Gentile, Maria
(2014)
Local Trigonometric Methods for Time Series Smoothing. , [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Metodologia statistica per la ricerca scientifica, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6494.
Documenti full-text disponibili:
Abstract
The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following.
First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process.
Second, a local trigonometric filter is built, with its statistical properties.
Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model.
A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis.
Abstract
The thesis is concerned with local trigonometric regression methods. The aim was to develop a method for extraction of cyclical components in time series. The main results of the thesis are the following.
First, a generalization of the filter proposed by Christiano and Fitzgerald is furnished for the smoothing of ARIMA(p,d,q) process.
Second, a local trigonometric filter is built, with its statistical properties.
Third, they are discussed the convergence properties of trigonometric estimators, and the problem of choosing the order of the model.
A large scale simulation experiment has been designed in order to assess the performance of the proposed models and methods. The results show that local trigonometric regression may be a useful tool for periodic time series analysis.
Tipologia del documento
Tesi di dottorato
Autore
Gentile, Maria
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze economiche e statistiche
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
unobserved components , finite linear filters, ARIMA time series, frequency domain analysis, local trigonometric regression
URN:NBN
DOI
10.6092/unibo/amsdottorato/6494
Data di discussione
15 Maggio 2014
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Gentile, Maria
Supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze economiche e statistiche
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
unobserved components , finite linear filters, ARIMA time series, frequency domain analysis, local trigonometric regression
URN:NBN
DOI
10.6092/unibo/amsdottorato/6494
Data di discussione
15 Maggio 2014
URI
Statistica sui download
Gestione del documento: