
Alma Mater Studiorum - University of Bologna

ARCES - Advanced Research Center on Electronic Systems

for Information and Communication Technologies E.De Castro

PhD Course in Information Technology

XXVI CYCLE - Scientific-Disciplinary sector ING-INF /01

Heterogeneous Multi-core Architectures for
High Performance Computing

Candidate: Advisors:
Matteo Chiesi Prof. Roberto Guerrieri

Prof. Eleonora Franchi Scarselli

PhD Course Coordinator:

Prof. Claudio Fiegna

Final examination year: 2014

ii

Abstract

This thesis deals with low-cost heterogeneous architectures in standard

workstation frameworks.

Heterogeneous computer architectures represent an appealing alterna-

tive to traditional supercomputers because they are based on commodity

hardware components fabricated in large quantities. Hence their price-

performance ratio is unparalleled in the world of high performance com-

puting (HPC).

In particular in this thesis, different aspects related to the performance

and power consumption of heterogeneous architectures have been explored.

The thesis initially focuses on an efficient implementation of a parallel ap-

plication, where the execution time is dominated by an high number of

floating point instructions. Then the thesis touches the central problem

of efficient management of power peaks in heterogeneous computing sys-

tems. Finally it discusses a memory-bounded problem, where the execu-

tion time is dominated by the memory latency.

Specifically, the following main contributions have been carried out:

• A novel framework for the design and analysis of solar field for Cen-

tral Receiver Systems (CRS) has been developed. The implementa-

tion based on desktop workstation equipped with multiple Graphics

Processing Units (GPUs) is motivated by the need to have an accu-

rate and fast simulation environment for studying mirror imperfec-

tion and non-planar geometries [1].

• Secondly, a power-aware scheduling algorithm on heterogeneous CPU-

GPU architectures, based on an efficient distribution of the comput-

ing workload to the resources, has been realized. The scheduler man-

ages the resources of several computing nodes with a view to reduc-

iii

iv Abstract

ing the peak power. The two main contributions of this work follow:

– the approach reduces the supply cost due to high peak power

whilst having negligible impact on the parallelism of computa-

tional nodes.

– from another point of view the developed model allows designer

to increase the number of cores without increasing the capacity

of the power supply unit [2].

• Finally, an implementation for efficient graph exploration on recon-

figurable architectures is presented. The purpose is to accelerate graph

exploration, reducing the number of random memory accesses.

Contents

Abstract iii

Introduction 1

1 Heterogeneous Architectures 4

1.1 Classification of Parallel Architectures 6

1.2 Heterogeneous Parallel Computing 9

1.3 Graphics Processing Unit (GPU) 13

1.3.1 NVIDIA Fermi Architectural overview 15

1.3.2 NVIDIA GPU Computational Structures 16

1.3.3 NVIDIA GPU Memory Structures 18

1.3.4 Power consumption 20

1.3.5 Programming the NVIDIA GPU 21

1.3.6 Multiple GPUs . 21

1.3.7 GPU applications . 23

1.4 Field Programmable Gate Array 25

1.4.1 Programming Technologies 26

1.4.2 Configurable Logic Block 26

1.4.3 Routing Architecture 29

1.4.4 Software Flow . 29

1.5 FPGAs for High Performance Computing: The Maxeler So-

lution . 31

1.5.1 Programming the FPGA using MaxCompiler 32

2 Optical Model for Design and Analysis of Solar Field on Multi-

GPU platform 34

2.1 Motivation and background 34

v

vi CONTENTS

2.2 Mathematical model . 36

2.3 Computing System . 40

2.4 Implementation . 41

2.4.1 Programming Model 42

2.4.2 GPU kernels . 44

2.4.3 Application Flow . 46

2.5 Validation . 46

2.6 Computational benchmarking 46

2.7 Application cases . 51

2.7.1 Performance field analysis and optimization 51

2.7.2 Analysis of mirror non-idealities 53

2.7.3 Stretched membrane mirrors 53

2.8 Conclusions . 56

3 Power-Aware Job Scheduling 57

3.1 Motivation and background 57

3.2 Power Measuring System . 61

3.3 Power-aware scheduler . 63

3.3.1 The scheduling algorithm 64

3.4 Performance and Evaluation 67

3.4.1 Job Characterization 67

3.4.2 Experimental Setup . 71

3.4.3 Analysis of Results . 72

3.5 Discussion . 77

3.5.1 Application case . 78

3.5.2 Limitations of the approach 78

3.6 Conclusions . 79

4 Heterogeneous System using a Reconfigurable approach for effi-

cient graph exploration 80

4.1 Motivation and background 80

4.2 Breadth-first search . 81

4.3 Irregular Graph and Parallel BFS Algorithm 84

4.4 Parallel BFS implementation 88

4.5 Discussion . 91

4.6 Conclusions . 95

CONTENTS vii

5 General Discussion 96

5.1 Summary of the contributions and results 96

5.2 Performance and limitations of heterogeneous architectures 97

5.3 Applications and Algorithms 98

Conclusions 99

A Acronyms 100

Bibliography 101

List of Figures

1.1 Transistor counts for integrated circuits plotted against their

dates of introduction. (source: Wikipedia). 5

1.2 Pollack’s Rule [3]. 5

1.3 Amdahl’s Law. (source: Wikipedia). 6

1.4 Flynn’s taxonomy. 7

1.5 Multiple tasks executed on MIMD architecture. 8

1.6 Multiple tasks executed on SIMD architecture. 8

1.7 Memory Architectures. 9

1.8 Block Diagram of a typical heterogeneous architecture 10

1.9 Heterogeneous architecture coupling CPU and GPU; in yel-

low are GPU computational cores 11

1.10 Control Flow Architectures (GPU) 12

1.11 Heterogeneous architecture coupling CPU and FPGA 12

1.12 Data Flow Architectures (FPGA) 13

1.13 Floating-point operations per second for the CPU and GPU.

(source: NVIDIA). 15

1.14 Block diagram of the NVIDIA GeForce 500 series. 15

1.15 The mapping of a Grid [4]. 17

1.16 Block Diagram of Fermi’s Dual Warp Thread Scheduler [4]. . 18

1.17 GPU Memory structures [4]. 19

1.18 NVIDIA GTX590 Graphics card. 20

1.19 Heterogeneous programming of a CPU/GPU system. 21

1.20 GPUs in Multiple Slots [5]. 22

1.21 Parallel processing with OpenMP. 22

1.22 Software hierarchy and interaction with hardware. 23

viii

LIST OF FIGURES ix

1.23 Arithmetic Intensity, specified as the number of floating-point

operations to run the program divided by the number of

Bytes accessed in main memory [4]. 24

1.24 Roofline model of several kernels on an NVIDIA C2050 GPU

[6]. 24

1.25 Overview of FPGA architecture [7] 26

1.26 Basic Logic Element (source: Tree-Based Heterogeneous FPGA

Architectures.) . 27

1.27 A configurable logic block (CLB) (source: Tree-Based Het-

erogeneous FPGA Architectures.) 28

1.28 FPGA-based computing architecture (source: Maxeler.) . . . 32

1.29 MaxCompiler chain (source: Maxeler.) 33

1.30 Maxeler dataflow system architecture (source: Maxeler.) . . 33

2.1 Block diagram of a Solar tower power plant (source: eSolar). 35

2.2 Reflection of the sun’s rays by a heliostat to a single aim point. 36

2.3 Geometrical model for optical simulation. 38

2.4 Simulation model geometry for a single receiver point analysis. 39

2.5 Geometric model for simulation with non-idealities in mir-

ror surface. 40

2.6 Flow chart of the algorithm. 41

2.7 Shadowing evaluation. 43

2.8 Comparison of GPU parallel model in a case of planar and

non-planar geometry. 49

2.9 Comparison of throughput of our application in TFLOPS. . . 50

2.10 Power on the receiver surface at noon of 21st March. 52

2.11 Solar irradiance collected by the receiver on March 21st . . . 52

2.12 Annual field performance. 53

2.13 Power on the receiver surface for ideal (left) mirrors and

non-ideal (right) mirrors. 54

2.14 Comparison of energy collected by the field on a typical day,

using ideal and real mirrors. 54

2.15 Simulated bending of a mirror realized with aluminum stretched

membrane. 55

2.16 Receiver spot using flat and stretched membrane mirrors. . . 56

x LIST OF FIGURES

3.1 Measuring setup for the generic computing node. 62

3.2 Example of scheduling: 4 nodes, each one composed of 4 cores 67

3.3 Power profile measured during a matrix multiplication on

GPU . 68

3.4 Comparison between theoretical and experimental evalua-

tion of total power absorption during 4 concurrent matrix

multiplications. 70

3.5 Average performance obtained using the power-aware schedul-

ing algorithm. In a) one sees the average peak reduction ob-

tained by the algorithm, while b) shows the increase in time.

Fig. c) shows the increase in energy consumption and Fig.

d) the power reduction with respect to the worst case scenario. 74

3.6 Power-Performance comparison. 75

3.7 a) Comparison between GPU and CPU execution of matrix

multiplication, b) Four different GPU kernels, c) Triangular

matrix inversion with different sizes of matrix, d) Analysis

of power requirements of different jobs. 76

4.1 The operation of BFS on an undirected graph [8]. 82

4.2 Compressed sparse row format 84

4.3 Data access pattern . 88

4.4 Additional Index Vector. 89

4.5 Relationship between Index and Vertex vectors. 90

4.6 Bitmap update: first step in parallel. 91

4.7 Bitmap update: second step in parallel. 91

List of Tables

2.1 Nomenclature table of the algorithm 42

2.2 Comparison between the GPU model and PS10 published

data. 47

2.3 Setup parameters of the simulation. 47

2.4 Error in the flux collected on the receiver aperture as a func-

tion of m. 48

2.5 Comparison between CPU and GPU execution times. 49

2.6 Parameter space used in the optimization. 51

2.7 Material properties. 55

3.1 Nomenclature table of the algorithm 64

3.2 Power consumption of GPU jobs 69

3.3 Power-Performance Comparison 75

4.1 Number of vertices in each BFS level: result from typical ex-

ecution in an RMAT graph [9] 86

4.2 Parameters table . 94

xi

Introduction

Heterogeneous multi-core architectures represent the future of high per-

formance computing (HPC). Traditionally, to increase the performance of

Supercomputers, designers just scale up the number of CPUs (Central Pro-

cessing Unit). This because CPUs are general purpose and easy to program.

However a large portion of the CPU area is exploited to realize a powerful

control unit. This control capability is usually wasted on many compute-

intensive problems. Since a lot of scientific, engineering and financial ap-

plications require that a single instruction is executed on multiple data, het-

erogeneous architectures are potentially more efficient than homogeneous

architectures that require to fetch and decode one instruction for each data.

This has led to equip large scale computing systems with heterogeneous

accelerators based on commodity hardware components to speed-up data-

intensive workloads [10]. For example, the new supercomputer Titan, de-

veloped by ORNL [11], uses an heterogeneous architecture composed of

conventional 16-core CPUs and GPU accelerators to overcome the com-

putational power achieved by the previous generation of supercomputers,

leading to the development of powerful heterogeneous High Performance

Computing systems.

Nevertheless, different applications have different needs towards the com-

puting systems. Designing an architecture to address a particular compu-

tational problem leads to excellent result, but it would be difficult to design

an architecture to address different types of problems and so far no “one

size fits all” architecture has been designed [12]. For instance, some archi-

tectures offer several simple computational cores vs. fewer complex pro-

cessors, some depend on multi-threading and some even replace caches

with explicitly addressed local stores [4].

This thesis explores the capabilities and the limitations of heterogeneous ar-

1

2 Introduction

chitectures based on GPUs and FPGAs (Field Programmable Gate Array),

to address some real-world “computationally hungry”problems. As target

applications this work focuses on data-intensive computational problems.

Initially the thesis focuses on the acceleration of complex 3 dimensional

optical problems. These problems are based on intensive floating-point op-

erations which can be efficiently implemented on a multi-GPU platform,

since GPUs have evolved in highly parallel floating-point processors. In

particular the purpose of this work is to speed up the computation in the

design and analysis of concentrating tower power plants which represent

one of the best ways to harness solar energy on a large scale. The design

and optimization of these systems is quite complex and time-consuming,

because it requires several design parameters to be considered at different

time steps. The contribution of this work is a new simulation environment

based on heterogeneous multi-GPU systems. The framework supports tun-

ing of the trade-off between accuracy and computational time to obtain an

analysis consistent with the precision required. The parallelism level in

multi PCI-express workstations is usually limited by the power consump-

tion. These systems could theoretically host from 2 up to 4 PCI-express

devices (e.g. GPUs) for each CPU. However, to equip these systems with

a number of GPUs equal to the number of PCI-express slots, could lead

to system failure caused by power capacity overload. In particular, the

multi-GPU workstation used could theoretically host 4 GPU cards, since

4 PCI-express slots are available. However the system is equipped with 3

GPU cards because with the fourth GPU the specification on the maximum

power consumption provided by the power supply unit will be exceeded.

Therefore the analysis has been moved to techniques to increase the paral-

lelism on multi-GPU platforms limiting the maximum power consumption

of the system. In this scenario, the attention has been focused on a job-level

scheduling algorithm that aims to reduce the worst case power condition

below a predetermined budget. The main idea is a redistribution of the

workload between nodes of the system in order to avoid concurrent execu-

tion of the most power-consuming jobs on the same node. The approach

used in this work aims to limit the total power consumption of the system

under a prefixed budget and allows designers to increase the number of

cores without increasing the capacity of the power supply unit.

Introduction 3

Finally the thesis discusses a reconfigurable approach for efficient graph

exploration. Differently from the previously studied class of problems,

characterized by an high ratio between arithmetic operations and mem-

ory accesses, this kind of problems (i.e. breath-first search (BFS)) is largely

dominated by memory latency, therefore not suitable for GPU architecture.

The methodology adopted in this work is based on a partitioning of the

algorithm in different levels. This in order to exploit the fast on-chip mem-

ory available in FPGAs and avoid multiple and inefficient random memory

accesses.

The rest of this work is organized as follows. Chapter 1 discusses the

two heterogeneous architectures based on GPU and FPGA used during this

research activity. The goal of this chapter is to explain the concept of hetero-

geneous systems, comprising systems set-up, architectures and program-

ming models. Chapter 2 provides a brief outline of solar fields explored

in this work, pointing out the parallelism of the computational problem,

where the previously described architectures based on GPU promise sig-

nificant improvements. The chapter also describes in details how the sim-

ulation environment has been implemented on a multi-GPU platform and

the results obtained. Chapter 3 focuses on the GPU power consumption

and the techniques used in literature to limit the total power consumption

of the system under a prefixed budget. Then the approach proposed to re-

duce the peak power and to increase the parallelism without increasing the

capacity of the power supply unit is illustrated. Chapter 4 discusses a new

techniques for efficient graph exploration. This section describes in details

how the algorithm could be implemented on reconfigurable architectures

and the limitations of this approach. Section 5 contains a general discussion

and some conclusions are drawn in Section 6.

Chapter 1

Heterogeneous Architectures

Microprocessors are the basic blocks of the information technology. Their

performance has made incredible progress over the last 20 years, driven by

transistor speed and energy scaling, as well as by the progress in system

integration density. Transistor density increases by about 35% per year. In-

creases in the die size are less predictable and slower, ranging from 10% to

20% per year. The combination of these two effects leads to a growth rate

in transistor count on a chip of about 40% to 55% per year. This trend is

known as Moore’s law [13] and it is shown in figure 1.1. While transistor

density increases with the Moore’s law, device speed scales more slowly

and is governed by Pollack’s Rule, which states that performance increases

as the square root of increase in complexity [14]. Figure 1.2 shows inte-

ger performance increase of new micro-architectures against area increase

from the previous generation micro-architecture, in the same process tech-

nology. In particular the figure highlights that if designer doubles the logic

in a processor core, then it delivers only 40% more performance. In addi-

tion, a further increase of frequency could lead to power dissipation issues.

Better results can be obtained with a multi-core micro-architecture. Two

smaller processor cores can provide 70-80% more performance, as com-

pared to 40% from a large monolithic core [3].

Therefore chip manufacturers start to build multi-core microprocessors.

Each core delivers lower performance than a large complex core; however

the total compute throughput of the system is much higher. Nowadays

general purpose processors integrate 2 to 16 cores [15], and it is expected

that in the future a single multi-core processor will host up to hundreds or

4

5

Figure 1.1: Transistor counts for integrated circuits plotted against their
dates of introduction. (source: Wikipedia).

Figure 1.2: Pollack’s Rule [3].

thousands of cores [16].

6 Heterogeneous Architectures

1.1 Classification of Parallel Architectures

Many scientific applications present a lot of concurrency, since the real

world itself is massively parallel. Although multi-core systems deliver

higher compute throughput than monolithic core systems, it may be diffi-

cult to harvest the performance. The performance gain that can be obtained

by improving some portions of an application is limited by the Amdahl’s

law [17]. It states that the parallel speed up is inherently limited by the

serial code in a program according to the equation 1.1 :

SpeedUpoverall =
1

(1− P) + P
N

(1.1)

where P represents the fraction of parallel code and N the number of com-

putational cores. The speed-up scales with the number of cores as shown in

figure 1.3. If the serial part of an application is large (i.e. 50%) the parallel

speed-up saturates with a small number of cores (i.e. 16 cores).

Figure 1.3: Amdahl’s Law. (source: Wikipedia).

Few applications offer performance which scales with the number of pro-

cessors. This usually happens when there are no data dependency between

different streams. However most applications require communication be-

tween the computational cores. In this scenario data traffic and synchro-

nization between nodes can be expensive. In general different computer

1.1 Classification of Parallel Architectures 7

architectures can provide different performance according to the class of

problems that programmers need to study. Homogeneous computer archi-

tectures are usually classified according to their processing units (PU) or

their memory architectures. Concerning their processing units, the most

common classification is the Flynn’s Taxonomy [18]. This classification is

based upon the number of concurrent instructions and data streams avail-

able in the architecture:

• Single Instruction Single Data (SISD)

• Multiple Instruction Single Data (MISD)

• Single Instruction Multiple Data (SIMD)

• Multiple Instruction Multiple Data (MIMD)

Figure 1.4 shows the general principles of these architectures.

Figure 1.4: Flynn’s taxonomy.

SISD represents a sequential computer which exploits no parallelism in

either the instruction or data stream. A single control unit fetches sin-

gle instruction stream from memory. MISD is a parallel computing ar-

chitecture where many functional units perform different operations on

8 Heterogeneous Architectures

the same data. MISD is an uncommon architecture which is generally

used for fault tolerance, and not many instances of this architecture ex-

ist. The classes of interest in computing are SIMD and MIMD. Multi-core

general purpose processors for example are MIMD architectures. Multiple

autonomous cores simultaneously execute different instructions on differ-

ent data. They are suitable to perform parallel tasks as shown in figure 1.5

(each core independently and concurrently processes a serial task).

Figure 1.5: Multiple tasks executed on MIMD architecture.

Task-parallel processing is very useful to control different independent parts

of a system. However a wide set of applications has significant data-level

parallelism (e.g. matrix-oriented applications, media-oriented images, graph-

ics processing and linear algebra). In this case an application can be decom-

posed into a large number of concurrent instruction streams which perform

the basic operation on different data sets as shown in figure 1.6.

Figure 1.6: Multiple tasks executed on SIMD architecture.

Moreover, since a single instruction can lunch many data operations, SIMD

is potentially more energy efficient than MIMD which needs to fetch and

execute one instruction per data operation. In the past, this has led to

1.2 Heterogeneous Parallel Computing 9

develop vector architectures which essentially are pipelined execution of

many data operations [19] and later to SIMD instruction set extension for

CPUs [20].

Computer architectures can also be classified according to their memory

organization. Memory architectures can be distributed, shared and hybrid

as shown in figure 1.7.

Figure 1.7: Memory Architectures.

Distributed memory provides a portion of private local memory to each

core. Hence this kind of architecture ensures fast local memory accesses

and is suitable for applications which present independent streams of data.

However, communication between processors occurs through an intercon-

nect network, which can become quickly the bottleneck for most applica-

tions. Moreover, when multiple cores are working on the same set of data,

each of them has to do its own copy, increasing memory consumption and

traffic. On the contrary in the shared memory model, the communication

between computational cores is the fastest and multiple cores can share the

same set of data. However this model does not scale well with the number

of cores since data traffic and competition for resources can scale up geo-

metrically with this number. The result is that most architectures adopt a

hybrid mix of shared and distributed memory [21].

1.2 Heterogeneous Parallel Computing

Since different applications have different needs towards the computing

systems, no universal multi-core accelerators have been designed so far.

Usually CPUs are considered the closest architectures to universal multi-

10 Heterogeneous Architectures

core solutions because they present an high versatility. However in a CPU,

a large portion of the overall area is used for control unit and cache, leaving

a restricted area to computational unit.

In the past supercomputers were built just scaling up the number of CPUs

and clustering them together using an high bandwidth interconnect. Re-

cently power consumption has become the most critical issue. Supercom-

puters can reach up to tens of MW and in 2012 the supply cost over their

useful life exceeded the initial capital investment [22]. For that reason het-

erogeneous architectures with combined traditional general purpose multi-

core processors and accelerators with a view to reducing the power con-

sumption have become an appealing alternative.

Heterogeneous Architectures are designed to maximize throughput for spe-

cific application fields. In heterogeneous architecture a large part of the

control logic is cut down. This means that they need an host processor

which provides input data and then collects the results from the accelera-

tors output.

The most common approach is therefore to combine few general purpose

processors with a uniform and large array of accelerators [23]. The block

diagram of a typical heterogeneous system is depicted in figure 1.8.

Figure 1.8: Block Diagram of a typical heterogeneous architecture

The most common general purpose accelerators are graphics processing

1.2 Heterogeneous Parallel Computing 11

unit (GPU) and field programmable gate array (FPGA).

GPUs are massively parallel coprocessors for floating-point operations. They

are usually integrated on a board with their own memory. The board com-

municates with the host system through PCI-express bus. Currently there

are two manufacturers of GPUs: AMD [24] and NVIDIA [25]. In this work

only NVIDIA GPUs have been used. The architecture of a GPU cluster is

reported in figure 1.9.

Figure 1.9: Heterogeneous architecture coupling CPU and GPU; in yellow
are GPU computational cores

In a GPU application, a source code is transformed into a list of instruc-

tions for the computational cores, which is then loaded into the memory as

shown in figure 1.10. Processors contain caches, forwarding and prediction

logic to improve the efficiency of this paradigm. Performance of these ar-

chitectures (i.e. called control-flow architectures) depends on the latency of

the memory access and the clock speed.

Also FPGAs have a significant mark share in high performance computing.

FPGAs can be reconfigured many times to address different problems. This

characteristic makes them the most versatile accelerators. However they

are hard to program, which is usually done using hardware description

languages (HDLs). Rarely FPGAs are used as massively parallel floating-

point units, but excellent results using these devices have been reported for

pattern matching [26], encryption [27], and signal processing applications

12 Heterogeneous Architectures

Figure 1.10: Control Flow Architectures (GPU)

[28]. A system using an FPGA as accelerator is depicted in figure 1.11.

Figure 1.11: Heterogeneous architecture coupling CPU and FPGA

In an FPGA, data streams from memory into the chip where data is for-

warded directly from an arithmetic unit to another until the chain is com-

plete as shown in figure 1.12 according to a data-flow paradigm. Once a

program has been executed the FPGA can be reconfigured for a new ap-

plication. Performance of this architecture depends on how the arithmetic

1.3 Graphics Processing Unit (GPU) 13

units are connected together.

Figure 1.12: Data Flow Architectures (FPGA)

The next sections explain more in details how GPUs and FPGAs work in

heterogeneous systems. Performance of GPUs and FPGAs are related to

the algorithm characteristics. An FPGA is in general superior over a GPU

for algorithms requiring large number of regular memory accesses, while a

GPU is superior for algorithms with variable data reuse [29].

1.3 Graphics Processing Unit (GPU)

Everybody with few hundreds of euros can buy a GPU which transforms

a standard machine desktop in a powerful heterogeneous computing sys-

tem. GPUs were initially designed as hardware accelerators for 3D appli-

cations. These applications involve intensive low precision floating-point

operations with a very modest need for control flow and data caching. The

market of GPUs has exponentially grown up, when their potential have

been combined with a programming language that made GPUs easier to

program. AMD and NVIDIA developed their application programming

interfaces (API): “Close to Metal” now called “Accelerated Parallel Process-

ing”(APP) [30] and Compute Unified Device Architecture (CUDA) [31].

They also provided new hardware features to make GPUs more appealing

for general purpose computing. To date, these include:

• IEEE-compliant Fast Double-Precision Floating-Point Arithmetic – The lat-

14 Heterogeneous Architectures

est GPUs match the relative double-precision speed of conventional

processors at roughly half the speed of single precision.

• Caches for GPU memory – While the GPU philosophy is to have enough

thread to hide the DRAM latency, there are variables that are needed

across threads, such as local variables. New GPU architectures in-

clude both an L1 data cache and L1 instruction cache for each multi-

processor. In addition an L2 cache shared by all multi-processors is

available.

• 64-Bit Addressing and Unified Address Space for All GPU Memories – This

innovation makes it much easier to provide the pointers needed for

C and C++.

• Error correction codes – to detect and correct errors in memory and

registers.

• Faster Context Switching – The new architectures have hardware sup-

port to switch contexts much more quickly.

• Faster Atomic Instruction – New architectures improve performance

of Atomic instructions. Hardware interrupts and other processors

cannot read or store the same location concurrently.

Driven by this scenario, GPUs have evolved in highly parallel, multi-thread,

many-core processors with an high computational power as shown in fig-

ure 1.13.

Throughput is measured in GFLOP/s that means billion of Floating-point

operations per second. Values reported in the plot indicates the maximum

theoretical throughput of the device, assuming that all computational units

are continuously busy with multiply-add operations. Thanks to these fea-

tures, GPUs are nowadays computational accelerators not only used for

graphics, with capabilities far exceeding their original purpose. As an ex-

ample the NVIDIA Tesla series of graphics cards does not even have a

graphics output [32].

The following section covers different aspect related to GPUs, with particu-

lar emphasis to the devices used for the experimental researches described

in chapters 2 and 3

1.3 Graphics Processing Unit (GPU) 15

Figure 1.13: Floating-point operations per second for the CPU and GPU.
(source: NVIDIA).

1.3.1 NVIDIA Fermi Architectural overview

GPUs work well only to address data-level parallel problems, since they

are SIMD architectures. This means that instructions must be executed on

many data elements in parallel. The reason behind this is that more tran-

sistors are devoted to data processing rather than data caching and flow

control. Figure 1.14 shows the architecture of NVIDIA GeForce 500 series

(codename: Fermi) used in the designs described in chapter 2 and 3.

Figure 1.14: Block diagram of the NVIDIA GeForce 500 series.

It is composed of 512 cores, organized in 16 Streaming Multi-Processors

16 Heterogeneous Architectures

(SM) composed of 32 cores (SP), able to perform a total of 512 single preci-

sion or 256 double precision instructions per GPU clock. In addition each

SM has four special function units (SFU) which perform transcendental in-

structions such as sine, cosine, square root, etc. To increase hardware per-

formance with respect to the previous generation of GPUs, each SM has

two thread schedulers and two instruction dispatch units.

This GPU has 3 different levels of memory, with different access times. For

each SM there is an L1 cache of 64 KB that allows programmer fast data ac-

cess. This memory can be divided into 2 sub-blocks, one of 16 KB and one

of 48 KB, and is used as the shared memory of SM or local cache L1. The

second level memory is a 768 KB L2 cache memory. Both L1 and L2 caches

are used to cache accesses to local or global memory, including temporary

register spills. Finally, the last level is called the device (or global) mem-

ory and is a 1536 MB off-chip memory, connected via a high-bandwidth

interface. This memory has higher latency than the other two. The GPU

cannot reach memory levels further down this memory hierarchy. Hence

data must be uploaded to and downloaded from the GPU device memory

via the PCI-express port. All control is exerted by the CPU side since the

GPU cannot initialize any kernel launch or data transfer on its own. Care in

using the on-chip memory is very important because it allows one to limit

access to the off-chip device memory, since it is usually the bottleneck of

GPU computation performance (see also section 1.3.3).

1.3.2 NVIDIA GPU Computational Structures

The CUDA programming model envisions hierarchical space decomposi-

tion to describe natural application parallelism. The basic element of the

CUDA computation is the thread. It represents the smallest sequence of in-

structions that can be managed independently by the scheduler. A CUDA

code (usually called kernel) is organized as a Grid of Thread Blocks, each one

executing a certain number of parallel data threads.

As an example, suppose a programmer has to multiply two vectors, each

16384 elements long. The GPU kernel that works on all 16384 elements is

called grid. The grid is organized in more manageable size, the thread blocks,

each with up to 512 elements. With 16384 elements in the vectors, this ex-

ample thus has 32 thread blocks since 16384 ÷ 512 = 32. An overview of

1.3 Graphics Processing Unit (GPU) 17

the mapping is reported in figure 1.15.

Figure 1.15: The mapping of a Grid [4].

These abstractions help programmer to organize the code. Thus a kernel

performs multiple thread blocks, so that the total number of threads (i.e.

16384) is equal to the number of threads per block (i.e. 512) times the num-

ber of blocks (i.e. 32). Each SM processes the threads inside these blocks

as an isolated problem, no synchronized communication between these

blocks being provided. In this example, it would send 32 thread blocks

to SMs to compute all 16384 elements.

GPUs have 2 levels of hardware schedulers; the thread block scheduler as-

signs thread blocks to SMs and ensures that thread blocks are assigned to

the SMs whose local memories have the corresponding data. The second

scheduler is within each SM which schedules when threads of instructions

should run. In order to optimize the computation, the CUDA environment

introduces warp meaning a group of 32 parallel threads which are simulta-

neously assigned to a SM. By contrast, thread blocks are assigned to differ-

ent SMs. Hence, a thread block is a stream of vector instructions, and scalar

18 Heterogeneous Architectures

threads are the vector elements. In order to massively exploit GPU capa-

bilities, the number of threads within a thread block should be composed

of an integer number of warps. Each warp consists of 32 thread. In the

Fermi architecture (see also figure 1.14) the number of cores is 32 so each

warp takes one clock cycle to complete. In the previous example, thread

blocks would contain 512 ÷ 32 = 16 warps (see also figure 1.15). Since by

definition warps are independent, the thread scheduler can pick whatever

warp is ready. Figure 1.16 shows the Scheduler picking warps in a differ-

ent order over the time. The assumption is that GPU applications have so

many warps that multi-threading can both hide the latency and increase

utilization of SMs.

Figure 1.16: Block Diagram of Fermi’s Dual Warp Thread Scheduler [4].

1.3.3 NVIDIA GPU Memory Structures

Figure 1.17 shows the GPU memory organization.

Understanding the memory architecture is essential because all GPU appli-

cations are inherently bandwidth limited. Since most of the area is devoted

to arithmetic units, the amount of on-chip memory is limited. As shown in

1.3 Graphics Processing Unit (GPU) 19

…
Grid 0

…
Grid 1

Thread block

----- Inter-Grid Synchronization -----

Per-Block
 Shared Memory

Global Memory

Sequence

CUDA Thread

Per-CUDA Thread Private Memory Registers

Figure 1.17: GPU Memory structures [4].

figure 1.17, three layers of memory are available:

• private memory;

• shared memory;

• global memory.

Each thread has some registers and a private memory. Registers can be ac-

cessed in two clock cycles. Private memory consists in a private section of

off-chip DRAM and it is used to stack frame, spilling registers, and for pri-

vate memory variables that do not fit in the registers. Recent GPUs cache

this private memory in the L1 and L2 caches to aid register spilling and to

speed up function calls. Private memory is freed as soon as the thread fin-

ishes.

Threads inside a block can access the same shared on-chip memory that

each SM is equipped with. Resources allocated in the shared memory are

freed once the block is completely finished. The shared memory can be ac-

cessed in two clock cycles if no access conflict occur. To increase bandwidth

shared memory is divided into equally sized banks. Hence full parallel ac-

cess is possible if threads from a warp access data without bank conflicts.

20 Heterogeneous Architectures

The condition of bank conflict vary depending on the GPU series.

Since the local memory is limited and the accesses to the device memory are

slower, it is necessary to organize the code in order to find the best trade-off

between the kernel length and the number of accesses to the global mem-

ory. Only data in global memory remain consistent for the lifetime of the

CUDA context. Therefore, communications between blocks of the same

kernel or between different kernels are obtained allocating space for results

in the global memory using a shared memory computation model. Global

memory has a latency between 400-600 cycles, which can usually be hid-

den by warp scheduling. The accessing pattern to global memory should

be structured in a particular way to allow coalescing of the access, which

means that data requested by a warp are transferred in a single memory

transaction. Failing in this could lead to a performance drops up to 90%

[33]. As for the bank conflict, the condition for coalescing vary depending

on the GPU generation.

1.3.4 Power consumption

In heterogeneous CPU/GPU computing systems, GPUs are the most power

consuming devices. Nowadays GPUs cannot be supplied via the PCI-express

interface and they usually require additional power supply lines. In par-

ticular each card used in the application described in chapter 3 requires a

power supply of 375W [2]. Therefore when multiple cards are packed on

the same platform the power requirement rises to order of KW.

Figure 1.18: NVIDIA GTX590 Graphics card.

1.3 Graphics Processing Unit (GPU) 21

1.3.5 Programming the NVIDIA GPU

The heterogeneous programming model supported by GPU implies a sys-

tem composed of a host (CPU) and one or more GPUs each with their own

separate memory. Kernels operate out of GPU memory, so the runtime

provides functions to allocate, deallocate and copy GPU memory, as well

as transfer data between host memory and GPU memory [34]. A typical

application flow is shown in figure 1.19.

Figure 1.19: Heterogeneous programming of a CPU/GPU system.

1.3.6 Multiple GPUs

Multiple GPUs can work in parallel if the motherboard allows users to ac-

commodate multiple graphics cards, as shown in figure 1.20.

Starting from the Fermi-class each GPU can map memory belonging to

the other GPU into its global address space. To fully exploit the perfor-

mance capabilities of a Multi-GPU system, CUDA has been used in concert

22 Heterogeneous Architectures

Figure 1.20: GPUs in Multiple Slots [5].

with OpenMp [35]. OpenMP is a multi-threading library based on shared

memory principles. OpenMP runtime support, allows programmer to split

the code into multiple threads via preprocessors directives. At the end of

the region threads are joined again with the master thread. An example is

shown in figure 1.21.

Figure 1.21: Parallel processing with OpenMP.

CUDA provides the application programming interface to the GPU, while

OpenMP manages CPU multi-threading. Each GPU has a dedicated CPU

core for handling and controlling. Other solutions are available, but OpenMP

is portable, lightweight and it fits perfectly the needs of the designs pre-

sented in chapter 2 and 3. The software hierarchy is depicted in figure 1.22.

1.3 Graphics Processing Unit (GPU) 23

Figure 1.22: Software hierarchy and interaction with hardware.

A typical application starts a single master thread. Then a fork is created

to assign one CPU thread per GPU. Within each thread a CUDA context

is created; the context sets up the synchronization loop and initializes the

runtime library. Then all CUDA API calls will refer to the selected GPU.

Host Random memory access (RAM) is shared among CPU threads and

with them also the CUDA contexts which can be used as buffer to exchange

data between GPUs.

1.3.7 GPU applications

The introduction of CUDA has changed the world of high performance

computing. New applications began to report speedups in the order of

ten to hundred times over CPUs. However, not all applications can be ef-

ficiently accelerated on GPU. Basically, any application involving an high

number of concurrent floating-point operations can greatly benefit from

GPU acceleration.

One intuitive way to compare potential performance of a variation of ar-

chitectures is the Roofline model [36]. It links together floating-point per-

formance and memory performance introducing a parameter called arith-

metic intensity. Arithmetic intensity is defined as the ratio of floating-point

operations per byte of memory accessed [4].

24 Heterogeneous Architectures

Figure 1.23: Arithmetic Intensity, specified as the number of floating-point
operations to run the program divided by the number of Bytes accessed in
main memory [4].

Figure 1.23 shows the arithmetic intensity of several computational prob-

lems. Some of these have an arithmetic intensity that scales with problem

size (such as dense matrix) while some others have an arithmetic intensity

independent of problem size (such as sparse matrix).

As an example, the Roofline model for a GPU NVIDIA TESLA C2050 (Fermi

class) is shown in figure 1.24 [6].

Figure 1.24: Roofline model of several kernels on an NVIDIA C2050 GPU
[6].

1.4 Field Programmable Gate Array 25

The graph shows how the throughput changes, changing the application.

The SFU label indicates the use of special function units and FMA indicates

the use of multiply-add instructions. A sparse matrix-vector multiplication

is labelled SpMV, a multigrid method with a seven-point-stencil is labelled

Stencil and a 3D fast-Fourier transform is labelled 3D FFT. As shown in

the graph, only applications which present an high arithmetic intensity

(also called operational intensity in figure 1.24) are capable to exploit the

throughput provided by GPUs. This because the intensive computation

hides the memory latency.

1.4 Field Programmable Gate Array

FPGAs were introduced 30 years ago and since then, they have become a

popular implementation for digital circuits. Field Programmable Gate Ar-

rays are devices which can be electrically programmed to became a digital

circuits or systems. These devices represent a cheaper solution as com-

pared to Application Specific Integrated Circuits (ASICs). In fact, FPGAs

cost around a few tens to a few thousand dollars and they take less than

a second to configure while ASICs require time and money in order to ob-

tain first device. Moreover a portion of FPGA can be reconfigured while

the rest of an FPGA is still running [37]. This flexibility is the main advan-

tage of FPGA but at the same time the major cause of its drawback. This

because flexibility makes FPGA larger, slower and more power consuming

than their ASICs counterparts [37]. In general ASICs are convenient for

large markets while FPGAs for small markets. An example of FPGA is de-

picted in figure 1.25.

It is composed of an array of programmable logic blocks (including general

logic blocks, digital signal processors, multipliers and memory), connected

by a programmable routing network. The routing network of an FPGA

occupies 80-90% of total area, while the logic area occupies only 10-20%

[38]. The entire array is surrounded by programmable input/output blocks

which make possible the off-chip connections. The “reconfigurable” term

in FPGAs means the ability to program a function into the chip after the

fabrication process. This is made possible by the programming technology,

which is a method that can cause a change in the behaviour of the chip after

26 Heterogeneous Architectures

Figure 1.25: Overview of FPGA architecture [7]

the fabrication process [39].

1.4.1 Programming Technologies

An FPGA is configured using electrically programmable switches. Sev-

eral programming technologies have been used so far and their proprieties

dictate the trade-off in reconfigurable architectures. The most important

are SRAM (Static Random Memory Access) programming technologies [7],

flash [40] and anti-fuse [41].

1.4.2 Configurable Logic Block

The basic block of an FPGA is the configurable logic block (CLB), which

provides logic and and storage for the target application. The purpose of

a configurable logic block is to provide the computation and storage ele-

ments needed in digital circuits and systems. The CLB could theoretically

be either a single transistor or an entire processor. Both the cases present

their advantages and disadvantages. When a CLB is very fine-grained, it

1.4 Field Programmable Gate Array 27

requires a lot of programmable interconnect to create any typical logic func-

tion. This results in an area-inefficiency (because programmable routing is

expensive in terms of area), low performance (each routing hop is slow)

and high power consumption (since each interconnect has an high capac-

itance that must be charged and discharged). At the other extreme, when

the CLB is very coarse-grained, it cannot perform small function without

a massive wastage of resources. Usually intermediate solutions to imple-

ment efficient CLBs are used. Some of them includes basic logic blocks

made of transistors [42], NAND gates [43], interconnection of multiplexers

[44], lookup tables (LUTs) [45], and PAL-style wide-input gates [46].

Figure 1.26: Basic Logic Element (source: Tree-Based Heterogeneous FPGA
Architectures.)

The market’s leader Xilinx [47] and Altera [48] use LUT-based CLBs. LUT-

based CLBs provide a good compromise between fine-grained and coarse-

28 Heterogeneous Architectures

grained blocks. Figure 1.26 shows the architecture of a LUT-based CLB. It

consists of a look-up table and a flip-flop. The LUT has k boolean inputs

(i.e. 4) and 2k configuration bits (16 SRAM bits). It can implement any k-

input function. A multiplexer selects the basic logic element (BLE) to be

either the output of the flip-flop or the output of the look-up table. Figure

1.27 depicts a cluster of BLEs. The output of each BLE is accessible to other

BLEs through a local interconnect network. Usually CLB packs together 4

to 10 BLEs in a single cluster.

Figure 1.27: A configurable logic block (CLB) (source: Tree-Based Hetero-
geneous FPGA Architectures.)

In addition to standard CLB, modern FPGAs contain a heterogeneous mix-

ture of blocks to address specific functions. These specific purpose blocks

are DSPs, multipliers or dedicated memory blocks.

1.4 Field Programmable Gate Array 29

1.4.3 Routing Architecture

Configurable logic blocks are connected to each other through programmable

routing network. This interconnect consists of wires and programmable

switches that connect the logic elements. These switching are configured

using the programmable technology.

The interconnect structure must be flexible to accommodate a high variety

of circuits keeping the design speed as high as possible. Although different

circuits need different connections, there are a lot of common characteris-

tics of digital circuits which can be used to optimally design the routing

network of FPGA architecture.

Most circuits exhibit locality, hence they require a high number of short

wires, while at the same time they need at least some longer wires to sup-

port more distant connections. In addition, signals such as clock and re-

set must be widely distributed across the FPGA. Hence, care in designing

routing interconnect is very important because routing has to address both

flexibility and efficiency. The macroscopic arrangement of wires with no

focus on the more microscopic switching between wires is called global

routing architecture. The global routing architecture can be categorized as

either hierarchical [49] or island-style [38, 50]. Currently, most commercial

FPGA architectures use island-style architectures [51, 52, 53, 54]. This rout-

ing structure offers several advantages. First of all, an efficient connection

for most designs can be achieved, since routing wires are in close physical

proximity to logic blocks. In addition, the physical layout for each logic

block can be optimized to form a single tile. As a result, the minimum

feasible routing delay between blocks can be quickly evaluated.

1.4.4 Software Flow

One of the main aspect of FPGA research is the development of Computer

Aided Design (CAD) tools for mapping applications to FPGAs. The soft-

ware flow, also called CAD flow, takes an application described using a

Hardware Description Language and converts it to a stream of bits used to

configure the FPGA. This process can be divided into five steps, namely:

synthesis, technology mapping, packing, placement and routing. Finally a

bitstream that configures the state of the memory bits in an FPGA is pro-

30 Heterogeneous Architectures

duced. The state of the bits determines the logic function mapped on the

FPGA.

Logic Synthesis

The first step in the software flow is the logic synthesis [55, 56] which trans-

forms an HDL description into a set of Flip-Flops and boolean gates. Sev-

eral technology-independent techniques are applied to optimize the boolean

network.

Technology Mapping

The purpose of technology mapping consists in finding a network of logic

elements which implements the boolean network. In particular in an FPGA,

technology mapping problem involves transforming the boolean network

in k-input look-up tables and registers. The most common used tools for

FPGA technology mapping are based on the FlowMap algorithm [57]. This

algorithm is capable to find an optimal solution in polynomial time.

Packing

Usually the configurable logic blocks in a Mash-based FPGA are organized

in two levels of hierarchy. The first level involves logic blocks which are k-

input LUTs and flip-flops, while the second level consists of k logic blocks

together to form a cluster. The packaging phase of the flow consists of form-

ing groups of k logic blocks. Hence these clusters can be directly mapped

to a logic element of an FPGA.

Placement

The purpose of placement algorithms is to determine which logic block

should implement a logic function required by the circuit. The goal of these

algorithms is to connect logic blocks close together in order to balance and

minimize the wiring across the FPGA, or to maximize circuit speed.

Routing

The routing is the process where nets are assigned to routing resources

avoiding to share one routing between more nets. The state-of-the-art rout-

1.5 FPGAs for High Performance Computing: The Maxeler Solution 31

ing algorithm is Pathfinder [58]. This algorithm operates according a graph

abstraction G(V,E) of the routing resources. The routing problem consists in

finding a direct tree in G which connects the source and the sink terminals.

This process is quite complicate since the routing resources are limited.

Timing Analysis

The purpose of the timing analysis is to determine the speed of the circuits

which have been placed and routed and to estimate the slack [59] between

source-sink connections. This is done in order to find and fix the connec-

tions which slow down the circuit.

Bitstream Generation

Bitstream information is generated from the netlist after the placement and

routing processes. The bitstream contains information as to which SRAM

bit be programmed to 0 or 1. It is configured on the FPGA using a bitstream

loader.

1.5 FPGAs for High Performance Computing: The Max-

eler Solution

Recently FPGAs have expanded their application area to HPC. Several HPC

vendors offer FPGA-based high performance computing solutions. These

boards are socket compatible with Intel and AMD processors using high-

speed bus. To improve the bandwidth, these boards offer on-board mem-

ory. In the design presented in chapter 4, the HPC system based on CPUs

and FPGAs proposed by Maxeler [60] is used. It consists of a combination

of synchronous dataflow, vector and array processors. Figure 1.28 depicts

the architecture of a Maxeler dataflow system which comprises FPGAs

with their own local memories, connected to a host through PCI-express or

Infiniband. Each FPGA can access two types of memory: on-chip memory

which can store several Mega-bits of data accessible with an high band-

width and a large on-board memory which can store many Giga-bytes of

data off-chip. However, one important limitation is that the on-board mem-

ory works in burst mode. This means that at least a block of 384 byte of data

32 Heterogeneous Architectures

Figure 1.28: FPGA-based computing architecture (source: Maxeler.)

must be read even if just 1 bit must be modified. This memory access pro-

vides excellent performance when data are read in sequential order, but

poor performance when data are read randomly.

1.5.1 Programming the FPGA using MaxCompiler

A Maxeler supercomputer consists of CPUs and FPGAs. The CPUs run ex-

ecutable files while FPGAs run a configuration file which contains the bit-

stream information. In particular, a general application consists of a small

pieces of source code running on CPU and a large amount of data running

on FPGA. In order to create the FPGA configuration file, a domain spe-

cific language called MaxCompiler is used. It is a Java-cased programming

language with additions for FPGA memory and data access. Therefore an

additional preliminary level is added to the software flow described in sec-

tion 1.4.4. The FPGA is programmed through one or more kernels and a

manager file. Kernels are graph of pipelined arithmetic units, which imple-

ment the computation. Without loops in the graph, data flows from inputs

to outputs. With loops in the graph, data flows in a physical loop inside

the FPGA, in addition to flowing from inputs to outputs. The manager

orchestrates data movement between kernels, FPGA memory and other in-

put/output interconnects. The first step when using MaxCompiler is to de-

sign, debug and simulate the application using a standard computer. Then

given kernels and a manager, MaxCompiler generates dataflow implemen-

1.5 FPGAs for High Performance Computing: The Maxeler Solution 33

tation which can be called from the CPU.

Figure 1.29: MaxCompiler chain (source: Maxeler.)

Figure 1.29 illustrates the development tool provided by MaxCompiler and

how it works to build an accelerated application. Usually in a Maxeler su-

percomputer, multiple FPGA are connected together via a high-bandwidth

interconnect as shown in figure 1.30.

Figure 1.30: Maxeler dataflow system architecture (source: Maxeler.)

Chapter 2

Optical Model for Design and

Analysis of Solar Field on

Multi-GPU platform

This is the first in a series of three chapters presenting the major contri-

butions of this thesis. They address the implementation of specific algo-

rithms using different configurations of the systems described in chapter

1. The purpose of this chapter is to present an efficient implementation of

optical model for design and analysis of solar field on Graphics Processing

Units. The work presented in this chapter was carried out as part of the

ERG project supported by ENIAC JU. This chapter follows the structure of

[1].

2.1 Motivation and background

The depletion of fossil fuels, the increase in energy demand and the atten-

tion of public opinion to environmental problems are moving the produc-

tion of electrical energy towards renewable sources. The sun is the most

abundant source of energy on Earth and every year delivers more than

10,000 times the amount of energy that humans currently use [61]. Hence,

the global solar electricity market is currently more than $10 billion/year,

and the industry is growing at more than 30% each year [62]. One of the

best ways to harness solar energy on a large scale is based on concentrating

tower power plants [63, 64]. This system, also called Central Receiver Sys-

34

2.1 Motivation and background 35

tem (CRS), consists of a field of highly reflective mirrors called heliostats

which focus the solar radiation on an absorbent surface, positioned at the

top of a tower. Solar radiation heats a fluid which is used in thermal or

thermo-electrical processes as as shown in figure 2.1 and has been pub-

lished in [1].

Figure 2.1: Block diagram of a Solar tower power plant (source: eSolar).

The design and optimization of these systems is quite complex and time-

consuming, because it requires several design parameters to be consid-

ered at different time steps [65]. For example codes like MIRVAL [66] and

SolTRACE [67] provide a detailed description of power reflected using a

ray-tracing method, but they do not support field optimization. Accuracy

of ray-tracing improves, increasing the number of rays, but unfortunately

the computation time itself increases. UHC [68] and DELSOL [69] which

use the convolution method contain more approximations in the peak flux

computation, but they provide a quicker evaluation of the annual perfor-

mance of a field [70]. These examples show that there is a trade-off between

accuracy and simulation time in the existing design tools.

This chapter presents a simulation framework capable of supporting the

design and analysis of solar fields for tower power plants with high accu-

racy and speed. The work is motivated by the need to analyze and op-

timize solar fields taking into account degradation factors such as shad-

owing, blocking, atmospheric attenuation, cosine effects, spillage, mirror

reflectivity [71, 72] , in addition to mirror imperfections and non-planar ge-

ometries.

The need to reduce the computational time has been recognized by other

36
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

groups who have proposed novel algorithms for this purpose [73]. How-

ever better improvements can be obtained by algorithms that exploit par-

allel computing architectures based on graphic processing units, which, at

a lower cost than standard servers, provide an accurate and fast simulation

environment.

2.2 Mathematical model

The sun can be considered as a Lambertian surface appearing from the

Earth as a disk of constant radiance [74]. However, considering a solar

concentrating system on the Earth’s surface, solar irradiation appears dif-

ferent from the ideal case due to the effect of the atmosphere on the sun’s

shape. In order to simulate major atmospheric effects, the model describes

the sun as a Lambertian plane with a defined irradiation distribution. For

simplicity’s sake, a normal distribution will be considered, as suggested

in [75], because it is simple to implement and introduces a limited error

in the sun description. Solar distribution, supported by data available in

databases (such as PVGIS [76] for Europe and Africa or TMY3 [77] for the

USA), provides site-specified solar irradiation.

Let us consider the subsystem sun-mirror-absorber as shown in figure 2.2.

Figure 2.2: Reflection of the sun’s rays by a heliostat to a single aim point.

Since Snell’s law requires that the angle of incidence θi be equal to the angle

2.2 Mathematical model 37

of reflection, the cosine of this angle can be derived from the scalar product

between sun ray unit vector S and aim point unit vector R as reported in

equation 2.1:

cos(2 θi) = S ·R (2.1)

where vectors S and R can be written as:

S = Sz î+ Seĵ + Snk̂ (2.2)

R = Rz î+Reĵ +Rnk̂ (2.3)

Sz , Se, Sn and Rz , Re, Rn, represent the direction cosines, where i, j and k

are unit vectors along z, e, and n axis. The direction cosines of S may be

written in terms of solar altitude (α) and azimuth (A) as:
Sz = sinα

Se = cos α sinA

Sn = cos α cosA

(2.4)

The reflection surface unit normal (H) can be found by adding the incidence

and reflection vector and dividing by appropriate scalar quantity as shown

in Equation 2.5:

H =
R+ S

2cos θi
=

(Rz + Sz)̂i+ (Re + Se)ĵ + (Rn + Sn)k̂

2cos θi
(2.5)

In the same way as shown in equation 2.4 it is possible to describe the di-

rection cosines of unit vector H in terms of altitude (αH) and azimuth (AH)

of the reflecting surface.


Hz = sinαH

He = cos αH sinAH

Hn = cos αH cosAH

(2.6)

Heliostat tracking angles may be derived from equation 2.5 as shown in

equations 2.7 and 2.8:

sinαH =
Rz + sinα

2cos θi
(2.7)

38
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

sinAH =
Re + cos α sinA

2cos θicos αH
(2.8)

Once the correct tilt angles (αH , AH) have been found, the observer located

on the receiver surface, looking in the direction of the mirror will see the

sun reflected at an apparent position, called the apparent sun plane, placed

behind the mirror as shown in figure 2.3 [78].

Figure 2.3: Geometrical model for optical simulation.

This plane is calculated as the plane located at a distance equal to the earth-

sun distance, orthogonal to the line that passes through the reflection point

and the mirror centre.

An observer sees the sun through the mirror and consequently sees the mir-

ror edges as delimiting the sun disk. Therefore, to find the solar radiation

collected by the mirror, it is necessary to project the mirrors corners onto

the apparent sun plane as shown in figure 2.4.

Normally, central receiver systems are composed of hundreds or thousands

of heliostats. Consequently, in order to project the mirror corners on the

sun plane, it is necessary to verify the blocking and shadowing effects in-

troduced by adjacent heliostats. In order to evaluate these two effects, each

mirror is discretized into a matrix of square sub-mirrors. In evaluating the

shaded area, the projection of each potentially occluding mirror onto the

plane of the mirror under analysis is calculated, taking as observation point

the center of the solar dish. A sub-element is then considered in the shad-

2.2 Mathematical model 39

Figure 2.4: Simulation model geometry for a single receiver point analysis.

owing area if the neighbour mirrors’ projection falls on it. Evaluation of

blocking is similar to the detection of shadowing. The only difference is in

the observation position which in this case coincides with the receiver’s.

As mentioned above, the proposed model allows one to quickly evaluate

field performances, composed of planar mirrors, or to obtain a more de-

tailed description, considering mirror imperfections or non-planar geome-

try. In the study of planar square mirrors, the adjacent non-shadowed and

non-blocked squares are joined up in larger squares, in order to calculate

the minimum number of integrals. Otherwise, if a more accurate analysis

is needed, it is possible to describe imperfections at the sub square level by

introducing two local angles which tilt the sub-mirror from the ideal posi-

tion. This model feature can also be used to describe non-planar geometries

of mirrors. In this case the apparent sun plane must be calculated for each

sub-element taking into account the different reflection point as shown in

figure 2.5.

The solar radiation collected on the receiver by a heliostat will be given by

the integral over the apparent sun plane of the flux density function. The

limits of integration are the projected mirror corners on the plane.

P =

∫∫
Mirror

Projection

F (xr, yr) dxr dyr (2.9)

40
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

Figure 2.5: Geometric model for simulation with non-idealities in mirror
surface.

where F (xr, yr) is the flux density function.

Performing this operation for each heliostat, the total solar radiation on the

absorber surface is achieved.

2.3 Computing System

The algorithm is implemented to run on a standard desktop machine with

one or more GPUs. In particular, the configuration of the computing node

used for this work is detailed as follows:

• Motherboard SuperMicro X8DTG-QF;

• Two Intel Xeon E5520 CPUs @ 2.27 GHz;

• 24 GB RAM;

• Two NVIDIA GTX 590 graphics cards.

• One NVIDIA GTX 480 graphics card.

The three GPUs and the two quad-core Intel CPUs share the same mother-

board.

2.4 Implementation 41

2.4 Implementation

The mathematical model for the system emphasizes a high level of paral-

lelism due to the fact that each mirror is considered as a single element in

the system. Thus, the solar flux distribution on the absorber surface is ob-

tained by adding the flux collected by each heliostat. Depending on the

specific target, the algorithm presents a different level of parallelism, as

shown in figure 2.6.

Figure 2.6: Flow chart of the algorithm.

To analyze the degree of parallelism of each stage in the overall algorithm,

three parameters are introduced as shown in table 2.1: k represents the

number of heliostats in the solar field, n the number of sub-elements used

to discretize the receiver surface, and m the number of elements used to

discretize each mirror surface.

42
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

Table 2.1: Nomenclature table of the algorithm

Heliostats k Number of heliostats in the field
Heliostat grid m = mx ×my Number of sub-elements used

to discretized each mirror surface
Receiver grid n = nx × ny Number of nodes used

to discretized the receiver surface

2.4.1 Programming Model

The main objective of the first part of the algorithm is to study the inter-

actions between adjacent heliostats such as shadowing and blocking. As

described in Section 2.2, the first step is to calculate heliostat altitude and

azimuthal angles which allow one to obtain the correct position of each

mirror. This can be done if one knows the day of the year and the coordi-

nates of each heliostat according to Equation 2.1, 2.7 and 2.8. Once the an-

gles are known, the algorithm calculates the corner positions of each mirror

(p1, p2, p3, p4) which define the heliostat outer edge.

In detection of shaded areas, the equation of the plane of the mirror being

analyzed is calculated solving Equation 2.10:∣∣∣∣∣∣∣∣
x− x1 y − y1 z − z1
x2 − x1 y2 − y1 z2 − z1
x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣∣ = 0 (2.10)

where xi, yi and zi are the three components of the corner pi. The outlines of

other mirrors, which potentially cover the mirror being analyzed, are pro-

jected onto the plane previously calculated, taking the center of the sun as

the observation point. The heliostat being analyzed is then discretized into

a matrix of m = mx ×my elements. If the center of a matrix sub-element is

contained in one of the neighbor mirror projections, the entire sub-element

is considered to lie in the shadowed region and is not included in the peak

flux computation, as shown in figure 2.7. This part, which is a computa-

tion of the positioning and shadowing interaction of a single heliostat in

the field, is repeated for each heliostat. The parallelism level in this part is

k.

Detection of a blocked area is similar to the shadowed case. The only dif-

ference is the observation point which in this case coincides with that of the

2.4 Implementation 43

Figure 2.7: Shadowing evaluation.

receiver. Since the receiver is discretized in order to accurately assess the

solar flux distribution over the entire surface, the analysis is repeated for

each receiver point for each mirror. The level of parallelism for this part is

k × n.

Once the part of each mirror which actually contributes to collecting so-

lar energy has been identified, the effective mirror outline is projected onto

the apparent sun plane and the integration of the irradiation distribution is

performed. As stated in Section 2.2, the apparent sun plane is calculated as

the plane located at a distance equal to the earth-sun distance, orthogonal

to the line that passes through the reflection point and the mirror (sub-

mirror) center as shown in 2.3.

Having defined the equation of the apparent sun plane, the algorithm finds

parameter values that fit the equations of the four lines that start from the

analysis point on the receiver and pass through the four corners of the mir-

ror (sub-mirror) as previously shown in figure 2.4. The cross points be-

tween the apparent sun plane and these lines define a polygon on the plane.

This polygon represents the integration area. Once the integration polygon

is defined in 3D space, the algorithm performs a coordinate space change.

The goal of this operation is to pass from a 3D space to a 2D space in order

to ease calculation of the integral in 2.9.

The solar flux distribution is numerically evaluated by Gauss-Legendre

44
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

quadrature. This part is characterized by a major level of parallelism, the

analysis being carried out for each receiver point and for each mirror. In ad-

dition, the level of parallelism increases still further when the simulation in-

volves geometries different from the flat one or when mirror non-idealities

are introduced. In this case, all the instructions are repeated for each re-

ceiver point, for each heliostat and for each sub-element of the heliostats.

Thus the number of integrals that can be evaluated in parallel increases to

k × n × m.

The solar irradiance on a single mesh element is then calculated by mul-

tiplying the integration value by the incident radiation. This value is re-

duced by the cosine effect estimated considering the solid angle between

the normal vector and receiver element, and the line that passes through

the mirror center and the analysis point on the receiver. In order to de-

scribe the effect of mirror light absorption and non-specular reflectance, a

scalar attenuation parameter is then introduced. Another scalar factor is

also considered in order to model the attenuation that the light undergoes

in crossing the path between the mirror and the receiver due to air scatter-

ing and absorption. This last term is dependent on the distance between

each mirror and the receiver.

2.4.2 GPU kernels

The algorithms can be efficiently implemented on GPUs utilizing the data

parallel programming model provided by the CUDA environment [31]. In

order to extend the model to a multi-GPU environment OpenMP is used

as multithreading library [35]. As mentioned in section 2.3 the computing

system consists of 3 GPUs that are massively parallel processors, equipped

with a large number of arithmetic execution units and 8 CPU cores.

For this algorithm the best solution found is to divide the GPU code into

three different kernels as shown in figure 2.6, organized as a suite of in-

terconnected routines, which make the code modular and easy to modify.

This is due to the different degrees of parallelism in the code and the need

to free the memory space used by the local variables.

Communications between different kernels is obtained allocating space for

results in the device memory using a shared memory computation model.

Since the parallelism is at the heliostat level and each mirror contributes in-

2.4 Implementation 45

dependently to collect solar energy on the receiver aperture, each block of

the same kernel can be executed independently of each other without any

need of additional communication.

The purpose of the first kernel is to evaluate the shadowing effect between

adjacent heliostats, while the second one evaluates blocking effects. This

is done following the algorithm described in section 2.4.1. Shadowing is

evaluated once for each heliostat (k), while blocking is evaluated for each

receiver point, for each heliostat (k × n), since the receiver is discretized in

a matrix of n elements.

Results of the shadowing kernel consist in a set of k matrixes (once for each

heliostat) of dimension m. Each matrix entry is set to 0 when the corre-

sponding sub-element is covered by another heliostat and to 1 when the as-

sociated sub-element reflects the solar radiation towards the receiver. Since

the blocking effects are evaluated for each one of the n receiver points and

for each heliostat, results produced by the blocking kernel amounts to (k

× n) matrixes of dimension m. The effects of shadowing and blocking are

combined in order to obtain the portion of reflective surface that collects

the solar energy on the receiver aperture.

In order to limit the usage of device memory space, the output results are

stored in vectors of 32 bit integers, where each bit corresponds to an ele-

ment of the shadowing matrix. This mapping allows to reduce the mem-

ory space used to store the shadowing and blocking results of a factor 32

when compared to the outcome of using a memory location to store a bi-

nary number, as supported by the existing compiler.

Once these effects are evaluated, the third kernel that performs the integra-

tion of the irradiation distribution is executed.

The peak flux density on the receiver surface is stored in a matrix of float-

ing point numbers of size (n). After the execution of the third kernel, the

results are copied from the device to the host memory.

For the execution of the kernels, a thread block of size 64 is chosen. Results

show that this is the best size to minimize pipeline latency as mentioned in

[79]. In summary, the launching parameters for the three kernels are:

• Threads per block = 64

• Number of blocks

46
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

k ÷ 64 for shadowing kernels;

k× n÷ 64 for blocking and planar geometries integration kernels;

k × n × m ÷ 64 for other integration kernels.

2.4.3 Application Flow

The framework is executed in a MATLAB environment, which makes it

easy to use and caters for plotting solar flux distribution on the receiver. As

an input it takes a set of fields parameters describing the heliostats, tower

and simulation parameters. Heliostat parameters consist of the coordinate

of each heliostat, the support height, the size of each mirror and a mirror

reflectivity coefficient. The code also provides two scripts that allow one

to generate test fields. The first one generates a rectangular field based on

a spatial distribution parameter, while the second one is based on radial

stagger distribution [80]. Tower data consist of the spatial coordinates, size

and tilt angle of the receiver aperture. The last data structure provides

simulation parameters, such as the number of the receiver analysis points n,

the heliostat matrix m, and the days and hours used to perform simulations.

The user can choose whether to run a standard analysis or to perform an

accurate simulation, introducing errors on each sub-element of the mirrors.

2.5 Validation

The code has been validated performing simulations of the PS10 field and

comparing the results with the published data [81]. PS10 is a solar tower

power plant, located near Seville and composed of 624 heliostats having

an area of 121 m2. The reflectivity of the mirrors is 0.88. The receiver is a

cavity type one. Its center is located at 100.5 m with a rectangular aperture

of 13.78 m × 12 m. Results are shown in table 2.2. Heliostat positioning

was graphically obtained from [81].

2.6 Computational benchmarking

The framework is benchmarked on the target system and its performance is

compared to that of a CPU-based system using a C language optimized im-

plementation. To completely exploit the capabilities of the system, OpenMP

2.6 Computational benchmarking 47

Table 2.2: Comparison between the GPU model and PS10 published data.

PS10 declared GPU evaluation
Concentrated flux

21-March 12:00 51,953 kW 51,325 kW
Irradiance 981W/m2

Concentrated flux
21-June 16:00 34,456 kW 34,403 kW

Irradiance 831W/m2

is used to share out the computation among eight different CPU cores (C

language implementation) and among three GPUs (CUDA C implementa-

tion). All computations were performed in single precision floating point.

A dense rectangular field layout, similar to that proposed by eSolar [82],

has been chosen as target scenario. The field analyzed is composed of

12,000 heliostats of 1 m2 without any physical non-ideality, located in the

Libyan Desert (lat. 2585N). A summary of the setup parameters is shown

in table 2.3.

Table 2.3: Setup parameters of the simulation.

Field parameters
Heliostat size 1 m × 1 m
Tower height 40 m

Receiver tilt angle 10 degree
Mirror reflectivity 0.93

Simulation parameters
n-point Gaussian quadrature rule 8

Once the target scenario has been selected, it is necessary to adjust simu-

lation parameters in order to ensure validity of results at the lowest com-

putational cost. For this purpose the simulation environment allows one to

set the number of rays used to discretized heliostats (m) and the number

of nodes used to explore the receiver surface (n). These two parameters

affect the accuracy of the simulation results in two different ways. The

heliostat matrix determines the number of sub-elements used to discretize

each mirror. Shadowing and blocking effects are evaluated once for each

sub-element in the center point. Therefore an increase of m will enhance

the accuracy in the assessment of power collected. On the other hand, the

number of points used to discretize the receiver surface provides a measure

48
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

of how the solar radiation is distributed on the aperture. Thus an increase

of n leads to higher accuracy in the evaluation of the solar flux distribution.

As reported in [65], typical field performance optimizations are carried out

varying the field parameters (e.g. tower height, heliostat dimension, etc.)

on an interval of ±30% around baseline values. This leads to a variation

in the optical efficiency of about 10%. In order to appreciate the effects of

the tuning of field parameters it is necessary to ensure that the error mar-

gin introduced by simulation parameters m and n will be smaller than the

variation introduced by field parameters. Consequently an acceptable er-

ror margin can be imposed at 10% of such value obtaining a value of 1%.

Simulations parameters have been chosen following the procedure described

below:

• The value of n has been set to 40 × 40 nodes, which is the same reso-

lution used to evaluate the PS10 absorber surface in [81];

• The value of m has been initially set to 20× 20 which is the maximum

achievable discretization;

• A set of simulations has been performed at different time steps on the

GPU based-system, in order to estimate the reference power values

collected on the receiver;

• Simulations for the same field configuration have been repeated with

lower values of the heliostat discretization matrix in order to obtain

the minimum value of m that ensures an acceptable error margin.

Table 2.4: Error in the flux collected on the receiver aperture as a function
of m.

Number of simulations performed Heliostat mesh m Maximum error %
72 20 × 20 0
72 16 × 16 0.4
72 10 × 10 0.7
72 8 × 8 1.4
72 5 × 5 3.8

Table 2.4 shows the trend of the error in the amount of power collected on

the receiver surface as a function of the parameter m. The simulation pa-

rameter m has been set to 10 × 10, in order to obtain an error on the power

2.6 Computational benchmarking 49

collected less than 1% for all time steps analyzed.

Table 2.5 shows that in this case a speed-up of 52× as compared to the 8-

core CPU-based model is obtained for a field of 12,000 heliostats.

Table 2.5: Comparison between CPU and GPU execution times.

CPU-based model GPU parallel model Speed-Up
226.98 s 4.33 s 52 ×

Although analysis of solar fields performed with a CPU-based solver needs

a tuning of the number of rays for each different field layout, the high com-

putational power provided by GPUs allows to use high accuracy regardless

of the size of the field analyzed. Therefore simulations for different field

dimensions have been carried out with the highest value of the heliostat

discretization matrix m (20× 20) and the number of ray n previously set, in

order to analyze how the execution times of the parallel model vary with

respect to the problem size.

Figure 2.8: Comparison of GPU parallel model in a case of planar and non-
planar geometry.

Figure 2.8 shows the run time with respect to the number of heliostats and

the linear trend of experimental data for ideal mirrors and for heliostats

with non-idealities. The GPU execution time includes every step of the

overall computation, such as data upload and download from/to the cen-

tral memory system. For ideal mirrors, the execution time of the GPU-

50
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

based model for fields up to 500 heliostats is constant because the paral-

lelism provided by graphic cards is not fully exploited. For larger fields,

the execution time increases linearly with the number of heliostats.

Contrary to the ideal mirrors case, where the matrix m (created to discretize

each mirror) is only used to evaluate shadowing and blocking effects, in the

analysis of mirrors with non-idealities, when increasing the value of m, the

number of integrals that must be performed also increases as previously

shown in figure 2.6. In this case the GPU resources are fully exploited even

for small fields due to the high computational cost of the algorithm. In ad-

dition for this kind of analysis the arithmetic intensity (the ratio between

floating-point operations and memory accesses) is higher with respect to

the previous case since for each heliostat the number of integrals that must

be performed grows to the size of m. This leads to a better exploitation of

graphic cards which results in the small increase of time with respect to the

previous case.

Rather than the execution time, the throughput in terms of floating-point

operation per second is often considered a more expressive measure of the

quality of an algorithm implementation as it gives insight into how well the

hardware is being utilized. This is calculated from the amount of floating

point operations required to process the given problem size divided by the

execution time.

The scaling of GPU throughput is shown in figure 2.9.

Figure 2.9: Comparison of throughput of our application in TFLOPS.

2.7 Application cases 51

To evaluate the quality of our implementation, a comparison with the the-

oretical peak throughput of the hardware is helpful. The 2 GTX 590 and

the GTX 480 have a theoretical peak throughput of up to 6.3 TFLOPS. This

value indicates the theoretical maximum of the 3 devices, calculated by pre-

tending that all computational units of the corresponding level of precision

are continuously busy with fused multiply-add operations. A peak perfor-

mance of 4 TFLOPS is obtained by our application. This number represents

64% of the theoretical peak and is based on execution times that include all

overheads.

2.7 Application cases

2.7.1 Performance field analysis and optimization

Simulations geared toward optimization of a solar field were performed

requiring an analysis repeated on several days of the year and at different

hours of a day. Three different configurations of a radial stagger distribu-

tion field layout composed of 5000 Heliostats are studied. Each one of these

fields was made up of 4 m2 heliostats and a 16 m2 receiver aperture. Even

though these parameters can also be used in our optimization loop, a spe-

cific size of mirrors and receiver is presented. Analysis was performed on

the 21st day of each month every hour from 7 am to 12 pm. Exploiting the

symmetry of the day, the results obtained were replicated from 12 pm to 5

pm as described in [69].

The optimization loop is carried out by varying the radial staggered field

aperture and tower height by ± 30% as suggested in [65]. Thus, the total

number of simulations was 1296. A summary of the parameter analysis is

shown in table 2.6.

Table 2.6: Parameter space used in the optimization.

Tower height 50 m; 60 m; 70 m; 80 m; 90 m; 100 m
Field Configuration (2/3)π; π/2; π/3

Day 21; 52; 80; 111; 141; 172; 202; 233; 264; 294; 325; 355
Hour 7; 8; 9; 10; 11; 12

Since the simulations provide instantaneous flux distribution on the re-

ceiver aperture at a given time of the day (figure 2.10), by repeating the

52
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

simulation at each hour and interpolating the results the daily power on

the receiver aperture is obtained, as shown in figure 2.11. Integrating this

Figure 2.10: Power on the receiver surface at noon of 21st March.

Figure 2.11: Solar irradiance collected by the receiver on March 21st

curve, the amount of daily energy collected by the field is computed. An-

nual field performance was obtained repeating the steps described above

on the 21st of each month representing the average direct irradiance of the

month. The time taken to perform these 1296 simulations was 48 min. An-

nual field performances for all configurations reported in table 2.6 are col-

2.7 Application cases 53

lected in figure 2.12. Simulations show that the field with 100 m tower

height and aperture π collects the highest energy. The variation in annual

performance between the best and the worst simulated cases is about 6%.

Figure 2.12: Annual field performance.

2.7.2 Analysis of mirror non-idealities

The analysis carried out in section 2.7.1 allows one to change field param-

eters and consequently to find the field with the best performance. How-

ever, in the real case, it is necessary to consider some non-idealities which

characterize heliostats. Thus, once the best plant configuration is found,

it is important to repeat the simulations for that field configuration, intro-

ducing these effects. In order to do this, statistical local slope errors are

assigned to each sub-element of the mx × my heliostat mesh with a devi-

ation range of ±5 mrad [83]. Results are reported in figure 2.13 and 2.14.

Figure 2.13 shows an enlargement of the mark on the receiver. Figure 2.14

shows a performance degradation of about 6% obtained comparing annual

energy produced by real and ideal heliostats. The computing time required

to obtain these results is 15 min at a 6-fold increase vis-vis the ideal case.

2.7.3 Stretched membrane mirrors

The approach discussed so far can be extended to very general mirror shapes.

In this section an example based on stretched membrane mirrors is shown.

54
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

Figure 2.13: Power on the receiver surface for ideal (left) mirrors and non-
ideal (right) mirrors.

Figure 2.14: Comparison of energy collected by the field on a typical day,
using ideal and real mirrors.

This mirror allows one to reduce the concentration area and increase the

concentration ratio, making the approach applicable to photovoltaic con-

centration systems as well. As stretched membrane mirrors are simpler

and cheaper than ideal parabolic ones, their performance is explored in

this context. Simulations were performed for a radial stagger field lay-

out composed of 100 stretched membrane mirrors obtained by stretching

a high-reflectivity aluminum membrane such as “Miro reflective 90” pro-

duced by Alanod Solar [84]. The surface properties are reported in table

2.7. The field is composed of 4 rings of mirrors that reflect the solar ra-

diation to the top of a 30 m high tower. Since the rings have a different

radius, mirrors belonging to each ring have a different focal distance from

2.7 Application cases 55

Table 2.7: Material properties.

Tensile strength (MPa) 160 - 200
Yield strength (MPa) 140 - 180

Elongation A 50% ≥ 2
Bending radius ≥ 1.5 fold thickness

Total solar reflectance % 90
Thickness in mm 0.3 - 0.8
Heat resistance 250 degree

the receiver. Hence, considering the ideal parabolic case, the depth d of the

generic dish is related to its distance from the receiver F and its radius R by

equation 2.11 :

d =
(2R)2

16F
(2.11)

In order to make the stretched membrane mirror approximate a parabolic

dish the outer edge of the circular surface is constrained to a fixed posi-

tion leaving it free to bend, and a tensile strength to the central ring S is

applied in order to produce an elastic deformation equal to d at the center

of the surface, as shown in figure 2.15a. Using a structural simulation soft-

ware (Comsol 3.5a), the numerical model describing this 2D circular plate

is solved for a radius R of 0.5 m and a thickness of 0.5 mm, obtaining the

results shown in figure 2.15b. These structural simulations were carried out

Figure 2.15: Simulated bending of a mirror realized with aluminum
stretched membrane.

for different values of the tensile strength so as to find the different config-

urations suitable for each ring. Once the surface was simulated, the first

56
Optical Model for Design and Analysis of Solar Field on Multi-GPU

platform

derivatives of the surface are approximated. Interpolation coefficients to

the data structure of the heliostats are added and the procedure described

in [85] is followed to find the correct tilt angle for each square. While a

thorough analysis of key issues arising in the field of sun power concentra-

tion, such as uniformity of power distribution at the receiver, is not within

the scope of this work, an example of simulation results is reported in fig-

ure 2.16. These simulations show that with such a change to the mirrors

geometry, the total amount of power collected remains the same (53.7 kW

in both the cases), but the spot on the receiver aperture is 8 times smaller.

The computational time required to perform this simulation is 4 s.

Figure 2.16: Receiver spot using flat and stretched membrane mirrors.

2.8 Conclusions

In this chapter a new algorithm and simulation environment for CRS based

on heterogeneous multi-GPU systems is presented, built with low cost com-

modity hardware components. The model supports tuning of the trade-off

between accuracy and computational time to obtain an analysis consistent

with the precision required. Compared to an efficient OpenMP-based ref-

erence code running on two quad-core CPUs, a speedup of up to 52 is ob-

tained with our implementation running on two GTX 590 and one GTX

480 graphics cards. Processing times for problem sizes that usually take

several hours on efficient CPU-based solvers can be reduced to a matter of

minutes, at the cost of an affordable hardware upgrade, making it possible

to carry out an optimization and highly accurate physical description of

solar fields.

Chapter 3

Power-Aware Job Scheduling

The desktop supercomputer used to solve the problem described in section

described in section 2.3 is equipped with a power supply unit of 1400 W.

Since each GPU consumes up to 365 W, add another GPU to the computing

system could lead to system failure caused by power capacity overload. In

this chapter an algorithm to increase the parallelism of the system without

increase the capacity of the power supply unit is presented. A paper has

been accepted with minor revision [2]

3.1 Motivation and background

As discussed in chapter 1 the computational power required by scientific,

engineering and financial applications is unattainable on todays most ad-

vanced multi-core CPUs [86] and GPUs have been proposed as accelerators

for intensive workloads in large scale supercomputers [10]. Although in

heterogeneous computing systems the ratio between floating-point instruc-

tions and power consumption is higher with respect to homogeneous com-

puting system, GPUs are power ”hungry” devices and they require high

external power supply in the range range of several hundreds of watts.

Hence, the limitations of the power consumption is a key factor. In addi-

tion to supply cost abatement and positive environmental implications, the

limitation of the worst case power scenario leads to a cost saving due to the

lower complexity and capacity of the cooling systems needed.

Traditionally, supercomputers were designed to sustain the worst case op-

erating condition. However this scenario is very rare and oversized power

57

58 Power-Aware Job Scheduling

supply and cooling systems involve additional costs. Thus in order to hold

down the costs, supercomputers are nowadays designed with a better-

than-worst-case policy [87]. In this situation the power consumption is

constantly monitored and if the operating condition overlaps the prede-

termined power threshold, the power budget required by each node is ad-

justed to run safely under the maximum physical limitation.

Power capping defined as a strategy to limit peak power under a predeter-

mined threshold is strongly influenced by the jobs activated on the com-

puting system nodes. Hence techniques are needed which allow one to

dynamically control the peak power while keeping system performance as

high as possible [88]. In particular simultaneous execution of jobs (concur-

rency) leads to a performance enhancement effect, but also to an increase

in power consumption. On the contrary, when concurrency is decreased,

both performance and power consumption decrease. In this framework,

this chapter discusses a job-level scheduling algorithm that aims to limit

the worst case power condition below a predetermined budget during the

concurrent execution of jobs in a heterogeneous computing system cou-

pling CPU cores and GPU accelerators. The need for power-saving policies

allowing control of power consumption, depending on the jobs being acti-

vated on the nodes, has already been recognized [89]. The open challenge

is to find an effective way to reduce peak power while keeping parallelism

as high as possible.

Several studies have been carried out addressing this issue. Some of them

exploit dynamic voltage and frequency scaling (DVFS) in order to achieve

a power reduction in HPC systems [90]. In [91] the approach presented

was to reduce the clock frequency on nodes which had been assigned small

computation load. The algorithm developed in [92] presents a power-aware

DVFS run-time system that performs power reduction with small perfor-

mance loss. Another work [93] provides a power-aware scheduling algo-

rithm for applications with deadline constraint. In this approach DVFS is

used to minimize power consumption meeting the deadline specified by

users. However none of these approaches are designed to keep the power

consumption under a preset threshold. Other methods exploit DVFS in or-

der to keep the maximum power lower than a predetermined power con-

straint. In [94] power is shifted between resources, observing how they are

3.1 Motivation and background 59

being used, while keeping the total power consumption lower than a given

budget. Since frequency assignment is performed at a very fine grain, ap-

plying this approach to large scale systems could involve high overheads.

In [87] the technique presented uses feedback control to keep the system

within predetermined power constraints managing the CPU performance.

The scheduling algorithm developed in [95] uses integer linear program-

ming to assign a CPU frequency before executing a selected job in order to

remain below the predetermined budget.

Even though DVFS is common for CPU-based infrastructures [96], it is rel-

atively new for heterogeneous systems based on GPUs. For example the

official driver provided by NVIDIA [34] is blind and it does not allow user

to adjust the voltage and the frequency levels for computational kernels.

Once the driver sees an application that is ready to be activated, the driver

will increase the clock speed up to the highest level set by the user [97]. For

enabling the DVFS users have to use open-source drivers such as Nouveau

[98]. Unfortunately Nouveau driver do not allow hardware acceleration

of 3D operations. Concerning AMD GPUs [24] the official driver supports

OpenCL [99], but does not support voltage and frequency scaling. On the

contrary the open-source driver called RadeonDriver [100] supports volt-

age and frequency scaling but does not support OpenCL [101].

It must also be noted that scheduling algorithms based on dynamic volt-

age and frequency scaling deliver a suboptimal response for short-time

workloads because they rely on reaction instead of prediction [102] and

for short workloads this reaction can occur after the transition. In this case

the amount of performance loss is related to the number of transitions in

the workload and the lag between request and capacity [102].

Approaches that aim to reduce power consumption according to the jobs

being activated on the node have been explored. In order to do this, the

power consumption of several library functions may be characterized for

different CPU performance. For example, in [103] a power performance

comparison between LAPACK [104] and PLASMA [105] libraries was made

using the setup developed in [89]. The work presented in [106] uses the

same measure setup [89] in order to develop a job-centric model. The pur-

pose of these works is to understand how a program can be modified to im-

prove performance with respect to system run-time and power consump-

60 Power-Aware Job Scheduling

tion. In [107] a method of profile-based power-performance optimization

is presented. In this work a program is split into several regions and for

each one the frequency which minimizes the power-performance ratio is

selected.

All of these works are based on multicore CPU and not on heterogeneous

CPU-GPU architectures. In addition, most of the algorithms described in

the literature do not consider the concurrent execution of several jobs on

different cores as a target to be optimized in order to keep peak power

under a predetermined budget. However, in heterogeneous computing

systems where GPUs are the most power-consuming devices, the simul-

taneous execution of GPU kernels may lead to overlapping high power

profiles, causing generation of power absorption peaks which could be

avoided with a smart distribution of the workload to the resources.

This chapter presents a predictive power-aware scheduling algorithm which

provides a real-time allocation of computationally-intensive jobs to the nodes

of a heterogeneous computing system, with a view to keeping the peak

power under a predetermined budget, mitigating the worst case power

condition. The algorithm can be used as a level of adjustable power state

software services [108, 88] in order to provide an efficient solution during

high-demand periods.

The basic idea behind the algorithm is to adopt a two-step approach. First,

the power consumption of a GPU kernel library is characterized. Jobs ac-

tivated on the system nodes utilize these kernels to accelerate intensive

computational cores. From the user viewpoint this characterization does

not affect the programming model at all. However, each time a new ker-

nel is added to the library, its power consumption must be characterized.

Second, this characterization is then used to develop a model capable of

adjusting the start time of a job depending on its GPU kernel calls, and se-

lecting the node on which to activate it, taking into account the jobs that

are already running on the system. This approach limits peak power re-

quirements and enables the system not to exceed the predetermined bud-

get. This is achieved without performance reductions caused by frequency

and voltage scaling as proposed in [87], since it is obtained by considering

the different profiles associated with each kernel in order to avoid concur-

rent execution of the most power-consuming jobs on the same node. The

3.2 Power Measuring System 61

specific contributions of this chapter may be summarized as follows:

• A low-cost measurement system has been developed to extract the

power profile of jobs running on heterogeneous computer architec-

tures. This system has been designed to make up for the lack of stan-

dard hardware sensors in the computing nodes used as basic blocks

of high performance systems [89].

• A power-aware scheduling algorithm to manage the resources of sev-

eral computing nodes has been developed. The scheduler manages

the start times and the nodes on which to run the jobs. The goal is to

minimize peak power absorption (such as may happen during simul-

taneous execution of several jobs) while keeping concurrency as high

as possible.

• A quantitative analysis has been carried out in order to demonstrate

that the algorithm significantly reduces peak power requirements dur-

ing parallel job execution, mitigating the worst case power condition.

3.2 Power Measuring System

In order to develop a job-level power model it is necessary to characterize

the power consumption of the jobs performed on the system nodes. Com-

mon power profiling techniques allow one to measure the consumption of

a single computer component such as a processor or a co-processor [109]

[110] [111] [112]. Other setups have been proposed to perform fine grain

profiling analysis of an entire system [89] [113]. However, they are based

on expensive measuring instruments.

In [111] three options are discussed to measure the power consumption of

a job running on heterogeneous CPU-GPU platform:

1. Measuring the power consumption of the GPU card;

2. Measuring the input of the power supply unit (PSU);

3. Measuring the output of the power supply unit.

Measuring the power consumption of the GPU card is the most direct way,

although it is not precise because the GPU is a co-processor and needs a

62 Power-Aware Job Scheduling

CPU as a host. Thus the power measured is only a part of the power re-

quired to run the job. Measuring the PSU input includes the power loss

by the power supply unit which may be 20% or more of the total power

dissipation [111]. However, measuring the total PSU output will not allow

one to understand how each computer component contributes to the to-

tal power consumption, whereas in order to develop a job-level model one

needs to measure the power consumption of each system component.

GPU
0

Power Supply
PSU

Current
Sensing
Board

CPU
K-1

CPU
0

MOTHERBOARD

RAM

GPU
M-1

PCI-e

Acquisition
and

Elaboration
V3.3

V 5

V 12

PCI-e
HD

PCI-e
Power line

P 3,3V ATX
P 5V ATX
P 12V ATX
P 12V EPS
P 12V PCI-e
P 12V PCI-e
P 3.3V SATA
P 5V SATA

SATA

Figure 3.1: Measuring setup for the generic computing node.

Fig. 3.1 shows the acquisition system used in this work. It has been de-

signed to measure the power consumption of each target system compo-

nent:

• the motherboard (ATX - 12 V, 5 V and 3.3 V);

• the additional power supply for CPU and PCI Express (EPS - 12 V);

• the GPUs (PCI-e - 12 V);

• the hard disk (SATA - 5 V and 3.3 V).

The current-sensing board is composed of 16 Hall effect current sensors ca-

pable of measuring currents in the range 0-30 A (Allegro ACS713) and 0-50

A (Allegro ACS758). The sensor outputs provide voltage values propor-

tional to the currents measured. Low-pass filters are connected between

sensor outputs and microcontroller inputs (STM32F) in order to improve

3.3 Power-aware scheduler 63

the signal-to-noise ratio. The bandwidth of the sensors is 120KHz, which

is higher than the cut-off frequency of the ADC input filter. Analog-to-

digital converters internal to the microcontroller sample the current data.

The board is connected to a PC used to acquire data via USB. A Java inter-

face is set up to manage data acquisition. When the connection between the

board and the PC is set, the microcontroller starts to send one data packet

per second. Using all 16 channels, the maximum sample rate is 1600 sam-

ples/s for each channel. The current samples are then multiplied by the

voltage values measured with a Fluke device and data are post-processed

by Matlab in order to obtain the power profile of each job.

3.3 Power-aware scheduler

High performance computing relies on computing nodes equipped with

multi-core devices at each node and a distributed resource management

system (DRMS). Users submit jobs which have to be assigned to the cores.

The DRMS sorts and assigns jobs to the available resources following a

scheduling policy. Hence by changing the DRMS policy it is possible to

limit peak power consumption[114].

The proposed power-aware scheduler is developed and implemented start-

ing from two common scheduling policies (First-in-first-out and Backfilling

first fit).

• First in First Out (FIFO)

First-in-first-out is a simple scheduling strategy. New jobs that must

be executed are placed at the end of the queue. When a resource

becomes available the first job in the queue is activated.

• Backfill algorithm (BFF)

Backfill is a policy which allows the scheduler to run jobs out of ar-

rival order. When there are not enough resources to run the first job

in the queue, other jobs in the queue are checked in order to find a job

that could be executed without exceeding the additional constraint

imposed by the algorithm. Usually backfill allows the scheduler to

start lower-priority jobs so long as they do not delay the first job in

the queue. Execution is therefore limited to the resources available

64 Power-Aware Job Scheduling

and the time available before the expected start time of the first job.

Various backfill strategies can be used. In this work a backfill first

fit strategy has been implemented: the list of feasible jobs is filtered,

selecting the first one which fits the constraints.

The proposed power-aware scheduler is capable of predicting the behavior

of each node, every time a new application is ready to be activated. Each

job discussed in the following pages is composed of a low computational

part running on a CPU host, and a data-intensive computational kernel

running on a GPU.

3.3.1 The scheduling algorithm

In order to simplify the design of the scheduling algorithm, three hypothe-

ses were formulated:

• during the entire execution of a GPU kernel, the power profile is as-

sumed constant and equal to the maximum value;

• power consumption of GPU kernels is not sensitive to changes in in-

put data set values;

• different input data size for the same GPU kernel lead to the same

peak power with different durations.

The validation of these hypothesis will be discussed in Section 3.4.1. Pa-

rameters used in the scheduling algorithm are defined in Table 3.1. The

Table 3.1: Nomenclature table of the algorithm

PC Power Capping : predetermined power constraint
Pjob (m) Maximum power consumption of mth-job
Pnode (n) Power consumption of nth-node
Pidle (n) Power consumed by the nth-node in idle state
N number of nodes
M number of cores for each node

purpose of the scheduler is to assign jobs to the available resources, lim-

iting the maximum power consumption of each node to below the prede-

termined constraint (PC) while keeping the parallelism as high as possible.

PC is set via software and can be adjusted by the user.

3.3 Power-aware scheduler 65

Power consumption of all kernels comprising the library is characterized

a priori using the measuring system described in Section 3.2. Thus, the

scheduler already knows the maximum power consumption of each job

(Pjob) that could be activated on the nodes. As previously mentioned, these

contributions are assumed constants and equal to their maximum values.

The detailed description of how the maximum power consumption of each

job has been obtained is reported in Section 3.4.1.

Each GPU in the system is a stand-alone device running an independent

job. Hence, the total power consumption of the nth-node during the concur-

rent execution of M jobs is computed by adding up the power consumed

by the node in idle state (Pidle) and the power consumption of jobs (Pjob)

which are running on that node, as shown in (3.1).

Pnode (n) = Pidle (n) +
M−1∑
m=0

Pjob (m) ∀n ∈ N (3.1)

Once the mth-job has been executed, the power consumption of the nth-

node is updated as shown in (3.2).

Pnode (n) = Pnode (n) − Pjob (m) (3.2)

When a new job needs to be activated on the system the DRMS checks if

there are nodes with resources available and if these nodes will meet the

power constraint when executing the job, as reported in (3.3).

PC ≤ Pnode (n) + Pjob (3.3)

Hence, if the condition shown in (3.3) is verified for some nodes, the sched-

uler assigns the application according to a minimum power-slot policy as

shown in the following algorithm.

Fig. 3.2 explains graphically what is discussed above. The system shown

is composed of 4 nodes (N = 4), each one equipped with 4 GPUs (M = 4).

At time Tstart the scheduler has to select the node on which the new job is

to be activated. The first node (NODE 1) is already running 4 jobs so it has

no resources available. The second node (NODE 2) has one GPU available.

However, if the job were to be run on the node, the PC threshold would

be exceeded. The job needs to be executed on NODE 3 or NODE 4 if the

66 Power-Aware Job Scheduling

Algorithm 3.1. Node selection
Input: N ;PC ;Pnode;Pjob

Output: selected node (n)
1: n← none
2: Pmin ← PC

3: for i = 0 to N − 1 do
4: PTMP = PC − Pnode (i) − Pjob

5: if (0 ≤ PTMP ≤ Pmin) then
6: Pmin ← PTMP

7: n← i
8: end if
9: end for

10: return n

power budget is not to be exceeded. The DRMS performs the scheduling

according to a minimum power-slot policy as illustrated in the proposed

algorithm. The strategy is to activate the job in the node with the small-

est ”power-slot” able to keep the power consumption under the predeter-

mined threshold. This is done in order to keep the largest ”power-slot” free

for a more power-consuming job.

In this example the job is activated on NODE 4 while NODE 3 is left free for

a more power-consuming job. If all nodes are busy or the constraints are

not met, the job will wait to be scheduled in the queue in accordance with

the scheduling policy selected. Thus the scheduler manages both power

and GPU as finite resources.

The algorithm can easily be extended to rack level instead of node level.

In this case, each time a new job is activated, the power needs to be con-

trolled at rack enclosure level [88] instead of node level. Equation (3.3) can

be rewritten as:

Prack ≤
N−1∑
n=0

Pnode(n)
+ Pjob (3.4)

Once the characterization of jobs has been completed, the scheduler makes

its decision at run time (on-line), selecting the most suitable candidates out

of the current set of tasks ready-to-run. The algorithm is non-preemptive

in that the currently executing task will not be preempted until completion.

3.4 Performance and Evaluation 67

job to be allocate

job to be allocate

job to be allocate PC

t t

t t

PC

PC PC

Job 2

Job 3

Job 1

Job 4
Job 3

Job 2

Job 1

Power

Power

Power

Power

Job 1 Job 1

Job 2 Job 2

Job 3 Job 3

NODE 1

NODE 3 NODE 4

NODE 2

Tstart Tstart

Tstart Tstart

Pidle Pidle

Pidle Pidle

P
n

o
d

e
(1

)

P
n

o
d

e
(2

)
P

n
o

d
e
(4

)

P
n

o
d

e
(3

)

Pjob

Pjob

Pjob

Figure 3.2: Example of scheduling: 4 nodes, each one composed of 4 cores

3.4 Performance and Evaluation

3.4.1 Job Characterization

Six jobs in the field of linear algebra (see Table 3.2) were developed, starting

from the code samples available in [25, 115]. The power consumption of

these jobs was characterized by changing the dimensions and the values of

the input data.

The configuration of the computing node used for this work is detailed as

follows:

• Motherboard SuperMicro X8DTG-QF;

• Two Intel Xeon E5520 CPUs @ 2.27 GHz;

• 24 GB RAM;

• Two NVIDIA GTX 590 graphics cards to a total of 4 GPUs.

Differently from the target system described in section 2.3, the GPU GTX

480 has been removed to avoid multiple algorithm characterizations on dif-

ferent GPUs. The contributions measured in order to obtain an estimation

of the power consumption during the computation of a job are:

• the power consumption of the motherboard (ATX);

68 Power-Aware Job Scheduling

• the additional power supply for CPU and PCI-express (EPS);

• the power of the GPUs (PCI-e);

• the consumption of the hard disks (SATA).

The idle power consumption of the computing node (Pidle) is 240 W. Each

job was characterized in the same operating conditions and during its exe-

cution no competing tasks were performed.

The heterogeneous programming model supported by GPU implies a sys-

tem composed of a host (CPU) and a GPU each with their own separate

memory. Kernels operate out of GPU memory, so the run-time provides

functions to allocate, deallocate and copy GPU memory, as well as transfer

data between host memory and GPU memory [34]. This architecture is re-

flected in the power profile of each job. A small increase in the job power

consumption will be detected during data upload and download. How-

ever the most time- and power-consuming phase is the kernel execution.

HOST EXECUTION

cuBLAS
 kernel

Download and upload Allocation and Upload

V ATX

V ATX

V ATX

V EPS

P 3V ATX
P 5V ATX

P 12V PCI
P 12V PCI
P 5V SATA

P 12V ATX
P 12V EPS

Figure 3.3: Power profile measured during a matrix multiplication on GPU

Fig. 3.3 shows an example of job power profile obtained with the mon-

itoring system developed. The figure shows a characterization of a ma-

trix multiplication performed by multiplying two input matrices compris-

ing 30720x30720 elements. Since the GPU memory has limited space, the

computation was carried out by decomposing the matrix into 9 different

3.4 Performance and Evaluation 69

sub-matrices of dimensions 10240x10240. Two main contributions can be

observed: the black line which shows the consumption of the motherboard

and the blue line which represents the power supply of a GPU. As shown in

Fig. 3.3, a GPU job starts with allocation of the GPU memory and copying

of data from host to GPU (contribution indicated in Fig. 3.3 with alloca-

tion and upload). Once the data have been allocated on the GPU memory,

the kernel execution starts. This phase always coincides with the highest

power in the job (contribution indicated in Fig. 3.3 with cuBLAS kernel).

After computation of a kernel, results are copied from device to host mem-

ory and new input data are uploaded on the device memory (contribution

indicated in Fig. 3.3 with download and upload). Once the job is finished,

the device memory is released. The other contributions reported in Fig. 3.3

(e.g. SATA) are negligible. All the jobs studied in this work, performed

with different sizes of input matrix and different input data set values, fol-

low the trend discussed above and shown in Fig. 3.3. The characterization

proves the hypothesis discussed in Section 3.3. The power profile of a ker-

nel is not sensitive to changes in the input data set values. In addition, ex-

periments demonstrate that different data sizes for the same kernel lead to

power profiles with very similar power peaks which can be approximated

to the same peak value. The different duration of these kernels depends

on the computational complexity of the kernel selected. A summary of

the GPU job power consumption is reported in Table 3.2. The table shows

Table 3.2: Power consumption of GPU jobs

Job Pjob

Matrix Multiplication 160W

Matrix Multiplication (cublas) 220W

Eigenvalues 170W

Triangular Matrix Inversion 190W

Matrix Transpose 180W

Scalar Product 110W

that the jobs differ considerably in power consumption value. These values

have been obtained by subtracting the idle power consumption of the GPU

from its maximum power consumption during the execution of the job.

As previously described in the algorithm, characterization of jobs which

can be activated on the target system allows the scheduler to predict what

70 Power-Aware Job Scheduling

(a) Theoretical

(b) Experimental

Figure 3.4: Comparison between theoretical and experimental evaluation
of total power absorption during 4 concurrent matrix multiplications.

the power consumption will be, knowing which jobs are currently running

on the node. An example of what has been discussed above is shown in

3.4 Performance and Evaluation 71

Fig. 3.4. The consumption profile is obtained by considering 4 concurrent

executions of the previously characterized matrix multiplication. Fig. 3.4a

shows the prediction obtained by adding the profile previously character-

ized, while Fig. 3.4b shows the consumption measured during run-time.

Substituting the values in (3.1), the estimated peak power consumption is

computed.

Pnode (n) = Pidle (n) +
M−1∑
m=0

Pjob (m)

= (240 +
3∑

m=0

220)W

= 1120W

The dashed lines at the top of the two profiles show the approximation in-

troduced in the algorithm (i.e. power constant and equal to the maximum

power value). The two profiles show the same trend. The fluctuations are

more evident in the theoretical case due to the fact that the plot represents

the sum of four identical contributions, so that noise components are visi-

bly amplified.

3.4.2 Experimental Setup

The scheduler was evaluated on 4 computing nodes (N = 4) equal to that

described in Section 3.4.1. Hence the total number of GPUs used is 16. The

algorithm was tested for generating, executing and measuring 10 work-

loads of 1000 job requests selected from the previously characterized jobs.

In order to create the workload, a Markov chain model was used [116] [117].

Each job requires 1 GPU and it is assumed that there is no data dependence

between any jobs. This hypothesis is used to simplify the experimental

setup. However, no considerable benefits can be achieved from this as-

sumption, since the scheduling policies used do not allow jobs to be exe-

cuted out of the arrival order. Each measurement was ended after all jobs

had finished.

The workloads were generated so as to have more concurrent jobs needing

to be activated than resources available. This was done in order to verify

72 Power-Aware Job Scheduling

the performance of the algorithm during high-demand periods. Power pro-

files obtained using the proposed power-aware scheduling algorithm were

compared with the results obtained by executing and measuring the same

jobs without the power-aware characteristic, so as to evaluate the trade-off

between performance and peak power reduction.

As shown in the previous Section, the worst case scenario of a node, (con-

sidering the previously characterized jobs) corresponds to four concurrent

executions of matrix multiplication (cublas), bringing the total peak power

up to 1120 W (Ppeak {WC}) as shown in Fig. 3.4. Although this situation is

very rare, the power supply has to be designed so as to sustain this condi-

tion.

3.4.3 Analysis of Results

Allocation of workloads to resources was evaluated for the two different

policies (FIFO, BFF) while changing the constraint on the maximum power

value attainable by the system (PC). Since the scheduling is done accord-

ing (3.3), changing PC the maximum power consumed by the node and the

execution time of the entire workload change as well.

Several indices are introduced to evaluate the performance of the proposed

technique. A detailed description of these follows:

Peak reduction (PR)

The peak reduction is computed comparing the peak power values ob-

tained executing the workload with and without the power aware char-

acteristic as shown in (3.5):

PR =
Ppeak {ST} − Ppeak {PA}

Ppeak {ST}
· 100 (3.5)

with

Ppeak = max({Pnode (n) : n = 0, . . . , N − 1})

where Ppeak {ST} is the peak power value measured during the execution

of the algorithm without the power-aware characteristic while Ppeak {PA} is

the peak power value measured during the execution of the power-aware

version.

Peak reduction with respect to the worst case power scenario (PW)

3.4 Performance and Evaluation 73

Peak reduction with respect to the worst case power scenario is defined

using (3.5) by substituting the power value measured during the execution

of the algorithm without the power aware characteristic (Ppeak {ST}) with

the worst case power value (Ppeak {WC}, in this case 1120W).

Increase in time (T)

The increase in computation time is obtained comparing the execution time

of the workload with and without the power aware characteristic as shown

in (3.6):

T =
Tmax {PA} − Tmax {ST}

Tmax {ST}
· 100 (3.6)

with

Tmax = max({TW (n) : n = 0, . . . , N − 1})

where TW is the workload execution time.

Increase in energy (EC)

The increase in the energy consumption is evaluated following (3.7):

EC =
E{PA} − E{ST}

E{ST}
· 100 (3.7)

where the total energy consumption E is computed as shown in 3.8

E =

N−1∑
n=0

(

TW (n)∫
0

Pnode (n,t) · dt) (3.8)

Peak power deviation from the average (MD)

The peak power deviation from the average is obtained as reported in (3.9):

MD =
Ppeak − Pavg

Pavg
· 100 (3.9)

where the average power is computed following (3.10):

Pavg =
E

N−1∑
n=0

TW (n)

(3.10)

Fig. 3.5 shows the experimental results measured by executing the work-

loads. As shown in Fig. 3.5a, by setting the power capping value at 800 W

74 Power-Aware Job Scheduling

0

5

10

15

20

25

30

800 850 900 950

P
e

a
k

 R
e

d
u

c
ti

o
n

 [
P

R
][

%
]

Power Capping [Pc]

p-fifo

p-bff

0

2

4

6

8

10

12

14

16

18

20

800 850 900 950

T
im

e
 i
n

c
re

a
s

e
 [

T
]

[%
]

Power Capping [Pc]

p-fifo

p-bff

0

5

10

15

20

25

30

800 850 900 950P
e

a
k

 R
e

d
u

c
ti

o
n

 [
P

W
][

%
]

-
W

o
rs

t
c

a
s

e

Power Capping [Pc]

0

2

4

6

8

10

12

14

16

18

20

800 850 900 950

E
n

e
rg

y
 I

n
c

re
a

s
e

[E

C
][

%
]

Power Capping [Pc]

p-fifo

p-bff

a) c)

d) b)

Figure 3.5: Average performance obtained using the power-aware schedul-
ing algorithm. In a) one sees the average peak reduction obtained by the
algorithm, while b) shows the increase in time. Fig. c) shows the increase
in energy consumption and Fig. d) the power reduction with respect to the
worst case scenario.

a peak power reduction of around 15% is measured. However this reduc-

tion is paid for by a time increase between 17 and 19% (Fig. 3.5b) and an

increase in energy consumption between 14 and 15% (Fig. 3.5c), depending

on the scheduling policy. This means that the threshold chosen (PC) lim-

its full exploitation of the computational parallelism available. By using a

higher power budget (850 W), better results can be obtained. In this case

the increase in time taken to compute the entire workload is less than 2%

with the power-aware version of the BFF algorithm, with a measured peak

power reduction of up to 10%. Using the power-aware FIFO approach, re-

sults are slightly worse because each time the power constraint is not met

all jobs are delayed. On further increasing the PC threshold, a peak power

reduction between 6 and 7% is recorded without any impact on system per-

formance. This means that the algorithm removes the sporadic peaks that

take place during workload execution, thus avoiding power capacity over-

load.

3.4 Performance and Evaluation 75

Another advantage introduced by the algorithm is that it mitigates the

worst case power scenario. As shown in Fig. 3.5d, by using the power-

aware approach (with PC = 850W) the worst case scenario is reduced by

up to 24% with a negligible impact on performance.

Fig. 3.6 explains the benefit of the algorithm from another point of view.

The plot shows the peak power deviation from the average (MD) as a func-

tion of the increase in computational time (T).

850

No capping

950

900

850

800

40

45

50

55

60

65

0 5 10 15 20

M
D

 [
%

]

T [%]

p-fifo

p-bff

Figure 3.6: Power-Performance comparison.

When no capping is forced a peak power 60% higher than the average

Table 3.3: Power-Performance Comparison

p-FIFO p-BFF

PC
PR T E MD PR T E MD
[%] [%] [%] [%] [%] [%] [%] [%]

800
12.0- 11.7- 10.5- 45.5- 11.2- 11.3- 9.5- 45.0-
18.5 22.6 17.8 52.5 18.7 21.8 16.9 54.6

850
6.9- 2.8- 2.3- 43.4- 6.4- 0- 0- 42.2-
14.6 9.7 7.9 52.9 13.2 4.4 3.6 49.5

900
2.0- 0- 0- 45.4- 3.5- 0- 0- 44.9-
9.1 2.6 2.0 56.6 9.0 2.9 2.4 56.0

950
0- 0- 0- 49.9- 0- 0- 0- 49.9-
6.2 2.8 2.3 67.5 8.9 2.5 2.3 67.5

value is measured. The first part of the curve (i.e. when power capping is

76 Power-Aware Job Scheduling

set between 950 and 900 W) shows how the peak deviation from the mean

can be reduced by 10% without any significant increase in the execution

time of the workload, by scheduling jobs taking their power consumption

into account. In the last part of the curve the value set in the algorithm is

closest to the average power value of the workload, so that peak reduction

is obtained at the cost of a significant time increase.

As expected, the BFF scheduling policy allows one to achieve better results

than the FIFO policy because it introduces fewer constraints on queue man-

agement.

A summary of the measurements recorded is shown in Table 3.3. The in-

crease in energy is due to the fact that jobs are delayed when the power

constraint is not met. The system is therefore in the idle state for a longer

time frame.

(a) (b)

(d) (c)

Figure 3.7: a) Comparison between GPU and CPU execution of matrix mul-
tiplication, b) Four different GPU kernels, c) Triangular matrix inversion
with different sizes of matrix, d) Analysis of power requirements of differ-
ent jobs.

3.5 Discussion 77

3.5 Discussion

Although thorough modeling of GPU kernel power dissipation does not

lie within the scope of this chapter, several important considerations can

be drawn from the measurement of power profiles taken by the measuring

system:

• Execution of a GPU job (for the architecture studied) is much more

peak power-consuming than execution of the same job on a CPU (al-

though the execution time is significantly reduced);

• during execution of a kernel the power profile can be assumed con-

stant;

• power consumption of jobs is not sensitive to changes in the input

data set values;

• different input data sizes for the same kernel lead to the same trend

with different durations. The run-time depends on the computational

complexity of the algorithm used in the kernel.

Fig. 3.7 shows what has been discussed above. The first plot (Fig. 3.7a)

was obtained when computing the same matrix multiplication three times,

using three different algorithms. The first two are mapped on GPU (matrix-

Mul cublas and matrixMul kernel), while the third is obtained by computing

the same operation on CPU (host execution). Since the computation on GPU

is much more power consuming than on CPU, in order to reduce peak

power one should focus on concurrent executions of GPU kernels rather

than on CPU tasks. Since the difference between the idle power state and

the maximum power state of a CPU is small (compared to that of a GPU),

the CPU power consumption can be assumed to be equal to its maximum

power consumption each time a new job is activated on CPU. Fig. 3.7b

shows the execution of different jobs performed on GPU. A GPU job can be

composed of a single kernel or multiple call to the same kernel performed

with different sets of input data to overcome the limited space of the GPU

memory. Fig. 3.7b makes it clear that the power consumption of a GPU

job can be considered as a constant contribution (dashed line) that has to

be added to the total power consumption. Fig. 3.7c and Fig. 3.7d provide

78 Power-Aware Job Scheduling

some additional considerations as to the values and sizes of input data.

Fig. 3.7c shows four matrix multiplications performed with different input

values. The graph shows that the power profile of a job depends only on

the kernel computed and is independent of the input values. The last plot

(Fig. 3.7d) shows that the same kernel, performed with different input data

sizes, leads to different durations of the kernel, but with comparable peak

power values. These considerations helped to streamline development of

the algorithm (which is in fact based on these hypotheses) so as to make it

general.

3.5.1 Application case

As previously pointed out, the purpose of the algorithm is not to save en-

ergy, which increases, albeit slightly. The approach aims to reduce the sup-

ply cost due to high peak power whilst having negligible impact on the

parallelism of computational nodes.

From another point of view the developed model allows designers to in-

crease the number of cores without increasing the capacity of the power

supply unit. For example, each node used in this work is equipped with a

power supply unit of 1400 W. As shown in Section 3.4 the worst case power

scenario is around 1120 W. In this scenario, since each GPU GTX 590 used

in this work consumes up to 365W [118], to equip the system with another

GPU could lead to system failure caused by power capacity overload. Us-

ing the proposed approach, it would be possible to add one GPU GTX 590

to the system, without overloading the power capacity, thereby reducing

supply costs, cooling systems and power distribution units.

3.5.2 Limitations of the approach

Experimental results shown in this chapter depend on the target architec-

ture utilized in this work. The execution of these jobs on a different ar-

chitecture could lead to a different peak power values. This is because the

technique is based on an a priori characterization that is architecture depen-

dent. If the target system changes, the characterization has to be repeated

on the new target system. In addition a new characterization is needed

each time a new kernel is added to the library. These considerations high-

3.6 Conclusions 79

light how the power-aware scheduling algorithm is related to the low-cost

monitoring system proposed.

3.6 Conclusions

This chapter presented a new algorithm for parallel realtime scheduling,

executed on GPU cluster nodes. The idea proposed is to manage both

power consumption and GPUs as finite resources has been proposed in or-

der to fully exploit parallelism which in heterogeneous CPU-GPU systems

is limited by the power consumption. Since the power configuration may

vary widely, there is the likelihood that job overlapping will result in power

spikes high enough to exceed the specifications of the nodes, causing catas-

trophic failures in systems designed to a better-than-worst-case policy. In

addition, peaks synchronized across several nodes could cause localized

power outage. In addition the algorithm allows designers to increase the

number of cores without increasing the capacity of the power supply unit.

Compared to a system without any power-aware policy, the model allows

one to obtain a peak power reduction of as much as 10%. Executing work-

loads that usually involve high power peaks can be avoided at the cost of

a very slight time increase, making it possible to reduce the power supply

cost.

Chapter 4

Heterogeneous System using a

Reconfigurable approach for

efficient graph exploration

This chapter present a graph exploration based on efficient use of memory

which tries to overcame speedups achieved by the previous implementa-

tions. This exploration has been carried out during my 6-month visiting

period at the Department of Computing - Imperial College London, under

the supervisor of Prof. Wayne Luk. The implementation of this work is the

subject of an ongoing research project.

4.1 Motivation and background

Many important areas of science such as astrophysics, artificial intelligence,

genomics and national security require approaches to explore large scale

graphs involving millions of vertices and billion of edges. Searching al-

gorithm are used to explore vertices, and paths with specific properties.

Among graph search algorithms, breadth-first search (BFS) is a simple one,

often used as archetype for other important algorithms such as Prim’s mini-

mum-spanning-tree, Dijkstra’s single-source shortest paths, best-first search,

uniform-cost search, greedy search, etc [8].

BFS is widely used in protein-protein interaction problems [119], intelli-

gence analysis [120], robotics [121, 122] and network analysis [123]. More-

over, the relationship between vertices in the analysis of scientific graph is

80

4.2 Breadth-first search 81

expressed by the properties of the shortest path, given by the BFS search

[124].

A wide literature explores different BFS solutions, based on multicore pro-

cessors [125, 126, 124] or heterogeneous architectures [127, 128, 9, 129]. In

[124] a new sophisticated data structure to reduce cache coherence traffic

between CPUs is presented. This implementation outperforms the previ-

ous ones, including other architectures such as cell processors [128], clus-

ters [125] and shared memory supercomputers [130]. A simple and faster

implementation of BFS on multicore CPUs has been proposed in [9]. The

paper also proposes a new hybrid method based on CPU and GPU which

selects the best execution methods among sequential and parallel approach,

depending on the graph scale.

Unfortunately traditional software and hardware parallel implementations

do not necessary work well for large scale graphs due to the graph proper-

ties [131]. For instance, many graphs are unstructured and highly irregular

and they require fine-grained memory accesses to be explored. These char-

acteristics lead to suboptimal performance in cache-based microprocessors

due to poor spatial and temporal locality of memory accesses. Moreover,

since no computation must be performed in BFS algorithm, the execution

is dominated by the memory latency. Also on reconfigurable architectures,

graphs with unstructured and irregular memory accesses cannot achieve

high performance. The low memory bandwidth generates many pipeline

stalls, resulting in a little FPGA-acceleration.

In this chapter a novel idea for an efficient graph implementation on recon-

figurable architectures is presented.

4.2 Breadth-first search

Given a graph G(V,E) composed of a set of vertices V, a set of edges E and a

source s in V, the BFS algorithm explores the edges of G to discover all the

vertices reachable from s. It computes the distance from s to each reachable

vertex in terms of smallest number of edges and it produces a breadth-first

tree rooted at s. Vertices are visited in levels: when a vertex is visited at

level l, it also said to be at distance l from the root.

For any vertex v reachable from s, the simplest path in the tree from s to v is

82
Heterogeneous System using a Reconfigurable approach for efficient

graph exploration

the path containing the smallest number of edges. The name breadth-first

search comes from the fact that the algorithm expands the frontier between

discovered and undiscovered vertices uniformly across the breadth of the

frontier. This means that the algorithm discovers all vertices at distance k

from s before discovering vertices at distance k+1.

Figure 4.1: The operation of BFS on an undirected graph [8].

4.2 Breadth-first search 83

Figure 4.1 illustrates how BFS works on a sample graph. To keep track of

progress, vertices in figure are white, gray and black. All vertices are ini-

tially white, except for the source vertex which is gray. When a vertex is

encountered during the search, it becomes non-white. Therefore, gray and

black vertices have already been discovered. However BFS distinguishes

between them to ensure that the search proceeds in a breadth-first manner.

Suppose for example that vertices w and t are connected by an edge (w, t ∈
E) and vertex w is black, then vertex t can be gray or black (see also figure

4.1c and e). Grey vertices may have some adjacent white vertices which

represent the frontier between discovered and undiscovered vertices (for

example see vertices t and u in figure 4.1c). The algorithm also builds the

breadth-first tree, which initially contains just the source vertex s. Every

time a white vertex v is discovered, the vertex v and the correspondent

edge are added to the tree. Since a vertex is discovered at most once, it has

at most one parent. The sequential breadth-first search algorithm follows:

The graph representation usually adopted is the ”Compressed Sparse Row”

(CSR) format. It consists of three vectors:

• V O(N)-sized - Input/Output;

• Offset O(N)-sized - Input;

• Adj list O(M)-sized - Input.

The BFS level of each node is computed starting from a source vertex and

stored in an O(N)-sized array (V). The graph representation merges the

successors of all vertices into a single O(M)-sized array (Adj list) with the

beginning location of each vertex’s adjacency list stored in a separate O(N)-

sized array (Offset).

Figure 4.2 shows the CSR representation relative to the previous example

(see also figure 4.1 a). The source vertex is s (i.e. vs = 0). The offset values

in position s (i.e. 4) and s - 1 (i.e. r = 2), indicate that successors of vertex s

are stored in the adjacency list in position 2 and 3 (for a generic vertex v, the

successor are stored from offset[v− 1] to offset[v]− 1). Then, the vertices

vector must be updated according to the vertices stored in the adjacency

list (red arrows in figure 4.2, Vr = 1 and Vw = 1).

84
Heterogeneous System using a Reconfigurable approach for efficient

graph exploration

Algorithm 4.1. Sequential BFS exploration of a graph
Input: G(V,E), graph;

source vertex, s;
level, exploration level;
Q, vertices to be explored in the current level;
Qnext, vertices to be explored in the next level;
Ev, set of edges connected to v
marked, array of booleans:
markedi∀i ∈ [1 · · · | V |]

1: ∀i ∈ [1... | V |] : markedi = false
2: markeds = true
3: level← 0
4: Q← {s}
5: repeat
6: Qnext ← {}
7: for all v ∈ Q do
8: for all n ∈ Ev do
9: if markedn = false then

10: markedn ← true
11: Qnext ← Qnext ∪ {n}
12: end if
13: end for
14: end for
15: Q← Qnext

16: level← level + 1
17: until Q = {}

Figure 4.2: Compressed sparse row format

4.3 Irregular Graph and Parallel BFS Algorithm

The BFS algorithm guarantees that all vertices of the graph are traversed

in a breadth-first manner. This means that all vertices in a certain level are

visited before the vertices with a greater level.

4.3 Irregular Graph and Parallel BFS Algorithm 85

In shared-memory systems the most common approach is level synchronous

BFS. Vertices are divided in 3 sets; the visited set V, current-level set C and

the next-level set N. All the vertices in the current set are visited and the

next level vertices are identified. Following this approach synchronization

is needed at each level and the parallelism is limited by the number of ver-

tices in a given level as shown in algorithm 4.2.

Algorithm 4.2. Level Synchronous Parallel BFS
Input: G(V,E) Graph;

source vertex, s;
1: V isited = Current = 0;Next = {s}
2: level← 0
3: repeat
4: Current = Next
5: Next = 0
6: for V ertex v ∈ Current do
7: for V ertex n ∈ Ev do
8: if n /∈ V isited then
9: Next = Next ∪ {n};V isited = V isited ∪ {n}

10: end if
11: end for
12: end for
13: level← level + 1
14: until N = 0

Recently new algorithms which optimize the simple parallel BFS imple-

mentation described in algorithm 4.2 have been proposed [124, 9, 129].

In [129] a reconfigurable computing solution which explores multiple ver-

tices in parallel has been presented. The strategy used to take advantage

of the hardware resources is to substitute the pipelining techniques usually

implemented on FPGA with multiple application-specific graph-processing

elements which tolerate the off-chip memory latency. This implementation

outperforms the state of the art of 2 times for graphs with million of ver-

tices and edges, using 4 FPGAs.

Other algorithms running on CPU use several optimizations to speed up

the breadth-first exploration. For example in [124] (Queue-based method see

also algorithm 4.3), the authors use a bitmap to compactly represent the vis-

ited set of vertices in concert with ”test and set” atomic instruction when

they update the bitmap. They also use local queues (one for each processor)

before to update the global queue. Also this operation is efficiently imple-

86
Heterogeneous System using a Reconfigurable approach for efficient

graph exploration

mented using ”fetch and add” atomic instruction. In addition they use a

delicate queue implementation which minimize unnecessary traffic during

queue operations. Although the queue optimization provides remarkable

benefits for small input dataset, the performance of this approach decreases

when the size of the input data set becomes very large.

However, real-world graphs are characterized by a property called “small-

world phenomenon” which states that the number of vertices in each BFS

level grows very rapidly. This property is not an observation valid for

certain graphs but a fundamental characteristic of randomly-shaped real-

world graphs [132]. Table 4.1 reports the number of vertices in each level

obtained for a graph with 32 million vertices and 256 million edges gener-

ated using RMAT [133].

Table 4.1: Number of vertices in each BFS level: result from typical execu-
tion in an RMAT graph [9]

Level Num. Vertices Fraction of V ertices(%)+

0 1 3.1 ∗ 10−6
1 4 1.3 ∗ 10−5
2 749 2.0 ∗ 10−4
3 109239 0.34
4 7103690 22.20
5 9088298 28.40
6 130298 0.41
7 172 5.3 ∗ 10−4

total visited vertices 16432919 51.35
total visited edges 255962977 99.99

This large graph has a maximum level equal to 7. The execution time is

dominated by the traversal of levels 4 and 5, since most of the vertices be-

long to these two levels. As stated in [9], many previous implementation

of level synchronous BFS [128, 124, 129] do not take into account the small-

world phenomenon. In this case an approach based on an efficient memory

use provides better results. The approach [9] is implemented on GPU, and

the use of shared queue is avoided due to the limitations of GPU mem-

ory architecture (see also section 1.3.3). This method, also called Read-based

method, replaces local queues with one global queue that tells if a vertex

belongs to the visited level, current level or next level. This array is ac-

cessed multiple times for each level. In this method, the data access pattern

4.3 Irregular Graph and Parallel BFS Algorithm 87

Algorithm 4.3. Queue-based Parallel BFS algorithm
Input: G(V,E) Graph;

source vertex, s;
Bitmap[v]: bit set to 1 if vertex v is visited , otherwise 0
CQ : queue of vertices to be explored in the current level
NQ : queue of vertices to be explored in the next level
LockedDequeue(Q) : Returns the front element of the queue Q
and updates the front pointer automatically;
LockedReadSet(a, val) : Returns the current value of a and
sets it to val atomically;
LockedEnque(Q, val) : Insert val to the end of the queue
and updates the pointer atomically;

Output: Array P [1... n] with P [v] holding the parent of v
1: for all v ∈ V in parallel do
2: P [v]←∞;
3: end for
4: for i← 1...n in parallel do
5: Bitmap[i]← 0;
6: end for
7: P [r]← 0;
8: CQ← Enqueue r;
9: fork;

10: while CQ 6= ∅ do
11: NQ← ∅;
12: while CQ 6= ∅ in parallel do
13: u← LockedDequeue(CQ);
14: for each v adjacent to u do
15: a← Bitmap[i];
16: if a = 0 then
17: prev ← LockedReadSet (Bitmap[v], 1);
18: if prev = 0 then
19: P [v]← u;
20: LockedEnqueue(NQ, v);
21: end if
22: end if
23: end for
24: end while
25: Synchronize
26: Swap(CQ,NQ)
27: end while
28: join

allows a sequential read of the adjacency list, minimizing the access mem-

ory latency. In addition, in order to speedup the overall computation, a

88
Heterogeneous System using a Reconfigurable approach for efficient

graph exploration

combination of two methods is used. If the current level contains only few

vertices the Queue-based algorithm presented in [124] is used, otherwise the

Read-based method is used.

However, both these methods [124, 9] still require additional random ac-

cesses from the adjacency list to the destination vertices (red arrows of fig-

ure 4.2).

4.4 Parallel BFS implementation

Having a look to table 4.1, it is clear that there are 2 levels (level 4 and level

5) where up to the 30% of the vertices must be explored. This means that

in these 2 levels a large part of the adjacency list and the vertices vector V

must be read. In these levels multiple random reading of the same memory

page executed at different time steps, could lead to a performance drop.

As an example, suppose we have to find the successor of vertices r and w in

the previous example (see also figure 4.1b, c, d). For sake of simplicity we

also suppose that the vertices vector V is memorized in 2 different bursts

(or memory pages).

Figure 4.3: Data access pattern

As depicted in figure 4.1 the successor of vertex r is vertex v while the suc-

cessors of vertex w are t and x. Hence we initially have to read the second

burst in order to update the level of vertex v. Then the algorithm updates

vertex t saved in the first burst and finally vertex x stored in the second

burst.

Since vertices contained in the adjacency list are stored in sparse order,

there is an high likelihood to modify elements in the same burst several

times, at different time steps. This means that the same burst (or memory

4.4 Parallel BFS implementation 89

page) must be loaded from the on-board memory to the on-chip memory

multiple times. Since graph algorithms are memory-bounded a speed up

can be obtained reducing this number of transfers. In this case instead of

multiple random accesses of the vertices vector V, stored on the on-board

memory, it is better to perform random accesses on the on-chip memory.

Hence, the idea herein proposed to speed up the computation is to explore

levels with an high number of vertices (such as levels 4 and 5 of table 4.1)

using a different approach.

In order to do this the algorithm is decoupled in different stages. The CRS

representation on reconfigurable architectures, must be changed in order

to avoid as much as possible additional logic, necessary to manage sparse

and shapeless graphs. The first step is to create a new O(M)-sized vector

called Index on the host memory and copy this vector on the FPGA on-

board memory. This vector is created at the beginning of each iteration

level (level 1 in figure 4.4) starting from the vertices vector V and the offset

vector as shown in figure 4.4. The vertices vector V is read and when the

value is equal to the iteration level, the index vector must be updated ac-

cording to the position indicated in the Offset vector. The Index vector will

contain 1 if an element of the adjacency list must be read and 0 otherwise.

Figure 4.4: Additional Index Vector.

Although this vector represents an additional steps to the graph explo-

ration, it is generated exploiting temporal and spatial locality of the caches,

since the list is read sequentially. The Index vector can be thought as an

enable. Its purpose is to increase the parallelism and avoid additional logic

on FPGA since each vertex does not have a fixed number of successors.

As an example we consider the figure 4.5. In order to exploit the paral-

90
Heterogeneous System using a Reconfigurable approach for efficient

graph exploration

Figure 4.5: Relationship between Index and Vertex vectors.

lelism provided by FPGA, each vertex contained in the first burst should

be read in parallel, and the successors stored in the adjacency list should

be modified in parallel as well. However, if each vertex has a different

number of successors, the speed up is limited by vertex with the higher

number of successors (vertex x in the previous example, which has 4 suc-

cessors). In a large scale graph this number can be huge. In the example

shown in table 4.1 the number of successors can vary from 0 up to 300000.

