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“Hear the rime of the ancient mariner
See his eye as he stops one of three

Mesmerises one of the wedding guests
Stay here and listen to the nightmares of the sea ...

... Driven south to the land of the snow and ice
To a place where nobody’s been ” ...

The Rime of the Ancient Mariner - Steve Harris - Iron Maiden

“Day after day, day after day,
We stuck, nor breath nor motion;

As idle as a painted ship
Upon a painted ocean.

Water, water, every where,
And all the boards did shrink;

Water, water, every where,
Nor any drop to drink.”

The Rime of the Ancient Mariner - Samuel Taylor Coleridge

“The curse it lives on in their eyes
The mariner wished he’d die ...

... And by the light of the moon
He prays for their beauty not doom ...

... Then the spell starts to break
The albatross falls from his neck

Sinks down like lead into the sea
Then down in falls comes the rain.”

The Rime of the Ancient Mariner - Steve Harris - Iron Maiden

“He went like one that hath been stunned,
And is of sense forlorn:

A sadder and a wiser man,
He rose the morrow morn.”

The Rime of the Ancient Mariner - Samuel Taylor Coleridge
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A B S T R A C T

This doctoral dissertation deals with the design and the characterization of novel
reconfigurable silicon-on-insulator (SOI) devices able to filter and route optical sig-
nals on-chip. The design is carried out through circuit simulations based on basic
circuit elements (Building Blocks, BBs) in order to prove the feasibility of an ap-
proach allowing to move the design of Photonic Integrated Circuits (PICs) toward
the system level.

PICs can play a key role to realize power efficient and cost effective solutions for
future flexible optical networks and data interconnect. CMOS compatibility and
large integration scale make SOI one of the most promising material to accomplish
these tasks. The high cost to access photonic integrated technologies represents
however an issue to pursue this aim. Moreover, single device performance are usu-
ally optimized but system level evaluations are rarely performed. The concepts of
generic foundry and BB based circuit simulations for the design are rapidly emerg-
ing as a solution to reduce the costs and increase the circuit complexity.

To validate this approach to the design of PICs, the development of some of the
most important BBs for the realization of optical integrated circuits is carried out
first: Straight/bent waveguides, directional couplers, Bragg gratings and Grating
Assisted Couplers (GACs). They are modelled and characterized evidencing per-
formance variability due to fabrication tolerances. A novel BB is also designed and
realized: a coupler with tunable power splitting ratio, enabling fabrication toler-
ances counteraction and devices reconfiguration. This BB is demonstrated to be
a valuable alternative to the most common solution employed in literature, being
more compact and providing lower losses.

Two novel reconfigurable multi-element PICs, based on the previously defined
BBs, are then investigated: a narrow linewidth single mode resonator and a pass-
band filter with a widely tunable bandwidth. Extensive circuit simulations are per-
formed in order to determine the devices potentials and limits. Suitable working
points are then selected evaluating the impact of fabrication tolerance effects.

The narrow linewidth single mode resonator is presented first. This device is
based on two GACs in a ring resonator (RR) configuration. This solution enhances
the GAC selectivity and limits the resonance range of the RR. It is shown that a
trade-off between performance, resonance bandwidth and device footprint has to
be performed. The device could be employed to realize reconfigurable add-drop
de/multiplexers. Sensitivity with respect to fabrication tolerances and spurious
effects is however observed.

xi



The passband filter with a widely tunable bandwidth is then analysed. This filter
is based on an unbalanced Mach-Zehnder interferometer loaded with a pair of RRs.
The device is shown to have valuable performance in comparison with the most
recent devices presented in literature at a reduced control complexity. Moreover,
the device is demonstrated to be robust to fabrication tolerances and nonlinear ef-
fects. These properties, together with bit error rate measurements, have confirmed
its applicability as functional element for the realization of future flexible network
systems.

The behaviour of the realised multi-element PICs as a function of their compo-
nent parts is shown to be in agreement with the simulated one thus demonstrating
both the viability and the potentials of an approach based on standardized circuit
elements for the design of complex PICs.
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I N T R O D U C T I O N

Think about how one could re-partition the server platform if CPU and
memory modules could be separated. Also think about the system
advantages of optically connecting a CPU to memory that is no longer
constrained by electrical limitations. Think about how data centres could
be redesigned with optical links instead of big, heavy copper cables; the
cooling benefits alone would be significant. Think of all the data that
exists in the cloud of the internet, and the future ability to access it at
high speed over fibre links. Think about future high-resolution displays,
3D televisions and movies that require high-bandwidth connections. All
of these could significantly benefit from high-volume, low-cost optical
communications, and this is what we are trying to achieve with
integrated silicon photonics.

Dr. Mario Paniccia, Director of Photonics Research at Intel Labs [1]

The development of low cost, energy efficient and reconfigurable photonic inte-
grated circuits (PICs) represents one of the key elements to process and transport
the constantly increasing data flow of modern times, from on chip interconnects to
flexible telecom networks.

Power management is becoming in fact a growing issue for multicore platforms
as the number of cores increases to optimize the computation capability. The substi-
tution of standard global interconnects with optical integrated circuits able to route
signals inside the chip could offer higher bandwidths and larger interconnection
density with reduced power consumption. But, increasing the computation capabil-
ity enhances problems related to electrical interfaces that cannot scale at the same
rate. The only way to increase the bandwidth is to increase power, reduce range
and add sophisticated signal processing which in turn brings to more power dissi-
pation. Optical interfaces are then envisaged as one of the most promising solution
to overcome this bottleneck for chip to chip and board to board data links.

At the same time, the growth of cloud-based services is driving the rise of larger
and larger data centres. In these networks the demand for higher communica-
tion speed and longer reach is constantly growing. Optical communication links
through low cost photonic integrated circuits can, also in this case, significantly
reduce power dissipation and costs.

Finally, the rise in computational and storage capabilities impacts also on long-
haul communication systems. The network traffic is constantly increasing and larger
capacities are required (i.e. 1 Tbit/s per optical channel is foreseen for 2020). A
flexible network that can be managed and reconfigured via software is seen as one

1



introduction

of the viable solution to efficiently allocate the spectral resources. The capacity
requirements can in fact vary in time and space depending on the used service and
on the devices position. Low cost per bit reconfigurable photonic integrated circuits
could enable this paradigm offering cost effective solutions for the adaptive routing
and processing of optical signals.

Many technological platforms have been investigated and solutions proposed.
However, the sustainable growth of the PICs market has been mainly limited by
the classical application oriented approach to the design. This led to a situation
where the costs are still too high and system level evaluation of complex circuits
is rarely performed. The paradigm of shared access foundries and optical design
based on circuit simulations with certified basic elements (building blocks, BBs) is
rapidly emerging as a solution to the aforementioned problem.

aim of the work

Within the presented scenario, this doctoral dissertation is focused on the valida-
tion of the BB based approach for the design of PICs using the silicon-on-insulator
(SOI) platform. The high level of integration as well as its intrinsic compatibility
with standard CMOS processes has in fact driven the interest and the efforts of
the scientific community and of the major microelectronic companies toward the
exploitation of the SOI material. In this framework, new basic BBs have been de-
veloped and the circuit approach has been exploited to design higher complexity
devices based on the aforementioned BBs, taking into account fabrication tolerance
effects on their performance. In particular, novel solutions to filter and route optical
signals on chip are proposed and investigated. Their successful design, fabrication
and characterization will demonstrate the viability of the employed approach.

thesis outline

The dissertation is structured as follows:

In Chapter 1, the concepts presented in this Introduction are discussed. Then,
the fabrication technique employed to realize the SOI devices designed during this
doctoral work is briefly presented. Finally, the standard characterization setup em-
ployed to characterize the aforementioned devices is described.

In Chapter 2, the functionality, the models and the characteristic parameters of
straight/bent waveguides and directional couplers (DCs) are presented. These three
elements represent the first basic set of BBs necessary for the realization of optical
integrated circuits. Fundamental devices such as ring resonators (RRs) and Mach-
Zehnder Interferometers (MZIs) can be realized with the aforementioned BBs. Being
the novel devices presented in this dissertation based on these elements, models and
functionalities of RRs and MZIs are then also illustrated.

2



0.0 thesis outline

In Chapter 3, a novel BB to extend the first set defined in the previous Chapter is
developed. The device is a directional coupler with a power splitting ratio that can
be tuned through a transverse temperature gradient induced by a laterally shifted
integrated heater. The tuning mechanism exploits the thermally induced phase ve-
locity mismatch between the coupled modes of the silicon waveguides. In order
to maximize the tuning range and reduce electric power consumption, the position
of the integrated heater and the waveguide design are optimized through system-
atic 2D thermo-optical simulations. The measured performance is shown to be in
agreement with simulations, demonstrating how asynchronous devices with an in-
trinsic phase mismatch can provide a more power efficient tuning. The presented
device offers a more compact and lower losses solution with respect to that usually
employed in literature.

In Chapter 4, other two BBs are characterized in order to allow the development of
complex circuits with more functionalities. The first part of the Chapter deals with
Bragg gratings. The model based on the Coupled Mode Theory (CMT) is presented
first. The model parameters are then obtained through the so called ’cavitometric’
technique. A technique employed to retrieve the transmission and reflection spectra
of the realized devices. In order to estimate with higher accuracy the grating reflec-
tion losses, a technique based on the evaluation of the measured reflection group
delay is then proposed showing encouraging results. In the second part of the Chap-
ter, the modelling and the characterization of Grating Assisted Couplers (GACs) are
carried out. The model parameters are obtained through systematic measurements,
highlighting the performance variability of the devices between different fabrication
runs.

In Chapter 5, the first multi-element PIC designed with the previously defined
circuit elements is presented. The device is a RR with GACs at the input/ouput
coupling sections. The wavelength selective functionality of the GAC allows in prin-
ciple for the realization of a single mode resonator. The analysed geometry would
allow for the realization of Wavelength Division Multiplexing (WDM) de/multi-
plexers more compact than that based on GACs and not limited by the free spectral
range as that based on RRs. Extensive circuit simulations are carried out show-
ing that a trade-off between desired filter bandwidth, footprint and performance is
required. Optimized GACs geometries are employed in order to reduce possible
spurious effects. The design tool employed allowed an estimation of the device be-
haviour that was proven by the reported experimental results. In order to improve
the device performance with respect to that obtained and add a degree of flexibility,
an increase in the control circuit complexity is shown to be mandatory.

In Chapter 6, the second multi-element PIC designed through the BB based ap-
proach, a novel bandpass filter with widely tunable bandwidth, is investigated. The
filter architecture is based on an unbalanced Mach-Zehnder interferometer loaded
with a pair of ring resonators. Wide bandwidth tunability while preserving a good

3
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filter off-band rejection can be achieved by controlling the resonant frequency of the
rings. Design rules are provided that take into account fabrication tolerances as well
as propagation losses variability. The device is shown to be robust to this variations
and good agreement between measurements and circuit simulations is observed.
Valuable performance compared to the most recent SOI tunable filters presented
in literature has been obtained with a reduced number of actuators. Furthermore,
the use of the tunable coupler BB developed in Chapter 3 allows a more flexible
shaping of the filter spectral response. The sensitivity with respect to nonlinear ef-
fects is carefully investigated. Operation over a wavelength spectrum of 20 nm is
demonstrated. The impact of the presented filter over a modulated optical signal is
also evaluated. Bit error rate (BER) measurements as well as eye diagrams evalua-
tions show that when signal degradation is detected this is mainly due to sideband
filtering rather than dispersion. These characteristics make the device suitable for
channel subset selection in flexible WDM systems.

Finally, the conclusions about the results achieved in the present work are drawn
in the last chapter together with considerations on future activity that could follow
from the present research.
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1

T H E S I S B A C K G R O U N D

This thesis focuses on the BB based approach for the design of multi-element PICs.
Such approach will be investigated, both illustrating its philosophy and designing,
fabricating and characterizing new types of reconfigurable devices. Performance
variability of the BBs due to unavoidable fabrication tolerances effects will be taken
into account in the design stage of the multi-element PICs. Finally, the successful
comparison between measured and expected performance will show the viability of
the approach followed for the design. The results that will be presented have been
obtained in the framework of the Italian Project Shared Access Platform to PHotonic
Integrated REsources (SAPPHIRE) [2].

The motivations for the development of PICs with spectral characteristics that can
be flexibly changed are illustrated first. An overview on the materials that can be
used for the realization of these devices is then given, focusing in particular on that
exploited during this work: silicon-on-insulator (SOI). After, the philosophy and the
advantages of the BB based approach to the design of PICs are illustrated. Finally,
the fabrication technique and the standard characterization setup used to realize
and characterize the devices during this work are presented.

1.1 reconfigurable photonic integrated circuits for flexible opti-
cal systems

Capacity, cost and power efficiency are the keywords representing the challenges
of future communication systems, regardless the distance to be reached. Higher
capacity and higher power efficiency are constantly required to keep up with the
continuous growth of the network traffic and computation capability. Performance
of individual processors as well as the fastest supercomputers have shown a 10
factor increase every 4 years, the total amount of stored data a factor 10 increase
every 5 years and, taking for example the network traffic in North America, a factor
100 increase in 10 years [3]. In this scenario, low cost per bit and reconfigurable
Photonic Integrated Circuits (PICs) are addressed as one of the most promising
solution to process and transport this increasing data flow with power and cost
efficiency.
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At chip level, power management is one of the main issues that is increasingly
limiting the ability of processing information. Interconnections inside and outside
the chip give the dominant contribution to power dissipation [4]. Consequently, the
need to limit this figure while improving performance led to multicore solutions
rather than just upscaling clock rates. However, as the number of cores increases,
classical interconnects are again becoming critical when the lengths to cover become
greater than few millimiters. Additionally, the chip input/output interfaces cannot
scale at the same rate of the processing capabilities, representing then an increas-
ingly more stringent limitation. CMOS compatible integrated optics can then offer
a solution to these problems by substituting classical interconnections. Optical in-
terfaces employing Wavelength Division Multiplexing (WDM) and on-chip global
interconnect employing Optical Networks on Chip (ONoC) [5, 6] can increase the
bandwidth while reducing power dissipation. Note that ONoC systems must also
be reconfigurable so that routing protocols can be changed on request.

Moving to short range communications, the realization of transparent optical data
links are also envisaged to become the future solution for data centres and High
Performance Computing Systems (HPCS) [7]. Cost and interface bottleneck issues
could be in fact tackled down through optical interfaces and switching fabrics en-
abling pervasive parallel computing.

As to long-haul systems, optical communications are unchallenged for the trans-
mission of large amounts of data. For most of the last decade, the rapid growth
of systems capacity thanks to WDM led to a situation where signals were carried
with low spectral efficiency. The available capacity exceeded in fact the network
requests. The adoption of advanced modulation formats to achieve higher spectral
efficiencies was then driven by the constant growth of network traffic requirements.
Nowadays it is foreseen that the bit-rate per single optical channel should reach
1 Tbit/s in 2020 to satisfy this increasing demand [3]. Reaching capacities beyond
100 Gbit/s poses however hard challenges for the current technology. The Interna-
tional Telecommunication Union (ITU) standard 50 GHz channel spacing grid will
in fact not likely fit bitrates beyond 100 Gbit/s. Both telecom and datacom industries
are considering now 400 Gbit/s as the next standard data rate and forcing it to fit
in the current grid by adopting a modulation format with higher spectral efficiency
would only allow short transmission distances. Moreover, the capacity requirements
of the network can rapidly vary in time and space due to the widespread diffusion
of mobile devices and the presence of many diverse services. Consequently, in order
to efficiently manage the spectral resources for this increasing and diverse capacity
demands, the concept of Elastic Optical Networking (EON) [8] has been developed.
This paradigm, also referred as gridless networking in the following of the thesis,
is based on a grid that is no more fixed but flexible. The optical fibre bandwidth
is divided into slots having central frequencies spaced by 6.25 GHz and available
widths of 12.5 GHz. A subset of the slot widths and central frequencies can be then
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selected depending on the application. This would allow to efficiently accommodate
different bit-rate and modulation formats within the transmission spectrum. In this
view, variable bit-rate transceivers, as well as flexible wavelength selective switches
that can be controlled and reconfigured via software are required. Integrated optical
solutions can potentially offer low cost per bit and the required flexibility [9].

The possibility to variate the spectral characteristics of the devices is then funda-
mental in view of the realization of future flexible optical systems (i.e. where band-
width or routing requirements of the incoming signals might vary) but not only.
When realizing complex system on chip, an active control is of key importance to
counteract the effects of mutual interaction between different devices. Moreover,
the control on the device functionality allows to counteract unavoidable fabrication
tolerance effects.

1.2 materials

Up to now, the importance of reconfigurable PICs development have been high-
lighted. In order to realize these circuits, many different materials (such as GaAs,
InP, LiNbO3, Si, etc ...) can be exploited. This variety is motivated by the need for
different waveguiding, electrooptic, emissive and detection capabilities to realize
the required functionalities. Among all, the silicon platform gained more and more
attention during the years [10–12]. This increasing interest was mainly due to the
possible exploitation of the microeletronic industry capabilities to produce low cost
PICs for mass-market applications.

Different materials can be employed to realize optical waveguides on the sili-
con platform: silica-on-silicon, silicon-on-silicon, silicon oxynitride (SiON), silicon
nitride (Si3N4) and silicon-on-insulator SOI [10]. One of the most important parame-
ters that has to be taken into account when choosing a technology is the refractive in-
dex contrast between the core and the cladding ∆n = (ncore− ncladding)/ncladding [13].
The higher the index contrast, the higher the light confinement. When light is more
confined, the maximum waveguide dimensions allowing single mode operations are
reduced as well as the bending losses for a fixed radius. A larger integration scale
can be then achieved. This property is of great interest for two main reasons: higher
yield and optoelectronic integration. Increasing the index contrast brings however
some drawbacks. The smaller the cross section of the waveguide core, the higher
the sensitivity to fabrication tolerances. High resolution fabrication techniques are
then required. For sub-micrometer cross sectional dimensions, waveguide sidewall
perturbations of only few nanometers can in fact produce remarkable issues: large
scattering losses, large backreflections and polarization conversion.

Despite these drawbacks, the possibility to realize single mode waveguides with
sub-micrometre sized cross sections and micrometre sized bend radius led toward
high index contrast technologies. In particular, SOI, showing the highest index con-
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trast (i.e. ∆n ≈ 1.4) received great attention from the scientific community as well
as from major players of the microelectronic industry [14–17] and several thousands
of elements on a single chip can be now realized [18]. In the next subsection some
of the most important features of this technology will be then reviewed.

1.2.1 Silicon-on-Insulator

Waveguiding in SOI is achieved by the means of the index difference between the
silicon core (nSi ≈ 3.5) and the SiO2 cladding (nSiO2 ≈ 1.5). This difference allows
the realization of single mode waveguides with core widths ranging from about 400
to 500 nm and core heights from about 200 to 300 nm. The strong light confine-
ment allows also the realization of micrometer sized bend radii. Resonators with
curvature radius of 1 µm have been in fact demonstrated [19]. However, in order
to reduce bending losses R > 5 µm is usually taken into account when designing
complex passive devices.

Bulk silicon is transparent from wavelengths larger than 1.1 µm to the far infrared.
This property makes it suitable for waveguiding in the second and third telecom
windows (i.e. around 1.3 and 1.5 µm). State of the art values for the losses of deep
etched 500× 220 nm2 waveguides are 2.4 dB/cm [20] and 1 dB/cm [21], obtained
respectively with Deep Ultraviolet (DUV) and Electron beam (Ebeam) lithography.
The impact of this high value on the device performance is however mitigated by
the reduced device size allowed by SOI.

The transparency of silicon at telecom wavelengths avoided the possibility to re-
alize an important device for optoelectronics circuits, the photodetector. However,
advancement in the epitaxial growth of germanium on silicon allowed the realiza-
tion of large 3 dB bandwidth waveguide coupled photodetectors [22].

SOI waveguides have a high aspect ratio, consequently, the device response is
different for transverse electric (TE) and transfer magnetic (TM) polarized light. The
devices geometry has then to be optimized for either one of the two polarizations.

The small cross sectional area of SOI waveguides makes difficult to realize butt
coupling with optical fibres at the chip input/output section. To increase the cou-
pling efficiency, inverse tapers and grating couplers are the most common structures
employed. Inverse tapers are realized by narrowing down to few tens of nanome-
ters the width of the silicon waveguide. The tapered wire is typically coated with a
polymer cladding having cross sectional dimensions of few µm2. The propagating
mode is then tapered adiabatically from the SOI to the polymer waveguide. This al-
lows for a better match between the fibre modes and the guided modes at the chip
output. Grating couplers are instead periodic structures coupling the waveguide
mode out of the chip plane. These structures allow then the testing of the devices
directly on the wafer. A feature that is of interest when mass production is the aim.
Inverse tapers instead, requiring the chip cleaving, can be suitable for research pur-
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poses when just few chips are produced. With polarized input light, high levels of
coupling efficiencies have been demonstrated for both techniques [23, 24].

In order to reconfigure the device spectral characteristic, the most common elec-
trooptic effects used in compound semiconductors cannot be exploited in silicon.
For example, the linear electro-optic effect (Pockels) is not present due to the cen-
trosymmetric crystal structure of silicon [11]. This limitation has been overcome
through the exploitation of the free-carrier dispersion effect by realizing p-i-n or p-n
junctions [25]. Free carriers concentration in the silicon waveguide can be varied by
forward or reverse biasing the junction. When increasing the carrier concentration,
a reduction of the silicon effective index can be obtained. This results in a blue shift
of the realized device spectral characteristic. Although nanosecond response times
can be achieved [26], the fabrication technique can be complex [25]. Moreover, ex-
ploiting the free-carrier plasma-dispersion effect can also induce a loss increase [11].
The control of the device spectral behaviour through this effect should be then em-
ployed just when fast responses are required. For example, when realizing high
speed modulators [25].

The devices reconfiguration can be also performed by exploiting the thermo-optic
effect. By inducing a temperature variation ∆T, a variation in the refractive index ∆n
proportional to ∆T is induced. It holds that ∆n = KT∆T, where KT is the so called
thermo-optic coefficient. For silicon KTSi = 1.86e−4 K−1 while for SiO2 KTSiO2

≈
10−5 K−1 [27]. Increasing the device temperature it is then possible to induce a
positive phase shift to the propagating modes, which translate into a rigid red shift
of the device spectral response. The fabrication of heaters controlling the devices
temperature is much easier than that required to exploit the free-carrier plasma
dispersion effect. Metal strips on top of the chip overcladding, producing Joule
heating, can be in fact realized with standard lift-off techniques. The thickness of
the overcladding is usually designed in order to have negligible losses of the guided
modes in the metal sections [28,29]. This choice represents then a suitable solution to
realize lossless and easy to fabricate controls of the devices spectral behaviour. For
this reason, during this work, the thermo-optic effect have been exploited to perform
the devices reconfiguration. More details on the heaters geometry is then given in
Section 1.4, where the exploited fabrication technique is described. The thermo-
optic effect has typically slow response times due to the slow heat diffusion process
in silicon-on-insulator substrates. Best optimized devices show response times in
the order of a few microseconds [28]. A reduction of this figure can be obtained
by directly heating the silicon core layer and employing pulsed excitation. By the
means of these techniques, response times below 100 ns have been demonstrated
[30, 31].

Another important property of SOI that must be underlined is its nonlinear be-
haviour. The tight confinement of light together with the large Kerr coefficient
makes SOI a suitable material for the exploitation of nonlinear effects to process op-
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tical signals [32]. Especially in structures that enhances the light matter interaction
such as photonic crystals and resonators. At wavelengths used in optical commu-
nication networks, the sum of the energies from two photons is sufficient to excite
an electron across the indirect band-gap of silicon. The generation of free carriers
related to this two photon absorption (TPA) is an important nonlinear effect that can
be detrimental for both the exploitation of nonlinear effects and the linear operation
of the devices. The focus of this work is on devices designed to operate in the linear
regime. In this case, nonlinear extralosses and distortion of the device behaviour
due to TPA related effects have to be carefully evaluated.

Finally, the silicon indirect bandgap avoids the possibility of efficient light gener-
ation and amplification on-chip. This is one of the major differences between the
presented material and other III-V compounds such as InP and GaAs. Light sources
are a fundamental component for on-chip interconnects, and is an active field of
research [33]. For longer communication ranges the near term solution is based on
lasers placed in external packages and coupled to the SOI chip.

The realization of low-loss waveguides together with the advancement in cou-
pling, modulating, processing and detect light on a SOI chip allowed for the ex-
ploitation of this platform for commercial purposes. At the time of writing this
doctoral dissertation Luxtera have already commercialized SOI based circuits (i.e.
Active Optical Cables) and majors like Intel and ST Microelectronics are at the R&D
stage [14, 16].

However, the access cost to photonic integrated technologies is still too high also
for silicon photonics. This usually results in great investments for still relatively
small markets. Looking for example at the InP platform, many groups have demon-
strated during the years PICs of increasing complexity and sophistication. Most of
these circuits have not been successfully commercialized [34]. One of the possible
solutions to this problem, as it will be illustrated in the next section, is to develop
a building block based approach to the design of PICs through the exploitation of
shared access technological platforms.

1.3 a building block based approach to the design

The classical approach used to design and realize PICs can be called as ’appli-
cation oriented’. The technological processes are in fact finely adapted to the user
and the specific application. This led to and extreme fragmentation of resources,
affecting the cost of photonic products. Costs that nowadays are still too high to
fully exploit the potentials of photonics in many application areas. In addition, the
discussed approach implies optical designers with an all level knowledge of the
design chain sketched in Fig. 1.1: from the technology to the circuit level, passing
through electromagnetic simulations.
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Figure 1.1.: PIC design flows: Classical optical design (green arrow) and Building
Block based design (High level circuit design, red arrow).

This design flow makes difficult the realization of complex multi-element circuits
as well as the realization of system level evaluations. Numerical techniques such as
FDTD and BPM can have a high level of accuracy but, due to their computational
weight and time requirements, can hardly be employed for the performance eval-
uation and design of high complexity circuits. Moreover, the simulated structures
are supposed to be ideal. In real devices, the impact of fabrication tolerances lead
to backreflections, polarization rotations and variability of the device characteris-
tic parameters that can affect the final performance. For example, in Section 2.2 it
will be shown that a power splitting device, widely employed to realize photonic
circuits, can show normalized power coupling values of about 10% lower than ex-
pected. Moreover, nominally identical couplers can show a 10% variability in the
coupling with respect to the expected value. Following the classical optical design
approach, this information has to be retrieved with dedicated fabrication runs be-
fore approaching the realization of the desired complex device. This increases the
costs as well as the project timings. The classical optical design can be then success-
fully employed to obtain high performing devices but can hardly be exploited for
the realization of systems with increasing complexity.

A possible solution to overcome the underlined problems is an approach, demon-
strated successful for electronics and microwave systems, that relies on two concepts:
generic foundry and Building Blocks.
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The generic foundry model is based on multiproject wafers runs organized by the
foundry that aggregates different designs of several users. This scheme allows for
the sharing of the same technology and the related costs between all the users [35].
The design of complex PICs is then based just on standardized circuit elements
(building blocks, BBs) performing guaranteed and certified functions within the
limits of the selected technological process. The BBs are basic elements of optical
integrated circuits such as straight and bent waveguides, directional couplers, Bragg
gratings, etc. . . The functionalities of these devices are expressed through their scat-
tering or transfer matrix, enabling circuit level simulations. A complex device can be
then simulated with a circuit simulator that combines the scattering matrices of the
various BBs. The BBs optimization is performed just once through electromagnetic
simulations and device characterization. All the informations, such as expected val-
ues and variability of the BB model parameters, are then collected and inserted in
the design kits (DKs [36]), made available to circuit designers. All the users can ben-
efit from the information collected during years of characterization and focus on the
realization of complex systems on a chip. Moreover, the performance of complex
devices such as, for example, multi-element filters, can be evaluated considering
unavoidable process variabilities. The design of the aforementioned filter can be
firstly carried out using one of the available synthesis technique [37–39]. A selection
of the more robust architecture can be then performed through circuit simulations
and statistical evaluations. The described conditions allow the design of complex
and reliable circuits with reduced computational time.

To the knowledge of the author, at least three European projects EuroPIC, Paradigm
and Helios [40–42], have been activated to create the necessary infrastructures for
the application of the generic foundry model. In particular, in the framework of
the projects EuroPIC and Paradigm, a first validation of the BB based approach
to the design of PICs has been recently demonstrated on the InP technological plat-
form [43]. The Helios project focuses instead on silicon technology and the optoelec-
tronic integration on a CMOS platform. Some of the Helios project partners have
adopted the circuit model approach originally initiated by the ePIXnet Network of
Excellence [44]. Even in North America it is possible to find generic foundries, an
example of which is Opsis [45], a silicon photonics foundry. Within this picture, sev-
eral young ”design houses” were born in Northern Europe around those foundries
that accepted this new paradigm.

Within this growing scenario, the Italian Project SAPPHIRE [2] aims to bring the
concepts discussed in this Section in Italy, via the realization and the management
of a SOI shared access platform. A platform based on the James Watt Nanofabrica-
tion Centre foundry at the University of Glasgow. One of the partners involved in
this project, the Photonics Devices Group at the Politecnico di Milano, developed a
strong collaboration with the optoelectronic group at the University of Glasgow in
the framework of the European Project SPLASH [46]. Apart from many scientifically
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relevant results on ’slow light’ devices, one of the outcomes of this collaboration was
the systematic characterization and modelling of some of the most important pas-
sive SOI BBs. The project SAPPHIRE inherited all the knowledge collected during
the SPLASH project and is based on the circuit simulator Aspic [47]. The techno-
logical platform is developed for TE polarized fields and devices working in linear
regime. The maximum on chip power in order to work in this regime was set to
5 dBm.

As previously introduced, the fabrication technique employed to realize BBs and
filters presented in this work was developed at the James Watt Nanofabrication
Centre (JWNC) by the Optoelectronics Group of the University of Glasgow. The
processes and the machines used to fabricate SOI devices are detailed in [29, 48, 49]
and will be briefly reviewed in the following Section.

1.4 soi devices fabrication

The SOI material is produced by SOITEC [50, 51] and the wafer is composed of
three layers. The top one is made of silicon and will become the guiding core of the
optical waveguides. The typical nominal thickness is of 220 nm. The core layer lies
on a 2 µm thick buried oxide (BOX) SiO2 substrate. This thickness allows negligible
leakage losses in the bottom layer made of bulk silicon crystals. This layer is about
700 µm thick and gives mechanical stability to the wafer. The fabrication process
employed to define waveguides on the SOI material is based on two main steps
(see Fig. 1.2): hard mask definition (resist spinning, patterning and development);
silicon etching.

Figure 1.2.: Sketch of the process sequence employed for SOI devices fabrication.

The negative tone resist employed to realize the hard mask is HSQ (Hydrogen
SilsesQuioxane), a spin-on glass material that consists of silicon, oxygen and hydro-
gen atoms that are initially disposed in a three-dimensional cage fashion [52]. A
nominal 200 nm thick film is obtained on the top layer of the chip by spinning for
60 seconds and subsequently baking for 2 minutes at 90 ◦C a 1 : 1 dilution of HSQ
in MIBK (Methyl Isobutyl Ketone). A sequential writing lithographic technique us-
ing an electron beam is then employed to pattern the processed resist. The machine
employed to perform the Ebeam lithography is the Vistec VB6-UHR-EWF. The cho-
sen resolution is of 1 nm which brings to a 1× 1 mm2 writing field dimensions (i.e.
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the area that can be patterned without mechanical movements of the machine). To
realize SOI waveguides the resist film is patterned with a Beam Spot Size of 4 nm
and a Beam Step Size of 2 nm. Moreover, the Ebeam tool employed implements
both proximity corrections and stitching errors compensations. When energy is
applied on the resist film, the hydrogen atoms of HSQ are displaced to form a
three-dimensional network structure more similar to that of silica [53]. The exposed
region has a different level of reactivity with TMAH (Tetra-Methyl-Ammonium Hy-
droxide) [54] which is used, at 25% concentration in water, as a developer. The
unexposed soluble areas are then removed during the development.

Once the hard mask has been defined, the pattern is transferred into the silicon
layer through a dry etching technique: Inductively Coupled Plasma (ICP) Reactive
Ion Etching (RIE) with SF4-CF8 gases. The silicon etching is provided by chemical re-
actions between F+ radicals and the silicon layer as well as by ion acceleration. This
mixed chemical/physical etching process, together with the passivation effect of the
C4F8 gas, can produce a strong anisotropic etching. This property is fundamental
for the realization of waveguides with vertical sidewalls.

The described process allows for the realization of high quality, state of the art
passive SOI devices. In Fig. 1.3a the Scanning Electron Microscope (SEM) images of
the fabricated waveguide cross section shows near-vertical sidewalls with an angle
of 87◦. This property is fundamental in view of the matching between simulations
and realized devices properties.

(a) (b)

(c)

Figure 1.3.: (Images taken from [49]) SEM images of fabricated SOI devices: (a)
waveguide cross-section with near-vertical sidewall (87◦); (b) top-view
of the sidewall, showing low LER value (< 1 nm); (c) directional cou-
pler.
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Fig. 1.3b shows then that low sidewall roughness is produced. The estimated
value of the Line Edge Roughness (LER) from the SEM image is below 1 nm. Losses
in integrated optical waveguides are proportional to the square of this value as
well as on the square of the index contrast ∆n [55]. In high index contrast guid-
ing structures such as SOI, the minimization of the sidewall roughness it is then
fundamental. State of the art values of about 1 dB/cm was measured for uncov-
ered waveguides [21]. Moreover, an accuracy better than 0.5 nm is achieved in the
waveguide lateral dimensions. Finally, the high etching selectivity between Si and
SiO2 (i.e. large difference in the etch rate of the materials) allows for the clearance
of gaps as low as 100 nm (see Fig. 1.3c). This means that really compact directional
couplers can be realized.

In characterization set-up schemes like those used during this thesis (see Sec. 1.5),
Fabry-Pérot resonances, given by the chip end facets reflectivity due to the silicon-
air interface, can strongly modulate the output spectra. This effect can be removed
either in post-processing with numerical techniques [56, 57] or with the realization
of inverse tapers [58]. The latter, employed during this thesis for all the devices,
are realized by tapering down to 50 nm the width of the silicon wire end sections.
These tapers are then buried in a SU-8 polymer waveguide with final cross sec-
tion at the facets of the chip of 2× 1.5 µm2. Another important property of these
mode adapters is the enhancement of the input/output fibre coupling efficiency.
5 dB/facet is the typical estimated coupling loss, which is approximately 4.5 dB
lower than that obtained without tapers. Once the optical circuit and the modal
adapters have been realized, they are buried in a buffer layer (i.e. overcladding).
The realization of this layer provides protection to the devices as well as a sur-
face to realize electrical circuits to tune their optical properties. In this way, the
thermo-optic effect can be exploited to counteract fabrication tolerances as well as
reconfigure the spectral characteristics of SOI devices. A sketch of the final structure
cross section is illustrated in Fig. 1.4a.

The height of the buffer layer is set to 900 nm in order to provide high tuning
efficiency together with negligible losses given by the overlap between the optical
mode and the metal layer. The lower part of this layer, which is approximately
550 nm thick, is realized by spinning and baking HSQ in order to provide good
gap filling. The upper part, approximately 350 nm thick, is then realized with
SiO2 deposited with Plasma Enhanced Chemical Vapour Deposition (PECVD). This
layer have the chemical and mechanical robustness required by the metal strips
fabrication process. High resistivity NiCr strips (i.e. heaters) with 50 × 900nm2

are then realized over the waveguides via deposition and lift-off. The experimental
value of the resistivity found during this doctoral work is ρNiCr = 1.14 Ωµm. In
order to bring the electrical signal over the waveguides with negligible power and
thermal dissipation, a low resistance 200 nm thick layer made of Titanium and
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(a) (b)

Figure 1.4.: (a) Sketch of the SOI waveguide cross section with the thermo-optic
control deposited over the waveguides. The dark green box on top of
the silicon waveguide represents the HSQ hard mask that is not removed
after the silicon etching process (see Fig. 1.3a). (b) (Image taken from
[29]) Optical microscope photograph of the heaters. Red boxes highlight
the NiCr high resistivity strips where the heat is generated.

Gold is then fabricated. The optical microscope photograph top view of a RR with
thermo-optic controllers is illustrated in Fig. 1.4b.

With the described electrical circuit, a 2π phase shift can be obtained by dissi-
pating an electrical power PD of about 20 mW over a heater with length Lh be-
tween 55-60 µm. During this doctoral work it was found experimentally that, in
order to avoid the fuse of the heater, the ratio PD/Lh should be kept smaller than
0.6 mW/µm. Finally, typical response times of the described actuator are in the
order of ten microsecond [29, 49].

To conclude this Section where the fabrication processes and the machines have
been briefly reviewed, it is possible to underline that modal adapters and heaters
constitute the first example of BB. The geometry and the performance of this devices
are in fact well defined. The designer can employ them in his own circuits without
performing any simulation, electromagnetic or thermal, being the optimization al-
ready performed by the technological platform.

1.5 standard measurement setup

In order to characterize the devices developed during this thesis, the author used
the facilities of the University of Glasgow and of the Politecnico di Milano. These
universities were in fact involved in the SAPPHIRE project (see Section 1.3). Both
setup were already optimized to characterize SOI passive devices and were based
on an ’end fire’ coupling scheme. At the University of Glasgow, the frequency
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domain analysis of the devices linear response was carried out. At the Politecnico
di Milano, the author of this dissertation performed also nonlinear experiments
and time domain characterizations, evaluating both eye diagram acquisitions and
bit error rate (BER) measurements. In this Section, the description of both setup
is carried out. Having similar characteristics, the setup used at the Politecnico di
Milano is presented first, then the one used at the Univesity of Glasgow is briefly
described focusing on the differences between the two.

Fig. 1.5a shows a sketch of the experimental setup used for frequency response
and time domain characterizations in Milan.

(a)

(b)

Figure 1.5.: Setup at Politecnico di Milano: (a) (Image taken from [59]) Schematic
of the typical experimental setup employed for the characterization of
the devices in the frequency (red links) and time (blue links) domains.
Dashed lines indicate electrical control connections. (b) (Image taken
from [49]) Photograph of the alignment block of the optical setup show-
ing the two piezo-controlled three-axis nano-positioning stages with ta-
pered lensed fibres and a SOI chip in the middle.

An optical spectrum analyser (OSA) is employed to acquire the spectral response
of the devices. The OSA is synchronized to a stepped tunable laser source and con-
trolled by a PC-based acquisition system. The OSA has large dynamic (> 50 dB) and
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high sensitivity (i.e. optical signal levels smaller than 60 dBm can be detected). The
minimum wavelength resolution is 1 pm and the maximum amount of points that
can be acquired is 12000. Nonlinear experiments (see Section 6.5.8) are performed by
inserting an Erbium Doped Fiber Amplifier (EDFA) followed by a Variable Optical
Attenuator (VOA) between the polarization controller and the input nanopositioner.
The output power from the EDFA is fixed to 30 dBm and the power at the input of
the chip is regulated by the means of the VOA. Reflection measurements (see Sec-
tion 4.2.2) are performed placing in the same position a fibre circulator. In order to
perform time-domain measurements, the eye diagrams of intensity modulated data
patterns are acquired with a wide-band sampling oscilloscope. A BER tester is then
employed to realise bit error rate measurements. Details on the modulation format
and on signal generation are given in Section 6.5.9. Light is injected and collected
respectively at the input and at the output of the device under test (DUT) by butt
coupling tapered lensed fibres. Typical coupling loss is of about 5 dB/facet with
polymer waveguides as taper and TE polarized light. The polarization state of the
input light is set before measurements with a free space polarizer and a polarization
controller having an extinction ratio of 30 dB between the two orthogonal polariza-
tions states (i.e. TE and TM). Piezo-electric controlled nano-positioning stages with
active feedback loop are employed to obtain a stable setup and achieve an align-
ment resolution of 5 nm. A photograph of the alignment block is illustrated in Fig.
1.5b. The DUT temperature is controlled by using a Peltier thermocooler with a
resolution lower than ±0.1 ◦C. A multiprobe head sustained by a mechanical arm
is employed to contact the printed circuit board that sends the electrical signals and
the pads of the heating circuit on-chip. The device reconfiguration is achieved with
a software that regulates the current feeding each heater.

As introduced at the beginning of this Section, the setup scheme employed at
the University of Glasgow is similar to that just described. The schematic and the
photographs of this setup are illustrated respectively in Fig. 1.6a and Fig. 1.6b. The
spectral response of the devices is acquired by a digital real-time oscilloscope syn-
chronized to a tunable laser source with continuous sweep. Conversion between the
oscilloscope temporal axis and wavelengths is automatically performed by the con-
trol software. With this system, the DUT output spectrum can be sampled with a
wavelength resolution below the picometer. The dynamical range is however limited
to a maximum of about 20 dB. The light is injected through a tapered polarization
maintaining (PM) fibre. The fibre holder can be manually rotated in order to set
the desired polarization before measurements with a free space polarizer having a
30 dB extinction between orthogonal polarizations. The output light from the DUT
is collected with a 20X lens and split by a beam splitter between a camera, em-
ployed for the alignment, and an InGaAs transimpedence amplifier photodetector
with tunable gain. The detector output is then connected to the digital oscilloscope.
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1.5 standard measurement setup

(a)

(b)

Figure 1.6.: Setup at Univeristy of Glasgow: (a) Schematic and (b) photographs of
the typical experimental setup employed for the characterization of the
devices. In (a) dashed lines indicate electrical control connections while
dotted lines indicate free space propagation.

Positioning stages are controlled manually. A multiprobe system similar to that
described previously is employed to reconfigure the devices spectral response.
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1.6 summary

To summarize, the motivations for the development of reconfigurable PICs able
to filter and route optical signals have been given in this Chapter. These devices can
play a key role in the development of future flexible telecom systems and of high
speed data interconnects. The main features of one of the most promising material
to realize such devices (i.e. SOI) have been then illustrated. The generic foundry
paradigm have been presented together with the BB based approach to the design
of PICs. These two concepts allow to access to photonic integrated technologies at
reduced costs and to focus the design on complex systems on-chip rather than on
single devices. The technological platform and the characterization set up exploited
to realize and characterize the devices during this doctoral work have been then pre-
sented. In the following Chapter, the first set of BBs, fundamental for the realization
of optical integrated circuits, will be defined.
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2

B A S I C B U I L D I N G B L O C K S

In this Chapter the functionality, the models and the characteristic parameters
of the first basic set of Building Blocks necessary for the realization of optical inte-
grated circuits will be illustrated. This set is constituted by the waveguide (straight
and bent) and the Directional Coupler (DC). Despite being composed of just three
elements, it already offers a wide range of possibilities for the design of an optical
system. Two important classes of devices such as the ring resonator (RR) and the
Mach-Zehnder Interferometer (MZI) are in fact based on these three elements. The
MZI and the RR are first order filters with respectively a Finite Impulse Response
(FIR) and an Infinite Impulse Response (IIR). By combining or cascading these de-
vices, it is then possible to synthesize the desired higher order filter response [38].
They can also, but not only, be employed for the realization of modulators [25], re-
ceivers [60], WDM multi/demultiplexers [11, 61] and sensors [62]. Moreover, the
complex filters designed and characterized in Chapter 5 and 6 are based on their
functionality. Due to their importance and in view of the development of a consis-
tent notation with the following parts of this work, a brief review of RRs and MZIs
will be carried out in the last two Sections of this Chapter.

2.1 the waveguide

2.1.1 Straight waveguide

The design of any integrated optical circuit starts from the waveguide geome-
try. The propagation of guided modes through a straight waveguide of length L
is associated with the complex factor e−(α+jβ)L where β = 2πne f f /λ is the prop-
agation constant of the excited mode, ne f f the effective index, λ the free space
optical wavelength and α is the attenuation constant. The effective index disper-
sion with λ can be then taken into account through the so called group index
ng(λ) = ne f f (λ) − λ(∂ne f f (λ)/∂λ). The described parameters are all dependent
on the waveguide cross section geometry as well as on the chosen technology (see
Section 1.4). These degrees of freedom have then to be fixed in order to allow the
designer to focus only on higher complexity devices. The first two requirements
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for a straight waveguide are low losses and single mode operation at the desired
wavelength.

Waveguides with 480 × 220 nm2 cross section size were deeply investigated in
the framework of the European Project SPLASH [29, 49] and became the standard
dimensions for this basic BB in the framework of the project SAPPHIRE. An SOI
waveguide with this geometry sustains just one guided TE mode and shows opti-
cal parameters at λ = 1.55 µm that are illustrated in Tab. 2.1. Note that AdB =

20 · α/ln(10) represents the value of the power propagation losses expressed in
dB/cm. These values have been then taken into account for the design of the de-

Table 2.1.: Straight Waveguide Optical Parameters

Parameter Symbol Typical value Min Max

Effective Index ne f f 2.413 2.412 2.414

Group Index ng 4.22 4.219 4.221

Losses AdB 2.5/3 1 6

vices presented in Chapter 3 and 6 and Section 4.2. From now on, the described
waveguide geometry will be addressed as standard in the following of this thesis.
The standard waveguide sustains also one guided TM mode at λ = 1.55 µm. The
high aspect ratio (≈ 2 : 1) provides however a large difference between the propa-
gation characteristics of TE and TM polarized modes [49]. This property allows to
study the devices considering either one of the two polarization states. As stated
at the end of Section 1.3, the technological platform on which this doctoral work is
based is developed for TE polarized fields and, unless specified, this polarization
is taken into account in the following of this dissertation. The first TE mode is
more confined but has a larger overlap with the waveguide sidewalls than the first
TM mode. This allows for the realization of more compact structures at the cost of
larger propagation losses. Propagation loss difference was measured to be about
0.7− 1 dB/cm in [49].

Some of the realized devices required different waveguide widths than that pre-
viously defined as well as evaluations at different wavelengths (see Section 4.3 and
Chapter 5). In order to simulate the guided modes properties in these situations,
a commercial software (COMSOL Multiphysics) implementing the Finite Element
Method (FEM) was employed. Some of the results obtained will be now presented
in order to review some well know properties of SOI waveguides, useful in the fol-
lowing of this thesis. The FEM simulation window as well as its dimensions and
characteristics are illustrated in Fig. 2.1a. A silicon refractive index nSi = 3.47572
and a silica refractive index nSiO2 = 1.4456 have been taken into account. Note that
the same optical properties have been assumed for the SiO2 BOX undercladding
and the overcladding. These values have been taken accordingly to that used in [49],
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Figure 2.1.: (a) Sketch of the simulation domain. (b) TE modes and first TM mode
effective index as a function of the waveguide width w. Electric field
components of the first TE mode for w = 480 nm: (c) Principal transver-
sal component Ex; (d) Ey; (e) longitudinal component −jEz.

where a good estimation of the waveguides optical properties is demonstrated. Per-
fectly Matched Layers (PML) sections were introduced as boundary conditions in
order to compute modes with leakage in the silicon substrate and maintain the same
computational window size regardless the computed mode confinement. Higher or-
der modes are in fact less confined than the fundamental one and can have a large
overlap with the silicon substrate, leading to large values of leakage losses. The
PML provided by COMSOL produced, in some of the investigated cases, reflections
at the edges of the computation window, thereby influencing the simulation results.
In order to overcome this problem PML have been implemented by defining an
anisotropic medium in these regions [63–65]. Permittivity and permeability of the
medium are second order diagonal tensors with elements that depend on the mate-
rial properties, on the desired absorption profile and on the type of wave that have
to be absorbed [66], being it evanescent in the lateral regions and oscillating in the
bottom region of our domain. Perfect electric conductor boundary conditions have
been then defined at the edges of the considered computational window.

We can now focus on the effective index dependence on w of the defined structure
modes. This behaviour is illustrated in Fig. 2.1b. Note that for completeness simu-
lations of the first TM mode have been also included in the figure (black trace in Fig.
2.1b). As introduced at the beginning of this Section, a waveguide with w = 480 nm
is monomode. The second order TE mode effective index (red trace in Fig. 2.1b) is
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close to the refractive index of silica and moreover it shows a value of 30 dB/cm of
leakage loss in the substrate. It can be then considered in attenuation. Widening
the waveguide width w, the waveguide starts to be multimodal, sustaining two TE
modes in propagation at w = 600 nm. The calculated leakage loss in the substrate
for the second order TE mode is in fact lower than 0.005 dB/cm. At w = 500 nm
the waveguide can still be considered monomode being the calculated leakage loss
of the higher order TE mode of about 9 dB/cm.

Another interesting consideration can be done by looking at the first TE mode
electric field components for w = 480 nm illustrated in Fig. 2.1c, 2.1d and 2.1e.
The longitudinal component Ez (Fig. 2.1e) reach maximum values that are slightly
higher than half the maximum value of the mode fundamental component Ex (Fig.
2.1c). This hybridness was expected, being related to the index contrast of the
material. The higher the index contrast the higher the hybridness [13]. Although in
this case it would be more correct to speak of quasi-TE mode, in the following of
this thesis they can be referred as TE modes to simplify the nomenclature.

Having reviewed the parameters and the models used to compute SOI straight
waveguides, we can now focus on the last property we are interested in: the mini-
mum bend radius allowing negligible bending losses. This issue will be treated in
the following subsection for the standard waveguide of this work.

2.1.2 Bends

One of the most interesting feature of high index contrast technologies such as
the SOI platform, is the possibility to realize micrometer sized bends [19, 55] that
enables a high level of integration. However, in some cases like the filter presented
in Chapter 6, the bend radius is not critical for the device footprint. On the other
hand, the extreme miniaturization of this parameter can lead to bend losses that can
limit the device performance increasing its loss figure. In this Section we will then
firstly focus on the minimum bending radius that introduces negligible bend losses.
In addition, the minimization of the transition losses in straight-bent waveguide
connections is also highly desirable in order to decrease the overall loss figure of
the designed devices. In this view considerations will be drawn in order to set a
minimum curvature radius allowing to describe the bent waveguide BB with the
same optical parameters as the straight waveguide BB.

An evaluation of the waveguide bend losses can be performed simulating the char-
acteristic bend modes with a mode solver over the 2D transversal plane. In order to
calculate these modes two approaches can be followed: conformal transformation
to obtain an equivalent straight waveguide [67,68], or solving the wave equations di-
rectly using a cylindrical coordinate system [69,70]. The first approach can however
lead to unreliable results when dealing with small bend radii [69, 71]. Moreover,
in the commercial FEM mode solver used for this analysis it was more straightfor-

24



2.1 the waveguide

ward to express the wave equation in cylindrical coordinates than to implement the
conformal transformation. The latter requires in fact the manual implementation in
the software of the wave equation expressed through its weak formulation, while
the former can be set just by enabling the 2D ’axisymmetry’ option through the
Graphical User Interface. In order to describe this option it is better to look at Fig.
2.2 where the optical bent waveguide, defined by the red lines, is sketched in the
Cartesian (black arrows) and the cylindrical (green arrow) reference frames. The

Figure 2.2.: Cartesian (black arrows) and cylindrical coordinate (green arrows) co-
ordinate system. The red lines define the bent waveguide. The bend
modes are calculate on the zρ cylindrical transversal plane where R is
the curvature radius of the bent waveguide.

2D ’axisymmetry’ model takes into account the cylindrical coordinate system and a
rotational symmetry of the structure with respect to the z axis. The wave equation
is then solved on the transverse zρ plane where the distance between the z axis
and the waveguide centre along ρ is equal to the bend curvature radius R. Note
that, in this case, the propagation direction coincides with the angular coordinate
ϕ. PML can be also implemented following the same procedure described in the
previous subsection. In this case, the tensors describing the absorbing anisotropic
medium properties must be expressed in the cylindrical coordinate system as de-
tailed in [66, 69, 72, 73].

By exploiting the described tool, the bend losses for different curvature radius R
can be then straightforwardly calculated from the imaginary part of the mode effec-
tive index. In Fig. 2.3 the optical power losses expressed in dB for a 90◦ bend for the
standard waveguide of this work (i.e. a waveguide with w = 480 nm) are illustrated
as a function of the bend radius R. As expected, bend losses increases as R reduces
and a negative exponential behaviour can be observed. The tighter the bend the
larger part of the guided mode tends to radiate into the cladding. The bend mode
leakage is clearly noticeable at R = 1 µm, where the real part of the mode princi-
pal component Eρ normalized respect to its maximum is illustrated. In this figure,
the white lines delimit the PML regions that, as required, absorb the leaky part
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Figure 2.3.: Bend losses expressed in dB per 90◦ bend as a function of the bending
radius R. Insets show the real part of the mode principal component Eρ

normalized to its maximum in logaritmic scale. White lines delimit the
PML regions.

of the mode producing negligible reflections. The bend losses associated with this
curvature are of about 0.08 dB/(π/2). Increasing the radius of one micron (i.e. con-
sidering R = 2 µm) reduces this value to the order of 10−4 dB/(π/2). Taking then
into account R = 5 µm, the calculated losses are on the order of 10−12 dB/(π/2)
and can be then considered negligible. Looking at the mode principal component it
is in fact immediately noticeable that the leaky part is not visible anymore. A cur-
vature radius of 5 µm can then constitute the minimum bending radius to obtain
negligible bending losses. However, it is possible to notice that with the considered
geometry the guided mode shows a slight asymmetry with respect to the centre of
the waveguide, tending outwards in radial direction. This behaviour can bring to
non negligible transition losses when the bend is connected to a straight waveguide.
Moreover, the mode tends to be larger close to the waveguide right sidewall than in
the straight waveguide case. This can bring to an increase of the scattering losses.
In order to minimize these two undesired effects and apply with a reasonable ap-
proximation the same model of the straight waveguide to the bent waveguide BB, a
minimum curvature radius R = 10 µm has been then set for this work. The optical
parameters listed in Tab. 2.1 have been then employed. As a concluding remark, it
can be highlighted that in the framework of the project SAPPHIRE, an even more
conservative R = 20 µm minimum curvature radius have been indicated for the
bent waveguide BB.

Having defined the geometry and the parameters of the straight and bent waveg-
uide, it is now possible to pass to the description of the last device that completes
the first set of basic BBs. A device enabling power splitting functionalities: the
Directional Coupler.

26



2.2 directional couplers

2.2 directional couplers

Power splitting devices are fundamental BBs for the realization of integrated op-
tical circuits. Together with straight and bent waveguides, they are at the basis of
some of the most important first order filters such as RRs and MZIs. The spectral
characteristics of these components, which will be reviewed in the following Sec-
tions, depend on the reliability of the power splitter design. Two main topologies
can be employed in SOI: the Directional Coupler [74] and the Multimode Interfer-
ence Coupler (MMI) [75].

At the beginning of this doctoral work, DCs had already been designed and char-
acterized on the considered technological platform [29, 49]. For MMI couplers in-
stead, a systematic study were never performed. For this reason we chose to focus
only on DCs when devices with power splitting functionalities were needed. The
characterization performed on higher complexity devices based on DCs (see Chap-
ter 3 and 6) allowed to extract useful information improving that obtained in previ-
ous works [29,49]. The measured parameters were used in fact to realize the DC BB
in the framework of the SAPPHIRE project.

In the following of this Section the DC model will be described first. After, the ob-
tained results will be analysed and compared to the ones already available defining
in the end, the DC model parameters.

2.2.1 Model

The DC is based on two parallel waveguides separated by a gap g. This device can
be realized with either bend-straight or bend-bend input/output sections. These
configurations are sketched respectively in Fig. 2.4a and Fig. 2.4b. According to

(a) (b)

Figure 2.4.: (a) Directional coupler with bend-straight input and output sections. (b)
Directional coupler with bend-bend input and output sections.

the Coupled Mode Theory (CMT) and considering equation (A.41), it is possible to
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express the power K coupled between the waveguides and normalized to the input
power as K = |κ|2

S2 sin(SLe f f )
2. In this equation, Le f f is the effective length of the

coupler, S =
√
(|κ|2 + ∆β2/4), κ is the CMT coupling coefficient and ∆β = β1 − β2

is the phase mismatch term between the two waveguides. Note that if identical
waveguides are considered ∆β = 0. The effective length takes into account not only
the coupling region of length Lc but also the contribution to the coupling given by
the so called transition regions. It can be defined as Le f f = Lc + 2Ltr where the
transition length Ltr is calculated considering a fixed κ equal to that of the coupling
region. With this assumption and considering the field exponential decay outside
the waveguide core as a function of the distance d(z) between the waveguides centre,
Ltr can be estimated as [38, 76]:

Ltr =
∫ ∞

0
exp(−γ(d(z)− dmin))dz =

1
2

√
πR
γ

, (2.1)

in the case of bend-bend transitions and as:

Ltr =
∫ ∞

0
exp(−γ(d(z)− dmin))dz =

√
πR
2γ

, (2.2)

in the case of bend-straight transitions. In both equations R is the curvature radius
of the bends depicted in Fig. 2.4, γ is the exponential decay constant of the field
and dmin is the distance between the waveguides centre in the coupling region.

The DC scattering matrix can be also calculated following the CMT of Appendix
A.4 and reads as:

ae−j(β1− ∆βL
2 )e−αL

[
cos(SLe f f )− j ∆β

2S sin(SLe f f ) −j κ
S sin(SLe f f )

−j κ
S sin(SLe f f ) cos(SLe f f ) + j ∆β

2S sin(SLe f f )

]
.

(2.3)
In this equation L takes into account the DC total geometrical length and a is the
coupler amplitude loss factor. The common phase term e−j(β1− ∆βL

2 ) = e−j(β2+
∆βL

2 )

shows that the asyncronism (i.e. the phase mismatch) is divided in equal parts
between the waveguides with opposite sign. Finally, e−αL takes into account the
coupler propagation losses, considered equal for both waveguides.

The coupling coefficient κ depends on the waveguide geometry and on the gap
g. The method of calculation of this parameter is illustrated in Appendix A.4. From
this method it can be understood that the smaller the gap or the less confined
the modes are, the higher the CMT coupling coefficient is (i.e. a smaller Le f f to
reach the desired K is required). This functionality principle brings one of the
drawbacks related to the use of DCs for power splitting purposes: the wavelength
dependence of the power splitting ratio K. The mode confinement is in fact inversely
proportional to the operational wavelength (i.e. the longer the wavelength the less
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confined the mode the higher κ). The power splitting ratio depends on the product
κLe f f and consequently the shorter the coupler the lower will be the wavelength
sensitivity.

Considering now a lossless device (i.e. α = 0 and a = 1) and a fixed κ, values
of K ranging from 0 to 1 can be obtained employing synchronous couplers. As
illustrated in fact in Appendix A.4, the maximum transferable power between the
two waveguides reduces as ∆β increases. In order to obtain the maximum design
flexibility, nominally identical waveguides with a standard cross section have been
considered in this work. Under this assumption, κ can be calculated through the
propagation constants of the supermodes of the structure (see Appendix A.4). In the
next section, the design procedure adopted to realize DCs as well as the comparison
with the obtained results will be illustrated.

2.2.2 Characterization

As introduced at the beginning of this Section, the comparison between the de-
sign (based on the CMT as previously discussed) and the characterization of syn-
chronous DCs realized on the exploited SOI platform, was already performed in
previous works [29, 49]. An undercoupling between simulations and experiments
with a mean relative error of 25% was found measuring couplers with K always
lower than 0.64. This effect can be related to a slightly lower value in the effective
index of the HSQ overcladding with respect to the bulk SiO2 undercladding which
brings to a higher confinement of the modes. The HSQ effective index depends in
fact on the curing temperature. Moreover, the presence of residual air in the gap of
the DC, despite the optimized gap filling fabrication technique (see Section 1.4), can
bring a reduced value of this effective index inside the gap. In order to design our
DCs we took then into account this systematic relative error.

DCs with a fixed gap g = 300 nm and fixed transitions (bend-bend with R =

20µm) varying Lc to obtain the desired K were realized. This analysis has been
carried out for DCs allowing to couple power between 40 and 95 % of the input
power. This values were in fact required for the realization of the devices presented
in Chapter 3 and 6.

In Fig. 2.5 the measured results are indicated with black crosses while the red
trace is obtained by fitting the CMT equation with the measurements. The blue
trace represents then the values simulated through the CMT. The relative error
((K− Km)/K) between the simulated K and the coupled power fitted from the mea-
surements Km is then illustrated by the green trace in the inset of the figure. It can
be immediately noticed that the relative error decreases as the simluated K increase.
For values of K between 0.65 and 0.003 the relative error goes from 18 % to 24 %,
in agreement with [29, 49]. However, it can be as low as 10 % for K = 0.95. This
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Figure 2.5.: Simulated (blue trace) and measured (black crosses) K. The red trace has
been obtained by fitting the measured results with the CMT analytical
equation A.41 obtaining κ = 0.018 µm−1. Dashed orange traces are
simulated by considering κ = 0.017 µm−1 and κ = 0.019 µm−1. The
inset shows the relative error ((K − Km)/K) between the simulated K
and the coupled power fitted from the measurements Km.

relative error variation corresponds to a difference in the CMT coupling coefficient.
This difference is of about 0.002 µm−1, being 0.018 µm−1 and 0.02 µm−1 the fitted
and the simulated κ respectively.

From Fig. 2.5 the variability of Km between nominally identical devices can be
also evaluated. The coupled power can vary more than 10 % between two devices
with the same geometry. The registered value is quite high and has to be taken into
account when it comes to the design of such couplers. This means that circuits and
devices robust to these variations or methods for the postfabrication tuning have to
be realized (see Chapter 3 and 6). However, it can be pointed out that the considered
range of fabricated K is the most sensible to κ. This is shown again in Fig. 2.5 where
the orange dashed traces have been calculated considering κ = 0.017 µm−1 and
κ = 0.019 µm−1. Smaller variability is then expected for lower values of the coupled
power. We can then notice that the majority of the measured K lies within the
region defined by the orange traces. We can then consider κ = 0.019 µm−1 and
κ = 0.017 µm−1 as an upper and lower bound for DCs realized with g = 300 nm,
R = 20 µm, bend-bend input/output sections.

The described characterization was then useful to define the DC BB for the SAP-
PHIRE project. Typical κ values of 0.018 µm−1 with ±0.001 µm−1 of typical vari-
ations are indicated. Knowing that for R = 20 µm and bend-bend transitions
Ltr = 1.416 µm, the designer can then choose the desired value of K by selecting
the suitable Lc. Losses must be also taken into account. Propagation loss coefficient
α can be assumed as that of the standard waveguide of the platform indicated in
Tab. 2.1. For what concerns the coupler losses, typical experimental values were
already determined as A = −20 · log10(a) = 0.06 dB [77] (i.e. a ≈ 0.993). Finally,
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the wavelength dependence of K has been also observed. DCs with K between 0.5
and 0.75 (i.e. Lc between 40 and 55 µm) at λ = 1.55 showed a variability of about
±0.03 for wavelength variations of ±10 nm.

This Section concludes the description of the first basic set of BBs. In the next
Section, the ring resonator (RR) will be rapidly reviewed as a first example of appli-
cation of the BB model. The RR has been chosen since it is a fundamental device for
the realization of optical integrated circuits.

2.3 ring resonator

Ring resonators constitute an important BB for the realization of integrated optical
circuits [78–81]. Geometries including one or more RRs have been proposed for
the realization of various functionalities for the optical signal processing such as
for example filtering, modulation, mux/demux, routing, buffering and switching
[5, 37, 61, 82–88]. Due to their importance they have been widely studied during the
years and their properties and functionalities are well described in many papers and
textbook (see for example [38, 89, 90]). However, it is useful now to perform a brief
review on the RR architecture and characteristics, focusing on the ones that will be
useful in the following of this thesis.

RRs are based on the coupling of a circular waveguide with one or two straight
waveguides, sketched respectively in Fig. 2.6a and Fig. 2.6b. They grey boxes in
both figures represent phase shifters that allow, as will be clear later, the rigid shift in
wavelength of the device spectral characteristics. The first of the two configurations

(a) (b)

Figure 2.6.: (a) All-pass and (b) add-drop ring resonator sketch.

is known as all-pass RR while the latter as add-drop RR. The reasons of this name
will be clarified in the following subsections. Note that the term ring resonator
refers by definition to structures with coupling section lengths Lc = 0. For Lc >

0 the correct definition is Racetrack Resonators. In this Section however as also
sometimes in literature, no distinction will be made between the two, being the
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working principles and functionalities equal. The same acronym (i.e. RR) will be
then employed to identify both devices.

The light inside a RR is partially forced to recirculate from the output port to the
input port. This functionality principle gives to the device an IIR behaviour [38].
The frequency response of a RR is periodical and at given frequencies, the so called
resonant frequencies, the light interfere constructively and it is trapped inside the
ring. The resonant frequencies of a RR satisfy the relation

βLr + ϕr =
2π

λ
ne f f Lr + ϕr = 2mπ, (2.4)

where m is a positive integer λ is the free space optical wavelength and Lr =

2Lc + 2πR is the ring cavity length. The spectral distance between two consecu-
tive resonances is usually called Free Spectral Range (FSR) and can be calculated
as [90]

FSRλ =
λ2

ngLr
or FSR f =

c
ngLr

, (2.5)

expressed respectively in the wavelength or the frequency domain and being c the
speed of light in vacuum. The unit delay T provided by the ring loop at each
roundtrip of the light is then inversely proportional to the filter periodicity being
T = 1/FSR [38]. It can be then shown that the filter group delay τg is proportional
to T [38]. Around the resonant wavelengths the phase nonlinear behaviour rapidly
varies and the group delay is enhanced with respect to that of a straight waveguide
of length Lr [89]. This group delay enhancement is also associated with an intra-
cavity power enhancement [89, 91].

Having summarized the main properties common to both the RR configurations
illustrated in Fig. 2.6 it is now possible to separately discuss the all-pass and the
add-drop resonator. In this view, the Z-transform notation and a pole-zero analy-
sis, typical of digital filters, can be exploited to present the device complex transfer
function and its dependence on the optical and geometrical parameters of the struc-
ture. [38]

2.3.1 All–pass Filter

As sketched in Fig. 2.6a, the All-pass RR is composed by a DC, two bent waveg-
uides having a π angle and a straight waveguide with the same length of the cou-
pling section Lc. To describe the DC coupler we can take into account the scat-
tering matrix defined in the previous Section considering identical waveguides (i.e.
∆β = 0). The RR losses can be grouped in the roundtrip loss factor γr = aγ where
γ = e−αLr include propagation and possible bend losses and a is the coupler loss
factor. Referring to the notation of Fig. 2.6a we can then define the waveguide to
ring amplitude coupling coefficient t = sin(κLe f f ) =

√
Kr, where Kr is the power
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coupling coefficient. Moreover, the ring to ring transmission amplitude coefficient
ρ = cos(κLe f f ) =

√
1− Kr. It holds |t|2 + |ρ|2 = 1.

The complex transfer function of this device can be then easily calculated by sum-
ming up the infinite series composed by all the contributions to the RRs response:

H(z) = aρ− at2γre−jϕr z−1
∞

∑
i=0

(ργre−jϕr z−1)n =

= a
(ρ− γre−jϕr z−1)

1− ργre−jϕr z−1 (2.6)

where z−1 = e−jβLr .
H(z) shows one pole at zp = γrρe−jϕr and one zero at zz = (γr/ρ)e−jϕr . The

complex variable e−jϕr rigidly rotates zp and zz of an angle ϕr on the complex plane
z. This translates in a rigid shift of the filter spectral characteristic in wavelengths.
We can then from now on consider ϕr = 0 for the analysis of the filter spectral
characteristics without affect the generality of the discussion. The pole zp lies always
inside the unit circle, thus making the filter stable. The zero zz, instead, can be
placed inside, outside or on the unit circle giving different properties to the filter
response:

• When γr > ρ (i.e. Kr > 1− γ2
r ), zz lies outside the unit circle and the filter

assumes a maximum phase response. An all-pass RR filter with this configu-
ration is also usually addressed as overcoupled. A particular case is observed
when γr = 1. The resonator transfer function is equal to that of a digital all-
pass filter [92], showing one pole and one zero placed at reciprocal positions
with respect to the unit circle.

• When γr < ρ (i.e. Kr < 1− γ2
r ), zz lies inside the unit circle and the filter

assumes a minimum phase response. An all-pass RR working under this con-
dition is referred as undercoupled.

• When γr = ρ (i.e. Kr = 1− γ2
r ), zz lies on the unit circle and the so called

critical coupling condition is satisfied. The filter response is identically zero at
the resonances.

To better understand the effect of the zz position with respect to the unit circle
on the filter response as well as underline the peculiarities of the different coupling
conditions of the resonator, we can observe the resonator response keeping ρ fixed
and varying γr. This behaviour is illustrated in Fig. 2.7 for an all-pass RR with
ρ = 0.8 and FSR= 3 nm. The power transfer function |H|2 is illustrated in Fig. 2.7a
while the phase response of the filter is illustrated in Fig. 2.7b. Note that the phase
is normalized to π and limited within the interval [−π, π]. We can start to analyse
the case of a lossless resonator (i.e. γr = 1). This is represented by the blue traces
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Figure 2.7.: (a) Transmission (|H|2) and (b) phase response of an all-pass RR with
Kr = 0.36 (ρ = 0.8) and FSR=3 nm, varying γr.

in Fig. 2.7. |H|2 (Fig. 2.7a) is equal to unity at all wavelengths and the filter phase
is nonlinear and periodical (Fig. 2.7b). This is the typical behaviour of a digital all-
pass filter [92]. The phase response shows rapid variations around the resonances
as highlighted in the insets of Fig. 2.7b. Values of the group delay τg larger than
that of a straight waveguide of length Lr are achieved at these wavelengths. The
optical wave is in fact trapped inside the resonator and sees a larger effective length.
As introduced at the beginning of this Section, an enhancement of the optical power
inside the resonator with respect to the input one [89] is then achieved.

By considering roundtrip losses different from zero (i.e. γr 6= 1) |H|2 shows
minima in correspondence of the resonances (see Fig. 2.7a). Maximum transmission
is instead achieved at the so called antiresonance wavelengths, where the condition
βLr = (2m + 1)π with m integer is satisfied. At the antiresonances the optical
wave sees an effective length smaller than Lr and consequently a smaller group
delay. This can be noticed by observing the slow variations of the phase around this
wavelengths for all the values of γr in Fig. 2.7b.

At the critical coupling condition (γr = ρ = 0.8 red trace in Fig. 2.7a) the filter
output power is identical to zero at resonances. The minima of |H|2 progressively
reduces in fact as the filter approaches the critical coupling from an overcoupling
configuration (i.e. zz approaches the unit circle from the outside as γr decrease from
1 to 0.8). This effect can be observed by looking at the green trace and the red trace
of Fig. 2.7a, representing respectively an overcoupled and a critically coupled lossy
resonator. The resonator values at the resonances instead progressively increase as
the filter pass from the critical coupling to the undercoupling condition (i.e. zz move
from the unit circle into it as γr decrease from 0.8). This effect can be observed
again in Fig. 2.7a by looking at the red trace and at the cyan trace, representing
respectively a critically coupled and an undercoupled resonator (i.e. with γr =

0.7 < ρ). The realization of all-pass resonator close to critical coupling is then of
interest if high extinction notch filters has to be developed.
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2.3 ring resonator

Focusing again on the phase response, it can be noticed that reducing γr in the
overcoupling region increases the phase slope around resonant wavelengths (as
shown by the blue and the green traces in the insets of Fig. 2.7b). The group
delay, and consequently the resonator power enhancement factor, increases in fact
as the critical coupling condition is approached. At critical coupling (red trace in
Fig. 2.7b) the filter phase shows an abrupt π variation around the resonances, lead-
ing to a singularity in the group delay. When the resonator is in undercoupling
condition (cyan trace in Fig. 2.7b), the phase slope around the resonances has op-
posite sign with respect to that typical of overcoupled resonators (blue and green
traces in Fig. 2.7b). Negative values of the group delay can be then observed. This
effect does not indicate any causality violation. Considering in fact pulse propaga-
tion, strong attenuation and envelope reshaping effects can cause apparent negative
velocities [93]. Considering now the power enhancement factor, it can be shown that
it progressively decreases as the filter configuration pass from critical coupling to
undercoupling. Close to critical coupling, the resonator shows the maximum value
of the power enhancement factor. This condition is then desirable when developing
devices to exploit nonlinear effects with low input optical power [94–96]. On the
other hand, it can be detrimental in complex filters based on resonators when linear
operations are the aim [59].

Up to know we have highlighted the all-pass RR properties under different cou-
pling regimes. We can now move to analyse another important figure of the res-
onator: the quality factor Q. The quality factor can be defined as Q = λ0/∆λ3dB

where ∆λ3dB is the 3 dB bandwidth of the resonance and λ0 is a resonant wave-
length. The analysis of this parameter will be then useful to understand how ∆λ3dB

varies with the losses and the coupling values. It is in fact clear that, by definition,
the higher Q is, the smaller ∆λ3dB becomes.

Q can be expressed with many different analytical formulations depending on
the selected approximation and formalism [62, 89, 97]. In this Section we followed
the approach of [89] that assumes |H|2 = 1 at the antiresonance (i.e. a low loss
resonator) and 3 dB bandwidth points close to λ0 (i.e. a narrow linewidth). These
assumptions are in fact widely taken into account in literature since they are veri-
fied for most applications. Moreover, the simplified equation that can be obtained
result useful in developing a brief but still general discussion. For the same reason
negligible coupler insertion loss (i.e. a = 1, γr = γ) is taken into account. Under
this assumptions the quality factor can be expressed as:

Q =
λ0π

FSRλ

√
γρ

1− γρ
. (2.7)

Eq. (2.7) shows that Q is then inversely proportional to the FSR. ∆λ3dB is in fact
proportional to the filter periodicity. The smaller the FSR is, the smaller ∆λ and
the larger Q are. Fixing now γ and the FSR we can notice that the larger ρ or, in
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other words, the smaller the coupling between the resonator and the waveguide, the
higher Q. For ρ = 1 the resonator is not coupled with the waveguide and Q = Qi

represents the so called intrinsic quality factor that is determined just by the losses
and the FSR. For the sake of completeness, when ρ < 1, Q is usually addressed in
literature as the loaded quality factor. Reducing the losses (i.e. increasing γ) allows
the wave to experience more roundtrips around the ring, increasing then its quality
factor. This appears clear from equation (2.7) and translate into a narrower linewidth
resonator. At critical coupling Q = Qi/2. This can be verified again from equation
(2.7) by noticing that under the assumption of low losses γ = e−αLr ≈ 1− αLr. From
this analysis we saw that the critical coupling condition not only provides maximum
extinction but also a narrow linewidth (i.e. high Q). Both these properties are useful
to realize a sensor [62].

The all-pass RR properties reviewed in this subsection will be then useful in view
of the following part of this thesis, in particular in Chapter 3 and 6. This subsection
has been also of use to introduce the Z-transform formalism for the description of
integrated optical filters. Although we illustrated the spectral and phase character-
istic of the all-pass RR over multiple FSRs, it is common to analyse the functionality
of a periodical filter just over one FSR. In this view, the complex variable z can be
expressed as z−1 = e−j2π f T = e−jΩT where f is the optical frequency and Ω is the
angular frequency. With this definition we have assumed ne f f ≈ ng. Although in
SOI the group index almost double the effective index (see for example Tab. 2.1),
this assumption can be justified by noticing that ne f f determines only λ0 while ng

determines the filter spectral characteristics. Note that FSR and T and thus the band-
width and the group delay are related to ng. When designing an optical periodical
filter we are more interested on its characteristics than on its λ0. The resonance posi-
tion will be in fact in turn different between the designed and the fabricated device
due to unavoidable fabrication tolerance effects and postfabrication tuning mecha-
nism will be required. Following this reasoning it is also common to express and
analyse the filter response as a function of the normalized frequency ν = ( f − f0)T
or the normalized angular frequency ω = 2πν, where f0 represent the resonance
frequency or, more generally, the filter central frequency.

2.3.2 Add–drop Filter

The typical geometry of an add-drop RR is sketched in Fig. 2.6b. Referring to the
notation of Fig. 2.6b we will assume from now on the port labelled with 1 as the
input port. The output labelled with 2 is then usually addressed as the Through port
while output 3 and 4 are usually called the Drop and the Add port respectively. This
device can be then viewed as an all-pass RR coupled to an output waveguide that
is parallel to the input one. It is composed by two DCs and two bent waveguides
having a π angle. To describe the directional couplers we can take into account, as
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in the former subsection, the scattering matrix defined in Section 2.2 considering
identical waveguides (i.e. ∆β = 0). We can then use the same notation employed
previously and the subscripts 1 and 2 to distinguish the input and the output DC.
With i = 1, 2, ti is the coupler to waveguide amplitude transmission coefficient, Kri =

|ti|2 is the power coupling coefficient and the ring to ring amplitude transmission
coefficient is then ρi =

√
1− Kri. It holds |ρi|2 + |ti|2 = 1. Taking into account

two sections of coupler losses in a roundtrip the loss factor is now defined as γr =

a2e−αLr . In order to obtain the filter transfer function we will from now on consider
Lc = 0. This means that the DC is assumed to be a point coupler where coupling
is provided just by the input/output transition regions. This assumption does not
affect the generality of the discussion developed here but the interested reader can
find details on the equations that takes into account Lc 6= 0 in [89].

With the described notation and assumptions, the complex transfer function be-
tween the input and the Through port of the filter is

H21(z) = a
ρ1 − γrρ2e−jϕr z−1

1− γrρ1ρ2e−jϕr z−1 , (2.8)

similar to that of the all-pass RR (see equation (2.6)). As in the previous subsection,
ϕr provides only a rigid shift of the spectral characteristic of the filter and will be
considered equal to zero from now on. The coupling provided by the output DC
can be viewed as an additive source of roundtrip losses for the wave circulating
inside the resonator. Assuming an equivalent roundtrip loss factor γrE = ρ2γr,
H21(z) is formally equal to the transfer of the all-pass RR discussed in the previous
subsection. Consequently, characteristics can be highlighted. In this case, the pole
of the transfer function placed inside the unit circle is at zp = γrE ρ1 while the zero is
at zz = γrE /ρ1. The ratio γrE /ρ1 determines whether the zero lies inside, outside or
onto the unit circle. Critical coupling (i.e. zero transmission at resonances) is then
achieved when γrE = γrρ2 = ρ1.

The complex transfer function at the Drop port of the filter can be then expressed
as

H31(z) = −a
t1t2
√

γrz−1

1− γrρ1ρ2z−1 . (2.9)

The expression of H31(z) has a single pole placed inside the unit circle at zp = γrρ1ρ2

and a zero placed at infinity. The resulting power transfer function |H31|2 is il-
lustrated in Fig. 2.8a considering, to simplify the discussion, ρ1 = ρ2 = ρ (i.e.
Kr1 = Kr2 = Kr). Fig. 2.8a shows the Drop port behaviour for three different val-
ues of ρ and two different values of γr in a resonator with FSR= 3 nm. The first
property that can be highlighted is the filter periodical and Lorentzian shaped be-
haviour. Maxima occur at the resonances while minima occur at the antiresonance
wavelengths. We can then pass to analyse the filter dependence on γr and ρ, con-
sidering first a lossless resonator (i.e. γr = 1). It can be noticed that increasing ρ
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Figure 2.8.: (a) Drop (|H13|2) and (b) Through (|H12|2) port transfer functions of a
RR add-drop filter with FSR=3 nm, γr = 1 (solid traces) and γr = 0.7
(dash-dotted traces) varying ρ1 = ρ2 = ρ.

(i.e. decreasing the ring to waveguide power coupling coefficient Kr) the filter se-
lectivity increases: the 3 dB bandwidth reduces and the off-band rejection, defined
here as the ratio between maximum and the minimum of the filter transfer function,
increases. By considering now γr = 0.7 it can be noticed that the losses affects more
the filter performance at the resonances. The additional insertion loss is higher at
the filter maxima. At resonance, the light is in fact trapped inside the resonator and
experiences more round trips. The same observations can be done for the Through
port characteristic that is illustrated in Fig. 2.8b for the same values of γr and ρ.
The insertion loss at the antiresonances is lower than the off-band rejection reduc-
tion. The second effect brought by a loss increase is the enlargement of the filter
3 dB bandwidth ∆λ3dB as highlighted in the previous subsection. The filter 3 dB
bandwidth can be in fact expressed as:

∆λ3dB =
FSRλ

π

1− γrρ1ρ2√
γrρ1ρ2

. (2.10)

As for the all-pass RR this parameter depends on the FSR and reduces as γr and/or
ρ increase (i.e. the losses increase and/or the coupling to the ring resonator Kr

reduces). Finally, we can then notice that last port to be analysed, the Add port, is
theoretically isolated when an input wave at port 1 is assumed.

The properties of the add-drop RR described so far make it then suitable to per-
form WDM routing [11, 61]. Assuming a WDM spectrum at the considered input
port, the desired channel can be selected and routed (dropped) at the Drop port.
In this case, maximum extinction at the Through port would be desirable. Critical
coupling condition represents then a suitable choice for the design of such a filter.
Moreover, an input signal at the Add port can be added to the incoming spectrum.
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Having reviewed the properties of ring resonators we can now move to the de-
scription of the second important device that can be realized using the first basic set
of BB defined in this Chapter: the Mach-Zehnder interferometer (MZI).

2.4 mach-zehnder interferometer

The Mach-Zehnder interferometer is another fundamental device for the realiza-
tion of optical integrated circuits able to process signals on chip. As the RR, it can
be employed for modulation, switching, mux/demux and filtering [25, 38, 98–101]
but also for detection schemes of differential phase encoded signals [60, 102, 103].
Moreover, the Mach-Zehnder interferometer geometry can be employed for the real-
ization of couplers with a power coupling coefficient that can be tuned [101,104–106]
or having a constant value over a broad spectrum [107, 108].

A sketch of the typical MZI geometry is illustrated in Fig. 2.9. It is based on

Figure 2.9.: Sketch of a Mach-Zehnder interferometer.

two power splitting devices (DCs in this case) at the input and at the output of the
device with a power slitting ratio of Kc1 and Kc2 respectively. The two couplers are
connected by two arms having an optical path length difference ∆L. The length L
will be then addressed from now on as the common path length. A phase shifter
can be then realized on one of the two arms in order to tune the devices spectral
characteristic. Depending on ∆L the MZI can be employed as a filter or a tunable
coupler. In both cases the Z-transform approach can be employed for the description
of the device behaviour [38].

For values of ∆L 6= 0 the MZI can be addressed as unbalanced or asymmetric. In
this case an input signal at either one of the two ports (i.e. X1 = 1 and X2 = 0 or vice
versa in Fig. 2.9) is split between the two arms of the device and then recombined at
the output. In other words, the input signal is made interfere with a delayed copy
of itself. This working way gives to the unbalanced MZI a Finite Impulse Response
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(FIR) filter characteristic. The device transfer functions can be calculated through
the transfer matrix method as follows[

Y1

Y2

]
=

[
H11(z) H12(z)
H21(z) H22(z)

] [
X1

X2

]
=

= γe−jβL

[
c2 −js2

−js2 c2

] [
γmze−jϕmz z−1 0

0 1

]
×

×
[

c1 −js1

−js1 c1

] [
X1

X2

]
(2.11)

where si =
√

Kci and ci =
√

1− Kci with i = 1, 2 represent respectively the ampli-
tude transmission and coupling coefficients of the input and output DCs, z−1 =

e−jβ∆L and γmz = e−α∆L represents the amplitude loss factor related to the extra
path in the longer MZI arm. γ and e−jβL are then respectively the amplitude loss
factor and the phase term related to the mode propagation through the common
path length L. It can be noticed that this two latter elements described adds to the
transfer functions a constant insertion loss and a constant group delay. These two
properties are then not of interest in the description of the MZI transfer functions
properties and will be considered equal to unity from now on.[

H11(z) H12(z)
H21(z) H22(z)

]
=

[
c1c2γmze−jϕmz z−1 − s1s2 −j(s1c2γmze−jϕmz z−1 + c1s2)

−j(c1s2γmze−jϕmz z−1 + s1c2) −s1s2γmze−jϕmz z−1 + c1c2

]
.

(2.12)
To simplify the discussion we will consider from now on X1 = 1 and X2 = 0. In
this case H11(z) and H21(z) represents respectively the Through and the Cross port
transfer functions. Both functions show one zero. For H11(z) the zero is placed at
zzT = (c1c2γmz/s1s2)e−jϕmz while for H21(z) is placed at zzC = (−s1c2γmz/s1c2)e−jϕmz .
In order to analyse zzT and zzC we can for now neglect e−jϕmz , common to both
zeroes. It in fact provides only a rigid rotation of their position. When ϕmz = 0,
zzT and zzC are placed at the opposite side of the real axis of the complex plane
z. Maximum transmission (i.e. constructive interference) at the Through port and
consequently minimum transmission (i.e. destructive interference) at the Cross port
occurs when z is real and negative. In other words, this condition is satisfied for
wavelengths at which the phase difference between the two paths β∆L = (2m + 1)π
with m integer. H21(z) shows then minima equal to zero when zzC is on the unit
circle. This implies s1c2γmz=s1c2 that in the lossless case (i.e. γmz = 1) can be written
as Kc1 = Kc2. Destructive and constructive interference respectively at the Through
and the Cross port is instead obtained when z is real and positive. In other words,
this condition is satisfied for wavelengths at which the phase difference between
the two paths β∆L = 2mπ with m integer. H11(z) shows then minima equal to zero
when zzT is on the unit circle. This implies c1c2γmz=s1s2 that in the lossless case (i.e.
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γmz = 1) can be written as Kc1 = 1− Kc2. Minima equal to zero at both ports can be
then obtained for γmz = 1 when Kc1 = Kc2 = Kc = 0.5 (i.e. designing input/output
3 dB couplers).

Under these assumptions and using Eq. (2.11), the power transfer functions can
be written as

|H11|2 = sin2(
β∆L + ϕmz

2
), (2.13)

|H21|2 = cos2(
β∆L + ϕmz

2
). (2.14)

Through and Cross port transfer functions show a sinusoidal characteristic with a
periodicity (FSR) that can be calculated as

FSRλ =
λ2

ng∆L
or FSR f =

c
ng∆L

, (2.15)

for the wavelength and the frequency domain. The unit delay given by the extra
path length ∆L is again defined as in the RR case as T = 1/FSR. From equations
(2.13) and (2.14) we can also notice that a variation of ϕmz provides a rigid translation
of the device spectral characteristics.

The power transfer functions |H11|2 and |H21|2 of a lossless Mach-Zehnder in-
terferometer with ϕmz = 0 and FSR= 1.5 nm are illustrated as a function of the
wavelength in Fig. 2.10. The filter 3 dB bandwidth at both ports is then equal to

Figure 2.10.: |H11|2 (blue trace) and |H21|2 (red trace) of a lossless Mach-Zehnder
interferometer with FSR= 1.5 nm.

FSR/2 in the considered situation.

In this Section we highlighted that the MZI can be viewed as a first order FIR
filter. On the other hand, the RR filter presented in the previous Section is a first
order IIR filter. It can have a transfer function with a single pole or with a pole and
a zero. Pole and zeroes of these two first order filters can be designed by choosing
suitable functional and consequently geometrical parameters. By combining these
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devices is it then possible to design higher order filters with the desired response
as proposed for example in [38, 99, 109–112].

Finally, it is worth to highlight that when ∆L = 0 the MZI can be used as a tun-
able coupler. In this case the MZI can be addressed as balanced or symmetric. By
considering equations (2.13) and (2.14) the power coupled by the MZI normalized
with respect to the input X1 can be expressed as K = |H21|2/(|H11|2 + |H21|2) =

cos2(ϕmz/2). A variation of ϕ form 0 to π makes K vary from 0 to 1. This solution,
described in detail in [38], is widely used in SOI [26, 110, 111, 113–117] to obtain
the required device flexibility or counteract fabrication tolerances. An alternative
solution to this scheme, offering more compactness and lower losses, has been de-
veloped during this thesis and will be presented in the next Chapter.

2.5 conclusions

In this chapter, a first set of basic BB for the SOI platform has been illustrated. It
is composed by straight/bent waveguides and directional couplers.

Regarding the SOI straight waveguide BB, an already optimized and character-
ized geometry was available at the beginning of this doctoral work and its optical
parameters have been presented. The cross sectional dimension of the silicon waveg-
uide core is 480× 220 nm2. A minimum curvature radius allowing to describe the
bent waveguide with the same model and parameters of the straight waveguide (i.e.
with negligible bend and transition losses) have been set equal to R = 10 µm. This
parameter has been found through considerations on the bend modes simulated
with a commercial FEM mode solver. Some important properties of the modes
sustained by SOI waveguides varying their geometry have been also reviewed. The
aforementioned mode solver has been employed to design devices based on straight
waveguides with geometries or operational wavelengths different form the those de-
fined in the BB.

Regarding the DC, the model and the results of the characterization have been
presented and discussed. In particular, the extracted values of the CMT coupling
coefficient have been used to define the relative BB in the framework of the project
SAPPHIRE. A variability of the coupled power in the order of 10% have been mea-
sured for nominally identical devices. Postfabrication tuning methods or the design
of complex devices robust to these variations are then required.

This set of basic BBs will be then extended in the following of this thesis in order
to allow the realization of circuits with more functionalities. In particular, a novel BB
based on the DC and allowing to tune its power splitting ratio will be presented in
the next Chapter. This BB is realized with an heater asymmetrically placed respect to
the DC gap, allowing the control of the phase mismatch ∆β between the waveguides
of the DC and consequently the amount of coupled power. This device is of interest
not only to counteract fabrication tolerances, but also for the design of integrated
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optical circuits with flexible functionalities. First order filters like RRs and MZIs,
reviewed at the end of the Chapter, are in fact based on DCs and their properties
depends on the power splitting ratio provided by the coupler.
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3

A N O V E L B U I L D I N G B L O C K : A T U N A B L E C O U P L E R

3.1 introduction

In the previous chapters the first set of basic BBs used to realize complex pas-
sive systems in SOI have been reviewed. Results of their characterization have also
been described. Finally, the importance of the realization of PICs devices with post-
fabrication tuning mechanisms has been highlighted. In this Chapter, attention will
be given to the design and the characterization of a novel and compact coupler
with tunable split ratio. This class of devices are in fact important BBs that can be
employed for many different purposes, including the compensation of fabrication
tolerances effects [110], the development of reconfigurable PICs [26,111,113,118,119],
switching [120], optical modulation [121] and lasing [122]. In addition, they can be
employed to control the critical coupling condition [123]. As reviewed in Section
2.3 this condition is of great interest in case of sensing [62], nonlinear [94, 95] and
filtering [115] applications. This explains why tunable integrated power-splitting
devices have been deeply investigated since the early stages of integrated optics.
They can be realized through thermally or electro-optically actuated directional
couplers [124], asymmetric waveguide junctions [125] and MMI couplers [126, 127].
Actuators can be also based on MEMS [128–130] and optical gradient forces [131].

In silicon photonics the most common approach to realize a tunable coupler ex-
ploits a thermally actuated balanced Mach-Zehnder interferometer [26,110,111,113–
117]. As illustrated in Section 2.4, this solution combines easy design and a wide
tuning range (theoretically form 100% to 0%) with a moderate electric power con-
sumption (i.e. just a π shift of one arm phase is required). However, the MZI
tunable coupler is based on a pair of 3 dB splitters. This leads to the realization of
devices usually longer than 100 µm and with higher insertion loss. For example, if
we consider 0.06 dB as the typical loss figure of the exploited SOI platform evanes-
cent couplers (see subsection 2.2.2) and 0.16 dB/turn as the typical RR filter round
trip loss [77], the insertion of other two 3 dB couplers almost double the round trip
loss figure.

The tunable directional coupler (TDC) described in this chapter has been con-
ceived with a new topology, which is more compact and exhibits lower losses than
the previously described MZI based solution, while keeping a reasonably low power
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consumption. The device is based on a single silicon photonic DC and is driven by
the transverse temperature gradient induced by a laterally shifted heater. The ther-
mally induced phase velocity mismatch between the coupled modes of the silicon
waveguides allows for the device tuning. The position of the heater and the DC
cross section are optimized through systematic 2D thermo-optical simulations to
maximize the tunability range, while reducing both footprint and electric power
consumption. The tool employed to simulate the TDC behaviour takes into account
the temperature dependence of the electro-optic coefficient as well as a reduced ther-
mal conductivity of the overcladding with respect to the bulk SiO2 undercladding.
Finally, the device behaviour is experimentally characterized showing good agree-
ment with simulations and good performance in the optimized configuration.

3.2 the tunable coupler

3.2.1 Geometry and Functionality

The cross sectional sketch of the proposed device is shown in Fig. 3.1a. The
standard SOI platform 480 × 220 nm2 silicon core waveguide on a 2 µm buried
oxide (BOX) under-cladding and a 700 µm bulk silicon substrate is employed. Two
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Figure 3.1.: (a) Sketch of the TDC cross section.(b) 2D thermal FEM simulation of
the silicon TDC cross section.

straight waveguides are spaced by a gap distance, g, and the NiCr heater is placed
on top of the overcladding at a distance, d, from the centre of one of the coupled
waveguides. Finally, the heater length was designed to be equal to the straight
coupling section Lc.

From Eq. (A.41) it is possible to express the power K coupled between the waveg-
uides of the TDC and normalized to the input power as K = |κ|2

S2 sin(SLe f f )
2, where

S =
√
(|κ|2 + ∆β2/4), κ is the coupling coefficient, ∆β = 2π∆n/λ is the phase mis-

match term and λ is the free space optical wavelength. The tuning of the phase
mismatch term allows then the control of the coupled power.
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An example of the device behaviour is shown in Fig. 3.1b, which reports the
temperature distribution in the transversal section of the device for PD = 34.5 mW,
Lc = 74 µm and g = 300 nm simulated with COMSOL Multiphysics. Switching on
the heater induces an evident transverse temperature gradient ∆T proportional to
the dissipated electric power PD. The SiO2 overcladding acts in fact as a thermal
insulator between the two waveguides having thermal conductivity of about 100
times smaller than that of Si [27, 28]. In this example, the heater temperature Th =

385 ◦C produces a temperature gradient ∆T = 38 ◦C, evaluated as the difference
between the average temperatures in the waveguide silicon cores (165 ◦C and 127 ◦C,
respectively). This provides, due to the thermo-optic effect, an extra effective index
difference ∆nth between the two waveguides that adds to the intrinsic one, ∆n.

In order to perform this simulation and the ones that will be presented in the
following, a thermal conductivity of 163, 1.38, and 1 W/(m ·K) for Si, SiO2 BOX,
and oxide overcladding layers, respectively [27, 28] have been assumed. Room tem-
perature (25 ◦C) was fixed at the boundaries of the 40 µm× 83 µm computational
window. Regarding the thermo-optic coefficients, KTSiO2

was fixed at 10−5 and the
temperature dependence of KTSi [132] was taken into account.

The effect of the induced thermal gradient over the device can be observed in
Fig. 3.2 where the electric field principal component of the two supermodes of the
structure is plotted for different values of PD. When PD = 0, the first (Fig. 3.2a)
and the second (Fig. 3.2b) supermodes show respectively the typical symmetric
and antisymmetric behaviour of a synchronous coupler. When PD is increased to
25 mW, the coupler starts to be asynchronous as indicated by the mode profile of
the supermodes in Fig. 3.2c and Fig. 3.2c. At PD = 50 mW (Fig. 3.2e and Fig. 3.2f),
the two waveguides are almost decoupled and the supermodes tend to resemble the
modes of the single waveguides.

Having illustrated the geometry, the simulation tool and the main features of the
novel proposed structure under analysis, it is now possible to describe the design
flow followed to optimize the device tuning efficiency.

3.2.2 Design

The dependency of K versus PD can be calculated applying Eq. (A.41). This
equation depends on the ∆n between the two modes of the single waveguides. The
two modes have then to be then computed separately. This can be done with a three
step simulation process. In the first step the calculation of the thermal profile in the
presence of both waveguides is done (see Fig. 3.1b). In the second step, a mode
solver is employed for a geometry that includes the previously calculated thermal
profile and just one of the two waveguides. The third step is similar to the second
one considering the other waveguide. In Eq. (A.41), the values of κ extracted during
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2.: Electric field principal component (Ex) of the: (a) First (Symmetric) and
(b) Second (Antisymmetric) supermode of the coupler for PD = 0; (c)
First and (d) Second supermode of the coupler for PD = 25mW; (e) First
and (f) Second supermode of the coupler for PD = 50mW;

the DC characterization part of this work (see 2.2.2) have been used. Moreover κ

has been assumed independent from PD. In other words, it has been assumed that
the mode profile has negligible variations when PD changes. Finally, as illustrated
in subsection 2.2.1, the effective length Le f f = Lc + 2Ltr have been considered in
(A.41) instead of just Lc. Bend-bend input/output sections with R = 20 µm have
been assumed in all simulations.

The tuning efficiency (i.e. the amount of coupled power reduction for a given
PD) depends in principle on four geometrical parameters: H, d, g, Lc and on the
intrinsic phase mismatch between the two waveguides (∆n). The latter is related to
the waveguide width difference (which may be designed on purpose or result from
fabrication tolerance effects). The optimization of the device requires the investi-
gation on which combination of the cited parameters gives the best performance.
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3.2 the tunable coupler

The overcladding height H is however fixed by the exploited silicon platform and
consequently can be considered constant (900 nm in our simulations).

The tuning efficiency dependence on the heater lateral shift d and on the coupler
gap g is analysed first. This can be done by comparing the performance of TDCs
having different d and g but the same intrinsic ∆n and the same coupled power K
when PD = 0. We selected three synchronous couplers (∆n = 0) designed to couple
100% of the power (K = 1) when no electrical power is dissipated over the heater.
The minimum gap was set to 200 nm, a value chosen considering the technologi-
cal possibility to guarantee good gap filling and consequently good coupler values
repeatability. The maximum gap was set to 300 nm in order to work with TDCs
having compact size. As discussed in subsection 2.2.1, the larger is g the lower is κ

and consequently the length of the coupling region Lc required in order to achieve
a given K becomes longer. The third gap was then set to 250 nm. Performance are
in this case evaluated evidencing the changes of the effective index difference ∆nth

normalized to ∆nth0, the amount of effective index difference necessary to switch
off the coupler (i.e. to pass from K = 1 to K = 0). With ∆n = 0 and K = 1 (i.e.
κLe f f = π/2) it can be in fact easily derived from Eq. (A.41) that the coupled power
depends on ∆nth/∆nth0, with ∆nth0 = λκ

√
3/π. TDCs with larger κ (i.e. smaller g)

require then larger values ∆nth to obtain a given coupling variation.

Figure 3.3.: Normalized thermally induced effective index difference versus d for
three TDCs with g = 200 nm (blue curve), 250 nm (red curve), and
300 nm (black curve). The length of the coupling region Lc is chosen
to have K = 1 for PD = 0. Heater temperatures Th refer to the case
d = 0.6 µm.

Fig. 3.3 shows the simulated performance as a function of d of the three consid-
ered TDCs for two different values of PD. Each coupler is represented by a different
colour. Different traces with the same colour corresponds to different values of PD.
Results are quite interesting and look promising for setting up a simple and general
design procedure. Curves in fact group in bundles depending basically only on
the dissipated power. The lower bundle corresponds to the results obtained with a
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dissipated power PD = 16 mW. In this case maximum tuning efficiency (i.e. larger
∆nth/∆nth0) is reached for d of about 0.6 µm. Moreover, it is possible to notice that
the tuning efficiency is almost independent on the coupler gap. As introduced pre-
viously, smaller gaps are associated to smaller values of Lc. The same PD dissipated
over a shorter length results then in a larger heater temperature Th. Consequently,
a larger value of ∆nth is achieved. However, it should be noted that a lower bound
exists for Lc, set by the fuse temperature of the heaters.

Increasing the dissipated power PD to 29 mW, (upper bundle of curves in Fig.
3.3), the same conclusions can be drawn.

Though the figure reports only two examples concerning PD = 16 and 29 mW,
these results are general. A maximum tuning efficiency is always reached for d of
about 0.6 µm, no matter on the value of the dissipated power. The maximum is
rather flat, indicating that the index change is expected to change not so much for
varying d. Moreover, the gap g does not significantly affect results. The ensemble
of these features allows a robust design and fabrication procedure. The precision
in the mask alignment during the fabrication process can in fact be as good as few
nanometers (50 nm at very most) making the device almost insensible to heater
positioning fabrication tolerances.

It is now possible to analyse the behaviour of the TDCs with a fixed value of the
gap (g = 300 nm) and of the heater lateral shift (d = 0.6 µm) and varying Lc (i.e.
varying K when PD = 0). In Fig. 3.4, the simulated K of four synchronous TDCs
(∆n = 0, solid lines) for several lengths of the coupling region Lc = 41 µm (red),
52 µm (blue), 57 µm (orange), and 74 µm (black) are compared. For all these devices

Figure 3.4.: Simulated K versus PD of four synchronous TDCs with lengths of the
coupling region Lc = 41 µm (red), 52 µm (blue), 57 µm (orange), and
74 µm (black). The dashed-dotted line show the performance of an
asynchronous TDC (∆n = 0.005) with Lc = 74 µm. All the devices have
g = 300 nm and d = 0.6 µm.

K can be reduced by about three times with PD varying from 0 to 35 mW. More
than 50 mW are required to make K smaller than 0.05. Note that the absolute K
reduction for a given PD reduces with the length of the coupler (i.e. with the value
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of K when PD = 0). The design of couplers with low values of K can then lead
to highly inefficient devices. Moreover, due to the small length required to design
such couplers they may reach the fuse temperature of the heater before showing
any appreciable K variation. To give a practical example, the limit value of PD/Lh,
which is in this case equal to PD/Lc, experimentally found during this work and
described in Section 1.4 can be used. For a TDC with Lc = 41 µm the maximum
safe PD would be equal to about 24.6 mW. This would limit this coupler tuning
range between K = 0.48 and K = 0.3.

The low efficiency of the described synchronous couplers (∆n = 0) is suggested
by Eq. (A.41), stating that, for these devices, the derivative of K versus ∆β (that
is, versus PD) vanishes at a small PD. The tuning efficiency can be increased by
designing asynchronous TDCs (∆n 6= 0) in order to steepen the K–PD characteristic.
The grey dashed-dotted trace in Fig. 3.4 shows the measured and simulated per-
formance of an asynchronous TDC with the same g, d, and Lc parameters of that
indicated by the black curve. The only difference is that one of the two coupled
waveguides is narrowed to w = 477 nm in order to have an initial ∆n = 0.005. Due
to this intrinsic phase mismatch, the tuning curve decreases linearly at small PD

with a K–PD slope of 0.021 mW−1. Less than 32 mW are now required to bring K
from 0.7 to 0.05.

Once the device numerical optimization has been performed, a set of devices has
been fabricated to analyze their performance and their agreement with simulations.
The analysis of the results will be illustrated and discussed in the next Section.

3.3 fabricated devices

3.3.1 Characterization

In order to test the TDC performance a set of racetrack resonators (RRs) in all-pass
filter configuration, such as that shown in Fig. 3.5, has been realized. The K values

Figure 3.5.: Optical microscope top-view photograph of a silicon TDC embedded in
an integrated RR all-pass filter.

were extracted from RRs with a radius of 20 µm, a round trip geometric length Lr =

270.5 µm and λ around 1.55 µm using the device analytical model (i.e. Eq. (2.6)).
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This procedure allows for accurate extraction of the coupling coefficient with respect
to a simple evanescent coupler configuration. The latter in fact relies on the equal
performance of the two outputs since the power at one port is usually normalized
with respect to the sum of the power at the two ports of the device. Any variation
from this condition could lead to erroneous evaluation of the coupling coefficient.
Fig. 3.6 shows the good matching between fitting and the measured response for
two different coupling conditions of the resonator. Fitting was performed using
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Figure 3.6.: Fitting of RRs normalized transmission characteristic with the analytical
model. (a) K = 0.07, γ ≈ 0.97. (b) K = 0.55, γ ≈ 0.98.

the nlinfit function of the commercial software Matlab, leaving the power coupling
coefficient of the DC K and the field roundtrip loss factor γ as free parameters.
Errors between the analytical model and the measured trace are minimized in the
least square sense. In Fig. 3.6a, the fitted K is equal to 0.07 and the fitted γ ≈ 0.97. In
Fig. 3.6b instead, the result of the fitting procedure is K = 0.55 and γ ≈ 0.98. It can
be noticed that the shallower the notch the more the RR characteristic is affected by
fluctuations in the transmission spectra, leading to a slightly less accurate estimation
of the coupling coefficient. Averaging over different FSRs as well as fixing γ can be
used to improve the accuracy in the power coupling coefficient estimation. It is in
fact reasonable to assume that on the same RR γ is independent from the coupling
condition set by the TDC. The loss value can be taken from measurements where
the coupling condition provides shallow notches. Up to now, nothing has been
said about the uniqueness of the solution found by the described fitting procedure.
It can be in fact highlighted that filters having the same poles but zeroes placed
in reciprocal positions with respect to the unit circle show the same magnitude
response [92]. As illustrated in subsection 2.3.1, an all-pass RR has one pole in zp =

γρ and one zero in zz = γ/ρ with ρ =
√

1− K. The same measured transmission
can be then fitted with the squared magnitude response of an overcoupled (γ > ρ)
and of an undercoupled (γ < ρ) resonator having the same zp. However, unreliable
results of the fitting procedure can be identified evaluating the resulting roundtrip
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losses. In such cases losses are considerably different with respect to the typical
values given by the technology. The corresponding solution can be then discarder
and the fitting performed again with different intial values for the free parameters
and/or over a wavelength domain with different dimensions.

As an example of the device spectral response, the wavelength domain charac-
teristic of one of the fabricated RRs when the K value of the TDC (g = 300 nm,
Lc = 74 µm) is thermally tuned is showed in Fig. 3.7a. Moreover, Fig. 3.7b
shows the relative values of K and of the Q factor. The average round-trip loss

(a)

(b)

Figure 3.7.: (a) Wavelength domain response of a RR all-pass filter for increasing
power PD dissipated in the TDC and (b) relative K and Q factor values:
overcoupling (PD = 0, K = 0.7, blue curve R1), critical coupling (PD =
30.4 mW, K = 0.06, red curve R2) and undercoupling condition (PD =
33.9 mW, K = 0.022, green curve R3).

is about 0.26 dB/turn, corresponding to a field round-trip loss factor γ = 0.97.
When no power is dissipated in the heater (PD = 0, blue trace R1), K = 0.7 and
the resonator is highly overcoupled (K >> 1− γ2) and the Q factor is about 4200.
When the heater temperature increases, the power coupled into the RR decreases
because of the thermally induced ∆nth. As a result, the notch depth progressively
increases until the critical coupling condition is reached (PD = 30.4 mW, red trace
R2). Here K = 0.06 ≈ 1− γ2, the notch depth is maximum (≈ 33.3 dB) and the Q
factor is in the order of 40000. A further increase of PD undercouples the resonator
(PD = 33.9 mW, green trace R3), so that the notch depth monotonically decreases as
well as K, showing a Q factor of about 57000.

53



a novel building block : a tunable coupler

This example of the device characterization shows already the potentials of the
proposed TDC. The precision in the critical coupling condition setting is demon-
strated by the really small minima of the RR resonance notch. Note that this value
is also limited by the receiver resolution in wavelength (1pm). Moreover the Q fac-
tor has been tuned of one order of magnitude. This feature could allow in a PIC the
on and off switching of RR nonlinear effects.

3.3.2 Heater position and Coupler gap

The characterization method described in the previous section allowed analyzing
the properties of the realized devices. The first investigated property is the tuning
efficiency dependence on the heater position. This has been done via the realization
of different tunable couplers with the same nominal waveguide widths w = 480 nm,
length Lc = 74 µm and gap g = 300 nm but with different values d of the heater
position. Lc was set in order to obtain complete power transfer between the two
waveguides (i.e. K = 1). Before describing the experimental results it is important
to remark that resonators that are highly overcoupled (i.e. having large K values)
show shallow notches. Consequently, the larger the fluctuations in the transmission
characteristic of a device, the more the fitting of large K is unreliable. The maximum
experimental K that will be illustrated in the following is then limited by this issue
and varies form device to device.

It is now possible to look at Fig. 3.8 where, as predicted by the simulations,
the highest tuning efficiency is provided by the heater with the lateral shift d =

0.6 µm. In this situation, K is reduced down to 0.52 with PD = 29 mW. The same

Figure 3.8.: Measured K of four synchronous TDCs with g = 300 nm and Lc =
74 µm for d = −0.3 µm (green circles), 0 µm (blue circles), 0.6 µm (black
circles) and 1.5 µm (brown circles).

power dissipation leads to K = 0.57 for d = 0 µm and K = 0.68 for d = −0.3 µm,
respectively. It is also possible to notice that the efficiency decreases faster if the
heater position moves in the direction of the center of the coupler gap (placed at
d = −0.39 µm) than in the opposite direction. Fig. 3.8 shows in fact that similar
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efficiencies have been measured for d = 0 and 1.5 µm. To drop the efficiency at
that level from the maximum efficiency point (d = 0.6 µm) the heater position must
move by 0.6 µm in the direction of the gap and of 0.9 µm in the opposite direction
as predicted by the simulations. Furthermore it can be noticed that the efficiency
dependence on d is not particularly critical confirming the device robustness versus
tolerances on the heater positioning.

Once the tuning efficiency dependence on the heater lateral offset has been demon-
strated to be in agreement with simulations, it is now possible to verify experimen-
tally the tuning efficiency independence on the coupler gap. To this purpose four
synchronous TDCs have been then realized. Two of them have nominal K = 1 and
g = 200 or 250 nm and the others with nominal K = 0.5 and g = 200 or 300 nm.
The heater offset is fixed to d = 0.6 µm. In Fig. 3.9 one can see that TDCs with
the same nominal K, but different g, have almost the same efficiency, the small dif-
ference being due to fabrication tolerances in the DC waveguide widths [133] and
thus on the value of K for PD = 0. It is also possible to notice the device efficiency

Figure 3.9.: Measured K versus PD of four synchronous TDCs with nominal K = 1
(squares, g = 200 and 250 nm) and K = 0.5 (circles, g = 200 and 300 nm).
The heater offset is d = 0.6 µm.

independence on the solution order of eq. (A.41). The TDCs with K = 0.5 were in
fact designed with SLc = π/4 (black trace) and SLc = 3π/4 (grey trace).

Once the tuning efficiency dependence on the heater lateral shift as well as on the
coupler gap have been demonstrated to be in agreement with the simulations, it is
now interesting to analyze the performance of the fabricated devices in terms of the
coupled power variations as a function of the dissipated power.

3.3.3 Performance

In this section, the experimentally measured device performance will be com-
pared to the calculated ones shown in Fig. 3.4. Superimposing the measured points
to the simulated features, one gets the results shown in Fig. 3.10. Experimental
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Figure 3.10.: Measured (circles) and simulated (solid curves) K versus PD of three
synchronous TDCs with lengths of the coupling region Lc = 52 µm
(blue), 57 µm (orange), and 74 µm (black). Diamonds and the dashed-
dotted line show the performance of an asynchronous TDC (∆n =
0.005) with Lc = 74 µm. All the devices have g = 300 nm and d =
0.6 µm.

results agree well with the model, predicting that the maximum K can be reduced
by about three times with PD = 35 mW. Fig. 3.10 also shows that the tuning effi-
ciency can be increased if asynchronous TDCs are realized. By realizing one of the
two waveguides of the TDC with Lc = 74 µm and g = 300 nm with a cross section
width 3 nm narrower (w = 477 nm and ∆n = 0.005) it is possible to steepen the
tuning curve as illustrated in Fig. 3.10 by comparing the results represented by the
black circles and the black diamonds. The optimized device shows a linear decrease
also at small PD with a K − PD slope of about 0.021 mW−1. Less than 32 mW are
required to bring K from 0.7 to 0.05 and 36 mW must be dissipated to reduce its
value below 0.01.

Once the device optimization and characterization has been carried out at about
λ = 1.55 µm (see Fig. 3.7a), it is interesting to see how the device performance
varies with wavelength. In general the split ratio of standard evanescent couplers
have a wavelength dependence that is related to the coupler geometry. For example
longer couplers show larger wavelength dependence. Consequently, it is reasonable
to expect that the TDC performance shows this dependence as well, considering, as
shown in Fig. 3.10, that the TDC efficiency varies as the K values when PD = 0 vary.

This aspect has been analyzed for the optimized asynchronous TDC on a wave-
length span of about 16 nm. The results are shown in Fig. 3.11. In this case the
device performance are almost independent on the wavelength being the variations
inside the uncertainty bar in the measurements of K. The optimized device shows
then good performance also considering this particular aspect. These results are
good. However, one can say that they are generally valid only after a set of system-
atic measurements on different TDCs together with a phase shift control on the RRs
to allow the precise wavelength locking of the resonance has been carried out to
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Figure 3.11.: K versus PD of the optimized asynchronous TDC (∆n = 0.005) mea-
sured for λ around 1.55 µm (black circles), 1.42 µm (blue circles) and
1.58 µm (red circles) and with Lc = 74 µm, g = 300 nm and d = 0.6 µm.

extensively characterize both coupler and TDC performance variations over a wide
span of wavelengths.

The last aspect worth of investigation on TDCs concerns their response time. It is
known that for a single waveguide realized with the exploited SOI platform this fea-
ture is in the order of ten microseconds [49]. One may then wonder if the proposed
device, being based on a laterally shifted heater and on the thermal insulation effect
of the coupler gap, shows a slower response than that of a device where the heater
is placed exactly on top of the waveguide (phase shifter case) or not. Response times
of reconfigurable filter geometries based on both phase and coupling tuning such
as, for example, that presented in [26, 111], could be then limited (or not) by the
proposed TDC.

In order to obtain an estimation of this value for a TDC, the device response to
a step dissipated power change was studied by transient FEM simulations based
on the presented model. A synchronous device with Lc = 74 µm, g = 300 nm,
d = 0.6 µm and PD = 34.5 mW were considered. In Fig. 3.12 the temperature
variation ∆T of the two TDC waveguides as a function of time t is illustrated. The
temperature in the waveguide closer to the heater (∆T1, black circles, upmost curve
in Fig. 3.12) varies slightly faster than that of the other waveguide (∆T2, red circles,
intermediate curve in Fig. 3.12). The response time, defined as the time required
to pass from 10% to 90% of the ∆T steady-state value [28], is respectively about
6.4 µs and 6.8 µs. The waveguide position with respect to that of the heater can
be then considered not critical regarding the response time. It is now possible to
focus attention on the temperature difference between the two waveguides’ core
(∆T1 − ∆T2, blue circles, lowest curve in Fig. 3.12). The proposed TDC is in fact
tuned by varying this difference. The ∆T1 − ∆T2 steady-state value is 38 ◦C and the
calculated time response is of about 2.6 µs. The TDC activation time has then the
same order of magnitude of that of the single waveguides. These simulations allow
to conclude that, at least in the considered case, the proposed TDC would not limit
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Figure 3.12.: Temperature variation ∆T as a function of time of the waveguide closer
to the heater (∆T1, black circles) and of the waveguide farther from the
heater (∆T2, red circles) of a TDC with: Lc = 74 µm, g = 300 nm and
d = 0.6 µm for PD = 34.5 mW. Note that ∆T1 − ∆T2 (blue circles)
represents instead the temperature difference between the two waveg-
uides. ∆T90 indicate 90% of the asymptotic (i.e. steady-state) value of
the traces. At the right boundary of the figure the asymptotic value of
each trace is indicated over the trace itself.

the reconfiguration time of filters based on phase and coupling tuning. It is anyway
reasonable to generalize this result for different parameters of the TDC.

3.4 conclusions

In conclusion, a novel silicon photonic TDC driven by a transverse temperature
gradient induced by a laterally shifted integrated heater has been designed and
characterized through a systematic numerical and experimental investigation. It has
been demonstrated that the tuning efficiency is almost independent of the waveg-
uide gap distance and the optimum heater position to minimize power consumption
has been found.

Tuning efficiency can be increased by designing TDCs with an intrinsic phase mis-
match. This property have been successfully demonstrated in a 74 µm long device
where tunable split ratio from 0.7 to 0.01 requiring 36 mW power dissipation was
achieved. Moreover, it has also been demonstrated that the presented device allows
for a wide tuning of the RR Q factor (1 order of magnitude) as well as the precise
setting of the critical coupling condition for RR all-pass filters. In Chapter 6 the pre-
sented device will be also successfully employed to widely tune the functionality of
a novel reconfigurable filter.

Due to its small footprint, the proposed TDC is a valuable alternative to conven-
tional MZI based schemes in PICs where extremely compact tunable couplers are
required, such as in RRs with large free spectral ranges.
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4

B R A G G G R AT I N G S A N D G R AT I N G A S S I S T E D C O U P L E R S

4.1 introduction

The importance of the development of PICs on the SOI platform has been high-
lighted so far. A BB based approach to the design of the devices is fundamental
for the development of circuits with increasing complexity. Some of the most im-
portant BB for the realization of passive devices able to perform signal filtering and
routing have been characterized and made available for the SOI platform on which
this work is based (see Chapters 1 and 2). For some others, despite being widely
used and known in literature, a systematic characterization was missing.

In this Chapter, this characterization will be performed for two important BBs:
the Bragg grating and the Grating Assisted Coupler (GAC). Both these devices are
1−D periodic structure with periodicity along the propagation axis. Due to this
periodicity, such devices show a photonic bandgap around a characteristic wave-
length, the so called Bragg wavelength, where the mode can not propagate. At this
wavelength, coupling with the backward propagating modes is induced.

4.2 bragg gratings

Bragg gratings constitute, due to their wavelength selectivity and phase properties
[48,134,135], a basic building block for the realization of PICs. They can be employed
to realize narrow-band transmission filters [136–138] and Fabry-Pérot cavities [139],
for lasing [140–142], as sensors [143,144], for dispersion compensation [145,146] and
in general in devices where wavelength selective reflectors are needed [112, 147].
Many of the functionalities formerly described, widely employed in fibre and early
stages integrated optical technologies, have been recently demonstrated also in SOI.

The aim of the work described in this Section is the characterization of photonic
wire Bragg gratings to define a BB for the SOI platform in the framework of the
project SAPPHIRE. In this view, the first step is to define the periodic structure of
the device and the model describing its functionality. Then, the device characteriza-
tion can be carried out to provide the model parameters by fitting the model with
the measured spectra. In order to perform a more accurate fitting, the so called
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’cavitometric’ technique [49] is employed to retrieve the device transmission and re-
flection characteristics. The reflection provided by the cleaved facets at both ends of
the chip can in fact sensibly modulate the measured spectra, especially in reflection.
Once the device spectral characteristics have been retrieved, the model parameters
can be extracted with accuracy except for one: the insertion loss. This figure is
in fact usually the most difficult to be determined with precision because of the
low loss nature of SOI Bragg gratings. However, this parameter can be important
to determine the exact value of the optical power reflected by the grating. In the
following, considerations on the retrieved spectra are performed first to evaluate
an upper bound for this figure. This upper bound was indicated in the framework
of the project SAPPHIRE for the Bragg grating BB. After that, the analysis of the
group delay of the reflected beam is proposed as a technique to estimate with more
precision this figure. This Section concludes then with some comments on the de-
sign of such devices via the CMT (see Appendix A), widely employed in literature
to reduce the computational weight required by numerical techniques such as 3D
FDTD.

4.2.1 Geometry and Model

A sketch (top view) of the considered geometry is shown in Fig. 4.1, where
periodicity comes from a sinusoidal modulation of the waveguide’s sidewalls. The

Figure 4.1.: Bragg grating top view sketch.

dependence of the device width on the propagation coordinate z can be described
as w(z) = w0 + 2a sin( 2π

Λ z + π) where w0 is the average waveguide width, a is the
modulation amplitude and Λ is the modulation period. The average width equals
the width of the feeding and the output waveguides and will be then fixed to the
standard of the exploited SOI platform (i.e. 480 nm).

The device functionality and its reflection properties can be described through
the CMT (see Appendix A.5). Due to the low loss technology used in this work,
the lossless model derived from the CMT can be assumed first. In the next Section
it will be shown in fact that this model well fits the experimental results. The
insertion losses IR and IT, respectively inside and outside the device reflection band,
can be then estimated after the device characterization. The CMT model allows to
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4.2 bragg gratings

design the maximum reflection, the reflection bandwidth and its central wavelength
by selecting suitable values of Λ and of the grating length LG once the coupling
coefficient κ and the average waveguide effective index ne f f and group index ng are
known. The maximum reflection

RGλB
= tanh2(κLG) (4.1)

is achieved at the Bragg wavelength

λB = 2ne f f Λ (4.2)

and the grating bandwidth can be calculated by the means of equation (A.60) as

∆λ00 =
λ2

B
πng

√
κ2 + (π/LG)2. (4.3)

The three parameters on which the grating characteristic depend (κ, ne f f and ng)
are all functions of the modulation amplitude a. Regarding the coupling coefficient,
the higher is a (i.e. the perturbation of the straight waveguide in Appendix A.5)
the higher will be the value of κ. A higher value of the coupling coefficient allows
for the realization of more compact reflectors (see Eq. (4.1)) with larger bandwidths
(see Eq. (4.3)). Considering then ne f f and ng, it can be noticed that their dependence
on w is nonlinear (see [49] and Fig. 2.1b). Their average value diverges then from
the one of the average waveguide width increasing the value of a.

Bragg gratings can be then designed through the suitable selection of Λ and
LG once a is fixed and the characteristic parameters have been determined. To
this purpose we realized different devices with the described geometry and a =

5, 10, 15, 20 nm. Two of these amplitude modulations were chosen to be inserted
into the SAPPHIRE grating BB library: a = 5 nm (’Type A’ grating) and a = 20 nm
(’Type B’ grating) in order to allow the designer for the selection between smaller
and larger bandwidth reflectors. Note that a = 5 nm is close to the minimum
perturbation that can be successfully realized (i.e. 3 nm). The grating period was
fixed to 320 nm to obtain, in the hypothesis of a sinusoidal perturbation of the
effective index, a Bragg wavelength close to 1550 nm (i.e. λB = 1544.3 nm).

In the following subsection the characterization technique employed to extract the
necessary model parameters and the obtained results will be presented.

4.2.2 Linear characterization

Characterization technique

Transmission and reflection measurements of Bragg gratings can be easily per-
formed through an end-fire set-up scheme such as that described in Section 1.5.
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bragg gratings and grating assisted couplers

Typical measured spectra of a grating with a = 5 nm and a = 20 nm are illustrated
respectively in Fig. 4.2a and Fig. 4.2b. The reflected (RG, green trace) and the
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Figure 4.2.: Transmission (TG, red trace) and reflection (RG, greentrace) measured
spectra of a Bragg grating with: (a) a = 5 nm, LG = 66.72 µm; (b)
a = 20 nm, LG = 38.56 µm.

transmitted (TG, red trace) spectra show a superimposed modulation (see insets in
Fig. 4.2a and Fig. 4.2b) although modal adapters (inverse tapers) minimizing the
reflections given by the input/output facets of the chip were realized (see Chapter
1 and [29]. The modulation depth of the RG characteristic can be larger than 10 dB
covering the grating reflection spectral features. The modulation of TG is instead
not dramatic and Bragg gratings characteristic parameters such as κ, ng and λB can
be easily extracted from it. However, the retrieval of RG and TG is necessary to ob-
tain a more complete analysis of the device reflection properties as well as a more
accurate parameters extraction.

This can be done exploiting the so called ’cavitometric’ technique [49]. This tech-
nique is based on the analysis and the processing of the transmission and reflection
autocorrelation functions, respectively AT and AR. They are obtained by Fourier
antitransforming the measured transmission and reflection spectra and can be ex-
pressed as a function of the optical spatial coordinate zopt = zng = cτg, where z is
the spatial coordinate, ng represent the group index, c the speed of light in vacuum
and τg the group delay. In reflection this technique is known as Coherent Optical
Frequency Domain Reflectometry (C-OFDR) and is described in detail in [148].

The reflection autocorrelation function of a grating with a = 5 nm and LG =

66.72 µm (see Fig. 4.2a for the spectral characteristic) is illustrated in Fig. 4.3.
Note that in this case we have expressed AR as a function of the normalized spatial
coordinate z′ = zopt/Lcavopt , where Lcavopt is the optical length of the chip. In this
way it is easier to relate the autocorrelation function features to the paths of the light
inside the chip.
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4.2 bragg gratings

Figure 4.3.: Reflection autocorrelation function of a grating with a = 5 nm and LG =
66.72 µm.

Around z′ = 0, we can notice the ’DC’ component of the autocorrelation function
AR(0). This component contains the informations on the total reflected power com-
ing from all the possible reflection paths. Far from the Bragg reflection bandwidth,
it is reasonable to assume that the fibre to waveguide reflection dominates. Isolating
this component and Fourier transforming it is then possible to retrieve the value of
the input fibre to waveguide power reflection coefficient |rei|2.

For z′ > 0 different peaks exist above the bakcscattering noise floor [149]. These
components of the autocorrelation function are related to the two by two products
between all the possible reflection paths in the chip and occur at z values correspond-
ing to the half of their path difference. Close to z′ = 0.25 we can notice the term that
includes the grating complex impulse response hRG , equal to reit2

eie
−(2αz)hRG , where

tei is the input fibre to waveguide amplitude transmission coefficient and e−(2αz)

accounts for the propagation losses. In Fig. 4.3 this component is highlighted in
red and an IIR characteristic due to the grating reflection principles can be noticed.
By filtering this component we can access to both phase and amplitude informa-
tion of the grating, getting rid of the observed spurious modulations. At z′ = 1
the component related to the optical path of a wave experiencing the reflection of
the output facet and a double transmission of the grating can be observed. In the
range 0.5 < z′ < 0.75 we can then find components related to optical paths char-
acterized by roundtrips in the cavities formed by the grating and the chip facets.
By proper filtering of the autocorrelation function it is then possible to verify that
the strong modulation observed for RG is present just when both the DC and the
reit2

eie
−(2αz)hRG component are present. This indicates that the beating between the

fibre to waveguide and the grating reflection are the main cause of this detrimental
behaviour.

Having analysed AR(z′) we can now briefly analyse the transmission autocorrela-
tion function properties of the device. The same procedure adopted to analyse the
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bragg gratings and grating assisted couplers

reflection autocorrelation function can be applied for the transmission one consid-
ering now transmission instead of reflection paths. In Fig. 4.4 AT(z′) is illustrated.
AT(0), evidenced in red in Fig. 4.4, contains the total transmitted power related

Figure 4.4.: Transmission autocorrelation function of a grating with a = 5 nm and
LG = 66.72 µm.

to all the possible optical paths. Assuming, as verified also thanks to the cavitom-
etry, a good quality of the modal adapters (i.e. small reflection given by the chip
facets) the dominant contribution in this case is given by the direct path between the
source and the receiver. From this component we can then retrieve TG getting rid
of the interference pattern modulating the transmission characteristic. By Fourier
transforming the filtered characteristic it is possible to obtain the following product:
t2
eit

2
eoe(−2α(Lcav−LG))TG, where teo is the amplitude waveguide to fibre output transmis-

sion coefficient and Lcav is the geometrical length of the chip.

The observed interference pattern modulating TG is due to the compound cavity
system realized by the end facets of the chip and the grating. The presence of
the grating gives rise to extra light paths in transmission with respect to the case
where a simple waveguide is the DUT. We can in fact notice that the autocorrelation
function shows two components above the backscattering level between AT(0) and
AT(1) (component related to a light path that experience one chip cavity roundtrip
before exiting the chip from the output facet). The component close to z′ = 0.25 is
related to the cavity defined by the input facet and the grating while the component
close to z′ = 0.75 is related to the cavity defined by the grating and the output
facet. This brings to modulation depth of the transmission characteristic larger than
that occurring in the single waveguide case where just the facets reflectivity are
responsible for multiple transmission paths.

The described technique allows for the recovery of the grating power transmission
characteristic as well as its amplitude and phase reflection properties. In Fig. 4.5
the recovered RG and TG characteristic from the gratings spectra showed in Fig. 4.2.
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Figure 4.5.: Transmission (TG, red trace) and reflection (RG, green trace) spectra
retrieved with the cavitometric technique of a Bragg grating with: (a)
a = 5 nm, LG = 66.72 µm; (b) a = 20 nm, LG = 38.56 µm. Dashed lines
are the results of simulations with the lossless Bragg grating model and
the parameters extracted from the fitting procedure.

