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Abstract

A flexure hinge is a flexible connector that can provide a limited rotational maktween two
rigid parts by means of material deformation. These connectors can deausabstitute tradi-
tional kinematic pairs (like bearing couplings) in rigid-body mechanisms. Vehempared to their
rigid-body counterpart, flexure hinges are characterized by reldwegght, absence of backlash
and friction, part-count reduction, but restricted range of motion. & hex several types of flexure
hinges in the literature that have been studied and characterized foedifsgplications. In our
study, we have introduced new types of flexures with curved strudtetesrcularly curved-beam
flexures and spherical flexures. These flexures have been utiizdzbth planar applications
(e.g. articulated robotic fingers) and spatial applications (e.g. sphedogbliant mechanisms).
We have derived closed-form compliance equations for both circularlyed-beam flexures and
spherical flexures. Each element of the spatial compliance matrix is anlyytioanputed as a
function of hinge dimensions and employed material. The theoretical modehivdtidated by
comparing analytical data with the results obtained through Finite Element Asxalysase study
is also presented for each class of flexures, concerning the potgutiadadions in the optimal
design of planar and spatial compliant mechanisms. Each case study isfblbgveomparing the
performance of these novel flexures with the performance of commoetygmsometries in terms
of principle compliance factors, parasitic motions and maximum stress demaodbermore,
we have extended our study to the design and analysis of serial arllblpemenpliant mecha-
nisms, where the proposed flexures have been employed to achievéraptitas e.g. compliant
spherical joints.
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Chapter 1

Introduction and Thesis Outline

This chapter briefly introduces compliant mechanisms, their advantageksaad
vantages in comparison with ordinary mechanisms and explains their contngutio
in different fields of mechanical and precision engineering. The motivatimh
outline of this thesis is further described.

1.1 Introduction to Compliant Mechanisms

A mechanism is a mechanical part or combination of parts that transformdagistand motions
into a desired set of output motions. A mechanism is commonly modeled as argetodnnected
rigid links by means of ideal rigid joints (kinematic pairs) which provide relath@/ements be-
tween the rigid links. Kinematic pairs ideally constrain the relative motion betwigahlinks
i.e. constraining the pure rotational motion about a single point, or prismatic mitiariine,
thus prevent any undesired motion produced from deflections and elaftienations. When the
flexibility and elastic deformations are used to provide desired relative moticmsneet a new
class of mechanisms called compliant mechanisms. Compliant mechanisms gain tikty ino
transforming an input force or energy into an output motion, undergainglastic deformation,
due to the existence of flexible members in these mechanisms. The concepigotampliant
members dates back to the late Paleolithic (about 35000 to 8000 B.C.) [1] wtiearaseems to
have been invented by the late stone-age humans for war and huntiragesi(ig. 1.1). Pulling
the arrow, strain energy is stored in the arc and by releasing the arcamgdrmed to kinetic en-
ergy of the arrow creating the output motion. Strain energy is the same #e platential energy
that is stored in a spring. This concept has been extended to use in ragreriveeapons later, i.e.
catapults that first used by Syracusean Greeks in 399 B.C. [2]. Ctayare the artillery of the
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Figure 1.1: The bow and arrow Figure 1.2: Greek palintone: A
torsion-powered catapult

ancient armies to hurl heavy objects or arrows over a large distanceyrbattles for winning the
war. A Greek "Palintone” type ballista catapult is shown in Fig. 1.2. It wasmbke of throwing a
three pound concrete ball more than 200 yards [3]. Palintone is callediartgyzowered catapult
since strain energy is provided by using tightly string coils of rope like a toasispring.

The use of compliant members were limited mostly for war machines until the lasirgeRe-
cently, compliant mechanisms become important components for various déippkda different
research areas such as micro-electromechanical systems (MEM&I¢soprecision engineering,
biomechanics, etc. They are also used frequently in our daily life. Some ahdst commonly
used compliant mechanisms are shown in Fig. 1.3.

1.2 Advantages

Compliant mechanisms encompass several advantages in comparison witlaticngairs that
make them suitable for a wide range of applications. These advantagee ctassified as fol-
lows [4]:

e Single Layer Fabrication: Compliant mechanisms can be made from a single layer of ma-

terial. This makes them compatible with different fabrication methods availablRIEMS,
such as surface micromachining, bulk micromachining and the LIGA (Lithpdgesor lithogra-
phy/Galvanoformung or electroforming/Abformung or molding) proce&sgus compact syn-
chrotron radiation (SR) source [5].
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Figure 1.3: Commonly used compliant devices: Binder clips, paper clipsglifzstr backpack
latch, eyelash curlers and nail clippers

No Need for Assembly:Fully compliant mechanisms that gain all of their motion from the de-
flection of flexible members are usually fabricated in a single piece and deqquite assembly
of different components.

Compactness:Some compliant mechanisms can be manufactured in a compact form, making
them ideal for micro-scale and precision engineering applications.

No Friction Losses: Considering the fact that compliant mechanisms gain their motion from
deflection of flexible members rather than rigid body joints, the friction relearubbing sur-
faces can be removed. This eliminates the need for lubrication and redeaes

Absence of Wear: Wear is the erosion caused by physical interactions between contacting
surfaces and occurs in kinematic pairs. It can be particularly problentateniall range ap-
plications in biomechanics and precision mechanisms. Wear can be remowtichinating
friction between contacting surfaces. This will increase the life cycles char@cal systems.

No Need for Lubrication: Absence of friction losses in compliant mechanisms, eliminates the
need for lubrication. This could have a significant role in applications thfidrsan easy lubri-
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cation process.

e High Accuracy: The absence of friction and wear, as described above, along withtkiabha-
free motion inherent in compliant mechanisms, increase their precision areltheak prefer-
able to use in high accuracy instruments.

e High Reliability: The aforementioned characteristics of compliant mechanisms, their light
weight and reduced maintenance result in high reliability.

1.3 Challenges

Despite all the advantages that compliant mechanisms comprise in comparisooravitary
mechanisms, they also have some challenges:

e Limited Range of Motion: Since the relative motion between rigid parts is provided by means
of material deformation, compliant mechanisms are unable to undergo camgimations and
are capable of providing limited range of motion.

e Parasitic Motions: The relative motion provided by compliant mechanisms is not a pure mo-
tion and there are always secondary undesired motions produced bgrtiptex deformation
behavior of these mechanisms. The secondary undesired motions adepeatisitic motions.

¢ Nonlinear Motions: Some compliant mechanisms require to undergo large deformations where
linearized beam equations are no longer valid. Nonlinear equations twirddor the geo-
metric nonlinearities caused by large deflections must be used. This carthealdesign and
analysis more complicated.

¢ Fatigue Failures: Most compliant mechanisms need to undergo repeated loading and to operate
under cyclic stress conditions which make them vulnerable to fatigue failures

1.4 Motivation

As previously described, compliant mechanisms gain their mobility from thectiefteof flex-

ible members. These flexible members are called flexure hinges. A flexuge, hina flexible
and slender region between two rigid parts that can provide a relativisoroteetween the rigid
parts by means of material deformation. They can be usually obtained byimmach blank
piece of material, thus obtaining the so-called Flexure-Based Compliantdviischs (FCMs) in
which compliance is concentrated within the relatively small regions of therexU=CMs are
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Figure 1.4: Pulley-based articulated robotic Figure 1.5: FCM-based articulated robotic
finger [6] finger [6]

widely used in different research areas considering their wide adyestaver traditional rigid-
body mechanisms. Some examples of implementing FCMs in different fields astatian micro-
positioning stages, piezoelectric actuators and motors, high-accuratsnalig devices for optical
fibers, missile-control devices, displacement and force amplifiers/deamgli@irthotic prosthe-
ses, antennas, valves, scanning tunneling microscopes, accelemgatescopes, high-precision
cameras, nano-lithography, robotic micro-displacement mechanismssoalebioengineering,
small-scale insect-like walking robots, actuation devices for unmanned nedial eehicles, or
nano-imprint technology.

The main focus of this study is on designing and developing FCMs for posgiblecations par-
ticularly in areas as mechanical and precision engineering, robotichiamedical engineering.
For instance, Fig. 1.4 shows an articulated robotic finger for applicatioasitilropomorphic
robotic hands. Anthropomorphic robotic hands have been widely studslibe of their inherent
similarity to the human hand and their contribution in various fields ranges faomd prosthet-
ics to healthcare robots and robotic surgeries to space explorationeveigw has been always
difficult to mimic the human hand due to its unique biological features and kinemeti@vior.
Thus, robotic hands often require complicated joint mechanism such asshiimkages, pulleys,
belts and sensors to be designed and developed in a small space in @adeiete the complex
behavior of the human hand.

From a design perspective, the introduction of FCMs in serial articuldtahs, like anthropo-
morphic hands and prosthesis, seems promising as it can allow the genefaioyn slender and
light mechanisms that better reproduce biological structures with a reduicebler of parts, easy
to be manufactured and assembled, cheap and compatible with the reqaited$e The example
of such an articulated robotic finger is shown in Fig. 1.5.
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1.5 Contribution

The main contribution of this thesis is to design and characterize new typeswidlhinges with
curved centroidal axes for both planar and spatial applications. Firstl&ly Curved-Beam
Flexures (CCBFs) will be characterized and particularly designediéorap applications such as
articulated robotic fingers. The spatial compliance of these flexures wélvakiated and their
closed-form compliance equations will be derived. Spherical Flex(8Es) will be then intro-
duced and specifically designed for spatial applications. These flewiltde evaluated concern-
ing their capabilities in generating spherical motions and they will be used inl@orhgpherical
chains (in particular, for the design of a new compliant spherical jointjthEuevaluations will
be carried out to compare the main characteristics of the aforementionede8axith commonly
used flexure hinges.

1.6 Thesis outline

e Chapter 1 briefly introduces compliant mechanisms, their advantages addatisages in com-
parison with ordinary mechanisms and explains their contributions in ditféeds of mechan-
ical and precision engineering. The motivation and outline of this thesisttssiudescribed in
this chapter.

e Chapter 2 is dedicated to a brief presentation of flexure hinges whicheareaim components
of flexure-based compliant mechanisms. Flexure hinges provide theveetatition between
the adjoining rigid parts by means of elastic deformation. The common methodi$ansie-
signing and analyzing flexure hinges accompanied by their literature ranewescribed in
this chapter.

e In Chapter 3, the closed-form compliance equations for circularly cibeam flexures are de-
rived. Following a general modeling procedure, each element of thiakp@mpliance matrix is
analytically computed as a function of both hinge dimensions and employed rhalbeahe-
oretical model is then validated by comparing analytical data with the resultaebdtédrough
finite element analysis. Finally, a case study is presented concerningtérigloapplication
of these types of flexures in the optimal design of compliant robotic fingers.

e In Chapter 4, the closed-form compliance equations for sphericalréiexare derived. Each
element of the spatial compliance matrix is analytically computed as a functiortfohbwe
dimensions and employed material. The theoretical model is then validated bpgeia-
alytical data with the results obtained through finite element analysis. Finatlg feneric
loading condition, spherical flexures are compared to circularly cupesan flexures in terms
of secondary compliance factors and maximum stress.

e Chapter 5 introduces and investigates a fully compliant spherical chais tiatained by the in-
series connection of two identical primitive spherical flexures with coimtidenter of spherical
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motion. The compliance matrix of the proposed chain is obtained via an analytaxadure
and validated via finite element analysis. Comparison with an equivalent fuiypkant chain
employing straight beam flexures is also provided to highlight the addesfiteewhen using
primitive spherical flexures.

e Chapter 6 represents a hew type of passive compliant spherical joiatjoifth is made by the
in-parallel connection of two fully compliant spherical chains. Each cisatiomposed of three
identical spherical flexures connected in-series with mutually orthogoesl The closed-form
compliance equations for the spherical joint are derived via the prdyidascribed analytical
method. The compliant spherical chain is also evaluated comparing with tvalega compli-
ant serial chain employing straight beam flexures.

e Chapter 7 summarizes the main contributions of this thesis.
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Chapter 2

Background and Literature

This chapter is dedicated to a brief presentation of flexure hinges whécthar
main components of flexure-based compliant mechanisms. Flexure hiruyssepr

the relative motion between the adjoining rigid parts by means of elastic defor-
mation. The common methods used for designing and analyzing flexure hinges
accompanied by their literature review are described in this chapter.

2.1 Flexure Hinges

A flexure hinge is a slender flexible connector that provides the relattadional motion between
two adjacent rigid members via material deformation rather than by the slidingiogrof mating
surfaces (Fig. 2.1). The flexure hinge is also called as "flexurat’porssimply "flexure”. When
compared to their rigid-body counterparts, flexure hinges are chaesctdy reduced weight, ab-
sence of backlash and friction, one-piece manufacturing with no negssefmbling (i.e. reduced
production costs), but restricted range of motion.

Flexure hinges can be classified as single-axis, two-axis and multi-axisdek7]. Single-axis
flexure hinges are supposed to be compliant with respect to one singl@arxipliant or sensi-
tive axis) and stiff as much as possible about all other axes. Single-exisdk are designed for
two-dimensional applications that have a planar motion and they can beat®lorisy removing
material from a blank piece using manufacturing processes such agiltind; electrodischarge
machining (EDM), laser cutting, metal stamping, or photolithographic techsifpreMEMS.
Two- and multi-axis flexure hinges possess two or more compliant axeg@sditable for three-
dimensional applications with spatial motions. They can be usually machinethieytianing or
precision casting.
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Rigid links Rigid links

Rotational joint Flexure hinge

(a) (b)

Figure 2.1: (a) Conventional rigid-body joint (b) Flexure hinge

Although flexure hinges provide monolithic connections with no backlashhgsteresis, they
usually bring the following disadvantages: limited range of motion, parasitic n®#od stress
concentrations. For this reason, to be effective, flexure hingestadxdconceived and optimized
for the specific application at hand. However it is not always straightdad to study and analyze
flexure hinges to achieve design demands for different applicationaly#dcal methods provide
accurate and precise means of evaluating and designing flexure hirigkesyocan be complicated
when flexures infold complex geometrical shapes or deforming out ofrlizeshbeam theory ap-
proximation. Finite Element Analysis (FEA) and simplified analytical methods ssi¢Psaudo-
Rigid-Body Model (PRBM) are also efficient tools that can be utilized toleaskch difficulties.
In the following of this chapter, the available techniques on designing amecterizing flexure
hinges, are briefly reviewed.

2.2 Pseudo-Rigid-Body Model

The PRBM is a tool that connects rigid-body mechanism theory to compliarftanesn theory
and provides the possibility of using traditional rigid-body modeling methodsardésign and
analysis of compliant mechanisms. The PRBM principally treats flexuresiddinks connected
at appropriately placed pins, with torsional springs to represent thelizomog behavior of flexible
members that undergo large and nonlinear deflections. Several vam&®ben dedicated to study
and develop the PRBM for applications both in macro-scale range( K198 [10], [11], [12]
and etc.) and MEMS( [13], [14], [15], [16] and etc.).

Let us consider a small-length flexural pivot [9] shown in Fig. 2.2. Wiherlength of the flexural
pivot (1) is much smaller than the length of the rigid pdrj,(and the flexural pivot is much less
stiffer than the rigid part, the motion of the system can be modeled by a pin joinecting two
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Figure 2.2: (a) A small-length flexural pivot (b) Its pseudo-rigid-bauydel

rigid links, called as "the characteristic pivot”. The characteristic pivédésted at the center of
the flexural pivot and the length of the pseudo-rigid linkis defined as follows:

=L+ — 2.1
r +2 (2.2)

The elastic deformation of the flexural pivot is modeled by a torsional gpsitth the spring

constanK:
__El

I
whereE, is the material Young’s modulus aihds the second moment of area.
The PRBM can be extended to other segments such as fixed-guided fleegutents, pinned-
pinned segments, beams loaded with a moment at the end, and beams with flubmgerCom-
plete details for pseudo-rigid-body modeling of different types of segsmeam be found in [4].

K (2.2)

2.3 Compliance-Based Design of Flexure Hinges

In spite of the fact that the PRBM is an exclusive tool in modeling and degigr@Ms, it can

suffer from some limitations. First, torsional springs are incapable of magakial and lateral de-
formations resulting from axial and transversal forces that usually iexisading flexure hinges.
Second, there are several FCMs that are intended to operate in smidkdmpnt range, pro-
ducing small levels of output motion within acceptable levels of stress, whee-thsplacement
theory does not apply. Compliance-based design of flexure hingas/eatome such difficulties.
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Fixed

Figure 2.3: Straight beam flexure loaded at the free end

In this approach, a flexure hinge is treated as a complex spring elementlitledgrees of free-
dom in response to quasi-static loading. Closed-form compliance equédidiexure hinges are
derived via analytical or finite element methods to design and characteseedlhinges in terms
of its geometrical parameters and the employed material. Within the validity limits of ges-su
position principle (which assumes linear elastic materials and small deflectiom&)n#io-static
behavior of a flexural hinge in the 3D space can be deduced by thesanafyits compliance
matrix [17]. For instance, let us consider a Straight Beam Flexure (88R)lengthl that is
generically loaded at the free end (Fig. 2.3). Given an external patian wrenchPw, acting on
the flexure free end whose components are expressed with respexbemtin free end coordinate
frameS, (with axesxy, Yp, Zp), the incremental displacement vect¢s, can be expressed as:

Ps— {pU] _rC. ["f] = PC.Pw (2.3)

T
wherePs is composed of an incremental translatian= [u v w} and an incremental rota-

T T
tion PG = [a [0} L,u} , Whereas’w is composed of a force vectdf = [fx fy fz} and a

T
torque vectoPm = [mx my mz} . As a consequence, the compliance mdt@xs a 6«6 matrix

with frame-dependent entries of non homogenous physical dimensibitd) relates the external
wrench to the resulting translations and rotations and it can be expresediowas [18]:
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whereA, Iy, ly, J, E and G are respectively cross section area, principal and polar moments of
inertia of the beams cross section, Youngs modulus and shear modulusaipleyed material.
In this scenario, the knowledge of the hinge compliance behavior, evea snhll displacement
range, can be extremely useful both for comparison purposes afigtattempt sizing the hinge
dimensions. Closed-form compliance equations provide useful meanalt@t/flexure hinges
on different basis i.e. principle compliance factors, sensitivity to undésirgarasitic motions
and maximum stress levels. Several studies have been proposed toadebidraracterize flexure
hinges on this basis. For instance, Paros and Weisbord [19] reprdsgrcular flexure hinges
(Fig. 2.4(a)) and provided compliance equations for them. Zettl et al.géfprmed FEA to
model right-circular flexure hinges. Xu and King [21] used this techniguenvestigating the
performance of elliptical (Fig. 2.4(b)) and corner-filleted flexure hin@fég. 2.4(c)). Lobontiu et
al. [22] represented the equations for corner-filleted flexure hingjeg the Castigliano’s second
theorem. Schotborgh et al. [23] applied FEA to present dimensionleggagaphs for three typ-
ical circular, corner-filleted and cross flexure hinges (Fig. 2.4(dyyder to provide a reasonable
comparison between them for design purposes. Tian et al [24] useeriual methods for dimen-
sionless graph analysis of three filleted V-shaped (Fig. 2.4(e)), cytlgFth. 2.4(f)) and circular
flexure hinges. Chen et al. [25] obtained analytical equations for elligicafillet flexure hinges.
In this thesis, we have introduced new types of flexure hinges with cuxesli.e. CCBFs (Fig.
2.4(g)) and SFs (Fig. 2.4(h)) for both planar applications like articulatidtic fingers and spatial
applications such as compliant spherical mechanisms. All the closed-fampliance equations
for these flexures are derived and represented as a function ofrifpe eometric parameters
and employed material. Further analysis have been carried out to evaleigiertbrmance of the
proposed flexures with commonly used ones such as SBFs.
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ala

(a) Circular flexures (b) Elliptical flexures

(c) Corner-filleted flexures (d) Cross flexures

(e) Filleted V-shaped flexures (f) Cycloidal flexures
(g) Circularly curved-beam flexures (h) Spherical flexures

Figure 2.4: Different types of flexures




Chapter 3

Design and Characterization of
Circularly Curved-Beam Flexure
Hinges for Planar Compliant
Mechanisms

In this chapter, the closed-form compliance equations for circularlyetlibeam
flexures are derived. Following a general modeling procedure, elechent of

the spatial compliance matrix is analytically computed as a function of both hinge
dimensions and employed material. The theoretical model is then validated by
comparing analytical data with the results obtained through finite element enalys
Finally, a case study is presented concerning the potential applicatiorseftipes

of flexures in the optimal design of compliant robotic fingers.

3.1 Introduction

As described earlier, flexure hinges have found a wide range of afiphs in different fields
such as serial articulated chains, like anthropomorphic hands and gsisstiror instance, Fig.
3.1 and Fig. 3.2 depict two compliant robotic fingers, previously propbgddtti and Vassura
[26], that employ either SBFs or CCBFs as possible substitutes for traditentdute joints (the
corresponding hinge rotation being defined as principal rotation [27))this case, regardless
of the flexure topology, the use of flexible joints allows one-piece manufagtand enhanced
performance in terms of robustness and safety when interacting with wnkavironments or
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Figure 3.1: Mono-piece robotic finger Figure 3.2: Mono-piece robotic finger
employing SBFs [26] employing CCBFs [26]

humans (e.g. [28]). In this chapter, the general approach foridgreompliance equations of
cantilever curved beams is first described and the closed-form compbapations for CCBFs are
obtained. CCBFs are then evaluated and compared with SBFs in terms ti/setempliance and

maximum achievable principal rotation for possible applications like robotiefsgs depicted in

Fig. 3.1 and Fig. 3.2.

The relevant contribution of this chapter is published in [29] and [30].

3.2 General Approach for Deriving Compliance Equations of Can-
tilever Curved Beams

The direct analytical method proposed in [31] is used for explicitly degitire closed-form com-
pliance equations of cantilever curved beams. With reference to Fig. 8cdrsider a cantilever
curved beam with a uniform cross section and generically loaded atdbeefrd. Node 1 and
node 2 are located on the beam fixed and free end respectively. Lettdreal loaddw, and the
corresponding deformatioBs be expressed with respect to a predefined global coordinate system
S

Then, a local coordinate systegncentered on the centroid of a generic beam cross section can be
defined. In particular, this local coordinates are denotelj twyandn, namely the tangent vector
and the principal vectors of the cross section. The relation betweendndajlobal coordinates

can be written as follows:

I Ix(s) Iy(s) Iz(s) [ [
m| = |m(s) my(s) m(s)|-|i|="Rg(S-]] 3.1)
n n(s) ny(s) ny(s) k k

wheres refers to the coordinate variable along the curve #®yls) is the rotation matrix that

relates global and local coordinate frames. Omitting for clarity the superéix| in the vec-
tor elements, the curve defining the centroid of the beam cross sectious,G;un the global
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Fixed ¢ _:1*

Node 1 Node 2 &

Figure 3.3: Cantilever curved beam loaded at the free end

coordinates can be expressed by:
9 (s) =x(s)i+y(s)j +z(s)k (3.2)

The load%w acting on the free end is balanced by a Ibatlacting on elements of the curveC.
This load'w’ produces a deformation per unit lengh,on the same element. The vectowand
'E and the corresponding analytical relation can be expressed as:

IW/:[fI fm fo M My rnh}T (3.3)

| T
E = [sn Yim Vn Ki  Kim Kln}
|W/ =K 'IE

The matrixK is the stiffness matrix of the elemeds that can be written as:

EA O 0 0O O 0
0 bnGA O 0O O 0
0 0O bGA O O 0 (3.4)
0 0 0O G O 0
0 0 0 0O Eln O
0 0 0 0 0 El

whereA, bm, bn, Im, In, J, E andG are, respectively, cross section area, shear coefficients, plincipa
moments of inertia and polar moment of inertia of the beam’s cross sectiong3ocundulus and
shear modulus of the employed material. The deformatitsy, of the elementls, due to the load

W', is defined by:

d's':[du’ v dw da’ def dw'}T:E.ds (3.5)
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whereu', vV, W anda’, ¢/, ¢/ are respectively displacements and rotations of the eledsint
thel , m andn directions. The loadw’, acting onds due to the presence of the lo&d on the
free end, can be computed via the adjoint transformation m'a’tgibetween the global and local
coordinates. In particular, The following relation holds:

W =1T4-%w (3.6)

The adjoint matri>ngJ is a function of the curvilinear coordinaseand can be computed from Eq.
3.1and Eq. 3.2:

(3.7)

where9 s =9, — 9r is the position vector connecting the centroid of the section to node 2. In
addition, the deformation of the elemety, d's, causes a deformation at the free ed?, that
can be calculated using the following equation:

-
d%="T,-d's (3.8)

By merging Egs. 3.3, 3.5, 3.6 and 3.8 one can obtain:
d9='Tg K 1.'Tg-9w-ds (3.9)

By integrating Eq. 3.9, the relation between the |8adand the deformatioBs of the free node
becomes as follows:

95=9C.-%w (3.10)

where:
gC:/'T;-Kfl-'Tg-ds (3.11)
C
The matrix9C is the compliance matrix for a general cantilever curved beam loaded akthe f
end and represents the relationship between the applied loads at therbeaend and the cor-
responding deformations. Applying this method for a general cantileveedibeam (Fig. 3.3)
with constant cross section, matA& can be computed as the following:

Cety, Cxy, O 0 0  Cym
G Gy O 0 0 Cm
o0 0 0 G, Cm Cm O (3.12)
0 0 GCgtf Cgm Cgm O
0 0 Cq.tf Cgm Cgm O
Ce.fc Co, O 0 0 Com

The analytical expression of the matrix entries are reported in Table 3.1.
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Table 3.1: Compliance factors for the cantilever curved beam loaded faethend

R(—AR?(36+sin(0)(cog 6)—4))—In (EA?Gbin(6—sin(6) cog 6))+6+sin(6) cog 0) ) )
Cat=— 2EAI,

R((cog6)—1)(—AR?(cog8)—1)+In(cog 6)+1) (EA*Gby—1)
Cuty =Gyt = ( ( 2EAI, )

R?(sin(6)—6
H Cx7mz:CBZ,fx:%)) H
_ R(EA2Glybm(6-+sin(6) cos(6))+(ARP+1n) (8—sin(6) cog6)) )

Cy,fy = 2EAI,
H Cym, =Ce, 1, = ——Rz(coéf)_l) H
R(GJIR?(6—sin(0) cog())+ 3 Elm( 4AG?6Jbn-+R?(60—8sin(6)+sin(26))) )
Cet, = 2EGJIm
H Cum, =Ce, 1, = RZ(GJ(Gfsin(B)cos(e)z)érgj?qrgeJrsin(e)(cos(9)72))) H
R?(—~GJcof(8)+GI+4EImsint( 8
Czm, =Ca,.1, = — ( 2EGJIm (2))
H C _ R(GJ(6—sin(B)cog 8))+EIm(0+sin(6) cog0))) H
B,mx — 2EGJIm
i?(8)R(—GJI+Elm
H Ca.m, =Cam = oIt )ZE(GJIm ) H
H C _ R(=GJ(8+sin(8) cog 8))+Ely(sin(8) cog6)—6)) H
6,m, = — 2EGII,
0
H Co.m = & H

3.3 Evaluating the Spatial Compliance of Circularly Curved-Beam
Flexures

The proposed method is applied to a CCBF with raduend anglef with its center located at
Oo (Fig. 3.4), in order to estimate its compliant behavior under a generalizesh¢padndition.

Centroid

\ x,(n)
L, eossing

-l .

Figure 3.4: Geometric parameters of the CCBFigure 3.5: Cross section properties of the
CCBF
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The cross section properties of the f
is derived in its analytical form:

lexure is depicted in Fig. 3.5. Thé=@GBpliance matrix

Cx 1, 0 0 0 Cx,my Cxm,
0 Gy Gr Gm O 0
oc—| 0 Gy Gr Gmo O 0 (3.13)
0 Cgys Caf, Com O 0
Cgty, O O 0 Cgm Cogm,
Cor, O O 0 Com Com

The analytical expression of the matrix entries are reported in Table 3.&ar $iduced defor-
mations are neglected, due to the slender structure of the flexure. ltecanticed that each
compliance factor is written in terms of the cross section area, principal @lad moments of
inertia (namelyA, Iy, Iy, andJ). For a rectangular cross section, this terms can be assessed as

follows:

! (3.14)

1 3 1 2
A:m,|m:1—2tw’>,|n:1—2m ,J:Im+ln:1—2vvt(t +w?)

Table 3.2: Compliance factors for the CCBF loaded at the free end

H Cur, = 1/2 R3(3EIm974EImsin(9)+EImcgz(gl)nfin(9)fGJ cog 0)sin(6)+GJO) H

H Cy,nk:ngJy:_Rz(—eE%:i”(e)) H

o . R2(—2Ely,sin(0)+Elymcod 8)sin(8)+Ely8—GJcog 8) sin(8)+GJo
H Cxm, = Co,.f, = -1/2 GJEInm ) H

R2(—1 0
H Com, =Ca,f, = — gl H
(Elm+GJ+Elm(cog0))?—2Elmcos 6)—(cog §))GJ)
GJEIn

H Co.m = &1 |
R(1ncog8)sin(8)+1n,6+3R2A0—4R2Asin(8)+R2Acog 8) sin(8)
Cyr,=1/2 ( EAIn )
H Ca/,my _ 1/2 R(Elmcos(e)sin(6)+ECI5IGEI—"(13Jcos(9)sin(9)+GJ9) H
(—ln+R2A+(cos(0))?In+RPA(cog 0))*—2R2Acog ) )
EAl,
Elm—GJ)(—1+(cog0))?)
GJEIm

R2
Cx’rnz — C@Z7fx — 71/2

R
CYafz = ley = 1/2
Ca.m = Com = 1/2%
6ymy = 6;,my =
R(cog(6) sin(6)—6) (1n+R2A)

Cor,=—1/2 EAI,

R(Elm 0)sin(0)—Eln6—GJ 0)sin(0)—-GJo
1/2 (Elmcog0)sin(0) e cog0)sin(0) ) H

H Cez7mz -
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3.4 Numerical Example and Model Validation

As a case study, the compliant behavior of the CCBF and of the SBF dejnictéd. 3.1 and
Fig. 3.2 are numerically evaluated. As for the CCBF, the following geometranpeters are con-
sidered, namelR = 30mm,t = 1.2mm,w = 6mm and 6 = 11/4. The flexure hinge connects two
rigid links located at a distande= 2Rsin(6/2) and is made of Acrylic Plastic with Young’s mod-
ulusE = 300aM pa, Poisson’s ratiov = 0.33, shear modulu& = 113 pa. The principal hinge
compliance [27] for the considered applicatiorCig m, = 12R6/Ewt3 = 9rad/Nm. The method
described in previous section is used for computing the overall CCBF campliaatrix, whereas
FEA is performed in order to validate the theoretical model. Fig. 3.6 depicts; agample, the
CCBF undeformed and deformed shapes when subject to a flexural mappdied on the hinge
free end.

Similar FEA simulations are carried out by individually loading the CCBF at the énd for each
component of the loa® (that is individual forces and moments are applied) and obtaining the
corresponding deformations (displacements and rotations). The ratiede®ach load and de-
formation component simply represents the compliance factors along diffexes. The overall
numerical results are shown in Table 3.3, which also depicts the percentagbetween analyt-
ical and FEA methods. A maximum percentage error of less than 3% confiewalillity of the
proposed modeling technique.

The same procedure is then applied to compute the SBF compliance matrix wiadgcal
solution is known from the literature [18]. As said, the SBF is designed s @mnnect the same
rigid links of the previous example and to provide the same principal compliantee CCBF
previously modeled. Henceforth, the SBF length is 2Rsin(6/2), the SBF principal compli-

Figure 3.6: FEA of the CCBF
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Table 3.3: Compliance factors for the CCBF and comparison between anbéytit FEA results

’ Compliance factortﬂ Cy 1, ‘ Cxm, =Ca,f, | Cxm, =Ca, 1, Cy.t, ‘ Cy.t, =Czt, ‘ Ca,.m, H
| Analytic | 8.001e-5] 3.016e-4 | -5e-3 | 1.466e-4| 4.483e-4 | 9.0903 |
| FEA | 7.746e-5| 3.015e-4 | -4.99e-3 | 1.457e-4| 4.457e-4 | 9.0897 |
| Percentageerror| 33 | 47e2 | 6e2 | 59el| 58e1 | 4.9e4 |
’ Compliance factor:ﬂ C.t, ‘ Czm =Ca.1, | Cym,=Ca, 1, ‘ Co,m, ‘ Cq,.m, =Co,m, ‘ Co,m, H
| Analytic | 15e-3 | 1.017e-1 | 272e2 |8.256e-1] -1.797e-1 | 4.662e-1|
| FEA | 1.486e-3] 1.017e-1 | 272e2 |8.271e-1| -1.803e-1 | 4.664e-1|
’ Percentage errorH 3.4e-1 ‘ 0 ‘ 0 ‘ 1.8e-1 ‘ 3.2e-1 ‘ 4.5e-2 H

ance isCq, m, = 12/wa3 = 9rad/Nm, whereas the SBF thickneds,is chosen accordingly as
t=t(2sin(0/2)/0)">.

The numerical values of the compliance matrix entries are depicted in Fig. 8Hi@rB.8 respec-
tively. Similarly to [27], this 3D bar graph representation allows a qualitatbrefarison of the
hinge behavior in terms of selective compliance. It can be noticed that, inghisyar case, the
two solutions behave similarly. However, CCBF outperforms SBF in terms ofrmawr achiev-
able principal rotation. The maximum principal rotation before failure is limited byettmployed
material yield strengtls,. Concerning CCBF, the maximum principal rotation is given by [18]:

Occpr = Max(ay, az) (3.15)

where:

6R(t +R)S,0 (—2t + (t + 2R)Log [“R])

oy = 3.16

: %E (—t+ (t+ R)Log [ "] (3.16)
t+2R 1

=6E'RS,0 3.17

a2 S < t2 —t+RLog [4f] ) 3.17)

Note that the switching condition of Eq. 3.15 is due to the fact that, dependirtheohinge
dimensions, the highest stress may occur at either inner or outer surface
Concerning SBF, the maximum principal rotation is given by:

OspF = :—:% (3.18)

A comparison in terms of maximum achievable rotation can be made by com[nw;—'teg/asgp.

In particular, Fig. 3.9 depicts the comparison of the maximum achievable rotgiarfunction
of the CCBF radiusR € [20— 40/mm, and thicknesg, € [0.5— 3]mm (for 8 = Zm). Note that the
value oforCCBF/GSBF does not depend on the hinge widih, The comparison clearly shows that
CCBF must be preferred in terms of principal rotation capabilities as |Om@;@i/a5|3|: >1.




3.4 Numerical Example and Model Validation

37

Compliance
Compliance

Compliance
Compliance

s

lindex © ™7 3
J index

Figure 3.7: 3D bar representation for the compliance matrix of the CCBF
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Figure 3.8: 3D bar representation for the compliance matrix of the SBF
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Figure 3.9: Comparison of the maximum achievable rotaﬁQeBF/GSBF, as a function of the
CCBF radiusR, and thicknessg,




Chapter 4

Design and Characterization of
Spherical Flexure Hinges for Spatial
Compliant Mechanisms

In this chapter, the closed-form compliance equations for sphericarfisyare de-
rived. Each element of the spatial compliance matrix is analytically computed as a
function of both hinge dimensions and employed material. The theoretical model
is then validated by relating analytical data with the results obtained through fi-
nite element analysis. Finally, for a generic loading condition, sphericalris

are compared to circularly curved-beam flexures in terms of secondargliance
factors and maximum stress.

4.1 Introduction

Most of the aforementioned flexures discussed in previous chapterdbban specifically applied
and conceived for prevalent planar motions only. Despite the pracéimlance, investigations
on flexure hinges particularly designed for spatial motions are insteadliguitied. For instance,
Lobontiu et al. [32, 33] investigated the two- and three-axis flexure king&e former consists
of two collocated notches that are cut perpendicular to each other; thedaitigists of an axial-
symmetric notch. In both cases, the resulting hinge features a small exigmal area and is
prone to unintentional rotations or buckling even when loaded with smakkg$ordagirdar [34]
used PRBM to study the kinematics and elasticity of curved beams. Li and [@5employed

two CCBFs with rectangular cross-section to devise a spherical Youatjghanechanism using
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PRBM. Considering the fact that a flexure hinge should be compliantt dsqurinciple compli-
ant axis (axes) and as stiff as possible in other directions, this chastictean be achieved for
spherical motions, by using CCBFs that are compliant along their curve @sipect to the axes
intersecting in the center of the sphere.

In this chapter, Spherical Flexures (SFs) have been specificallyndesand evaluated for preva-
lent spherical motions in spherical compliant mechanisms and are compdezohéof parasitic
motions and maximum stress to CCBFs with rectangular cross section thagfeqtivalent com-
pliant behavior with respect to moment-induced rotations.

The relevant contribution of this chapter will be published in [36].

4.2 Closed-Form Compliance Equations for Spherical Flexure Hinges

A SF features an arc of a circle as centroidal axis and an annulus ssatonss-section. Circle
and annulus have a common center coinciding to that of the desired speoian. The axis

of the smaller SF central moment of inertia points towards the desired cergigh@fical motion.
With reference to Fig. 4.1, let us consider a SF with subtended centraidialsR and angled

with the center located d@y. The flexure is loaded at its free end denoted by a global frame
with corresponding axes;, Yq, Zg and origin pointOq centered at hinge cross section centroid.
Following the general approach described in Section 3.2, the compliandg foathe SF, can be

Figure 4.1: Geometric parameters of the SF
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obtained as follows:
(Ct, Gy, O 0 0 G
Cyer Cy7 fy O 0 0 Cy7mz
0 0 C 0
oc— Gt Come Com 4.1)
0 0 GCqf Cgm Cgm O
0 0 Cq.tf Cgm Cgm O
Co.ic Cour, O 0 0 Com,]

Neglecting shear deformations, being a slender beam, the compliance facttre matriXdC is
reported in Table 4.1. Each compliance factor is written in terms of the croisrsarea, area
and polar moments of inertia (namely I, 1,,, andJ). In particular, these properties are derived
as a function of the SF geometric parameters in the following section.