Therefore, once the Index vector is created, the graph can be processed in

parallel at the adjacency list level. Then, a bitmap on the on-chip memory

is created in order to store the vertices which must be updated at this it-

eration level. The size of this bit-vector is equal to the number of vertices

of the graph (O(N)-sized). To update the bitmap a random memory access

is still needed. However, in this case the random access is performed on

the on-chip memory. Since on-chip memory is composed of several banks

edges s and r can be written at the same cycle exploiting the parallelism

provided by FPGA as shown in figures 4.7 and 4.6.

Once the bitmap has been completely updated the vertices vector can be

updated in sequential order avoiding multiple overheads due to random

memory access. The proposed implementation is shown in algorithm 4.4.

Obviously this methods can be used only when a large number of vertices

must be explored. Hence, to address the inefficient processing of non-

critical levels, a combination of two approaches can be adopted as pro-

posed in [9]. The idea is to use the Queue-based method proposed in [124]

when the current level contains only few vertices, and the proposed im-

plementation when many vertices must be explored. Since all graphs start

4.5 Discussion 91

Figure 4.6: Bitmap update: first step in parallel.

Figure 4.7: Bitmap update: second step in parallel.

from a single source vertex, the hybrid approach will start using the Queue-

based method. Then when the size of the next level is larger than a threshold

T, the parallel implementation herein proposed is used. Later, when the

number of vertices decreases under the threshold, the algorithm switches

once again to the previous Queue-based implementation.

4.5 Discussion

As explained in the previous sections due to irregular and shapeless nature

of graphs, BFS algorithm requires a lot of random memory accesses in or-

92
Heterogeneous System using a Reconfigurable approach for efficient

graph exploration

Algorithm 4.4. Level-synchronous Parallel BFS

Input: G(V,E); bfs level
Output: distance [1 · · ·n] with distance [i] = minimum distance(vs, vi)

1: repeat
2: for all vi ∈ V do
3: if distance[i] = bfs level then
4: for offset[i] ≤ j < offset[i]) do
5: (index[i]← 1)
6: end for
7: else
8: for (offset[i] ≤ j < offset[i]) do
9: (index[i]← 0)

10: end for
11: end if
12: end for
13: for all vi ∈ V do
14: (bitmap[v]← 0)
15: end for
16: for all ej ∈ E do
17: if index[j] = 1 then
18: (bitmap[adj[j]]← 1)
19: end if
20: end for
21: for all vi ∈ V do
22: if index[v] = 1&distance[v] =∞ then
23: distance[j]← bfs level + 1)
24: done← false
25: end if
26: end for
27: bfs level← bfs level + 1
28: until done

der to discover the minimum distance between the source and each vertex.

Since the computation in BFS is absent, the only way to speed up the al-

gorithm is to find an efficient solution capable of reducing the number of

on-board memory accesses.

The proposed implementation allows designer to exploit the principle of

locality in a cache based system, or to avoid multiple overheads due to ran-

dom memory accesses in the system described in section 1.5.

The method proposed in this chapter replaces random memory accesses

needed to updated the vertices vector (V), with an higher number of se-

quential on-board memory accesses. In order to roughly compare the per-

4.5 Discussion 93

formance of the proposed method described in the algorithm 4.4, with the

Queue-based method described in section 4.3, we consider the simple CPU

execution time of level 5 of table 4.1. This is the most time consuming level,

since 9000000 millions of vertices must be visited. (one third of the entire

vertices vector).

Generally the execution time can be estimated considering the number of

CPU clock cycles and the number of memory stall cycles as stated in equa-

tion 4.1

CPUExecution time = (CPUClock cycles +MemoryStall Cycles)× Clock Cycle (4.1)

where CPU clock cycles can be written as:

CPUclock cycles = CPI × IC (4.2)

CPI means clock cycles per instructions and IC is the total instruction count.

Also Memory stall cycles are evaluated following the equation 4.3

Memorystall cycles = Number of misses×Miss Penalty

= IC × Misses

Instruction
×Miss Penalty

= IC × Memory accesses

Instruction
×Miss rate×Miss Penalty

(4.3)

Parameters used to compare the two algorithms are reported in table 4.2.

Since the architecture is the same for both the executions the CPI and the

MissPenalty are equal for both cases. The ratio betweenMemory Accesses

and Instruction is also equal for both cases. With the new implementation

a double number of memory accesses have to be performed, since the data

are initially stored in the bitmap and then in the central memory. However,

in the proposed implementation the cache is massively used and therefore

a smaller MissRate is estimated (20% vs. 70%).

Combining equation 4.2 and equation 4.3, equation 4.1 can be rewritten as:

CPUexecution time = IC × (CPI + Memory Accesses
Instruction ×Miss rate×Miss Penalty) (4.4)

94
Heterogeneous System using a Reconfigurable approach for efficient

graph exploration

Table 4.2: Parameters table

Parameter Description Queue based New algorithm
number of

CPI clock cycles 1 1
per instruction

2× ICQB

IC instruction count 9000000 =
18000000

Number of
Memory Accesses

Instruction memory access 0.5 0.5
for each instruction

Number of
MissRate miss for each 0.7 0.2

memory access
Number of

MissPenalty additional clock cycles 30 30
for each miss

Substituting the value for the Queue based method we obtain:

CPUQB = ICQB × (1 +×0.5× 0.5× 30)

= IC × (1 + 10.5) = IC × 11.5

while considering the new algorithm we have:

CPUNew = ICnew × (1 +×0.5× 0.2× 30)

= IC × (1 + 3) = IC × 4

Since ICnew = 2× ICQB the total speed up is:

SP =
CPUQB

CPUNew
=

ICQB × 11.5

2× ICQB × 4
= 1.44

This is a simple estimation of a CPU based algorithm. However the same

concepts can be applied to an FPGA implementation. In fact, the FPGA

computing system developed by Maxeler presents an overhead of 40 clock

cycles every time a burst is read randomly from the on-board memory and

an overhead of 2 clock cycles for each other burst, which is read in sequen-

tial order.

4.6 Conclusions 95

The reconfigurable implementation of the algorithm is the subject of a cur-

rent study.

4.6 Conclusions

In this chapter a scalable breadth-first search (BFS) algorithm has been pre-

sented. In spite of the highly irregular access pattern of the BFS, the pro-

posed algorithm was able to enforce various degrees of memory, minimiz-

ing the negative effects of completely random memory accesses. Although

this implementation has been thought for reconfigurable architectures, the

algorithm can be efficiently implemented also on CPU. Theoretically this

implementation allows programmer to achieve a speedup as compared to

the previous implementations. Achieving a speedup in graph explorations

is quite important since graphs are a core part of most analytic workloads.

The implementation is currently under study.

Chapter 5

General Discussion

This thesis deals with the capabilities and limitations of some heteroge-

neous architecture in the field of high performance computing. In particu-

lar, this work explores the performance of standard workstation equipped

with commodity hardware components to address some computational

hungry problems. Heterogeneous computing systems are affordable, highly

configurable and easy to upgrade. Given these characteristics, excellent re-

sults can be obtained from paring parallel software with parallel hardware

because it takes parallel applications to access the potential of parallel hard-

ware.

5.1 Summary of the contributions and results

The main contributions of this thesis can be summarized in three princi-

pal parts, which address selected computational challenges. Based on the

individual demands of the task, different scales of heterogeneous systems

have been employed. The set-ups range from a workstation supercomput-

ers with multiple CPUs and several high-end graphics cards to a worksta-

tion equipped with multiple CPUs and FPGA.

Chapter 3 presented a multi-GPU based model for design and analysis

of solar field, motivated by the need to have an accurate and fast simu-

lation environment for studying mirror imperfection and non-planar ge-

ometries. A single-precision throughput of 4 TFLOP/s is achieved using

two NVIDIA GTX 590 dual-GPU graphics cards and one NVIDIA GTX480,

which is a high percentage of the total theoretical peak. It outperformed a

96

5.2 Performance and limitations of heterogeneous architectures 97

multiCPU reference by a factor of 52X.

Chapter 4 presented a scheduling algorithm for an efficient distribution

of the workload to the resources. The scheduling algorithm yielded peak

power reduction of as much as 10% compared with a system without any

scheduling policy. The algorithm has been tested using 2 NVIDIA GTX 590

dual-GPU graphics cards.

Finally, Chapter 5 presented a graph exploration on reconfigurable archi-

tectures based on efficient use of memory. This work has been carried out

during my 6-month visiting period at the Department of Computing - Im-

perial College London, under the supervisor of Prof. Wayne Luk.

This implementation tries to overcame the speedup achieved by the pre-

vious parallel implementations. Although the study is not finished yet, a

preliminary estimation performed on CPU shows that the proposed imple-

mentation could overcome the state of the art by a factor of 1.5.

5.2 Performance and limitations of heterogeneous ar-

chitectures

Looking at the results available in literature, it is easy to see that heteroge-

neous architectures offer remarkable performance in many scientific appli-

cations. Some implementations report amazing speedups up to 500x as a

look in the ”CUDA community showcase” [134] or in the ”MAX-Up Publi-

cations Website” [135]. However, the theoretical throughput between GPU

and CPU of comparable generations is an order of magnitude. Also the

efficiency advantage of FPGA ranges from 10 to 50. The question is: how

these applications achieve these high speedups over CPUs? In many cases,

benchmarks hide several pitfalls. For instance fine-tuned multi-GPU im-

plementations are compared with serial CPU executions, sometime unopti-

mized. This has become so common that some studies present quantitative

and qualitative analyses which have the purpose to debunk these unex-

pected speedups [136, 137]. In addition, heterogeneous implementations

are subjected to several limiting factors that are responsible for the gap be-

tween theoretical and real application performance. Some depend on the

architecture while some others are inherent to parallel computing. As an

example, theoretical performance declared by vendors are obtained in par-

98 General Discussion

ticular conditions that are usually far from real cases. GPU vendors ad-

vertise their products with peak throughput of some TFLOP/s. However

this number is obtained by pretending that all arithmetic units are continu-

ously busy with fused multiply-add operations which count as two FLOPs,

but require only one operation on GPU. On the other hand, as stated in the

Amdahl’s law (see also section 1.1) if an algorithm contains steps that can-

not be fully parallelized, parallel speedup vs. serial speedup stagnates at a

certain level and cannot be improved by parallel computation.

Taking these factor in considerations, even highly parallel applications can

be subjected to the scaling limitations described by Amdahl’s low.

5.3 Applications and Algorithms

As mentioned before, several algorithms can benefit from heterogeneous

architectures. Comparing individual performance of an algorithm can be

difficult, since data movement between host and device could vary. Each

of these architectures has its benefits and its drawbacks. In general, the

GPU is the best architecture when executing single-precision floating-point

operations. In this case its performance is an order of magnitude better as

compared to others architectures [23]. However the best result can be ob-

tained when the computation presents independent set of data, disfavoring

applications which require communication and synchronization.

On the other hand, it is difficult to quantify FPGA performance in terms of

floating-point operations, since floating-point is usually avoided [23]. FP-

GAs are well exploited for algorithms where massively fixed-point, integer

or bit operations are required. For these tasks, FPGAs present outstand-

ing results and optimal performance per watt ratio. The main drawback of

FPGAs is the time to program them. However, new domain specific lan-

guages, such as Maxeler [60] offer promising abstractions.

Conclusions

The contributions of this thesis are very practical. They address challeng-

ing computational problems in different scientific fields and use afford-

able hardware upgrades to considerably reduce computation time spent

on these problems.

As expected it can be stated that computational intensive floating-point

applications can be efficiently mapped on heterogeneous multi-GPU plat-

forms.

In addition, although the high power consumption limits the parallelism

level in heterogeneous multicore systems, an efficient scheduling policy

contributes to keep their performance as high as possible.

Finally, the thesis proposed an graph implementation on reconfigurable ar-

chitecture. As shown in section 1.3.7, for memory bounded problems GPUs

do not work well, do to their high memory latency. In such a scenario FP-

GAs can theoretically offer better performance.

99

Appendix A

Acronyms

API Application Programming Interface

APP Accelerate Parallel Processing

ASIC Application Specific Integrated Circuit

ATX Advanced Technology eXtended

BFF Backfill First Fit

BFS Breadth-first search

BLE Basic Logic Element

CB Connection Box

CLB Configurable Logic Block

CPU Central Processing Unit

CRS Central Receiver System

CSR Compress Sparse Row

CUDA Compute Unified Device Architecture

DAG Direct Acyclic Graph

DRMS Distributed Resource Management System

EPS Entry-Level Power Supply Specification

FIFO First In First Out

FLOPs Floating Point Operations per second

FPGA Field Programmable Gate Array

100

101

GPU Graphics Processing Unit

HPC High Performance Computing

ISA Instruction Set Architecture

LUT Look-Up table

MIMD Multiple Instruction Multiple Data

MISD Multiple Instruction Single Data

PC Power Capping

PCI Peripheral Component Interconnect

PSU Power Supply Unit

PTX Parallel Thread eXecution

PU Processing Unit

RAM Random Memory Access

SATA Serial Advanced Technology Attachment

SFU Special Function Unit

SIMD Single Instruction Multiple Data

SISD Single Instruction Single Data

SLI Scalable Link Interface

SM Streaming Multi-Processor

SP Streaming Processor

SRAM Static Random Memory Access

SW Switch Boxes

Bibliography

[1] Matteo Chiesi, Luca Vanzolini, Eleonora Franchi Scarselli, and
Roberto Guerrieri. Accurate optical model for design and analysis
of solar field based on heterogeneous multicore systems. Renewable
Energy, 55:241–251, 2013.

[2] Matteo Chiesi, Luca Vanzolini, Claudio Mucci, Eleonora
Franchi Scarselli, and Roberto Guerrieri. Power-aware job schedul-
ing on heterogeneous multicore architectures. Parallel Distrib. Syst.,
IEEE Trans. on, Under minor revision.

[3] Shekhar Borkar. Thousand core chips: a technology perspective. In
Proceedings of the 44th annual Design Automation Conference, pages 746–
749. ACM, 2007.

[4] John L Hennessy and David A Patterson. Computer architecture: a
quantitative approach. Elsevier, 2012.

[5] Nicholas Wilt. The CUDA Handbook: A Comprehensive Guide to GPU
Programming. Addison-Wesley Professional, 2013.

[6] Rio Yokota and Lorena Barba. Hierarchical n-body simulations with
autotuning for heterogeneous systems. Computing in Science & Engi-
neering, 14(3):30–39, 2012.

[7] Jonathan Rose, Abbas El Gamal, and Alberto Sangiovanni-
Vincentelli. Architecture of field-programmable gate arrays. Proceed-
ings of the IEEE, 81(7):1013–1029, 1993.

[8] Charles E Leiserson, Ronald L Rivest, Clifford Stein, and Thomas H
Cormen. Introduction to algorithms. The MIT press, 2001.

[9] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient par-
allel graph exploration on multi-core cpu and gpu. In Parallel Archi-
tectures and Compilation Techniques (PACT), 2011 International Confer-
ence on, pages 78–88. IEEE, 2011.

[10] Volodymyr V Kindratenko, Jeremy J Enos, Guochun Shi, Michael T
Showerman, Galen W Arnold, John E Stone, James C Phillips, and
Wen-mei Hwu. Gpu clusters for high-performance computing. In

102

BIBLIOGRAPHY 103

Cluster Computing and Workshops, 2009. CLUSTER’09. IEEE Int. Conf.
on, pages 1–8. IEEE, 2009.

[11] ORNL. Titan project timeline, December 2012.

[12] Florian Ries. Heterogeneous Multicore Architecture for Digital Signal Pro-
cessing. PhD thesis, ARCES - University of Bologna, 2011.

[13] Gordon E Moore et al. Cramming more components onto integrated
circuits, 1965.

[14] F Pollack. Pollack’s rule of thumb for microprocessor and area.
http://en.wikipedia.org/wiki/Pollack’s_Rule.

[15] Jinuk Luke Shin, Kenway Tam, Dawei Huang, Bruce Petrick,
Ha Pham, Changku Hwang, Hongping Li, Alan Smith, Timothy
Johnson, Francis Schumacher, et al. A 40nm 16-core 128-thread cmt
sparc soc processor. In Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), 2010 IEEE International, pages 98–99. IEEE, 2010.

[16] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,
Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A Pat-
terson, William Lester Plishker, John Shalf, Samuel Webb Williams,
et al. The landscape of parallel computing research: A view from
berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[17] Gene M Amdahl. Validity of the single processor approach to achiev-
ing large scale computing capabilities. In Proceedings of the April 18-
20, 1967, spring joint computer conference, pages 483–485. ACM, 1967.

[18] Michael J Flynn. Some computer organizations and their effective-
ness. Computers, IEEE Transactions on, 100(9):948–960, 1972.

[19] Jack J Dongarra, Hans W Meuer, Horst D Simon, and Erich
Strohmaier. Recent trends in high performance computing. The Birth
of Numerical Analysis, page 93, 2009.

[20] Mahmoud Hassaballah, Saleh Omran, and Youssef B Mahdy. A re-
view of simd multimedia extensions and their usage in scientific and
engineering applications. The Computer Journal, 51(6):630–649, 2008.

[21] Kai Hwang, A Ramachandran, and R Purushothaman. Advanced com-
puter architecture: parallelism, scalability, programmability, volume 199.
McGraw-Hill New York, 1993.

[22] Federal Energy Management Program. Data Center Energy Con-
sumption Trends. Technical report, U.S. Department of Energy, 2009.

http://en.wikipedia.org/wiki/Pollack's_Rule

104 BIBLIOGRAPHY

[23] Andre R Brodtkorb, Christopher Dyken, Trond R Hagen, Jon M
Hjelmervik, and Olaf O Storaasli. State-of-the-art in heterogeneous
computing. Scientific Programming, 18(1):1–33, 2010.

[24] AMD. Amd graphics cards, April 2013.

[25] NVIDIA CORPORATION. Nvidia graphics cards, December 2013.

[26] Christopher R Clark and David E Schimmel. Scalable pattern match-
ing for high speed networks. In Field-Programmable Custom Computing
Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on, pages
249–257. IEEE, 2004.

[27] Chang Shu, Soonhak Kwon, and Kris Gaj. Fpga accelerated tate pair-
ing based cryptosystems over binary fields. In Field Programmable
Technology, 2006. FPT 2006. IEEE International Conference on, pages
173–180. IEEE, 2006.

[28] Roger Woods, John McAllister, Gaye Lightbody, and Ying Yi. Front
Matter. Wiley Online Library, 2008.

[29] Ben Cope, Peter YK Cheung, Wayne Luk, and Lee Howes. Perfor-
mance comparison of graphics processors to reconfigurable logic: A
case study. Computers, IEEE Transactions on, 59(4):433–448, 2010.

[30] AMD. Accelerated parallel processing (app) sdk, December 2013.

[31] NVIDIA. Compute unified device architecture (cuda) sdk, December
2013.

[32] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym.
Nvidia tesla: A unified graphics and computing architecture. Micro,
IEEE, 28(2):39–55, 2008.

[33] Vasily Volkov and James W Demmel. Benchmarking gpus to tune
dense linear algebra. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, page 31. IEEE Press, 2008.

[34] NNVIDIA. Cuda c programming guide, December 2013.

[35] Leonardo Dagum and Ramesh Menon. Openmp: an industry stan-
dard api for shared-memory programming. Computational Science &
Engineering, IEEE, 5(1):46–55, 1998.

[36] Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
an insightful visual performance model for multicore architectures.
Communications of the ACM, 52(4):65–76, 2009.

[37] Umer Farooq, Zied Marrakchi, and Habib Mehrez. Tree-Based Hetero-
geneous FPGA Architectures. Springer, 2012.

BIBLIOGRAPHY 105

[38] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture
and CAD for deep-submicron FPGAs. Kluwer Academic Publishers,
1999.

[39] Ian Kuon, Russell Tessier, and Jonathan Rose. FPGA architecture. Now
Publishers Inc., 2008.

[40] Daniel C Guterman, ISAM H Rimawi, Te-Long Chiu, RICHARD D
Halvorson, and DJ McElroy. An electrically alterable nonvolatile
memory cell using a floating-gate structure. Electron Devices, IEEE
Transactions on, 26(4):576–586, 1979.

[41] J al Birkner, A Chan, HT Chua, A Chao, K Gordon, B Kleinman,
P Kolze, and R Wong. A very-high-speed field-programmable gate
array using metal-to-metal antifuse programmable elements. Micro-
electronics Journal, 23(7):561–568, 1992.

[42] David Marple and Larry Cooke. An mpga compatible fpga architec-
ture. In Custom Integrated Circuits Conference, 1992., Proceedings of the
IEEE 1992, pages 4–2. IEEE, 1992.

[43] QuickLogic Corporation. Eclipse ii family data sheet.
http://www.quicklogic.com/assets/pdf/data sheets/, 2013.

[44] Abbas El Gamal, Jonathan Greene, Justin Reyneri, Eric Rogoyski,
Khaled A El-Ayat, and Amr Mohsen. An architecture for electri-
cally configurable gate arrays. Solid-State Circuits, IEEE Journal of,
24(2):394–398, 1989.

[45] William Carter, Khue Duong, Ross H Freeman, H Hsieh, Jason Y
Ja, John E Mahoney, Luan T Ngo, and Shelly L Sze. A user pro-
grammable reconfigurable gate array. In Proceedings of the IEEE Cus-
tom Integrated Circuits Conference, 1986.

[46] Sau C Wong, HC So, Jung H Ou, and John Costello. A 5000-gate
cmos epld with multiple logic and interconnect arrays. In Custom
Integrated Circuits Conference, 1989., Proceedings of the IEEE 1989, pages
5–8. IEEE, 1989.

[47] Xilinx. http://www.xilinx.com/, 2013.

[48] Altera. http://www.altera.com/, 2013.

[49] Aditya A Aggarwal and David M Lewis. Routing architectures for hi-
erarchical field programmable gate arrays. In Computer Design: VLSI
in Computers and Processors, 1994. ICCD’94. Proceedings., IEEE Interna-
tional Conference on, pages 475–478. IEEE, 1994.

[50] Jonathan Rose and Zvonko G Vranesic. Field programmable gate arrays,
volume 180. Springer, 1992.

106 BIBLIOGRAPHY

[51] Xilinx. Virtex 6. http://www.xilinx.com/products/silicon-
devices/fpga/virtex-6/, 2013.

[52] Xilinx. Virtex 7. http://www.xilinx.com/products/silicon-
devices/fpga/virtex-7/, 2013.

[53] Altera. Stratix 5. http://www.altera.co.uk/devices/fpga/stratix-
fpgas/stratix-v/stxv-index.jsp, 2013.

[54] Altera. Stratix 10. http://www.altera.co.uk/devices/fpga/stratix-
fpgas/stratix10/stx10-index.jsp, 2013.

[55] Robert K Brayton, Gary D Hachtel, and Alberto L Sangiovanni-
Vincentelli. Multilevel logic synthesis. Proceedings of the IEEE,
78(2):264–300, 1990.

[56] Robert K Brayton. The decomposition and factorization of boolean
expressions. In Proc. Int. Symp. Circ. Sys.(ISCAS 82) Rome, 1982.

[57] Jason Cong and Yuzheng Ding. Flowmap: An optimal technol-
ogy mapping algorithm for delay optimization in lookup-table based
fpga designs. Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 13(1):1–12, 1994.

[58] Larry McMurchie and Carl Ebeling. Pathfinder: a negotiation-based
performance-driven router for fpgas. In Proceedings of the 1995 ACM
third international symposium on Field-programmable gate arrays, pages
111–117. ACM, 1995.

[59] Jon Frankle. Iterative and adaptive slack allocation for performance-
driven layout and fpga routing. In Proceedings of the 29th ACM/IEEE
Design Automation Conference, pages 536–542. IEEE Computer Society
Press, 1992.

[60] Maxeler Technologies. Multiscale dataflow programming.
http://www.maxeler.com, 2013.

[61] Janet L Sawin. Charting a new energy future. State of the World, pages
85–109, 2003.

[62] U.S. Department of Energy. Basic research needs for solar energy
utilization. Technical report, Washington, DC, USA, 2005.

[63] Ramteen Sioshansi and Paul Denholm. The value of concentrating
solar power and thermal energy storage. Sustainable Energy, IEEE
Transactions on, 1(3):173–183, 2010.

[64] Volker Quaschning. Technical and economical system comparison
of photovoltaic and concentrating solar thermal power systems de-
pending on annual global irradiation. Solar Energy, 77(2):171–178,
2004.

BIBLIOGRAPHY 107

[65] Robert Pitz-Paal, Nicolas Bayer Botero, and Aldo Steinfeld. Heliostat
field layout optimization for high-temperature solar thermochemical
processing. Solar energy, 85(2):334–343, 2011.

[66] PL Leary and JD Hankins. User’s guide for mirval: a computer code
for comparing designs of heliostat-receiver optics for central receiver
solar power plants. Technical report, Sandia Labs., Livermore, CA
(USA), 1979.

[67] Tim Wendelin. Soltrace: a new optical modeling tool for concentrat-
ing solar optics. ASME, 2003.

[68] CL Laurence, FW Lipps, and LL Vanthull. User’s manual for the
university of houston individual heliostat layout and performance
code. NASA STI/Recon Technical Report N, 85:21808, 1984.

[69] Bruce L Kistler. A user’s manual for delsol3: A computer code for
calculating the optical performance and optimal system design for
solar thermal central receiver plants. Technical report, Sandia Na-
tional Labs., Livermore, CA (USA), 1986.

[70] Pierre Garcia, Alain Ferriere, and Jean-Jacques Bezian. Codes for so-
lar flux calculation dedicated to central receiver system applications:
a comparative review. Solar Energy, 82(3):189–197, 2008.

[71] Patricia Kuntz Falcone. A handbook for solar central receiver design.
Technical report, Sandia National Labs., Livermore, CA (USA), 1986.

[72] William B Stine and Michael Geyer. Power from the Sun. Power from
the sun. net, 2001.

[73] Xiudong Wei, Zhenwu Lu, Zhifeng Wang, Weixing Yu, Hongxing
Zhang, and Zhihao Yao. A new method for the design of the he-
liostat field layout for solar tower power plant. Renewable Energy,
35(9):1970–1975, 2010.

[74] Allen Nussbaum and Richard A Phillips. Contemporary optics for
scientists and engineers. Contemporary Optics for Scientists and Engi-
neers by Allen Nussbaum, Richard A. Phillips New Jersey: Prentice Hall,
INC, 1976, 1, 1976.

[75] Paul Bendt and Ari Rabl. Optical analysis of point focus parabolic
radiation concentrators. Applied Optics, 20(4):674–683, 1981.

[76] European Commission Institute for Energy and Transport. Photo-
voltaic geographical information system (pvgis). http://re.jrc.
ec.europa.eu/pvgis/.

[77] National Renewable Energy Laboratory (NREL). National solar ra-
diation data base. http://rredc.nrel.gov/solar/old_data/
nsrdb/1991-2005/tmy3/.

http://re.jrc.ec.europa.eu/pvgis/
http://re.jrc.ec.europa.eu/pvgis/
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/
http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/

108 BIBLIOGRAPHY

[78] Lorenzo Pancotti. Optical simulation model for flat mirror concen-
trators. Solar energy materials and solar cells, 91(7):551–559, 2007.

[79] Vasily Volkov and James W Demmel. Benchmarking gpus to tune
dense linear algebra. In Proceedings of the 2008 ACM/IEEE conference
on Supercomputing, page 31. IEEE Press, 2008.

[80] FMF Siala and ME Elayeb. Mathematical formulation of a graphical
method for a no-blocking heliostat field layout. Renewable Energy,
23(1):77–92, 2001.

[81] D. Valerio Fernndez. a 11.0-mwe solar tower power plant with satu-
rated steam receiver. Technical report, Solucar, 2004.

[82] eSolar. Sierra suntower. http://www.esolar.com/sierra_
fact_sheet.pdf, 2012.

[83] Steffen Ulmer, Tobias März, Christoph Prahl, Wolfgang Reinalter,
and Boris Belhomme. Automated high resolution measurement of
heliostat slope errors. Solar Energy, 85(4):681–687, 2011.

[84] Alanod Solar. Miro90 technical specifications. http:
//alanod-solar.com/opencms/opencms/Reflexion/
Technische_Info.html, 2012.

[85] KK Chong, FL Siaw, CW Wong, and GS Wong. Design and con-
struction of non-imaging planar concentrator for concentrator pho-
tovoltaic system. Renewable Energy, 34(5):1364–1370, 2009.

[86] Michael Showerman, Jeremy Enos, Avneesh Pant, Volodymyr Kin-
dratenko, Craig Steffen, Robert Pennington, and Wen-mei Hwu. Qp:
a heterogeneous multi-accelerator cluster. In Proc. 10th LCI Int. Conf.
on High-Performance Clustered Computing, 2009.

[87] Charles Lefurgy, Xiaorui Wang, and Malcolm Ware. Power capping:
a prelude to power shifting. Cluster Computing, 11(2):183–195, 2008.

[88] Xiaorui Wang, Ming Chen, Charles Lefurgy, and Tom W Keller. Ship:
A scalable hierarchical power control architecture for large-scale data
centers. Parallel Distrib. Syst., IEEE Trans. on, 23(1):168–176, 2012.

[89] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong
Li, and Kirk W Cameron. Powerpack: Energy profiling and analysis
of high-performance systems and applications. Parallel Distrib. Syst.,
IEEE Trans. on, 21(5):658–671, 2010.

[90] Min Yeol Lim, Vincent W Freeh, and David K Lowenthal. Adaptive,
transparent frequency and voltage scaling of communication phases
in mpi programs. In Proc. of the 2006 ACM/IEEE Conf. on Supercom-
puting, pages 14–14. IEEE, 2006.

http://www.esolar.com/sierra_fact_sheet.pdf
http://www.esolar.com/sierra_fact_sheet.pdf
http://alanod-solar.com/opencms/opencms/Reflexion/Technische_Info.html
http://alanod-solar.com/opencms/opencms/Reflexion/Technische_Info.html
http://alanod-solar.com/opencms/opencms/Reflexion/Technische_Info.html

BIBLIOGRAPHY 109

[91] Nandini Kappiah, Vincent W Freeh, and David K Lowenthal. Just
in time dynamic voltage scaling: Exploiting inter-node slack to save
energy in mpi programs. In Proc. of the 2005 ACM/IEEE Conf. on Su-
percomputing, page 33. IEEE Computer Society, 2005.

[92] Chung-hsing Hsu and Wu-chun Feng. A power-aware run-time sys-
tem for high-performance computing. In Proc. of the 2005 ACM/IEEE
Conf. on Supercomputing, page 1. IEEE Computer Society, 2005.

[93] Kyong Hoon Kim, Rajkumar Buyya, and Jong Kim. Power aware
scheduling of bag-of-tasks applications with deadline constraints on
dvs-enabled clusters. In Proc. of the seventh IEEE Int. Symp. on cluster
computing and the grid, pages 541–548, 2007.

[94] Xiaorui Wang and Ming Chen. Cluster-level feedback power control
for performance optimization. In High Performance Computer Architec-
ture, 2008. HPCA 2008. IEEE 14th Int. Symp. on, pages 101–110. IEEE,
2008.

[95] Maja Etinski, Julita Corbalan, Jesús Labarta, and Mateo Valero. Par-
allel job scheduling for power constrained hpc systems. Parallel Com-
puting, 2012.

[96] Bin Lin, Arindam Mallik, Peter Dinda, Gokhan Memik, and Robert
Dick. User-and process-driven dynamic voltage and frequency scal-
ing. In Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE Int. Symp. on, pages 11–22. IEEE, 2009.

[97] Li Tang and Yiji Zhang. Low-power task scheduling for gpu energy
reduction.

[98] Nouveau Wiki. Accelerated open source driver for nvidia cards, De-
cember 2012.

[99] Krhonos group. Opencl, April 2013.

[100] AMD. Gpu open-source drivers., April 2013.

[101] Cong Liu, Jian Li, Wei Huang, Juan Rubio, Evan Speight, and Xi-
aozhu Lin. Power-efficient time-sensitive mapping in heterogeneous
systems. In Proc. of the 21st Int. Conf. on Parallel architectures and com-
pilation techniques, pages 23–32. ACM, 2012.

[102] William Lloyd Bircher and Lizy Kurian John. Core-level activity pre-
diction for multicore power management. Emerging and Selected Top-
ics in Circuits and Systems, IEEE J. on, 1(3):218–227, 2011.

[103] Hatem Ltaief, Piotr Luszczek, and Jack Dongarra. Profiling high per-
formance dense linear algebra algorithms on multicore architectures
for power and energy efficiency. Computer Science-Research and Devel-
opment, 27(4):277–287, 2012.

110 BIBLIOGRAPHY

[104] Edward Anderson. LAPACK Users’ guide, volume 9. Siam, 1999.

[105] UsersGuide PLASMA. Parallel linear algebra software for multicore
architectures. Version, 2(4):5, 2011.

[106] Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-
Ching Chang, Chun-Yi Su, and Kirk Cameron. Power-aware predic-
tive models of hybrid (mpi/openmp) scientific applications on mul-
ticore systems. Computer Science-Research and Development, 27(4):245–
253, 2012.

[107] Yoshihiko Hotta, Mitsuhisa Sato, Hideaki Kimura, Satoshi Matsuoka,
Taisuke Boku, and Daisuke Takahashi. Profile-based optimization of
power performance by using dynamic voltage scaling on a pc cluster.
In Parallel and Distributed Processing Symp., 2006. IPDPS 2006. 20th
Int., pages 8–pp. IEEE, 2006.

[108] Jin Heo, Praveen Jayachandran, Insik Shin, Dong Wang, Tarek Ab-
delzaher, and Xue Liu. Optituner: On performance composition and
server farm energy minimization application. Parallel Distrib. Syst.,
IEEE Trans. on, 22(11):1871–1878, 2011.

[109] Wu Ye, Narayanan Vijaykrishnan, Mahmut Kandemir, and
Mary Jane Irwin. The design and use of simplepower: a cycle-
accurate energy estimation tool. In Proc. of the 37th Annual Design
Automation Conf., pages 340–345. ACM, 2000.

[110] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a
framework for architectural-level power analysis and optimizations.
ACM SIGARCH Computer Architecture News, 28(2):83–94, 2000.

[111] Reiji Suda et al. Accurate measurements and precise modeling of
power dissipation of cuda kernels toward power optimized high per-
formance cpu-gpu computing. In Parallel and Distributed Computing,
Applications and Technologies, 2009 Int. Conf. on, pages 432–438. IEEE,
2009.

[112] Xiaohan Ma, Mian Dong, Lin Zhong, and Zhigang Deng. Statistical
power consumption analysis and modeling for gpu-based comput-
ing. In Proc. of ACM SOSP Workshop on Power Aware Computing and
Systems (HotPower), 2009.

[113] Pat Bohrer, Elmootazbellah N Elnozahy, Tom Keller, Michael Kistler,
Charles Lefurgy, Chandler McDowell, and Ram Rajamony. The case
for power management in web servers. In Power aware computing,
pages 261–289. Springer, 2002.

[114] Olli Mämmelä, Mikko Majanen, Robert Basmadjian, Hermann
De Meer, André Giesler, and Willi Homberg. Energy-aware job

BIBLIOGRAPHY 111

scheduler for high-performance computing. Computer Science-
Research and Development, 27(4):265–275, 2012.

[115] Florian Ries, Tommaso De Marco, and Roberto Guerrieri. Triangular
matrix inversion on heterogeneous multicore systems. Parallel Dis-
trib. Syst., IEEE Trans. on, 23(1):177–184, 2012.

[116] Anne Krampe, Joachim Lepping, and Wiebke Sieben. A hybrid
markov chain model for workload on parallel computers. In Proc.
of the 19th ACM Int. Symp. on High Performance Distributed Computing,
pages 589–596. ACM, 2010.

[117] Nima Sharifimehr and Samira Sadaoul. Markovian workload mod-
eling for enterprise application servers. In Proc. of the 2nd Canadian
Conf. on Computer Science and Software Engineering, pages 161–168.
ACM, 2009.

[118] NVIDIA CORPORATION. Gpu gtx 590 specifications, December
2012.

[119] Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu, Hongchao
Lu, Jingfen Zhang, Shiwei Sun, Lunjiang Ling, Nan Zhang, et al.
Topological structure analysis of the protein–protein interaction net-
work in budding yeast. Nucleic acids research, 31(9):2443–2450, 2003.

[120] Thayne Coffman, Seth Greenblatt, and Sherry Marcus. Graph-based
technologies for intelligence analysis. Communications of the ACM,
47(3):45–47, 2004.

[121] Liangjun Zhang, Young J Kim, and Dinesh Manocha. A simple path
non-existence algorithm using c-obstacle query. In Algorithmic Foun-
dation of Robotics VII, pages 269–284. Springer, 2008.

[122] Avneesh Sud, Erik Andersen, Sean Curtis, Ming Lin, and Dinesh
Manocha. Real-time path planning for virtual agents in dynamic en-
vironments. In ACM SIGGRAPH 2008 classes, page 55. ACM, 2008.

[123] Mark EJ Newman. Fast algorithm for detecting community structure
in networks. Physical review E, 69(6):066133, 2004.

[124] Virat Agarwal, Fabrizio Petrini, Davide Pasetto, and David A Bader.
Scalable graph exploration on multicore processors. In Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–11. IEEE Computer
Society, 2010.

[125] Andy Yoo, Edmond Chow, Keith Henderson, William McLendon,
Bruce Hendrickson, and Umit Catalyurek. A scalable distributed
parallel breadth-first search algorithm on bluegene/l. In Supercom-
puting, 2005. Proceedings of the ACM/IEEE SC 2005 Conference, pages
25–25. IEEE, 2005.

112 BIBLIOGRAPHY

[126] PR Venkata Subramaniam and Kam-Hoi Cheng. A fast graph search
multiprocessor algorithm. In Aerospace and Electronics Conference,
1997. NAECON 1997., Proceedings of the IEEE 1997 National, volume 1,
pages 247–254. IEEE, 1997.

[127] Michael Delorimier, Nachiket Kapre, Nikil Mehta, Dominic Rizzo,
Ian Eslick, Raphael Rubin, Tomás E Uribe, Thomas F Knight, and
André DeHon. Graphstep: A system architecture for sparse-graph
algorithms. In Field-Programmable Custom Computing Machines, 2006.
FCCM’06. 14th Annual IEEE Symposium on, pages 143–151. IEEE, 2006.

[128] Daniele Paolo Scarpazza, Oreste Villa, and Fabrizio Petrini. Efficient
breadth-first search on the cell/be processor. Parallel and Distributed
Systems, IEEE Transactions on, 19(10):1381–1395, 2008.

[129] Brahim Betkaoui, Yu Wang, David B Thomas, and Wayne Luk. A
reconfigurable computing approach for efficient and scalable parallel
graph exploration. In Application-Specific Systems, Architectures and
Processors (ASAP), 2012 IEEE 23rd International Conference on, pages
8–15. IEEE, 2012.

[130] David A Bader and Kamesh Madduri. Designing multithreaded al-
gorithms for breadth-first search and st-connectivity on the cray mta-
2. In Parallel Processing, 2006. ICPP 2006. International Conference on,
pages 523–530. IEEE, 2006.

[131] Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and
Jonathan Berry. Challenges in parallel graph processing. Parallel Pro-
cessing Letters, 17(01):5–20, 2007.

[132] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-
worldnetworks. nature, 393(6684):440–442, 1998.

[133] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat:
A recursive model for graph mining. Computer Science Department,
page 541, 2004.

[134] NVIDIA. Cuda community showcase.
http://www.nvidia.com/object/cuda showcase html.html, 2013.

[135] Maxeler. Max-up publications. http://www.maxeler.com/, 2013.

[136] Victor W Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Dae-
hyun Kim, Anthony D Nguyen, Nadathur Satish, Mikhail Smelyan-
skiy, Srinivas Chennupaty, Per Hammarlund, et al. Debunking the
100x gpu vs. cpu myth: an evaluation of throughput computing on
cpu and gpu. In ACM SIGARCH Computer Architecture News, vol-
ume 38, pages 451–460. ACM, 2010.

BIBLIOGRAPHY 113

[137] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A quantita-
tive analysis of the speedup factors of fpgas over processors. In Pro-
ceedings of the 2004 ACM/SIGDA 12th international symposium on Field
programmable gate arrays, pages 162–170. ACM, 2004.

	Abstract
	Introduction
	Heterogeneous Architectures
	Classification of Parallel Architectures
	Heterogeneous Parallel Computing
	Graphics Processing Unit (GPU)
	NVIDIA Fermi Architectural overview
	NVIDIA GPU Computational Structures
	NVIDIA GPU Memory Structures
	Power consumption
	Programming the NVIDIA GPU
	Multiple GPUs
	GPU applications

	Field Programmable Gate Array
	Programming Technologies
	Configurable Logic Block
	Routing Architecture
	Software Flow

	FPGAs for High Performance Computing: The Maxeler Solution
	Programming the FPGA using MaxCompiler

	Optical Model for Design and Analysis of Solar Field on Multi-GPU platform
	Motivation and background
	Mathematical model
	Computing System
	Implementation
	Programming Model
	GPU kernels
	Application Flow

	Validation
	Computational benchmarking
	Application cases
	Performance field analysis and optimization
	Analysis of mirror non-idealities
	Stretched membrane mirrors

	Conclusions

	Power-Aware Job Scheduling
	Motivation and background
	Power Measuring System
	Power-aware scheduler
	The scheduling algorithm

	Performance and Evaluation
	Job Characterization
	Experimental Setup
	Analysis of Results

	Discussion
	Application case
	Limitations of the approach

	Conclusions

	Heterogeneous System using a Reconfigurable approach for efficient graph exploration
	Motivation and background
	Breadth-first search
	Irregular Graph and Parallel BFS Algorithm
	Parallel BFS implementation
	Discussion
	Conclusions

	General Discussion
	Summary of the contributions and results
	Performance and limitations of heterogeneous architectures
	Applications and Algorithms

	Conclusions
	Acronyms
	Bibliography

