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Abstract 

 

Particulate matter is one of the main atmospheric pollutants, with a great chemical-environmental 

relevance. Aerosol deeply affects climate, local weather, visibility, human health, damages 

environment and cultural heritage. In the last two decades particulate matter has increasingly 

attracted the interest of the scientific community because, in spite of the ever improving efforts in 

the abatement technologies, its concentration is locally still very high often exceeding the 

thresholds. Despite many studies, the knowledge of sources, formation mechanisms and chemical 

characterization is still limited. Improving knowledge of the sources of particulate matter and of 

their apportionment is needed to handle and fulfill the legislation regarding this pollutant, to support 

further development of air policy as well as air pollution management. 

Various instruments have been used to understand the sources of particulate matter and 

atmospheric radiotracers at the site of Mt. Cimone (44.18° N, 10.7° E, 2165 m asl), hosting a global 

WMO-GAW station. Thanks to its characteristics this location is suitable investigate the regional and 

long-range transport of polluted air masses on the background Southern-Europe free-troposphere. 

In particular, PM10 data sampled at the station in the period 1998-2011 were analyzed in the 

framework of the main meteorological and territorial features: the time series is characterized by a 

strong seasonal fluctuation with a winter minimum and a summer maximum, attributed to the 

seasonal fluctuation of the mixed layer height as well as to the intense vertical exchange occurring 

in the warm season at this latitude. A receptor model based on back trajectories was applied to 

study the source regions of particulate matter. Highest PM10 data at the site can be attributed to 

three classes of events: 

- Saharan dust transports from the northern African deserts; 

- Uplift of polluted air masses from the Italian areas north of the Apennines range (i.e., Po 

Valley), especially during intrusion events from the boundary layer favoured by deep 

convection; 

- Advection of PM10 enriched air masses from the European continent North and East of the 

Italian peninsula.  

Simultaneous measurements of atmospheric radionuclides 
210

Pb and
 7

Be acquired together with 

particulate mass load have also been analysed to acquire a better understanding of vertical and 

horizontal transports able to affect atmospheric composition. Due to their contrasting natural origin, 

210
Pb and

 7
Be have often been used as a pair to investigate vertical transport and the scavenging of 

the aerosols. At Mt. Cimone 
210

Pb is characterized by a seasonal fluctuation similar to that of PM10, 

characterized by a summer maximum due to thermal convection and higher mixing height, while 



7
Be is characterized by two relative maxima, one during the cold season linked to Stratosphere-to-

Troposphere transport and one in the warm season, mainly associated to tropospheric subsidence 

balancing the ascent of air masses from the low troposphere. Seasonal variations of atmospheric 

radiotracers have been studied both analysing the long-term time series acquired at the 

measurement site as well as by means of a state-of-the-art global 3-D chemistry and transport model 

(GMI CTM): in particular, the use of the model enabled a better understanding of the transport and 

precipitation scavenging processes on the 
210

Pb and 
7
Be seasonalities at Mt. Cimone. 

Advection patterns characterizing the circulation at the site have been identified by means of clusters 

of back-trajectories. The analysis revealed that the seasonality of transports is a relevant factor affecting 

atmospheric composition. In particular, one of the most interesting aspects of this study is the 

connection between Saharan Dust incursion events and increases not only in 
210

Pb (and PM10) but also 

in 
7
Be, linked to two independent mechanisms occasionally acting together: the desert dust uplift and a 

strong downward movement from the upper troposphere. The analysis showed also that in general the 

cold period is mainly affected by long-range transports, while on the contrary short-range transports 

dominate the warm season. The relationship between NAO (North Atlantic Oscillation) and advection 

patterns has all-year-long important effects in terms of atmospheric composition at Mt. Cimone. 

The study of source regions of the ratio 
7
Be/

210
Pb and of high potential vorticity values pointed 

out once more the usefulness of these tracers in the understanding of vertical transports. Locations 

highlighted by this kind of analysis are areas frequently affected by mechanisms promoting 

Stratosphere-to-Troposphere transport (areas interested by lee cyclogenesis, preferred regions for 

cyclone formation, and areas where the polar jet stream is generally stronger): North America, 

Northern Atlantic, the Arctic region and the Alps. Analysing the seasonal and trend components of 

the time series, it was highlighted that, even though some advection patterns and 
210

Pb and PM10 are 

associated to a decreasing trend, the largest variability of the time series is in general associated 

with seasonal fluctuations and small time-scale changes.  

Finally, the results of a source apportionment study of particulate matter carried on in a midsize 

town of the Po Valley (actually recognised as one of the most polluted European regions) are 

reported. Receptor models have identified six sources, interpreted as mineral dust, road dust, traffic, 

secondary aerosol, biomass burning and a pseudo-marine factor linked to the use of salt as de-icing 

agent on roads during winter. The source apportionment result was that on the average about 30% 

of PM10 is attributed to the coarse fraction, while the fine fraction contributes to about the 70%.  

An approach exploiting different techniques, and in particular different kinds of (mostly, but not 

only receptor) models, successfully achieved a characterization of the processes/sources of 

particulate matter at the two sites, and of atmospheric radiotracers at the site of Mt. Cimone. 



Riassunto 

 

Il particolato atmosferico è uno degli inquinanti secondari di maggiore rilevanza chimico-

ambientale. L’aerosol esercita importanti effetti sul clima, sul tempo atmosferico, sulla visibilità, 

sulla salute umana, danni all’ambiente ed ai beni culturali. Negli ultimi due decenni il particolato 

atmosferico ha attratto sempre più l’attenzione della comunità scientifica perché, nonostante le 

sempre migliori tecnologie di abbattimento, la sua concentrazione è ancora molto alta a livello 

locale, superando spesso i limiti legislativi. Nonostante il gran numero di studi, la conoscenza delle 

sorgenti, dei meccanismi di formazione e della caratterizzazione chimica del particolato sono 

ancora limitate. Una migliore conoscenza delle sorgenti di particolato e del loro apporzionamento 

sono necessarie anche a fini legislativi, a supporto di ulteriori sviluppi delle politiche in materia di 

qualità dell’aria e per il contenimento dell’inquinamento atmosferico. 

Vari strumenti sono stati utilizzati volti alla comprensione delle sorgenti di particolato atmosferico 

e radiotraccianti al sito di Monte Cimone (44.18° N, 10.7° E, 2165 m asl), che ospita una stazione 

globale WMO-GAW e che, grazie alle sue caratteristiche, rappresenta un luogo utile 

all’investigazione del trasporto regionale ed a lungo raggio di masse d’aria inquinate al di sopra del 

fondo fornito dalla troposfera libera sud-europea.  

In particolare, i dati di PM10 raccolti alla stazione nel periodo 1998-2011 sono stati analizzati nel 

contesto delle principali caratteristiche meteorologiche e territoriali: la serie temporale mostra una 

forte fluttuazione stagionale con un minimo invernale ed un massimo estivo, attribuito alla 

fluttuazione stagionale dell’altezza dello strato di rimescolamento ed all’intenso scambio verticale 

che avviene nella bassa troposfera a questa latititudine. Un modello a recettore basato sull’utilizzo 

di back trajectories è stato utilizzato per studiare le regioni sorgente di particolato atmosferico. Gli 

aumenti di PM10 al sito di misura sono attribuibili a tre classi di eventi: 

- Trasporti di sabbia sahariana dai deserti del Nord-Africa; 

- Trasporto verso l’alto di masse d’aria inquinate dalle aree italiane a nord dell’arco appenninico 

(Pianura Padana), specie durante eventi di intrusione dal boundary layer favoriti dalla 

convezione spinta; 

- Avvezione di masse d’aria arricchite dal continente europeo a Nord ed a Est della penisola 

italiana, inclusa l’area balcanica.  

Sono state anche analizzate le misure simultanee di radionuclidi atmosferici 
210

Pb e 
7
Be raccolti 

assieme alla massa di materiale particolato per ottenere una migliore comprensione dei trasporti verticali 

ed orizzontali in grado di influire sulla composizione atmosferica. Infatti, grazie alla loro origine 

naturale contrapposta, la coppia 
210

Pb e 
7
Be è stata spesso usata per studiare il trasporto verticale e lo 



scavenging degli aerosols. A Monte Cimone il 
210

Pb è caratterizzato da una fluttuazione stagionale 

simile a quella del PM10, caratterizzata da un massimo estivo dovuto alla convezione termica ed alla 

maggiore altezza di rimescolamento, mentre il 
7
Be è caratterizzato da due massimi relativi, uno durante 

la stagione fredda legato al trasporto Stratosfera-Troposfera ed uno nella stagione calda, principalmente 

associato alla subsidenza troposferica che bilancia l’ascesa di masse d’aria dalla bassa troposfera. Le 

variazioni stagionali dei radiotraccianti atmosferici sono state studiate sia tramite l’analisi della lunga 

serie temporale acquisita al sito di misura, sia tramite un modello globale 3-D di chimica e del trasporto 

(GMI CTM), che ha consentito in particolare una migliore comprensione dell’influenza dei processi di 

trasporto e dello scavenging della precipitazione sulle stagionalità di 
210

Pb e 
7
Be a Monte Cimone. 

I patterns di avvezione che caratterizzano la circolazione al sito sono stati identificati per mezzo 

dell’analisi dei clusters di back trajectories. L’analisi ha rivelato che la stagionalità dei trasporti è un 

fattore rilevante per la sua influenza sulla composizione atmosferica. In particolare, uno degli aspetti più 

interessanti risultante da questo studio è la connessione degli eventi di trasporto di sabbia sahariana con 

aumenti non solo di 
210

Pb (e PM10) ma anche di 
7
Be, legata a due meccanismi indipendenti che agiscono 

talvolta contemporaneamente: la salita di polvere desertica con un forte movimento verso il basso dall’alta 

troposfera. La ricerca ha mostrato anche che in generale il periodo freddo è interessato in prevalenza da 

trasporti a lungo raggio, mentre al contrario i trasporti a corto raggio dominano la stagione calda. La 

relazione tra la NAO (North Atlantic Oscillation) e patterns di avvezione ha importanti effetti in termini di 

composizione atmosferica a Monte Cimone, lungo tutto il corso dell’anno.  

L’analisi delle regioni sorgente del rapporto 
7
Be/

210
Pb e di valori elevati di vorticità potenziale ha 

messo ancora una volta in rilievo la loro utilità nella comprensione dei trasporti verticali. Le regioni 

evidenziate da questo tipo di analisi sono aree interessate frequentemente da meccanismi promotori del 

trasporto stratosfera-troposfera (regioni interessate da ciclogenesi di lee, regioni preferite per la 

formazione di cicloni, ed aree dove si localizza generalmente la corrente a getto polare): il Nord 

America, l’Atlantico settentrionale, la regione artica e le Alpi. Lo studio delle componenti stagionali e 

dei trends delle serie temporali hanno posto in evidenza come, sebbene per alcuni patterns di avvezione 

e per 
210

Pb e PM10 sia stato rivelato un trend in calo, la maggiore variabilità delle serie temporali è 

associata alle fluttuazioni stagionali ed alle fluttuazioni a piccola scala temporale. 

Da ultimo, vengono riportati i risultati di uno studio di source apportionment di particolato 

atmosferico condotto in una città di medie dimensioni della Pianura Padana, attualmente 

riconosciuta come una delle regioni più inquinate dell’intera Europe. I modelli a recettore hanno 

individuato sei sorgenti, interpretate come polvere minerale, polvere stradale, traffico, aerosol 

secondario, combustione di biomassa ed un fattore pseudo-marino legato all’utilizzo di sale come 

agente anti-gelo sulle strade durante l’inverno. Il risultato del source apportionment è stato che in 



media circa il 30% del PM10 è attribuibile alla frazione grossolana, mentre la frazione fine 

contribuisce per il 70% circa. 

L’utilizzo di un approccio che ha sfruttato diverse tecniche, ed in particolare diversi modelli 

(principalmente, ma non solo, a recettore), ha consentito di caratterizzare completamente sorgenti/processi 

di particolato ai due siti, e quelle dei radiotraccianti atmosferici al sito di Monte Cimone. 
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CHAPTER 1 – General Introduction 
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Premise 

Particle pollution (also called particulate matter or PM) is the term indicating a mixture of solid 

particles and liquid droplets found in the air. Some particles, such as dust, dirt, soot, or smoke, are 

large or dark enough to be seen with the naked eye. Others are so small that they can only be detected 

using an electron microscope. These particles come in many sizes and shapes and can be made up of 

hundreds of different chemicals. Particle pollution includes “inhalable coarse particles”, with 

diameters larger than 2.5 micrometres and smaller than 10 micrometres and “fine particles” with 

diameters that are 2.5 micrometres and smaller. Particle pollution contains solid or liquid droplets that 

are so small that they can get deep into the lungs and cause serious health problems (Davidson et al., 

2005; Pope and Dockery, 2006; Pope et al., 2009). Particles have also deep effects on climate, cloud 

formation, and visibility reduction (Finlayson-Pitts and Pitts, 1999; Usher et al., 2003; Seinfeld and 

Pandis, 2006; Forster et al., 2007; Myhre et al., 2013), and can damage the environment and cultural 

heritage (Camuffo et al., 2001; Godoi et al., 2006; Nava et al., 2010). At present, fine and coarse 

particles are regulated in the USA and in Europe. At European level, Directive 2008/50/EC on 

ambient air quality and cleaner air for Europe requires Member States to limit the exposure of citizens 

to the airborne particles and sets limit values for PM10 and PM2.5. Improving knowledge of the 

sources and apportionment of these sources of airborne particulate matter is useful to handle and fulfil 

the legislation regarding this pollutant, to support further development of air policy as well as air 

pollution management.  

The main objective of this work is to understand the sources of particulate matter and 

atmospheric radiotracers 
7
Be and 

210
Pb at the global WMO-GAW station of Mt. Cimone (44.18°N, 

10.7°E, 2165 m asl, Italy) and in the Po Valley, recognised as one of the most polluted regions in 

Europe. Aside from being the most elevated peak of the Northern Apennines, lying above the 

planetary boundary layer during most of the year, Mt. Cimone is also fairly off cities and 

industrialized areas and has a 360° free horizon. Owing to these characteristics, it represents a 

suitable location to investigate the regional and long-range transport of polluted air masses on the 

background Southern Europe-Mediterranean free troposphere (Fischer et al., 2003; Marinoni et al., 

2008). It is to note in this framework that Southern Europe and the Mediterranean basin are 

considered as a hot-spot region both in terms of climate change (e.g., Forster et al., 2007; 

Hesselbjerg et al., 2013) and air quality (Monks et al., 2009), also representing a major crossroad of 

different air mass transport processes (Lelieveld et al., 2002; Millàn et al., 2006; Duncan et al., 

2008; Tositti et al., 2013). Various approaches are used in this work for the purpose of studying the 
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sources of particulate matter and atmospheric radiotracers at the site of Mt. Cimone, both in terms 

of physical processes as well as of long-range and regional transport: the main tool which will be 

applied in the present work is receptor modelling, especially incorporating the use of back 

trajectories, but other analyses have been carried out and will be thoroughly described to gain better 

insights into the processes responsible of PM10 and atmospheric radiotracers variabilities.  

Because of their contrasting natural origin, atmospheric radiotracers 
7
Be and 

210
Pb can be used to 

understand the atmospheric composition and its variations, and the vertical motions in the 

atmosphere. In particular, this pair has been often used in the study of Stratosphere-to-Troposphere 

Exchange (STE) and to determine the contribution of Stratosphere-to-Troposphere Transport (STT) 

to tropospheric ozone (O3). As a matter of facts, while 
7
Be, being a cosmogenic radionuclide mostly 

produced in the stratosphere and upper troposphere, is considered a tracer of stratospheric influence, 

210
Pb is considered a tracer of air masses with continental origin, as it is the decay daughter of 

222
Rn 

emitted from soils. O3 is a greenhouse gas and one of the most important gases involved in 

photochemical reactions (Crutzen et al., 1999; Volz-Thomas et al., 2002), one of the key agents 

determining the oxidation capacity of the troposphere (Gauss et al., 2003), but most of all is a 

secondary pollutant in the lower troposphere dangerous to human health (Hoek et al., 1993; Kinney, 

1993), ecosystems (Scebba et al., 2006), and agricultural yields (Fuhrer and Booker, 2003), playing 

also a central role in the radiative budget of the atmosphere (Ramaswamy et al., 2011). Due to 

anthropogenic emissions, tropospheric O3 concentrations have increased significantly since pre-

industrial ages (Staehelin et al., 1994), leading to an equivalent radiative forcing of about 19% of 

that from carbon dioxide as from the last IPCC (Intergovernmental Panel on Climate Change) 

assessment (Myhre et al., 2013). In fact, there are two sources of O3 in the troposphere: 

photochemical production from oxidation of carbon monoxide and hydrocarbons in the presence of 

nitrogen oxides, and transport from the stratosphere (Crutzen, 1973; Jacobson, 2002), often in 

connection with tropopause folding events (e.g., Holton et al., 1995 and references therein). While 

the former process is directly affected by anthropogenic emissions of O3 precursors, the downward 

branch of the Brewer-Dobson circulation in middle and high latitudes (Haynes et al., 1991) is the 

process controlling the total amount of O3 that is exchanged from the stratosphere to the 

troposphere. It is to note here that besides being very suitable to study tropospheric background 

conditions (Wotawa et al., 2000; Stohl et al., 2000; Cuevas et al., 2013), mountain peak stations are 

also appropriate locations to investigate specific aspects of STT (Cristofanelli et al., 2006). Data 

acquired so far at the station constitute a time series long enough to provide a sort of short-term 

climatology of the site. Moreover, the data time extension is so long that the application of receptor 

modeling in order to identify the sources of atmospheric particulate matter is possible. In fact, 
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receptor modeling tools typically use complex chemical composition dataset to characterize and 

estimate the contribution of each source type to the observed concentration, but can also be based 

on the identification of the locations of the sources through the use of ensembles of air parcel back 

trajectories. Both the methods are used in the present work. In particular, statistical techniques 

based on a long term series of back trajectories calculated at the Mt. Cimone site is aimed at a 

thoroughly elucidation of the role of atmospheric transports (most of all, but not only, vertical) 

affecting variations in atmospheric composition. The use of receptor modeling tools based on 

complex chemical composition dataset to characterize and estimate the contribution of each source 

type to the observed concentration was instead applied to gain insights into the sources of 

particulate matter in Bologna, a mid-size town located in the central Po Valley, and in quantifying 

their contribution. 

This work consists of 8 chapters and is organized as follows. The remainder of Chapter 1 is used to 

pose the scientific basis for the understanding of the thesis work: a general introduction to particulate 

matter, atmospheric radiotracers and receptor modelling tools is given in the following sections of this 

chapter. Chapter 2 describes the average behaviour of PM10 at the Mt. Cimone site and investigates its 

variations both in relation to data acquired at the station and on the regional scale as well as with 

receptor modelling involving back trajectories techniques. A source receptor modelling based on the 

application of back trajectories is specifically applied to investigate the source regions associated to 

events of elevated PM10 measured at Mt. Cimone. Chapter 3 presents a basic overview of the 
7
Be and 

210
Pb time series collected at the site and discusses the data in terms of seasonal and interannual 

variations with the purpose of gaining better insights into physical mechanisms responsible of their 

variabilities. To the same aim in Chapter 4 simulations of 
7
Be and 

210
Pb at Mt. Cimone are conducted 

with a state of the art global 3-D chemistry and transport model: the use of the model enables to 

examine how transport and precipitation scavenging affect their concentrations. In Chapter 5 the main 

advection patterns at Mt. Cimone are examined by means of back trajectories clustering analysis. The 

temporal series of air masses back trajectories and of the data acquired at the station are analysed in 

terms of seasonal fluctuations, trends and association to NAO (north Atlantic Oscillation). The roles of 

atmospheric transport and NAO in the observed variations of atmospheric composition are also studied. 

Chapter 6 uses a different statistical trajectory analysis to investigate the influence of stratospheric air 

masses on radiotracers and ozone. In particular, the geographical areas associated to events of high 
7
Be, 

210
Pb and ozone are identified, and the major mechanisms promoting stratosphere-to-troposphere 

exchange events are investigated. In Chapter 7 a more classical source apportionment study applied on 

a chemical composition dataset is carried on. The study evaluates the source contributions in a midsize 

town located at the centre of the Po Valley by means of multivariate statistical techniques and receptor 



CHAPTER 1 

4 

modelling. The impact of a long range transport event due to Saharan Dust outbreaks is also evaluated. 

Finally, conclusions coming from all of these works are drawn.  

During the first year of my PhD, a relevant event occurred on March 11
th
, 2011: the accident in the 

Fukushima Dai-ichi nuclear power plant after the devastating tsunami in Japan. This event has been 

the occasion for me to deal not only with natural but also with artificial radioactivity released in the 

atmosphere during the nuclear accident. The analysis of radioactivity also served to me as a tool to 

test atmospheric transport models capabilities in representing this (very) long-range transport event. 

The work carried on during this event is presented in Appendix II, while Appendix I describes my 

first studies of natural radiotracers with more rudimental tools, also conducted during the first year of 

my PhD in occasion of a IAEA (International Atomic Energy Agency) conference held in Monaco. 

 

 

1.1 Atmospheric particulate matter 

1.1.1 Physical characteristics 

Atmospheric particulate matter is generally defined as a complex and dynamic mixture of solid 

and/or liquid particles present in suspension in a gas (air) having organic and inorganic components 

(vanLoon et al., 2000). Particulate matter has extremely variable dimensions, origin and chemical 

composition and for this reason forms a complex and heterogeneous mixture. Atmospheric PM has 

a profound effect on our lives, as it affects global climate, local weather, visibility, personal health 

and conservation of built heritage. Nevertheless, the knowledge of sources, formation mechanisms, 

fate and properties of PM is still limited, most of all regarding some constituent compounds and 

some aspects related to formation processes.  

Atmospheric PM can be emitted by a wide variety of sources that influence its physical 

properties (size, surface area, density), chemical composition and size distribution. Particulate 

matter is produced by lots of sources and processes, both of natural and anthropogenic origin, from 

crumbling of material by abrasion/erosion to complex photochemical mechanisms in troposphere 

(Manahan, 2000). In particular, PM may be classified as primary or secondary in accordance with 

its formation mechanism: primary particles are directly emitted into the atmosphere (dust, pollen, 

smoke) while secondary particles are formed after chemical transformation of their gaseous 

precursors and lead to production in condensed phase. In this case both organic and inorganic 

particles are involved in oxidative reactions (vanLoon et al., 2000). 

Bio-geo-chemical cycle of atmospheric aerosol may be outlined as in Figure 1.1: 

1 primary particles and precursor gases of secondary aerosol are emitted by natural and 

anthropogenic sources; 
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2 particles may undergo further modifications after chemical-physical processes of different nature; 

3 particles may be removed from the atmosphere by either wet (meteorology) or dry deposition; 

4 removed particles may rearrange their chemical content to the deposition environment 

(hydrosphere and pedosphere), interacting with the biosphere in direct or indirect way 

(Pöschl, 2005). 

 

Figure 1.1 Natural cycle of atmospheric aerosol (Image downloaded from Pacific Northwest National 

Laboratory, http://www.pnnl.gov/atmospheric/research/aci/aci_aerosol_indeffects.stm). 

 

Atmospheric particles are mainly characterized by their size. It is mainly expressed in terms of 

equivalent (or effective) radius or diameter, assuming that particles have spherical shape. In reality, 

atmospheric particles are characterized by various shapes: from the rough edge-shape of a crustal 

particle, to the long branched chains of small nanoparticles characterizing diesel exhausts emission, 

to the flat appearance of a skin fragment, to the cubic shape of a sodium chloride crystal. For this 

reason, the concepts of radius or diameter have a relative value and the concept of equivalent 

diameter, depending from physical rather than geometric characteristics, is introduced to assign a 

diameter to any (even irregular) particle. The equivalent diameter is generally defined as the 

diameter of a sphere or circle having some specific property or behaviour as the particle under 

consideration. The most used is the aerodynamic diameter Da, that is the diameter of a sphere of 

unity density (1 kg m
-3

) with the same settling (sedimentation) velocity as the particle in question 

(Heyder et al., 1974). The mathematical law that describes Da is: 

            √    ⁄      (1.1) 

where Dg is geometrical diameter, p the particle density, 0 the density of the reference spherical 

particle, k a spatial factor (equal to 1.0 in the case of a spherical particle). The terms PM10 and 

http://www.pnnl.gov/atmospheric/research/aci/aci_aerosol_indeffects.stm
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PM2.5 are related to this definition, and define suspended masses of particulate formed by particles 

less than 10 and 2.5 m, respectively. In both cases the choice of these upper limits refers to the 

ability to penetrate into the respiratory system depending on their size (PM10 can be inhaled and 

accumulate in the respiratory system, while PM2.5 can lodge deeply into the lungs, and PM1 can 

reach alveolar area thereby depositing deep inside respiratory tract). 

PM may vary in size from a few nanometres to several tenths of micrometres. Its typical size 

distribution, shown in Figure 1.2, includes four different modes, differing also in terms of 

generation processes (John, 2001). Moreover, size controls and determines also environmental fate 

of the particle. Basically, the number of particles decreases increasing the size of particles. The four 

modes in the distribution are interpreted as follows: 

 the coarse mode (over 1 or 2.5 m, depending on the adopted convention). Generally this mode 

has the highest volume (or mass) concentration. Particles in this mode are mainly formed by 

natural mechanical processes, such as erosion of the earth surface (mineral dust) and of other 

materials, including the ocean surface (sea spray), but also processes of anthropogenic origin 

such as the abrasion on tyres and on brakes of motor vehicles. The chemical composition 

reflects that of the source originating the particles: if aerosol has a coastal or marine origin, it is 

mainly constituted by minerals and NaCl (Hueglin et al., 2005); a component having organic 

origin is also present (e.g., Cass et al., 1982), and most of the components having biological 

origin, such as pollen and spores, is in this interval. Although coarse mode is dominated by 

primary particles, also secondary particles formed by the chemical interaction of gases with 

primary particles of crustal and marine origin can be found in this mode; 

 the accumulation mode generally has the highest number concentration and includes 

particles in the range between 0.08 and 1-2 m; these particles are formed by coagulation of 

small size particles and by condensation of gaseous species on the surface of pre-existing 

particles. Their chemical composition comprehends lots of organic substances and insoluble 

inorganic salts such as NH4
+
, NO3

-
 and SO4

2-
; 

 Aitken nuclei mode includes particles having diameter between 0.07 and 0.08 m, 

originated by heterogeneous reactions of gas-particle conversion (condensation) and in the 

combustion processes at high temperatures. They act as condensation nuclei for water 

vapour and for gaseous species with low vapour pressure; 

 the nucleation mode includes particles having equivalent diameter below 0.01 m, which are 

formed by the homogeneous nucleation of precursor gases and from combustion processes. The 

size limit that allows distinguishing these particles from big sizes molecules is in reality not certain 

(US EPA, 2004). 
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Figure 1.2 Typical size distribution of atmospheric aerosol and origin of particulate matter (US EPA, 2004).  

 

Other classifications often employed distinguish among (Oberdörster, 2000): 

 coarse particles, diameter larger than 2.5 or 1 m; 

 fine particles, diameter between 0.1 and 1 m; 

 ultrafine particles or nano-aerosol, diameter shorter than 0.1 m (that can be further divided 

into ultrafine particles, with at least one of the three dimensions shorter than 100 nm, and 

nanoparticles, with all the three dimensions shorter than 100 nm). 

Ultrafine particles (UFP) comprehend particles of nucleation mode and most of Aitken nuclei. 

Although they are so small that do not contribute in a significant way to the total mass, they make 

up more than 80% of the atmospheric aerosol, as can be seen in Figure 1.3. UFP are also very 

important from the sanitary point of view, both because of reduced dimensions and of their 

concentration. 
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Figure 1.3 Simplified comparison among number, area and volume of particles as a function of the 

logarithm of the particles diameter (Tiwary and Colls, 2002). 

 

The residence time of particles in the atmosphere depends also on their size. After the 

production/emission, particles undergo redistribution and transport processes through the 

atmosphere, and are finally removed by wet and dry deposition. The most efficient removal 

mechanism of PM is wet scavenging, which corresponds to 80% of the total removal processes and 

is formed by transport processes to the ground through precipitations (rain, snow, hail, but also 

“hidden” precipitations such as fog, frost and dew). The main mechanisms of wet deposition are: 

 rainout, that is removal in between the cloud (also called in-cloud processes); 

 washout or below-cloud processes, in which a particle is absorbed in a pre-existing falling 

droplet. This process is less efficient than rainout as there is a limited probability of collision 

between the droplet and the particle during the fall of the droplet. 

There are three main mechanisms of dry deposition: gravitational settling, diffusive deposition and 

contact with surfaces. Owing to the effect of gravity, coarse particles are rapidly removed from the air 

by sedimentation (residence time between some minutes and some hours). Particles in the nucleation 

mode are rapidly transformed into coarser particles by coagulation processes and then are also 

removed by sedimentation. The highest residence time in the atmosphere (up to some weeks) is 

shown by particles in the accumulation mode, which are too large to have sufficient Brownian 

diffusivity and too light to be removed by gravitational settling; these particles can be easily 

transported by the wind up to thousands of kilometres far from the area where they are formed. 

Usually aerosol particles in accumulation size mode are less effectively washed out and prone to 

remain distributed in the atmosphere even after a spell of heavy rainfall (Chate, 2005). Dry deposition 
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of particles in the accumulation mode is due to collision with surfaces, even if wet deposition is the 

most efficient removal mechanism. The residence time of particles in the accumulation mode varies 

from some days to some weeks depending on climatic conditions and altitude. The term 

“accumulation interval” is due to the long life-time with respect to other classes of particles and to the 

dependence of the removal by meteorological phenomena (Baird and Cann, 2008). The residence 

time of Aitken nuclei is short, due to the rapid coagulation. The residence time is also a function of 

the injection height: with increasing injection height, the residence time increases. Aerosols from 

volcano eruptions which reached stratosphere may stay there for about one year. 

 

 

Figure 1.4 Residence time of particles as a function of their dimensions (Prospero et al, 1983; Jaenicke, 1980). 

 

1.1.2 Sources of atmospheric aerosol 

Sources of particulate matter can be natural or anthropogenic. Naturally occurring particles are 

produced by volcanoes, sea spray, grassland fires, desert dust and by a variety of biological sources 

(pollen, bacteria, fungal spores, fragments of vegetable organisms and animals). Anthropogenic 

particles derive from human activities, such as the burning of fossil fuels in vehicles, domestic 

heating, power plants and industrial processes. The composition of PM reflects that of the source 

from which it is originated. 

Table 1.1 summarizes natural and anthropogenic sources for the main constituents of primary 

and secondary aerosol for fine and coarse particles. It also highlights that, on a global scale, 

estimated fluxes of anthropogenic origin are overall equivalent to those of natural origin.  
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Table 1.1 Estimate of fluxes (Tg*yr
-1

) of particulate matter as a function of the source, natural and 

anthropogenic (Seinfeld and Pandis, 2006). 

 

One of the main sources of natural primary particles is the formation and resuspension of dusts 

from soil and rocks erosion operated by winds and other atmospheric agents (physical and chemical 

weathering). It depends from wind and atmospheric agents, but also from the structure and chemical 

composition in the location, variable depending on climate, geology, geography and topography 

(sea, mountain, desert …). Generally particles originated by these processes are coarse-sized and 

constituted by silicates such as quartz, clays (most of all kaolinite, illite, feldspars, carbonates and 

dolomite) and to a less extent calcium sulphates (gypsum) and iron oxides. The most common 

chemical elements (both in soil and in rocks) are Si, Al, Fe and soluble elements such as Ca
2+

, 

Mg
2+

, Na
+
 and K

+
, in form of minerals. Organic material is also present in soils, in different 

percentages depending on environmental conditions in the area. 
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Another important natural source of aerosol is represented by seas and oceans (sea-spray). Sea-

spray is considered the second largest contributor in the global aerosol budget and reflects the 

composition of seawater, consisting mainly of sodium chloride (NaCl) and sulphates (Na2SO4, 

MgSO4, K2SO4). This kind of aerosol is mainly originated by sea foam produced by wind, that 

generates lots of sea droplets that are suspended in the atmosphere and there remain as solid 

particles after evaporation processes. These particles are both coarse and fine-sized. Sea-spray can 

have a deep influence on the composition of PM in coastal areas and on islands. 

Volcanic emissions are another natural source of primary mineral particles but also gases (most 

of all sulphur dioxide, carbon dioxide and water vapour). The contribution of volcanic emissions is 

generally localized and variable in time. 

Natural PM comprehends also a biogenic fraction, generally made up by vegetal debris, pollen, 

spores and microorganisms (e.g., bacteria, viruses, fungi and seaweeds). While viruses and bacteria 

have dimensions less than 2 m, vegetal debris, pollen and spores are generally in the coarse size 

(Pòsfai and Molnàr, 2000). 

Natural sources do not originate only primary aerosol, but also gaseous precursors of secondary 

aerosol; for instance SO2 emitted by volcanoes, but most of all dimethyl sulphide [(CH3)2S] of 

biogenic marine (and biomass) origin, that once diffused from the marine surface to the atmosphere, 

is oxidised to SO2. SO2 is further oxidized by OH radical, forming H2SO4 (sulphuric acid). This 

acid component is neutralized by gaseous ammonia emitted by natural cycle of nitrogen. The acid-

base reaction forms (NH4)2SO4, a salt that represents one of the most abundant components of 

secondary aerosol (Finlayson-Pitts and Pitts, 1999). 

Also a small part of nitrates coming from NOx in the nitrogen cycle (Roelle et al., 2001) and from 

lightning (Price et al., 1997a, b) are part of natural aerosol. Their presence is as important as that of 

NaCl, since water vapour can condensate (formation of clouds and precipitation) only owing to their 

hygroscopicity and to their ability of absorption/adsorption
1
 in the form of ultrafine crystals. In fact it 

is well known that, because of low pressure and rarefaction of gases with height in the atmosphere, it 

would be extremely hard for water vapour to meet the necessary thermodynamic conditions to 

homogenous condensation, despite low temperatures. 

A carbonaceous fraction is also part of secondary natural PM, constituted by both elemental carbon 

produced by natural combustion of forests and by organic substances emitted by vegetation (Harrison 

                                                             
1 Absorption is the process by which one substance melts in the mass of a particle, whereas adsorption is the process by 

which molecules of a substance, such as a gas or a liquid, collect on the surface of another substance. In the case of 

adsorption, the molecules are attracted to the surface but do not enter the solid’s minute spaces as in absorption; an 

important example is adsorption of big organic molecules on carbon molecules (soot). 
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et al., 2001). Vegetal biosphere releases in the atmosphere many organic unsaturated molecules such 

as isoprene and terpenes (generally called bio-VOC’s) whose oxidation originates more polar organic 

compounds, characterized by a reduced vapour pressure and by a higher probability to undergo 

nucleation processes that form secondary aerosol (Christoffersen et al., 1998; Koch et al., 2000).  

The main anthropogenic sources are mostly localized in urban and industrial areas. Generally, 

anthropogenic sources contribute mostly to the secondary fraction, associated to the huge quantities 

of gaseous precursors emitted by combustion processes both from stationary (electric energy 

production, industries, incinerators, heating) and mobile sources (light and heavy duty, off-road, air 

and ship traffic). Also catalytic converters installed inside internal combustion engines with the aim 

at cutting down harmful emissions of exhausts, promoting (through catalysts) their complete 

oxidation and in particular converting unburned hydrocarbons, nitrogen oxides NOx, carbon 

monoxide CO to CO2, H2O and N2, emit platinum-palladium in the form of PM. Moreover, the 

excess of operation of catalytic converters caused increased emissions of ammonia in PM. 

In urban environment primary PM is generated by erosion processes of roads operated by traffic 

and by wear of motor vehicles’ mechanical components (engine, brakes, tyres). Moreover in 

exhaust carbonaceous particles are also present (most of all elemental carbon, EC), of primary 

origin and typically submicron-sized.  

Also industrial activities, such as concrete production, mineral industries, ceramic and building 

materials manufacture, are typically sources of coarse particles, but associated with emissions of 

gaseous precursor which can generate secondary aerosol.  

Secondary anthropogenic PM is mainly formed by sulphates, ammonium nitrates and organic 

carbon. Sulphur dioxide is emitted by coal and diesel oil combustion, fuels by which sulphur 

impurities are only partially removed before sale and use. In the past the extensive use of coal as 

fuel caused serious episodes of atmospheric pollution, in particular linked to acid rains. In fact coal 

is a fuel containing elevated amounts of sulphur; the concentration of sulphur dioxide in the 

atmosphere was so elevated that ammonia was no more able to neutralize sulphuric acid, very 

hygroscopic. Wet deposition produced precipitations with very acid pH (with values up to 3-4 

units), and consequent serious damages to entire ecosystems. Nowadays SO2 levels are strongly 

reduced thanks to the use of fuels containing reduced concentrations of sulphur, such as diesel and 

fuel oil, and to the phase out of coal’s production. In Figure 1.5 the historic series of SO2 

concentrations in Milan is reported: a notable decrease of this gas since the end of ‘50s due to the 

decrease of the coal’s use is observed (Cazzuli et al., 2005). A similar decrease was observed in all 

developed countries. Anyway, in many areas, most of all in developing countries such as China and 

India, acid rains still occur due to high local industrialization (Wenche et al., 2006; Larssen et al., 
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2006; Muthukumara et al., 2012). Driven by the rapid economic development, SO2 emissions from 

India and China have been continuously increasing over the past two decades (Garg et al., 2006; Lu 

et al., 2011; JRC/PBL, 2013; Kurokawa et al., 2013). According to a new analysis of data from 

NASA’s Aura satellite (Lu et al., 2013), emissions of sulphur dioxide from power plants in India 

increased by more than 60% between 2005 and 2012, due to the rapid growth of electricity demand 

and the absence of regulations. 

 

 

Figure 1.5 Historic series of SO2 concentrations in Milan since 1957 until 2005 (Cazzuli et al., 2005). 

 

Nitrogen oxides are among other gaseous precursors formed during combustion processes. An 

elevated temperature is needed to combine atmospheric nitrogen and oxygen (Finlayson-Pitts and 

Pitts, 1999), and therefore nitrogen oxides are mostly emitted by urban traffic and industrial 

processes at high temperatures. NOx are oxidized in the atmosphere by OH to HNO3 and, similarly 

to H2SO4, after the neutralization with NH3 form condensed vapour droplets and/or crystal salts 

(condensation nuclei). 

Even in the case of anthropogenic sources precursors of secondary PM exist. These are mainly 

fugitive emissions, which are the fractions of volatile hydrocarbons emitted by vehicles because of 

evaporation, and organic solvents widely used both in industry as well as in daily life. VOCs 

(Volatile Organic Compounds) are compounds with high vapour pressure and low solubility in 

water. They include a great variety of chemical substances, some of which can have adverse effects 

on health. Many VOCs are produced and used in the production of paints, pharmaceutical and 

cooling substances. Typically VOCs are industrial solvents such as trichlorethylene, fuel additives 

such as MTBE or by-products generated by chlorine addition to water such as chloroform.  
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On a global scale, the most important anthropogenic sources of VOCs are associated to extended 

cultivated areas and to forests combustion, an activity linked to large scale variations of land use in 

behalf of farm areas (Odum et al., 1996; 1997a, b). Same as bio-VOCs, even these substances can 

be oxidized in the atmosphere and transformed in more polar and condensable species.  

While 80-90% of PM emitted by combustion is less than 1 m diameter, less than 10% of the 

mass of dust from geologic material is PM2.5. 

 

1.1.3 Effects of aerosols 

It is widely recognized that atmospheric PM influence climate through at least two main pathways: 

its effect on both the absorption and scattering of solar radiation (direct effect) and its role in cloud 

formation processes (indirect effect). In fact, as an indirect effect, aerosols in the lower atmosphere 

can modify the size of cloud particles, changing how the clouds reflect and absorb sunlight, thereby 

affecting the Earth’s energy budget.  

In the atmosphere, when particles are sufficiently large, we notice their presence as they scatter and 

absorb sunlight. Their scattering of sunlight can reduce visibility and redden sunrises and sunsets. 

 

 

Figure 1.6 Reduction of visibility by aerosols. The visibility of an object is determined by its contrast with 

the background (2 vs. 3). This contrast is reduced by aerosol scattering of solar radiation into the line of 

sight (1) and by scattering of solar radiation from the object out of the line of sight (4) 

(http://acmg.seas.harvard.edu/people/faculty/djj/book/bookchap8.html#20531).  

 

Earth’s climate is influenced not only by greenhouse gases which heat up the planet absorbing 

the infrared component of the Earth’s radiation and re-emitting it towards the Earth’s surface. The 

action of aerosols on climate is more complex: they can behave such as greenhouse gases and 

produce a heating effect or act as cooling, depending on their chemical-physical characteristics 

(D’Alessio et al., 2005; Mitra et al., 2002). 

The interaction of aerosol particles with the solar radiation depends on their chemical 

composition. Some components of the aerosol can scatter incoming solar radiation reducing its flux 

to the Earth’s surface, and are thus capable of reducing the heating due to greenhouse gases (for 

example, sulphate). Other components, such as elemental carbon, have a continuous absorbing 
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spectrum that extends to IR, and can contribute to the heating effect. The ability of the atmospheric 

aerosol to influence the way solar radiation is transmitted through the atmosphere has relevant 

consequences in terms of radiation budget and thus in terms of climate change.  

Figure 1.7 represents mean global radiative forcing for year 2011 starting from a pre-industrial 

situation of 1750 (IPCC, 2013) and aggregated uncertainties for the main drivers of climate change. 

Values are global average radiative forcing (RF) partitioned according to the emitted compounds or 

processes that result in a combination of drivers. The best estimates of the net radiative forcing are 

shown as black diamonds with corresponding uncertainty intervals; the numerical values are 

provided on the right of the figure, together with the confidence level in the net forcing (VH-very 

high, H-high, L-low, VL-very low). Aerosols result to have a “cooling” effect on climate, by 

scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes 

clouds brighter and extends their lifetimes (IPCC, 2007; IPCC, 2013). However, the net effect of all 

contributes on climate is positive in agreement with the trend of atmospheric temperature observed 

in the troposphere. The net effect of aerosol, which includes cloud adjustments due to aerosols, is 

negative (-0.9 W m
-2

, medium confidence) and it is a balance of positive forcing mainly due to 

“black carbon” absorption of solar radiation and a negative forcing of reflecting aerosol from most 

aerosols. Despite its importance for climate, atmospheric nucleation is poorly understood (Almeida 

et al., 2013). There is high confidence that aerosols and their interactions with clouds have offset a 

substantial portion of global mean forcing from well-mixed greenhouse gases. They continue to 

contribute the largest uncertainty to the total RF estimate (IPCC, 2013). The forcing from 

stratospheric volcanic aerosols can have a large impact on the climate some years after volcanic 

eruptions. Several small eruptions have caused a radiative forcing of -0.11 W m
-2

 for the years 

2008-2011, which is approximately twice as strong as during the years 1999-2002 (IPCC, 2013). 
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Figure 1.7 Radiative forcing estimates in 2011 relative to 1750 and aggregate uncertainties for the main 

drivers of climate change. Values are global average radiative forcing (RF) partitioned according to the 

emitted compounds or processes that result in a combination of drivers. The best estimates of the net 

radiative forcing are shown as black diamonds with corresponding uncertainty intervals; the numerical 

values are provided on the right of the figure, together with the confidence level in the net forcing (VH-very 

high, H-high, L-low, VL-very low). Albedo forcing due to black carbon on snow and ice is included in the 

black carbon aerosol bar. Total anthropogenic radiative forcing is provided for three different years relative 

to 1750. The net effect of aerosol includes cloud adjustments due to aerosols is negative (-0.9 W m
-2

, medium 

confidence) and it is a balance of positive forcing mainly due to “black carbon” absorption of solar 

radiation and a negative forcing of reflecting aerosol from most aerosols. There is high confidence that 

aerosols and their interactions with clouds have offset a substantial portion of global mean forcing from 

well-mixed greenhouse gases. They continue to contribute the largest uncertainty to the total RF estimate 

(IPCC, 2013. Figure 5 from Approved Summary for Policymakers). 

 

PM deposition exerts a significant influence on aquatic and terrestrial ecosystems. Deposition of 

acid pollutants such as sulphuric acid contributes to soil acidification with adverse effects on forests 

and crop cultivation and on the economy. Enhanced rates of nitrates deposition, instead, contributes 

to eutrophication of aquatic ecosystems, causing a negative impact on the life of aquatic animals. 
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The relationship between ecosystems and particulate depends on size, origin and chemical 

composition of particles; the effects of acid rains strongly depend on soil composition.  

Deposition of particulate matter on plants can have direct effects if it resides long time on leaves 

or indirect effects in the case in which it is deposited to soil, where it can be absorbed by roots. 

When particulate permeate in soil spread by dry and wet depositions, the environmental impact is 

increased as chemical composition is modified by deposition. 

Acid rains can damage forests and slow their growth strongly modifying the acidity of the soil, 

ruining leaves, solving nutritive substances and releasing toxic substances for plants (e.g., 

aluminium, easily absorbed by plants). When pH of soil is reduced, nutritive substances such as 

potassium, calcium and magnesium are exchanged with H
+ 

and are washed. Soil has a natural 

ability to neutralize acidity, on the basis of chemical composition and of rocky underlayer (US 

EPA, 2012). 

Acid components in soil can penetrate deep into it and reach aquifers, rivers and lakes, adding to 

the direct effect of precipitation. Rivers and lakes completely acidify when both water and soil are 

no more able to neutralize the acid component: pH can be reduced from normal values of 6-8 units 

to 2-4 units. In acidified lakes elevated concentrations of Al
3+

 in solution are normally found. 

Aluminum comes from washing of rocks by H
+
: in neutral pH conditions aluminum ions are 

blocked into rocks thanks to their reduced solubility. Acid pH and aluminum released by soil into 

waters are extremely dangerous to aquatic ecosystems, and in particular for ichthyic species (US 

EPA, 2012).  

Materials exposed to air and atmospheric agents are naturally subject to degradation processes 

due to the effects of heat, humidity, oxidative capacities of the atmosphere and presence of 

microorganisms. The presence of aggressive pollutants can speed up already existing degrading 

processes and activate new ones. The main pollutants responsible for such acceleration are SOx, 

NOx, CO2, O3 and derivatives, and PMx (Vandini et al., 2000). Acid aerosol can attack cultural 

heritage and construction materials, altering their chemical composition. 

The effects of PM on human health have been widely studied in the last twenty years and include 

asthma, lung cancer and cardiovascular issues. An important relationship has been found between 

current PM10 concentration in ambient air and the number of hospitalizations and deaths due to 

respiratory and cardiovascular diseases (Pope et al., 1995; Dockery and Pope, 1996). The threat of 

atmospheric particles to health depends on their size, shape, and chemical composition. In particular, 

researches demonstrated that the most important parameter determining the toxicity of particles is its 

size, as it is correlated to the ability of penetration into the respiratory system: while PM10 is able to 
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penetrate in the bronchi, PM2.5 can reach the lungs and nanoparticles are able to pass through the 

lungs and enter the circulatory system (Dockery and Stone, 2007; Pérez et al., 2009). 

In fact, inhalation constitutes the main exposition pathway to particulate. For this reason, a 

concentration limit under which there is no adverse effect on health does not exist (WHO, 2002).  

Human respiratory system acts a “filter” against foreign bodies: before reaching the lungs, 

particles have to pass through a series of natural barriers, as shown in Figure 1.8: 

 

Figure 1.8 Depositioned particle size in respiratory tract 

(http://www.tus.ac.jp/rist/lab/introduction/2research-centers/906.html).  

 

Particles having sizes higher than 1 m are easily intercepted and deposited in nose and throat, 

from where are then thrown out; those having size in the range 1 m – 100 nm can deposit in 

bronchioles, and then be carried into the throat and thrown out in about two hours. 

Ultrafine particulate is the most dangerous as it can reach alveoli and be transported by 

circulatory system to different organs of respiratory system. It is removed in a slower and less 

complete way: it can escape phagocytosis of macrophages of pulmonary alveoli and can reach 

lymphatic system, epithelial tissues and pulmonary pits causing wounds, inflammations and 

preventing gaseous exchanges with blood. Moreover, due to the particular surface structure, 

particles can adsorb carcinogenic chemical substances, toxic or reactive substances that are 

deposited on cells with which they interact (Oberdörster, 2000). 

The specialized cancer agency of the World Health Organization (WHO), the International 

Agency for Research on Cancer (IARC), recently announced that it has classified outdoor air as 

carcinogenic to humans (IARC, 2013). Particulate matter, a major component of air pollution, was 

evaluated separately and was also classified as carcinogenic to humans (IARC, 2013). The IARC 

evaluation showed an increasing risk of lung cancer with increasing levels of exposure to outdoor 
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air pollution and particulate matter. 

Anenberg et al. (2010) published an estimate of the global health effects of air pollution based on a 

single atmospheric model. More recently, Silva et al. (2013) improved these calculations by using 

results from a range of atmospheric different models—six in all—rather than relying on just one. They 

concluded that 2.1 million deaths occur worldwide each year as a direct result of fine particulate matter. 

The map of Figure 1.9 shows the model estimate of the average number of deaths per 1,000 square 

kilometers (386 square miles) per year due to air pollution. The researchers used the difference in 

pollution levels between 1850 and 2000 as a measure of human-caused air pollution. Dark brown areas 

have more premature deaths than light brown areas. Blue areas have experienced an improvement in air 

quality relative to 1850 and a decline in premature deaths. Fine particulate matter takes an especially 

large toll in eastern China, northern India, and Europe—all areas where urbanization has added 

considerable quantities of PM2.5 to the atmosphere since the start of the Industrial Revolution. A few 

areas—such as the southeastern United States—saw PM2.5 concentrations decline relative to pre-

industrial levels (shown in blue). In the southeastern United States, the decrease in PM2.5 is likely related 

to a decline in local biomass burning that has occurred over the last 160 years. 

 

 

Figure 1.9 Model estimate of the average number of deaths per 1000 square kilometers per year due to air 

pollution. The researchers used the difference in pollution levels between 1850 and 2000 as a measure of 

human-caused air pollution. Dark brown areas have more premature deaths than light brown areas. Blue 

areas have experienced an improvement in air quality relative to 1850 and a decline in premature deaths. 

(http://earthobservatory.nasa.gov/IOTD/view.php?id=82087&src=eoa-iotd) 

 

Some metals such as Fe, Cu and Mn in contact with pulmonary tissues can produce chemical 

reactions adverse on human health (Fenton reactions) (Harrison et al., 2001). Moreover, metals can 

undergo oxidation-reduction reactions or act as catalysts of chemical reactions, forming free 
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radicals such as OH radical, well-known for its inflammatory capabilities (Harrison et al., 2000).  

Ultrafine particles are also supposed to directly interact with central nervous system, being 

deposited on nasal mucous membrane and diffused through olfactory nerve to the brain: this can 

lead to adverse neurotoxic effects (Oberdörster et al., 2004). 

 

1.1.4 Chemical composition 

Particulate matter is extremely complex in terms of size and formation mechanisms and for this 

reason is extremely heterogeneous also from the chemical point of view. Emission and formation 

processes affect not only the size distribution of particles, but also their chemical composition (Raes 

et al., 2000). Figure 1.10 reports a schematic representation of the main mechanisms of formation 

of particles of atmospheric particles together with their corresponding chemical components. 

 

 

Figure 1.10 Chemical composition of atmospheric aerosol (elaboration of the scheme of Seinfeld, Brice 

Temine, Department of Chemistry, UCC http://crac.ucc.ie/tour/Brice1.pdf) 

 

During recent years, substantial improvements have been carried out in the chemical 

characterization and identification of the main atmospheric aerosol components (Viana et al., 2008). 

All the individual inorganic species, typically representing more than 1% of the total PM mass, can 

be easily determined and their main sources identified: crustal elements (silicon, aluminium, 

calcium, carbonate), sea-salt aerosol (sodium chloride), inorganic secondary species (nitrate, 

sulphate, ammonium), primary anthropogenic species (elemental carbon). 
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Much more complex is the situation for organic compounds, as this class constitutes a relevant 

fraction of PM mass (20-60%) but includes a wide variety of individual species, each one at very 

low concentration levels. Organic matter can be measured as a whole, but only a small part of the 

species that constitute this group can be determined individually; for this reason the monitoring of 

organic species in PM is generally addressed only to harmful (toxic and carcinogenic) compounds 

or to specific species that can be considered tracers of specific PM emission sources.  

Chemical components constituting PM are not homogeneously distributed on all size fractions, 

but tend to accumulate in specific intervals, as a function of the source and the corresponding 

formation mechanism (Raes et al., 2000).  

Generally speaking, sulphates, ammonium, hydrogen ions, elemental carbon, the organic 

component and trace elements are mainly present in the fine fraction, while crustal (calcium, 

aluminium, silicon, magnesium and iron) and biological material (spores, pollen, organic 

fragments) are in the coarse fraction (Chiari et al., 2004; Hueglin et al., 2004; Moreno et al., 2004).  

Sulphates, nitrates and ammonium are among the most abundant components in PM. In gaseous 

phase sulphur dioxide and nitrogen dioxide react with OH radical producing sulphuric and nitric 

acid (Finlayson-Pitts and Pitts, 1999). As of Figure 1.11, sulphuric acid then reacts with ammonia 

and form ammonium sulphate, while HNO3 is neutralized by reaction with calcium carbonate of 

crustal origin or by substitution with marine NaCl.  

 

Figure 1.11 Formation processes of nitrates and sulfates (Brice Temine, Department of Chemistry UCC, 

http://crac.ucc.ie/tour/Brice1.pdf) 

 

Neutralization by ammonia is not always complete: in strongly man-made environments a sub-

stoichiometric concentration of ammonia is often observed, which determines a typical acid 

character of PM. Sometimes acidity can be more than neutralized, such as in Saharan Dust, due to 

the typically basic composition of minerals that form this natural aerosol. 

Nitric acid is more volatile and as a consequence significant concentrations are in form of gas, 

while sulfuric acid has a very low vapor pressure in environmental conditions and exist in form of 

particles in aerosol phase (Hewitt, 2001). 

http://crac.ucc.ie/tour/Brice1.pdf
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The carbonaceous fraction of aerosol is formed by elemental carbon (or black carbon), organic 

molecules and carbonates (about 5% as estimated by Fermo et al., 2006). These compounds are 

present in elevated amounts in atmospheric dusts, especially of anthropogenic origin. Carbonates 

are typically compounds of crustal origin. 

Researches carried on urban and rural aerosol show that aerosol of the shortest size is mainly 

constituted by carbonaceous material (Putaud et al., 2004). A considerable fraction of EC and OC 

(organic carbon) comes from combustion not only through fossil fuels, but also by forest fires that 

affect on planetary scales extended surfaces of forests (equatorial band, boreal forests, 

Mediterranean area). EC are present in amorphous or crystalline form and is the component of 

atmospheric aerosol which can mostly absorb solar radiation. It is also responsible of the notable 

reduction of visibility in industrial districts. Concentrations are extremely variable depending on the 

locations and seasons: in rural areas it is usually in the range 0.2-2 g m
-3

, whereas in urban areas 

its range is 1.5-20 g m
-3

. OC can be directly emitted to the atmosphere both as primary OC, or 

formed by condensation and/or oxidation of low volatility products by photo-oxidation of 

hydrocarbons (secondary OC). OC derives mostly from oxidation of combustion products, such as 

VOCs (Volatile Organic Compounds) and their successive condensation, dissolution in aqueous 

phase, adsorption (mainly on EC particles) or absorption (Seigneur, 2001). The organic fraction in 

urban and rural aerosol is a complex mixture of organic compounds (Jacobson et al., 2000; 

Baltensperger et al., 2005). Tropospheric particulate contains a significant and variable amount of 

organic material (10-70% in mass of fine particulate depending on the location), which has an 

important impact of physical and chemical properties of aerosol (McFiggans et al., 2005). OC 

represent 90 to 97% of total carbon present in the fine fraction in rural areas, while the remaining is 

attributed to elemental carbon (Tagliavini et al., 2000). PAHs (Polycyclic Aromatic Hydrocarbons), 

a class of compounds notably toxic and carcinogenic, are among the minority of carbonaceous 

fraction. They are formed by incomplete combustion of organic substance (coal, oil, wood, 

gasoline). PAHs, adsorbed on the surface of particles generated by combustion, are released in 

atmosphere together with other pollutants (nitrates, sulfates, ozone, PAN and radicals). In these 

conditions PAHs are subject of chemical transformations that can lead to degradation and formation 

of more polar compounds. PAHs can react with nitrogen dioxide to form nitro-PAHs that can be 

oxidized by ozone or photo-degraded and oxidized to quinons (US EPA, 1997).  

Metals and other elements are present in the aerosol to low levels of concentration and represent 

a reduced of the mass of PM (2-3 %). Some elements are considered “tracers” of the sources by 

which are emitted (Mitra et al., 2002; Tositti and Sandrini, 2007), such as those shown in Table 1.2: 
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Tracer Source 

Al, Fe, Si, K, Mn Rocks, soil 

Na, Cl   Marine aerosol 

Br, Pb, Ba Vehicular traffic  

V, Ni   Fuel oil 

Se, As, Cr, Co, Cu Coal combustion 

Zn, Sb, Cu, Cd, Hg Waste incinerator 

 

Table 1.2 Trace elements and sources (table elaborated by Mitra et al., 2002). 

 

Lead, zinc, bromine, nickel, vanadium, potassium and sulfur are mainly in the fine fraction of 

particulate, while sodium, iron, chromium, silicon, aluminum and magnesium are in the fine and 

coarse fraction (Ariola et al., 2002). Figure 1.12 reports yearly emission fluxes of some trace 

elements particularly relevant from the environmental and toxicological point of view and the 

estimates for global cumulative sources. The comparison between the two kinds of sources, together 

with the fact that in the atmosphere metals and non-metals (with few exceptions) travel attached to 

particulate or in crystalline matrices show how these species are present everywhere and how a 

unique identification of the emission sources can be problematic (Pacyna and Pacyna, 2001).  

 

 

Figure 1.12 Global estimated anthropogenic emissions of metals compared to estimated natural sources 

(Nriagu and Pacyna, 1989). 
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1.2 Environmental radiotracers 

Natural and artificial, radioactive, water-soluble, aerosol-borne tracers are an ideal tool to study 

atmospheric transport processes. The source distribution of these elements is relatively well known, 

they are removed from the atmosphere only by radioactive decay as well as by wet and dry 

deposition, and many observations exist to be compared with transport model results. Radioactive 

tracers in the atmosphere may be divided into three groups (Junge, 1963): 

I. Natural radioactivity from emissions out of the Earth’s surface, that include the three 

families of natural radioactive decay (
238

U, 
235

U and 
232

Th) (Table 1.3) and some 

primordial radionuclides of which the most abundant is 
40

K (0.0119% of the natural 

isotopic mixture of elemental potassium); 

II. Natural radioactivity produced by cosmic radiation (bombardment of stable nuclides by 

cosmic rays); 

III. Artificial radioactivity produced by nuclear weapon tests. 

Figure 1.13 reports a schematic view of the main radionuclides in the atmosphere: 
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Figure 1.13 Schematic view of the main radionuclides in the atmosphere.  

 

Radon isotopes are members of the natural decay series: the 
238

U decay series (
222

Rn, half-life 

3.8 days), the 
232

Th decay series (
220

Rn, also called thoron, half-life 56 s) and the 235U series (
219

Rn, 

also called actinon, half-life 3.9 s). Almost all radon in the atmosphere is produced in soils and rocks 

by radioactive decay of the respective precursor (Table 1.3), from which it is released and transported 

by diffusion. In atmospheric studies using radon isotopes, 
222

Rn plays a dominant role, as its longer 

half-life facilitates a greater diffusive transport and an atmospheric concentration that is 100 times 

higher than that of 
220

Rn. The atmospheric activity concentration of 
219

Rn is relatively negligible.  
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Table 1.3 Partial decay series starting from Radium isotopes in the three main radioactive decay series 

(Sykora and Froehlich, 2010).  

 

About 99% of 
222

Rn in the atmosphere originates in soils and rocks, where it is produced by 

radioactive decay of its parent nuclide 
226

Ra. Once released to the atmosphere, it remains there until 

its radioactive decay. As it is a chemically inert gas, physical or chemical processes cannot remove 

it from the atmosphere. Therefore, it is suitable to trace atmospheric mass transport and to identify 

air masses derived from the continental boundary layer. Furthermore, atmospheric 
222

Rn is the 

source of its decay products (
214

Bi, 
214

Pb, 
210

Pb, 
210

Bi, and 
210

Po) in the atmosphere, which are also 

suitable to identify air masses from the continental boundary layer.  

In particular, atmospheric 
210

Pb is mainly produced within the atmosphere by decay of 
222

Rn; its 

direct precursor is 
214

Po (Table 1.3). The produced 
210

Pb atoms are attached to aerosols in the 

diameter size range between 0.1 and 0.5 m (accumulation mode) (Papastefanou and Ioannidou, 
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1995; Winkler et al., 1998; Gaffney et al., 2004; Ioannidou et al., 2005). For particles of this size, 

precipitation is the main mechanism of removal from the atmosphere. 
210

Pb is a minor constituent of 

this aerosol type (one 
210

Pb-containing aerosol particle in about 10
4 

aerosol particles) and, thus, it is 

useful to trace their atmospheric transport and to determine their atmospheric residence time (Lambert 

et al., 1990; Koch et al., 1996). Figure 1.14 shows an example of the spatial distribution of 
210

Pb in air 

over the Pacific. The sampling sites belong to the network of the SEAREX (sea/air exchange). 

Generally, an increase of the concentration with latitude north is observed, and it is correlated with the 

size of the land-mass upwind from the sampling sites (Turekian and Graustein, 2003). 

 

 

Figure 1.14 Distribution of 
210

Pb in air at stations of the SEAREX network. The site name is centered over 

the point representing the data. The length of the name approximates to the error of the mean. (from 

Turekian and Graustein, 2003; Sykora and Froehlich, 2010).  

 

Cosmogenic radionuclides are produced by the interaction of cosmic rays (composed of protons of 

very high energy, of galactic or solar origin) with the atoms that form the atmosphere, and their rate of 

production depends primarily on the cosmic-ray particle flux (Masarik, 2010), but is also linked to the 

Earth’s magnetic field (Turekian and Graustein, 2003). Cosmic radiation penetrates all of the space, 

the source being primarily outside our solar system. The primary cosmic radiation consists of very 

high-energy heavy particles, photons and muons. The interactions of cosmic-ray particles with the 
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Earth’s atmosphere and the Earth’s surface produce a cascade of secondary particles and a variety of 

cosmogenic nuclides. The concentration of cosmogenic nuclides is the result of the interplay between 

four processes: production, decay, transport and deposition. Examples of cosmogenic nuclides are 

radioactive isotopes of the elements beryllium, carbon, aluminum, chlorine, calcium, and iodine. 

Their lifetimes range from seconds to thousands and even millions of years, and some of the isotopes 

are stable.  

Lal et al. (1958), Lal and Peters (1962, 1967), Masarik and Beer (1999) and Nagai et al. (2000) 

have published reviews on the production and distribution of cosmogenic radionuclides. Table 1.4 

is a compilation of the cosmogenic radionuclides, of which 
14

C, 
3
H, 

7
Be and 

10
Be are the most 

frequently used in atmospheric studies.  

 

 

Table 1.4 Production rates and global inventory of cosmogenic radionuclides (from Turekian and Graustein, 

2003; Sykora and Froehlich, 2010).  

 

The decay of 
7
Be (half-life 53 days) to 

7
Li by electron capture is associated with the emission of 

a 477.6 keV gamma ray that facilitates measurement of its activity by low-level germanium 

detector. Lal and Peters (1962, 1967) have shown that the 
7
Be production rate decreases with 

atmospheric depth (Figure 1.13). Most 
7
Be resides in the stratosphere. Its production rate reaches a 

maximum in the upper stratosphere at about 20 km (Masarik and Beer, 1999) and decreases with 

decreasing altitude down to ground level due to Stratosphere-to-Troposhere Exchange (STE) (e.g., 

Stohl et al., 2000). The relatively high production rates of 
7
Be in the upper troposphere, combined 

with its transport from the lower stratosphere to the upper troposphere, normally maintain a steep 

vertical concentration gradient between the upper and lower troposphere (Feely et al., 1989). 



General Introduction 

29 

 

Figure 1.15 Production of 
7
Be in the atmosphere as a function of latitude and altitude (from Turekian and 

Graustein, 2003; Sykora and Froehlich, 2010).  

 

The source functions of cosmogenic radionuclides depend mainly on latitude and altitude 

(Benioff, 1956; Lal et al., 1958; Lal and Peters, 1962; O’Brien, 1979; Masarik and Beer, 1999). 

Considering 
7
Be, only 33% is produced in the troposphere, particularly in the upper troposphere, 

while the rest is produced in the stratosphere (Figure 1.15). 

Natural radionuclides from terrestrial and upper atmospheric sources (
222

Rn, 
220

Rn, 
212

Pb, 
210

Pb, 

7
Be, 

10
Be, etc.) and of anthropogenic origin are widely used as tracers to examine atmospheric 

processes relevant to air quality and climate and to validate atmospheric models simulating 

transport, transformation and removal processes of gases and aerosols. The validation and 

calibration of such models require accurate experimental data on source functions and temporal and 

spatial variation of relevant radionuclides. Yet, the effective use of such data is still limited, 

especially due to the insufficient accuracy of radionuclide source functions. 

Measurements at different locations carried out by, e.g., Papastefanou and Ioannidou (1995), 

Takayuki et al. (1996), El-Hussein et al. (2001) and Gerasopoulos et al. (2001) have shown that the 

7
Be concentration in air at ground level depends on latitude, altitude and on local meteorological 

conditions. At middle latitudes, 
7
Be values are generally higher than at high latitudes (Feely et al., 

1989; Baeza et al., 1996; Todorovic et al., 1999; Al-Azmi et al., 2001; Aldahan et al., 2001). In 
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Bratislava (latitude about 48°N), measurements from 2001 to 2005 yielded a monthly average 
7
Be 

activity concentration in ground air of 2.85 mBq m
-3

 (Sykora et al., 2005); during the period from 

1981 to 1995, the monthly average was 3.12 mBq m
-3

 at nearly the same location (Durana et al., 

1996). These values are remarkably lower than the value of 5.06 mBq m
-3

 derived from daily 

measurements during the period 1982 to 2002 in Palermo, Italy (39°N), and the value of 

5.21 mBq m
-3

 obtained in Kuwait (29°N) during 1994–1998 by Al-Azmi et al. (2001). The larger 

values at the latter two stations, which are located close to the sea, may be attributed to enhanced 

vertical air mass exchange at coastal stations compared to inland stations such as Bratislava. Figure 

1.16 illustrates the latitudinal effect of 
7
Be measured at various ground-level stations. The global 

average tropospheric 
7
Be is 12.5 mBq m

-3
 (UNSCEAR, 2000).  

 

 

Figure 1.16 Annual 
7
Be concentrations at various locations as function of latitude (Sykora and Froehlich, 2010).  

 

In Figure 1.17 a compilation of data of 
7
Be in surface air in Northern Hemisphere is represented 

(Kulan et al., 2006). Higher concentrations are found at middle latitudes and lower concentrations 

are towards the Pole and the Equator. The production rate of 
7
Be is highest in the stratospheric air at 

high latitudes (Beer et al., 2012). Mixing of this stratospheric air into the upper troposphere occurs 

along the tropopause discontinuity in mid latitude regions. Subsequently, convective mixing within 

the troposphere will bring 
7
Be rich air masses from upper tropospheric or lower stratospheric origin 

into the planetary boundary layer and to the Earth’s surface. Stohl et al. (2003) highlighted the 

importance of events of rapid deep stratospheric intrusions. As one of the preferred destinations of 

such intrusions they identified the Mediterranean region. This might explain why the highest 
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concentrations of 
7
Be in ground level air shown in the N-S transect of Figure 1.17 were observed at 

latitudes around 35-40°N.  

 

 

Figure 1.17 Long term averages of 
7
Be concentrations in ground level air for the northern hemisphere 

between 17°W and 30°E. Filled symbols represent data from sampling stations located within the 

atmospheric boundary layer. Open symbols show data from high altitude sites which lay typically above the 

ABL. Triangles correspond to data from this paper. Diamonds and the fitted lines (solid and stippled lines) 

are according to Kulan et al. (2006). Additional data points (circles) are from: Dutkiewicz and Husain 

(1985), Kolb (1992), El-Hussein et al. (2001), Gerasopoulos et al. (2001), Azahra et al. (2003), Ioannidou et 

al. (2005), Todorovic et al. (2005), Cristofanelli et al. (2006), Daish et al. (2006), Likuku (2006), Leppänen 

et al. (2010), Bourcier et al. (2011), Dueñas et al. (2011), Pham et al. (2011), Leppänen et al. (2012). 

Results from Steinmann et al. (2013) are represented as open circles (Jungfraujoch, Switzerland, average 

2006-2011), filled triangles (average ratios of four other locations at ground level in Switzerland) 

(Steinmann et al., 2013).  

 

Like 
210

Pb, also
7
Be once produced is rapidly attached to submicron-sized particles (Papastefanou 

and Ioannidou, 1995; Winkler et al., 1998; Gaffney et al., 2004; Ioannidou et al., 2005). As 
7
Be and 

210
Pb share the same Winkler fate of aerosol, useful information about transport, removal and 

residence time of aerosols in the atmosphere can be obtained from combined measurements of 
7
Be 

and 
210

Pb. 
7
Be is produced in the stratosphere and upper troposphere, and 

210
Pb in the lowermost 

metre of the atmosphere over continents and islands. While 
7
Be is mixed downward, 

210
Pb is mixed 

upward, but both are removed from the atmosphere by precipitation. Thus, changes in the 
7
Be/

210
Pb 

ratio in space and time reflect both vertical and horizontal transport in the atmosphere. Virtually, all 
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210
Pb is transported from the continent, which makes the 

7
Be/

210
Pb ratio an excellent indicator of 

continental sources of local aerosols: low values of the ratio due to high 
210

Pb reflect high 

continental influence, while low values point to relative isolation from continental sources. 

The pair 
210

Pb and 
7
Be is also useful to test global atmospheric models for wet and dry 

deposition (Liu et al., 2001). Long-term data records of 
210

Pb (Preiss et al., 1996) and 
7
Be (Feely et 

al., 1989; Larsen and Sanderson, 1995) are available from worldwide networks and provide good 

constraints for model validation. 
7
Be and 

210
Pb have also been used to validate global numerical 

models describing other processes, such as transport of continental air over the oceans (Turekian et 

al., 1989; Balkanski et al., 1993), transport from the stratosphere (Rangarajan and Gopalakrishnan, 

1970; Viezee and Singh, 1980; Sanak et al., 1985; Dibb et al., 1992, 1994; Rehfeld and Heimann, 

1995) and subsidence in the troposphere (Feely et al., 1989; Koch et al., 1996). 

The ratio 
7
Be/

210
Pb can also be used to determine the sources of chemical species in the lower 

free troposphere such as ozone and nitrate. Graustein and Turekian (1990) have correlated the 

ozone concentration with a function of 
7
Be and 

210
Pb measured at Izania, Tenerife, and found that 

the primary source of ozone in the lower free troposphere of this eastern Atlantic region was the 

upper troposphere. 

Long-term records of monthly mean surface air concentration of 
210

Pb, 
7
Be and O3 measured at 

New York City, USA (Lee, 2004), indicate that the summer maximum of ozone corresponds well 

with the summer minimum of 
210

Pb and maximum of 
7
Be. 

7
Be and ozone concentrations measured 

during summer campaigns in free tropospheric air at Mt. Fuji, Japan, showed a clear correlation 

between 
7
Be and ozone, which indicates transport from the lowermost stratosphere and uppermost 

troposphere. The ozone values at low 
7
Be concentration represented instead a photochemical 

component of ozone produced in the troposphere. Based on these measurements, the ozone influx 

from the stratosphere has been estimated to be about 0.9-10
11 

molecules cm
-2

 s
-1

 (Lee, 2004). 

In summary, the use of 
7
Be and 

210
Pb in order to trace tropospheric aerosol resides on their well-

known properties: 

 they have distinct and well known sources and sinks; 

 they can be measured with accuracy without risks of contamination during the manipulation 

of the sample; 

 they have a chemistry in the atmosphere which is easier than that of other stable substances 

transported by aerosol particles, and for this reason are able to give information on basic 

processes in which aerosol is involved.  
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1.3 Receptor modelling 

Tools called receptor models are applied to obtain information on the sources of air pollutants 

from the measured airborne concentrations. Information about the identification of the sources of 

materials emitted into the air, the quantitative estimation of the emission rates of the pollutants, the 

understanding of the transport of the substances from the sources to downwind locations, and the 

knowledge of the physical and chemical transformation processes that can occur during that 

transport is needed to the management of air quality. The name receptor models or receptor-

oriented models arises from the fact that these methods are focused on the behavior of the ambient 

environment at the point of impact as opposed to the source-oriented dispersion models that focus 

on the emissions, transport, dilution and transformations that occur beginning at the source and 

following the pollutants to the sampling or receptor sites. While source-oriented models are 

predictive models that may be applied both to PM and gaseous species and calculate ambient 

concentrations starting from source emissions and atmospheric dispersion models, receptor models 

are diagnostic models, which identify the sources and calculate their contribution starting from 

measured concentrations of PM mass and chemical compounds in the sampling site (receptor). The 

traditional source-oriented approach consists in solving dispersion model equations forward in time 

for given sources of pollutant (Astitha et al., 2005). As a result, a time- and space-dependent 

concentration field C is obtained. In many practical applications, air pollution at a given receptor is 

of primary interest, and alternative receptor-oriented modeling can be a more effective approach 

(Astitha et al., 2005). Air quality at the receptor is characterized by an integral of pollution 

concentration over the modelling domain and time of simulation. In the receptor-oriented approach, 

starting from backward trajectories (or puffs, when Lagrangian Particle Dispersion Models are 

used), an influence function C* is determined instead of concentration. The influence function 

calculated for a given receptor depends on meteorology and transformation of pollutant in the 

atmosphere, but it is independent of emission sources (Astitha et al., 2005). The receptor-oriented 

approach is useful for emission control, planning locations of new emission sources, and assessing 

the contributions from different sources to air pollution in a given area.  

The source-receptor relationship is an important concept in air quality modeling. It describes the 

sensitivity of a “receptor” element y to a “source” x (Seibert and Frank, 2004). Typically receptor 

models use the chemical composition data for airborne particulate matter samples and result in the 

identification of the pollution source types and in estimates of the contribution of each source type 

to the observed concentrations (Hopke and Thurston, 1984; Thurston and Spengler, 1985; Hopke, 

2009). Some models have also been developed to identify the locations of the sources through the 

use of ensembles of air parcel back trajectories. In fact the chemical and physical composition of an 
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air mass is inherently related to its path through the atmosphere and in order to get the maximum 

information out of long term time series of composition measurements, data are often divided 

according to air mass history (Fleming et al., 2012).  

 

1.3.1 Back trajectories 

Atmospheric composition measurements have been interpreted using wind speed and direction 

measurements as a marker for air mass history for many years, but this resulted in poor attribution 

of the sources. In meteorology, trajectories are defined as the paths of infinitesimally small particles 

(Dutton, 1986). The fluid particle, marked at a certain point in space at a given time, can be traced 

forward or backward in time along its trajectory. In trajectory models, this is done by integrating the 

trajectory equation          (where Δx is the position increment during a time step Δt resulting 

from the wind v; the index i runs from 1 to 3 and denotes the three dimensions of space), using 

mean (non-turbulent) horizontal and vertical winds from a meteorological model.  

While forward trajectories describe where a particle will go, backward trajectories (or back 

trajectories) indicate where it came from. Therefore, they can be used to interpret measurements of 

atmospheric trace substances, in order to establish relationships between their sources and their 

receptors (Stohl, 1998). Large data-sets are often investigated using back trajectories, allowing 

statistical analyses to be made (e.g., Moody and Galloway, 1988; Brankov et al., 1998; 

Eleftheriadis et al., 2009; Tarasova et al., 2009). 

Inaccuracies in the input wind fields are the largest errors in trajectory calculations (Stohl, 1998). 

Other sources of errors are the interpolation of the wind velocity from grid points to actual 

trajectory positions (Rolph and Draxler, 1990; Doty and Perkey, 1993; Stohl et al., 1996), and 

truncation errors which occur in the numerical solution of the trajectory equation (e.g., Walmsley 

and Mailhot, 1983; Seibert, 1993). Total trajectory position errors result from all the above sources, 

but are difficult to determine and normally unknown. In a survey of results from previous studies, 

Stohl (1998) suggested that average trajectory errors are on the order of 15-20% of the distance 

travelled after a few days. In critical flow situations errors up to 100% are also possible. The 

accuracy of an individual trajectory being limited by these errors, it is virtually impossible to 

describe transport phenomena in turbulent flows by calculating single trajectories. The limitations 

and uncertainties that apply to individual trajectories may, to some extent, be overcome by a 

statistical classification approach, aggregating a large number of trajectories over a long time 

period, since potential errors tend to average out; in particular, errors are reduced when daily 

trajectories are categorized according to the common path air parcels followed (Brankov et al., 

1998; Stohl, 1998).  
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1.3.2 Source-receptor models incorporating back trajectories 

Using a model of atmospheric transport, the position of the air being sampled backward in time 

from the receptor site from various starting times throughout the sampling interval can be 

calculated. With back trajectories it is possible to examine source-receptor relationships and the 

timescales of long-range and local transport and its effect on the observed composition (Fleming et 

al., 2012). As outlined in previous paragraph, many uncertainties and limitations apply to individual 

trajectories, but they are generally overcome when a large number of back trajectories is calculated 

and is grouped into the common paths followed by air parcels. In particular there are two major 

ways to visualize air quality data: the first one is cluster analysis where the data is split into a 

number of groups representing distinct fetch areas and atmospheric transport patterns. The second 

one is to produce a probability map which identifies areas around the receptor site that contribute to 

the pollution observed at the site. This is done using the trajectories in Residence Time Analysis 

(RTA) (Poirot and Wishinski, 1986; Poirot et al., 2001), Areas of Influence Analysis (AIA) (Malm 

et al., 1990), Quantitative Bias Trajectory Analysis (QTBA) (Keeler and Samson, 1989), Potential 

Source Contribution Function (PSCF) (Ashbaugh et al., 1985), and Residence Time Weighted 

Concentrations (RTWC) (Stohl, 1996).  

In Chapters 2 and 6, the PSCF receptor model, which is the most widely used of the trajectory 

ensemble methods, will be used; cluster analysis will instead be applied in Chapter 5. The two 

methods are briefly described in the following sections. 

 

Cluster analysis of back trajectories 

The application of clusters to back trajectories analysis was introduced by Moody (1986) and 

Moody and Galloway (1988), who recognised its ability to simultaneously account for variations in 

wind speed and direction (Harris and Kahl, 1990).  

Cluster analysis is a categorization method used to separate the data in classes or clusters, such 

that objects in the same cluster are similar to each other and different from objects located in further 

clusters (Manly, 1994). Individual trajectories of an ensemble are grouped into a smaller number of 

clusters, and in this way the errors in the individual trajectories tend to average out. It has been 

demonstrated that clusters of back trajectories arriving at a specific location can serve as surrogates 

for different synoptic circulation patterns (Dorling et al., 1992).  

Clusters are groups with similar distributions: in the case of back trajectories, similar directions 

and lengths of a combination of trajectory pathways and composition. In general, trajectories are 

grouped by a statistical technique and then the concentrations of some atmospheric compounds at the 

receptor site are analysed for each trajectory classification to see whether each classification is 
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chemically distinct. Cluster analysis thus provides an objective means of grouping trajectories whilst 

giving information about the history of the air mass and the air pollution climatology of a site, helping 

to determine source-receptor relationships (Fleming et al., 2012). However, it has been pointed out 

by, e.g., Stohl (1998) that in reality cluster analysis is not completely objective, since the selection of 

the clustering algorithm and the specification of the distance measure and of the number of clusters 

used is subjective. Anyway, the result of a cluster analysis is similar to a flow climatology, but cluster 

analysis is more objective and accounts for variations in transport speed and direction simultaneously 

(Stohl, 1998).  

In cluster analysis, each data is treated as a point in an n-dimensions space. The coordinate axes of 

this space are defined by the measurements used to characterize the data (in the case of trajectories, 

latitude and longitude). The analysis defines the degree of similarity between the data measuring the 

distances between the points in space (Lavine, 2000). Similar data will be close to each other, while 

different data will be far away. The choice of the metric to be used for the distance depends on the 

kind of measured variables. Euclidean distances are commonly used for continuous variables, but in 

our case the great-circle distance, i.e., the shortest distance measured along the surface of the sphere, 

was chosen, since the computation of Euclidean distances with geographical coordinates as planar 

would lead to errors that might not be acceptable at high latitudes. 

There are two differently types of clustering algorithms, hierarchical and non-hierarchical clustering: 

 Hierarchical clustering partitions data following a series of steps either by grouping or by 

separating the objects one by one in each step. These algorithms do not construct a single 

partition with k clusters but deal with all values of k in the same run (Kaufman and 

Rousseeuw, 2005). All the classified objects are considered at each step of the hierarchical 

clustering and the process is determined by the construction of an agglomeration tree. The two 

closest clusters are merged in each step, starting the procedure with singleton clusters and 

ending with a single cluster that contains all the objects. This approach is commonly used 

when the number of clusters is not known. Examples of this clustering procedure are Ward’s 

method
2
, average-linkage 

3
(which calculates the distance between all pairs of points and the 

cluster) and centroid methods.  

 Non-hierarchical clustering attempts to directly decompose the data set into a set of disjoint 

clusters by minimising the measure of dissimilarity in the trajectories within each cluster, 

                                                             
2 In Ward’s method at each step the deviances associated to all possible groupings is calculated and the group 

associated to the minimum deviance is chosen (Lavine, 2000). 

3 In average linkage method the distance of all pairs of points in which a member of each pair belong to the cluster is 

calculated. The average of these distances is used to calculate the similarity between the points and the cluster (Lavine, 2000).  



General Introduction 

37 

whilst maximising the dissimilarity of different clusters. These methods are applied if one 

wants to classify the objects into k clusters, where k is fixed. In general, the algorithm tries 

to find a “good” partition in the sense that objects of the same cluster should be close or 

related to each other, whereas objects of different clusters should be far apart or very 

different (Kaufman and Rousseeuw, 2005). The k-means procedure is the most commonly 

used for trajectories classification (e.g., Sharma et al., 2006; Eneroth et al., 2007; Huang et 

al., 2010; Dueñas et al., 2011) and is also used in Chapter 5. 

The k-means is an iterative algorithm that used a specified number of clusters k to partition the 

data by comparing each object to the arithmetic mean of all the members of each of the k clusters 

(cluster centres). The selection of the optimal number of clusters that best describes the different air 

flow patterns is performed by computing the percentage change in within-cluster variance, as a 

function of the number of clusters (Dorling et al., 1992). The assignment of members (trajectories) 

to a given group (cluster) is carried out by minimising the internal variability within the group of 

trajectories and maximising the external variability between different groups based on the trajectory 

coordinates. It uses the Root Mean Square Deviation (RMSD) of all individual clusters from their 

cluster mean trajectory against the number of clusters retained until a “break” is reached, indicating 

that two clusters have been merged which are unacceptably different. Alternatively, if a threshold 

percentage change in RMSD is exceeded at any particular point in the clustering process, this is also 

taken as an indication that an optimum number of clusters have been reached. The k-means 

clustering method is often quoted as the Dorling method in climatological clustering research and is 

well suited for large databases because of its relatively small computational requirements (see for 

example Dorling and Davies, 1995). 

 

Potential Source Contribution Function 

The method was originally developed by Ashbaugh et al. (1985) and Malm et al. (1986). Air parcel 

back trajectories ending at a receptor site are represented by segment endpoints. Each endpoint has 

two coordinates (latitude and longitude) representing the central location of an air parcel at a 

particular time. To calculate the PSCF, the whole geographic region covered by the trajectories is 

divided into an array of grid cells whose size is dependent on the geographical scale of the problem 

so that the PSCF is a function of locations as defined by the cell indices i and j.  

Let N be the total number of trajectory segment endpoints during the whole study period, T. If nij 

is the number of trajectory segment endpoints that fall in the ijth cell during the T time period, then 

the probability of this event, A, is given by 

       [   ]  
   

 
     (1.2) 
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where  [   ] is a measure of the residence time of a randomly selected air parcel in the ijth cell 

relative to the time period T. 

In the same ijth cell there exists a subset of mij segment endpoints for which the corresponding 

trajectories arrive at a receptor site at the time when the measured concentrations are higher than a 

pre-specified criterion value. The probability of these high concentration events Bij is then given by  

       [   ]  
   

 
     (1.3) 

where  [   ]is again a measure of the residence time but for contaminated air parcels. 

The PSCF is defined as  

     
 [   ]

 [   ]
 

   

   
    (1.4) 

and is the conditional probability that an air parcel which passed through the ijth cell had a high 

concentration upon arrival at the trajectory endpoint. That is, cells with high PSCF values are 

indicative of areas of “high potential” contribution (Wang et al., 2006). They do not necessarily 

make a large contribution to long-term air pollutant concentrations, since this also depends on the 

frequency at which air parcels actually travel over that region (Stohl, 1998). The error associated 

with the trajectory segment increases with increasing distance from the receptor sites (Stohl, 1996). 

In this trajectory approach the method looks at the collective properties of a large number of end 

points. Although the trajectory segment endpoints are subject to uncertainty, a sufficient number of 

endpoints should provide accurate estimates of the source locations if the location errors are random 

and not systematic (Begum et al., 2005; Hopke, 2009). Cells containing emission sources would be 

identified with conditional probabilities close to one if trajectories that have crossed the cells 

effectively transport the emitted contaminant to the receptor site. The PSCF model thus provides a 

means to map the source potentials of geographical areas. It does not apportion the contribution of 

the identified source area to the measured receptor data (Begum et al., 2005; Hopke, 2009).  

 

1.3.3 Source apportionment 

From a general point of view, source apportionment is the estimation of the contributions to the 

airborne concentrations of some atmospheric species (generally, a pollutant; primarily, airborne 

particulate matter) that arise from the emissions of natural and anthropogenic sources. 

Such kind of models have been applied to the study of PM since the ‘70s and reconstruct the 

sources estimating contributes starting from chemical-physical of atmospheric aerosol measured in 

one or more receptor sites using different mathematical tools (US EPA, 2004). 

The basic idea of source apportionment is that aerosol particles retain elemental-chemical 

composition characteristic of their origin: the PM composition at the receptor site is a combination 
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of the compositions of the aerosols emitted by the different sources. The main hypothesis is then 

that mass conservation can be assumed and a mass balance analysis can be used to identify and 

apportion sources of airborne particulate matter in the atmosphere. The common approach is to 

obtain a data set constituted by a large number of chemical constituents such as elemental 

concentrations in a number of samples. The assumption is that the measured concentrations derive 

from the summation of the mass contributions of a number of independent sources or source types 

(Hopke, 2009). The mathematical expression of the mass balance equation that accounts for all m 

chemical species in the n samples, as contributions from p independent sources is 

    ∑       
 
       (1.5) 

where i = 1,..., n samples, j = 1,…, m species and k = 1, …, p sources. 

Receptor models based on the mass balance equation require the validity of the following 

assumptions (Watson et al., 2002): 

1) all the sources that give a significant contribution have been identified (otherwise the mass 

reconstruction is poor); 

2) source chemical profiles are constant in time (or at least during the sampling period); 

3) source chemical profiles are constant in space, i.e., they do not change during transport from 

the source to the receptor site; 

4) source profiles are each other linearly independent (not collinear), in order to correctly 

disentangling the corresponding source contributions. 

Equation (1.5) can be solved in a number of different ways, depending on the information that is 

available. The problem can be divided into two classes: the case in which the source profiles are 

known and the case in which the source profiles are unknown.  

If the sources profiles in the region are a priori known, the problem can be rewritten as a 

regression problem where the profiles and the ambient concentrations are known 

    ∑            
 
      (1.6) 

where the equation is now written for one sample at a time.  

This approach was first suggested by Winchester and Nifong (1971) and Miller et al. (1972), and 

the common solution to this problem is achieved through an effective-variance least squares method 

(Cooper et al., 1984), now generally referred to as the Chemical Mass Balance (CMB) model 

(Watson et al., 1990). The CMB model is most useful for primary emissions where the chemical 

characteristics of the particles permit their apportionment. Secondary particles are difficult since 

they are the result of chemical transformations of gaseous emissions into particles and are generally 

treated as specific chemical species such as sulphate, nitrate, and ammonium or ammonium 

sulphate and ammonium nitrate. Of course the key issues in the application of CMB are the 
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knowledge of the profiles. Misspecification of the profiles in the model can be a major problem 

even though one may apparently get a good fit to the data. In the following a description of two 

multivariate methods that deal with the most general case in which the source profiles are not 

known and that have been used in one of the following works will be given. 

A number of methods have been developed that deal with the most general case in which the source 

profiles are not known. In general, these methods are form of factor analysis, in which the source 

apportionment is simultaneously extracted from the whole data matrix. These methods attempt to 

apportion the sources on the basis of interpretations (internal correlations) at the receptor site alone (Viana 

et al., 2008). The wide family of all “Factor Analysis” techniques comprehends Target Transformation 

(TTFA), Principal Component Factor Analysis (PCFA), Positive Matrix Factorization (PMF).  

Principal components and factor analysis are names given to several of the variety of forms of 

eigenvector analysis. A great deal of confusion exists in the literature in regard to the terminology 

of eigenvector analysis. Various changes in the way the method is applied has resulted in it being 

called factor analysis, principal component analysis, principal components factor analysis, empirical 

orthogonal function, etc., depending on the way the data are scaled before analysis or how the 

resulting vectors are treated after the eigenvector analysis is completed. All of the methods have the 

objective to compress data into fewer dimensions and the identification of the structure of 

interrelationships that exist between the variables measured or the cases studied. Principal 

components analysis (PCA) is a multivariate statistical technique that attempts to identify a new set 

of variables as linear combinations of the measured variables so that the observed variations in the 

system can be reproduced by a smaller number of these causal factors. The new variables, 

commonly known as principal components (PCs), are orthogonal and uncorrelated to each other. 

Since PCA can only be performed on a set of samples in which the various sources contribute different 

amounts of particles to each sample, the mass balance needs to be expanded to a matrix equation 

            (1.7) 

where X is the m x n pollutant concentration data matrix, G is the m x p matrix containing the p 

source profiles, F is the p x n matrix of source contributions, E is the residual matrix, the part of 

variance not explained by the model.  

The methods of Factor Analysis/Multiple Linear Regression (FA/MLRA) and Positive Matrix 

Factorization, which are used in Chapter 7, will be described in the remainder of this paragraph.  

 

Factor Analysis/Multiple Linear Regression 

Factor Analysis/Multiple Linear Regression (FA/MLRA) is a technique that consists of two 

following steps: a first procedure to identify sources of PM through Factor Analysis and a second 



General Introduction 

41 

one in which contributions of different sources are estimated by multiple linear regression. The first 

objective of FA is to investigate how an elevated number p of correlated variables (analyzed 

chemical species) can be linked to a lower number of independent not observed variables (factors) 

and then to solve the matrix using a number of factors far lower than p. There is the possibility to 

find a number k of factors lower than p if every observed data xi = (x1, x2, …, xi, …, xp) can be 

written as 

   ∑         
 
        (1.8) 

where fl with l = 1, …, k are the factors, λjl are the loadings and l are error terms (specific factors) 

(Tucker and Mac Callum, 1997; Härdle and Simar, 2003).  

In this way each calculated factor is a linear combination of the original variables and expresses a 

maximum of variability in the original data but is also uncorrelated with the rest of data. Loadings 

represent the degree of correlation between the variables and the single calculated factors; they are 

linked to the composition of the source (Henry et al., 1984; Hopke and Thurston, 1984; Salvador et 

al., 2004). 

In particular the elements with higher loadings in each factor are interpreted as fingerprints of 

the source that they represent. For this reason in order to identify in a unique way a single source 

with a single factor particular compounds characteristic of that source have to be identified. 

Normally, loadings in the range 0.4-0.6 are considered high (Lv et al., 2006), even if the association 

of compounds to sources represent the delicate step of the analysis. 

By design, the eigenvector analysis compresses the information content of the data set into as 

few eigenvectors as possible. Thus, in considering the number of factors to be used to describe the 

system, it is necessary to carefully examine the problems of reconstructing both the variability 

within the data and the actual data itself. Following the diagonalization of the correlation or 

covariance matrix, it is necessary to make the difficult choice of the number of factors, p, to use in 

the subsequent analysis. This problem occurs in any application of an eigenvector analysis of data 

containing noise. In the absence of error, the eigenvalues beyond the true number of sources 

become zero except for calculation error. The choice becomes more difficult depending on the error 

in the data. Several approaches have been suggested (Hopke et al., 1980; Dresser et al., 1988). A 

large relative decrease in the magnitude of the eigenvalues is one indicator of the correct number of 

factors. It can often be useful to plot the eigenvalues as a function of factor number and look for 

sharp breaks in the slope of the line (Cattell, 1966). If the eigenvalue is a measure of the 

information content of the corresponding eigenvector, then only sufficiently "large" eigenvalues 

need to be retained in order to reproduce the variation initially present in the data. One of the most 

commonly used and abused criteria for selecting the number of factors to retain is retaining only 
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those eigenvalues greater than 1 (Guttman, 1954). The argument is made that the normalized 

variables each carry one unit of variance. Thus, if an eigenvalue is less than one, then it carries less 

information than one of the initial variables and is therefore not needed. However, Kaiser and 

Hunka (1973) made a strong argument that although eigenvalue greater than one does set a lower 

limit on the number of factors to be retained, it does not set a simultaneous upper bound. Thus, 

there must be at least as many factors as there are eigenvalues greater than one, but there can be 

more than that number that are important to the understanding of the system's behavior. Hopke 

(1982) has suggested a useful empirical criterion for choosing the number of retained eigenvectors. 

In a number of cases of airborne particulate matter composition source identification problems, 

Hopke found that choosing the number of factors containing variance greater than one after an 

orthogonal rotation provided a stable solution. Because the matrices produced by the 

diagonalization process have been calculated in a way to maximize the amount of variance 

contained in each factor, they may not reflect the pattern of variables representative of a particle 

source. Thus, the factors are rotated generally to achieve what is termed "simple structure" (Hopke 

et al., 1976). A varimax rotation is most commonly used in such analyses. With this axes rotation 

few variables with high loadings exist for each factor and an elevated number of variables have 

instead loadings close to zero.  

Even though the choice of the model dimension and the search for non-negative solutions by 

axis rotations can be based entirely on mathematical criteria, it has been suggested that factor 

analysis attempts to get more information out of atmospheric data than is really there (Henry, 1987). 

Prior to FA, the variables have to be normalized: generally in the study of PM the standardization 

is used (Thurston and Spengler, 1985; Swietlicki et al., 1996; Marcazzan et al., 2003), which converts 

real xij values to displacements from a normal distribution using the following transformation 

ij i

ij

i

x x
z




        (1.9) 

where i = 1, 2, …, n is the total number of elements in the analysis, j = 1, 2, …, m is the total number 

of observations, zij the standardized value of the ith element for the jth observation; xij the 

concentration of that element for that observation, ix  the average concentration on all concentrations 

of ith element and σi the standard deviation of the concentrations of ith element. The result of the 

standardization is a distribution of average value equal to zero and standard deviation equal to one. 

After the identification of the sources of PM, next step is to derive the contributions of each source. 

Contributions are obtained through MLRA using Absolute Factorial Scores (AFS) as independent 

variables and PM as dependent variable (Thurston and Spengler, 1985; Harrison et al., 1997). AFS 

are calculated inserting daily values of each element in the factor equations and are the new 
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coordinates of samples calculated respect the new k axes represented by the k extracted factors. As the 

values of the original matrix have been normalized, also factorial scores are referred to normalized 

values. Thurston and Spengler (1985) proposed to obtain the score of an artificial sample with null 

concentrations for each p variable. After the application of FA, factorial scores of this sample are 

subtracted from the factorial scores of real observations, and new factorial scores referred to the real 

zero, not normalized, are obtained (Thurston and Spengler, 1985; Salvador et al., 2004).  

Estimated daily contributions of each source are obtained as products of daily AFS with multilinear 

regression coefficients. The result of the regression of PM concentrations on AFS is an interception 

constant, representing (if higher than zero) the quantity of PM not explained by identified sources. 

The source profiles for each element are then obtained by regression of daily concentrations on 

estimated daily contributions of sources, obtained as product of absolute factorial scores with the 

coefficients of multilinear regression. The estimated daily concentration of PM is obtained as sum 

of daily contributions of the sources: 

0

1

k

j j

j

PM AFS 


        (1.10) 

with ζ0 the interception constant contribution of sources not considered in the model, ζi the coefficients 

of regression, AFSj absolute factorial scores, j the number of factors extracted by FA. 

 

Positive Matrix Factorization 

Positive Matrix Factorization (PMF) (Paatero, 1997, 1999) is based on a different approach to the 

factor analysis problem from the prior form of factor analysis. While all other methods are based on 

eigenvector analysis and singular value decomposition, PMF is based on an explicit least-square 

approach with individual data points weights. 

The X matrix of Eq. 1.7 can also be defined as 

             ̅ ̅ ̅       (1.11) 

where  ̅ and  ̅ are the first p columns of the U and V matrices. The U and V matrices are calculated 

from eigenvalue-eigenvector analyses of the XX’ and X’X matrices, respectively. It can be shown 

(Lawson and Hanson, 1974; Malinowski, 1991) that the second term on the right side of Eq. 1.7 

estimates X in the least-squares sense that it gives the lowest possible value for  

∑ ∑     ∑ ∑ [    ∑       
 
   ] 

   
 
   

 
   

 
      (1.12). 

An eigenvector analysis is an implicit least-squares analysis as it is minimizing the sum of squared 

residuals for the model. Paatero and Tapper (1993) showed that in effect in PCA there is scaling of 

the data by column or by row and that this scaling will lead to distortions in the analysis. They 

further showed that optimum scaling of the data would be to scale each data point individually so as 
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to have more precise data having more influence on the solution than points that have higher 

uncertainties. However, they showed that point-by-point scaling result in a scaled data matrix that 

cannot be reproduced by a conventional factor analysis based on singular value decomposition.  

In particular the main limits of FA/MLRA that have been solved by PMF are: 

 uncertainties on measured data are not taken into account, and concentrations of all 

chemical species are equally weighted independently from the accuracy of their 

measurements; 

 some factor loadings may be negative (which means anti-correlation among factors and 

measured species); 

 as components are by definition uncorrelated, the model cannot describe real collinear 

sources (due for example to meteorological factors); 

 the model outputs are given without uncertainty or with uncertainties that do not take into 

account the experimental uncertainties on input data. 

 

PMF takes the approach of an explicit least squares in which the method minimizes the object 

function: 

      ∑ ∑ (
    ∑       
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       (1.13) 

where sij is an estimate of the “uncertainty” in the jth variable measured in the ith sample. The factor 

analysis problem is then to minimize Q(E) with respect to G and F with the constraint that each of the 

elements of G and F is to be non-negative (Paatero and Tapper, 1993, 1994).  

A correctly weighted least squares formulation of the factor problem leads to an optimum fitting 

of the data matrix. Moreover, the possibility to input each data with a specific weight allows a 

correct and effective use of all the information contained in the dataset, as it is possible also to use 

“problematic” data (missing data, lower or near detection limit values, …). The weight makes Q a 

dimensionless quantity that is invariant for scale changes (optimal scaling).  

In the way it is built, this method works in robust mode, i.e., it excludes outliers so that they do 

not affect the calculations of the contributions. The errors in the F matrix are estimated from the 

concentrations and assuming that other matrices are not affected by errors. Each matrix is treated in 

a similar way in turn, so that each element of matrix has an associated uncertainty.  

In the PMF model, it is suggested that variables associated to elevated errors in the 

measurements or to a lot of missing data are not considered (US EPA, 2005). It is possible to verify 

if a variable should be included or not calculating the signal to noise ratio (SNR) for each variable 

(Paatero and Hopke, 2003): 
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with xij the concentrations of the species and sij the uncertainty associated to the ith variable in the 

jth observation. The value of the ratio can be: 

1. strong, in the case in which noise is low or the signal is elevated, and then that variable is 

robust and can be inserted into the model; 

2. bad, when there are too many missing values or the errors are elevated, and the variable 

should be removed from the elaborations; 

3. weak, if the variable is not robust but can be inserted in the model, even if with a lower 

weight than the others (uncertainty three times higher). 
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2.1 Introduction
1
 

Air pollution by airborne particulate matter (from now on named PM) represents an environmental 

problem of primary concern whose role in air quality and climatic issues is well recognised (EMEP, 

2000; WHO, 2000; IPCC, 2007; JRC, 2010; IPCC, 2013). 

In fact, owing to its remarkable complexity, great efforts are being exerted in order to fill a 

number of gaps in the knowledge of PM phenomenology, ranging from the source apportionment to 

the complete resolution of the chemical mixtures according to particle size up to transformation and 

transport processes in which PM is involved. Though the collection of experimental data and the 

understanding of the atmospheric system are in continuous and tremendous progress, its inherent 

complexity and continuous evolution of sources still points out its incomplete knowledge and 

consequently the need for continuous monitoring and updating (Monks et al., 2009; Colbeck and 

Lazaridis, 2010). 

In order to fulfil the need for regulating aerosol concentration levels, PM metrics have long been 

introduced internationally into air quality legislation. The progress in this field of research has also 

stimulated the evolution of PM gravimetric standards leading to a shift toward lower cut-off sizes in 

connection with health issues such as PM2.5, PM1 and PM0.1 (particulate matter with mean 

aerodynamic diameter < 2.5, 1, 0.1 m, respectively) or even suggesting the shift towards the 

adoption of a totally different PM standard i.e., air particles number density (USEPA, 2004; 

Johansson et al., 2006). 

                                                             
1 Part of this chapter consists of a paper by Tositti L. (Dept. of Chemistry “G. Ciamician” Università di Bologna), 

Riccio A. (Dept. of Applied Science, University of Napoli “Parthenope”), Sandrini S. (Dept. of Chemistry “G. 

Ciamician” Università di Bologna), Brattich E. (Dept. of Biological, Geological and Environmental Sciences-Section of 

Geology, Università di Bologna), Baldacci D. (Dept. of Chemistry “G. Ciamician” Università di Bologna), Parmeggiani 

S. (Dept. of Chemistry “G. Ciamician” Università di Bologna), Cristofanelli P. (Institute of Atmospheric Sciences and 

Climate of the Italian National Research Council ISAC-CNR), Bonasoni P. (Institute of Atmospheric Sciences and 

Climate of the Italian National Research Council ISAC-CNR), 2013. Short-term climatology of PM10 at a high altitude 

background station in Southern Europe. Atmospheric Environment 65, 142-152. doi:10.1016/j.atmosenv.2012.10.051. 

Section 2.3.5 regarding the Saharan Dust episode happened in March 2004 has been presented at 7th International 

Workshop on Sand/Duststorms and Associated Dustfall, 2-4/12/2013, ESA/ESRIN, Frascati (Rome), Italy. 
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As a result, the use of PM10 standard may presently appear as a somewhat dated reference metric 

for air particulate; nevertheless it is recognised that for environmental purposes PM10 is still a very 

informative index since to date there is a wealth of data concerning this aerosol fraction available 

from datasets, providing a tool for large scale comparison and analysis. Instead the attention towards 

the finest fractions is required for health protection purposes as well as for investigating 

microphysical processes.  

The PM10 metric is also very useful in areas affected by large-scale volcanic plumes and, 

especially in association with PM2.5, is a more predictive tool able to efficiently detect coarse-to-fine 

variations typical of natural events, such as mineral dust transport toward southern Europe. As such, 

PM10 vs. PM2.5 relationships may help to adequately identify PM10 exceedances on an event basis. 

Aside from scientific research and investigations within academic institutions, air quality 

networks provide basic information on pollution levels including PM10 (and now even PM2.5) within 

the single countries with the objective of safeguarding population, cultural heritage and 

environment, as required by the European legislation. In this complex framework there emerges an 

increasing awareness of the importance of mixing of natural and anthropogenic PM sources 

influencing both the background PM levels and affecting at different levels countries in the north 

and south of the European continent (Querol et al., 2009 and references therein; Pey et al., 2010). 

In Italy, PM10 measurements are available with a good temporal and spatial coverage, especially 

in the northern and central regions of the peninsula, where it is measured within the air quality 

networks managed by the national system of environmental agencies at regional and national scale 

(ISPRA, 2010). For this reason most of PM10 data is focussed on urban sites with limited 

information on background stations, though recent upgrades in Italian air quality legislation is 

trying to fill this relevant gap. Under urban/industrial conditions where attention is mainly 

addressed to population safeguard, PM10 levels detected in the national air quality network are 

usually very high, especially in the Po valley where, owing to the large degree of urban 

development and to the low capacity of pollution dispersal (Van Dingenen et al., 2004; Vecchi et 

al., 2004), air quality suffers from high frequency/high criticality PM pollution episodes, occurring 

mainly in winter. The average situation is such that, without suitable chemical speciation, local 

source intensity may mask other background contributions associated with large-scale circulation 

affecting the Italian peninsula throughout the year.  

Moreover it has long been recognised how Italy is often downwind of African mineral dust 

plumes which may significantly enhance PM10 levels producing mass loads above the EC objective 

value of 50 µg m
-3

, especially during the summer season, when ground level stations experience 

much lower seasonal averages (Balkanski et al., 2003; Fischer et al., 2003; Bonasoni et al., 2004; 
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Cristofanelli and Bonasoni, 2009). In other cases the influence from the European continent has 

been pointed out suggesting the influence of transboundary pollution (Marenco et al., 2006; Riccio 

et al., 2007, 2009; EMEP, 2011). 

In this Chapter the PM10 data time series collected over the years 1998-2011 at Mt. Cimone 

observatory, a high altitude station on the top of the Italian Northern Apennines, is analysed. This site is 

considered representative of the European continental background conditions (Bonasoni et al., 2000; 

Marinoni et al., 2008), and due to its altitude and geographical position southwards of the Alps and the 

Po valley, as well as being in the core of the Mediterranean region, it is suitable to study a wide 

spectrum of atmospheric processes. In particular, owing to its remoteness with respect to the intense 

pollution sources, densely clustered over the Italian territory, it offers the unique opportunity to observe 

background influence of airborne particulate sources, usually overshadowed by local sources at ground 

level.  

This chapter will therefore include: 

- description of the average behaviour of PM10 at this site based on basic statistics and on the 

meteorological framework; 

- analysis of PM10 data at Mt. Cimone in connection with PM10 data on the regional scale 

collected by the local networks North and South of the Apennine range; 

- analysis of PM10 data in association with fine and coarse particles number density; 

- source apportionment of PM10 based on back-trajectories clustering technique. 

 

2.1.1 Site description 

Mt. Cimone station (44°11’ N, 10°42’ E, 2165 m asl) is located on the highest summit of the 

Northern Apennines experiencing both regional and long-range transport of air masses (Bonasoni et 

al., 1997, 2000; Cristofanelli et al., 2006; Cristofanelli and Bonasoni, 2009) (Figure 2.1). The 

station is maintained by the Italian Meteorological Office managed by the Italian Air Force since 

1941 and hosts the research platform “Ottavio Vittori” managed by ISAC-CNR
2
. Its main 

meteorological features can be briefly summarized as follows: an annual mean temperature of about 

2°C, with a winter mean and minimum respectively of -4°C and -22°C and a summer mean and 

maximum of about 10°C and 18°C. Snow cover usually lasts from November to late May. 

Mt. Cimone is the windiest site among the Italian meteorological stations, with wind speeds 

reaching intensities of 216 km h
-1

. During the year prevailing winds blow from S-SW in the warm 

season and N-NE in the cold one. More details on the station are available at 

http://www.isac.cnr/cimone/.  

                                                             
2 Institute of Atmospheric Sciences and Climate of the Italian National Research Council 
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Figure 2.1 Location of Mt. Cimone station in the northern Italian Apennines (Planiglobe, kk&w - digital 

cartography, http://www.planiglobe.com/). 

 

 

2.2 Experimental 

Ambient aerosol is systematically collected at Mt. Cimone since 1998 with a high volume PM10 

sampler by General Metal Works collecting aerosol particles with a mean aerodynamic diameter 

lower than 10 m. Filters are manually changed every two or three days.  

The equipment has been adapted in order to overcome the harsh meteorological conditions of the 

site, frequently characterised by high relative humidity, strong winds and low temperatures often 

leading to sudden and quick frosting. The sampling head has thus been equipped with a heating 

system by an electric resistance to prevent inlet icing in case of harsh meteorological conditions. 

Sampling operations (with exception PC interface of filter change) are remotely controlled from 
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Bologna facilities at ISAC-CNR allowing the recording of mean meteorological and sampling 

parameters during air filtration. 

The average flow rate is about 1.13 m
3
 min

-1
 at standard temperature and pressure (STP), with an 

average volume of air collected on each filter equal to 3000-4000 m
3
 during approximately 48 hours 

samplings (115-175 samples per year), depending on weather conditions, failures of the sampling 

equipment and/or of the power supply and personnel on site. A total of 839 two-day samples were 

collected during the period 1998-2011 (53% of the total collected samples). 

The PM10 data collected at ground stations, used in Subsection 2.3.2 to describe the regional 

framework, were gravimetrically determined by the Environmental Protection Agencies networks 

of Emilia Romagna and Tuscany according to the European Standard EN 12341 (CEN, 1998), 

absorbed in the Italian Ministerial decree n.60 (DM 60/02). 

The uncertainty associated with the sampled volume has been estimated by the manufacturer to 

be around 5%. Aerosol is collected on rectangular glass-fiber filters (Whatman, 20 cm x 25 cm). 

According to the product specification the collection efficiency of the filters is more than 99% for 

the inhalable fraction of aerosol with diameter between 0.1 and 10 m.  

Once delivered to the University of Bologna, aerosol mass load on filters is determined 

gravimetrically by an electronic microbalance with a sensitivity of 0.0001 g after 24 hours filter 

conditioning at controlled temperature (22-24 °C) and relative humidity (around 30%) inside a 

desiccator. After weighing, the PM10 samples are subjected to non-destructive high-resolution -

spectrometry with HPGe detectors for the determination of airborne radiotracers lead-210 and 

beryllium-7, only marginally treated in this work, but already partially investigated in other papers 

(Gerasopoulos et al., 2001; Cristofanelli et al., 2006; Lee et al., 2007) and treated in following 

Chapters 3, 4, 5 and 6 of this thesis. 

At Mt. Cimone, since 2000, concentration and size distribution of particles with optical diameter 

between 0.30 and 20 μm have been continuously recorded by ISAC-CNR in 15-size channels by 

using an optical particle counter (OPC, Mod. GRIMM 1.108). These measurements allow the 

determination of a fine mode (0.3 μm ≤ Dp < 1 μm) and a coarse mode (1 μm ≤ Dp ≤ 20 μm) of 

particles with a 1-minute time resolution. The instrument is based on the quantification of the 90° 

scattering of light by aerosol particles. According to the specifications, the reproducibility of the 

OPC in particle counting is ±2% (Putaud et al., 2004). A heated non-selective sampling head at 9 m 

above the ground draws air in the OPC inlet. The sampling head heating system, together with the 

laboratory temperature, constant at about 20°C for the whole year, prevents size counting bias at 

high relative humidity levels affecting hygroscopic growth.  

Prior to the analysis, all the concentrations have been normalized at 25°C and 1 atm. 



CHAPTER 2 

66 

2.2.1 Trajectory model description and source apportionment technique 

In order to evaluate the effects of short-term climatology on PM10 concentrations, back trajectories 

were calculated by means of the HYSPLIT model (version 4.9; Draxler, 1999). 

HYSPLIT is a well-known trajectory model, updated several times over the last two decades 

(Draxler and Taylor, 1982; Draxler, 1992; Draxler, 1999; Draxler and Rolph, 2011) and now is a 

complete system for computing simple trajectories for complex dispersion and deposition simulations 

using either puff or particle approaches. It has already been used to cluster trajectories arriving at 

several sites in Northern (Dorling and Davies, 1995) and Southern Europe (Escudero et al., 2006). 

Gridded meteorological data from the NCAR/ARL website were used. NCAR data consist of a 

large set of global meteorological data, stored at a spatial resolution of 2.5°  2.5° in a 6-hours 

archive starting from 1948. These data originate from the operational series of computer forecasts 

and analysis undertaken by the National Centers for Environmental Prediction. 

Four back trajectories for each day were computed, covering the whole monitoring period. 

Trajectories arrive at synoptic times (00, 06, 12, and 18 UTC) at the height of 1000 m above the 

measurement site, and were integrated backward in time by interpolating the 4-D wind records to 

the current particle positions up to five days back. 

A review by Stohl (1998) revised the limitations and advantages which apply to trajectory 

calculations; the uncertainties involved in any analyzed meteorological field, the interpolation to 

trajectory position and the lack of representation of small-scale effects (e.g., turbulence) inevitably 

limit the significance of analysis based on backward trajectories. Typical trajectory errors are about 

10–20% of the travel distance, but individual trajectories can have much larger errors depending on 

the meteorological situation (Harris et al., 2005); moreover, the analysis of backward trajectories is 

known to generate “ghost sources” in the wake of real emission sources (Wotawa and Kröger, 1999; 

Maione et al., 2008) since it implicitly assumes that concentrations measured at the receptor site are 

smeared out along all the associated trajectories; Vasconcelos et al. (1996 a, b) investigated the spatial 

resolution of the method, and found that the angular resolution was good, but that the radial resolution 

was poor, so that caution is needed in the interpretation of results from back-trajectories. 

However, the limitations and uncertainties that apply to individual trajectories may, to some extent, 

be overcome by a statistical classification approach, aggregating a large number of trajectories over a 

long time period, since potential errors tend to average out. Notwithstanding their limitations, 

trajectory classification approaches have been used to analyze source-receptor relationships in a large 

number of studies: Keeler and Samson (1989), Seibert et al. (1994), Stohl (1996), Cape et al. (2000), 

Lui et al. (2003), Bonasoni et al. (2004), Marinoni et al. (2008), and many others of similar vein. 
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In this work a source-receptor approach has been applied. Ashbaugh (1983) and Ashbaugh et al. 

(1985) originally developed this approach and much work has been done to add to this basic 

method (Seibert et al., 1994; Stohl, 1996). 

According to Ashbaugh et al. (1985), a conditional probability (CP) was reconstructed by 

exploiting the residence time of each trajectory; to this aim, the European domain was discretized 

using grid cells, each one of 1.0° × 1.0° side length, and the “high incident trajectories” (HITs), i.e., 

trajectories arriving at the receptor site during a measurement period at or above the 50
th

 percentile, 

were selected, which means that the concentration values residing in the highest 50% of all 

measured concentrations were considered. The time spent by HITs in each grid cell was calculated, 

and a CP was assigned to each grid cell by means of the formula 

ij

ij

ij
T

HIT
CP        (2.1) 

where HITij is the residence time of ‘hits’ in the (i, j) grid cell and Tij the time spent by all 

trajectories in the same grid cell. 

The resulting field may exhibit small-scale variations that are not necessarily statistically 

significant and should not be shown in a contour plot. On the other hand, a simple smoothing is not 

completely justified, since it can remove significant features. In order to remove small-scale 

variations in the concentration field, while retaining the most statistically significant features, HITij 

was filtered using a binomial test with a 95% confidence level. HITij values which did not 

significantly exceed 50% were set to zero. This value was chosen since the high incident days were 

defined as those at, or above, the 50
th

 percentile. The test was applied to the CPijs of each cell, 

assuming that individual values were independent from each other. 

The CP field is related to most relevant emission source areas (Seibert et al., 1994; Stohl, 1996); 

however, it should be stressed that the actual spatial distribution of emission sources may be different 

because meteorological conditions (and thus also the emission, transformation and removal processes) 

are specific for the pathways towards Mt. Cimone, and the resulting CP field has to be interpreted as a 

map of source fields contributing specifically to the concentration at this site. 

The vertical transport is not considered in this methodology, therefore here the contributions from 

upper troposphere and lower troposphere are not distinguished. 
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2.3 Results and discussion 

2.3.1 PM10 trend 

The dataset depicted in Figure 2.2 (light dots) consists of the PM10 mass load concentrations 

measured at Mt. Cimone from 1998 to 2011.  

 

 

Figure 2.2 PM10 concentration (small dots). The thicker markers are the seasonal fluctuations, as estimated by 

the KZ(3,21) filter. ‘SCM’ stands for Standard Cubic Meter, i.e., concentration normalized at 1 atm and 25 °C. 

 

The large gap presented by the data in 2007 is due to technical problems with the aerosol 

sampler. Owing to manual filter change at the station, sampling time is not uniform (though most 

samples are collected over 48 hours), therefore in order to safely apply statistical techniques data 

have been firstly homogenised by selecting only those samples referring to an averaging period no 

longer than 48 hours. The selection of only two-days averaged samples is also required by the 

analysis of source-receptor relationships; values referring to a sampling period longer than two days 

may be associated with fast changing synoptic conditions, so that back trajectories may derive from 

very different source areas, “blurring” the resulting images and adding an additional source of 
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uncertainty into the interpretation of source-receptor relationships. All data referring to the PM10 

mass accumulated over a longer time period have been neglected in any further analyses. 

PM10 displays a marked intra-annual variation, with winter minima and summer maxima (see 

Figure 2.2); to highlight anomalies, i.e., the synoptically influenced deviations from the seasonal 

cycle, the original time series was de-seasonalized by means of the Kolmogorov-Zurbenko filter 

(Zurbenko, 1986), denoted as KZ(m,n). This filter is based upon the calculation of a moving average 

tz  centered over a time window of n values (n is an odd integer), i.e., 
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The moving average is then iterated m times. A detailed discussion of the KZ filter, as well as 

comparisons with other separation techniques, can be found in Eskridge et al. (1997) and Rao et al. 

(1997).  

The de-seasonalized time series (Figure 2.3) was obtained by: 

KZ

MCT

PM

PM
PMPM       (2.3) 

where PM
MCT

 is the original time series measured at the Mt. Cimone site, PM is the mean 

concentration, evaluated over the whole monitoring period, and PM
KZ

 is the seasonal fluctuation 

obtained after the application of the KZ(3,21) filter, i.e., the moving average applied three times 

over a time windows of twenty-one days (thicker markers in Figure 2.2); this filter was chosen 

because it guarantees an almost perfect separation of the seasonal and synoptic time scales, as 

evaluated from the spectral response of the filter (Rao et al., 1997). The de-seasonalized time series 

is shown in Figure 2.3. Summer maxima of the seasonal deviation will be discussed in more details 

later on in this Section. 

The resulting time-series is characterised by remarkable variability between samples. In this 

framework the variations of PM10 concentrations mostly reflect the balance between sources and 

removal by meteorological processes whose time-scale is of the order of 3-5 days, i.e., a quasi-

synoptic timescale. The mass load concentrations mainly fall below 10 µg m
-3
 and may occasionally 

exceed 20 g m
-3 

(10% of cases). Fluctuations over the mean periodical behaviour show the 

occurrence of relative minima associated mainly with wet removal of PM throughout the year 

and/or with limited exchange with ground-level sources, most typical during the winter. Relative 

maxima are widely scattered throughout the year though the most significant increases tend to be 

more frequent in the warm season.  
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Figure 2.3 De-seasonalized PM10 time series obtained by eqn. (2.3). 

 

An analysis of basic statistics results obtained on the rough data (number of observations = 1586) yields 

an arithmetic mean of 8.8 ± 8.0 μg m
-3
 (geometric mean = 6.0 μg m

-3
; min = 0.1 μg m

-3
; 

max = 79.7 μg m
-3

); a skewness level of 2.6 indicates asymmetry in the data distribution, as clearly 

evident from the probability density function (pdf) in Figure 2.4. The distribution shows its maximum 

around 4 -6 μg m
-3
 suggesting the geometric mean as a more representative parameter rather than 

arithmetic mean. 
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Figure 2.4 Empirical probability density function of PM10 concentration (bars). The solid line is the 

maximum likelihood estimation of a log-normal pdf fitted to the data. 

 

2.3.2 The regional framework 

High values of PM mass loads at this high altitude station were analysed in a doctoral thesis by 

Baldacci (2005) based on the comparison of PM10 relative maxima with the corresponding values of 

210
Pb measured in the samples, the fine and coarse particle number density, Atmospheric Optical 

Thickness (AOT) and back trajectories analysis on an event basis. In summary, highest PM10 data 

can be attributed on average to three classes of events: 

- Saharan dust transports from the northern African deserts, which act as an important source 

of mineral dusts for both the western (Prospero, 1996; Barnaba and Gobbi, 2004; Bonasoni 

et al., 2004; Escudero et al., 2005; Cristofanelli et al., 2009), central (Di Sarra et al., 2001; 

Barkan et al., 2005) and eastern Mediterranean area (Papayannis et al., 2005); 

- uplift of polluted air masses from the Italian areas north of the Apennines range (i.e., Po 

Valley), especially during intrusion events from the boundary layer favoured by deep 

convection (Crosier et al., 2007; Carbone et al., 2010); 

- advection of PM10 enriched air masses from the European continent North and East of the 

Italian peninsula. 
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Interannual variations are also observed as a result of dominating meteorological conditions in 

single years. Comparison of annual means is depicted in Figure 2.5, reporting box and whiskers plot 

of collected PM10 and grouped by year. The annual means show largest variability at higher 

concentration levels; in principle this effect is mostly ascribed to Saharan dust incursions, often 

observed at Mt. Cimone (Bonasoni et al., 2004, Marinoni et al., 2008; Riccio et al., 2009) and 

whose frequency is rather unpredictable while they lead to remarkable increments in PM10 mass 

load as described in Baldacci (2005). 

 

 

Figure 2.5 Box and whiskers plot of the PM10 collected at Mt. Cimone and grouped by year (1998-2011). The 

boxes contain the range 25
th
-75

th
 percentile of the data; the whiskers represent the 5

th
 and 95

th
 percentile, while 

the square and the line inside the boxes denote the arithmetic mean and the median, respectively. Crosses and 

external lines represent the outliers and extreme values (minima and maxima), respectively. 
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As previously discussed, PM10 time series shows a pronounced seasonal fluctuation with winter 

minima and summer maxima. This seasonal behaviour has been evaluated on the basis of frequency 

analysis on data grouped by single month (Figure 2.6). Asymmetry in the frequency distribution is 

preserved in all the months, though summer months’ concentrations are distributed over a broader 

interval compared to the other months. It is observed that PM10 concentration reaches maximum 

levels in July and minimum in December. This behaviour is attributed to the seasonal fluctuation of 

the mixed layer height, as well as to the intense vertical exchange in the lower troposphere occurring 

in the warm season at this latitude, as reported by Baltensperger (1997), Baldacci (2005), Cristofanelli 

et al. (2006, 2009). The importance of vertical motion and of the resulting lower troposphere mixing 

has been already discussed in a previous paper concerning the behaviour of the 
7
Be/

210
Pb ratio at Mt. 

Cimone (Lee et al., 2007), a parameter which is known to efficiently describe this transport 

component within the troposphere as a result of the mixing of natural radionuclides whose reservoirs 

are located respectively in the stratosphere/upper troposphere (
7
Be) and in the mixed layer (

210
Pb). 

 

 

Figure 2.6 Box and whiskers plot of the PM10 collected at Mt. Cimone (1998-2011) and grouped by months. 

As previously reported (Bonasoni et. al., 2000; Fischer et al, 2003), during the cold season 

background free-troposphere conditions are often accomplished at Mt. Cimone top, whereas during 

the warm season the top of Mt. Cimone is enveloped into a fluctuating mixed layer, a phenomenology 

characterized by a daily modulation which, as a result of solar heating, is particularly intense during 
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this period (Marinoni et al., 2008). The overall seasonal effect is a combination of upward motion due 

to mixed layer expansion, thermal convection and mountain/valley breeze regime, altogether resulting 

into the uplift of airborne particulate from the lower troposphere and the substantial increase of mass 

load observed during the warm season. Nucleation at this height may be relevant as promoted by the 

favourable physico-chemical conditions, but its contribution in term of mass load is negligible, 

therefore the source of airborne particulate mass is mainly attributed to transport from sources at the 

regional and synoptic scale, as previously mentioned. This behaviour is further confirmed by the good 

agreement between PM10 and 
210

Pb (Pearson’s correlation coefficient R = 0.56; Spearman’s 

correlation coefficient R = 0.70), suggesting that they share source and timing in connection with the 

prevailing accumulation (fine) mode fraction (Lee et al., 2007). 

The influence of the efficient vertical exchange, driven by thermal convection in the warm 

season and causing the uplift of PM from ground level sources to Mt. Cimone top, is observed even 

at the Jungfraujoch in Switzerland, i.e., at higher altitude and latitude with respect to Mt. Cimone 

(Baltensperger, 1997; Tomasi et al., 2003). On the regional scale the PM10 increase at Mt. Cimone 

summit during the warm season is in phase-opposition with stations at ground level, both northward 

(Po Valley) and southward of the Apennine range, where maxima are recorded during the winter 

(i.e., when stable conditions inhibit the uplift of PM emitted at ground level). 

It is worth to note that, in agreement with the above observations, PM10 at Mt. Cuccolino, a semirural 

monitoring station (presently discontinued) of the Regional Environmental Protection Agency (ARPA 

Emilia-Romagna), at about 200 m asl on the hills close to Bologna, corresponds to an intermediate height 

between the behaviour in the free troposphere and in the mixed layer, showing a very weak seasonality 

and PM concentrations between ground stations and Mt. Cimone (see Figure 2.7). 

The analyzed regional data of PM10, on a daily sampling time basis, allows for further 

observations. The 2004 PM10 data at ground stations were determined gravimetrically on daily 

samples collected on filters at stations of the Environmental Protection Agencies networks of 

Emilia Romagna and Tuscany (mostly covering urban stations and a few rural and semirural 

stations). Figure 2.7 shows that, while the seasonal behaviour is opposite due to the winter 

decoupling from the CBL and the summer upward expansion of CBL over Mt. Cimone, on the 

lower timescale a strong correlation between all the stations in certain dates can be noted. 
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Figure 2.7 PM10 monthly means at various stations south and north Mt. Cimone in 2004. Southern stations 

are located in Tuscany (Empoli, Lucca, Pisa, Pistoia,), while Northern stations are located in Emilia-

Romagna (Bologna S. Felice, Carpi, Castenaso, Imola, Maranello, Modena, Monte Cuccolino, Nonantolana, 

Spezzano). The Mt. Cimone average value during March shows the influence of a huge Saharan dust 

outbreak, whose effect is very strong, suggesting a high elevation transport episode, which will be discussed 

with details in following Section 2.3.5. 

 

2.3.3 PM10 vs. OPC densities 

In order to obtain a more detailed characterization of PM10 fluctuations at Mt. Cimone, the data 

were compared with number densities of fine (< 1 m) and coarse (>1 m) particles simultaneously 

measured at this site since 2000 with an Optical Particle Counter. The latter data were extensively 

discussed in Van Dingenen et al., (2005) and Marinoni et al. (2008).  

Figures 2.8(a,b) depict the trend of PM10 and, respectively, fine particles (a) and coarse (b) 

particles for the year 2005, in which the number density series is less patchy. 
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Figure 2.8(a,b) Trend of PM10 and fine particles (0.3 μm ≤ Dp < 1 μm) (a) and coarse particles 

(1 μm ≤ Dp ≤ 20 μm) (b) for the year 2005 at Mt. Cimone. 

 

During the periods in which all the above observations were available the trend is very similar, 

showing a good agreement between fine and coarse fractions, according to the expected behaviour 

of airborne particulate and its relationships. The pattern of PM10 and number densities are in 

excellent overall agreement showing that the adopted sampling strategy of PM10 is able to 

efficiently capture a large fraction of its variance, even at this theoretically poor time resolution. 

In order to analyse the correlations between PM10 mass loadings and OPC data, number densities 

were averaged over the same time interval of PM10 sampling. This allowed to obtain the scatter 

plots presented in Figure 2.9, reporting respectively PM10 vs. fine particles (Figure 2.9 a), PM10 vs. 

coarse particles (Figure 2.9 b) and coarse vs. fine particles (Figure 2.9 c). 
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Figure 2.9(a,b,c) Scatter plot of a) PM10 vs. fine particles b) PM10 vs. coarse particles and c) coarse vs. fine 

particles. In Figure 2.9 c data have been classified in three clusters; clusters are indicated by different 

symbols and colors, i.e., dark cyan “pluses”, cyan “crosses” and blue small dots. 

 

As previously observed, high PM10 can be produced not only by Saharan Dust episodes carrying 

high coarse fractions, but also by the uplift of polluted air masses enriched in secondary aerosol. 

The plot of coarse vs. fine particles (Figure 2.9 c) clearly shows the presence of three main 

classes of events; “k-means” analysis have been exploited to cluster these classes using the cosine 

similarity as aggregation criteria. The first cluster (dark cyan plus symbols) is characterized by high 

values of the coarse fraction: most of data present in this cluster belong to an exceptional event of 
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Saharan dust transport occurred from 13 to 15 March 2004, which was already reported by Beine et 

al. (2005). A second cluster (cyan crosses) is characterized by significant loadings of the coarse 

fraction (normally between 2 and 4 particles cm
-3

), with a small contribution from the fine fraction. 

The visual inspection of satellite aerosol optical depth maps (MODIS and SeaWIFS) and model 

data (DREAM) shows that most of these events are attributable to Saharan dust events. Finally, the 

last cluster (blue small dots) shows data with small loadings of the coarse fraction (less than 2 

particles cm
-3

) but significant fine loadings, suggesting events of anthropogenic pollution. 

Another interesting feature in Figures 2.9 a and 2.9 b is that PM10 peaks appear to be associated 

either with coarse plus fine particle peaks as a consequence of Saharan dust incursions or uniquely 

to fine particles peaks when air masses originate in air sheds enriched in secondary pollutants. 

It is remarkable to note that during Saharan dust events not only the coarse fraction but also the 

finer fraction typically increase (Marinoni et al., 2008), as already observed by other authors 

(Prospero et al., 2001; Zauli Sajani et al., 2011). Therefore, while polluted air masses can be 

characterised by simultaneous increases of fine particles number and PM10, Saharan dust events are 

traced by the simultaneous increase of coarse plus fine mass loadings. 

Moreover, as reported in Baldacci (2005), PM10 increase due to polluted air masses uplift is 

accompanied by a simultaneous increase of ozone and 
210

Pb, a good proxy for secondary aerosol from 

the lower troposphere layer (Graustein and Turekian, 1996; Arimoto et al., 1999; Hammer et al., 2007; 

Dombrowski-Etchevers et al., 2009), for which back trajectories suggest source areas in the Balkans or 

in northern central Europe or even in the Po Valley as reported by Bonasoni et al. (2004) and Marinoni 

et al. (2008), and with greater details in Chapter 6. Instead in the case of Saharan Dust, ozone has been 

found to decrease, as reported in Figure 2.10, where de-seasonalized PM10 and O3 time series acquired 

at Mt. Cimone from 1998 till 2003 are reported. O3 decreases are linked to a double effect: reduced 

sources of pollution in Northern Africa together with O3- destroying reactions on the surface of mineral 

particles probably through catalytic mechanisms due to their chemical-physical structure (Usher et al., 

2003; Bonasoni et al., 2004). This suggests that a multitracer approach (Bonasoni et al., 2004) seems to 

better constrain the behaviour of certain kinds of transports. 
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Figure 2.10 De-seasonalized O3 and PM10 time series acquired at Mt. Cimone from 1998 till 2003. Arrows 

indicate events identified as Saharan Dust incursions, where increases of PM10 and decreases of O3 are 

observed.  

 

As concerns 
210

Pb, its role in association with Saharan Dust is not straightforward; this aspect is 

presently under investigation since 
210

Pb occurrence in mineral dust seems to be affected both by 

geographical origin of resuspended material and by grain-size. 

 

2.3.4 Source apportionment by Hysplit back trajectories  

As described in Subsection 2.2.1, back trajectories were calculated by means of the HYSPLIT4 

model, and used to evaluate the conditional probability in eqn. (2.1). 

Figure 2.11 shows the conditional probability map, obtained by eqn. (2.1). This figure highlights 

the direction of arrival of the most important contributions to the measured PM10 at Mt. Cimone. 

Apart from the expected contributions from the nearby Italian regions, important contributions 

come from Northern African, and Eastern European regions, confirming that Mt. Cimone station, at 

the centre of the Mediterranean basin, could be the ideal experimental platform for observing the 

“crossroads” of pollution transports, as outlined by the modelling work of Lelieveld et al. (2002). 
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Figure 2.11 Source-receptor relationships, as evaluated by the conditional probability map defined by eqn. 

(2.1). Non-significant sources were filtered by using a binomial test at a 95% significance level. 

 

These results are comparable to those obtained by equivalent analyses. Using the Absorbing 

Aerosol Index (AAI) derived from TOMS (Total Ozone Mapping Spectrometer) on the Nimbus 7 

satellite, Prospero et al. (2002) characterized the major dust sources in the world. In the African 

continent the most active dusty areas are made by an extensive system of salt lakes and dry lakes 

found in the lowlands south of the Tell Atlas, the Eastern Libyan Desert and Egypt, and a quasi-

permanent dusty area extending from the coast of Mauritania deep into Algeria, the so-called “dust 

belt”. It is worthwhile to note that the analysis of residence times ascribes to some of these areas the 

contribution to the most severe PM episodes recorded at Mt. Cimone. 

As the trajectory statistics applied in this work attributes the same weight to all segments of the 

trajectory and not to the segment corresponding to the actual location of emissions (Stohl, 1996), 

then artificial emission sources can be localized in regions where several back trajectories during 

high concentration events have passed through, before passing over the actual source region. The 

maximum of conditional probability east of the Canary Islands and Morocco coastline is associated 

with trajectories passing first over the Atlantic Ocean and then north-eastward over North Africa, 

where dust is actually mobilized, toward the Mediterranean basin, in agreement with Israelevich et 

al. (2012). Due to the equal weight assumption, the source-receptor analysis assigns a high 

conditional probability to the segments passing off the Atlantic coasts, too, so that this maximum 
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can be probably ascribed as a fictitious result. The same reasoning also applies to the relative 

maximum off the Libyan coast, over the Gulf of Sirte, where trajectories are usually associated with 

an anticyclonic pathway from the Libyan Desert or from Egypt. 

The analysis of residence times highlights the contribution from eastern European countries. 

While PM (and its precursors) emissions have declined in western countries during the last decade, 

it is expected not to be reduced as quickly, or even to increase, in eastern European and former 

Soviet Union (FSU) countries: the total PM emissions from FSU countries from mobile sources will 

probably exceed those from western European countries from 2015 onwards, before eventually 

declining (WBCSD, 2004). The map in Figure 2.11 reveals that trajectories from the Eastern sector 

usually load a high level of PM mass and are associated with the highest PM concentrations at the 

receptor site. 

 

2.3.5 The dust episode in March 2004 

Dust outbreaks are very common throughout the year, with a peak frequency in spring (March, April, 

May) towards the Atlantic Ocean, or in late spring/summer (May, June, July) towards the 

Mediterranean Sea (even if winter and especially autumn events, though less frequent, are usually very 

intense) (Prospero et al., 2002; Baldacci, 2005; Barkan et al., 2005). Every year strong winds blowing 

over the Sahara desert lift hundreds of millions of tons of dust high into the sky over North Africa. 

In 2004, from 13 to 15 March, as reported by Beine et al. (2005), a severe PM episode was 

observed at Mt. Cimone. Figure 2.12(a-e), showing the 2004 time series of PM10, 
210

Pb, number 

densities of fine and coarse particles, and 
7
Be, highlights a clear increase of all these parameters 

during the Saharan Dust episode (per cent increase with respect to monthly mean of March 2004: 

+540% PM10, +73% 
210

Pb, +54% number density of fine particles, +360% number density of coarse 

particles, +32% 
7
Be; per cent increase with respect to yearly mean of 2004: +820% PM10, +33% 

210
Pb, +42% number density of fine particles, + 1257% number density of coarse particles). Reasons 

for this and other 
7
Be more relevant increases connected  to transports from the Northern Africa 

regions will be given in following Chapters 5 and 6, which will specifically deal with the 

characterization of advection patterns and their impact on variations in atmospheric composition 

observed at Mt. Cimone. Here it can be briefly anticipated that some episodes of transport from 

North-Africa seem to be connected not only to uplift of crustal particles and increases of PM10 and 

210
Pb, but also to strong downdrafts from the upper troposphere and to increases in 

7
Be, in 

agreement, for instance, with Dueñas et al. (2011). A contemporary decrease of O3 (Figure 2.12 f) 

was also observed (per cent decrease with respect to monthly mean of March 2004 equal to -9%; per 

cent decrease with respect to yearly  mean of 2004 equal to -5%), for the reasons previously 
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explained in Subsection 2.3.3. In particular, the most relevant increases were observed for PM10 and 

for coarse particles: PM10 concentration reached 80 μg m
-3

, a value seven times higher than the mean 

level during the preceeding and subsequent days, and the maximum PM10 concentration recorded at 

Mt Cimone in more than 12 years observations. This episode has been ascribed to a long lasting 

Saharan dust outbreak, as confirmed by back trajectories calculated for the period and by the results 

of the DREAM model (Figure 2.13 shows examples of the results obtained for 15
th
 March 2004), 

starting at the beginning of March, and first impacting the Atlantic Ocean and then the 

Mediterranean area. 

 

Figure 2.12(a,b,c,d,e,f) Time series of PM10 (a), 
210

Pb (b), number density of fine particles (c), number 

density of coarse particles (d), 
7
Be (e) and ozone (f) for the year 2004 at Mt. Cimone. Arrows indicate the 

observed increase (in the case of PM10, 
210

Pb, fine and coarse particles number densities, 
7
Be) and decrease 

in the case of O3, connected to the outstanding Saharan Dust transport of March 2004. 
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Figure 2.13(a,b,c) a) Back-trajectories (96-hours backward) calculated by Hysplit-4 model ending at 

Mt. Cimone on 15
th
 March 2004, 12 UTC and for three arrival heights: 1400, 2200 and 3000 m asl; b) Dust 

loading from the dust regional model DREAM for the day 15
th
 March 2004, 00 UTC; c) Lowest model level 

dust concentration resulting from the dust regional model DREAM (images from the BSC-DREAM8b (Dust 

REgional Atmospheric Model) model, operated by the Barcelona Supercomputing Center, 

http://www.bsc.es/projects/earthscience/DREAM/) for the day 15
th
 March 2004, 12 UTC. 

 

The first part of this episode has been described in details elsewhere (Knippertz and Fink, 2006). 

This event originated from the Bodele depression in northern Chad, a remarkable source of dust 

(Koren et al., 2006); the analysis of aerosol optical depth (Figure 2.16) revealed that dustiness 

conditions occurred along the entire ITCZ. On 5
th

 March 2004 images from the visible channel of 

the SeaWIFS satellite (Figure 2.14) show a huge, dense, meridionally oriented dust plume off the 

northwest African coast from west of Madeira to Cape Verde, sustained by hazy and prolonged 

Harmattan conditions. This plume spread laterally, moved westward and formed an arc for over 

5000 km from Guinea to the northern tip of Morocco. The plume crossed the Atlantic Ocean and 

impacted onto the Caribbean region (Knippertz and Fink, 2006). 
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Figure 2.14 The SeaWIFS image for 15 March 2004 shows a major dust outbreak from Western Africa across 

the Atlantic. The massive storm formed a huge arc of thick dust reaching Cape Verde Islands and the shores of 

Western Europe; during the following days, the dust plume continued to spread southwards and westwards. 

(Image courtesy of the SeaWIFS Project, NASA Goddard Space Flight Center). 

 

At the end of this extraordinary episode, the sequence of two main meteorological patterns: 1) 

the penetration of an upper-level trough to low latitudes with a minimum centered over the NW 

Algerian coast; and 2) a Sahara high extending all over the Mediterranean Sea with an elongated 

north-eastward tongue, mobilized dust to the south of the northern Atlas Mountains in Morocco and 

western Algeria. The inception of a steep gradient pressure between a trough and a Saharan high 

along the Western Sahara and the western Mediterranean basin is a typical condition during which 

dust is efficiently transported toward the central Mediterranean (Barkan et al., 2005).  

The synoptic conditions characterizing the mid-March period is represented by the NCEP-based 

map of 700 mbar level (Figure 2.15). The chart shows the relative position of the two geopotential 

maxima/minima, and the NE high extending toward the western Mediterranean basin. Figure 2.16 

shows the aerosol optical depth at the beginning of the second dust outbreak (on 13
th

 March, 2004) 

and the average over the period 10-15 March, 2004. These images clearly show the severe dust 

outbreaks across the Atlantic and the Northern part of Italy: during this event the monitoring site at 

Mt. Cimone was located exactly along the main axis of the dust plume trajectory, leading to a PM10 

record maximum of 80 μg m
-3

. 
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Figure 2.15 The geopotential height at 700 mbar for 14 March 2004, 12 UTC. Data from the NCEP/DOE 

AMIP-II Reanalysis project (Image provided by the NOAA-ESRL Physical Sciences Division, Boulder 

Colorado from their Web site at http://www.esrl.noaa.gov/psd/). 

 

 

Figure 2.16 Aerosol optical depth at 0.55 μm, daily average on 13
th
 March 2004 (left), and time averaged over 

the period 10-15 March 2004 (right). Every image is the average over data from the MODIS Terra and Aqua 

satellites (MOD08_D3.051 and MYD08_D3.051 collections). Deep Blue retrievals are included into the average. 

(Image courtesy of MODIS instrument team, NASA Goddard Space Flight Center). 

 

 

 

http://www.esrl.noaa.gov/psd/
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2.4 Conclusions 

The analysed PM10 data series collected at Mt. Cimone over the years 1998-2011 was found to be 

characterized by a marked intra-annual variation as well as by a seasonal cycle with winter minima and 

summer maxima. The latter phenomenology is caused both by the seasonal fluctuation of the mixed 

layer height and by the intense vertical exchange during the warm season, as well as mountain/valley 

breeze regimes. Average PM10 value at this high elevation site amounts to 8.8 μg m
-3
, the whole data-set 

being characterized by a lognormal distribution. 

The de-seasonalized time series showed a remarkable variability between samples, due to the 

balance between sources and removal processes. 

A complex effect of different processes and different sources on the PM10 time series at the 

receptor site is revealed by the use of different kinds of measurements, statistical and source 

apportionment techniques. 

The highest PM10 concentrations were found to be connected with three different kinds of 

processes, such as Saharan dust transports from the Northern African deserts, uplift of polluted air 

masses from the Italian areas north of the Apennines range and advection of PM10 enriched air 

masses from the European continent. In fact, the source apportionment conducted through back 

trajectories statistical techniques recognised high contributions from the nearby Italian regions as 

expected, but also from Northern Africa (mineral dust) and Eastern Europe (highly polluted air 

masses from less developed countries). 

The analysis of PM10 data in connection with coarse and fine particle number revealed that while 

during Saharan dust events both the fine and the coarse fraction usually increase, during uplifts of 

polluted air masses only the rise up of the fine fraction is usually observed. 

A detailed analysis of the synoptic conditions during an exceptional Saharan dust event observed 

during March which led to the extremely high concentration of 80 g m
-3

 at Mt. Cimone was also 

presented.  

It is confirmed that the location hosting the research activity herein reported provides an ideal 

platform for the observation of aerosol transport from source areas including both well-recognized 

and less investigated regions. 
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3.1 Introduction
1
 

In the course of the last decades airborne radionuclides have long been investigated within the 

framework of atmospheric science. Initially the focus concerned the emission of artificial 

radioactivity during weapon testing (see for example chapter 9 of Eisenbud and Gesell, 1997; 

Pállson et al., 2013) which pointed out to the scientists both the safety issues connected with 

radioactivity hazard as well as the remarkable efficiency of atmospheric transport processes at the 

global scale. It was soon recognized that atmospheric radioactivity had also a not negligible 

background component capable to trace both the gaseous and the particulate phases enabling the 

quantitative description of fundamental processes of atmospheric dynamics. Airborne radioactivity 

has long been playing a relevant role in the study of atmospheric transport processes as detectable 

from the frequency of scientific publications (Burton and Stewart, 1960; Junge, 1963; Reiter et al., 

1971; Gaggeler, 1995; Arimoto et al., 1999; Turekian and Graustein, 2003; WMO-GAW, 2004; 

Dibb, 2007; Papastefanou, 2008; Rastogi and Sarin, 2008; Sykora and Froehlich, 2010; Froehlich 

and Masarik, 2010; Lozano et al., 2011). 

At present nuclear safety is still a basic issue at the global scale as demonstrated by the follow up 

of Chernobyl and Fukushima accidents (see for example chapter 12 of Eisenbud and Gesell, 1997; 

Papastefanou et al., 1988; Hötzl et al., 1992; Davison et al., 1993; Vakulovsky et al., 1994; Masson 

et al., 2011; Diaz Leon et al., 2011; Lozano et al., 2011; Manolopoulou et al., 2011; Pittauerová et 

al., 2011; Tositti et al., 2012 –Appendix II–; Ioannidou et al., 2013) or as a result of episodic cases 

such as the fall of nuke-fed satellites (Cosmos 954, Kosmos 1402, see for example chapter 12 of 

Eisenbud and Gesell, 1997) or the accidental melting of orphan sources/metals scraps in high 

temperature processes (e.g., Algeciras accident, Krysta and Bocquet, 2007; on this occasion 
137

Cs, a 

radionuclide which is usually below detection limit at Mt. Cimone, was detected at this site in two 

samples at very low levels). Moreover the need for monitoring potential violations of the Nuclear 

                                                             
1 This chapter consists of a paper by Tositti L. (Dept. of Chemistry, Università di Bologna), Brattich E. (Dept. of 

Biological, Geological and Environmental Sciences-Section of Geology, Università di Bologna), Cinelli G. (Dept. of 

Biological, Geological and Environmental Sciences-Section of Geology, Università di Bologna; now at European 

Commission, DG JRC, Institute for Transuranium Elements, Via E Fermi 2749, I-21027 Ispra (VA), Italy), Baldacci D. 

(Dept. of Chemistry, Università di Bologna), 2014. 12 years of 7Be and 210Pb data in Mt. Cimone, and their correlation 

with meteorological parameters. Atmospheric Environment 87C, 108-122. doi:10.1016/j.atmosenv.2014.01.014 
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Ban Treaty has recently promoted the constitution of a global network for artificial radioactivity 

whose efficiency has been successfully tested following the recent Fukushima emergency (Masson 

et al., 2011; Hernández-Ceballos et al., 2012; Thakur et al., 2013).  

Cosmogenic and naturally occurring radionuclides have long been investigated either per se or as 

normalizing and reference factors in the study of artificial radioactivity or again both as efficient 

tracers in environmental science and as geochronometers. Altogether this field of research has been 

crucial to the comprehension of several basic processes such as interhemispheric transport, 

stratosphere-to-troposphere exchange (STE) and time scales of atmospheric dynamics, while posing 

the basis for basic concepts in environmental science such as biogeochemistry, environmental 

monitoring management and exposure/dosimetry concepts presently extended to stable “classic” 

pollutants such as for example ozone and/or airborne particulate matter.  

At present though the application of radiotracers constitutes a niche approach, the simultaneous 

use of artificial and natural radiotracers still provides a solid background for the characterization of 

atmospheric transport (Arimoto et al., 1999; Paatero and Hatakka, 2000; Dueñas et al., 2011), the 

testing of atmospheric models (Koch et al., 1996; Liu et al., 2001, 2004; Heinrich and Jamelot 

2011; Christoudias and Lelieveld, 2013), as well as in supporting source apportionment of 

pollutants (Li et al., 2002; Cuevas et al., 2013). 

Among the most used naturally occurring radionuclides there are 
7
Be, 

210
Pb, 

222
Rn and others 

included in the group of the key atmospheric components that should be routinely monitored within 

the WMO-GAW network (WMO-GAW, 2004). In particular the importance of 
210

Pb and 
7
Be relies 

upon their distinct natural sources. 
210

Pb (half-life, T1/2 = 22.1 years) is supplied to the atmosphere at 

ground level by the radioactive decay of its precursor, 
222

Rn (T1/2 = 3.83 days). As the 
222

Rn flux from 

the ocean is negligible, 
210

Pb is considered a continental tracer of air masses (Balkanski et al., 1983; 

Turekian et al., 1983; Baskaran, 2011). In contrast, 
7
Be is a relatively short lived (T1/2 = 53.3 days) 

radionuclide of cosmogenic origin, produced by cosmic ray spallation reactions with light 

atmospheric nuclei of nitrogen and oxygen (Usoskin et al., 2009): most of the 
7
Be production (~ 75%) 

occurs in the stratosphere while the remaining part (~ 25%) is produced in the troposphere, and 

particularly in the upper troposphere (Johnson and Viezee, 1981; Usoskin and Kovaltsov, 2008). The 

production rate of 
7
Be has a latitudinal dependence (Ioannidou et al., 2005), while it has a negligible 

dependence from season and longitude, but a remarkable variation due to the 11-year solar cycle 

(Hötzl et al., 1991; Megumi et al., 2000; Cannizzaro et al., 2004; Ioannidou et al., 2005; Leppänen et 

al., 2012). Once formed, 
7
Be and 

210
Pb undergo rapid association onto submicron-sized aerosol 

particles both peaking in the accumulation mode (Papastefanou and Ioannidou, 1995; Winkler et al., 

1998; Gaffney et al., 2004; Ioannidou et al., 2005). Thereafter, 
7
Be and 

210
Pb are removed from the 
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atmosphere by wet and dry scavenging of the carrier aerosol (Feely et al., 1989; Kulan et al., 2006). 

Most of the 
7
Be produced in the stratosphere does not readily reach the troposphere because of its 

short half-life compared to the longer residence times of aerosols in the stratosphere (which, 

depending on the size of the particles, is equal to one or more years as estimated from Hamill et al., 

1997 and Rasch et al., 2008). In fact, the relatively high production rates of 
7
Be in the upper 

troposphere (UT), combined with transport from the lower stratosphere (LS) to the upper troposphere, 

usually maintain a steep vertical concentration gradient between the upper and the lower troposphere 

(Feely et al., 1989). Nevertheless, the UT–LS may cause high 
7
Be concentrations in the surface air, 

easily detectable at a high altitude stations such as for example Mt. Cimone station (Bonasoni et al., 

1999, 2000a, b; Cristofanelli et al., 2003, 2006, 2009a). 

Due to the similar physico-chemical behaviour, variations in the
7
Be/

210
Pb ratios reflect both 

vertical and horizontal transport in the atmosphere. Because of the different origins of the two 

radionuclides, the use of the combination of 
7
Be and 

210
Pb as activity ratio has been shown to 

provide clearer information about the origin of the air masses (Graustein and Turekian, 1996; 

Bonasoni et al., 2000a, b, 2004; Zheng et al., 2005), and its seasonal variability over continents has 

been studied for examining vertical exchange transport processes (Koch et al., 1996). The 

simultaneous measurements of 
7
Be and 

210
Pb, together with their ratio can provide useful 

information about the vertical motion of air masses as well as on convective activity in the 

troposphere (Brost et al., 1991; Koch et al., 1996; Tositti et al., 2004; Lee et al., 2004, 2007). ). 

Recently, Lozano et al. (2012) studied the different synoptic patterns and air masses types associated to 

ranges of 
7
Be and 

210
Pb activity concentrations in the southwestern Iberian Peninsula, indicating the 

differences between the arrival of maritime and continental air masses and confirming that both 

radionuclides can be used as two independent atmospheric transport markers. 

In this Chapter a basic overview of the time series of 
7
Be and 

210
Pb collected at the WMO GAW 

station of Mt. Cimone from 1998 until 2011 is presented. This activity has been already the object 

of several papers devoted to specific topics, in particular the use of 
7
Be in STE (Stratosphere – to –

 Troposphere Exchange), a rather classic application of this radionuclide, though not thoroughly 

understood yet (Bonasoni et al., 1999; Bonasoni et al., 2000a, b; Cristofanelli et al., 2003, 2006, 

2009a). The follow up of Fukushima accident was also investigated at this station and results have 

been recently published either at the European scale in a collective paper by Masson et al. (2011) or 

at the regional scale comparing the radionuclidic pool at two nearby stations including Mt. Cimone 

(Tositti et al., 2012, presented in Appendix II of this thesis). Finally another recent paper concerned 

the PM10 matrix in which pioneristically all the radionuclides herein treated are measured since the 

beginning of this experiment, providing a long-term overview of PM10 behavior in the core of the 
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Mediterranean region (Tositti et al., 2013, presented in previous Chapter 2 of this thesis). This work 

presents and discusses a statistical analysis of frequency distributions, seasonality, interannual 

variation, correlations of the 
7
Be, 

210
Pb (and their ratio) data of acquired from 1998 to 2011 at the 

WMO-GAW station of Mt. Cimone, with the purpose of gaining better insights into the different 

physical mechanisms at the basis of their variability. 

 

 

3.2 Material and methods 

3.2.1 Measurement site 

Mt. Cimone station (44°12’ N, 10°42’ E) is located on top of the highest peak of the Italian 

Northern Apennines (2165 m asl). The station is a global WMO-GAW managed by the 

Meteorological Office of the Italian Air Force and by the Institute of atmospheric and climate 

science of the National Council of Research (ISAC–CNR). It has a 360° free horizon and is fairly 

off main pollution sources such as cities and industrialized areas in the north (Po valley) and south 

(Tuscan plain) of the Apenninic range; Mt. Cimone has an elevation such that the measurement site 

hosted by “O. Vittori” station lies above the planetary boundary layer during most of the year, so 

that it can be considered representative for the South-European free troposphere (Bonasoni et al., 

2000b; Fischer et al., 2003), even if an influence of the innermost layer cannot be completely ruled 

out, in particular during warm months because of the increased vertical mixing (thermal 

convection) and mountain/valley breeze regimes (Fischer et al., 2003; Cristofanelli et al., 2007). 

For these reasons, the measurement site is a suitable location to investigate the influence of regional 

and long-range transport of polluted air masses on the background free troposphere (Tositti et al., 

2013; Cristofanelli et al., 2013), located at the center of the Southern Europe and the Mediterranean 

basin, a region which is recognized as a hot-spot both in terms of climate change and air-quality. 

Unlike the surrounding area (temperate-continental) the climate of the mountaintop is classified as 

alpine, due to its height. The mean yearly temperature is about 2°C, with a winter minimum of -22°C 

and a summer maximum of 18°C (Colombo et al., 2000). Mt. Cimone is the windiest site among the 

Italian meteorological stations, with wind speeds reaching intensities of 216 km h
-1

, with a mean daily 

wind speed of 40 km h
-1

 during winter, probably due to the isolated position of the site. In the region 

the precipitations are maximum during November (secondary maximum in spring) and minimum in 

July (secondary minimum in January). At this station, the annual average precipitation amounts (L) to 

696.3 mm (period 1964-2004; Şerban et al., 2007), which is much lower than the one recorded in the 

period 1961-1980, equal to 744.7 mm (Rapetti and Vittorini, 1989). The annual average precipitation 

during the period 1998-2011 (corresponding to the sampling of PM10 and atmospheric radiotracers) is 
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even lower and equal to 381.2 mm. During the year prevailing winds blow from S-SW in the warm 

season and N-NE in the cold one. Generally speaking, typical synoptical circulations in Emilia-

Romagna are characterized by winter fluxes originating N-NE and fast currents from S-SW all over 

the rest of the year. In the first case the presence of an anticyclone on the Eastern Europe or of a 

depression centred on the Southern Italy or on the Central Adriatic can determine the access in the Po 

Valley of air masses that reach the Adriatic slope of the Tuscan-Emilian Apennines; the most frequent 

case is the second one, in which high streams from SW associated to a depression in the Gulf of 

Genoa affect the Tuscan-Emilian Apennines. In fact, Mt. Cimone can be affected by intense 

cyclogenetic activity often originating in the near Gulf of Genoa area (Buzzi et al., 1984; Davies and 

Schuepbach, 1994). This phenomenology has been widely connected with STE events relevant to the 

well-known increases of both ozone and 
7
Be (Tosi et al., 1987; Aebischer and Schär, 1998; Stohl et 

al., 2000). 

The Italian Air Force, which is in charge for the meteorological service in Italy, is responsible 

for the facility which hosts and integrates the research activity led by ISAC–CNR. Besides 

meteorology, the Italian Air Force – General Bureau for Meteorology – manages the collection of 

atmospheric CO2 data presently constituting the longest time series of this fundamental greenhouse 

gas in Europe, dating back to 1979. It is to note that in the past this station served also as one of the 

Italian monitoring sites for weapon test fallout (Argiero et al., 1961; Dietrich et al., 1997), an 

activity dismissed in the 90’s.  

Several scientific programs have been established at Mt. Cimone with the scope of studying both 

climatologically relevant gases and the physical-chemical characteristics of atmospheric aerosols 

(see web page http://www.isac.cnr/cimone/). 

 

3.2.2 Experimental 

At Mt. Cimone station 
7
Be, 

210
Pb and aerosol mass loading in the form of PM10 have been measured 

since the early 1990’s, but measurements became regular only since 1998 following the acquisition 

of a PM10 high volume sampler. Aerosol sampling has been carried out with a time resolution of 

about 48 h by using a Thermo-Environmental PM10 high-volume sampler with a flow rate of 

1.13 m
3
 min

-1
. PM10 is collected on rectangular glass fiber filters (Whatman, 20.3 cm x 25.4 cm). 

The PM10 sampler collects airborne particulate matter with a mean aerodynamic diameter lower 

than 10 µm that carries the radionuclides, which tend to populate the fine fraction (< 1.0 μm) 

(Winkler et al., 1998; Gaffney et al., 2004), as a consequence of their physical origin. Samples are 

transferred to the Laboratory of Environmental Chemistry and Radiochemistry of Bologna 

University, where they are conditioned for 24 h at constant temperature (22-24°C) and relative 

http://www.isac.cnr/cimone/
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humidity (30%) inside a desiccator. The net mass load on filters is determined gravimetrically by an 

electronic microbalance with a sensitivity of 0.0001 g (Ohaus). After weighing, the PM10 samples 

are subjected to non-destructive high-resolution -spectrometry with two Hyper Pure Germanium 

crystal detectors (HPGe) for the determination of airborne radiotracers 
7
Be and 

210
Pb, respectively 

at 477.6 and 46.5 keV. The characteristics of the two detectors are the following ones: one p-type 

coaxial detector by Ortec/Ametek with a relative efficiency of 32.5% and FWHM 1.8 keV at 

1332 keV and one planar DSG detector with an active surface of 1500 mm
2
 and FWHM 0.73 keV 

at 122 keV, for higher and lower energy ranges (100-2000 keV and 0-900 keV), respectively. 

Spectra are accumulated for at least one day and then processed with a specific software 

package (GammaVision-32, Ortec). Efficiency calibration is determined on both detectors with a 

blank glass fiber filter traced with accurately weighted aliquots of a standard solution of mixed 

radionuclides (QCY48, Amersham) supplemented with 
210

Pb, homogeneously dispersed dropwise 

over the filter surface. Once dried under a hood under ambient conditions, the calibration filter is 

folded into a polystyrene container in the same geometry as the unknown samples. Quantitative 

analysis on samples is carried out by subtracting the spectrum of a blank filter in the same 

geometry, while uncertainty on peaks (k = 1, 68% level of confidence) is calculated propagating the 

combined error over the efficiency fit previously determined with the counting error. Minimum 

detectable activity is calculated making use of the Traditional ORTEC method with a peak cut-off 

limit of 40%. Activity data is corrected to the midpoint of the time interval of collection and for the 

decay during spectrum acquisition.  

In addition to the standard procedures to test laboratory performances (to determine efficiency 

calibration, to determine uncertainty on peaks and minimum detectable activity and to correct for 

the radioactive decay during the sampling and during spectrum acquisition), accuracy and precision 

of 
7
Be measurements were evaluated within an intercomparison exercise involving several 

European research groups (Tositti et al., 2004). 

Prior to all the analyses, all the concentrations have been normalized at 25°C and 1 atm. 

 

 

3.3 Results and discussion 

3.3.1 Seasonality and interannual variability 

Figure 3.1(a,b,c) shows the time series of 
7
Be and 

210
Pb and of the 

7
Be/

210
Pb ratio measured at 

Mt. Cimone from 1998 to 2011. As previously observed in Chapter 2, the large gap presented by 

the data in 2007 is due to technical problems with the aerosol sampler. Besides interannual 

variabilities, a distinct seasonal pattern can be observed for the two tracers, which will be discussed 
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further on in the paper: while 
7
Be exhibits two seasonal maxima, one during the cold season and 

one during the warm one, 
210

Pb presents only one peak during the summer months. Because of the 

simultaneous occurrence of the 
7
Be and 

210
Pb peaks during the warm season, their ratio time series 

exhibits only one peak during the cold season.  

 

 

Figure 3.1(a,b,c) Time series of the data acquired at Mt. Cimone from 1998 to 2011 (black squares) and 

seasonal fluctuation of the variables obtained after the application of the KZ(3,21) filter (red line): a) 
7
Be; b) 

210
Pb; c) 

7
Be/

210
Pb. 

 

Similar to what has been previously reported for PM10 dataset of Mt. Cimone in previous 

Chapter 2 of this thesis (Tositti et al., 2013), radiotracers as well as 
7
Be-to-

210
Pb ratio show 

remarkable sample to sample fluctuations (“anomalies”) overlapped to a lower frequency 

periodicity linked to seasonality. These anomalies, defined as the ”synoptically influenced 

deviations from the seasonal cycle”, are highlighted in Figure 3.1(a,b,c) following the application of 

the Kolmogorov–Zurbenko filter (Zurbenko, 1986), denoted as KZ(m,n). This filter is based upon 
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the calculation of a moving average 
tz  centred over a time window of n values (with n odd integer), 

i.e., 

( 1) / 2

( 1) / 2

1 t n

t i

i t n

z y
n

 

  

   

The moving average is then iterated m times. The reader is referred to Eskridge et al. (1997) and 

Rao et al. (1997) for a detailed description of this filter. The seasonal fluctuation was obtained after 

the application of the KZ(3,21) filter, i.e., the moving average applied three times over a time 

window of 21 days (crosses in Figure 3.1): the number of iterations as well as the time window of 

the filter were chosen evaluating the spectral response of the filter, which guarantees an almost 

perfect separation of the seasonal and synoptic time-scales (Rao et al., 1997).  

Interannual variations of 
7
Be, 

210
Pb and of the 

7
Be/

210
Pb ratio are reported in Figure 3.2(a,b,c). 

The vertical box encloses the middle 50% of the data. The median is the horizontal line inside the 

box and the square represents the mean value. Whiskers cover the range 10
th

-90
th

 percentile. 

Minimum and maximum values are plotted as individual points with a line, whereas a cross 

indicates the 1
st
 and 99

th
 percentiles. Annual changes are commonly ascribed to different factors, 

especially meteorological conditions, such as the amount of precipitation, atmospheric stability, 

relative humidity, temperature (Ioannidou et al., 2005; Dueñas et al., 2009; Pham et al., 2011; 

Carvalho et al., 2013) and, in the case of 
7
Be, also the 11-year solar cycle (Ioannidou et al., 2005; 

Kulan et al., 2006; Steinmann et al., 2013). 
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Figure 3.2(a,b,c) Interannual variations at Mt. Cimone during the sampling period 1998-2011, represented 

by box and whiskers plots, of: a) 
7
Be; b) 

210
Pb; c) 

7
Be/

210
Pb. ). The boxes contain the range 25

th
-75

th
 percentile 

of the data; the whiskers represent the 5
th
 and 95

th
 percentile, while the square and the line inside the boxes 

denote the arithmetic mean and the median, respectively. Crosses and external lines represent the outliers and 

extreme values (minima and maxima), respectively. 

 

For instance, the decrease in 
7
Be and 

210
Pb mean activity (and in PM10 concentration, reported in 

Chapter 2, Figure 2.2) from 1998 to 1999 could be tentatively attributed to the increased total amount 

of precipitation (total precipitation in 1998 equal to 296 mm, whereas in 1999 the total precipitation 

was equal to 641 mm), whereas the increase in 
7
Be and 

210
Pb activity from 2002 to 2003 (similar 

amount of precipitation: 2002 total precipitation equal to 328 mm, 2003 total precipitation equal to 

308 mm) might be due to the extremely high temperature recorded in the whole European region, 

possibly contributing to enhanced convection and radon exhalation, especially during the summer 

months (Pace et al., 2005; Cristofanelli et al., 2009b) and connected also to anomalous high ozone 

concentrations at Mt. Cimone as reported by Cristofanelli et al. (2007). 
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The effect due to the frequency and trends of different air mass transports, such as Saharan Dust 

incursions for instance, cannot be completely ruled out, however, and it will be the focus of Chapter 5. 

Figure 3.3(a,b,c) depicts box and whiskers plots with seasonal variations of 
7
Be, 

210
Pb and of the 

7
Be/

210
Pb ratio.  

 

Figure 3.3(a,b,c) Seasonal variations at Mt. Cimone during the sampling period 1998-2011, represented by 

box and whiskers plot, of: a) 
7
Be; b) 

210
Pb; c) 

7
Be/

210
Pb. 

 

The 
7
Be concentration starts to increase during the warm period from May to August, with a 

maximum during the months of June–July. The seasonal variation is higher for 
7
Be, as highlighted by 

maximum and minimum values, as well as by 1
st
 and 99

th
 percentile, which in the case of 

7
Be with 

larger deviations from the mean value than for 
210

Pb. Anyway, the variability is high for both tracers 

during the sampling period, with a percent standard deviation from the mean of 55% for 
7
Be and 65% 

for 
210

Pb. A secondary maximum for 
7
Be is observed during the cold period from November to 

February.  

210
Pb shows instead a simpler seasonal behaviour, with an increase starting during spring and 

reaching its summer maximum in August. The minimum values are observed during the cold 



Temporal Changes of 7Be and 210Pb Activity Concentrations at Mt. Cimone 

105 

months, behaviour analogous to that of PM10 in previous Chapter 2, Figure 2.6 (Tositti et al., 2013), 

with which 
210

Pb shares a large part of the source term, i.e., the Earth’s crust, as distinguished by 

7
Be whose main source terms are located in the stratosphere and upper troposphere. Similarly to 

PM10, during the cold season 
210

Pb is not uplifted to Mt. Cimone top owing to the decoupling of the 

Continental Boundary Layer from the free troposphere. As a result mean 
210

Pb values at Mt. 

Cimone in the cold season should be representative of background free-troposphere concentrations 

for this tracer. 

7
Be/

210
Pb shows maximum values during the cold months from November to February, while the 

spring and summer season are characterized by lower values. The variability of the ratio is lower 

during the summer season and secondarily during winter (percent standard deviation from the mean 

equal to 53% and to 57%, respectively), while the variability is maximum during the transition 

seasons (standard deviation percent from the mean equal to 67% and to 72%, respectively for 

autumn and spring). The winter maximum of the 
7
Be/

210
Pb ratio at the height of Mt. Cimone is 

mainly caused by the scarce availability of 
210

Pb and of its precursor 
222

Rn, whose lift up above the 

PBL (Planetary Boundary Layer) is inhibited by the limited thermal convection in the cold season.  

The summer maxima of 
7
Be and 

210
Pb, and the consequent minimum of their ratio during this 

season, are due to enhanced vertical mixing, thermal convection and mountain/valley breezes during 

this period of the year. As already highlighted by Baltensperger et al. (1997), Cristofanelli et al. 

(2003), Lee et al. (2007) and in Chapter 2 (Tositti et al., 2013) during the warm season the mixing 

height reaches high levels, while thermal convection leads to intense vertical exchange in the 

troposphere. Rising warm air from the boundary layer brings about high values of 
210

Pb, being 

somehow counterbalanced by cold air sinking from the upper troposphere enriched in 
7
Be. As shown 

in Figure 3.3(a,b) the warm period maxima of 
7
Be and 

210
Pb are not completely simultaneous, though. 

While 
7
Be shows a maximum during the months of June-July, a behaviour which, as reported in 

previous Chapter 2 (Figure 2.6), is shared by PM10, 
210

Pb shows its maximum during August. PM10 

and 
210

Pb share similar sources and one would expect their concentrations follow similar trends. A 

detailed analysis of the seasonality of air flows at this site is the objective of Chapter 5 and Chapter 6, 

however it can be anticipated that during the summer months the prevailing flows are short range 

transports from North Western Europe and from West, even if the major influence of Saharan Dust 

during spring and summer, especially linked to 
210

Pb and PM10, cannot be completely ruled out. In 

particular, our results indicate that the influence of Saharan Dust on the PM10 concentration is 

maximum during the summer season (about 49% of the peaks/events are due to this source) with a 

slight decrease in the transition seasons (about 44% during spring and 43% during autumn), while 

during winter the African source contribution to aerosol transport is significantly lower (11%), as 
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well as the mean concentration of PM10 ascribed to this source. Even if Saharan Dust transports 

have a seasonal frequency maximum during spring-autumn, it is during the summer season that 

Saharan Dust mass load contribution is especially high, with effects on the monthly averages which 

are rather unpredictable due to different amounts in the coarse fractions lifted up and transported 

away from the source region. In this respect while the influence of Saharan Dust events is mainly 

reflected by the relevant contribution to mass loadings due to the importance of the coarse fraction 

typical of these transports, the influence on 
210

Pb is not straightforward and needs further 

investigations. In fact, while for regional scale transports we believe (as explained in Chapter 2; 

Tositti et al., 2013) that there is a close connection between thermal convection (a dominant 

dynamical condition during the warm season in the investigated area), fine fraction and 
210

Pb as 

derived from exhaled radon (the so-called excess or “unsupported 
210

Pb), the decoupling of 
210

Pb 

and PM10 peak concentration may have different reasons. In particular, we speculate that the 

amount of the coarse fraction transported by Saharan Dust which is a fairly stochastic or rather 

event-based factor in terms of efficiency in the lifted up and transported amounts of mineral dust, 

may affect the concentration of 
210

Pb in several ways: geochemistry (mineral dust composition is 

not uniform in the whole northern African region, as suggested e.g., by Moreno et al., 2006, 

Formenti et al., 2008, and Formenti et al., 2011, affecting also the content in natural radionuclides –

still scarcely known– while Saharan Dust source regions are known to fluctuate in longitude during 

the year, as observed by, for example, Barkan and Alpert, 2008 and Israelevich et al., 2012), 

secondly different amounts of suspended mineral dust, and finally the occurrence of both supported 

(associated with the coarse mineral particles) and unsupported 
210

Pb. All the effects so far discussed 

though reasonable cannot be definitely interpreted on the basis of the available data, but need to be 

clarified by further investigations and measurements suitably designed to the scope. 

The secondary maximum of 
7
Be during the cold months (December, January, February and 

March) is due to an increase in Stratosphere-to-Troposphere events during this season, as already 

reported by e.g., James et al. (2003), Stohl et al. (2003), Trickl et al. (2010). Moreover Cristofanelli 

et al. (2009a) introduced a stratospheric index based on 
7
Be, relative humidity and ozone 

measurements at Mt. Cimone enabling the assessment of a higher incidence of STE events during 

the period from October to February with respect to the warm season, when thermal convection and 

the rising of the tropopause promote vertical mixing which acts as confounding factor in STE 

detection. As reported by James et al. (2003) the reason of this behaviour is mostly the seasonal 

differences of rapid descent within the troposphere itself, rather than the differences in Stratosphere 

to Troposphere Transports (STT). 
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The higher frequency of rapid subsidence in winter at mid-latitudes Northern Hemisphere can be 

ascribed to the intensity of baroclinic systems which is greatest in wintertime. In fact, well-developed 

tropopause folds and rapid deep intrusions are most likely to occur in the wake of intense cyclogenesis, 

usually limited to the wintertime storm track regions (James et al., 2003).  

Previously, Elbern et al. (1997), identified a principal late winter maximum and a secondary 

maximum around September and October, with clear minima during early summer for deep 

stratospheric intrusions at the Zugspitze (2962 m asl, Germany) and Wank (1776 m asl, Germany) 

summits, widespread on the mesoscale. Cyclones developing in the Gulf of Genoa, which are well 

known to have a close link to STE (e.g., Aebischer and Schär, 1998; Stohl et al., 2000), are a 

constant feature over the whole year (Trigo et al., 2002; Campins et al., 2006), a feature which 

could be somehow in contrast with the above statement. However, even if they are more frequent 

during summer, it is during winter that they are deeper and connected to more severe weather 

(Trigo et al., 2002). In the Gulf of Genoa both orography and dynamical processes (upper level 

troughs) play the most important cyclogenetic roles (Anagnostopoulou et al., 2006): the upper-level 

dynamics seem to be more important in spring and autumn, while the orographic effect seems to 

contribute more significantly in winter and spring (Campins et al., 2006), but during winter there is 

also the further influence of the thermal contrast between seawater and air (Maheras et al., 2002), 

which is at its maximum during this season (Reiter, 1975a). 

The activity of the two radionuclides normalized on the PM10 concentration (not shown) shows 

maxima during the cold months (from October to February, and especially in December and 

January) and seasonal minima during summer for both radionuclides as a result of the lower and 

higher aerosol loads available for their association.  

The seasonal variations of both 
7
Be and 

210
Pb are modulated even by seasonal precipitation patterns. As 

typical of mid-latitudes, summer months are usually associated to lower rates of precipitation with respect 

to the transition seasons and winter: as already outlined before, in the region the precipitations are 

maximum during November (secondary maximum in spring) and the absolute minimum appears in July, 

even if speaking about a mountain site precipitation includes both rain and snow. 

As an example Figure 3.4a depicts PM10 (to which radionuclides are associated) and 

precipitation patterns in 2002: it can be easily seen that precipitation (bars in the Figure) events 

bring about PM10 minima as a result of wet removal, as well as maxima in RH% (Figure 3.4b).  

 



CHAPTER 3 

108 

 

Figure 3.4(a,b) a) Precipitation (bar) and PM10 (dotted line and square) patterns in 2002 at Mt. Cimone; b) 

Precipitation (green bar) and relative humidity (dotted line and square) patterns in 2002 at Mt. Cimone. 

 

3.3.2 Basic statistics 

Table 3.1 presents basic statistics results obtained on the overall radionuclides and ratio dataset 

(1609 observations for 
7
Be and 1443 observations for 

210
Pb) including arithmetic mean (AM), 

geometric mean (GM), median (ME), minimum and maximum values (Min, Max), standard 

deviation (SD), 10
th
 percentile (PC10), 90

th
 percentile (PC90), skewness (SK) and kurtosis (KU).  

 

 
AM GM ME Min Max SD PC10 PC90 SK KU 

7
Be (mBq m

-3
) 4.3 3.6 4.0 0.05 15.8 2.3 1.5 7.3 0.9 1.3 

210
Pb (mBq m

-3
) 0.46 0.38 0.38 0.05 2.30 0.30 0.16 0.87 1.65 4.39 

7
Be/

210
Pb 12.2 

 
10.3 0.5 127.8 8.0 5.2 21.3 3.7 35.1 

 

Table 3.1 Statistical parameters for the 
7
Be, 

210
Pb and 

7
Be/

210
Pb time series: arithmetic mean (AM), 

geometric mean (GM), median (ME), minimum and maximum values (Min, Max), standard deviation (SD), 

10
th
 percentile (PC10), 90

th
 percentile (PC90), skewness (SK) and kurtosis (KU). 

 

The skewness levels obtained for the three parameters suggest asymmetries in their frequency 

distributions, though less pronounced in the case of 
7
Be. Kurtosis is a measure of the sharpness of 

the distribution of variable: taking the kurtosis of the normal distribution equal to zero, the high 
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kurtosis of the three variables and in particular of the 
7
Be/

210
Pb ratio, indicates a distribution sharper 

than the normal one and possibly the presence of significant tails. Figure 3.5(a,b,c) depicts the 

frequency distribution for the three time series. 

 

Figure 3.5(a,b,c) Frequency distributions of a) 
7
Be (blue distribution) and 

7
Be during the cold (November, 

December, January and February, red distribution) and warm season (May, June, July, August, green 

distribution), fitted by a lognormal (red curve) and a normal distribution (green curve), respectively; b) 

210
Pb, fitted by a lognormal distribution; c) 

7
Be/

210
Pb, fitted by a lognormal distribution. 
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While 
210

Pb and 
7
Be/

210
Pb ratio data are very well fitted by log-normal distributions (Shapiro–Wilk 

W test equal to 0.997, with probability p less than 0.01, for the distribution of the natural logarithm of 

210
Pb and of 

7
Be/

210
Pb), the 

7
Be frequency distribution is bi-modal. This behaviour is attributed to the 

presence of two distinct seasonal maxima for this tracer, respectively during the cold and warm 

season as confirmed by decomposing the dataset into two major seasonal subsets ranging respectively 

between November and February (extended winter) and between May and August (extended summer) 

as reported in Figure 3.5a. While the winter distribution, which gives rise to the lower mode of the 

distribution at 3 mBq m
-3

, is well fitted by a lognormal function (Shapiro–Wilk W test of the natural 

logarithm = 0.985, p < 0.01), the summer distribution corresponds to a normal distribution peaking at 

about 6 mBq m
-3

. The skewness values for the two distributions during the two seasons are different: 

while during the cold period the skewness for 
7
Be is equal to 1.21, highlighting once again the 

asymmetry of the distribution during this period, the value during the warm period is equal to 0.81, 

showing a larger degree of symmetry which is well recognizable in the distribution of Figure 3.5a. 

The kurtosis value is higher during summer than during winter (equal to 2.05 and 1.84, respectively), 

probably because of the presence of heavier tails in the distribution of the warm period. In the case 

herein treated the pronounced observed asymmetry suggests that the geometric mean or the median 

should be used instead of the mean to characterize average values of the three time series investigated 

(Wilks, 2006). 

Bimodality in the frequency distribution of 
7
Be has already been observed at four high-altitude 

stations including Mt. Cimone (Gerasopoulos et al., 2001) and by Lee et al. (2007) at the Mt. Cimone 

and Mt. Waliguan GAW stations. In order to understand the physical origin of the bimodality of the 
7
Be 

distribution Gerasopoulos et al. (2001) proposed to apply a simple statistical treatment based on t-test 

over separation values among 
7
Be bins in order to split the data into major groupings as a function of 

distinct meteorological and atmospheric conditions. It is to note that at the time of the above mentioned 

publication 
7
Be dataset from Mt. Cimone was included in the paper, but was insufficient for this 

elaboration. In brief 
7
Be was distributed into bins in the range from 1 to 11 mBq m

-3
: each bin represents 

a separation value, for which it is possible to form two classes of meteorological and atmospheric data, 

linked, respectively, to values lower and higher than the separation one. The Student’s t-test value is 

then calculated to check for the difference between the means of the two classes. Figure 3.6(a-f) reports 

the results of this analysis performed for relative humidity, specific humidity, tropopause height, 

pressure, temperature and wind speed. 
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Figure 3.6(a,b,c,d,e,f) t-test values for the significance of the difference between the means of 

meteorological and atmospheric parameters , when sorted according to a separation value of 
7
Be: a)relative 

humidity; b) specific humidity; c) tropopause height; d) pressure; e) temperature; f) wind speed. Lines 

connecting the values are polynomial b-splines. 

 

In all the curves a transition class in the t-test values at 3-4 mBq m
-3

 of 
7
Be can be observed. A 

second maximum at 9-10 mBq m
-3

 (8 mBq m
-3

 for tropopause height and relative humidity) is also 

shown by the presented curves for atmospheric/meteorological variables. This result might suggest the 

presence of a third mode for values of 
7
Be above 8 mBq m

-3
. Data so far available at Mt. Cimone do not 

allow further verifications of this hypothesis, as the values above 8 mBq m
-3

 are only the 6% of the total 

case, but this would be in agreement with Reiter et al. (1983) who showed that the total ogive of the 

frequency distribution of 
7
Be at Zugspitze at a higher altitude than Mt. Cimone, is composed of three 

modes, of which the first corresponds to a distribution of the tropospheric values without stratospheric 

influx, the second one to a distribution of the values influenced by stratospheric intrusions and the third 

to a distribution of high values originated from deep stratospheric intrusions (Elbern et al., 1997; 

Bonasoni et al., 1999; Bonasoni et al., 2000a, b; Stohl et al., 2000, 2003; James et al., 2003; Zanis et al., 
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2003; Cristofanelli et al., 2003, 2006, 2007, 2009a; Trickl et al., 2010) in proximity of the station, with 

limited shear and therefore with minimal path. The positive sign of the t-test values for relative humidity 

and wind speed can be attributed to the anti-correlation between these two variables and 
7
Be, due to 

removal and dispersion of particles during high relative humidity/wind speed conditions, or maximum 

7
Be associated to minima of relative humidity during STE. On the contrary, the negative sign of the t-

test values for other variables (tropopause height, specific humidity, pressure and temperature) reveals a 

positive correlation between 
7
Be and these variables.  

Ozone has been routinely monitored at the Mt Cimone station since 1996 by ISAC–CNR 

(Institute of Atmospheric Sciences and Climate of the Italian National Research Council): data are 

available at http://ds.data.jma.go.jp/gmd/wdcgg/ (World Data Centre for Greenhouse Gases, 

WDCGG). 

As shown in Figure 3.7, ozone shares the bimodality of 
7
Be. It has already been shown that O3 

increases in the troposphere are due to two different mechanisms, particularly at a high-altitude 

station such as Mt. Cimone: 1) continental emissions in the PBL and transports in the troposphere 

(associated to 
210

Pb transports) (Arimoto et al., 1999; Li et al., 2002; Liu et al., 2004); 2) transport 

from the stratosphere/upper troposphere, where it is known to be present a large ozone reservoir 

(associated to 
7
Be transports) (Monks, 2000; Li et al., 2002; James et al., 2003; Cuevas et al., 

2013). Even if the seasonality of this trace gas (Figure 3.8) is associated to an increase starting 

during late spring (April–May) and continuing during summer, the bimodality of its distribution 

clearly resembles the one of 
7
Be. In fact, over the Mediterranean region and in southern Europe, the 

tropospheric seasonal cycle of O3 is usually dominated by the presence of a broad spring-summer 

peak (Bonasoni et al., 2000b; Kouvarakis et al., 2002; Ribas and Peñuelas, 2004; Nolle et al., 2005; 

Di Carlo et al., 2007; Cristofanelli and Bonasoni, 2009), due to the superposition of the 

hemispheric-scale spring maximum (April–May) and the increased photochemical production of O3 

that characterises the lower troposphere during summer (Pochanart et al., 2001; Lelieveld et al., 

2002). Moreover, typical summer fair weather conditions, besides contributing to an increase in O3 

production from anthropogenic precursors, can also favour the export of polluted air masses from 

the boundary layer to the free troposphere of the continental Europe (Henne et al., 2005; 

Cristofanelli et al., 2007) and over the Mediterranean basin (Kouvarakis et al., 2002; Lelieveld et 

al., 2002; Gerasopoulos et al., 2005a). The spring O3 maximum was attributed to STE (Monks, 

2000; Vingarzan, 2004) and long-range transport of O3 precursors accumulating during winter in 

the northern hemispheric free troposphere, and its ensuing in situ photochemical production. In the 

free troposphere, the presence of the yearly O3 double peak, frequently integrated in a broad spring-

summer peak, was already evidenced for measurements carried out in high mountain areas by 
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Cristofanelli and Bonasoni (2009). O3 distributions during extended winter and extended summer 

are well fitted by normal distribution (Shapiro–Wilk W test = 0.984, p < 0.0006 winter distribution; 

Shapiro–Wilk W test = 0.957, p < 0.000001 summer distribution). 

 

 

Figure 3.7 Frequency distributions O3 (blue distribution) and O3 during the cold (November, December, 

January and February, red distribution) and warm season (May, June, July, August, green distribution), 

fitted by two normal distributions. 

 

Figure 3.8 Seasonal variations of O3 at Mt. Cimone during the sampling period 1998-2011, represented by 

box and whiskers plot. 
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The same approach of the t-test over separation values can be applied on O3 bins in order to 

split the data into major groupings related to different meteorological and atmospheric conditions 

(Figure 3.9(a-f)). 

 

 

 

Figure 3.9(a,b,c,d,e,f) t-test values for the significance of the difference between the means of 

meteorological and atmospheric parameters , when sorted according to a separation value of O3: a)relative 

humidity; b) specific humidity; c) tropopause height; d) pressure; e) temperature; f) wind speed. Lines 

connecting the values are polynomial b-splines. 

 

The presence of at least two modes (even three in the case of tropopause height and relative 

humidity) is clear also in the case of O3. 

Even in this case, the positive sign of the t-test highlights the presence of anti-correlation of 

ozone with relative humidity and wind speed; the negative sign instead highlights its correlation 

with the tropopause height (same as 
7
Be, as the lower tropopause height during winter is associated 

with increased STE and transports of both O3 and 
7
Be from the UT–LS, but also the higher 

tropopause during summer is associated to the maximum seasonal O3, transported from the polluted 

boundary layer), pressure (anticyclonic conditions are associated to increased photochemical 
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activities and therefore to increased ozone production) and temperature (increased photochemical 

production of ozone during summer with increased temperatures). 

 

3.3.3 Correlations with other atmospheric species 

In order to investigate the potential use of 
7
Be and 

210
Pb as atmospheric tracers Spearman’s rank 

correlation coefficients of 
7
Be and 

210
Pb and of PM10 concentrations with a series of meteorological 

and compositional parameters such as a set of trace gases and black carbon among those monitored 

at Mt. Cimone have been calculated and results are presented in Table 3.2. 

 

 
p 

(mbar) 
T 

(°C) 
RH 
% 

SH 
(kg kg-1) 

TH 
(m) 

WS 
(m s-1) 

O3 

(ppb) 
CO2 

(ppm) 
BC 

(g m-3) 
CO 

(ppb) 

7Be 
(mBq m-3) 

210Pb 
(mBq m-3) 

PM10 

(g m-3) 
FP 

(N cm-3) 
CP 

(N cm-3) 
7Be/210Pb 

7Be 
(mBq m-3) 

0.49 0.46 -0.56 0.21 0.34 -0.32 0.47 -0.36 0.47 -0.12 1.00 0.56 0.51 0.36 0.07 0.31 

210Pb 
(mBq m-3) 

0.45 0.61 -0.25 0.51 0.43 -0.28 0.55 -0.35 0.62 -0.12 0.56 1.00 0.70 0.54 0.28 -0.54 

PM10 

(g m-3) 
0.37 0.60 -0.22 0.54 0.32 -0.23 0.64 -0.33 0.74 -0.07 0.51 0.70 1.00 0.65 0.29 -0.31 

7Be/210Pb -0.05 -0.25 -0.24 -0.38 -0.17 0.04 -0.16 0.05 -0.26 0.01 0.31 -0.54 -0.31 -0.27 -0.26 1.00 

 

Table 3.2 Spearman’s rank correlation coefficients of 
7
Be, 

210
Pb, PM10 and ratio 

7
Be/

210
Pb with 

meteorological/atmospheric variables (pressure P, temperature T, relative humidity RH%, specific humidity 

SH, tropopause height TH, wind speed WS), trace gases (ozone O3, carbon dioxide CO2, carbon monoxide 

CO), black carbon (BC) and fine and coarse particles number densities (FP and CP, respectively). 

 

In general the relationship between ozone and 
7
Be is widely recognized as a traditional field on 

investigation concerning STE (see for example Reiter, 1975b; Dutkiewicz, and Husain, 1979; Reiter, 

1983; Dutkiewicz and Husain, 1985; Tremblay et al., 1993; Allen et al., 2003; Gerasopoulos et al., 

2005b; Trickl et al., 2010). The approach was extended to the relationships between ozone and 
7
Be 

and/or 
210

Pb due to the complex source terms of O3 which can be successfully intercepted by both the 

radionuclides representing two of the major sources for this fundamental gaseous component i.e., the 

stratosphere and the PBL (see for example Prospero et al., 1995; Graustein and Turekian, 1996; 

Arimoto et al., 1999; Li et al., 2002; Liu et al., 2004; Lee et al., 2007; Cuevas et al., 2013).  

Less frequent is the use of the radiotracers with other gases apart from CO2 (Zheng et al., 2011) 

or Hg (Lamborg et al., 2000). In this work we have taken into account the following atmospheric 

species measured at Mt. Cimone observatory i.e., O3, CO2, CO by IAFMS (Italian Air Force) and 

ISAC–CNR (Institute of Atmospheric Sciences and Climate of the Italian National Research 

Council) available the World Data Centre for Greenhouse Gases (at 

http://ds.data.jma.go.jp/gmd/wdcgg/) while black carbon and fine (0.3 μm ≤ Dp < 1 μm) and coarse 
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particle (1 μm ≤ Dp ≤ 20 μm) number densities are available at EBAS database (at 

http://ebas.nilu.no/). Measurements at Mt. Cimone from different research groups, as well as 

meteorological and atmospheric parameters, such as temperature, pressure, relative humidity, wind 

speed and tropopause height (determined from radiosoundings at S. Pietro Capofiume station, the 

closest ground based station in the Po Valley for which this observational activity is available) were 

retrieved together and averaged to the same time resolution of two-days as PM10 and radionuclides 

for statistical homogenization of data. 

The non-parametric Spearman’s rank correlation coefficients have been applied instead of 

Pearson’s approach, because, as previously observed, the parameters herein discussed are not 

normally distributed and therefore the former method is preferable (Wilks, 2006). Except for carbon 

monoxide, whose measurement started only in 2007 and therefore has a poor statistics, all the 

correlation coefficients are significant at p < 0.05. 

An elevated correlation is found for 
210

Pb and PM10 with temperature, suggesting the role of thermal 

convection during the warmer months in increasing vertical mixing within the troposphere. During the 

warm season the combination of an upward motion due to mixed layer expansion, thermal convection and 

mountain/valley breeze regime, results in an uplift of 
210

Pb, PM10 and other substances from the polluted 

boundary layer (ozone, elemental carbon, all positively correlated with 
210

Pb and PM10). Relative humidity 

is negatively correlated with all the particulate associated parameters suggesting the effect of wet 

scavenging. As of Figure 3.4b maxima of relative humidity are associated with precipitation leading to 

minima in aerosol load due to wet scavenging. However the anti-correlation between 
7
Be and relative 

humidity is much stronger than for the other parameters indicating the role of downward transport from 

the extremely dry UT–LS air causing simultaneous increases of 
7
Be (and ozone) and decrease of relative 

humidity due to stratosphere depletion in water vapour. Both 
7
Be and ozone show bimodal frequency 

distributions with behaviours slightly different for each of them. In this framework it is to note that specific 

humidity and relative humidity are not completely equivalent: in principle, specific humidity would be 

preferable for the identification of stratospheric intrusions being conserved in an air mass. However, 

stratospheric air masses usually mix with tropospheric ones during the descent to the lower troposphere, 

and since specific humidity in tropospheric air is highly variable (lower values in winter and at high 

altitudes and higher values in summer and close to the surface), the use of specific humidity as a tracer for 

stratospheric intrusions would result in the identification of excess STE during winter and at higher 

stations (Stohl et al., 2000). This is the reason why the observational climatology of stratospheric 

intrusions is generally based on relative humidity instead of specific humidity. 

Table 3.3 reports again Spearman’s rank correlation coefficients in this case calculated on a seasonal 

basis: winter (December January February), spring (March April May), summer (June July August) and 



Temporal Changes of 7Be and 210Pb Activity Concentrations at Mt. Cimone 

117 

autumn (September October November). In this case it was chosen to study the correlations on a “normal” 

four seasons basis, which was preferred to the use of the two extended winter/summer periods used for the 

distribution of 
7
Be, in order to better study the difference between the two transition seasons, too. 

 

WINTER 
p 

(mbar) 
T 

(°C) 
RH 
% 

SH 
(kg kg-1) 

TH 
(m) 

WS 
(m s-1) 

O3 

(ppb) 
CO2 

(ppm) 
BC 

(g m-3) 
CO 

(ppb) 

7Be 
(mBq m-3) 

210Pb 
(mBq m-3) 

PM10 

(g m-3) 
FP 

(N cm-3) 
CP 

(N cm-3) 
7Be/210Pb 

7Be 
(mBq m-3) 

0.50 0.15 -0.64 -0.46 0.22 -0.19 0.44 -0.29 -0.08 -0.09 1.00 0.49 0.13 -0.43 -0.15 0.68 

210
Pb 

(mBq m-3) 
0.24 -0.03 -0.29 -0.30 0.03 -0.19 0.36 -0.24 -0.07 -0.15 0.49 1.00 0.40 -0.51 -0.10 -0.26 

PM10 

(g m-3) 
0.01 -0.26 -0.12 -0.24 -0.20 0.00 0.19 -0.02 -0.18 -0.37 0.13 0.40 1.00 -0.52 -0.09 -0.22 

7Be/210Pb 0.33 0.24 -0.45 -0.18 0.24 -0.07 0.18 -0.20 -0.01 -0.20 0.68 -0.26 -0.22 -0.22 -0.13 1.00 

SPRING       
          

7Be 
(mBq m-3) 

0.53 0.46 -0.59 0.17 0.39 -0.32 0.40 -0.28 0.15 0.10 1.00 0.51 0.55 0.06 0.25 0.40 

210Pb 
(mBq m-3) 

0.41 0.39 -0.28 0.27 0.24 -0.20 0.37 -0.28 0.28 0.18 0.51 1.00 0.59 0.00 0.25 -0.53 

PM10 

(g m-3) 
0.53 0.43 -0.35 0.29 0.36 -0.23 0.35 -0.27 0.05 0.14 0.55 0.59 1.00 0.18 0.29 -0.14 

7Be/210Pb 0.00 0.00 -0.22 -0.11 0.03 -0.03 -0.04 0.01 -0.16 -0.21 0.40 -0.53 -0.14 0.02 -0.02 1.00 

SUMMER       
          

7Be 
(mBq m-3) 

0.21 0.34 -0.43 -0.05 0.02 -0.15 0.36 -0.27 -0.07 0.13 1.00 0.52 0.62 0.09 -0.07 0.24 

210Pb 
(mBq m-3) 

0.43 0.63 -0.37 0.42 0.31 -0.16 0.37 -0.18 0.04 0.09 0.52 1.00 0.61 0.11 0.06 -0.64 

PM10 

(g m-3) 
0.33 0.57 -0.41 0.28 0.11 -0.06 0.30 -0.31 -0.01 0.05 0.62 0.61 1.00 0.05 -0.09 -0.16 

7Be/210Pb -0.28 -0.44 0.07 -0.53 -0.32 0.07 -0.14 -0.02 -0.08 -0.04 0.24 -0.64 -0.16 0.01 -0.09 1.00 

AUTUMN       
          

7Be 
(mBq m-3) 

0.50 0.38 -0.59 -0.09 0.25 -0.31 0.40 -0.25 -0.05 0.12 1.00 0.54 0.40 0.04 0.01 0.33 

210Pb 
(mBq m-3) 

0.48 0.57 -0.25 0.32 0.34 -0.21 0.44 -0.17 0.08 0.03 0.54 1.00 0.67 0.19 0.07 -0.50 

PM10 

(g m-3) 
0.35 0.49 -0.15 0.38 0.20 -0.10 0.39 -0.28 0.21 0.00 0.40 0.67 1.00 -0.12 -0.19 -0.42 

7Be/210Pb -0.03 -0.26 -0.33 -0.45 -0.08 -0.08 -0.05 -0.06 -0.28 -0.02 0.33 -0.50 -0.42 -0.13 0.08 1.00 

 

Table 3.3 Spearman’s rank correlation coefficients of 
7
Be, 

210
Pb, PM10 and activity ratio 

7
Be/

210
Pb with 

meteorological/atmospheric variables (pressure P, temperature T, relative humidity RH%, specific humidity 

SH, tropopause height TH, wind speed WS), trace gases (ozone O3, carbon dioxide CO2, carbon monoxide 

CO), black carbon (BC) and fine and coarse particles (FP and CP, respectively) for each season (winter, 

spring, summer, autumn). 

 

The table highlights how the correlation can be significantly different during the seasons. During 

summer 
210

Pb shows its maximum correlation with temperature (0.63) and specific humidity (0.42), 

while its maximum correlation with pressure is shown during autumn (0.48), when the maximum 

210
Pb–PM10 correlation (0.67) and 

210
Pb–O3 are also found. During spring 

210
Pb shows its maximum 

correlation with temperature (0.46). 
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Fine particles show maximum correlation coefficients with 
7
Be, 

210
Pb and PM10 during winter, 

while during the other seasons no simple correlation is found for this variable. 

PM10 is correlated with temperature during summer (0.63), while a partial correlation with 

pressure can be found during spring. 

7
Be shows its maximum anti-correlation with relative humidity during winter (-0.64), decreasing 

during the transition seasons and showing its minimum value during summer. During the cold 

season anti-correlation (-0.46) is found also in respect with specific humidity, emphasizing the role 

of active STE in the cold period. Gerasopoulos et al. (2001) reported an analogous correlation 

pattern for 
7
Be and relative-specific humidity: they explained that the elevated correlation between 

the above parameters respectively throughout the year and during cold months with the dominating 

effect of wet scavenging during the warm period, while in the cold period vertical transport 

becomes important as previously explained.  

In the cold season the highest 
7
Be–O3 correlation is also observed, which could highlight the 

same UT–LS origin of these two parameters during this season when ozone photochemistry and 

transport from PBL are limited; this observation is in agreement with Cristofanelli et al. (2009a). In 

summer the high correlation among temperature, 
210

Pb and PM10 confirms the influence of 

enhanced convective vertical mixing, affecting simultaneously the concentrations of 
7
Be 

(downward motion), 
210

Pb, PM10 and other trace gases all uplifted to Mt. Cimone from the polluted 

boundary layer as mentioned before. 

In Figures 3.10, 3.11 and 3.12 some scatterplots of special interest between the treated variables 

are presented; in fact low values of the correlation coefficients are not necessarily due to lack of 

correlation between couples of variables, but could be due to the presence of bivariance as found in 

this work, which in turn might be due to different seasonal correlation patterns or to other different 

mechanisms promoting different covariance in the atmosphere (see for example the scatterplot 

between the 
7
Be/

210
Pb ratio vs. O3, Figure 3.10a). 
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Figure 3.10(a,b,c,d) Scatterplots of 
7
Be/

210
Pb vs. : a) O3; b) PM10; c) number density of fine particles 

(0.3 μm ≤ Dp < 1μm); d) number density of coarse particles (1 μm ≤ Dp ≤ 20 μm). 

 

As previously highlighted, ozone increase can be due both to transports of air pollution from the 

boundary layer (correlation with 
7
Be and 

210
Pb, low 

7
Be/

210
Pb ratio, especially during the warm 

months; see Arimoto et al., 1999; Bonasoni et al., 2004; Liu et al., 2004; Marinoni et al., 2008; 

Tositti et al., 2013) as well as from transports from the UT–LS (correlation with 
7
Be only, elevated 

7
Be/

210
Pb ratio, especially during the cold period; see Bonasoni et al., 1999, 2000a, b; Cristofanelli 

et al., 2006, 2009a; Liu et al., 2004). 

The pattern highlighted in the scatterplots of 
7
Be/

210
Pb (Figure 3.10b,c,d) clearly show how an 

elevated ratio can be linked both to increases as well as to decreases in aerosol mass load, and in the 

number densities of both fine and coarse particles. 

Marinoni et al. (2008) suggested North Italy, west Europe and east Europe as source regions for 

black carbon and number density of fine particles; moreover, they reported the seasonal cycle of 

fine and coarse particles as characterized by the highest values in spring-summer and the lowest 

values in autumn-winter. The bivariance in the scatterplot of 
210

Pb vs. black carbon and carbon 

monoxide (Figure 3.11a,c) show that they share some source regions/seasonalities, but not all of 

them: the likely influence of Saharan Dust transports as source of increases of 
210

Pb but not of black 

carbon (and carbon monoxide) depending on the occasional occurrence of biomass burning in that 

region might be the cause of the bivariance in the scatterplots. 
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Figure 3.11(a,b,c) Scatterplots of 
210

Pb vs.: a) black carbon; b) carbon monoxide; c) carbon dioxide. 

 

The bivariance of the scatterplot of 
210

Pb vs. CO2 (Figure 3.11b) could be due instead to the 

different seasonal behaviour of the two variables: while 
210

Pb at Mt. Cimone has been shown to 

exhibit a summer maximum, CO2 presents the typical Northern Hemisphere seasonal pattern with a 

winter maximum and a summer minimum, which are known to be due to the seasonal modulation in 

carbon fluxes (Cleveland and Kaufmann, 2007). 

Finally, the scatterplot in Figure 3.12 highlights that besides the summer thermal convection 

giving rise to both 
7
Be and fine particles increases, other mid-scale transports can be responsible of 

only fine particles (Western/Eastern Europe, for instance, in agreement with the results of Tositti et 

al., 2013, presented in Chapter 2). 
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Figure 3.12 Scatterplot of 
7
Be vs. number density of fine particles (0.3 μm ≤ Dp < 1 μm). 

 

 

3.4 Summary and conclusions 

This work reports the results of a study concerning temporal variations and statistical analysis for 

the atmospheric radiotracers 
7
Be, 

210
Pb and of their activity ratio at the WMO–GAW station of 

Mt. Cimone from 1998 to 2011. 

1. Both radiotracers similarly to PM10 discussed in Chapter 2 (Tositti et al., 2013), have a 

marked seasonal variation. Interannual variations are ascribed to amounts of overall 

precipitation, atmospheric stability, relative humidity, mean temperature. On a first 

approximation all of the three parameters have a winter minimum and a summer maximum. 

2. Frequency distributions of the two radionuclides and of their ratio reveal a lognormal 

distribution for 
210

Pb and for the ratio 
7
Be/

210
Pb, while a bimodal distribution is associated to 

7
Be. The bimodality of the 

7
Be distribution reflects the different seasonal behaviour of this 

tracer, and is further investigated with the help of a statistical t-test over separation values 

among 
7
Be as a function of distinct meteorological and atmospheric conditions. In fact, while 

210
Pb summer maximum is mainly due to the higher mixing height and enhanced uplift from 

the boundary layer as a result of thermal convection, the seasonal fluctuation of 
7
Be is more 

complex, being characterized by two relative maxima, one during the cold season, which is 

associated to Stratosphere-to-Troposphere transport and one in the warm season, mainly (but 

not exclusively) associated to tropospheric subsidence balancing low tropospheric air masses 
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ascent occasionally accompanied by STE. 
7
Be/

210
Pb ratio presents a seasonal maximum 

during the cold period due to the intensity of baroclinic systems during this period. The 

resulting modes and data sub-grouping found with the help of t-test are associated 

respectively to the tropospheric values without stratospheric influx, while 
7
Be modes with a 

tail above 8 mBq m
-3

 shows a strong influence from STE events suggesting the presence of a 

third mode in the distribution, potentially associated with deep stratospheric intrusions. 

3. Frequency distribution was determined also for ozone, one of the main tropospheric trace 

gases which, besides in situ photochemical production is known to be due to two different 

transport mechanisms (from the polluted boundary layer like 
210

Pb, and from UT–LS like 

7
Be). Similarly to 

7
Be, ozone, also presents a bimodal distribution, which is not strictly 

linked to its seasonal pattern, but is confirmed by the t-test approach, too: two or even three 

modes were found for ozone with this method, connected with different 

meteorological/atmospheric conditions, which in turn might be linked to different 

mechanisms causing increases in the trace gas. 

4. The correlation patterns of the radionuclides and of their ratio with physical and 

compositional variables, namely particulate matter, ozone, and other gases such as CO2, CO, 

black carbon and particles in the fine and coarse ranges, are examined, both on a total as well 

as on a seasonal basis. The role of thermal convection leading to increases in both the 

radionuclides (high correlation with temperature, tropopause height), and of wet scavenging 

as the most efficient removal mechanism (anti-correlation with relative humidity) is stressed. 

The anti-correlation of 
7
Be with relative humidity is further emphasized by downward 

transport from the extremely dry UT–LS. Ozone is correlated with 
7
Be during the cold 

season when they are both contributed by STE, while in the warm season it is highly 

correlated with 
210

Pb, PM10 and trace gases all uplifted from the polluted boundary layer.  

5. Finally, bivariance between 
7
Be/

210
Pb vs. O3, PM10, fine and coarse particle number density, 

210
Pb vs. black carbon, CO and CO2, 

7
Be vs. fine particles number density is introduced 

suggesting other less conventional but potentially promising applications of the studied 

radiotracers in atmospheric investigations, useful in the complex framework of climate 

change and consequent modifications of circulation patterns.  
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4.1. Introduction
1
 

The use of atmospheric radionuclides to understand atmospheric dynamics, pollutant dispersion and 

pollutant removal processes has a long history punctuated by the number of relevant scientific 

publications (e.g., Junge, 1963; Reiter et al., 1971; Gaggeler, 1995; Arimoto et al., 1999; Turekian 

and Graustein, 2003; WMO-GAW, 2004; Dibb, 2007; Papastefanou, 2008; Rastogi and Sarin, 

2008; Froehlich and Masarik, 2010; Sykora and Froehlich, 2010; Lozano et al., 2011; Lozano et al., 

2012). In the beginning, radionuclides in the atmosphere were monitored to understand the effects 

of atmospheric nuclear bomb fallout, which occurred mostly from tests in the 1960s. Natural 

radionuclides were measured simultaneously with anthropogenic radionuclides in fallout (Junge, 

1963). Atmospheric chemistry, air pollution and climate-related issues became prominent after the 

1970s. During the past three decades, the largely separate communities conducting observations and 

modeling of natural radionuclides and chemical constituents began to merge, and the value of 

natural radionuclide tracers in atmospheric chemistry research and assessment has been recognized 

(WMO-GAW, 2004). 

As routine measurements of naturally occurring radionuclides in a global monitoring network for 

atmospheric composition support global climate change and air quality research, natural 

radionuclides are measured at many of the regional, global and contributing-partner stations in the 

Global Atmosphere Watch (GAW) network of the World Meteorological Organization (WMO) 

(WMO-GAW, 2004). In particular, 
210

Pb and 
7
Be natural radionuclides are helpful in the 

understanding of the roles of transport and scavenging in controlling the behaviors of radiatively 

active trace gases and aerosols (Balkanski et al., 1993; Koch et al., 1996), as well as their 

anthropogenic (vs. natural) origin (e.g., Graustein and Turekian, 1996; Arimoto et al., 1999; Liu et 

al., 2004; Cuevas et al., 2013). It is therefore recommended that they are routinely monitored at 

WMO-GAW stations around the world (Lee et al., 2004). Although 
210

Pb and
 7

Be have long (1998-

                                                             
1 This chapter consists of a manuscript in preparation by Brattich E. (Dept. of Biological, Geological and Environmental 

Sciences-Section of Geology, Università di Bologna), Hongyu Liu (National Institute of Aerospace, Hampton, Virginia, 

USA), Tositti L. (Dept. of Chemistry, Università di Bologna).  
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2011) been measured at the Global WMO-GAW station of Mt. Cimone (Italy), their seasonal 

behaviour has not been thoroughly elucidated (Lee et al., 2007; Tositti et al., 2014, presented in 

Chapter 3). Here we apply a state-of-the-art global chemistry and transport model (CTM) to the 

simulation of 
210

Pb
 
and 

7
Be, with an objective to better understand the roles of transport and 

precipitation scavenging processes in controlling their seasonal variations at Mt. Cimone. 

Because of their contrasting natural origins, 
210

Pb and
 7

Be have been used as a pair to study the 

vertical transport and scavenging of aerosols (Koch et al., 1996). 
210

Pb (half-life τ1/2 = 22.3 years) is 

the decay daughter of 
222

Rn (τ 1/2 = 3.8 days), emitted from soils by decay of 
226

Ra (Turekian et al., 

1977). The oceanic input of 
222

Rn is about two orders of magnitude less than the continental input 

and, because of the continental origin of 
222

Rn, 
210

Pb is considered as a tracer of air masses with 

continental origin (Baskaran, 2011). 
7
Be (τ1/2 = 53.3 days) is a cosmogenic radionuclide generated by 

cosmic ray spallation reactions with nitrogen and oxygen (Lal et al., 1958). Most (~67%) of 
7
Be is 

produced in the stratosphere and the remaining (~33%) is generated in the troposphere, particularly in 

the upper troposphere (Johnson and Viezee, 1981; Usoskin and Kovaltsov, 2008). 
7
Be is thus 

considered a tracer of stratospheric influence (Viezee and Singh, 1980; Dibb et al., 1992, 1994; Liu et 

al., 2004) and subsidence (Feely et al., 1989; Koch et al., 1996; Liu et al., 2004). Once produced, 

both radionuclides rapidly attach onto aerosol particles in the fine fraction (Papastefanou and 

Ioannidou, 1995; Winkler et al., 1998; Gaffney et al., 2004; Ioannidou et al., 2005), and are removed 

from the atmosphere mainly by wet and secondarily dry deposition (Kulan et al., 2006). The 

concentrations of these radionuclides in surface air thus depend on their sources, wet and dry removal, 

radioactive decay (in the case of 
7
Be), and transport (Beer et al., 2012).  

In the past, several observational studies of factors influencing surface 
210

Pb and 
7
Be 

concentrations in Europe, Middle East and North Africa have been made. With compiled data of 

7
Be in ground level air over Europe, Kulan et al. (2006) showed that higher concentrations are 

present at middle latitudes (20-50°N) because of the mixing of stratospheric air into the upper 

troposphere along the tropopause discontinuity in midlatitude regions and subsequent convective 

mixing within the troposphere, which brings 
7
Be-rich air masses into the planetary boundary layer 

and to the earth’s surface. Lower 
7
Be concentrations are towards the pole and presumably, as 

interpolated in the work of Steinmann et al. (2013) who complemented that of Kulan et al. (2006) 

with some more recent literature data from Europe and some low latitude sites, towards the equator. 

Lozano et al. (2012) examined the meteorological factors influencing the 
210

Pb
 

and 
7
Be 

concentrations in surface air in the south-western Iberian Peninsula (El Arenosillo) and concluded 

that different synoptic patterns are associated with the ranges of 
210

Pb and 
7
Be activity 

concentrations. The low values of 
210

Pb are strongly linked to air masses from the Atlantic Ocean, 
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whereas the highest values are associated with air masses clearly under the influence of continents, 

such as the Iberian Peninsula and North of Africa. As for 
7
Be, they determined that the highest 

7
Be 

activity concentrations over south-western Iberian Peninsula are related with the arrival of air 

masses from middle latitudes, and in particular from the Canary Islands, western Mediterranean 

Basin and the north of Africa, an observation in agreement with Dueñas et al. (2011). North and 

Atlantic advection patterns are instead associated with low 
7
Be concentrations. High 

7
Be 

concentrations in the Canary Islands were observed by Hernández et al. (2008) and were attributed 

to downward transport from the stratosphere. The amount of precipitation associated with each 

range of activity concentrations generally indicates larger influence on 
210

Pb than on 
7
Be 

concentrations (Koch et al., 1996; Caillet et al., 2001; Likuku, 2006; Dueñas et al., 2009; Lozano et 

al., 2012). 

There are a number of studies that examined the seasonal behavior of 
210

Pb and
 7

Be at European 

mid-latitude surface sites (e.g., Cannizzaro et al., 2004; Ioannidou et al., 2005; Daish et al., 2005; 

Todorovic et al., 2005; Likuku, 2006; Dueñas et al., 2009; Pham et al., 2011; Carvalho et al., 2013; 

Steinmann et al., 2013). Higher monthly mean 
210

Pb concentrations during autumn (October-

November) and lower concentrations during spring (March-April) were observed in Thessaloniki 

(Ioannidou et al., 2005). The higher values of 
210

Pb during autumn were attributed to the frequent 

inversion conditions of the surface layers, resulting in a build-up of radon and its decay products in 

ground-level air, while the minimal values during spring were linked to higher washout due to the 

larger amount of precipitation during this period at that site (Ioannidou et al., 2005). Generally 

speaking, high levels of 
210

Pb during summer and low levels in winter reflect the differing rates of 

222
Rn emanation from soil above the European land mass during winter (wet or snow covered soil) 

and summer (dry soil) (Hötzl and Winkler, 1987; Caillet et al., 2001; Ioannidou et al., 2005; Daish 

et al., 2005). The spring 
210

Pb maximum observed, for example, in England by Likuku (2006) and 

Daish et al. (2005) was not completely explained, but possible explanations were suggested: 1) a 

“pulse” of radon was held back by winter conditions, followed by release during thawing of the 

snow-cap; 2) it could arise from anthropogenic sources such as the use of fertilisers during spring 

soil conditioning; and 3) the folding of the tropopause in spring could bring a high-altitude 
210

Pb 

component in precipitation, as shown in Tokieda et al. (1996), where its contribution is about 12% 

in spring compared to about 2% in winter. However, this last factor could explain only an increase 

of 
210

Pb wet-deposition fluxes, whereas precipitation needs to be evaporated to increase 
210

Pb 

airborne concentration because of this high-altitude component. Daish et al. (2005) did not explain 

whether or not this is the case.  
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At European mid-latitude surface sites, monthly 
7
Be averages are characterized by a well-defined 

annual cycle with lower values during winter and higher values during summer. Generally, the 

increase of 
7
Be in ground level air from March to May is ascribed to the more efficient stratosphere-

to-troposphere exchange (STE) and higher frequency of tropopause folding, whereas the further 

increase of 
7
Be during summer is due to the stronger convective mixing and higher tropopause. 

Convection brings the 
7
Be in the upper troposphere (rather than direct input of stratospheric air) down 

to the lower troposphere and ground level (Gerasopoulos et al., 2001; Ioannidou et al., 2005; Likuku 

et al., 2006; Steinmann et al., 2013; Ioannidou et al., 2014).  

High-elevation sites such as Jungfraujoch (Switzerland), Zugspitze (Germany), Mt. Cimone 

(Italy), lying typically above the planetary boundary layer (PBL), are characterized by higher 
7
Be 

due to direct influences of air masses from the free troposphere and lower 
210

Pb concentrations 

(Zanis et al., 2000). Reiter et al. (1983) analyzed 12 years of 
7
Be data for Zugspitze (2962 m asl, 

Germany) and found that the seasonality of this radionuclide is characterized by higher values in 

summer due to convection-forced exchange with the upper troposphere, and reduced values from 

April to June, due to the precipitation pattern at that site. Gerasopoulos et al. (2001) analyzed the 

7
Be data obtained from 1996 to 1998 at four high-altitude stations (Jungfraujoch-Switzerland, 

Zugspitze-Germany, Sonnblick-Austria, and Mt. Cimone-Italy). They found that the monthly means 

showed an annual cycle with a late-summer maximum at all stations, which was attributed to the 

higher tropopause that lead to more efficient vertical transport from the upper troposphere to the 

lower troposphere. It is generally observed that at high-altitude sites a secondary maximum of 
7
Be 

during cold months (December-March) is due to an increase in stratosphere-to-troposphere events 

during this season (e.g., James et al., 2003; Stohl et al., 2003; Trickl et al., 2010). The higher 

frequency of rapid subsidence in winter at Northern Hemisphere mid-latitudes can be ascribed to 

the intensity of baroclinic systems, which is greatest in wintertime. In fact, well-developed 

tropopause folds and rapid deep intrusions are most likely to occur in the wake of intense 

cyclogenesis, usually limited to the wintertime storm track regions (James et al., 2003). 

210
Pb and 

7
Be data from October 2004 to July 2008 at Puy de Dome (1465 m asl, France) and 

Opme (660 m asl, France) were analyzed by Bourcier et al. (2011). They observed similar 
210

Pb 

concentrations at the two sites, indicating that the vertical transport is efficient enough to consider 

the atmosphere well mixed on the scale of 
210

Pb lifetime, consistent with the study of Abe et al. 

(2010). It also indicates that short-term observations of varying airborne profiles do not represent 

long-term observations of 
210

Pb in the atmosphere. The seasonal 
210

Pb pattern was characterized by 

maximum concentrations in the spring and autumn and minimum concentrations in winter, due to 

higher radon emissions during the dry season than during the wet seasons, and lower PBL height 
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during winter (weaker vertical transport means a decrease of 
210

Pb concentrations at high-altitude 

sites). 
7
Be concentrations at the two sites were instead characterized by a maximum in summer and 

a minimum in winter, at both altitudes: this seasonal behaviour was ascribed to stronger vertical 

mixing during summer compared to winter, with an increased feeding of the PBL from the upper 

troposphere.  

Studies using 1-D models to determine the levels of surface 
7
Be showed higher concentrations at 

high-altitude sites (Jasiulionis and Wershofen, 2005; Simon et al., 2009) but also suggested that the 

diffusion of 
7
Be was affected by the seasonal variation of meteorological conditions. In a global 3-

D transport model study, Rehfeld and Heimann (1995) compared the simulated seasonal pattern of 

surface 
210

Pb and 
7
Be concentrations with the observations at several sites in both hemispheres. 

They found that at Mauna Loa (19.47N, 155.6W, 3400 m asl, Hawaii) 
210

Pb seasonality was 

characterized by high concentrations in spring and summer and lower ones in winter, as opposed to 

the seasonal pattern found at higher latitudes. They attributed this behaviour to the elevation of the 

site, representative of conditions of the middle troposphere rather than those in the PBL. As for 
7
Be, 

the comparison between the model and the observations at Rexburg (43.8N, 111.83W, USA) 

showed systematically lower modelled values, due to the much higher precipitation rate used in the 

model. The seasonality of 
7
Be was characterized by a summer maximum, caused by higher 

convective activity by which much more 
7
Be aerosols are transported downward out of their source 

region (Feely et al., 1988) and a winter minimum. Balkanski et al. (1993) examined the transport of 

210
Pb in a global 3-D model and reported a weak decrease of 

210
Pb concentrations between the 

continental mixed layer and the free troposphere: simulated concentrations at 6-km altitude were 

about 50% of continental mixed-layer over much of the Northern Hemisphere in summer, and over 

large areas of the tropics year around, a result consistent with the few observations available for the 

free troposphere (Moore et al., 1973).  

The measurements of 
7
Be at Mt. Cimone have already been the objective of previous studies, 

mainly concerning its use in the study of the role of STE in surface ozone increases (Bonasoni et al., 

1999, 2000a, b; Cristofanelli et al., 2003, 2006; Lee et al., 2007; Cristofanelli et al., 2009a), and in the 

framework of EU project such as VOTALP (Vertical Ozone Transport in the Alps) and 

STACCATO (influence of Stratosphere-Troposphere exchange in A Changing Climate on 

Atmospheric Transport and Oxidation capacity). Previous studies led to the assessment of a higher 

incidence of STE events during the period from October to February relative to the warm season, 

when thermal convection and the rising of the tropopause promote vertical mixing, which acts as a 

confounding factor in STE detection. Lee et al. (2007) studied the seasonal patterns and frequency 
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distributions of 
210

Pb
 
and 

7
Be measured at the station and highlighted higher concentrations of both 

radionuclides in the summertime, due to the higher mixing height and horizontal transport by 

regional airflows; the latter also led to increases in O3. During winter, a general increase in 
7
Be is 

associated with a decrease in 
210

Pb, due to the dominating effect of STE and subsidence in the free 

troposphere. At the time of this work, no modelling study of the radionuclides has been conducted 

for the site.  

In this Chapter, we conduct simulations of 
210

Pb and 
7
Be at Mt. Cimone with a state-of- the-art 

global 3-D chemistry and transport model (GMI CTM) driven by assimilated meteorological fields 

for the year of 2005. Our objectives are a better elucidation of the seasonal variations of 
210

Pb
 
and

 7
Be 

concentrations and an improved understanding of the roles of transport and precipitation scavenging 

processes in their seasonalities at Mt. Cimone. 

The remainder of this Chapter is organized as follows. Section 4.2 describes the measurement 

site, the radioactivity measurements at Mt. Cimone, and the GMI CTM. Section 4.3 evaluates the 

model performance in reproducing the observed wind and precipitation fields. Section 4.4 evaluates 

the seasonal 
210

Pb and 
7
Be concentrations in the model with those observed. Section 4.5 examines 

the sources and seasonal variations in the simulated radionuclide activities, followed by summary 

and conclusions in section 4.6. 

 

 

4.2 Data and methods 

4.2.1 Radionuclide measurements at Mt. Cimone 

Mt. Cimone station (44°12’ N, 10°42’ E, 2165 m asl) is a global WMO-GAW station managed by the 

Meteorological Office of the Italian Air Force, which hosts the research platform “Ottavio Vittori” of 

the Institute of Atmospheric and Climate Science of the National Council of Research (ISAC-CNR). 

The station is located on top of the highest peak of the Italian northern Apennines, with a 360° free 

horizon and an elevation such that the station lies above the PBL during most of the year: the Mt. 

Cimone measurements are considered representative for the southern Europe/Mediterranean free 

troposphere (Bonasoni et al., 2000a; Fischer et al., 2003; Cristofanelli et al., 2007), even though 

during the warmer months an influence of PBL can be detected both due to convective processes and 

mountain/valley breeze regimes (Fischer et al., 2003; van Dingenen et al., 2005; Tositti et al., 2013; 

see also Chapters 2 and 3). Note in this framework that southern Europe and Mediterranean basin are 

considered as a hot-spot region in terms of both climate change (e.g., Forster et al., 2007) and air 

quality (Monks et al., 2009), as well as a major crossroad of different air mass transport processes 
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(see previous Chapter 2 and following Chapters 5 and 6; Li et al., 2001; Lelieveld et al., 2002; Millàn 

et al., 2006; Duncan et al., 2008; Tositti et al., 2013).  

At Mt. Cimone station, 
210

Pb, 
7
Be, and aerosol mass load in the form of PM10 have been 

regularly measured since 1998 with a Thermo-Environmental PM10 high volume sampler. Details of 

the sampling of PM10 and 
210

Pb and 
7
Be have been given in previous Chapters 2 and 3. 

For our analysis, we used monthly averages of 
210

Pb and 
7
Be data at Mt. Cimone in 2005.  

 

4.2.2 GMI Model 

The GMI (Global Modeling Initiative, http://gmi.gsfc.nasa.gov) is a NASA-funded project aiming 

at improving assessments of anthropogenic perturbations to the Earth system; in this framework a 

CTM appropriate for stratospheric assessments was developed (Rotman et al., 2001). It was firstly 

used to evaluate the potential effects of stratospheric aircraft on the global stratosphere (Kinnison et 

al., 2001) and on the Antarctic lower stratosphere (Considine et al., 2000). The recent version of the 

GMI CTM includes a nearly full treatment of both stratospheric and tropospheric photochemical 

and physical processes and is also capable of simulating atmospheric radionuclides 
222

Rn, 
210

Pb, 

7
Be, and 

10
Be throughout the troposphere and stratosphere (Considine et al., 2004; Rodriguez et al., 

2004; Considine et al., 2005; Liu et al., 2013). Details of the model are described in Duncan et al. 

(2007, 2008), Strahan et al. (2007) and Considine et al. (2008). 

In this work a version of the GMI model with the same basic structure as described by Considine 

et al. (2005) and Liu et al. (2013) was used, including parameterizations of the important 

tropospheric physical processes such as convection, wet scavenging, dry deposition and planetary 

boundary layer mixing were also included. Meteorological data used to drive the CTM, e.g., 

horizontal winds, convective mass fluxes and precipitation fields, are taken from the output of the 

assimilated data set MERRA (Modern ERA Retrospective Analysis for research and applications) 

from the NASA Global Modeling and Assimilation Office (GMAO). MERRA is a reanalysis for the 

satellite era using a major new version of the Goddard Earth Observing System Data Assimilation 

System Version 5 (GEOS-5.2.0).  

The flux-form semi-Lagrangian advection scheme and a convective transport algorithm from the 

CONVTRAN routine in NCAR CCM3 physics package are used in the model. The wet deposition 

scheme is the same of Liu et al. (2001): it includes scavenging in wet convective updrafts, and first-

order rainout and washout from both convective anvils and large-scale precipitations. The 

gravitational settling effect of cloud ice particles included in Liu et al. (2001) is not considered 
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here. Dry deposition of aerosols is computed using the resistance-in-series approach. For the 

simulations of radionuclides, each simulation was run for six years, recycling the meteorological 

data for each year of the simulation; the sixth year output was used for analysis. 

A uniform 
222

Rn emission of 1.0 atom cm
-2

 s
-1

 from land under nonfreezing conditions is 

assumed (Liu et al., 2001). Following Jacob and Prather (1990), the flux is reduced by a factor of 3 

under freezing conditions. The flux from oceans and ice is null. Although a large variability of 

222
Rn emission from land is observed, the above emission estimate is thought to be accurate to 

within 25% globally (Turekian et al., 1977) and to within a factor of 2 regionally (Wilkening et al., 

1975; Schery et al., 1989; Graustein and Turekian, 1990; Nazaroff, 1992; Liu et al., 2001). 

Following Brost et al. (1991) and Koch et al. (1996), the Lal and Peters (1967) 
7
Be source for 1958 

(solar maximum year) is used, as it best simulated stratospheric 
7
Be concentrations measured from 

aircraft (Liu et al., 2001). Stratospheric 
7
Be concentrations are determined by a balance between 

production and radioactive decay. For this reason, the stratospheric 
7
Be observations are used as a 

constraint on the 
7
Be source. The 

7
Be production rate is inversely correlated with solar activity (e.g., Lal 

and Peters, 1967; Koch and Mann, 1996). At high solar activity, the deflection of cosmic rays away 

from the solar system lowers the 
7
Be production rate. No interannual variability in the 

7
Be source is 

considered in the model (Liu et al., 2001). This may lead to an underestimate of tropospheric 
7
Be 

concentrations, especially at high latitudes during a solar minimum (or near minimum) year. Lal 

and Peters (1967) reported that the relative amplitude of the 
7
Be production rate over an 11-year 

solar cycle is about 13% below 300 hPa at latitudes above 45 degree. 

Because of the coarse resolution of the model (2° latitude by 2.5° longitude), the model 

representation of the topography at the site is poor. The elevation of Mt. Cimone in the model is only 

298 m, whereas in reality the mountain is 2165 m (asl) high (Figure 4.1). For this reason, the model 

output was not sampled at ground level, but at the gridbox corresponding to the elevation of the site. 

In order to see the sensitivity of model-observation comparisons to spatial sampling, the model was 

sampled not only at the grid (“ij”) corresponding to the latitude and longitude of Mt. Cimone, but also 

for the 8 adjacent grids (“ip1jm1”, “ijm1”, “im1jm1”, “ip1j”, “im1j”, “ip1jp1”, “ijp1”, “im1jp1”, 

where “p” stands for “plus” and “m” stands for “minus”). To better understand the sources and 

seasonality of radiotracers in the model, we examine model output not only for 
210

Pb 
7
Be, and their 

ratio 
7
Be/

210
Pb (an indicator of vertical transport, Koch et al., 1996), which can be directly compared 

to the measurements taken at Mt. Cimone, but also for other radiotracers and quantities, e.g., 
222

Rn, 

10
Be, stratospheric 

210
Pb, stratospheric 

7
Be, stratospheric 

10
Be, stratospheric 

7
Be/total 

7
Be (i.e., 

fraction of 
7
Be coming from the stratosphere), and 

10
Be/

7
Be (a STE tracer, Zanis et al., 2003). 
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Figure 4.1 Surface elevations (km) in the GMI model. 

Year 2005 was chosen for analysis because of the availability of observational data and model 

output at the start of this collaborative work. Monthly averages of 
210

Pb and 
7
Be data at Mt. Cimone 

were calculated for comparison with model results. To compare the seasonalities of 
210

Pb and 
7
Be 

between the model and the observations, the annual mean concentration was subtracted from the 

monthly mean concentrations and then divided by the annual mean (i.e., monthly percentage 

deviations from the annual mean concentration were calculated). 

 

 

4.3 Seasonal variations of transport and precipitation at Mt. Cimone: observations vs. 

model simulations 

Seasonal transport in the model was studied and reported in Figure 4.2(a,b). In the model 

Mt. Cimone appears to be in a location where there is a large horizontal gradient of wind 

(transport). The seasonal wind can be briefly summarized as follows: 
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 Fast N-NW: January and December 

 Slower (but not slow) N-NW: March and August 

 N: February 

 Slow W: April, May and July 

 Slow W-NW: June 

 Very slow/calm: September 

 Slow S-SW: October 

 Slow W-SW: November 
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Figure 4.2(a,b) Seasonality of winds in the MERRA meteorological data, at the elevation of Mt. Cimone. 

Color images show the GMI simulated monthly mean 
210

Pb (a) and 
7
Be (b) concentrations. The white dot 

indicates the location of Mt. Cimone (44°12’ N, 10°42’ E, 2165 m asl). 
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The most frequent situations in the circulation patterns in the Emilia-Romagna region are 

characterized by the fluxes from NE (Karst plateau) or fast currents from SW (Giuliacci, 1988). In the 

first case (NE) the presence of an anticyclone on the eastern Europe or of a depression centered on the 

southern Italy or on the central Adriatic Sea can allows air masses originating in the Karstic and 

Dinaric Alps to enter in the Po Valley. The second case (SW) is most frequent and characterized by 

jets from SW associated with a depression on the Ligurian Sea or on the northern Tyrrhenian Sea. 

Moreover, in cases of slow general circulation (typical, for example, of the warm period), because of 

the presence of the Alpine barrier, atmospheric layers of the Po Valley are mainly influenced by 

circulations due to thermal differences with different baric situations during the day and during the 

night (Giuliacci, 1988). Synoptic scale breezes are then formed, and do not directly affect 

Mt. Cimone. They are able to influence the characteristics of the wind, which are then described by a 

NE direction during the day and a SW direction during night on the northern Apennines.  

Mt. Cimone is the windiest meteorological station in Italy and the prevailing winds blow from 

S-SW and N-NE directions (Ciattaglia et al., 1987; Colombo et al., 2000). The analyses of wind 

observations at Mt. Cimone during the period of 1998-2011 agree with previous studies from Italian 

Air Force (Ciattaglia, 1983; Ciattaglia et al., 1987; Colombo et al., 2000) analysing the climatology 

of local wind intensity and direction during the period of 1946-1999. N-NE directions are more 

significant during the cold period, when an equivalent decrease of fluxes from SW is recorded. This 

situation is strictly linked to the different synoptic situation of the cold season, which is 

characterized by the influence of the intense anticyclone on eastern Europe. The presence of this 

anticyclone can favour the development of low-pressure systems over central Europe, to the north-

east of Italy, generating cold streams from this quadrant. Ciattaglia (1983) indicated that NE winds 

are a consequence of the N-S component shifted by the Alps mountain chains. While winds 

blowing from the S-SW sector generate a sea air inflow, a continental air inflow is observed when 

winds come from the N-NE sector (Ciattaglia et al., 1987). 

Wind roses during the different seasons of 2005 partially follow the general description of winds 

at Mt. Cimone. Prevailing winds during the winter season are fast NNE-NE, but also slower W-SW, 

while on the contrary summer winds are described by slow WSW-W. The transition seasons show 

as expected an intermediate character, with prevailing W-SW winds during spring and fast NNE but 

also slower W-S (and all directions falling in between) during autumn. 

The difference between local wind roses and model winds (Figure 4.2) might reflect the fact that, 

even though the mountaintop is very elevated and completely free of orographic obstacles, the wind 

observations are more or less localized especially compared to those in a coarse-resolution model 

(2° X 2.5°). In particular, the NE direction, which is commonly observed during winter and autumn 
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at Mt. Cimone, is missing from the assimilated winds. More important for this kind of comparison 

is the difference in the N-S direction between model-observations, which arises in particular during 

summer and, to a lesser extent, during transition seasons. 

The model is able to capture relevant features of pressure systems and seasonal circulation 

patterns of the North Atlantic/Mediterranean/African region. The semi-permanent high pressure 

system located in the North Atlantic with different positions during different seasons is the 

Bermuda/Azores high. The Siberian High, a semi-permanent system of high pressure centred in 

northeastern Siberia during the colder half of the year, originating from the intense cooling of the 

surface layers of air over the continent, is well discernible in the simulated winds in the January-

April plots. The ITCZ is also well discernible in the summer/autumn season. The Siberian High is 

discernible in the simulated winds, too. In northern Europe there are approximately two main states 

for the atmosphere, the westerly or zonal flows modulated by the advection of Atlantic lows, and 

the long-lived blocking anticyclonic configurations over North Sea or Scandinavia (easterly) 

(Burlando et al., 2008). According to Huschke’s nomenclature (1959), in the Mediterranean and 

surrounding regions there are more than 50 wind systems (Burlando, 2009). Most of them are local-

scale wind systems (Burlando, 2009); they are thus not captured by a global meteorological model 

such as MERRA. Etesian winds, prevailing north-easterly in the northern Aegean, northerly in the 

central and southern Aegean (Kotroni et al., 2001) during summer, originating as part of the Asian 

monsoon system, from the high pressure over the Balkans and the development of a thermal low 

over the Anatolian plateau, are observed in simulated winds in the eastern Mediterranean. Also the 

Mistral, a strong north/north-westerly wind system blowing in winter from southern France into the 

Gulf of Lyon (Huschke, 1959; Reiter, 1975; Jiang et al., 2003), is resolved by the model. Also 

simulated are the westerly winds commonly observed in the western Mediterranean as a result of a 

deep low pressure to the north over the British Isles, or depressions moving eastward across the 

Iberian Peninsula, whereas in the eastern Mediterranean the recurrent pattern besides the Etesian 

wind is a north-westerly flow, due to a low pressure extending over the Middle East and the African 

continent and a higher pressure system over the Balkans and the Aegean sea (Burlando, 2009). 

North-African lows and Sahara depressions (also referred to as Atlas lee depressions) and the 

resulting S-SW wind in advance (Sirocco) (Reiter, 1975), appear to be an important feature 

missing/underrepresented in the model, where they appear only during October/November. 

Trigo et al. (2002) reported an updated climatology of the cyclogenesis activity in the Mediterranean 

on a seasonal basis. They showed that the cyclogenetic mechanisms for winter and for summer/spring 

are different: while in winter cyclogenesis mainly occur in the northern Mediterranean coast, in summer 
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cyclogenesis occur over land. In winter they identified three main cyclogenetic regions corresponding to 

the Gulf of Genoa, the Aegean Sea, and the Black Sea, and they concluded that the cyclones developing 

in these regions are essentially sub-synoptic lows (thus not resolved by a global model), triggered by the 

major North-Atlantic synoptic systems affected by the local topography of the northern Mediterranean 

coast (Trigo et al., 2002). In summer, the main cyclogenetic regions are located in the Iberian Peninsula, 

North Africa and Middle East because of thermal effects, and in Sahara also being affected by 

orography (Atlas Mountains) and by the increase in low-level thermal gradients (Campins et al., 2006). 

Those features seem to be partly captured by the model. 

Important to the model performance in reproducing the observed seasonal behavior of 
210

Pb and 

7
Be is the accuracy of precipitation fields used in the model. We compare here the MERRA 

precipitation with those from the GPCP (Global Precipitation Climatology Project, 

http://www.gewex.org/gpcp.html) satellite and surface observations in 2005. 

We compared each month’s precipitation on the global scale and the comparison was then 

restricted to the region defined by 0-75°N and 90° W – 90°E (Figure 4.3). A good agreement 

between GPCP and MERRA precipitations was found for both comparisons. 
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Figure 4.3 Comparison of the regional precipitation patterns (latitude: 0-75° N, longitude: 90°W-90° E) 

during January, March, July and October in the GPCP observations and in the MERRA meteorological data 

set. The white dot indicates the location of Mt. Cimone (44°12’ N, 10°42’ E, 2165 m asl). 

 

We also compared the GPCP/MERRA precipitation seasonality for each of the 9 grids 

surrounding Mt. Cimone (Figure 4.4, only “ij” and “ijm1” grids are shown). The agreement 
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between model and satellite observations is reasonable, especially for the “im1jm1” and “ip1jp1” 

grids (not shown). Summer precipitation patterns are very similar in the model/GPCP observations. 

However, there are large differences between these values and those observed at the surface of Mt. 

Cimone (not shown). This difference may very well reflect again the fact that the observed surface 

precipitation is very localized, whereas the satellite/model precipitations are for larger scales 

(MERRA: 2° X 2.5°; GPCP: 2.5° X 2.5° global grid). Moreover, as Colombo et al. (2000) 

previously pointed out, different from the surrounding area where the climate is defined as 

temperate-continental, the climate at the mountaintop is classified as alpine because of the high 

elevation. In the region the observed precipitations show maxima during November (secondary 

maximum in spring) and absolute minimum in July (secondary minimum in January), but on the top 

of the mountain the precipitations are maxima during summer. Simulated precipitations show 

increased amounts during April and the period August-December, with minimum in June-July. 

 

 

Figure 4.4 Comparison of the seasonal precipitation in the MERRA meteorological data set with that in the 

GPCP satellite observations for (a) the model gridbox (“ij”) corresponding to the latitude and longitude of 

Mt. Cimone; (b) the model gridbox (“ijm1”) to the west of “ij”. 

 

 

4.4 Seasonal variations of 
210

Pb and 
7
Be at Mt. Cimone: observations vs. model simulations 

Low 
210

Pb areas (Figure 4.2a) are seen over the Atlantic Ocean, due to the negligible flux of 
222

Rn 

from the oceans, and in northern and western Europe especially during the cold season. High 
210

Pb 

concentrations appear over the Sahara desert and North Africa, as a result of low precipitation in 

this area, and over Middle East/Asia. 
210

Pb concentrations over southern Europe appear higher 

during the transition seasons and peak during summer.  
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Low 
7
Be concentrations (Figure 4.2b) are simulated along the Equator, where convective 

scavenging is strongest. High 
7
Be concentrations are seen over the Sahara desert, due to a 

combination of low precipitation and subsidence in this region. Elevated values also occur over the 

Middle East, North American, and Greenland. 

The seasonality and frequency distributions of 
210

Pb
 
and 

7
Be concentrations measured at the Mt. 

Cimone station were previously studied by Lee et al. (2007), while a more recent analysis was 

presented in Chapter 3 (Tositti et al., 2014). Generally, both radionuclides show a marked seasonal 

maximum in the summertime, a behaviour shared by PM10 and O3. While 
210

Pb summer maximum is 

mainly due to the higher mixing height and enhanced uplift from the boundary layer as a result of 

thermal convection, the seasonal fluctuation of 
7
Be is more complex and characterized by two relative 

maxima, one during the cold season associated with stratosphere-to-troposphere transport, and one 

during the warm season mainly (but not exclusively) associated with tropospheric subsidence 

balancing lower-tropospheric air masses ascent occasionally accompanied by STE (Chapter 3; Tositti 

et al., 2014). The measurements in 2005 are in agreement with this description (Figure 4.5, 4.6 and 

4.7, solid lines): 
210

Pb concentrations are characterized by two maxima during the warm period (July 

and September), while 
7
Be concentrations are characterized by one absolute maximum during 

summertime (July) and one secondary maximum during the cold period (March). 
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Figure 4.5 Comparison of GMI simulated (black dotted line) percentage deviations (X 100) of 
210

Pb (a) and 

7
Be (b) concentrations from the annual means at the “ij” grid with those observed at Mt. Cimone (solid 

lines). Also shown are GMI simulated monthly fluctuations of 
222

Rn activities (c), 
10

Be/
7
Be ratios (d) and 

strat 
7
Be/total

 7
Be ratios (e) at the “ij” grid.  
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Figure 4.6 Same as Figure 4.5(a, b), but for the “ijm1” and “im1jm1” grids. In these grids, a better 

agreement for 
7
Be in summer was found. 

 

 

Figure 4.7 Same as Figure 4.5(a,b), but for “ip1jp1” “ijp1”, “im1jp1” grids. In these grids, a better 

agreement for 
7
Be in winter was found. 
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In Figures 4.5, 4.6 and 4.7 the simulated 
210

Pb and 
7
Be activities are compared with the 

observations at Mt. Cimone. The seasonality of 
210

Pb is well captured by the GMI model driven by 

the MERRA meteorological fields, although slightly underestimated in spring. The model 

reproduces the presence of two seasonal maxima observed in the measurements, with the maximum 

observed in July in the measurements shifted to June in the simulation.  

As for 
7
Be, the model well captures the March maximum and the general seasonal pattern during 

the cold and transition seasons. During the warm period, the simulated 
7
Be concentrations show a 

month-to-month variability similar to that in the observations, but are significantly lower than the 

observed. A better agreement was found at some adjacent model gridboxes (Figure 4.6 and Figure 

4.7 vs. Figure 4.5). 

 

 

4.5 Sources and seasonality of 
210

Pb and 
7
Be at Mt. Cimone: a model analysis 

The importance of simulating the seasonality of 
210

Pb and 
7
Be relies in the fact that in the model 

their sources and governing processes are perfectly known. For instance, from Figure 4.5c one 

could conclude that the summer 
210

Pb maximum is due to stronger (thermal) convection, which 

uplifts more 
222

Rn from the boundary layer, as pointed out by, e.g., Lee et al. (2007) and in previous 

Chapter 3.  

In a similar manner, the source of 
7
Be March maximum can be investigated with the model 

simulations. Figure 4.5 also shows the simulated seasonal patterns of the fraction of 
7
Be originating 

from the stratosphere (strat 
7
Be/total 

7
Be) and of the 

10
Be/

7
Be activity ratio. As both tracers exhibit 

a maximum during December-March, the March 
7
Be maximum is largely due to a large 

stratospheric influence during winter/spring months. However, the model tends to overestimate the 

observed 
7
Be concentrations during the period December-March, suggesting that STE and/or 

subsidence in the model is likely too fast. 

The fact that the model uses the 
7
Be production rate of Lal and Peters (1967) for a solar 

maximum year may partially explain the lower annual mean 
7
Be in the model than in the 

observations. In fact, the sunspot number in 2005 was quite low (29.8) (slowly decreasing from 

2000, solar maximum year, reaching the minimum in 2008), especially compared to the 1958 value 

of 184.8 (sunspot number data available from the World Data Center SILSO, Royal Observatory of 

Belgium, Brussels, http://sidc.oma.be/sunspot-data/). 

During the winter period, associated with the simulated (Figure 4.2b) and observed 
7
Be increases 

(Figure 4.5, 4.6 and 4.7), strong and long-range transport seems to dominate in the European region 

(Figure 4.2). In particular, transport from higher latitude regions (Arctic, northern Europe, and 

http://sidc.oma.be/sunspot-data/


Processes Controlling the Seasonal Variations of 210Pb and 7Be at Mt. Cimone: A Model 

Analysis 
 

 

155 

North America), which have already been linked to STE by many authors (e.g., Bonasoni et al., 

1999, 2000ab), appears particularly important during the cold period (Figure 4.2). 

On the contrary, during the warm period the simulated (Figure 4.2a) and observed 
210

Pb 

concentrations increase. It appears to be associated with short-range and regional transport as 

suggested by the model simulations. As expected, long-range transport is more typical of the 

winter/spring season because of stronger horizontal winds, while regional effects are more 

important during summer when convection gets stronger. 

The discrepancy between the simulations and the observations of 
7
Be during the warm period is 

partly due to the sensitivity to spatial sampling in the model. As seen from the map plots of 
210

Pb 

and 
7
Be concentrations (Figure 4.2) at the elevation of Mt. Cimone, the sampling site appears to be 

located in a region where the N-S gradient of concentrations is large (especially for 
7
Be). The 

presence of an elevated gradient in the region surrounding Mt. Cimone was also observed for 

winds, as expected because concentrations and transport are inherently connected. The sensitivity to 

spatial sampling in the model is therefore ascribed to this observed strong gradient in the N-S 

direction. In fact, while “ijm1” and “im1jm1” grids are better for summer 
7
Be comparisons (Figure 

4.6), the grids “ip1jp1”, “ijp1”, and “im1jp1” are better for winter (Figure 4.7).  

The model underestimation of 
7
Be levels during the warm months suggests looking with more 

details in the mixing between the PBL and the lower free troposphere: entrainment of free tropospheric 

air into the PBL (whose influence at Mt. Cimone is higher in summer, due to enhanced vertical mixing 

and mountain wind breeze regime, as reported by e.g., Fischer et al., 2003 and Cristofanelli et al., 2007) 

could be limited. A limited mixing with the PBL in the model would result in lower 
7
Be concentrations, 

as even though subsidence of upper tropospheric air (which has been influenced by frequent shallow 

stratosphere-to-troposphere transport events) in the lower free troposphere were correctly simulated, the 

higher 
7
Be air masses could not penetrate adequately the PBL. 

The comparison between model/observations of radionuclides suggests that the model simulated 

summer 
210

Pb and 
7
Be concentrations are often low (more for 

7
Be than for 

210
Pb), but the model 

7
Be/

210
Pb ratio is much closer to the observed ratio (Figure 4.8). This suggests that the ratio cancels 

out the errors in precipitation scavenging that contribute to the underestimate of 
210

Pb
 
and 

7
Be 

activities, as previously suggested by Koch et al. (1996). 
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Figure 4.8 Comparison between GMI simulated monthly fluctuations (in percentage X 100) of 
7
Be/

210
Pb 

ratios at the “ij”, “ijm1”, “im1jm1”, “ip1jp1”, “ijp1”, and “im1jp1” grids (black dotted line) and those 

from the observations at Mt. Cimone (green solid line). 

 

If one compares the seasonality of radionuclides (Figures 4.5, 4.6 and 4.7) and precipitation at 

the 9 grids (Figure 4.4), the maxima/minima of precipitation appear to be in phase with 

minima/maxima of radionuclides activities. Moreover, in previous Chapter 3 (Tositti et al., 2014) it 

was showed that precipitation events bring about PM10 minima as a result of wet removal, as well 

as maxima in relative humidity. 

We have conducted model sensitivity experiments where convective transport/scavenging, wet 

scavenging (both large-scale and convective), and dry deposition processes are turned off, 

respectively, to examine the roles of these processes in controlling the seasonality of 
210

Pb and 
7
Be 

at Mt. Cimone. Figure 4.9 shows the results for the standard and sensitivity runs at the “ijm1” grid, 

for which the simulated tracer seasonal variations are similar to those observed.  
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Figure 4.9 Comparison of GMI simulated monthly fluctuations (in percentage X 100) of 
210

Pb and 
7
Be at the 

“ijm1” grid between the standard (black dotted line) and the sensitivity runs at Mt. Cimone. The sensitivity 

runs are those without convective transport/scavenging (red dotted line), without dry deposition (blue dotted 

line), and without scavenging (orange dotted line). The observations are shown as green solid line. 

 

As expected, turning off dry deposition does not significantly change the simulated 
210

Pb and 
7
Be 

concentrations, due to the high elevation of the site (larger effects are shown at the bottom model layer). 
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Also turning off convection (with neither convective transport nor convective scavenging), the simulated 

7
Be seasonality remains nearly the same. In the case of 

210
Pb, turning off convection does not have a large 

effect on the simulated seasonality either. As we previously noted, convection plays a dominant role in 

determining the summer 
210

Pb maximum. The fact that concentrations in the run without convection are 

similar to those in the standard run is probably due to the compensating effects of convective transport and 

convective scavenging in the free troposphere. In fact, when turning off convection, there is no convective 

transport of
 222

Rn, therefore less 
222

Rn (and 
210

Pb) being transported to the free troposphere; on the other 

hand, no convective scavenging of 
210

Pb increases its concentration in the free troposphere. A map of 

surface 
222

Rn concentrations at the elevation of Mt. Cimone (not shown), as well as a map of changes in 

210
Pb concentrations due to the convection processes (Figure 4.10) show that convection in the region is 

more important during summer and autumn, but also during spring when it is not completely negligible. 

 

 

Figure 4.10 GMI simulated difference of 
210

Pb concentrations at the elevation of Mt. Cimone between a 

sensitivity run without convection and the standard run. Arrows denote MERRA winds. The white dot 

indicates the location of Mt. Cimone (44°12’ N, 10°42’ E, 2165 m asl). 
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The model run without scavenging clearly suggests that wet scavenging is mainly responsible for the 

seasonal variation of 
7
Be (Figure 4.9, bottom panel). For 

210
Pb (Figure 4.9, top panel), it seems that wet 

scavenging plays a more important role during August-December than during January-July. This 

appears to be associated with the seasonality of precipitation, which shows prolonged elevated values 

during the period of August/September-December, as well as a maximum during April, as previously 

discussed (Figure 4.4). A map of changes in 
210

Pb concentrations due to scavenging in model (Figure 

4.11) confirms that the scavenging effect is larger during fall and, to a lesser extent, during summer. At 

Mt. Cimone, the scavenging effect is not minimal during July (month of minimum precipitation, Figure 

4.4), suggesting the influence of precipitation scavenging elsewhere in the region on the site.  

 

 

Figure 4.11 Same as Figure 4.10, but for a sensitivity simulation where wet scavenging is turned off.  
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4.6 Summary and conclusions 

In this Chapter, we have tested the ability of a global 3-D model (GMI CTM) driven by MERRA 

assimilated meteorological data to simulate 
210

Pb and 
7
Be, two natural atmospheric radionuclides 

originating from contrasting source regions (lower troposphere and upper troposphere/lower 

stratosphere, respectively), attached to submicron particles, and removed from the troposphere 

mainly by wet deposition. Our objective was to investigate the seasonality of 
210

Pb and 
7
Be at the 

Mt. Cimone WMO-GAW station by examining the roles of horizontal advection, vertical transport 

(large-scale and convection), and wet scavenging. For this purpose, the model results have been 

compared with surface observations obtained at the station in 2005.The seasonal pattern of 
210

Pb 

concentrations is characterized by the presence of maxima during the warm period, while minima 

during the cold period are generally observed. The seasonality of 
7
Be seasonality is instead more 

complex, with two separate maxima during the warm and cold periods. The model performance in 

representing the transport and scavenging processes was tested by comparing model results with the 

observations. In particular, the MERRA precipitation field used by the model was evaluated against 

the GPCP satellite and surface observations, and a general good agreement was found. On the 

contrary, a general disagreement between the model and the local observations of winds and 

precipitation was observed, which was attributed to the coarse resolution of the model compared to 

the localized characteristics of winds and precipitation from surface measurements. 

The seasonal pattern of 
210

Pb concentrations is characterized by the presence of maxima during the 

warm period, while minima during the cold period are generally observed. The seasonality of 
7
Be 

seasonality is instead more complex, with two separate maxima during the warm and cold periods. The 

model performance in representing the transport and scavenging processes was tested by comparing 

model results with the observations. In particular, the MERRA precipitation field used by the model was 

evaluated against the GPCP satellite and surface observations, and a generally good agreement was found. 

The model was able to capture the main circulation patterns observed in the Northern Hemisphere. Some 

local-scale winds/pressure systems, which may be of importance for the sampling site, were not well 

described in the simulations. In particular, a general disagreement between the model and the local 

observations of winds and precipitation was noted, which was attributed to the coarse resolution of the 

model compared to the localized characteristics of winds and precipitation from surface measurements. 

The model well reproduced the observed 
210

Pb seasonality: 
210

Pb maximum during the warm 

period was attributed to the stronger (thermal) convection, which uplifts more 
222

Rn (and 
210

Pb) 

from the boundary layer. The seasonal pattern of 
7
Be was instead better represented during the cold 

period, while the summer 
7
Be maximum was underestimated. The model tends to overestimate the 

7
Be observations during the cold period, probably because the STE and/or subsidence in the model 
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was too fast. The lower simulated annual average 
7
Be concentration relative to the observation is 

instead partly attributed to the fact that the model used the 
7
Be production rate for a solar maximum 

year, while in 2005 the solar activity was rather low.  

By examining the wind fields and horizontal distribution of radiotracers in the model, we noted 

that the sampling site is in a location where there is a large gradient especially in the North-South 

direction. For this reason, we investigated the sensitivity of model results to spatial sampling. A better 

agreement between the model and the observations at some adjacent gridboxes was found. The 
7
Be 

March maximum was linked to the large stratospheric influence during winter/spring. The model 

tends to underestimate the summertime 
210

Pb and 
7
Be, but the model errors due to precipitation 

scavenging appear to be canceled out in the 
7
Be/

210
Pb ratio. We have conducted a series of model 

sensitivity experiments to further examine and quantify the roles of wet scavenging, dry deposition, 

and convective transport/scavenging in controlling the seasonality of 
210

Pb and 
7
Be at Mt. Cimone. 

Dry deposition does not have a significant effect on the magnitude and seasonality of 
210

Pb and 
7
Be 

concentrations at the site. The relatively weak effects of convective transport and scavenging on the 

radiotracer seasonality were attributed to the compensating effects of convective transport and 

convective scavenging on tracer concentrations in the free troposphere (both convective transport and 

convective scavenging turned off in the run without convection). Convection in the region seems to 

be more important during summer and autumn, although it is not completely negligible during spring. 

Finally, scavenging is found to be the most important process controlling the seasonal variations of 

210
Pb and 

7
Be at Mt. Cimone. For 

210
Pb, it was noted that scavenging seems to be more important 

during August-December than during January-July. This was related to the seasonality of local and 

regional precipitation, which shows prolonged elevated values in the period of August-December. 

We have conducted a first modeling study of 
210

Pb and 
7
Be observations at Mt. Cimone. Our 

simulations demonstrated the model’s capability to reproduce the seasonality, while highlighting the 

weaknesses of the model in reproducing local features mostly due to its coarse resolution. A future study 

about the interannual variability and the 
210

Pb-
7
Be-O3-CO relations is also planned. Both radionuclides 

will prove to be very useful tracers in our future modeling studies of 
210

Pb-
7
Be-O3-CO relationship, as well 

as the interannual variability of these tracers and other trace gases and aerosols at Mt. Cimone. 
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5.1 Introduction
1
 

The aim of this work is to find a relationship, if any, between the seasonality, trends, interannual 

variability in the advection patterns and the variations in the atmospheric composition observed in a 

long time series acquired at the WMO-GAW Mt. Cimone station (Italy). In particular, the main 

species which are considered to this aim, are PM10, atmospheric radiotracers such as 
7
Be and 

210
Pb, 

and O3, which have been object of a number of studies, especially, but not only, concerning the 

study of Stratosphere-to-Troposphere-Exchange (STE) at this high altitude site (Bonasoni et al., 

1999, 2000a, b; Cristofanelli et al., 2003; Bonasoni et al., 2004; Cristofanelli et al., 2006; Lee et al., 

2007; Cristofanelli et al., 2009a, b; Tositti et al., 2012, presented in Appendix II; Cristofanelli et al., 

2013; Tositti et al., 2013, 2014, see previous Chapters 2 and 3).  

7
Be and 

210
Pb are especially useful as radiotracers to investigate vertical motions in the 

atmosphere because of their natural contrasted origin: in fact, while 
7
Be (half-life 53.3 days) is 

produced by cosmic ray spallation reactions with nitrogen and oxygen in the stratosphere (about 

75%) and in the upper troposphere (Johnson and Viezee, 1981; Usoskin and Kovaltsov, 2008), 
210

Pb 

(half-life 22 years) is a tracer of continental air masses (Balkanski et al., 1993), being emitted as decay 

daughter of 
222

Rn (half-life 3.8 days) emitted from soils (Turekian et al., 1977). Once produced, both 

radionuclides attach to submicron-sized aerosol particles peaking in the accumulation mode 

(Papastefanou and Ioannidou, 1995; Winkler et al., 1998; Gaffney et al., 2004; Ioannidou et al., 2005). 

Thereafter, the main removal mechanisms of 
7
Be and 

210
Pb from the atmosphere are wet and dry 

scavenging of the carrier aerosol (Feely et al., 1989; Kulan et al., 2006). For this reason, the 

simultaneous measurements of 
7
Be and 

210
Pb, together with their ratio, can provide useful information 

about the vertical motion of air masses as well as on convective activity in the troposphere (Brost et al., 

1991; Koch et al., 1996; Tositti et al., 2004; Lee et al., 2004, 2007). 

Backward trajectories have long been used in the study of the effect of the origin and pathway of 

air masses on composition change and trends. A good review of the methods useful to this aim is 

                                                             
1 This chapter consists of a manuscript in preparation by Brattich E. (Dept. of Biological, Geological and Environmental 

Sciences-Section of Geology, Università di Bologna), Orza J.A.G. (SCOLAb, Fisica Aplicada, Miguel Hernandez 

University; Elche, Spain), Tositti L. (Dept. of Chemistry, Università di Bologna).  
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available in Fleming et al. (2012). While a large number of studies sort air masses by designated a 

priori geographical sectors, the method to cluster the trajectories with a statistical technique and then 

to analyse the concentrations at the receptor site for each trajectory classification, to see whether each 

classification is chemically distinct, is also quite common: to cite only a few examples, clusters of 

back trajectories were used by Huang et al. (2010) to study 15 years of particulate matter 

concentration at Alert (Greenland), monthly average ozone and mercury transport to the Arctic by 

Eneroth et al. (2007), to compare the composition for Alert and Barrow in the Arctic (Sharma et al., 

2006), to derive seasonal air masses origin in Beijing, China (Xia et al., 2007), to study three years of 

ozone measurements at Mace Head, Ireland (Cape et al., 2000), to identify trajectory types at various 

Atlantic Ocean sites (Virginia, Bermuda, Cape Point, Amsterdam Island) (Moody et al., 1989), to 

study 10 years of tracer levels at Ny-Ålesund, Svalbard (Eneroth et al., 2003), and to analyse CO and 

O3 measurements at Hong Kong, China (Wang et al., 2004). The variability in the occurrence of each 

trajectory group and the assessment of trend in association with atmospheric circulation indexes, such 

as the North Atlantic Oscillation index (NAOi), is less common (Orza et al., 2013). 

The use of both air masses classification and atmospheric radiotracers is not so usual but has 

already been objective of some studies. The air mass origin influence on 
7
Be and 

210
Pb activities in 

Málaga (Southern Spain) has been studied with the use of clusters of back-trajectories by Dueñas 

et al. (2011), who associated polar maritime air masses to low 
7
Be and 

210
Pb activities; also, for the 

first time an association of continental flows from Northern Africa with high concentrations of 

both radionuclides was underlined by this study, which might result from African dust uplifting 

after downward movement of air from the upper troposphere. The influence of air mass type on the 

7
Be and 

210
Pb concentrations in the city of Edinburgh (Scotland, UK) was studied by Likuku 

(2006), who used a broad a priori classification of the trajectories between continental (higher 

210
Pb activities) and oceanic air masses, and at Bermuda by Arimoto et al. (1999), who associated 

the highest loadings for 
7
Be and 

210
Pb to transport from the NW of Bermuda, whereas low 

activities were linked to transport from E and SE. Moody et al. (1995) linked highest 
7
Be values at 

Bermuda to subsiding flow behind surface cold fronts moving eastward over the North Atlantic. 

The same kind of downward transport was observed in the Northern Apennines and the Alps by 

Bonasoni et al. (2000a) and by Zanis et al. (2003). The source areas of 
7
Be and 

210
Pb in Northern 

Finland have been investigated by means of trajectory statistics by Paatero and Hatakka (2000), 

showing that the highest 
210

Pb concentrations are associated to continental air masses originating in 

Central Russia, whereas high 
7
Be activities are found in air masses from Central Russia and air 

masses coming from southwest during springtime. Clustering techniques have been also applied to 

back trajectories by Lozano et al. (2012) in south-western Spain to identify the origin of the air 
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masses giving rise to different ranges of 
7
Be and 

210
Pb: once again, air masses with clear 

continental influence are associated to the highest 
210

Pb values, whereas air masses from middle 

latitudes, such as from the Canary Islands, Western Mediterranean Basin and the north of Africa 

bring on the highest 
7
Be concentrations. Some events of elevated or low 

7
Be concentrations in 

Canary Islands have been analysed in connection with different origin of the air masses by 

Hernández et al. (2008), who pointed out that high 
7
Be activities are due to subsidence and may be 

concurrent with African dust outbreaks. Back trajectories and atmospheric radionuclides were also 

used to assess the impacts of stratospheric and pollution influences on ozone at Bermuda by Li et 

al. (2002). The positive correlation of surface O3 with 
7
Be and 

210
Pb is due to the strong subsidence 

behind cold fronts, resulting in the mixing of middle-tropospheric air with continental outflow in 

the air arriving at Bermuda. 

Back trajectories statistical methods have also already been used to study atmospheric 

composition at a number of high altitude sites. Salvador et al. (2010) investigated the influence of 

synoptic weather patterns and long-range transport episodes on the concentrations of several 

compounds related to different aerosol sources (EC, OC, SO4
2-

, Ca
2+

, Na
+
, K

+
, 

210
Pb and 

dicarboxylic acids) registered in PM10 or PM2.5 aerosol samples collected at three high altitude 

background sites by means of clusters of back trajectories. Transport of NOX, CO, and O3 to four 

alpine GAW stations was investigated by trajectory residence time analysis (Kaiser et al., 2007). 

Residence time of air masses was also applied to categorize surface ozone at Arosa (Switzerland) 

by Pochanart et al. (2001). The same method of residence time of trajectories was also used to study 

SO2 data acquired at Sonnblick (Austria) (Tscherwenka et al., 1998) and more recently to study 

European source and sink areas of CO2 with a Lagrangian dispersion model at the high alpine site 

Jungfraujoch (Switzerland) (Uglietti et al., 2011). Concentration weighted trajectory was applied to 

apportion the sources of black carbon over the western part of trans-Himalayas (Babu et al., 2011). 

Air masses origin was also studied by means of back trajectories to understand the different CO 

concentrations found at two background sites, one of which located at a high altitude, by Scheel et 

al. (1998), to assess the influence of south foehn on the ozone mixing ratios at the high alpine site 

Arosa (Campana et al., 2005), to corroborate the source region of a Saharan dust transport at 

Jungfraujoch, identified by means of mineralogical and chemical composition (Schwikowski et al., 

1995), and to investigate possible reasons of trends identified in long-term ozone measurements at 

two background mountain sites (Kislovodsk High Mountain Station in Caucasus, Russia -2070 m 

asl- and the Jungfraujoch in Switzerland) (Tarasova et al., 2009). Gerasopoulos et al. (2001) 

examined the source regions of 
7
Be at four high-altitude stations in Europe by means of the 

concentration weighted trajectory method, showing that typically very low 
7
Be concentrations are 
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advected from low levels and especially from ocean areas. A path of quite high 
7
Be activities is 

observed for trajectories descending 4500 m, stretching from the northwest to the measurement 

sites, linked to stratospheric intrusions at the mountain stations (Stohl et al., 2000). Very recently, 

Cuevas et al. (2013) studied O3 transport pathways at Izaña (Tenerife, Spain) by means of the so 

called “mean concentrations at receptor” method, also with the support of atmospheric radiotracers 

data: a positive correlation throughout the year between ozone and potential vorticity and 
7
Be was 

attributed to the transport from the middle and upper troposphere. 

Some trajectory statistical methods were also applied to study atmospheric composition at Mt. 

Cimone site. The residence time analysis suggested by Ashbaugh et al. (1985) was applied by 

Wotawa et al. (2000) to identify the O3 source regions. Bonasoni et al. (2000b) evaluated the 

frequency of different air mass origins to the Mt. Cimone area as a function of trajectory starting 

positions within the domain 80° N, 50° W, and 20° N, 50° E, dividing the domain into six a priori 

identified regions (Arctic, Atlantic Ocean, Continental Europe, Eastern Europe, Mediterranean 

Basin and Saharan-African region) and then applied the trajectory statistics method of Seibert et al. 

(1994) to study the relation of ozone concentrations to air mass path. This a priori classification of 

geographical source regions was then used in all successive studies concerning air mass origin and 

atmospheric composition at this site (Balkanski et al., 2003; Fischer et al., 2003; Gobbi et al., 

2003; Putaud et al., 2004; Cristofanelli et al., 2006; Marenco et al., 2006; Marinoni et al., 2008; 

Cristofanelli et al., 2007, 2009b). The trajectory statistics method of Seibert et al. (1994) was then 

used also by Marinoni et al. (2008) to evaluate the correlations between air mass origins and 

aerosol physical parameters, while the potential source contribution function (PSCF) of Ashbaugh 

et al. (1985) was applied to investigate PM10 transport to the site by Tositti et al. (2013; Chapter 2), 

but no cluster of back trajectories has been previously applied to study thoroughly the advection 

patterns at this site and the links between atmospheric composition and air mass origin. 

This Chapter is dedicated to the finding of the main advection patterns at Mt. Cimone and to 

examine how the variations in the atmospheric composition can be related to the changes observed 

in the flow patterns, both from a seasonal and an interannual point of view, analysing the data 

acquired at Mt. Cimone from 1998 till 2011. The relationship of flow patterns and atmospheric 

composition with NAO is also investigated. The presence of trends in the monthly time series is 

carefully examined. 

This Chapter consists of four sections. Section 5.2 describes the measurements techniques and 

the statistical methods used in the cluster analysis of back trajectories, the analysis of significant 

differences by advection patterns and the assessment of trends. Section 5.3 presents and discusses 

the results, further divided as follows: Subsection 5.3.1 describes the main advection patterns found 
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by the cluster analysis of back trajectories; Subsection 5.3.2 analyses the relationships between 

advection patterns and meteorological parameters/other atmospheric components; in Subsection 

5.3.3 a temporal analysis of the monthly time series and a trend analysis is done; in Subsection 5.3.4 

associations of air flow types and meteorological/atmospheric variables with NAO are examined. 

Finally, Section 5.4 summarizes our main conclusions. 

 

 

5.2 Material and methods 

Mt. Cimone (44°11’ N, 10°42’ E, 2165 m asl), the highest peak of the Italian northern Apennines, 

hosts a global WMO-GAW station maintained by the Italian Meteorological Office since 1941 and 

a research platform managed by the Institute of Atmospheric Sciences and Climate of the Italian 

National Research Council (ISAC-CNR). The main characteristics of this high-altitude background 

site have been already described in previous Chapters 2, 3 and 4.  

As a WMO-GAW station, a number of atmospheric compounds are measured at Mt. Cimone since 

a long time. Besides meteorology, the Italian Meteorological Office is responsible for CO2 data, 

presently constituting the longest time series of this fundamental greenhouse gas in Europe, dating 

back to 1979, whereas ISAC-CNR has been collecting tropospheric ozone data since 1996 and carbon 

monoxide since 2007 (the three datasets are available at 

http://ds.data.jma.go.jp/gmd/wdcgg/wdcgg.html); since 2000 ISAC-CNR has been continuously 

recorded concentration and size distribution of particles with optical diameter between 0.30 and 

20 μm by using an optical particle counter (OPC, Mod. GRIMM 1.108). These measurements allow 

the determination of a fine mode (0.3 μm ≤ Dp < 1 μm) and a coarse mode (1 μm ≤ Dp ≤ 20 μm) of 

particles with a 1-minute time resolution (data available at EBAS database http://ebas.nilu.no/). Since 

July 2005 ISAC-CNR has been measuring also black carbon data (available at EBAS database 

http://ebas.nilu.no/). 

In this framework the Department of Chemistry of the University of Bologna has measured 
7
Be, 

210
Pb and aerosol mass load in the form of PM10 (airborne particulate matter with a mean 

aerodynamic diameter lower than 10 µm) since the early 1990’s, even if measurements became 

regular only since 1998 following the acquisition of a Thermo-Environmental PM10 high-volume 

sampler with average flow rate of 1.13 m
3
 min

-1
 at STP. The time resolution of aerosol sampling is 

about 48 hours (manual change of the filter, approximately 115-175 samples per year). Details of 

PM10, 
210

Pb and 
7
Be sampling and measurement at Mt. Cimone have been given in previous 

Chapters 2 and 3.  
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Measurements at Mt. Cimone from different research groups, as well as meteorological and 

atmospheric parameters, such as temperature, pressure, relative humidity, wind speed and 

tropopause height (determined from radiosoundings at S. Pietro Capofiume station, the closest 

ground based station in the Po valley for which this observational activity is available) were 

retrieved together and averaged to the same time resolution of PM10 and radionuclides for statistical 

homogenization of data. 

In order to analyse the origin of the air masses arriving at the measurement site, 96-hour 3D 

kinematic back trajectories starting four times a day (00, 06, 12, 18 UTC) at three heights (1400, 

2200 and 3000 m asl) have been calculated with the HYbrid Single-Particle Lagrangian Integrated 

Trajectory (HYSPLIT) model version 4.8 (Draxler and Hess, 1997, 1998; Draxler, 1999; Draxler 

and Rolph, 2003). 

The first issue encountered in the calculation of the back trajectories was the choice of the 

meteorological fields: in fact, meteorological fields are associated to the strongest source of errors 

(Stohl et al., 2001) when calculating back trajectories, and they may eventually influence the 

outcome of the trajectory clustering (Cabello et al., 2008a). 

Due to the coarse resolution of the meteorological model, the topography of Mt. Cimone is poorly 

modelled in all of the meteorological fields that were available to us (NCEP/NCAR reanalysis 

available at the NOAA Air Resources Laboratory, which considers a height of 550 m asl for Mt. 

Cimone; 1° resolution ERA Interim dataset, considering the topography at Mt. Cimone only 249 m 

asl; 1.5° ERA Interim, which considers 277 m asl for Mt. Cimone), and we concluded that our best 

option (still not good) was to choose the National Center for Environmental Prediction 

(NCEP)/National Center for Atmospheric Research (NCAR) reanalysis with a 2.5° latitude-longitude 

resolution, 17 pressure levels from 1000 to 10 hPa, and 6 hourly data. The vertical movement of the 

air parcels was calculated from the vertical velocity fields. As for the choice of the heights, we 

considered one height just above the monitoring site (2200 m asl), one 800 m higher (3000 m asl, just 

at the beginning of the free troposphere) and one 800 m below (1400 m asl, above the model terrain’s 

height for the measurement site). 

Trajectories have been classified into homogeneous groups by a robust cluster procedure based 

on the k-means algorithm (Dueñas et al., 2011; Orza et al., 2013; Perrone et al., 2013), with hourly 

longitude and latitude as input variables (Moody and Galloway, 1988). The aim of the cluster 

analysis is to classify a large data set into non-predefined dominant groups such that variance within 

each cluster is minimized and variance between clusters is maximized. The great-circle distance, 

i.e., the shortest distance measured along the surface of the sphere, has been utilized as the 

similarity measure in the clustering process. The k – means algorithm groups a given dataset into a 
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pre-specified number of clusters k. A cluster is represented by its centroid, defined as the average 

over the trajectories belonging to that cluster. In a first step, k starting centroids are randomly 

chosen from the trajectory set. Once the trajectories are allocated into the cluster to which centroid 

they are closest, the centroids are recalculated by averaging all the trajectories belonging to the 

same cluster in an iterative process until no changes in cluster assignment are found. The 

appropriate number of clusters has been assessed following Dorling et al. (1992). The number of 

clusters k is successively reduced by one, from 15 down to 3 clusters, and the total within-cluster 

root mean squared distance (RMSD) between individual trajectories and their centroids is then 

examined as a function of the number of clusters. The clustering result is known to present some 

dependence on the selected starting centroids: thus, for each k, 1000 replicate clustering solutions 

are previously computed and the solution with the smallest total RMSD is retained as the best 

solution for that k.  

This clustering procedure has already been used to identify the main advection patterns and 

subsequently relate air masses and aerosol size distributions at SE Spain (Cabello et al., 2008b), air 

masses and radionuclide activities in Málaga (Dueñas et al., 2011), air masses and PM2.5 and PM1 

levels and composition in Lecce (southern Italy) (Perrone et al., 2013). To detect statistically 

significant differences in the analysed meteorological and atmospheric parameters according to the 

identified clusters, without any a priori assumption of their distribution (Brankov et al., 1998), the 

Kruskall-Wallis test has been used. Whenever significant differences among the groups were found, 

pairwise Mann-Whitney tests were performed to identify which pairs were significantly different. 

Conservatively, p-values in the latter were compared against adjusted significance levels α using the 

Dunn-Sidák correction for multiple comparisons           
   , where             is 

the number of pair-wise comparisons done between k categories, with overall significance    

    .  

The analysis of individual situations has been done with composite synoptic charts of 700, 850 

and 1000 hPa geopotential height, which were computed with data from NCEP/NCAR re-analysis 

project database (Kalnay et al., 1996), available from the Earth System Research Laboratory, 

Physical Sciences Division, of the USA National Oceanic and Atmospheric Administration 

(NOAA) at http://www.esrl.noaa.gov/psd/. 

The monthly time series considered in this work have been examined for significant trends over 

the study period by a number of nonparametric statistical methods, mainly based on the Mann-

Kendall (M-K) tau test to assess the significance of monotonic trends and the Theil-Sen (T-S) slope 

estimate for trend magnitude. 
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The significance of a trend is often overestimated by serial correlation; moreover, the presence 

of a trend alters the estimate of the serial correlation. A first estimation of the correlation 

coefficients at different lags was done by computing the autocorrelation function (ACF) for each 

time series, showing that they present, in general, some degree of serial correlation. In addition they 

show seasonality; therefore, two methods of trend analysis have been used with the aim of 

removing, or reducing, the influence of seasonality and lag-1 autocorrelation in the monthly data:  

(1) The seasonal Kendall test (Hirsch et al., 1982), which applies the M-K trend test separately for 

each month and then combines the results. (2) The Yue-Pilon (Y-P) procedure (Yue et al., 2002) 

applied to the previously de-seasonalized monthly time series, to remove the influence of the month-

to-month correlations in the significance of the trends. The Y-P procedure comprises several steps: 

the time series is linearly de-trended using the T-S slope, and the serial autocorrelation of the residuals 

is removed. Then, the discarded linear trend is added back to the remaining time series, and the M-K 

test is applied. 

Seasonal-trend decomposition of the time series was used to obtain the de-seasonalized time 

series, which were subsequently analysed by the Y-P procedure. The decomposition technique used 

in this work (STL-decomposition hereafter) is based on a nonparametric regression technique 

(LOESS, locally weighted low-degree polynomial regression) recursively applied to the seasonal 

and trend components (Cleveland et al., 1990). Additionally, the resulting (nonlinear) trend 

component has been used for the visual assessment of the long-term behaviour of the time series. 

The association between the frequencies of each advection pattern and the measurements made 

at the sampling site, as well as their association to the NAO, has been examined for the de-trended 

monthly time series and for the seasonal means via least-square regression analysis with statistical 

significance evaluated by a two-tailed t test. Since relationships are not necessarily linear, the 

nonparametric Kendall rank test has also been used to identify any statistically significant 

association without any a priori assumption of their form. Spearman correlation coefficients have 

been computed for the cases with significant association. 

 

 

5.3 Results and discussion 

5.3.1 Characteristics of the main advection patterns 

The number of groups in which the trajectories are found to be clustered is different at each arriving 

height: while at 1400 m only 6 clusters have been found, at 2200 m the trajectories are grouped in 8 

clusters, and at 3000 m the trajectories can be classified into 7 groups. Figure 5.1 shows the 
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centroids (representative trajectory) of the clusters at 1400, 2200 and 3000 m asl and the relative 

percentage frequency of each flow pattern on the whole 1998-2011 period.  

 

 

Figure 5.1(a,b,c) Centroids of the trajectory clusters identified for trajectories arriving at: a) 3000 m asl; b) 

2200 m asl; c) 1400 m asl for the 12-year study period. The flow patterns are identified as follows: A is for 

Arctic, E is for Eastern, Me-AF is for Mediterranean-Africa, Atl is for Atlantic, N Atl is for Northern 

Atlantic, N Am is for North America, NW-Eu is for North Western-Europe. The percentage indicates the 

frequency of occurrence of each flow pattern in the whole 1998-2011 period. 
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Most of the trajectories at each height correspond to westerly flows; the name assigned to each 

flow pattern depends on its region of provenance (rather than from associated wind speeds or 

particular airmass type). At 3000 m westerly trajectories are classified into Northern Atlantic (N Atl), 

North America (N Am), Atlantic (Atl), and Western (W), together representing the 59% of the flows. 

The remaining trajectories are classified into Arctic (A), Eastern (E), Mediterranean-Africa (Me-Af), 

representing the 13%, 12% and 17% of the flows, respectively. At 2200 m a further flow type 

classified as North Western-Europe (NW-Eu) is identified, separating slow continental north-westerly 

flows from faster air masses coming from the Atlantic Ocean. This further classification represents 

the 19% of the trajectories and is decreasing the importance of the Atlantic air masses to 8% at this 

height. The frequency of other flow types is only slightly changed from the 3000 m height. At 1400 m 

the number of clusters is reduced to six and this appears mainly as the result of joining the Northern 

Atlantic with the North America pattern and the Atlantic with the West cluster. At this height slow 

flow patterns such as North Western-Europe, Eastern and Mediterranean-Africa gain importance with 

respect to fast flow patterns such as Northern Atlantic and Atlantic. The height of 1400 m is not 

further analysed in the following sections as it is neither the real topography height nor the model one. 

Figure 5.2 shows the mean heights of the representative trajectories that reach the study site at 

2200 m versus end-point time. The Arctic and North-American trajectories reach the most elevated 

heights, even if the North American ones go to lower heights when approaching the site, and again to 

higher heights before finally reaching it, in order to overcome the Alps. North Western-Europe and 

Eastern flows do not change very much their height during their travel, whereas Western, Atlantic and 

(more specifically) Mediterranean-Africa trajectories generally arrive from very low levels. 
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Figure 5.2 Plot of the heights of the representative trajectories at 2200 m asl vs. end-point time. 

 

Figure 5.3 represents the monthly variation of the air mass patterns arriving at 3000 and 2200 m 

asl. A summary of the major characteristics of the identified advection patterns is as follows: 

o A: advection of fast and high air masses originating in the Arctic/polar regions. This trajectory 

type, more frequent in autumn and winter, is found at each of the three arrival heights with 

a rather stable percentage frequency (13% at 3000 m, 14% at 2200 m and 1400 m). 

o E: advection of relatively slow and low air masses from East. This flow type is more frequent 

in April, May and September and groups the 12% of the 3000 m trajectories, 13% of the 

2200 m, gaining importance at the lowest 1400 m level. 

o Me-Af: relatively short and low Mediterranean and North-African air masses. This kind of 

trajectories is frequent all-yearlong but most of all in spring and autumn; this group is 

associated with 17% of the 3000 m trajectories, 18% of the 2200 m ones, being more 

important (21% of the trajectories) at 1400 m. 

o W: advection of relatively slow and low air masses from West, more frequent in July and 

August. This flow pattern is identified only at 3000 (16% of the trajectories) and 2200 m 

(15% of the trajectories). 

o Atl: relatively fast and low air masses coming from the Atlantic Ocean. This advection pattern 

is mostly occurring from October to April. It groups the 16% of the trajectories at 3000 m 
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and the 14% of the trajectories at 1400 m, whereas at the midlevel of 2200 m only the 8% 

of the trajectories fall into this category. 

o N-Am: polar fast and high air masses that originate as continental air over North America. This 

air mass type is almost non-existent in summer months, mostly occurring from October to 

April. This advection pattern is not identified at the lowest 1400 level; at higher levels is 

anyway a “rare” flow pattern (8% of the trajectories at 3000 m and 5% at 2200 m). 

o N-Atl: relatively fast but not very high air masses coming from the Northern-Atlantic Ocean. 

Frequent all-yearlong but most of all in July. This group of trajectory is more important at 

higher levels (19% at 3000 m, 14% at 2200) whereas at 1400 m only the 7% of the 

trajectories fall into this category. 

o NW-Eu: slow and not very high continental air masses coming from North Western-Europe. 

More frequent in summer months. This flow pattern is identified only at 2200 and 1400 m, 

where it is also very frequent (27% of the trajectories; only 19% at 2200). 



Advection Patterns Influencing PM10 at the WMO-GAW station of Mt. Cimone: Seasonality, 

Trends and Influence on Atmospheric Composition 

183 
 

 

Figure 5.3(a,b) Monthly variation of the frequencies of the identified advection patterns at a) 3000 m asl; b) 

2200 m asl. 

 

5.3.2 Atmospheric and meteorological parameters by advection pattern 

The next step of the research is to analyse the values of atmospheric compounds and meteorological 

parameters associated to each advection pattern. As the PM10 filters at the station are manually 

changed, sampling time is not uniform. Anyway as most of the samples were collected over 
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48 hours (sampling approximately 3250 m
3
 of air), in order to safely apply statistical techniques 

data have been firstly homogenized by selecting only those samples which collected a volume 

between 2700 and 3700 m
3
. One sample was attributed to one advection pattern only if at least the 

60% of the calculated trajectories ending at the site during the sampling corresponded to that 

advection pattern. However, the case of fast and frequent change of the flows during the sampling 

has also been carefully examined. 

Figure 5.4 and 5.5 show box plots of meteorological parameters such as pressure, wind speed, 

relative humidity, precipitation, temperature, tropopause height (Figure 5.4) and atmospheric 

compounds (Figure 5.5), such as CO2, CO, O3, PM10, atmospheric radiotracers 
7
Be and 

210
Pb, fine 

and coarse particles number densities, black carbon as well as some interesting ratios such as 

7
Be/

210
Pb, 

7
Be/PM10, 

210
Pb/PM10 representing mean, median, minimum and maximum values, 5

th
 

and 95
th

 percentile values, associated to each flow pattern at 2200 m and at 3000 m asl. Table 5.1 

(2200 m) and Table 5.2 (3000 m) report a summary statistics of each variable by advection pattern, 

reporting arithmetic mean (AM), standard deviation (SD), skewness and kurtosis (Skew and Kurt), 

minimum, maximum and percentiles (25
th
, 50

th
 and 75

th
). Last column indicates the statistically 

different flows identified through Mann-Whitney tests with the Dunn-Sidák correction applied to 

the αt values (0.05). Figure 5.4 and 5.5, as well as Table 5.1 and 5.2, refer to the “pure cases”, i.e., 

the samples attributed to only one advection pattern (when the 60% of the trajectories ending at Mt. 

Cimone during the sampling belong to that advection pattern): this way, the flow patterns can be 

better characterized. 



Advection Patterns Influencing PM10 at the WMO-GAW station of Mt. Cimone: Seasonality, 

Trends and Influence on Atmospheric Composition 

185 
 

 

Figure 5.4 Box plots of meteorological variables (P = pressure, T = temperature, RH =relative humidity, 

TH = tropopause height, WS = wind speed) versus air flows arriving at 2200 m (white box plots) and at 

3000 m asl (black box plots). The horizontal bold line in each box represents the 50
th
 percentile (median), 

the circle represents the mean value, lower and upper boundaries locate the 5
th
 and 95

th
 percentile of the 

values and whiskers locate the minimum and maximum values. 
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Figure 5.5 Same as Figure 5.4, but for atmospheric gases (O3, CO2, CO), black carbon (BC), fine and coarse 

particles number densities, PM10, atmospheric radiotracers 
7
Be and 

210
Pb, ratio 

7
Be/

210
Pb, ratio 

7
Be/PM10, ratio 

210
Pb/PM10, versus air flows arriving at 2200 (white box plots ) and at 3000 m asl (black box plots).  
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8 clusters - 2200 m  

  
AM SD Skew Kurt Min Pct25 Pct50 Pct75 Max 

Diff 
(α = 0.0064) 

P 
(mbar) 

A 
(37)

 789 7 -1.0 3.0 771 786 792 793 799 a,b,c 

E 
(74)

 790 6 -1.6 8.1 761 788 791 795 800 a,b,c 

Me-Af 
(102)

 791 5 -1.0 3.6 776 788 792 794 800 a 

W (53) 792 6 -1.6 6.1 769 791 793 796 802 a 

Atl 
(26)

 788 6 0.0 2.5 778 784 788 791 800 c 

N-Am (10) 786 4 0.0 2.1 779 784 786 789 793 b,c 

N-Atl (45) 790 7 -2.6 11.7 759 789 791 794 798 a,b,c 

NW-Eu (83) 791 6 -1 3.9 772 788 791 796 800 a,b 

T 
(°C) 

A
 (37)

 -2.2 7.8 0.2 2.4 -17.8 -7.5 -3.4 3.0 13.4 d 

E 
(74)

 1.5 7.2 -0.3 2.7 -15.4 -3.1 1.7 7.5 17.0 c,d 

Me-Af (102) 5.8 5.8 0.0 2.5 -11.2 1.1 5.6 9.9 17.2 a,b 

W 
(53)

 8.1 5.8 -0.7 2.6 -6.0 4.1 9.4 12.6 16.2 a 

Atl (26) 2.8 4.9 1.3 4.2 -2.9 -0.5 0.5 5.4 17.5 c,d 

N-Am 
(10)

 -2.3 4.6 0.3 2.0 -8.8 -5.4 -2.8 1.2 5.7 d 

N-Atl (45) 4.7 5.2 -0.7 2.8 -8.6 2.6 5.6 8.3 12.7 b,c 

NW-Eu (83) 4.8 7.1 -0.1 2.0 -10.3 -1.1 6.0 10.0 18.2 b,c 

RH 
(%) 

A (36) 67 17 -0.5 3.2 19 57 68 80 99 c 

E (69) 77 22 -1.4 4.4 10 70 82 94 100 a,b 

Me-Af (102) 80 18 -0.9 2.7 35 68 86 95 100 a 

W (53) 71 17 -0.6 3.0 26 60 75 84 99 b,c 

Atl (26) 74 19 -0.5 2.2 32 59 78 88 99 a,b,c 

N-Am (10) 66 17 0.3 2.2 41 52 66 79 98 a,b,c 

N-Atl (44) 78 14 -0.9 3.5 36 71 83 87 99 a,b 

NW-Eu (83) 78 17 -0.7 2.8 34 69 81 93 99 a,b 

Prec 
(mm) 

A (7) 2.8 3.7 1.4 3.7 0.3 0.4 1.4 3.5 10.4 a 

E (19) 3.7 3.3 0.8 2.4 0.2 1.4 2.0 5.9 10.8 a 

Me-Af (43) 5.0 6.5 2.1 7.1 0.4 0.8 1.8 6.4 27.5 a 

W 
(15)

 14.0 40.6 3.4 12.8 0.2 0.8 2.0 6.6 160 a 

Atl (4) 3.5 2.6 0.6 2.1 0.8 2.5 3.0 4.0 7.0 a 

N-Am (3) 2.6 1.3 0.3 1.5 1.4 1.9 2.4 3.2 4.0 a 

N-Atl (9) 4.8 5.9 1.5 4.1 0.4 0.7 1.8 8.0 18.4 a 

NW-Eu(38) 4.0 5.5 2.3 7.7 0.1 0.5 2.1 4.9 23.6 a 

TH 
(m) 

A (37) 10951 1056 -0.3 2.5 8543 10313 11092 11698 12712 b 

E 
(60)

 11099 1108 -0.5 2.6 8500 10360 11312 11832 13042 b 

Me-Af (89) 11820 1366 0.9 4.3 9232 10950 11703 12444 16325 a 

W (50) 11925 1400 0.6 3.6 9137 11125 11824 12614 15785 a 

Atl 
(25)

 11665 1325 0.8 3.4 9438 10817 11406 12182 15133 a,b 

N-Am 
(9)

 11310 1273 1.3 3.8 9876 10672 10986 11086 14125 a,b 

N-Atl 
(42)

 11564 1138 0.1 3.2 8979 10866 11411 12228 14167 a,b 

NW-Eu (75) 11532 1324 0.5 3.5 8726 10579 11502 12241 15455 a,b 
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WS 
(m s-1) 

A (37) 6.2 4.3 1.6 5.7 0.6 3.5 5.3 7.8 20.7 a,b,c 

E (73) 6.7 4.6 1.2 5.6 0.5 2.9 6.0 9.9 26.3 a,b,c 

Me-Af 
(102)

 5.8 3.6 1.2 5.1 0.1 3.4 5.3 7.0 18.1 a,b,c 

W 
(53)

 5.6 3.4 1.1 4.1 0.3 3.2 4.7 7.6 17.0 b,c 

Atl (26) 7.3 2.9 0.6 3.1 2.4 5.3 7.5 8.6 14.6 a 

N-Am (10) 8.9 3.8 -0.2 2.2 3.0 7.1 9.3 10.1 14.4 a,b 

N-Atl 
(45)

 4.5 3.3 1.0 3.5 0.2 1.9 4.2 5.8 13.0 c,d 

NW-Eu (83) 4.0 3.1 1.6 5.8 0.4 1.8 3.3 4.8 16.2 d 

 

  
AM SD Skew Kurt Min Pct25 Pct50 Pct75 Max 

Diff 
(α = 0.0064) 

O3 
(ppb) 

A 
(37)

 52 12 1.0 3.7 34 43 50 58 83 b,c 

E (72) 57 11 0.7 4.8 34 49 57 64 98 a,b 

Me-Af 
(97)

 56 10 -0.2 2.9 34 50 57 63 82 a,b 

W (52) 57 11 0.7 3.5 39 49 55 65 90 a,b 

Atl (26) 49 7 0.2 3.6 35 46 49 52 66 c 

N-Am (9) 48 5 0.4 1.6 42 46 47 54 55 b,c 

N-Atl (44) 57 8 0.4 2.7 41 50 57 62 75 a 

NW-Eu 
(80)

 61 13 0.6 4.2 35 52 59 70 109 a 

CO2 
(ppm) 

A (34) 377 7 -0.6 2.7 361 374 378 383 390 a 

E (69) 377 9 0.1 2.9 354 372 376 382 396 a 

Me-Af (93) 376 7 0.5 2.8 362 372 375 380 396 a 

W (50) 372 6 0.6 3.4 358 368 371 376 389 b 

Atl (23) 376 5 1.4 4.2 369 372 375 376 390 a,b 

N-Am (10) 378 6 0.8 2.3 372 373 375 382 389 a,b 

N-Atl (38) 374 8 0.3 2.7 362 368 373 379 392 a,b 

NW-Eu (67) 373 9 -0.1 2.1 357 366 374 379 390 a,b 

BC 

(g m-3) 

A (4) 0.2 0.1 -0.6 1.9 0.07 0.2 0.3 0.3 0.4 a,b 

E (14) 0.4 0.3 1.5 5.0 0.02 0.1 0.3 0.5 1.3 a,b 

Me-Af 
(18)

 0.3 0.2 0.8 2.8 0.04 0.2 0.3 0.4 0.8 a,b 

W (8) 0.6 0.4 0.8 2.6 0.1 0.4 0.5 0.7 1.3 a 

Atl (5) 0.13 0.09 0.7 1.9 0.05 0.06 0.1 0.2 0.3 b 

N-Atl (5) 0.32 0.25 1.0 2.7 0.06 0.2 0.2 0.3 0.7 a,b 

NW-Eu (9) 0.4 0.5 1.2 3.2 0.02 0.07 0.1 0.4 1.4 a,b 

CO 
(ppb) 

A 
(2)

 112 4 0.0 1.0 109 111 112 114 116 a 

E 
(7)

 117 20 -0.4 2.5 83 111 116 130 141 a 

Me-Af (10) 111 8 -0.5 1.8 98 105 113 117 121 a 

W (5) 118 12 0.1 2.2 102 114 118 123 135 a 

Atl 
(2)

 123 26 0.0 1.0 104 114 123 132 142 a 

N-Am (1) 107 NA NA NA 107 107 107 107 107 a 

N-Atl (7) 113 12 0.4 3.1 94 108 113 115 134 a 

NW-Eu (5) 127 21 0.9 2.3 109 114 116 134 161 a 
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7
Be 

(mBq m-3) 

A (37) 4.5  2.1 0.7 3.7 1.3 3.3 4.3 5.6 10.4 a,b,c 

E (71) 4.2  2.4 0.8 4.0 0.4 2.7 3.9 5.7 12.6 a,b,c 

Me-Af 
(97)

 4.3  2.1 -0.1 2.2 0.1 2.8 4.5 5.7 8.3 a,b 

W 
(51)

 5.2  2.4 0.8 4.4 0.9 3.6 5.1 6.6 13.3 a 

Atl (25) 3.0  1.4 0.5 2.1 0.9 2.1 2.6 4.0 5.7 c 

N-Am (8) 2.8  1.5 0.9 3.4 0.9 2.2 2.4 3.3 5.8 b,c 

N-Atl 
(44)

 4.3  2.1 0.3 2.1 0.5 2.8 4.3 6.0 8.2 a,b,c 

NW-Eu (83) 4.4  2.4 0.4 2.4 0.6 2.5 4.0 6.0 11.1 a,b,c 

210Pb 
(mBq m-3) 

A (33) 0.30 0.12 0.9 4.3 0.14 0.20 0.29 0.39 0.70 c 

E (70) 0.50 0.29 1.0 3.4 0.12 0.27 0.44 0.64 1.32 a,b 

Me-Af 
(89)

 0.51 0.29 0.7 2.8 0.08 0.28 0.49 0.70 1.30 a,b 

W (48) 0.53 0.30 1.4 6.0 0.12 0.33 0.49 0.67 1.67 a,b 

Atl (17) 0.25 0.13 0.9 3.1 0.08 0.15 0.21 0.31 0.55 c 

N-Am (6) 0.25 0.13 1.4 3.7 0.13 0.19 0.22 0.24 0.51 a,b,c 

N-Atl 
(40)

 0.38 0.19 1.0 3.7 0.12 0.25 0.30 0.49 0.97 b,c 

NW-Eu 
(76)

 0.55 0.32 0.7 2.8 0.06 0.30 0.49 0.76 1.50 a 

 

  
AM SD Skew Kurt Min Pct25 Pct50 Pct75 Max 

Diff 
(α = 0.0064) 

PM10 

(g m-3) 

A (34) 6.2 3.8 0.9 3.4 0.9 3.5 5.1 8.1 15.9 c,d,e 

E (68) 9.2 6.7 1.3 5.3 0.4 3.9 7.7 13.2 35.0 a,c 

Me-Af (98) 10.9 9.3 1.4 5.2 0.3 3.2 9.5 15.6 45.7 a,b,c,d 

W (49) 12.0 8.1 0.1 1.7 0.7 4.1 13.2 18.7 26.1 a,b 

Atl (22) 5.1 3.9 2.4 9.9 1.3 3.1 4.5 5.9 19.5 c 

N-Am (8) 3.6 1.6 0.4 2.5 1.4 2.4 3.7 4.2 6.5 b,d,e 

N-Atl (44) 7.6 4.1 0.2 2.2 1.1 4.5 7.6 10.3 15.7 a,b,c,d,e 

NW-Eu (80) 9.3 6.0 0.7 3.2 0.4 4.9 8.6 13.5 28.4 a,c 

Fine Particles 
(N cm-3) 

A (16) 31.2 35.5 1.2 3.0 1.2 5.8 14.1 42.7 110.7 a 

E (23) 26.4 21.0 0.8 3.0 0.3 9.5 21.4 40.6 80.1 a 

Me-Af 
(42)

 30.7 25.9 1.2 4.6 0.3 10.9 25.6 41.1 118.6 a 

W (15) 31.9 30.4 0.7 2.1 0.7 5.5 24.0 55.6 92.0 a 

N-Atl (16) 24.4 19.6 1.4 4.8 4.4 12.0 18.6 29.5 78.9 a 

NW-Eu (34) 33.6 28.0 0.9 3.1 0.5 10.1 24.1 56.0 113.0 a 

Coarse Particles  
(N cm-3) 

A (16) 0.09 0.07 1.0 2.9 0.02 0.03 0.05 0.11 0.26 b 

E 
(23)

 0.16 0.33 2.9 9.8 0.002 0.03 0.04 0.10 1.33 b 

Me-Af 
(42)

 0.33 0.43 2.6 10.0 0.01 0.07 0.21 0.40 1.94 a 

W (15) 0.27 0.25 0.7 2.3 0.01 0.06 0.21 0.44 0.76 a,b 

N-Atl (16) 0.13 0.07 0.0 1.9 0.01 0.09 0.11 0.19 0.23 a,b 

NW-Eu 
(34)

 0.22 0.34 3.2 12.8 0.003 0.05 0.13 0.22 1.64 a,b 

7Be/PM10 

(mBq g-1) 

A (34) 1.2 1.4 2.1 7.0 0.3 0.4 0.6 1.3 6.0 a 

E (65) 1.0 2.1 4.2 21.6 0.09 0.3 0.4 0.8 13.5 b,c 

Me-Af (93) 0.7 1.4 6.3 44.6 0.01 0.3 0.4 0.7 11.2 c 

W (47) 0.9 1.1 2.4 7.7 0.1 0.3 0.4 0.9 4.9 a,b,c 

Atl (21) 0.8 0.7 3.1 13.4 0.1 0.5 0.7 0.9 3.6 a,b 

N-Am 
(7)

 1.0 0.6 1.5 3.9 0.4 0.6 0.8 1.0 2.3 a,b,c 
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N-Atl 
(43)

 0.8 0.9 3.4 13.8 0.2 0.5 0.5 0.7 4.7 a,b,c 

NW-Eu (80) 1.0 2.3 6.1 42.3 0.07 0.3 0.5 0.7 18.1 a,b,c 

210
Pb/PM10 

(mBq g-1) 

A (30) 0.07 0.06 1.1 2.6 0.02 0.03 0.05 0.10 0.2 a 

E 
(64)

 0.08 0.09 3.1 12.4 0.01 0.04 0.06 0.08 0.5 a 

Me-Af 
(85)

 0.06 0.05 2.8 12.9 0.01 0.04 0.05 0.07 0.3 a 

W (44) 0.07 0.10 4.0 19.3 0.02 0.03 0.05 0.07 0.6 a 

Atl (14) 0.06 0.02 -0.5 3.2 0.01 0.04 0.06 0.07 0.1 a 

N-Am 
(5)

 0.07 0.02 -0.4 1.4 0.05 0.06 0.08 0.09 0.1 a 

N-Atl (39) 0.07 0.08 3.3 13.8 0.02 0.03 0.04 0.06 0.4 a 

NW-Eu (74) 0.08 0.09 5.9 42.4 0.004 0.04 0.06 0.08 0.8 a 

7
Be/

210
Pb 

A (33) 16.7 7.0 0.8 2.7 8.0 11.9 15.5 19.1 31.4 a 

E 
(67)

 10.2 6.2 1.2 4.0 2.0 5.6 8.6 12.6 28.6 c 

Me-Af (87) 11.4 9.3 4.1 23.6 0.5 6.9 10.0 12.7 68.1 c 

W (47) 12.4 7.1 1.9 6.3 5.4 8.0 10.7 13.4 36.5 b,c 

Atl (17) 15.6 10.4 3.1 12.1 7.9 10.2 13.2 16.6 53.7 a,b 

N-Am 
(6)

 12.6 8.0 0.9 2.6 4.7 7.7 10.3 15.3 26.7 a,b,c 

N-Atl 
(39)

 14.2 7.5 2.2 10.7 3.5 9.7 11.8 18.0 47.0 a,b 

NW-Eu (76) 10.2 6.8 2.6 12.5 1.9 6.1 8.6 11.7 45.9 c 

 

Table 5.1 Summary statistics of the variables by flow pattern at 2200 m asl (AM = arithmetic mean, 

SD = standard deviation, Skew = skewness, Kurt = kurtosis, Min = minimum, Pct25 = 25
th

 percentile, 

Pct50 = 50
th
 percentile, Pct75 = 75

th
 percentile, Max = maximum). The number of cases associated to each 

air-flow is given in brackets as superscript. For each variable, equal letters in last column indicate groups 

with no significant differences (identified by a multiple comparison test with overall significance   =0.05). 

 

7 clusters - 3000 m  

  
AM SD Skew Kurt Min Pct25 Pct50 Pct75 Max 

Diff 
(α = 0.0073) 

P 
(mbar) 

A 
(53)

 787 9 -1.1 3.9 759 782 789 793 800 b,c 

E 
(61)

 790 8 -2.4 11.8 750 787 791 796 800 a,b 

Me-Af (76) 791 5 -0.8 3.1 777 788 792 796 800 a,b 

W (71) 791 5 -1.1 5.1 773 789 793 795 802 a 

Atl (59) 790 6 -0.6 2.8 775 786 790 794 798 a,b 

N-Atl (59) 791 7 -1.2 4.7 769 788 792 795 801 a,b 

N-Am (23) 785 6 -0.1 1.8 775 780 785 789 793 c 

T 
(°C) 

A 
(53)

 -0.6 7.5 0.1 1.9 -15.6 -6.4 -1.8 6.7 13.4 c 

E 
(61)

 1.8 7.8 -0.5 2.7 -17.8 -3.2 3.2 7.9 17.0 b,c 

Me-Af (76) 4.3 6.0 0.0 2.7 -11.2 0.3 4.7 8.4 16.7 b 

W (71) 8.1 5.7 -0.4 2.0 -3.7 3.7 8.7 13.0 17.2 a 

Atl (59) 4.9 5.6 0.3 1.8 -3.2 -0.3 4.6 9.6 15.4 b 

N-Atl 
(59)

 5.0 6.8 -0.4 2.4 -10.3 -0.3 6.6 9.8 18.2 a,b 

N-Am (23) -1.6 4.3 0.5 3.4 -8.8 -4.0 -1.3 1.3 9.5 c 
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RH 
(%) 

A (52) 73 17 -0.6 3.1 19 59 77 87 99 a 

E (57) 76 21 -1.3 4.2 10 70 82 91 100 a 

Me-Af 
(75)

 80 18 -1.0 2.7 35 68 87 94 99 a 

W 
(71)

 76 16 -0.4 2.3 35 66 78 91 100 a 

Atl (59) 77 17 -0.7 2.7 32 66 81 90 99 a 

N-Atl (59) 78 16 -1.1 3.7 34 72 83 89 99 a 

N-Am 
(23)

 74 16 -0.2 2.1 41 61 76 83 99 a 

Prec 
(mm) 

A (12) 3.4 3.6 1.0 -0.4 0.3 0.4 2.1 5.3 10.4 a 

E 
(15)

 3.1 2.6 1.0 -0.1 0.2 1.5 1.6 4.3 8.6 a 

Me-Af 
(26)

 4.2 6.0 2.7 8.0 0.2 0.6 1.6 5.9 26.7 a 

W 
(26)

 9.7 31.0 4.9 24.7 0.1 0.8 1.6 5.0 160.0 a 

Atl 
(14)

 4.5 7.0 2.7 8.2 0.1 0.6 1.3 6.5 26.4 a 

N-Atl 
(27)

 4.0 4.3 1.7 3.0 0.1 0.7 2.6 6.0 17.2 a 

N-Am (11) 4.1 2.9 0.5 -1.3 0.8 1.9 3.0 6.5 8.8 a 

TH 
(m) 

A (52) 10814 1297 0.1 2.7 7833 9901 10996 11607 13929 d 

E (51) 11126 1050 -0.3 2.3 8722 10320 11246 11854 13042 c,d 

Me-Af (62) 11404 1336 0.8 5.2 8500 10714 11288 12009 16325 b,c,d 

W (69) 12196 1313 0.9 4.0 9980 11462 11950 12835 16318 a 

Atl 
(57)

 11876 1141 0.2 3.1 9309 11177 11948 12586 14712 a,b 

N-Atl (50) 11520 1340 -0.2 3.0 8306 10944 11555 12458 14844 a,b,c 

N-Am (22) 11220 1064 0.8 2.7 9840 10479 11020 11667 13504 b,c,d 

WS 
(m s-1) 

A (53) 5.3 3.7 1.8 7.4 0.6 2.7 4.5 6.8 20.7 b,c 

E (61) 7.0 4.6 1.2 5.9 0.5 3.2 6.0 10.4 26.3 a,b 

Me-Af (75) 5.2 3.5 1.1 4.3 0.1 2.5 4.4 6.9 17.7 b,c 

W (71) 6.3 3.4 1.0 4.5 0.7 3.8 6.0 8.4 18.1 a,b 

Atl (59) 5.9 3.3 0.4 2.5 0.9 3.2 5.9 8.5 14.6 a,b 

N-Atl (59) 4.6 3.9 1.5 4.9 0.4 1.9 3.4 5.3 17.8 c 

N-Am (22) 8.2 3.4 0.1 1.9 3.0 5.0 8.8 10.4 14.4 a 

 

  
AM SD Skew Kurt Min Pct25 Pct50 Pct75 Max 

Diff 
(α = 0.0073) 

O3 
(ppb) 

A (53) 53 11 0.6 3.3 31 45 51 59 83 b,c 

E (60) 57 12 0.5 4.0 34 48 58 64 98 a,b 

Me-Af (74) 56 10 -0.1 2.5 34 49 57 64 82 a,b 

W (69) 55 10 -0.1 2.3 35 49 55 63 77 a,b 

Atl 
(57)

 55 10 0.9 3.8 39 47 52 60 88 a,b 

N-Atl 
(57)

 60 12 0.4 2.8 37 54 59 67 87 a 

N-Am (22) 47 7 0.2 2.1 35 41 47 52 59 c 

CO2 
(ppm) 

A (47) 376 9 0.0 2.1 361 370 376 383 395 a,b 

E 
(54)

 376 9 0.2 3.1 354 370 375 381 396 a,b 

Me-Af (73) 378 8 0.3 2.0 365 372 376 383 396 a 

W (68) 374 7 0.5 3.7 362 369 373 378 396 b 

Atl 
(51)

 374 6 0.0 2.7 362 370 374 378 389 a,b 

N-Atl 
(42)

 373 8 -0.1 2.3 358 367 374 378 388 b 

N-Am 
(23)

 378 8 0.6 2.0 368 372 375 384 392 a,b 
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BC 

(g m-3) 

A (8) 0.31 0.19 1.3 4.3 0.07 0.24 0.28 0.33 0.74 a 

E (15) 0.41 0.32 1.6 5.7 0.07 0.25 0.33 0.50 1.33 a 

Me-Af 
(16)

 0.30 0.16 0.6 3.3 0.02 0.19 0.28 0.39 0.69 a 

W 
(12)

 0.39 0.26 0.1 2.1 0.02 0.24 0.39 0.54 0.84 a 

Atl (7) 0.24 0.34 1.8 4.6 0.05 0.06 0.10 0.23 0.99 a 

N-Atl (6) 0.15 0.15 0.7 1.7 0.03 0.04 0.08 0.25 0.38 a 

N-Am 
(3)

 0.07 0.05 -0.7 1.5 0.02 0.06 0.10 0.10 0.10 a 

CO 
(ppb) 

A (6) 111 20 0.8 2.7 91 98 111 115 146 a 

E 
(8)

 119 23 0.4 2.9 83 109 115 125 161 a 

Me-Af 
(14)

 125 28 2.3 8.0 101 112 117 126 214 a 

W 
(3)

 102 5 0.5 1.5 98 99 101 104 108 a 

Atl 
(7)

 121 13 0.6 2.1 104 114 117 127 142 a 

N-Atl 
(3)

 118 18 -0.4 1.5 98 110 122 128 134 a 

N-Am (5) 113 7 0.5 1.7 107 107 110 117 122 a 

7Be 
(mBq m-3) 

A (51) 4.2 2.3 0.6 3.2 0.5 2.5 4.2 5.5 10.5 a,b 

E (58) 4.3 2.4 0.9 3.9 0.5 2.6 4.0 6.0 12.6 a,b 

Me-AF (71) 4.0 2.0 0.0 2.0 0.5 2.5 4.0 5.6 8.2 b 

W (69) 5.0 2.1 -0.2 2.9 0.4 3.8 5.0 6.2 10.2 a 

Atl 
(55)

 4.1 2.1 0.2 2.0 0.9 2.3 4.0 5.6 8.5 a,b 

N-Atl (58) 4.3 2.3 0.4 2.7 0.1 2.4 4.0 6.2 11.1 a,b 

N-Am (21) 3.0 1.8 0.6 2.1 0.6 1.6 2.5 4.0 6.4 b 

210Pb 
(mBq m-3) 

A (47) 0.34 0.25 3.7 19.9 0.12 0.23 0.28 0.38 1.70 c 

E (57) 0.50 0.28 1.0 3.5 0.13 0.26 0.44 0.65 1.32 a,b 

Me-Af (64) 0.49 0.29 0.7 2.6 0.08 0.26 0.44 0.67 1.14 a,b 

W (65) 0.55 0.26 0.7 3.4 0.14 0.37 0.51 0.70 1.30 a 

Atl (44) 0.39 0.22 0.9 4.3 0.08 0.21 0.35 0.54 1.15 b,c 

N-Atl (54) 0.55 0.32 0.8 3.4 0.06 0.31 0.52 0.70 1.50 a 

N-Am (15) 0.28 0.17 1.5 4.9 0.11 0.17 0.23 0.31 0.75 c 

 

  
AM SD Skew Kurt Min Pct25 Pct50 Pct75 Max 

Diff 
(α = 0.0073) 

PM10 

(g m
-3

) 

A (50) 6.2 3.8 1.0 3.6 1.1 3.5 5.2 8.0 17.2 c 

E (56) 9.6 6.7 1.4 5.8 0.4 5.5 8.1 13.0 35.0 a,b 

Me-Af (73) 10.1 9.0 1.9 7.6 0.4 3.4 8.4 13.8 45.7 a,b,c 

W 
(68)

 13.6 11.5 2.8 16.9 0.1 5.7 12.3 19.8 79.7 a 

Atl (55) 7.0 5.5 1.2 3.9 0.4 2.8 4.8 10.7 25.6 b,c 

N-Atl (56) 8.9 5.9 0.9 4.0 0.2 4.3 8.6 11.8 28.4 a,b,c 

N-Am (19) 3.3 2.3 1.3 3.7 1.4 1.7 2.5 4.0 9.1 d 

Fine Particles 
(N cm-3) 

A 
(19)

 343.9 368.1 2.4 8.6 46.2 150.3 218.6 372.4 1611.3 a,b 

E (17) 634.0 452.0 0.7 2.1 44.8 275.2 554.4 796.5 1450.3 a,b 

Me-Af (26) 293.8 298.1 1.5 5.2 20.4 60.3 187.5 453.7 1262.7 a 

W (29) 160.9 201.0 2.8 11.1 1.4 55.5 93.1 174.4 978.3 a 

Atl 
(14)

 168.0 127.4 1.7 5.2 58.3 90.1 122.8 203.8 520.0 b 

N-Atl (23) 442.3 690.7 2.4 7.9 22.3 79.8 149.5 500.9 2695.0 a 

N-Am 
(3)

 202.8 229.3 0.4 1.5 1.0 78.2 155.3 303.7 452.1 a,b 



Advection Patterns Influencing PM10 at the WMO-GAW station of Mt. Cimone: Seasonality, 

Trends and Influence on Atmospheric Composition 

193 
 

            

Coarse Particles 
(N cm-3) 

A (19) 0.07 0.06 1.2 3.5 0.01 0.04 0.05 0.10 0.22 c,d 

E 
(17)

 0.05 0.05 1.1 3.6 0.002 0.03 0.03 0.08 0.17 d 

Me-Af 
(26)

 0.22 0.27 3.0 12.9 0.02 0.08 0.15 0.25 1.33 a,b 

W (29) 0.53 0.80 3.4 15.5 0.01 0.15 0.28 0.67 4.14 a 

Atl (14) 0.10 0.14 2.6 8.9 0.01 0.02 0.06 0.11 0.53 b,c,d 

N-Atl 
(23)

 0.27 0.40 2.6 8.8 0.003 0.06 0.17 0.27 1.64 a,b,c 

N-Am (3) 0.05 0.04 0.7 1.5 0.02 0.03 0.03 0.06 0.09 a,b,c,d 

7
Be/PM10 

(mBq g-1) 

A (48) 1.0 1.2 2.9 11.2 0.1 0.4 0.6 0.9 6.0 a,b,c 

E (53) 1.2 3.1 4.5 22.8 0.1 0.3 0.4 0.6 18.1 a 

Me-Af 
(68)

 0.8 1.3 4.8 25.7 0.01 0.3 0.4 0.7 7.9 c,d 

W (66) 0.8 1.5 5.7 38.7 0.1 0.3 0.4 0.6 11.2 d 

Atl (51) 1.2 2.1 4.7 28.2 0.1 0.4 0.6 0.9 13.8 a,b 

N-Atl 
(55)

 1.2 3.9 6.9 50.2 0.01 0.4 0.5 0.8 29.2 b,c,d 

N-Am (18) 1.1 0.7 1.1 3.0 0.4 0.7 0.8 1.4 2.8 a 

210Pb/PM10 

(mBq g-1) 

A (44) 0.07 0.05 1.4 3.9 0.02 0.04 0.05 0.08 0.19 a,b,c 

E (52) 0.09 0.12 4.2 21.4 0.01 0.04 0.06 0.08 0.78 b,c 

Me-Af (61) 0.07 0.06 3.9 20.0 0.01 0.04 0.05 0.08 0.38 b,c 

W (62) 0.07 0.09 4.6 25.6 0.01 0.03 0.05 0.06 0.60 c 

Atl 
(40)

 0.06 0.06 4.2 22.7 0.01 0.04 0.05 0.07 0.41 b,c 

N-Atl (51) 0.12 0.31 6.6 46.2 0.004 0.05 0.06 0.09 2.24 a,b 

N-Am (13) 0.10 0.06 1.4 3.6 0.05 0.06 0.09 0.10 0.22 a 

7Be/210Pb 

A (45) 14.9 7.4 0.8 3.1 4.3 9.1 15.3 19.0 35.0 a 

E (54) 10.0 6.0 1.3 4.3 2.0 5.6 8.9 12.3 28.6 b 

Me-Af (63) 11.1 9.3 4.0 23.9 0.5 6.6 9.2 12.0 68.1 b 

W (64) 11.2 7.8 3.9 21.6 4.5 7.1 9.3 12.4 57.0 b 

Atl (44) 13.8 7.1 2.4 11.8 2.7 9.3 12.4 16.2 47.0 a 

N-Atl (53) 10.1 6.8 2.9 15.3 1.9 5.7 8.8 11.8 45.9 b 

N-Am 
(15)

 13.0 6.6 0.9 2.9 4.7 8.6 11.1 16.2 26.7 a,b 

 

Table 5.2 Same as Table 5.1, but for the variables by flow pattern at 3000 m asl (AM = arithmetic mean, 

SD = standard deviation, Skew = skewness, Kurt = kurtosis, Min = minimum, Pct25 = 25
th

 percentile, 

Pct50 = 50
th
 percentile, Pct75 = 75

th
 percentile, Max = maximum). 

 

From the point of view of meteorological variables, Arctic air masses are very cold, dry 

especially at 2200 m, and associated to low tropopause heights and low wind speeds in the 

surrounding of the sampling station. Eastern advection pattern is associated with high pressures, 

high relative humidity, low tropopause heights and low wind speeds. 

Mediterranean-Africa air masses are warm and very humid, associated with low wind speeds. 

Western air masses are also very warm and associated to high tropopause height and slow wind 

speeds. Atlantic air masses are moderately warm and humid (more at 3000 m), and show moderate 

wind speeds (especially at 2200 m). Flows from North America present the lowest pressure levels 
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both at 2200 and at 3000 m; they are also very cold, dry (especially at 2200 m), and associated with 

low tropopause heights and moderate winds. North-Atlantic air masses are moderately warm and 

very humid, connected to slow wind speeds. Flows from North Western-Europe (cluster found only 

at 2200 m) present usually higher temperatures, high relative humidity and slow wind speeds.  

Overall, Arctic and North America trajectories, both more frequent in the cold period, are 

subsiding flows related to the lowest temperature and (particularly the Arctic advections) relative 

humidity. Quite contrasting features are found for the Mediterranean-Africa trajectories, which pass 

over the Mediterranean at low altitudes and are warm and humid flows. The purely continental 

Eastern flows present no significant differences in temperature with respect to the cold advections, 

though humidity takes intermediate values that differ significantly from both the cold and warm 

groups. The lowest pressure at the surface and higher wind speed are associated to the Atlantic and 

North America advections, while Northwest- Europe flows present the lowest wind speed and high 

pressure, frequently related to blocking situations in summertime. Relatively low values of the 

tropopause height are found for Arctic and Eastern flows, which present significant differences with 

respect to Western and Mediterranean-Africa flows at 2200 m and Western, Atlantic and North 

Atlantic ones at 3000 m. 

From the point of view of the atmospheric compounds, North American air masses are usually 

very clean (low O3, black carbon, CO, PM10, fine and coarse particles). Eastern, Western and North 

Western flows generally carry on elevated values of atmospheric compounds: in particular, Western 

air masses carry on elevated values of O3, PM10, fine and coarse particles, while Eastern and North 

Western-Europe air masses bring lower concentrations of particulate matter, but associated to 

higher loadings of fine particles than coarse particles, as previously observed in Chapter 2 (Tositti 

et al., 2013). Mediterranean-Africa air flows also bring PM10 as associated to Saharan Dust 

transports: this kind of transport is associated to elevated loadings of both the fine and coarse sized 

particles. Black carbon is higher in Western air masses, even though also flows from East and North 

Western-Europe largely contribute to its increase. Arctic, Atlantic, North-American and North 

Atlantic air masses show low contributions to black carbon. Carbon monoxide is low with flows 

from Arctic, North-America, North Atlantic; Eastern, Western and North Western-Europe flows 

show elevated concentrations of this gas, even if at 3000 m the contribution of Western air masses 

is greatly decreased, whereas Mediterranean-Africa and North Atlantic advection patterns 

contribute more at higher height.  

North Atlantic and North West Europe advections, both passing over the British Isles and France, 

present the highest levels of O3 with no significant differences with the concentrations for Eastern, 

Mediterranean-Africa and Western flows. In turn, Atlantic as well as North America and Arctic are 
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associated with low O3 values, which points out the influence of precursor levels. At 3000 m, the 

significant differences in O3 are reduced, with North Atlantic (high values) significantly different from 

North America and Arctic flows, and North America flows differing from all other advection types 

except Arctic. CO2 values are quite homogeneously distributed over the flow types: at 2200 m 

significant differences are found only between Western (associated to low CO2 values) and Eastern, 

Arctic and Mediterranean-Africa flows, while at 3000 m only significant differences between 

Mediterranean-Africa and North Atlantic, Western associated to lower CO2 values are found. For black 

carbon only one significant difference at 2200 m between Western (high levels) and Atlantic (low 

levels) is found; at 3000 m no significant difference between flow types is found. For carbon monoxide 

no significant difference is found either at 2200 or at 3000 m. Also from the point of view of the number 

densities of fine particles, flows are not significantly different from each other at 2200 m, while at 3000 

m Atlantic air masses, which are associated with a low number of fine particles, are significantly 

different from North Atlantic, Mediterranean-Africa and Western, which on the contrary are rich in fine 

particles. Coarse particles are transported mostly by Mediterranean-Africa flows, which at 2200 m are 

significantly different from Eastern and Arctic, while at 3000 m significant differences between Arctic 

(low number density of coarse particles) and Mediterranean-Africa, Western (higher loadings of coarse 

particles) and between Eastern (low number of coarse particles) and North Atlantic, Mediterranean-

Africa, Western (rich in coarse particles) can be found. Further significant differences for coarse 

particles at this height can be found between Western, rich in coarse particles, and Atlantic air masses. 

As for PM10, clean Atlantic air masses present significant differences at 2200 m with Eastern, Western, 

Mediterranean-Africa and North Western-Europe which are related to higher PM10 values, while North 

American flows, which are also clean from this point of view, are significantly different from North 

Western-Europe air masses. Arctic flows, associated to low PM10 values, are significantly different from 

Western air masses. 

From the point of view of atmospheric radiotracers, Arctic air masses are associated to high 
7
Be 

and low 
210

Pb (high 
7
Be/

210
Pb); this kind of transport, in agreement with previous papers about 

stratospheric intrusions at Mt Cimone (Bonasoni et al., 1999, 2000a, b), is in fact frequently 

associated to STE. In fact, the production rate of 
7
Be is highest in the stratospheric air at high latitudes 

(Beer et al., 2012), even if the mixing of stratospheric air into the upper troposphere occurs along the 

tropopause discontinuity in mid-latitude regions. Stohl et al. (2003) already highlighted the 

importance of events of rapid deep stratospheric intrusions which tend to have as a more frequent 

destination the Mediterranean region. Both radionuclides present low activities when the air mass 

comes from the Atlantic and North America. 
210

Pb present low values with the arrival of air masses 

from the ocean (Atlantic, North America and Northern America), while the highest values are linked 
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to flows with a clear continental origin such as Mediterranean-Africa, Western, Eastern and North 

Western-Europe. This behaviour is of course due to 
210

Pb continental origin, as 
222

Rn flux from the 

oceans into the atmosphere is negligible (Balkanski et al., 1993; Baskaran, 2011). At 2200 m Atlantic 

and Arctic air masses, being associated with low values of 
210

Pb, are significantly different from 

Eastern, Mediterranean-Africa, North Western-Europe and Western, as well, while North Atlantic 

flows are significantly different from North Western-Europe. At 3000 m Arctic and North American 

flows are significantly different from other flow types except from Atlantic, which are significantly 

different from North Atlantic, Western, Mediterranean-Africa and Eastern (higher values of 
210

Pb). A 

further significant difference is also found for Atlantic with North Atlantic and Western, associated to 

higher 
210

Pb values. 
7
Be low values are connected to Atlantic and Northern American air masses, 

while Western flows are related to the highest values, probably associated to Gulf of Genoa and Gulf 

of Lion cyclogenesis, which are well known to be associated with STE (e.g., Aebischer and Schär, 

1998; Stohl et al., 2000). Western air masses, being linked to high 
7
Be values at 2200 m, are 

significantly different from Atlantic and North American flows which are associated with lower 

values of this tracer. Atlantic air masses being associated to low 
7
Be values are significantly different 

from Mediterranean-Africa. At 3000 m significant differences are found between Western and 

Mediterranean-Africa, North American flows. 

Similarly to Dueñas et al. (2011), Mediterranean-Africa air masses are linked to high activities of 

both 
7
Be and 

210
Pb, due to the combination of African dust uplifting and downward movement from the 

upper troposphere. 
7
Be/

210
Pb as well as 

7
Be/PM10 and 

210
Pb/PM10 ratios associated to this kind of 

advection pattern are not very high, as due to the simultaneous transport of particulate matter and 

radionuclides. As for 
7
Be/PM10, differences are significant only between Mediterranean-Africa and 

Atlantic, Arctic flows, being Arctic also significantly different from Eastern and Mediterranean-Africa 

air masses (higher activity on a lower number of particles). At 3000 m the number of significant 

differences is more elevated: North American air masses are significantly different from Western, North 

Atlantic, Eastern and Mediterranean-Africa, which are also significantly different from Atlantic, while 

Arctic and Atlantic air masses are significantly different from Eastern and Western flows. As for 

210
Pb/PM10, no significant difference is found at 2200 m, while at 3000 m North American air masses, 

associated with high values, are significantly different from Western, Atlantic, Eastern and 

Mediterranean-Africa, while North Atlantic flows, instead related to low values, are significantly 

different from Western. As for 
7
Be/

210
Pb, Eastern flows, which are associated to the lowest values at 

2200 m, are significantly different from Atlantic, Arctic and North Atlantic; Arctic flows, linked to high 

7
Be/

210
Pb values, are significantly different from Eastern, Western, Mediterranean-Africa and North 

Western-Europe; Atlantic and North Atlantic flows are significantly different from Mediterranean-
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Africa, Eastern and North Western-Europe (lower 
7
Be/

210
Pb values). At 3000 m, Arctic and Atlantic air 

masses are significantly different from North Atlantic, Mediterranean-Africa, Eastern and Western, 

which are related to lower values of the ratio 
7
Be/

210
Pb.  

When considering longer back trajectories at 2200 m asl (6-day instead of 4-day trajectories), the 

resulting number of clusters is reduced from eight to seven. One of these clusters, composed by south-

easterly flows, is very low populated; and another one, which should be named as Eastern Atlantic, 

appears as the result of joining most of the Western and North Western-Europe flows identified in the 

4-day trajectories. The subsequent analysis of significant differences in atmospheric compounds and 

meteorological parameters by advection pattern detects a smaller number of pair-wise comparisons 

with significant differences for the longer (6-days) trajectories. Moreover, a lower number of 

significant differences are revealed if the best 8 clusters solution for the 6-day trajectories were 

considered. This suggests that these longer trajectories may lose part of their specific features.  

As shown in Figure 5.6 and as previously highlighted in Chapters 3 (Tositti et al., 2014) and 4, 

the seasonal behaviour of 
210

Pb is characterized by the presence of one summer maximum mainly 

due to higher mixing height and enhanced uplift from the boundary layer, while 
7
Be seasonal 

variations are more complex, being characterized by two relative maxima, one during the cold 

season associated to an increased frequency of STE (James et al., 2003; Stohl et al., 2003) and one 

in the warm season mainly (but not exclusively) associated to tropospheric subsidence balancing 

low tropospheric air masses ascent occasionally accompanied by STE (Cristofanelli et al., 2009a).  

Ioannidou et al. (2014) recently pointed out that the high 
7
Be activity values observed during warm 

months can be well explained by the solar heating of the Earth-atmosphere system. In fact, the solar 

heating of the surface of the Earth results in the heating of air masses in contact with the surface while 

turbulent eddies transport the surface air to higher altitudes. This produces a convective circulation, 

carrying surface air upward and bringing downward air from upper levels (Zanis et al., 1999). This 

phenomenon is accompanied by an increase of tropopause height during the warm summer months, 

induced by a deep penetration of convection: the positive correlation between tropopause height and 

7
Be activity concentrations reflects both downward transport of dry upper tropospheric air within 

anticyclonic conditions as well as lower scavenging rates (Paatero and Hatakka, 2000; Gerasopoulos 

et al., 2001, 2005). In fact, as Ioannidou et al. (2014) pointed out, during low relative humidity events 

condensation is not intense and accordingly particles tend to remain small-sized, with lower 

scavenging and as a result higher 
7
Be activity concentrations (Ioannidou et al., 2011). Figure 5.6 

highlights, however, that the seasonality of air mass transports cannot be completely ruled out as a 

factor influencing the seasonality of radionuclides. In fact, while 
7
Be winter maximum can be linked 

to the seasonal behaviour of Arctic and North-Atlantic air masses (as Atlantic and North American air 
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masses, showing also a simultaneous peak with 
7
Be, are associated to lower 

7
Be values in the 

boxplots), 
7
Be summer maximum can be associated to Mediterranean-Africa, Western and North 

Atlantic air masses seasonal pattern. 
210

Pb summer maximum seems to be well related with the 

seasonality of Western and North Western-Europe flows. However this analysis at the monthly level 

cannot separate the contributions of advection patterns occurring in the same month. 

 

Figure 5.6 Monthly medians activities of 
7
Be (right scale, red line) and 

210
Pb (right scale, black line) and 

their relationship with the seasonal frequency of air flows (left scale, grey bar) from: a) Arctic; b) East; c) 

Mediterranean-Africa; d) West; e) Atlantic; f) North America; g) North Atlantic; h) North Western-Europe. 

 

Figure 5.7 similarly analyses the PM10 seasonal pattern, already studied in Chapter 2 (Tositti et al., 

2013); similarly to 
210

Pb, PM10 show minimum values during the cold season whereas maxima are 

reached during summer months, when it is uplifted from the boundary layer due to thermal convection and 

increased mixing height. The seasonal pattern of PM10 might be, however, influenced by the seasonal 

pattern of advection patterns bringing about elevated mass loads of particles, such as Mediterranean-

Africa, Western, North Atlantic and North Western-Europe air masses. In particular, while the seasonal 

maximum frequency of Mediterranean-Africa in June could be contributing to the first PM10 increase 
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observed during this month, July values could be related to the contribution of North Atlantic flows, while 

August elevated values might be linked to the seasonal pattern of Western and North Western-Europe 

advections. In both Figure 5.6 and 5.7 we decided to characterize the seasonality of variables with monthly 

medians, and not with monthly means, as the distributions of PM10 and of atmospheric radiotracers are 

remarkably non-Gaussian (see Chapter 2 Figure 2.4 for PM10, and Chapter 3, Figure 3.5 for 
7
Be and 

210
Pb; 

Tositti et al., 2013, 2014), and in this case it is known that the median has to be preferred to the arithmetic 

mean, as less sensitive to the influence of outliers (e.g., Wilks, 2006). 

 

 

Figure 5.7 Monthly medians concentrations of PM10 (right scale, black dashed line) and relationship with 

the seasonal frequency of air flows (left scale, grey column) from: a) Mediterranean-Africa; b) West; c) 

North Atlantic; d) North Western-Europe. 

 

However, the seasonal frequency of events is only a part of the story: in fact, also rare events might 

contribute a lot to increases of the variables during certain seasons. For this reason, Figure 5.8 reports 

boxplots of the median 
7
Be/

210
Pb contribution per number of episodes for each season. This Figure 

highlights that summer Arctic flows, and also summer North-American flows, in spite of being quite 

rare events, can contribute a lot to increases of 
7
Be (and not of 

210
Pb) during the summer period. Their 

average contribution to high 
7
Be/

210
Pb during summertime is higher than during winter when they are 
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more frequent. From this Figure it is also highlighted that the main contributors to winter 
7
Be/

210
Pb 

increases are Arctic, North Atlantic, North-American and Western flows. A further interesting 

observation of this Figure is that Mediterranean-Africa flows can be regarded as important contributors 

not only of 
210

Pb and PM10, but also of 
7
Be. This feature, already briefly introduced in Chapter 2 when 

the outstanding Saharan dust transport of March 2004 was presented, was already highlighted by 

Hernández et al. (2008), who attributed episodes of high 
7
Be concentrations in Canary Islands to 

subsidence concurrent with Saharan Dust outbreaks and by Dueñas et al. (2011), who highlighted that a 

combination of African dust uplifting and downward movement from the upper troposphere can in 

some cases cause increases in both 
7
Be and 

210
Pb activities. This analysis highlights also once more how 

fast changing synoptic transitions are relevant to characterize the measurements. 

 

 

Figure 5.8 Seasonal boxplots showing the contribution to 
7
Be/

210
Pb per number of events of each flow type: 

a) Arctic; b) Eastern; c) Mediterranean-Africa; d) Atlantic e) North-Atlantic; f) North-America; g) North 

Western-Europe; h) Western. The horizontal bold line in each box represents the 50
th
 percentile (median), 

the square represents the mean value, lower and upper boundaries locate the 25
th
 and 75

th
 percentile of the 

values and whiskers locate the 5
th
 and 95

th
 percentile values. Crosses and horizontal lines outside the boxes 

further indicate 1
st
 and 99

th
 percentile and minimum and maximum values, respectively. 
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5.3.3 Temporal analysis of transport patterns and atmospheric composition 

The seasonal nature of the advection patterns, as well as of the analysed atmospheric variables, is also 

evidenced by the periodic behaviour of the ACF of their monthly frequencies of occurrence (in the 

case of flows) and medians (in the case of atmospheric variables), with maxima and minima beyond 

bounds of significance (95% confidence) and a full cycle of 12 months. Figure 5.9 shows for example 

the ACF of North American flows before and after the removal of the seasonal component using STL 

decomposition, and after further removal of the linear trend from the T-S slope. 

The pattern of the ACF reveals also for instance the typical Northern Hemisphere seasonal pattern of 

CO2 (Figure 5.9) superimposed on a rising trend, with a winter maximum and a summer minimum 

(Chapter 3, Subsection 3.3.3; Tositti et al., 2014) which are known to be mainly due to the seasonal 

growth in land vegetation (e.g., Keeling et al., 1996), as well as the seasonal pattern of 
210

Pb, PM10, 

associated to maxima during the warm season and minima during the cold season (Chapter 2, Figure 2.6 

for PM10 and Chapter 3, Figure 3.3b for 
210

Pb; Tositti et al., 2013, 2014) and that of 
7
Be, which is 

characterized by a summer maximum and a secondary winter maximum (Chapter 3, Figure 3.3a; Tositti 

et al., 2014). In all of these cases the decomposition into seasonal, trend and remainder components 

using STL allowed the estimation of their relative contributions, and the removal of the seasonal 

component enable the removal of the periodic structure in the ACF for further analysis. 

 

 

Figure 5.9 Autocorrelation function of the monthly frequency of North American flows (upper panels) and the 

monthly median of CO2 (bottom panels). From left to right they correspond to the time series, the de-

seasonalized series from the STL decomposition and to the de-seasonalized and further de-trended series from 

the T-S slope estimate. One major difference between the two original time series is that CO2 presents a strong 

trend which is evidenced by the shape of the ACF. The de-seasonalized and de-trended CO2 time series needs 

further removal of the month-to-month correlation to obtain a good estimation of the significance of the trend, 

following the Y-P procedure. 
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The assessment of the existence of temporal trends in the frequencies of the air flow types, as 

well as in monthly medians of the variables and in NAO indexes time series has taken into account 

the presence of seasonality and serial correlations in the time series (Figure 5.9). The analysis 

revealed significant trends in only a few cases, which in general show small trend magnitudes. Even 

though some differences exist in the results of the two nonparametric methods (Table 5.3), they 

consistently detect significant downward trends for Atlantic and North-American flows reaching 

Mt. Cimone at 2200 m, and for the monthly medians of 
210

Pb and PM10 measured at the station in 

the period 1999-2006 (Figure 5.9). The mean annual change of the original monthly time series are 

equal to -0.008 mBq m
-3

 year
-1

 and -0.15 g m
-3

 year
-1

, respectively, while for the de-seasonalized 

monthly series they are equal to -0.01 mBq m
-3

 year
-1

 and -0.30 g m
-3

 year
-1

. A strong upward 

trend for CO2 is also revealed, in agreement with longer records at Mauna Loa (Machta, 1972; 

Thoning et al., 1989; Randerson et al., 1997). The mean annual change over the time period 1999-

2006 of the CO2 measurements is equal to +1.80 ppm year
-1

 for the original time series, while it is 

equal to +1.90 ppm year
-1

 for the de-seasonalized series. Significant upward trends are also revealed 

by both methods for monthly precipitation for the period 1998-2011. The mean annual change over 

the period 1998-2011 is equal to +1.27 mm year
-1

 for the original time series, while it is equal to 

+1.19 mm year
-1

 for the de-seasonalized series. A significant upward trend is also found by the 

seasonal Mann-Kendall test for tropopause height for the period 1999-2006. In this case the mean 

annual change of the original time series is equal to 0, while it is equal to +99.6 m year
-1

 for the de-

seasonalized time series. The Yue-Pilon procedure results in a trend which is only weakly 

significant for this variable. Other advection patterns present no significant trends, despite the T-S 

slope being downward for Arctic and Western, and upward for Eastern, North Atlantic and North 

Western-Europe. Eastern advection pattern present a weakly significant trend resulting from the 

Yue-Pilon procedure. As for other atmospheric variables, no other significant trend is revealed, 

despite the T-S slopes being positive for pressure, temperature, ozone, and for the ratio 
7
Be/PM10, 

while it is negative for relative humidity and 
7
Be.  
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    Monthly frequencies 

NAO Index   Seasonal K De-seasonalized Y-P 

Hurrell_Stat_NAOi 
 

0.7156/0.00 0.8877/-0.001 

Hurrell_PC_NAOi 
 

0.1104/-0.03 0.3368/-0.02 

CPC_Stat_NAOi 
 

0.0519/-0.04 0.1454/-0.04 

CRU_Stat_NAOi   0.0767/-0.08 0.0561-/0.07 

    Monthly frequencies 

Flow Type   Seasonal K De-seasonalized Y-P 

A   0.1598/-0.17 0.1025/-0.20 

E 

 
0.1718/+0.21 0.0742/+0.31 

Me-Af 

 
0.7736/0.00 0.7387/-0.004 

W 

 
0.3411/-0.13 0.2553/-0.25 

Atl 

 
0.039/-0.37 0.0062/-0.40 

N-Am 

 
0.0008/-0.14 0.0096/-0.23 

N-Atl 

 
0.1098/+0.27 0.1446/+0.30 

NW-Eu   0.1626/+0.23 0.234/+0.33 

    Monthly medians 

Variable   Seasonal K De-seasonalized Y-P 

p (mbar)   0.1237/+0.32 0.2317/+0.13 

T (°C) 
 

0.1855/+0.3 0.1024/+0.17 

RH % 
 

0.1234/-0.26 0.4996/-0.34 

TH (m) 
 

0.0268/0.00 0.0749/+99.6 

WS (m s-1) 
 

0.1336/0.00 0.2292/+0.12 

Prec (mm)  0.0051/+1.27 0.0215/+1.19 

O3 (ppbv) 
 

0.1320/+0.28 0.1806/+0.29 

CO2 (ppm) 
 

0.0000/+1.80 0.0000/+1.90 
7Be (mBq m-3) 

 
0.2840/-0.08 0.1984/-0.09 

210Pb (mBq m-3) 
 

0.0450/-0.008 0.0135/-0.01 

PM10 (mg m-3) 
 

0.0053/-0.15 0.0083/-0.30 

7Be/PM10 (mBq mg-1) 
 

0.1851/+0.007 0.1616/+0.01 
210Pb/PM10 (mBq mg-1) 

 
0.7921/0.00 0.9839/0.00 

7
Be/

210
Pb   0.6678/+0.1 0.3612/+0.08 

 

Table 5.3 Results of the seasonal Kendall test for the monthly time series and the Yue-Pilon (Y-P) procedure 

on the de-seasonalized monthly series for the detection of monotonic trends. For each case, the results are 

presented as: p value/ mean change per year from the Theil-Sen slope. In bold when significant at the 0.05 

level, in italic when the trend is only weakly significant, i.e., significant at the 0.1 level. 

 

It has to be noted, however, that for Atlantic flows, monthly precipitation, tropopause height and 

CO2 even a simple linear regression already found significant trends (downward for the frequency of 

Atlantic flows, upward for CO2, monthly precipitation and tropopause height). Of course this method 
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is not appropriate as it assumes the residuals (the differences between the measured and calculated 

values) are independent and normally distributed with a constant variance, which is not the case.  

A common measure of the NAO phase is the so called NAO index (NAOi) that is determined by the 

strength and the location of the semi-permanent Icelandic low and Azores high pressure systems 

(Walker, 1924; Walker and Bliss, 1932). The NAOi is commonly defined as the difference in 

normalized seas level pressure (SLP) anomalies between either Lisbon (Portugal) or Ponte Delgada 

(Azores), and Stykkisholmur/Reykjavik (Iceland) (Hurrell, 1995). The key strengths of this index are 

that station-based indexes extend back to the mid-19
th
 century or earlier and that is simple to construct 

and understand. However, this definition of NAO is limited since the stations are fixed in space and thus 

may not track the movement of the NAO centres through the annual cycle (Pausata et al., 2012), and 

individual pressure readings can be noisy due to small-scale and transient meteorological phenomena 

unrelated to NAO (Hurrell, 2013). Alternative definitions of NAOi exist: a first one is based on the 

empirical orthogonal function (EOF) analysis of the SLP field. The NAOi in this case is identified as the 

leading eigenvector (the first Principal Component, PC1) computed from the time variation of the SLP 

field (Hurrell, 1995; Wallace, 2000; Hurrell et al., 2003). The associated PC1 is used to evaluate the 

temporal evolution of the NAO in any season. The spatial pattern representing the NAO is given by the 

leading EOF (EOF1). The advantage of using EOF analysis of the SLP field is that the PC1 provides a 

more accurate representation of the NAO pattern taking into account the shifting of the NAO centres of 

action throughout the year (Pausata et al., 2012). This index may be also less noisy than the station-

based indexes. The two indexes present a significant correlation coefficient equal to 0.81. The NAOi 

time series (both the station-based and the Principal Components-based) over the study period shows no 

significant trend according to the tests, despite both the original and de-seasonalized time series present 

a negative T-S slope. For completeness, the results for another alternative NAO index are also reported: 

the CRU station-based NAOi calculated as the difference between the normalised SLP over Gibraltar 

and the normalised SLP over southwest Iceland (Jones et al., 1997), which presents weakly significant 

trends resulting from both the seasonal Kendall and the Yue-Pilon procedure, as reported in Table 5.3. 

This index presents a significant correlation coefficient with the other two (equal to 0.80 with Hurrell 

station-based NAOi, and equal to 0.79 with Hurrell principal components-based NAOi). 

A visual inspection of the time series and their trend components obtained from the seasonal-trend 

decomposition analysis (Figure 5.10) suggests that Atlantic flows downward trend was very significant in 

2002-2004 and then after 2008; in the case of North American flows, instead, the decreasing trend can be 

appreciated in the period 1999-2006, and it levelled off after 2006 until at least 2010. While CO2 is 

constantly increasing over the time period, the increasing trend of tropopause height is well seen in the 

period 2002-2004. For 
210

Pb and PM10 the decreasing trend is better appreciated after 2001. The 
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increasing trend for monthly precipitation seems to be connected mostly to increases in the period 

2009-2011, while the maximum yearly precipitation was reached in 1999. This upward trend in 

precipitation seems to be mostly connected with an increase of the proportion of rainy days. 

An overall increasing trend in tropopause height is found in the period 1999-2006. However, the 

evolution is not monotonic: The increasing trend of tropopause height is better appreciated in the 

period 1999-2002; after that a slight decreasing trend is observed in the period 2002-2005, and then 

again an increase can be appreciated. An upward trend of tropopause height has been already 

observed globally using radiosonde data (Seidel et al., 2001; Añel et al., 2006; Seidel and Randel, 

2006; Brocard et al., 2013), GPS radio occultation data (Schmidt et al., 2008), optimal 

combinations of observations and numerical weather forecast reanalyses (Highwood et al., 2000; 

Randel et al., 2000), and climate models forced by combined anthropogenic and natural effects 

(Santer et al., 2003a, 2004; Gettelman et al., 2009, 2010). Previous analyses of reanalysis data 

indicate that the greatest increases of tropopause height have occurred in the extratropics in both 

hemispheres (Santer et al., 2003a; Añel et al., 2006; Seidel and Randel, 2006). Tropopause height 

has been indicated as an alternative detection variable of climate change (Hoskins, 2003; Santer et 

al., 2003a, b, 2004; Añel et al., 2006). In fact, the increase of atmospheric CO2 has been shown to 

cause tropospheric warming and stratospheric cooling (e.g., Ramaswamy et al., 1996, 2001; Hansen 

et al., 2002; Santer et al., 2003a, b; Bindoff et al., 2013; Myhre et al., 2013; Previdi et al., 2013; 

Santer et al., 2013); moreover, the stratospheric cooling is also due to anthropogenically induced 

depletion of stratospheric ozone (e.g., see Chapter 5 of WMO, 2007; Myhre et al., 2013; Santer et 

al., 2013). These temperature changes tend both to increase tropopause height (Shepherd, 2002; 

Hoskins, 2003; Santer et al., 2003b, 2004; Gettelman and Birner, 2007; Gettelman et al., 2011). The 

increasing trend of tropopause height and stratospheric cooling are also connected to the meridional 

extent and width of the Hadley cell (Frierson et al., 2007; Lu et al., 2007; Seidel et al., 2008; Allen 

et al., 2012), which has been observed to shift poleward by some authors (Hu and Fu, 2007; Lu et 

al., 2007; Seidel et al., 2008; Allen et al., 2012; Hu et al., 2013) as well as to strengthen (Chen et 

al., 2002; Hu et al., 2005; Mitas and Clement, 2005). The Hadley cell has already been observed to 

have an important effect on 
7
Be activity in Oceania (Doering et al., 2014). The presence of a similar 

influence at Mt. Cimone has not yet been clarified and needs to be further investigated. 

A decreasing trend of PM10 in the period late 90’s-2010 was observed in many stations in 

Europe, most of all regional background stations (Pérez et al., 2008; Barmpadimos et al., 2011; 

Colette et al., 2011; Barmpadimos et al., 2012). Generally, these studies attribute this PM10 drop 

both to a decrease in anthropogenic emissions, due to the emission management strategies, as well 

as to different meteorological processes or cycles, such as the frequency and intensity of Saharan 
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dust episodes (Pérez et al., 2008). Both Colette et al. (2011) and Barmpadimos et al. (2012) showed 

that the decrease in anthropogenic emissions seems to be more important than meteorology as a 

driving factor for the observed decrease. However, as in our case we observe a contemporary 

decreasing trend of 
210

Pb at this remote background site, which cannot be ascribed to a decrease in 

anthropogenic emissions, the role of meteorology in these drops cannot be ruled out and would 

probably need further investigations. The upward trend of precipitation is best appreciated in the 

period 2009-2011, and therefore cannot be linked to the downward trend of 
210

Pb and PM10. 
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Figure 5.10 (first five plots) Evolution of the monthly frequency of occurrence of the Atlantic and North 

American flow types, which show significant trends over the whole study period, evolution of the Hurrell 

station- and principal components-based NAO indexes, evolution of the monthly precipitation time series. 

(last four plots) Evolution of the monthly medians of variables which show significant trends over the period 

1999-2006 (tropopause height, CO2, 
210

Pb and PM10). Dashed lines are the linear regressions, solid lines are 

the Theil-Sen slope estimates, and black solid curved lines are the local trends from the seasonal-trend 

decomposition analysis. 
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The increase in 
210

Pb activity from 2002 to 2003 might be due to the extremely high temperature 

recorded in the whole European region, especially during the summer months (Cristofanelli et al., 

2009b; Pace et al., 2005) and connected also to anomalous high ozone concentrations at Mt. Cimone as 

reported by Cristofanelli et al. (2007). In PM10 this increase is masked by the 2004 maximum also 

connected to an exceptional Saharan dust episode reported by Beine et al. (2005) and described in 

Chapter 2, Subsection 2.3.5 (Tositti et al., 2013) which resulted in a concentration reaching 80 g m
-3
. 

As previously highlighted in Chapter 2, this event was characterized by significant loadings of the 

coarse fraction with a small contribution of the fine fraction (to which radionuclides attach). As pointed 

out in Chapter 2, the 
210

Pb increase during this event was not as relevant as that of PM10: as a matter of 

facts, the per cent increase of 
210

Pb with respect to the monthly mean was equal to +73% for 
210

Pb, 

while for PM10 it was equal to +540%. Moreover, the per cent increase of 
210

Pb with respect to the 

yearly mean was equal to +33%, while it was equal to +820% for PM10. 

The analysis of the magnitude of the seasonal and trend components of the time series revealed 

that the seasonal component dominates over the trend component and the small-time scale 

variations in almost all the measured atmospheric variables (the only exceptions are RH, 
7
Be/

210
Pb, 

TH and WS), weighting about twice the trend component. In turn, the small scale variations 

dominate both the NAO indexes, the monthly precipitation and the frequencies of the different 

advection patterns, with the only exception of the North American flows that present the strongest 

seasonal patterns as they are almost absent in summertime. 

 

5.3.4 Association of air flow types and meteorological/atmospheric parameters with NAO 

The NAO is often regarded as a winter phenomenon, since winter months are dynamically the most 

active and present the largest SLP amplitude anomalies. The winter season is also associated to the 

strongest interdecadal variability. For this reason the extended winter period (DJFM) is frequently 

used in the literature of NAO.  

Table 5.4 shows the linear correlation coefficients for the cases presenting significant association 

to NAOi during the DJFM months. NAO is strongly related to North-American flows, while it is 

weakly anti-correlated to Western flows and very weakly to Mediterranean-Africa flows. As a 

matter of facts, it is recognized that the positive NAO phase corresponding to a stronger than usual 

subtropical high pressure centre and deeper than normal Icelandic low results in more and stronger 

winter storms crossing the Atlantic Ocean on a more northerly track, while the negative phase is 

connected to fewer and weaker winter storms crossing on a more west-east pathway. An anti-

correlation of westerly flows reaching three Mediterranean sites with NAOi was also observed by 

Orza et al. (2013): as they explained, this is connected with the fact that the location of the 
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subtropical high at lower latitudes during the negative phase of the NAO facilitates the entrance of 

westerlies (W)/south-westerlies (Me-AF) to the Mediterranean. This is also shown in Figure 5.11, 

where the ratio between the residence time of air parcels reaching Mt. Cimone during positive and 

negative phases of NAO (NAOi higher and lower than +0.5 and -0.5, respectively) during the 

extended winter period is depicted. From the plot it is evident that south-westerlies and lower speed 

westerlies from the westernmost part of Northern Africa and southern Spain are more frequent 

during the negative phase of the NAO. On the contrary, flows from Lybia and surrounding regions, 

also part of the Mediterranean-Africa flows, are more common during the positive phase of NAO. 

Moreover, trajectories coming from North-America are more frequent during the positive phase of 

NAO, as indicated by the correlation of North-American flows with NAO. Also North-Eastern 

flows seem to be more usually observed during the positive NAO phase, even if this was not readily 

observed from the correlation analysis of Table 5.4. 

 

 

Figure 5.11 Ratio of residence time of air parcels reaching Mt. Cimone in the positive and negative phase of 

NAO (NAOi higher than +0.5 and lower than -0.5, respectively) in the extended winter DJFM period. 

 

 

 

 

 



CHAPTER 5 

210 

  Hurrell_Stat_NAOi Hurrell_PC_NAOi CRU_Stat_NAOi 

A       

E 

   Me-Af -0.16 

 

-0.25 

W -0.31 -0.25 

 Atl 

   N-Am 0.48 0.41 0.49 

N-Atl 

   NW-Eu       

 
   p (mbar)   0.48 0.38 

T (°C) 

   RH (%) 

 

-0.29 

 TH (m) 

 

0.35 0.38 

WS (m s
-1

)       

Prec (mm)  -0.28 -0.29 

O3 (ppb) 

   CO2 (ppm) 

   BC (g m-3) 

   CO (ppb) 

 

-0.77 -0.68 
7Be (mBq m-3) 

   210Pb (mBq m-3) 

   PM10 (g m-3) 

   Fine Particles (N cm-3) 

   Coarse Particles (N cm-3) 

   7
Be/PM10 (mBq g

-1
) 

   210Pb/PM10 (mBq g-1) 

   7Be/210Pb    

 

Table 5.4 Spearman correlation coefficients in the extended winter DJFM period for the cases with 

significant association between NAOi (Hurrell Station-based and principal components based, CRU station-

based on the difference between SLP at Gibraltar and Southwest Iceland) and the frequencies of air flow 

types arriving at Mt. Cimone at 2200 m (first part of the table). In the second part of the table Spearman 

correlation coefficients in the extended winter DJFM period for the cases with significant association 

between NAOi and monthly medians of the atmospheric variables are reported. The correlation coefficient is 

bold when both linear and Kendall tests are significant at 0.01 level, italic when both tests are significant at 

0.05 level; other values are significant at 0.1 level at least in one of the tests. 

 

A strong correlation of NAOi with pressure is also revealed; positive values of NAO are 

typically associated with milder weather over Western Europe (increased pressures). This results 

also in increased tropopause heights during this phase (weakly significant correlation of NAOi with 

this variable) and in anti-correlation with relative humidity (not very significant, though). 
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Westerlies were observed to bring on high values of CO in Figure 5.5, and this explains the 

observed anti-correlation of CO with NAOi.  

Table 5.5 similarly reports the linear Spearman correlation coefficients for the cases presenting 

significant associations between monthly medians of the variables and frequencies of air flow types during 

the extended winter period (DJFM). Most of these associations were already observed in Figure 5.5 and in 

Table 5.1. Arctic flows anti-correlation with 
210

Pb and fine particles appears mainly as the result the 

continental origin of 
210

Pb and of Arctic air masses being very clean from the point of view of particles, 

even if they contribute more to fine than coarse-sized particles. The correlation of Arctic flows with 

temperature, which could be a striking feature of Table 5.5, could arise from the decreasing trend which 

was observed for North-American flows. In fact, North-American flows are the coldest air masses (Figure 

5.4 and Table 5.1), and their decreasing trend could result in an increasing temperature and the resulting 

anti-correlation with Arctic flows which are not the coldest ones. This is also the cause of the correlation 

of Mediterranean-Africa flows with temperature. The second striking feature of Table 5.5 is the anti-

correlation of Arctic flows with 
7
Be, which seems quite in contradiction with the results of Figure 5.5 and 

Table 5.1. This results contrasting seasonal pattern of the two variables, thus deriving purely from 

mathematics and not from physics: in fact, when in Figure 5.6 we reported the seasonality of air flows and 

the seasonality of 
7
Be and 

210
Pb, it was quite clear that the seasonality of Arctic flows is just the opposite 

of that of 
7
Be. Arctic flows are more frequent when 

7
Be is low (from November to March) and 

7
Be is 

higher in the central part of the year, when Arctic flows are less frequent, with the exception of June. In 

spite of the anti-correlation found between the frequency of Arctic flows and 
7
Be activity, it was observed 

that they can contribute a lot to 
7
Be increases (Figure 5.8), and moreover their contribution is generally 

higher during spring and summer than during winter, despite their higher frequency during the cold 

season. In any case, it seems that even if Arctic flows are associated to high 
7
Be, the seasonality is 

masking that in the correlations. The association of Mediterranean-Africa flows to elevated values of black 

carbon and PM10 seems to be related to the occasional influence of biomass burning in that region (e.g., 

Cristofanelli et al., 2009b) and to the influence of Saharan-Dust transports on PM10 values. The correlation 

of western air masses to temperature could be connected to the fact that these air masses travel not very 

high. Atlantic air masses coming from the ocean bring low values of fine particles and this explains the 

anti-correlation of these flows with fine particles number densities. North-American flows correlation to 

7
Be/PM10 is due to the fact that this flow type is associated to high

 7
Be but contemporary low PM10 values 

as being generally associated to low values of particles (both fine and coarse-sized, as from Figure 5.5). 

North Western-Europe flows are instead associated with higher anthropogenic pollution values and this is 

the reason of the elevated correlation coefficients with fine and coarse number densities.  

 



CHAPTER 5 

212 

  A E Me-Af W Atl N-Am N-Atl NW-Eu 

p (mbar) -0.28 
       

T (°C) 0.33 
 

-0.37 0.42 
    

RH (%) 
        

TH (m) 
        

WS (m s-1) 
        

Prec (mm)         

O3 (ppb) 
        

CO2 (ppm) 
        

BC (g m-3) 
  

0.73 
     

CO (ppb) 
        

7
Be (mBq m

-3
) -0.41 

 
0.29 

     
210

Pb (mBq m
-3

) -0.36 
       

PM10 (g m-3) 
  

0.30 
     

Fine Particles (N cm
-3

) -0.68 
   

-0.57 
  

0.57 

Coarse Particles (N cm-3) 
       

0.57 
7Be/PM10 (mBq g-1) 

     
0.26 

  
210Pb/PM10 (mBq g-1) 

        
7Be/210Pb 

        
 

Table 5.5 Same as Table 5.4, but for the cases with significant association between monthly frequencies of 

flows of air flow types arriving at Mt. Cimone at 2200 m and monthly medians of the atmospheric variables. 

 

Even if the NAO is often regarded as a winter phenomenon, Barnston and Livezey (1987) showed that 

the NAO has a year-round influence on weather conditions in Europe with pronounced seasonal variation 

in location of the high and low pressure centres, and strong climate anomalies can also be detected outside 

the winter season (Pausata et al., 2012). For this reason, the association between NAOi and frequencies of 

air flow types and between NAOi and monthly medians was further analysed by season. It was already 

observed by Pausata et al. (2012) that station-based indices being fixed in space cannot account for the 

seasonal migration of the NAO centres of action; instead the PC-based NAOi provides a more accurate 

representation of the NAO pattern in any season. Figure 5.12 reports the seasonal correlation coefficients 

of Hurrell Station and PC-based NAOi with flows. Figure 5.13 similarly reports seasonal correlation 

coefficients of Hurrell Station and PC-based NAOi with monthly medians.  
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Figure 5.12 Spearman correlation coefficients between the frequency of occurrence of the different air flow 

types and the NAOi (a) Hurrell station-based index; b) Hurrell PC-based index, by season and for the full year.  

 

Figure 5.13 Spearman correlation coefficients between the monthly medians of variables and the NAOi (a) 

Hurrell station-based index; b) Hurrell PC- based index, by season and for the full year. Capital letters 

indicate the variables: p = Pressure, T = temperature, O3 = ozone, CO2 = carbon dioxide, BC = black 

carbon, CO = carbon monoxide, RH = relative humidity, 
7
Be, 

210
Pb, PM10, FP = fine particles, CP = coarse 

particles, 
7
Be/

210
Pb, TH = tropopause height, WS = wind speed, Prec = precipitation.  
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Considering winter instead of the extended winter period the correlation/anti-correlation 

coefficients are generally a bit higher. Anyway, the difference seems not very significant. The 

association between each air flow type and the NAO is similar during the different seasons but with 

some exceptions, namely Arctic, Eastern, Mediterranean-Africa (only in the PC-based NAOi), 

Atlantic and North Western-Europe. Arctic flows are negatively correlated to NAOi during 

summer, and weakly positively correlated during other seasons. Eastern flows are always weakly 

correlated to NAOi: as reported by Orza et al. (2013), the frequency of easterly flows in the 

Mediterranean is not connected to NAOi. The weak negative correlation of Mediterranean-Africa 

flows to NAOi which was observed during the extended winter period is present also during 

autumn, while during summer the PC-based NAOi (which provides a more accurate representation 

of the NAO pattern during this season) is positively correlated to this flow type. The anti-

correlation with western flows is not restricted only to the winter period, but also to other seasons, 

being especially important during spring and summer (especially for the PC-based NAOi). Also 

Atlantic flows are negatively correlated to NAOi, even if a weak positive correlation of the station-

based index is observed during spring. The correlation of NAOi with North-American flows is 

present throughout the year, being especially important during winter and less important during 

summer. It has to be remembered, however, that North-American flows are typical of the cold 

period, and almost non-present during the other seasons. North-Atlantic patterns, which on the 

contrary are present all-year long, are less correlated to NAOi but reach the highest correlation 

during autumn. North Western-Europe flows are positively correlated to NAOi during spring and 

weakly negatively correlated to NAOi during other seasons. A map similar to that of Figure 5.11 

depicting the fraction of time that the air parcels stay in a grid point during the positive NAO phase 

with respect to the time spent in the same grid point during the negative NAO phase during the 

whole year (not shown) shows similar features (but not completely identical) to the ones that have 

been illustrated for the extended winter period. Anyway, the main features observed in the map are 

that the arrival of North-American air masses is more common during the positive phase of NAO, 

while westerlies/south-westerlies are on the contrary more frequent during the negative phase of 

NAO. Flows from the central-Eastern Mediterranean and Lybia are also more frequent during the 

positive phase of NAO. 

Concerning the seasonal correlations of NAOi to atmospheric variables, the most appealing 

features of Figure 5.12 are the marked positive correlation of CO during autumn and less marked 

during summer, while during spring and winter a strong anti-correlation is observed. Because of 

this different correlation pattern during different seasons, no correlation is observed during the 

whole year time series. The anti-correlation of CO to NAOi during winter was explained as the 
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negative phase of NAO facilitates the entrance of westerlies to the Mediterranean, and this flow 

type is associated to high values of CO at Mt. Cimone. Anyway from this analysis it is also clear 

that during autumn and summer the positive phase of NAO is associated to higher values of CO; 

from the previous analysis it was observed that during autumn and spring NAO was linked to North 

Western-Europe and Northern-Atlantic flows, and these flows were also associated to high CO 

values in the boxplots. Coarse particles are positively correlated to NAO during the transition 

seasons, while during summer the station-based index is negatively correlated to coarse particles. 

Coarse particles are mostly transported by Western and Mediterranean-Africa, and to a lesser extent 

by North Western-Europe. The negative phase of NAO being associated to more westerlies/south-

westerlies entering to the Mediterranean, the reason of the anti-correlation of coarse particles is 

easily understood. Positive NAO phases are associated to drier weather conditions in the 

Mediterranean area, corresponding to more relevant uplift of particles from the ground and this 

could explain the positive correlation during other seasons. Black carbon presents a pattern which is 

similar to CO, even if the positive correlation during the transition seasons is lower and observed 

only in the PC-based NAOi. However, the reasons of these associations are also connected to the 

negative phase of NAO facilitating the entrance of westerlies bringing high levels of BC. An 

association of the PC-based NAOi to O3 was observed also by Pausata et al. (2012). This is fairly 

clear as the drier conditions in the Mediterranean area associated to the positive NAO phase result 

in the build-up of O3 because of photochemical processes. The transport of O3 enriched air masses 

from the Atlantic Ocean cannot be completely ruled out, however, and was also observed by 

Pausata et al. (2012). The weak positive correlation of NAO to 
7
Be (which for the station-based 

NAOi is observed only during winter) can be associated to the shift of the storm track and 

associated SI events. An association of SI events at Mt. Cimone with NAO was already observed by 

Cristofanelli et al. (2009a). The positive correlation of NAO to TH should be linked to the higher 

tropopause connected to drier weather during the positive NAO phase. Other variables do not 

present relevant correlations to NAOi.  

 

 

5.4 Summary and conclusions 

This Chapter focused on finding relationships between the advection patterns and atmospheric 

composition observed in a long time series acquired at the WMO-GAW station of Mt. Cimone 

(Italy). Advection patterns were identified by a cluster analysis of back trajectories arriving at Mt. 

Cimone at three different heights; the cluster analysis identified 8 groups at the height of 2200 m, 

roughly corresponding to the altitude of the station. The results reflect strong seasonal patterns with 



CHAPTER 5 

216 

prevalence of westerlies as typical of mid-latitude Northern Hemisphere sites. The main features of 

these flow patterns, both from the meteorological and from the atmospheric composition point of 

view, were analysed by means of boxplots and significant differences. The results indicate that 

North-American flows are related to low pressures and tropopause heights, cold, and dry air masses, 

and linked to high wind speeds. These flows are almost non-existent during summertime, and are 

also generally related to low values of atmospheric pollutants such as BC, CO, O3, PM10, but also of 

atmospheric radionuclides 
7
Be and 

210
Pb. Arctic flows are also cold and more typical of the cold 

season. These flows are also connected to low values of atmospheric gases such as CO, O3, BC, but 

also of particulate matter and 
210

Pb. On the contrary, this flow type is associated with high 
7
Be and 

seems connected to SI events. Continental flows from North-Western Europe, Eastern Europe, 

Western and Mediterranean-Africa are generally linked to higher values of atmospheric 

components; in particular, NW-Europe, Western and Eastern flows are related to “pollution” events, 

being associated with high levels of CO, BC, O3 and fine particles number densities, causing also 

increases in PM10. Because of their continental origin, these flows are also linked to high 
210

Pb 

levels. Mediterranean-Africa flows being related to Saharan Dust events are related to high PM10 

values, and increases in both the fine and coarse fraction of particles. Interestingly, this flow type 

was not only associated with high 
210

Pb values, but also high 
7
Be, which could be connected to the 

combination of African dust uplifting and downward movement from the upper troposphere. 

The association of the seasonality of air mass transports with the seasonality of radionuclides and 

particulate matter was also studied. In fact, while 
7
Be winter maximum can be linked to the 

seasonal behaviour of Arctic and North-Atlantic air masses, 
7
Be summer maximum can be 

connected to the seasonal pattern of Mediterranean-Africa, Western and North Atlantic air masses. 

210
Pb summer maximum seems to be well related with the seasonality of Western and North 

Western-Europe flows, whereas the seasonal pattern of PM10 might be, however, influenced by the 

seasonal pattern of advection types bringing about elevated mass loads of particles, such as 

Mediterranean-Africa, Western, North Atlantic and North Western-Europe flows.  

Downward temporal trends were detected by means of non-parametric techniques for the 

monthly frequencies of Atlantic and North-American flows reaching Mt. Cimone at 2200 m, as well 

as for the monthly medians of 
210

Pb and PM10 measured at the station in the period 1999-2006. 

These contemporary decreasing trends of both 
210

Pb and PM10 cannot be ascribed to a decrease in 

anthropogenic emissions only, highlighting the potential role of meteorology, which would require 

further investigations to be carefully examined. Upward temporal trends were instead detected for 

CO2 and monthly precipitation. However, the analysis of the magnitude of the seasonal and trend 



Advection Patterns Influencing PM10 at the WMO-GAW station of Mt. Cimone: Seasonality, 

Trends and Influence on Atmospheric Composition 

217 
 

components of the monthly time series revealed that the largest variabilities are associated with the 

seasonal components, with a reduced weight of the trend component for all the series. 

The association of NAOi with advection patterns and atmospheric variables was also examined. 

In particular, positive correlations of NAO with the frequency of North-American flows and an anti-

correlation with that of Western flows were observed. As for the atmospheric composition, the most 

important associations of NAO are with carbon monoxide and coarse particles, which are connected 

to the modifications of the flows induced by the shift of the NAO phase.  

The most important aspect that was studied by this work is the role of flow patterns and NAO as 

factors that can have a deep influence in the variations in atmospheric composition. This was 

possible since the time series of data acquired at the station was long enough to characterize a sort 

of short-term climatology of the site. This work could be extended in a number of ways. For 

instance, the regions where the air masses originated when high levels of some atmospheric 

components are observed could be studied in greater detail, as well as information on the altitude of 

the trajectories along the pathway could be examined, since it can be useful to better understand the 

relation between air flow types and other meteorological/air quality data.  
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6.1 Introduction
1
 

Although measurements of both radionuclides 
7
Be and 

210
Pb and the study of stratospheric 

intrusions have a long term tradition at the global WMO-GAW station of Mt. Cimone (44°11’N, 

10°42’E, 2165 m asl), at present only few of these studies made use of the simultaneous 

measurements of both atmospheric radiotracers, e.g., as activity ratio, while most of them used only 

7
Be. Research activities carried out at Mt. Cimone within EU projects VOTALP and STACCATO 

(Bonasoni et al., 1999, 2000a, b; Fischer et al., 2003; Cristofanelli et al., 2003, 2006, 2009) led to 

the introduction of a Stratospheric Index based on the use of 
7
Be, relative humidity and ozone 

(Cristofanelli et al., 2009), and to the study of the seasonality and of short-term climatology of 

stratospheric intrusions at Mt. Cimone. In agreement with comprehensive studies of Stratosphere-

to-Troposphere-Exchange (STE) in the Northern Hemisphere mid-latitudes (James et al., 2003a, 

Sprenger and Wernli, 2003; Stohl et al., 2003; Trickl et al., 2010), as well as with studies carried on 

at other mountain sites in Europe, such as Zugspitze (2962 m asl, Germany) (Elbern et al., 1997), 

Jungfraujoch (3580 m asl, Switzerland) and Sonnblick (3106 m asl, Austria) (Stohl et al., 2000), 

stratospheric intrusions at Mt. Cimone are characterized by a maximum from October to February 

with a minimum in July (Cristofanelli et al., 2006, 2009). During the warm season the efficient 

vertical mixing enhances the downward transport of air masses from the upper troposphere (Feely 

et al., 1989; Gerasopoulos et al., 2001, 2003), which can lead to erroneous stratospheric intrusions 

(SI) identifications. SI can be considered as a specific aspect of STE: the irreversible downward 

transport of stratospheric air relatively deep into troposphere (James et al., 2003a). A number of 

different mechanisms can promote SI, acting on different geographical and temporal scales (Stohl et 

al., 2000): fronts or high-pressure systems at the surface (Davies and Schuepbach, 1994; Zanis et 

al., 1999), tropopause folding (Lamarque and Hess, 1994; Holton et al., 1995; Reed, 1995; Elbern 

et al., 1997;) and cut-off lows (Vaughan and Price, 1989; Zanis et al., 2003a).  

These events are characterized by tongues of anomalously high potential vorticity (PV), high 

ozone, high 
7
Be and low water vapor mixing ratio, which may be stretched out into elongated 

filaments or roll up to form isolated coherent structures containing high PV (cut-off lows) (Holton 

                                                             
1 This chapter consists of a manuscript in preparation by Brattich E. (Dept. of Biological, Geological and Environmental 

Sciences-Section of Geology, Università di Bologna), Orza J.A.G. (SCOLAb, Fisica Aplicada, Miguel Hernandez 

University; Elche, Spain), Tositti L. (Dept. of Chemistry, Università di Bologna).  
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et al., 1995). In particular the analysis of in situ pressure values (Cristofanelli et al., 2006) 

suggested that at Mt. Cimone direct SI, which are the events in which stratospheric air maintains for 

a large part its stratospheric properties as it reaches the lower troposphere by rapid vertical transport 

(Eisele et al., 1999) were connected with intense fronts affecting the region; on the contrary indirect 

SI, i.e., events in which stratospheric air reach the lower troposphere after a sequence of transport 

steps, with a greater chance to mix with tropospheric air (Eisele et al., 1999), were possibly 

connected with subsiding structures related to anticyclonic areas. Although object of a long 

scientific debate over the last five decades (Junge, 1962; Crutzen, 1973; Chameides and Walker, 

1973; Reiter, 1975; Fabian and Pruchniewicz, 1977; Singh et al., 1978; Logan, 1985; Penkett and 

Brice, 1986; Austin and Follows, 1991; Follows and Austin, 1992; Davies and Schuepbach, 1994; 

Holton et al., 1995; Appenzeller et al., 1996; Roelofs and Lelieveld, 1997; Harris et al., 1998; 

Bonasoni et al., 1999, 2000a, b; Lelieveld and Dentener, 2000; Monks, 2000; Stohl et al., 2000; 

James et al., 2003a, b; Sprenger and Wernli, 2003; Stohl et al., 2003; Fischer et al., 2003; 

Cristofanelli et al., 2006, 2009; Trickl et al., 2010), STE and especially the cross-tropopause flux of 

ozone are still topics of great scientific interest and not thoroughly elucidated.  

Moreover, the geographical areas associated to high concentrations of atmospheric radiotracers 

and atmospheric SI related components measured at Mt. Cimone have not been completely 

assessed. Together with 
222

Rn, atmospheric radiotracers 
7
Be and 

210
Pb are among the most used 

naturally occurring radionuclides included in the group of the key atmospheric components that 

should be routinely monitored within the WMO-GAW network (WMO-GAW, 2004). Their 

importance in the understanding of vertical transports of air masses is due to their natural contrasted 

origin. In fact, 
210

Pb (half-life T1/2 = 22.1 years) is a radionuclide of crustal origin, being produced 

by the radioactive decay of 
222

Rn (T1/2 = 3.8 days) which is supplied to the atmosphere by the 

Earth’s crust: as stated by Baskaran et al. (2011), the 
222

Rn flux from the oceans is negligible 

compared to the input of continental origin. 
7
Be (T1/2 = 53.3 days) is instead a cosmogenic 

radionuclide produced by cosmic-ray spallation reactions with nitrogen and oxygen (Usoskin et al., 

2009) and is mostly produced in the stratosphere (about 75%) and in the upper troposphere (about 

25%) (Johnson and Viezee, 1981; Usoskin and Kovaltsov, 2008). Once produced, both 

radionuclides rapidly attach to submicron-sized particles (Papastefanou and Ioannidou, 1995; 

Winkler et al., 1998; Gaffney et al., 2004; Ioannidou et al., 2005), and for this reason they share a 

similar tropospheric fate being removed from the atmosphere by wet and dry deposition 

mechanisms (Feely et al., 1989; Kulan et al., 2006). Due to the different origins of the two 

radionuclides, they are used to study the origin of the air masses and to examine vertical exchange 

transport processes as well as convective activity in the troposphere (Brost et al., 1991; Graustein 
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and Turekian, 1996; Koch et al., 1996; Bonasoni et al., 2000a; Lee et al., 2004; Tositti et al., 2004; 

Zheng et al., 2005; Cristofanelli et al., 2006; Lee et al., 2007).  

Mountain sites are very suitable locations to study tropospheric background conditions (Wotawa 

et al., 2000; Stohl et al., 2000; Cuevas et al., 2013) as well as to investigate SI events (Cristofanelli 

et al., 2006). In fact, as mixing processes act on small and intermediate (about 100 km) scales, 

stratospheric air masses quickly lose their original properties (Appenzeller and Davies, 1992), 

making it difficult to identify originally stratospheric air masses at low altitudes.  

The “Ottavio Vittori” research station GAW, located on top of Mt. Cimone, is managed by the 

Meteorological Office of the Italian Air Force and by the Institute of atmospheric and climate science 

of the National Council of Research (ISAC-CNR). This station is part of the Global Atmosphere 

Watch (GAW) of the World Meteorological Organization (WMO). The main meteorological and 

territorial features, as well as peculiarities of this high-altitude WMO-GAW station have been 

described in Chapters 2, 3 and 4. The study of SI is one of the activities conducted at this research 

station and for this reason parameters helpful to identify SI are routinely monitored at Mt. Cimone 

(ozone, atmospheric radiotracers 
7
Be and 

210
Pb, relative humidity). As briefly introduced before, only 

one of the many STE studies conducted at Mt. Cimone made use of both 
7
Be and 

210
Pb (in particular 

as activity ratio), and this is also one of the oldest studies (Bonasoni et al., 1999), while the others 

made use of only 
7
Be (Bonasoni et al., 1999, 2000a, b; Fischer et al., 2003; Cristofanelli et al., 2006, 

2009). Statistical trajectory source analyses were already used to study the specific emission areas of 

some compounds: for instance the concentration field method of Seibert et al. (1994) was applied to 

ozone concentrations measured at high mountain peaks within and at the fringes of the Alps, among 

which Mt. Cimone, in order to establish the specific emission areas (Wotawa et al., 2000), and the 

same method was applied to study the source regions of ozone (Bonasoni et al., 2000b), of black 

carbon and fine particles (aerodynamic diameter between 0.3 and 1 m) (Marinoni et al., 2008), while 

the potential source contribution function (PSCF) of Ashbaugh et al. (1985) was used in Chapter 2 to 

assess the source regions of PM10 (Tositti et al., 2013). None of these methods has been applied to 

radiotracers and to clarify the potential source regions of stratospheric intrusions.  

In particular, Bonasoni et al. (2000b) divided the domain 80°-20° N, 50°W-50° E into six a 

priori identified regions (Arctic, Atlantic Ocean, Continental Europe, Eastern Europe, 

Mediterranean Basin and Saharan-African region) and then evaluated the frequency of different air 

mass origins to the Mt. Cimone as a function of trajectory starting positions. After this study, all 

works related to atmospheric composition and air mass origin made use of this a priori classification 

(Balkanski et al., 2003; Fischer et al., 2003; Gobbi et al., 2003; Putaud et al., 2004; Marenco et al., 

2006; Cristofanelli et al., 2006, 2007, 2009). In Chapter 5 (Brattich et al., in preparation), a cluster 
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analysis of back trajectories was applied to study the main advection patterns at the site, and how 

the seasonality and trends of the transports might influence the compounds measured at Mt. 

Cimone. Cluster analysis of air mass trajectories can in fact provide the transport pathways but has 

difficulties locating their source regions (Stohl, 1996). Trajectory based receptor models such as 

potential source contribution function (PSCF) and residence time weighted concentrations (RTWC) 

have proven useful in identifying these source regions (Hopke et al., 1993). PSCF has been 

successfully and extensively used, for instance, to investigate the sources of atmospheric trace 

elements and particulate species such as sulphate, nitrate, ozone, black carbon and mercury (Poirot 

and Wishinski, 1986; Zeng and Hopke, 1988; Cheng et al., 1993; Stohl and Kromp-Kolb, 1994; 

Polissar et al., 1999, 2001a; Lin et al., 2001; Güllü et al., 2005; Wang et al., 2006; Eleftheriadis et 

al., 2009; Kong et al., 2013;), but also the transport of nitrogen oxides, carbon monoxide and ozone 

to the Alpine GAW stations Jungfraujoch, Zugspitze and Hohenpeissenberg (Germany), Sonnblick, 

and Mt. Krvavec (Slovenia) (Kaiser et al., 2007). The method has also been applied to locate the 

sources or source categories identified by multivariate receptor models, e.g., principal component 

analysis, positive matrix factorization of Paatero and Tapper (1994) or Henry’s UNMIX (1997) 

(Xie et al., 1999; Poirot et al., 2001; Polissar et al., 2001b; Cohen et al., 2010; Koçak et al., 2011). 

The major aims of this Chapter are to identify the source areas of ozone and atmospheric 

radionuclides 
7
Be (stratospheric-upper tropospheric) and 

210
Pb (crustal) and to study the major 

characteristics and influence of stratospheric air masses on the measurements at Mt. Cimone. 

This Chapter is divided in four sections and is organized as follows. Section 6.2 describes the 

measurement techniques used at Mt. Cimone, and the use of back trajectories and of the PSCF 

method used for the identification of the source regions, similar to the one previously used in 

Chapter 2, but with some additional improvements. Section 6.3 presents and discusses our major 

results, and is further divided in Subsection 6.3.1 which describes the source areas of atmospheric 

radiotracers and ozone measured at Mt. Cimone, and Subsection 6.3.2 where the source regions of 

high potential vorticity values and the mechanisms leading to stratospheric intrusions are analyzed. 

Finally section 6.4 draws the main conclusions of this Chapter. 

 

 

 

6.2 Material and methods 

Continuous monitoring of 
7
Be and 

210
Pb radionuclides at Mt. Cimone has been carried out since 

1998 till 2011, after isolated measurements were performed in 1996 and 1997. Details of PM10, 

210
Pb and 

7
Be sampling and measurements have already been given in Chapters 2 and 3. 



Influence of Stratospheric Air Masses on Radiotracers and Ozone at Mt. Cimone 

 

235 

Tropospheric O3 measurements at the station have been carried out continuously since 1996 by 

ISAC-CNR by using a UV-photometric analyzer (Dasibi 1108). The accuracy and the quality of the 

measurements (time sampling: 1-min, accuracy and precision: ± 2 ppb) are guaranteed within the 

GAW requirements. Tropospheric O3, as well as meteorological data such as pressure, temperature, 

relative humidity, wind speed and wind direction data have been downloaded at 

http://ds.data.jma.go.jp/gmd/wdcgg/ (World Data Centre for Greenhouse Gases, WDCGG). Before 

the analysis, all the data were averaged at the same time resolution of PM10 and radionuclides for 

statistical homogenization of data. 

In order to evaluate the origin of air masses arriving at Mt. Cimone, 4-day three-dimensional 

backward trajectories were calculated by means of the HYSPLIT model, version 4.8 (Draxler and 

Hess, 1997, 1998; Draxler, 1999; Draxler and Rolph, 2003).  

Gridded meteorological data from the NOAA/ARL website were used. NCEP/NCAR reanalysis 

data in format ARL are a large data set of global meteorological data stored with a 2.5° latitude-

longitude resolution, 17 pressure levels in a 6-h archive starting from 1948. These data derive from 

the operational series of computer forecasts and analyses undertaken by the National Center for 

Environmental Prediction (NCEP).  

Four trajectories for each day, arriving at the synoptic times (00, 06, 12 and 18 UTC) at the heights of 

1400, 2200 m and 3000 m asl were calculated, and the vertical movement of the air parcels was calculated 

from the vertical velocity fields (kinematic hypothesis, which has been observed to produce more realistic 

results as for the horizontal and vertical displacements of air masses (Fuelberg et al., 1996)).  

Global potential vorticity data stored on 6 hourly archives on 11 isentropic surfaces (270, 280, 

290, 300, 315, 330, 350, 400, 450, 550 and 650 K) were also available as a NCEP/NCAR reanalysis 

product at http://rda.ucar.edu/datasets/ds090.0/#metadata/detailed.html?_do=y. 

For each of the 96 endpoints of a trajectory, the PV is calculated by performing a 3-D nearest-

neighbor interpolation with the 11 isentropic PV levels of the NCEP reanalysis, from the latitude, 

longitude and potential temperature of each endpoint. 

Depicting the origin of the particle, back trajectories can be used to establish relationships between 

the sources of atmospheric trace substances and their receptors (Stohl, 1998). The accuracy and 

limitations of trajectory calculations have been addressed by several researchers (Merrill et al., 1985; 

Kahl et al., 1989; McQueen and Draxler, 1994; Stunder, 1996; Kahl, 1996; Stohl, 1998). It is in fact 

well known that the accuracy of an individual trajectory is limited by the temporal and spatial 

resolutions of meteorological observations, measurement errors, analysis errors and by any 

simplifying assumptions used in the trajectory model (Brankov et al., 1998). For instance, in his 

review, Stohl (1998) highlighted that the significance of analysis based on back trajectories is limited 
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by the uncertainties involved in analyzed meteorological fields and in the interpolation to trajectory 

position, as well as by the lack of representation of small-scale effects such as turbulence. Typical 

trajectory errors are about 10-20% of the travel distance, but depending on the meteorological 

situation individual trajectories can have much larger errors (Harris et al., 2005). Moreover, implicitly 

assuming that concentrations measured at the receptor site are smeared out along all the associated 

trajectories, the analysis of back trajectories is known to generate “ghost sources” in the wake of real 

emission sources (Wotawa and Kröger, 1999; Lupu and Maenhaut, 2002; Maione et al., 2008). Care 

is also needed in the interpretation of the results obtained from the analysis of back trajectories: the 

results of Vasconcelos et al. (1996a, b) investigating the spatial resolution of the method, highlighted 

that even if the angular resolution is good, the spatial resolution is poor. 

Potential errors in the individual trajectories are averaged out when considering a large number 

of back trajectories over a long time period. Although the several limitations applying to the use of 

the back trajectories approach hold also for the analyses of source-receptor relationships, it has been 

extensively used in a number of studies (e.g., Dorling and Davies, 1995; Bonasoni et al., 2000b; 

Wotawa et al., 2000; Aalto et al., 2002; Abdalmogith and Harrison, 2005; Hwang and Hopke, 2007; 

Riccio et al., 2007; Marinoni et al., 2008; Tarasova et al., 2009; Baker, 2010; Ebinghaus et al., 

2011; Martin et al., 2011; Tositti et al., 2013); a recent review of the studies using air-mass history 

to analyze atmospheric composition is available in Fleming et al. (2012). 

In this work the PSCF method originated from the residence time probability analysis (RTA) of 

Ashbaugh et al. (1985) was adopted. This method was developed to identify geographical regions 

giving rise to observed concentrations (Hopke et al., 1995). The concept of this method is to combine 

air mass back trajectories and atmospheric composition data to produce conditional probabilities over 

the region, where the region of interest is subdivided into a number of grid cells. The conditional 

probability function describes the spatial distribution of probable geographical source locations by using 

trajectories. The number of trajectory endpoints falling within grid cell i,j over the whole set of samples, 

ni,j are counted. Then, the subset of trajectories associated with high concentration samples are identified 

by comparing the measured concentrations to a threshold level and the number of endpoints in each grid 

cell associated to these high concentrations, mi,j, is determined. The PSCF for the grid cell i,j is given by 

(detailed derivation can be found in Chapter 1, Section 1.3.2, as well as in Hopke et al., 1995) 

         
    

    
 
                                                          

                            
 (6.1). 

PSCF is an indication of the probability that a given region contributed to those measurements whose 

concentration at the receptor was higher than the selected threshold. It should be stressed that the result 

does not yield the emission rate for a pollutant but rather the preferred source region or transport pathways 

to the site. Hopke et al. (1995) suggested fixing the threshold level to the average value, whereas other 
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studies such as Crawford et al. (2007) used the top 25% of measurements. In this work the threshold was 

chosen at the 50
th
 percentile and the study region was discretized into square grid cells of 1.0° x 1.0°.  

It is likely that a problem arises because of grid cells crossed by a small number of trajectories. 

Having poor counting statistics often results in false positive if trajectories travelling over the true 

source areas extend beyond these sources. Similarly to Chapter 2, (Tositti et al., 2013), in order to 

remove small scale variations and to minimize the influence of the grid cells with small ni,j , the results 

were filtered using a binomial test with a 95% confidence level (Vasconcelos et al., 1996a, b). In 

particular, the conditional probabilities that did not significantly exceed 50% were set to zero, where 

the value of 50% was chosen in correspondence with the threshold values for “high” concentrations, 

which was defined at the 50
th

 percentile. In addition to this, grid cells that were visited only once 

during the study period were removed from the probability field before the analysis. 

 

 

6.3 Results and discussion 

6.3.1 Source areas of atmospheric radiotracers and ozone 

Atmospheric radiotracers have been traditionally used in the study of STE and in the assessment of 

the stratospheric influence on O3 increases (Reiter et al., 1983; Arimoto et al., 1999; Monks, 2000; 

Wotawa et al., 2000; Stohl et al., 2000; Li et al., 2002; Cristofanelli et al., 2003; Zanis et al., 

2003b; Liu et al., 2004; Gerasopoulos et al., 2005; Carvalho et al., 2010; Cuevas et al., 2013), also 

at Mt. Cimone where the studies of stratospheric intrusions have a long-term tradition (Bonasoni et 

al., 1999, 2000a, b; Cristofanelli et al., 2006., 2009). In this work the PSCF analysis was applied in 

order to locate the geographical areas which can be considered as a “source” of high 
7
Be, 

210
Pb, 

ratio 
7
Be/

210
Pb and O3. Figure 6.1 shows the four conditional probability maps of 

7
Be, 

210
Pb, ratio 

7
Be/

210
Pb and O3, highlighting the main areas of provenance of the air when high concentrations of 

these tracers were registered at Mt. Cimone. The scale goes from 0.50 to 1 as the high concentration 

days were chosen as the ones whose concentrations were equal to or above the 50
th
 percentile.  
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Figure 6.1(a,b,c,d) Conditional probability maps of a) 
7
Be; b) 

210
Pb; c) 

7
Be/

210
Pb; d) O3, evaluated by 

eqn. (6.1) Only significant sources are shown, while the non-significant ones were filtered by using a binomial 

test at a 95% confidence level. Scales go from 0.5 to 1 as the high concentration days were chosen as the ones 

with values equal to or above the 50
th
 percentile. Grid cells that were visited only once during the study period 

were also removed from the probability field before the analysis. 

 

The main areas associated to high 
7
Be are located in the Arctic region as can be seen in Figure 

6.1a, whose contribution is not surprising as this origin of the air mass has been already linked to 

STE (high 
7
Be, low 

210
Pb) by many authors (e.g., Bonasoni et al., 1999, 2000a, b), Northern Russia 

and Finland, North America. In previous Chapter 5 it has been in fact highlighted that Arctic flows 

are dry descending air masses arriving from high latitudes; in addition they are associated with low 

tropopause height in the study area. Moreover these air flows may interact with the Alps, thus they 

can be connected to STE in several ways. Interestingly, apart from likely “ghost sources” located 

east of the Canary Islands and east of Morocco, where a high conditional probability is located due 

to only few back trajectories during high concentration events, a high conditional probability is also 

located in Northern Africa, a region which so far has been connected to high 
7
Be events only by few 

authors (Hernández et al., 2008; Dueñas et al., 2011). Menut et al. (2009) associated an increase in 

7
Be, 

210
Pb, 

137
Cs with one intense African dust event in France.  
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As far as 
210

Pb is concerned (Figure 6.1b), its main source areas are very similar to those of PM10 

studied in Chapter 2 (Tositti et al., 2013); in fact PM10 and 
210

Pb share a large part of the source term (the 

Earth’s crust), differently from 
7
Be which originates mainly in the stratosphere-upper troposphere. 

Important contributions come from Eastern Europe and Northern Africa, whereas surrounding Italian and 

French regions show a reduced contribution. Recalling what we previously observed in Chapter 3 (Tositti 

et al., 2014) about the decoupling of 
210

Pb and PM10 summer maxima, we have carefully examined and 

compared their source regions, especially during the summer season when this difference was noted. In 

particular, we observe that while for PM10 there is a relevant contribution from Northern Africa (Chapter 

2; Tositti et al., 2013), due to Saharan Dust transport, for 
210

Pb this source is important but seems to 

contribute to a lesser extent, probably since North Africa is a relevant contributor of coarse-sized particles 

more than fine-sized particles. Moreover, for PM10 the contribution of surrounding regions is more 

relevant (Chapter 2; Tositti et al., 2013), suggesting a possible effect of particulate of secondary origin, 

able to influence PM10 increase but not 
210

Pb. Finally, as Marinoni et al. (2008) observed, during summer 

a high contribution for PM10 is observed coming from the Iberian Peninsula: this region is frequently 

affected by forest fires and biomass burning during the summer season, and these processes are again able 

to affect PM10 concentrations rather than 
210

Pb. The North African region seems an important contributor 

both for 
7
Be as well as for 

210
Pb: our results seem to indicate that both uplift of crustal particles and 

downward movement from the upper troposphere-lower stratosphere can be present when the air is 

coming from this region. This last mechanism might be responsible of 
7
Be increases connected to Saharan 

Dust events. It is worth to note in this framework that the application of the filter which removed 

endpoints visited only once but linked to high concentrations recorded at Mt. Cimone was able to reduce 

the number of “ghost sources” with respect to Chapter 2 (Tositti et al., 2013), such as the ones east of the 

Canary Islands and Morocco and the ones over the Gulf of Sirte.  

As once produced, both 
7
Be and 

210
Pb radionuclides rapidly attach to submicron-sized particles 

(Papastefanou and Ioannidou, 1995; Winkler et al., 1998; Gaffney et al., 2004; Ioannidou et al., 2005), 

they share the same fate being removed mainly by wet and secondarily by dry deposition (Feely et 

al., 1989; Kulan et al., 2006); their ratio 
7
Be/

210
Pb has been often used to gain insights into vertical 

motions of the air masses as well as on convective activity in the troposphere (Brost et al., 1991; Koch 

et al., 1996; WMO, 2001; Lee et al., 2004; Tositti et al., 2004; Lee et al., 2007). The source areas of 

7
Be/

210
Pb (Figure 6.1c) are located far away from the measurement site, in the Arctic region, in North 

America and in the Atlantic Ocean (as already showed by Balkanski et al. (1993) and Baskaran (2011), 

the flux of 
222

Rn from the oceans is negligible). Interestingly, these areas in the Atlantic which are 

highlighted as source of high 
7
Be and low 

210
Pb roughly correspond to the tropopause discontinuity in 

mid-latitude regions (a “belt” around 30 degrees is well seen) (Steinmann et al., 2013), as well as to a 
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preferred region for cyclone formation (e.g., James et al., 2003a; Stohl et al., 2003). North America 

and Atlantic regions also correspond to locations where the polar jet stream is generally stronger. 

These areas will be compared to high potential vorticity regions afterwards in this Chapter. 

Ozone source regions (Figure 6.1d) are more similar to 
210

Pb than to 
7
Be, even if the contribution of the 

surrounding regions seems important to this gas. Surrounding regions such as the Po Basin, southern 

Germany, France, greatly contribute to high concentrations of this gas, similarly to what has been 

previously shown by Wotawa et al. (2000) by means of another statistical method applied to trajectories. 

This does not mean, however, that increases of ozone cannot have a stratospheric influence as highlighted 

for instance in Figure 6.2(a,b), where the PSCF analysis on ozone was carried on separately during the 

cold (November to February) (Figure 6.2a) and warm season (May to August) (Figure 6.2b); on the 

average, however, these events contribute limitedly (but not negligibly) to the total ozone increases, as 

already highlighted by some authors (Bonasoni et al., 1999; Stohl et al., 2000; Wotawa et al., 2000; 

Bonasoni et al., 2000a,b; Monks, 2000; Zanis et al., 2003b; Stohl et al., 2003; Cristofanelli et al., 2006). 

The contribution of surrounding regions is, as expected, higher during the warm season. 

 

 

Figure 6.2(a,b,c,d) Same as Figure 6.1, but for O3 during the cold season (November, December, January 

and February) (a) and during the warm season (May, June, July, August) (b) and for 
210

Pb during the cold 

(c) and warm season (d). 
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Figure 6.3(a,b,c,d) Same as Figure 6.1, but for 
7
Be during the cold season (November, December, January 

and February) (a) and during the warm season (May, June, July, August) (b) and for 
7
Be/

210
Pb during the 

cold (c) and warm season (d). 

 

Figure 6.2(c,d) and Figure 6.3(a,b,cd) report the same “seasonal” analysis for 
210

Pb (Figure 6.2), 
7
Be 

(Figure 6.3a,b), and 
7
Be/

210
Pb (Figure 6.3c,d). 

210
Pb transport from North Africa seems to be more 

important during the warm season, while transport from Eastern Europe is on the contrary dominant 

during the cold season. Interestingly, during the warm season transport from North Africa seems to be 

important also for 
7
Be transport, whereas during the cold season 

7
Be transport is dominated by long-

range transports from the Arctic and North American regions. Even if both 
7
Be and 

210
Pb are transported 

almost simultaneously from North Africa, similar seasonal patterns can be observed also in the 

7
Be/

210
Pb transport. The transports from North Atlantic and North Africa contribute more importantly to 

this tracer during the warm season. Similar to what previously observed in Chapter 4 by means of the 

GMI CTM, it is clear that in general the cold season is dominated by long-range transports while on the 

contrary during the warm season short-range transports are more important. This seasonal pattern of the 

transports to Mt. Cimone corresponds to what has been observed more generally in previous Chapter 5 

(Brattich et al., in preparation). Previously, also Marinoni et al. (2008) observed that long-range 

transport processes are more likely to produce an effect on aerosol properties during the cold season, 
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when the measurement site is always above the boundary layer; on the contrary, during the warm 

season, stronger contributions from the polluted regional boundary layer due to less aged air masses are 

possible. They observed that while during the cold season O3 is almost uncorrelated with black carbon 

and fine-sized particles, due to the transport of aged (and well processed) air masses to the measurement 

site, during the warm season O3 is instead highly correlated with black carbon and fine particles, 

because of the transport of polluted air masses rich in photochemically produced O3. During the warm 

season, the transport of air masses from the lower troposphere is very important in determining black 

carbon and fine particles concentrations at the site; the vertical transport of polluted air masses from the 

lower troposphere is favoured by wind breeze circulations typical of summer fair weather conditions. 

From our analysis the findings of Hernández et al. (2008), Menut et al. (2009), Dueñas et al. 

(2011), who associated transport from Northern Africa with increases in both 
7
Be and 

210
Pb are 

corroborated. In fact, transport from Northern Africa is connected to two different mechanisms, 

which are independent but may be mixed in single episodes: a strong downdraft from the upper 

troposphere and soil dust uplift. This way, 
7
Be can be scavenged by African dust and transported 

with it. Correspondingly, ozone transported from upper levels concurrently with 
7
Be is depleted 

when mixed with the dust laden air masses. Figure 6.4, representing source regions of 
7
Be/PM10, 

further highlights that Northern Africa is a source of both 
7
Be and dust (PM10). Recently, Belmaker 

et al. (2011) pointed out that in desert areas dry deposition is the major supply of “newly” produced 

cosmogenic beryllium. They observed that the concentration of 
7
Be during a major dust storm was 

more than an order of magnitude higher than the regular average, and suggested that the higher the 

overall dust transport the higher cosmogenic 
7
Be is scavenged. However, the physical mechanism at 

the basis of these findings has yet to be fully clarified. 

 

 

Figure 6.4(a,b,c,d) Same as Figure 6.1, but for 
7
Be/PM10. 
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Figure 6.5(a,b,c,d) shows the mean heights of the back trajectories when high values (higher than 

the 75
th
 percentile) are registered at Mt. Cimone. It is clearly shown that high altitude back trajectories 

originating in the lower stratosphere come from the Arctic (where the tropopause is also lower due to 

limited convective overturning) and North America/Atlantic regions, with special strength over 

Greenland, whereas the lowest trajectories are coming from the lowest latitude regions. The highest 

heights are related to high 
7
Be/

210
Pb as it was expected, pointing out once more the importance of this 

tracer in the understanding of vertical motions and in connection with STE events.  

 

 

Figure 6.5(a,b,c,d) Maps of mean back trajectory height when concentrations higher than the 75
th
 percentile 

are registered at Mt. Cimone. Maps refer to: a) 
7
Be; b) 

210
Pb; c) 

7
Be/

210
Pb; d) O3.  

 

6.3.2 Analysis of potential vorticity values 

Potential vorticity has been often used as a tracer of stratospheric air in the troposphere (e.g., 

Beekmann et al., 1994; Poulida et al., 1996; Cristofanelli et al., 2006). In fact, the strong positive 

vertical gradient of potential temperature produced by the ozone layer in the stratosphere is such 

that the potential vorticity is there several orders of magnitude higher than in troposphere 

(Beekmann et al., 1994). In the atmosphere above 350 hPa, PV rapidly increases with height, 
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reaching typical values ranging from 1.0 pvu
2
 (Danielsen, 1968) to 3.5 pvu (Hoerling et al., 1991; 

Appenzeller et al., 1996). 

Some degree of arbitrariness in the choice of the potential vorticity threshold for stratospheric air 

exist: while Cuevas et al. (2013), for instance, used the low value of 1.0 pvu, Cristofanelli et al. (2006) 

considered the higher, even if still low, value of 1.6 pvu, justified by the fact that the trajectories may 

not go back all the way deeply into the stratosphere because of their limited length and also because of 

possible trajectory errors, while commonly the dynamical tropopause is represented by the 2 pvu surface 

(Holton et al., 1995; Appenzeller et al., 1996; James et al., 2003b). It has to be known, however, that 

high PV values can also be generated by diabatic processes in the lower troposphere (such as strong 

nighttime cooling at the surface or diabatic heating due to the condensation of water vapor) 

(Cristofanelli et al., 2006) and as such, only heights higher than 5000 m should be considered in order to 

be sure to identify stratospheric air masses (Olsen et al., 2000). In this study we use the 1.6 pvu 

threshold but a sensitivity analysis is carried on afterwards to understand if and how the choice of the 

threshold might influence the result. 

The number of times a region was linked to a potential vorticity greater than 1.6 pvu is reported 

in the map of Figure 6.6, from the PV values associated with each trajectory endpoint. The north 

Atlantic region, which has been already connected to STE events as a preferred region for cyclone 

formation (Stohl et al., 2003; James et al., 2003a; Cuevas et al., 2013), and of large scale 

subsidence connected to the descending branch of the Hadley cell is highlighted as a potential 

source region of high PV. This region was in fact also observed as an area of high 
7
Be/

210
Pb levels, 

especially during the warm season. North Africa is also again observed as a high PV source, 

confirming that this region is not only associated with uplift from the Earth’s crust, but also to 

subsidence from the upper troposphere as already reported by Dueñas et al. (2011). Most of the 

locations in this map can be related to lee cyclogenesis (Alps and Atlas mountains) and to the areas 

where the resulting depressions are displaced (south of the Atlas to Tunisia, the track of the 

cyclones formed in the lee of the Atlas). Figure 6.7 reports a map of all the trajectories having a 

potential vorticity greater than 1.6 pvu at a height higher than 5 km. Even if the locations associated 

with Northern Africa and Atlas mountains are lost in this map, because in these regions the 

trajectories only sporadically reach heights higher than 5000 m as previously observed in Figure 

6.5, the contour of the Alps is revealed in this Figure and the importance of lee cyclogenesis as a 

STE promoting mechanism is well highlighted. Of course, we are aware that the resolution of the 

NCEP/NCAR reanalysis meteorological input fields represent large flows and cannot adequately 

resolve local to mesoscale phenomena such as topographically influenced flow; however, our 

                                                             
2 1 pvu = 1 x 10-6 m2 K kg-1 s-1 
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results point to an indication that the Alpine cyclogenetic activity, and in general lee cyclogenesis, 

is connected to STE, as observed by, e.g., Tosi et al. (1987), Aebischer and Schär (1997), Stohl et 

al. (2000). Nevertheless, mesoscale and local meteorological effects which we cannot resolve with 

this method, have already been observed to be very important for variations of PM10, 
7
Be and 

210
Pb 

(Lozano et al., 2013). 

 

 

Figure 6.6 Map showing the number of times of a potential vorticity greater than 1.6 pvu was observed 

along the trajectories (“source regions” of high PV). 

 

 

Figure 6.7 Map showing the heights of the trajectories associated with heights greater than 5000 m and to 

potential vorticity higher than 1.6 pvu. 
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The time spent between the moment a trajectory crosses a region of PV greater than 1.6 pvu and 

the time of arrival to Mt Cimone lies mainly in the range 24 to 72 hours, even if there are also some 

cases reaching the upper and lower extremes (the latter corresponding to a stratospheric intrusion 

just above the measurement site). These time intervals, along with 
7
Be/

210
Pb measurements and PV 

data are plotted against each other in Figure 6.8. Papastefanou and Ioannidou (1995) estimated 

residence times for 
7
Be-aerosols varying between 7.4 and 8.9 days (average 8 days), while 

according to Liu et al. (2001) mean residence times in the troposphere are about 20 days for 
7
Be 

(17 days including loss from radioactive decay). In any case, the mean residence time of 
7
Be in the 

atmosphere is much longer than the time spent between the trajectory crossed the PV threshold of 

1.6 pvu and the time of the measurement at Mt. Cimone. Only a few data belong to the range 72 to 

96 hours, and for this reason it is speculated that considering longer trajectories is not going to add 

further insight to the analysis.  

 

 

Figure 6.8 3-d scatterplot representing as X coordinate 
7
Be/

210
Pb measurements at Mt. Cimone, Y 

coordinate PV data higher than 1.6 pvu and Z coordinate time interval between the crossing of the 1.6 pvu 

surface and the moment of the arrival of the trajectory at Mt. Cimone. Grey dots represent the projections on 

each surface.  
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In order to examine how the results depend on the selection of the threshold used for PV, Figure 

6.9 presents the results obtained with the different thresholds of 1 pvu and 2 pvu. As it could be 

expected, the threshold of 1 pvu seems too low to be considered, while the results obtained 

selecting the threshold of 2 pvu can be well compared to those with the threshold of 1.6 pvu: once 

more the storm track regions such as the North Atlantic and the regions connected to lee 

cyclogenesis are highlighted as linked to STE processes.  

 

 

Figure 6.9(a,b). Map showing the number of times a potential vorticity greater than 1 pvu (a) and 2 pvu (b) 

was observed along the trajectories. 

 

 

6.4. Summary and conclusion 

The major scope of this Chapter was to examine the source areas connected to high concentrations 

of 
7
Be, 

210
Pb and O3 in order to gain a better understanding of the processes promoting their 

increases, and of the source regions of SI events. 

The PSCF analysis was used to this scope. The main source areas of 
7
Be are located in the Arctic 

region, in Northern Russia, Finland and North America. Increases of 
7
Be are also connected to air 

masses originating in Northern Africa. 
210

Pb originates mainly in Eastern Europe and Northern Africa, 

with a limited contribution of surrounding Italian and French regions.  

Both 
210

Pb and PM10 experience a maximum in summertime, but their maxima are decoupled 

which points out to a possible difference in their sources. While for PM10 there is a relevant 

contribution from Northern Africa, due to Saharan Dust transport, for 
210

Pb this source is important 

but seems to contribute to a lesser extent, probably since North Africa is a relevant contributor of 

coarse-sized particles more than fine-sized particles. Moreover, for PM10 the contribution of 

surrounding regions is more relevant than for 
210

Pb, suggesting a possible effect of particulate of 
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secondary origin. Finally, during summer a high contribution for PM10 is observed from the Iberian 

Peninsula, a region which during this season is frequently affected by forest fires and biomass 

burning, processes again able to affect more PM10 concentrations rather than 
210

Pb. 

The role of the North African region as contributing both to 
210

Pb and
 7
Be increases is understood in 

terms of simultaneous uplift of crustal particles and downward movements from the upper troposphere-

lower stratosphere. The ratio 
7
Be/

210
Pb, useful to understand the vertical motions of the air, originates 

far away from the measurement site, in the Arctic region, in North America and in the Atlantic region. 

This last area corresponds to the tropopause discontinuity in the mid-latitudes, as well as to a preferred 

region for cyclone formation. North America and Atlantic region also correspond to preferred locations 

for a stronger polar jet-stream. The source regions of O3 are similar to those of 
210

Pb, even if the 

surrounding region, such as the Po Basin, France and southern Germany seem to give important 

contributions to its increase. A separate analysis for the cold and warm periods highlighted that the 

contributions of the surrounding regions is higher during the warm season. The PSCF analysis by 

season applied to 
210

Pb show that the contribution of North Africa dominates during the warm season, 

while transport from Eastern Europe dominates during the cold season. As for 
7
Be, long range transports 

from the Arctic and North American regions are more important during the cold period, whereas during 

the warm season the transport from Northern Africa is important also to 
7
Be increases. Observing the 

seasonal pattern of 
7
Be/

210
Pb transport, it is clear that while transports from North Atlantic and North 

Africa dominate the warm season, transports from Arctic, North American and Eastern Europe interest 

mainly the cold period. It is clear that in general the cold season is dominated by long-range transports 

while on the contrary during the warm season short-range transports are more important.  

The analysis of the mean heights of the back trajectories when high concentrations/activities are 

registered at Mt. Cimone showed that the trajectories travelled at higher altitudes on average the 

higher the latitudes: high altitude back trajectories originate mainly in the Arctic and North 

America/Atlantic regions, with special strength over Greenland, whereas the lowest trajectories are 

coming from the lowest latitude regions. In particular, the highest heights are connected to high 

7
Be/

210
Pb, highlighting once more the importance of this tracer in the understanding of vertical 

motions and in connection with STE events.  

A potential vorticity analysis linked to the trajectories provided information on the contribution 

of the lower stratosphere/upper troposphere to the study site. The North Atlantic is highlighted as a 

potential source region of high PV; this confirms that STE events are promoted in this region. 

Importantly, also northern Africa is again observed in this analysis, highlighting once more that this 

region can give rise not only to particles originating from the Earth’s crust but also to radionuclides 

transported by subsidence from the upper troposphere. Most of the locations related to high PV 
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values are also linked to lee cyclogenesis and to the areas where the resulting depressions are 

displaced. The importance of lee cyclogenesis as a STE promoting mechanisms is especially 

highlighted when observing the heights of the trajectories having high potential vorticity and 

heights higher than 5000 m. 

The travelling time spent between the trajectory cross of the high PV threshold and the time of 

the measurement at Mt. Cimone fall mainly in the range 24-72 hours. This suggests that it should 

not be needed to compute longer trajectories. 

Finally, a sensitivity analysis carried out to understand how the choice of the threshold value for 

potential vorticity might influence the results showed a similar outcome for 1.6 and 2 pvu. The relevance 

of the North Atlantic storm track and lee cyclogenesis regions is highlighted using both thresholds. 
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7.1. Introduction
1
 

Air pollution has long been recognized as a serious concern due to its negative influence on the 

biotic and abiotic compartments of the Earth at both small and large scales, including climatic 

change. In the last two decades airborne Particulate Matter (PM) has increasingly attracted the 

interest of the scientific community because, in spite of the ever improving efforts in abatement 

technologies, its concentration is locally still very high often exceeding the thresholds. Effects of 

PM hazards include damage to the environment and cultural heritage (Camuffo et al., 2001; Godoi 

et al., 2006; Nava et al., 2010) through direct and indirect effects such as respectively alteration of 

atmospheric chemistry and reactivity, climate change and biogeochemical cycles (Charlson et al., 

1992; Finlayson-Pitts and Pitts, 1999; Usher et al., 2003; Seinfeld and Pandis, 2006; Forster et al., 

2007) as well as adverse impacts on human health (Davidson et al., 2005; Pope and Dockery, 2006; 

Pope et al., 2009).  

The persistence of high levels of atmospheric pollution arises from a number of figures spanning 

from a generalized and huge increase in all the types of transportation from vehicles to maritime and 

aviation (EEA, 2011), building, soil use, urbanization and atmospheric circulation at every space and 

time scale. In this framework complexity in aerosol chemistry and phenomenology (Van Dingenen et 

al., 2004; Putaud et al., 2004; Prather et al., 2008; Putaud et al., 2010; Carslaw et al., 2010; Colb and 

Worsnop, 2012) linking PM composition to its peculiar and transient mix of sources are still a matter 

of basic research. Although the formation mechanisms and chemical characterization of PM are still 

quite challenging, valuable tools for the identification of the emission spectrum over a location have 

long been available. Source apportionment techniques based upon chemical speciation and 

                                                             
1
 This chapter consists of a paper by Tositti L. (Dept. of Chemistry, Università di Bologna), Brattich E. (Dept. of 

Biological, Geological and Environmental Sciences, Università di Bologna), Masiol M. (Dept. of Environmental 

Sciences, Informatics and Statistics, Università Ca’ Foscari Venezia; now Marie Curie Research Fellow at GEES, 

University of Birmingham, UK), Baldacci D. (Dept. of Chemistry, Università di Bologna), Ceccato D. (LNL-INFN 

Legnaro & Dept. of Physics, Università di Padova), Parmeggiani S. (Dept. of Chemistry, Università di Bologna), 

Stracquadanio M. (ENEA Bologna), Zappoli S. (Dept. of Industrial Chemistry, Università di Bologna), 2014. Source 

apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy). Environmental Science 

and Pollution Research 21, 872-890. doi:10.1007/s11356-013-1911-7 
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subsequent receptor modeling provide in facts a fundamental tool in order to obtain quantitative and 

reliable information about the number and types of sources of PM active in a given location. Such 

information is of crucial importance to understand the potential emission sources and to take 

corrective decisions within environmental policies in a given area. In the last decade the use of these 

tools has provided an ever increasing application with the aim of solving PM sources mix in a 

innumerable series of cases (see for example, Harrison et al., 1997; Querol et al., 2001; Marcazzan et 

al., 2003; Vallius et al., 2005; Kim et al., 2003a;b; Viana et al., 2007; Viana et al., 2008a;b and 

references therein; Yin et al., 2010; Masiol et al., 2012a;b; Pant and Harrison, 2012).  

If the choice of PM chemical species to characterize is fairly unlimited and to some extent arbitrary, 

though always experimentally demanding, data treatments enabling source apportionment  include a 

relatively limited number of statistical techniques among which the most popular and effective are 

presently the Principal Component Analysis followed by Multi-Linear Regression Analysis (PCA/MLRA, 

Thurston and Spengler, 1985; Viana et al., 2006; Almeida et al., 2006; Viana et al., 2008a;b;) and the 

Positive Matrix Factorization (PMF, Paatero and Tapper, 1994; Lee et al., 1999; Kim et al., 2003a,b; Lee 

et al., 2008).  

In this Chapter we present data of chemical speciation based on major inorganic ions, trace 

elements and carbonaceous matter collected in Bologna within the framework of the national 

project SITECOS (Integrated Study on national Territory for the characterization and the COntrol 

on atmospheric pollutantS), covering simultaneous and coherent PM monitoring in ten locations of 

the Italian peninsula in association with the large meteoclimatic and environmental differences from 

north to south (Amodio et al., 2007). Bologna was one of the stations hosting SITECOS monitoring 

activity in the Po Valley. The whole Po Valley is recognized as one of the most polluted regions in 

Europe due to highest level of population and industrial density. Moreover, automotive, railing and 

flying transports have been regarded as important emission sources for this area (EC, 2004). 

Extensive agricultural activity and related food industry is highly developed in the whole region.  

The air quality in the Po Valley is usually very poor not only due to the aforementioned 

anthropogenic emissions, but also to its topography. Alps and Apennines mountain chains act as a 

shield against atmospheric circulation, leading to weak winds, low mixing heights and prolonged 

atmospheric stabilities, causing air mass stagnation and reduced pollutant dispersal both in the cold 

(extreme PM average concentrations) and in the warm (extreme photosmog levels) seasons.  

Several studies on PM composition and source identification have been carried out in various 

urban locations of the Po Valley, e.g., in Turin (Gilli et al., 2007), Milan (Marcazzan et al., 2003; 

Lonati et al., 2005), Venice-Mestre (Rampazzo et al., 2008), Ispra (Rodríguez et al., 2005) and 

Bologna (Matta et al., 2002). Still the whole region is a sort of large-scale laboratory deserving 
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attention and efforts by the scientific community. A recent overview on receptor model techniques, 

European studies and sources can be found in Belis et al. (2013). 

Bologna (44°29’ N; 11°20’ E) (Figure 7.1) is a mid-size city (380 000 inhabitants) reaching one 

million people including the metropolitan area. The territory is not directly affected by large scale 

industrial facilities, however a recently upgraded municipal waste incinerator is active in the town 

outskirts and mechanical and food manufactures are densely present in the whole area, together with 

agricultural activities. Due to its strategic location at the crossroad between north and south of Italy as 

well as of the western and eastern sides of the Po Valley, it is heavily interested by large scale 

transportation (railway and aviation) but it is mainly affected by local and long-range light and heavy 

duty traffic. It is worth noting that besides the urban traffic, Bologna is an important crossroads 

between North and South Italy; moreover it is surrounded by much trafficked orbital roads. 

 

 

Figure 7.1 Map and location of Bologna (44°29’ N, 11°20’E) in the Italian Po Valley (Planiglobe, kk&w - 

digital cartography). 

 

This Chapter mainly aims to evaluate the source contributions in an urban background site in Bologna 

by: (i) detecting the seasonal variations in PM chemical composition; (ii) identifying and quantifying the 

main emission sources using PCA/MLRA (Viana et al., 2006) and PMF (Paatero and Tapper, 1994; 

Paatero, 1997; 1999) receptor modeling techniques; (iii) comparing the source apportionment results, and 
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(iv) evaluating the impact of long range transport due to Saharan dust outbreaks. The results aim at 

providing a clear and quantitative knowledge of the main sources of airborne particles, enhancing the 

effectiveness of further control policies. Remarkably though several papers have been published about 

Bologna airshed and its particulate matter, as far as the authors are aware, this is the first source 

apportionment study and for the first time trace elements have been accounted for. 

 

 

7.2. Material and Methods 

An urban background site (high density residential area, distance > 50 m from major streets) was placed 

in the courtyard of the Chemistry Dept., Bologna University, near the city center. PM10 and PM2.5 were 

sampled on a daily simultaneous basis (24 h) in two main periods: a winter campaign and a summer 

campaign for a total of 84 days in 2006. Sampling was continuous within each campaign. Two 

preliminary short term campaigns were carried out in 2005: a very short campaign (only 9 samples) was 

carried out during the summer 2005, in which only PM2.5 was sampled, whereas a simultaneous PM10 

and PM2.5 campaign was carried out during autumn 2005. Owing to the different experimental design 

these data could not be elaborated together with the former data. More details about the periods, the 

sampling and the analyses carried on the samples during the four campaigns are available in Table 7.1.  

 

 

Table 7.1 Details about the sampling campaigns and the analyses carried on the sampled filters. 

Campaign Sampled Fraction Filter Type  

 

Type of analyses 

Summer 2005 

07/18-07/28/05 

 

PM2.5 Quartz fiber filter 

Ø 47 mm 

½ filter for inorganic ions (IC) 

¼ filter EC/OC (TGA) 

 

Autumn 2005 

09/26-10/19/05 

 

 

 

 

PM2.5 

 

 

PM10 

 

Quartz fiber filter 

Ø 47 mm 

 

PTFE with support ring 

Ø 47 mm 

 

¼ filter for metals (ICP-MS) 

¼ filter for inorganic ions (IC) 

 

 

Winter 2006 

01/23-03/05/03/06 

 

 

PM2.5 

 

Quartz fiber filter 

Ø 47 mm 

 

 

¼ filter EC/OC (CHN) 

¼ filter inorganic ions (IC) 

PM10 PTFE with support ring 

Ø 47 mm 

whole filter for elements (PIXE) 

 

Summer 2006 

06/20/-07/20/06 

 

PM2.5 

 

Quartz fiber filter 

Ø 47 mm 

 

 

¼ filter EC/OC (CHN) 

¼ filter TC (CHN) 

 

PM10 PTFE with support ring 

Ø 47 mm 

whole filter for elements (PIXE) 
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Samplings were daily performed according to European standard EN 14907 (CEN, 2005) using a 

HYDRA Dual (FAI, Italy) low volume sampler and started at midnight. PM10 was collected on PTFE 

(Whatman with support ring, 2 µm, Ø 47 mm) while PM2.5 was collected on quartz fiber filters 

(Schleicher and Schuell, Germany, Ø 47 mm) in agreement with SITECOS shared sampling strategy.  

Blank filter mass and PM mass load were determined gravimetrically after 48 hours conditioning 

at constant temperature and relative humidity in a drier. Filter weights were obtained as the average 

of at least three measurements using a microbalance (nominal precision 1 µg). Each PM2.5 filter was 

cut in three aliquots. One quarter of the filter was sonicated in ultrapure water for 30 minutes and 

subsequently analyzed by isocratic ion chromatography with a Dionex ICS-90 for the determination 

of five major inorganic cations (NH4
+
, Na

+
, Mg

2+
, K

+
 and Ca

2+
) and 3 anions (Cl

-
, NO3

-
, SO4

2-
). 

Cation setup: precolumn, CG12A, column CS12A 4 μm; methanesulfonic acid (20 mM) as eluant. 

Anion set-up: precolumn, AG14A; column, AS14A 7 μm; Na2CO3 (8 mM) and NaHCO3 (1 mM) as 

eluant.  

The second aliquot was analyzed for Total Carbon (TC) using an elemental analyser (CHN Flash 

Combustion, Termoquest, Milano), coupled to a muffle pretreatment (Nabertherm, Lilienthal) for 2 

hours at 450°C. The collected samples were then analyzed for elemental carbon with a complete 

oxidation of OC at 350°C for 3 hours and 30 minutes. The third aliquot was stored for further 

analyses. Only for the autumn 2005 campaign, ICP-MS (Element 2 double focusing, with an HNO3 

pH 1.5 filter extraction) elemental analyses were performed on this third aliquot.  

PM10 samples on PTFE membranes were analyzed by Particle Induced X-Ray Emission (PIXE) at 

LNL-INFN laboratories (Padua, Italy) for the non-destructive quantitative determination of 19 elements 

(Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Pb, P). PIXE set-up was described in 

detail in Mittner et al. (1996) and involves a 1.8 MeV proton beam and a low-energy germanium detector. 

X-ray spectra from PIXE were fitted using GUPIX software package (Maxwell et al., 1995) to obtain 

concentration, minimum detection limits and % fit error for each element in each sample. 

Filter blanks and field blanks were analysed together with the samples in order to subtract their 

contribution to samples. Detection limit (LOD) was calculated as LOD = bx  + 3.14 σb with  as 

the arithmetic mean of the analyte concentration in the blanks and σb as its standard deviation. 

Experimental data lower than LOD were rejected at first and then substituted by LOD/2 only before 

applying multivariate statistical analyses, whereas data greater than LOD were subtracted by . 

Experimental uncertainty (RDS) was detected following Miller and Miller (1993); all the 

uncertainties were added up following the rules for error propagation. The relative percent error was 

in the range 3% (for Na
+
) and 13% (for Mg

++
). 

bx

bx
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For ion chromatography, quality control was carried out by analyzing the synthetic rain water 

BCR®-408 and BCR®-409 (IRMM, Community Bureau of Reference of the European 

Community) certified reference materials. The quality and the accuracy of quantitative PIXE 

analyses were checked with NIST SRM 2783 Air Particulate thin film standard on Filter Media. 

The influence of external PM contributions from African dust outbreaks over Bologna was 

investigated by the reconstruction of air mass backward trajectories using NOAA HYSPLIT v 4.9 

model (Draxler, 1999; Rolph, 2003; Draxler and Rolph, 2011). HYSPLIT set-up: starting at 00:00 h 

local time, at 50, 500, 1000 m AGL, duration -90 h, 6 h step, model vertical velocity, GDAS1 

meteorological data fields input data. 

 

 

7.3. Results and Discussion 

7.3.1 PM levels 

A preliminary explorative data analysis was performed for each single campaign. Results are 

summarized in Table 7.2. Yearly, PM10 mass concentration levels are in the 12.4–151.5 μg m
−3

 

range, with an average (mean ±standard deviation) of 44.5 ± 24.2 μg m
−3

, while PM2.5 ranges from 

7.9 to 124.3 μg m
−3

, with an average of 31.6 ± 21.0 μg m
−3

. 
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PM10 Na Mg Al Si S Cl K Ca Ti V Cr Mn Fe Ni Cu Zn Br Pb P 

AUTUMN 2005 
                    

N 24 0 0 24 0 0 0 0 0 0 24 24 24 24 24 24 24 0 24 0 

mean 46 - - 0.02 - - - - - - 0.002 0.001 0.003 0.05 0.001 0.005 0.041 - 0.013 - 

std dev 17 - - 0.01 - - - - - - 0.001 0.000 0.002 0.03 0.000 0.002 0.024 - 0.009 - 

WINTER 2006 
                    

N 49 41 32 40 40 41 41 41 41 41 0 37 14 41 37 0 41 21 30 0 

mean 51 0.23 0.05 0.11 0.5 1.2 1.1 0.32 1.2 0.03 - 0.006 0.02 0.67 0.006 - 0.08 0.01 0.03 - 

std dev 31 0.15 0.03 0.07 0.3 0.7 0.8 0.18 0.8 0.02 - 0.003 0.01 0.37 0.004 - 0.054 0.005 0.018 - 

SUMMER 2006 
                    

N 35 9 18 34 34 34 34 34 34 34 9 32 34 34 11 34 34 0 0 18 

mean 35 0.09 0.05 0.26 0.8 1.1 0.05 0.27 1.2 0.04 0.006 0.004 0.016 0.7 0.004 0.02 0.03 - - 0.024 

std dev 11 0.07 0.03 0.24 0.6 0.4 0.11 0.13 0.5 0.03 0.003 0.001 0.007 0.4 0.002 0.006 0.008 - - 0.007 

 PM2.5 EC OC NO3
- SO4

2- Cl- NH4
+ Ca++ K+ Mg++ Na+ Cd As Mo Hg 

SUMMER 2005 
  

 
            

N 9 9 9 9 9 3 9 8 8 8 9 0 0 0 0 

mean 17.7 1.7 5.7 0.40 5.8 0.11 1.93 0.19 0.15 0.03 0.13 - - - - 

std dev 4.3 0.4 4.8 0.09 2.5 0.04 1.08 0.07 0.07 0.01 0.05 - - - - 

AUTUMN 2005 
  

 
            

N 24 0 0 24 24 13 24 24 24 4 23 24 24 24 24 

mean 33 - - 7.3 5.0 0.53 3.8 0.11 0.21 0.013 0.075 0.0005 0.0008 0.0005 0.0007 

std dev 18 - - 6.9 2.8 0.21 2.1 0.04 0.19 0.004 0.078 0.0004 0.0005 0.0003 0.0008 

WINTER 2006 
  

 
            

N 49 42 42 41 41 21 42 37 42 24 40 0 0 0 0 

mean 41 2.7 4.1 12.1 3.9 0.94 3.6 0.19 0.31 0.03 0.06 - - - - 

std dev 26 1.3 2.0 9.4 2.0 0.84 2.3 0.11 0.21 0.02 0.04 - - - - 

SUMMER 2006 
  

 
            

N 35 34 34 34 34 13 34 32 34 30 0 0 0 0 0 

mean 21 1.7 4.0 0.74 5.2 0.66 1.55 0.32 0.39 0.04 - - - - - 

std dev 7 1.1 1.3 0.93 2.0 0.41 0.74 0.09 0.30 0.01 - - - - - 

 

Table 7.2) Number of days when the elements have been found (N), arithmetic mean concentration and 

standard deviation (μg m
-3

) for major and trace ions and elements obtained at Bologna during the four 

campaign of the SITECOS project (summer 2005, autumn 2005, winter 2006 and summer 2006) in PM10 (a) 

and PM2.5 (b). 

 

Annual mean of PM10 concentration was above the European annual PM10 threshold of 40 μg 

m
−3 

fixed by 1999/30/EC (EC, 1999), while the European 24 h PM10 limit value of 50 μg m
−3

 is 

exceeded in 9 days during September-October 2005, 18 days during January-March 2006 and 

5 days during June-July 2006 campaigns. Though PM2.5 thresholds were enforced in Italy in 2008, 

results from the present investigations clearly show that not only this fraction represents a 

considerable mass contribution to PM10 (up to 90% in the winter), but also PM2.5 limits were 

frequently exceeded as presently regulated (EC, 2008).  

Data on mixed layer height were obtained by the annual reports of the Regional Environmental 

Protection Agency ARPA-ER, where this parameter is evaluated based on atmospheric modeling 

(Calmet meteorological pre-processor (ARPA-EMR, 2013)). The mixing height typically shows 
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winter minima and summer maxima and is inversely correlated with the PM10 and PM2.5 seasonal 

trend in agreement with similar findings concerning the Po Valley (Matta et al., 2002; Lonati et al., 

2008; Rampazzo et al., 2008). 

The daily average concentrations of PM2.5 and PM10 are found equal to 33 and 46 μg m
−3

 in 

autumn, 41 and 51 μg m
−3

 in winter, 21 and 35 μg m
−3

 in summer.  

In most European sites the PM2.5:PM10 ratio ranges from 0.4 to 0.9 with a slight increase from 

natural to urban background sites (Putaud et al., 2004; 2010). In this study, the ratio among the two 

fractions varies seasonally, with values of 0.5-0.6 during the warm season and 0.8-0.9 during the 

cold period. In general this difference is attributed to an increase in the coarse fraction under dryer 

summer conditions, due to higher resuspended dust during the warm season, as well as to different 

combustion source profiles in the two seasons. 

 

7.3.2 Chemical characterization and seasonal patterns 

Table 7.2 reports basic statistics of the chemical species measured in PM10 and PM2.5. During the 

whole period, the most abundant elements in PM10 follow the order: 

Ca > S > Si > Cl > Fe > K > Na > Al > Mg > Zn > Ti > Pb > P > Br > Mn > Cu > Cr > Ni > V. These 

elements are mainly associated to natural sources, i.e., crustal material (Si, Al, Ca, Fe), sea spray (Na 

and Cl), but also to secondary inorganic aerosol (SIA) and biomass burning (S and K, respectively). 

Anthropogenic-related elements (Cr, Cu, Zn, Pb) exhibit values slightly lower than in other Italian 

urban sites (e.g., Lucarelli et al. 2000; Marcazzan et al., 2003; Rampazzo et al., 2008) (Table 7.3). 

The most abundant species in PM2.5 are nitrate, sulfate, ammonium, and the carbonaceous fraction. 

These latter species present concentrations comparable with other European sites located in the 

Mediterranean Region (Putaud et al., 2004; 2010). On average, the carbonaceous fraction represents 

about 17-20% (cold period vs. warm period value) of PM2.5 mass, while SIA accounts for 28% of 

PM2.5 on average (warm period average value 22%, cold period average value 33%).  
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Firenze 
Site A  

Firenze 
Site B  

Firenze 
Site C  

Milano 
Winter 

Milano 
summer 

Venezia 
site 1 

Venezia 
site 2 

Venezia 
site 3 

This study 

PM10 47000±1600 28000±1200 32000±20000 87400±37800 41500±14500 46000±32000 41000±31000 23000±15000 44500±24200 

Na 670±580 620±590 780±700 
  

460±660 1141±2770 2948±6931 202±150 

Mg 140±61 73±50 100±60 
  

346±220 324±149 174±165 53±30 

Al 400±200 180±130 260±160 175±82 129±60 307±192 320±169 147±209 140±170 

Si 1140±540 510±350 800±490 675±309 452±197 1074±1076 3364±10086 6055±10433 646±500 

P 33±15 18±9 22±13 
  

32±29 33±19 7±12  24±10 

S 2720±1390 1850±1050 1700±930 540±206 571±202 5474±7412 5983±8190 12169±25719 1195±600 

Cl 270±520 240±490 330±570 161±155 173±180 
   

600±800 

K 370±190 350±200 400±230 132±47 132±53 595±1287 736±1604 2518±6140 300±200 

Ca 1880±950 910±490 1670±970 427±187 264±123 1378±1366 3118±8509 4016±10438 1197±700 

Ti 52±24 25±15 37±25 20±8 14±6 45±51 87±236 128±258 35±30 

V 11±6 9±5 9±6 3±2 3±2 18±43 27±68 67±169 3±2 

Cr 12±4 4±3 7±4 5±2 5±3 11±11 17±38 22±37 4±3 

Mn 24±9 10±5 17±10 12±5 10±4 23±16 19±8 15±10 13±10 

Fe 1730±550 380±200 890±550 514±193 423±150 919±584 522±215 329±254 515±400 

Ni 9±5 5±3 7±5 3±1 2±1 10±21 6±3 5±6 4±3 

Cu 90±27 16±8 38±23 20±8 17±6 40±23 24±15 12±12 13±10 

Zn 80±34 36±27 56±37 75±47 56±37 100±93 80±46 74±8 51±40 

Br 72±28 15±10 41±26 9±4 10±4 
   

14±5 

Pb 280±99 64±46 150±97 109±48 105±44 79±51 53±31 52±38 24±20 

Cd 
     

3±3 3±3 8±11 0.5±0.4 

As 10±4 4±2 7±4 
     

0.8±0.5 

Mo 
     

3±3 2±1 2±3 0.5±0.3 

 

Table 7.3 Comparison between the average elemental concentrations (ng m
-3

) observed in this study and in 

Firenze (Lucarelli et al., 2000), Milano (Marcazzan et al., 2003) and Venezia (Rampazzo et al., 2008). 

 

The analyses carried out during the project about the partitioning of TC between organic and 

elemental carbon reveals that about 60-70% of total carbon is composed of organic carbon while the 

elemental carbon account for only the 40-30% (cold vs warm value). These values are in agreement 

with previous European studies (Putaud et al., 2010) that investigated the main chemical 

composition of several sites in Europe, including Bologna, and showed that total carbon in this area 

is mostly composed of organic carbon (69%) and secondarily of elemental component (31%). The 

sea-salt contribution to PM10 was calculated assuming that Na
+
 has only a marine origin and 

deriving the sea-salt fraction of K
+
, Mg

++
, Ca

++
, Cl

-
 and SO4

2-
 from the typical seawater ratios 

respect to Na
+
 (Riley and Chester, 1971): the average value was found equal to 1%.  
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The contribution of the crustal matter to PM10 was estimated on the basis of the semi-empirical 

equation (Chan et al., 1997; Salma et al., 2001): 

            crustal matter  = 1.16* Al 2.15 Si 1.41 Ca 1.67 Ti 2.09 Fec c c c c c     

where c(i) is the concentration of element i; crustal matter contributes 13% on average, with a clear 

increase from the average value of 10% during the cold period to the 17% found during the warm 

period. This increase can be attributed to the above mentioned increase of the coarse fraction due to 

dryer summer conditions but also to the incursion of a Saharan Dust in June 2006, which will be 

described with further details in Section 7.3.6. 

CO3
2-

 were indirectly determined from the contents of Ca and Mg on the basis of the empirical 

relationship suggested by Querol et al. (1998), which assumes that the carbonate form is the 

dominant species for both elements; though experimentally unverified this hypothesis largely 

accommodates most situations including the local one where the pedological framework (alluvional 

plain) plus the building influence are reasonable sources of this component. 

The contribution of carbonates to PM10 was equal to 4-5% (cold and warm value, respectively). 

This first rough estimate of the PM10 contributions of some “a priori” known sources give us firstly 

an idea of the relevant contribution of SIA to particulate matter and of the high percentage due to 

crustal matter resuspension, increasing from winter to summer. The minor contribution of sea salt, 

which was expected due to the distance of Bologna from the sea, is confirmed by this first estimate. 

The elemental composition largely follows the same seasonal behavior as PM10, with higher 

values during the warm season, while S, K, Ca and Fe do not present significant seasonal 

differences. Crustal tracers (Si, Al, Ti) and V exhibit higher concentrations during summer, usually 

attributed to an increase in soil resuspension and Saharan Dust contribution. This latter contribution 

is further investigated. During the cold season nitrates contribute more than sulfates to PM2.5, in 

good agreement with European data recorded in the last decade (Van Dingenen et al., 2004; Putaud 

et al., 2004; 2010). In fact, during the warm season the lower contribution of nitrates is partly due to 

incomplete collection of NH4NO3 due to its remarkable thermal instability (Schaap et al., 2002; 

Schaap et al., 2004a, b; Vecchi et al., 2009), while the increase of the photochemical oxidation of 

SO2 leads to a relative raise of sulfates (Hewitt, 2001; Rodríguez et al., 2004; Vecchi et al., 2004). 

The equivalence ratio between the experimental concentrations of nssSO4
2-

 (determined as the 

difference between experimental SO4
2-

 and sea salt sulfates, estimated by the typical seawater to Na
+
), 

NO3
-
 and NH4

+
 is calculated for the campaigns of autumn 2005, winter and summer 2006 in order to 

assess the degree of neutralization in the analyzed aerosol samples (see Figure 7.2(a-c)). On the basis 

of the principle of electroneutrality, during the cold season the sum of sulfates and nitrates equivalents 

is not balanced by sufficient ammonium equivalents, which therefore calls for extra positive cations; 
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this balancing fraction is attributed to H
+
 (whose measure is not straightforward) which therefore 

implies an acid character of aerosol (Pathak et al., 2004; Squizzato et al., 2013). In the warm season 

cation deficit is substantially balanced by calcium as often observed in the warm season when soil 

resuspension increases adding carbonates to atmospheric bases available for acid neutralization 

(Alastuey et al., 2004). 

 

Figure 7.2(a,b,c) Time series of the IC determined NH4
+
 moles and necessary NH4

+
 moles to complete 

neutralization of sulfuric and nitric acid during the periods: a) autumn 2005; b) winter 2006; c) summer 2006. 
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7.3.3 Enrichment Factors 

In order to acquire some preliminary information about the crustal and non-crustal sources of trace 

elements in particulate matter, crustal enrichment factors (EFs) were calculated during the cold and 

warm seasons. The enrichment factor is defined as (Lantzy and McKenzie, 1979; Voutsa et al., 2002)    

EF = (Celement/Creference)air/(Celement/Creference)crust  

where Celement is the concentration of any element, Creference is the concentration of reference element. 

Generally, Al, Fe or Si are chosen as reference elements. In this work the average ratio of each trace 

element to Al in the crust (Bowen, 1979) was used; in fact, in an urban framework real soil composition 

may represent an arbitrary choice due to the dominant influence of traffic related sources (vehicles and 

pavement) and buildings (Marcazzan et al., 2003). By convention, an EF ≤ 10 indicates a non-enriched 

element suggesting a crustal origin. EFs >> 10
4
 indicate that the element is enriched respect to the 

Earth’s crust; according to the local conditions this enrichment may be attributed to the influence of 

anthropogenic sources locally active in the area.  

Figure 7.3 reports the EF average values for the two analyzed periods. Lowest EF’s were found for 

Mg, Al, Ti, Mn, K and Fe, suggesting that these elements have a terrigenous origin. Na, Cr, Cu, Zn, but 

especially Cl and S are found to be enriched, particularly during the winter season. Anthropogenic 

sources may be relevant to these elements. The EF calculated for the data of autumn 2005 using Al as 

reference crustal element are presented in Figure 7.4: all the elements apart from Mn and Fe are found 

to be enriched, and Cu, Zn, Pb, Cd, As, Mo and Hg present very elevated EF value. 

 

 

Figure 7.3 Average values of enrichment factors of the analyzed elements during winter and summer 2006, 

calculated considering Si as reference crustal element.  
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Figure 7.4 Average values of enrichment factors of the analyzed elements during autumn 2005, calculated 

considering Al as reference crustal element.  

 

7.3.4 PCA/MLRA  

PCA/MLRA receptor modeling was applied to the data of the period winter-summer 2006 (January-

March and June-July 2006). As already highlighted in previous studies in the Po Valley (Matta et 

al., 2002; 2003) the major part of total aerosol mass is distributed in the fine size range. Moreover, 

as noted not only in the above-mentioned studies but also during a previous study carried out in 

Bologna on the size-segregated samples collected by means of a multi-stage high-volume cascade 

impactor (Andersen, Lab Automate Technologies) in this area (ARPA-EMR, 2005), inorganic ions 

represent a substantial part of the total mass, and are typically present in the fine fraction 

(< 1.5 μm). During this study it was observed that in this area nitrate dominates the fractions below 

1.5 μm; nitrate is known to be a complex ion species owing to both remarkable volatility and 

chemical weakness when associated with ammonium and to post formation reactivity leading to 

displacement reactions with other aerosol species and to a size distribution shift towards coarser 

fractions. Crustal elements on the contrary dominate the coarse fraction, because of their 

mechanical origin: the coarse fraction is known to count very little in terms of number of f particles, 

but a lot as for the weigh (Mitra et al., 2002; D’Alessio et al., 2005). Taking into account these 

considerations, in this study the ions data analyzed in the PM2.5 fraction and the elemental data 

measured in PM10 were merged together. 
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Before applying multivariate statistical analysis, the overall dataset was subjected to a strict 

selection in order to optimize modeling conditions: variables with > 10% values below the detection 

limit were discarded while if only a limited number of data was found lower than the LOD they 

were substituted by LOD/2. 

Before choosing the data for the analysis, a comparison between the PIXE analyzed elements in 

PM10 and the corresponding ion analyzed in PM2.5 was also carried on. Na, Mg and Ca were always 

more abundant in PM10 than in PM2.5, which is reasonably linked to their mechanical (mostly 

crustal for Mg and Ca, marine for Na) origin. In order to prevent double counting in the working 

matrix PIXE data were kept for Na, Cl and Ca; for Mg, the ion data were retained, as slightly more 

abundant, whereas the Cl
-
 data were discarded as the Cl data are far more abundant (see Table 7.2 

for reference about the number of data available for each variable).  

A good correlation was found between SO4
2-

 determined in IC and the calculated SO4
2-

 

concentrations in PM10 (r
2
 = 0.75) which means that S analyzed in PM10 has a prevailing secondary 

origin mostly lined to the presence of ammonium sulfate. K was often higher in PM10 than K
+
 in 

PM2.5, but for 19 samples the opposite was observed. For these samples a contemporary increase of 

K
+
 and OC and a general good correlation of K

+
 with OC were observed  (r

2
 = 0.78 winter value, 

r
2
 = 0.40 summer value): the overall conclusion of these observations was a probable link of K

+
 to 

combustion sources, and in particular to biomass burning. From these considerations it was 

assumed that all the PM10 sulfur was in the sulfate form, and the IC sulfates data were kept instead 

of S; for K, the difference between the PIXE and IC values was calculated (Kins) and K
+
 and Kins 

were treated as independent variable. A final matrix consisting of 20 variables and 76 observations 

was analyzed. 

Results of the Varimax rotated PCA on the standardized data (mean = 0, standard deviation = 1) 

revealed four factors (Table 7.4 and Figure 7.5 a-d), accounting for 80% of the total variance. 

Communality, which represents the amount of variance of each variable explained by the model, 

showed high values for all the variables, except for K
+
 and Mg

++
 (0.5 and 0.4, respectively), 

probably because of their low concentrations.  
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 Factor 1 Factor 2 Factor 3 Factor 4 

NO3
- 0.92 0.00 0.22 0.10 

SO4
2- 0.09 0.29 0.81 -0.02 

NH4
+
 0.80 0.00 0.40 0.07 

K
+
 0.18 -0.02 0.80 0.06 

Mg
++

 -0.47 0.16 0.18 0.62 

OC 0.54 0.29 0.55 -0.15 

EC 0.80 0.01 0.13 -0.07 

Na 0.49 -0.16 -0.25 0.69 

Al -0.12 0.95 0.12 -0.08 

Si 0.01 0.98 0.08 -0.05 

Cl 0.67 -0.18 0.11 0.55 

Ca 0.38 0.82 -0.04 0.09 

Ti 0.06 0.98 0.08 -0.04 

Cr 0.85 0.37 0.09 0.01 

Mn 0.63 0.61 0.10 0.12 

Fe 0.43 0.87 0.04 0.02 

Ni 0.87 0.20 0.06 0.10 

Cu 0.72 -0.03 -0.12 -0.09 

Zn 0.90 0.19 0.15 0.13 

K ins -0.12 0.80 0.22 -0.02 

Eigenvalue 8.3 4.8 1.7 1.2 

Variance (%) 41.7 24.1 8.4 5.8 

Cumulative percent 41.7 65.8 74.2 80.0 

Source Traffic and ammonium nitrate Crustal Mixed combustion “Pseudo-marine” 

 

Table 7.4 Results of the VARIMAX rotated PCA on the standardized data. Loadings >0.6 are marked in 

bold, while loadings between 0.4 and 0.6 are in italics 
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Figure 7.5(a,b,c,d) Source profiles illustrated as percentage of the species (%) in the four identified sources 

by the PCA model.  

 

The first factor (42% of the total variance) is clearly related to an anthropogenic source, being 

composed of Cr, Zn, Ni, Cu, nitrate, ammonium, EC, Cl, and secondarily OC and Fe. Chromium, 

copper, nickel and zinc have been extensively linked to various industrial processes and mostly to 

traffic (abrasion and corrosion of brakes, tyres) (Wahlin et al., 2006; Alastuey et al., 2007; Lin et 

al., 2008; Thorpe and Harrison, 2008; Gietl et al., 2010; Koçak et al., 2011), whereas NO3
-
 and 

NH4
+
 are the main component of secondary ammonium nitrate formed through homogeneous and 

heterogeneous reactions from gaseous NOx and NH3 (Schaap et al., 2004a; Pathak et al., 2009). 

