapC5h% to the best

upper bound computed by Cplex 5h. In the last column, we also show the percentage

gap GapC900s% between the solutions obtained by RND Heur. and Cplex Pol. 900s.

Finally, in the last rows of the table, we show the average (Avg.), the median (Median)

and the standard deviation (StDev.) of the percentage gaps, as well as the minimum

(Min) and the maximum (Max) percentage gap.

90 Chapter 4 Single-commodity Robust Network Design Problem

Inst. n t% K uCP uNSP ImpruCP % uPSP ImpruNSP %
1 50 25 5 22904 22904 0.00 22438 -2.03
2 50 50 5 60921 53443 -12.27 52952 -13.08
3 50 100 5 79487 67250 -15.39 66340 -16.54
4 50 25 10 52835 47419 -10.25 47272 -10.53
5 50 50 10 66781 58928 -11.76 58346 -12.63
6 50 100 10 88323 73352 -16.95 71530 -19.01
7 100 25 5 39255 37624 -4.15 37041 -5.64
8 100 50 5 89264 80139 -10.22 79088 -11.40
9 100 100 5 81126 76247 -6.01 75012 -7.54
10 100 25 10 86929 72399 -16.71 71694 -17.53
11 100 50 10 115437 99155 -14.10 97703 -15.36
12 100 100 10 132233 116100 -12.20 115107 -12.95
13 200 25 5 98497 87562 -11.10 86855 -11.82
14 200 50 5 142509 122543 -14.01 122032 -14.37
15 200 100 5 169962 148214 -12.80 145826 -14.20
16 200 25 10 134999 113380 -16.01 111439 -17.45
17 200 50 10 173335 148397 -14.39 147487 -14.91
18 200 100 10 219903 190824 -13.22 189406 -13.87
19 300 25 5 92259 85518 -7.31 84681 -8.21
20 300 50 5 139954 129723 -7.31 129709 -7.32
21 300 100 5 183689 164206 -10.61 163699 -10.88
22 300 25 10 148349 122424 -17.48 121953 -17.79
23 300 50 10 201301 172539 -14.29 170487 -15.31
24 300 100 10 271340 235728 -13.12 232706 -14.24
25 400 25 5 109241 98219 -10.09 98176 -10.13
26 400 50 5 217300 190677 -12.25 190492 -12.34
27 400 100 5 291469 253378 -13.07 251291 -13.78
28 400 25 10 158033 136413 -13.68 135968 -13.96
29 400 50 10 253648 253648 0.00 244109 -3.76
30 400 100 10 325512 325512 0.00 314428 -3.41
31 500 25 5 106191 93433 -12.01 93425 -12.02
32 500 50 5 189269 174540 -7.78 174082 -8.02
33 500 100 5 261922 245907 -6.11 242828 -7.29
34 500 25 10 214149 214149 0.00 209360 -2.24
35 500 50 10 262379 262379 0.00 254891 -2.85
36 500 100 10 323275 323275 0.00 315955 -2.26

Avg. -9.91 -11.02

Table 4.2: Results obtained by the proposed method within 900 seconds of time
limit.

Chapter 4 Single-commodity Robust Network Design Problem 91

Cplex 5h Cplex Pol. 900s RND Heur. 900s
Inst. n t% K UB UB GapC5h% uPSP GapC5h% GapC900s%

1 50 25 5 22438 22438 0.00 22438 0.00 0.00
2 50 50 5 52952 52952 0.00 52952 0.00 0.00
3 50 100 5 66340 66546 0.31 66340 0.00 -0.31
4 50 25 10 47272 47272 0.00 47272 0.00 0.00
5 50 50 10 57861 57861 0.00 58346 0.83 0.83
6 50 100 10 71526 71526 0.00 71530 0.01 0.01
7 100 25 5 37031 37031 0.00 37041 0.03 0.03
8 100 50 5 78702 78702 0.00 79088 0.49 0.49
9 100 100 5 74822 74822 0.00 75012 0.25 0.25
10 100 25 10 71192 71189 0.00 71694 0.70 0.70
11 100 50 10 97246 98409 1.18 97703 0.47 -0.72
12 100 100 10 114624 115068 0.39 115107 0.42 0.03
13 200 25 5 85676 85947 0.32 86855 1.36 1.05
14 200 50 5 122062 122522 0.38 122032 -0.02 -0.40
15 200 100 5 144508 145770 0.87 145826 0.90 0.04
16 200 25 10 114995 116786 1.53 111439 -3.19 -4.80
17 200 50 10 148087 148138 0.03 147487 -0.41 -0.44
18 200 100 10 184992 204936 9.73 189406 2.33 -8.20
19 300 25 5 83302 87723 5.04 84681 1.63 -3.59
20 300 50 5 128296 130825 1.93 129709 1.09 -0.86
21 300 100 5 162860 168882 3.57 163699 0.51 -3.17
22 300 25 10 148349 129877 -14.22 121953 -21.64 -6.50
23 300 50 10 199456 195300 -2.13 170487 -16.99 -14.55
24 300 100 10 268072 259317 -3.38 232706 -15.20 -11.44
25 400 25 5 98297 101115 2.79 98176 -0.12 -2.99
26 400 50 5 190328 206445 7.81 190492 0.09 -8.37
27 400 100 5 252987 252842 -0.06 251291 -0.67 -0.62
28 400 25 10 158033 150661 -4.89 135968 -16.23 -10.81
29 400 50 10 253648 253648 0.00 244109 -3.91 -3.91
30 400 100 10 325512 325512 0.00 314428 -3.53 -3.53
31 500 25 5 98778 102182 3.33 93425 -5.73 -9.37
32 500 50 5 177572 177292 -0.16 174082 -2.00 -1.84
33 500 100 5 241684 251807 4.02 242828 0.47 -3.70
34 500 25 10 214149 214149 0.00 209360 -2.29 -2.29
35 500 50 10 262379 262379 0.00 254891 -2.94 -2.94
36 500 100 10 323275 323275 0.00 315955 -2.32 -2.32

Avg. 0.51 -2.38 -2.90
Median 0.00 0.00 -1.35
StDev. 3.67 5.75 3.96

Min -14.22 -21.64 -14.55
Max 9.73 2.33 1.05

Table 4.3: Comparison of the proposed heuristic (time limit of 15 minutes) with
Cplex (time limit of 5 hours or 15 minutes).

Bibliography

[1] A. Altin, E. Amaldi, P. Belotti, and M.C. Pinar. Provisioning virtual private

networks under traffic uncertainty. Networks, 49:100–115, 2007.

[2] E. Álvarez-Miranda, V. Cacchiani, T. Dorneth, M. Jünger, F. Liers, A. Lodi,

T. Parriani, and D. Schmidt. Models and algorithms for robust network design

with several traffic scenarios. In A. R. Mahjoub et al., editor, ISCO 2012, volume

7422 of Lecture Notes in Computer Science, pages 261–272. Springer, 2012.

[3] A. Atamtürk. On capacitated network design cut-set polyhedra. Mathematical

Programming, 92:425–437, 2000.

[4] W. Ben-Ameur and H. Kerivin. Routing of uncertain traffic demands. Optimiza-

tion and Engineering, 6:283–313, 2005.

[5] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs.

Operations Research Letters, 25(1):1–13, 1999.

[6] A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems

contaminated with uncertain data. Mathematical Programming, 88:411–424, 2000.

[7] D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):35–

53, 2004.

[8] D. Bienstock, S. Chopra, O. Günlük, and C.H. Tsai. Minimum cost capacity instal-

lation for multicommodity network flows. Mathematical Programming, 81(2):177–

199, 1998.

[9] C. Buchheim, F. Liers, and L. Sanità. An exact algorithm for robust network

design. In J. Pahl, T. Reiners, and S. Voß, editors, INOC, volume 6701 of Lecture

Notes in Computer Science, pages 7–17. Springer, 2011.

[10] C. Chekuri. Routing and network design with robustness to changing or uncertain

traffic demands. SIGACT News, 38:106–128, 2007.

[11] R. T. Chien. Synthesis of a communication net. IBM Journal of Research and

Development, 4(3):311–320, 1960.

93

94 BIBLIOGRAPHY

[12] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramakrishnan, and

J.E. van der Merwe. A flexible model for resource management in virtual private

networks. In Proceedings of the conference on Applications, technologies, architec-

tures, and protocols for computer communication, SIGCOMM ’99, pages 95–108.

ACM, 1999.

[13] M. Fischetti and M. Monaci. Proximity search for 0-1 mixed-integer convex pro-

gramming. Technical report, DEI, University of Padova, Italy, 2013.

[14] A.V. Goldberg. An efficient implementation of a scaling minimum-cost flow algo-

rithm. Journal of Algorithms, 22(1):1–29, 1997.

[15] R. Gomory and T. Hu. An application of generalized linear programming to

network flows. Journal of the Society for Industrial and Applied Mathematics,

10(2):260–283, 1962.

[16] R.E Gomory and T.C. Hu. Multi-terminal network flow. SIAM Journal on Applied

Mathematics, 9:551–570, 1961.

[17] L. R. Ford Jr. and D. R. Fulkerson. A simple algorithm for finding maximal

network flows and an application to the hitchcock problem. Canadian Journal of

Mathematics, 9:210–218, 1957.

[18] H. Kerivin and A.R. Mahjoub. Design of survivable networks: A survey. In In

Networks, pages 1–21, 2005.

[19] A.M.C.A. Koster, M. Kutschka, and C. Raack. Robust network design: Formula-

tions, valid inequalities, and computations. Networks, 61(2):128–149, 2013.

[20] M. Labbé, R. Séguin, P. Soriano, and C. Wynants. Network synthesis with non-

simultaneous multicommodity flow requirements: Bounds and heuristics, 1999.

[21] S. Mattia. The robust network loading problem with dynamic routing. Compu-

tational Optimization and Applications, 54:619–643, 2013.

[22] Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae,

10(1):96–115, 1927.

[23] M. Minoux. Optimum synthesis of a network with non-simultaneous multicom-

modity flow requirements. In Annals of Discrete Mathematics (11) Studies on

Graphs and Discrete Programming, volume 59, pages 269 – 277. North-Holland,

1981.

[24] F. Ortega and L.A. Wolsey. A branch-and-cut algorithm for the single-commodity,

uncapacitated, fixed-charge network flow problem. Networks, 41(3):143–158, 2003.

[25] E. Rothberg. An evolutionary algorithm for polishing mixed integer programming

solutions. INFORMS Journal on Computing, 19:534–541, 2007.

BIBLIOGRAPHY 95

[26] Youcef Saad and Martin H. Schultz. Topological properties of hypercubes. Tech-

nical Report YALEU/DCS/TR389, Yale University, 1985.

[27] L. Sanità. Robust Network Design. Ph.D. Thesis. Università La Sapienza, Roma,

2009.

[28] L. Sanità. Private communication. 2013.

[29] A. L. Soyster. Convex programming with set-inclusive constraints and applications

to inexact linear programming. Operations Research, 21(5):1154–1157, 1973.

Chapter 5

A Decomposition Based

Heuristical Approach for Solving

Large Stochastic Unit

Commitment Problems Arising

in a California ISO Planning

Model1

5.1 Introduction

The state of California has embarked on an aggressive plan to produce 33% of its elec-

tric energy from renewable resources by the year 2020 [3]. The increased penetration of

intermittent renewable generation needed to meet this goal will substantially increase

the variability and uncertainty in generation resources available to system operators.

To assess the impact of these high renewable penetrations, the California Energy Com-

mission funded a recently-completed study at Lawrence Livermore National Laboratory

to couple atmospheric models capable of producing renewable generation trajectories

with stochastic day-ahead unit commitment optimization models [9]. This stochastic

day-ahead unit commitment model employs at its core a deterministic unit commit-

ment planning model developed by the California Independent System Operator (ISO)

1Accepted - “An Efficient Approach for Solving Large Stochastic Unit Commitment Problems
Arising in a California ISO Planning Model”, T. Parriani, G. Cong, C. Meyers, D. Rajan, 2014 PES
General Meeting Proceedings; Under review - “A framework for solving mixed-integer programming
problems with decomposition and generic approaches”, G. Cong, T. Parriani, United States Patent and
Trademark Office, Research Disclosure YOR8-2013-1124.

97

98
Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic

Unit Commitment Problems Arising in a California ISO Planning Model

for a study of market impacts under the 33% renewable portfolio standard [2]. The de-

terministic model is based on a grid description and operational specifications provided

by the California ISO, and is implemented using the PLEXOS power market software

package [10], which generates a mixed-integer linear programming formulation suitable

for determining day-ahead hourly commitment decisions.

The stochastic unit commitment model is formulated as a two-stage mixed-integer

stochastic optimization extension of the deterministic model, where scenarios are de-

fined by different renewable generation trajectories, unit commitment states for long-

start generators are treated as first-stage decisions (common across all scenarios), and

economic dispatch values and unit commitment states for short-start generators are

treated as second-stage decisions (one for each scenario).

5.1.1 Model Description and Prior Computational Performance

The model representation of the Western Energy Coordinating Council (WECC) grid

developed by the California ISO includes more than 2,400 generating units, over 42

zones in 11 states, with 120 transmission lines between zones (a zonal model). Wind

and solar (PV) inputs are included at a zonal level, aggregated from numerous individ-

ual real and proposed wind and solar sites. The California ISO model calculates hourly

day-ahead unit commitments for all 2,400 generating units, with integer commitments

for all (several hundred) generation units in California, and fractional commitments

elsewhere. As a result, the deterministic day-ahead mixed-integer program (MIP) is al-

ready fairly large, including roughly 400,000 constraints, 600,000 continuous variables,

10,000 general integer variables and 2,000 binary variables.

Variables and constraints in the stochastic version of the model are (roughly) linear

multiples of the corresponding values in the deterministic model, according to the

number of scenarios used. Thus, the computational burden associated with solving

such problems becomes prohibitive for even very powerful systems. In the California

Energy Commission study [9], it was found that for only 8 scenarios, each day-ahead

stochastic unit commitment problem already takes an average of 5 hours to solve, and

no solutions at all were found for 20 or more scenarios. It was for this reason the

original study was downscaled to include only 5 scenarios [9].

5.1.2 Contributions

We propose in Section 5.3 a new method for solving two-stage stochastic optimization

problems that significantly reduces the solution time of the aforementioned stochastic

unit commitment problems. As detailed in Section 5.4, this method allows us to

solve individual unit commitment problems roughly 6 times faster than previously

Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic
Unit Commitment Problems Arising in a California ISO Planning Model 99

• • • • • • • • •
• • •
• • •

• • •
• • •

 • • •
 • • •

One	 sample,	 one	 block	

Coupling	
constraints	
between	 samples	

Non-‐zero	 entry	

Figure 5.1: Pictorial Representation of non-zero entries in constraint matrix: Cou-
pling constraints (5.2) have first-stage variables from all scenarios. Constraints (5.3)

and (5.4) can be divided into blocks, one for each scenario s.

achievable, while a parallel implementation of this method (many of its stages are

parallelizable) solves the problems more than 20 times faster.

5.2 Dual Decomposable Schemes for Stochastic Optimiza-

tion Problems

We begin by reviewing stochastic optimization problems, and briefly describe schemes

for solving such problems. We then consider the Progressive Hedging (PH) algorithm

in detail, highlighting many of its strengths and some weaknesses.

5.2.1 Stochastic Optimization: An overview

A stochastic optimization problem is often formulated as a two-stage optimization

problem. Given a set of scenarios ωs, s ∈ [1, S] with corresponding probabilities ps, the

sample-based MIP is formulated as:

min
∑
s∈S

ps
(
cTxs + qTs ys

)
(5.1)

s.t.

x1 = x2 = · · · = xs (5.2)

Axs ≤ b (5.3)

Tsxs +Wsys = hs (5.4)

l1 ≤ xs ≤ u1 (5.5)

l2 ≤ ys ≤ u2 (5.6)

xjs ∈ Z,∀j ∈ D1 ⊆ {1, . . . , n1} (5.7)

yjs ∈ Z,∀j ∈ D2 ⊆ {1, . . . , n1} (5.8)

100
Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic

Unit Commitment Problems Arising in a California ISO Planning Model

where x and y are first- and second-stage decision variables, respectively.

This formulation is often referred to as dual decomposable, since by eliminating the

coupling constraints (1a), the problem can be decomposed into a separate subproblem

for each scenario; see Figure 5.1. Many dual decomposition approaches have been

applied to such problems, including Lagrangian [4], and augmented Lagrangian meth-

ods [1, 22], branch and price approaches based on Dantzig-Wolfe decomposition [16],

and the Progressive Hedging (PH) algorithm proposed in [19]. The Dantzig-Wolfe

decomposition requires the iterative resolution of an integer reduced master problem.

Conversely, the augmented lagrangian method is not naturally decomposable and re-

quires the use of some “tricks” (see e.g., [5, 21]). An alternate deterministic equivalent

formulation (also expanded by the number of scenarios) uses coupling first-stage vari-

ables that are common for all the scenario. In this primal decomposable formulation,

once the coupling first-stage variable are eliminated, the problem decomposes into sep-

arate subproblems corresponding to scenarios. Using primal-decomposition schemes

such as Benders’ (see, e.g., [29]), stochastic optimization problems can be effectively

solved when all the second-stage variables are continuous. When the problem has gen-

eral integer and binary second-stage variables, as the problem addressed here, it is not

possible to directly use the Benders’ scheme. Extensions have been proposed to primal

decomposition schemes for such cases, (see e.g., [30, 23, 24, 11]).

Progressive Hedging (PH) was designed specifically for stochastic programming prob-

lems and combines the idea of augmented Lagrangian methods with a scenario based

decomposition. Unlike branch and price and other approaches based on column gener-

ation, the subproblems in PH are updated without needing to iteratively solve a master

problem.

5.2.2 The Progressive Hedging Algorithm

Studies concerning the structural proprieties of PH can be found in [26] while in [25] a

first analysis of different parallelization strategies is presented. For convex optimization

problems, such as stochastic linear programs, PH is guaranteed to converge to the

optimal solution ([13, 17]), even if the subproblems are solved approximately ([28,

19]). In our case, both since both first and second stage decisions contain integer

variables, theoretical convergence is lost. Nevertheless, PH can be applied to non-

convex stochastic integer programs (such as ours) to obtain heuristic solutions ([7, 12,

15, 14, 27]).

Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic
Unit Commitment Problems Arising in a California ISO Planning Model 101

In PH, for iteration i, a subproblem is defined for each scenario s as:

(SP is) min ps(c
Txs + qTs ys) + f̂ ′s(xs, i) (5.2a)

Axs+ = b (5.2b)

Tsxs +Wsys = hs (5.2c)

x ∈ X, y ∈ Y . (5.2d)

The penalty function f̂s(xs, i) is then defined as:

f̂ ′s(xs, i) = λisxs +
1

2
ρi(xs − xi)2 ∀i > 0 (5.3)

f̂s(xs, i) = 0 i = 0 (5.4)

where ρi = ρ > 0 ∀i is a parameter we refer to as “penalty factor”; x is a vector of

the averages of subproblem solutions, x∗i−1
s , defined as xi =

∑
s∈S psx

∗i−1
s and λis is

defined as

λis = λi−1
s + ρi−1(x∗i−1

s − xi) ∀i > 0 (5.5)

λis = 0 i = 0 . (5.6)

At every iteration of the algorithm, SP is is solved for every scenario and solutions are

used to update the penalty function. The purpose is to define a penalty function so that

all first-stage variables assume the same value in all subproblem solutions, producing

a feasible solution (optimal in the convex case).

A natural stopping criterion for PH consists in halting execution when convergence is

reached for all the first-stage variables. In a commonly used termination criterion [8],

PH terminates when the norm

δ = {||xi − xi−1||2 +
∑
s∈S

ps||x∗i,s − xi||2}
1
2

drops below a certain parametric threshold. In this case δ is a measure of the “distance

from convergence”. As we discuss later, we also consider termination criteria based

on the gap between the best-known upper bound (from feasible solutions) and the

best-known lower bound (obtained by combining the solutions of the subproblems for

the first iteration). In practice, many problems also consider a global execution time

limit.

The main drawbacks of PH are that the commonly used penalty factor results in a

quadratic integer program for each subproblem, which can present computational chal-

lenges; furthermore, the PH scheme does not provide feasible solutions to the stochastic

problem until it converges (or at least all the integer-first stage variables converge).

Even then, there is no guarantee that a feasible solution exists for the original prob-

lem with fixed first-stage integer variables. We address both these shortcomings in

102
Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic

Unit Commitment Problems Arising in a California ISO Planning Model

mPH, our modified PH-based algorithm for solving two-stage stochastic optimization

problems.

5.3 mPH: A PH-based Heuristic for Two-stage Stochastic

Problems

We motivate our introduction of mPH, a modified version of PH effective in solv-

ing large real-world stochastic problems, by detailing our approach in overcoming the

drawbacks of PH.

5.3.1 Linear subproblems

The penalty function defined in (5.3)-(5.4) leads to quadratic subproblems. (If all the

second-stage variables are defined as binaries there is an equivalent linear formulation

for SP is [7], but this does not apply in our unit commitment problems.) When the size

of the problem increases, the quadratic subproblems quickly become difficult to solve

if not intractable. From a theoretical point of view, the presence of the quadratic term

ensures convergence to an optimal solution for the convex case (as in stochastic linear

programs). From our perspective, losing the convergence property by modifying the

penalty function is acceptable since the proof of convergence does not extend to the

non-convex stochastic integer program case.

As illustrated in Figure 5.2(a), the quadratic term in f̂ ′s(xs, i) pushes the first-stage

variables to assume values that are near the average xi. In a linear penalty function

obtained by removing the quadratic term, the distance from xi is not penalized, caus-

ing oscillatory behavior of the variables and impacting, convergence of the algorithm.

Therefore, instead of removing the quadratic term, we approximate the quadratic dis-

tance from xi with the absolute distance. To the best of our knowledge, this is a new

technique in the context of PH.

For a generic scenario s, we define the following penalty function:

f̂s(xs, i) = λisxs +
1

2
ρi|xs − xi| (5.7)

where the penalty factor ρi is a vector as defined below. The intent behind the definition

of f̂s(xs, i) is to mitigate the oscillatory behaviour and, at the same time, allow the

solution of linear subproblems. Note that with the linear penalty the overall cost of

a given first-stage variable xs,j has a minimum at xij , if ρij ≥ 2(cj + λis,j), or at the

minimum defined by c and λis, otherwise (see Figure 5.2(b) and Fig.5.2(c)).

Choosing the correct penalty factor for the original quadratic penalty function is critical

and is often data dependent ([27, 18]). When f̂s(xs, i) is used instead of f̂ ′s(xs, i), the

smoothness of the quadratic penalization is lost and choosing the correct penalty factor

Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic
Unit Commitment Problems Arising in a California ISO Planning Model 103

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

αx

ρ

2
(x−x̄)2

cx+αx+
ρ

2
(x−x̄)2

(a)

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

αx

ρ

2
|x−x̄|

cx+αx+
ρ

2
|x−x̄|

(b)

0 2 4 6 8 10 12 14
x

10

5

0

5

10

cx

αx

ρ

2
|x−x̄|

cx+αx+
ρ

2
|x−x̄|

(c)

Figure 5.2: Examples of penalty functions: for a given first-stage variable with
original cost c = 0.5, in (a) the penalty function f̂ ′s(xs, i) is represented supposing

λis = −1, ρi = 2; in (b) and (c), the penalty function f̂s(xs, i) is represented with
same λis and,respectively, ρi = 2 and ρi = 2

3 .

is as critical as in the quadratic case.

Penalty factor: We extend the element-specific penalty factor first proposed in [27].

The authors define a penalty factor, for each iteration i and for each first-stage variable

j, as follows:

ρ̃ij =
|cj |

(maxs x
∗i,s
j −mins x

∗i,s
j)

.

When the absolute distances replaces the quadratic term, using the same definition

results in a weak penalty factor and, consequently, slow convergence of the algorithm.

Instead, we use the vector ρi = (ρi1, ..., ρ
i
n), where ρij = (ρ̃ij)

2 and n is the number of

first-stage variables.

In f̂ ′s(xs, i), any ρ > 0 guarantees that the subproblems are bounded. This is not the

case when absolute distance is considered. To overcome this issue, for every unbounded

first-stage variable j, we adjust ρ̃ij so that the overall cost defined by c,λ and ρ̃ij is greater

then zero for any xs,j ≥ xij . In particular if we observe for a positive unbounded variable

j that:

ρ̃ij ≤ −2 min
s:(csj+λ

s,v
j)<0

(csj + λs,vj)

104
Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic

Unit Commitment Problems Arising in a California ISO Planning Model

we impose:

ρ̃ij = −2 min
s:(csj+λ

s,v
j)<0

(csj + λs,vj) + γ

where γ > 0. In our experiments, we set γ = 1.

5.3.2 Guided MIP Solves for feasible solutions

PH does not directly provide feasible solutions until complete convergence. For diffi-

cult to solve instances, it is highly likely that convergence will not complete within a

given time limit. Existing strategies typically stop the algorithm before convergence is

reached for all the first stage variables and then search for global feasible solutions by

fixing some variables. Our new approach searches for feasible solutions while the algo-

rithm iterates. Our ability to find good feasible solutions even after the first iteration

is particularly useful for instances such as ours with large and difficult subproblems,

in which a single iteration of mPH requires a considerable computational effort. More-

over, different iterations of the algorithm may generate different feasible solutions by

exploring different parts of the feasibility region.

Guided solves: We refer to first-stage variables that have the same value in the solu-

tions of all subproblems for a given iteration as “agreed” variables. We obtain feasible

solutions by optimizing SUC with agreed variables fixed to the common value. We call

this problem SUC ′ and its solution as “guided solves”. Since we may have different sets

of agreed variables in different iterations, we may derive a different SUC ′ formulation

at every iteration, producing a different solution.

For continuous first-stage variables, we define a tolerance in which two first-stage vari-

ables can be considered equal and therefore, agreed. For any ε > 0, we denote by

“ε−agreed” all the variables for which the variance from a common value is less than

ε. All the ε−agreed variables can then be fixed at their average value xi. If ε is smaller

than the feasibility tolerance of the MIP solver used for the guided solves, then the

definition of agreed and ε-agreed variables coincide.

SUC ′ feasibility: Observe that Problem SUC ′ is obtained by adding constraints to

the original SUC formulation; thus the feasibility region of SUC ′ is contained in the re-

gion of SUC. On the other hand, there is no guarantee that SUC ′ has feasible solutions

even if SUC does. In fact, it is not always possible to satisfy the non-anticipativity

constraints for all non-fixed first-stage variables for all agreed variables. However, if

a combination of first-stage variables is known to be feasible for all scenarios if it is

feasible for one scenario, then is possible to state a-priori that SUC ′ is always feasible

if SUC is feasible.

ε-strategies: The parametric definition of ε-agreed variables suggests certain natural

strategies. When the number of agreed first-stage variables is low, the guided solve

requires a computational effort similar to the original SUC formulation. In this case,

considering integer variables that have similar (unequal) values as ε-agreed may help.

Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic
Unit Commitment Problems Arising in a California ISO Planning Model 105

gap % mPH gap % mPH
Instance It 1 It 2 Instance It. 1 It. 2

D2020-03-02 0.1 0.11 D2020-12-29 0.01 0.02
D2020-01-04 0.13 0.11 D2020-10-10 0.01 0.01
D2020-05-14 0.09 0.09 D2020-07-16 0.87 -
D2020-08-07 - 0.13 D2020-06-30 0.23 0.12
D2020-09-27 0.03 0.02 D2020-04-15 0.02 0.02
D2020-11-09 0.05 0.06 D2020-02-12 0.00 0.00

Table 5.1: Comparison of solution quality for 5-scenarios instances

This causes an increased number of fixed variables in SUC ′, with consequent reduction

of required computation and, potentially, solution quality.

Conversely, one may want to reduce the number of fixed first-stage variables, when

easy to solve SUC ′ problems return poor or infeasible solutions. One strategy is to

fix variables that converged only in the previous iteration. This idea arises from the

fact that some generation resources are used only when uncertainty is considered. For

example, the subproblems solved separately may not use such resources in the initial

iterations, even if they are used in the optimal solution. In this case, fixing such

resources to zero will cut off the optimum.

5.4 Computational Results

Instances and Experimental Setup: We present numerical results evaluating our

algorithm mPH on a test bed containing twelve 5-scenario instances and one 20-scenario

instance. Each instance corresponds to a daily hour-time-step unit commitment prob-

lem, simulated for year 2020, as described in Section 5.1.1. We ran our algorithm mPH

on a machine with a Power7 processor, which has 8 cores running at 3.61GHz, with

each core capable of four-way simultaneous multithreading. Power7 executes instruc-

tions out-of-order. There are 12 execution units (including 2 fixed-point units and 2

load/store units) per core shared by the 4 hardware threads.