The grating reflection has been normalized with the retrieved value of |re|2. Both TG

and RG have been then normalized with respect to the maximum of TG assuming
tei = teo and negligible propagation losses. The grating properties can be now
easily analysed and the Bragg grating characteristic parameters can be extracted
from TG and RG by a fitting procedure employing the CMT lossless model. Fitting
was performed, as in subsection 3.3.1, using the nlinfit function of the commercial
software Matlab. Both gratings illustrated in Fig. 4.5 show an extinction ratio in
transmission at the Bragg wavelength of about 15 dB. The reflection characteristic
in Fig. 4.5a shows a 3 dB bandwidth equal to 8.7 nm, ∆λ00 = 10.95 nm and the
higher sidelobe at about −6.5 dB from the reflection maximum. The one in Fig.
4.5b shows instead a 3 dB bandwidth equal to 15.14 nm, ∆λ00 = 18.23 nm and the
higher sidelobe at about −4.2 dB from the reflection maximum.

Model parameters

In order to extract the grating characteristic parameters, devices with four dif-
ferent LG for each one of the considered values of the amplitude modulation were
realized. In Fig. 4.5 the dashed traces are obtained using the CMT lossless model
with the average values of the extracted parameters. The good agreement with the
recovered traces indicates both the reliability of the model as well as the on chip
performance uniformity of the gratings. The grating extracted parameters are sum-
marized in table 4.1 together with the value of ∆λ00 calculated through equation
(4.3) with κLG = π. Note that the considered κLG brings an RG ≈ 0.99 in a lossless
grating (see equation (4.1)).
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Table 4.1.: Bragg Grating Parameters

Type a[nm] κ[µm−1] ng λB/Λ σλB [nm] ∆λ00(κLG = π)[nm]

A 5 0.035 4.181 4.843 0.14 9.11

B 20 0.065 4.294 4.811 0.3 16.12

Regarding the Bragg wavelength, it can be noticed that both type of gratings show a
good on chip uniformity, being the registered standard deviation σλB always lower
than 0.3 nm. However, as stated in Section 4.2.1, gratings with different sidewall
modulations than those listed in table 4.1 were realized, measuring in some cases
λB variation as high as 1.7 nm. This value must be taken then into account when
gratings or more complex structures including gratings must be designed.

With the parameters listed in table 4.1 it would be in principle possible to design
gratings with the desired λB, bandwidth and reflection. However, the information
regarding the device insertion loss inside and outside the reflection band are still
missing.

The value of the insertion loss outside the grating stopband IT can be in princi-
ple estimated from the direct measurement of the device transmission characteris-
tic once the input/output taper performance have been characterized. The perfor-
mance of the modal adapters show however a poor repeatability on the measured
chip, making its accurate and direct measure not possible. Anyway, the character-
ized devices are subwavelength gratings. Far from λB their insertion loss IT should
not differ from that of a straight waveguide of length LG. Moreover, the selected
perturbations allow the realization of really compact devices. RG ≈ 0.99 can be
achieved with LG = 90 µm and LG = 48 µm if the ’Type A’ or the ’Type B’ grat-
ing are respectively considered. Considering typical propagation losses of about
3 dB/cm, the values of IT can then be reasonably assumed lower than 1 dB for both
types of gratings.

The insertion loss inside the grating stopband IR is more difficult to estimate. The
cavitometric technique exploited so far cannot provide the absolute value of the
reflected power with precision and some assumptions are required. Moreover, as
shown in Fig. 4.5, the lossless Bragg model well fits the measured spectra indicating
a low value of IR. In the following, the analysis performed in order to give an
estimation of the insertion loss at the Bragg wavelength will be presented.

In Fig. 4.5 TG and RG have been obtained assuming negligible propagation losses
and equal performance for the input and output chip to fibre coupling. In order
to give a first estimation of the grating insertion loss at λB we can maintain the
latter assumption but consider typical propagation losses (i.e. 3 dB/cm). Assuming
then that the propagation losses in transmission outside the grating stopband are
negligible (i.e. IT = 0), the value of IR can be calculated through the difference in
RG at λB between the losses CMT model simulations and the measured RG. In this

66



4.2 bragg gratings

case values of IR always lower than 1 dB and lower than 1.7 dB have been found
respectively for the ’Type A’ and the ’Type B’ grating.

At this point it can be natural to ask if the lossy Bragg grating model, derived
again from the CMT (see Appendix A.5), can be also employed to improve the
loss estimation accuracy. We can first compare the retrieved grating spectra with
the simulation performed with the lossy model, increasing propagation losses and
taking into account the parameters of table 4.1. Note that with this procedure we
are assuming as negligible the coupling losses between the waveguide mode of the
feeding waveguide and the Bloch mode of the grating. This assumption can hold in
first approximation due to the relatively small values of a under inspection at least
for the ’Type A’ grating.

In Fig. 4.6 the retrieved normalized TG and RG of the grating with a = 5 nm
and LG = 66.72 µm are illustrated together with the lossy model simulations for
increasing values of IR. It is immediately noticeable that the intensity characteristic
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Figure 4.6.: Normalized (a) TG and (b) RG retrieved spectra (thick black traces) and
simulated characteristics (colored traces) of a grating with a = 5 nm and
LG = 66.72 µm varying IR.

of the grating either in transmission (Fig. 4.6a) or in reflection (Fig. 4.6a) is almost
insensitive to a loss increase. However, it can be noticed that for IR = 0.84 dB the
simulations start to loose the matching with the measurement.

Similar observations can be done for the grating with a = 20 nm and LG =

38.56 µm (see Fig. 4.7). For this grating we can clearly notice that in transmission
(Fig. 4.7a) at IR = 0.76 dB the simulated characteristic shows a smoothing that is
not present in the measured spectra. However in reflection (Fig. 4.7b) the grating
slight asymmetry makes impossible any reasonable conclusion.

The performed simulations, although the grating characteristics are not particu-
larly sensible to a loss increase, indicate that in both type of gratings values of IR

lower than 1 dB can be assumed. These values of IR are in agreement with those
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Figure 4.7.: Normalized (a) TG and (b) RG retrieved spectra (thick black traces) and
simulated characteristics (colored traces) of a grating with a = 20 nm
and LG = 38.56 µm varying IR.

previously discussed for the grating with a = 5 nm. Regarding instead the grating
with a = 20 nm, the difference with respect to the previous discussion is of about
0.7 dB. We can then conclude that IR lower than 1 dB for the ’Type A’ grating and
IR < 1.5 dB for the ’Type B’ grating can reasonably be assumed.

Group Delay Measurements for accurate loss evaluation

In view of providing the Bragg grating BB design parameters, the information
regarding IR and IT could conclude the device characterization part of this work.
At this point it can however be underlined that the analysis performed brought to
a reasonable but coarse estimation of the insertion losses. It is then now of interest
to investigate if more precise values of IR can be obtained with the tools employed
in this Section. It can be shown that the Bragg grating characteristic more sensible
to the losses is the group delay in reflection τgGR. Moreover, as stated previously,
the cavitometric technique allows to access to the phase properties of the grating re-
flection and then to measure τgGR. The comparison of the measured τgGR with that
those obtained through the lossy Bragg grating model can constitute then a way to
obtain a finer estimation of IR. In the following part of this subsection the results
of this analysis will be then illustrated. It should be mentioned before entering into
the details of the results that the function (τgGR − τgWG) will be analysed, where τgWG

is the group delay of a straight waveguide having the same length of the grating.
Due to the grating group delay characteristics, reviewed in Appendix A.5, values of
(τgGR − τgWG) below 0 are expected at λB. For the same reasoning (τgGR − τgWG) max-
ima will be observed close to the wavelengths determining ∆λ00. Finally, far from
the Bragg wavelength (τgGR − τgWG) will tend to 0. Moreover, in the following, when
using the lossy grating model, the parameters listed in Tab. 4.1 will be employed.
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4.2 bragg gratings

In Fig. 4.8a the measured (black thick trace) reflection group delay of a grating
with a = 5 nm and LG = 66.72 nm is illustrated together with the lossy grating sim-
ulations performed for an increasing value of IR (grey scale traces). Looking at the
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Figure 4.8.: Measured (black thick trace) and fitted (light green trace) τgGR − τgWg of
a grating with a = 5 nm and: (a) LG = 66.72 µm; (b) LG = 84.32 µm.
Grey scale traces are obtained in both figures through simulations with
the lossy Bragg grating model and increasing value of IR.

simulations dependence on IR it can immediately be noticed that this characteristic
of the grating is more sensitive to the losses than the previously showed intensity
response (see Fig. 4.6a). It is also noticeable that a good agreement between simula-
tions and measurements can be found by choosing the right value of IR. Fitting the
measured characteristic (green trace Fig. 4.8a), IR equal to 0.15 dB can be extracted.
The measured characteristic depends however on the power reflected by the grating.
Approaching the group delay characteristic maxima the grating reflection reduces.
It can be then more and more dominated by that provided by waveguide backscat-
tering. The measured group delay can be then less reliable. For wavelengths close to
λ = 1530 nm, the grating has negligible reflection and the peak in the group delay
is due to the random nature of the backscattering. Some features of the measured
τgGR such as the notch at the edges of the reflection bandwidth can be then provided
by the backscattering more than by the grating, leading to unreliable results of the
fitting procedure.

Due to these considerations, we have performed this analysis also on another
grating with a = 5 nm but with LG = 84.32 nm. The results are illustrated in Fig.
4.8b. Also in this case we can notice that a good agreement between simulations
and measurements can be found for a certain value of IR. IR = 0.22 dB was found
by fitting the measured characteristic.
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The good agreement registered in both analysed cases indicates that this method
can constitute a way to estimate the losses of low perturbation Bragg gratings. More-
over, the fitted results have been found within the upper bound analysed previously.

This method was also tested for a grating with a = 20 nm and LG = 38.52 µm
and the results are illustrated in Fig. 4.9. The same conclusions drawn for a = 5 nm
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Figure 4.9.: Measured (black thick trace) and fitted (light green trace) τgGR − τgWg of
a grating with a = 20 nm and LG = 38.52 µm.

gratings hold. However, in this case, the measurement and consequently the fitting
are conditioned by the asymmetry registered in the grating reflection characteristic
(see Fig. 4.7b). Values of IR below 0.38 dB can be reasonably assumed observing
Fig. 4.9.

The analysis carried out in the last part of the former subsubsection showed both
a way to extract the Bragg grating reflection losses at λB and the low loss nature
of this class of devices. Despite the encouraging results shown here, this technique
should be tested with more systematic measurements, accompanied also by 3D FTD
simulations in order to remove the hypothesis of negligible coupling between the
straight waveguide mode and the Bloch mode of the grating.

Up to now, Bragg gratings with different length and values of the sidewall modu-
lation parameter a have been characterized. Nothing has been however said on how
we selected the ’right’ values of LG to be fabricated. In order to properly character-
ize a grating, this length has in fact to be chosen carefully. Depending on the value
of κ, too small values of LG can lead to really low reflection with almost no sidelobes.
On the other hand, too large values of LG can lead to sidelobe values as high as the
main lobe. Both cases have to be avoided since the fitting of the Bragg characteristic
is critical. A reliable numerical technique have then to be employed for the device
design. During this work, the value of κ has been calculated through the CMT. In
the next section the comparison between the designed and the measured properties
of the grating will be discussed.
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4.2.3 Considerations on the Grating design through the CMT

The method used so far to calculate the grating coupling coefficient as a function
of the sidewall modulation amplitude a is based on the CMT and the procedure
applied is described in detail in Appendix A.3. With reference to the coordinate
system depicted in Fig. 4.1, the coupling coefficient should be calculated as κ =

κx + κy − κz where κi represent the contribution of the field component along the i
direction. κx is then related to the fundamental component of the TE mode and κz

to the longitudinal one.

Previous results collected during this thesis showed that this calculation leads
to coupling coefficient values not in agreement with the experiments. This can be
related to the fact that the considered devices do not satisfy one of the CMT basic
hypothesis: small perturbations. Although the sidewall modulations realized dur-
ing this work can be considered geometrically small with respect to the waveguide
lateral dimensions, their effect of the mode could not be considered small. Guided
modes in SOI waveguides show in fact high values at the waveguide core edges (see
Fig. 2.1c and 2.1e).

Before the beginning of this doctoral work we found however that by considering
just the fundamental component of the field it is possible to obtain values of κ closer
to the measured ones. Due to this, in order to design the LG of the devices presented
in the former subsection, we considered κ = κx. In Fig. 4.10 the measured and the
calculated values of κ and κi for Bragg gratings with w0 = 480 nm, Λ = 320 nm and
different sidewall modulation amplitude a are illustrated.

Figure 4.10.: Bragg grating coupling coefficient: measured (black squares) and cal-
culated through the CMT.

It is clearly noticeable that the values of κx are those that better approximate the
experimental results. The large values of κz with respect to κx is not surprising.
In a high index contrast waveguide such as that considered here, the longitudinal
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component of the field is in fact not negligible with respect to the fundamental one.
Moreover, the component of the field along the propagation direction has its max-
ima and minima in correspondence with the waveguide sidewalls (see Fig. 2.1e),
i.e. where the modulation to realize the grating is applied and κ is calculated (see
Appendix A.3). The presented results confirm that the approximation used to cal-
culate the coupling coefficients of SOI Bragg gratings, even though not rigorous
but empirical, can offer a quick approach with a reasonable accuracy. The maxi-
mum absolute difference between the measured κ and the calculated κx is of about
0.015 µm−1 and can be observed for a = 5 nm and a = 20 nm. Respectively the
’Type A’ and ’Type B’ grating perturbations of the former subsection. Consequently,
the maximum relative difference is registered at a = 5 nm.

Considering just the coupling coefficient, it is difficult to evaluate the real impact
of the differences. In order to evaluate their effect on the device performance, the
values of RG and ∆λ00 as a function of LG have been taken into account.
Assuming IR = 1, RG depends only on κ and LG (see Eq. (4.1)). The reflection value
can be then calculated through the CMT considering κ = κx and compared to that
calculated with the measured coupling coefficients.
On the other hand ∆λ00 depends also on λB and ng (see Eq. (4.3)). The grating
bandwidth is calculated considering κ = κx, λB = 1550 nm and ng = 4.22 and
compared to the bandwidth calculated with the measured values of Tab. 4.1.

We can start this comparison from the case with the biggest relative κ difference
between simulations and measurements. The grating with a = 5 nm. In this case
the calculated coupling coefficient is equal to 0.0216 µm−1 while that extracted from
the measurement and listed in Tab. 4.1 is of about 0.035 µm−1. Fig.4.11a shows RG

as a function of LG calculated considering the simulated κ (κ CMT, blue trace) and
calculated considering the measured coupling coefficient (κ Fitted, red trace). The
difference between these two functions is illustrated in the inset of the figure. The
maximum difference is of about 0.3 and occurs when LG ≈ 35 µm. This means that
a grating designed to reflect the 40 % of the input power would reflect instead the
70 %. The RG difference decreases as the grating reflection curve saturates. For a
designed RG = 0.99 (i.e. LG = 140 µm) the difference is just of about 0.01.

The results concerning ∆λ00 are illustrated in Fig. 4.11b. For this figure, the
values measured directly from the retrieved grating reflection spectrum has been
also added. They are represented by circles. The difference between ∆λ00 calculated
with the design parameters and ∆λ00 calculated with the parameters extracted from
the measurements increases as LG increases (see also the inset of 4.11b). At LG =

138.72 µm, the measured ∆λ00 is 1.8 nm larger than that from the design parameters,
which is of about 5.7 nm. This difference is quite large, representing almost one
third of the designed bandwidth.

Considering then the grating with a = 20 nm, the same conclusions can be drawn.
In this case the relative difference between the calculated and the measured κ was

72



4.2 bragg gratings

20 60 100 140 180 220
0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

LG [µm]

R
G

 

 

20 60 100 140 180 220
−0.35
−0.3

−0.25
−0.2

−0.15
−0.1

−0.05
00

LG [µm]

R
g
D
iff
er
en
ce

 

 

κ CMT
κ Fitted

κ CMT - κ Fitted

(a)

20 60 100 140 180 220

0

5

10

15

20

25

30

35

LG [µm]

∆
λ
0
0
[n
m
]

 

 

20 60 100140180220
−2.5

−2

−1.5

−1

−0.5

0

LG [µm]

∆
λ
0
0
D
iff
er
en
ce

[n
m
]

 

 

κ CMT
κ Fitted
Measured

κ CMT - κ Fitted

κ CMT - Measured

(b)

Figure 4.11.: Simulated (a) RG and (b) ∆λ00 as a function of LG, of a grating with
a = 5 nm. Blue traces are calculated with the design parameters while
red traces are obtained with the ones extracted from the measurements.
Insets of both figure show the difference between these two traces. In
(b), black circles represent the measured values and grey circles repre-
sent the difference between design and measurements.

smaller and a smaller differences in RG and ∆λ00 can be expected. The calculated
coupling coefficient is equal to 0.0775 µm−1 while that extracted from the measure-
ment and listed in Tab. 4.1 is of about 0.065 µm−1. In Fig. 4.12a we can notice
that the maximum difference is about 3 times lower than in the previous case. At

10 20 30 40 50 60 70
0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

LG [µm]

R
G

 

 

10 20 30 40 50 60 70
0

0.02
0.04
0.06
0.08
0.1

0.12

LG [µm]

R
g
D
iff
er
en
ce

 

 

κ CMT
κ Fitted

κ CMT - κ Fitted

(a)

10 20 30 40 50 60 70
0
5

10
15
20
25
30
35
40
45
50
55
60

LG [µm]

∆
λ
0
0
[n
m
]

 

 

10 20 30 40 50 60 70
1

1.5
2

2.5
3

3.5
4

LG [µm]

∆
λ
0
0
D
iff
er
en

ce
[n
m
]

 

 

κ CMT
κ Fitted
Measured

κ CMT - κ Fitted

κ CMT - Measured

(b)

Figure 4.12.: Simulated (a) RG and (b) ∆λ00 as a function of LG, of a grating with
a = 20 nm. Blue traces are calculated with the design parameters while
red traces are obtained with the ones extracted from the measurements.
Insets of both figure show the difference between these two traces. In
(b) black circles represent the measured values and grey circles repre-
sent the difference between design and measurements.

LG = 14 µm the designed RG is equal to 0.63 but it would instead reflect the 52 %
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of the input power. For LG = 38.56 µm, corresponding to RG = 0.99 considering
the design values this difference is of about 0.018. In this case the value is almost
doubled with respect to the previous case but still reasonably small. Regarding
instead ∆λ00, at LG = 38.56 µm the measured value is 2.1 nm smaller than that
calculated with the design parameters that is of about 17.7 nm. The absolute value
of the difference is bigger than in the previous case but is much smaller if compared
to the bandwidth. The measured ∆λ00 is just one ninth smaller than that predicted
using the design values.

4.2.4 Conclusions

In conclusion, Bragg gratings with two different sidewall modulations have been
characterized. The model describing the device features has been presented and
the parameters of this model determined. On chip variability of the performance
has been also discussed. The obtained results constitute the starting point of the
Bragg grating BB on the considered SOI platform. Variability between different
fabrication runs should be determined. Moreover, for future development of this
BB, different perturbation values as well as apodized and chirped geometries could
be investigated.

The insertion loss estimation issue of such devices has been also discussed. A
method based on the measurements of the grating group delay in reflection has
been proposed to obtain a finer estimation of the loss figure. The described method,
although needs to be tested with further measurements and simulations, has shown
encouraging results regarding its accuracy and applicability, confirming also the low
loss nature of SOI Bragg gratings reflectors.

Finally, it has been shown that the CMT provides rather accurate results when
just the fundamental component of the field is considered in the calculation of the
coupling coefficient κ. The presented analysis allows to conclude that this method,
although not rigorous, constitutes a good starting point for the evaluation of the
grating properties. The accuracy for high values of the reflected power can be
really good, but it can also be really poor if small RG are of interest. Moreover,
depending on the relative difference between the calculated and the realized κ, the
values of ∆λ00 can be in good agreement between the design and the experiments
and their maximum RG difference limited. These results can be also read in view of
the robustness against fabrication tolerances. Gratings with smaller values of a can
be more affected to any variation of this perturbation respect to gratings realized
through bigger amplitude modulations.

In the next Section, another class of devices obtained with two parallel Bragg
gratings with different average waveguide widths will be presented. The properties
highlighted in this Section will be used in the following to design, analyse and
characterize the aforementioned devices: the Grating Assisted Couplers (GACs).
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4.3 grating assisted couplers

Among the various elementary elements that can be developed as building blocks
for SOI photonic circuits, an important class of devices that can perform optical
routing among different waveguides while being highly wavelength selective are
the Grating Assisted Couplers. GACs have been realized during the years with
different technologies such as LiNbO3 [150], optical fibres [151] and recently there
has been an increasing interest in the development of such devices on the SOI plat-
form [152–159]. These devices can be based either on rib [155, 156] or on ridge
SOI waveguides [152–154, 157, 158]. It has been demonstrated how compact 4 chan-
nels WDM demultiplexers with low insertion loss can be based on GACs [153, 157].
Moreover, they have been employed for dispersion compensation [154] and pulse
compression [159].

In this Section the results of the GAC developed characterization will be illus-
trated. Attention is focused on the coupling coefficients that, as for the Bragg grat-
ing presented in the former Section, can determine the bandwidth of the filter and
the device length necessary to obtain the desired amount of backward power cou-
pled. The final aim is in fact the employment of the GAC as a building block in a
more complex device, i.e. as a wavelength selective coupler in a RR add-drop filter
(see Chapter 5) and these coefficients are fundamental in this view. The GAC func-
tionality and its model are presented first. Finally, the results of the characterization
will be presented.

4.3.1 Functionality and Modelling

The GAC is a device made by two waveguides with different average widths w1

and w2, separated by a gap g and perturbed by gratings with the same period (Λ).
A sketch of this device is shown in Fig. 4.13a, where the grating is obtained, as
described in section 4.2, by a sinusoidal sidewall modulation of both waveguides
with amplitudes a1 and a2.

The device functionality should be in principle described through the so called 4-
wave model derived from the CMT. This model is briefly reviewed in Appendix A.6
when the orthogonal CMT is taken into account and developed in [160, 161] for the
non-orthogonal CMT. The input wave sketched in Fig. 4.13a is: i) backward coupled
on the same waveguide around the Bragg wavelength defined by β1 = −β1 + 2π/Λ,
ii) backward coupled in the other waveguide around the Bragg wavelength defined
by β1 = −β2 + 2π/Λ due to the presence of the sidewall modulation, iii) forward
coupled in the other waveguide due to the broadband codirectional coupling given
by the presence of the second waveguide and the harmonic of order zero of the
grating.
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Figure 4.13.: (a) Schematic diagram of the GAC. (b) Propagation constants of a
waveguide with w1 = 500 nm (blue solid trace) and a waveguide with
w2 = 400 nm (dark green solid trace). The dash dotted black line
represents the grating wavenumber.

However, when the difference between the two average waveguide widths is large
enough (large asynchronism condition), the codirectional coupling can be consid-
ered negligible. Moreover, the two Bragg conditions are so well separated in wave-
length that can be considered as not mutually interacting. In this case is possible to
model and solve the problem neglecting the codirectional coupling and, depending
on the wavelength region, consider just the contradirectional coupling between two
waves as in a Bragg grating. This model is referred to as 2-wave model in [162] and
can be found implemented also in [163]. Only two output ports are coupled to the
input port while the fourth is considered as isolated (i.e. τX = 0 in Fig. 4.13a).

As an example of a fabricated GAC, we can take the waveguides widths w1 and
w2 as being respectively 500 nm and 400 nm wide, providing different propagation
constant in single modal regimes and a period Λ = 320 nm. Note that this geometry
and the related measurements that will be shown were obtained by our group before
the beginning of this doctoral work. In this situation the GAC behaviour can be
described by its two coupling regimes:

• Direct Reflection coupling involve counter-propagating modes (i.e. having prop-
agation constants of equal modulus and opposite sign (βi = −β j) in each
waveguide. Coupling occurs at two distinct wavelengths (λBDi ) according to
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the phase matching condition βi = π/Λ depending on the waveguide that
acts as the input port. This is shown in Fig. 4.13b where λBD2 = 1.4819 µm
(the input waveguide is waveguide 2) and λBD1 = 1.5591 µm (the input waveg-
uide is waveguide 1). In these conditions the input power flows out through
the direct transmission port (τD), the output port of the coupler arm where
power is injected, and through the direct reflection port (ρD), the same port
where input power is injected (see Fig. 4.13a). Note that in the 4−wave model
of Appendix A.6 these two coupling processes are represented by the coupling
coefficients κd1 and κd2.

• Exchange coupling involves counter-propagating modes of the different waveg-
uides (|βi| = |β j|, sign βi 6= sign βi) and occurs at a wavelength halfway be-
tween the two direct coupling conditions (λBEx = 1.5187 µm in the considered
case, Fig. 4.13b). In this condition the input power flows out of the device
through the direct transmission port (τD) and through the exchange reflection
port of the coupled waveguide ρX (see Fig. 4.13a). Note that in the 4−wave
model of Appendix A.6 this coupling process is represented by the coupling
coefficient κEx.

In Fig. 4.14a the behaviour of a measured device with a1 = 10 nm and a2 = 8 nm
is illustrated. The average gap between the two waveguides is g = 200 nm and
the length of the coupling region is LGAC = 100 µm. Exchange and direct Bragg
conditions are well separated being λBD1 ≈ 1.57 µm and λBEx ≈ 1.532 µm. We
can also notice that the codirectional coupling can be considered negligible for the
GAC functionality. The lossless Bragg grating model exploited in the former Sec-
tion and described by Eq. (A.56) and Eq. (A.57) has been then employed to fit
the coupling coefficients values κ for each one of the two coupling regimes of the
device. In the wavelength range 1.52− 1.5575 µm the coupling coefficient related
to the exchange coupling κEx = κ = 0.0072 µm−1 was found. In the wavelength
range from 1.5575 µm onwards, the coupling coefficient related to the direct reflec-
tion κd1 = κ = 0.033 µm−1 was extracted. By the means of another device with
the same geometry but different input waveguide (i.e. waveguide 2), the value of
κd2 was found being of about 0.039 µm−1. Fig. 4.14b shows the simulation per-
formed through the extracted parameters and the 2−wave model. The GAC spec-
tral characteristics are magnified in the inset around the chosen separation point
between direct and exchange reflection. Note that the cross coupling characteristic
|τX|2, which is identical to zero at every wavelength, has been offset to improve its
readability. Note also that in order to match the Bragg wavelengths, the so called
self-coupling coefficients (see Appendix A.5) have also been fitted and considered
in the simulations.

The good agreement between simulation and measurements confirms the appli-
cability of the 2−wave model with GAC based on the considered waveguides asyn-
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Figure 4.14.: (a) Experimental behaviour of a GAC with w1 = 500 nm, a1 = 10 nm
and w2 = 400 nm, a2 = 8 nm. The average gap between the two
waveguides is g = 200 nm and the length of the coupling region is
LGAC = 100 µm. The period is set to Λ = 320 nm. (b) GAC behaviour
simulated with the coupling coefficients extracted from the measure-
ments and the 2−wave model.

chronism. Moreover, the large distance between the direct and the exchange Bragg
condition provided by this asynchronism (i.e. ≈ 38 nm) allows focusing attention
only on the exchange coupling properties of the device. In fact, if applications in-
side the optical C-band are of interest, it is easily possible to chose a period Λ in
order to have λBEx inside the desired band and both λBDi outside of it. The appli-
cability of the 2−wave model indicates that, once κEx is known, properties such as
the power coupled between the waveguides and the bandwidth can be calculated
through the same equations used in the former Section for the Bragg grating. The
GAC normalized power coupling coefficient at λBEx can be written as

|ρX|2 = tanh2(κExLGAC), (4.4)
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while the GAC bandwidth can be written as

∆λEx00 =
λ2

BEx

πngEx

√
κ2

Ex + (π/LGAC)2, (4.5)

where ngEx is the average between the group index relative to w1 and the group index
relative to w2. Smaller κEx allows the realization of a GAC with smaller bandwidth
∆λ00Ex for a given coupled power RGACEx . To give an example, in order to have
99 % of the power coupled within a 100 GHz bandwidth considering λB = 1550 nm
and ngEx = 4.28, κEx = 0.0031 µm−1 and LGAC longer than 900 µm are required.
The desired κEx can be obtained, in a GAC with fixed waveguide dimensions, by
varying 3 geometrical parameters: a1, a2 and g (see Appendix A.6). In the next
section the exchange coupling coefficient dependence on this three parameters will
be then characterized.

4.3.2 Characterization

As introduced at the end of the former subsection, the determination of κEx is
fundamental to design a GAC. Having fixed the waveguide widths w1 = 500 nm
and w2 = 400 nm, the exchange coupling coefficient depends on the modulation
amplitudes a1, a2 and on the gap g. The values of these geometrical variables were
selected based on the results obtained by our group before the beginning of this
doctoral work. An example of these results has been already shown in Fig. 4.14a.
The set of GACs already realized and measured had:

• Three different couples of amplitude modulations:

– a1 = 15 nm, a2 = 10 nm;

– a1 = 10 nm, a2 = 8 nm;

– a1 = 6 nm, a2 = 4 nm.

• Three different gap:

– g = 200 nm;

– g = 220 nm;

– g = 240 nm.

This work was focused on GACs with a relatively small value of κEx, ideally lower
than < 0.003 µm−1. This interest is explained and justified in Chapter 5, where
the GAC have been exploited to realize the wavelength selective coupling of an
add-Drop RR. In this view, only the two smaller couples of amplitude modulations
have been maintained and the gap variation rage has been expanded. Moreover,
Λ = 0.336 µm was chosen in order to realize devices with a λBEx closer to 1550 nm.
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Figure 4.15.: Measured κEx as a function of the GAC gap g for different fabrication
runs (marker shape) and a1, a2 combinations (marker colour). All the
measured GACs had w1 = 500 nm, w2 = 400 nm and Λ = 336 nm.

In Fig. 4.15 the exchange coupling coefficient as a function of the gap for differ-
ent fabrication runs are illustrated. Results related to different fabrication runs are
indicated by different markers. Different colours represent different couples of am-
plitude modulations. The first fabrication run of this doctoral work was performed
in April 2012 (circles in Fig. 4.15) though fabrications have been done since 2009
(crosses in Fig. 4.15). A substantial difference is immediately noticeable. An over-
all larger value of the coupling coefficients has been obtained. The more recent
results obtained for a1/a2 = 6/4 (blue colour in Fig. 4.15) equals that extracted for
a1/a2 = 8/10 of the previous fabrication run (red colour in Fig. 4.15). In some cases
the exchange coupling coefficient is almost doubled. Since the fabrication technique
and recipe did not change, a possible reason for this result is a drift in the machines.
This drift could have in turn changed the device cross section geometry such as
perturbation amplitudes and waveguide widths. The last fabrication run analysed
during this work (squares in Fig. 4.15), performed after a shorter period of time,
is in fact in line with the expected results. For a1/a2 = 6/4 and g = 300 nm a
minimum absolute difference of 0.0003 µm−1 can be observed, being the two mea-
sured coupling coefficients respectively 0.0031 µm−1 and 0.0028 µm−1. The relative
difference is approximately one tenth the coupling coefficient value indicating a not
dramatic variation in the device performance (see subsection 4.2.3). Moreover, mea-
surement performed for g = 350 nm referred to February 2013 are in line with the
exponential fitting curve drawn from the April 2012 results. We will then refer from
now on to these two fabrication runs for the analysis of the GAC performance.

Focusing on the GAC properties as a function of its geometrical parameters, Fig.
4.15 shows the behaviour expected from the CMT. Larger gaps as well as smaller
perturbation amplitudes allow the realization of smaller κEx. Moreover, in view of
the complex device analysed in Chapter 5, it is important to notice that different
combination of a1, a2 and g can be used to obtain the same κEx. If large values of
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g are needed, larger values of a1, a2 can be used maintaining the same exchange
coupling properties.

Further considerations can be done by observing some example of the spectral
behaviour of GACs realized during this work. In Fig. 4.16a the normalized output
intensities of a GAC with a1 = 10 nm, a2 = 8 nm, g = 180 nm and LGAC =

235.2 µm is illustrated. Note that in this case the input waveguide is the one with
w2 as average width. The exchange coupling coefficient is about 0.01 µm−1 and
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Figure 4.16.: Output characteristics of a GAC with w1 = 500 nm and w2 = 400 nm,
g = 180 nm, Λ = 336 nm and: (a) a1 = 10 nm, a2 = 8 nm and
LGAC = 235.2 µm; (b) a1 = 6 nm, a2 = 4 nm, g = 180 nm and LGAC =
332.64 µm.

the result of the fitting is depicted in the figure inset with dashed traces. As in the
previous subsection it can be noticed that the power levels of |τX|2 can be considered
negligible for the GAC performance. The device shows a power dropped at λBEx =

1554.57 nm that is 0.5 dB lower than the |τD|2 maximum, ∆λ00Ex ≈ 2.94 nm and a
3 dB bandwidth equal to 2.43 nm.

As indicated by the CMT, smaller bandwidths with large the value of the coupled
power can be obtained reducing the value of κEx at the cost of a device footprint
increase. The coupling coefficient reduction can be obtained maintaining the same
gap and reducing the sidewall modulation amplitudes as in Fig. 4.16b, where the
output normalized intensities of a GAC with a1 = 6 nm, a2 = 4 nm, g = 180 nm
and LGAC = 332.64 µm are illustrated. The measured exchange coupling coefficient
for this structure is of about 0.0085 µm−1. The device shows a power dropped at
λBEx = 1555.46 nm that is 1 dB lower than the |τD|2 maximum, ∆λ00Ex ≈ 2.31 nm
and a 3 dB bandwidth equal to 2 nm.

The coupling coefficient and consequently the bandwidth reduction has been
obtained by keeping g = 180 nm and varying the GAC modulation amplitudes
of a few nanometers. By looking at Fig. 4.15 it can be however noticed that
κEx = 0.0085 µm−1 can be also obtained keeping the sidewall modulation ampli-
tudes at a1/a2 = 10/8 and increasing the gap of more than 20 nm (i.e. from 180 to
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203 nm). The coupling coefficient is less sensitive to g than to ai variations. This
means that if a system based of multiple GACs sections with different κEx has to
be made, fixing the value of ai and varying g allows for a more robust design to
fabrication tolerance effects.

Having characterized the exchange coupling coefficient as a function of a1, a2 and
g, it is now possible to analyse the Bragg wavelength λBEx and its dependence on
these geometrical parameters. From the characteristics of the GACs illustrated in
Fig. 4.16, we can already expect that having fixed g and Λ, the higher the sidewall
modulation amplitudes the shorter the exchange Bragg wavelength. This result is
in agreement with the behaviour of a simple Bragg grating (see Section 4.2). In-
creasing a1 and a2 can in fact reduce the waveguides’ average effective index and
consequently the λBEx value. The dependence of λBEx on g for a1/a2 = 6/4 and
a1/a2 = 10/8 are illustrated in Fig. 4.17a. As for the coupling coefficients of Fig.
4.15 different colours correspond to different sidewall modulation pairs and dif-
ferent marker shapes correspond to different fabrication runs. Moreover, different
results for the same g, a1, a2 and fabrication run refer to devices with different LGAC.
Looking first at the results referred to the fabrication run of April 2012, indicated
by circle markers in Fig. 4.17a, for both a1/a2 = 6/4 (blue colour in Fig. 4.17a)
and a1/a2 = 10/8 (red colour in Fig. 4.17a), the on chip variability of λEx is larger
than the one observed for single Bragg gratings. The maximum difference in λEx

between devices with the same geometrical parameters but different LGAC can be
larger than 4 nm (i.e. 4.8 nm in the worst case). However, it can be noticed that
in the majority of cases, this value is below 1 nm. An example of this behaviour
is illustrated in Fig. 4.17b, where the |ρX|2 characteristics normalized with respect
to their maxima of GACs with a1/a2 = 10/8, g = 220 nm and varying LGAC are
illustrated. Three traces show their λBEx within a 0.8 nm band while the fourth one,
corresponding to LGAC = 295.68 µm, has its central wavelength 4.8 nm apart. This
variability has then to be taken into account if a circuit based on different GACs
has to be developed. The circuit will have to be either robust to these variations or
include postfabrication tuning methods.

Regarding the λBEx dependence on g, dashed lines in Fig. 4.17a have been drawn
as guidelines. They refer to the April 2012 fabrication run and have been obtained
averaging the values λBEx that were bundled within a 1 nm band. This average
value shows the same trend as g varies for both a1/a2 considered. It increases as g
reduces and reduces with an asymptotic behaviour as g increases. This trend can be
explained by recalling that one of the assumptions at the base of the CMT is that the
modes of the coupler (i.e. supermodes) can be expressed as the linear combination
of the single modes of the waveguides composing the structure. This hypothesis is
less accurate as the gap decreases. For lower values of the gap, higher values of the
supermodes effective indices can be found, leading then to an increase of λBEx .
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Figure 4.17.: (a) Measured λBEx as a function of the GAC gap g for different fabri-
cation runs (marker shape) and a1, a2 combinations (marker colour).
Different results for the same g, a1, a2 and fabrication run refers to
devices with different LGAC. (b) |ρX|2/max(|ρX|2) of GACs within the
April 2012 fabrication run with g = 220 nm, a1 = 10 nm, a2 = 8 nm
and varying LGAC.

Finally, the work carried on for the GACs allowed us to monitor the λBEx varia-
tions over different fabrication runs. Looking at the GACs with a1/a2 = 6/4 and
g = 300 nm in Fig. 4.17a (blue squares) it is noticeable that variations as large as
9 nm can be detected. Moreover, looking at the results obtained for a1/a2 = 10/8
and g = 350 nm (red squares) we can notice a shift of about the same amount (i.e.
9 nm) with respect to the results that can be expected by looking at the dashed
orange guideline.
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4.3.3 Conclusions

In conclusion, in this Section it has been shown that a GAC based on two waveg-
uides with 100 nm difference in their average width can be successfully described
through the CMT based 2−wave model. A systematic characterization of κEx de-
pendence on the device gap and perturbation amplitudes has been performed. The
GAC exchange coupling coefficient showed a good repeatability comparing the two
different fabrication runs performed during this doctoral work. The values mea-
sured were however not in agreement with the results available from previous works
of our group on the same technological platform. A possible drift in the machines
exploited to perform the GACs fabrication during the years could have led to the
observed inconsistency between the results. These observations can be used to high-
light the general need of periodical controls on the performance and the quality of
the fabrication runs. This is in fact at the base of a successful exploitation of the BB
based approach.

Regarding the exchange Bragg wavelength, its sensitivity to fabrication tolerances
has been highlighted. Variations as high as 4.8 nm have been observed for the de-
vices with nominally identical geometrical parameters but the length. In the major-
ity of the devices analysed, this value is however below 1 nm. Between different
fabrication runs, the difference between the measure and the expected λEx was of
about 9 nm. GACs show then a greater sensibility of λBEx to fabrication tolerances
than κEx. Postfabrication tuning methods or circuits robust to these variations have
then to be designed.

4.4 conclusions

The characterization of Bragg gratings and GACs have been carried out in this
Chapter.
Regarding the Bragg grating, the CMT model parameters have been measured as
well as their on chip variability. The measured reflection group delay have been
also analysed in order to obtain a more accurate estimation of the reflection losses.
The proposed technique have shown encouraging results regarding its accuracy and
applicability. A more systematic analysis have however to be performed in order to
confirm the reliability of the method.
Regarding the GAC, the coupling coefficient and the Bragg wavelength have been
measured varying the device geometrical parameters. Variability between different
fabrication runs have been measured, evidencing the device sensitivity to fabrication
tolerances.

In the next Chapter 5 the acquired results will be taken into account for the design
of a complex device that relies on two GACs in a resonant configuration.
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5

R I N G R E S O N AT O R S W I T H G R AT I N G A S S I S T E D C O U P L E R S

5.1 introduction

In the previous Chapters, the philosophy of the BB based approach to the design
of Photonic Integrated Circuits has been illustrated as well as the main features
of the classical BBs (straight waveguide, bends, Mach-Zehnder interferometer, ring
resonator, Bragg gratings and Grating Assisted Couplers). In this chapter, the first
multi-element PIC designed with the previously defined circuit elements is pre-
sented. A combination of two basic BB, the RR (subsection 2.3.2) and the GAC
(Section 4.3) will be considered. The studied device combines them into a Grating
Assisted Coupler ring resonator (GAC-RING in the following) to exploit the wave-
length selectivity of the GAC to filter the comb of wavelengths selected by RRs with
standard couplers.

A sequence of RRs can be in fact used to add/drop all the channels of a WDM
spectrum [11, 61] but problems arise when the WDM overall spectrum is larger
than the FSR of the devices. In this case more than one wavelength would be
dropped/added by the same Ring. The design problem is not simple since the RR
bandwidth also depends on the FSR (see Eq.(2.10)). Two approaches have been
proposed to overcome this problem.

• The first one is based on the realization of a series of coupled resonators real-
ized with different cavity lengths to exploit the Vernier effect [164–166]. This
approach allows the realization of RRs with extended FSR, through the sup-
pression of the RR resonant modes that are not integer multiple of the RRs
FSR ratio. Devices with FSR larger than the C-band have been realized on a
silicon platform, showing however a small value of the ratio between the se-
lected and the suppressed modes (9 dB in [167]). Just recently this value has
been optimized to 25 dB for a device with a dropped 3 dB bandwidth equal
to 0.09 nm [168], showing however an insertion loss value larger than 5 dB.

• The second approach is based on the inclusion of a wavelength selective device
inside the RR. This approach, to the knowledge of the author, has been so far
poorly investigated. The sidewall modulation of half RR cavity length allows
for the realization of a single resonance reflector with a ratio between the
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selected mode and the side mode of about 7.8 dB [169]. This solution if used
for WDM channel selection would however require a circulator to separate the
optical channels.

Also the GAC can perform optical add/drop routing between adjacent waveg-
uides and can be used to build devices with similar overall behaviour. However,
GACs can be designed to operate over a single spectral range allowing the so called
FSR-free operation [157, 158]. The drawback intrinsic to these devices comes from
the fact that nanometer or subnanometer bandwidths (e.g. for applications such as
WDM add-drop filters or sensors) require weak perturbations, resulting in many
hundreds micrometer long devices (see Section 4.3). For Bragg gratings, solutions
based on spiral waveguides instead of straight waveguides have been proposed to
realize really compact devices with small reflection bandwidths [170–172] while for
the GACs the compactness remain still an issue.

