Charge transport properties of organic conjugated polymers for photovoltaic applications

Righi, Sara (2014) Charge transport properties of organic conjugated polymers for photovoltaic applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6460.
Documenti full-text disponibili:
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (3MB) | Anteprima


Charge transport in conjugated polymers as well as in bulk-heterojunction (BHJ) solar cells made of blends between conjugated polymers, as electron-donors (D), and fullerenes, as electron-acceptors (A), has been investigated. It is shown how charge carrier mobility of a series of anthracene-containing poly(p-phenylene-ethynylene)-alt-poly(p-phenylene-vinylene)s (AnE-PVs) is highly dependent on the lateral chain of the polymers, on a moderate variation of the macromolecular parameters (molecular weight and polydispersity), and on the processing conditions of the films. For the first time, the good ambipolar transport properties of this relevant class of conjugated polymers have been demonstrated, consistent with the high delocalization of both the frontier molecular orbitals. Charge transport is one of the key parameters in the operation of BHJ solar cells and depends both on charge carrier mobility in pristine materials and on the nanoscale morphology of the D/A blend, as proved by the results here reported. A straight correlation between hole mobility in pristine AnE-PVs and the fill factor of the related solar cells has been found. The great impact of charge transport for the performance of BHJ solar cells is clearly demonstrated by the results obtained on BHJ solar cells made of neat-C70, instead of the common soluble fullerene derivatives (PCBM or PC70BM). The investigation of neat-C70 solar cells was motivated by the extremely low cost of non-functionalized fullerenes, compared with that of their soluble derivatives (about one-tenth). For these cells, an improper morphology of the blend leads to a deterioration of charge carrier mobility, which, in turn, increases charge carrier recombination. Thanks to the appropriate choice of the donor component, solar cells made of neat-C70 exhibiting an efficiency of 4.22% have been realized, with an efficiency loss of just 12% with respect to the counterpart made with costly PC70BM.

Tipologia del documento
Tesi di dottorato
Righi, Sara
Dottorato di ricerca
Scuola di dottorato
Scienze chimiche
Settore disciplinare
Settore concorsuale
Parole chiave
conjugated polymers, fullerenes, charge carrier mobility, bulk-heterojunction solar cells, charge trapping
Data di discussione
11 Aprile 2014

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi