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Introduction

Aim of the work

The aim of this thesis is to study the effect of embedded nanoparticles on

liquid crystalline systems using Monte Carlo computer simulations. Dis-

persed liquid crystal composite materials have received significant atten-

tion by research community due to their potential impact for technolog-

ical advancements in the field of displays and sensors. Among these,

nanoparticle doped liquid crystals (LCs) systems have shown tremendous

interest due to their properties and prospective applications in electronic

industry for view in various important phenomena such as electro-optic,

dielectric, and memory effects. For example, in LC displays a voltage

must be applied to the LCs in order to change their orientation; importantly

this voltage must be above a particular threshold for this reorientation. It

is shown that, if the mesogen is doped with nanoparticles (NPs), there

is a reduction in the threshold voltage, something that would be benefi-

cial in reducing energy usage in these devices. On the other hand, the

highly anisotropic environment of LCs may enable the self–assembly of

dispersed NPs in two or three dimensional architectures exhibiting high

processability and self healing properties; i.e. particular, self-assembled

nanoparticles can serve as alignment layers for nematic LCs for the use in

sensors; the possible utility of such assemblies has inspired a significant

effort to understand and control their formation. In this context we address

the lack of fundamental knowledge of the properties and phase behaviour
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of these novel composite materials: we focus first on the changes induced

by NPs on the orientational LC order and secondly on the key factors de-

termining when and how NPs assemble. This dissertation is organized

as follows: in Chapter 1 we will introduce the relevant properties of liquid

crystals and describe some of the applications of the doping of LC with

various types of nanoparticles. In Chapter 2 we will briefly present the ap-

proach used to study these nanocomposite materials, using a Monte Carlo

simulation technique. We will describe in some detail the intermolecular

multisite Gay–Berne potential, which constitutes our reference model for

investigating the organization of these mixture systems. In Chapter 3 we

will introduce the single and pair particle properties used to characterize

liquid crystalline phases and discuss how they can be determined from

computer simulations. We will present a systematic method to identify and

characterize nanoparticles aggregates. In Chapter 4 we will present the

results of a series of Monte Carlo simulations on systems of rod–like Gay–

Berne molecules taking into account the effect of the nanoparticle shape,

in particular spherical, rod or disk–like, and dimension. Then, in Chapter 5,

we study the effect of the specific interactions between nanoparticles and

between nanoparticles and mesogens and of the presence of embedded

nanoparticle dipoles. Final remarks of Chapter 6 conclude the disserta-

tion.
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Chapter 1

Liquid Crystals and
Nanoparticles

1.1 Liquid Crystals

Liquid crystals (LCs) are states of matter intermediate between the crys-

talline and isotropic liquid state. Solid crystalline phases are character-

ized by an high degree of both positional and orientational order: the con-

stituent molecules sit on lattice points, which form a repeat pattern and the

direction of the molecular axes are dictated by this arrangement. Instead,

in an isotropic liquid phase a random distribution of molecules exists, de-

void of both positional and orientational long range orders and molecules

are free to translate and rotate. Liquid crystalline materials phases (also

called mesophases) show some fluid-like properties (e.g. they can flow

and have viscosities similar to those of ordinary liquids) while maintain-

ing a residual degree of orientational order: mesogens exhibit an average

preferred alignment and the direction of this preferred orientation is called

director of the system. The orientational order gives different optical di-

electric magnetic and mechanical properties in different directions, that is

the material is anisotropic.

Mesogens can be divided into thermotropic and lyotropic; the first undergo
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phase transitions as the temperature changes, while lyotropics are typi-

cally amphiphilic molecules that change their organization when dissolved

in a suitable solvent upon varying the concentration. The present thesis

deals with thermotropic LCs. On the basis of the degree of orientational

and positional order thermotropic mesophases can be classified in nemat-

ics, which may also include chiral nematic mesophases called cholester-

ics, and different classes of smectics.

1.1.1 Nematic mesophases

Nematic phases exhibit long–range orientational order, while having no

order in their translational degrees of freedom. Indeed molecules in that

phase can still move freely maintaining the fluidity typical of a liquid but, on

average, align each other in the same general direction.

The classical example of room temperature mesogens showing a transi-

tion to nematic phase is that of p,p’-cyanobiphenyls, composed of an aro-

matic biphenyl core substituted by an alkyl chain at one end and by a polar

cyano group at the other (see, e.g. the 5CB molecule, Figure 1.1). The

presence of the alkyl chain influences the arrangement of the molecules:

for n<5 nCBs do not form LC phases, for 5CB this sequence of phases

Crystal 23.0◦C←→ Nematic 35.0◦C←→ Isotropic is observed. The isotropic - ne-

matic transition is a weakly first order one.

Figure 1.1: 4-pentyl-4’-cyanobiphenyl (5CB) molecule.

In Figure 1.2 is a sketch of a typical monodomain nematic organization

is reported as well as a picture showing the typical thread-like texture ob-

served at the microscope between crossed polarizers for a sample where
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locally ordered domains are macroscopically disordered. Typically nemat-

ics appear to be uniaxial around a preferred orientation called the director,

that is their properties are invariant for an arbitrary rotation around the di-

rector. As the temperature decreases, the degree of alignment and hence

the order typically increases.

(a) (b)

Figure 1.2: Sketch of the molecular organization of a nematic phase mon-
odomain of a thermotropic liquid crystal (a) and typical optical texture of a
non aligned nematic between crossed polarizers (b).

The chiral nematic phase is also commonly called cholesteric because it

was observed for the first time in derivatives of cholesterol. The molecules

in this phase are organized, similarly to those of a nematic, with the molec-

ular axis aligned with respect to the local director, while the director itself

assumes a helical structure (Figure 1.4), characterized by the parameter

p, the chiral pitch, which measures the repeat distance between local di-

rectors with the same orientation.

1.1.2 Smectic mesophases

In smectic phases, molecules are arranged in layers thus exhibiting both

long–range orientational order (just as in the nematic phase) and 1D po-
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sitional order. The most common phases are called smectic A, in which

molecules are on average perpendicular to the layers, smectic B, charac-

terized by an hexagonal clustering of the molecular centres, and smectic

C, in which molecules form an angle (tilt angle) with respect to the layer

normal (see Figure 1.3). In many cases the layer thickness is equal to the

length of the molecule; while for those compounds forming partial or com-

plete bilayers, the layer thickness could approach or be nearly twice the

molecular length, due to interpenetration between molecules of the two

nearby layers.

(a) (b)

(c) (d)

Figure 1.3: Optical textures of thermotropic smectic liquid crystals between
crossed polarizers: smectic A (a) and smectic C (b) - Note the typical
appearance of fans. Sketch of the molecular organization in smectic A (c)
and C phases (d).

Chiral smectic C phases (or C∗ denoting the chirality) also exist, where

molecules show a tilted layered structure, like in a Smectic C, but where

the director of each layer twists of a finite angle while proceeding along the
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direction normal to the layers; as a consequence, a kind of helical structure

is formed [1, 2]. Ferroelectric LC phases are obtained from smectic C*

mesogens with a transverse dipole.

Figure 1.4: Chiral liquid crystal.

1.1.3 Blue phases

Blue phases (BPs) are particular liquid crystalline defect phases of chiral

mesogens, which termodinamically exist in a very small range of temper-

ature, between the isotropic liquid and the chiral nematic phase. Blue

phases are built from double twist cylinders, which are arrenged mutu-

ally perpendicular. While two double twist cylinders are placed to form a

continuous director field, a third double twist cylinder can only be merged

through a creation of a defect; these defects form a cubic lattice with dif-

ferent arrangements. see Figure 1.3 for a schematic representation. Blue

phases can be easily identified by polarized optical microscopy thanks to

a characteristic platelet texture, see Figure 1.5.
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Figure 1.5: Schematic arrangement of the double twist cylinders forming
the body–centered and simple cubic defects (typical of Blue Phase I and
II) and distinctive texture of a BP seen with an optical microscope under
polarized light, adapted from [3]

1.1.4 Discotic columnar phases

Liquid crystal phases are formed from non-spherical mesogens but not

necessarily only rodlike ones. For molecules such as HHTT (see Fig-

ure 1.6) in which one of the molecular axis is much shorter than the other

two, the alternative family of discotic phases arise. Discotic molecules

tipically have a core composed of aromatic rings with alkyl chains at the

periphery. In the discotic nematic phase the director is the average orien-

tation of the short molecular axis. Discotic nematic phases are, however,

rather infrequent and most often discotic molecules pack into stacks, giv-

ing rise to the so called discotic columnar phases (see Figure 1.7).
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Figure 1.6: Representation of a discotic mesogen.

Figure 1.7: Representation of a discotic columnar LC phase.
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1.2 Doping LC with nanoparticles

The major applications of nematic LC concern displays (LCD) and other

devices where the LC molecular organization and optical properties are

changed by the application of external fields. For instance, in a classical

twisted nematic (TN) display (Figure 1.8 ), an helical director configuration

is established in a thin nematic film by the contrasting aligning effect of

the two confining walls of the cell that are treated to impose planar parallel

alignment along two perpendicular directions.

Figure 1.8: Sketch of a twisted nematic LC display pixel in its field off (left)
and field on (right) state.

In this type of applications the threshold field needed to switch from one

state to the other, the field-on switching time and the time taken to restore

the initial helical configuration are important material features to optimize.

Doping liquid crystals with nanoparticles provides an important method for

tuning material properties and attracts growing attention since the prop-

erties of such composites may differ significantly from those of the pure

materials. An advantage of tuning properties by the addition of NP is that

the optical transparency in the visible, essential for displays, can be main-

tained. Scattering in fact, strongly depends on the relative size of the

particles compared to relevant wavelengths (Figure 1.9) and is relatively

negligible for these small sizes. In addition NP suspensions can also be
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stable over long times, again an essential requirement for industrial appli-

cations.

Figure 1.9: Schematic illustration of the effect of particle size, expressed
as relative diameter (particle diameter, d / wavelength of light λ) on the
relative scattering coefficient, α [4]. The scattering becomes negligible for
d� λ.

There are many reports showing that doping of a nematic LC with even a

small amount of nanoparticles (NPs) results in a decrease of the threshold

and switching voltages as well as in reducing the switching times of LC

displays [5–9].

Enhancement of LCs properties is dependent on the size, type, concen-

tration and intrinsic characteristic of nanoparticles used for doping, but

the overall outlook is far from clear. Here we attempt to give a brief

overview of the effects of embedding nanoparticles and relate them to spe-

cific nanoparticle features.

(i) Electro-optic response

Nematics doped with ferroelectric NPs are known to enhance dielectric

and optical anisotropy, increase the electro-optic response [10, 11] and
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improve the photorefractive properties of composites [12]. Para- and fer-

romagnetic particles in nematic mesogens are promising candidates for

magnetically tunable structures. On the other hand metal and silica nanopar-

ticles in ferroelectric LCs improve the spontaneous polarization and dielec-

tric permittivity and decrease switching times [13–15].

Ha et al. [16] investigated LC displays in which the nematic liquid crystal

were doped with metallic Ti nanoparticles (∼ 100 nm) at different concen-

trations, from 0.1% wt to 2.0% wt. The nematic LC (MJ001929) had a

positive refractive index anisotropy ∆n = 0.077, an isotropic–nematic tran-

sition temperature of 72◦ C and a dielectric anisotropy ∆ε = 8.2. For a

Figure 1.10: Schematic diagram to illustrate the operation of NLCs in an
on-state (left) and off-state (right) NLC cell with doping of Ti NPs. Adapted
from [16].

metallic conductive particle in an electric field, the tangential component

of the electric field at the conductor surface is zero, and the normal com-

ponent is equal to the surface charge density on the conductor divided by

the permittivity of space. The metallic Ti NPs change the electric flux path

with a focusing effect of the electric flux and an electric flux density in-

crease around the nanoparticles. As a result, at the same applied voltage

level, the local voltage increases around the nanoparticles and as the Ti

NP concentration increases, lower threshold voltages and faster response

times are obtained. Therefore, this results demonstrates that LCDs perfor-

mance can be controlled by changing the NPs concentration.
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(ii) Nematic-Isotropic phase transition

NPs may also affect the Nematic-Isotropic (NI) phase transition temper-

ature. While the effect of solute impurities in a nematic LC is typically

that of destabilizing the ordered phase, thus lowering the NI transition

temperature, the NP effect is far less clear and predictable. Examining

published data on this transition temperature and the order of the phase

change, it is difficult to find a common pattern among the several experi-

ments carried out in the last years. One of the problems lies in the need

to consider a large number of variables, ranging from the nature of the

different liquid crystals employed, up to the characteristics of the nanopar-

ticles, where size and polydispersity, concentration and chemical nature

seem to be of considerable importance in the study of the interactions with

the solvent. From the Table 1.1 we can see that the behavior is very dif-

LC system NPs NPs size NPs conc TNI
8CB [17] R812 aerosil 7nm 1-10%wt = TNI , = TNSmA
5CB [18] R812 aerosil 7nm 0.3-3%wt = TNI , < P2

5CB [19] R812 aerosil 7nm 1-10%wt = TNI , < P2

5CB [20] Sn2P2S6+Oleic acid 20 nm 03% v/v < or > TNI
ZLI-4801 [13] Sn2P2S6+Oleic acid 10 nm 0.3% v/v < TNI

LSCE [21] PbT iO3 (F) 40-800 nm 1-5% w/w =

Table 1.1: Summary of the effects of different classes of NPs on the NI
transition in relation to type, size and concentration. In particular, in the
last column, the nematic–isotropic transition temperature is indicated with
TNI , while TNSmA represent the nematic–smectic A transition temperature.
Also the orientational order parameter P2 of the nematic liquid crystalline
phase is reported.

ferent, depending on the kind of nanoparticle. Same NP types seem to

have a consistent behaviour, e.g. metal nanoparticles such as gold and

silver have been shown to have a tendency to lower the transition tem-

perature [13, 14, 22–24]. The addition of very small silica nanoparticles

(aerosils) seems instead to have very little effect on the transition tem-

perature, despite the formation of aggregates, which could easily disturb
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the local order [17–19]. A non consistent behaviour is shown by other

members of the same category, such as Sn2P2S6 which shows contrasting

effects depending on the concentration [13,20].

The effect of the size in the case of a ferroelectric nanoparticle seems to

be irrelevant, since PbT iO3 nanoparticles of different, even if all relatively

large, sizes (from 40 to 800 nm) do not seem to vary the clearing transition,

even when concentration is increased [21].

The N–I transition temperature increases in nematics doped with strongly

anisotropic NPs including nanotubes [25], magnetic nanorods [26] and var-

ious ferroelectric particles [10, 11]. One example is the effect of BaTiO3

nanoparticles: of considerable interest is the work of Reznikov et al. [14],

which reported an increase in the N–I transition temperature of 9◦C. In

this case, despite the variation of the solvent, the size of the nanoparti-

cles appears to be the most relevant factor influencing the increase and

decrease of TNI (see Table 1.2). It is important to take into account NPs

aggregation which is likely to happen when adding nanoparticles to LCs,

especially ferroelectric ones. In all the experiments considered in Table 1.2

the surfactant oleic acid was added in order to increase the interaction of

NPs with the solvent and decrease their aggregation tendency; it is there-

fore of great importance to consider the affinity between nanoparticle and

mesogen.

LC system NPs NPs size NPs conc TNI
MLC-6609 [14] BaTiO3+OA 1(F) 50-100 nm 0.2% > (9◦C)

TL205 [27] BaTiO3 +OA 9 nm 0.5% w/w <
5CB [28] BaTiO3+OA 150 nm 4% v/v > (> P2)

TL205 MLC6815 [29] BaTiO3+OA 10-28 nm 1% w/w <
8CB [30] BaTiO3+OA 1 2nm 0.2-0.4%w/w < (= TNSmA)

8OCB 8CB 1:3 [31] BaTiO3+OA 15 nm 5-10mg/g < (< TNSmA)
EN18 [32] BaTiO3+OA 15 nm 5mg/g < (< TNSmA)

Table 1.2: Summary of the effects of ferroelectric NPs on the NI transition
in relation to type, size and concentration.

1Oleic acid

16



In general, when NPs and LC sizes are similar, the N–I transition tem-

perature decreases with NPs increasing concentration. This kind of phase

separation is very important for the application of LC nanocomposites, and

it has been observed in few anisotropic soft matter systems.
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(iii) Metamaterials

LC-NP composites are also investigated as the building blocks of novel

metamaterials. Sub-wavelength metallic or semiconductor particles can

be used to tailoring the optical response, achieving very high or very low

and negative values of refractive index, permittivity and/or permeability

[33]. Upon immersing a metamaterial into a nematic LC one can switch

the LC alignment by changing the temperature or external voltages and

modify the overall optical properties of the composite. The smallest size of

NPs may be close to molecular dimensions, but the properties of the par-

ticles differ significantly from those of surrounding mesogenic molecules

and therefore a phase separation should be a common phenomenon. One

example is given by the self–assembly of liquid crystalline gold metama-

terials. Combining gold nanoparticles with liquid crystals, could provide

materials that can be induced to assemble in a controlled way and have a

particular and unique optical properties [34]. Coating the Au nanoparticles

Figure 1.11: Target liquid crystal coated gold nanoparticles; transition tem-
peratures of mixtures of 8CB and NPs determined by DSC (on table); a
simplified illustration of the arrangement of NPs in a condensed mixed
phase. Adapted from [34].

with specific ligands can allow NPs to be mixed into other media without

segregation, beyond affect the organization properties.
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(iv) Blue Phases

Phase separation in LCs doped with NPs is not always a negative ef-

fect which should be avoided. For examples, the introduction of spherical

nanoparticles in LC blue phases seems to have a stabilizing effect. [35] In

fact NPs mainly concentrate in the vicinity of defects, i.e. of regions with

the highest (most unfavourable) free energy which results in a decrease of

their energy, opening the way to building new molecular and NP 3D orga-

nizations by exploiting them. The stabilization effect depends on the NPs

size.

Figure 1.12: (a) For small nanoparticles a large filling ratio can be achieved
and stabilization effects level off at 100% defect occupation. (b) and (c)
For increasing NPs sizes, dispersion becomes increasingly difficult, so the
efficiency in stabilization decreases. (d) For particles much larger than the
BP unit cell, the stabilization is not effective at all. Adapted from [3].
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1.3 Theoretical background

To make progresses with these materials it is essential to develop some

theory for the interaction between liquid crystals and ferroelectric nanopar-

ticles. In the theory proposed by Reshetnyak et al. the key issue is how

an ensemble of NPs with aligned dipole moments can polarize the LC

molecules [14, 36, 37]. This electrostatic effect enhances the I-N transi-

tion temperature and reduces the Frederiks transition voltage. Molecular

dynamics simulations of ferroelectric NPs doping a nematic liquid crys-

tal [38] which assume alligned NPs, show an enhancement of LC order.

Lopatina and Selinger [15,39], on the other hand, proposed a different type

of explanation based on statistical mechanics for ferroelectric nanoparti-

cles behaviour. They suppose that both LC and NPs have distributions of

orientations characterized by two different order parameters.
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Chapter 2

Computer simulations

2.1 Introduction

Computer simulation provide an important way of linking microscopic mod-

els and experimental observables. Theoretical, statistical mechanics stud-

ies, while aiming at retaining the essential physics, tend to be based on

very and sometimes oversimplified models; thus it is often difficult to com-

pare predictions with experimental results. Computer simulation methods,

represent, as we shall see, brute force numerical approaches to the prob-

lem of calculating observable properties for bulk or nano size systems from

molecular models that, although still approximate, can be much more de-

tailed and representative of real systems with respect to statistical theories.

The results of computer simulations can then be used to test theories and

to check the validity of models in comparison to experimental results, but

more importantly they also provide a connection between specific molec-

ular features (shapes, charges, dipoles, etc..) and macroscopic material

properties. Computer simulations allow also to determine properties in

situations out of the reach of experiment, such as extreme pressure and

temperature conditions. However it should be remembered that a suc-

cessful prediction of properties is dependent on a good representation of

the interaction between molecules. For any simulation study, the basic
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methodology can be divided into three parts:

• constructing a model that describes the system under investigation,

typically starting with a description of a single molecule and of pair-

wise interactions;

• implementing the model in a simulation procedure, e.g. Monte Carlo

or Molecular Dynamics;

• using output to monitor the progress of the simulation and to calcu-

late macroscopic properties.

This chapter provides first a description of the two principal methods used

in simulations of LC at the molecular scale, namely Monte Carlo and

Molecular Dynamics methods [40–43]. Then, since any molecular simula-

tion has at its hearth an interaction potential which represents the micro-

scopic energetics defining the molecular system, the potentials developed

to model both LC and NPs are discussed.

2.2 Monte Carlo simulations

The Monte Carlo method used in statistical mechanics was proposed by

Metropolis et al. [44] to evaluate equilibrium statistical averages. Typi-

cal examples of thermodynamic properties calculated according to this

method are the energy 〈U〉, pressure 〈p〉, volume 〈V 〉, density 〈ρ〉 and

so on (where 〈〉 symbolizes a statistical average).

Considering a system ofN rigid particles interacting with each other through

a pair potential Uij = U(Xi, Xj), for a fixed value of each of the positional-

orientational coordinates Xi of each particle i, we have that the total en-

ergy of the system will be:

U({X}) =
1

2

∑
i 6=j

U(Xi, Xj) (2.1)

22



Note that {X} = X1, X2, . . . , XN represents the set of positional and orien-

tational coordinates, also called configuration. For this system, in canoni-

cal conditions, constant number of particles N , volume V and temperature

T , all static properties can be expressed as the Boltzmann average

〈A〉 =

∫
{dX}A({X})e−U({X})/kBT∫
{dX}e−U({X})/kBT

(2.2)

where kB is the Boltzmann constant. In a real system we can imagine

to consider a number M of configurations sampled from the equilibrium

distribution (“importance sampling”) and to calculate A(j) for each j con-

figuration. In this case the integral can be approximated, for M sufficiently

large, with the simple arithmetic mean

〈A〉 =
1

M

M∑
j=1

A(j) (2.3)

This simplification is possible since, once the equilibrium is reached, a

given system has a probability of having a certain configuration {X} as-

sociated with energy U({X}) that is proportional to the Boltzmann factor

exp(−U({X})/kBT ).

The Monte Carlo method in this context represents a technique for gen-

erating these equilibrium configurations: the order in which the configu-

rations are generated is not important since we are interested in static

quantities. In order to have an efficient method the frequency with which

the configurations are generated must be proportional to the Boltzmann

factor and the sequence must be random and independent from the initial

configuration.

Markovian processes and Metropolis algorithm

The mathematical justification of the MC method lies in the theory of Markov

processes [45], ie. stochastic processes, where a system evolves through
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a sequence of states with memory limited to the previous state. The prob-

ability that a system evolving in accord to a Markov process is in a state k,

at time t, depends only on the state at time (t−1). For a system at equilib-

rium we require that each state j with energy U (j) belongs to the Markov

chain, then the relative frequency wj is given by its Boltzmann probability:

wj = e−[U
(j)/kBT ]/ZN (2.4)

where the configurational partition function ZN is a normalization constant.

The Metropolis algorithm provides a simple way of producing a Markov

chain; in its most basic form, it considers a system of N interacting par-

ticles at temperature T in a volume V . Configuration space is sampled

by choosing one particle i at random and assigning it a new random

position–orientation. The move is accepted if it goes downhill in energy

δU = Unew − U old ≤ 0. Instead, if the move is uphill in energy, i.e. δU > 0,

then it is accepted with a probability e−δU/kBT . This is performed by gener-

ating a random number ξ ∈ [0; 1): the move is accepted if ξ ≤ e−δU/kBT and

rejected otherwise. This procedure (called MC step) will be repeated for

a suitable large number of steps in order to achieve a good convergence

to the equilibrium values. The method can be applied to rigid molecules

of arbitrary shape, but even to non rigid molecules where new states are

created by changing the positions, orientations and conformations of the

molecules [40]. A schematic representation of Monte Carlo algorithm is

shown Figure 2.1.

The Monte Carlo method has been and is applied with success to the study

of condensed phases in various statistical ensembles, including the canon-

ical ensemble (NVT), and, as a generalization, the isobaric–isothermal

(NPT). In these cases the number N of particles is kept constant and

typically has values ranging between a few hundreds and a few million,

still very small compared to the Avogadro number. Nevertheless, using

periodic boundary conditions it is possible to reduce the effect of finite

size and thus approximate the thermodynamic limit (N → ∞; V → ∞,
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Figure 2.1: The Monte Carlo algorithm in the canonical ensemble.

ρ = N/V = cost.).

If the initial configuration is not an equilibrium state at the chosen temper-

ature, the simulation is let to evolve until the equilibrium is reached.

The number of cycles (a cycle is a set of N MC moves) necessary to reach

the equilibrium is not predictable a priori, even if it depends on the effec-

tiveness of the configurational space sampling and on the probability with

which the generated configurations are accepted. At each step the size

of the move is governed by the maximum displacement δXmax, roughly an

adjustable parameter whose value is usually chosen so that 50% of the

trial moves are accepted. If δXmax is too small, then many moves will be

accepted but the states generated will be very similar to the previous ones

and the system will explore phase space very slowly; if δXmax is too large,

then very few moves will be accepted.
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Extention to the isothermal–isobaric ensemble

The Metropolis solution can be extended to other ensembles; Wood [46]

proposed a method to extend it to isothermal–isobaric one. In that case

the equilibrium probability for the system to be in state with enthalpy H(j)

is:

wj = e
−H(j)

kBT /ZN (2.5)

where H = U + PV , P represents the pressure and V the volume. The

difference in the algorithm with respect to the one used for the canonical

ensemble, lies in the change of volume that is performed periodically in

order to keep the pressure constant. Trial volume changes (Vnt − Vt) are

evaluated by testing the variation in enthalpy δH given by:

δH = δU + P (Vnt − Vt)−NkBT ln

(
Vnt
Vn

)
(2.6)

so that a given volume change move is accepted if δH ≤ 0 or ξ ∈ [0; 1] ≤
e−δH/kBT and rejected otherwise.

2.3 Molecular Dynamics

The Molecular Dynamics (MD) simulation method [43], first introduced by

Alder and Wainwright in 1959 [47], studies the macroscopic behaviour of

systems by following the evolution of all the constituent interacting particles

over a finite, usually short, time. The engine of a MD code is its time inte-

gration algorithm, required to integrate the Newton equation of motion for

the interacting particles and follow their trajectories. Indeed in MD simula-

tions the collective properties are determined starting from the trajectory of

all particles. The ensemble average of a specific property A of an ergodic

system can be obtained from a time average of its instantaneous values
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over a total time tT :

A = 〈A({X(t)})〉time =
1

tT

∫ tT

0

A({X(t)}) dt (2.7)

where X(t) describes the set of positions and orientation of the N particles

system at time t. The integration algorithms are based on finite difference

Figure 2.2: The Molecular Dynamics algorithm.

methods where time is discretized on a finite grid. The most popular inte-

gration methods are the Verlet algorithm [48], the leap-frog algorithm [49]

and the velocity-Verlet algorithm [50]. The basic microcanonical MD tech-

nique has been readily extended to perform simulations at constant tem-

perature and pressure; considerable number of thermostats and barostats

are currently available [41]. The general algorithm of the Molecular Dy-

namics method is sketched on Figure 2.2.
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2.4 Microscopic Models

In constructing a model it is important to consider the level of detail that

is to be used since the time and length scales of any simulation should

reflect the scale of the phenomenology that is under investigation. For ex-

ample quantum molecular dynamics approaches, using schemes like the

Car–Parrinello [51] technique, are able to investigate a small number of

atoms over a short amount of time: a typical case for a quantum molecu-

lar dynamics study could be to investigate ≈ 64 water molecules for ≈100

ps. They are particularly important in situations where bonds between

atoms can form and break, e.g. when chemical reactions take place. In

our case we are interested in studying instead systems with well defined

composition and investigate molecular organizations and their changes

and suitably parametrized classical mechanics simulations of molecular

systems suffice. In particular, atomistic studies, in which each atom in a

molecule is represented by a specific site, may at present time be em-

ployed to explore systems of tens of thousands of atoms over nanosecond

timescales. Atomistic simulations are essential when a specific chemical

structure is assumed and predictions on the resulting observable proper-

ties, e.g. phase transitions, order parameters, etc. are sought. To look at

larger systems over longer times, coarse grained approaches have been

developed [52–55]. Here groups of atoms are represented by specifically

tailored potentials. Using coarse grained models, it is possible to exam-

ine systems equivalent to hundreds of thousands of atoms over hundreds

of nanoseconds. While the name coarse grained suggests a systematic

procedure to generate the potential starting from a more detailed atomistic

description, the same name is often used to indicate molecular resolution

models where an entire molecule is replaced by a simple anisotropic par-

ticle with approximately the appropriate size, shape and possibly specific

interaction features.

Over the last decades, liquid crystalline materials have been modelled us-
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ing a range of scales and levels of detail. The characteristics and level of

detail of a model must be taken into account when conclusions are drawn

from the results of a computational study. For example, a mesogenic

molecule that is represented by a simple single site has a fixed shape and

dimensions and therefore describes a rigid molecule. Most real mesogens

are not completely rigid, but rather have both a flexible and a rigid part.

This difference between the real system and the model can have a pro-

found effect on the formation of ordered phases because the packing of

rigid particles is less efficient. The effect of this discrepancy is seen in the

difference between the change in density at the phase transition in the real

and model systems. In essence any computational study must balance the

constraints that the physics of the system under investigation creates with

the availability of computer resources.

For this research, the main considerations when deciding upon the choice

of a model is the nanocomposite nature of the systems which requires

large system sizes and requires a coarse-grained approach. Moreover,

for these complex systems, understanding general behaviour and trends

rather than reproducing specific chemical systems is already a very ambi-

tious target.

Regarding liquid crystalline systems, a large variety of models is available

[42, 53, 54, 56] . The most common potentials in LC simulations are often

assuming rigidity and are divided in hard and soft potentials.

The form of the first type is very simple and purely repulsive: the only

interaction present is that to prevent inter–penetration of particles and the

effect of the particles nature on the phase behaviour depends only on

shape and density. The simplest model is the hard sphere, and strings

of spherical repulsive beads have been used to model LC, although LC

models are often represented as rods or disks, respectively for calamitic

and discotic mesogens (see Figure 2.3).

Soft potentials have the peculiarity of smoothly changing from repulsive

to attractive with increasing the separation distance between particles. A
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Figure 2.3: Molecular structure of 5CB and benzene-hexan-n-alkanoate
derivates liquid crystals (adapted from [57]).

smooth potential which is soft and has long–range attractive interactions

and short–range repulsive ones, represents a good choice to fit the van

der Waals dispersion forces existing between molecules. Examples of

such kind of potentials are Lennard–Jones for isotropic particles and Gay–

Berne for anisotropic ones.

2.4.1 Gay–Berne coarse grained model

The Gay-Berne (GB) potential is the most successful and popular inter-

action model for soft anisotropic particles, described as rigid bodies of el-

lipsoidal shape, particularly studied in the field of thermotropic mesogens

simulations. Originally developed [58] to fit a linear arrangement of four

Lennard-Jones (LJ) [59] sites with a single ellipsoidal particle, the model

can be considered as a generalization of the LJ 12-6 potential, where

shape and interaction anisotropies have been introduced. The GB interac-

tion potential between particles i and j, assumed to be uniaxial, therefore

depends on their orientations, defined by the unit vectors ûi, ûj, and by
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their vector distance, rij:

U(ûi, ûj, r̂ij) = 4ε0ε(ûi, ûj, r̂ij)×
[(

σ0
rij−σ(ûi,ûj ,r̂ij)+σ0

)12

−
(

σ0
rij−σ(ûi,ûj ,r̂ij)+σ0

)6]
(2.8)

where σ0 and ε0 define the scales of length and energy, while σ(ûi, ûj, r̂ij)

and ε(ûi, ûj, r̂ij) are the anisotropic contact distance and potential well

depth, respectively. The contact distance reads:

σ(ûi, ûj, r̂) = σ0

{
1− χ

2

[
(ûi · r̂ + ûj · r̂)2

1 + χ(ûi · ûj)
+

(ûi · r̂− ûj · r̂)2

1− χ(ûi · ûj)

]}−1/2
(2.9)

where

χ =
k2 − 1

k2 + 1
(2.10)

is the shape anisotropy parameter, defined by the length-to-breadth ratio,

k. The well depth is determined by two functions:

ε(ûi, ûj, r̂) = [ε1(ûi, ûj, r̂)]
µ [ε2(ûi, ûj)]

ν (2.11)

where

ε1(ûi, ûj, r̂) = 1− χ′

2

[
(ûi · r̂ + ûj · r̂)2

1 + χ′(ûi · ûj)
+

(ûi · r̂− ûj · r̂)2

1− χ′(ûi · ûj)

]
(2.12)

ε2(ûi, ûj) =
[
1− χ2(ûi, ûj)

2
]−1/2

. (2.13)

while the parameter

χ′ =
(k′)1/µ − 1

(k′)1/µ + 1
(2.14)

is defined in terms of the well depth anisotropy k′, i.e. the ratio between

well depths for the side-by-side and end-to-end interactions, respectively.

The exact form of the GB potential is determined by the four parameters

µ, ν, k, k′, with the exponents µ, ν tuning the orientational dependence of
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the energy. The original formulation, with parameters k = 3, k′ = 5, µ = 2,

ν = 1, gives rise to stable nematic and smectic LC phases.

Figure 2.4: The GB potential as a function of dimensionless intermolecular
distance for k = 3, k′ = 5 in side-by-side, T-shaped, and end-to-end con-
figurations (left panel). Energy parameters are µ = 2, ν = 1 (dashed line)
and µ = 1, ν = 3 (continuous line). Adapted and reproduced from [53].
The sketch on the right defines ûi, ûj and rij for a pair of GB particles.

2.4.2 Models for LC–NP systems

Generic LC

We have considered a system of uniaxial ellipsoidal particles characterized

by positional and orientational degrees of freedom and interacting with a

pair potential U∗ij = Uij/εS that is sum of a Gay–Berne dispersive potential

and, in presence of dipoles, an electrostatic contribution U∗ij = U∗GB + U∗d .

In particular, for the GB potential, we have employed shape anisotropy k =

σe/σs = 3, interaction anisotropy k′ = εS/εe = 5, cutoff R(GB)∗
c = R

(GB)
c /σS

= 6.0 and the parametrization indicated in Table 2.5, with GB exponential

coefficients µ = 2 and ν = 1 as in the original formulation [58].

The graph above is relative to the pair potential curves obtained for three

typical configurations of a pair of molecules. We can notice that among
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GB parameters
µ = 2
ν = 1

σx = 1 σ0
σy = 1 σ0

3σ0 σz = 3 σ0
∼ 1.8nm σc = 1 σ0

εx = 1 ε0
εy = 1 ε0
εz = 0.2 ε0

Figure 2.5

the three, the curve characterized by the deepest potential well is the one

refering to parallel molecules with r̂ij ⊥ ûi, ûj (thus the side-side configu-

ration corresponds to the strongest interaction).

Nanoparticle model

While a variety of models have been developed for liquid crystals, as

shown in the above paragraphs, the studies carried out, at the theoreti-

cal level, on nanoparticles are not so widespread. Nanoparticles used to

study NP-LC mixtures are generically modelled as a spherical or rod–like

particles of similar size with respect to the mesogen. Also in this case, as

for simple fluids, hard square well or Lennard–Jones (see Figure 2.7) are

used.

However, it is of great importance that the potential could be tunable as

much as possible, in order to study a number of interesting effects at the

nanoscale level, such as that of a particular type of anchoring (see Fig-

ure 2.8), how the molecules prefer to orient at the NP surface, or how NPs

self–assemble between them.

In our case we have chosen to model a nanoparticle not as a single site,

but as a collection of spherical Lennard-Jones sites rigidly connected to

each other to form different NPs shapes. This type of modeling has been

chosen as it makes the treatment of intermolecular interactions easier (e.g.

33



Figure 2.6: The graph shows the potential energy profiles obtained for
three directions of approach (side–side, end–end and T) of a second
molecule with respect to the first.

it allows substantially lowering the cutoff values for intermolecular inter-

actions) and at same time it allows treating more realistic nanoparticles

shape. In practice using this approach has made possible the study of the

influence of different shape and size nanoparticles on the liquid crystalline

phase. The shapes taken into account here are a sphere, an elongated

rod and disks of two different sizes. For the case of rodlike nanoparticles

we have also compared the effects of apolar NPs with that of polar NPs,

where a dipole moment placed in the center of the rod was added.

Another interesting feature of our cluster-like modeling lies in the possi-

bility of varying the intensity of the interaction between nanoparticles by

adjusting the value of the energetic parameter εS characteristic of each LJ

sphere. This has allowed us to investigate one important aspect present

in real NP suspensions, i.e. the aggregation of NPs and the effect of the

aggregates on liquid crystalline phases as a function of the degree of NPs

aggregation.

Nanoparticles parameterization in terms of energy leads to a planar an-
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Figure 2.7: Schematic representation of a spherical nanoparticle adapted
from [60].

Figure 2.8: Representative configurations for LC-NP mixtures with respec-
tively planar and homeotropic anchoring, adapted from [61].

choring of the liquid crystal on the nanoparticle surface. It is known that LC

molecules adopt one orientation over another depending on the functional-

ization of the particle surface, on the bulk spatial properties of LCs and on

the relative strength of the interactions between mesogen and nanoparti-

cles (MN). It is therefore interesting to be able to modify the heterogeneous

interactions, to simulate different possible situations with regard to the ag-

gregation of nanoparticles from one part, and the variation of the liquid

crystalline phase from the other. With this aim, an additional parameter

eNM is thus introduced in the heterogeneous GB potential to take into ac-
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count the solvation affinity of the NP towards the mesogen:

UAB(ω1, ω2, r̂12) = 4ε0eNMε
ν
AB(ω1, ω2)ε

′µ
AB(ω1, ω2, r̂12)×[(

σc
r12 − σAB(ω1, ω2, r̂12) + σc

)12

−
(

σc
r12 − σAB(ω1, ω2, r̂12) + σc

)6] (2.15)

The parameter eMN allows to rescale the amplitude of the single site-site

pair energy, without altering the distance dependence in our investigation

of nematic systems doped with polar rod NPs and disk shaped NPs, mak-

ing it easier to separate solvent affinity and electrostatic effects.
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Chapter 3

Observables

3.1 Introduction

In this Chapter we introduce the most relevant observables considered for

the analysis of the simulation results together with the needed computa-

tional details and in particular we discuss the description of orientational

order and of relevant pair particle properties. Simulation studies are able

to provide much more detailed information on the molecular level, if com-

pared with their experimental counterparts, as each simulation determines

positions and orientations of every particle for a large number of equilib-

rium configurations. These "snapshots" that we shall also represent with

the help of computer graphics are themselves very useful to provide a

qualitative understanding of phenomena like phase organizations and ag-

gregations, that can then be quantified by suitable observables.

3.2 Single particle properties

As already mentioned, MC computer simulations generate equilibrium con-

figurations. A complete knowledge of the static equilibrium properties of

the system of N rigid particles studied can be obtained from a sufficiently

large set of M configurations (i.e. set of positions ri = (xi, yi, zi) and orien-
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tations ωi of all the particles). Indeed, calculating the value of an arbitrary

property A(ri, ωi, · · · , rN , ωN), depending on molecular positions and ori-

entations, in each of these equilibrium configurations (J ) we can obtain

the average value of A as

〈A〉 =
1

M

M∑
J

AJ (ri, ωi, · · · , rN , ωN) (3.1)

where the angular brackets 〈· · · 〉 indicate a statistical average over all re-

quired positions and orientations. If the probability density P (1)(r, ω) for

a molecule to have a certain position (r + dr) and orientation (ω + dω) is

known, the average of any property A(r, ω), relating to a single molecule

can be calculated as

〈A〉 = 〈A(r, ω)〉r,ω∫
drdωA(r, ω)P (1)(r, ω)/N

(3.2)

Therefore P (1) contains all the microscopic information necessary to cal-

culate one particle properties and viceversa the structure and order of the

system will be reflected by P (1). Thus the organization in liquid crystal

phases can be characterized first by the one particle probability distribu-

tion function P (1)(r, ω) of finding a molecule at position r with orientation ω.

A common and useful way of writing the singlet distribution is through the

Dirac delta functions. Indeed, since δ(r1 − r′1) is different from zero only

when the position r1 of molecule 1 is r′1, we can use a delta function as a

device for counting the molecules at a certain position–orientation

P (1)(r1, ω1)/N = 〈δ(r1 − r′1)δ(ω1 − ω′1)〉r′1,ω′1 (3.3)

which gives the average number of molecules with the desired position–

orientation.
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3.2.1 Orientational order

The description of long range orientational order, is a central issue when

treating LC systems, since this type of order is common to all the various

mesophases. If we consider a molecule as a rigid uniaxial particle we can

specify its orientation ω with respect to a laboratory frame with the Euler

angles (α, β), 0 ≤ α ≤ 2π; 0 ≤ β ≤ π . In general we can obtain a purely

orientational distribution P (ω) integrating out positions in eq. 3.3. For

uniform fluids such as nematics, the singlet probability is indipendent of

the position of molecules: P 1(r, ω) = ρP (ω) where ρ = N/V is the number

density. The probability of finding the molecule at a certain orientation with

respect to the axis of the mesophase is

P (ω) = P (α, β). (3.4)

If the laboratory Z axis is taken along the director of the phase and if the

mesophase is uniaxial around the director, then rotating the sample around

Z should leave all the observable properties unchanged. This means that

the probability for a molecule to have an orientation (α, β) should be the

same, independently of the angle α, i.e. P (α, β) = P (β)/2π. A useful ap-

proach is that of expanding P (β) in an orthogonal basis set and connect-

ing the expansion coefficients to a set of observable quantities that we can

obtain from experiment [62]. A suitable set of orthogonal functions (when

integrated over dβsinβ) is that of Legendre polynomials PL(cosβ) [63, 64]

for which we have∫ π

0

dβ sin βPL(cos β)PN(cos β) =
2

2L+ 1
δLN . (3.5)
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The explicit form of the first few Legendre polynomials is [64]:

P0(cos β) = 1

P1(cos β) = cos β

P2(cos β) =
3

2
cos2 β − 1

2

P3(cos β) =
5

cos3 β − 3

2
cos β

P4(cos β) =
35

8
cos4 β − 30

8
cos2 β +

3

8

(3.6)

Notice that PL(cos β) is an even function of cos β if the rank L is even and

viceversa. For normal nematics and smectics, there is a head to tail sym-

metry

P (β) = P (π − β) (3.7)

and only even L terms need to be retained in writing the even orientational

distribution in terms of PL(cos β) functions. However in some cases, it is

useful to consider also odd L terms, e.g. when testing for the existence of

polar ferroelectric phases [65–67]. In general:

P (β) =
∞∑
L=0

2L+ 1

2
〈PL〉PL(cos β) (3.8)

where the coefficients have been obtained exploiting the orthogonality of

the basis set. The average

〈PL〉 =

∫ π

0

dβ sin βPL(cos β)P (β)/

∫ π

o

dβ sin βP (β) (3.9)

represents the orientational order parameter of rank L. The knowledge of

the set of 〈PL〉 completely defines the distribution:

P (β) =
1

2
+

3

2
〈P1〉P1(cos β)+

5

2
〈P2〉P2(cos β)+

7

2
〈P3〉P3(cos β)+

9

2
〈P4〉P4(cos β)+· · ·

(3.10)
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The most common and useful term is the second rank order parameter

〈P2〉 =
3

2
〈cos2 β〉 − 1

2
. (3.11)

〈P2〉 has the properties one could expect from a good order parameter: for

a system of molecules perfectly aligned β = 0, so 〈P2〉 = 1; on the other

hand, for a system completely disordered (isotropic fluid) 〈cos2 β〉 = 1
3

and

thus 〈P2〉 = 0. In general

0 ≤ 〈P2〉 ≤ 1. (3.12)

This treatment can be extended to rigid molecules of arbitrary symmetry

and to complex phases, expanding P (α, β, γ) in a set of Wigner matrices

DL
m,n, orthogonal in (α, β, γ) space and systematically applying the sym-

metry properties of the molecules and of the phase [62].

3.2.2 Second rank order parameter

The second rank order parameter 〈P2〉 can be calculated by averaging

P2(cos β) over the probability P (β) of finding the molecule at an orientation

β with respect to the director (see Eq. 3.9). In the ordinary MC method

we do not work in a director frame but in an arbitrary, fixed, laboratory

frame. In the absence of a preferred direction imposed, for example by

an external electric or magnetic field, the director n̂ is not fixed a priori

in the laboratory frame, but can fluctuate during the simulations from one

configuration to another one. Thus, in principle, we have to determine n̂

for each configuration produced in the MC chain, in order to compute the

values of the orientational order parameters. The problem it is solvable

introducing a single molecule matrix property A [62, 68], whose only non

vanishing component is along the molecule symmetry axis, that is we can

define A as the direct square of a vector u taken along the molecular axis

A = u⊗ u, (3.13)
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where u = (0, 0, 1) in the molecule fixed frame. The sample average of A

in our arbitrary laboratory frame is obtained relating the components of A

to the molecule fixed components and summing over all particles:

〈ALABab 〉S =
1

N

N∑
i=1

∑
a′b′

(Ri)aa′(Ai)
MOL
a′b′ (R̃i)b′b

= 〈RazRbz〉S

= Qab +
1

3
δab

(3.14)

where R is the orthogonal matrix rotating from the laboratory to the molec-

ular frame and we have taken advantage of the fact that AMOL
ab = δazδbz;

〈· · · 〉S indicates an average over the sample and where we have defined

the ordering matrix Q as

Qab = 〈RaZRbZ −
1

3
δab〉S. (3.15)

Notice that Q is symmetric and traceless. The director frame is identified

digonalizing the 〈ALAB〉S or the Q tensor. We shall take the instantaneous

director to be parallel to the direction Z, defined by the eigenvector asso-

ciated with the largest eigenvalue of A [62, 69]. Then we can obtain the

second rank order parameter since

〈ADIRZZ 〉S =
∑

UaZUbZ〈ALABab 〉S

= 〈cos2 β〉S

=
2

3
〈P2〉S +

1

3
,

(3.16)

where U is the matrix rotating the laboratory into the director frame (i.e. the

matrix of eigenvectors of (〈ALABab 〉S) and the angle β gives the orientation

of the molecular axis in the director frame. In practice we calculate and

diagonalize the Q tensor for every configuration we wish to use, say Q(J )

for the J -th one. By diagonalizing Q(J ) we obtain an order parameter
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P
(J )
2 and a director n̂(J ), that can change from one configuration to the

next. P (J )
2 is obtained maximizing the expression

〈P2〉(J )
s =

1

N

N∑
i=1

P2(ûi· n̂(J )), (3.17)

with respect to the unit vector n̂(J ). If the director n̂(J ) is parallel to the Z

axis we see immediately that

Q =


−1

3
〈P2〉S − ξ 0 0

0 −1
3
〈P2〉S + ξ 0

0 0 2
3
〈P2〉S

 . (3.18)

The sample biaxiality parameter ξ corresponds to different ordering with

respect to the laboratoryX and Y axis and will tend to zero at large sample

size if the mesophase has uniaxial symmetry [70].
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3.3 Pair properties

After discussing the single particle distribution P (1)(r, ω) which gives the

probability of finding a molecule at a particular position and orientation,

and its expansion, we now focus on the pair distribution, which defines

the probability P 2(r1, ω1, r2, ω2) of finding any two particles at (r1, ω1, r2, ω2)

considering a pair property A(r1, ω1, r2, ω2), whose average is

〈A(r1, ω1, r2, ω2)〉r,ω =
1

N(N + 1)∫
dr1dω1dr2dω2A(r1, ω1, r2, ω2)P

(2)(r1, ω1, r2, ω2).

(3.19)

We can write this pair distribution using delta functions for counting the

molecules at a certain position–orientation:

P (2)(r1, ω1, r2, ω2)/[N(N − 1)] = 〈δ(r1 − r′1)δ(ω1 − ω′1)δ(r2 − r′2)δ(ω2 − ω′2)〉.
(3.20)

The last form is useful to evaluate the pair distribution by computer simu-

lation; in practice the delta functions are replaced by functions which are

non–zero in a small range of separations or orientations, and a multidi-

mensional histogram is constructed for all pair separations and also orien-

tations falling within such range. The pair distribution will reduce for large

intermolecular separations to the product of the singlet distributions for the

two molecules: P (r1, ω1), P (r2, ω2), that is

lim
r→∞
〈δ(r1 − r′1)δ(ω1 − ω′1)δ(r2 − r′2)δ(ω2 − ω′2)〉

= 〈δ(r1 − r′1)δ(ω1 − ω′1)〉〈δ(r2 − r′2)δ(ω2 − ω′2)〉.
(3.21)

At short and intermediate distances the position-orientation of the two

molecules are correlated. The spatial–orientational correlation is expressed

by the reduced pair distribution function or simply pair correlation function:

g(2)(r1, ω1, r2, ω2) ≡ P (2)(r1, ω1, r2, ω2)/P (r1, ω1)P (r2, ω2), (3.22)
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so that g(2)(r1, ω1, r2, ω2) goes to one in the limit of large intermolecular

separations

lim
r12→∞

g(r1, ω1, r2, ω2) = 1, (3.23)

i.e. the density of particles at large distances just becomes that of the bulk.

Moreover, for uniform systems we can write

P (2)(r1, ω1, r2, ω2) = ρ2P (ω1)g
(2)(r1, ω1, r2, ω2). (3.24)

Given the anisotropy of liquid crystals, it is useful to define distributions

along different orientations ω12 of the intermolecular vector relative to the

director. Considering a molecule as the origin, i.e. assuming r12 ≡ r,

the distributions along different orientations ωr, are obtained by integration

over the orientations of the two particles and the position of the first particle

[67,71,72]:

g(r, ωr) =

∫
dr1dω1dω2g

(2)(r1, ω1; r1 + r, ω2∫
dr1dω1dω2

(3.25)

This quantity gives the probability of finding a particle at a certain distance

r from a particle chosen as origin when their intermolecular vector has

orientation ωr = (αr, βr). If the system investigated is uniaxial, and we

consider orientations defined with respect to a laboratory system with Z

axis parallel to the director, we do not need to consider the angle αr and

the intermolecular vector distribution reduces to g(r) = g(r, βr)/2π. Thus,

by integrating the g(2)(r, ω1, ω2) over the orientations of the two particles,

one obtains the intermolecular vector correlation function [67]

g0(r) =
1

64π4

∫
dω1dω2g

(2)(r, ω1.ω2) (3.26)

which gives the probability for the intermolecular vector to have module r

and orientation ωr. The intermolecular vector correlation function g(r, βr)
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can be expanded in series of Legendre polynomials as

g(r, βr) = g0(r)
∑
L

(2L+ 1)g+L (r)PL(cosβr) (3.27)

where g0(r) is the standard radial distribution

g0(r) =
1

2

∫
dβrsinβrg(r, βr)

≡ 1

4πr2ρ
〈δ(r − r12)〉ij

(3.28)

giving the probability of finding a molecule inside the spherical shell r± dr
from another molecule. Notice that in the second form of eq. 3.28, a

delta function is used as before as a device for counting the molecules

with a certain separation; here 〈· · · 〉ij is the average computed over all

the molecular pairs i, j, while 4πr2ρ represents the average number of

molecular pairs having separation r for an isotropic fluid.

In computer simulations it is useful to replace the delta functions with func-

tions which are non–zero in a small range of separations; g(r) is con-

structed by computing an histogram of all pair separations falling within

such range, i.e. r12 ∈ [r : r + δr] where r ∈ [0 : Lmin/2] and Lmin is the

shortest simulation box length. The histogram bin heights represent the

average particle occupancies in concentric spherical shells around any

particle taken as reference (see Figure 3.1). In order to obtain g(r), the

histogram must be normalized by the average expected occupancy of an

ideal gas at the same density. In order to obtain a smooth function, it

is also required averaging g(r) over several uncorrelated configurations,

taken during the course of a simulation, to obtain a smooth function. This

means that the histogram must be normalized also by the number of con-

figurations and the number of particles used. In the case of liquid crys-

talline phases, it is necessary to consider different distribution functions in

different directions due to the anisotropic nature of the fluid. In particular

the distribution functions resolved along directions parallel and perpen-
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Figure 3.1: Representation of the volume corresponding to a spherical
shell between the distance r + δr adapted from [73].

dicular to the director, respectively g‖(r‖) and g⊥(r⊥) are useful to study

smectic phases. The approach used in computing these functions is very

similar to that used for g(r): the histograms of the projection of r12 par-

allel (r‖ = n̂ṙ12) and perpendicular (r⊥ =
√
r212 − r2‖) to the director n̂ are

considered. In order to simplify the process, all histograms are computed

within a cylindrical geometry, as shown in Figure 3.2.
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g‖(r‖)

Figure 3.2: Representation of the volumes corresponding to a cylindrical
shell between the distance r + δr, as used for the computation of g‖(r‖)
and g⊥(r⊥) adapted from [73].
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3.4 Aggregate analysis

The first step in aggregation analysis is to determine aggregate in systems.

Clusters determination are based on the minimum neighbour distance cri-

teria. With this method two NPs are assigned to the same cluster if the

distance between their centers is less than some distance Ragg. In order to

assess also the shape of the resulting aggregate, beyond the visual anal-

ysis of the snapshots, we have calculated the aggregate principal radii of

gyration and, from them, the asphericity parameters for each formed clus-

ter. The procedure is as follows: for each configuration we first calculate

the radius of gyration1 tensor for every aggregate. Next, we diagonalize

the matrix to find three eigenvalues, says R2
x, R2

y and R2
z, which we order

from the smallest to the largest. We then find the average of each ordered

eigenvalue, over all aggregates, and then take the square root of these

averages. The results are the mean–squared princial radii of gyration of

aggregate (R2
i )

1/2 with i = 1, 2, 3. The asphericity parameter is a single

number characterizing the shape, calculated from R2
i through

αS =

∑3
i>j=1(〈R2

i 〉 − 〈R2
j 〉)2

2(
∑3

i=1〈R2
i 〉)2

(3.29)

Clearly if the aggregate is a perfect sphere, all the principal radii of gyration

are equal and αS = 0, if it is elongated along one direction, the two smaller

one are equal and αS > 0.

3.4.1 Nanoparticle diffusion

It is interesting to try to extend to Monte Carlo simulations the study on

molecular diffusion, tipically examined via MD simulations by taking into

account the dynamics of particles affecting the transport properties. This

is not possible in general, since the MC dynamic is an arbitrary Markov one
1Radius of gyration defined as Rg = rmc − ri
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that we have assumed. However, if we only consider realistic MC moves

(e.g. small translations and rotations), some dynamic information can be

gathered, although on a MC time scale and not a real one. In particular

understanding the translational diffusion of nanoparticles in bulk solvent,

in relation to particle size, could be interesting i.e. in their use as tracer

particles. The translational motion of particles may be analyzed through

the self-diffusion coefficient

Dt =
1

6
lim
t→∞

d

dt
〈|rc(t)− rc(0)|2〉 =

1

6
lim
t→∞

d

dt
〈∆r2〉 (3.30)

where rc(t) is the centre of mass position of the nanoparticle at time t

and the angled brackets denote averaging over different time origins. Dt

is extracted from the slope of the mean-squared diffusion (MSD) at long

times. MSD in our case could be defined as

〈∆r2(n)〉 = 〈(rn − r0)2〉 (3.31)

where r − r0 is the displacement vector moved by a given particle in n

consecutive MC moves per particle and the angled brackets indicate an

average over all particles and the run lenght. Even if we cannot access

true dynamics of the systems, since we perform MC simulations, we can

still consider these as useful indicators: the greater the gradient of 〈∆r2〉
the more fluid the studied phase. As may be expected the translational

motion of the NP depends on the particle radius with smaller particles

diffusing more rapidly.

Relation between rotational and translational diffusion

For a sphere in an ordinary (isotropic) liquid the diffusion tensor compo-

nents can be related, in the stick boundary hydrodynamic limit, to the vis-
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cosity, via the Stoke–Einstein relation.

Dt ≡
kT

ftrans
=

kT

6πηr
=

4

3
Drotr

2π (3.32)

Drot =
kT

6πη(4
3
πr3)

(3.33)

Notice that stricly one should use the equivalent of the Stokes–Einstein

relation in a medium like a liquid crystal, where the viscosity itself is a

tensor. In a situation where relations like 3.32 or 3.33 are valid it is possible

to get informations on translational diffusion from rotational diffusion data

(e.g. from spin probe techniques). Equations for the brownian motion of

an ellipsoid (with semiaxes a, b=c) in an isotropic liquid:

Translation

X0 = f1u (3.34)

Y0 = f2v (3.35)

Z0 = f3w (3.36)

whereX, Y, Z are viscous force and u, v, w are veociity components; f1, f2, f3
are translational friction coefficients.

f1 = 16πη
a2 − b2

(2a2 − b2)S − 2a
(3.37)

f2 = f3 = 32πη
a2 − b2

(2a2 − 3b2)S + 2a
(3.38)
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Rotation

The friction coefficients β1, β2, β3 are

β1 =
32

3
πη

(a2 − b2)b2

2a− b2S
(3.39)

β2 = β3 =
32

3
πη

a2 − b2

(2a2 − b2)S − 2a
(3.40)

where η is the viscosity.

S =

∫ ∞
0

ds

(b2 + s)
√
a2 + s

(3.41)

For a > b (elongated, prolate, ellipsoid) this reduces to

S =
2√

a2 − b2
loga

a+
√
a2 − b2
b

(3.42)

For a < b (oblate, disk–like ellipsoid)

S =
2√

b2 − a2
arctg

√
b2 − a2
a

(3.43)

Remember that

Dtrasl
i =

kT

fi
(3.44)

Drot
i =

kT

βi
= Ri ≡ DR

i (3.45)

We can obtain simple approximate for fi, βi in limiting situation, e.g. for a
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very elongated ellipsoid a >> b in the sense that a2 − b2 ∼ a2.

S =
2

a
ln

2a

b
(3.46)

β1 = β// =
16

3
πη

a3

(a
b
)2 − ln 2a

b

(3.47)

β2 = β3 = β⊥ =
16

3
πη

a3

2 ln 2a
b
− 1

(3.48)

so that for a >> b

DR
// ∼

3kT

16πηa3

[(
a

b

)2

− ln
2a

b

]
(3.49)

DR
⊥ ∼

3kT

16πηa3

[
2 ln

2a

b
− 1

]
(3.50)

Notice that D///D⊥ should be indipendent of η, T and only depend on a/b

(This is true in general, not just for a > b of course).

Again for a >> b we find

f1 = f// = 8πηa

[
2 ln

2a

b
− 1

]−1
(3.51)

f2 = f3 = f⊥ = 16πηa

[
2 ln

2a

b
+ 1

]−1
(3.52)

Therefore for a >> b

DT
// =

kT

8πηa

(
2 ln

2a

b
− 1

)
(3.53)

DT
⊥ =

kT

16πηa

(
2 ln

2a

b
+ 1

)
(3.54)
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Chapter 4

Results – Doping LC with
nanoparticles.
Effect of shape and size

As was presented in Chapter 1, there are many key factors that affect the

stability and properties of the liquid crystalline phase. In the first part of

this dissertation we study in detail the effect of the nanoparticles shape,

taking into account three different shapes, while in the second part we

concentrate on the effect of nanoparticle size (see sketch in Figure 4.1).

To perform this study, we start from the nanoparticle model introduced in

Chapter 2, to build four distinct nanoparticles by arranging in different ways

their forming units (spherical LJ sites) according to different symmetries

and sizes.

4.1 Pure mesogen simulations

We have first performed Monte Carlo simulations on a pure mesogenic

rod–like system, which will be the reference for the following investigations.

As already explained in Chapter 2, we have modelled the rod mesogen
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Figure 4.1: Schematic representation of the work illustrate on this Chapter.

through a Gay–Berne potential [58] with a parameterization already used

by [74–76], namely: σx = σy = 1, σz = 3, interaction well depth εx = εy =

1, εz = 0.2, and energy parameters µ = 2 and ν = 1. Here σ0 and ε0 are

used as molecular units of length and energy, which taking the 5CB as

typical elongated mesogenic molecule can be approximated as 6 Å and

0.2 kcal/mol. The interaction cutoff radius adopted is R(GB)
c = 4σ0.

We considered systems of N = 1000 GB rods contained in a orthogonal

box with periodic boundary conditions, in the isothermal–isobaric ensem-

ble (NPT). We kept the dimensionless pressure P ∗ = 8 fixed, while varying

the temperatures T ∗ in a range wide enough to observe both isotropic–

nematic and nematic–smectic transitions. We performed a series of simu-

lations in a progressive cooling sequence, starting from an isotropic sam-

ple (T ∗ = 1.8), where each new lower temperature was studied using as

starting configuration an equilibrated one resulting from the previous simu-

lation at higher temperature. For each temperature, we first let the system

equilibrate for 2000 kcycles, then we have collected observables during

production runs of 500 kcycles.
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From the simulations we computed the equilibrium averages of several

physical quantities, like the adimensional energy 〈U∗〉 and the orienta-

tional order parameter (Figure 4.2), as well as instantaneous configuration

snapshots like the one in Figure 4.3, showing three state points in different

mesophase regions.

Figure 4.2: Average simulation values for adimensional energy 〈U∗〉 and
orientational order parameter 〈P2〉 versus temperature T ∗. Pressure is
P ∗ = 8. Three regions are shown, corresponding to stable mesophases,
i.e. Sm (smectic), Nem (nematic) and I (isotropic).

These instantaneous configurations show at once that the phases ob-

tained on cooling correspond to isotropic, nematic, smectic A or B. To

provide an immediate visualization of the existing short and long range

order, here and in the following, LC molecules are represented with ellip-
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soidal particles and their orientation is indicated by a colour code ranging

from yellow to blue (see palette on the right of Figure 4.3). In particular

at T ∗ = 1.7, it is visible a steep increase in 〈P2〉 corresponding to the first

order isotropic–nematic transition, while at T ∗ = 1.15 a further jump in 〈P2〉
denotes the nematoc–to–smectic transition.

Structural informations can be obtained from the radial distribution func-

tion g0(r) which, as explained in Chapter 3, estimates the probability of

finding other molecules at a given radius from each mesogen composing

the system, averaged on all the configurations. The radial distribution in

particular shows a sharp peak at r∗ = 1, corresponding to the side–side

configuration (see Figure 4.4). At lowest temperature (T ∗ = 1.0) the ra-

dial distribution shows also a splitting of the second peak, characteristic of

hexagonal order in the plane and thus of a smectic B type ordering. The

density profile along the director g(z) shows a clear smectic periodicity

with peaks essentially centered at slightly lower values of multiples of the

molecular length σz, confirming a partial interdigitation of smectic layers.
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Isotropic

Nematic

Smectic

Figure 4.3: Molecular organization for the N = 1000 system in isotropic
T ∗ = 1.8, nematic T ∗ = 1.5, and smectic T ∗ = 1.0, phase. The palette is
also shown on the right.
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Figure 4.4: Radial correlation function (bottom) and density correlation
function (top) along the director in smectic B (T ∗ = 1.0) and nematic (T ∗ =
1.5) and isotropic (T ∗ = 1.8) phase.

60



4.2 Effect of nanoparticle shape

We studied the effect of the shape of dopant NP on the mesophase organi-

zation, and ordering in a system of rod–like Gay–Berne molecules. Three

different NP shapes are considered: spherical, rod–like, disk–like. For

all these cases, we considered three possible concentrations of dopant

NP and performed temperature scans in order to monitor the mesogen

orientational order, as well as locate the isotropic–nematic phase transi-

tions. The nanoparticle–mesogen coupling parameter (eNM ) was set to a

maximum value (i.e. eNM = 2.0) in order to avoid phase separation and

aggregation of NPs.

4.2.1 Sphere–shaped Nanoparticle

Spherical nanoparticles are assumed as closed packed bulk clusters of 32

identical Lennard–Jones (LJ) sites which can be viewed as a stacking of 4

dense LJ layers, where each of the two inner layers has an octagonal basis

and contains 12 LJ spheres, while the two outer have a square basis and

contains 4 LJ spheres (see Figure 4.5). LJ spheres have dimensions σS =

σx = σy = σz = 2.0σ0 and are slightly overlapping, in order to form a quasi

spherical shape of diameter ≈ 6σ0 without large surface discontinuities.

Concerning the energetic parameterization, we choose well dephts: εS =

εx = εy = εz = 0.15ε0, while the exponents µ and ν were set to 2 and 1

respectively, as for the model of the pure LC (Figure 4.6).

In Figure 4.7 we show the representative pair potential profiles relative

to the homogeneous interaction NN, as well as the heterogeneous NM

one. We note that for the chosen coupling parameter, the NM interaction

strengths (well depths) relative to lateral (side–side) configuration is al-

most equal to the (nearly spherically symmetric) NN interaction, while it is

slightly larger than the end–end NM interaction; this suggests that a weak

planar anchoring is preferred, because the configurational interaction cor-

responding to planar anchoring is energetically slightly more favored than
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Figure 4.5: Exploded view of the four LJ layers forming the sphere–shaped
nanoparticle.

≈ 6σ0

σS εS
σx σy σz εx εy εz

Sphere 2.0 2.0 2.0 0.15 0.15 0.15

Figure 4.6

the homeotropic one. We used as potential cutoff radius r
∗(GB)
c = 4.0

for the mesogen–mesogen interaction and r
∗(LJ)
c = 6 for the interaction

between spherical sites, while that for the mixed interaction is calculated

through the mixing rules adopted in [77].

Simulations have been performed of sample mixtures of N = NM +NN =

4000 total particles with NN = 4, 8, 20, corresponding respectively to the

numerical nanoparticles concentration 0.1%, 0.2%, 0.5%, in the isobaric–

isothermal (NPT) ensemble, using 3d periodic conditions. As in the pure

LC system, dimensionless pressure P ∗ was set to 8, while the temperature

T ∗ spanned the range 1.0− 1.8. For each concentration, MC experiments

were run in a cooling sequence starting from well equilibrated isotropic

configurations, obtained inserting the proper number of uniformly embed-

ded nanoparticles in the previously equilibrated pure LC configuration at
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Figure 4.7: Pair potential profiles relative to homogeneous interaction NN
and heterogeneous NM for pairs in side–side (ss) and end–end (ee) con-
figurations.

the same pressure and temperature. In Figure 4.8 we plot the resulting

temperature dependence of the orientational order parameter.

From the plots we see that, compared to the pure LC, all systems undergo

a general decrease of the LC orientational order for all the concentrations.

Also, for the c = 0.2% and 0.5% cases, a shift of the NI transition towards

lower temperatures with respect to the pure LC system (black line) is ev-

ident; in addition, for the maximum concentration c = 0.5%, the smectic

phase become unstable, to the point that it is not observed at any temper-

ature, at least in the range explored, as can be seen from the radial corre-

lation function g(r)MM and from the correlation along the director gz(r)MM

(see Figure 4.9). In general, the main effect of adding spherical NP seems

to be to disfavour the positional as well the orientational ordering.

However, the resulting phase structuring is difficult to anticipate and it is

instructive to get an idea of the molecular organization by examining snap-

shots of the low-temperature system configurations. In Figure s 4.10, 4.11,

4.12 typical configuration snapshots for the temperatures corresponding to
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Figure 4.8: Orientational order parameter P2 (top) for the NPT simula-
tion at P ∗ = 8, against the dimensionless temperature T ∗ of the three
LC/spherical NP mixtures, as increasing concentrations; the data for the
pure system are reported here for comparison.

isotropic, nematic and smectic phases are given for increasing concentra-

tions. Here, the NPs are rendered with gray spheres while, as before, LC

molecules are represented with ellipsoidal particles and their orientation is

indicated by a colour code ranging from yellow to blue.

It is relevant to note that, for the smaller concentration (c = 0.1%), NPs

are well dispersed through the LC medium, while for higher concentra-

tions they tend to dimerize (c = 0.2%) or form small chains (c = 0.5%).

This is confirmed by the radial correlation functions g(r)NN of NN pairs in

Figure 4.13. In Fact, for c = 0.2% the first peak at r∗ = 6, which is the

diameter of the spherical NP, signals that a certain number of NPs are in

close contact (i.e are first neighbours); for c = 0.5% a rise in the magni-

tude of the first peak, as well as the appearance of a peak on the second

coordination shell, are observed.

A longitudinal section of a MC configuration (Figure 4.14) shows the lo-

cal arrangement of mesogens around one nanoparticle and evidences a
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planar–type anchoring as well as the presence of defects. A qualitative

information about the local arrangement can also be gained by examining

the radial correlation function for nanoparticle–mesogen g(r)NM pairs as

shown in Figure 4.15: for all the concentrations studied the first broad peak

at r∗ = 3.6, corresponding to a side–side nanoparticle–mesogen configu-

ration, demonstrates a clear parallel anchoring.

In addition to structural informations we have also tried to characterize

the fluidity of the systems monitoring the mean square displacement of

centers of mass (MSD) of the constituents. Figure 4.16 reports the MSD

for both LC and nanoparticles (magnified in the inset) for the system at c

= 0.5%, showing a decrease in the mobility on cooling down sequences.

As expected, the translational motion depends on the particle radius, with

smaller particles diffusing more rapidly.
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Figure 4.9: Radial correlation function and density correlation function
along the director referred to M particles (T ∗ = 1.0). The curves in black
report the behaviour of the pure LC system.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.10: Molecular organizations of systems for T ∗ = 1.8 (Iso), T ∗ =
1.5 (Nem) and T ∗ = 1.0 (SmA) phase (concentration is c = 0.1%v).
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.11: Molecular organizations of systems for T ∗ = 1.8 (Iso), T ∗ =
1.5 (Nem) and T ∗ = 1.0 (SmA) phase (concentration is c = 0.2%v).
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.12: Molecular organizations of systems for T ∗ = 1.8 (Iso), T ∗ =
1.5 (Nem) and T ∗ = 1.0 (Nem) phase (concentration is c = 0.5%v).
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 4.13: Radial correlation function referred to NPs for c = 0.1%, 0.2%
and 0.5% for two reference temperatures in smectic (T ∗ = 1.0) and ne-
matic (T ∗ = 1.5) phase.

Figure 4.14: Longitudinal section of a portion of an instantaneous config-
uration at T ∗ = 1.5 ; c = 0.1% showing a parallel weak anchoring.
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 4.15: Mesogen-nanoparticle g(r)MN correlation functions at T ∗ =
1.5 and T ∗ = 1.0 for nanoparticles concentrations 0.1%, 0.2% and 0.5%.

Figure 4.16: Total mean square displacement (σ0 units) plotted against
temperature, both for mesogens and nanoparticles (see inset for the
nanoparticle expanded curve), calculated after 10 kcycles.
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4.2.2 Rod–shaped Nanoparticle

Rod-shaped nanoparticles are modelled as close–packed bulk clusters of

14 equal Lennard–Jones sites, which can be viewed as a stacking of three

square basis layers (each containing 4 LJ sites), with one single LJ unit at

both ends (see Figure 4.17). As in the case of spherical NPs, LJ spheres

are characterized by energetic well depths εS = εx = εy = εz = 0.15ε0, and

dimensions σS = σx = σy = σz = 2.0σ0. Spheres are slightly overlapping,

so that the long and the short axis of the overall nanoparticle are about 8σ0

and 3.2σ0 respectively (Figure 4.18).

Figure 4.17: Exploded view of the rod–shaped nanoparticle.

≈ 8σ0

≈ 3.2σ0

σS εS
σx σy σz εx εy εz

Sphere 2.0 2.0 2.0 0.15 0.15 0.15

Figure 4.18

In fig 4.19 the representative pair potential profiles relative to the homoge-

neous interaction NN, a well as the heterogeneous NM are shown. Focus-

ing on the NN interaction profiles, we evidence that the lateral ss interac-

tion is 4 times larger than the T one, and more than 10 times larger of the

ee interaction. On the other hand, the NM interaction relative to lateral (ss)

configuration is much larger than both the terminal (ee) and T interactions.
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This picture suggests the promotion of the parallel-type anchoring, that is

again energetically favored with respect to the perpendicular one. The po-

tential cutoff radius was chosen as r∗(GB)
c = 4.0 and r∗(LJ)c = 6 respectively

for the mesogen–mesogen and the interaction between spherical sites,

while the cutoff interaction for the mixed interaction is calculated through

the mixing rules adopted in [77].

As in the case of spherical nanoparticles, we performed MC simulations of

sample mixtures of N = NM +NN = 4000 total particles (with NN = 4, 8, 20

corresponding respectively to the nanoparticles concentration c = 0.1%,

0.2%, 0.5%) in the isobaric–isothermal ensemble, using 3D periodic con-

ditions. Dimensionless pressure P ∗ was set to 8 while the temperature

T ∗ spanned the range 1.0-1.8. Figure 4.20 show the temperature depen-

dence of the orientational order parameter.

This plots reveal that, for any concentration value, the system undergoes

a shift of the NI transition towards lower temperatures with respect to the

pure LC system (black line); this is particularly strong for the c=0.5%.

Focusing on the low temperatures, differently from the previous case of

spherical embedded NP case, smectic A phase survives irrespective of

concentration, as confirmed by both radial correlation function g(r)MM and

correlation along the director g(z)MM (see Figure 4.21).

Snapshots of molecular configuration in Sm and Nem phase give some

hints on the spatial arrangement of nanoparticles. Here at the smaller

concentration (c=0.1% and 0.2%) NPs seems to be dispersed through the

mesogenic solvent, while for c=0.5% they tend to dimerize. This is proved

also by the g(r)NN curve at c=0.5% for T ∗ = 1.0 showing a peak at r∗ = 3.0,

that is the contact distance for NN pairs in side-side configuration as well a

structure of peaks at larger distance. No evidence of orientational order of

nanoparticles is found for any value of the concentration (see Figure 4.20).

Focusing on the local arrangement between NM pairs, the radial correla-

tion function for nanoparticle–mesogen g(r)NM in smectic (T ∗ = 1.0) phase

(Figure 4.27) shows, for all the concentration values, a first small peak at
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r∗ = 2.5, corresponding to nanoparticle–mesogen in side-side configura-

tion, and a second broad and more pronounced peak around r∗ = 4.0;

at larger distance, that is far from the NP surface, the correlation function

tends to a constant value, expecially in the nematic phase. This picture

fits with a weak parallel anchoring as evidenced in Figure 4.26 by a lon-

gitudinal section of a MC configuration showing the local arrangement of

mesogens around the NP surface with formation of LC orientational de-

fects.

We also investigate the mobility of the system, computing the mean square

displacement of centers of mass (MSD) of both nanoparticles and meso-

gens; the behavior of the MSD for both LC and nanoparticles are reported

in Figure 4.28, confirming the same trend observed in the previous simu-

lations.
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Figure 4.19: Pair potential profiles relative to homogeneous NN (bottom)
and heterogeneous NM (top) for pairs in ss, ee, T configuration.
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Figure 4.20: Orientational order parameter P2 for the NPT simulation at
P ∗ = 8, against the dimensionless temperature T ∗ of the mixtures of LC
and NP; the data for the pure system are reported here for comparison.The
orientational order parameter for rod–like nanoparticles is also reported.
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Figure 4.21: Radial correlation function (bottom) and density correlation
function (top) along the director referred to M particles for c = 0.5% for
two reference temperatures in smectic (T ∗ = 1.0) and nematic (T ∗ = 1.5)
phase. The curves in black report the behaviour of the pure LC system.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.22: Molecular organizations of systems for T ∗ = 1.8 (Iso), T ∗ =
1.5 (Nem) and T ∗ = 1.0 (SmA) phase (concentration is c = 0.1%).
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.23: Molecular organizations of systems for T ∗ = 1.8 (Iso), T ∗ =
1.5 (Nem) and T ∗ = 1.0 (SmA) phase (concentration is c = 0.2%).
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.24: Molecular organizations of systems for T ∗ = 1.8 (Iso), T ∗ =
1.5 (Nem) and T ∗ = 1.0 (SmA) phase (concentration is c = 0.5%).
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 4.25: Radial correlation function and density correlation function
along the director referred to NN particles for c=0.1%, 0.2% and 0.5% for
two reference temperatures in smectic (T ∗ = 1.0) and nematic (T ∗ = 1.5)
phase.

Figure 4.26: Longitudinal section of a portion of an instantaneous config-
uration at T ∗ = 1.5, c = 0.1% showing a parallel anchoring.
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 4.27: Mesogen–nanoparticle g(r)MN correlation functions at T ∗ =
1.0 for different nanoparticles concentrations (system εS = 0.15 and
eGBLJ = 2.0).

Figure 4.28: Comparison of the mean square displacement plotted against
temperature for the mesogen and the nanoparticle (see inset for the
nanoparticle expanded curve).
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4.2.3 Disk–shaped Nanoparticle

Disk-shaped nanoparticles are modelled as clusters of 12 equal Lennard–

Jones sites which are placed on a dense octagonal basis layer. As in

the case of spherical NPs, LJ spheres are characterized by energetic well

depths εS = εx = εy = εz = 0.15σ0 dimensions σS = σx = σy = σz = 2.0σ0.

Spheres are slightly overlapping, so that the long and the short axis of the

overall nanoparticle are about 6σ0 and 2σ0 respectively.

≈ 6σ0

σS εS
σx σy σz εx εy εz

Sphere 2.0 2.0 2.0 0.15 0.15 0.15

Figure 4.29

In Figure 4.30 the representative pair potential profiles relative to the ho-

mogeneous interaction NN, as well as the heterogeneous NM are shown.

Focusing on the NN interaction profiles, we evidence that the side-side

interaction at r∗ ≈ 6.0 is 3 times smaller than the T one (r∗ ≈ 4.0), and

more than 10 times smaller of the face-face interaction (r∗ ≈ 2.0). On

the other hand, the NM interaction relative to T configuration (at r∗ = 1.5)

is much larger than both the face-to-end (at r∗ = 2.5) and side-to side

(r∗ = 3.5) interactions. This picture suggests the promotion of the parallel–

type anchoring, that also in this case is energetically favored with respect

to the perpendicular one. The potential cutoff radius r
∗(GB)
c = 4.0 and

r
∗(LJ)
c = 6 respectively for the mesogen–mesogen and the interaction be-

tween spherical sites, while the cutoff interaction for the mixed interaction

is calculated through the mixing rules adopted in [77].
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Figure 4.30: Potential profiles relative to both homogeneous disk-like
nanoparticle–nanoparticle (NN) and heterogenous nanoparticle–mesogen
NM interaction for pairs in side-to-side, T-shape, and end-to-end configu-
rations. The distance is plotted in σ0 units whilst the potential in ε0 units.
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MC simulations of sample mixtures of N = NM +NN = 4000 total particles

(with NN = 4, 8, 20 corresponds respectively to the nanoparticles concen-

tration 0.1%, 0.2%, 0.5%) were performed in the isobaric–isothermal en-

semble, using 3D periodic boundary conditions. Dimensionless pressure

P ∗ was set to 8 while the temperature T ∗ spanned the range 1.0-1.8.

Figure 4.31: LC orientational order parameter 〈P2〉 for the NPT simulation
at P ∗ = 8, against the dimensionless temperature T ∗ of the three mixtures
of LC and NP, at increasing concentrations. The global orientational order
parameter relative to disk–like nanoparticles is also reported.

The temperature dependence of the LC orientational order parameter and

of the adimensional number density shows the same phase sequence Iso–

Nem–Sm of the pure LC (see Figure 4.31); if the concentrations of discotic

NP is less or equal to c=0.2% a strong layering in the density correlation

along the director (g(z)MM ) and the characteristic double peak typical of an

hexagonal arrangement in the radial correlation function g(r)MM (see Fig-

ure 4.35) confirm the presence of a SmB phase, suppressed for c=0.5%.

Differently from the previous case of spherical and elongated NP, no shift

of the NI temperature transition is observed. Still, no evidence of orienta-

tional order of nanoparticles is found for any value of the concentration c
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(see Figure 4.31).

Concerning the NPs organization, for the smallest concentration (c=0.1%),

NPs are well dispersed through the mesogenic media, while for larger con-

centrations they tend to dimerize and to form larger aggregates. This

could be observed also from the g(r)NN reported in Figure 4.36 curves

at c=0.5% for both T ∗ = 1.0 and T ∗ = 1.5 showing a peak at r∗ = 2, that is

the contact distance for NN pairs in face-to-face configuration as well as a

structure of peaks at larger distance.

Focusing on the local arrangement between nanoparticles and mesogens,

the radial correlation function g(r)NM in smectic (T ∗ = 1.0) phase (Fig-

ure 4.38) shows, for all the concentration values, a first small peak at

r∗ = 2., corresponding to nanoparticle-mesogen pairs in T configuration, a

second broad and more pronounced peak around r∗ = 4.0 which is consis-

tent with nanoparticle–mesogen pairs in side-side configuration; at larger

distance, that is far from the NP surface, the correlation function tends to a

constant value, especially in the nematic phase. This picture fits with weak

planar anchoring situation (see Figure 4.37).

The mobility of the system, computed via the MSD of both nanoparticles

and mesogens, is investigated and reported in Figure 4.39.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.32: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 at concentration c =
0.1%.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.33: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 at concentration c =
0.2%.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.34: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 at concentration c =
0.5%.
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Figure 4.35: Radial correlation function and density correlation function
along the director referred to M particles for c = 0.1%, 0.2%, 0.5% for
temperature reference in smectic (T ∗ = 1.0) phase. The curves in black
report the behaviour of the pure LC system.

Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 4.36: Radial correlation function g(r)NN referred to NN particles for
c= 0.5% for two reference temperatures in smectic (T ∗ = 1.0) and nematic
(T ∗ = 1.5) phase.
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Figure 4.37: Longitudinal section of a portion of a MC configuration show-
ing a nanoparticle embedded in a nematic LC (T ∗ = 1.5 ; c = 0.1%). A
parallel weak anchoring is evident.

Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 4.38: Mesogen–nanoparticle g(r)MN correlation functions at T ∗ =
1.0 for concentrations c = 0.1%, 02%, 0.5%.
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Figure 4.39: Comparison of the mean square displacement plotted against
temperature, calculated after 10 kcycles for both mesogens and nanopar-
ticles at c = 0.5% (see inset for the nanoparticle expanded curve).
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4.2.4 Conclusions

In conclusion, we have shown that doping a mesogenic system with nanopar-

ticles, at least for the chosen values of the well depth (εS = 0.15) and the

coupling parameter (eNM = 2.0), has the effect of reducing both the orien-

tational and positional order, irrespective from the NPs shape (spherical,

prolate, oblate). Nevertheless, the most disordering effects are found in

the case of spherical nanoparticles, for which the disruption of the meso-

genic orientational order is more important. For any shape, the larger the

concentration of NP is, the bigger becomes the potential to destroy the

long-range positional as well as orientational order.

In order to compare results for the translational motion of NPs of different

shapes we take into account the MSD against MC cycles: from the slope

of MSD at long time (see Figure 4.40) we could extract the self–diffusion

coefficient Dt.

We report in table 4.1 the Dt coefficients for the three different NPs shapes

at c=0.5%, obtained applying equation 3.30. In Figure 4.41 are shown the

trends of Dt against the T ∗ for the reference temperatures correspond-

ing to isotropic, nematic and smectic phases. Here we note that disc–like

NPs have higher mobility, followed by rods, although with very small dif-

ferences, while the spheres diffuse considerably less. This trend suggests

that the determinant factor enhancing NP mobilities is given by their mini-

mum cross section (6 for spheres, 3.2 for rods and 2 for discs).

Spherical NPs Rod–like NPs Disk–like NPs
∆r2 Dt ∆r2 Dt ∆r2 Dt

Isotropic phase 0.115 0.0019 33.3 0.0055 32.46 0.0051
Nematic phase 0.074 0.0012 52.6 0.0032 50.0 0.0033
Smectic phase 0.029 0.0005 303.0 0.0005 172.4 0.0009

Table 4.1
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Spherical shaped NP

Rod–shaped NP

Disk–shaped NP

Figure 4.40: Average mean square displacements vs MC cycles for three
temperature cases for the systems with spherical, rod and disk–shaped
nanoparticles.
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Figure 4.41: Comparison between the translational diffusion coefficient
against temperature for the three different NPs shape.
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4.3 Effect of NPs size

In order to evaluate the effect of the size of dopant NP on the mesophase

organization and orientational order of system of rod mesogens, we com-

pared the previous results for disk-shaped NPs with a new series obtained

considering dopant NPs with same shape and energetic parameters, but

enlarged size.

We modelled this larger disk-shaped nanoparticle via a multi–site model

in which a ring of 14 LJ sites has been added to the scheme described in

section 4.2.3. The total number of LJ sites is 28 (see Figure 4.42), while

the long and the short axis of the overall nanoparticle are about 8σ0 and

2σ0 respectively.

8σ0

σS εS
σx σy σz εx εy εz

Sphere 2.0 2.0 2.0 0.15 0.15 0.15

Figure 4.42

Figure 4.43 reports the pair potential profiles relative to homogeneous in-

teraction between NN pairs and heterogeneous interaction between NM.

Focusing on the NN profiles, the comparison with the plot in Figure 4.30

(in section 4.2.3) suggests that larger disks has stronger ee interaction

and thus have a greater tendency to aggregate face-to face. No relevant

modifications are found on the heterogeneous MN profiles.

We performed MC simulation of sample mixtures of N = NM +NN = 4000

total particles with NN = 4, 8, 20, as in the previous cases, in the NPT

ensemble at the dimensionless pressure P ∗ = 8 and in the same range of

temperature 1.0 < T ∗ < 2.0.

The simulation of systems doped with these discotic NPs gives a quite

different behaviour of the orientational order vs T ∗ curve as reported in

Figure 4.44. In Fact, for the largest concentration c=0.5% the isotropic–
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nematic transition temperature is significantly shifted toward lower values

and, more in general, the 〈P2〉 values are diminished with respect to the

smaller discotic NPs case. Also the phase sequence is affected: for all

concentrations c=0.1%, 0.2% and 0.5% the smectic phase is suppressed.

This is made evident by the behaviour of radial correlation function g(r)MM

and density along the director g(z)MM (see Figure 4.45); in particular no

splitting of the second peak characteristic of an hexagonal order in the

plane is found in the g(r)MM for any values of nanoparticle concentration,

and a lack of the smectic periodicity for c=0.5% case is apparent even at

low temperature (see g(z)MM ). Revealing snapshots of configurations of

the system at the selected temperature T ∗ = 1.0, 1.5 and 1.8 for the three

concentration cases are shown in Figure 4.46, 4.47, 4.48.

The local arrangement of mesogens around the NPs evidences weak planar-

type anchoring and presence of defects. Looking at the NPs organization,

as in the previous case, for the smallest concentration (c=0.1%) NPs stay

dispersed inside the mesogenic solvent; instead at larger concentration

they tend to stack face-to-face, even if no evidence of large aggregates is

found. This is apparent also from the g(r)NN curves at c=0.5% for both

T ∗ = 1.0 and T ∗ = 1.5 showing a peak at r∗ = 2.0, that is the contact

distance for NN pairs in face-to face configuration (see Figure 4.50).

In conclusion we have shown that increasing the size of dopant NPs,

at least for the discotic–like ones, has the effect to create orientational

defects, thus reducing both positional and orientational order of the LC

medium and shifting downward the nematic–isotropic transition tempera-

tures.
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Figure 4.43: Potential profiles relative to both homogeneous disk-
like nanoparticle–nanoparticle (NN) and heterogeneous nanoparticle–
mesogen NM interaction for pairs in side-to-side, T-shape, and end-to-end
configurations. The distance is plotted in terms of σ0 whilst the potential is
in terms of ε0.
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Figure 4.44: Orientational order parameter P2 for the NPT simulation at
P ∗ = 8, against the dimensionless temperature T ∗ of the three mixtures of
LC and NP; the data for the pure system are reported here for comparison.
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Figure 4.45: Radial correlation function (bottom) and density correlation
function along the director (top) for c = 0.5% for the reference temperature
in smectic (T ∗ = 1.0) phase. The curves in black report the behaviour of
the pure LC system.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.46: Snapshot of instantaneous configurations showing the molec-
ular organization for T ∗ = 1.8, 1.5, 1.0 at concentration c = 0.1%.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.47: Snapshot of instantaneous configurations showing the molec-
ular organization for T ∗ = 1.8, 1.5, 1.0 at concentration c = 0.2%.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 4.48: Snapshot of instantaneous configurations showing the molec-
ular organization for T ∗ = 1.8, 1.5, 1.0 at concentration c = 0.5%.
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 4.49: Nanoparticle–nanoparticle g(r)NN correlation functions at
T ∗ = 1.0 and T ∗ = 1.5 for c = 0.1%, 0.2%, 0.5%.

Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 4.50: Mesogen–nanoparticle g(r)MN correlation functions at T ∗ =
1.0 and T ∗ = 1.5 for c = 0.1%, 0.2%, 0.5%.
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Chapter 5

Results - Doping LC with
nanoparticle
Effect of nanoparticle–mesogen
and nanoparticle–nanoparticle
interactions

5.1 NP rod with dipoles

In the second part of this investigation we attempt to make a closer link with

the structure of real LCs by adding a bit of chemical detail. Since charge

distribution in typical molecules forming mesophases like 5CB plays an im-

portant role in determining their phase structure, we embedded a central

electric point dipole, directed along the long molecular axis, in our rod–like

mesogen model. Clearly this kind of geometry of the dipole is rather ar-

tificial and constitutes only an approximation; nevertheless, the effect of

adding simple dipolar contributions to the GB potential has been success-

fully studied in [78–80] and important modifications have been observed in

the overall molecular organization. This polar GB system will be exploited

as a suitable solvent for polar dopant nanoparticles.
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5.1.1 The dipolar interaction

In general the dipolar pair energy between two point dipoles i and j is

Ud(rij) =
µiµj
r3ij

[
µ̂i· µ̂j − 3(µ̂i· r̂ij)(µ̂j· r̂ij)

]
(5.1)

where rij is the distance between dipolar sites, µi, µj the molecular dipoles

with orientations µ̂i and µ̂j (µi = µiµ̂i, µj = µjµ̂j).

The pairwise long range dipolar interactions are the computationally most

costly part of molecular simulations. The number of calculations for each

atom scales with r3 where r is the spherical cutoff radius. To resolve the

computational cost problem, Reaction Field (RF) and Ewald summation

methods and improved version of these are applied. Ewald approximation

methods [40,81–84] rely on splitting dipolar interactions into a short–range

component which is computed by pairwise dipole–dipole summation, and

a long–range component computed here by evaluating Fourier series di-

rectly. This is based on the assumption of exact periodicity within the sim-

ulated system.

In the Reaction Field method [40, 84, 85] each dipole is interacting with

neighbouring dipoles within a cutoff sphere of radius Rc. The rest of the

sample is approximated, as an electrostatic medium, like an homogeneous

dielectric continuum of permittivity εRF matching that of the explicit solvent.

Continuum electrostatic equations are then solved using spherical symme-

try to estimate the dipolar interaction with the particle as:

ERF =

(
εRF − 1

2εRF + 1

)
1

R3
c

∑
j

µj (5.2)

where j is an index running over all the dipoles contained in the cavity.

The energy of the interaction between the central dipole i and the Reaction

Field is then given by:

Uext(i) = −µi · ERF (5.3)
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in such a way that the contribution to the total energy is

URF =
1

2

∑
i

Uext(i). (5.4)

This long–range correction is then added to the short–range contribution

which is computed via explicit summation over the neighbouring dipoles

within the cutoff sphere.

5.1.2 Pure mesogenic system with dipoles

We investigated systems of Gay–Berne ellipsoids with an embedded cen-

tral electric point dipole positioned at rx, ry, rz in the molecular frame,

oriented along the molecular axis with components µx, µy, µz, as reported

in Table 5.1.

Dipole moment rx ry rz µx µy µz
0.0 0.0 0.0 0.0 0.0 1.5

Table 5.1

We use a dimensionless dipole moment µ∗ = (µ2/ε0σ
3
0)1/2 = 1.5, ex-

pressed in ε0 and σ0 units, that correspond to about 5.5D, similar to that of

5CB. We have simulated a system of N = 1000 dipolar rod-like Gay-Berne

particlesin the NPT ensemble at P ∗ = 8.0 and 1.0 < T ∗ < 2.0. The dipolar

energy has been computed using the Reaction Field method with cutoff

Rc = 6σ0 and dielectric constant of the surronding medium εRF = 1.5.

The behavior for the average P2 against temperature T ∗, reported in Fig-

ure 5.1, evidence a slight shift of the TNI towards higher temperature, with

respect to the apolar system (see Figure 5.2 for instantaneous snapshots).

Also, the system shows a more pronounced layering at low temperature as

shown by the radial correlation function g0(r) and the density along the di-

rector g(z). In order to analyze in a quantitative way the molecular and

dipolar organization, we report the polar orientational correlation function
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Figure 5.1: Average orientational order parameter 〈P2〉, energy U∗ and
number density N/V , plotted against the temperature in dimensionless
units, for the system of rod particles without dipoles.

g1z(r) between the longitudinal axis zi of a molecule chosen as origin and

that of any other found at a distance r∗, which shows a weak correlation of

antiparallel pairs (see Figure 5.3).
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Isotropic

Nematic

Smectic

Figure 5.2: Molecular organization for the N = 1000 system with dipoles
µ∗ = 1.5, respectively in isotropic T ∗ = 1.8, nematic T ∗ = 1.5, and smectic
T ∗ = 1.0, phase.
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Figure 5.3: Correlation function g1z for systems in the nematic (T ∗ = 1.5)
and smectic (T ∗ = 1.0) phases.

110



5.2 Effect of the strength of interactions

(nanoparticle–nanoparticle and nanoparticle–

mesogen)

In order to explore the various possibilities of dispersion aggregation of

NPs, for the specific nanoparticle with rod–like shape, we now discuss the

results of several MC experiments, trying to assess the effect of strength

of heterogenous nanoparticle-mesogen interaction (solvent affinity) and

strenght homogeneous nanoparticle-nanoparticle interaction on liquid crys-

talline phase (see Figure 5.4).

We performed simulations on mixtures formed by a constant number N =

NM +NN = 5000 of total particles, where NM = 4975 is the number of polar

mesogenic molecules and NN = 25 is the number of rod–like nanoparti-

cles corresponding to the solute fraction 0.5%. As in the previous cases,

dimensionless pressure P ∗ was set to 8 while the temperature T ∗ spanned

the range 1.0-1.8. We used two different values of the coupling parameter

eNM (defined in eq. 2.15), that is eNM = 0.5 and eNM = 2.0, corresponding

respectively to the low affinity and high affinity regimes. For each value of

eNM we also tested three value of εS (i.e. well depth of each spherical unit

composing the NP) which acts as parameter controlling the homogeneous

inter-nanoparticles interaction.

5.2.1 High solvent affinity

Figure 5.5 shows the pair potential profiles for both nanoparticle-nanoparticle

(NN) and heterogenous nanoparticle-mesogen (NM) for eNM = 2.0. The

curves relative to the well depths εS = 0.15 (already investigated in section

4.2.2), 1.0 and 2.0 are reported.

As turned out for apolar LC, embedding rod–like nanoparticles to the liquid

crystal medium results in a shift of the NI transition temperature towards

lower values and in a general lowering of the mesogenic orientational or-
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Figure 5.4: Sketch of the plan of work of this section.

der in comparison to the pure system (see Figure 5.6). Interestingly, this

effect is observed regardless the values of the well depht εS (i.e. homo-

geneous NP–NP interaction); no evidence for local orientational order of

nanoparticles is found for any value of εS. The resulting phase sequence

is Iso–Nem–SmA, with suppression of the SmB phase at T ∗ = 1.0 seen for

pure mesogen system, as proven also by the absence of the characteristic

double peak in the radial correlation function g(r)MM , that is a fingerprint of

an hexagonal arrangement of molecules in smectic layers (see Figure 5.7).

Snaphots of istantaneous MC configurations are given in Figure 5.8, 5.9,
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5.10.

A qualitative information about the local arrangement between nanoparti-

cles and mesogenic molecules can be gained by examining the radial pair

correlation functions for nanoparticle–mesogen g(r)NM and g2z(r)
MN 1 in

smectic (T ∗ = 1.0) and nematic (T ∗ = 1.5) phases (see Figure 5.12). For

any values of εs, a first small peak at r∗ = 2.0 is observed, correspond-

ing to a nanoparticle–mesogen pair in side–side configuration with parallel

orientations, as well as a second broad peak around r∗ = 4.0, which is

consistent with nanoparticle–mesogen still parallely oriented. As before,

this picture is consistent with a planar anchoring situation (see also Fig-

ure 5.13).

Focusing on the arrangement of nanoparticles, g(r)NN curves for both

T ∗ = 1.0 and T ∗ = 1.5 (Figure 5.11) exhibit a general slight tendency

to dimerize, irrespective on the value of εS, as confirmed by showing a first

non-zero value at approximately r∗ = 3.0, which is the contact distance

for NN pairs in side-side configuration. The scarcely structured profile at

long–range suggest that nanoparticles avoid to aggregate in clusters of

significant size, irrespective from the values of εS, as apparent from the

snapshots in Figure 5.8, 5.9, 5.10 and also from the aggregates disper-

sion histograms in Figure 5.23 which report the number of the sampled

aggregates against the number of their constituent molecules.

1Defined as g2z(r)MN = 〈δ(r − rij)
[
3
2 (ẑi · ẑj)

2 − 1
2

]
〉ij
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Figure 5.5: Pair potential profiles relative to homogeneous NN (bottom)
and heterogeneous NM in the case of high affinity eMN = 2.0 (top) for
three different cases of εS (plotted for pairs in ss, ee, T configuration).
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Figure 5.6: LC orientational order parameter P2 for the NPT simulation at
P ∗ = 8, against the dimensionless temperature T ∗ of the three mixtures of
polar LC and apolar rod–like NP. The local orientational order parameter
relative to rod–like nanoparticles is also reported.
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Figure 5.7: Radial correlation function and density correlation function
along the director for εS = 0.15, 1.0, 2.0 in smectic phase (T ∗ = 1.0). The
curves in black report the behavior of the pure polar LC system.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.8: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 0.15.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.9: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 1.0.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.10: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 2.0.
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 5.11: Radial correlation function g(r)NN referred to NN particles for
εS = 0.15, 1.0, 2.0 for reference temperatures in smectic (T ∗ = 1.0) and
nematic (T ∗ = 1.5) phases.

Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 5.12: Mesogen–nanoparticle g(r)MN (top) and g2z(r)
MN (bottom)

correlation functions at T ∗ = 1.5 and T ∗ = 1.0 for εS = 0.15, 1.0, 2.0.
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Figure 5.13: Longitudinal section of a portion of an instantaneous config-
uration at T ∗ = 1.5, c = 0.1% and εS = 2.0 showing a parallel anchoring.
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Temperature T ∗ = 1.5 - Nematic phase Temperature T ∗ = 1.0 - Smectic phase

(a) (d)

(b) (e)

(c) (f)

Figure 5.14: Nanoparticles aggregates dispersion histograms for T ∗ = 1.5
(left) and T ∗ = 1.0 (right) for different values of εS.
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5.2.2 Low solvent affinity

Figure 5.15 shows the pair potential profiles relative to heterogeneous

nanoparticle-mesogen (NM) for the low affinity case (i.e. coupling param-

eter eNM = 0.5). As expected, NM pairs have weaker interactions with

respect to the previous, high affinity case and, in turn, the homogeneous

NN interactions become dominant.

Looking at the temperature dependence of the order parameter 〈P2〉 (shown

in Figure 5.16 for the three values of εS), we notice a shift of the NI transi-

tion temperature towards lower values and a general lowering of the meso-

genic orientational order in comparison to the pure system even if reduced

with respect to the eMN = 2 case; in particular for εS = 2.0 (maximum NP–

NP interaction) the LC orientational order is only weakly altered by the

dopant NPs. From the radial correlation function and the density correla-

tion function along the director referred to MM particles for εS = 0.15, 1, 2

given in Figure 5.17, we can observe that the phase sequence Iso–Nem–

Sm is maintained and in the case of εS = 2.0 the survival of the SmB;

snaphots of instantaneous MC configurations are given in Figure 5.18,

5.19, 5.20.

The arrangement between nanoparticles can be gathered by the nanoparticle–

nanoparticle radial pair correlation functions g(r)NN in Figure 5.21, pre-

sented here for T ∗ = 1.5 (nematic phase) and T ∗ = 1.0 (smectic phase).

Interestingly, for the εS = 2.0 case (strong NN interaction), both curves ev-

idence a drastic rise in the magnitude of the first peak (which corresponds

to the lateral dimension of NPs), as well as a structure of peaks at large

distance. This indicates a situation in which NP strongly aggregate in clus-

ters, as apparent in Figure 5.24. Instead, for the εS = 0.15 case (weak

NN interaction) the first peak is sensitively smaller and also the profile at

long range is less structured, thus suggesting a situation in which NPs may

dimerize, but are prevented from forming large aggregates.

Finally the radial correlation function g(r)MN and the orientational cor-

relation function g2z(r)
MN referred to nanoparticle–mesogen pairs (Fig-
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ure 5.22) convey some information about the local organization of the

mesogens around a nanoparticle. Notably both functions are sensitive

to the homogenous NN interaction strenght (i.e. the εS value). In fact,

while for εS = 0.15 and εs = 1.0, behaviors similar to the high affinity case

are found, for εS = 2.0 we evidence a reduction of the peak relative to NM

pairs parallely oriented in side-side configuration; in addition, and more

interestingly, the orientational correlation is lost for r∗ > 3.

From Figure 5.23 we can observe a different aggregation behavior: low-

ering the affinity between nanoparticle and mesogen allows the formation

of clusters, whose dimensions depend on the strength of nanoparticle–

nanoparticle interactions. Analyzing a representative cluster (which ap-

pear in the most favourable case: eMN = 0.5 and εS = 2.0), shown in Fig-

ure 5.24, we could see that the NPs tend to maintain a random orientation

instead of orienting themselves along a preferred direction. The cluster,

characterized by radius of gyration Rg = 10.9, does not undergo consider-

able changes of shape and dimension as a function of temperature; more-

over it is oriented almost perpendicular with respect to the director of the

nematic phase with a tilt angle of 87◦, as we can see in Figure 5.24.
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Figure 5.15: Pair potential profiles relative to homogeneous NN (bottom)
and heterogeneous NM in the case of low affinity eMN = 0.5 (top) for three
different cases of εS (plotted for pairs in ss, ee, T configuration).
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Figure 5.16: LC orientational order parameter P2 for the NPT simulation at
P ∗ = 8, against the dimensionless temperature T ∗ of the three mixtures of
polar LC and rod–like NP. The local orientational order parameter relative
to rod–like nanoparticles is also reported.
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Figure 5.17: Radial correlation function and density correlation function
along the director for εS = 0.15, 1.0, 2.0 in smectic phase (T ∗ = 1.0). The
curves in black report the behavior of the pure polar LC system.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.18: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 0.15.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.19: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 1.0.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.20: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 2.0.
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 5.21: Radial correlation function g(r)NN referred to NN particles for
εS = 0.15, 1.0, 2.0 for reference temperatures in smectic (T ∗ = 1.0) and
nematic (T ∗ = 1.5) phase.

Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 5.22: Mesogen–nanoparticle g(r)MN (top) and g2z(r)
MN (bottom)

correlation functions at T ∗ = 1.5 and T ∗ = 1.0 for εS = 0.15, 1.0, 2.0.
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Temperature T ∗ = 1.5 - Nematic phase Temperature T ∗ = 1.0 - Smectic phase

(a) (d)

(b) (e)

(c) (f)

Figure 5.23: Nanoparticles aggregates dispersion histograms for T ∗ = 1.5
(left) and T ∗ = 1.0 (right) for different values of εS.
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T ∗ = 1.0

Figure 5.24: Cluster of nanoparticles (after removing periodic boundary
conditions) at temperature T ∗ = 1.0 for the system with stronger NN inter-
actions (εS = 2.0).
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5.2.3 Effect of nanoparticle embedded dipoles

In this section we focus on the effects on the liquid crystalline phase as-

sociated to the presence of longitudinal centered dipole moment in the

rod-like NPs with low affinity between nanoparticles and LC solvent, vary-

ing the interaction between nanoparticles (see scheme on Figure 5.25).

Figure 5.25: Sketch of the plan of work of this section.

We considered a sample mixture formed by constant number NM +NN =

5000 total particles, where NM = 4975 is the number of polar GB molecules

and NN = 25 is the number of rod-like particle corresponding to the solute

fraction 0.5%. We assumed a dipole strength µ∗ = 1.5 for the mesogen

and µ∗ = 20 for the nanoparticle, corresponding to about 75D. As before,

interactions were calculated with the Reaction Field method setting the

external permittivity to εRF = 1.5 and cutoff Rc = 10σ0.
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Low solvent affinity

By analysing the order parameter 〈P2〉 against the temperature T ∗ plot,

reported in Figure 5.26, we evidenced behaviors comparable to the ones

already revealed from apolar NP for small and medium homogeneous NN

interactions(εS = 0.15 and 1.0). Instead, and more interestingly, for the

strongest homogeneous NN interaction (εS = 2.0), the NI transition re-

mains unvaried with respect to the pure mesogenic system and overall

both the orientational and positional order are substantially not affected by

the introduction of NPs. This is confirmed by the examination of the ra-

dial distribution g(r)MM and density distribution g(z)MM at T ∗ = 1.0 (see

Figure 5.27) which, for εS = 2.0, exhibit stronger nearest neighbour peak

compared with the apolar system as well as a stronger layering. Snaphots

Figure 5.26: LC orientational order parameter P2 for the NPT simulation at
P ∗ = 8, against the dimensionless temperature T ∗ of the three mixtures of
polar LC and rod–like NP.

of istantaneous configurations in Figure 5.28, 5.29, 5.30 for different εS re-

veals the phase obtained, and give some hints about the arrangement of

nanoparticles.
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The radial correlation function g(r)MN and the orientational correlation

function g2z(r)
MN referred to nanoparticle–mesogen pairs (Figure 5.31)

convey some information about the local organization of the mesogens

around a nanoparticle. Notably both functions are sensitive to the ho-

mogenous NN interaction strenght (i.e. the εS value). In fact, for εS = 2.0,

we evidence a reduction of the peak relative to NM pairs parallely ori-

ented in side-side configuration. The radialcorrelationfunction g(r)NM and

the orientational correlation function g2z(r)
NM referred to nanoparticle–

mesogen pairs shows similar features of apolar NPs with clear indication

of a parallel-type anchoring of mesogens on NPs. As expected, an an-

tiparallel alignment of mesogens with respect to neighbor nanoparticles is

found, as pointed out by the correlation function g1z(r)NM .

Notably, for the maximum NN interaction, nanoparticles tend to form ag-

gregates of large dimension (as detailed by histograms in Figure 5.33), as

pointed out also by the g(r)NN radial pair correlation function which ex-

hibits an enhanced peak at r∗ = 3.0 (the lateral contact distance – see

Figure 5.32) and a significant structure at long–range.

Still, the aggregate shape does not vary with temperature, but differently

from the previous case, NPs tend to orient themselves along the mesophase

director (as strenghtened by the behaviour of the 〈P2〉NANOLOC ), due to their

embedded longitudinal dipole moments. The measured tilt angle between

the aggregate principal axis and the mesophase director is appproximately

40◦ (see Figure 5.34).

We calculated both the local first rank 〈P1〉NANOLOC and second rank 〈P2〉NANOLOC

order parameter referred to the nanoparticles, as reported in Figure 5.35.

Overall or local polarization is not found for any values of the temperature;

instead the values of 〈P2〉, computed on the nanoparticles composing the

aggregate, assume increasing values upon cooling down the temperature.

As a further information on the polar correlation we computed the aver-

age scalar product gNN1z between the longitudinal axis zi of a nanoparticle

molecule chosen as origin and that of any other found at a distance r∗,
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reported in Figure 5.32 at T ∗1.0 and T ∗ = 1.5, that shows an antiparallel

arrangement.
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Figure 5.27: Radial correlation function and density correlation function
along the director for εS = 0.15, 1.0, 2.0 in smectic phase (T ∗ = 1.0). The
curves in black report the behavior of the pure polar LC system.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.28: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 0.15.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.29: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 1.0.
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T ∗ = 1.8

T ∗ = 1.5

T ∗ = 1.0

Figure 5.30: Snapshot of instantaneous configurations showing the molec-
ular organization at temperatures T ∗ = 1.0, 1.5, 1.8 for the system at
εS = 2.0.
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 5.31: Mesogen–nanoparticle g(r)MN (top), g2z(r)MN (medium) and
g1z(r)

MN (bottom) correlation functions at T ∗ = 1.5 and T ∗ = 1.0 for εS =
0.15, 1.0, 2.0.
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Nematic phase T ∗ = 1.50 Smectic phase T ∗ = 1.00

Figure 5.32: Radial correlation functions g(r)NN and g1z(r)
NN referred to

NN particles for εS = 0.15, 1.0, 2.0 for reference temperatures in smectic
(T ∗ = 1.0) and nematic (T ∗ = 1.5) phase.
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Temperature T ∗ = 1.5 - Nematic phase Temperature T ∗ = 1.0 - Smectic phase

(a) (d)

(b) (e)

(c) (f)

Figure 5.33: Nanoparticles aggregates dispersion histograms for T ∗ = 1.5
(left) and T ∗ = 1.0 (right) for different values of εS.

144



T ∗ = 1.0

Figure 5.34: Nanoparticle organization in cluster at temperature T ∗ = 1.0
for the system with stronger NN interactions (εS = 2.0).

Figure 5.35: Local first 〈P1〉NANOLOC and second 〈P2〉NANOLOC rank order param-
eters plotted against temperature.
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Chapter 6

Conclusions

We have reported the results of Monte Carlo computer simulation studies

on systems of rod-like mesogens doped with nanoparticles. In particular,

we have focused on the effects of

• nanoparticle shape, considering spherical, rodlike and disc-like cases

• nanoparticle size, relative to that of the mesogen molecules

• strength of the specific interactions between nanoparticles and be-

tween nanoparticles and mesogens (solvent affinity)

• polarity of the embedded nanoparticles

on phase behavior, long-range positional and orientational order and over-

all organization of these mixture systems.

The results clearly show that even a simple model based on a multi-site

Gay–Berne potential and dipolar interaction can help to figure out the fea-

tures which favours the enhancement of the LC order as well as the for-

mation of nanoparticle aggregates.

In particular we found that doping a mesogenic system with nanoparticles

of any shape has the overall effect of reducing both the orientational and

positional order, with the most disordering effects observed for the embed-

ded spherical nanoparticles.
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The specific nanoparticle-solvent interaction has a significant influence in

determining the aggregation/dispersion state of the dopant NP, anyway all

the mixtures evidence a shift of the TNI temperature towards lower val-

ues, if compared with the pure system. The only exception is given by the

mesogenic system doped with polar rod-shaped NP with very low solubil-

ity features, which essentially shows invariance of the ordering properties

and of the relevant transition temperatures. This behavior is related to the

formation of nanoparticles aggregates, each aggregate containing a large

number (> 20) of nanoparticles, overall oriented along the mesophase

director. The local arrangement of mesogens around the NP evidences

a planar-type anchoring with orientational defects.We can thus claim the

overall on stability to be a delicate balance of often contrasting contribu-

tions.

These results provide some rationalization elements that we hope will be

of help in understanding the effect of NP doping of liquid crystals and in

developing a general strategy to control and direct the assembly of NPs in

LC.
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