4.3 Defining Cross Section Properties for the Spherical Flexure

In particular, the SF cross section is an annular sector (Fig. 4.2), thatecaonsidered as the
common section of two concentric circular sectors with different radiususeonsider; andrg
as the radius of the inner and the outer circular sectors respectivelynAsgf as the subtended

Table 4.1: Compliance factors for the SF loaded at the free end

R(Acog 6) sin(6)R2—4Asin(6)R2+3AR20+cog 6) sin(6)1n-+1n6)
Cut = 2EAI,

R(A(cog8))’RE—2R2Acog 8)+R2A+(cog(8))?In—In
CX>fy =G =— ( 2EAI, )

R2(sin(8)—6
H Cm, = Ca 1, = 7= H
R(cog(0)sin(6)—6)(RPA+1n)

Cyty=— 2EAI,
R? 0)-1
| Gy = -1 |
H __ RE(Elpcog0)sin(8)—GJcog 0) sin(8)—4Ely,sin(0)+3E1,0+GJ6) H
Cet, = 2GJEIn
H Com, = Co, 1, = Rz(Elmcos(e)sin(G)—GJcos(zégjgll(:)—zElmsin(9)+E|m9+GJ9) H
R2(Elm(cog8))2—GJ(cog 8))?—2Elmcos 8)+Elm+GJ H
H Czm, =Ca,.1, = — ( 2GJEI, )
H C _ R(EIlmcog6)sin(8)—GJcog 0)sin(6)+Eln6+GJ6) H
Bx,my 2GJEl,
R(Eln—GJ)(sin(8))2
H Co.m, = Ca.m, = ( 2631)5(5“'”( k H
H C _ R(Elpcog0)sin(8)—GJcog 0)sin(6)—Eln6—GJo) H
B,my = T 2GJEIm

H Coum = £ H
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¥ Centroid

Figure 4.2: Cross section properties of the SF

angle of the annular sector, the cross section area can be obtaineah@ydeBnite integration
over the annular sector as follows:

o 28 128 (12-r?)p

_ _Tob 1P _ (lo=17)P
A= //rdrdﬁ_ e (4.2)
B2

In order to derive area and polar moments of inertia with respect to theoialtaxis, we need to
locate the centroid of the annular cross section. Using the definition forrgherfoment of area,
one can obtain:

B/2 rq

Sy:Az_:/Asz _ / /(rsinﬁ)rdrdﬁ:o;»z—: S,/A=0 4.3)
B2

B/2 1o 2
SZ:AY:/ydA = / /(rcosB)rdrdB: §(rg’—ri3)sin[§/2
A —B/2ti (4.4)
_ _A(r3-rd)sinB/2
YRS e

whereS, andS; are the first moments of area abgndz axes. The area moments of inertia with
respect toy andz axes, can then be written as:

B/2 1o
ly= /Azsz :42/(rsinﬂ)2rdrdﬁ - %(rg—ri“)([}—sinﬁ) (4.5)
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B/2 rq
l, = /ysz = / /(rcosﬁ)zrdrdﬁ = %(rg—ri“)(BJrsinB) (4.6)
A —B/2ti
By applying parallel axis theorem [37], one can find the area and polatents of inertia with
respect to the centroidal axis, transfering them fyoamdz to y; andz axes:

=1y = 5(r&—r&)(8 — sing) @7)
B 1 . 8 (r3 —rd)?sir? (B/2)
|n—|z_AR2—é(rg_ri‘lxﬁ"‘smﬁ)_@ (rg_riz)ﬁ (4-8)
_ _1 8 (r3—rf)?sir’ (B/2)
J=Imtln= (-8~ (r2—r?)B (4.9)

Replacing Egs. 4.2,4.7,4.8 and 4.9 in Table 4.1, the compliance matrix for the Sbevd#ter-
mined as a function of the hinge geometric parameters and the applied material.

4.4 Stress Considerations

Stress distribution over different cross sections of a flexure hinge iethdt of normal stresses
that are produced through bending and tension/compression, andtiahggesses that are pro-
duced through torsion [22]. Considering the von Mises criterion forgktness condition, the
maximum stress occurs at any cross section of the flexure hinge, capressed as:

Omax = 1/ (02 + 3T2) max (4.10)

Curved beam theories i.e. Winkler-Bach formula should have been evaditb evaluate stress
distribution of curved flexuers [38]. However, we are generally irsteekin knowing the maxi-
mum stress in the flexure. In order to fulfill this goal, we use stress ctnatiem factors that were
proposed by Wilson and Quereau [39] conducting a numerous stringgoefiments on curved
beams with various cross sections to simplify the procedure of determinirsg stréhis type of
flexural members.

Let us consider the SF depicted in Fig. 4.1 loaded with a genericload [ fy f, f,my mymz]T at
its free end. Maximum stress terms across an arbitrary cross sectionftehiie can be written

= k k kf
MhYi n W\n21+_|

(o] = max
e ( I Im A

) (4.11)

km (/Y2 + 2
T = ———— (4.12)

where:
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fi = fxcog0) + fysin()
m = — f,R(1—cog8)) +mycos 8) +m,sin(6)
my = — fxR(1— cog6)) + m, + f,Rsin(8)
My = — FR(sin(6) — mysin(8) + m, cog 6)

y; andz are the maximum longitudinal and transversal lengths measured from g s@otion
centroid. Considering the cross section symmetry, these lengths coultheag® positive or
negative quantities based on the loading profidés the empirical formula for stress correction
factors for curved flexures and can be obtained from [39]:

h (1 1
k_1+0.5@{R—_C+§} (4.13)

where;:
b = maximum breadth of section
c = distance from centroidal axis to the inner fiber

In applications that the loading is not known or fully determined but the dedtion of the flexure
free end is specified, the recent stress equations can be expretsedigplacement domain using
the following transformation between compliance and stiffness matrices:

9w=9K9s 9K=9C? (4.14)

where9sis the deformation of the flexure free end in the global coordinate system.

4.5 Numerical Example and Model Validation

The SF depicted in Fig. 4.1 is considered as a case study. The geomedritepens employed in
the simulation areo = 60mm, ri = 50mm, 6 = 11/3 anda = 11/180. The hinge is made of Acrylic
Plastic with Young’s modulu& = 3000MPa and Poisson’s rativ = 0.33. The aforementioned
theoretical procedure is adopted to estimate the SF compliance matrix. Resthsravalidated
through FEA performed with the commercial software COMSOL (Fig. 4.3hI€T4.2 compares
the results obtained via numerical model and FEA. The comparison sholese agreement
between the two methods.

In order to evaluate the flexure performance, we have compared trerefntioned SF with a
rectangular cross section CCBF having identical centroidal axes atelhgled angles. In addition,
the two flexures are suitably dimensioned in order to present the same cantyelievior with
respect to moment-induced rotations. The resulting CCBF width and thickness= 9.98mm
andt = 0.963mm. By applying the method described in Section 3.3, the CCBF compliance matrix
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Figure 4.3: FEA of the SF

has been computed and numerical data are shown in Table 4.3. As wee¢dheseompliance
factors become identical for the two flexures with the exceptio@.af, Cx 1, andCy,1,, which
represent undesired (secondary) compliances in all those applicatjoming a spherical motion.
Naturally, unavoidable secondary compliances should be minimized in ordectease parasitic
motions as much as possible. A quantitative comparison between SF and GGBRen be
achieved by defining two compliance ratios as follows:

S SF S-
rX X = Cx:fx . er _ CX:fy _ Cy7 fx
X ~CCBF’ Y CBF ~— (~CCBF
Cx f Cgf Cy, fx

9 IX

(4.15)

where each SF compliance factor (referred to with SF superscript)igediby the corresponding
CCBF compliance factor (referred to with CCBF superscript). In ordantterstand the behavior
of SFs and CCBFs in terms of parasitic motions, we have assessed thedafafehe geometric

parameters on these two factors. This goal is achieved by evaluatingriiaoce ratiogy x

Table 4.2: Compliance factors for the SF and comparison between anafyttt&EA results

‘Compliance factoreﬂ Cx 1, ‘ Cut, =Cyt, | Cxm, =Ca, 1, Gty ‘ Cym, = Ca, 1, ‘ Czt, H
| Analytic || 4.0146e-5] -8.6900e-5 | -0.0023 |2.1584e-4]  0.0064 | 0.0232]|
| FEA | 4.0149e-5| -8.6947e-5| -0.0023 |2.1594e-4|  0.0064 | 0.0232||
’ Percentage errorH 7.5e-3 ’ 0.054 ‘ 0 ‘ 0.046 ‘ 0 ‘ 0 H
‘ Compliance factorsH Co,.m, ‘ Czm, =Ca.1, | Cxm, =Caq, 1, Co,.m, ‘ Co.m, = Ca,m, ‘ Co,m, H
| Analytic | 80448 | 04147 | -05158 | 184932 | -9.0486 | 0.2413||
| FEA | 8.0466 | 04148 | -05159 | 18.4966 | -9.0492 | 0.2413||
| Percentageerror|| 0022 | 0024 | 0019 | 0018 | 66e3 | 0 |
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Table 4.3: Compliance factors for the similar CCBF

‘Compliance element# O ‘ Cuty =Cute | Cxm, = Ca, 1, Cy.ty ‘ Cym. = Ce, 1, ‘ G, H
| Value | 4.0144e-5/ -8.6901e-5 | -0.0023 |2.1584e-4  0.0064 | 0.0232
‘ Compliance element# Co,.m, ‘ Czm =Cq.1, | Cxm,=Cag,. 1, Co.m, ‘ Ca,.m, = Cg,my ‘ Ce,m, H
| Value | 80448 | 04147 | -05158 | 18.4932 | -9.0486 | 0.2413||

andryy for varying values oR and 6. Fig. 4.4 and Fig. 4.5 respectively represent the values

(1—rxx) x 100 and(1—ryy) x 100 as function oR and8. From these two graphsyy is always

negative whereas, 1, is always positive, meaning that it is impossible to assess which flexure

presents the best selectively compliant behavior without consideringcifisgoading condition.
It is also worth mentioning that by increasing the length of the flexures, tlsray andryy are
tending to 1, which imply a similar deformation behavior for relatively large lengitthickness
ratios. For what concerns the overall Von Mises stress on eachdlehen loaded with a (prin-
cipal) bending momenm, on the free end, the following stress ratio has been defined:
S

0max
We have obtained this ratio for varying valuesRand 6. In particular, the ratio, assumes a
constant value equaling 0.918 at varylRgvhereas the influence éfis shown in Fig. 4.6. As we

can see, SF outperforms CCBF, being characterized by a lower stres®teequal load (meaning
that the SF outperforms CCBF in terms of maximum achievable rotation).

o
o
o

* (I-r_)%
+(1-r )%
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Figure 4.4: Influence of varying on compliance ratios
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Chapter 5

Compliance-Based Evaluation of a
Fully Compliant Spherical Chain with
Two Degrees of Freedom

This chapter introduces and investigates a fully compliant spherical chairisth
obtained by the in-series connection of two identical primitive sphericalifiex
with coincident center of spherical motion. The compliance matrix of the [sexgho
chain is obtained via an analytical procedure and validated via finite elemaiyt a
sis. Comparison with an equivalent fully compliant chain employing straigguinbe
flexures is also provided to highlight the added benefits when using prirefitver-
ical flexures.

5.1 Introduction

Spherical mechanisms are an important class of spatial mechanisms thatdiragplications in
pointing/orientation systems and mechanical transmissions [40]. These msnkare charac-
terized by having all points of their links moving on concentric sphericdbses; the center of
these spheres being denoted as center of spherical motion. In its singphlesafspherical chain
features the in-series connection of two or more revolute pairs with axesédntig in the said
center of spherical motion.

Some studies have been proposed to investigate compliant mechanisms ingphdiiadj motions
as well as fully compliant spherical mechanisms.Smith [41] proposed compliargrsal joints
fabricated from circular leaf springs, which also provided axial traiwsidor self-alignment ap-
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Figure 5.1: SF-based compliant chain Figure 5.2: SBF-based compliant chain

plications. However, the proposed joints are affected by significarssstencentrations that limit
their ranges of motion. Moon et al. [42] developed a compliant revolutechiraged on torsion
beams of cross or segmented-cross type, and employed two of them ctamhire series with
orthogonal axes, to conceive a fully compliant universal joint. Latertbe ensemble of two
universal joints of this kind has been proposed by Machekposhti gt3jlto obtain a compliant
constant velocity Double-Hooke’s universal joint. Different authide, 45] employed two in-
series connected flexure notch hinges with orthogonal axes to cereceilly compliant universal
joint. Jacobsen et al. [46] employed three in-series connected laminaerhévgsional joints
with axes intersecting in a single point to make spherical chains with threeategf freedom
(for compliant joints or mechanisms, the number of degrees of freedom igledeas the number
of independent prevalent directions of motion). These spherical £lnane then used to build a
3-RRR spherical parallel mechanism (R being a revelote joint). Callegaki[d7] addressed the
analysis and design of a 3-CRU spherical parallel mechanism with flékuges (C and U being
cylindrical and universal joints respectively).

All the aforementioned studies are based on the use and proper combiofatiomitive flex-
ures that are specifically conceived for prevalent planar motions dnlyarevious chapter, the
dedicated studies to design of flexure hinges for spatial applicationsagdressed and SFs were
specifically designed and evaluated for prevalent spherical motionfiarispl compliant mech-
anisms. In this chapter, a fully compliant spherical chain that is made by theries connection
of two identical primitive SFs with coinciding centers of spherical motion (Fidj).9n particular,
the stiffness analysis of the proposed fully compliant spherical chaindseased. Simulation
results are compared to those of a similar chain (Fig. 5.2) employing SBFsalDtlee stiffness
analysis highlights that the use of two primitive SFs makes it possible to cenfedliy compliant
spherical chains with two independent prevalent directions of rotatidmath reduced parasitic
translational motions. The relevant contribution of this chapter is submitte@®}o [4
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5.2 Closed-Form Compliance Equations for a Serial 2-SF Spherical
Chain

Concerning the frame dependency, as explained in [17], compliance esadtidifferent reference
frames (e.g. from the frantg, to a generic fram& (Fig. 5.1)) can be related resorting to thé&6
adjoint matix PT:

I IR T (5.1)

wherePRg denotes the rotation matrix of franf® with respect to frames, (i.e. the columns
of PRy are the unit vectors of fram@& expressed in the coordinate frargg), and°r, denotes
the skew symmetric matrix of the position vectop, which locates the origin of fram& with
respect to framé,.

Specifically, once the compliance matfg at frameS, is known, the compliance matrix related
to the frameS, can be simply calculated as:

oc — OTET .PC. °T51 — pTE .PC.PT, (5.2)

whereT denotes the transpose of a matrix. As reported in [49], tt&eaBljoint matrix is also
useful for characterizing a collection pfin-series connected compliant flexures. In this case, the
overall system compliance can be simply obtained by summing up the complianceesafr
each flexure, once all matrices are related to a common reference armberefore, resorting

to Eq. 5.2, the following relation holds:

n n
%C=3 T T-9C- Tyt = S 97§ -9C- 9o (5.3)
g g

In the following, the procedure is outlined for the fully compliant spheritalic depicted in Fig.
5.1. The chain is composed by the in-series connection of two SFs (teenedérred to as SF#1
and SF#2) that are both identical to the SF represented in Chapter 4 (Bigvith centroidal axes
lying on the same circumference. The compliance matrix of each SF can thegdled from
Section 4.2. Let us denot€ and?C as the compliance matrix of each SF as referred to the hinge
free end. The center of the spherical motion (i.e. p@gin Fig. 5.1) is then taken as the origin

of &, the frame axes being oriented such Wgaxis passes through the centroid of the SF#1 mid
cross section, whereag axis is orthogonal to the symmetry plane containing the centroidal axes
(similar toz axis in Fig. 4.2).

As a further step, the adjoint matricEBg and?T, respectively relatingC and?C to S, should

be computed. Recalling Eqg. 5.1, the rotation matrié®s, and?Rg, and the translation vectors,
rg and?rg, composing T and?T are defined as follows:

cog6/2) —sin(6/2) O
'Ro=|sin(6/2) cogB/2) 0 (5.4)
0 0 1
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Table 5.1: Compliance elements of the mechanism
Cur, = — R(—2(AR+1p) Z(Icz:zlsj-](é)sin(e)+9)) Cet, = Cyty = R(sin(25) sziré(gl)n(ARerln))
Cyt, = R(Z(ARZHn)(2?5;('::52(6)sin(6))) Cam, = Ca, 1. — — R2(74CO§E(Ing)sin(%))
Cym = Coy 1, — K (28Dn(3)) Cam, = Co, , = FLA3(E)sn(3))
Coum — R(—ZGJ(G—C0§(6)sin(ZGE)()BSIiEIm(cos’-(cS)sin(9)+6)) Crp =2 %
Co,.m, = Ca,.m, = Rsin(d) cog(8) sin(6) (ﬁm - é) Czm =Ca,.1, = w
Coym, = R(2GJ(co(5) sin(9)+26E)gJ2lilm(97co§(6)sin(@))) Com — 2 E_Ien
cog0/2+906) —sin(6/2+d6) O
’Ro= |sin(6/2+3) cog6/2+8) O (5.5)
0 0 1
lro=2rg— [o, R O}T (5.6)

whereRand®6 represent the radius and subtended angle of SF#1 and SF#2 cdistxeilavhereas
d is the angle between thg axis and an axis connecting poidt and the centroid of the SF#2
mid cross section. The overall chain compliance matrix can then be computetingso Eq.
5.3, wheren = 2. In particular, the matri{C can be expressed as follows:

Cxte Ot O 0
G, Gy, 0 O
oc — 0 0 G, GCm
0 0 Cq.1, Com,
0 0 Ca.r Cqgm,
_CQZ7 ., Ce, fy 0 0

(5.7)

0 Cum

0 Cum
Cm, O
Com, O
Com, O

0 Com

Matrix °C relates the wrenchw acting onS, to the corresponding generalized displacenfent
(namely%s = 9C - %w). The analytical expression of the matrix entries are reported in Tables5.1 a
a function of the geometric parameters and the employed material. The cctiss ggoperties

(A, Im, In, andJ) can be recalled from Section 4.3 as a function of the hinge geometric parame

5.3 Numerical Example and Model Validation

A fully-compliant spherical chain featuring two identical in-series SFs issitiered as a case
study. The SF geometric parameters and the material employed for the simutaidadentical to
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Figure 5.3: Influence of varying on principal compliances

the corresponding data used in Section 4.5. For a generic &ndie aforementioned theoretical
procedure is adopted to estimate the overall compliance matrix. The depgralehe principal
compliance element&g, m, andCqg, m , on the angl® is shown in Fig. 5.3, which highlights that
Cq.m, = Cq,m, Wwhend = 90".

Results concerning this particular geometry (nandety 90°) are then validated through FEA per-
formed with the commercial software COMSOL. FEA simulations are executeddyidually
loading the chain along the axrg Yo andzy. The compliance elements are simply computed as
the ratios between each load component and the corresponding defoisndable 5.2 compares
the results obtained via analytical model and FEA. The comparison shoseaagreement be-

Table 5.2: Compliance elements of the 2-SF spherical chain and compagisezen analytical
and FEA results

Compliance element# Cy 1, ‘ Cxt,=Cyt, | Cxm, =Ca, 1,

Gty ‘ Cym, = Ce, 1, ‘ Cz1, H

a Analytic | 7.3603e-4| -5.9730e-20|  0.0127 | 7.3603e-4| -0.0127 | 0.0039)|
| FEA | 7.3631e-4| -5.9000e-20|  0.0127 | 7.3635e-4| -0.0127 | 0.0038||
| Percentageerror | 0038 | 122 | 0 | 0038 | 0 | 256 |
‘ Compliance element# Co,.m, ‘ Czm =Ca.1, | Com,=Caq, 1, Co,.m, ‘ Co.m, = Ca,m, ‘ Ce,m, H
| Analytic | 265379 | -0.0334 | 00334 | 265379 | -4.9013e-15 | 0.4827||
| FEA | 2655455 | -0.0334 | 00334 | 265455 | -4.9000e-15 | 0.4842||
| Percentage error || 0.028 | 0 | 0 | 0028 | 0026 | 031 |
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Table 5.3: Compliance elements of the 2-SBF spherical chain

‘Compliance element# Cy 1, ‘ Cxt, =Cyt, | Cxm, = Ca, 1, Cyt, ‘ Cym, =Ca, 1, ‘ C.t, H
| Value | 8.0311e-4| -4.0926e-20|  0.0133 | 8.031le-4 -0.0133 | 0.0183
‘ Compliance element# Co,.m, ‘ Czm =Ca.1, | Cxm, =Caq, 1, Cq,.m, ‘ Ca,m, = Ca,m, ‘ Co,m, H
| Value | 2655379 | -0.0350 | 0.0350 | 265379 | -1.5472e-15 | 0.4827||

tween the two methods.

