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«Soyez régulier et ordonné dans votre vie comme un bourgeois,
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ABSTRACT

Geochemical mapping is a valuable tool for the control of territory that can be used not only in the 

identification of mineral resources and geological, agricultural and forestry studies but also in the 

monitoring  of  natural  resources  by  giving  solutions  to  important  environmental  and  economic 

problems. The mapping of the elements is needed to understand the geochemical processes from 

global- to local-scale, detect geochemical backgrounds and their changes in a defined time, identify 

and document the human impact on the distribution of the elements, manage the plans regarding the 

land use  and  many  other  policy  decisions.  Stream sediments  are  widely  used  in  the  sampling 

campaigns carried out by the world's governments and research groups for their characteristics of 

broad representativeness of rocks and soils, for ease of sampling and for the possibility to conduct 

very detailed sampling

In  this  context,  the  environmental  role  of  stream  sediments  provides  a  good  basis  for  the 

implementation of  environmental management measures, in fact the composition of river sediments 

is an important factor in understanding the complex dynamics that develop within catchment basins 

therefore they represent a critical  environmental  compartment:  they can persistently incorporate 

pollutants  after  a  process  of  contamination and release  into the  biosphere if  the environmental 

conditions change. It is essential to determine whether the concentrations of certain elements, in 

particular heavy metals, can be the result of natural erosion of rocks containing high concentrations 

of specific elements or are generated as residues of human activities related to a certain study area. 

The determination of the natural background may be an important product of this analysis as this 

information could have management implications useful as a reference point in the investigation of 

a possible alteration and environmental contamination.

This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna 

rivers the widest spectrum of informations. The study involved low and high order stream in the  

mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is 

active. The geochemical signals recorded by the stream sediments will be interpreted in order to 

reconstruct the natural variability related to bedrock and soil contribution, the effects of the river 

dynamics, the anomalous sites, and with the calculation of background values be able to evaluate 

their level of degradation and predict the environmental risk.
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RIASSUNTO

La cartografia geochimica costituisce un valido strumento di controllo del territorio che può essere 

utilizzato non solo nell'identificazione di risorse minerarie e in studi a carattere geologico, agricolo 

e forestale ma anche nel monitoraggio delle risorse naturali dando risposte importanti a problemi 

ambientali  ed economici.  La mappatura degli  elementi  è necessaria per comprendere i  processi 

geochimici  a  larga e  piccola scala,  documentare i  background geochimici e le variazioni in un 

tempo  definito,  identificare  e  documentare  l'impatto  umano  sulla  distribuzione  degli  elementi, 

pianificare l'uso del suolo e molte altre decisioni politiche. I sedimenti fluviali sono da decenni tra i 

materiali  più utilizzati  nelle  campagne di  campionamento realizzate  dai  governi  mondiali  e dai 

centri di ricerca di tutto il mondo per le caratteristiche di ampia rappresentatività di rocce e suoli, 

per la facilità di campionamento e per la possibilità di effettuare ricerche dettagliate con sforzi e 

risorse più contenute in termini economici e temporali. 

In  questo  contesto  il  ruolo  ambientale  dei  sedimenti  fluviali  costituisce  una  valida  base  per 

l'implementazione di misure di gestione ambientale, infatti la composizione dei sedimenti fluviali è 

un importante fattore nella comprensione delle complesse dinamiche che si sviluppano all'interno 

dei  bacini  idrografici  in  quanto  rappresentano  un  comparto  ambientale  critico:  essi  possono 

incorporare sostanze inquinanti persistentemente dopo un processo di contaminazione e rilasciarle 

nella biosfera se cambiano le condizioni ambientali. È essenziale determinare se le concentrazioni 

di certi elementi, in particolare dei metalli pesanti, può essere il risultato di erosione naturale delle  

rocce contenenti alte concentrazioni di specifici elementi o sono generati come residui delle attività 

umane legate ad una certa area di studio. La determinazione del valore naturale dei tenori di fondo 

può  essere  un  importante  prodotto  di  questa  analisi  poiché  tale  informazione  potrebbe  avere 

implicazioni  gestionali  utili  come  punto  di  riferimento  nell'investigazione  di  una  possibile 

alterazione e contaminazione ambientale.

Questa tesi di dottorato è finalizzata ad estrarre da un vasto database dei sedimenti fluviali dei fiumi 

della Romagna il più ampio spettro di informazioni. Lo studio riguarda aste fluviali di vario ordine 

che si sviluppano tra montagna e pianura dove sono presenti aree urbanizzate, attività agricole e 

industriali. I segnali geochimici registrati dai sedimenti fluviali sono stati interpretati allo scopo di 

ricostruire la variabilità naturale relativa ai contributi del suoli e delle rocce, studiare gli effetti delle 

dinamiche fluviali e, con il calcolo dei valori dei tenori di fondo, valutare ed indentificare i siti 

anomali,  il loro livello di degradazione e predire il rischio ambientale.
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CHAPTER 1

Introduction and summary

1.1 Geochemical mapping projects in environmental monitoring at various scales

Geochemical  mapping  is  a  powerful  method  to  assess  environmental  status,  background 

concentration and provide a basis for monitoring changes in the levels of chemical elements at the 

Earth’s surface. Geochemical maps have traditionally been valuable in addressing a whole range of 

environmental problems, geological, agricultural and forestry studies, in addition to probably the 

original application of geochemical mapping, that is for mineral prospection. Several decades of 

geochemical  mapping  by  national  geological  surveys  and  related  organisations  throughout  the 

world, have resulted in a wealth of valuable information (Thornton and Plant, 1980; Bolviken et al., 

1990; Darnley, 1990; Reid, 1993; Simpson et al., 1993; Davenport et al., 1993; Birke and Rauch, 

1993; Darnley et al., 1995; Cocker, 1996a, b, 1998a, b;  Moon, 1999) available at local, regional, 

national scale. 

Geochemical mapping projects have been carried out in some little countries since the late 1960s 

(Garrett  and Nichol, 1967; Armour-Brown  and Nichol, 1970; Redman  and Gould, 1970) and in 

continental countries during the late 1970s in China (Xie 1979) and early 1980s in USA (Shacklette 

and Boerngen, 1984). These  countries were mapped conducting low-density geochemical survey 

with sample densities ranging from 1 site per 200 km2 to 1 site per 18000 km2. Sampling densities 

were a direct reflection of the purpose of the survey and the scale at which they were conducted,  

indeed as the area to be mapped becomes larger, the task becomes economically and logistically 

difficult (Smith and Reimann, 2008). In the same years were carried out high density geochemical 

survey at regional-scale in European countries: England and Wales (1 site per 3.1 km2; Webb et al. 

1978), Germany (1 site per 3 km2; Fauth et al., 1985) and Austria (1 site per 1.4 km2; Thalmann et 

al., 1989).

In  the  early  1990s,  Darnley  (1990)  began  to  promote  the  realization  of  the  International 

Geochemical Mapping project (IGM) and suggested the use of the global geochemical reference 

network (GRN) promoting guidelines in multi-media approach (stream sediments, surface waters, 

soils, floodplain sediments) for multi-scale projects (Darnley et al., 1995). During the last twenty 

years,  these documents and the early mapping projects  have led to the proliferation of global-, 

continental-, regional-, local- and detailed-scale geochemical mapping projects in each continent 

(Tab.1). This has resulted in the use of new sampling densities, different sample types and various 

analytical techniques. According with Reimann et al. (2010), the following definitions of scale are 
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used:

• global scale: >50 million km2 – suggested sample density < 1 site/5000 km2; 

• continental  scale:  0.5–50 million  km2 –  sample  density  between 1  site/5000 km2 and  1 

site/500 km2; 

• regional scale: 500–500,000 km2 – sample density between 1 site/500 km2 and 1 site/km2; 

• local scale: 0.5–500 km2 – sample density between 1 site/ km2 and > 100 sites/km2; 

• detailed  scale:  <0.5 km2 –  sample density  usually  >100 sites/  km2 or  detailed scientific 

investigations on some few samples. 

1.2 Density sampling and scale of representation

At  continental  scale,  there  have  been  some  initiatives  in  China  (Xie  and  Cheng,  1997,  2001) 

providing very low-density floodplain sampling (1 per 18000 km2) collected as part of the EGMON 

project and very high density stream sediment sampling of RGNR Project (Xie et al., 1989, 1997; 

Xie and Ren, 1997) (Fig.1 a). In United States (Fig.1 b) , it has been confirmed the low-density soil  

sampling (1 per 6000 km2) collected for the conterminous USA (Gustavsson et al., 2001); in fact 

studies by Smith et al. (2005, 2006) allow additional tests of the robustness of the maps generated 

from the low-density soil data. Another very low-density sampling (1 per 10000 km2) has been 

carried out in Australia (Caritat and Cooper, 2011) using catchment outlet sediments sampled at two 

9

Tab.  1  Table  of  some geochemical  mapping projects  carried  out  in  the  world.  For each  project  specified:  
sampling density (km2/site), area (km2), scale (continental, regional, local), sample type, mapping technique and 
references.

Projects Scale Sample type Mapping technique References

China 18000 - 1 9.572.900 Continental Interpolation

Australia 10000 – 1000 7.617.930 Continental Foodplain sediment at 2 dephts EDA
USA 6000 9.372.614 Continental Soil Gustavsson et al. (2001)
FOREGS 5000 4.450.000 Continental

Salminen et al. (2005)

GEMAS 2500 5.600.000 Continental Arable soils and grazing soils Interpolation Reimann et al. (2009)
Baltic Soil Survey 2500 1.800.000 Continental Agricultural top and botsoils Reimann et al. (2003)
North America 1600 21.329.304 Continental Soil Interpolation Smith et al. (2005,2006)
Barents Project 1000 1.550.000 Continental Interpolation Salminen et al. (2004)

Germany 380 357.124 Regional Stream sediment, surface water Interpolation Birke et al (2009)
Finland 300 – 5 338.424 Regional Siewers (1992)

Kola Project 300 188 Local Top and subsoil Grid Reimann et al. (1998)
Parana (Brazil) 220 199.727 Regional Interpolation Licht (2005)

Portugal 135 89000 Regional Topsoil(A),organic horizons(humus, O)
Holland 70 41.526 Regional Topsoil, parent material EDA Veer et al. (2006)
Croatia 25 56.542 Regional Soil
Aquitania (France) 16 41.309 Regional Soil (30 cm) Administrative boundaries El Hadri et al. (2012)
India 5 – 1 3.268.090 Continental Interpolation Geological Survey of India (2012)
Campania (Italy) 5 13600 Regional Stream sediment, topsoil De Vivo et al. (2003)
Emilia Romagna plain (Italy) 5 10.507 Regional Topsoil (60-80cm), subsoil (90-140cm) Pedology Amorosi et al. (2011)
Muravera (Italy) 5 690 Local Stream sediments, soil Catchment basins Valera P (2008)
South Africa 1 1.219.090 Continental Stream sediment, soil Interpolation Lombard et al. (1999)
UK 1 152.195 Regional Topsoil,subsoil,stream sediments, water Rawlins et al (2012)
Aaroy district (Philippines) 1 101 Local Stream sediments Carranza (2010)

Sampling density (km2/site) Area(km2)

Foodplain sediment, stream sediment Lag 
materials,rockdebris

Xie & Cheng (1997,2001)

Caritat & Cooper (2011)
Interpolation1

Foodplain sediment, humus, sub soil, top 
soil, stream sediment, stream water

Interpolation1

Interpolation2

terrestrial mosses, organic topsoil, C-
horizon, and stream water

glacial till, organic stream sediments, 
groundwater, surface water 

Interpolation1

Overbank sediment,stream sediments, stream 
water

Interpolation2 Inácio et al. (2007)

Interpolation3 Halamić et al. (2012)

sediment
Interpolation4

Interpolation3

Interpolation4, Catchment basins

1 MWM (Moving Weighted Median), 2 Kriging, 3 IDW: Inverse Distance Weighting, 4 MIDW: Multifractal Inverse Distance Weighting



depths (Fig.1 c). In Europe, some countries as Germany (Fig.2 a), Finland (Fig.2 b), Portugal (Fig.2 

c),  Holland (Fig.2  d)  and Croatia  (Fig.2 e)  have  produced national  atlases  (Birke et  al.,  2009; 

Siewers,  1992;  Inácio et  al.,  2007;  Veer  et  al.,  2006;  Halamić et  al.,  2012)  with a  low-density 

sampling ranging from 1 site per 300 km2 to 1 site per 25 km2. 

Also continental european projects have been mapped in various projects at different low-density 

sampling: Kola project (1 site per 300 km2; Reimann et al., 1998) (Fig.3 a); Barents Project (1 site 

per 1000 km2; Salminen et al., 2004) (Fig.3 b); Baltic Soil Survey (1 site per 2500 km 2; Reimann et 

al.,  2003)  (Fig.3  c);  GEMAS  Project  (1  site  per  2500  km2;  Reimann  et  al.,  2009)  (Fig.3  d); 

FOREGS (1 site per 5000 km2; Salminen et al., 2005) (Fig.3 e). 

At regional-, local- and urban-scale, occurred different choices in the sampling density therefore the 

determining factor  in  the preservation of patterns is  the original  magnitude of the geochemical 

variation and size of the geological features (Ridgway et al., 1991). Surveys can be carried out at 

density  which  are  compatible  with  the  local  scale  of  geological  and geochemical  features,  the 

purpose  of  the  geochemical  survey and its  logistical  and funding constraints.  Moreover  higher 

density sampling would be appropriate in areas where social and environmental factors are more 
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Fig.1 Geochemical maps of China (a), United States (b) and Australia (c).



important (Fordyce et al., 1993). Geochemical mapping projects at regional- and a more local-scale 

have been much more common (El  Hadri  et  al.,  2012, Fig.4 a;  De Vivo et  al.,  2003,  Fig.4 b; 

Carranza, 2010, Fig.4 c; Amorosi et al., 2011, Fig.4 d; Valera, 2008, Fig.4 e). Chiprés et al. (2008)  

recognize various factors: the easier logistical considerations, the smaller budgets required and the 

need to obtain more precise informations. Further, Ohta et al. (2011) point out that high density 

mapping  in  an  urban  region  is  an  effective  tool  for  risk  assessment  for  human  health.  The 

importance of this survey's  scale is confirmed by various projects  regarding urban geochemical 

mapping  (Urban  Geochemistry  project  of  major  European  cities;  2012  Annual  report  for  the 

international union of geological  science).  These projects  were carried out  at  very high-density 

sampling (4-8 samples per 1 km2) (Guillén et al., 2011, Fig.5 a; Flight et al., 2011, Fig.5 b).

Some exceptions  are  represented  by national  geochemical  mapping projects  of  India  (Fig.6 a), 

England and Wales (Fig.6 b), South Africa (Fig.6 c) (Geological Survey of India, 2012; Rawlins et  

al., 2012; Lombard et al., 1999) in which correlations between area and sampling density is not 

respected.  Although  the  areas  have  a  national-scale,  atlases  were  carried  out  at  high-density 

sampling (1 site per km2).
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Fig.2 Geochemical maps of Germany (a), Finland (b), Portugal (c), Holland (d) and Croatia (e).
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Fig.3 Geochemica maps of Kola project (a), Barents project (b), Baltic Soil Survey (c), GEMAS project (d) and 
FOREGS (e).
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Fig.4 Geochemical maps of Aquitaine region in France (a),  Campania region in Italy (b), Aaroy district in 
Phylippines (c), plain of Emilia Romagna region in Italy (d) and Muravera area in Sardegna-Italy (e).

Fig.5 Urban geochemical maps of Huelva municipality in Spain (a) and London in UK (b).



1.3 Mapping techniques

An informative geochemical map and a visible data structure are the goals of each geochemical 

survey's group. The task is not simple because its realization requires the application of certain 

graphics  (histogram,  density  trace,  one-dimensional  scattergram,  boxplot  and  cumulative 

probability  plot)  to  investigate  the  data  structure,  trends,  relation  among variables  and identify 

anomalies.  Another  critical  point  regards  the  data  elaboration  for  map  production:  the  choice 

between point maps and interpolated maps, and application of gridding algorithm for interpolation 

(IDW, MWM, Kriging, Spline) but also some aspects of art. In fact the choice of colour scales or 

symbols  are  not  secondary  details  (Reimann,  2005)  for  a  powerful  representation  of  the 

information.  If  we look at  many geochemical  maps  produced in  the  last  years,  we notice  that 

sampling density and sample type have influenced the use of certain mapping techniques. Dividing 

mapping  techniques  in  two  groups,  statistics  and  non  statistics,  defined  and  discussed  in  the 

following section. In general, we can notice that there is a widespread implementation of statistical 

techniques (interpolation, EDA) and a restricted use of non statistics techniques in geochemical 

maps carried out at high-density sampling (Table 1, Fig. 7). 

1.3.1 Statistical techniques

Interpolation techniques have become a “routine” tool in geochemical mapping, especially with 

development of powerful multifractal models that identify geochemical anomalies (Cheng et al., 

1994, 2000; Li et al., 2003; Cheng, 2008; Azfal et al., 2011) and determine geochemical baselines 

(Cicchella et al., 2005; Lima et al., 2003, 2008). At national and continental scale this technique is 

very  useful  because  the  extension  of  point  data  covers  areas  that  were  not  sampled  reducing 

analytical costs (Fig.8). For this reason pattern data of large countries (China, USA, India, South 
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Fig.6 Some extracts from the geochemical maps of India (a), England and Wales (b) and South Africa (c).



Africa, Germany) and continental projects (FOREGS, GEMAS, Baltic Soil Survey, Barents Project) 

were processed using interpolation techniques. Otherwise at regional and local scale, multifractal 

models  (Concentration-Area  model,  Spectrum-Area  model,  Concentration-Distance  model, 

Concentration-Volume model)  associated to  interpolation have proven very effective in  mineral 

exploration and environmental assessment (De Vivo et al., 2003, Carranza, 2010). Also EDA has 

proved to be a robust technique in defining threshold data (Kürzl, 1988; O'Connor et al., 1988; 

Reimann et al., 1988; Bounessah and Atkin, 2002) and we notice that some countries (Holland and 

Australia) have adopted this technique for respectives geochemical atlases (Veer et al., 2006; Caritat 

and Cooper, 2011) at low-density sampling. 

1.3.2 Non statistical techniques

In  the  group  of  non-statistical  techniques  are  grouped  methods  of  representation  that  use 

cartographic units as catchment basins, pedologic units, administratives boundaries and cell grid 

(Fig. 8). The use of catchment basins is not recent and positive results of its application are known 

since the late 1980s (Bonham-Carter et al., 1987; Carranza  and Hale; 1997; Moon, 1999; Seoane 

and Barros Silva, 1999; Spadoni et al., 2004; Spadoni, 2005) while pedogeochemical mapping, a 

model using pedologic landscape, has been developed in recent years (Amorosi et al., 2011). Also 

the  application  of  administrative  boundaries  by  El  Hadri  et  al.  (2012)  is  a  new  example  of 

geochemical mapping. These projects were carried out at regional- (Amorosi et al., 2011; El Hadri 
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Fig.7 Diagram of statistical  and non statistical technique applied in geochemical mapping projects (up).  The 
techniques of representation are also ordered according to sampling density (bottom). 



et  al.,  2012)  and  local-scale  (Carranza,  2010;  Valera,  2008)  because  the  application  of  these 

techniques requires an high-density sampling (1 samples per 1-5 km2). An exception is represented 

by cell grid in fact this technique has been applied in the continental Kola project.

1.4 Sample type

The selection of appropriate sampling media and procedures has been identified as the most crucial 

decision-area in the context of international geochemical mapping, and therefore it has received the 

most attention. In order to benefit from standardization at later stages in the mapping process, it is 

necessary that the various sample media collected conform to accepted specifications. Since 1990s, 

Darnley et al. (1995) have suggested materials with a broad significance for certain environments 

and scales. Indeed Ottesen et al. (1989) showed how overbank sediments have turned out to be an 

important medium for the construction of maps of geochemical elements in large regions (Fig. 9). 

These samples are used in geochemical mapping of China, Australia, Europe and in the pilot project 

for a global geochemical mapping in the brazilian area of Paraná (Licht, 2005).

Soils have been used largely in a lot of projects from continental- to local-scale mapping (Fig. 9) 

(Reimann et al., 1998; De Vivo et al., 2003; Reimann et al., 2003; Salminen et al., 2005; Smith et 

al., 2005, 2006; Inácio et al., 2007; Veer et al., 2006;  Halamić et al., 2012;  Reimann et al., 2009; 

Amorosi et al., 2011; Gustavsson et al., 2011; Lombard et al., 2012; Rawlins et al., 2012) therefore 

reflect variations in the geogenic composition of the uppermost layers of the Earth's crust but are 

also important in regional surveys to avoid soil sampling at locations that have visible or known 

contamination (Salminen, 2008).  Other sampling media such as till, surface water and terrestrial 
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Fig.8  Frequency  of  statistical  and  non-statistica  techniques  in  geochemical  mapping  projects  according  to 
sampling density.



mosses were tested and became more commonly used in geochemical surveys ( Siewers, 1992; 

Lahermo et al., 1990, 1996; Ruhling, 1994; Reimann et al., 1998;  Salminen et al., 2005). These 

samples  have  been  exploited  mainly  as  a  sampling  material  on  national-  and  regional-scale 

(Finland, Norway and Kola project) (Fig. 9). 

1.5 Stream sediments as medium samples in environmental monitoring

Wherever the landscape permits, stream sediments have been the preferred sampling medium for 

reconnaissance  geochemical  surveys  concerned  with  mineral  exploration.  According  to  the 

definition  given  by  the  Forum  of  the  European  Geological  Surveys  (FOREGS),  these  are 

represented by the fine and medium size fraction of sediments (< 0.150 μm) carried and settled by 

second  order  streams  (Salminen  et  al.,  2005).  The  samples,  if  properly  collected,  represent  a 

composite of materials from the drainage basin upstream of the collection site (Darnley et al., 1995) 

therefore can be genetically considered as a mixing between grains and particles of different nature 

originated from erosive processes within a catchment basin (Spadoni, 2005) (Fig. 10). 

However, sediment yield and the geochemistry of river sediments are controlled not only by the 

physical and chemical weathering of parent rocks, but also by factors such as climatic, hydrological  

and morphological features of the basin. Incongruent and congruent dissolution, which takes place 
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in  the  presence  of  aqueous  solutions  during  penetration  through soils  and  rocks,  can  result  in 

differences between the chemical composition of a parent rock and its resulting weathering product 

(Nahon,  1991).  Similarly,  channel  bed  morphology  and  bank  slope  can  strongly  influence  the 

transportation and sorting of minerals. Sufficiently intense rainfall can initiate bed load transport, 

bringing the − 100 μm fraction into suspension (Fletcher, 1996). The energy slope of the channel 

bed also positively contributes to the initiation of bedload transport. This will result in a downslope 

variation in the composition of lag deposits, with deposits that are rich in heavy minerals and coarse 

materials located in areas with steeper slopes and deposits that contain finer or lighter materials 

located in flatter areas (Fig. 10). 

Government-sponsored  reconnaissance  surveys  covering,  for  example,  large  parts  of  China, 

Germany, South Africa, UK, USA (Rawlins et al., 2012; Lombard et al., 1999; Geological Survey of 

India,  2012;  Xie  and Cheng,  2001) have  been  based  on  stream  sediments  and  for  regional 

geochemical surveys  is the most widely used sample material  throughout the world (Salminen, 

2008). In this regard various projects have been developed considering a high-density sampling at 

local-(Carranza, 2010, Valera, 2008) and regional- (De Vivo  et al.,  2003; Spadoni, 2005) scale 

(Fig.9).  Stream  sediments  have  some  characteristics  that  provide  a  lot  of  advantages  in  the 

realization of geochemical mapping: 

• they have a good sensitivity for many heavy metal trace elements;

• they reflect the rock and soil composition of wide areas that permits to avoid high-density 

sampling; consequently, the geochemical characteristics of each sample can be considered as 

a  function  of  the  composition  of  different  geological  materials  and  sediments  of 

anthropogenic origin transported along the hydrographical network (Bolviken et al., 1990; 

Webb et al., 1978; Lahermo et al., 1996);

• the sampling is more facilitated by the accessibility of sites because the best place is the 

closing section of catchment basin;

• the chemical composition is relatively stable;

• during the deposition the selection of a certain type of material occur, allowing for greater 

uniformity in the fraction sampled for analysis.

The complex nature  of  stream sediments  and their  capacity  to  incorporate  different  sources  of 

geochemical imput have fundamental importance in environmental geochemistry, especially when 

investigating  the  background  concentrations,  the  presence  of  natural  and  anthropic  anomalies 

(Spadoni,  2005)  and  the  identification  of  local  enrichments  of  geochemical  concentrations 
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(Rantitsch,  2000).  Geochemical  landscapes  have  been  modelled  as  continuous  fields  by 

interpolating stream sediment geochemical data with sampling density sufficiently high and spatial 

autocorrelation (De Vivo et al., 2003; Lombard et al., 1999; Rawlins et al., 2012; Carranza, 2010; 

Birke et al., 2009) and alternatively as discrete fields by attributing stream sediment data to their 

sample catchment basins (e.g. Bonham-Carter et al., 1987; Carranza and Hale, 1997; Spadoni et al., 

2004). These studies have shown that the appropriateness of these techniques using stream sediment 

depend largely on the mapping scale of exploration and/or environmental geochemical surveys: 

continuous field modelling of geochemical landscapes based on stream sediment is an advantageous 

in regional-scale geochemical surveys, in which the objective is to delimit broad anomalous areas 

for further investigations at higher scales. In regional-scale geochemical surveys over large areas 

(say, western Europe; see Lima et al., 2008), discrete field (e.g.: catchment basin) modelling of 

geochemical  landscapes  based  on  stream sediment  is  not  totally  inappropriate  but,  because  of 

variations  in  sizes  of  sample  catchment  basins  due  variations  in  sampling  density  and  sample 

distribution, could be both tedious and impractical with respect to the scale(s) of output map(s) (e.g.  

1:100 000 or smaller). On the other hand, discrete field modelling of geochemical landscapes based 

on  stream  sediment  is  arguably  advantageous  in  many  cases  of  district-scale  to  local-scale 

environmental  and/or  exploration  geochemical  surveys,  in  which  the  objective  is  to  establish 

precisely  sources  of  contamination  and/or  significant  anomalies  in  individual  catchment  basins 

(e.g.: Goodyear et al. 1996; Ódor et al., 1998; Moon, 1999). 
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1.6 The aims of the doctorate and the environmental role of stream sediments 

The purpose of the doctorate is to develop innovative methods for data analysis and elaboration 

concerning  stream  sediment.  These  approaches  will  increase  the  knowledge,  identify  natural 

sources for chemical elements as well as compromised sites, provide useful information in terms of 

land management.

In  this  context  the  environmental  role  of  stream  sediment  constitutes  a  valid  base  for  the 

implementation  of  environmental  management  measures:  in  fact  the  composition  of  stream 

sediments  is  an  important  factor,  although  sometimes  neglected,  in  the  comprehension  of  the 
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Fig. 10  Some of the most important factors affecting the composition of stream sediments. From a practical  
point of view, tributaries can be also considered as sources of geochemical inputs (Spadoni et al., 2006). Below is  
reprented the geomorphology of a typical catchment basin (Strahler, 1969).



complex dynamics that occur within catchment basins. They can be affected by fluvial processes 

and climate, they are strongly influenced by bedrock lithology and soil composition, they collect 

anthropogenic  products  that  can  modify  their  quality.  In  general,  stream sediments  represent  a 

critical environmental compartment because they can persistently incorporate contaminants, even 

after an episode of contamination and eventually release if environmental conditions change (Baudo 

et  al.,  1990).  In  particular  the  section  of  fine  particle  size  of  the  sediment  represents  the 

geochemically  more  active  component  since  it  can  adsorb  large  quantities  of  contaminants 

(Sodergen, 1997) and transport away from the initial source. The sediments play a fundamental role 

in the processes of deposition, accumulation and transport of contaminants in aquatic environments 

because  they  could  move with  the  sediment  and may interact  with  various  components  of  the 

biosphere (Karickhoff et al., 1979; Santiago et al., 1994). On the other hand their composition can 

be  useful  to  trace  their  source,  since  the  presence  of  heavy  metals  and  minerals  in  different 

concentrations allows us to determine the origin of the sediments in fact each tributary has its own 

characteristics of sedimentation that give it a unique and recognizable geochemical signal (Lake et 

al.,  1990).  It  is  essential  to  determine  whether  the  concentrations  of  certain  elements,  and  in 

particular some heavy metals may be the result of natural erosion of rocks containing elements or 

are generated as residues of human activities that are carried out in a given study area.

Determination of the natural background, thus, can be an important product of such an analysis. The 

data from small catchment can be considered to be affected by anthropogenic alteration only to a 

limited degree and thus could be helpful in the determination of the natural background of any 

element analysed. This information could have great management implication since could be used 

as a reference point to investigate possible alteration.

This PhD thesis aims to extract from an extensive database on stream sediments of the Romagna 

rivers the widest spectrum of information. The study involved low and high order stream in the 

mountain and hilly area, but also the sediments of the floodplain area, where intensive agriculture is 

active. The geochemical signals recorded by the stream sediments will be interpreted in order to 

reconstruct the natural variability related to bedrock and soil contribution, the effects of the river 

dynamics, the anomalous sites, and with the calculation of background values be able to evaluate 

their level of degradation and predict the environmental risk.
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1.7 Chapter summary

Chapter  2 discusses  various  geochemical  representation  techniques  of  a  regional-scale  area 

characterized  by  complex  geology  and  multiple  factors.  The  investigation  of  stream  sediment 

geochemistry of the Romagna Apennines point out the importance in different approaches that can 

evidence  peculiarities  otherwise  concealed  by  a  standardized  technique.  Firstly  a  reasoned 

elaboration of dataset and the classification with adequate statistical techniques such as growing dot 

maps and cumulative probability plots can evidence clear differences in the spatial distribution of 

chemical composition of stream sediments derived from geology. In addition the choice of certain 

symbols and class division in the exploration of dataset can draw attention to particular anomalous 

areas that are not evident in overall representations. Finally the use of mapping techniques based on 

IDW interpolation and SBC techniques highlight the potential of stream sediments and high-density 

sampling in the identification of probable contamination sources.

Chapter 3 presents a geochemical mapping technique based on geological units of the turbiditic 

Marnoso-arenacea Formation. This local-scale area is derived from the regional-scale area studied 

in  Chapter  2  therefore  the  aim is  to  assess  the  potential  resulting  from an increase  in  stream 

sediment sampling density and the presence of a more detailed scale. The results of this study show 

that a geochemical map based on geological units could be a valid tool supporting the geology 

reconstruction  of  a  complex  area  and  providing  additional  data  for  interpretation:  in  fact,  the 

recognition of a time-dependent evolutionary trend of geological members of the Marnoso-arenacea 

formation  characterized  by  Apenninic  and  Alpine  inputs  is  consistent  with  the  available 

petrographical, mineralogical and geochemical literature.

Chapter 4 broadens the scope of the thesis in several ways. The analysis of stream sediments moves 

to a more local-scale deepening the study of heavy metals content in the catchment basins of the 

Romagna rivers. The upper threshold level of background for every single catchment is evaluated 

following  the  ISO/DIS  19258 recommendation  and  these  data  are  applied  to  show  the 

environmental  status  of  the major  rivers  working either  on the elemental  concentration and on 

nromalized values. So the analysis of stream sediment becomes not only a means for establishing 

thresholds  that  identify  the  geological  background  of  the  area  but  also  a  powerful  tool  for 

identifying  sources  of  pollution.  In  this  ways  are  detected  with  a  major  precision  the  samples 

contaminated according with the study of land use and geochemical index (Igeo).
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CHAPTER 2

Regional  geochemical  mapping  at  high  density  sampling:  various 

criteria in representation of Romagna Apennines, Northern Italy1

Abstract

Geochemical mapping is a fundamental tool in environmental monitoring and land management. 

For  this  reason,  regional-,  national-  and  global-scale  geochemical  mapping  projects  have  been 

carried out in some countries since the late 1960s. In the Romagna Apennines (Northern Italy) has 

been conducted an high density stream sediment geochemical survey (1 sample per 5 km2): 770 

samples were collected in a regional-scale area (4125 km2) and analysed for 30 elements by X-ray 

fluorescence spectrometry on the fraction < 180 μm. The area has a complex geology dominated by 

sedimentary  rocks  and  characterized  by  different  geological  units  that  belong  to  specific 

palaegeographic  domains:  Ligurian,  Tosco-Umbrian  and  Padano-Adriatic.  In  the  area  industrial 

settlements  and  largest  towns  are  in  the  plains,  agricultural  areas  in  the  hills  and  a  wooded 

mountainous area is common in the upper reaches of the major streams.

In data interpretation different mapping techniques were applied: growing dots, EDA symbols, IDW 

interpolation and Sample Catchment Basin (SCB) mapping approach. Growing dot maps associated 

with cumulative probability plots are effective tools for an indicative framework of the area in fact 

is  evidenced  the  lithological  control  of  geological  units.  EDA  symbols  based  on  quantiles 

demonstrate that some informations could be more evident considering relevant symbols and class 

divisions:  moreover  subdivision  of  a  total  dataset  in  separate  populations  related  to  a  specific 

grouping variable  highlights  anomalous areas  that  are  not  evident  in  an  overall  representation. 

Finally the comparison of mapping techniques based on IDW interpolation and SCB approach show 

different  methods  in  the  identification  of  anomalous  distribution  of  chemical  elements  and  in 

particular SCB approach indicate the source of the possibile signal.

This study shows how in an area characterized by multiple factors, chemical elements cannot be 

represented properly with a standardized mapping technique. Indeed, the use of different mapping 

techniques point out peculiarities useful for interpretation of the effect of geology or of the human 

impact. 

Keywords: Geochemical mapping; Stream sediments; Sample Catchment Basin (SCB) approach; 

IDW interpolation, Geostatistics

1 This chapter consists of a paper by Lancianese V. and Dinelli E. submitted at Journal of Geochemical Exploration.
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2.1 Introduction

During the last forty years, geochemical mapping projects have been carried out in many places of 

the world playing an important role both in mineral exploration and environmental studies (Darnley 

et  al,  1995;  Grunsky  et  al.,  2009).  The  spatial  distribution  of  chemical  elements  presented  as 

geochemical maps allows a better visualization of the geochemical processes active in a study area, 

facilitating for example the decision-making process in land management and assessment (De Vivo 

et  al.,  1998).  According  to  available  literature  some  important  criteria  were  considered  when 

creating geochemical maps. The representation scale has influenced the choice of density sampling 

because at  continental-  and national-scale  some countries were mapped conducting low-density 

geochemical survey with sample densities ranging from 1 site per 25 km2 to 1 site per 18000 km2 

whereas at regional- and local-scale prevailed high-density sampling ranging from 1 site per 1 km2 

to 1 site per 5 km2. The same sampling density influenced also the sample type, in fact low-density 

surveys have been conducted searching materials with a broad significance (Darnley et al., 1995). 

Ottesen et  al.  (1989) showed how overbank sediments  can be a  representative medium for  the 

construction of maps of geochemical elements over large areas. Also Smith et al.  (2005, 2006) 

allow additional tests of the robustness of maps generated from the low-density soil data although a 

soil sample is only considered to be representative of the point on the Earth's surface where it was 

collected (Smith and Reimann, 2008). However this peculiarity has been exploited in a lot of high-

density projects because is useful in avoiding locations that have visible or known contamination 

(Salminen, 2008). Other authors (e.g.:  Lahermo et al., 1990; Ruhling, 1994; Salminen et al., 2005; 

Siewers,  1992)  suggested  other  low-density  sampling  media  such  as  till,  surface  water  and 

terrestrial mosses as other matrices to be used in geochemical surveys. 

At  regional  scale,  stream  sediment  is  the  most  widely  used  sample  material  in  high-density 

geochemical  surveys  throughout  the  world  (Salminen,  2008)  and,  as  the  overbank  sediment 

samples, represents a composite of materials from the drainage basin upstream of the collection site 

(Darnley et al., 1995). The stream sediment composition is closely linked to different factors such 

as geological setting, history, slope, vegetation, pedogenesis and industrial activities (Spadoni et al., 

2005). This complex nature of stream sediments can be exploited in environmental and exploration 

geochemistry and the resulting maps can be useful in defining background values and localizing 

geochemical anomalies (Spadoni, 2006). Studies undertaken at higher density can investigate the 

local effects of anthropogenic influence and the relationships between the chemical composition of 

stream  sediments  and  bedrock  geology  (Yamamoto  et  al.,  2007).  The  abundance  of  spatial 

informations in stream sediment data should be appropriately investigated and supported by various 

statistical and cartographic techniques. The goal is to obtain an informative geochemical map and a 
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visible data structure but the task is not simple because its realization requires the choice of certain 

statistical graphics as histogram, density trace, boxplot and cumulative probability plot, the use of 

specific  gridding  algorithm  for  interpolation  but  also  some  aspects  of  art  that  involve  the 

employment of effective colour scales, class selection and explicative symbols (Reimann, 2005). 

Geochemical  data  structure  often  follow a  log-normal  distribution  due  to  outliers  or  are  poly-

populational,  related  to  the  geochemically  distinct  bedrock  lithologies  or  anthropogenic 

contamination (Reimann, 2005). For these reasons, operating a class selection for colour map or 

choosing symbols for black and white map is very difficult and requires several tests. Percentiles, 

boxplot, cumulative probability plot, QQ-plot are widespread univariate tools for data exploration 

and representation and, since interpolation techniques have become a “routine” tool in geochemical 

mapping,  have  been  developed  also  other  techniques  of  class  selection,  especially  powerful 

multifractal models that identify geochemical anomalies (Cheng et al. 1994, 2000; Li et al. 2003; 

Cheng, 2007; Azfal et al. 2011) and determine geochemical baselines (Cicchella et al., 2005; Lima 

et al., 2003, 2008). 

In other cases, different approaches have been applied, especially common are those based on map 

units. The use of sample catchment basins (SCB) in building geochemical maps based on stream 

sediment data is not recent and positive results of its application at regional scale are known since 

the late 1980s (Bonham-Carter et al., 1987; Carranza and Hale; 1997; Spadoni et al., 2004; Spadoni 

et al., 2005; Spadoni, 2005). Geochemical maps based on soil samples produced pedogeochemical 

maps using a  pedologic landscape approach (Amorosi  et  al.,  2011) which follows an approach 

similar to the SCB, but based on pedologic maps. Other maps were produced using administrative 

boundaries (El Hadri et al., 2012) as a base for representation. These techniques show advantages 

and  disadvantages:  SCB  avoid  “mathematical  interference”  between  neighbouring  samples 

(Spadoni,  2005)  and  establish  precisely  sources  of  contamination  or  significant  anomalies  in 

individual  catchment  basins  (Carranza,  2010),  but  are  suitable  for  morphological  contexts 

characterized by mountainous or hilly areas (Spadoni et al., 2004) and not for large plain areas. 

In most cases, research groups conduct regional-scale sampling focusing on a single representation 

technique  and  ignoring  the  possibility  to  explore  the  results  obtained  by  different  techniques, 

specially in areas influenced by geology, mineral exploration and human impact. Nevertheless some 

authors (Reimann, 2005; Carranza, 2010) aims to reflect about realization process and consider land 

morphology, sample type and the purpose of analysis as parts of the decision-making.

This  paper  presents  the  results  of  a  regional-scale  stream  sediment  survey  to  which  various 

statistical  and cartographic techniques have been applied. Maps based on symbols, chosen with 

different  criteria  and with secondary subdivision have been produced and compared with other 
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maps  produced  by  interpolation  algorithm  and  sample  catchment  basins  extrapolation.  The 

objective is to critically investigate a spatially distributed dataset in order to identify optimal data 

treatment and visualization to highlight natural phenomena and eventual human impacts.

2.2 Study area

The study area, extending over 4125 km2, includes the whole Romagna Apennines (northern Italy) 

which  includes  the  catchment  basin  of  eleven  rivers: Idice, Sillaro, Santerno, Senio, Lamone, 

Acerreta-Tramazzo, Montone, Rabbi, Bidente, Savio-Borello and Marecchia (Tab. 1 and Fig. 1). 

Industrial  activities  are  developed  mostly  around  the  main  cities  located  at  the  closing  of  the 

mountain section of several rivers (Imola, Faenza, Forlì, Cesena and Rimini), whereas in the hills 

and mountains agricultural activities prevail. The geology of the area is dominated by sedimentary 

rocks and include different geological units attributed to different palaeogeographic domains and 

structural units (Vai, 2001): Ligurian, Tosco-Umbrian and Padano-Adriatic (Fig. 2). The Ligurian 

domain,  including  also  the  sedimentary  successions  deposited  in  satellite  basin  (Epiligurian 

deposits), is located in the north-western and south-eastern part of the area and is dominated by 

chaotic clays, argillaceous sheet, turbiditic units (limestone/clay alternations) and sandstones. The 

Tosco-Umbrian domain (more correctly Romagna Umbria) crops out along the central part of the 

study area and is composed exclusively by the Marnoso-arenaceo Formation. Finally the Padano-

Adriatic  domain lies parallel  to  the Tosco-Umbrian domain and includes evaporitic,  clastic  and 

clayey sediments and alluvial deposits (AA.VV., 1987; Regione Emilia-Romagna., 1996).
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Tab. 1  Catchment basins of rivers included in Romagna Apennines. Number of samples, Area basin (km2) and 
Lenght (km) are specified for each catchment basin.



2.3 Methods

2.3.1 Sampling and analytical methods

The Department of Biologic, Geologic and Environmental  Sciences of Bologna has conducted an 

high density regional-scale sampling (1 sample per 5 km2) during five years collecting 770 stream 

sediment  samples  for  environmental  geochemistry  studies.  The  survey  has  been  carried  out 

sampling one stream sediment  sample for  each catchment  basin previously extracted by DEM, 

considering that a sampling site is presumed to express the average chemical concentration in a 

drainage basin (Howarth and Thornton 1983). In the field, sediment collected in a range of 200 m 

within the stream channel was combined and directly sieved in the field to < 180µm with local 

running water  and stored in  PET 1.5l  bottles.  In  the  laboratory  samples  sediments  were dried, 

homogenized and pulverized with an agate mill. Pressed powder pellets were prepared for analysis 

of major and trace element (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, Sc, V, Cr, Co, Ni, Cu, Zn, Ga, As, 

Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pb, Th, S)  by X-ray fluorescence  spectrometry.  Analyses  were 

performed with a Philips PW1480 automated spectrometer at the BiGeA X-Ray Fluorescence Lab, 

following the methods of Franzini et al.  (1972, 1975), Leoni and Saitta (1976) and Leoni et al.  
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Fig. 1. Schematic map of the study area at a scale of 1:400000. Points indicate sampling locations, solid lines 
show rivers drainage basins.



(1982) for matrix corrections. Long term reproducibility for major elements was generally better 

than 7%, whereas for trace elements, it was on average better than 10%. Absolute accuracy relative 

to  certified  values  of  International  Reference  Material  was  generally  within  the  reproducibility 

range.  Analytical  homogeneity  between  batches  was  checked  by  duplicate  analysis  of  selected 

samples and found to be better  than 5%. Loss on ignition (LOI) was estimated after overnight 

heating at 950° in a muffle furnace.

2.3.2 Cartographic and statistical techniques 

Geochemical  maps have been produced using Quantum GIS, a  Geographic information system 

software  downloadable  at  http://www.qgis.org/.  Regarding  Sample  Catchment  Basin  (SCB) 

mapping  approach,  the  watershed  stream  network  was  calculated  from  a  SRTM  30m  DEM's 

provided  by  the  USGS  web  site  and  were  taking  into  account  basins  greater  than  100  m2. 

Considering a continuous field model, the elemental concentration of each cell (300 m x 300 m) 

was calculated using the Inverse Distance Weighted (IDW) method (Watson and Philip, 1985).
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Fig. 2. Lithological map of Romagna Apennines (Northern Italy). The upper right insert represent the map of 
the palaeogeographical domains.

http://www.qgis.org/


Data analysis have been carried out in R, an open source software which can be freely downloaded 

from CRAN server at http://cran.r-project.org. For producing analytical results, non-parametric test 

and  graphics  has  been  used  the  DASplusR  package,  downloadable  at 

http://www.statistik.tuwien.ac.at/StatDA/DASplusR/.  Analytical  results  are  characterized  by 

computation  of  mean,  median,  Standard  Deviation,  Median  Absolute  Deviation,  minimum, 

maximum, 2th, 5th, 10th, 25th (lower quartile), 50th (median), 75th (upper quartile), 90th, 95th, and 

98th percentile.  To display  the  underlying data  structure  in  a  map,  class  selection of  chemical 

element concentration has been carried out using percentiles (2, 5, 10, 25, 50, 75, 90, 95, and 98%) 

in growing dot maps and boxplot (1st quartile, median, 3rd quartile and 95%) in maps represented 

with EDA symbols, IDW interpolation and SCB mapping approach.
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Table 2 Summary statistics for the geochemistry of stream sediments in Romagna Apennines. Have been 
reported the 2°, 5°, 10°, 25°, 75°, 90°, 95° and 98° percentile, median and mean value, Min (Minimum), 
Max (Maximum), SD (Stamdard Deviation) and MAD (Median Absolute Deviation).



2.4 Results and discussions

2.4.1 Distribution data pattern: a first view using dot maps

Table 2 presents a summary statistics for the stream sediment data, including percentiles, median, 

mean, SD (Standard Deviation) and MAD (Median Absolute Deviation) for compositional data. 

Some major elements show significant variation (e.g. CaO (1.5-40.7 wt.%), MgO (0.61-5.84 wt.%), 

MnO (0.03-1.5 wt.%), Na2O (0.05-2.39 wt.%), P2O5 (0.01-1.5 wt.%), Al2O3 (1.5-18.4 wt.%) TiO2 

(0.22-1.29 wt.%)) whereas for other is lower (e.g. Fe2O3 (1.09–6.93 wt.%), K2O (0.86–2.84 wt.%), 

SiO2 (16.7–76.2 wt.%).   Also trace elements, As (1.5–26.6 ppm), Ba (1.5–2210 ppm), Ce (1.5–117 

ppm), Co (1–31 ppm), Cr (1.5–517 ppm), Cu (1.5–119 ppm), Ga (1.5–27 ppm), La (1.5–62 ppm), 

Nb (1.5–97 ppm), Ni (1.5–160 ppm), Pb (1.5–58 ppm), Rb (1.5–158 ppm), S (1.5–18000 ppm), Sc 

(1.5–49 ppm), Sr (1.5–3260 ppm), Th (1–102 ppm), V (1.5–152 ppm), Y (1.5–58 ppm), Zn (1.5–

956 ppm), Zr (1.5–688 ppm) identify remarkable differences. We will discuss only some selected 

and indicative elements (Al2O3, CaO, SiO2, Sr, Cr and Pb), but all dot maps, cumulative probability 

plot,  geochemical  maps  obtained  by  IDW interpolation  and  catchment  basin  approach  of  the 

complete dataset are included as supplementary material. 

The first step was to produce dot maps (Fig. 3a-f), in order to provide a preliminary indication on 

the distribution of Al2O3, CaO, SiO2, Sr, Cr and Pb. Ten classes, representing 2°, 5°, 10°, 25°, 50°, 

75°, 90°, 95° and 98° percentiles were used to identify the symbols. As background information the 

boundaries of the three  palaeogeographic  domains are included in the figure. Calcium (Fig. 3a) 

shows high values  in  the Tosco-umbrian domain,  in particular  along Santerno,  Senio,  Lamone, 

Acerreta-Tramazzo and Savio valleys. In the other domains (Ligurian and Padano-adriatic) there are 

only three samples with CaO exceeding 33 wt.% respectively in the Marecchia valley and in the 

Acerreta-Tramazzo catchment near Faenza.  On the contrary the Al2O3 dot map (Fig.  3b) shows 

higher values (> 15.9 wt.%) in the Ligurian domain, in particular along the Idice and Sillaro valleys. 

Also  the  samples  from  the  Ligurian  domain  in  the  Marecchia  valley  shows  relatively  high 

concentration,  while  in  Tosco-umbrian  and  Padano-adriatic  domains  have  been  clearly  lower 

concentrations. The SiO2 dot map (Fig. 3c) shows in general higher concentrations in the north-

western sector of the studied area, with the highest concentrations in scattered locations within the 

Ligurian  and  Tosco-umbrian  domains.  Considering  trace  elements,  the  Sr  dot  map  (Fig.  3d) 

evidences a concentration of higher values in the south-eastern part of the area within Ligurian and 

the Padano-adriatic domains, but also relatively high concentrations occur in the Tuscan domain, 

showing an increasing trend to the East. The Cr dot map (Fig. 3e) shows values higher than 168 

ppm in the north-western and south-eastern parts of the area respectively in the Padano-adriatic 

domain and between the Ligurian and the Padano-adriatic domain. In the Tosco-umbrian domain 
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Fig. 3 Geochemical dot maps of CaO (a), Al2O3 (b), SiO2 (c), Sr (d), Cr (e) and Pb (f).



the Cr concentrations are generally much lower, except for a high value in the Savio-Borello valley. 

The Pb dot map (Fig.  3f)  shows higher values (> 24.2 ppm) in  the Tosco-umbrian domain,  in 

particular along the Senio, Lamone, Rabbi and Bidente valleys, and in the south-wastern Ligurian 

and Padano-adriatic  domains,  respectively  along  Marecchia  valley  and near  Cesena.  These  are 

scattered points, generally located along the major rivers, were urban settlements are more common.

2.4.2  Pattern  related  to  palaeogeographic  domains:  a  secondary  screening  by  inference  of  

cumulative probability plots. 

As  suggested  by  the  dot  maps,  there  are  distinct  regional  patterns  that  coincide  with  major 

palaeogeographical domains, mostly related to major lithological differences at least for the major 

elements,  as  confirmed by the  cumulative  probability  plots  in  Fig.  4  a-c.  There is  only  partial 

overlap for SiO2 (Fig. 4c) but for the other elements the three palaeogeographic domains are clearly 

differentiated.  Calcium  is  much  higher  in  the  Tosco-umbrian  which  is  characterized  by  the 

Marnoso-arenacea Formation, a turbiditic unit with alternating sandstones and marls. In addition to 

a  calcium  contribution  from  the  fine-grained  lithologies  there  are  sandstone  beds  enriched  in 

carbonate (Gandolfi  et al.,  1983), and in general compared to other turbiditic sandstones of the 

northern  Apennines,  these  rocks  have  higher  CaO content  (Dinelli  et  al.,  1999).  The  Ligurian 

domain records the highest values of Al2O3 (Fig. 4b) which is directly related to the clay rich nature 

of  the  tectonic  mélange  that  outcrop  in  both  zones  of  the  Ligurian  domain  area  (Pini,  1999; 

Vannucchi and Bettelli,  2010) as well  as from feldspar-rich sandstones occurring in the area as 

scattered  blocks  (Valloni  and  Zuffa,  1984).  The  lower  values  observed  in  the  other  domains 

basically reflect a dilution related to the different carbonate content.

The three curves of SiO2 (Fig. 4c) cross at the 90 percentile, corresponding with the presence of 

greater dot in all domains. In general the Ligurian and the Padano-adriatic distribution are higher 

compared to the Tuscan-umbrian and overlapping up to the 90th percentile, where the Ligurian curve 

bend to  higher  values.  Occurrence  of  quartz  rich  sandstones  in  the  Ligurian  domain  is  known 

(Valloni and Zuffa, 1984; Cibin et al., 2011) in the north western area south of Bologna and is likely 

reflected by some samples. The high SiO2 values in the Tuscan-Umbrian domain occur in the north-

eastern part, where during the Tortonian stage sediment supply was related to an Alpine provenance 

(Gandolfi et al., 1983), with an high arenite/pelite ratios (Martelli et al., 1994), producing a clear 

geochemical signal within the Marnoso-arenacea formation (Lancianese and Dinelli,  submitted). 

Other high values observed in this unit occur in the upper reaches of the Montone valley, possibly 

reflecting, older (Langhian-Serravallian), quartz-rich sediments. 

CP plot of Sr (Fig. 4e) displays only minor differences up to the 90 th percentile, with the Ligurian 
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domain  having  the  lower  concentration.  In  the  upper  distribution  there  is  a  sharp  increase  in 

concentrations  in  the  Padano-Adriatic  and  few  high-concentration  samples  from  the  Ligurian 

domain. Being Sr a substitute of Ca, we expected high values in Tuscan-umbrian domain, especially 

in the south-eastern part of the area, but the highest values were observed downstream of evaporitic 

units  of  the  Padano-adriatic  domain  that  crossed  also  the  other  geological  units  occurring 

douwnstream  of  the  sources.  Strontium  substitutes  Calcium  also  in  gypsum  but  the  strong 
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Fig. 4. Cumulative probability plots of CaO(a),  Al2O3 (b),  SiO2 (c),  Sr (d),  Cr (e) and Pb (f).  Three curves  
represent  palaegeographical  domains:  Ligurian  domain  (black),  Padano-adriatic  domain  (red)  and  Tosco-
umbrian domain (green).



enrichment in some scattered areas is located to the occurrence of mine wastes associated to former 

sulphur mines strongly enriched in Sr (Dinelli, 1995).

The curves of Cr plot (Fig.4e) indicate three distinct curves however with very small differences 

and  only  few anomalous  samples  observed  in  the  Padano-adriatic  population  in  the  Idice  and 

Marecchia Valley, in association with calcareous sandstones of Pliocene age. These deposits formed 

in a shallow marine environment (Amorosi et  al.,  2002) receiving sediments from the growing 

apenninic mountain belt which included also ophiolitic rocks. A similar source, an enrichment in 

chromium-rich heavy minerals or less likely an anthropogenic source could be the origin for these 

high values.

The  Cp  plot  of  Pb  (Fig.4f)  shows  slightly  higher  concentrations  of  Pb  in  the  Padano-adriatic 

domain, but after the 80th percentile (20 ppm Pb) the three curves overlap. The reason for the slight 

difference could be related to the geological nature of this unit, being characterized by fine-grained 

sediments, but the fact that it located at closer to the Po River Plain and with higher anthopogenic  

pressure possibly suggest the occurrence of diffuse pollution. High concentrations occur in all the 

three population, suggesting that there are localized sources of anomaly within the study area.

2.4.3 Total dataset vs. pattern divided for palaegeographical domains: a third step to investigate  

background and anomalous values with the support of EDA symbols

We have seen that the dot maps of chemical elements (Fig. 3) and the cumulative probability plots 

according to palaeogeographical domains (Fig. 4) gave interesting results for interpretation. Dot 

maps provide a primary indication regarding the spatial distribution of chemical elements, while the 

cumulative probability plots strengthen the importance of lithological control and point out some 

inferences for human impact. To go deeper in the interpretation we applied a combined approach to 

better point out the geochemical features of the study area. To the sample populations belonging to 

the  three  palaeogeographic  domains  we  applied  an  EDA graphic  approach.  The  use  of  EDA 

symbols  and  boxplots  constitute  a  valid  tool  in  displaying  a  data  distribution  (Tukey,  1977; 

Velleman and Hoaglin, 1981) giving an optical graphical weight to higher and lower values using 

respectively crosses and circles. Furthermore, a class division characterized by boxplot quantiles 

(25th, 50th, 75th percentile) with the addition of a discretionary upper percentile (in this paper has 

been used the 95th percentile) could discriminate between background and anomalous values among 

the entire population (Fig. 5a-c). The same approach as been applied to the three separate sub-

population  referring  to  the  palaeogeographic  domains  (Fig.5b-d).  We  present  this  kind  of 

elaboration to two elements CaO and Pb, that better  then others are representative of lithology 

(CaO) and can be influenced by anthropogenic activities (Pb).
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The  map  of  CaO  shown  in  Fig.  5a  is  a  good  example  of  EDA symbols  utility  because  the 

appearance and interpretation of data are facilitated. Compared to the growing dot map (Fig. 3a) the 

high and low areas are even more evident respect to growing dot symbols, and once again the 

Ligurian domain clearly stands out for its low content, either to the north-west and the south-east. 

There is also a heterogeneous within the Tosco-umbrian domain with higher values in the central 

and southern portion of this domain. If the dataset is splitted more details come out (Fig. 5b) that 

can be attributed to specific geological features. For example, in the Padano-adriatic domain high 

concentration (filled circles and crosses) occur in  the central  area between the Bidente and the 

Savio-Borello catchment where Pliocene sandstones and biocalcarenite are common (Benini et al., 

2009) and also in the north-eastern sector south of Bologna where calcareous sandstones belonging 

the Pliocene Intra-Apenninic Basin outcrop (Panini et al., 2002). 
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Fig. 5. Geological maps of CaO and Pb are represented using EDA symbols applied to total data pattern (a,c) 
and divided for palaegeographical domains (b,d).



A more complicated picture comes out for the Ligurian unit in the Marecchia valley where scattered 

limestone and calcareous arenites Cornamusini et al., 2009) strongly influence the stream sediment 

composition. Given the higher values in the Tosco-umbrian population this treatment compresses 

the original data clearly point out section of the unit with remarkably different composition, better 

discussed in Lancianese and Dinelli (submitted).

For  an element  like Pb,  which can  be strongly  influenced by anthropogenic sources,  the  EDA 

symbols  clearly  locate  the  points  with  localized  anomaly  (Fig.  5c)  which  are  not  “domain-

dependent”, and clusters of high rank data (filled circles and crosses) are concentrated along the 

main course as in the Lamone and Montone case,  irrespective of the palaeogeographic domain 

boundary. Considering the Pb map based on singular palaegeographic domains (Fig. 5d) there is a 

sort of normalization and even local deviation from the general trend of the sub-population can be 

outlined.  Eventual  lithological  effects  can  be  reduced  and  minimal  alteration  compared  to 

background can be pointed out. For example filled circles and crosses appears in the north-western 

area of the Ligurian domain, in an area with diffuse anthropization. Similar considerations can be 

made also for the south-eastern sector of the Ligurian domain, where local anomalies along the 

Marecchia river in connection with urban areas become more evident. Instead the comparison of 

Tusco-umbrian and Padano-adriatic domains between Fig. 5c and Fig. 5d don't reveals significative 

differences.

2.4.4 Interpolation vs sample catchment basin approach

Geochemical maps based on interpolation and sample catchment basin (SCB) approach constitute a 

further  tool  of  data  presentation  and  analysis  that  can  be  applied  to  could  provide  additional 

information about the factors controlling element distribution. The use of interpolation techniques 

represent  a  common  tool  for  environmental  geochemistry,  geochemical  prospecting  and 

geochemical mapping, as outlined in the introduction. Care in application and interpretation should 

be given for sampling density,  since interpolation with low density  data  can lead to unrealistic 

responses. Less common is the application of the SCB approach, that however if sampling density 

is adequate can provide interesting information. 

The interpolated geochemical maps of CaO and Pb (Fig.6 a-c) based on IDW interpolation and the 

maps based on the SCB approach (Fig.6 b-d) have been compared to each other and with maps of  

the other paragraphs. Geochemical maps drawn by means of mathematical interpolators do not take 

into consideration the geomorphologic contraint of the watersheds and the functional relationship, 

in term of transport and deposition processes, between sampling points along the stream network 

(Spadoni,  2005).  The interpolated  map for  CaO clearly  identifies  the  low values  in  the  north-
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western Ligurian domain and the high belt in the central area of the Tosco-umbrian domain (Fig. 6a) 

which  is  confirmed  also  in  the  “catchment  basin”  map  (Fig.  6b).  Some  of  the  observed 

encroachments  depends  on  the  extension  of  the  catchment  that  do  not  follow  the  geological 

boundaries. For a major element like CaO the difference between the two maps can be minimal and 

still  the association to bedrock geology is present. For an element like Pb the interpolated map 

produces an “hot-spot” appearance (Fig. 6c) related to the occurrence of spot anomalies, that have 

however also the same effect concerning the low values. The SCB map (Fig. 6d) provides direct  

information  about  the  location  of  the  anomaly,  at  least  within  the  size  of  the  catchment  basin 

although the patchy appearance could not appear as elegant as the interpolated one. It highlights, for 

example, the occurrence of high concentrations in the closing section of the rivers, often in the 

suburbs of large towns. It also clearly localizes other anomalies in mountain stretches of the rivers, 

that generally include small towns and industrial settlements. This approach clearly permits a more 

precise identification of the location of the anomaly and guide the location for additional studies if 

needed, without the uncertainty related to spatial interpolation. Furthermore the application of IDW 

to  derive  the  continuous  geochemical  surfaces  could  not  be  optimal  in  this  case,  particularly 

because stream sediments do not represent continuous geo-object (Carranza, 2010) as soil samples.

Compared to growing dot maps (Fig. 3a and f) and EDA symbol maps (Fig. 5a and c) there is a less 

clear  visualization  of  the  linkages  between  element  concentration,  lithology  and  anthropogenic 

factors because the colours representing specific range classes are extended over the boundaries of 

the  palaeogeographic  domains.  Neverthless  the  use  of  mapping  techniques  based  on  IDW 

interpolation  and  SBC  approach  add  further  informations  that  may  be  useful  in  identifying 

anomalous concentrations of chemical elements.
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2.5 Conclusions

Various representation techniques have been used to investigate stream sediment geochemistry of 

Romagna Apennines (Northern Italy). The comparison between growing dots, EDA symbols, IDW 

interpolation and Sample Catchment Basin (SCB) techniques, combined with statistical analyses, 

produced different considerations:

1) the  distribution  of  chemical  elements  in  an  area  characterized  by complex geology and 

multiple  factors  cannot  be  represented  properly  with  a  standardized  mapping  technique 

because different approaches point out peculiarities useful for interpretation of the effect of 
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Fig. 6. Geological maps of CaO and Pb are represented using IDW interpolation (a,c) and SCB approach 
(b,d). In the maps are visibles the boundaries of palaegeographical domains.



geology or human impact;

2) growing dot  maps  and cumulative  probability  plots  are  effective  tools  for  an  indicative 

framework  of  the  area:  in  this  case  the  visualization  of  linkages  between  chemical 

distribution  and  geology  is  stressed,  since  there  are  clear  differences  in  the  chemical 

composition of stream sediments derived from the three major geological units based on 

palaeogeographic considerations (Ligurian, Tosco-umbrian and Padano-adriatic domains);

3) the choice of symbols and class division are fundamental in exploring a data population: 

growing dot represented 10 classes and EDA symbols based on quantiles demonstrate that 

some informations could be more evident considering relevant symbols and class divisions: 

the EDA approach for  example stress  the tails  of the distribution and draw attention to 

anomalous areas and zone possibly affected by deficiency.

4) the  subdivision  of  a  total  dataset  in  separate  populations  related  to  a  specific  grouping 

variable, in this case the palaegeographic domains, highlights anomalous areas that are not 

evident in an overall representation, taking indirectly into account possible differences in 

background values related to natural factors;  

5) the use of mapping techniques based on IDW interpolation and SBC techniques should be 

related to certain criteria: for this study the type of sample, the sampling density and the land 

physiography are adapted to a SBC technique because it directly indicate the source of the 

possible signal and permits possible detailed studies

Nowadays geochemical mapping it is no more an issue of data handling, since specific softwares 

allows the quick production of very beautiful geochemical maps. But also other tools for spatial 

analysis and accessible supporting background information of easy implementation in appropriate 

softwares enable other ways of data classification and elaboration more appropriate to the data 

studied. Dot maps or similar clearly represent the true results, but their interpretation is not easy 

even for a well trained eyes. For stream sediments samples, when appropriate sampling density is 

used, the SCB represent a very powerful tool which can be easily read also by not trained people 

and is very useful for management issues.
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CHAPTER 3

Geochemical mapping based on geological units: a case study from the 

Marnoso-arenacea Formation (Northern Apennines, Italy)2

Abstract

Geochemical  maps  can  provide  lot  of  information  about  geology,  earth  surface  processes, 

anthropogenic pressures and represent valuable tools for ore prospecting and land management. 

Stream sediment collected from the active channels were considered in this study and they represent 

an integral of the various possible sources of sediments upstream of the sampling point. Of course 

there can be multiple sources of signal, but in general the one related to bedrock geology should be 

the prevailing one. In this paper we investigated their potential application to integrate geological 

interpretation and produce  a  geologically-oriented geochemical  map.  Among the samples  (770) 

collected for a regional geochemical mapping program, we selected a number of them (149) whose 

catchment  basin  included  only  one  of  the  members  recognized  within  the  Marnoso-Arenacea 

formation. This Middle-Upper Miocene (Langhian-Tortonian) turbiditic unit forms the backbone of 

the  Romagna  Apennines  and  has  been  subdivided  in  14  members  according  to  age  and 

lithostratigraphic criteria. The results indicate that there are marked differences in the composition 

of the members of the Marnoso Arenecea formation that reflect the provenance of the sediment and 

the palaeogeographic evolution of the units. Based on univariate and multivariate analysis (Factor 

analysis)  two  principal  types  sediment  compositions  can  be  idenfied:  Tortonian  members  are 

characterized by sialic coarse grain-sediments while the Langhian-Serravallian members are richer 

in  carbonate  fraction,  slightly  enriched  in  a  mafic  contribution.  This  work  elaborated  the 

geochemical  data  with  attention  to  geology,  integrating  the  literature  information  available  to 

spatially extend the interpretation based on limited site observation as the petrographic ones. In 

general the geochemical map based on geological unit could be a valid tool supporting the geology 

recostruction of a complex area.

Keywords: Geochemical mapping, Geochemistry, Stream sediments, Provenance, R-mode factor 

analysis, Marnoso-arenacea formation, Geological members, Sediment composition, Source rock 

weathering, Apennines

2 This chapter consists of a paper by Lancianese V. and Dinelli E. submitted at “Chemie der Erde/Geochemistry”
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3.1 Introduction

Since the early 1980's, the geochemistry of clastic (Bhatia, 1983, 1985a,b; McLennan et al., 1983, 

1993;  Taylor  and  McLennan et  al,  1985;  Roser  and Korsch,  1986,  1988;  Condie  et  al.,  1992; 

Condie, 1993), lake (Krishnamurthy et al., 1986; Fontes et al., 1993; Mullins, 1998; Willemse and 

Tornqvist, 1999; Last and Smol, 2001; Jin et al., 2001, 2003; Laird et al., 2003; Rose et al., 2004) 

and stream sediments (Swennen and Sluys, 1998; Cannon et al., 2004; Ortiz and Roser, 2006 a, b; 

Ranasinghe et al., 2008, 2009; Singh, 2010; Bhuiyan et al., 2011) has been used for the evaluation 

of tectonic setting and provenance studies because the original signature of the source still remains 

preserved in the sediments. Chemical compositions of sediments have been examined in different 

ways: some trace elements as Sc, Th, Zr, Cr, Ni, Co and REEs generally remain immobile during 

several processes of sediment production and are useful indicator of source region composition 

(Singh, 2010); SiO2/Al2O3 ratio,  CaO, Na2O and Sr suggest clay matrix  control,  grain size and 

residence in feldspars (Bhuiyan et al., 2011); some geochemical indices of sandstones (Th/Sc, La 

Sc, Co/Th, Cr/Th, Cr/V and V/Ni ratios) and shales (La/Sc and La/Cr ratios), based on low mobility 

elements,  were used to reconstruct the source area characteristics (Taylor and McLennan, 1985; 

McLennan et al., 1993; Condie, 1993).

Stream sediments are composite samples of the outcropping rocks and surface material upstream of 

the sampling point (Levinson, 1974; Rose et al., 1979; Darnley, 1990; Hale and Plant, 1994) a key 

feature for exploration, mapping and management and are useful for  background concentrations 

(Bölkiven et al., 1990) therefore stream sediment is one of the best medium in provenance studies 

and evalutation of tectonic setting (Carranza and Martin, 1997; Chandrajith et al., 2000; Ohta et al., 

2004; Cannon et al., 2004; Singh, 2010; Tripathy et al., 2013). The chosen grain-size fraction can 

have an important  influence on the analytical  results  for stream sediment  samples,  since many 

metals tend to be enriched in the fine grain-size fractions (Förstner and Müller, 1974).

If there is an adequate sample density it is possible to highlight the litological effect of specific 

geological units (Cocker,  1999; Lima et al.,  2003; Ohta,  2005; Albanese et  al.,  2007; Breward, 

2007) based on the differences that characterize several rock types (e.g.: ultramafic, granitoid and 

sedimentary). The present study takes advantage of an high-density stream sediment sampling and a 

detailed geological map to investigate the geochemical evolution within each single geological unit 

providing strong connection between geological evolution and geochemical composition. In this 

way, the geological information is considered as a key of representation in geochemical mapping 

approach  that  follows  a  particular  criterion  of  attribution  of  geochemical  data.  The  resulting 

geochemical  map  based  on  geological  unit  could  be  a  valid  tool  supporting  the  geology 

recostruction of a complex area.
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3.2 Study area

3.2.1 Geologic and stratigraphic setting 

The Marnoso-arenacea  Formation  (MAF) is  a  turbiditic  unit,  deposited  in  the  Tuscan-Umbrian 

portion of the Inner Periadriatic basin during the Miocene (Cipriani and Malesani, 1963 a, b, c;  

Ricci  Lucchi,  1978;  Ricci  Lucchi  and  Valmori,  1980;  Gandolfi  et  al.,  1983).  This  basin  was 

elongated in a NW-SE direction in front of the growing Northern Apennines orogenic wedge (Ricci 

Lucchi, 1978, 1981, 1986). In the Romagna Apennines it forms a belt 90 km long and 40 km wide, 

and reaches a thickness of up 3500 m. It is limited to the north-west and to the south-east by two 

allocthonous units of the Sillaro valley and of the Marecchia valley (Fig. 1).

The MAF has been subdivided in 14 members for cartographic purposes (Tab. 1 and Fig. 1), based 
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Fig. 1.  Geological  map of  MAF modified from the source available at  Servizio Geologico,  Sismico e dei  Suoli  
Regione Emilia Romagna showing the 13 members recognized by Martelli  et al. (1994). The area is part of the  
catchment  of  nine  rivers  (upper  right  insert):  Santerno,  Senio,  Lamone,  Acerreta-Tramazzo,  Montone,  Rabbi,  
Bidente, Savio-Borello. It is limited to the north-west and to the south-east by two allocthonous units of Sillaro valley  
and Marecchia valley. The MAF (lower left insert) is part of the Umbrian Units between Ligurian, Subligurian,  
Epiligurian units at north-west and south-east, the Pliocene and Quaternary unit at north-east and Cervarola unit at  
south-west (from Muzzi Magalhaes and Tinterri, 2010). 



on  litostratigraphic  criteria  such  as  arenite/pelite  ratio,  average  thickness  of  arenaceous  levels, 

composition of arenites and stratigraphic position (Martelli et al., 1994). These members can be 

correlated with those proposed by Mutti et al.  (2002) and Ricci Lucchi (1981). Based on Ricci 

Lucchi's  work,  the  sedimentary  evolution  involves  two  stages  or  basins:  an  older  inner  stage 

(Langhian to Serravallian) and a younger outer stage (Tortonian), as a result of the basin depocenter  

shifting through time toward the NE and the progressive closure of the MAF foredeep. According to 

Ricci Lucchi (1981) the change from inner to outer stage is marked by an increase in the sand/mud 

ratio  and a  decrease  in  clastic  carbonate  input.  Moreover  Ricci  Lucchi  (1986) adds  that  MAF 

deposits  can  be subdivided into four  depositional  sequences,  LS (Langhian-Serravallian)  and S 

(Serravallian)  characterizing  the  inner  stage,  and  T1  (Tortonian  1)  and  T2  (Tortonian  2) 

characterizing the outer stage, each recording the shift towards the foreland (E-NE) of the main 

depocenter (Fig 2).  Recent studies  (Argnani  and Ricci Lucchi,  2001;  Conti,  2001;  Mutti  et  al., 

2002a; Roveri et al., 2002; Lucente, 2004; Muzzi Magalhaes and Tinterri, 2010; Tinterri and Muzzi 

Magalhaes,  2011)  shown  that  the  MAF  depositional  setting  was  complicated  by  a  structural 

deformation  and sedimentary/tectonic  load  that  exerted  control  over  basin  geometry  and facies 

distribution. These considerations have produced a further sedimentary evolution characterized by 

three  stages:  a  Langhian/Serravallian  inner  basin,  an  upper  Serravallian  phase  recording  the 

transition between inner and outer basin and a Tortonian outer basin.

3.2.2 Sediment petrographic composition
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Tab. 1. Subdivision of MAF on the basis of litostratigraphic criteria and age as proposed by Ricci Lucchi (1981),  
Martelli  et al. (1994), Mutti  et al. (2002).  FMA 6 and FMA7 are not included because there are no avaibles  
stream sediment samples within these geological members. 



Sediment compositional variations  within the MAF basin are derived by three main detrital inputs 

(Fig.  2)  (Ricci  Lucchi  and Valmori,  1980;  Gandolfi  et  al.,  1983;  Ricci  Lucchi  and Ori,  1985;  

Capozzi  et  al.,  1991;  Roveri  et  al.,  2002;  Mutti  et  al.,  2003;  Zattin  and  Zuffa,  2004;  Muzzi 

Magalhaes and Tinterri, 2010): a prevalently Alpine input (siliciclastic) is associated to NW-to-SE 

flowing turbidity currents; other important inputs derived from southwestern area, from the growing 

apenninic mountain belt, and minor inputs are located in the southern and southeastern margins of 

the  basin  which  produced  carbonate  (“Colombine”)  and  hybrid  siliciclastic/carbonatoclastic 

(“Contessa-like”) turbidity currents flowing in the opposite direction towards the NW. Gandolfi et 

al. (1983) associated these provenances with five petrofacies (Alpine I and II, Apenninic I, II and 

III): among the main distinctive petrographic features of Alpine I and II petrofacies there is K-

feldspar  <  plagioclase,  the  presence  of  dolomite,  serpentine  schist  and  volcanic  lithics  and  a 

distinctive heavy mineral association (epidote, glaucophane, kyanite). In contrast Apennine II and 

III  sandstones  are  characterized  by  K-feldspar  >  plagioclase,  the  presence  of  limestone  and 

siliciclastic  sedimentary  rock  fragments  and  a  different  heavy  mineral  association  (picotite, 

monazite + xenotime, zircon). Finally Apennine I presents K-feldspar < plagioclase, fragments of 

granite and aplite and an epidote-glaucophane-kyanite heavy mineral association.
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Fig.  2.  Scheme of  the  main sediment  inputs  in  the  MAF basin 
(redrawn from Gandolfi et al., 1983; Roveri et al., 2002).



3.3 Methods

3.3.1 Sampling methodology and analysis

Stream sediments were collected from the active channel, at adequate distance from the banks, to 

minimize the influence of very local contribution. Sediment collected in different points within the 

site was sieved in the field using a stainless steel with running water. The fraction < 180µm was  

separated and collected in 1,5 l bottle. settling the bottle was emptied, cut and the solid material  

oven dried at 40°C, until dryness. 30 grams were homogenized and milled in an agate mortar, and 

powder pellets were prepared for XRF analysis. The concentration of 30 major and trace element 

analyses (SiO2, TiO2, Al2O3, Fe2O3, MnO, MgO, CaO, Na2O, K2O, P2O5, Sc, V, Cr, Co, Ni, Cu, Zn, 

Ga, As, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pb, Th, S)  were  perfomed  by  X-ray  fluorescence 

spectrometry at the XRF laboratory of the Department of Biological, Geological and Environmental 

Sciences  of  the University  of  Bologna.  Matrix  corrections  were applied  in  the  analytical  work 

(Franzini et al., 1972, 1975; Leoni and Saitta, 1976; Leoni et al., 1986). Based on the analysis of  

international  reference  material,  the  estimated  precision  and  accuracy  for  trace  element 

determination was better than 5%, except for those elements at 10 ppm or lower (10–15%). Total 

loss on ignition (LOI) was estimated after overnight heating at 950° in a muffle furnace.

3.3.2 Data selection and treatment

Starting from an extensive database resulting from a stream sediment geochemical survey (Dinelli 

and  Lucchini,  2004)  subsequently  integrated  by  additional  sampling,  to  reach  a  total  of  770 

samples,  and  discussed  in  a  separate  paper  (Lancianese  and  Dinelli,  submitted),  samples  were 

selected to be the most representative of the bedrock signal. Among the 390 collected with the MAF 

boundaries, further selection involved the removal of samples from high stream order (Fig. 3a) and 

samples whose upstream catchment included different geological members (Fig. 3b). In addition 

were excluded from further analysis also those samples were anthropogenic disturbances were clear. 

According to these criteria,  149 samples were selected and subsequently assigned to  a specific 

member of the MAF. It was not possible to assign any samples to member 6 and 7 which were thus 

excluded from the following elaboration.

The computation of median and median absolute deviation (MAD) have been carried out in R, a  

free  software  environment  (http://cran.r-  project.org  ),  using  the  DASplusR  package 

(http://www.statistik.tuwien.ac.at/StatDA/DASplusR/), as well as the elaboration of Factor Analysis 

(FA)  to  describe  the  data  in  terms  of  correlation  structures  that  fit  a  predefined  number  of 

components  (factors)  and  in  the  processing  of  notched  boxplot  of  chemical  elements.  Binary 

diagrams of elemental ratios were constructed with GCDkit package (Janoušek et al., 2006). 
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3.3.3 Methodology for the elaboration of geochemical maps

We have  discussed  in  a  separate  paper  (Lancianese  and Dinelli,  submitted)  about  the  need  of 

various techniques in the comprehension of geochemical phenomena focusing on the representation 

of spatial  distribution of chemical  elements.  The choice of  geochemical  mapping techniques is 

greatly influenced by representation scale,  sample density and sample type.  At a regional scale 

geochemical maps based on certain landscape units (Carranza and Hale; 1997; Spadoni et al., 2004; 

Amorosi  et  al.,  2011;  El  Hadri  et  al.,  2012)  proved  to  be  very  effective  compared  to  other 

representation  techniques  in  presenting  for  example,  the  effect  of  geology  especially  for  areas 

influenced by natural and anthopogenic factors. In this paper, we consider a local-scale area with a 

complex geology but  supported by an high-density  sampling and detailed geological  landscape 

units. Based on the availability of a detailed geological map of the area at a scale 1:10000 from 
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Fig.  3.   Stream sediments  were  collected with specific  criteria in  order to avoid contamination sources:  (a)  
samples  collected  from  high  stream  order  (black  dots)  have  been  deleted  because  are  located  near  sites  
characterized  by  human  activities  and  influenced  by  multiple  sources;  (b)  samples  collected  in  catchment 
including different geological members (black dots) are deleted because contaminated  by different geochemical 
signals.



Servizio  Geologico,  Sismico  e  dei  suoli  Regione  Emilia  Romagna  providing  a  background  of 

suitable resolution, we realized the geochemical maps using the geological members of MAF as 

landscape units. Figure 4 summarizes the next steps in data analysis: to each member was assigned 

the median value of stream sediments collected within the unit. Following, the median values of the 

geological  members,  represented  in  a  summary  boxplot  (Fig.  4a),  have  been  subdivided  for 

mapping purposes according to the 25th, 50th, 75th and 90th percentile (Fig. 4 a) then the same filling 

was applied to the whole member area (Fig. 4 b).  Geochemical maps have been produced using 

Quantum GIS, a Geographic information system software available at h  ttp://www.qgis.org/  . 

3.4. Results and discussions

3.4.1 Stream sediment composition

Table  2 reports  statistical  parameters  (median  and Median  Absolute  Deviation  (MAD)) for  the 

members of the MAF. Selected major and trace element variations, as well as geochemical ratios are 

presented as box-plots in Fig. 5.  

Considering the major elements (Fig. 5), the median content of Al2O3 increases from MAF1 (9.5 ± 

1.87  wt.  %)  to  MAF14  (11.1  ±  0.45  wt.  %)  while  the  concentration  of  CaO decreases  from 

Langhian-Serravallian (25  ± 5.7 wt.%) to Tortonian members (13  ± 2.5 wt.%). MgO, Na2O, and 

SiO2  values are higher in Tortonian members: in particular the median content of SiO2  increases 

constantly from MAF1 (30 ± 7.1 wt.%) to MAF14 (50 ± 6.5 wt.%) whereas MgO and Na2O present 

discontinuous  values.  Fe2O3/Al2O3  and  MgO/Al2O3  ratios  display  also  significant  differences: 
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Fig. 4. Geochemical maps of chemical elements have been carried out in two steps: (a) the median values of  
geological members of MAF have been extracted and calculated  in a class division based on 25°, 50°, 75° and 90° 
percentile; (b) median values have been assigned to each geological members considered such as landscape units.

http://www.qgis.org/
http://www.qgis.org/


Fe2O3/Al2O3  ratio presents lower values in Tortonian members (0.33-0.39) compared to Langhian-

Serravallian  members  (0.40-0.42)  while  MgO/Al2O3  ratio  is  lower  in  Langhian-Serravallian 

members (0.35-0.36) than Tortonian members (0.37-0.39) with some exceptions (MAF8, MAF13, 

MAF14). Trace elements concentrations present similar trends (Fig. 5): fundamentally Nb, Rb, V, 

Zr, Y and Ce increase from MAF1 to MAF14. Sr follows the same evolution of CaO, therefore 

decreases from MAF1 (608 ± 121 ppm) to MAF14 (305 ± 66 ppm).

Generally, the results show a lithologic control that can be referred to major provenance inputs and 

to grain-size balance between sandstones and marl, which is a discriminating member attribution. 

The high SiO2 values of Tortonian reflect the relative importance of sandstones against finer grained 

material  and could be indicator  of an Alpine provenance,  as  suggested by the studies  of Ricci 

Lucchi and Valmori (1980), Gandolfi et al. (1983), Ricci Lucchi and Ori (1985), Capozzi et al.  

(1991) and Roveri et al. (2002). 
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Fig. 5. Box-plots showing the variations of selected major elements (Al2O3, CaO, SiO2, MgO), geochemical ratios  
(Fe2O3/ Al2O3, MgO/Al2O3) and selected trace elements (Rb, Sr, Ce, Nb, Y) in geological members of MAF. The  
numbers in Y axis (from 1 to 14) indicate geological members from MAF1 to MAF14 (excluding MAF6 and MAF7).  
The values in X axis are expressed in wt.% for major elements and ppm for trace elements. The box-plots have been  
subdivided  in  three  chronostratigraphic  periods  (LS=Langhian-Serravallian;  ST=Serravallian-Tortonian;  
T=Tortonian) based on division shown in Tab.1, in order to highlight differences in the evolutionary trend of MAF.



The same arguments might explain also the high Na2O and Rb results in these members, being 

related to the higher proportions of plagioclase and feldspar, which are known to be abundant in this 

section of the MAF (Gandolfi et al., 1983; Cavazza and Gandolfi, 1992; Gandolfi et al., 2007). The 

high CaO and Sr values in Langhian-Serravallian members could reflect the major importance of 

limestone clastic inputs whose provenance has been attributed to Apenninic sources (Ricci Lucchi 

and Pialli, 1973; Ricci Lucchi and Valmori, 1980; Zuffa, 1980; Gandolfi et al., 1983; Martelli et al., 

1994). Given the sample type considered, we are aware that these elements could be influenced by 

several other possible sources, such as carbonate cement within sandstones, carbonate fraction in 

marls, and even direct travertine formation locally observed close to springs or in riffles, but their 

signal is consistent with the petrographic information available. The high MgO values in North-

eastern members (from MAF10 to MAF14) indicate the importance and extension of a dolomitic 

contribution which has been recognised in the upper portion of the FMA formation (Gandolfi et al.,  

1983)  and  attributed  to  a  Southern  Alpine  source.  Also  the  MgO/Al2O3  ratio,  although  with 

restricted range, point out an increase in Tortonian members. The decreasing Fe2O3/Al2O3 ratio value 

from MAF1 to MAF14 reflect changes in provenance (e.g.: sources from acidic rocks?) as well as 

changes in the sandstone/pelite ratio, that if the sandstone is arkosic could maintain high Al2O3. Zr, 

Y, Ce, in sandstones are basically associated to relatively common heavy minerals (e.g. monazite, 

xenotime,  zircon,  garnet)  in  the  FMA (Gandolfi  et  al.,  1983)  and  could  be  useful  additional 

provenance  indicators.  Their  interpretation  however  cannot  be  straightforward  because  sorting 

effects  could affect  their  occurrence in  alluvial  environment  where enrichment  can reflect  high 

energy environment and not source area characters (Vital and Statteger, 2000; Dypvik and Harris, 

2001; Fralick and Kronberg, 1997. Garcia et al., 2004; Dinelli et al., 2007) as could happen if some 

highly sloping stream-bed are eventually sampled.

Geochemical maps of MAF based on geologic members as cartographic units can be powerful tools 

for the comprehension of geological history of the area. From the geochemical maps of Fig. 6 we 

observe some clear relation between chemical element contents and geological stages. For example 

Fig.6 (a,  c)  indicate  higher  content  of  Al2O3 and SiO2 along the north-eastern  part  of  the  area 

corresponding to Tortonian stage while Fig.6 (b) highlights higher median concentration of CaO 

along the south-western part corresponding to Langhian-Serravallian members. These maps reflect 

the nature of the provenance of turbidity currents deposited in the FMA foredeep: the sialic coarse-

grained turbidity current derived from the north-eastern Alpine area and the carbonate-rich fine-

grained turbidity currents originating from Apenninic sources. Fig.6 d shows the major content of 

MgO in the Tortonian members that testify the dolomitic contribution of this stage but also in the 

Apenninic supply that characterize the Langhian-Serravallian stage. Fig.6 e show clearly the higher 
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content of Na2O in geological members of the Tortonian stage suggesting the great influence of 

minerals such as plagioclase. Considering element ratios, we note that Fig.6 f shows the highest 

Fe2O3/Al2O3 values  in  high-carbonate  members  of  Langhian-Serravallian  stage  suggesting  the 

possible presence of a slightly higher mafic supply in sediments deposited in this period or the 

presence of iron-rich clay minerals. In Fig.6 g the MgO/Al2O3 ratio indicates the higher values in 

the central area, possibly reflecting a less evident, but present, dolomite contribution recognized 

also in other provenances (Gandolfi et al., 1983). The Tortonian members that does not appear in 

this diagram for the high Al2O3 related to plagioclase content.

Also  the  trace  elements  give  some  important  graphical  results:  Rb  and  Sr  have  opposite 

distributions  being  elements  related  respectively  to  sialic  and  carbonatic  components  of  the 

sediment (Fig. 6 h, i). In these Figures the sialic composition of Tortonian members characterized 

by  higher  content  of  Rb  and  the  carbonate  composition  of  Langhian-Serravallian  members 

characterized by major contents of Sr are clear. The distribution of Ce, Nb and Y (Fig. 6 l, m, n)  

highlight higher values in the Tortonian members whose turbidity currents were richer in heavy 

minerals (Gandolfi et al., 1983). 
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Fig. 6. Geochemical maps of Al2O3 (a), CaO (b), SiO2 (c), MgO (d), Na2O (e), Fe2O3/Al2O3 (f), MgO/Al2O3 (g), 
Rb (h), Sr (i), Ce (l), Nb (m), Y (n). 
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Tab. 2.  Median composition and Median Absolute Deviation (MAD) of 30 chemical elements in MAF geological 
members.



3.4.2 Geochemical signatures 

A more general indication can be obtained through application of factor analysis to the selected data 

set. The  analyses  included 28 elements  listed  in  Table  2,  excluding  As and  Ga because  many 

samples  are  below  the  detection  limit.  The  results  of  factor  analysis  indicate  5  factors  with 

eigenvalue > 1, accounting for 77 % of the total variance, that are discussed in detail and shown in 

Fig. 7.

The first factor (positive Al2O3, Co, Cr, Fe2O3, MgO, K2O, Ni, Rb, V; negative CaO) explaining 40 

% of the total variance (Fig. 7), can be referred mainly to the clayey fraction of the sediment, which 

is opposed to a carbonate fraction. The clay mineral fraction is important in the type of samples 

studied, based on a relatively fine-grained fraction. The stratigraphic distribution outlined by factor 

scores  (Fig.  8)  indicate  an  increase  in  higher  median  values  from  Serravallian  to  Tortonian 

members. Information on the mineralogy of the fine-grained fraction of the MAF is rare (Tilling et 

al., 2007) and indicate that the mudstones originating northwestern sources (Alpine) are enriched in 

illite and mica and to a lower degree in dolomite, whereas those beds originating from the southeast  

and to the southwest (Apenninic) have a distinct higher carbonate content and slightly higher quartz 

content. The geochemical map of first factor (Fig. 9a) identifies an increasing content of the clayley 

component  in  Tortonian  members  but  also  high  contents  in  Langhian-Serravallian  members, 

especially FMA5 and FMA8.
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Fig.7.  Factor loading plot  for five  factor scores  applied to  MAF stream sediment  data.  The factors  can  be  
referred to: F1 = clayey components; F2 = heavy metal components; F3 = sandy components; F4 = unclear; F5 = 
unclear.



The second factor, explaining 17 % of the total variance, is characterized by high positive loadings 

for Ce, La, Nb, P2O5, SiO2, TiO2, Y, Zr and negative loading for CaO (Fig. 7). The elements with 

positive loadings could be associated to a suite of heavy minerals that are present in the sediment 

and derive from the outcropping rocks. The presence of SiO2 could reflect quartz occurrence and 

suggest association with a fine-sand coarse silt sediment fraction (Dinelli et al., 2006) eventually 

enriched in steep sloping channels. As already mentioned, a similar geochemical association have 

been observed in sediments and sedimentary rocks from high-energy environments (Fralick and 

Kronberg, 1997; Dypvik and Harris, 2001; Garcia et al., 2004). The stratigraphic pattern outlined by 

factor  scores  (Fig.  8) indicate  a  shift  towards higher  median values  from older  FMA members 

towards  the  younger  one,  and  is  reflected  in  the  geochemical  map  (Fig.  9b).  These  youngest 

members outcrop in the closing section of the Santerno and Savio rivers (Fig. 1), areas with lower 

topographic gradient compared to other sampling sites in the upper reaches where older members 

occur. Of course localized situations favourable to heavy mineral accumulation can occur, but this 

consideration  would  likely  support  an  interpretation  more  related  to  the  bedrock  composition 

instead of a sorting effect.
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Fig. 8. Box-plots showing the variations of factor scores (F1, F2, F3, F4, F5) in geological members of MAF. The 
numbers in Y axis (from 1 to 14) indicate geological members from MAF1 to MAF14 (excluding MAF6 and 
MAF7). The box-plot have been subdivided in three chronostratigraphic periods (LS=Langhian-Serravallian; 
ST=Serravallian-Tortonian; T=Tortonian) based on division shown in Tab1, in order to highlight differences in 
the evolutionary trend of MAF.



The third factor explains 10 % of the total variance and includes the positive Al2O3, Ba, Na2O, K2O, 

Si2O and  the  negative  CaO (Fig.7)  that  can  be  referred  to  a  relatively  coarse-grained  fraction 

dominated by feldspars and plagioclase which is opposed to a carbonate fraction,  possibly also 

associated to a coarse-grained fraction. The stratigraphic distribution outlined by the factor scores 

(Fig.  8) indicates an increase in higher median values from Langhian-Serravallian to Tortonian 

members that confirms the arenite/pelite ratio trend shown in Table 1. The geochemical map of the 

third  factor  (Fig.  9c)  shows  very  well  that  the  plagioclase  component  increases  in  Tortonian 

members  testifying how Alpine turbidites deposited in the foredeep after  Langhian-Serravallian 

have been important in determining the sediment composition of these geological members.

The fourth factor explains 6 % of total variance. It includes Th-Zn-S-Na2O and the negative P2O5-Y-

Zr-Pb-Sc  (Fig.  7).  The  stratigraphic  plot  (Fig.  8)  shows  very  large  variations,  testifying  for 

heterogeneity. Only FMA10 and FMA11 have the lowest values and restricted spread reinforcing 

the role of heavy minerals. The elemental association of the positive side is rather strange and likely 

supports a non natural sources, possibly related to agricultural practices and eventually to effects of 

sulphur mining (Savio-Borello catchment, northeastern part of Marecchia and Bidente valleys) (Fig. 

9d). The fifth factor support 4 % of total variance including Cu-Zn and negative Na2O (Fig. 7). as 

for the preceding factor, there is not great difference among the members (Fig. 8) so a lithologic  

control can be ruled out. The positive elements likely reflect a signal of diffuse pollution that has 

not been completely removed during the selection step.
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Fig. 9. Geochemical maps of F1 (a), F2 (b), F3 (c), F4 (d), F5 (e).



3.4.3 Different supplies of material: the evolutionary trend of MAF 

The components highlighted in factor scores can be investigated using variations of element ratios 

in binary plots. Given the presence of a sialic, carbonatic, mafic and heavy minerals component, a 

division of MAF members related to their provenance and composition may be inferred. With the 

purpose of discriminating possible inputs, in Figs. 10-11 have been included as references average 

data representing important rock types and local sources.

To evaluate the silicate and carbonate supplies has been used a Rb/Sr vs. CaO/Al2O3 diagram (Fig. 

10) considering these elements as rough indicators of the changes in siliclastic/carbonate ratios. The 

predominant siliciclastic source inputs has high Rb/Sr and low CaO/Al2O3 ratios while carbonatic 

inputs have low Rb/Sr and high CaO/Al2O3 ratios. The differentiation in geological members of 

MAF describe a wide variation through time in the two types of contribution: the carbonate inputs 

characterize the Langhian-Serravallian stage while siliciclastic inputs influence the Tortonian stage. 

In fact considering the references and the results already presented, it is apparent an evolutionary 

trend showing a decrease in carbonate inputs from Langhian-Serravallian members to Tortonian 

members.  Moreover  the  members  deposited  in  Upper  Serravallian-Lower  Tortonian  (MAF8, 
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Fig. 10. Binary plot of CaO/Al2O3 vs. Rb/Sr showing the distribution of MAF geological members. The sources for  
the  reference  rocks:  ultramafic  rocks  (Turekian  and  Wedephol,  1961;  Puchelt,  1992),  metamorphic  rocks  
(Wedepohl,  1995),  igneous rocks (Morgan et  al.,  1978) greywackes (Wedepohl, 1995),  marine shales (Li,  1991),  
granites (Le Maitre, 1976), marine pelagic clay (Li, 1991), North American Shale Composite (NASC) (Morgan et al.,  
1978;  Li,  1991),  peridotites  (Le  Maitre,  1976),  ophiolitic  gabbros  (McDonough,  1991),  Northern  Apennines  
sandstones (Macigno Formation, Modino sandstones, Cervarola Sandstones, Marnoso-arenacea Formation, from  
Dinelli et al., 1999) and limestones (Reimann and Caritat, 1998).



MAF9)  show  geochemical  features  belonging  to  both  Tortonian  and  Langhian  Serravallian 

members:  this  dispersion  could  be  related  to  the  contemporary  deposition  of  siliciclastic  and 

carbonate detritus input occurred during this period.

The mafic and felsic supply has been identified using a Y/Ni vs. Cr/V diagram (Hiscott, 1984). In 

Fig. 11 the Langhian-Serravallian members (MAF1-MAF5) stend to have a slightly higher Cr/V 

compared to the majority of the samples, whereas the Tortonian members (MAF-10-14) have a 

clearly higher  Y/Ni ratios which is indicative of a sialic supply. Also in this graphic the members 

deposited in Serravallian sup.-Tortonian inf. (MAF8, MAF9) are positioned between Tortonian and 

Langhian  Serravallian  members  testifying  for  a  mixed  supply.  Compared  to  the  similar  graph 

presented in Dinelli et al.  (1999) which was relative only to sandstone samples, there is a shift 

towards  lower  Y/Ni  values  which  reflect  and  increasing  influence  of  fine-grained  grained 

sediments, as suggested by the position of reference data.
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Fig. 11. Binary plot of Cr/V vs. Y/Ni (Hiscott, 1984) showing the distribution of MAF geological members. Element  
contents of rocks used as references (metamorphic rocks, greywackes, marine shales, granites, marine pelagic clay)  
are from Morgan et al., 1978; Wedepohl, 1995 and Li, 1991. Element contents of Northern Apennines sandstones  
(Cervarola,  Macigno,  Modino and Marnoso-arenacea Formation) and ultramafic rocks are from Turekian and  
Wedephol (1961) and Puchelt (1992).



3.5 Conclusions

The  results  of  this  study  show  that  the  distribution  pattern  of  chemical  elements  is  greatly 

influenced  by  geological  members,  suggesting  that  it  can  provide  useful  additional  data  for 

interpretation. After accurate selection of samples representative of a single geological member, 

according to cartographic information, these data can be used to extend the interpretation over a 

wide  (basin)  area.  Based  on  the  data  analyses  and  on  the  geochemical  maps  produced  and 

considering  the  time-dependent  evolutionary  trend  of  geological  members  from  Langhian  to 

Tortonian stage, we can put forward some conclusions:

6) In the Langhian-Serravallian inner stage, southeastern geological members (from MAF1 to 

MAF5)  are  characterized  by  prevailing  carbonate,  fine-grained  sediments  derived  from 

southern Apenninic supply.

7) In the Serravallian-Tortonian stage, considered as a transition phase between inner and outer 

stage, geological members as MAF8 and MAF9 have hybrid geochemical features because 

they are influenced by both Appenninic and Alpinic turbidity currents characterized by a 

decrease in the carbonate signal and an increase in the siliciclastic contribution. 

8) In  the  Tortonian  outer  stage,  the  northwestern  geological  members  (from  MAF10  to 

MAF14) are characterized by sialic, siliciclastic (either enriched in plagioclase and mica) 

with high MgO related to important dolomite inputs derived from Alpine supply.

These  considerations  are  consistent  with  the  available  petrographical,  mineralogical  and 

geochemical  literature.  One major  difference  is  that  those reconstructions  were  based  on point 

observation whereas these data cover a large part of the outcrop area on the FMA, so that a large 

overview  can  be  obtained.  The  data  selection  and  the  availability  of  high  quality  supporting 

information has enabled the clear indication of a chronologic evolutionary trend in the deposits of 

MAF and the geologically oriented geochemical maps clearly display the distribution.
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CHAPTER 4

Geochemical Backgrounds of the Romagna river basins: the effect of 

geology, normalization and land use on heavy metal content of stream 

sediments3

Abstract

The identification of geochemical background levels plays a fundamental role in the quantitative 

assessment  of  heavy metal  contamination in  the sediments  but  it  is  not  sufficient  to  obtain  an 

objective and definitive overview of a study area therefore the effect of contaminating factors of the 

geochemical  signal  can  affect  the  quality  of  results.  The  computation  of  the  upper  limit  of 

background can be combined with normalization procedures to minimize the effect of geology and 

weathering and with techniques that associate anomalous values to land use types.

In the Romagna area, 784 stream sediment samples has been collected in twelve river basins that 

cross different geological units and land use types from the mountains to the plain. The spatial  

distribution of heavy metal elemental content (Cr, Cu, Ni, Pb and Zn) is different in each river 

basins and greatly influenced by the occurrence of calcareous or clays. For this reason we calculated 

a  background  value  based  on  Low  Stream Order  rivers  for  each  catchment,  a  procedure  that 

minimize the chance of missing anomaly. The upper limit of background, calculated according to 

the ISO 19258 guidelines, varies over wide ranges, suggesting the importance of a similar approach 

and the presence of differences also in the normalized to Al2O3 results that evidence the importance 

of different provenance and the role of dilution on stream sediment geochemistry. 

The calculated background thresholds were applied to the results of the High Stream Order samples, 

identifying  anomalous  sites.  The  probable  contamination  sources  were  evaluated  taking  into 

account also the association to land use types. In this  way anomalous values of Cr and Ni are 

principally related to geology and elemental enrichment caused by sorting effect while Cu, Pb and 

Zn  are  principally  related  to  anthropogenic  impact  characterized  by  agricultural  and  industrial 

activities.  

Keywords: background, normalization, heavy metals, stream sediments

3 This chapter consists of a paper by Lancianese V. and Dinelli E. submitted at “Journal of Soils and Sediments”.
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4.1 Introduction

The quantitative assessment of heavy metals contamination in the rivers is a very sensitive issue 

that  has  been  addressed  in  European  Union  since  the  introduction  of  the  European  Water 

Framework Directive (WFD, 2000) with the aim to achieve a good status of all European waters by 

the year 2015. Afterwards the necessity of an environmental monitoring for sediments with precises 

quality objectives has been stressed in successive documents (WFD, 2010) and sediment quality 

guidelines (OSPAR commission, Guidance Document No:25) that have highlighted the importance 

of reference levels of heavy metals. There are many factors that control the reference levels of any 

chemical element, and these include the geochemical variation in bedrock geology, the influence of 

soil-forming  processes,  and  erosion-transport  effects,  but  it  also  can  include  more  localized 

disturbing factors such as the occurrence of mineralization or other various types of anthropogenic 

influences (Salminen and Gregorauskiene, 2000). Not secondary is the reference to the analytical 

method  followed,  since  for  certain  elements  the  value  can  change significantly  for  example  if 

different digestion protocols are followed (e.g.: Salminen and Gregorauskiene, 2000) uences.When 

dealing with surface material (e.g.: stream sediments, soils). The knowledge of this information has 

great importance in environmental legislation, that indicates limits for selected elements in soil, 

contaminated land and other surface materials, that could be exceed simply for natural reasons, such 

as the presence of a particular rock type with peculiar geochemical features (e.g.: Cr and Ni in 

ultramafic  rocks)  and  its  effecto  on  soil  and  even  on  transported  material  (e.g.:  Amorosi  and 

Sammartino, 2007; Amorosi, 2012).

In fact  the identification of background thresholds,  although there is  confusion in its  definition 

(Reimann  and  Garrett,  2005),  is  a  fundamental  tool  in  recognition  of  contamination  sources 

therefore allows to compare anomalous values to more representative regional values respect to 

average shale contents or crust contents shown in literature (Bowen, 1979; Wedepohl, 1995). In this 

regard, some authors have applied robust techniques (Matschullat et al., 2000; Fukue et al., 2006, 

Kalender et al., 2013; Mil-Homens et al. 2007) that are referred to specific databases and that reflect 

the characteristics of the study area. In these cases another factor is considered: the normalization. 

Heavy metals  are influenced by grainsize and mineralogical effects  derived from anthropogenic 

activities and geochemical processes (UNEP, 1995; Summers et al., 1996; Grant and Middleton, 

1998) that determine enrichment and accumulation in the sediments and then difficulties in the 

identification of the kind of source. Some authors (Covelli and Fontolan, 1997; Ho et al., 2012). 

discuss  the  potential  of  this  approach  considering  aluminum  (Al)  or  alumina  (Al2O3)  as 

normalizers , being one of the most important constituents of the aluminosilicate mineral fraction. 

These factors prove that is complicated to determine reliable background values, especially in areas 
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influenced  by  contrasting  geology,  where  other  factors  as  as  land  use  can  produce  significant 

changes in the concentration value of heavy metals (Reimann and Garrett, 2005; Fok et al., 2013; 

Hao et al., 2014). 

This study shows the results of a sampling campaign carried out on stream sediments on several 

river basins of an extensive regional area in northern Italy, characterized by contrasting lithology, 

dominated by sedimentary rocks, different land use and with possible localized sources of anomaly. 

We evaluated the upper threshold level of background for every single catchment, following the 

ISO/DIS 19258 recommendation, based on the low stream order dataset. We applied this data to 

evaluate  the environmental  status  of  the major  rivers,  and used it  for the calculation of Igeop, 

working either on the elemental concentration and on nromalized values. 

4.2 Study area

The study area,  extending  over  6856 km2,  includes  the  whole  Romagna  Apennines  and  the 

Romagna plain and include the catchment basins of twelve rivers: Idice, Sillaro, Santerno, Senio, 

Lamone, Acerreta-Tramazzo, Montone, Rabbi, Bidente, Savio-Borello, Uso and Marecchia (Fig. 1).
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Fig.1  Distribution  of  land  uses  in  the  study  area.  The  classification  of  the  map  (download  at  
http://www.eea.europa.eu/) is organized according with the level 1 of Corine Land Cover.



The main land use type (64% of total area) include agricultural activities widespread in the plain 

section and in the valley bottoms. The industrial activities and urbanarea (4% of the total area) are 

developed  mostly  in  the  Romagna  plain  around  the  main  cities  located  at  the  closing  of  the 

mountain section of several rivers (Imola, Faenza, Forlì, Cesena and Rimini) and in several minor 

urban centers along the main valley. In the hill and mountain area of the  Romagna Apennines 

human activities are almost absent, wooded areas prevail (31% of total area).

The geology of the area (Fig.2) is dominated by sedimentary rocks formed during different periods: 

in the northern and southern part of Romagna Apennines, the Cretaceous-Miocene Ligurian and 

Epiligurian  domains  are  characterized by the  presence of  ophiolites,  chaotic  clays,  argillaceous 

sheet, turbiditic units (limestone/clay alternations) and sandstones. The central part of the Romagna 

Apennines is composed exclusively by the sandstones and marls of the turbiditic Marnoso-arenacea 

Formation  (Langhian-Serravallian).  Along  the  mountain  range  border  outcrop   the  messinian 

evaporites of the Gessoso-Solfifera formation, the Plio-pleistocene clay and clastic sediments of the 

Padano-Adriatic  domain  (AA.VV.,  1987;  Regione  Emilia-Romagna.,  1996).  In  the  plain  area 

Quaternary alluvial deposits occur. 
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Fig.2 Simplified geology of the study area. The maps indicates also few localities close to changes in the geological  
units, and cited in the text as geographic reference. Some will be recalled also in the data discussion.



4.3 Methodology

4.3.1 Sampling and analytical methods

The Department of Biological, Geological and Environmental Sciences of Bologna has conducted a 

sampling campaign during five years collecting 753 stream sediment samples for environmental 

geochemistry  studies  (Fig.  3).  The  survey has  been  carried  out  sampling  one  stream sediment 

sample for each catchment basin previously extracted by DEM, considering that a sampling site is 

presumed to express the average chemical concentration of geologic material upstream  (Howarth 

and Thornton, 1983). The total 753 samples have been divided in two categories: stream sediments 

collected from high stream order (HSO sediments; n=254) and stream sediments collected from low 

stream order (LSO sediments; n=499). Subsequently this database has been integrated by additional 

samples  (n=31) collected in  the Romagna plain over the highway line,  to reach a total  of  784 

samples.

Stream sediments were collected from the active channel, at adequate distance from the banks, to 

minimize the influence of very local contribution. Sediment collected in different points within the 
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Fig. 3 Location of stream sediment samples of high stream order (HSO) and low stream order (LSO). The Plain  
sediment samples are located over the highway line.



site was sieved in the field using a stainless steel with running water. In the field, sediment collected 

in a range of 200 m within the stream channel was combined and directly sieved in the field to < 

180µm  with  local  running  water  and  stored  in  PET  1.5  l  bottles.  In  the  laboratory  samples 

sediments were dried, homogenized and pulverized with an agate mill. Pressed powder pellets were 

prepared for analysis of major and trace element (Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, P, Sc, V, Cr, 

Co,  Ni,  Cu,  Zn,  Ga,  As,  Rb,  Sr,  Y,  Zr,  Nb,  Ba,  La,  Ce,  Pb,  Th,  S)  by  X-ray  fluorescence 

spectrometry.  Analyses  were  performed  with  a  Philips  PW1480 automated  spectrometer  at  the 

BiGeA X-Ray Fluorescence Lab, following the methods of Franzini et al. (1972, 1975), Leoni and 

Saitta (1976) and Leoni et al. (1982) for matrix corrections. Long term reproducibility for major 

elements was generally better than 7%, whereas for trace elements, it was on average better than 

10%.  Absolute  accuracy  relative  to  certified  values  of  International  Reference  Material  was 

generally within the reproducibility range. Analytical homogeneity between batches was checked by 

duplicate analysis of selected samples and found to be better than 5%. Loss on ignition (LOI) was 

estimated after overnight heating at 950° in a muffle furnace.

4.3.2 Statistical analysis and graphic elaborations

Data analysis have been carried out in R, an open source software which can be freely downloaded 

from CRAN server at  http://cran.r-project.org. For producing analytical results (median, standard 

deviation,  minimum  maximum  and  95°le),  Shapiro-Wilk  normality  test,  non-parametric  tests 

(Levene's  test  and Kruskal-Wallis  test)  and graphics  (boxplot  and profiles)  have  been used the 

DASplusR  package  (http://www.statistik.tuwien.ac.at/StatDA/DASplusR/)  and  GCDkit  package 

(Janoušek et al., 2006) downloadable at  http://www.gcdkit.org/. The maps of the study area have 

been  produced  using  Quantum  GIS,  a  Geographic  information  system  software  available  at 

h  ttp://www.qgis.org/  . 

4.4 Results and discussions

4.4.1 Elaboration of data

For the elaboration of the dataset, HSO sediments, LSO sediments and Plain sediments have been 

used for different aims: HSO sediments and Plain sediments  have been used for the construction of 

profiles representing the variation along the major rivers (Idice, Sillaro, Santerno, Senio, Lamone, 

Acerreta-Tramazzo, Montone,  Rabbi, Bidente,  Savio-Borello, Uso and Marecchia).  Instead LSO 

sediments  have been used for the computation of background limit, considering these sites as less 

influenced by the anthropogenic activities. The cumulative distribution function (CDF) of HSO and 

LSO sediments for Cr, Cu, Ni, Pb and Zn are reported in Fig. 4. For a proper comparison of the data 
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some outlier were censored: for Cr the values greater than 200 ppm in the LSO sediment population 

(max = 517 ppm), for Ni the concentrations greater than  100 ppm in the LSO sediment population 

(max  =  160  ppm)  and  for  Zn  the  concentrations  greater  than  200  ppm in  the  LSO sediment 

population (max = 957 ppm). The curves are comparable, with overlaps, with slightly higher values 

for LSO population. This slight difference can be related to the greater integration capacity of the 

major rivers that mixes sediments from different sources while LSO could be influenced by the 

localized occurrence of peculiar rock types. 
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Fig. 4 Cumulative distribution function (CDF) of elemental concentration in the HSO (grey points) and 
LSO  (black points) stream sediments for Cr, Cu, Ni, Pb and Zn.



4.4.2 Normalization

When  discussing  heavy  metals  data  it  is  often  applied  a  normalization  procedure  for  the 

compensation of grain-size and mineralogical effects (UNEP, 1995; Summers et al., 1996; Covelli 

and Fontolan, 1997; Grant and Middleton, 1998; Aloupi and Angelidis, 2001; Ho et al., 2012). We 

have  considered  Aluminum  (as  Al2O3)  as  potential  normalizer,  It  displays  a  marked  spatial 

distribution (Fig. 5) with higher concentrations in northern and southern rivers (respectively Idice, 

Sillaro  and  Uso,  Marecchia)  compared  to  central  rivers  (Santerno,  Senio,  Lamone,  Acerreta-

Tramazzo,  Montone,  Rabbi,  Bidente  and  Savio-Borello).  This  clearly  indicates  a  specific 

lithological  control  on  stream sediment  composition,  more  clayey  in  the  Bologna  and  Rimini 

territories compared to the others which are more rich in carbonates, as already outlined in a more 

general work (Lancianese and Dinelli, submitted). The central rivers on the other hand are those 

with the highest CaO content (Fig. 5), due to the important contribution of the Marnoso-arenacea 

Formation.  This  is  important  since  the  carbonate  component  can  have  a  dilution  effect  on  the 

concentration of the discussed elements.

In the heavy metal boxplots we have censored some values for a proper comparison of the data, in 

particular in Cr boxplot 2 outliers up 300 ppm, in Cr/Al2O3 boxplot 1 sample up 25, in Zn boxplot 2 

outliers up 300 ppm, in Zr/Al2O3 boxplot 1 sample up 120. The Chromium has a spatial distribution 

in which central basins (in particular Acerreta-Tramazzo, Montone and Lamone) show lower values 

respect to basins that are situated in the northern (Idice, Sillaro and Santerno) and in the southern 

part (Uso, Savio and Marecchia) of the area, reflecting a carbonate dilution effect. However some of 

the  differences  disappear  considering  the  Cr/Al2O3 indicating  values  around  10  as  a  possible 

reference. Similar values have been observed in borehole samples from the Lamone and Montone 

(Amorosi  et  al.,  2002)  and  are  consistent  with  the  value  of  11.5  considered  by  Amorosi  and 

Sammartino (2007) and Amorosi (2012) as representative for sediments of Apenninic source. The 

lower values observed in the northern rivers, Sillaro in particular, are consistent with data from 

boreholes (Amorosi et al., 2002) and testify a slightly different provenance signal.

Copper  has  a  spatial  distribution  similar  to  Cr:  median  values  of  Cu in  the  central  basins  (in 

particular Lamone, Montone and Rabbi) are lower respect to values of northern (Idice, Santerno) 

and southern (Marecchia, Uso, Savio-Borello) basins. On the contrary Cu/Al2O3 ratio doesn't show 

a particular differences, except for the Sillaro basin, and have similar median values.

Ni doesn't have a clear spatial distribution although the median values of central basin (Acerreta-

Tramazzo, Montone, Lamone and Senio) are lower than northern (Idice, Sillaro) and southern (Uso, 

Bidente)  basins.  On  the  contrary  Ni/Al2O3 ratio  evidences  a  more  clear  spatial  distribution 

influenced by lithological composition of study area in which central basins (Bidente, Montone, 
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Lamone  and  Acerreta-Tramazzo)  have  higher  median  values  compared  to  northern  (Sillaro, 

Santerno) and southern (Marecchia, Uso) basins.

Also for Pb there is not evidence of a spatial distribution of the elemental content. We note also that 

some  northern  basins  (Idice  and  Sillaro)  have  median  values  that  are  higher  respect  to  some 

southern  (Marecchia  and  Bidente)  and  central  (Rabbi  and  Acerreta-Tramazzo)  basins  while 

Pb/Al2O3 ratio presents a spatial distribution similar to Pb. Zn spatial distribution indicates lower 

median  values  for  some  central  basins  (Montone,  Lamone  and  Acerreta-Tramazzo)  respect  to 

northern  (Idice,  Sillaro,  Santerno)  and  southern  (Marecchia,  Uso,  Savio-Borello  and  Bidente) 

basins. Zn/Al2O3 ratio has a different distribution in which some northern rivers (Sillaro and Idice) 

have lower median values respect to southern ones (Marecchia, Savio-Borello and Bidente). 

As expected the normalized plots tend to minimize the differences but still indicate peculiarities that 

can be related to geological features of each catchment.
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Fig.  5  Boxplots  of  the  elemental  concentrations  (Al2O3,  CaO,  Cr,  Cu,  Ni,  Pb  and  Zn)  and 
normalized values (Cr/Al2O3, Cu/Al2O3, Ni/Al2O3, Pb/Al2O3, Zn/Al2O3) in the Romagna rivers, 
subdivided according to catchment.



4.4.3 Background level for each catchment 

The evaluation of a background level in the content of heavy metals is the major aim of this paper.  

Various techniques have been used by many authors (e.g.: Matschullat et al., 2000; Fukue et al.,  

2006; Mil-Homens et al., 2007; Kalender and Cicek Uçar, 2013;  Liu et al., 2013) based on the 

number  of  observations  considered  for  its  evaluation  and  on  the  approach  followed.  For  the 

evaluation  of  the  background  values  we followed  the  ISO 19258  guidelines  (ISO/DIN 19258, 

2005), that consider the upper limit of background to be represented by the 95 th percentile of a 

dataset  previously cleaned by outliers.  We performed this  calculation either  for  the entire  LSO 

population and for any single catchment already discussed (e.g.: Fig. 4), and calculated the upper 

limit of background both on total concentrations and on normalized data.

The first step of the statistical analysis is to study the distribution (normal or lognormal) of the 

measured variables to choose the data for the elaborations. Shapiro-Wilk normality test has been 

applied on LSO population and the results indicated that the dataset follows a normal distribution. 

The second step consists  in  the removal  of  outliers identified by the concentration distribution 

histograms  and  boxplots  relative  to  the  elements  (Cr,  Cu.  Ni,  Pb,  Zn)  and  normalized  data 

(Cr/Al2O3, Cu/Al2O3, Ni/Al2O3, Pb/Al2O3, Zn/Al2O3), this for the entire database and for any single 

catchment.

The third step consists in calculating the 95th percentile for the total dataset of LSO sediments and 

for the single catchment basin dataset. These results are reported in Tab. 1. We stress the wide range 

of variation of the calculated upper limit of background for the singular catchment, either for the 

total concentrations and for the normalized values. The difference is very large for example for Cu 

(23-49.8 ppm) or Zn (86-123 ppm) in any case greater than 20% compared to the relative maximum 

for  the  elements,  which  means  that  the  differences  in  bedrock geology greatly  influence  these 

values.

Another important consideration can be made from the comparison of the limits calculated with the 

entire population with those of the single catchment. The overall limit is close to the higher values 

calculated for the single catchments, and thus quite different from those calculated in many singular 

catchment. This has clear environmental drawbacks, since considering a general regional value as 

reference as could be reasonably argued to be a logical condition at a regional scale, could lead to 

the missing of anomalous situation in many catchments, that for geological reasons have a different 

natural concentration.
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4.4.4 Calculation of the Geochemical Index (Igeo)

Having defined the upper limit of background provides a key reference value that can be applied for 

the evaluation of sediment quality. Among the several index suggested and applied in the literature, 

the Geoaccumulation Index (Igeo), originally defined by Muller (1969) in order to determine and 

define metal contamination in sediments by comparing current concentrations with pre-industrial 

levels. The index has the advantage of providing also a descriptive definition of the quality of the 

sediment (Table 2) thus making easier the communication with non expert people.

The Igeo is calculated as follows:

Igeo=Log2(Cn/1.5* Bn)

where, Cn is the concentration of metals examined in sediment, and Bn geochemical background 

concentration of element (n). The Factor 1.5 should account for heterogeneity in the background 

values but sometimes can lead to underestimation of pollution (Covelli and Fontolan, 1997; Dung et 

al., 2013) 

In the calculation of the Igeo we used the calculated upper limit of background (Table 1) as Bn, 

applying the specific catchment value. The results will be pointed commented in section 4.6 when 

discussing  single  elements  in  detail.  In  general  the  overall  quality  is  good,  with  only  11 

uncontaminated to moderately contaminated samples including 2 for Cr, 9 for Cu, 5 for Zn and 4 for 
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Tab. 1 Background thresholds of Cr, Cu, Ni, Pb, Zn, Cr/Al2O3, Cu/Al2O3, Ni/Al2O3, Pb/Al2O3, 
Zn/Al2O3 calculated for total LSO stream sediment dataset and for LSO stream sediment dataset of  
each Romagna river (Idice, Sillaro, Santerno, Senio, Lamone, Acerreta-Tramazzo, Montone, Rabbi,  
Bidente, Savio-Borello, uso and Marecchia). In the bottom row we reported the range between the 
min and max background threshold calculated in the rivers of Romagna.



Pb. Considering the normalized elements there is an increase in the number of sample therefore are 

detected 43 uncontaminated to moderately contaminated samples including 27 for Cr/Al2O3, 16 for 

Cu/Al2O3, 10 for Ni/Al2O3, 22 for Pb/Al2O3 and 25 for Zn/Al2O3, and 7 moderately contaminated 

samples including 3 for Cr/Al2O3, 3 for Cu/Al2O3 and 1 for Zn/Al2O3. Apart some single anomalies, 

it is important to note that in some cases there are sites with poor sediment quality for multiple 

element, which suggest a non natural origin and situations to be further considered. 

4.4.5 Analysis of HSO samples: elemental content along the Romagna rivers and association to  

land use

The background limits for total dataset and singular dataset for each catchment basin are reported 

on profiles (Figs.  7-11) that represent the spatial  distribution of elemental contents in the HSO 

sediments  samples  along the rivers  from wooded and agricultural  zones  (hill  and mountain)  to 

industrial and populated zones (plain). This subdivision is graphically presented by the two boxes 

for each element and parameter. The left box describes the mountain course, whereas the right one 

represents the results of sampling in the plain section of each river. The separation represents the 

highway  line  (see  Fig.  1)  took  as  reference.  The  figures  include  in  mountain-hilly  section  as 

geographic reference (vertical dashed lines) the location of some localities close to changes in the 

geological units to facilitate the observation of heavy metals and normalized elements profiles that 

are presented in the following paragraphs. 

An additional step that we integrated to the investigation of HSO sediment samples is the evaluation 

of possible relations with the land use of study area.  A specific  land use could be a  source of 

contamination:  for  example  the  presence  of  industrial  activities  is  often  related  to  the  use  of 

pollutants or extensive agricultural activities are interested by the use of pesticides that affect the 

concentration of heavy metal in the sediments (Schintu and Degetto, 1999; Santana-Perez et al., 
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2007; N'guessan et al., 2009; Vega et al., 2009; Oyarzun et al., 2011; Albanese et al., 2013). HSO 

sediment samples are located precisely near the critical points of the rivers that cross these types of 

areas therefore could be interesting to verify an association between anomalous values and critical 

land uses.

Based on Level 3 of Corine Land Cover classification  have been considered three categories:

9) natural areas (NA), that include wooded and grazing lands;

10) semianthropic areas (SA), that include agricultural lands, orchards, vineyards and permanent 

cultivation systems;

− anthropic areas (AA), that  include mining sites,  road and rail  networks,  continuous and 

discontinuous urban areas.

The classification was elaborated associating a buffer of 500 m around each HSO sediment sample 

to estimate which category has the most influence on the nature of the sediment. In this case the 

most extensive land use within the area of the buffer has been associated to HSO sediment sample. 

Secondly, HSO sediment population has been divided in two datasets: a background dataset, related 

to all values below the background limit and an anomalous dataset in which are included all the 

values that are greater than the background limit. 

For each dataset was calculated the number of HSO sediment samples grouped according to land 

uses  (NA,  SA,  AA)  and  represented  in  boxplots  (Fig.6).  There  is  great  similarity  among  the 

boxplots of the Background dataset, while there are differences according to land use within the 

Anomalous dataset. In particular for Cr the Anomalous dataset shows higher median in AA and SA 

compared to NA. On the contrary the Cu and Pb Anomalous dataset have higher median in AA than 

SA and NA. Ni Anomalous distribution evidences that NA  has median values major than SA and 

AA. Finally Zn Anomalous dataset evidence that SA has median values major than NA and AA

Fig.6 shows some results that are coherent with a major association of anomalous heavy metal 

concentration to SA or AA categories while in other cases the results evidence a major influence of 

natural areas on the anomalous elemental content. Certainly these results are not sufficient to define 

the anomalous or background value of a stream sediment but if associated to profile of the next 

paragraphs may be useful in integrating considerations on specific contaminated sites.
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Fig. 6 Boxplots for Background and Anomalous dataset of Cr, Cu, Ni, Pb and Zn: the dataset are  
divided in anthropic areas (AA), semianthropic areas (SA) and natural areas (NA).



4.4.5.1 Cr and Cr/Al2O3 

The  profile  of  Cr  (Fig.  7a)  shows  three  trends:  in  Idice,  Santerno,  Lamone,  Montone,  Rabbi, 

Bidente and Uso rivers, the content tends to increase from mountain to plain although presenting 

some peaks up to 100 ppm in the central hilly areas. In Sillaro, Savio-Borello and Marecchia rivers 

the content remains roughly uniform although in the samples over the starting point the values are 

higher.  In  Senio  and  Acerreta-Tramazzo  rivers  the  content  tends  to  decrease.  Considering  the 

background level of total database (solid line), the samples that exceed the threshold of 135 ppm are 

14 whereas considering the diversified thresholds the number increases to 23. The Cr/Al2O3 profile 

(Fig. 7b) shows various differences respect to the Cr profile: in Idice, Bidente and Savio-Borello 

rivers the profiles point out some peaks up to 12 that are strongly dependent on the lithology of the 

area. However, the most remarkable difference concerns the Sillaro river because the profile tend to 

regularly increase from mountain to plain. The number of samples that exceed the threshold of 11 

(solid line) are 20 whereas considering the diversified thresholds the number increases to 42. In 

particular the major remarkable differences are detected in Idice, Sillaro, Lamone and Rabbi rivers.

The spatial distribution of boxplots in Fig. 4  shows that Cr is influenced by the geology and the 

dilution effect since a major concentration in the catchment basins of the northern (Sillaro Idice) 

and southern part (Uso) of the study area is revealed. In the northern catchment basins, mafic and 

ultramafic rocks of Ligurian domain and clay and sandy sediments of Padano-adriatic domain have 

an important role in the high content of Cr, while in the Uso basin the high content is characterized 

by  the  presence  of  clay  sediments.  Instead  in  the  central  catchment  basins,  especially  Senio, 

Lamone, Acerreta-Tramazzo and Montone, the Cr low content is strongly influenced by a dilution 

effect from calcareous sediments of the marls of Marnoso-arenacea Formation. 

In the profiles of Cr and Cr/Al2O3 (Fig. 7 a, b) the local effects of geology on the elemental content 

are clearly evidenced: in the Idice river, we note the effect of calcareous sediments on the low 

content of Cr upstream of Loiano village and the effect of clastic and clay sediments on the high 

content of Cr downstream of Loiano village. In particular, upstream of Loiano village, the effect of 

dilution is evidenced by the Cr/Al2O3 profile because the role of CaCO3 is minimized. In this part of 

the area the concentrations above the threshold values are due to natural factors not only for the 

effect  of  dilution  but  also  for  the  geological  characteristics  of  this  catchment  basin  receiving 

sediments by ophiolitic rocks (Amorosi et al., 2002). Nevertheless certain anomalous samples could 

be moderately contaminated by the effect of anthropogenic activities as evidenced by Igeo that 

detect values ranging 0,13 and 1,33. In particular these samples are located near Loiano village and 

upstream of the Plain. 

In Sillaro, Savio-Borello and Rabbi rivers the regular trend of profiles reflect the homogeneous 
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sandy and marly composition of these catchment basins. In the other basins, the differences in the 

end sections of the river are probably due to an increase in clay sediments and alluvial deposits 

(Lamone, Montone, Rabbi e Bidente) and a decrease in the elemental content characterized by the 

presence of evaporites (Acerreta-Tramazzo, Montone, Santerno, Senio). 

In the plain are revealed some anomalous values, especially in Idice, Sillaro, Lamone, Montone, 

Savio-Borello and Marecchia, that are probably influenced by anthropogenic activities as confirmed 

by Igeo that detect samples moderately contaminated with values ranging between 0,16 and 1,14.

The major  influence  of  geology respect  to  anthropogenic  factor  is  confirmed by the graphs of 

landuse (Fig. 6) in which remarkable differences between land uses not occur. Nevertheless the 

anomalous values influenced by anthropogenic activities are present, especially in the Plain area.
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Fig. 7 Longitudinal trends of Cr content expressed in ppm (a) and Cr/Al2O3 ratio (b) of HSO stream sediment  
samples along the rivers of Romagna from mountain/hill (left box) to the plain (right box). The solid horizontal lines  
represent the background threshold of total database while the dashed horizontal lines show the diversified local  
background thresholds for each river. 



4.4.5.2 Cu and Cu/Al2O3 

The profile of Cu (Fig. 8a) shows three trends: in Sillaro and Savio-Borello rivers, the content tends 

to increase from mountain to plain although presenting some peaks in the central hilly areas. In 

Idice,  Santerno,  Senio,  Lamone,  Acerreta-Tramazzo,  Rabbi,  Bidente and Uso rivers  the content 

remains roughly uniform although some spikes occur, especially in Lamone and Senio rivers up to 

60 ppm. In the Marecchia river the content tends to decrease while in the Montone river the values 

increase in the central area.  Considering the background level of total  database (solid line), the 

samples that exceed the threshold of 43 ppm are 28 whereas considering the diversified thresholds 

the number increases to 42. In particular the most remarkable differences are shown in Bidente and 

Acerreta-Tramazzo rivers. Also Cu/Al2O3 profile (Fig. 8b) shows various trends: in Idice, Sillaro 

and Acerreta-Tramazzo rivers the profiles tend to increase from mountain to plain while in the 

Marecchia river the content of Cu/Al2O3 tends to decrease from mountain to plain. In Santerno, 

Senio, Lamone, Rabbi, Savio-Borello and Uso rivers the content remains roughly uniform although 

there are some peaks, especially in Lamone , Bidente  and Savio-Borello . In the Montone river the 

profile evidence higher values in the central area. The number of samples that exceed the threshold 

of 4.26 (solid line) are 15 whereas considering the diversified thresholds the number increases to 

31. The most remarkable differences are present in Idice and Sillaro rivers.

The spatial  distribution  of  Cu and Cu/Al2O3 of  Fig.  5  evidences  the  influence  of  geology and 

dilution: the central catchment basins (in particular Montone) that have lower content in Cu, are 

affected  by  the  presence  of  the  dominant  sandy  and  marly  composition  of  Marnoso-arenacea 

formation while in the external basins (Idice and Marecchia) the higher Cu content is influenced by 

the clay and clastic sediments. The lower values observed in the Sillaro catchment basin are due to 

the prevailing sandy composition of the basin.

The Cu and Cu/Al2O3 profiles (Fig. 8 a, b) show a local variability along the high stream order that 

in certain sites reflect the geology of the area while in other zones detect anomalous values. In 

Sillaro river the Cu content reflect the geology of the area because the values are lower upstream of 

Castel  San  Pietro  town  for  the  presence  of  sandy  sediments  while  these  values  are  higher 

downstream of Castel San Pietro village. In the end section of Sillaro river the values that exceed 

the local threshold value of 23 could be influenced not only by the presence of clay sediments and 

alluvial deposits of Padano-adriatic domain in the Plain sediment samples but also for the presence 

in the zone of various intensive agricultural activities as confirmed by Igeo that evidences samples 

moderately contaminated (0,68-1,16). The central rivers (from Santerno to Bidente) don't reflect the 

homogeneous sandy-marly composition of the catchment basins in fact are detected some peaks 

upstream of Casola Val Senio, Fognano, Modigliana and Dovadola villages. Downstream of these 
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villages  the  profiles  have  an  irregular  trend  probably  due  to  the  heterogeneous  geological 

composition of the end section of the rivers but also to the presence of settlements in the plain that 

could affect certain values that exceed the threshold values up to 40 ppm as confirmed by Igeo (0,3-

0,4). In the Santerno river the negative peak overlaps with the evaporites, suggesting a lithological  

influence, while the positive peaks of Lamone, Acerreta-Tramazzo and Savio-Borello rivers overlap 

with  the  sandy sediments  and  the  alluvial  deposits  that  are  located  respectively  dowstream of 

Fognano,  Modigliana  and  Mercato  Saraceno  villages.  In  these  sites  the  presence  of  extended 

industrial activities could affect the elemental content of samples that exceed the local threshold as 

confirmed by Igeo that detect samples moderately contaminated in the hilly area (0.3-0.7) and in the 

Plain (0,2-0,7). The profiles of Marecchia and Uso rivers have the trend that are coherent with the  

geology of study area: Uso river is characterized by an homogeneous clayey lithology, except for 

the plain area where alluvial deposits are present, while Marecchia river has an irregular profile that  

reflect the heterogeneous lithological composition of the area characterized by calcareous and clay 

sediments.

Comparing these observations with the land use (Fig. 6)  the higher association of stream sediment 

samples to anthropic areas (AA) is coherent with the little relation between anomalous values of Cu 

and geology, especially in the mountain and hilly sections of the rivers. Therefore the values that 

exceed  the  background  threshold  have  an  anthropic  origin,  probably  due  to  agricultural  and 

industrial activities.
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Fig. 8 Longitudinal trends of Cu content expressed in ppm (a) and Cu/Al2O3 ratio (b) of HSO stream sediment 
samples along the rivers of Romagna from mountain/hill (left box) to the plain (right box). The solid horizontal 
lines represent the background threshold of total database while the dashed horizontal lines show the diversified 
local background thresholds for each river. 



4.4.5.3 Ni and Ni/Al2O3 

The Ni profile (Fig. 9a) shows different trends: in Acerreta-Tramazzo and Marecchia rivers the 

elemental  content  tends  to  decrease  from mountain  to  plain  although  there  is  one  peak in  the 

Acerreta-Tramazzo river up to 80 ppm. In Idice, Sillaro, Santerno, Lamone, Montone, Rabbi, Savio-

Borello and Uso rivers the elemental content remains roughly the same although presenting some 

peaks, especially in Montone river (1) and Savio-Borello river (1). In Senio and Bidente rivers the 

profiles evidence higher Ni values in the central hilly areas. Considering the background level of 

total  database,  the  samples  that  exceed  the  threshold  of  82  ppm  (solid  line)  are  8  whereas 

considering  the  diversified  thresholds  (dashed  line)  the  number  increases  to  25.  The  most 

remarkable differences are present in Senio and Savio-Borello rivers.  Also the Ni/Al2O3 profile 

(Fig. 9b) shows different trend: in Idice, Santerno and Montone rivers the profiles point out higher 

values in the central area while in Lamone, Acerreta-Tramazzo, Rabbi, Bidente, Savio-Borello, Uso 

and Marecchia  river  the  profiles  are  constant  although are  some peaks,  especially  in  Acerreta-

Tramazzo , Savio-Borello  and Marecchia . In Sillaro river the elemental content tends to increase 

from mountain to plain while in Senio river the profile tend to decrease from mountain to plain. The 

samples  that  exceed the  threshold  of  8  (solid  line)  are  13  whereas  considering  the  diversified 

thresholds (dashed line) the number increases to 29. The most remarkable differences are present in 

Idice and Rabbi rivers.

The spatial distribution of Ni (Fig. 5) doesn’t evidence a particular correlation with geology of the 

area differently by Ni/Al2O3 that reflect a probable effect of dilution and possibly different sediment 

provenance: in fact central catchment basins (especially Savio-Borello, Bidente and Rabbi) have 

higher median values respect to northern (Sillaro) and southern (Marecchia and Uso) catchment 

basins. This is reflected in the differences of Ni and  Ni/Al2O3 profiles of Fig. 9 although certain 

sections  of  the  profile  point  out  a  concentration related to  lithology.  In particular,  upstream of 

Loiano  village  and  downstream Verucchio  village  the  low values  of  Ni  are  coherent  with  the 

dominant calcareous composition of these zones and increase in the clayey lithology. In catchment 

basins  that  are  geologically  homogeneous,  the  profiles  are  regular  (Uso,  Montone,  Rabbi  and 

Sillaro)  with  values  below the  background  threshold.  In  the  other  catchment  basins  (Santerno, 

Senio, Lamone, Acerreta-Tramazzo e Bidente) the profile are less regular in the hilly/plain sections 

of  the  rivers  in  which  the  lithologies  are  heterogeneous  (evaporites,  calstic  sediments,  sandy 

sediments,  clay  sediments  and  alluvial  deposits).  Despite  this  in  certain  zones,  upstream 

Tossignano, Casola Val Senio, Modigliana and Rabbi villages are detected elemental concentrations 

above  the  threshold  value  that  are  likely  not  natural.  In  these  cases  the  normalization  has  an 

important  role  in  determining  the  effect  of  dilution  on  the  elemental  concentration  therefore 
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upstream of Tossignano there are  high ratios on carbonaceous lithologies and lower ratios on clay 

sediments downstream of Tossignano village. In this site the Igeo detect the presence of samples 

moderately contaminated with values ranging between 0,2 and 0,5. Also in the mountain section of 

Senio river upstream of Casola Val Senio village the high values of Ni in marl of Marnoso-arenacea 

formation are minimized in the  Ni/Al2O3 profile presenting the ratio values below the threshold 

value.  Considering the  Plain samples  only in  Uso river  is  evidenced the presence of  a  sample 

moderately contaminated as confirmed by Igeo (0,4):

The landuse of anomalous values (Fig. 6) is coherent with the elemental content of Ni in the profiles 

therefore the effect of geology is confirmed by the major association of anomalous values with 

natural areas although few samples are moderately contaminated.
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Fig. 9 Longitudinal trends of Ni content expressed in ppm (a) and Ni/Al2O3 ratio (b) of HSO stream sediment 
samples along the rivers of Romagna from mountain/hill (left box) to the plain (right box). The solid horizontal 
lines represent the background threshold of total database while the dashed horizontal lines show the diversified 
local background thresholds for each river.



4.4.5.4 Pb and Pb/Al2O3 

The Pb profile (Fig. 10a) shows a trend in which the rivers have roughly uniform elemental contents 

with  some  peaks  up  to  20  ppm  in  Lamone,  Acerreta-Tramazzo  and  Savio-Borello  rivers. 

Considering the background level of total database (solid line), the samples that exceed the limit of 

22 ppm are 27 whereas considering the diversified thresholds (dashed line) the number increases to 

30.  The most  remarkable differences  are  present  in  Sillaro and Acerreta-Tramazzo rivers.  Also 

Pb/Al2O3 profile (Fig. 10b) shows uniform trends in the rivers but respect to Cr is evidenced an 

increase in some peaks up to 2, especially in Idice, Lamone, Acerreta-Tramazzo, Rabbi, Bidente and 

Savio-Borello.  Considering the background level of total  database (solid line),  the samples that 

exceed the threshold of 1.96 are 40 whereas considering the diversified thresholds (dashed line) the 

number increases to 41. The most remarkable differences are present in Sillaro river. 

The  elemental  content  of  Pb  doesn't  reflect  a  particular  spatial  distribution  (Fig.  5)  and  an 

association with the geology of the area therefore the central catchment basins, especially Lamone, 

Acerreta-Tramazzo,  Montone  and  Rabbi,  have  different  medians  although  the  lithologic 

composition is similar and dominated by the sandstones and marls of Marnoso-arenacea formation. 

Also in Idice and Sillaro catchment basins, the higher content of Pb respect to other basins could be  

coherent with the presence of clastic and clay sediments. Instead the geological heterogeneity of 

Savio and Marecchia catchment basins characterized by calcareous and clay sediments reflect the 

wide  range  of  boxplots.  We  could  aspect  that  these  values  reflect  a  real  concentration  in  the 

sediments therefore the  Al2O3  normalization doesn't point out remarkable differences between Pb 

and Pb/Al2O3. 

These results  are evident  in  the profiles of Pb and Pb/Al2O3  (Fig.  10 a,  b) in which the peaks 

detected above the background threshold are similar in these profiles, in particular some samples of 

Lamone river near the Fognano village, Acerreta-Tramazzo river upstream of Modigliana village, 

Bidente river  downstream of  Cusercoli  village and Savio-Borello  river  downstream of Mercato 

Saraceno village. These anomalous values could be associated to the proximity to urbanized areas 

and the presence of agricultural and industrial activities as confirmed by Igeo that identifies samples 

moderately contaminated with values ranging between 0,16 and 0,97. In Idice and Sillaro rivers the 

elemental concentration reflect the prevailing clay and clastic sediments of mountain/hilly section 

while the anomalous concentrations in the alluvial deposits of the plain could be an anthopic origin 

as confirmed by Igeo with values ranging between 0,45 and 0,82. In Senio, Acerreta-Tramazzo, 

Montone and Bidente  rivers,  the  negative  peaks  of  Pb are  probably  due to  the  evaporites  and 

calcareous sediments downstream of Casola Val Senio, Fognano, Dovadola and Cusercoli villages. 

In Marecchia catchment basin the irregular profile of Pb reflects the geological heterogeneity due at 
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the presence of calcareous and clay sediments while the Savio-Borello profile evidence an increase 

in  the  Pb  content  probably  influenced  by  the  presence  of  clastic,  clay  sediments  and  alluvial 

deposits downstream of Verucchio village. Uso, Montone and Lamone rivers reflect the geology but 

present some values above the local threshold that could be associated to anthropic activities as 

evidenced by Igeo with samples moderately contaminated (0,2-0,54). Although some Pb profiles 

reflect  the  geology  of  the  area,  other  profiles  evidence  anomalous  values,  confirmed  by  the 

Pb/Al2O3 profile, that could be due to anthropic activities, as suggested by the major association of 

anomalous values to anthropic areas and semianthropic areas (Fig. 6).
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Fig. 10 Longitudinal trends of Pb content expressed in ppm (a) and Pb/Al2O3 ratio (b) of HSO stream sediment 
samples along the rivers of Romagna from mountain/hill (left box) to the plain (right box). The solid horizontal 
lines represent the background threshold of total database while the dashed horizontal lines show the diversified 
local background thresholds for each river. 



4.4.5.5 Zn and Zn/Al2O3 

The Zn profile (Fig. 11a) shows different trends: in Sillaro, Santerno, Rabbi, Uso and Marecchia 

rivers the elemental content tends to remain constant along the river although are present some 

peaks, particularly strong the one in Sillaro, up to 150 ppm. In Senio, Lamone, Acerreta-Tramazzo 

and Savio-Borello rivers the elemental content is higher in the central hilly areas, with a spike up to  

200 ppm in the Lamone river. In Idice, Montone and Bidente rivers the elemental content tend to 

increase from mountain to plain. Considering the background level of total database (solid line), the 

samples that exceed the threshold of 119 ppm are 26 whereas considering the diversified thresholds 

(dashed line) the number increases to 42. The most remarkable differences are present in Acerreta-

Tramazzo river.  Zn/Al2O3 profiles (Fig.  12b) show uniform trends with some peacks up to  10, 

especially  in  Idice,  Sillaro,  Lamone,  Acerreta-Tramazzo,  Bidente  and Savio-Borello  rivers.  The 

samples that exceed the threshold of 10.43 (solid line) are 20 whereas considering the diversified 

thresholds (dashed line) the number increases to 45. The most remarkable differences are present in 

Acerreta-Tramazzo river.

The spatial distribution of Zn (Fig. 5) shows an influence of geology on the elemental content of 

Zn: in the northern (Sillaro and Santerno) and southern (Marecchia) catchment basins the higher 

content of Zn reflect the presence of clastic, clay and sandy sediments while some central catchment 

basins (Senio, Lamone, Acerreta-Tramazzo and Montone) evidence lower contents of Zn probably 

due  to  the  calcareous  and  marly  composition  of  the  Marnoso-arenacea  formation.  The  Al2O3 

normalization point out a dilution effect in Zn/Al2O3   reducing the effect of CaCO3 in the central 

catchment  basins,  especially  Senio,  Lamone,  Acerreta-Tramazzo  and  Montone.  Instead  in  the 

northern (Idice, Sillaro and Santerno) and southern (Bidente, Savio-Borello, Uso and Marecchia) 

catchment basins the normalization have not a significant influence.

Zn and Zn/Al2O3  profiles (Fig. 11 a,b) show elemental contents of Zn and values of Zn/Al2O3  ratio 

that are coherent with the geology of the area: in Sillaro, Montone and Bidente the values of Zn 

reflect the low concentration below the background threshold in calcareous sediments and marls of 

Marnoso-arenacea formation while Uso river. Other rivers (Santerno, Savio-Borello and Marecchia) 

show complex trends that could be related to the heterogeneous geological composition of these 

catchment basis in which are present evaporites, calcareous sediments, sandstone and marls.

The Zn and Zn/Al2O3  profiles evidence some peaks that have a different significance: in the Idice 

river downstream of Loiano river, in Senio river upstream of Casola Val Senio river, in Acerreta-

Tramazzo river upstream of Modigliana village and in Bidente river upstream Cusercoli village, the 

differences between Zn and Zn/Al2O3  profiles are due to the effect of dilution played CaCO3 for 

Senio, Lamone and Acerreta-Tramazzo and clay sediments for Idice and Bidente. In Sillaro river 
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near  Castel  San Pietro village,  in  Lamone river  downstream of  Fognano village  and in  Savio-

Borello river downstream of Mercato Saraceno village the peaks of Zn and Zn/Al2O3  profiles are 

similar  therefore the anomalous values  can be considered as  real.  In  these case the anomalous 

values are probably due to anthropogenic factor as confirmed by Igeo that reveal sample moderately 

contaminated with value ranging between 0,28 and 0,60. Also in the closing section of the rivers the 

Zn contents above the background threshold could be related to anthropogenic activities for the 

presence  of  extensive  urbanized,  industrial  and  agricultural  areas.  The  Igeo  detect  sample 

moderately contaminated with values that ranging between 0,14 and 1,07.

The boxplots of land use shown in Fig. 6, reflect the important role of geology dilution effect in 

determining  the  anomalous  values  of  some samples:  however  is  likely  that  certain  samples  in 

Santerno,  Lamone  and  Savio-Borello  rivers  in  central  hilly  areas  and  Idice,  Sillaro,  Santerno, 

Montone and Uso rivers in the Plain are influenced by anthropic factors.
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Fig. 11 Longitudinal trends of Zn content expressed in ppm (a) and Zn/Al2O3 ratio (b) of HSO stream sediment 
samples along the rivers of Romagna from mountain/hill (left box) to the plain (right box). The solid horizontal 
lines represent the background threshold of total database while the dashed horizontal lines show the diversified 
local background thresholds for each river. 



4.5 Conclusions

The study area is greatly influenced by different geological units that overlap various catchment 

basins: these rivers (Idice, Sillaro, Santerno, Senio, Lamone, Acerreta-Tramazzo, Montone, Rabbi, 

Bidente,  Savio-Borello,  Uso  and Marecchia),  show  a  specific  spatial  distribution  of  chemical 

elements that evidences the characteristic lithology of the area.  The major elements (Al2O3 and 

CaO) have opposite trends that point out the major clayley composition of northern (Idice, Sillaro) 

and southern (Marecchia and Uso) catchment basins and the calcareous and marly composition of 

central catchment basins (from Santerno to Savio-Borello). This distribution of major elements is 

reflected in the content of some heavy metals that are presented in this paper: Cr, Cu, Ni, Pb and Zn. 

Cr, Cu, Ni and Zn have similar geochemical behavior that show a spatial distribution influenced by 

the content of major elements: their concentration is lower in the catchment basins characterized by 

high content of limestone and is higher in the basins that reflect a more clayey composition. On the 

contrary Pb doesn't reflect a geologically-oriented distribution.

Considering the effect of enrichment of heavy metals in certain sediments, especially with a more 

clayey composition, has been required the Al2O3 normalization to investigate the probable effect of 

dilution and/or sorting in some catchment basins. The differences in normalized ratio, if extensive 

and not related to a singular point, can reflect local geochemical characteristics (e.g.: provenance) 

of the bedrock lithology. Spikes, sometimes reaching values very different from the rest of the data,  

can identify anomalies, in almost every case related to anthropogenic activities. A change, towards 

homogeneization reducing the differences between the other groups observed in absolute values can 

indicate a major effect of dilution, for example related to different amounts of CaCO3. Specifically 

the normalization has an effective role in the central catchment basins where the effect of dilution is 

associated principally to CaCO3: this is evident in Cr, Cu, Zn and Ni where the ratios have a content 

similar  to  northern  and  southern  catchment  basins  and  the  effect  of  these  heavy  metals  is 

minimized. 

Based on these considerations is applied a methodology for identifying the background values that 

consider also the effect of geology. The application of the ISO/DIS 19258 technique for total dataset 

and for singular catchment basins evidence a wide range of values in all the elements that confirms 

the  influence  of  geology  on  background  values.  This  consideration  demonstrates  that  a  fixed 

background values for the total  dataset doesn't  reflect a representative threshold: for example a 

fixed  value  of  135  ppm  for  Cr  is  not  coherent  with  the  calcareous  and  marly  geological  

characteristics of central catchment basin that are dominated by the Marnoso-arenacea formation. 

Instead  different  background  thresholds  applied  to  singular  basin  take  into  account  also  the 

geological  factor  and  could  be  more  reliable  in  the  identification  of  anomaly.  This  concept  is 
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evidenced by comparing the number of values above the total background (TB) threshold that is 

lower respect to the number of values above the background basin (BB) threshold for all heavy 

metals. It means that without a background level fixed for each catchment basins a lot of potential  

anomalous values are missed. From an environmental point of view, this approach can point out 

low-grade  anomaly  susceptible  of  further  investigations  that  would  be  missed  with  a  more 

generalistic  approach,  and  provides  clear  evidence  that  background  values  are  dependent  on 

location and scale, as pointed out by Reimann and Garret (2005).  

Whereas in an area characterized by agricultural and industrial activities the anthropic factor could 

be determinant in anomalous values, we have considered also the role of land use on the spatial 

distribution of elemental content. In this paper we note that some samples with anomalous values 

don't reflect the influence of geology or dilution effect whereby the association of certain values to 

land use could be determinant in the comprehension of the responsible factor. Cr, Ni and Zn values 

that exceed the local background threshold are equally distributed between anthropic, semianthropic 

and natural  areas  and the samples moderately contaminated,  as confirmed by Igeo,  are  present 

mostly in the Plain and in few sites of mountain-hilly zones where urbanized areas and intensive 

agricultural and industrial activities occur. The only example of a diffuse area of contamination is 

along Idice river with anomalous values of Cr. Pb and Cu values exceeding the local background 

threshold show a major association of anomalous values to anthropic areas: in this case the samples 

moderately contaminated are present exclusively in the Plain for Cu while for Pb are detected also 

some sites of contamination in central hilly areas. Although anthropic activities are developed in the 

rivers from mountain to plain, the effect of human impact in the plain is more determinant in the 

contamination  of stream  sediment.
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General conclusions 

The primary aim of this thesis was to explore the potential of stream sediment analysis applied to 

geochemical  mapping of Romagna area (Northern Italy)  in  the monitoring and management  of 

environmental resources. Stream sediments were selected for their wide application as sampling 

medium  in  geochemical  surveys  regarding  mineral  exploration,  environmental  problems, 

geological,  agricultural  and  forestry  studies  from  global-  to  local-scale  area.  In  fact  the  great 

capacity of reflecting the rock and soil composition of wide areas as catchment basins, the facility 

of sampling and the good sensitivity for many chemical elements, especially for those implicated 

with environmental pollution have been good parameters for the success of this geochemical study 

applied to an area with a complex geology and environmental factors. 

The  first  part  of  the  study  concerned  the  comparison  of  various  geochemical  representation 

techniques used to investigate stream sediment geochemistry of the regional scale-area of Romagna 

Apennines. In this paper, different aspects have been discusses: firstly the influence of geology on 

the  spatial  distribution  of  chemical  elements  and  consequently  the  importance  of  manipulating 

datasets through the analysis of separate populations associated to geology. These elaborations have 

highlighted anomalous values that were not evident in an overall representation. Secondly, the use 

of mapping techniques based on IDW interpolation and Sample Basin Catchment techniques has 

shown the great potential of stream sediments in representing the geochemical signal of wide areas 

as catchment basins and detecting the extension of anomalous sources. The comparison of these 

techniques confirmed the importance of different approaches that can point out peculiarities usfeul 

for interpretation of the effect of geology.

In the second part a more local-scale approach was applied to the study of the Marnoso-arenacea 

Formation (MAF). Stream sediment analysis was exploited to evaluate the distribution pattern of 

geological  members,  the chronologic evolutionary trend in  the deposition of  sediments and the 

composition and origin of sediments. The richness of informations related to high density sampling 

and a more detailed scale have permitted to carry out a further tool supporting these considerations:  

a geochemical mapping based on geological units. Also this cartographic technique, as well as IDW 

interpolation and SBC  technique, has evidenced the great capacity of stream sediments in reflecting 

the rock and soil  composition of wide areas:  the Alpine and Apenninic supplies composing the 
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geological members of MAF are recognized throughout the representation of spatial distribution of 

certain chemical elements that point out the prevailing carbonate, fine-grained sediments deposited 

in the Langhian-Serravallian stage, the sialic, siliciclastic inputs deposited in Tortonian stage and 

the hybrid carbonate-siliciclastic contributions deposited in the Serravallian-Tortonian stage.

The third part of the study explored the stream sediment analysis applied to different local-scale 

areas represented by catchment basins of Romagna rivers.  In this paper was indagated the influence 

of geology, normalization and land use on the background threshold of some heavy metals. The 

elemental content of  major elements in stream sediment of rivers evidenced the clayey composition 

of northern and southern catchment basins and the calcareous and marly composition of central 

catchment basins: this geologically-oriented distribution and the effect of dilution and/or sorting in 

some catchment basins have inducted to consider diversified background thresholds for each river. 

The  profiles  of  heavy  metals  representing  the  elemental  content  along  Romagna  rivers  from 

mountain  to  plain  have  highlighted  some  contaminated  sites  exceeding  the  local  background 

thresholds:  these  anomalous  site  compared  to  land  use  and  a  geochemical  index  (Igeo)  of 

contamination confirmed the effect of human impact related to agricultural and industrial activities 

on the level of pollution in stream sediments.

Generally stream sediments proved to be a powerful sampling media at various scale-areas. Their 

great potential applied to the realization of geochemical mapping is an effective tool of monitoring 

that shows is efficiency not only in geochemical exploration, but also in geological recostruction of 

a  complex  area  and  in  the  management  of  environmental  problems  related  to  pollution  and 

contamination of natural resources in anthropogenic areas.
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