The GAC-RING, studied in this Chapter, combines the positive features of the
composing elements. If the RR coupling region is realized using a GAC, the occur-
rence of possible multiple resonances passed by a single RR is hopefully eliminated
by the GAC. Moreover, the RR allows narrow bandwidth filtering keeping compact
the device geometry.

Devices with similar topology have been already presented in literature but with
a different purpose, either to control the loss/coupling ratio in a fibre based RR
add-drop filter [173] or to trap light inside an all-pass RR [174]. It must also be
mentioned that, during this work, a proof of concept of the GAC-RING has also
been independently proposed in [175]. However, that device was not optimized as
it will be shown at the end of this Chapter that is organized as follows.

The GAC-RING behaviour is analysed first using the GAC 2−wave model (see
Section 4.3) and the scattering matrix approach [176–178]. After the device function-
ality has been described through not optimized parameters, extensive simulations
are performed. Potentials and limits of the GAC-RING are then discussed in view
of the device fabrication, indicating suitable device working points. The validity of
the GAC 2−wave model BB in a resonant configuration is then discussed and ge-
ometries of the GAC minimizing possible spurious effects are investigated. Devices
are then fabricated selecting from Section 4.3 the GACs that best suit the design re-
quirements. Finally, evaluations of the device performance as well as considerations
on the BB based approach are carried out.

5.2 functionality

The schematic of the GAC-RING is illustrated in Fig. 5.1a, where GACs replace
the DCs of the standard RR add-Drop filter configuration.
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Figure 5.1.: (a) Sketch of the GAC-RING geometry. (b) Output spectra of the GAC-
RING simulated using the GAC 2−wave model and the scattering ma-
trix method. (c) Sketch of the GAC geometry. (d) Output spectra of the
GAC within the GAC-RING of Fig. 5.1a and Fig. 5.1b, simulated using
the GAC 2−wave model.

The description of this device can be based on the 2−wave model that has been
previously exploited to successfully describe the behaviour of the GACs (see section
4.3). In this view, the dark red arrows in Fig. 5.1a represent the optical path of
the circulating wave inside the resonator, tT indicates the amplitude of the wave
transmitted at the so called Through port and tD the amplitude of the wave that is
transmitted at the so called Drop port (i.e. as in a standard RR). The amplitude of
the wave reflected back by the direct reflection of the GAC is indicated as tR while
the amplitude of the wave coming out from the last port (Cross port) is indicated as
tC. Before discussing the simulation of the device, it can be immediately understood
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that using the 2−wave model the output at tC will be identically zero being this port
uncoupled at all the wavelengths.

In order to explain the device functionality a bending radius of the RR R = 20 µm
and a GAC coupler length LGAC = 20.16 µm have been set. This choices provide
negligible bend losses (see subsection 2.1.2) and compact size. The device has been
simulated through the scattering matrix approach [176–178] by the means of 4× 4
matrices. Propagation losses of 2.5 dB/cm for the RR bent sections and an insertion
loss for each GAC of 0.06 dB have been considered. These values are consistent
with the used technology. The simulated GAC geometry, apart for LGAC, is the
same of the device presented in Fig. 4.14 from which the coupling coefficients
have been extracted. The sketch of the GAC has been reported in Fig. 5.1c to ease
the readability for the reader. The average waveguide width outside the resonator,
named here as wB, is 400 nm and its perturbation amplitude aB = 8 nm. Inside the
resonator the average waveguide width, named here as wR, is equal to 500 nm and
its perturbation amplitude aR = 10 nm. The grating period is Λ = 0.320 µm. The
exchange coupling coefficient κEx = 0.0072 µm−1 leading to a normalized power
coupled inside and outside the resonator |ρX|2 ≈ 0.986 tanh(κExLGAC)

2 = 0.0205 at
λBEx (see Fig. 5.1d). The GAC-RING spectral response is illustrated in Fig. 5.1b. It
can be immediately noticed that this device achieves spectral limitation to the add-
drop functionality inherent to the ring resonance thanks to the GAC, that allows
power coupling only over a limited spectral span.

When both GACs are in the exchange coupling condition, the ring is coupled to the
input/output waveguides and the resonance based add-drop behaviour is enabled
as shown by the frequency comb visible in the range 1512 nm–1550 nm of Fig. 5.1b.
Therefore the GAC effectively limits the working wavelengths of the ring. Moreover
it can be noticed that when the input GAC is in the direct reflection coupling condition
the device behaves as a simple Bragg grating since the GAC does not couple the
input power to the ring-waveguide. This occurs in the wavelength range 1460 nm–
1512 nm.

The wavelength selectivity of the GAC reduces the spectral region over which the
ring can resonate and the resonance effect enhances the wavelength selectivity of
the GAC despite its short length. The next step is the optimization of the circuit
parameters to achieve a single mode resonator providing low insertion loss at the
Drop port. This task, as well as the definition of the device figures of merit, is
carried out in the next Section.

5.3 narrow-linewidth single mode resonator

Before entering into the details of the numerical approach used to design the
GAC-RING, it is useful to define first the single resonance GAC-RING figures of
merit that will be taken into account in the optimization process. In principle, the
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presented device should completely suppress all the RR resonances but one. At a
given wavelength, the Drop port characteristic should exhibit a single peak while
the Through port characteristic should have a single notch. In the following, the
mode at this wavelength will be called as the Central Mode and will be always
assumed or simulated at the same wavelength of the Bragg exchange condition.
Note that the Through port spectral behaviour will also show the characteristic
photonic bandgap of the GAC input waveguide (see Fig. 5.1b). In practice, as
it will be shown later, a complete suppression of the undesired resonator modes
(denoted in the following as the Side Modes) is not achievable. Due to the GAC
spectral characteristic the Side Modes will be progressively more suppressed as
moving away from the Central Mode. The ratio between the peak power carried
by the Central Mode and the peak power carried by the neighbouring Side Modes
represents one of the most important figure of our device and will be called Side
Modes Suppression Ratio (SMSR). Another important figure of merit that will be
taken into account in the design procedure is the maximum notch depth of the Side
Modes (Side Modes Notch Depth) at the Through port characteristic. The last three
figures refer just to the Central Mode and they are the same of a standard RR: the
insertion loss (IL Central Mode) and the 3 dB bandwidth at the Drop port, the notch
depth at the Through port (Central Mode Notch Depth).

In the next subsections, in order to optimize the described figures, three parame-
ters will be varied: the GAC exchange coupling coefficient κEx, that will be simply
indicated as κ to simplify the notation, the GAC length LGAC and the resonator
bending radius R. It will also be assumed that the larger waveguide of the GAC
will constitute the ring and consequently that the smaller waveguide will constitute
the bus. This choice ensures lower losses inside the resonator. As in the previous
Section, the average waveguide widths will be respectively named wR and wB and
consequently their perturbation amplitude will be named aR and aB. wB will be
considered fixed at 400 nm while two values of wR will be taken into account. The
standard wR = 500 nm that ensures a suitable distance between direct and exchange
reflection in the GAC and wR = 600 nm, for reasons which will be clarified later in
this Chapter. The RR radius will be assumed always larger than 10 µm, to ensure
negligible bending losses. Finally, when wR = 500 nm, the GAC period Λ will be
set equal to 336 nm to bring the exchange Bragg wavelength closer to λ = 1550 nm
with respect to the previously discussed GAC-RING simulation (Fig. 5.1b). For the
same reason, when wR = 600 nm, the GAC period Λ will be set equal to 328 nm.

To get a first idea on how this parameters can influence the device figures one
can notice that a given κ, LGAC sets the fraction of power coupled into the ring.
Such power will determine, as in the standard RRs add-drop filter shown in Section
2.3.2), the selected mode insertion loss and 3 dB bandwidth. The ring FSR (see
Section 2.3) is defined by the aforementioned length together with R and the width
of the waveguide inside the resonator wR that determines the waveguide group
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index. The relationship between the resonator FSR and the GAC Bandwidth (∆λ00Ex

in Section 4.3) will then impact on the SMSR of the single mode resonant device.

A device with so many parameters and figures of merit is expected to show many
different suitable working points depending on the required specifications. In order
to make the analysis clearer, some more specifications will be fixed still allowing a
broad overview on the device performance.

The numerical approach to the device design will be based on extensive simula-
tions varying the aforementioned parameters. Simulations will be performed using
the GAC 2−wave model and the scattering matrix method as in Section 5.2. Al-
though this approach is based on simple and low computational weight calculus,
the amount of parameters and figures of merit can greatly increase the computa-
tional time. In this view, the development of a simplified model based only on
analytical equations could help to have a quick overview on the device functional-
ity as well as highlighting the device parameter values range worth to simulate. In
the next section this model will be called the RR model and will be investigated also
to assess its validity limits. The numerical approach to the GAC-RING design will
be then defined as a mix between the RR model and the one based on the 2−wave
model.

5.3.1 Numerical approach to the GAC-RING design

When it comes to RR add-drop filters the first and simplest approach to their
description is that described in Section 2.3. In this model, in the following referred
to as the RR model, a point coupler with an insertion loss represented through the
parameter a is assumed. The resonator length Lr as well as the propagation losses
are determined by the bending radius R and by the real evanescent coupler length
Lc (i.e. Lr = 2πR + 2Lc). Though a GAC and not a standard evanescent coupler
is present in the coupling section, it will be initially assumed that this model can
be still applied. The GAC behaviour in the exchange band can be calculated first
for different values of LGAC fixing κ. The resonator FSR can be then determined by
means of Eq. (2.5) and the group index of the waveguide inside the resonator. The
selected mode insertion loss and 3 dB bandwidth can be then calculated by means
of Eq. (2.9) and Eq. (2.10) assuming that the amount of power coupled inside the
RR is that provided by the GAC at the Bragg wavelength (i.e. maximum coupled
power by the GAC). This calculation can be repeated with the amount of power
coupled by the GAC at a wavelength that is one FSR far from the exchange Bragg
wavelength (i.e. at a wavelength at which a Side Mode exists). In this way, again by
the means of Eq. (2.9), it is possible to calculate the amount of power carried by the
Side Mode at the Drop port.

This model suggest that one would need a wavelength selective device with a
bandwidth lower than twice the FSR of the RR (i.e. Side Modes occurring outside
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the GAC exchange bandwidth ∆λ00Ex ) in order to select a single resonance of the RR
typical output comb. This situation can never be achieved in practice considering
wR = 500 nm and wB = 400 nm or wR = 600 nm and wB = 400 nm. This appear
clear by looking respectively at Fig. 5.2a and at Fig. 5.2b, where ∆λ00Ex for different
values of the coupling coefficient κ and twice the FSR of the RR (2FSR) are illustrated
as a function of the GAC length LGAC. Note that a resonator radius R = 10 µm is
considered. As indicated by Eq. (4.5) and (2.5) both ∆λ00Ex and the ring FSR reduce
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Figure 5.2.: ∆λ00Ex and 2 ·FSR of a RR with R = 10 µm and: (a) wR = 500 nm,
wB = 400 nm; (b) wR = 600 nm and wB = 400 nm.

as LGAC increases. The ∆λ00Ex never becomes lower than 2FSR. It can be however
noticed that, for a given κ, the difference between these two variables reaches a
minimum for a certain LGAC. This value of LGAC increases as κ reduces. These
working points may then indicate a suitable design point of our devices in order to
maximize the SMSR.

The RR model used so far offers an easy and quick way to describe the device
behaviour as κ and LGAC vary. It however assumes that the wave coupled by the
GAC inside the resonator experiences the same group delay of a wave propagating
in a straight waveguide. As shown in Appendix A.5 this can be considered true
just for small κL. In order to verify the validity limit of the RR model we can also
calculate the SMSR exploiting the 2−wave model discussed in Section 5.2. Simula-
tions have been performed for both models for a coupler with typical insertion loss
values (i.e. 0.06 dB) and 2.5 dB/cm propagation losses. Note that, to match the
two models, the GAC in the 2−wave approach will be considered here and in the
following Sections without propagation losses that have been instead added to the
bent waveguides. Moreover, the wavelength matching between the Central Mode
and the exchange Bragg wavelength for this model has been obtained in every sim-
ulation by the numerical tuning of the RR bend waveguides effective index. The
results of these simulations are illustrated in Fig. 5.3. The RR model behaves as
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Figure 5.3.: SMSR calculated with the RR model (solid traces) and the 2−wave
model (circles) for GAC-RINGs with κ = 0.03 (red) and κ = 0.0015
(blue), R = 20 µm and increasing LGAC

expected. It is in agreement with the 2−wave model just for small κLGAC, and the
highest predicted SMSR is reached when a minimum between 2 ·FSR and ∆λ00Ex is
achieved. Increasing LGAC, the two models starts to diverge and the 2−wave model
shows larger reachable SMSR than the RR model.

To understand the SMSR results given by the 2−wave model we can observe in
Fig. 5.4 the device characteristics for R = 20 µm, κ = 0.0015 µm−1 and three
significant values of κLGAC (i.e. 0.36, 1.395 and 2.16). When kLGAC = 0.36 (Fig.
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Figure 5.4.: GAC-RING spectral characteristics simulated with the 2−wave model,
for R = 20 µm, κ = 0.0015 µm−1 and (a) kLGAC = 0.36, (b) kLGAC =
1.395 and (c) kLGAC = 2.16. Dash-dotted lines represent the input (dark
blue trace) and output (light blue trace) GAC spectral behaviour.

5.4a), the amount of normalized power coupled inside and outside the RR (|ρX|2)
at the Bragg wavelength is 0.12. Note that the Input and Output GAC exchange
spectral characteristics overlap having the same perturbation period Λ = 0.336. The
SMSR is 13.6 dB and the 3 dB bandwidth at the Drop port is 6.14 GHz. For this value
of kLGAC, the RR model and the 2−wave model agree quite well (see Fig. 5.3). The
FSR calculated between the Central Mode and the neighboring Side Modes of Fig.
5.4a is in fact about 119 GHz, just one GHz larger than the value calculated with the
RR model. Increasing kLGAC to 1.395 (Fig. 5.4b), the amount of normalized coupled
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5.3 narrow-linewidth single mode resonator

power inside and outside the RR become 0.78 at the Bragg wavelength and the 3 dB
bandwidth increases to 26.2 GHz. With this amount of coupled power the GAC-
RING shows almost completely suppressed Side Modes. The largest simulated
SMSR value is achieved and is equal to 24.5 dB. The difference in the FSR between
the two models is maximum and it is equal to 3.5 GHz. Increasing further the value
kLGAC, one can observe from Fig. 5.4c that the device behaviour resembles that of a
grating. The amount of coupled power for kLGAC = 2.16 is about 95% and the GAC-
RING acts almost as a delay line. In this case there are almost no more resonances
and the FSR looses its meaning. The SMSR is now evaluated with the maximum of
the first sidelobes of the Drop port characteristic and, as in a uniform grating, they
increase as LGAC increases.

A mix between these two models will then be used in order to design the single
mode GAC-RING. The RR model can be employed for κLGAC < 0.18 while for larger
values of this parameter the 2−wave model can be used. The RR model, being
based on analytical equations, requires reduced computational times and is then
preferred inside its κLGAC < 0.18 validity region over the 2−wave model. Moreover,
the exploitation of the RR model allowed to limit the range of values of the device
parameters. In the following Section R < 20 µm and 0.0015µm−1 < κ < 0.009 µm−1

will be considered.

5.3.2 Single Resonance Design

The first parameter that will be analysed in this section is the resonator bending
radius R. Fig. 5.5 shows the SMSR dependence on LGAC of GAC-RINGs with
different κ and two different R. R = 20 µm (Fig. 5.5a) and R = 10 µm (Fig. 5.5b).

0.18 0.58 0.98 1.38 1.78 2.16
0
5

10
15
20
25
30
35
40

kLGAC

S
M

S
R

 [d
B

]

 

 

κ=0.0015µm−1

κ=0.0020µm−1

κ=0.0030µm−1

κ=0.0040µm−1

κ=0.0060µm−1

(a)

0.18 0.58 0.98 1.38 1.78 2.16
0
5

10
15
20
25
30
35
40

kLGAC

S
M

S
R

 [d
B

]

 

 

κ=0.0015µm−1

κ=0.0020µm−1

κ=0.0030µm−1

κ=0.0040µm−1

κ=0.0060µm−1

κ=0.0090µm−1

(b)

Figure 5.5.: SMSR of GAC-RINGs with (a) R = 20 µm and (b) R = 10 µm. In both
cases wR = 500 nm and wB = 400 nm.

It can be immediately noticed, comparing these two figures, that the device per-
formance increases as R reduces. For a given value of κLGAC, larger values of the
SMSR can be achieved. In other words, the same or better performance can be
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achieved with devices having larger κ or smaller LGAC. With R = 10 µm, SMSR
larger than 10 dB are achievable with a large amount of possible κ–LGAC combina-
tions and can then represent a good value for the GAC-RING design. In general,
even better performance can be expected with smaller values of R. However the
choice of curvature radius smaller than 10 µm can lead to round trip loss increase
due to bending and transition losses as well as reflections at the bent-straight section
(see subsection 2.1.2). For these reasons and in order to be able to describe the bent
waveguide section as a straight waveguide in our BB based approach, R ≥ 10 µm
has always been considered in our simulations.

Having fixed R, it is now possible to inspect the device suitable κ and LGAC

working points. The starting point will be, as before, the SMSR now calculated as a
function of the GAC length in order to better evaluate the device dimensions. Also
the Notch Depth of the two neighboring Side Modes will be evaluated.

As anticipated before, the performance of a GAC with wR = 600 nm will be also
taken into account. A waveguide with this width supports two modes above cutoff
(see subsection 2.1.1). However, the two modes have quite different effective indexes
and the GAC period is optimized to couple the first guided mode. Moreover, the
large bend radius should provide negligible excitation of the higher order guided
mode.

The results of the simulations done considering the just given geometrical param-
eters are illustrated in Fig 5.6.

Fig. 5.6a and Fig. 5.6c show respectively the SMSR and the Notch Depth of the
neighbouring Side Modes of GAC-RINGs with wR = 500 nm and wB = 400 nm.
The simulations have been limited to LGAC < 400 µm to keep compact the device
size and have been stopped at κLGAC = 2.16 (i.e. 0.95 of coupled power).

SMSR larger than 10 dB with the Notch Depth smaller than 2.5 dB can be obtained
using κ < 0.006 µm−1. The lower is κ, the lower is the minimum value of LGAC

which satisfies these two minimum specifications. For example, if κ = 0.003 µm−1,
LGAC > 80 µm is required. If, instead, κ = 0.004 µm−1, one needs LGAC > 270 µm.
Looking now at Fig. 5.6b and Fig. 5.6d, which show respectively the SMSR and
the Notch Depth of the neighboring Side Modes of GAC-RINGs with wR = 600 nm
and wB = 400 nm, a performance increase can be noticed. The SMSR values have a
larger slope dependence on LGAC and the Side Modes Notch Depth reduces faster
with LGAC after its maximum point. SMSR larger than 10 dB keeping the notch
depth lower than 2.5 dB can now be obtained with shorter GAC lengths for a given
κ. For example, if κ = 0.003, one requires LGAC > 65 µm (i.e. a GAC 20 µm shorter
than before).

The selection of the suitable κ, LGAC pair can be now completed analysing the
figures which involve just the Central Mode and depend mostly just on the coupled
power (i.e. the value of κLGAC). Because of that, it is not necessary to distinguish
among devices with different wR since minimum differences in these figures will
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Figure 5.6.: (a) SMSR and (c) Side Modes Notch Depth as a function of LGAC for
GAC-RINGs with wR = 500 nm, wB = 400 nm and R = 10 µm. (b)
SMSR and (d) Side Modes Notch Depth as a function of LGAC for GAC-
RINGs with wR = 600 nm and wB = 400 nm and R = 10 µm.

be detected. In Fig. 5.7 the insertion loss (Fig. 5.7a), the Notch Depth (Fig. 5.7b)
and the 3 dB bandwidth (Fig. 5.7c) are plotted as a function of LGAC just for a
GAC-RINGs with wR = 500 nm and wB = 400 nm and R = 10 µm.

Looking together at Fig. 5.7a and Fig. 5.7b one can see that for κ = 0.0015 µm−1,
LGAC equal to about 300 µm are needed to obtain respectively 1.5 dB of insertion
loss and 16 dB of Notch Depth. In order to obtain a compact device, larger values
of κ are necessary.

Focusing now attention on devices that can provide dropped channels with 3 dB
bandwidths between 10 and 20 GHz, devices with κ < 0.004 µm−1 must be selected.
From Fig. 5.7c one can in fact see that this coupling coefficient requires GACs
shorter than 150 µm. These lengths would bring the device to work under the
minimum SMSR and over the maximum Side Modes Notch Depth previously fixed
(see Fig. 5.6) both for GAC-RINGs with wR = 500 nm and wR = 600 nm. These
specifications can be maintained if κ = 0.003 and LGAC between 100 and 200 µm are
designed. If, on the contrary, devices with a 3 dB bandwidth just around 10 GHz
are desired, κ = 0.002 µm−1 and LGAC between 150 and 250 µm can be assumed in
the design with even better SMSR and Side Modes Notch Depth performance (see
Fig. 5.7c and Fig. 5.6).
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Figure 5.7.: Central Mode (a) Drop port insertion loss, (b) Through port Notch
Depth and (c) Drop port 3 dB bandwidth. All the simulated GAC-
RINGs have wR = 500 nm and wB = 400 nm and R = 10 µm.

In conclusion, the presented device could show practical limitations if a device
with increasing value of the 3 dB bandwidth and compact size must be realized.
Large bandwidths are achieved with large power coupled inside the ring. This
requires high κ values for which, as shown in Fig. 5.6, it could be difficult to
achieve high performance. Anyhow, different specifications should be evaluated
case by case taking into account the possibility to further enlarge wR, at the cost of
increasing the possible issues given by a multimodal waveguide, or reducing the
size of wB at the cost of a possible increase of the GAC losses. Moreover, looking
together at Fig. 5.6 and Fig. 5.7 it is possible to notice how a variation of 0.001 µm−1

in κ with respect to the design value can significantly vary the device performance.
In view of the design of such a device it is consequently of primary importance the
knowledge of the κ dependence on the GAC geometrical parameters. κ variations in
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the order of 0.001 µm−1 can in fact cause sensible changes in the device performance
and consequently in the required value of LGAC.

Up to now, identical GAC at the input and at the output section of the GAC-
RING have been considered. However, in Section 4.3 it has been shown that iden-
tical GACs could differ in the exchange Bragg condition wavelength of an amount
smaller than 1 nm in most of the cases. This value can also be in some cases larger
than 4 nm. The effect of this misalignment, that will be addressed from now on as
∆λBEx , are illustrated in Fig. 5.8.

Fig. 5.8a shows the ideal situation (i.e. input and output GACs are aligned,
∆λBEx = 0) for a GAC-RING with R = 10 µm, wR = 500 nm, wB = 400 nm,
κ = 0.003 µm−1 and LGAC = 120 µm. Here the SMSR is 11.8 dB and the Side Modes
Notch Depth is 2.13 dB. The Central Mode shows an insertion loss of 1.5 dB at the
Drop port, a Notch Depth of 16.5 dB at the Through port and a 3 dB bandwidth
of 11.6 GHz. If the output GAC spectral behaviour (Output |ρX|2) is shifted by
1.2 nm and the resonator resonance is tuned in order to have a symmetric |tD|2
(Fig. 5.8b) the SMSR increases to 16.7 dB. However, the notch depth of the left
Side Mode becomes larger than that of the Central Mode. The performance can be
partially recovered by tuning the Central Mode resonance at the input GAC λBEx

(Fig. 5.8c). The Central Mode Notch Depth is increased by 2.5 dB and the SMSR is
decreased by about 2 dB with respect to the ideal situation. The 3 dB bandwidth
is 3 GHz lower, the insertion loss and the maximum Side Mode notch depth (left
one) are respectively increased by 1.2 dB and 1.5 dB. We can then conclude that this
working point is robust against misalignment between the input and output λBEx

below 1.2 nm. Note that this value represents about 1/4 of the GACs ∆λ00Ex .

Increasing the misalignment to 2.5 nm (about half ∆λ00Ex ) and tuning again the
Central Mode resonance at the intersection between the input and output GAC |ρX|2
(Fig. 5.8d) in order to obtain a symmetric Drop port characteristic, a performance
reduction with respect to the ideal case is evident. In this situation no performance
recovery is possible. The input λBEx corresponds in fact to a minimum of the Output
|ρX|2 spectrum. An even larger shift (i.e. 4.2 nm in Fig. 5.8e), corresponding to
about ∆λ00Ex , would lead to a completely distorted Drop port output no matter of
the resonance tuning.

If no control is available for the GACs wavelength tuning, GAC with large ∆λ00Ex

are then desirable to be robust against input and output λBEx misalignments. In
other words, the smaller LGAC and the larger κ are, the more robust the GAC-RING
will be against this fabrication tolerance effect.

At this point it would be in principle possible to select the desired κ and design
the GAC geometry according to Section 4.3 or other approaches such as the CMT
or FDTD. However, nothing have been said on the applicability of the GAC 2−wave
model in a resonant configuration. In subsection 4.3.1 it has been shown that the
GAC |τX|2 broadband coupling as well as the direct reflection given by the grating
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Figure 5.8.: GAC-RING spectral characteristics simulated with the 2−wave model,
for R = 10 µm, κ = 0.003 µm−1, wR = 500 nm, wB = 400 nm,
wR = 500 nm, wB = 400 nm, LGAC = 120 µm and: (a) ∆λBEx = 0;
(b) ∆λBEx = 1.2 nm, Central Mode resonance tuned at the intersection
between the input and output GAC |ρX|2; (c) ∆λBEx = 1.2 nm, Cen-
tral Mode resonance tuned at the maximum of the input GAC |ρX|2;
(d) ∆λBEx = 2.5 nm; (e) ∆λBEx = 2.5 nm. Dash-dotted lines represent
the input (dark blue trace) and output (light blue trace) GAC spectral
behaviour.

inside the exchange stopband can be considered negligible. In the ring loop these
contributions, although small, can lead to detrimental effects to the GAC-Ring spec-
tral behaviour. In the next subsection the GAC 4−wave model will be employed to
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5.3 narrow-linewidth single mode resonator

describe these aspect of the GAC-Ring. After that it will be demonstrated how it is
possible to minimize these undesired spurious effects.

5.3.3 Spurious effects minimization

In order to describe the GAC functionality when all the ports are coupled the
CMT 4−wave model can be employed (see Appendix A.6). The GAC geometry and
parameters can be again taken as the same used in Section 5.2. Note that, in the
4−wave model informations about the coupling coefficient representing the codi-
rectional coupling between the two waveguides constituting the GAC are also re-
quired. Unfortunately, though direct and exchange reflection coupling coefficients
can be easily extracted form GAC measurements, this is not true for the codirec-
tional coupling. The intensity of the transmission coefficient tX can be at noise level
making impossible any reliable fitting. With reference to Appendix A.6 notation a
test value κ12 = κ21 = 0.0137 µm−1 was then considered in order to perform these
simulations.

After the determination of the coupling coefficients, the CMT partial differential
equation system of the GAC can be numerically solved. Then, the GAC spectral
behaviour can be evaluated. As a first step, a comparison between the GAC 2−wave
and 4−wave model spectra can be performed. Figure 5.9 shows the results of this
simulation for a GAC with wB = 400 nm, wR = 500 nm, aB = 8 nm, aR = 10 nm,
Λ = 320 nm and LGAC = 20.16 µm when the larger waveguide is excited. Note that
this is then the spectral response seen by a wave propagating inside the resonator.
The curves of the 2−wave model (Fig. 5.9a) are compared with those of the 4−wave
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Figure 5.9.: GAC spectral behaviour simulated with: (a) the 2−wave model; (b) the
4−wave model.

model (Fig. 5.9b). Despite the large qualitative similarity, there are two important
differences. The first is the residual coupling of the ports that are not involved in the
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main coupling. As shown in the inset, the side-lobes of the direct reflection curve
extend up to the exchange stop-band region. The second concerns the codirectional
coupling which remains under 0.2% over the entire spectrum. Although the four
wave model shows a small change in behaviour of the GAC, such small changes can
have a detrimental impact on the GAC-RING device due to its resonant behaviour.

Once the GAC scattering matrix have been retrieved, the GAC-RING spectra is
simulated through the scattering matrix approach considering an insertion loss of
0.06 dB for the GAC and 2.5 dB/cm as propagation losses for the bent waveguide
sections. The bend curvature radius has been set equal to 20 µm. The result of this
simulation is illustrated in Fig. 5.10b. The spurious behaviour can be immediately
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Figure 5.10.: (a) Sketch of the GAC-RING geometry. (b) Spectal behaviour of the
GAC-RING simulated with the GAC 4−wave model and the scattering
matrix method.

noticeable: the power at the Cross port |tC|2 is similar to that at the Drop port |tD|2,
the resonance peaks show splitting and there are undesired resonance features all
over the spectrum. The residual broadband codirectional coupling is responsible
for the presence of resonance notches not only in the bandwidth range where the
exchange coupling takes place. Due to the losses there are no resonances at the Drop
port away from the exchange stop band even if dips on the through characteristic
are noticed over all spectrum.

The behaviour in the exchange stopband is more complex. In this range the
input power is also coupled forward by residual codirectional coupling. Moreover,
the GAC reflects a small fraction of the power coming from each side of the ring.
This causes the presence of some signal that propagates in both directions of the
ring with similar intensity and couples back to both exchange ports. Since the ring
supports two counter-propagating waves coupled by the GAC, a coupled-cavity is
generated and this results in the split-peak spectral features [97, 179].
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This brief analysis showed that in order to make the device work with the desired
performance, a GAC minimizing these effects has to be designed. Taking into ac-
count the codirectional coupling it can be noticed that this parameter in inversely
proportional to the gap g. The minimum gap that guarantees the codirectional cou-
pling minimization has then to be found. A numerical approach can show to this
purpose practical limitations. The small values of this broadband coupling can be
easily covered by numerical errors leading to erroneus estimations. Due to this rea-
soning we chose an experimental approach. The evaluation of the codirectional cou-
pling effects can be done by observing the GAC-RING resonant behaviour outside
the exchange bandwidth, fixing all the GAC parameters but g. The experimental
results for GAC-RINGs with R = 10 µm, wR = 500 nm, aR = 6 nm, wB = 400 nm,
aB = 4 nm, Λ = 0.336 µm, LGAC = 100.8 µm and different g are show in Fig.
5.11. Fig. 5.11a shows that g = 180 nm leads the device to resonate at almost all
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Figure 5.11.: Spectral behaviour of a GAC-RING with R = 10 µm, wR = 500 nm,
wB = 400 nm, Λ = 0.336, LGAC = 100.8 and: (a) g = 180 nm; (b)
g = 300 nm.

the wavelengths. It can in fact be difficult to recognize the range of wavelengths
where the GAC exchange coupling takes place. Increasing the gap to 300 nm (see
Fig. 5.11b) greatly reduces the codirectional coupling. The GAC exchange coupling
takes place at wavelengths around 1550− 1560 nm. Over this wavelength range it is
also possible to notice that the deeper notch of |tT|2 and the smaller insertion loss of
|tD|2 do not occur at the same resonance. As illustrated in subsection 5.3.2 and Fig.
5.8, this is the typical effect given by different input/output GAC λBEx . Only the
tuning of the resonance position can indicate whether the GAC-RING performance
are robust to these misalignments. This aspect will be investigated in the next
subsection. Looking far from the GAC exchange coupling condition (i.e. around
1580− 1590 nm), the notch depths of |tT|2 are smaller than 2.5 dB and the resonance
at |tD|2 and |tC|2 are always lower than 9.5 dB with respect to the largest peak at the
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centre of the Bragg condition. Note that this performance is in agreement with the
minimum target specifications given in the previous subsection. g = 300 nm can be
then considered as the minimum gap for the fabrication of the devices.

Moreover, to reduce the interaction between exchange and direct reflection band-
width, GAC with waveguide widths difference larger than 100 nm can be realized.
Considering GACs with wR = 600 nm and wB = 400 nm can also lead to improved
performance of the device in terms of SMSR as shown in the previous Section.

5.3.4 Fabricated devices performance

Once the device theoretical investigation have been carried out and a minimum
GAC gap allowing the description of the GAC-RING behaviour with the 2−wave
model has been found, it is now possible to design the GAC-RING according to
well defined specifications having fixed R = 10 µm from the previous analysis.

Before entering into the details of the realized devices it is important to highlight
that NiCr heaters were realized on top of the resonator bent sections in order to
exploit the thermo-optic effect to tune the resonance position. Low resistivity Ti-Au
strips were also realized in order to bring the electrical signal over the device waveg-
uides as described in 1.4. The NiCr heaters cross section is set to 920× 50 nm2 and
heater lengths Lh = 32.44 µm are chosen. An example of the fabricated GAC-RINGs
is illustrated in the optical microscope photograph of Fig. 5.12. It can be immedi-

Figure 5.12.: Example of a fabricated GACR-RING with heater control over the ring
resonator phase.

ately noticed that NiCr strips are present not only over the device waveguides. On
this chip some Ti-Au parts overlapping the NiCr strips were in fact lifted due to fab-
rication problems. The only drawback arising from this condition is the inefficient
tuning. Resistances are higher than those expected form the exploited SOI platform.
Consequently, higher voltages are required to tune the RR resonance in the desired
position. The following procedure has been applied in order to retrieve realistic
values of the necessary power dissipated to set the resonance at the wavelength that
gives the maximum GAC-RING performance. The electrical current Ih was moni-
tored during the tuning process. The heater resistance Rh was calculated through
the heater geometrical parameters and taking into account the average NiCr resis-
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tivity (see Section 1.4). The value of the electrical power dissipated PD = Rh Ih
2 has

been obtained and will be reported in the following.

The analysis developed in the previous Section has shown that GAC with κ ≤
0.003 µm−1, g ≥ 300 nm should be selected in order to realize a compact device
with SMSR larger than 10 dB and a filter 3 dB bandwidth between 10 and 20 GHz.
At the time of this fabrication run only one already characterized GAC with this
characteristics was available (see Section 4.3.2). To obtain κ ≈ 0.003 µm−1, wR =

500 nm, aR = 6 nm, wB = 400 nm, aB = 4 nm and g = 300 nm were then selected.
As previously shown in subsection 5.3.2, the larger is the GAC bandwidth the more
robust is the GAC-RING to GACs exchange wavelength misalignments (i.e. ∆λBEx 6=
0). LGAC = 100.8 µm was chosen providing a ∆λ00Ex ≈ 5.68 nm. The described
geometrical parameters are collected in the first row of Tab. 5.1 together with the
simulated performance of the GAC and of the GAC-RING (D1 row, Tab. 5.1). A
dropped 3 dB bandwidth (BW) of 9.8 GHz with 2 dB of insertion loss (IL) and a
SMRS = 11.1 dB is then expected from the design. Moreover, the selected working
point provides a Central Mode Notch Depth (CM ND) equal to 14.3 dB and a Side
Modes Notch Depth (SM ND) equal to 2.2 dB.

In Fig. 5.13 the measured output spectra of this device are illustrated. Fig. 5.13a
shows the measured GAC-RING spectral characteristic when no electrical power is
dissipated on the heater. It is possible to notice that for lower wavelengths |tD|2
shows larger bandwidth resonance peaks. This behaviour is due to the presence of
a TM component of the field. The presence of this component can be addressed to
a polarization conversion effect of the mode adapters [29] or to a reduced extinction
at the chip input more than to the GAC-RING itself. A GAC-RING with identical
parameters was in fact fabricated in a former run and its spectral behaviour, shown
in Fig. 5.11b, does not show these extra features. For this reasoning, from now on
the GAC-RING spectra obtained through a TE polarizer at the output of the chip
will be illustrated. This does not cause loss of any important information, as it can
be noticed comparing the GAC-RING spectra without (Fig. 5.13a) and with (Fig.
5.13b) the output TE polarizer in the set up.

The desired device performance can be obtained dissipating a PD of about 9 mW
over the resonator. The measured output optical normalized power at the three
ports of the GAC-RING under this electrical condition are illustrated in Fig. 5.13c.
By looking at the Drop port characteristic (|tD|2, red trace), a 3 dB bandwidth of the
Central Mode of about 8.4 GHz and a SMSR of 11 dB can be observed. The SMSR
is also maintained over the whole spectrum as shown by the dashed horizontal line.
Looking at the Through port characteristic (|tT|2, black trace) we can notice that
the Central Mode Notch Depth is larger than 13 dB and the notch depth of the
Side Modes is smaller than 2.7 dB in the whole measured wavelength interval. By
comparing the described performance, collected in row M1a of Tab. 5.1, with that
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Figure 5.13.: Spectral behaviour of a GAC-RING with R = 10 µm, wR = 500 nm,
aR = 6 nm, wB = 400 nm, aB = 4 nm, Λ = 0.336, LGAC = 100.8 µm,
g = 300 nm and: (a) PD = 0; (b) PD = 0 and the TM component
of the field filtered at the output of the chip; (c) PD = 9 mW and
the TM component of the field filtered at the output of the chip; (d)
PD = 10 mW and the TM component of the field filtered at the output
of the chip.
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ring resonators with grating assisted couplers

designed (row D1, Tab. 5.1) the good agreement is immediately noticeable. Note
that, for the sake of completeness, in Tab. 5.1 the value of κ and ∆λ00Ex measured
from GAC test devices on the same chip are also reported. Moreover, the GAC
|ρX|2 at λBEx calculated using Eq. (4.4) and assuming 0.06 dB of GAC insertion
loss is also reported. The detected variability of the input/output mode adapters
performance (i.e. larger than 5 dB) did not allow in fact for a reliable measurement
of this parameter.

Due to this variability it was also not possible to have a reliable estimation of
two important parameters of the GAC-RING: the Central Mode insertion loss at the
Drop port (IL in Tab. 5.1) and at the Cross port. The first figure is required to be
small to obtain efficient channel selection, while the latter is required to be large if
the Cross port is used to add a channel into the system like in a standard add-drop
RR. Regarding the Central Mode insertion loss at the Drop port, the accordance
between simulated and measured spectral features indicates a good estimation of
the device losses in the design stage. An insertion loss close to the simulated value
(i.e. 2 dB) can be then expected from the considered device. Regarding instead the
Central Mode insertion loss at the Cross port, in the following it will be highlighted
whether the variation of the tuning can increase or reduce this parameter.

The Central Mode 3 dB bandwidth can be in fact finely tuned without dramat-
ically affect the other figures of merit of the device. By increasing PD of 1 mW it
is possible to increase this figure of 1 GHz, reducing then the difference between
designed and measured bandwidth from about 1.4 GHz to about 0.4 GHz. This
condition is illustrated in Fig. 5.13d and the measured performance are collected in
row M1b of Tab. 5.1. The SMSR is practically unchanged, being in fact increased by
only 0.3 dB. Looking at Fig. 5.13d it is possible to notice that this figure is now lim-
ited by the Side Modes outside the GAC exchange bandwidth and not by the Side
Modes close to the Central Mode. The insertion loss of the Central Mode increases
of about 0.3 dB at the Drop port while decreases of about 1 dB at the Cross port.

In comparison with the proof of concept device proposed in [175], a SMSR larger
of about 3 dB has been then achieved in a single mode resonator with a 1.5 GHz
larger bandwidth. In [175], the resonance tuning was not performed and moreover
R = 20 µm was set. As shown in subsection 5.3.2, this design choice reduces the
ranges of κ and LGAC over which a SMSR larger than 10 dB can be achieved.

As it has been shown in the previous Section, the device performance can be
further improved by selecting different values of the GAC κ and LGAC than that
just described. The improvement of the SMSR in the neighbourhood of the GAC
exchange bandwidth wavelength is however pointless if not realized together with
a further suppression of the resonances outside the cited bandwidth. The same
reasoning applies for the Side Modes Notch Depth. In order to overcome this prob-
lem, two design strategies can be taken: the increase of the GAC gap, which can in
turn reduce the codirectional coupling value, and the widening of wB, which can in
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5.3 narrow-linewidth single mode resonator

turn reduce the codirectional coupling value and the reflections given by the grating
inside the resonator. Both of these solutions have been tested.

The first of these two solutions is tested through the realization of a GAC-RING
with R = 10 µm, wR = 500 nm, aR = 10 nm, wB = 400 nm, aB = 8 nm, LGAC = 100.8
and g = 350 nm (see second row of Tab. 5.1). Note that in this device the gap
and the perturbations of the two waveguides have been increased with respect to
the device geometry presented so far. The exponential fitting curve shown in Fig.
4.15 have been employed in order design a GAC keeping the value of the coupling
coefficient higher than 0.002 µm (i.e. ≈ 0.0026 µm−1 for this device). This choice
allows to obtain performance similar to that of the previously presented GAC-RING
since κLGAC is not sensibly reduced. Note that also the same robustness to GACs
λBEx misalignments is expected since the GAC ∆λ00Ex is reduced by just 6 pm. The
designed GAC and GAC-RING performance are illustrated in row D2 of Tab. 5.1.

Fig. 5.14 shows the spectral characteristic of the described device with PD =

6.3 mW.
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Figure 5.14.: Spectral behaviour of a GAC-RING with R = 10 µm, wR = 500 nm,
aR = 6 nm, wB = 400 nm, aB = 4 nm, Λ = 0.336, LGAC = 100.8,
g = 300 nm, PD = 6.3 mW and and the TM component of the field
filtered at the output of the chip.

This GAC-RING presents a ’cleaner’ spectrum with respect to the previously char-
acterized one, which confirms the reduction in the broadband coupling obtained. At
the Through port (black trace, Fig. 5.14) the notches outside the GAC bandwidth
have in fact a maximum depth of 1.5 dB. More than 1 dB smaller than in the pre-
vious case. However, looking at the Drop port characteristic (red trace, Fig. 5.14) it
can be noticed that the resonance occurring at wavelengths around 1610 nm is 11 dB
lower than the Central Mode: the same value detected in the previously presented
device. This behaviour can be related to an increase in the insertion loss of the Cen-
tral Mode. In fact, as illustrated in Section 5.3.2, a larger input/output GAC λBEx

(∆λBEx ) can increase this figure. In such case, a larger deviation from the designed
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performance is also expected. The comparison between the target and the measured
performance for this device, illustrated respectively in row D2 and M2 of Tab. 5.1,
shows in fact larger differences than those previously detected. For example, the
dropped 3 dB bandwidth (5.8 GHz) and the SMSR (9 dB) are of about 2 GHz and
3.6 dB smaller than their relative target values.

It is now possible to highlight that, although the discussed differences are larger
than in the previous case, they are not dramatic. They can be due in fact not only
to a larger ∆λBEx but also to higher losses and/or different κ between the input and
the output GACs. These effects can be easily taken into account for future design
of this class of devices through the 2−wave model. Moreover, it can be noticed
form row M2 of Tab. 5.1 that the present GAC-RING has input/output GACs that
nominally couples 5.5% of the input power at λBEx . This value is about 2% less than
in the previously analysed case (see rows M1a and M1b of Tab. 5.1). With these
levels of coupled power, even though the two GAC waveguides are 350 nm apart,
the GAC-RING performance can be more sensitive to the codirectional coupling. In
such case it is possible to set a lower κLGAC limit for the applicability of the 2−wave
model other than the minimum GAC gap. Also the grating direct reflection inside
the ring can be responsible for the observed performance deviation from the target
values. This reflection can be in fact also increased with respect to the previous
case due to the increased ring waveguide perturbation (aR in Tab. 5.1). Geometries
minimizing the interaction between the GAC direct reflection inside the ring and
the GAC exchange reflection can be then preferred in the design stage.

Finally, to demonstrate the latter solution to reduce codirectional coupling, a GAC
with 100 nm larger wR with respect to the first GAC-RING analysed in this section
was realized. The perturbation period Λ has been reduced from 336 nm to 328 nm
in order to maintain the GACs λBEx in the same wavelength region. All the other
geometrical parameters have been kept unchanged except LGAC, which has been
increased to 150.88 µm (see the third row of Tab. 5.1). The coupling coefficient
of a GAC with these parameters was calculated with the CMT (see Appendix A)
involving just the principal component of the electric fields as in subsection 4.2.3.
The calculated κ is about 0.0015 µm−1. From this κ and LGAC combination it would
be possible to expect a 3 dB bandwidth of 4.9 GHz and a SMSR larger than 20 dB
(see row D3 of Tab. 5.1). However, the lower value of κ as well as the larger value
of LGAC brings a ∆λ00Ex of about 1.8 nm lower than that of the first GAC-RING
analysed in this section. A bigger sensitivity to ∆λBEx 6= 0 and consequently a
sensible reduction of the ideal performance are then expected. Fig. 5.15a shows
the spectral characteristic of the described device with PD = 0. The measured
performance are collected in row M3a of Tab. 5.1.

With the described geometrical parameters it is possible to achieve a transmission
spectrum (black trace of Fig. 5.15a) with practically only one notch. The Drop
port characteristic (|tD|2, red trace) shows that the maximum value of the resonance
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Figure 5.15.: Spectral behaviour of a GAC-RING with R = 10 µm, wR = 600 nm,
aR = 6 nm, wB = 400 nm, aB = 4 nm, Λ = 0.336, LGAC = 100.8 µm, g =
300 nm and: (a) PD = 0 mW; (b) PD = 6.3 mW. In both experiments
the TM component of the field has been filtered at the output of the
chip.

peaks outside the GAC exchange bandwidth is now about 14 dB lower than the
Central Mode maximum power level.

By increasing PD to 5.5 mW it is possible to achieve a better condition for the
Drop port (red trace of Fig 5.15b). The SMSR, reported in row M3b of Tab. 5.1, is
in fact maintained almost unchanged at about 12 dB but now the Central Mode is
almost perfectly symmetrical with respect to its central wavelength. The difference
between the simulated 3 dB bandwidth and the measured one have been reduced
from 4.7 GHz to about 2 GHz. The insertion loss at the Drop port is reduced by
4.2 dB and the insertion loss at the Cross port is increased by 8 dB with respect to
the previous tuning condition.

However, at the Through port, the Notch Depth of the Central Mode is reduced
by 3 dB and two notches can now be appreciated. As illustrated in subsection 5.3.2
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and Fig. 5.8, this effect is given by ∆λBEx 6= 0 and can be easily tackled down by real-
izing heaters controlling the input/output GAC λBEx . A performance improvement
bringing the SMSR closer to the design value is also expected by implementing this
solution.

5.4 conclusions

In conclusion, the design tool based on the GAC 2−wave model BB allowed an
estimation of the device behaviour that was proven by the reported experimental
results. This demonstrates the applicability of the approach based on BBs and of
the developed model to the design of a complex device like the GAC-RING.

Moreover, the in depth experimental and numerical analysis of the GAC-RING
carried out has evidenced its limits and potentials. In general, a trade-off be-
tween performance, bandwidth and device footprint is required when designing
the proposed narrow linewidth single mode resonator. However, smaller band-
widths within a more compact device with respect to simple GACs solutions can be
achieved.

In particular, a GAC-RING with dropped 3 dB bandwidth of about 9 GHz and
SMSR of 11 dB was designed and characterized. It has been shown that the SMSR is
actually limited more by the spurious resonances outside the GAC exchange band-
width than by the neighbouring modes of the selected resonance. A reduction of
this undesired effect is possible by changing the geometry of the GAC: increasing
the GAC gap or the waveguide widths difference. Both these solutions have been
successfully demonstrated. In general, by considering also the simulated results,
an increase in the GAC waveguides asynchronism can be preferred in the design
stage. Increasing the gap can bring in turn just to a lower value of the broadband
codirectional coupling while widening the ring waveguide can also reduce the inter-
action between the direct and the exchange stopband. The latter solution can also
offer higher SMRS maintaining the same footprint size or more compact devices
maintaining the same SMSR.

The extensive simulations carried out showed that higher performance than that
demonstrated can be obtained by choosing smaller κ and larger LGAC. For example,
ratios larger than 20 dB between the power carried by the selected mode and the
side modes are achievable. In this situation, the realization of actuators controlling
of the GACs exchange Bragg wavelength is however mandatory due to the increased
sensitivity of the GAC-RING to fabrication tolerances. The wavelength selective
couplers tuning would also allow to reconfigure the filter central wavelength. This
feature is highly desirable to give a degree of flexibility to the device. The price to
pay for increasing performance and flexibility is then an increasing complexity in
the device control. Three actuators are then required instead of one to obtain the
same reconfigurability of a simple RR.
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5.4 conclusions

The presented device showed also some practical limits. The larger the required
bandwidth the more it can be difficult to maintain large performance. Moreover,
the GAC-RING performance is sensitive to the highlighted spurious effects.
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6

T U N A B L E B A N D W I D T H F I LT E R

6.1 introduction

The second multi-element PIC designed through the BB based approach concerns
a reconfigurable filter, an integrated circuit able to reconfigure and adapt its char-
acteristics to the system requirements. As stressed in Section 1.1, these circuits
are becoming increasingly important in many applications including on-chip net-
working [113, 180], optical communication systems [9] and also microwave photon-
ics [26,117,181], playing a key role in the development of highly functional modules
to meet the required system flexibility.

Photonic integrated filters design has been deeply investigated and many dif-
ferent techniques have been proposed for the synthesis of the desired filter re-
sponse [37,39,109,112]. The development of these techniques together with the high
fabrication quality standards of SOI photonic devices reached by many foundries
all over the world led to the realization of multi-element chip-scale filters with high
complexity and high performance [100, 110, 182–184]. However, the capability to
tune both the filter bandwidth and the filter central wavelength maintaining high
performance for all the filter configuration is not straightforward and represents
still an open issue. For example, single resonators with tuning of their coupling sec-
tions [115,185] offer limited bandwidth tunability range or poor Off-band Rejection.
By embedding ring resonators in an unbalanced Mach-Zehnder Interferometer it is
possible to improve the filter performance [111, 186]. The use of RRs in add drop
configuration [186] can bring to a limited bandwidth tuning range due to in-band
ripples and insertion loss despite high Off-band Rejection values. Better design flex-
ibility, bandwidth tunability, high Off-band Rejection and simple control can be ob-
tained using several all pass RRs [111]. All pass RRs combined with a MZI have also
been used as unit cells of cascaded filters with two [114] or more stages [26] to allow
a wide tunability of the filter characteristics. To achieve the described performance
a large number of actuators to control the phases and the coupling coefficients of
the RRs and of the MZI are however required. Moreover, as previously shown in
this work, devices robust to fabrication tolerances effects have to be developed.
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tunable bandwidth filter

In this chapter a simpler geometry, where only one arm of the MZI loaded with
two RRs in all-pass configuration is deeply investigated. This device requires only
tuning of the RRs and of the MZI unloaded arm phases. It provides wider band-
width tunability range, easier management with reduced power consumption and
central wavelength tunability over the full Free Spectral Range at the price of a
modest Off-band Rejection reduction.

The device is theoretically investigated through the transfer matrix and the Z-
transform formalism by the means of the exploited SOI platform BBs. This approach
allows the definition of the design rules to maximize the filter performance taking
into account losses and fabrication tolerances effects. The comparison between the
design and the realized devices is then carried out to demonstrate the feasibility of
the described design procedure. Moreover, improved flexibility can be also achieved
by realizing two tunable coupling sections for the all pass RRs through the BB
developed in Chapter 3.

Finally, in order to test the devices suitability for channel subset selection in WDM
systems, reconfigurable filters for gridless networking and adaptive filtering of sig-
nals, the simultaneous and correct tuning of many passbands and the filter robust-
ness against nonlinear effects is investigated as well as bit error rate (BER) measure-
ments.

6.2 filter functionality

The filter architecture is shown in Fig. 6.1. It is based on an asymmetric MZI
with input and output couplers power coupling coefficients Kc1 and Kc2. Two RRs
in all pass configuration with the same geometric length Lr and power coupling
coefficient Kr load one of the MZI arms. The length of the unloaded arm is set to
have an optical path difference equal to Lr so that the FSR of the RRs matches that
of the MZI (see Sections 2.3 and 2.4).

Figure 6.1.: Schematic diagram of the tunable filter architecture.

Bandwith tunability is achieved by controlling the three phase shifters repre-
sented by the grey boxes in Fig. 6.1. The tuning of the RRs phase difference
∆ϕ = ϕr2 − ϕr1 allows the control of the filter 3 dB bandwidth while the condition
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6.2 filter functionality

ϕmz = mπ + (ϕr1 + ϕr2)/2 with m integer allows a filter transfer function always
symmetric with respect to the filter central frequency f0.

Following the notation introduced in Section 2.3, the spectral response of the
device can be described through the Z-transform approach [187] and the transfer
matrix method as [

Y1

Y2

]
=

[
H11(z) H12(z)
H21(z) H22(z)

] [
X1

X2

]
= (6.1)

=

[
c2 −js2

−js2 c2

] [
HR(z) 0

0 γe−jϕmz z−1

]
× (6.2)

×
[

c1 −js1

−js1 c1

] [
X1

X2

]
, (6.3)

where Xi and Yi represent respectively the complex amplitudes of the optical fields
at the input and at the output of the system. In the following X1 = 1 and X2 = 0 will
be assumed. It holds that z−1 = e−j2π f T, where f represents the optical frequency
and T is the unit delay. This delay is given by T = (ngLr/c) = (1/FSR), with ng the
waveguide group index and c the speed of light in vacuum. Note that as justified
at the end of subsection 2.3.1, an effective index ne f f ≈ ng is assumed by using the
presented notation. HR(z) represent the all-pass RRs cascade transfer function and
can be expressed as (see Eq. (2.6))

HR(z) =
2

∏
i=1

ae−jϕri(ρejϕri − aγz−1)

(1− ρaγe−jϕri z−1)
, (6.4)

where, as in Section 2.3, ρ =
√

1− Kr is the coupler field transmission coefficient
and a is the coupler loss factor. Moreover, γ is the field propagation loss factor
associated to a propagation length Lr. The ring resonator round trip loss factor is
then defined by the product aγ = γr. The input and the output MZI couplers are
represented by the first and the last matrix at the right side of Eq. (6.3) being, as in
Section 2.4, ci =

√
1− Kci and si =

√
Kci with i = 1, 2.

Using Eq. (6.3) and (6.4) the Through and the Cross port transfer functions (H11(z)
and H21(z)) can be expressed as the ratio between two third order polynomials N(z)
and D(z) as (see in Appendix B, Eq. (B.7) and Eq. (B.12)):

H11(z) =
N11(z)
D11(z)

, (6.5)

H21(z) = −j
N21(z)
D21(z)

. (6.6)

These two equations account for the behaviour of a general filter. Its key parameters
(3 dB bandwidth, Off-band Rejection and Shape Factor), besides ∆ϕ, depend also
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on the coupling coefficient ρ (or Kr) and the loss factors a and γ. To highlight
how ∆ϕ influences the system poles and zeros location and consequently the filter
performance, a lossless device will be considered first (i.e. a = γ = 1) with a given
value of Kr. Moreover, 3 dB couplers will be considered at the input and at the
output of the MZI (i.e. Kc1 = Kc2 = 0.5). This choice, as in a standard unbalanced
MZI (see Section 2.4) ensures equal performance at the two ports as illustrated in
Appendix B. Using Eq. (6.3) and Eq. (6.4) one gets:

N11(z) =ρ2 + [1− 2ρ cos(∆ϕ/2)] z−1

+ [1− 2ρ cos(∆ϕ/2)] z−2

+ ρ2z−3, (6.7)

N21(z) =ρ2 − [1 + 2ρ cos(∆ϕ/2)] z−1

+ [1 + 2ρ cos(∆ϕ/2)] z−2

− ρ2z−3 (6.8)

and
D11(z) = D21(z) = 2 · (1− 2ρ cos(∆ϕ/2)z−1 + ρ2z−2). (6.9)

where ϕr2 = −ϕr1 = ϕr and ϕmz = π has been considered to simplify the notation
without lack of generality. In fact adding a phase ϕ0 to the three phases produce
just a rigid shift of the filter characteristic while a π variation of ϕmz produce a swap
between the Through and Cross port transfer functions.

Assuming for example Kr = 2/3 (i.e. ρ = 1/
√

3), the filter Through port transfer
functions for different ∆ϕ and the corresponding pole-zero diagrams are illustrated
in Fig. 6.2 using the normalized frequency ν = ( f − f0)/FSR and z−1 = e−j2πν.
The upper left diagram of Fig. 6.2b shows that when ∆ϕ = π the filter has three
zeros in z = −1 and two purely imaginary complex conjugated poles. The filter
transfer function (green trace in Fig. 6.2a) shows then two nulls at ν = ±0.5 and
a spectral behaviour similar to the symmetric interleaver presented in [188]. The 3
dB bandwidth is equal to FSR/2 and a flat passband is obtained [38]. Varying ∆ϕ

from π to 0 induces a rotation of two zeros towards z = 1 onto the unitary circle
and of two poles towards the positive real axis on a circle of radius equal to ρ (see
the upper part of Fig. 6.2b). This changes the filter transfer function reducing the 3
dB bandwidth from FSR/2 to its minimum (see Fig. 6.2a).

Looking at the corresponding pole zero diagram in Fig. 6.2b, one can notice that
the filter has three zeros in z = −1 and two purely imaginary complex conjugated
poles. The amplitude of the filter transfer function is thus that of a 3rd order But-
terworth filter with a cut off at the normalized frequency νc = 1/4 [38]. Varing ∆ϕ

from π to 0 changes the filter 3 dB bandwidth from FSR/2 to its minimum (see Fig.
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Figure 6.2.: (a) Filter Through port intensity transmission for Kr = 2/3 (i.e. ρ =
1/
√

3) and different ∆ϕ as a function of the normalized frequency ν =
( f − f0)/FSR. (b) Relative pole-zero diagrams where poles and zeroes
are represented respectively by crosses and dots.

6.2a). This corresponds to a rotation of two zeros towards z = 1 on the unitary circle
and of two poles towards the positive real axis on a circle of radius equal to ρ (see
the upper part of Fig. 6.2b).

Instead, by varying ∆ϕ from π to 2π it is possible to increase the filter 3 dB
bandwidth from FSR/2 to its maximum (see Fig. 6.2a). In this case two zeros move
apart from z = −1 along the real axis in reciprocal positions with respect to the unit
circle, while two poles are rotated toward the negative real axis always on the circle
of radius ρ (see the lower part of Fig. 6.2b). As it will be shown in subsection 6.3.2,
for any Kr, a perfectly flat passband response can be obtained only for one value of
∆ϕ. For different values some in-band ripples appear but they are always below 0.3
dB, which is not too detrimental.

The Through port has been considered so far. The behaviour of the Cross port
is complementary. The maximum (minimum) bandwidths are obtained for ∆ϕ = 0
(∆ϕ = 2π) respectively. Inspection of Eq. (6.7), (6.8) and (6.9) also shows that for
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Figure 6.3.: (a) Filter Cross port intensity transmission for Kr = 2/3 (i.e. ρ = 1/
√

3)
and different ∆ϕ as a function of the normalized frequency ν = ( f −
f0)/FSR. (b) Relative pole-zero diagrams where poles and zeroes are
represented respectively by crosses and dots.

given spectral characteristics, the pole zero plot is that of the Through port rotated
by π. This complementary behaviour is shown in Fig. 6.3.

Once the main characteristics of the filter behaviour have been introduced, in
the next section its design process will be illustrated evidencing the role of the
parameters that have been kept constant in this analysis.

6.3 filter design

In this section the effect of the RRs coupling coefficient Kr as well as that of the
losses (a and γ) and of the input/output MZI couplers will be discussed in view
of the filter design. The effect of Kr will be studied first, with fixed losses. This
study has been performed doing extensive numerical simulations varying Kr from
0.6 to 1 (the reason of this choice will be discussed later) and ∆ϕ from 0 to 2π

(corresponding to minimum and maximum 3 dB filter bandwidth) and calculating
the corresponding values of 3 dB bandwidth, Off-band Rejection and Shape Factor
with coupler insertion loss A = −20 log10(a) = 0.06 dB and ring resonator round
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trip loss Γr = −20 log10(γr) = 0.2 dB/turn. Losses have been set in accordance
with typical SOI platform figures (see Chapter 2 and [77]). Then, once the desired
value of Kr has been found, the impact of the losses on the overall performance is
studied. Variations from the 3 dB input/output MZI coupler condition will be then
analysed and finally, a brief discussion on the possibility to obtain filter responses
with a maximally flat passband characteristic will be done.

Before illustrating the results it should also be noticed that the Off-band Rejection
must be defined differently depending on the presence or not of sidelobes (see Fig.
6.2). In particular the Off-band Rejection is calculated with respect to the maximum
of the filter sidelobes, if they exist, or, if they are not present, with respect to the
filter absolute minimum. Moreover, the Shape Factor is defined as the ratio between
the 1 dB and the 10 dB filter bandwidth.

6.3.1 RRs Coupling Coeffcient

The filter 3 dB bandwidth as a function of Kr and ∆ϕ are illustrated in the map
of Fig. 6.4, where level curves are drawn to help reading the different values of the
colormap.

Figure 6.4.: Map of the filter Through port 3 dB bandwidth normalized to the FSR
as a function of ∆ϕ (x axes) and Kr (y axes).

The figure shows that for ∆ϕ = π the 3 dB bandwidth is always of about 50 %
of the FSR, no matter of the value of Kr. Suitable combinations of ∆ϕ and Kr al-
low all the possible values of the 3 dB bandwidth, with minimum and maximum
values obtained for ∆ϕ close to 0 and 2π respectively. Large values of Kr reduce
the bandwidth tunability as well as its sensitivity to ∆ϕ variations. The limit case
is represented by Kr = 1, where the two RRs act as pure delay lines and the filter
transfer function is that of an unbalanced MZI with a bandwidth of 0.499 FSR in-

119



tunable bandwidth filter

dependently on ∆ϕ. One can conclude that small values of Kr are then desirable to
maximize the filter bandwidth tunability.

However, this figure is not the only one that has to be taken into account in
the design of the filter. The effects of Kr on the Off-band Rejection as well as on the
Shape Factor have to be considered too. The dependence of these figures of merit on
Kr is illustrated in Fig. 6.5. The Off-band Rejection (Fig. 6.5a) and the Shape Factor

(a)

(b)

Figure 6.5.: Map of the (a) filter Off-band Rejection and (b) Shape Factor (color bar
and contour lines) for the 3 dB bandwidths obtained for 0 < ∆ϕ < 2π
(y axes) as a function of Kr (x axes).

(Fig. 6.5b) are shown as a function of Kr and of the 3 dB bandwidth normalized
to the filter FSR. Level curves are drawn to help reading the different values of the
colormap.
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Considering the Off-band Rejection first, Fig. 6.5a shows that an overall increase
of this figure of merit can be obtained increasing Kr. A trade-off is thus needed to
obtain both wide bandwidth tunability and a reasonable Off-band Rejection for all
the filter configurations. In this trade-off the filter shape has also to be taken into
account. Considering the map of Fig. 6.5b one can also see that, increasing Kr also
smoothens the shape of the filter thus reducing the Shape Factor. An upper limit
for Kr can be thus also given by this figure depending on the required performance.

These maps allow the designer to choose the value of Kr corresponding to the
desired performance, providing at the same time a general view of the mutual
effect of the parameters. A good compromise can be obtained for Kr within 0.7 and
0.8. With Kr = 0.7 a large bandwidth tunability, from 90% to 10% of the FSR, can be
obtained with an Off-band Rejection always larger than 12.7 dB. With Kr = 0.8 an
Off-band Rejection larger than 20 dB is achieved for all the filter configurations but
the bandwidth tunability is reduced by about 7% (i.e. 0.86− 0.13 FSR). With Kr =

0.75 an Off-band Rejection always larger than 20 dB can be obtained for bandwidths
larger than FSR/5 maintaining an overall larger value of the Shape Factor.

This is why we limited the lower value of Kr to 0.6 although Kr can decrease
down to 0, value which corresponds to an unbalanced MZI transfer function, inde-
pendently on the choice of ∆ϕ. RRs coupling coefficients Kr < 0.6 can lead in fact to
small values of the Off-band Rejection for bandwidths smaller than FSR/2 and high
values of the in-band ripples for bandwidths larger than FSR/2. This effect can be
observed looking at Fig. 6.6a and Fig. 6.6b where the filter 3 dB bandwidth and Off-
band Rejection for ∆ϕ = 0 (red dashed trace) and ∆ϕ = 2π (blue dash-dotted trace)
are shown for Kr between 0.6 and 0.3. As Kr decreases the filter Off-band Rejection
decreases too, reaching a value near to 0 for the minimum bandwidth condition
(∆ϕ = 0) at Kr = 0.3. The maximum bandwidth condition (∆ϕ = 2π) shows instead
Off-band Rejection values always larger than 10 dB. However in-band ripples of
about 3 dB can be observed at Kr = 0.3 (see Fig. 6.6c).

In conclusion, small values of Kr provide large bandwidth tunability as well as
large Shape Factor. However, to obtain good Off-band Rejection, large values of Kr

are required. A good trade-off between these figures can be obtained by choosing
Kr between 0.7 and 0.8. Once a suitable value of Kr have been chosen between this
range, it is now interesting to analyse whether and how a variation between the
designed and the fabricated working point can affect the devices spectral behaviour.
This aspect will be investigated in the following subsection.

6.3.2 Robustness against fabrication tolerance effects

The analysis of the maps of Fig. 6.5, besides providing the optimal range of
the design parameters, can also be useful to evaluate the filter robustness against
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Figure 6.6.: (a) 3 dB bandwidth and (b) Off-band Rejection for ∆ϕ = 0 and ∆ϕ = 2π
as a function of Kr (varied between 0.3 and 0.6). (c) Filter Through port
normalized intensity transmission for ∆ϕ = 0, ∆ϕ = 2π and Kr = 0.3 as
a function of ν.

fabrication tolerances. This property strongly depends on the filter working point as
well as on the considered figure of merit. This issue will be thus discussed focusing
in particular on the regions of the maps within Kr = 0.7 and Kr = 0.8.

Considering first bandwidth tunability, the device shows a good robustness to
fabrication tolerances. For Kr between 0.7 and 0.8, bandwidth tunability varies in
fact by about 0.7% for every 1% of Kr. However, its sensitivity to a Kr variation
increases as Kr increases. High values of the RRs coupling coefficient are then not
recommended if a device with low sensitivity to fabrication tolerances is desired.

With regards to the Off-band Rejection, Fig. 6.5a shows that larger bandwidths
(> 0.5 FSR) have lower sensitivity to coupler values variation than the smaller ones
(< 0.5 FSR). If, for example, Kr = 0.75 and a 3 dB bandwidth equal to 0.2 FSR is
considered, a ±5% change of Kr causes a variation of +5.5/ − 3.5 dB in the Off-
band Rejection from its design value (i.e. 20 dB). If this figure of merit is expected
to be critical for the considered application it is then convenient to use coupling
coefficients with larger values or, as it will be shown in subsection 6.5.6 by the
means of the thermally driven tunable coupler developed during this thesis (see
Chapter 3), add a control on the RR couplers to set Kr precisely.

Finally, regarding the Shape Factor, it can be observed from the map of Fig. 6.5b
that in general this figure of merit varies slowly with Kr (especially for small 3 dB
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bandwidths) and can be thus considered less critical: the slope of the isolevel curves
is in fact low almost everywhere in the map.

One can then conclude that the filter performance are not very sensitive to fabrica-
tion tolerance effects when Kr is in the range 0.7− 0.8. Having deeply investigated
the filter performance dependence on Kr it is now time to focus on other parameters,
such as Kc1, Kc2 and the losses, that can affect the filter spectral behaviour. In the
next subsection, the effect of the input/output MZI couplers will be investigated to
see if the choice of 3 dB couplers assumed so far is the best one.

6.3.3 MZI Input/Output Couplers

In the analysis carried out until now, a pair of 3 dB couplers have been considered.
It has been in fact previously shown (and also proven with the extended demonstra-
tion reported in Appendix B) that this condition provides identical performance at
the two ports of the device. Similar performance, or better, equal performance at
the two ports, is generally desirable. If just one output port of the device is to be
used, this condition ensures that, maximizing the Off-band Rejection at one port, the
amount of power lost at the unused port is minimized. If, on the contrary, both the
outputs are to be used (e.g. interleaver applications), the 3 dB couplers guarantee
the same filtering properties at the two output ports.

In this section, it will be analysed whether this condition maximizes the filter
performance and if the presented filter is robust against variations of the coupling
coefficients of the two couplers, Kc1 and Kc2, from the designed value. To this
purpose Kr is fixed to 0.8, a value chosen in order to analyse a filter showing Off-
band Rejections larger than 20 dB in any configuration.

(a) (b)

Figure 6.7.: Map of the Through port 3 dB bandwidth for (a) ∆ϕ = 0 and for (b)
∆ϕ = 2π as a function of Kc1 and Kc2. Note the different scales of the
figures.

The analysis can start focusing on the device bandwidth tunability. In the maps
of Fig. 6.7 the Through port minimum 3 dB bandwidth (∆ϕ = 0, Fig. 6.7a) and
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maximum 3 dB bandwidth (∆ϕ = 2π, Fig. 6.7b) are plotted as a function of Kc1 and
Kc2.

One can notice that a combination of Kc1 and Kc2 that, at the same time, maxi-
mizes the maximum bandwidth and minimizes the minimum bandwidth cannot be
achieved. Both maps of Fig. 6.7 show minimum values on the antidiagonal region
and maximum values at the upper right and lower left corners. Despite that, band-
width tunability poorly varies with the MZI input/output couplers choice. Both
bandwidth conditions show a 2% maximum variation for a 20% variation of Kc1

and Kc2 form the 3 dB condition.

The same conclusions can be drawn for the Cross port. The maps of Fig. 6.8
show in fact that both minimum (∆ϕ = 2π, Fig. 6.8a) and maximum (∆ϕ = 0, Fig.
6.8b) 3dB bandwidth of the filter Cross port are just slightly affected by Kc1 and Kc2

variations. The only difference is that now the minimum values of both bandwidth

(a) (b)

Figure 6.8.: Map of the Cross port 3dB bandwidth for (a) ∆ϕ = 2π and for (b)
∆ϕ = 0 as a function of Kc1 and Kc2. Note the different scales of the
figures.

conditions are found around the diagonal region of the maps and the maximum
values can be found instead at the bottom right and at the upper left corners.

We can then conclude that regarding bandwidth tunability, Kc1 = Kc2 = 0.5 rep-
resents a good design choice and that this figure is almost insensitive to Kc1 and Kc2

variations due to fabrication tolerance effects.

We can now move to the analysis of the Off-band Rejection. In this case, to
give a better overview, also at the ∆ϕ = π condition behaviour will be considered.
The Through port performance is shown in Fig. 6.9. In the minimum bandwidth
condition (∆ϕ = 0, Fig. 6.9a) the Off-band Rejection is less sensitive to changes of
Kc1 and Kc2 with respect to the maximum (∆ϕ = 2π, Fig. 6.9b) and the ∆ϕ = π

condition (Fig. 6.9c). This comes from the Off-band Rejection definition given at the
beginning of this Section. A Kc1, Kc2 variation affects more the filter minima than the
filter sidelobes. When ∆ϕ = 0, the filter shows a good robustness against fabrication
tolerances on the value of Kc1 and Kc2. Moreover, input/output MZI 3 dB couplers
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(a) (b)

(c)

Figure 6.9.: Map of the Through port Off-band Rejection for (a) ∆ϕ = 0, (b) ∆ϕ = 2π
and (c) ∆ϕ = π as a function of Kc1 and Kc2. Note the different scales of
the figures.

provide best performance, corresponding to an Off-band Rejection of 20.5 dB. A
±5% variation of either Kc1 or Kc2 brings a maximum reduction of this value of
about 1.5 dB. However, it can be noticed that the Off-band Rejection experiences
the maximum reduction when Kc1 and Kc2 undergo the same variation. A +5%
variation of both Kc1 and Kc2 reduces in fact the Off-band Rejection to 16.6 dB. On
the other hand, the Off-band Rejection does not vary if Kc1 is increased (decreased)
and Kc2 is decreased (increased) by the same amount.

Although input/output MZI 3 dB couplers ensure maximum performance and ro-
bustness against fabrication tolerances for the minimum bandwidth condition, this
is not true for all the filter configurations. This appears clear observing Fig. 6.9b
and Fig. 6.9c. Kc1 = Kc2 = 0.5 provides however, as also discussed in subsection
6.3.1, high performance. An Off-band Rejection of 37 dB for the ∆ϕ = π configura-
tion (Fig. 6.9c) and of 25 dB for the maximum bandwidth configuration (∆ϕ = 2π,
Fig. 6.9c) can be in fact observed. Moreover, the larger sensitivity to Kc1,Kc2 varia-
tions is partially mitigated by an overall larger value of the Off-band Rejection. A
±5% variation of either Kc1 or Kc2 can lead, in the worst case, to an Off-band Rejec-
tion of 23.8 dB and of 19.6 dB respectively for the ∆ϕ = π (Fig. 6.9c) and for the
maximum bandwidth configuration (∆ϕ = 2π, Fig. 6.9b). In both cases this value
results larger than that observed for ∆ϕ = 0 (i.e. 19 dB). Similar conclusions can be
drawn considering Kc1 = Kc2 = 0.55. In this case an Off-band Rejection of 18.9 dB
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and of 16.4 dB can be observed respectively for the ∆ϕ = π (Fig. 6.9c) and for the
maximum bandwidth configuration (∆ϕ = 2π, Fig. 6.9b). When ∆ϕ = 0 the same
input/output MZI values brings to an Off-band Rejection of 16.6 dB.

As in the bandwidth tunability analysis, the same considerations that have been
drawn for the Through port can be drawn for the Cross port. The only difference
is the maximum performance orientation in the Kc1–Kc2 coordinate system. In Fig.
6.10 the Cross port Off-band Rejection as a function of Kc1,Kc2 is in fact illustrated
for the minimum (∆ϕ = 2π, Fig. 6.10a), the maximum (∆ϕ = 0, Fig. 6.10b) and
the ∆ϕ = π (Fig. 6.10c) condition. Note that the maximum performance orientation

(a) (b)

(c)

Figure 6.10.: Map of the Cross port Off-band Rejection for ((a)) ∆ϕ = 0, (b) ∆ϕ = 2π
and (c) ∆ϕ = π as a function of Kc1 and Kc2. Note the different scales
of the figures.

was expected considering that, for a lossless MZI, minima equal to zero at the Cross
port are obtained for Kc1 = Kc2 and minima equal to zero at the Through port are
obtained for Kc1 = 1− Kc2 (see Section 2.4).

It is then possible to conclude that Kc1 = Kc2 = 0.5 represents a high performance
working point for every filter configuration at both outputs. Moreover, bandwidth
tunability is highly robust against fabrication tolerances on the Kc1,Kc2 values. The
filter Off-band Rejection can be instead highly sensitive to Kc1, Kc2 variations from
the selected working point, depending on the filter configuration. However, the
more sensitive configurations can show larger values of the Off-band Rejection than
those of the less sensitive for a given Kc1 − Kc2 combination.
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These properties makes the working point defined by Kc1 and Kc2 less critical than
that defined by the RR coupling coefficient. However, a careful evaluation must be
performed after the selection of Kr. Variations of Kc1 and Kc2 from the 3 dB condition
may in fact lead the Off-band Rejection below the minimum value required by the
selected application. In such case, the analysis of different working points have to
be performed and the possibility to realize tunable couplers at the input/output of
the MZI can be also evaluated.

6.3.4 Loss Effects

A fixed value of the losses (Γr = 0.2 dB/turn and A = 0.06 dB) has been consid-
ered so far. It is now interesting to see how the losses influence the filter behaviour.
The test case considers Kr = 0.8, as in the previous subsection, and varying γ and
thus γr. As expected, losses have a detrimental impact on the three considered filter
figures of merit and on the device insertion loss. The effect on these figures depends
on ∆ϕ as shown in Fig. 6.11, where three values of ∆ϕ (i.e. 0, π, 2π) are plotted as
a function of the ring round trip losses Γr.

Fig. 6.11a shows that the insertion loss increases more for the minimum band-
width condition (∆ϕ = 0) than for the maximum one (∆ϕ = 2π). This can be
explained noting that while f0 matches the RRs antiresonance frequency when
∆ϕ = 2π, it matches the RRs resonance frequency when ∆ϕ = 0. In the mini-
mum bandwidth condition the wave will then experience more round trips into
the RRs and consequently a larger insertion loss as well as a larger sensitivity to
Γr variations (larger insertion loss vs. Γr slope). The difference between the inser-
tion losses of these two bandwidth conditions reaches 3 dB for values of Γr around
1.7 dB/turn.

Fig. 6.11b shows the dependence of the Off-band Rejection on the losses. In this
case, the increase in the loss factor affects more the maximum bandwidth condition
(∆ϕ = 2π) than the minimum one (∆ϕ = 0). As it occurred in the MZI input/output
couplers analysis, this comes from the definition of Off-band Rejection. This figure
is in fact calculated respect to the filter sidelobes or, if no sidelobes are present
in the spectral characteristic (i.e. maximum bandwidth condition), respect to the
filter minima. Increasing the losses brings the zeros of the filter away from the unit
circle affecting more the filter nulls than the filter sidelobes and consequently more
the Off-band Rejection of the maximum bandwidth configuration than the one of
the minimum bandwidth. Increasing Γr from 0.06 to 1.8 dB/turn the minimum
bandwidth condition Off-band Rejection reduces from more than 20 dB to around
16 dB while the maximum bandwidth condition reduces of more than 20 dB. Off-
band Rejection values larger than 20 dB for every filter configuration can be obtained
for Γr lower than 0.4 dB/turn.
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Figure 6.11.: (a) Insertion loss, (b) Off-band Rejection, (c) Shape Factor and (d) 3 dB
bandwidth as a function of Γr for ∆ϕ = 0 (minimum bandwidth), ∆ϕ =
π and ∆ϕ = 2π (maximum bandwidth).

To increase the filter performance when large round trip loss occur, it is possible
to design filters with a larger value of Kr at the cost of bandwidth tunability and
Shape Factor reduction. It should be noticed that this reduction would add to that
already caused by the losses. Fig. 6.11c and 6.11d show that the larger the round
trip loss the smaller the filter Shape Factor (mostly for the maximum bandwidth
condition) as well as the bandwidth tunability. This figures of merit show however
a low sensitivity to loss variation and can be then considered less critical than the
Off-band Rejection.

It can be now pointed out that the value of Γr can be interpreted in two ways. A
large value of Γr may correspond either to larger values of the ring losses with a
constant Lr or a longer Lr for a given loss figure. The balance between these two
constraints affects the achievable values of FSR.

6.3.5 Flat Passband

After the extensive description on how the several parameters of the analysed
filter influence its performance, one may wonder whether and how the filter can
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6.3 filter design

be designed to obtain maximally flat passband behaviour at a certain desired ∆ϕ.
Moreover, if RRs tunable coupling sections are available, if this condition can be
achieved for any desired bandwidth. To give a general idea on how this condition
can be calculated as a function of ∆ϕ and to simplify the calculations, a lossless
device will be considered. The lossy case will lead in fact to straightforward but
cumbersome equations without changing the conclusions. This equations could be
useful just in the case that precise values of Kr would be required. In addition
Kc1 = Kc2 = 0.5 and ϕmz = π will be considered.

The maximally flat passband condition can be derived expressing Eq. (6.3) in the
frequency domain rather than in the Z-transform domain. In this case the Through
and the Cross port squared magnitude transfer functions read as:

|H11(z)|2 = sin2
(

∆Φ(Ω)

2

)
, (6.10)

|H21(z)|2 = cos2
(

∆Φ(Ω)

2

)
. (6.11)

Where Ω = 2π f and ∆Φ(Ω) = Φr(Ω) − (ΩT + ϕmz) represent the difference be-
tween the phases acquired by the wave in the two arms of the MZI. Φr(Ω) is the
RRs cascade phase and (ΩT + ϕmz) represents the phase of the MZI unloaded arm.
The passband and the stopband centre frequencies occur when the phase difference
is a integer multiple of π. To flatten the pass band response, a constant phase dif-
ference around the passband centre frequency fc = Ωc/(2π) is then required. This
can be done by setting the derivative of ∆Φ(Ω) calculated with respect to Ω equal
to zero [38] or, in other words, setting the RRs cascade group delay τgRR equal to
the unit delay T:

τgRR(Ωc) = −
dΦ(Ω)

dΩ

∣∣∣∣
Ω=Ωc

=
d(ΩT + ϕmz)

dΩ

∣∣∣∣
Ω=Ωc

= T, (6.12)

where τgRR can be expressed as the sum of the group delay of the two RRs τgr1 and
τgr2 as it follows:

τgRR(Ω) = τgr1(Ω) + τgr2(Ω)

=
1− ρ2

1 + ρ2 − 2ρ cos(ΩT − ∆ϕ
2 )

T

+
1− ρ2

1 + ρ2 − 2ρ cos(ΩT + ∆ϕ
2 )

T. (6.13)

Combining Eq. (6.13) with Eq. (6.12) and considering ϕmz = π it is possible
to derive a second order algebraic equation in ρ that can be easily solved either
around the filter central frequency at the Through port (ΩT = 2mπ, with m integer)
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tunable bandwidth filter

or around the filter central frequency at the Cross port (ΩT = (2m + 1)π, with m
integer). Once the values of ρ for every ∆ϕ have been found it is straightforward to
calculate the corresponding Kr.

The values of Kr necessary to obtain a maximally flat passband filter for a given
∆ϕ are illustrated in Fig. 6.12a for the Through port (blue trace) and the Cross port
(red trace). For ϕ = π/2 the Through port filter pass band is flat if Kr = 0.26 is
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Figure 6.12.: (a) Kr necessary to obtain the maximally flat passband condition for
varying ∆ϕ at the Through port (blue trace) and at the Cross port (red
trace). (b) Filter response for ∆ϕ = π/2 and Kr = 0.26 (maximally
flat passband condition at the Through port). (c) Filter response for
∆ϕ = π/2 and Kr = 0.85 (maximally flat passband condition at the
Cross port).

set. This RRs coupling coefficient value should be avoided due to low Off-band
Rejection values (see Section 6.3). Looking in fact at Fig. 6.12b, the Through port
filter response (0.235 FSR 3dB bandwidth) shows a maximally flat passband but
poor Off-band Rejection values (about 5 dB). Moreover, the Cross port shows inband
ripples of about 3 dB. Setting instead Kr = 0.84 it is possible to flatten the Cross
port bandwidth (as shown in Fig. 6.12c). The Through port bandwidth is now equal
to 0.255 FSR and shows the maximum value for the Off-band Rejection. It is now
possible to understand that the large Off-band Rejection line (white line) in Fig. 6.5a
represent the Kr values for which maximally flat passband is obtained at the Cross
port.

In conclusion maximally flat passband can be obtained for any value of ∆ϕ but,
due to reduced Off-band Rejection performance, it is practically achievable only for
filter configurations with 3dB bandwidths larger than FSR/2.
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6.4 group delay and dispersion

6.4 group delay and dispersion

Before discussing the results obtained on the fabricated devices, it is convenient to
discuss also some other important characteristics of the filter, evidencing the effect
of ∆ϕ in terms of group delay and dispersion.

The group delay of the proposed filter varies with the amplitude of the filter
transfer function. Fig. 6.13 shows an example of the normalized group delay τn and
the normalized dispersion Dn of a filter varying the losses for different values of ∆ϕ

and Kr = 0.8. The curves are thicker in the frequency range within the filter 3 dB
bandwidth. The normalized group delay τn is related to the absolute group delay τg

through the unit delay T by the equation τg = τnT, while the normalized dispersion
Dn is related to the absolute dispersion τg by the equation D = −c(T/λ)2Dn [38].

Considering first a lossless filter (Fig. 6.13a and Fig. 6.13b), in the minimum
bandwidth condition, at f0, the light passes through both the resonances of the
ring resonators experiencing thus the maximum group delay and high values of the
dispersion at the edges of the 3 dB bandwidth.

Increasing the phase shift between the RRs, the filter group delay and dispersion
decrease and a minimum dispersion in the 3 dB bandwidth (for ∆ϕ ∈ [0.4π, 0.5π])
is found. A further increase of ∆ϕ reduces then the group delay at f0 increasing the
dispersion. For ∆ϕ = π the group delay is minimum at f0 and maximum at about
the 3 dB bandwidth edges. In the maximum bandwidth condition (∆ϕ = 2π), the
filter exhibits an almost constant delay in the center of the 3 dB bandwidth and a
maximum dispersion close to the edges larger than that occurring for ∆ϕ = π.

The working points close to the filter maximum and minimum bandwidth condi-
tions can be critical for signal degradation. This problem can be reduced increasing
the FSR which is inversely proportional to τg and D.

For different values of the losses, the described group delay evolution between
minimum and maximum bandwidth conditions still hold. In the following, the
variations respect to this case for different values of the losses will be analysed.
Assuming a lossy filter with A = 0 dB and Γr = 0.2 dB (Fig. 6.13c and Fig. 6.13d)
an overall τn and Dn decrease occurs. The larger is the bandwidth the larger is this
reduction. Adding coupler losses (A = 0.06 dB and Γr = 0.2 dB/ in Fig. 6.13e and
Fig. 6.13f), the appearance of two peaks at the edges of the FSR window for τn can
be noticed for filter configurations with ∆ϕ < π. This behaviour does not affect
however the filter functionality because of its spectral position. Finally, increasing
Γr to 1.84 dB and keeping A = 0.06 dB, values of τn and Dn at the edges of the
3 dB bandwidth when ∆ϕ = 2π are almost equal to those assumed if ∆ϕ = π. Loss
increase can be then considered beneficial if dispersion and group delay are under
inspection.

In this analysis, the value of Kr has been kept fixed to 0.8. To make this anal-
ysis complete it can be shown how variations of this parameter influence the de-

131



tunable bandwidth filter

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

ν

τ n

 

 

∆ϕ = 0

∆ϕ = 0.4π

∆ϕ = 0.5π

∆ϕ = π

∆ϕ = 2π

(a)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−15

−10

−5

0

5

10

15

ν

D
n

 

 

∆ϕ = 0

∆ϕ = 0.4π

∆ϕ = 0.5π

∆ϕ = π

∆ϕ = 2π

(b)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

ν

τ n

 

 

∆ϕ = 0

∆ϕ = 0.4π

∆ϕ = 0.5π

∆ϕ = π

∆ϕ = 2π

(c)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−15

−10

−5

0

5

10

15

ν

D
n

 

 

∆ϕ = 0

∆ϕ = 0.4π

∆ϕ = 0.5π

∆ϕ = π

∆ϕ = 2π

(d)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

ν

τ n

 

 

∆ϕ = 0

∆ϕ = 0.4π

∆ϕ = 0.5π

∆ϕ = π

∆ϕ = 2π

(e)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−15

−10

−5

0

5

10

15

ν

D
n

 

 

∆ϕ = 0

∆ϕ = 0.4π

∆ϕ = 0.5π

∆ϕ = π

∆ϕ = 2π

(f)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

ν

τ n

 

 

∆ϕ = 0

∆ϕ = 0.4π

∆ϕ = 0.5π

∆ϕ = π

∆ϕ = 2π

(g)

−0.5−0.4−0.3−0.2−0.1 0 0.1 0.2 0.3 0.4 0.5
−15

−10

−5

0

5

10

15

ν

D
n

 

 

∆ϕ = 0

∆ϕ = 0.4π

∆ϕ = 0.5π

∆ϕ = π

∆ϕ = 2π

(h)

Figure 6.13.: Filter Through port (a),(c),(e),(g) τn and (b),(d),(f),(h) Dn for: (a),(d)
a lossless device; (c),(d) A = 0 dB and Γr = 0.2 dB/turn; (e),(f)
A = 0.06 dB and Γr = 0.2 dB/turn; (g) (h) A = 0.06 dB and
Γr = 1.84 dB/turn. For all the considered loss conditions, τn and Dn
simulations where performed for ∆ϕ = 0, 0.4π, 0.5π, π, 2π, Kr = 0.8,

vice phase response properties for a fixed value of the losses (A = 0.06 dB, Γr =

0.2 dB/turn). In Fig. 6.14 the normalized group delay (Fig. 6.14a) and the normal-
ized dispersion (Fig. 6.14b) of a filter with Kr = 0.7 and varying ∆ϕ is illustrated.
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Figure 6.14.: Filter Through port (a) normalized group delay τn and (b) normalized
dispersion Dn for ∆ϕ = 0, 0.4π, 0.5π, π, 2π, Kr = 0.7, A = 0.06 dB and
Γr = 0.2 dB/turn.

Comparing these results with those obtained for Kr = 0.8 and the same value of
the losses (Fig. 6.13e and Fig. 6.13f) one can immediately notice an increase in the
dispersion and the group delay. Moreover, the general conclusions on the ∆ϕ varia-
tions still hold. It is then reasonable to expect that an increase of Kr will induce the
opposite effect, reducing the filter dispersion and group delay values. This choice
can be used if the calculated dispersion is expected to be particularly critical at the
price of a bandwidth tunability reduction (see Section 6.3).

After describing the general features of the filter and discussing its design issues,
in the next section fabrication and measurements of some devices will be presented
and discussed.

6.5 fabricated devices

The filter architecture illustrated so far has been exploited to realize devices with
200, 100 and 25 GHz FSR on the silicon platform at the base of this work. The

Figure 6.15.: Optical microscope photograph of a fabricated filter.
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width of the realized waveguides is the standard w = 480 nm that provides single
mode operations. The mask was designed using constant bend radii (= 20 µm)
and constant coupler gaps in the directional couplers of the MZI and of the RRs
(= 300 nm) both investigated in Chapter 2. In order to test the filter performance,
filters with Kr = 0.7 were designed (i.e. with a coupler length Lc = 55.2 µm). An
example of the fabricated structure is shown in Fig. 6.15. The design choices ensures
not only negligible bending losses and good couplers gap filling but also a compact
footprint size (< 0.2 mm2 for the device in Fig. 6.15).

6.5.1 Thermal Tuning and Fitting

An example of the realized filters thermal tuning is shown in Fig. 6.16a for a
25 GHz FSR filter. As described in the previous analysis, the minimum bandwidth
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Figure 6.16.: (a) Through and (b) Cross port spectral characteristic tuning from the
minimum (∆ϕ = 0) to the maximum (∆ϕ = 2π) bandwidth condition
for a 25 GHz FSR filter with Kr = 0.79. At both ports, measured spectra
are normalized with respect to the maximum of the filter maximum
bandwidth configuration. (c) Measured and simulated 3 dB bandwidth
values normalized to the FSR as a function of ∆ϕ (upper x axis) and of
the required RRs power dissipated difference ∆P (lower x axis).

condition at the Through port of the filter is reached when the two RRs resonate at
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the same frequencies (∆ϕ = 0) and there is a relative difference of π between the
phase of the RRs and that of the MZI unloaded arm. To make the ring resonate
at the same frequencies, different values of electrical power have to be dissipated
over the two nominally identical RRs because of fabrication tolerances [133]. In
Fig. 6.16c ∆ϕ = ϕr2 − ϕr1 = 0 is in fact obtained for a power dissipated difference
∆P = Pr2 − Pr1 = −7.8 mW, being respectively Pr2 = 8 mW and Pr1 = 15.8 mW
the power dissipated over the two RRs. A power of 0.2 mW is dissipated over the
MZI to obtain the minimum bandwidth at the Through port, resulting in a total
power dissipated of around 24 mW. Bandwidth tuning has been then obtained
cooling down one of the RRs (i.e. decreasing Pr1) and heating up the other (i.e.
increasing Pr2) in a push-pull configuration to increase the value ∆ϕ up to 2π and
keep constant the total power dissipated. The simulation results were obtained
from fitted parameters where a RRs coupling coefficient Kr = 0.79, a ring loss
of 1.77 dB/turn and an input/output MZI couplers value of 0.53 has been found.
Note that A = 0.06 has been assumed in the fitting procedure. In a device with
so many parameters, fitting has to be done carefully. The analysis developed in
Section 6.3 is useful to distinguish between the different effects. Larger Kr brings
larger bandwidth tunability together and smaller Off-band Rejections, while higher
losses bring a reduction of both this figures. Values Kc1 and Kc2 different from 0.5
bring instead an asymmetry between the two ports characteristics that poorly affects
the device bandwidth tunability. However, the same filter 3 dB bandwidth can be
obtained for different ∆ϕ–Kr combinations. ∆ϕ has to be then fixed in order to
extract the RRs coupling coefficient and the losses with accuracy. This can be done
by fitting first the filter maximum and minimum bandwidth configuration, where
∆ϕ can be assumed respectively 0 and 2π. In Fig 6.17a the ∆ϕ = 0 configuration
fitting is shown to be good agreement both for the Through and the Cross port.
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Figure 6.17.: Through port and Cross port experiment (solid curves) and fitting
(dashed curves) for the 25 GHz FSR filter for (a) ∆ϕ = 0 and for (b)
∆ϕ = π + π/25.
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Fitted Kr, γ, Kc1 and Kc2 can be then used varying ∆ϕ to simulate the device at
different bandwidths. By comparing simulations with measurements it is finally
possible to extract ∆ϕ from filter configurations different from the maximum and
minimum bandwidth ones. In Fig 6.17b the measurements at the Through and the
Cross port for a filter configuration close to FSR/2 are compared with a simulation
preformed with the fitted parameters and ∆ϕ = π + π/25. The good agreement
confirms the reliability of the fitting procedure.

6.5.2 Performance

The previously illustrated filter through (T) and Cross port (C) performance are
illustrated in the first row of Tab. 6.1, where different realized devices are compared.

To simplify the notation, the minimum bandwidth condition (∆ϕ = 0) is indicated
with the letter L while the maximum bandwidth condition (∆ϕ = 2π) is indicated
with the letter U. To obtain a 25 GHz FSR device, Lr ≈ 2.9 mm must be designed.
This implies a high value of Γr and, as previously described, reduced performance.
However, at the Through port, the filter shows an Off-band Rejection always larger
than 10 dB and an Off-band Rejection of 15 dB for the minimum bandwidth con-
dition. The maximum bandwidth condition shows the minimum insertion loss (IL)
value that is of about 2.2 dB. This value increases as the bandwidth reduces. An
increase in the insertion loss (IL EXCESS) of about 3.1 dB is observed when the fil-
ter is tuned from the maximum to the minimum bandwidth condition. Bandwidth
tunability is still wide, allowing to tune the device bandwidth from 21 to 4 GHz
(i.e. from 83% to 16% of the FSR). For applications of this filter that require smaller
3 dB bandwidths (i.e. longer RRs cavity lengths) such as, for example, in the mi-
crowave photonics field, the losses can be easily reduced designing RRs with larger
waveguides [26,117] paying a price in term of an increased device footprint size. In
this case an improvement in the performance is expected as previously discussed
and illustrated in Fig. 6.11. As anticipated, similar performance can be found at the
Through port. It is also noticeable that the deviation from the nominal 3 dB MZI
input/output couplers condition gives rise just to small asymmetries between the
Through and the Cross port performance.

The best results are obtained, as expected, for the 200 GHz filter (third row of
Tab. 6.1, Fig. 6.18) because of the reduced size of Lr. The filter 3 dB bandwidth
at the Through port can be tuned from 173 to 23 GHz (i.e. from 87.5% to 11.5%
of the FSR) showing a low insertion loss value for all the bandwidths (maximum
1.35 for the minimum bandwidth condition). The largest improvement in terms of
Off-band Rejection and Shape Factor with respect to the 25 GHz FSR filter has been
obtained, in agreement with the theory, for the maximum bandwidth condition. The
only consistent difference between the Through and the Cross port behaviour due
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Figure 6.18.: (a) Through and (b) Cross port spectral characteristic tuning from the
minimum (∆ϕ = 0) to the maximum (∆ϕ = 2π) bandwidth condition
for a 200 GHz FSR filter with Kr = 0.75. (c) Measured and simulated
3 dB bandwidth values normalized to the FSR as a function of ∆ϕ
(upper x axis) and of the required RRs power dissipated difference ∆P
(lower x axis).

to Kc1 = 0.52 and Kc2 = 0.49 concerns the maximum bandwidth condition Off-band
Rejection. This figure is however evaluated with respect to the filter minima and
thus does not represent a major performance variation as it is clear in Fig. 6.18.
Note that, in this case, the mapping between ∆ϕ and ∆P was not possible (Fig.
6.18c) as in the 25 GHz case (Fig. 6.16c). Bandwidth tunability become less sensitive
to ∆ϕ (i.e. ∆P) variations as the minimum and the maximum bandwidth conditions
are approached. ∆P variations in the order of 1 mW induce negligible changes in
the 3 dB bandwidth but make impossible to directly map ∆ϕ over ∆P with accu-
racy. For this filter, also the cross talk levels averaged over the 1 dB Through port
bandwidth have been calculated. Maximum values can be found approaching the
minimum bandwidth condition (i.e. −11.1 dB in this particular case). Increasing
the bandwidth this value decreases too, being equal to −16.3 dB when the Through
port 3 dB bandwidth is about FSR/2 (black trace, Fig. 6.18a) and equal to −17.4 dB
in the maximum bandwidth condition.

Finally, we can notice from the 100 GHz FSR filter (second row of Tab 6.1) that
wider bandwidth tunability (from 89% to 9% of the FSR) can be obtained with a
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smaller value of Kr (i.e. 0.67). However, in this case, the Off-band Rejection at the
minimum bandwidth condition becomes lower than 10 dB. Finally it can be noticed
that the reduced number of actuators required by the proposed geometry allows
a low electrical power consumption (i.e. the total dissipated power Ptot is always
lower than 30 mW).

The filter central wavelength λ0 = c/ f0 can be also tuned. Adding the same
positive (negative) phase ϕ0 to the three phase shifters it is possible to obtain a
red (blue) shift of λ0 and thus span the whole FSR. This can be done increasing
(reducing) by the same amount the power dissipated over the three phase shifters
of the device. In Fig. 6.19 the tuning over the whole FSR has been measured for the
device with 200 GHz FSR keeping the 3 dB bandwidth always around 44 GHz (i.e
∆ϕ between π/2 and 2π/5). As shown in Fig. 6.19b, 60 mW are required to cover
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Figure 6.19.: (a) Central wavelength tuning of a 44 GHz 3 dB bandwidth filter with
200 GHz FSR and (b) corresponding total power dissipated (Ptot) versus
the frequency shift (∆ f ).

the whole FSR (i.e. 3.3 GHz/mW or 0.017 FSR/mW). An average of 20 mW is in
fact required by the fabricated actuators to add a 2π shift to each phase shifter.
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6.5.3 Design versus Experiments

During the overview of the realized devices performance, some variability has
been shown to occur in the coupling coefficient values of nominally identical de-
vices while, in Section 6.3, it had been highlighted through simulations that the
presented device should be robust against coupling coefficients and losses varia-
tions. In this Section this property will be verified taking into account the 25 GHz
and the 200 GHz FSR filters.

All the presented devices were designed with Kr = 0.7 and Kc1 = Kc2 = 0.5
considering typical propagation losses 3 dB/cm and typical coupler losses A =

0.06 dB/cm (i.e. Γr = 0.17 dB/turn for a 200 GHz FSR filter and Γr = 0.91 dB/turn
for a 25 GHz FSR filter).

The realized devices show propagation losses of about 6 dB/cm, twice as large
as the design value taken into account. In a more compact device like the 200 GHz
FSR filter this brings just a 0.09 dB/turn increase of Γr with respect to the design.
From the analysis carried out in subsection 6.3.4 it is then reasonable to expect a
small detrimental impact on the realized filter performance respect to the design.
The 25 GHz FSR filter shows instead about 0.9 dB/turn increase with respect to
the design. Such an increase in the round trip losses may bring large differences
between the target and the measured spectra (see subsection 6.3.4).

Taking first into account the 200 GHz FSR filter, we measured a Kr = 0.75 (see
third row of Table 6.1). This increased value together with the larger value of prop-
agation losses cause a reduced bandwidth tunability of 5% FSR with respect to the
design. It is now interesting to see how this parameter variation affects the filter be-
haviour for bandwidth conditions different from the minimum and the maximum
one. Fig. 6.20 shows the comparison between measurements and design for the
40 GHz (Fig. 6.20a) and the 100 GHz (Fig. 6.20b) filter configuration. For both
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Figure 6.20.: Desing versus experiment for the 200 GHz FSR filter for (a) 40GHz 3dB
bandwidth configuration and for (b) 100GHz 3dB bandwidth configu-
ration.
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examples the difference between experiment and design are negligible and the filter
robustness is thus confirmed.

Considering the 25 GHz FSR filter, we measured Kr = 0.79 (see first row of Table
6.1). The differences between design and experiments for the round trip losses are
larger than in the 200 GHz FSR case. Less agreement between expected and mea-
sured characteristics can be foreseen. Bandwidth tunability is in fact now reduced
by about 10% FSR. Considering then the 6 GHz configuration (Fig. 6.21a) one can
notice as expected that the filter shape is substantially different from the design.
The performance is however still in agreement with that of the design. Increasing
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Figure 6.21.: Desing versus experiment for the 25 GHz FSR filter for (a) a 6 GHz
3 dB bandwidth configuration and for (b) a 6 GHz 3 dB bandwidth
configuration.

the filter bandwidth to 12.5 GHz (Fig. 6.21b) we can notice that the major difference
does not concern the Shape Factor but the filter Through port Off-band Rejection
that is limited by the realized input/output MZI coupler values. The value of this
figure is still however at about 20 dB. This confirms again that the presented filter is
robust against variations between designed and realized coupling coefficients and
loss values.

6.5.4 RRs Coupling Coefficient Disorder Effects

Until now, almost all the filter parameter effects on the studied filter itself have
been analysed. The RR coupling coefficient Kr has however always been considered
identical for the two rings to make the design not too heavy. In this subsection
the disorder of this parameter value will be discussed through realized devices
examples and a low sensitivity of the proposed device to this effect will be shown.

The difference in the two RRs Kr induces an asymmetry in the filter transfer
function with respect to f0 if ϕmz is kept equal to π. This effect cannot be observed
at the minimum and the maximum bandwidths since the RRs resonate at the same
wavelengths. For this configuration, the transfer function is that of a filter with a Kr
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that is the average between the two RRs Kr. Fig. 6.22 shows the tuning of a 100 GHz
FSR filter where the two Kr differs of about 7% (i.e. Kr1 = 0.74 and Kr2 = 0.67) that
represents one of the largest variations registered for nominally identical couplers
placed side by side on the chip during this work.

1549.5 1550 1550.5
−18
−16
−14
−12
−10
−8
−6
−4
−2

0

Wavelength [nm]N
or

m
al

iz
ed

 T
ra

ns
m

is
si

on
 [d

B
]

Cross Port

(a)

1549.5 1550 1550.5
−18
−16
−14
−12
−10
−8
−6
−4
−2

0

Wavelength [nm]N
or

m
al

iz
ed

 T
ra

ns
m

is
si

on
 [d

B
]

Through Port

(b)

Figure 6.22.: (a) Cross port and (b) Through port 3 dB bandwidth tuning (i.e. ∆ϕ
from 0 to 2π) of a 100 GHz FSR filter with Kr1 = 0.74 and Kr2 = 0.67.

The filter tuning has been performed, as previously described, varying ∆ϕ from
0 to 2π and keeping the MZI phase aligned with the resonances of the RRs (i.e.
ϕmz = π). The only difference is that now every trace is normalized with respect
to its own maximum. At the minimum and maximum bandwidth, a symmetric
behaviour with respect to λ0 of the filter characteristics can be observed. In this case,
the fitted value of Kr is equal to 0.705. This value is in turn the average between
the two different Kr. Increasing the value of ∆ϕ, the asymmetry with respect to λ0

becomes noticeable but it is not dramatic. Moreover, the MZI phase, if required, can
be set in order to make symmetric one of the characteristics at one port and more
asymmetric the other one. It is then possible to conclude that this kind of filter is
also robust to the disorder in the RRs coupling coefficient values.

6.5.5 Comparison with the state of the art

So far the filter performance have been investigated through the characterization
of the fabricated filters (see Tab. (6.1)). Large bandwidth tunability, together with
good Off-band Rejection values have been obtained for all the devices with just
three actuators. It is now interesting to compare the presented results with that
reported in literature. Tab. (6.2) shows the most recent multi-element SOI tunable
filters together with the 200 GHz and the 25 GHz FSR filter presented in this work,
respectively the best and the worst performing filter characterized so far. This table
lists the figures of merit analysed during this work: bandwidth tunability, Off-band
Rejection, Shape Factor and Insertion Loss. Moreover, the number of actuators
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necessary to exploit the filter tunability is considered instead of the total electrical
power dissipated. This figure allows in fact a more general comparison between
different devices, being the amount of power dissipated strictly dependent on the
actuator technology. The reduced complexity in the control of the characterized
filters (fifth and sixth row of Tab. (6.2)) with respect to the other proposed solutions
is immediately noticeable.

Regarding the other device figures of merit, the 200 GHz FSR filter (fifth row of
Tab. (6.2)) shows the largest bandwidth tunability together with the smallest Inser-
tion Loss and Shape Factor values in line with the other devices. These performance
together with simple control of the device comes however at a price of the lowest,
although still good, values of the Off-band Rejection. It can be in fact noticed that
the tunable bandwidth filter presented in this work is the lowest order filter.

Focusing on bandwidth tunability, the first three rows of Tab. (6.2) report the
performance of three filters designed to operate with variable bandwidths between
hundreds of MHz and few GHz. The geometry presented in this work can be
easily scaled down to operate in this bandwidth range as previously discussed in
subsection 6.5.2 by increasing Lr and the RRs waveguide width. This allows to keep
the losses low as implemented in [111] and [26] (i.e. first and second row of Tab.
(6.2)) at the cost of the device footprint increase. In this case, performance similar
to the solution already presented in literature are then expected.

Having demonstrated the valuable performance of the studied device compared
to the most recent multi-element tunable SOI filter, it can be know pointed out that
by adding a control on the RRs coupling coefficients could further improve the filter
functionality at the price of a small increase in the device control complexity. The
realization of this solution is illustrated in the next section.

6.5.6 Full Control via Tunable Couplers

The proposed tunable bandwidth filter has shown a good performance that can
be tailored through the suitable selection of the RRs coupling coefficient during
the design process. The active control of Kr would allow the full control over the
filter functionality shown in the maps of Fig. 6.5 as well as to correction of the
unavoidable fabrication tolerance effects, adding another degree of freedom to the
device reconfigurability. This allows better adapting the characteristics of the filter
to a variation in the system requirements.

To demonstrate both the possibility of obtaining this desirable feature and the
functionality of the tunable couplers presented in Chapter 3, a filter with Kr = 0.95
(i.e. Lc = 72.5) and 25 GHz FSR without changing the geometry illustrated so far
has been realized with the cited coupling control. A schematic of the proposed filter
with tunable couplers is shown in Fig. 6.23a, where Kr is shown as a function of PTC.
The value of Kr can be reduced detuning the directional coupler by increasing the
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electrical power dissipated over the heater PTC. When the two tunable couplers are
switched off, the filter shows bandwidth tunability from about 70% to 28% of the
FSR, Shape Factor values between about 0.53 and 0.28 and the Off-band Rejection is
larger than 16 dB for every filter configuration.

(a)

(b)

(c)

Figure 6.23.: (a) Schematic diagram of the tunable filter with tunable coupling sec-
tions. The RRs coupling coefficient Kr is illustrated as a function of
the dissipated power on the tunable coupler PTC. (b) Filter Cross port
characteristic variation due to RRs couplers detuning (i.e. increasing
values of PTC) maintaining ∆ϕ = 2π (minimum bandwidth condition).
(c) 7 GHz 3 dB bandwidth filter for different values of PTC (and thus
Kr) obtained slightly adjusting the value of ∆ϕ for each case. Insets in
(b) and (c) show the Off-band Rejection map of Fig. 6.5a with the red
dashed lines to evidence qualitatively the locus of the filter working
points.

The filter Cross port minimum bandwidth condition (∆ϕ = 2π) for PTC = 0 is
illustrated by the dashed line in Fig. 6.23b. Keeping ∆ϕ = 2π fixed and increasing
PTC, it is possible to reduce the minimum bandwidth from 7 to 1.8 GHz. This
corresponds to a ∼ 35% reduction of Kr obtained with a maximum PTC = 26.2 mW.
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Referring to the maps of Fig. 6.5, this moves the filter working point along the
minimum bandwidth edge (the lower one). This variation is qualitatively depicted
by the red dashed line in the inset of Fig. 6.23b over the Off-band Rejection map of
Fig. 6.5a.

Full control over the maps of Fig. 6.5 can be then demonstrated maintaining the
same 3 dB bandwidth of the filter and changing its spectral characteristics. For
example in Fig. 6.23c the same bandwidth has been maintained around 7 GHz (e.g.
0.28 FSR) for each configuration of the tunable couplers, adjusting the value of ∆ϕ.
The Shape Factor increases from 0.28 to 0.49 while the Off-band Rejection decreases
from 38 to 15 dB. Referring to the maps of Fig. 6.5 this moves the filter working
point over the horizontal line defined by the value of the 3 dB bandwidth equal to
0.28 FSR. This variation is again qualitatively depicted in the inset of Fig. 6.23c over
the Off-band Rejection map of Fig. 6.5a. The price to pay to obtain the full control
over the device is an increase in the overall power consumption. This value can be
reduced if lower Kr tunability is required (e.g. to counteract fabrication tolerance
effects) and asynchronous couplers are designed (see Chapter 3).

Up until now the filter behaviour has been discussed considering the spectral
response around the central frequency. It may be questioned if the filter can be
used also in cases, such as WDM, where multiple carriers are present at the same
time. The next subsection will discuss this situation showing that the filter can be
successfully applied in this case too, allowing different operations.

6.5.7 Multiple Bandwidths Simultaneous Tuning

In WDM systems one can face different needs: for example, depending on the cho-
sen FSR, that of filtering periodically spaced subset of carriers (interleaver function)
or that of selecting a single subset of carriers. This two functionality are schemat-
ically depicted respectively in Fig. 6.24a and Fig. 6.24b for a WDM system with
12 channels and a fixed grid spaced of ∆ fch. T and C stand for the Through and
the Cross port respectively and the filter responses have been drawn with an ideal
box-like shape.

Considering the first case, the use of the 200 GHz FSR filter with 3 dB band-
width tunable from 23 to 173 GHz, would enable the periodic selection from 1 to 7
channels from a 25 GHz spacing Dense WDM optical system. In this case the device
should select the same number of channels in the same way, no matter of the central
frequency.

This is in effect possible as shown by Fig. 6.25a where the spectral response
of the 200 GHz FSR filter over 20 nm wavelength span is plotted for three band-
width conditions (∆ϕ = 0, π, 2π). The filter bandwidth is correctly tuned for
all the passbands once the required filter configuration is selected for one wave-
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(a) (b)

Figure 6.24.: Sketch of a WDM system with 12 channels and a fixed grid spaced
of ∆ fch: (a) Periodically spaced subset of carriers filtered (interleaver
function). (b) Single subset of carriers filtered. T and C represents the
Through and the Cross port respectively and the filter responses are
depicted with a box-like shape.

length (λ0 = 1547.26 nm in the considered case). This is shown more clearly
in Fig. 6.25b where the 3 dB bandwidth at the minimum and at the maximum
condition are plotted showing small variations across the considered 20 nm wave-
length span. The minimum bandwidth varies from 21.4 GHz at λ0 = 1540.95 nm
to 27.7GHz at λ0 = 1560 nm. The maximum deviation with respect to the value
at λ0 = 1547.26 nm is then of 4.7 GHz, that corresponds to 2.4% of the FSR.
The maximum bandwidth varies instead from 175.8 GHz at λ0 = 1540.95 nm to
170.4 GHz at λ0 = 1558.42 nm. The maximum deviation with respect to the value at
λ0 = 1547.26 nm is then of 2.8 GHz, corresponding to 1.4% of the FSR. This change
occurs because of the directional couplers’ wavelength dependence (∼ 6% of abso-
lute variation over the considered span). This impacts also on the Off-band rejection
values as shown in Fig. 6.25c where the value of the minimum Off-band rejection
varies for both bandwidths. This value is however maintained to be always larger
than 15.7 dB for the maximum bandwidth (∆ϕ = 2π, blue dashed dotted curve of
Fig. 6.25a) and 11 dB for the minimum one (∆ϕ = 0, red dashed curve of Fig. 6.25a).
For the minimum bandwidth the optimum value is at the design wavelength and
degrades far from it by about the same amount mainly because of the phase tuning
which has been optimized for the central wavelength. The larger the bandwidth
the less it is affected by this effect. The maximum bandwidth off-band rejection in
fact varies monotonically, mainly because of the wavelength dependence of the filter
couplers.

In the other previously mentioned case, where a single passband is to be used
to select the desired WDM channels, a much larger FSR than the one presented in
this work would be required. Silicon ring resonators with a few microns bending
radius and FSR with more than 2 THz [19] can be exploited for the realization of
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Figure 6.25.: (a) 200 GHz filter Through port spectra over 20 nm wavelength span.
(b) 3 dB bandwidth and (c) Off-band Rejection variation over the anal-
ysed wavelength span for the minimum (∆ϕ = 0) and the maximum
(∆ϕ = 2π) bandwidth condition.

the proposed architecture. With this design choice tunability from 200 GHz to 1.8
THz is expected.

The simultaneous presence of many channels may lead to high values of aggre-
gate optical power. In this case, nonlinear effects with a negative impact on device
behaviour can arise. The next subsection will address this issue.
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6.5.8 Impairments due to nonlinear effects

The dominant non linear phenomena in silicon devices are two-photon absorption
(TPA) and free-carrier absorption (FCA) [189] which cause an intensity-dependent
extra-loss and refractive index change. Free carrier recombination generated by
TPA [190] induces a local heating of the waveguide that depends on the local optical
power. This thermal effect produces an increase of the refractive index and can alter
the behaviour of RRs based optical filters. The local power inside the resonators is
in fact enhanced with respect to the device waveguides (see Section 2.3). Different
red shifts are then induced, causing a distortion of the filter characteristic which is
not simply a rigid shift [59]. In the following it will be shown that the proposed
device, being based on resonators with a small value of the enhancement factor (i.e.
strongly overcoupled resonators), is robust against TPA induced distortions.

Fig. 6.26 shows the spectral characteristics at the two ports of the 200 GHz FSR
filter of Tab. 6.1 for ∆ϕ = 0, obtained through single source measurements for
increasing values of the optical power on chip Pin (see Section 1.5 for more details
about the measurement setup). Measuring both the Through port (Fig. 6.26a) and
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Figure 6.26.: 200 GHz FSR filter (a) Through port characteristic and (b) Cross port
characteristic for ∆ϕ = 0 and increasing values of the optical power Pin
on the chip.

the Cross port characteristics (Fig. 6.26b) one can evaluate the minimum and the
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maximum bandwidth filter configuration with the same exact value of Pin. The
filter RRs power enhancement factor is about 3 (i.e. the local power inside the RRs
is ∼ 4.8 dB higher than Pin).

TPA effects start to be appreciated for Pin > 9 dBm. The difference between the
filter characteristics for Pin = −2 dBm (blue solid traces in Fig. 6.26) and for Pin =

9 dBm (red dashed traces in Fig. 6.26) are in fact negligible. For Pin = 14 dBm (black
solid traces in Fig. 6.26), an almost rigid shift of around 30 pm occurs. This value
is less than 1/5 of the minimum filter 3 dB bandwidth and can be then considered
negligible as it appears also from Fig. 6.26, looking at the difference between the
black solid line and the blue solid line. For Pin = 19 dBm the different shifts between
the RRs resonances and the MZI waveguides slightly distort the filter response at
the Through port (green solid line in Fig. 6.26a). The Cross port characteristic, due
to the larger value of the bandwidth, is instead more robust and shows an almost
rigid shift of around 110 pm. Moreover a maximum of just 0.22 dB of extra-losses
due to the TPA has been detected.

We can then conclude that the characterized filter is just slightly affected by im-
pairments due to TPA/FCA for values of the aggregate optical power in a WDM
system up to 19 dBm. Moreover, we showed that the bigger is the bandwidth the
less the filter is sensitive to nonlinear effects. It is thus reasonable to expect from de-
vices with the same geometry but bigger FSR to be even more robust. Note also that
the TPA/FCA induced effect is thermal and can be easily compensated as shown
in [191] if more channels and consequently higher aggregate power enters the filter.

To test the TPA/FCA effect on filters that operates on smaller bandwidths we
have performed the same experiments for the 25 GHz FSR filter of Tab. 6.1. Results
are illustrated in Fig. 6.27 where, as before, the Through port (Fig. 6.27a) and the
Cross port (Fig. 6.27b) characteristics are reported when ∆ϕ = 0 is set. The power
enhancement factor of the filter RRs is around 2 (i.e. the local power inside the RRs
is ∼ 3 dB higher than Pin).

TPA effects starts to be visible as before for Pin > 9 dBm. At Pin = 14 dBm (black
solid traces in Fig. 6.27) the characteristics of the filter are almost rigidly shifted
of around 17 pm. The value of this shift is more than a half of the minimum 3 dB
bandwidth and consequently cannot be considered negligible. The filter starts to
be slightly distorted in the minimum bandwidth condition at Pin = 16.5 dBm (vio-
let dashed trace in Fig. 6.27b) while the distortion is clearly visible for both filter
configuration at Pin = 19 dBm (green solid traces in Fig. 6.27). With this optical
power on chip a shift of about 54 pm is registered for the Cross port characteristic
nulls and the Through port characteristic absolute maximum. The same maximum
induced extra-loss as in the 200 GHz FSR device has been observed. Comparing the
described results with the ones obtained for the 200 GHz FSR filter it is clear that
TPA/FCA induced detrimental effects affects more filters that works with smaller
bandwidths. The same induced shift become in fact more important as the band-
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Figure 6.27.: 25 GHz FSR filter (a) Through port characteristic and (b) Cross port
characteristic for ∆ϕ = 0 and increasing values of the power on chip
Pin.

width and the FSR decreases. The impairment is however still not dramatic for the
considered case, confirming the filter robustness. Moreover, as it has been previ-
ously discussed, it can be easily compensated.

The intensity behaviour of our filter has been deeply investigated so far while the
phase behaviour has been only illustrated in the design section of this chapter. To
complete the analysis of the proposed device BER measurements of a nonreturn-to-
zero (NRZ) on-off keying (OOK) modulated signal transmission through our filter
have been performed and will be discussed in the next Section.

6.5.9 BER measurements

In order to perform BER measurements, the set-up presented in Section 1.5 has
been exploited. The optical signal-to-noise ratio (OSNR) was controlled and eval-
uated over 0.2 nm at the chip input, by cascading a Variable Optical Attenuator
(VOA), an Erbium Doped Fiber Amplifier (EDFA) and a 0.2 nm 3 dB bandwidth
filter centred at the signal central frequency. The receiver is a 10 GHz bandwidth
avalanche photodiode.

To evaluate the impact of the proposed device on the transmission of an optical
signal, we measured the BER of a 10 Gbit/s NRZ OOK data stream (27 − 1 pseu-
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tunable bandwidth filter

dorandom bit sequence) after transmission through the Cross port the tunable filter
with a 25 GHz FSR (first row of Tab. 6.1). Fig. 6.28a shows the measured BER
versus the received power Pr for decreasing bandwidth of the filter, when the OSNR
is 23 dB. Eye diagrams of Fig. 6.28b show that the bandwidth of the filter can be
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Figure 6.28.: (a) BER measurements (marks) of a 10 Gbit/s NRZ OOK signal filtered
by a 25 GHz FSR device with three different 3 dB bandwidths: 18 GHz
(red circles) 10 GHz (green squares) 8 GHz (magenta diamonds). Black
triangles show the BER measured after propagation through a 5-mm
long silicon waveguide. (b) Eye diagrams for the different conditions.

reduced down to 10 GHz (squares) without significantly deteriorating the signal
quality. In this condition, the power penalty with respect to the 18 GHz bandwidth
condition (circles) is about 2 dB at a BER of 10−9. Above 18 GHz bandwidth, no
appreciable power penalty is observed compared to the reference waveguide.

In order to test whether the signal degradation in the narrower band conditions
is due to sideband filtering rather than to phase distortion, numerical simulations
with the fitted filter parameters have been performed. Two types of simulations
have been done: the first with the complete filter characteristic, the second just with
the filter amplitude characteristic. The latter will be addressed as NO PHASE. In
Fig. 6.29 the measured (left column) and the simulated (central and right column)
eye diagrams of the filtered 10 Gbit/s OOK NRZ signal for different filter 3 dB band-
widths are shown. There is a good agreement between the measured eye diagrams
and the simulated ones of the complete filter characteristic (amplitude and phase).
This confirms the reliability of the fitting procedure also with reference to the phase
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(a)

(b)

(c)

Figure 6.29.: Measured (left column) and simulated (central and right column) eye
diagrams of a 10 Gbit/s NRZ OOK signal filtered with the 25 GHz
filter Cross port haveing 3 dB bandwidth: (a) 18 GHz, (b) 12 GHz and
(c) 10 GHz.
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Figure 6.30.: (a) BER measurements (marks) of a 10 Gbit/s NRZ OOK signal fil-
tered by the 200 GHz FSR device with two different 3 dB bandwidths:
173 GHz (red circles) and 23 GHz (green squares). Black triangles show
the BER measured after propagation through a 5 −mm long silicon
waveguide. (b) Eye diagrams for the different conditions.
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tunable bandwidth filter

of the filter. Moreover, due the slight difference between the simulations performed
with the entire filter characteristic and the NO PHASE ones, it is reasonable to ex-
pect that sideband filtering is the main responsible for signal distortion.

The performance of the 200 GHz FSR filter (third row of Tab. 6.1) at the Through
port was also checked on the same signal. Results in Fig. 6.30 show the BER of the
received signal when the filter is tuned to the maximum (173 GHz, red circles) and
the minimum bandwidths (23 GHz, green squares) conditions. As in Fig 6.28 black
triangles show the reference BER measured after propagation through a 5 mm long
silicon waveguide. Since the bandwidth of the filter is much larger than the signal
bandwidth, no power penalty is detected in any bandwidth condition as expected.

6.6 conclusions

In conclusion, an extensive analysis of a compact silicon photonic passband fil-
ter with widely tunable bandwidth has been carried out in this Chapter. The circuit
approach allowed to provide design rules that takes also into account fabrication tol-
erances as well as propagation losses variability. The measured results have shown
to be in agreement with the expected performance, demonstrating the feasibility of
the design procedure.

It has been shown theoretically and experimentally that wide bandwidth tunabil-
ity (from about 90% to 10% of the device FSR) can be obtained maintaining the
Off-band Rejection always larger than 15 dB for devices with a footprint size always
smaller than 0.6 mm2. Simple control and consequently low power consumption are
allowed by only three actuators. This performance has been shown to be valuable
also in comparison with the most recent silicon reconfigurable filters proposed in
literature. The filter central wavelength can be also easily tuned over the whole FSR
by adding a maximum of 60 mW of dissipated power. The filter robustness against
fabrication tolerance effects as well as against the losses, makes it suitable for the
SOI platform.

Since the filter principal figures of merit depend on the resonator coupling coeffi-
cient and a trade-off is generally needed, filters with the tunable coupler BB devel-
oped in Chapter 3 have also been realized maintaining the geometry unchanged. In
this way, the full control over the device characteristics at the cost of a reasonable
increase in the power dissipated has been demonstrated. The filter can be simul-
taneously tuned over 20 nm of the C-band and relying on strongly coupled res-
onator it has been shown to be robust against TPA/FCA effects. BER performance
of a 10 Gbit/s OOK NRZ signal was also checked after propagation through the
200 GHz and the 25 GHz FSR tunable filer, showing that when signal degradation
is detected, this is mainly due to sideband filtering rather than dispersion.

The presented characteristics make this filter suitable for flexible WDM system to
select channel subsets or to adapt its characteristics to the channel requirements.
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C O N C L U S I O N S A N D F U T U R E W O R K S

This thesis has dealt with the design and the characterization of novel recon-
figurable SOI devices able to filter and route optical signals on-chip. The chosen
approach for the design was based on basic circuit elements (Building Blocks, BBs).
This approach, well assessed in electronics and only recently introduced in optics,
uses a functional description of the behaviour of simple (basic) optical elements (i.e.
the scattering matrix, for example) and combines them to obtain higher complexity
multi-element Photonic Integrated Circuits (PICs).

Models and performance of the basic BBs employed during this work have been
described and characterized in the first part of this thesis. Extensive circuit simu-
lations have been then carried out in order to evidence potentials and limits of the
proposed devices taking into account fabrication tolerance effects. Two novel multi-
element PICs have been investigated: a narrow linewidth single mode resonator
and a passband filter with a widely tunable bandwidth.

The narrow linewidth single mode resonator (i.e. the GAC-RING), based on two
Grating Assisted Couplers (GACs) in a ring resonator (RR) configuration, has been
presented in Chapter 5. A suppression ratio between the selected and the sup-
pressed modes of the resonator larger than 10 dB has been successfully demon-
strated. Larger values of this figure have been shown to be achievable increasing
the device control complexity. Geometries allowing larger performance are in fact
more sensitive to fabrication tolerance effects. Reconfigurable add-drop multiplex-
ers, not limited by the Free Spectral Range as that based on RRs and more compact
than that based on GACs, could be realized by exploiting the proposed geometry.
The device showed however sensitivity to spurious effects. Moreover, the larger
the required bandwidth the more difficult is to achieve large performance. An in-
teresting geometry that could be investigated in future works could be based on
two directly coupled GAC-RINGs with different cavity lengths, exploiting then the
Vernier effect. This solution could in turn increase the device performance while
reducing the sensitivity to fabrication tolerance effects.

The passband filter with widely tunable bandwidth, based on an unbalanced
Mach-Zehnder interferometer loaded with a pair of RRs, has been then presented
in Chapter 6. Valuable performance with a reduced control complexity with respect
to the solutions proposed in literature has been successfully demonstrated. In view
of the realization of complex systems, where many devices and functionalities are
integrated on the same chip, a reduced number of actuators per device is of key
importance. This allows for power dissipation reduction as well as an easier man-
agement of the circuit. The device spectral characteristic flexibility has been also im-
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conclusions and future works

proved through the employment of tunable couplers of novel concept. This tunable
power splitting BB has been developed and optimized during this doctoral work
(see Chapter 3). The robustness of the tunable bandwidth filter against nonlinear
effects and fabrication tolerances has been also proven. These properties, together
with bit error rate measurements, have confirmed that the presented device can be
suitable for gridless networking and adaptive filtering applications. An interesting
future development is the use of the proposed filter as functional element for the re-
alization of a flexible wavelength selective switch. Such a device, of key importance
for the development of future flexible networks, could be realized by cascading in a
tree architecture the studied filter.

In conclusion, the future of PICs design relies on the ease with which complex cir-
cuits can be simulated and evaluated. Moreover, the effects of fabrication tolerances
on the circuit elements performance must be well established and standardised. The
work presented in this thesis performed such a validation function, demonstrating
complex PICs and their operating regimes as a function of their component parts.
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A
C O U P L E D M O D E T H E O RY

In this appendix the Coupled Mode Theory (CMT) is briefly summarized to de-
rive the set of coupled equations used during during this work to model and design
evanescent couplers, Bragg gratings and GACs.

This theory is in fact widely used in integrated optics to analyze and/or design
systems where coupling between different modes is generated by perturbations:
parallel waveguides at a distance g (directional coupler) or a periodic variation of
the waveguide width (photonic wire Bragg grating).

The CMT can be derived from a variational approach [192] or from the Lorentz’s
reciprocity theorem [193]. In this appendix, the second approach will be followed
and after a brief remind on the Lorentz reciprocity theorem, the coupled mode
equations will be obtained. The general form of the coupled mode equations will
be then used to study the particular cases of interest for this thesis (directional
couplers, Bragg grating and grating assisted couplers).

a.1 lorentz’s reciprocity theorem

Let E1, H1 and E2, H2 be the solutions of Maxwell’s equations in two media, with
the same µ = µ0, and with different dielectric constants, ε1 and ε2 respectively
occupying the same volume V. Introducing two polarization vectors, defined as
Pi = (ε i − ε)Ei, it is possible to rewrite Maxwell’s equations considering in both
cases the same reference material with dielectric constant ε assumed real, so that
differences, including losses, are taken into account by the polarization vector P.
Recasting these equations is then possible as in [194] to obtain the integral formula-
tion of the Lorentz’s reciprocity theorem:

∫
S
(E1 ×H∗2 + E∗2 ×H1) · n̂ dS =

 −jω
∫

V(ε1 − ε∗2) E1 ·E∗2 dV

−jω
∫

V(P1 ·E∗2 − E1 ·P∗2) dV.
(A.1)

If, in particular, ε1 = ε∗2, (A.1) reduces to:∫
S
(E1 ×H∗2 + E∗2 ×H1) · n̂ dS = 0.
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coupled mode theory

The Lorentz’s theorem formulation greatly simplifies if volume V reduces to a cylin-
drical structure (i.e. a structure invariant along the propagation direction). The
integral conjugated formulation of the Lorentz theorem for cylindrical structures is
then:

∫
S∞

∂

∂z
(E1 ×H∗2 + E∗2 ×H1) · ẑ dS =

 −jω
∫

S∞
(ε1 − ε∗2) E1 ·E∗2 dS

−jω
∫

S∞
(P1 ·E∗2 − P∗2 ·E1) dS.

(A.2)

which reduces to: ∫
S∞

∂

∂z
(E1 ×H∗2 + E∗2 ×H1) · ẑ dS = 0

if ε1 = ε∗2 everywhere.

a.2 coupled mode equations

To derive the set of coupled mode equations used during this work three as-
sumptions must be made. It is assumed first that radiating modes give a negligible
contribution to the field of the structure. Coupling to the radiating modes is in fact
undesirable for proper device working and so all the efforts are done to reduce their
presence, which justifies the hypothesis.

To derive the coupled mode equations is thus necessary to define two fields. The
first field, identified by subscript 1, is the combination of all the local forward and
backward guided modes inside the structure. Its transverse components can there-
fore be written as:

E1t(z) = ∑
ν

(aν(z) + bν(z)) Etν(z)

H1t(z) = ∑
ν

(aν(z)− bν(z))Htν(z)

in which the dependence of the amplitudes on the longitudinal coordinate z of
the magnitudes is evidenced and aν(z) = Aν(z) e−jβν(z)z and bν(z) = Bν(z) e jβν(z)z

are the complex amplitude coefficients of the modes propagating in the positive and
negative directions respectively.

Under the hypothesis of small perturbations it is possible also to assume (second
simplifying assumption) that the field shapes in the transversal planes, Etν(z) and
Htν(z) do not vary along z as well as the mode propagation constants βν(z). As a
result, only the amplitude coefficients aν and bν will depend on z. The equations
describing field 1 are then:
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A.2 coupled mode equations

E1t(z) = ∑
ν

(aν(z) + bν(z)) Etν (A.3)

H1t(z) = ∑
ν

(aν(z)− bν(z))Htν (A.4)

with

aν(z) = Aν(z) e−jβνz (A.5)

bν(z) = Bν(z) ejβνz. (A.6)

The second field (denoted by suffix 2) to be considered to apply the reciprocity
theorem is any mode of the structure. Its transversal components can be thus writ-
ten as:

E2t(z) = Etµ e−jβµz (A.7)

H2t(z) = Htµ e−jβµz. (A.8)

From now on, for formal simplicity, the explicit mention of z dependence of the
variables will be omitted, though it continues to exist.

Substituting (A.3)-(A.4) and (A.7)-(A.8) into the equation of the reciprocity the-
orem (A.2) written for lossless cylindrical structures (ε∗ = ε), the left hand side
integral turns out to be:

∫
S∞

∂

∂z

[
∑
ν

(aν + bν) Etν ×H∗tµ e jβµz + E∗tµ e jβµz ×∑
ν

(aν − bν)Htν

]
· ẑ dS. (A.9)

The guided modes will be considered orthogonal. The coupled mode theory can be
also easily extended to the case where the modes are not mutually orthogonal as
in [160] but being outside the sake of this thesis this extension will not be developed
in this appendix. The orthogonality between the modes allows writing:∫

S∞

Etν ×H∗tµ · ẑ dS = 2Pδνµ

which allows to rewrite (A.9) as:

4P
(

∂aµ

∂z
+ jβµaµ

)
e jβµz = (A.10)

= 4P
∂Aµ

∂z
. (A.11)
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Considering propagation in the negative verse of the z axis1, one should have
written the following equations instead

E2t = Et,−µ e jβµz = Etµ e jβµz

H2t = Ht,−µ e jβµz = −Htµ e jβµz.

With similar algebra one also finds that integral (A.9) holds

−4P
(

∂bµ

∂z
− jβµbµ

)
e−jβµz = (A.12)

= −4P
∂Bµ

∂z
. (A.13)

It is now time to move to the evaluation of the right member of (A.2). It holds:

=

 −jω
∫

S∞
(ε1 − ε2)E1 ·E∗2 dS

−jω
∫

S∞
(P1 ·E∗2 − P∗2 ·E1) dS.

(A.14)

Note that all the three components of the fields must be considered.
Before the calculation of these integrals, the third approximation which allows to

get the final form of the coupled mode equations must be introduced. In particular,
supposing weak coupling between the guides, one can express the fields supported
by the overall structure as a linear combination of fields supported by each single
guide forming the complex structure. This is obviously not true if the two guides
are placed close each other but is anyway an acceptable approximation if the two
waveguides are far enough not to perturb each other significantly.

Note also that this third hypothesis is not necessary for any structure. For ex-
ample, in a corrugated waveguide, the second hypothesis makes the modes of the
corrugated (deformed) waveguide equal to those of the not deformed structure.

To calculate the integrals appearing in (A.14), one must first define what is the
deformation of the structure. In the case of two parallel waveguides separated
by a gap distance g (see Fig A.1), the presence of Waveguide 2 can be seen as the
deformation of the single waveguide represented Waveguide 1 and viceversa. In the
case of a corrugated guide shown in figure A.2 the concept of deformation appears
clearly.

In conclusion, making reference to figure A.2, for a periodically perturbed waveg-
uide, ε is that of the unperturbed cylindrical waveguide while ∆ε accounts for the
changes from that waveguide. When two parallel waveguides are considered, the
distribution of relative dielectric constant to one of them is taken as ε of the struc-
ture, while ∆ε is the change from ε related to the presence of the second guide.

1 Note that one can get the same result applying the reciprocity theorem in the non conjugate form.
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A.2 coupled mode equations

Figure A.1.: Parallel waveguides schematic, top view.

Figure A.2.: Corrugated waveguide schematic top view. The waveguide perturba-
tion regions are evidenced in yellow.

In other words, ∆ε does not vanish only where changes occur with respect to the
undeformed structure.

If suffix 1 refers to the unperturbed structure and suffix 2 is associated to the
perturbation, one can then write (A.14) letting P2 = 0 and P1 = ∆ε E1. This leads to
write the right term of the Lorentz’s theorem equation (A.14) as: −jω

∫
S∞

∆ε E1 ·E∗2 dS

−jω
∫

S∞
P1 ·E∗2 dS.

(A.15)

Note that all the field components appear in these integral. The longitudinal ones
can be written:

E1z =
1

jωε

(
∇t ×H1t

)
· ẑ

H1z = − 1
jωµ

(
∇t × E1t

)
· ẑ

(A.16)

and then

Pt = ∆ε E1t = ∆ε ∑
ν

(aν + bν) Etν (A.17)

Pz =
ε ∆ε

(ε + ∆ε) ∑
ν

(aν − bν) Ezν. (A.18)
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Considering propagation in the positive direction along z, (E2 = Eµe−jβµz) and prop-
agation in the negative direction of the z axis (E2 = Eµ e jβµz with Et,−µ = Etµ e
Ez,−µ = −Ezµ) the Lorentz theorem allows to write:

4P
∂Aµ

∂z
e−jβµz = −jω

∫
S∞

∑
ν

[
(aν + bν)∆ε Etν ·E∗tµ+

+ (aν − bν)
ε ∆ε

(ε + ∆ε)
EzνE∗zµ

]
dS (A.19)

4P
∂Bµ

∂z
ejβµz = jω

∫
S∞

∑
ν

[
(aν + bν)∆ε Etν ·E∗tµ+

− (aν − bν)
ε ∆ε

(ε + ∆ε)
Ezν E∗zµ

]
dS. (A.20)

It is now possible to define the transverse and longitudinal coupling coefficients as:

κt
νµ =

ω

4

∫
S∞

∆ε Etν ·E∗tµ dS (A.21)

κz
νµ =

ω

4

∫
S∞

ε ∆ε

(ε + ∆ε)
Ezν E∗zµ dS. (A.22)

Considering powers normalized to 1 (e.g. P = 1) and using (A.5)-(A.6) to evidence
the expressions of the coefficients A and B one gets:

∂Aµ

∂z
= −j ∑

ν

[
Aν

(
κt

νµ + κz
νµ

)
e−j(βν−βµ)z+

+Bν

(
κt

νµ − κz
νµ

)
ej(βν+βµ)z

]
(A.23)

∂Bµ

∂z
= j ∑

ν

[
Aν

(
κt

νµ − κz
νµ

)
e−j(βν+βµ)z+

+Bν

(
κt

νµ + κz
νµ

)
ej(βν−βµ)z

]
. (A.24)

These equations are the so-called Coupled Mode Equations. They express the de-
pendence on the propagation direction z of the mode amplitude coefficients. Codi-
rectional coupling occurs when the power transfer is between Aµ and Aν while
contradirectional coupling occurs when power transfer is between Aµ and Bν. The
exponential functions e±j(βν±βµ) takes into account the phase missmatch between the
coupled modes. The smaller (βν ± βµ) the larger the coupling. When (βν ± βµ) = 0
the so called phase matching condition is achieved and the coupling is maximized
as it will be shown in Section A.4.

Before entering into the details of the coupled mode equation solutions for spe-
cific structures, it is now useful to develop some algebra on the Fourier series to
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A.3 fourier analysis of periodic perturbations

understand the contribution of a periodic perturbation to the coupling of the modes.
This analysis will be performed in the next Section.

a.3 fourier analysis of periodic perturbations

Let us then consider for simplicity a planar waveguide with a surface grating
such as that shown in figure A.2. Note that the same analysis can be developed
for every structure that has a periodic perturbation. The perturbation ∆ε(z) can be
mathematically described by a periodic function which can be expressed in terms
of a Fourier series:

∆ε(z) =
∞

∑
n=−∞

∆εn ej 2π
Λ nz (A.25)

where Λ is the grating period. Since the equations accounting for the phenomenon
are linear, the effect of each harmonic can be studied independently. At the end,
results can be added to obtain the problem solution. For example if only a TE mode
can propagate assuming for simplicity that κz

νµ = 0, one must evaluate:

κt
νµ =

ω

4

∫
S∞

∆ε Etν E∗tµ dS, (A.26)

also keeping in mind that the integral to evaluate κt
ν,µ does not vanish only in the

region where the perturbation occurs. Inserting (A.25) into it, one gets:

κt
νµ =

ω

4

∫
S∞

∞

∑
n=−∞

∆εn ej 2π
Λ n z Etν E∗tµ dS =

=
∞

∑
n=−∞

κn,νµ ej 2π
Λ n z (A.27)

being κn real positive given by

κn,νµ =
ω

4

∫
S∞

∆εn Etν E∗tµ dS.

The coupled mode equations A.23 and A.24 can be then rewritten as:

∂Aµ

∂z
= −j

∞

∑
n=−∞

∑
ν

[
Aν

(
κt

νµ + κz
νµ

)
e−j(βν−βµ)z+

+Bν

(
κt

νµ − κz
νµ

)
ej(βν+βµ)z

]
e j 2π

Λ nz (A.28)

∂Bµ

∂z
= j

∞

∑
n=−∞

∑
ν

[
Aν

(
κt

νµ − κz
νµ

)
e−j(βν+βµ)z+

+Bν

(
κt

νµ + κz
νµ

)
ej(βν−βµ)z

]
e j 2π

Λ nz. (A.29)
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The arguments of the exponential functions are now (βν± βµ)± 2nπ/Λ. The pres-
ence of the periodic spatial structure deformation allows phase matching between
modes propagating in the same or in opposite directions.

A useful case to analyse can be that of a square wave with period equal to Λ,
duty cycle equal to δ and amplitude ∆ε. The solution of this example can be in fact
applied in order to calculate the contribution of periodic perturbations of any shape
as it will be shown later for a sinusoidal one. The grating shape is described by
∆ε(z), which can be written as a Fourier series as

∆ε(z) =
∞

∑
n=−∞

∆εn e j2πnz/Λ with ∆εn = ∆ε δ sinc(nδ).

The amplitude of the harmonics decreases as 1/n, causing a decrease of the value
of the coupling coefficient κ and then of the reflection efficiency, for a given grating
length. The grating contribution can be then easily calculated also for the longitudi-
nal component of the field, remembering Eq. (A.22), as:

∆ε(z)
ε + ∆ε(z)

=
∞

∑
n=−∞

∆ε

ε + ∆ε
δ sinc(nδ) e j2πnz/Λ.

Once the square wave perturbation contribution to the coupling of the modes has
been described through the Fourier analysis, it is now easily possible to describe
how to calculate this contribution in the case of a sinusoidal perturbation [140].
This is in fact the perturbation geometry chosen to allow contradirectional coupling
during this work (see Chapter 4 and 5). Periods that allow phase matching at
the desired wavelength for n = ±1 or, in other words, first order gratings have
been realized. Due to that, in the following, n = 0,±1 will be considered. As in
the former part of this analysis, the perturbation that contribute to the transversal
coupling coefficient will be analysed first. In order to explain the calculation, the
dependence of the longitudinal component on the transversal coordinates has to be
explicit. From now on we will then indicate ∆ε(z) = ∆ε(x, y, z).

The sketch of a sidewall sinusoidally perturbed waveguide is illustrated in Fig.
A.3a. It is possible to consider first the x− z plane that intersect the y axis in y0. The
grating sketch on this plane is represented in Fig. A.3b where the blue dashed line
that intersects the x axis in x0 represents the average waveguide width. We can now
focus on one of the two sidewalls. The zoomed view of the left sidewall is sketched
in the upper part of Fig. A.3c where two particular x axis points are highlighted,
x1 (red dashed line) and x−1 (blue dashed line). For each of these two points the
perturbation can be modelled as a square wave perturbation, as shown in the lower
part of the figure, and the Fourier series coefficients ∆εn can be easily calculated as
previously illustrated. Considering n = 1, the coefficients of the two series reads as:

∆ε1(x1, y0) = ∆ε δ sinc(nδ),
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(a)

(b)

(c)

Figure A.3.: (a) Sinusoidally perturbed waveguide (b) Sinusoidally perturbed
waveguide top view. Dashed lines represents the average waveguide
width. (c) Upper sketch: Sinusoidally perturbed waveguide left side-
wall top view. Red and green dashed lines indicate two different posi-
tions on the x axis, respectively x1 and x−1. Lower sketch: ∆ε(x1, y0, z),
red trace and ∆ε(x−1, y0, z), green trace.

∆ε1(x−1, y0) = −∆ε δ sinc(nδ) e−jπ.

Considering instead n = 0, we can write the coefficients as:

∆ε0(x1, y0) = ∆ε δ,

∆ε0(x−1, y0) = −∆ε δ.
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Regarding then the coupling of the longitudinal component of the field, the Fourier
series coefficient can be easily calculated through the former equations with the
substitutions: ∆ε← ε∆ε/(ε + ∆ε) and −∆ε← −ε∆ε/(ε− ∆ε).

Having described the effect on the coupling of the modes of a periodic perturba-
tion, it is now possible to develop the coupled mode equations for the structures of
interest for this dissertation.

a.4 codirectional coupling between single mode waveguides : di-
rectional coupler

The case of two single mode waveguides separated by a distance g (see Fig. A.1)
is considered first. If coupling is codirectional one can neglect coupling between
(A.23) and (A.24). This case is useful to model or study the behaviour of directional
couplers. The equations that has to be solved reduce then to:

∂Aµ

∂z
= −j ∑

ν

Aν (κ
t
νµ + κz

νµ) e−j(βν−βµ)z (A.30)

∂Bµ

∂z
= j ∑

ν

Bν (κ
t
νµ + κz

νµ) ej(βν−βµ)z. (A.31)

Forward and backward propagating modes are then mutually independent. To sim-
plify the notation κsνµ = κt

νµ + κz
νµ will be considered for this case. The coupling

between the modes propagating in the positive z direction is described by Eq. A.30

while the coupling between the modes propagating in the negative z direction is
described by Eq. A.31. Possible values for both ν and µ are 1 and 2. Suffix 1 refers
to the mode of the first waveguide, while suffix 2 refers to the second one. Con-
sidering propagation along the positive direction of z, only (A.30) must be solved.
Introducing the explicit values of ν and µ one gets:

∂A1

∂z
= −jA1 κs11 e−j(β1−β1)z − jA2 κs21 e−j(β2−β1)z

∂A2

∂z
= −jA1 κs12 e−j(β1−β2)z − jA2 κs22 e−j(β2−β2)z.

As said before, it is necessary to determine which is the “guide” and which is
the relevant “perturbation”. Waveguide 1 is considered first as the “guide”, while
waveguide 2 is the “perturbation”. In this case:

κs11 =
ω

4

∫
S2

∆ε Et1 ·E∗t1 +
ε ∆ε

(ε + ∆ε)
Ez1 E∗z1 dS (A.32)

κs21 =
ω

4

∫
S2

∆ε Et2 ·E∗t1 +
ε ∆ε

(ε + ∆ε)
Ez2 E∗z1 dS (A.33)
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A.4 directional coupler

where the integral does not vanish only in the region where the core of waveguide
2 is present. At the same time, conjugation is applied to the mode that excites the
structure. The first consequence is that the first integral is an infinitesimal of higher
order with respect to the second one. This occurs since the first integral is calculated
integrating the product of two field distributions which both have negligible values
in the integration area while, in the second one, one of the two functions is not
negligible. It is then reasonable to consider κs11 ' 0. The equation to be solved is
then:

∂A1

∂z
= −jA2 κs21 e−j(β2−β1)z. (A.34)

Exchanging the roles of “guide” and “perturbation” it is then straightforward to
obtain κ12 and κ22. Since κ22 ' 0 for the same reasoning developed before for κ11,
one gets the second equation to be solved:

∂A2

∂z
= −jA1κs12e−j(β1−β2)z. (A.35)

One can now determine the relationship existing between κ12 and κ21. It can be
demonstrated that power conservation in the system requires

κ∗s12 = κs21 = κ. (A.36)

Letting
∆β = β1 − β2 (A.37)

Eq. (A.34) and (A.35) can also be written as

∂A1

∂z
= −jA2 κs21 e−j(β2−β1)z = −jA2 κs ej∆βz

∂A2

∂z
= −jA1 κs12 e−j(β1−β2)z = −jA1 κs

∗ e−j∆βz.

The system formed by the two former defined equations can be solved analytically
by setting the boundary conditions for A1 and A2. Taking into account A1(0) = A0

and A2(0) = 0 the system solutions read as

A1(z) = A0 e
j∆β

2 z
(

cos(Sz)− j
∆β

2S
sin(Sz)

)
(A.38)

A2(z) = −jA0 e−j ∆β
2 z κ

S
sin(Sz). (A.39)
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The powers carried by the two waveguides considering an input optical power nor-
malized to 1 (i.e. P0 = |A1 = (0)|2 = 1) read as:

P1(z) = |A1(z)|2 =

[(
∆β

2S

)2

sin2(Sz) + cos2(Sz)

]
(A.40)

P2(z) = |A2(z)|2 =
|κ|2
S2 sin2(Sz). (A.41)

where S =

√(
∆β
2

)2
+ |κ|2. These expressions strongly depend on ∆β. ∆β = 0 repre-

sents the so called phase matching or synchronous condition of the modes. It occurs
when β1 = β2. This condition implies that the two considered waveguides have the
same cross section dimensions. In fact, during this work a fixed height of the core
and fixed index contrast between the core and the cladding of the waveguides were
considered. ∆β 6= 0 (i.e. β1 6= β2) corresponds instead to the non synchronous or not
phase matched case (i.e. the two considered waveguides have different cross section
dimensions). Observing Eq. (A.41) it can be noticed that the power transfer between
the two waveguides is periodical in z and that maximum coupling is achieved when
Sz = (2m + 1)π/2 with m a non negative integer. For m = 0, z = Lπ = π/2S is
known as the coupling length. Complete power transfer between the two waveguides
is achievable only in the synchronous case (i.e. S = κ). In this case the coupling
length can be written as

Lπ =
π

2S
=

π

2|κ| . (A.42)

Fig. A.4 shows the coupled power dependence from the longitudinal coordinate z
for four different phase conditions. Increasing the asynchronism between the waveg-
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Figure A.4.: Coupled power calculated for four different values of ∆β/κ as a func-
tion of the longitudinal coordinate z normalized to Lπ. Note that Lπ is
calculated considering the synchronous case (i.e. ∆β = 0).

uides, the maximum achievable coupled power decreases as well as the periodicity
of P2 with z.

In the synchronous case Lπ and thus κ can be related to the propagation constants
of the modes sustained by the overall structure (i.e. the supermodes). In this way
it is possible to ease the calculation of the coupling coefficient and consequently

168



A.5 bragg grating

the design of the coupler. A single mode coupler shows two supermodes, with
symmetric and antisymmetric shapes respect to the coupler gap [195]. The power
transfer, described in the coupled mode theory as the coupling between the modes
of the two waveguides, is the consequence of the interference between these two su-
permodes. Complete power transfer occurs at a distance Lπ where the supermodes
interference destructively:

(βs − βa)Lπ = π. (A.43)

By inserting this equation in Eq. (A.42) it is then easy to calculate that

κ =
(βs − βa)

2
. (A.44)

a.5 contradirectional coupling in a monomode waveguide : bragg

grating

We now consider the case of a monomode waveguide with a periodic perturbation
which induce the coupling between the mode propagating in the forward (z > 0)
direction and that propagating in the opposite one. This structures are the so called,
as in Section 4.2 of this work, Bragg gratings. In this case, Eq. (A.28) and (A.29)
developed in Section A.3 can be written as:

∂A1

∂z
= −jA1 κs11 − jB−1 κd(−1)1 ej(β1+β(−1))z e−j 2π

Λ z (A.45)

∂B(−1)

∂z
= jB(−1) κs(−1)(−1) + jA1 κd1(−1) e−j(β1+β(−1))z e j 2π

Λ z. (A.46)

where A1 is the amplitude coefficient of the mode which propagates in the positive
direction of the z axis, and B(−1) is the amplitude of the mode which propagates in
the opposite direction. Note that the subscript −1 instead of 1 has been chosen for
the amplitude coefficient B in order to distinguish the coupling coefficients κ in the
two differential equations. As before to simplify the notation κsνµ = κνµ + κνµ and
κdνµ = κνµ − κνµ will be considered. Eq. (A.45) and (A.46) can be easily recast as:

∂A1

∂z
= −jB(−1) κd(−1)1 ej((β1+κs11)+(β(−1)+κs(−1)(−1)))z e−j 2π

Λ z (A.47)

∂B(−1)

∂z
= jA1 κd1(−1) e−j((β1+κs11)+(β(−1)+κs(−1)(−1)))z e j 2π

Λ z, (A.48)

showing that κs11 and κs(−1)(−1) induce just a variation of the mode propagation
constant that is usually small. We can thus now neglect its contribution without
lack of generality considering κs11 = κs(−1)(−1) = 0. After the analytical solution to
the system will be derived, the impact of these coefficients will be discussed.
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It can be demonstrated then that, always because of power conservation, it must
hold:

κd(−1)1 = κ∗d1(−1) = κ. (A.49)

Keeping this into account, Eq. (A.47) and (A.48) can be written as:

∂A1

∂z
= −jκ B(−1) ej(β1+β(−1))z e−j 2π

Λ z (A.50)

∂B(−1)

∂z
= jκ∗ A1 e−j(β1+β(−1))z e j 2π

Λ z. (A.51)

It is now possible to introduce the analytical solution of the derived coupled mode
equations for the contradirectional coupling between a forward and a backward
wave in a single mode waveguide with a periodical perturbation. From now on, in
order to simplify the notation the perturbation wavenumber 2π/Λ will be named
as KG. Evidencing B(−1) in Eq. (A.50) and inserting it into Eq. (A.51) and one gets:

∂2A1

∂z2 − j(β1 + β−1 − KG)
∂A1

∂z
− |κ|2 A1 = 0.

Its solutions are the linear combination of two exponential functions with arguments
given by

j
β1 + β−1 − KG

2
±
√
|κ|2 −

(
β1 + β−1 − KG

2

)2

= j
∆β

2
± S

being

∆β = β1 + β−1 − KG (A.52)

S =

√
|κ|2 −

(
∆β

2

)2

. (A.53)

The solution finally is:

A1(z) = A′ e j ∆β
2 z+Sz + A′′ e j ∆β

2 z−Sz. (A.54)

From this one gets

B−1(z) =
j
κ

e−j∆βz ∂A1

∂z
= (A.55)

=
j
κ

A′
(

j
∆β

2
+ S

)
e−j ∆β

2 z+Sz +
j
κ

A′′
(

j
∆β

2
− S

)
e−j ∆β

2 z−Sz.

In this case, the synchronous or phase matching condition can still be defined by
∆β = 0 which means that β1 + β−1 = KG. In the case of a mono mode waveguide
the propagation constants of the propagating and the counterpropagating modes
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A.5 bragg grating

have the same moduli (β1 + β−1 = 2β1) phase match and consequently maximum
reflection, as will be shown later, is achieved at the so called Bragg wavelength
λB = 2ne f f Λ, where ne f f is the average effective index of the perturbed waveguide.
In the following of this Appendix β1 and β−1 will be still both explicitly written in
order to keep equations as general as possible. The equations that will be derived
in the following of this Appendix will be in fact useful in Chapter 4 and Chapter 5

of this thesis not only to model the behaviour of the Bragg gratings, but also that of
the Grating Assisted Couplers.

It is important to notice now that S, given by Eq. (A.53), is not necessarily real,
as it always was in the codirectional coupling case. S, in fact, can be real only if the
argument of the square root is positive, i.e. if |κ|2 > (∆β/2)2 or −2κ < ∆β < 2κ.
This range represents the so called photonic band-gap where the field is attenuated
along the positive verse of z. Outside this range instead the field propagates in that
direction.

A′ and A′′ appearing in (A.54) and (A.55) must be now determined in order to
highlight the grating intensity and phase behaviour as a function of κ, LG and ∆β.
To this purpose one can impose the problem general initial conditions:

A1(z = 0) 6= 0

B−1(z = LG) = 0.

After some cumbersome but straightforward algebra the coupled mode equations
solutions can be written as:

A1(z) = ej(∆β/2)z S cosh(S(z− LG))− j ∆β
2 sinh(S(z− LG))

S cosh(SLG) + j ∆β
2 sinh(SLG)

A1(0) (A.56)

and
B−1(z) = e−j(∆β/2)z jκ sinh(S(z− LG))

S cosh(SLG) + j ∆β
2 sinh(SLG)

A1(0) (A.57)

The ratio B(z = 0)/A(z = 0) is the reflection coefficient of the field in the struc-
ture:

B−1(0)
A1(0)

=
−jκ sinh(SLG)

S cosh(SLG) + j ∆β
2 sinh(SLG)

(A.58)

while, the intensity reflection coefficient is:

RG =

∣∣∣∣B−1(0)
A1(0)

∣∣∣∣2 =
|κ|2 sinh2(SLG)

S2 cosh2(SLG) +
∆β2

4 sinh2(SLG)

. (A.59)

Figure A.5 shows the intensity reflection coefficient RG for three values of κLG as
a function of ∆β/2κ. The grating spectrum consists of a main lobe placed around

171



coupled mode theory

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

11

∆β/2κd

R
G

 

 

κdLG = 6

κdLG = 3

κdLG = 1

4κ

Figure A.5.: Bragg grating RG as a function of ∆β/2κ.

∆β = 0 and a series of sidelobes, the intensity of which decrease as |∆β| increases.
Outside the photonic bandgap (indicated as 4κ in Fig. A.5) the waves propagate
in the periodic medium experiencing reflections at both of its ends. Interference
between these reflected waves give rise to this Fabry-Pérot like behaviour [196]. As
we go farer from the photonic bandgap region, the effect of the periodic medium de-
creases and the grating approaches the behaviour of a straight waveguide (i.e. zero
reflection). When the phase matching condition is satisfied (∆β = 0) RG reduces to
tanh2(κLG) and it is maximized. Increasing κLG makes RG tend to 1 and increase
the sidelobes. Considering a finite κ, a grating with infinite length would be then re-
quired to obtain complete power transfer between the forward and backward mode
(i.e. RG = 1).

Nulls in the RG coefficients occur for SLG = jmπ (j =
√
−1, m integer) and

consequently for:

∆β = ±2
√
|κ|2 + (mπ/LG)2. (A.60)

The distance between the first two nulls (calculated with m = 1 in Eq. (A.60))
represents the main lobe bandwidth. It increases as κ increases and decreases as LG

increases. For increasing values of κLG it approaches the photonic bandgap width
4κ as illustrated in Fig. A.5.

The transmission intensity coefficient TG = |A(LG)/A(0)|2 can be then easily
calculated from Eq. (A.56). In a lossless grating TG = 1− RG, adding no further
interesting information on the grating behaviour.

It is now useful to inspect the grating group delay. This results are in fact used in
Chapter 4 and 5 of this thesis. By differentiating the phase of (A.58) respect to the
angular frequency Ω, the group delay can be easily calculated [197]. In a lossless
grating, identical functions can be obtained by differentiating the transmission char-
acteristic. The grating can be seen in fact as cavity with the group delay representing
the cavity lifetime [198] (i.e. the amount of time that the light spend inside the pe-
riodic structure). Fig. A.6 shows the grating group delay τg normalized respect to
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Figure A.6.: Grating group delay τg normalized to the group delay of a straight
waveguide τ0 as a function of ∆β/2κ.

τ0, the group delay of an unperturbed waveguide with a length equal to LG, for
different values of κLG. When ∆β = 0 the input light is coupled with the reflected
wave reducing the cavity lifetime. This makes τg lower than that of a straight waveg-
uide. Increasing the value of κLG increases the grating reflection further reducing
the group delay, which is inversely proportional to this product [197, 198]. Outside
the photonic bandgap, as discussed before, the light can be transmitted or reflected
after many reflections inside the cavity. This makes the group delay oscillating and
reaching in some cases values higher than the one of a straight waveguide. The
group delay peaks appears for ∆β values in close proximity with the RG nulls (i.e.
TG maxima). At the edges of the RG main lobe, τg is proportional to κ2L2

G [197, 198]
leading to really high values as κLG increase (see Fig. A.6).

Up to now the intensity and group delay characteristics of a lossless grating with
the light coming just from one input port have been derived and discussed. In order
to derive the scattering matrix of the Bragg grating, useful in Chapter 4 and 5 of this
thesis, it is necessary to calculate its transfer functions also when the other port is
excited and express them for the complex amplitude coefficients a(z) and b(z). This
can be easily done by solving Eq. (A.54) and (A.55) with the following boundary
conditions:

A1(z = 0) = 0

B−1(z = LG) 6= 0.
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Then, Eq. (A.5) and (A.6) can be applied in order to obtain:

a1(z) =

(
e−jβ1z S cosh(S(z− LG))− j ∆β

2 sinh(S(z− LG))

S cosh(SLG) + j ∆β
2 sinh(SLG)

ej(∆β/2)z

)
a1(0)

+

(
e−jβ1z e−jβ−1LG

−jκ sinh(Sz)

S cosh(SLG) + j ∆β
2 sinh(SLG)

e j(∆β/2)(z+LG)

)
b−1(LG)

(A.61)

and

b−1(z) =

(
ejβ−1z jκ sinh(S(z− LG))

S cosh(SL) + j ∆β
2 sinh(SL)

e−j(∆β/2)z

)
a1(0)

+

(
ejβ−1(z−LG)

S cosh(Sz) + j ∆β
2 sinh(Sz)

S cosh(SL) + j ∆β
2 sinh(SL)

e−j(∆β/2)(z−LG)

)
b−1(LG). (A.62)

The scattering matrix S of the grating defined as[
b−1(0)
a1(LG)

]
=
[

S
] [ a1(0)

b−1(LG)

]
=

[
S11(z) S12(z)
S21(z) S22(z)

] [
a1(0)

b−1(LG)

]
,

can be immediately evaluated by calculating a1(LG) and b−1(0) respectively from
Eq. (A.61) and (A.62).

Finally, in some cases as in Chapter 4, it might be useful to consider a lossy
grating. This can be taken into account by following the same approach developed
in [199] for a grating with gain. Following this approach Eq. (A.61) and (A.62) can
be rewritten as:

a1(z) =

(
e−jβ1z S′ cosh(S′(z− LG))− j ∆β′

2 sinh(S′(z− LG))

S′ cosh(S′LG) + j ∆β′
2 sinh(S′LG)

ej(∆β/2)z

)
a1(0)

+

(
e−jβ1z e−jβ−1LG

−jκ sinh(S′z)

S′ cosh(S′LG) + j ∆β′
2 sinh(S′LG)

e j(∆β/2)(z+LG)

)
b−1(LG)

(A.63)

and

b−1(z) =

(
ejβ−1z jκ sinh(S′(z− LG))

S′ cosh(S′L) + j ∆β′
2 sinh(S′L)

e−j(∆β/2)z

)
a1(0)

+

(
ejβ−1(z−LG)

S′ cosh(S′z) + j ∆β′

2 sinh(S′z)

S′ cosh(S′L) + j ∆β′
2 sinh(S′L)

e−j(∆β/2)(z−LG)

)
b−1(LG).

(A.64)
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where S′ =
√
|κ|2 − (∆β′/2)2, ∆β′ = β1 + β−1 − KG − 2α and α is the real part of

the modes’ propagation constants.

a.6 codirectional and contradirectional coupling between sin-
gle mode waveguides : grating assisted coupler

After having illustrated the codirectional coupling between two parallel single
mode waveguides and the contradirectional coupling in a single mode waveguide
with a periodical sidewall perturbation it is now possible to analyse a case of in-
terest in Chapter 4 and 5: the coupling between two parallel single mode periodi-
cally corrugated waveguides. In this section of the appendix the coupled equations
describing such a structure will be derived and the calculation of the coupling co-
efficients discussed. The sketch of the described system is illustrated in Fig. A.7.
The two unperturbed waveguides will be always considered having different β and

Figure A.7.: Sketch of a grating assisted coupler with the relative complex ampli-
tudes at the four ports.

consequently, as explained in Section A.4, having different width. The two waveg-
uides are assumed to be perturbed by a sinusoidal sidewall corrugation like that
illustrated in Section A.3. In the system illustrated in Fig. A.7 an input wave at
any port will be coupled to all the other three waves and to itself. These coupling
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phenomena can be described by using the CMT (Eq. (A.28) and (A.29)) obtaining
the following system:

∂A1

∂z
= −jA1 κs11 − jA2 κs21 e−j(β2−β1)z (A.65)

− jκd(−1)1 B(−1) e j(β1+β(−1)− 2π
Λ ) z − jκd(−2)1 B(−2) e j(β1+β(−2)− 2π

Λ ) z

∂A2

∂z
= −jA1 κs21 e−j(β1−β2)z − jA2 κs22 (A.66)

− jκd(−1)2 B(−1) e j(β2+β(−1)− 2π
Λ ) z − jκd2(−2) B(−2) e j(β2+β(−2)− 2π

Λ ) z

∂B−1

∂z
= jA1 κd1(−1) e j(β(−1)+β1− 2π

Λ ) z + jA2 κd2(−1) e−j(β2+β−1)z (A.67)

+ jκs(−1)(−1) B(−1) + jκs(−2)1 B(−2) e−j(β−1−β(−2)) z

∂B−2

∂z
= jA1 κd1(−2) e−j(β1+β−2− 2π

Λ )z + jA2 κd2−2 e−j(β2+β−2− 2π
Λ )z (A.68)

+ jκs(−1)(−2) B(−1) e j(β−1−β(−2)) z + jκd(−2)(−2) B(−2)

Note that in this situation β1 = β−1 and β2 = β−2.

The coupling coefficients present in the obtained coupled system can be divided
into four different groups depending on the related coupling process.

• SELF-COUPLING:
This process represents the coupling of the mode with itself. The perturbation
produces a variation of the mode propagation constant. κs11 = κs(−1)(−1) = κs1

and κs22 = κs(−2)(−2) = κs2 represent the self-coupling coefficients respectively
of the mode of waveguide 1 and of the mode of waveguide 2. Contribution to
this coefficient is given by the grating harmonic of order 0 and by the coupled
waveguide. An increase in the grating perturbation leads then to an increase
of this parameter.

• CODIRECTINAL COUPLING:
This process represents the coupling of the considered mode with the mode
of coupled waveguide propagating in the same direction of the z axis. κs21 =

κs(−2)(−1) = κ21 and κs12 = κs(−1)(−2) = κ12 represent the codirectional cou-
pling between the two waveguides. Contribution to this coefficient is given by
the gratings harmonic of order 0 and by the coupled waveguide. The more
the two waveguides are far apart, the less the coupling strength will be. Hav-
ing the two waveguides different propagation constants (β1 6= β2) the phase
matching condition is not satisfied. The larger the difference between the two
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propagation constants (i.e. the more the two waveguides width are different),
the smaller the coupling.

• DIRECT CONTRADIRECTINAL COUPLING:
This process represents the coupling of the considered mode with a mode
in the same waveguide but propagating in the opposite direction of the z axis.
κd(−1)(1) = κd(1)(−1) = κd1 and κd(−2)(2) = κd(2)(−2) = κd2 represent the contradi-
rectional coupling between the forward and backward propagating mode in
one waveguide, respectively waveguide 1 and waveguide 2. Contribution to
this coupling is given by the first order harmonics of the gratings which al-
lows the phase matching condition between the modes. This coupling can be
increased mainly by increasing the perturbation of the waveguide where the
coupling is acting.

• EXCHANGE CONTRADIRECTINAL COUPLING:
This process represents the coupling of the considered mode with a mode in
the coupled waveguide but propagating in the opposite direction of the z axis.
κd(−2)1 = κd1(−2) = κd(−1)2 = κd2(−1) = κEx, represent the contradirectional
coupling between a mode propagating in one direction and a mode propa-
gating in the opposite direction in the other waveguide. Contribution to this
coupling is given by the first order harmonics of the gratings which allows
the phase matching condition between the modes. This coupling can be in-
creased by reducing the spacing between the waveguides or increasing the
perturbation of the waveguides.

In order to analyse how the structure of Fig. A.7 behaves, numerical solvers have
to be employed. The scattering matrix of this structure can be easily extracted by
solving the mentioned system for all its four inputs, one at a time.
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T U N A B L E B A N D W I D T H F I LT E R

The design, the analysis and the characterization of a novel tunable bandwidth
filter has been carried out in Chapter 6. Design and simulation were based on the
transfer matrix and the Z-transform approach. In this Appendix the general filter
transfer functions will be derived. These functions help to understand the filter
behaviour described in Chapter 6.

b.1 tunable bandwidth filter transfer functions

As introduced in Section 6.2 we can describe the behaviour of the tunable band-
width filter through the Z-transform approach by the following general transfer
matrix: [

Y1

Y2

]
=

[
H11(z) H12(z)
H21(z) H22(z)

] [
X1

X2

]
. (B.1)

Developing the calculations, the filter transfer functions can be expressed as:

H11(z) =
[
c1c2a2HR(z)− s1s2γe−jϕmz z−1

]
, (B.2)

H21(z) = −j
[
s2c1a2HR(z) + c2s1γe−jϕmz z−1

]
, (B.3)

H12(z) = −j
[
s1c2a2HR(z) + c1s2γe−jϕmz z−1

]
, (B.4)

H22(z) = −
[
s1s2a2HR(z)− c1c2γe−jϕmz z−1

]
, (B.5)
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where

HR(z) =
2

∏
i=1

ae−jϕri(ρejϕri − aγz−1)

(1− ρaγe−jϕri z−1)
. (B.6)

We can now focus on H11(z) and H21(z), the Through and the Cross port transfer
functions, when X1 = 1 and X2 = 0 are the conditions at the input of the device.
These are in fact the functions of interest in this work. Considering ϕr1 = −ϕr2 = ϕr

one can then write:

H11(z) =
N11(z)
D11(z)

=
A11 + B11z−1 + C11z−2 + D11z−3

1− 2ρaγ cos(∆ϕ/2)z−1 + ρ2(aγ)2z−2 (B.7)

where ∆ϕ = ϕr1 − (−ϕr2) = 2ϕr,

A11(z) = c1c2a2ρ2, (B.8)

B11(z) = −2ρa3γc1c2 cos(∆ϕ/2)− s1s2γe−jϕmz , (B.9)

C11(z) = a3γ2c1c2 + 2s1s2ρaγ2e−jϕmz cos(∆ϕ/2), (B.10)

D11(z) = −s1s2ρ2a2γ3e−jϕmz , (B.11)

and

H21(z) = −j
N21(z)
D21(z)

=
A21 + B21z−1 + C21z−2 + D21z−3

1− 2ρaγ cos(∆ϕ/2)z−1 + ρ2a2γ2z−2 (B.12)

where
A21(z) = s2c1a2ρ2, (B.13)

B21(z) = −2ρa3γs2c1 cos(∆ϕ/2) + s1c2γe−jϕmz , (B.14)
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C21(z) = a3γs2c1 − 2s1c2ρaγ2e−jϕmz cos(∆ϕ/2), (B.15)

and
D21(z) = s1c2ρ2a2γ3e−jϕmz . (B.16)

Consider now a particular case of interest: 3 dB couplers at the input and at the

output of our filter (i.e. s1 = s2 = c1 = c2 =
√

1
2 ). Under this assumption one can

write the numerator and the denominator of the filter transfer functions as:

N11(z) = a2ρ2

−
[
γe−jϕmz + 2ρa3γ cos(∆ϕ/2)

]
z−1

+
[

a3γ2 + 2ρaγ2e−jϕmz cos(∆ϕ/2)
]

γ2z−2

− ρ2a2γ3e−jϕmz z−3, (B.17)

N21(z) = a2ρ2

+
[
γe−jϕmz − 2ρa3γ cos(∆ϕ/2)

]
z−1

+
[

a3γ2 − 2ρaγ2e−jϕmz cos(∆ϕ/2)
]

γ2z−2

+ ρ2a2γ3e−jϕmz z−3, (B.18)

D11(z) = D21(z) = 1− 2ρaγ cos(∆ϕ/2)z−1 + ρ2a2γ2z−2. (B.19)

Comparing (B.17) and (B.18) it comes immediately out that a π change of ϕmz

will swap the two characteristics. Moreover it can be noticed that, considering a real
variable ϕX ∈ [0, 2π], the poles and zeros of H11(z, ∆ϕ = ϕX) are that of H21(z, ∆ϕ =

2π − ϕX) rotated by π respect to the centre of the unit circle. It is then possible to
conclude that 3 dB input and output couplers ensures equal performance at both
ports of the device.
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