As a further step, an SF-based chain has been compared with a similafectaing SBF flexures
and equal values of the principal compliance elements. Defiwiagd| as the SBF width and
length, the latter design constraint is achieved whenever both SBFs andr&Ileharacterized
by equal width (i.e.w = ro —r;), and same centroidal axes length (ile= R6). By applying
the method described in Section 5.2, the compliance matrix of the SBF-basedhasabeen
computed and numerical data are shown in Table 5.3. The pictures of th@hsmered design
solutions are reported in Figs. 5.4 and 5.5 which also show the chain defatmages (contour
plot of the total displacement) when a generic torque lyingin yp plane is applied to the end-
link.

The quantitative comparison between the two design solutions is then pedfbynakefining three
compliance ratios as follows:

SF SF SF SF
. G L Cml  1Car | ICSH|  ICE 4| e Gl 5:8)
= SR T ICE|F| T ICSBF | |CS|F|  |CSBF| = CSF| :
G, IRl G, IGERI I, C21,

where each compliance element concerning the SF-based chaingaefewith SF superscript)
is divided by the corresponding compliance element concerning the 88&dlchain (referred to
with SBF superscript). In particular, the variablgsr,, andrs represent ratios between unde-
sired (secondary) compliances in all those applications requiring aisgherotion. Therefore,
compliance ratios whose value is less than unity simply indicates that the Sé-diz&ia out-

0]

0

Figure 5.4: Finite element model of the 2-SKigure 5.5: Finite element model of the 2-SBF
chain. chain.




5.3 Numerical Example and Model Validation 55

s 1 __.-.-.-.-.-;'.'.'.'.'.=.'-'.iii.i.'r.=.=.=.-.=Ei:.:.'.'.:.:.:.'.:i:.:.'.. |

‘S .....ll...l...l

~0.8- |

\Y)

S

Sos

- -7

S04 2

oS B
0.2- 7

0.5 1
Flexure angle, © [rad]

Figure 5.6: Influence of varyin§ on compliance ratios

performs the SBF-based chain in terms of parasitic motions. As an examipkegfeen radius
R =55.2mm, the values of 1, r, andrz as a function oB are reported in Fig. 5.6. For a given angle
6 = /3, the compliance ratios are constant (independeR},afamelyr; = 0.9191,r, = 0.9549
andrz =0.2115. In conclusion, for what concerns this particular case studyerioal simulations
confirm the benefits when using the primitive SF as compared to the traditiBial S
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Chapter 6

Design and Analysis of a Fully
Compliant Passive Spherical Joint
Using Spherical Flexure Hinges

In this chapter, a new type of passive compliant spherical joint is repted. The
joint is made by the in-parallel connection of two fully compliant sphericaircha
Each chain is composed of three identical spherical flexures connieesedies
with mutually orthogonal axes. The closed-form compliance equations &or th
spherical joint are derived via the previously described analytical rdethithe
compliant spherical chain is also evaluated comparing with the equivalemnglieo
ant chain employing straight beam flexures.

6.1 Introduction

In previous chapter, relevant studies dedicated to compliant mechanispharigvspherical mo-
tions as well as compliant spherical mechanisms were reviewed and a foliglieot spherical
chain with two degrees of freedom was introduced and evaluated. Inhhfgtar, a compliant
passive spherical joint is represented. Few studies have beentdddicanalysing and design-
ing compliant passive spherical joints. Lobontiu and Paine [33] provéaedytical solution for
designing circular cross-section corner-filleted flexures (Fig. 6.idaxhree-dimensional com-
pliant mechanisms. These flexures have been used as a compliant sufistifyleerical pairs
in the literature. However, they suffer from anisotropic deforming biglawlike identical ball
joints, and difficult machining and manufacturing process. Daihong eb@].Have proposed a
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(a) Circular cross-section corner-filleted flexures  (b) Spherical joint proposed by Daihong et al. [50]

(c) Spherical joint proposed by Hesselbach et al. [44] (d) Spherical joint presented in this study

Figure 6.1: Compliant spherical joints

cubic compliant spherical joint (Fig. 6.1(b)) to use in their 6-DOF compliantimdator. They
have used three circular flexures as revolute pairs with intersecting comnakas. Hesselbach
et al. [44] have applied three set of elliptical flexures in their composetpliant spherical joint
(Fig. 6.1(c)). The spherical joint introduced in this chapter, is progpesing six identical SFs
composing the in-parallel connection of two 3-SF compliant spherical sl{gig. 6.1(d)). This
joint demonstrates a fully isotropic and decoupled deformation behaviopt@dpoads.

6.2 Closed-Form Compliance Equations for the Spherical Joint
The compliant spherical pair proposed in this chapter is composed of 8foc®mpliant spherical

chains and can provide 3 rotational degrees of freedom between thiesingft (fixed) and the
output shaft as depicted in Fig. 6.2(a). Let us denote as Chain#1 (Ridp)6and Chain#2 (Fig.
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Oftput Shaft Input Shaft

(a) Compliant spherical joint studied in this chapter

SF#3 Zok o2

2_ -
-

(b) Chain#1

(c) Chain#2

Figure 6.2: Compliant spherical joint composed of two spherical chains

6.2(c)), the upper and lower spherical chains respectively. Eaaim ¢ made by the in-series
connection of three SFs (namely SF21 for Chain#1l and SF#8,6 for Chain#2) as shown in
Fig. 6.2. All of the SFs are identical to the SF represented in Chapter 44Hiy. The flexures

in each chain are located such that their centriodal axes are lying in threealmwrthogonal
planes. This imposes the joint to have an isotropic configuration. The fgamseadopted at the
center of the spherical motio®g) such thatyg, xg andzy axes pass through the geometric center

of SF#1 4, SF#25 and SF#3% respectively. Resorting to Eq. 5.3, the overall compliance matrix
for Chain#1 and Chain#2 can be obtained as follows:

3 3

%Cchains= y °Tg"-9C-OTgt =5 9T(-9C- 9T, (6.1)
d=1 =
6 6 .

Cchaintz= Yy °Tg"-9C-Tgt =% 9T§-'C-9To (6.2)

=4 g=4
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Hinges

where9C,g = 1...6 is the compliance matrix of the SFs as obtained in Section 4.2 about their
global coordinate frames. The adjoint matfikg relating9C to § can be determined using the
proper rotation matrix4Ro) and the translation vecto?r(), recalling Eqg. 5.1. In particula®Rg
and9r for the SFs are defined as follows:

[cog6/2) —sin(8/2) O]

'Ro=|sin(6/2) cog6/2) O0|;
0 0 1]
[—sin(8/2) 0 cog6/2)]

3Ro= | cog6/2) 0 sin6/2)|;
0 1 0 |
[0 cog6/2) sin(6/2)

®Ro= |0 —sin(8/2) —cog6/2)|;
1 0 0

o
O .
l—

[0 —cog6/2) —sin(6/2)
Ro= |0 sin(8/2) cog6/2)

1 0 0

[—cog6/2) sin(8/2)
*Ro= | —sin(6/2) —cog6/2)

0 0

[ sin(6/2) 0 —cog6/2)]
°Ro= |—cog6/2) 0 —sin(6/2)

0 1 0o
Srg =6 :[o, R o}T

, (6.3)

(6.4)

whereR and 8 represent the radius and subtended angle of the SFs centroidaBgxesplacing
Egs. 6.3 and 6.4 to Eqgs. 6.1 and 6.2 and recaflibdrom Table 4.1, the compliance matrices for
the two spherical chains can be determined as follows:

0
Cchain#1=

0
CChain#2:

Cx 1, 0
0 Cy.1,
0 0
0 Car,
Ca., O
Ce..tc Ca,.1,
[Cur, O
0 Cyy,
0 0
0 Cgp,
Cg., O
|Co..tc  Co,t,

0 0 Cim Cim
0 GCGm 0 GCm

Cz, f, Cz,rm Cz,my 0

Co.f, Co.m, 0 0

CQ/, f, 0 Ceym 0
0 0 0 Ceme_ Chain#1
0 0 Cum Cim |
0 Gm 0 GCm

Cz., f, Cz7mx C:z7my 0

Co.f, Co.m, 0 0

ng7 f, 0 Cey,w 0
0 0 0 Cez,mz_ Chain#2

(6.5)

(6.6)
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Table 6.1: Compliance factors for the two spherical chains

RO (1nGJ+GIRPA+RPEAI)

{Cxt, = Cyt, = Co 1, fchaintr= {Cx t, = Cy.t, = Cz 1, chainte= ( EALGI

{Cxmy = Cym, = Com, = Ce, 1, = Cg,.1, = Ca, f, Jchains1=
—{Cim, =Cym, =Czm, =Cq 1, = Cq,.1, = Ca, 1, } Chainsz= —2 %

RO (InElm+1nGI+GIlm
H {Cex,mx = Cey,my = CGz.,rnz}Chain#lz {Cex,mx = Cey7my = CGz,mz}Chain#ZZ ( GJIEImin ) H

{Cxm, = Cym, = CZ’mY - C9X=fy = Cey,fz = Ce,.f, }Chain#1=
—{Cxm, = Cym, = Czm = Cq, 1, = Cq,.1, = Co, 1, }chainso= 2 w

In

The analytical expressions for the matrix entries are reported in TableThé.cross section
properties A, Iy, I, andJ) can be recalled from Section 4.3 as a function of the hinge geometric
parameters.

A similar procedure can be adopted to obtain the overall compliance matrix spttegical joint,
considering the fact that for parallel combinations, stiffness matriceseotiiains should be
summed up in the same reference frame:

2

. -1 -1
K = ZOTi K0T =%Ccpaingr ~ + °Cchainz (6.7)
i=

The compliance matrix of the joifPC), will be then obtained by inverting it's stiffness matrix:

0c — okt (6.8)

Matrix °C relates the wrencfw acting onS, to the corresponding generalized displacenisais
follows:

T
Os= [uO Vo Wo o @ %}

OW:[on fyo f Mo My szr

6.3 Numerical Example and Model Validation

The spherical joint depicted in Fig. 6.2 is considered for the case stindyjoint is composed of
two serial chains with six identical SFs. The SF geometric parameters and tiainemployed
for the simulations are identical to the corresponding data used in SectioriTAebanalytical
method described earlier and FEA are both used to evaluate the complianmesafiChain#1
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Table 6.2: Compliance elements for Chain#1 and comparison between anagtddaEA results

Compliance element# Cxt, =Cy1, =Cypt, Cxm, =Cym,=Czm =Cq 1, =Cg, 1, =Ca,1,

| |

Analytic [ 0.0027 | -0.0334 |
FEA [ 0.0027 | -0.0335 |
Percentage error H 0 ‘ 0.3 ‘

|
|
|
|
; Compliance element# Co.m =Cqm =Co,m, ‘ Cxm, =Cym, =Czm, =Cq, 1, =Cq, 1, =Cg, 1,
|
|

Analytic [ 26.7793 | 0.0127 |
FEA [ 26.7921 | 0.0129 |
Percentage error H 4.77 ‘ 1.55 ’

Table 6.3: Compliance elements for Chain#2 and comparison between anagtddaEA results

Compliance eIement# Cxt, =Cyt, =Cyy, Cxm, =Cym, =Czm, =Cq, 1, =Cq,1, =Ca,r,

| |

Analytic [ 0.0027 | 0.0334 |
FEA [ 0.0027 | 0.0335 |

|

Compliance element# Co.m =Cq,m =Co,m, ‘ Cxm, =Cym, =Czm, =Cq, 1, =Cq, 1, =Co, 1,

|
|
|
’ Percentage error H 0 ‘ 0.3
|
|
|
|

Analytic I 26.7793 | -0.0127 |
FEA [ 26.7921 | -0.0129 |
Percentage error H 4.77 ‘ 1.55 ‘

and Chain#2. Table 6.2 and Table 5.3 compares the results obtained viticahahodel and
FEA for Chain#1 and Chain#2 respectively. One can notice the closemgnt between the two
methods from the comparison and the percentage error provided.

Following Egs. 6.7 and 6.8, the overall compliance matrix for the joint and taéar between
deformations and the loads actingStcan be determined as follows:

\Ljo [ 00013 7933%-6 7.9332-6! O 0 0o | ;XO
” 7.9332-6 00013 7933%-6/ O 0 0 Iy
0| = |7.9332-679332-6 00013 . 0 o 0 _[-]:2] (6.10)
do 0 0 01131498 00797 00797 | | M
® 0 0 0 | Q0797 131498 00797 | |my,
w| |0 0 0 Q0797 00797 131498] |m,

As we can see from Eq. 6.10, the compliance matrix of the joint represently asbtopic be-
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havior to applied loads and moments which is an ideal characteristic foricaljemts specially
in compliant mechanisms and micro-manipulators. Furthermore, it comprisaqueyroperty
for this purpose specially encompassing decoupled deformation behawapplied forces and
moments. This indicates that if the joint is loaded purely with moments, the defornpatifite
of the joint will only comprise rotations exempt from undesired displacements.

In order to better understand the characteristics and competencies o/&~sommonly used
flexures e.g. SBFs, the SF-based Chain#1 (SF-Chain) has beenredmygth a similar chain
featuring SBFs (SBF-Chain). The SBF-Chain is composed of three ideStigFs such that the
middle cross section centriod of the SBFs are located in a distance edffabta the center of the
spherical motion@p). Assuming the same conditions and following the same procedure depicted
in section 6.2, the compliance matrix for the SBF-Chain is obtained as Eq. 6.5 witbllidwing
compliance elements:

| (W?+12R%) 13 | (12Gw?+1%Gt2 + 12R%Et?)

e G 6.11
xt =Gy, = Czt, Ew® | Ewe EWt3G (W2 +t2) (6.11)
RI
Cxmy = Gy, =Cam, = Co, . = o = Couty = —125 i
| | |
Coom. =Coym, = Co,m, = 1250 Wit " L2ewe TP
RI

— —Cym =Cp 1 =Caq s =Cq s =12—
Cxm, =Cym =Czm, =Caq, 1, =Cq, 1, =Co, 1, Etu

One can realize that there are 4 independent compliance elements and¢heeswof the matrix is
similar to the SF-Chain. In order to compare these two chains, the SBF istdrazad consider-
ing equal compliance factors for the two chains. This results in a systemaflihear equations.
Since there are 3 unknowns for characterizing the SBF, the nonlinsensys solved assuming
equal rotation-induced compliance factors and minimizing theequation that involves pure dis-
placements, to minimize the overall parasitic motions. Considering Egs. 6.5 dndtéslsystem
of equations can be simplified as:

C)(QSﬂF\;Chain) . )gsrTBnyChmn) -0
C(ejin;Chain) _C((Jiznifcrmain) 0 — Minimize{C)((inChai”) _C)E?SFChwn)}
O ~Crain) _ (B ~Chain) _

This set of nonlinear equations is solved using numerical methods and thés$Baracterized
asl =39.8mm, w= 9.3mmandt = 0.87mm. The compliance matrix entries for the SBF-Chain
are defined as depicted in Table 6.4. By comparing the compliance elememrisarged for the
two chains as reported in Table 6.2 and Table 6.4, one can notice that alintipdiance elements
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Table 6.4: Compliance elements for the SBF-Chain

Compliance element
Value

Cut =Gty =Czt, | Gum, =Cym, =Czm, =Ca, 1, =Ca,.1, =Ca, 1,
0.0060 -0.0334

Compliance elements Cg, m, =Cg,m, =Cq,m, | Cxm, = Cym, = Czm, =Cq 1, =Cq, 1, = Cq, 1,

26.7793 0.0127

|
;
|

Value

for the both chains are equal except the three for translational termb atd@lso representative
of parasitic motions. This term is equal t@027 for the SF-Chain and@6 for the SBF-Chain.
This clarifies the outperforming behavior of SFs in comparison with SBFs imsterf parasitic
motions. The numerical values of the compliance matrix entries for the SF-@hdiSBF-Chain
are depicted in Fig. 6.3 and Fig. 6.4 respectively. As described in Sectloith®& 3D bar graph
representation allows a qualitative comparison of the spherical chaingria tdrcompliance fac-
tors.

As a further step, the SF and SBF have been compared in terms of maximasieteds. Consid-
ering the von Mises criterion as explained in Section 4.4, the two flexuresb®an evaluated by
the maximum von Mises stress when loaded with a unit (principal) bending momentthe free
end. In particular, the SBF assumes a constant value equali8g8®a along its length where
the stress distribution for the SF along its centroidal axis, is depicted in FigTé& maximum
stress for the SF occurs at its free end and is equaltee8Pa. As we can see, the SF furthermore
outperforms SBF in terms of maximum achievable rotation, being charactényzatbwer stress
level for equal load.
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Chapter 7

Conclusion

Flexure-based compliant mechanisms have become increasingly popuiferend research ar-
eas, considering their advantages compared to traditional rigid-bodyamisofs. These compli-
ant mechanisms gain some or all of their mobility due to the elastic deformation ofléxéie
members known as flexure hinges. Flexure hinges are characteriZigthfoyeight, no need for
lubrication, no backlash, no friction losses and an easy manufactuiicggs. In this thesis, new
types of flexure hinges with curved centroidal axes were introducddtudied for both planar
and spatial applications. First, circularly curved-beam flexures wereacterized and particularly
designed for planar applications, such as articulated robotic fingeescldbed-form compliance
equations for this type of flexures were fully derived as a function df tleometric parameters
and the employed material. These flexures were further compared to comusauystraight
beam flexures considering the potential applications in the optimal desigongiliant robotic
fingers. It was shown that circularly curved-beam flexures are rbaiternatives for achieving
maximum rotation demands in planar applications. Spherical flexure hingeshves introduced
and specifically designed for spatial applications involving spherical mosoch as compliant
spherical mechanisms. These mechanisms are characterized by hayinmtslof their links
moving on concentric spherical surfaces, the center of these spghargsdenoted as center of
spherical motion. Spherical flexures were also characterized andctbsé@d-form compliance
equations were derived. Proposing a feasible framework for congptrase flexures with cir-
cularly curved-beam flexures, for what concerns their capability aviding spherical motions,
proved that spherical flexures should be preferred over circudariyed-beam flexures when opti-
mizing compliant spherical mechanisms. Spherical flexures were themrusaahpliant spherical
chains and further evaluated comparing them with equivalent chains emgkiyaight beam flex-
ures. The comparison further highlighted the superior characteristgghefical flexures. Finally
a new passive compliant spherical joint was designed using spheexatdk. The overall com-
pliance matrix of the joint demonstrated an exclusive deforming behavior esghect to applied
loads.
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