This factor seems mainly associated with traffic, a relevant contribution in Bologna emissive 

profile, which seems to be confirmed by the results of the cluster (Figure 7.6) and factor analyses 

applied to the dataset of the autumn campaign in 2005 (not homogeneous with the subsequent 

sampling periods, as the analyses were all carried out on the PM2.5 fraction) showing that the four 

variables Cr, Zn, NO3
-
, NH4

+
 are closely linked also to V, a tracer of diesel engines, widely used for 

both light and heavy vehicles in Italy. Since the industrial emissions in Bologna are not 

significantly high due to the lack of major industries (neither chemical industries nor energy 

production facilities are present in the territory), while the main industries are linked to manufacture 

activities, and since the city centre is affected by heavy traffic roads (one of which close to the 
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sampling site), the vehicular emissions appear as the most probable source for this association of 

elements. Thus, this source can be interpreted as a combination of secondary aerosol (mainly 

composed of nitrates coupled to ammonium) and traffic. 
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Figure 7.6 Cluster analysis for the variables observed during the autumn 2005 campaign, calculated with 

Ward’s agglomerative hierarchical method and squared Euclidean distances. Similarity values are 

normalized to (Dlink/Dmax * 100) 

 

The second factor explains about 24% of the total variance and mainly links typical crustal 

elements Kins, Al, Si, Ca, Ti, Fe, Mn (loadings >0.6). This source was then interpreted as crustal 

material originated from soil resuspension (Qin et al., 2006; Mazzei et al., 2006; Vecchi et al., 

2008). The influence of road dust cannot be excluded due to the pavement wear and to the abrasion 

occurring on mechanical parts, such as brake lining and drums (Fe, Mn) (Garg et al., 2000; Iijima et 

al., 2008; Thorpe and Harrison, 2008; Bukowiecki et al., 2009; Gietl et al., 2010). A usual 

association of Fe with Cu is observed looking at the clusters of the single campaigns (an example of 

this observation can be found in Figure 7.6, referring to the period autumn 2005) and this can 

indicate a possible source from mechanical abrasion of vehicles (brakes). Fe also showed a 

significantly high linear correlation with Cu, Mn, Cr, Pb and Zn (0.6 < R < 0.9), all elements 

typically attributed to the abrasive/coarse contribution of vehicles, partly dropped from the matrix 

used in modeling for the reason explained, but reported as averages in Table 7.2. 

The third factor (8% variance) includes K
+
, SO4

2-
, and to a lesser extent NH4

+
, OC. While K

+
 is 

largely linked to combustion processes, including biomass burning (Morawska and Zhang, 2002; 
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Mahowald et al., 2005; Thurston et al., 2011; Masiol et al., 2012a), NH4
+
 and SO4

2-
are attributed to 

gas-to particle reactions leading to the secondary ammonium sulfate formation. According to 

Ramadan et al. (2000) and/or Begum et al. (2004) for example, biomass burning sources are 

successfully identified by K and carbonaceous parameters, an evidence recently enforced and 

stressed by Pachon et al. (2013) who confirm the relevant role of potassium as an efficient tracer of 

biomass burning as compared to levoglucosan, an alternative tracer widely used to this scope. It is 

worth noting that in the present study ionic potassium in PM2.5 was chosen for receptor modeling, 

representing the soluble/fine fraction of this element as compared to total potassium by PIXE in 

PM10 available in the present data set to which the former largely contributes, as previously 

discussed, when high correlation between K
+
 and OC was described corroborating the tight 

association with biomass burning. 

The last source is made up of Na, Cl and Mg
++

 and accounts for 6% of the total variance, 

representing the marine aerosol. Although Bologna is far distant from the coast (> 100 km) and the 

influence of sea salt is very limited, as already highlighted by the “a-priori” PM mass balance, this 

factor shows evidence of the occurrence of episodic transports of sea salt aerosol mainly in the 

coarse fraction. Due to its distance from the Adriatic coast and to the weak circulation in this 

region, Bologna can rarely be reached by marine air masses, an occurrence usually more frequent in 

the winter, but in any case fairly unusual (Bora episodes); therefore this sea salt component is 

mostly attributed to the use of road de-icing practice following snowfall as often reported (e.g., 

Furusjö et al., 2007; Belis et al., 2013) and will be named from now on as “pseudo-marine”.  

The daily source contributions to the PM levels were then obtained by the regression of the 

Absolute Factorial Scores (AFS) on PM10 concentrations following the methodology described in 

Thurston and Spengler (1985). Results of ANOVA show a statistically significant relationship (at a 

99% confidence level) for all the sources on PM masses. The adjusted coefficients of multiple 

determination indicate that the model explains 92% of the PM10 variability.  

Figure 7.9(a) shows the percentage mass contribution of the four sources identified by 

PCA/MLRA to PM10. On average, the “mixed combustion” source mainly contributes to PM10 

mass, accounting for 36%, followed by traffic and ammonium nitrate source, crustal and “pseudo-

marine” particles, accounting for 32%, 21% and 10%, respectively.  

The time series of PM10 source contributions can be found in Figure 7.7. The “pseudo-marine” 

contribution presents higher levels during the cold periods. The crustal source presents higher 

contribution during the summer, as already found by the empirical calculations for the PM mass 

balance; this is probably due to dryer conditions favouring the resuspension of crustal material. In 

addition, an influence of Saharan dust outbreaks cannot be excluded. A further elaboration 
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including the back trajectories analysis is subsequently presented to extract helpful information on 

the influence of long-range transports. 

 

 

Figure 7.7(a,b) Time series of the PM10 source contribution resulting from the PCA/MLRA model: a) winter 

2006 campaign; b) summer 2006 campaign. 

 

The traffic source contributes mainly during the cold season due to marked low level 

atmospheric stability, while its dispersal is promoted during the warm season by marked instability 

and convection leading to a deeper mixed layer (Ponce et al., 2005; Marenco et al., 2006). The 

mixed combustion source is more intense during the warm period ruling out the potential role of the 

incinerator and of agricultural biomass burning at the end of the harvest and before the cold season 

rather than domestic heating typical of winter. The increase in sulfates during summer can be 

explained by enhanced photochemistry during the warm season: the oxidation kinetics of SO2 

(primary precursor emitted from the “mixed combustion” source) to sulfates are promoted during 

the warm season and have already been associated to higher levels during summer (Hewitt, 2001; 

Rodríguez et al., 2004; Vecchi et al., 2004). 
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7.3.5 PMF 

PMF analysis was also performed on the same dataset, using the EPA PMF 3.0 software package. 

The final matrix used for PMF modeling consists of 20 parameters (21 with PM10) x 76 

observations in agreement with Pant and Harrison (2012) stating that a minimum of 50 points is 

suitable for the scope. The data consistency though not optimal for statistical purposes is widely 

coherent with published papers such as, for example, Qin and Oduyemi (2003), Furusjo et al. 

(2007), Callén et al. (2009). The chosen parameters are retained in order to fulfill the conditions of 

minimizing model uncertainty, with negligible or absent missing data. 

Uncertainty was calculated as the analytical uncertainty plus one third of the LOD, in agreement 

with the widely used method by Reff et al. (2007). Missing (but higher than LOD) values were 

replaced by their median and the associated uncertainty was calculated as four times the species 

median, whereas data lower than LOD were replaced by LOD/2, while the associated uncertainty 

was taken as 0.83 LOD (Polissar et al., 1998; Reff et al., 2007).  

Cu was treated as a weak variable due to a low signal-to-noise ratio (< 2), therefore its 

uncertainty was tripled. Sodium was also added to the list of weak variables because of the presence 

of a large number of data below LOD during the warm season. The overall uncertainty of the 

dataset was also increased of a further 9% to account for sampling uncertainties and the exclusion 

of some further species for which observations were missing (EPA, 2008). PM10 was set as the 

“total variable” and as such considered weak by default by the software. 

PMF uses algorithms in order to find a solution that minimizes Q(E) using various random 

starting points. For this study 100 starting points were chosen for the elaboration of the results. 

As the theoretical optimum value of Q(E) (E residual matrix, Q(E) object function to be 

minimized) should be roughly equal to the number of degrees of freedom for the data matrix (Qin 

and Oduyemi, 2003; Furusjö et al., 2007; Yatkin and Bayram, 2007) (1520 in this case), and the 

two parameters IM (maximum scaled residuals mean of the modeled variables) and IS (maximum 

scaled residual standard deviation of the modeled variables) show a drastic decrease when the 

number of factors increases up to a critical value (Lee et al., 1999), the most physically feasible 

number of factors describing the system is 6.  

The diagnostic parameters on the performance obtained by the PMF model such as intercept 

constant, slope of the regression line, standard error and r
2
 with a factorization value of 6 were 

analyzed and are presented as Table 7.5. 
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Variable Intercept Slope SE r^2 

PM10 0.56 0.98 4.8 0.97 

NO3
-
 0.12 0.95 2.0 0.95 

SO4
2- 0.30 0.89 0.7 0.88 

NH4
+ 0.06 0.90 0.7 0.87 

K+ 0.18 0.24 0.1 0.23 

Mg++ 0.02 0.09 0.01 0.03 

OC 0.42 0.84 0.8 0.78 

EC 0.25 0.82 0.4 0.87 

Na 0.01 0.75 0.05 0.84 

Al 0.00 1.00 0.02 0.98 

Si -0.01 1.03 0.08 0.98 

Cl 0.06 0.83 0.2 0.89 

Ca 0.05 0.95 0.1 0.96 

Ti 0.00 0.90 0.00 0.97 

Cr 0.00 0.91 0.00 0.87 

Mn 0.00 0.79 0.01 0.69 

Fe 0.00 1.01 0.08 0.96 

Ni 0.00 0.79 0.00 0.75 

Cu 0.02 0.30 0.02 0.28 

Zn 0.01 0.79 0.01 0.91 

Kins 0.02 0.86 0.05 0.70 

 

Table 7.5 Diagnostic parameters on the performance obtained by PMF model: a) intercept constant, 

identifying the fraction of the variable not explained by the model; b) slope of the regression line, c) 

standard error SE, estimate of the variability between experimental and retrieved from the model 

concentrations; d) r
2
, correlation between experimental and retrieved from the model concentrations. 

 

The predicted PM10 mass concentrations well reproduce the measured ones (r
2
 = 0.97) and the 

scaled residuals are normally distributed.  

The source profiles are reported in Figure 7.8(a,b,c,d,e,f), whereas the contribution of the six 

identified sources on PM10 can be found in Figure 7.9(b). The first source (8% of PM10) exhibits 

elevated contributions of Na and Cl clearly linked to the marine aerosol, but also to road salt in 

winter. The second source (35% of PM10) is interpreted as “secondary aerosol and traffic 

emissions”, with high contributions from NO3
-
, NH4

+
, Ni, Zn, K

+
, Cr, Cu, OC and EC. As already 

pointed out discussing the results obtained by the PCA model, Ni, Cr, Cu, Zn can be linked to 

brakes and tyre emissions (Garg et al., 2000; Wahlin et al., 2006; Ijima et al., 2008; Thorpe and 

Harrison, 2008; Bukowiecki et al., 2009; Gietl et al., 2010), whereas NO3
-
 and NH4

+
 are the main 

component of secondary ammonium nitrate, formed through homogeneous reactions from gaseous 

NOx and NH3. Road traffic is a major source of NOx, especially in a town like Bologna 

characterized by medium industries (mostly mechanical), agriculture and traffic; the increasing use 

of three-way catalysts on cars has presumably led to increasing emissions of NH3 from vehicle 

exhausts (Sutton et al., 2000; Gilbert et al., 2003; Frati et al., 2006), caused by the reducing 
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conditions inside the converter, though large scale agriculture is its main source. In the following 

this source will be referred to as “traffic”.  

 

 

Figure 7.8(a,b,c,d,e,f) Source profiles illustrated as percentage of the species (%) in the six identified 

sources by the PMF model.  
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Figure 7.9(a,b) Contribution of the sources to PM10 as resulting from the application of the a) PCA/MLRA 

model; b) PMF model.  

 

The third source (5% of PM10) exhibits contributions from OC, EC, and K
+
, Mg

++
 to a lesser 

extent, and represents the biomass burning source (Morawska and Zhang, 2002; Dan et al., 2004; 

Mahowald et al., 2005; Thurston et al., 2011; Masiol et al., 2012a; Pachon et al., 2013). High linear 

correlation among K
+
, sulfates and Cl

-
 (R > 0.9) all measured in PM2.5 and a slower but still 

significant linear correlation with Zn, a multisource species, suggests a likely influence of the 

municipal waste incinerator, whose relative importance requires further investigations. 
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The fourth source (26% of PM10) is linked to SO4
2-

, Mg
++

, NH4
+
, K

+
 and represents the 

secondary aerosol (ammonium sulfate), mainly linked to the use of fuel oil from heavy duty 

vehicles, as suggested by the high good linear correlation coefficient between S/sulfates and the 

typical tracers of this source (V, Ni; sulfates–V R = 0.73 autumn 2005; sulfates–Ni R = 0.64 during 

autumn 2005 and winter 2006), whose data were not sufficient for the source apportionment but can 

be used for the purpose of gaining better insights as briefly outlined before going into the details of 

receptor modeling.  

The fifth source (11% of PM10) is made up of Ca, Cu, Mn, Fe, Zn, Ni, Na. This source is thus 

attributed to the road dust associated to the abrasion of the mechanical parts of the vehicles (brakes, 

pads, drums, tyres), as well as to the road dust asphalt, and is thus referred to as road dust. 

The sixth source (15% of PM10) presents elevated shares from typical crustal elements (Al, Si, 

Ti, Kins, Ca, Fe, Mn) and is identified as the mineral dust source.  

With respect to the PCA/MLRA, the PMF model is able to distinguish between the mineral and 

road dust, and to split the ammonium sulfate from the traffic source. 

The reconstructed time series of the four identified sources are reported as Figure 7.10.  

 

 

Figure 7.10(a,b) Time series of the PM10 source contribution resulting from the PMF model: a) winter 2006 

campaign; b) summer 2006 campaign. 
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The “pseudo-marine” contribution presents higher levels during the cold periods. This is 

obviously also due to the winter use of sea salt as de-icing agents on the roads. The soil dust source 

yields a higher contribution in the warm season, in agreement with the empirical calculations for the 

PM mass balance and with the PCA/MLRA model as a result of enhanced resuspension under dry 

weather conditions. In addition, the influence of a Saharan dust transport during the summer period 

cannot be excluded. A further elaboration including the back trajectories analysis is subsequently 

presented to extract helpful information on the influence of long-range transports across the 

Apennine range even in northern Italy. 

The traffic source contributes mainly during the cold season probably because of the influence of the 

ammonium nitrate, more stable at low winter temperatures: in addition the marked low level 

atmospheric stability promotes the higher concentrations of most PM components during the cold 

season, while its dispersal is promoted during the warm season owing to marked instability and 

convection leading to a deeper mixed layer (Ponce et al., 2005). The road dust source, however, also 

shows a slight decrease from the winter to the summer season, which possibly means that a general 

decrease of the traffic from the cold to the warm season cannot be completely excluded. The biomass 

burning source is more intense during the warm period; as a consequence it seems likely that this source 

is linked both to the agricultural biomass burning at the end of the harvest and possibly to the waste 

incinerator, rather than to domestic heating, which is instead typical of winter. The secondary aerosol 

(ammonium sulfate) source also shows an increase from the cold to the warm season. As pointed out 

before, the increase in sulfates during summer is due to enhanced photochemistry during the warm 

season as widely observed in the literature (Hewitt, 2001; Rodríguez et al., 2004; Vecchi et al., 2004). 

 

7.3.6 Analysis of a case study occurred during the sampling campaigns 

All the European plain zones, and in particular the Po Valley, are characterized by a typical trend of 

the PM concentrations, with a marked thermal gradient between summer and winter (Marcazzan et 

al., 2003; Matta et al., 2003). This result is mainly attributed to the variation of the thickness of the 

planetary boundary layer (PBL), i.e., the volume of air where the atmospheric pollutants are 

dispersed. The height of the PBL is directly proportional to the solar irradiance and because of the 

thermal expansion of the atmospheric gases and the trend of the turbulence is lower during the cold 

season and higher during the warm one. The overall result is a variation of the volume where the 

gases and PM can be dispersed. This results in the consequent rise of the winter concentrations of PM, 

mainly (but not only) due to the different dilution ratios. For this reason, generally, PM10 and PM2.5 

limit values set by the European legislation (1999/30/CE and 2008/50/CE) are frequently exceeded 

during the cold season in the whole Po Valley. The influence of additional sources during the cold 
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season, such as domestic heating, along with frequent thermal inversions can also drop the dispersion 

of locally emitted pollutants in the lower atmosphere. Moreover, some peculiar orographic 

characteristics of the Po Valley, which is surrounded by the Alps and Apennines mountain chains, can 

enhance the air mass stagnation with the consequent increase of the pollutants. 

An interesting high PM value episode in June 2006 was investigated. This period was characterized by an 

anomalous series (7 subsequent days, of which 5 exceeding the European limit value) of PM10 

concentrations in the range 46-56 µg m
-3
. As previously recognized by for example Matassoni et al. (2009), 

Guarnieri et al. (2011) and Nava et al. (2012) this period was characterized by a Saharan dust outbreak, 

which strongly impacted overall Italy and in general the whole Mediterranean basin. The influence of this 

natural event in Bologna was quite remarkable owing both to its intensity and duration. As shown in Figure 

7.11, during this period the contribution of mineral dust to PM10 was very high (81% on 23
th
 June, and then 

ranging from 52 to 67% in the following 6 days till the end of June). Figure 7.11 reports the temporal trend 

of PM10 mass load during the period June-July 2006 in the city of Bologna and at a remote station (WMO-

GAW) on Mt. Cimone (44°12’ N, 10°42’ E, 2165 m asl). As it lies above the PBL during most of the year 

(Winkler et al., 1998), the Mt. Cimone background station is not influenced by common anthropogenic 

emissions due to cities and industrialized areas. For this reason, the measurements of atmospheric species 

carried out at this site can be considered representative for the South- European free troposphere (see 

previous Chapters 2, 3, 4, 5 and 6; Bonasoni et al., 2000; Fischer et al., 2000; Tositti et al., 2013).  

 

Figure 7.11 PM10 mass loading (μg m
-3

) during the year 2006 at the Mt. Cimone site and in the city of Bologna. 

An increase in the end of June 2006 is evident at both sites.  
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In Figure 7.12(a-f) scatterplots of some elements during the joint period winter-summer 2006 are 

presented. The Saharan Dust event is identified by an oval in the Figure. The scatterplots highlight three 

clusters of elements: the first one, to whom the Al-Si, Ti-Si couples belong, groups together elements 

which, sharing the same crustal source, exhibit elevated correlation values and keep the same ratio even 

during the SD event; for the second (Ca-Si, Fe-Si) and third (Mn-Si and Zn-Si) group the ratio is different 

during the SD event, and specifically it is little decreased for the second group while it is largely decreased 

for the third one. The analysis of the EF value shows that the typical crustal elements (Al, Ti) were 

enriched during the SD event, while the elements that can derive also from anthropogenic sources (brake 

pads, drums), as for example Mn, Cu, Cr and Zn, result to be depleted.  

 

Figure 7.12(a,b,c,d,e,f) Scatterplot of crustal elements during the period winter-summer 2006: a) Al vs. Si; 

b) Ti vs. Si; c) Ca vs. Si; d) Fe vs. Si; e) Mn vs. Si; f) Zn vs. Si. In the rectangle the days of the SD transport 

event happened at the end of June 2006 are identified.  

 

The air mass origin analyzed with the help of the HYSPLIT-4 model and the Dust Regional 

Atmospheric Model DREAM (http://www.bsc.es/projects/earthscience/DREAM/)(Figure 7.13 a-c), 

predicting the atmospheric life cycle of the eroded desert dust, show a transport of dust from the 

Sahara desert in that period. The synoptic situation, illustrated in Figure 7.13 (d,e), was characterized 
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by an extended African high pressure and not by an episode with baric minimum over the Tyrrhenian 

Sea, which is instead a situation more typical during the transition seasons. Escudero et al. (2005) 

showed that the transport of air masses towards the Western Mediterranean basin can be originated by 

four meteorological scenarios: 1) a North African high located at surface levels, 2) an Atlantic 

depression, 3) a North African depression, and 4) a North African high located at upper levels (Querol 

et al., 2009b). The high pressure system on North Africa (Morocco and Algeria) and the trough West 

of the African coast have been observed to be a typical synoptic configuration allowing for the 

transports of the dust for some thousands of kilometers in a short time, directly on the Mediterranean 

basin and Europe (Barkan et al., 2005; Meloni et al., 2008). Barkan et al. (2005) showed that it is the 

joint effect of the horizontal and vertical flows formed around the front between cold air and the 

African warm air that causes the uplift of the dust and transportations over long distances. This 

phenomenon is an integral part of the West Africa monsoon system that develops starting from June 

(Guarnieri et al., 2011). 

 

 

Figure 7.13(a,b,c,d,e) a) Back trajectories calculated for the day 23/06/06, 12:00 UTC, by the HYSPLIT-4 

model, for the city of Bologna (lat 44.40, lon 11.30) at three arrival heights: 100, 500, 1000 m AGL; b) dust 

loading from the dust regional model DREAM for the day 20
th
 June 2006, 18 UTC; c) lowest model level 

dust concentration resulting from the dust regional model DREAM (images from the BSC-DREAM8b (Dust 

REgional Atmospheric Model) model, operated by the Barcelona Supercomputing Center, 

http://www.bsc.es/projects/earthscience/DREAM/) for the day 20
th
 June 2006, 18 UTC; d,e) Synoptic 

situation (500 hPa geopotential and ground level pressure in hPa) for the days 21
st
 (d) and 26

th
 June 2006 

(e) (http://www.wetterzentrale.de) 
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7.4 Conclusions 

This Chapter reports the results of an intensive particulate matter sampling campaign in Bologna, a large 

city in the Po Valley. This region is recognized to have high levels for many atmospheric pollutants in 

Europe and, then, is of primary importance for the related human health concerns. Major inorganic ions 

and elements were analyzed on PM2.5 and PM10, respectively, and two receptor modeling techniques 

have been successfully used to identify and characterize the most influencing PM sources. Firstly, the 

application of a principal component analysis followed by a multilinear regression on chemical data 

allowed to quantitatively identify 4 main sources: crustal dust, traffic and ammonium nitrate, mixed 

combustions and “pseudo-marine” aerosol. The mixed combustion was the source mainly contributing 

to the PM mass (36%), followed by traffic and ammonium nitrate (32%), crustal dust (21%) and 

“pseudo-marine” aerosol (10%). The multilinear regression analysis also provided the percentage of 

each element in the sources composition. In a second step, the positive matrix factorization model was 

also applied on the same dataset. The second model is able to yield a more detailed source profile, 

splitting the crustal source between the mineral and the road dust component. Moreover, in the PMF 

model the secondary aerosol source represented by ammonium sulfate is identified separately by the 

generic traffic source. The main source contributing to the PM levels is found to be the traffic (35%), 

followed by the secondary aerosol (26%), mineral dust (15%), road dust (11%), “pseudo-marine” (8%) 

and biomass burning (8%). Summing up the contribution of fine and coarse particles source, however, 

both the models indicate that about 70% (66% in the PMF and 68% in the PCA/MLRA) of the PM is 

due to fine particulate (secondary aerosol, traffic, and biomass burning), while the remaining 30% is 

instead due to coarse particulate source (dust and sea salt). 

Even in the absence of significant industrial and energy production point sources, it is worth 

noting that all the receptor models employed in this study confirm the importance of anthropogenic 

sources associated mainly to traffic and to regional scale processes affecting secondary aerosol 

formation especially during the cold season, in agreement with other authors (Marcazzan et al., 

2003; Lonati et al., 2005; Putaud et al., 2004, 2010). Given the emissive pattern of the area and the 

relevant PM levels mainly affected by secondary fractions, it appears that main improvements in air 

quality standards are likely to succeed only if “tyre” transports are more strictly 

regulated/substituted by less impacting technologies or policies, and if overall policies are set up 

and shared over the whole Po Valley district. 

Finally, an episode leading to excess PM10 in June 2006 was investigated by means of 

meteorological analysis, back trajectories and aerosol chemistry pointing out a strong influence of 

long-range transports of Saharan dust. The episode was characterized by elevated PM10 mass load 

not only in the urban sampling site in Bologna, but also at the high elevation WMO-GAW station of 
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Mt. Cimone. A characteristic value of the ratio of some crustal elements (mean ± standard 

deviation: Ca/Si = 1.1 ± 0.2, Fe/Si = 0.68 ± 0.05, Mn/Si = 0.015 ± 0.002, Zn/Si = 0.020 ± 0.008) 

was observed during this event, in agreement with, for example, Kong et al. (2011). The synoptic 

situation was characterized by an extended African high pressure, a situation that has been often 

observed to be responsible of elevated dust transport to Italy and to Central Europe. 
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The primary aims of this thesis were to characterize the origin and sources of variability of particulate 

matter and atmospheric radiotracers 
7
Be and 

210
Pb at the WMO-GAW station of Mt. Cimone (44°12’ 

N, 10° 42’ E, 2165 m asl). In this work, it was remarked the importance of this high-altitude station in 

the study of regional and long-range transports of polluted air masses on the background South-

European free troposphere. Moreover, because of their contrasting natural origin, the usefulness of the 

pair 
7
Be and 

210
Pb as tracers of vertical transports and scavenging of aerosols was also highlighted. In 

particular, the ratio 
7
Be/

210
Pb can be used to determine the sources of chemical species in the lower 

free troposphere, such as ozone, which together with particulate matter is one of the main secondary 

atmospheric pollutants. Different methods were applied to fully characterize the physical processes at 

the basis of variations of PM10, 
7
Be and 

210
Pb and their source regions. Receptor modeling based on 

calculations of back trajectories is one of the tools widely applied in the thesis to this scope: in 

particular the PSCF receptor model and the cluster analysis of back trajectories have been used. 

Firstly, the PM10 data time series sampled at the station in the period 1998-2011 was fully 

analyzed. The PM10 series is characterized by marked intra-annual variations as well as by a 

seasonal cycle described by winter minima and summer maxima. The seasonal effect is connected 

to a combination of mixed layer expansion, thermal convection and mountain/valley breeze 

regimes, altogether resulting into the uplift of particulate matter from the lower troposphere and the 

substantial increase of mass load observed during the warm season. In this framework it was 

observed that on the regional scale the PM10 increase at Mt. Cimone during the warm season is in-

phase opposition with stations at ground level, experiencing maxima during the cold period due to 

stable conditions which inhibit the uplift of PM emitted at ground level. The simultaneous 

observations of PM10 and number densities of fine and coarse particles, as well as the PSCF 

receptor model were used to provide further insights into the origin of particulate matter at the site. 

The highest PM10 concentrations were found to be connected to three different kinds of events: 1) 

Saharan dust transports from the Northern African deserts, usually connected to a contemporary 

decrease of O3, linked to both reduced sources of pollution in Northern Africa as well as to O3-

destroying reactions happening on the surface of mineral particles; 2) uplift of polluted air masses 

from the Italian areas north of the Apennines range (Po Valley); 3) advection of PM10 enriched air 

masses from the European continent, and mostly from eastern European countries, where PM 

emissions are not declining as quickly as in western Europe. While during Saharan dust events 

increases of both fine and coarse fraction are usually observed, during uplift or advection of 

polluted air masses it is only the fine fraction that rise up. 
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Secondly, the seasonal and interannual variations, frequency distributions and correlation patterns of 

atmospheric radiotracers were examined. While 
210

Pb seasonal fluctuation is very similar to that of PM10, 

characterized by a summer maximum, the seasonality of 
7
Be is more complex, being characterized by two 

relative maxima. The 
7
Be maximum during the cold period is associated to Stratosphere-to-Troposphere 

transport, while the more pronounced maximum during the warm season is connected to tropospheric 

subsidence balancing low tropospheric air masses ascent occasionally accompanied by Stratosphere-to-

Troposphere Exchange. The presence of two different physical mechanisms leading to the two 
7
Be 

maxima was confirmed by the analysis of the frequency distributions and of correlation patterns, markedly 

dissimilar during the cold and warm period. The seasonality of 
7
Be and 

210
Pb was also studied by means of 

the simulations conducted through the global 3D model GMI CTM: in particular, the use of a model 

enabled a thoroughly knowledge of the roles of transport and precipitation scavenging processes in 

controlling the seasonal variations of 
7
Be and 

210
Pb at Mt. Cimone. The model was able to capture the 

main circulation patterns observed in the Northern Hemisphere. A general good agreement in the 

simulations of 
210

Pb seasonal pattern was observed, and it was confirmed that the summer 
210

Pb maximum 

is due to the stronger thermal convection and consequent increased uplift from the boundary layer. The 

seasonal pattern of 
7
Be was instead worse represented, especially during the warm season. The results of 

the simulations showed that the large stratospheric influence is the cause of 
7
Be increases during the cold 

period. A general better agreement between the model and observations was observed if the model is 

sampled at the some adjacent gridboxes. The analysis of simulated wind fields and horizontal distribution 

of radiotracers suggested that the site is located in a region where there is a large gradient especially in the 

North-South direction. A series of sensitivity experiments were further conducted to examine and quantify 

the roles of wet scavenging, dry deposition, and convective transport/scavenging in controlling the 

seasonality of 
210

Pb and 
7
Be at Mt. Cimone. Wet scavenging resulted to be the most important process 

controlling the seasonal variations of 
210

Pb and 
7
Be at Mt. Cimone. 

Advection patterns at Mt. Cimone were characterized by means of a back trajectories cluster 

analysis, and the role of transport in the observed changes in the atmospheric composition has been 

studied. The clustering algorithm found 8 main flow types arriving at the height of 2200 m asl, 

roughly corresponding to the height of the measurement site. Most of the trajectories corresponded to 

westerly flows, as typical of mid-latitude Northern Hemisphere sites. A name was assigned to each 

flow pattern, identifying its region of provenance: Arctic, Eastern, Mediterranean-Africa, Western, 

Atlantic, North Atlantic, and North America. The results indicate that flows from North America are 

related to low pressures and tropopause heights, low temperatures and they are dry air masses. These 

flows are almost non-existent during summertime and generally linked to low values of atmospheric 

pollutants such as ozone, PM10, black carbon, carbon monoxide but also of atmospheric radiotracers 
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7
Be and 

210
Pb. Flows from the Arctic region are also dry, associated to low tropopause height and 

cold, even if a bit warmer than those from North America. These flows are associated with generally 

low values of atmospheric compounds such as PM10, O3, black carbon and carbon monoxide. They 

are also linked to high 
7
Be and low 

210
Pb values. Continental flows from North Western-Europe, 

Eastern Europe, Western and Mediterranean-Africa are generally associated to higher values of 

atmospheric components; in particular, North Western-Europe, Western and Eastern flows are 

associated to high levels of CO, BC, O3 and fine particles number densities, causing also increases in 

PM10. Because of their continental origin, these flows are also linked to high 
210

Pb levels. 

Mediterranean-Africa flows being related to Saharan Dust events are associated to high PM10 values, 

and increases in both the fine and coarse fraction of particles. Interestingly, this flow type was not 

only associated to high 
210

Pb values, but also to high 
7
Be: this phenomenology might be connected to 

the combination of African dust uplifting and downward movement from the upper troposphere, 

which was further studied in the thesis. 

This study highlighted also that the seasonality of air mass transports can have a deep influence on 

variations in atmospheric composition. In fact while 
7
Be winter maximum can be linked to the 

seasonal behaviour of Arctic and North-Atlantic air masses, 
7
Be summer maximum can be associated 

to Mediterranean-Africa, Western and North Atlantic air masses seasonal pattern. 
210

Pb summer 

maximum seems to be well related with the seasonality of Western and North Western-Europe flows, 

whereas the seasonal pattern of PM10 might be influenced by the seasonal pattern of advection 

patterns bringing about elevated mass loads of particles, such as Mediterranean-Africa, Western, 

North Atlantic and North Western-Europe air masses. Moreover, it was also found that rare events 

can contribute a lot to increases of some species during some seasons. In particular, it was observed 

that even if flows from the Arctic/polar regions are more frequent during the cold period, they can 

have a large contribution to 
7
Be summertime increases. Trends were also studied for the time series of 

advection patterns and of measured variables at Mt. Cimone. Downward trends were detected for 

Atlantic and North-American flows, and for the monthly medians of 
210

Pb and PM10 measured at the 

station. An upward trend was instead found for CO2 and precipitation time series. The contemporary 

decreasing trend of PM10 and 
210

Pb, which cannot be ascribed to a decrease in anthropogenic 

emissions, highlights the potential role of meteorology as one of the main causes of these downward 

trends. The analysis of the magnitude of the seasonal and trend components of the time series 

revealed that the largest variabilities of the time series are associated to the seasonal components, with 

a reduced weight of the trend component for all the series.  

The association of NAO with flows and atmospheric variables was examined. A positive correlation 

of NAO with North-American flows and an anti-correlation with Western flows were observed. This is 
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explained by the fact that the subtropical high at lower latitudes during the negative phase of the NAO 

facilitates the entrance of westerlies/south-westerlies to the Mediterranean. As for the atmospheric 

composition, the most important associations of NAO are with carbon monoxide and coarse particles, 

connected also to the modifications of the flows induced by the shift of the NAO phase.  

The PSCF method was again applied to study the source regions of 
7
Be, 

210
Pb and O3 and the 

influence of stratospheric air masses at Mt. Cimone (also with the help of potential vorticity). 
210

Pb 

sources are similar to those of PM10: in fact 
210

Pb originates mainly in Eastern Europe and Northern 

Africa, with a more limited, still notable, contribution from the surrounding Italian and French regions. 

The main source areas of 
7
Be are located in the Arctic/polar region, Finland and North America, but 

importantly the region of Northern Africa was observed as a potential source originating high values of 

7
Be. This led to the important conclusion that two different independent mechanisms may mix and act 

together during single Saharan dust incursions events: the dust uplift causing increases of crustal 

particles, PM10 and 
210

Pb, but also a strong downdraft from the upper troposphere causing increases of 

7
Be, scavenged by African dust and transported with it. The source regions of O3 are similar to those of 

210
Pb, even if the surrounding region, such as the Po Basin, France and southern Germany seem to give 

important contributions to its increase. A separate analysis for the cold and warm periods highlighted 

that the contributions of the surrounding regions is higher during the warm season, while stratospheric 

influence can have a more limited, but not negligible, effect during the cold period. Importantly, the 

PSCF applied separately during the warm and cold period highlighted that long-range transports are 

more active during winter while during summer regional and short-range transports are more important. 

This result was similar to the one of the simulations of the GMI CTM: long-range transport dominates 

the winter/spring season because of higher horizontal winds, while regional effects are more important 

during the warm season when convection gets stronger. 

Generally, high trajectories originate in the Arctic and North America/Atlantic regions, whereas 

low trajectories are coming from the lowest latitudes. The same areas were associated to high 

7
Be/

210
Pb, pointing out once more the importance of this tracer in the understanding of vertical 

motions and in connection with STE events. The areas observed in this analysis correspond to 

preferred regions for cyclone formation (Atlantic region), as well as areas where the polar jet stream 

is generally stronger (North America/Atlantic). A link to the tropopause discontinuity region at 

mid-latitudes was also observed. The observation of areas source of high potential vorticity values 

highlighted the importance of lee cyclogenesis as a mechanism promoting vertical exchanges 

between stratosphere and troposphere; North Atlantic and North Africa region were again observed 

as areas source of particles from the upper troposphere/lower stratosphere.  
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Finally, a source apportionment study was conducted in Bologna, a midsize city located in the 

centre of the Po Valley, which is recognized as one of the most polluted regions of the whole 

Europe, and which is located North of Mt. Cimone. The application of receptor modelling identified 

six sources of particulate matter in the city: traffic, secondary aerosol, biomass burning, mineral 

dust, road dust, and a “pseudo-marine” factor linked to the use of salt as a de-icing agent on roads 

during winter. The result of the source apportionment highlighted an important contribution of fine 

particulate sources (about 70%), while the remaining part (about 30%) is connected to coarse 

particles.  

Overall, the main feature of this study is the use of a multi-tracer and multi-model approach to 

understand the processes at the basis of observed variations in the measurements. The use of 

receptor models is extremely important especially at a station such as Mt. Cimone, which is an ideal 

platform for observing the “crossroads” of pollution transports and where acquired data time series 

are long enough to provide a short-term climatology of the site. The exploited approach 

successfully characterized the processes/sources affecting atmospheric composition at the site. 
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1. Introduction
1
 

The importance of environmental radionuclides in the study of atmosphere and climate dynamics 

has been often emphasized in the course of the last decades as well documented in the GAW 155 

report (WMO, 2004). Though nowadays the radiotracer method constitutes a niche approach to 

the comprehension of the planetary complexities, it still deserves attention as it provides a 

powerful tool for the basic characterization of transfer and transformation mechanisms occurring 

both at local and large scale. For this reason several radionuclides, namely 
7
Be, 

210
Pb, 

222
Rn and 

others are included among the key atmospheric components that are routinely monitored within 

the WMO-GAW network (WMO, 2004). 

Though an historical reconstruction of radiotracer literature in many geophysical as well as 

radioprotection studies was partly given in this thesis in Chapters 1, 3 and 4, it is worth noting the 

steady production of papers where the environmental radiotracers have been used with the role of 

quantitative descriptors. Examples can be found in Paatero and Hatakka (2000), Liu et al. (2004), 

Lee et al. (2007). 

In this Appendix a brief compendium of the research activity carried out by the University 

of Bologna in this field since the 90’s is presented. In particular we will introduce the long 

term monitoring activity of 
7
Be, 

210
Pb in the PM10 fraction at Mt. Cimone station, a WMO-

GAW station in the Northern Italian Apennines hosting a complex activity of atmospheric 

research. 

 

                                                           
1
 This chapter consists in parts of a paper by Tositti L. (Dept. of Chemistry, Università di Bologna), Brattich E. 

(Dept. of Biological, Geological and Environmental Sciences-Section of Geology, Università di Bologna), 

Cinelli G. (Dept. of Biological, Geological and Environmental Sciences-Section of Geology, Università di 

Bologna; now at European Commission, DG JRC, Institute for Transuranium Elements, Via E Fermi 2749, I-

21027 Ispra (VA), Italy), 2013. Aerosol characterization at the WMO-GAW station of Mt. Cimone (2165 m 

a.s.l.) by 
7
Be, 

210
Pb and PM10.  In: Isotopes in Hydrology, Marine Ecosystems and Climate Change Studies. 

Proceedings of an International Symposium Monaco, 27 March-1 April 2011, Vol.1, 387-393, International 

Atomic Energy Agency, Vienna. ISBN 978–92–0–135610–9  
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2. Material and Methods 

2.1 Experimental 

The experimental activity carried out since the early 90’s for the determination of 
7
Be, 

210
Pb 

and aerosol mass loading in the form of PM10 at Mt. Cimone station has been described in 

Chapters 2 and 3 of this thesis.  

 

2.2 Measurement Site 

The measurement site of Mt. Cimone (44°12’ N, 10°42’ E), the highest peak of the Northern 

Apennines (2165 m asl), has been described in Chapters 2 and 3 of this thesis. 

 

 

3. Results  

In Figure 1, time series of 
7
Be, 

210
Pb and PM10 are shown. We can notice a distinct seasonal 

cycle for 
7
Be, 

210
Pb and PM10, with maxima in the summer and minima in the winter. 

Peaks of Beryllium-7 are often associated with downward transport from the upper 

troposphere or from the stratosphere. This phenomenology, now defined as Stratosphere-to-

Troposphere-Exchange (STE), able to affect ozone budget in the troposphere, is still matter 

of investigation since its mechanism has not been thoroughly elucidated. Nevertheless 

research activities carried out at Mt. Cimone within EU projects VOTALP and STACCATO 

(Bonasoni et al., 1999, 2000; Cristofanelli et al., 2006, 2007, 2009) allowed discovering that 

STE events are not limited to spring-summer period as previously believed, but they are 

scattered all the year round, at least in the area investigated. In addition a Stratospheric 

index based on the use of 
7
Be, relative humidity and ozone was introduced in order to 

quickly identify stratospheric air masses through simultaneous data collected on-site 

(Cristofanelli et al., 2009). 

Vertical motion is characterized by both downward and uplift motion, in order to fulfill 

hydrostatic condition in the troposphere. The concurrence of both transports seems to be very 

well captured by the use of 
7
Be/

210
Pb ratio (Lee et al., 2007). 

Other studies in progress concern the identification of transport from Saharan deserts and 

from contaminated areas such as the Po valley and the eastern European areas. In both cases 

there is a remarkable influence on ozone budget, but in opposite directions: a decrease in the 

former case and an increase in the latter. We will take advantage of radionuclides such as 

210
Pb to discriminate these phenomenologies which are both characterized by a mass loading 

increase, but in order to have a more quantitative point of view, massive use of back-

trajectories will be carried out together with multivariate models. In the meantime collection 
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of samples and their analysis by HPGe will be continued in order to enlarge the time series 

and the database available. 

 

 

Figure 1 Time series of a) 
7
Be (mBq/m

3
); b) 

210
Pb(mBq/m

3
) and c) PM10(g/m

3
). Solid line represents 

the moving average of period 21. 
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1. Introduction
1
 

Airborne radioactivity is a powerful tool in the investigation of environmental dynamics. The monitoring 

of airborne radionuclides has afforded a convenient and efficient approach in investigating both the 

problems associated to sanitary risks and the efficiency of atmospheric transport processes, including 

redistribution and removal of pollutants. In this context it is worth referring to some basic works 

summarizing details on this topic such as Junge (1963), Reiter (1978), Garland et al. (1991), Eisenbud and 

Gesell (1997), Turekian and Graustein (2003), and the recent review by Papastefanou (2008). 

As widely recognized, the release of artificial radionuclides into the atmosphere started in 1945 

at Alamogordo, New Mexico, within the Manhattan Project, it developed through the tragic war 

events of Hiroshima and Nagasaki, and continued with nuclear weapon testing which finished only 

in 1980 when the last Chinese nuclear experiments in air took place. Besides warfare sources, 

accidental release of radioactivity through the terrestrial airshed has been ascribed to several 

occurrences such as the fall of nuclear fuelled satellites, accidents in nuclear power plants i.e., 

Kyshtym, Windscale, Three Mile Island, Chernobyl, to mention the most relevant (see for example 

Eisenbud and Gesell, 1997; UNSCEAR, 2008; Sykora and Froehlich, 2010). In the recent past, the 

Algeciras release was observed when radiocontaminated metal scraps were accidentally loaded and 

melt in a steel mill, leading to the spread of a weak, though well detectable, 
137

Cs plume over the 

Mediterranean basin (Papastefanou et al., 2005; Quélo, 2007; Pham et al., 2011).  

                                                
1 This chapter consists in parts of a paper by Tositti L. (Dept. of Chemistry, Università di Bologna), Brattich E. (Dept. 

of Biological, Geological and Environmental Sciences-Section of Geology, Università di Bologna), Cinelli G. (Dept. of 

Biological, Geological and Environmental Sciences-Section of Geology, Università di Bologna; now at European 

Commission, DG JRC, Institute for Transuranium Elements, Via E Fermi 2749, I-21027 Ispra (VA), Italy), Previti A. 

(Laboratory of Nuclear Engineering, Università di Bologna), Mostacci D. (Laboratory of Nuclear Engineering, 

Università di Bologna), 2012. Comparison of radioactivity data measured in PM10 aerosol samples at two elevated 

stations in northern Italy during the Fukushima event. Journal of Environmental Radioactivity 114, 105-112. This work 

was also presented as a poster presentation at the Conference “Chernobyl 25 anni dopo: studi, riflessioni e attualità”, 

held in Udine (Italy) 21-22-23 June 2011. Proceedings (in Italian) are available online at 

http://www.arpa.fvg.it/export/sites/default/tema/radiazioni/radiazioni-artificiali/allegati/Atti_Convegno_STAMPA.pdf, 

and published by Regione Autonoma Friuli Venezia Giulia, ISBN 978-88735-16-0 

http://www.arpa.fvg.it/export/sites/default/tema/radiazioni/radiazioni-artificiali/allegati/Atti_Convegno_STAMPA.pdf
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The details of the Fukushima accident are described in the abundant data available (IAEA, 

2011a,b,c; NISA, 2011a,b,c; MEXT, 2011a,b). The atmospheric release started on 12 March 2011 

and proceeded for several weeks following the occurrence of a number of hydrogen driven 

explosions, which created a variable source term (Stohl et al., 2011). Monitoring activities were 

promptly organized worldwide. In this framework not only the agencies in charge of radioactivity 

monitoring networks were active, but many other research units were interested to observe the 

inception and evolution of Fukushima plume dispersal over the Northern hemispheric troposphere 

(Bolsunovsky and Dementyev, 2011; Diaz Leon et al., 2011; Lozano et al., 2011; Manolopoulou et 

al., 2011; Pittauerová et al., 2011). Results from the European Community countries have been 

already subject of national reports as well as collectively described by Masson et al. (2011), 

showing a large degree of homogeneity in data and time evolution in spite of well recognized 

inhomogeneity in weather patterns over such a large and complex territory. 

The data discussed in the present contribution includes the observations of both Fukushima related 

radionuclides and the natural components sampled at Mt. Cimone (http://www.isac.cnr.it/cimone/) and 

Montecuccolino, two stations located in the Northern Italian Apennines. Data description and 

interpretation is given with the objective of evaluating activity trends at two different altitudes in 

order to: 

a) characterize the transport of artificial radioactivity in airborne particulate matter from a 

long distant source; 

b) point out the effect of altitude on the vertical distribution of radionuclides during 

atmospheric transport; and 

c) determine the extra dose from the Fukushima release as compared to background 

components present in airborne particulate matter. 

 

1.1  Measurement sites 

Air sampling was carried out at two locations (see Figure 1): Montecuccolino, starting 1
st
 April 2011, 

and Mt. Cimone, starting 8
th
 April 2011.  

 

1.1.1 Montecuccolino 

Montecuccolino is a nuclear sciences laboratory of the University of Bologna, founded in the 1960’s 

and still active in the field of nuclear reactor, plasma physics and radiation protection. The 

Montecuccolino laboratory (44° 27' N, 11° 19' E) is located on the foothills of Bologna, 3.5 km 

away from downtown, at an altitude of 273 m above sea level. It hosts also the Institute for 

Radiation Protection of ENEA (Italian National agency for new technologies, Energy and 

http://www.isac.cnr.it/cimone/
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sustainable economic development). Due to the presence of the research nuclear reactors in the past 

there has always been an intense activity in radiation measurements, and this was utilized following 

the Fukushima Dai-ichi accident. 

 

1.1.2 Mt. Cimone 

The Mt. Cimone Station is a research platform for the observation of meteorological and climatologic 

parameters of international relevance with an active role within the WMO-GAW network, recently 

upgraded to “global station” ranking. The features of this measurement site have been described in 

Chapters 2 and 3 of this thesis work.  

 

 

Figure 1 Locations of Mt. Cimone and Montecuccolino (Bologna) stations in the northern Italian Apennines 

(Planiglobe, kk&w - digital cartography). 

 

 

2. Material and methods 

2.1 Experimental activity 

The
 7

Be, 
210

Pb and aerosol mass loading in the form of PM10 have been measured at Mt. Cimone 

since the early 1990’s; however, a steady measurement activity began in 1998 following acquisition 

of a PM10 high volume sampler. The preference for PM10 sampling rests on the well-known size 

distribution of the radionuclides considered, which tend to populate the fine fraction (< 1.0 µm) 

(Winkler et al., 1998) as a consequence of their physical origin, to wit nuclear spallation reaction in 

free gas molecule/atoms in the atmosphere for 
7
Be and decay of gaseous 

222
Rn to 

210
Pb. Once 

formed, both radionuclides become rapidly associated to the finest aerosol particles, becoming 
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prone to long-range transport. The same fate is shared by those components of radioactive plumes 

whose radioisotopes are released through high temperature processes and accidents, so that they are 

first vaporized and thereafter attach onto fine particles, as observed for weapon test fallout and the 

Chernobyl accident. Still, the 10 μm cut-off allows the substantially quantitative collection of the 

coarser fraction of aerosols of mineral origin following soil resuspension processes. The 

supermicron fraction typically of crustal origin (and locally including sea salt contribution) may 

contain K, U and Th radioisotopes associated to the mineral phases detectable in γ-spectra as a 

function of meteorological conditions. 

At Mt. Cimone, aerosol sampling was carried out with a time resolution of about 48 hours by 

means of a PM10 high-volume sampler (Thermo Environmental Instruments Inc. – Flow 

rate = 1.13 m
3
 min

-1
) using a rectangular glass fiber filter (20.3 cm x 25.4 cm, exposed area: 407 cm

2
). 

The volume sampled in a period amounted to approximately 3250 m
3
. Once collected, samples were 

transferred to the Laboratory of Environmental Chemistry and Radiochemistry of Bologna University 

where they were conditioned at a constant temperature (20° C) and relative humidity (30%) prior to 

weighing for the determination of net mass loads of ambient aerosol. Since high altitude stations such 

as Mt. Cimone (2165 m a.s.l.) are representative of large regions, but may only partially catch the 

situation in the lower troposphere, a second sampling point was set at Montecuccolino at the end of 

March 2011, using analogous sampling conditions and extending the comparison from the activity 

concentrations of artificial radionuclides to the other γ-emitters detectable in aerosol samples such as 

7
Be and 

210
Pb tracing respectively downward and upward transports. 

The -emitters in aerosol samples were analyzed on a planar Hyper Pure Germanium crystal 

detector (HPGe) with a 1500 mm
2
 active surface, FWHM 0.73 keV at 122 keV, and energy range 0-

900 keV. Spectra were accumulated for 1 day, to optimize peak analysis. Spectra were processed 

with the software package GammaVision-32, version 6.07, ORTEC. 

Efficiency calibration is determined with a blank glass fiber filter traced with accurately 

weighted aliquots of a standard solution of mixed radionuclides (QCY48, Amersham) 

supplemented with 
210

Pb, homogeneously dispersed in drops over the filter surface. Once dried 

under a hood in ambient conditions, the calibration filter was folded into a polystyrene container in 

the same geometry as the unknown samples. Quantitative analysis on samples was carried out by 

subtracting the spectrum of a blank filter in the same geometry, while uncertainty on peaks (k = 1, 

68% level of confidence) was calculated propagating the combined error over the efficiency fit 

previously determined with the counting error. Minimum detectable activity was calculated making 

use of the Traditional ORTEC method with a peak cut-off limit of 40%.  
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Activity data was corrected to the midpoint of the time interval of collection and for the decay 

during spectrum acquisition. As expected the latter correction was significant only for 
131

I owing to 

the short half-life. 

Qualitative analysis of the aerosol spectra was carried out using a selected isotope library 

extracted by the basic ORTEC mask library. As a rule, typical isotopes searched in spectra are 
7
Be, 

210
Pb, 

40
K, γ emitters from the uranium and thorium families, 

137
Cs and 

22
Na. This list was 

supplemented with a further selection of artificial nuclides based on the experience gathered at the 

time of the Chernobyl accident and above all on the analysis of a couple of fresh Fukushima 

samples in the month of March 2011. The samples analyzed in our laboratory were obtained by 

collecting dust from the turbines of an airliner which flew between Tokyo and Milan during the 

period of maximum airborne radioactivity in Japan. Both samples were very active compared to 

typical ambient samples and led to identification of the following artificial radionuclides attributed 

to the release from Fukushima: 
132

Te, 
131

I, 
132

I, 
133

I, 
134

Cs, 
136

Cs and 
137

Cs. As a result the isotope 

library was supplemented, for the present study, with all the “exotic” species detected due to the 

decay of the less abundant, short-lived Fukushima radionuclides. In the present work, results of 

gamma spectrometry are reported, using the emission at 661.62 keV for 
137

Cs, 604.66 and 

795.76 keV for 
134

Cs, 364.48 keV for 
131

I and 185.99 keV for 
226

Ra. The 
226

Ra activity was 

corrected taking into account the contribution of the 
235

U peak at 185.71 keV, considering the 

natural isotopic composition of uranium (Gilmore, 2008). 

Fallout was also sampled in the city of Bologna collecting bulk (wet+dry) deposition on the roof 

of the Department of Chemistry during the periods: 18/03-05/04/2011, 01-11/04/2011, 11-

27/04/2011, 27/04-18/05/2011. Fallout samples were collected in a barrel with an open surface of 

471 cm
2
. The samples were recovered by acidification and analyzed in 1 dm

3
 Marinelli beakers by 

low-level low-background gamma spectroscopy. 

To integrate the experimental data apparently deriving from an exotic source, back-trajectories 

analysis was applied. The use of back-trajectories in atmospheric research is presently widespread. 

In fact they allow both to characterize typical circulation patterns in a given location and to provide 

a diagnostic tool (either in retrospective or in forecast mode) useful to associate atmospheric 

composition variation to circulation. In the present work, 3D-kinematic back-trajectories were 

calculated using the NOAA - ARL (National Oceanic and Atmospheric Administration – Air 

Resources Laboratory) Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT –

 4) (Draxler and Rolph, 2003; http://www.arl.noaa.gov/ready/hysplit4.htm; Draxler and Rolph, 

2004), employing archived GDAS1 (Global Data Assimilation System) global analysis 

http://www.arl.noaa.gov/ready/hysplit4.htm
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meteorological data provided by NCEP (National Weather Service’s National Center for 

Environmental Prediction).  

 

2.2 Dose Estimation 

Effective doses and their contribution to the total annual dose to individuals in Italy were estimated, 

to evaluate the potential radiological impact to the Italian population due to the arrival of the 

radionuclides from the Fukushima Dai-ichi damaged reactors. Estimates refer only to the measuring 

site of Montecuccolino, in view of its proximity to a densely populated area, whereas Mt. Cimone is 

a research station located in a remote, unpopulated environment. 

The effective doses due to inhalation of artificial radionuclides (
137

Cs, 
134

Cs and 
131

I) and natural 

radionuclides (
226

Ra, 
7
Be and 

210
Pb) were estimated following specifications in the Italian Law 

(Legislative Decree 230/1995, implementing the Council Directive 96/29/EURATOM, based on the 

recommendations of the ICRP60). To produce an upper bound estimation of the dose, an inhalation 

rate of 1.2 m
3
/h, i.e., that of a working adult, and inhalation dose coefficients for children under 1 

year of age, the highest activity-to-dose conversion factors, were considered. Iodine is present both 

within particulate and in gaseous form, but in the present work only the particulate form was 

measured: a particulate-to-total ratio of 0.3 was assumed in dose calculation. This value was chosen 

on the basis of Japanese and European experimental data collected during the Fukushima accident 

(Masson et al., 2011) and on the basis of Chernobyl data (Battiston et al., 1988). The activity 

concentrations of the radionuclides measured in Montecuccolino during the days of 4
th

 and 5
th

 April 

2011, the days when the highest concentration of artificial radionuclides was measured, were used. 

 

 

3. Results and discussion 

The occurrence of the Fukushima accident suggested inclusion in the monitoring activity of a 

number of artificial radionuclides usually neglected, with the exception of 
137

Cs which occasionally 

has been detected in the high volume samples collected in this framework. In particular, because of 

the favourable position of Mt. Cimone, samples from May-June 1998 showed the transit of the 

137
Cs plume released from Algeciras steel plant due to melting of radio-contaminated metal 

(Papastefanou et al., 2005; Quélo et al., 2007; Pham et al., 2011). The 
137

Cs concentration reported 

on that occasion was of the order of a few mBq m
-3

 against the usual absence of this nuclide from γ-

spectra due to the absence of soil resuspension on the mountain top. As for the other artificial 

radionuclides, the choice was made in keeping with what was discussed in the experimental section.  
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The results of -spectrometry for each sample collected are reported in Figure 2 for Mt. Cimone 

and Figure 3 for Montecuccolino. Artificial radionuclide activities are presented in Figure 2a and 

Figure 3a, whereas natural radionuclides activities are reported in Figure 3a and Figure 3b. 

 

 

 

Figure 2 Activities measured in mBq/m
3
 (corrected for standard conditions) with N-type planar 

detector at Mt. Cimone site: (a) artificial emitters 
131

I, 
137

Cs and 
134

Cs, (b) natural emitters 
7
Be, 

226
Ra 

and 
210

Pb. 
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Figure 3 Activities measured in mBq/m
3
 (corrected for standard conditions) with N-type planar 

detector at Montecuccolino site: (a) artificial emitters 
131

I, 
137

Cs 
134

Cs, (b) natural emitters 
7
Be 

226
Ra 

210
Pb. 

 

The values for 
131

I ranged from 0.020 to 0.250 mBq/m
3
, those for 

137
Cs from 0.015 to 

0.250 mBq/m
3
 and finally those for 

134
Cs from 0.010 to 0.220 mBq/m

3
. The average recorded 

values of Fukushima radionuclides are in good agreement with data collected over the Italian 

peninsula, generally from ground level stations as reported from the Institute for Environmental 

Protection and Research (ISPRA, 2011). Our data are consistent with those observed over the 

European continent, as discussed in Masson et al. (2011), which show a rather large degree of 

homogeneity of the plume following redistribution processes in the troposphere. 

Comparing the maximum activity concentration observed in our time series and that one 

recorded at Fukushima and Sugitsuma (available at MEXT 
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http://radioactivity.mext.go.jp/en/monitoring_around_FukushimaNPP_dust_sampling/2011/05/1306

621_053110.pdf), the mean transit time between Japan and Northern Italy was roughly estimated as 

eleven days. As a result, the approximate dilution factor of the plume radioactivity based on 
137

Cs 

(the longest lived of the detected γ-emitters) was estimated of about 5 orders of magnitude. 

Good agreement was found between the activities (either natural or artificial) measured at both 

stations, as per Table 1, upon comparing average values at the two sites with a Student’s t-test. The 

t-test value indicated that for all the radionuclides reported, with the sole exception of 
7
Be and 

226
Ra, the means of the observed values at the two sites were not statistically different at the 0.05 

confidence level. The values for 
7
Be are slightly higher at Mt. Cimone because of the greater 

altitude of the location and the negative gradient of this radionuclide due to its cosmogenic origin. 

On the contrary, the values for 
226

Ra were slightly lower because of the crustal origin of this 

radionuclide. Concerning 
210

Pb, values would be expected higher close to the ground, but data at the 

two sites were comparable. Such comparable values for 
210

Pb are expected during the warm season 

when, as a result of active turbulent motions which stir the innermost tropospheric layer above the 

Mt. Cimone top, this site lies within the planetary boundary layer (PBL); during the cold season, 

instead, the PBL and free troposphere are decoupled largely preventing upward transport of 
210

Pb. 

 

 

 Mt Cimone Montecuccolino    

 
mean 

(mBq/m
3
) 

std dev 
(mBq/m

3
) 

mean 
(mBq/m

3
) 

std dev 
(mBq/m

3
) 

t value df p 

7
Be 2.9 1.0 2.1 0.7 2.66 36 0.012 

210
Pb 0.38 0.14 0.3 0.2 1.58 34 0.123 

226
Ra 0.20 0.08 0.4 0.2 -2.92 31 0.007 

131
I 0.10 0.02 0.13 0.09 -0.76 10 0.462 

137
Cs 0.03 0.01 0.07 0.07 -1.31 14 0.212 

134
Cs 0.04 0.02 0.06 0.05 -1.36 26 0.186 

 

Table 1 Mean, standard deviation and differences between the means (evaluated through the 

Student’s t-test) of the airborne detected radionuclides activity concentration at the two sites, in 

mBq/m
3
. 

 

Comparison of activity data on Fukushima radionuclides with those on the natural components 

clearly shows that the background aerosol radioactivity (namely 
7
Be and 

210
Pb) was on the average 

one order of magnitude higher than the artificial component. In all the samples in which the 

Fukushima radionuclides were detected, associated experimental uncertainty was very high due to 

low concentrations, as a result of both dispersal-dilution and wet removal, frequent in the region 

(especially at Mt. Cimone) during spring time. As for 
7
Be and 

210
Pb, the values were also typical for 
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the season, that is at an average concentration between the winter minimum and the summer 

maximum. 

The average 
134

Cs/
137

Cs ratio at the two sites was found to be 0.9, in good agreement with the 

0.95 average European value recorded during the period March 20
th
 – April 4

th
 (Masson et al., 

2011), and very different from the 0.5-0.6 value reported after the Chernobyl accident (Arvela et 

al., 1990; De Cort et al., 1998). 

In Figure 4, 3D kinematic fifteen days back-trajectories calculated using the HYSPLIT-4 model 

for the site of Mt. Cimone on the 4
th

 April 2011, i.e., the day with the maximum observed 
137

Cs 

value, are shown. Only Mt. Cimone back trajectories are reported due to the coincidence of the 

output for Montecuccolino. The analysis of back trajectories of the period end of March – 

beginning of April confirmed the westerly Japanese origin of the considered air masses, which is 

very well captured and described by the one shown in Figure 4. 

 

 

 

Figure 4 15 days back-trajectories for 4
th

 April 2011 (00:00 UTC), day of maximum detected 
137

Cs 

value, for Mt. Cimone (44°12’ N, 10°42’ E), calculated by the HYSPLIT-4 model 

(http://www.arl.noaa.gov/ready/hysplit4.htm) for three arrival heights (1700, 2200 and 2700 m asl) 
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From the time series of the artificial radionuclides the influence of emissions from Fukushima 

appears to have ceased in Italy in the first half of May 2011 (Torri, 2011). For the sake of 

completeness the data of fallout sampled in the same period is reported: total 
137

Cs deposition 

analyzed between March 18
th
 and May 18

th
 2011 resulted to be 27.1 ± 5.9 Bq/m

2
. 

The increase in radiological risk due to the Fukushima plume in Italy can be evaluated against 

the doses due to the natural radionuclides that are always present. Dose calculations were conducted 

under the worst case hypotheses discussed in section 2.2. The doses calculated for all the 

radionuclides considered are reported in Table 2. The dose contribution of the nuclides deriving 

from the Fukushima accident, calculated for a hypothetical one year constant exposure, was 

assessed at 1.1 μSv/year, to be compared to the 50 μSv/year due to the natural components, 

including 
7
Be, 

210
Pb, 

226
Ra. This latter in turn amounts to only a minor fraction of the annual dose to 

members of the public from all sources (natural, medical, etc.), which in Italy averages 

approximately 4500 μSv/year (Dionisi et al., 2005). 

 

 
Hourly dose 

(μSv/h) 
Annual dose 

(μSv/y) 
7
Be 7.53E-07 6.60E-03 

210
Pb 2.55E-03 2.24E+01 

226
Ra 3.11E-03 2.72E+01 

131
I
 

7.28E-05 6.38E-01 
134

Cs 1.85E-05 2.87E-01 
137

Cs 3.28E-05 1.62E-01 

 
Table 2 Hourly (μSv/h) and annual (μSv/year) dose deriving from the detected natural (

7
Be, 

210
Pb and 

226
 Ra) 

and artificial radionuclides (
131

I, 
134

Cs, 
137

Cs). 

 

 

4. Conclusions 

In this work the data of airborne radioactivity in ambient aerosol at two elevated sites in northern 

Italy under the influence of the Fukushima plume transit are reported. The main artificial 

radionuclides detected were 
131

I (0.020-0.250 mBq/m
3
), 

137
Cs (0.012- 0.250 mBq/m

3
) and 

134
Cs 

(0.010-0.220 mBq/m
3
). The activities of the gamma emitters from the Fukushima accident detected 

at both stations were consistent with those collected at other locations both in the Italian peninsula 

and elsewhere in Europe, and approximately one order of magnitude lower than those of natural 

background radionuclides. The Japanese origin of the artificial radionuclides was confirmed by 

back-trajectories models applied to the locations investigated.  
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Considering a one-year constant exposure the peak inhalation dose from Fukushima nuclides 

was estimated at 1.1 μSv/year, whereas the dose from natural gamma emitters yielded a total of 

50 μSv/year. These figures can be compared to the dose limit to the general population of 

1000 μSv/year. It can be concluded that at the location considered the dose increase due to the 

Fukushima accident is entirely negligible. 
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