5.4.1 Results

We compare mPH with “direct” solutions of the SUC formulation using CPLEX 12.4

with standard parameters except for “relative MIP gap tolerance which is set to 0.05%.

We use the same version of CPLEX and the same parameter settings to solve SUC ′

in mPH, but set the relative MIP gap tolerance to 0.5% for the subproblems SP is .

To reduce the computational requirements for solving SUC ′, we fixed some second-

stage variables in addition to the “ε−agreed” first-stage variables. If we observed that

the second-stage variables for a given variable assume the same value in the solutions

106
Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic

Unit Commitment Problems Arising in a California ISO Planning Model

of all the subproblems, then in SUC ′ we fix all these second-stage variables to this

agreed value.

Five scenarios instance: In Table 5.1 we summarize the quality of the results

achieved for the 5-scenarios instances. In column “It. 1” and “It. 2” we report the

gap, in percentage, between the optimal solutions obtained using the direct approach

and the feasible solutions returned by the guided solves after the first two iterations.

In our experiments, we stopped mPH after just two iterations since we obtain solutions

comparable to the optimum in two iterations. We did obtain infeasible SUC ′ problems

in two cases, but the overall performance was not compromised since for every instance

it was possible to reach a feasible solution in either the first or second iteration.

Table 5.2 compares the solution times (in seconds) for the 5-scenario problems. We

achieve a 6x speedup in average serial solution time. A parallel implementation solves

all the subproblems in parallel; the guided solve subsequent to iteration i is also carried

out in parallel with the subproblems of i + 1. In this implementation, we find a 22x

average speedup.

Times [s]
Direct mPH mPH

Instance 0.05-Opt Serial Parallel
D2020-03-02 9923.30 1642 463.3
D2020-01-04 5318.20 2503.1 643.9
D2020-05-14 13708.30 1668.3 513.1
D2020-08-07 8097.70 1269.5 412.6
D2020-09-27 11842.70 1381.4 491.7
D2020-11-09 5484.30 1543.6 380.6
D2020-12-29 9192.00 2699 691.7
D2020-10-10 35951.50 3923.7 1020.7
D2020-07-16 2965.80 1221.5 301
D2020-06-30 5988.80 1110.9 321.1
D2020-04-15 36022.50 3650.4 1151.3
D2020-02-12 7642.10 1748.2 483.8
AVERAGES 12678.1 2030.13 572.90

Table 5.2: Comparison of execution times for 5-scenario instances

In our experiments, we observed a decrease in subproblem solution times for the second

iteration, which is partially due to information from the first iteration and partially due

to a different (penalizing) objective function. We also observe a reduction in solution

time for the guided solves, averaging a 40% improvement. In our experiments, the

guided solve re-optimized from scratch at every iteration, with no information used

from the previous iteration, so the reduced solution times can only be attributed to

the different fixed variables in SUC ′.

Twenty scenarios instance: Table 5.3 lists mPH execution times and solution qual-

ity for the 20-scenario instance. Time columns are the same as the 5-scenario case,

and the rows here are the iteration number. The gap between the solutions from the

Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic
Unit Commitment Problems Arising in a California ISO Planning Model 107

guided solves the best known lower bound is reported in column “Gap % SUC ′i-LB”. It

is clear from the results that the solutions provided by the guided solves are extremely

close to optimal. The feasible solutions returned by mPH are the only valid upper

bound in this case as the 20-scenarios instance is intractable when solved with the

direct approach (no feasible solution was found in 24 hours).

Convergence: While mPH provided near optimal solutions after 2 iterations, the

convergence of the algorithm depends on the effectiveness of the linear penalty function

f̂s(xs, i). To gauge this, we ran the algorithm for ten iterations for the 5-scenarios

instances and seven iterations for the 20-scenario instance; there were no cases of

complete convergence.

Times [s] Gap %
It. SP is Sum SP is Max SUC ′i SUC ′i-LB

1 7172.88 466.37 8781.04 0.02
2 2600.46 186.71 2419.81 0.02
3 3012.23 214.35 2072.5 0.01
4 2543.42 202.39 2277.18 0.01
5 2786.57 260.27 1732.35 0.01
6 3614.93 439.67 2120.29 0.01
7 4033.06 382.32 1218.11 0.02

Table 5.3: Results for the 20-scenarios instance

In Figure 5.3 we report the measure δ. After the first iteration the δ in the 5-scenarios

instances reaches very small values and remains there. In the twenty scenarios instance,

we observed a slight but constant reduction of δ in the following iterations.

1 2 3 4 5 6 7 8 9 10
Iteration

0

10

20

30

40

50

60

70

80

90

δ

(a) 5 scenario instances

1 2 3 4 5 6
Iteration

0

10

20

30

40

50

60

δ

(b) 20 scenario instance

Figure 5.3: Evolution of δ.

108
Chapter 5 A Decomposition Based Heuristical Approach for Solving Large Stochastic

Unit Commitment Problems Arising in a California ISO Planning Model

To achieve complete algorithmic convergence, one could fix the agreed variables both

in SUC ′ and also in the subproblems of following iterations. Alternatively, one could

use a definition of εi that increases when the iterations of i increases.

5.5 Conclusions

We have observed that the mPH algorithm is able to produce near-optimal solutions

for our stochastic unit commitment problems, with roughly a 4 times improvement

in solution time over the standard approach. This allows us to solve our stochastic

unit commitment problems using many more renewable generation scenarios than was

previously reasonable computationally, including the solution of formerly intractable

problems such as the 20-scenario case. Given the recent interest within the power

industry for stochastic unit commitment models as a way of managing uncertainty [6,

20], these results represent another tool that can be used to mitigate the computational

burden of such problems.

We note that the linearization introduced in the penalty function allows the resolution

of very large mixed integer linear subproblems with the direct use of generic purpose

solvers. Nonetheless the computation needed to solve the subproblems can be con-

siderable, and convergence of the algorithm within the reduced number of iterations

computable within a given time limit can be a challenge. Thus it is crucial to also

allow the parallel solver to search for feasible solutions before convergence is reached.

The combinatorial methods proposed here suggest several areas for further analysis.

First, as mentioned in the ε-strategies paragraph, there are different possible defini-

tions of the agreed variables. Second, when feasible solutions are available there is the

concrete possibility (not exploited in this work) to use these solutions to help conver-

gence of PH or to speed up the resolution process in general. As an example, if for a

given iteration SUC ′ returns a particularly good feasible solution, it may be advanta-

geous to fix some of the agreed variables in the subproblems. This will help produce

easier subproblems, with a consequent reduction of computation, and may also help

convergence of the algorithm by progressively fixing more variables.

Bibliography

[1] Alexandre Belloni, AL Diniz Souto Lima, ME Piñeiro Maceira, and Claudia A

Sagastizábal. Bundle relaxation and primal recovery in unit commitment prob-

lems. the Brazilian case. Annals of Ops Research, 120:21–44, 2003.

[2] California Independent System Operator. Integration of renewable resources:

Technical appendices for California ISO renewable integration studies. Techni-

cal report, California ISO, 2010.

[3] California State Senate. Bill Number 2, April 12 2011.

[4] Claus C Carøe and Rüdiger Schultz. Dual decomposition in stochastic integer

programming. Ops Research Letters, 24:37–45, 1999.

[5] Pierre Carpentier, G Gohen, J-C Culioli, and Arnaud Renaud. Stochastic opti-

mization of unit commitment: a new decomposition framework. Power Systems,

IEEE Transactions on, 11(2):1067–1073, 1996.

[6] K. Cheung, D. Gade, C. Monroy, S. Ryan, J. Watson, R. Wets, and D. Woodruff.

Toward scalable stochastic unit commitment - part 2: assessing solver perfor-

mance. IEEE Transactions on Power Systems, 2013. Submitted.

[7] Teodor Gabriel Crainic, Xiaorui Fu, Michel Gendreau, Walter Rei, and Stein W

Wallace. Progressive hedging-based metaheuristics for stochastic network design.

Networks, 58:114–124, 2011.

[8] Amal De Silva and David Abramson. Computational experience with the parallel

progressive hedging algorithm for stochastic linear programs. In Proceedings of

1993 Parallel Computing and Transputers Conference Brisbane, pages 164–174.

Citeseer, 1993.

[9] T. Edmunds, A. Lamont, V. Bulaevskaya, C. Meyers, J. Mirocha, A. Schmidt,

M. Simpson, S. Smith, P. Sotorrio, P. Top, and Y. Yao. The value of storage

and demand response for renewable integration. Technical Report under contract

CEC-500-10-051, California Energy Commission, 2013. Awaiting approval for

public release.

109

110 BIBLIOGRAPHY

[10] Energy Exemplar. PLEXOS Integrated Energy Modeling Software. Product of

Energy Exemplar, LLC, 2013. http://www.energyexemplar.com/.

[11] Dinakar Gade, Simge Küçükyavuz, and Suvrajeet Sen. Decomposition algorithms

with parametric gomory cuts for two-stage stochastic integer programs. Mathe-

matical Programming, pages 1–26, 2012.

[12] Kjetil K Haugen, Arne Løkketangen, and David L Woodruff. Progressive hedging

as a meta-heuristic applied to stochastic lot-sizing. European Journal of Opera-

tional Research, 132(1):116–122, 2001.

[13] Thorkell Helgason and Stein W Wallace. Approximate scenario solutions in the

progressive hedging algorithm. Annals of Ops Research, 31:425–444, 1991.

[14] Arne Lokketangen and Fred Glover. Solving zero-one mixed integer program-

ming problems using tabu search. European Journal of Operational Research,

106(2):624–658, 1998.

[15] Arne Løkketangen and David L Woodruff. Progressive hedging and tabu search

applied to mixed integer (0, 1) multistage stochastic programming. Journal of

Heuristics, 2:111–128, 1996.

[16] Guglielmo Lulli and Suvrajeet Sen. A branch-and-price algorithm for multistage

stochastic integer programming with application to stochastic batch-sizing prob-

lems. Management Science, 50:786–796, 2004.

[17] John M Mulvey and Hercules Vladimirou. Applying the progressive hedging

algorithm to stochastic generalized networks. Annals of Operations Research,

31(1):399–424, 1991.

[18] John M Mulvey and Hercules Vladimirou. Solving multistage stochastic networks:

An application of scenario aggregation. Networks, 21:619–643, 1991.

[19] R Tyrrell Rockafellar and Roger J-B Wets. Scenarios and policy aggregation in

optimization under uncertainty. Mathematics of operations research, 16:119–147,

1991.

[20] P. Ruiz, C. Philbrick, E. Zak, K. Cheung, and P. Sauer. Uncertainty management

in the unit commitment problem. IEEE Transactions on Power Systems, 24:642–

651, 2009.

[21] Andrzej Ruszczyński. On convergence of an augmented lagrangian decomposition

method for sparse convex optimization. Mathematics of Operations Research,

20(3):634–656, 1995.

[22] Andrzej Ruszczyński. Decomposition methods in stochastic programming. Math-

ematical programming, 79(1-3):333–353, 1997.

BIBLIOGRAPHY 111

[23] Hanif D Sherali and Barbara MP Fraticelli. A modification of benders’ decompo-

sition algorithm for discrete subproblems: An approach for stochastic programs

with integer recourse. Journal of Global Optimization, 22(1-4):319–342, 2002.

[24] Hanif D Sherali and Xiaomei Zhu. On solving discrete two-stage stochastic pro-

grams having mixed-integer first-and second-stage variables. Mathematical Pro-

gramming, 108(2-3):597–616, 2006.

[25] Michael Somervell. Progressive hedging in parallel. PhD thesis, Engineering

Science)–University of Auckland, 1998.

[26] Stein W Wallace and Thorkell Helgason. Structural properties of the progressive

hedging algorithm. Annals of Operations Research, 31(1):445–455, 1991.

[27] Jean-Paul Watson, David L Woodruff, and David R Strip. Progressive hedging in-

novations for a stochastic spare parts support enterprise problem. Naval Research

Logistics, 2007.

[28] Roger JB Wets. The aggregation principle in scenario analysis and stochastic op-

timization. In Algorithms and model formulations in mathematical programming,

pages 91–113. Springer, 1989.

[29] Lei Wu and Mohammad Shahidehpour. Accelerating the Benders decomposition

for network-constrained unit commitment problems. Energy Systems, 1:339–376,

2010.

[30] Qipeng P Zheng, Jianhui Wang, Panos M Pardalos, and Yongpei Guan. A decom-

position approach to the two-stage stochastic unit commitment problem. Annals

of Operations Research, pages 1–24, 2012.

	1 Introduction
	1.1 Preface
	1.2 Content of the Thesis
	1.2.1 Chapter 2
	1.2.2 Chapter 3
	1.2.3 Chapter 4
	1.2.4 Chapter 5

	2 Partial Aggregation for Generalized Bundle Methods, An Application to the Multicommodity Min-Cost Flow ProblemTechnical Report ``Partial aggregation for Generalized Bundle Methods, An Application to the Multicommodity Min-Cost Flow Problem'', A. Caprara, A. Frangioni, T. Parriani Tech. Rep. DEI, OR-14-10.
	2.1 Introduction
	2.2 Decomposition Approaches in Linear Programming
	2.2.1 A Primal Point of View
	2.2.1.1 Column Generation

	2.2.2 A dual point of view
	2.2.3 The stopping criteria
	2.2.4 Block-angular structured problem
	2.2.5 Stabilization and Generalized Bundle Methods

	2.3 Partially Aggregated Bundles, An Application to the Multicommodity Flow Problem
	2.3.1 Partially Aggregated Bundles
	2.3.2 The Multicommodity Min-Cost Flow Problem

	2.4 Computational Results
	2.4.1 Preliminary Notes
	2.4.2 Notations
	2.4.3 Results
	2.4.3.1 The Mnetgen Instances
	2.4.3.2 ``JLF'' instances
	2.4.3.3 ``Dimacs2pprn'' Instances
	2.4.3.4 The Planar and Grid instances
	2.4.3.5 PRT instances
	2.4.3.6 ``Waxman'' instances

	2.5 Conclusions and Future Works

	3 Solving the optimum system traffic assignment problem for Personal Rapid Transit networks using the Frank-Wolfe algorithmTechnical Report ``Solving the optimum system traffic assignment problem for Personal Rapid Transit networks using the Frank-Wolfe algorithm'', J. Schweizer, T. Parriani, E. Traversi, F. Rupi, Tech. Rep. DEI, OR-13-17.
	3.1 Introduction
	3.2 Methodology
	3.2.1 Link costs with minimum safe distance spacing
	3.2.2 Bilinear programming model
	3.2.3 Solution method: Frank Wolfe algorithm

	3.3 Computational Experiments
	3.3.1 Instances description
	3.3.2 Implementation of algorithm

	3.4 Conclusions

	4 Single-commodity Robust Network Design Problem: Complexity, Instances and Heuristic SolutionsPublished - ``Models and Algorithms for Robust Network Design with Several Traffic Scenarios'', E. Álvarez-Miranda, V. Cacchiani, T. Dorneth, M. Jünger, F. Liers, A. Lodi, T.Parriani, D. Schmidt, Combinatorial Optimization, LNCS series, Volume 7422, 2012, pp 261-272; Under review - ``Single-commodity Robust Network Design Problem: Complexity, Instances and Heuristic Solutions'', E. Álvarez-Miranda, V. Cacchiani, A. Lodi, T.Parriani, D. Schmidt, ``European Journal of Operational Research''.
	4.1 Introduction
	4.2 Related Literature
	4.3 Complexity
	4.3.1 All balances different from 1 and -1
	4.3.2 Hypercubes
	4.3.2.1 All balances equal to 1, 0, or -1
	4.3.2.2 All balances equal to r, 0, or -r, r integer and >1

	4.3.3 Challenging Instances

	4.4 Heuristic Algorithm
	4.4.1 Constructive Phase
	4.4.1.1 Construction of a Feasible Solution

	4.4.2 Neighborhood Search Phase
	4.4.3 Proximity Search Phase

	4.5 Computational Results
	4.6 Conclusions and Future Research

	5 A Decomposition Based Heuristical Approach for Solving Large Stochastic Unit Commitment Problems Arising in a California ISO Planning ModelAccepted - ``An Efficient Approach for Solving Large Stochastic Unit Commitment Problems Arising in a California ISO Planning Model", T. Parriani, G. Cong, C. Meyers, D. Rajan, 2014 PES General Meeting Proceedings; Under review - ``A framework for solving mixed-integer programming problems with decomposition and generic approaches'', G. Cong, T. Parriani, United States Patent and Trademark Office, Research Disclosure YOR8-2013-1124.
	5.1 Introduction
	5.1.1 Model Description and Prior Computational Performance
	5.1.2 Contributions

	5.2 Dual Decomposable Schemes for Stochastic Optimization Problems
	5.2.1 Stochastic Optimization: An overview
	5.2.2 The Progressive Hedging Algorithm

	5.3 mPH: A PH-based Heuristic for Two-stage Stochastic Problems
	5.3.1 Linear subproblems
	5.3.2 Guided MIP Solves for feasible solutions

	5.4 Computational Results
	5.4.1 Results

	5.5 Conclusions

