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Abstract

Despite the several issues faced in the recent past, the evolutionary trend of

silicon has kept its constant pace. Exploiting the high integration density offered

by Moore’s Law, today an ever increasing number of cores is integrated onto the

same die, thus we are observing the shift from the multi-core to the many-core era.

The extraordinary computing performance achievable by the many-core paradigm

is limited not only by Amdahl’s law, but several other factors concur in reducing

the degree of effectiveness of such platforms. Memory bandwidth limitation, a

problem exacerbated in many-core systems, combined with the lack of efficient

synchronization mechanisms can severely overcome the potential computation

capabilities. Moreover, the huge HW/SW design space of such architectures

requires accurate and flexible tools to perform early architectural explorations

and validation of key design choices.

In this thesis we focus on the aforementioned aspects affecting modern many-

core architectures. A flexible and accurate Virtual Platform has been developed

as an infrastructure tool, targeting a typical many-core architecture. With the

goal of both flexibility and accuracy in mind, such Virtual Platform (VP) is ca-

pable of highly-accurate insights in the micro-architectural domain, full-system

simulations of heterogeneous Systems-on-Chips (SoCs) as well as energy efficiency

analyses. The tool has been used to perform architectural explorations, focusing

on instruction caching architecture and hybrid HW/SW synchronization mecha-

nism for local (intra-cluster) and global (inter-cluster) communication.

Beside architectural implications of modern many-core SoCs, another para-

mount issue of embedded systems is considered in this work: energy efficiency.

Near Threshold Computing (NTC) is today a key research area in the Ultra-Low

Power (ULP) domain, as it promises a tenfold improvement in energy efficiency

compared to super-threshold operation and it mitigates thermal bottlenecks. Un-



fortunately, the physical implications of modern deep sub-micron technological

nodes are posing sever limits to the performance and reliability of modern designs.

Reliability becomes a major obstacle when operating in NTC, especially memory

operation becomes unreliable and can compromise system correctness. Read fail-

ure, due to the lack of Static Noise Margin (SNM), is one of the principal failure

factors, limiting the efficiency of dynamic voltage scaling. In the present work a

novel hybrid memory architecture is devised to overcome reliability issues and at

the same time improve energy efficiency by means of aggressive voltage scaling

when allowed by workload requirements. Variability is another great drawback of

near-threshold operation. The greatly increased sensitivity to threshold voltage

variations in today a major concern for electronic devices: conservative design

margins are nowadays not feasible due to the enormous performance waste and

new architectural techniques are under investigation to mitigate this problem. In

the present work, a variation-tolerant extension of the baseline many-core archi-

tecture is presented. By means of a micro-architectural knobs inserted at design

and a lightweight runtime control unit, we extend the baseline architecture to be

dynamically tolerant to variations.
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Chapter 1

Introduction

In this chapter an overview of modern many-core architectures is presented, de-

scribing the evolutionary path of such systems and highlighting their most fun-

damental traits. Relevant examples of commercial many-core platforms follows,

exposing the characteristics of such architectures at the cluster level, as a back-

ground knowledge to understand the properties of the target architecture consid-

ered in the present work. Finally, the thesis outline is presented to understand

chapters organization and to highlight the main contributions.

1.1 Many-core architectures

Several variants of many-core architectures have been designed and are in use for

years now. As a matter of fact, since the mid 2000s we observed the integration

of an increasing number of cores onto a single integrated circuit die, known as

a Chip Multi-Processor (CMP) or Multi-Processor System-on-Chip (MPSoC), or

onto multiple dies in a single chip package. Manufacturers still leverage Moore’s

Law [66] (doubling of the number of transistors on chip every 18 months), but

business as usual is not an option anymore: scaling performance by increasing

clock frequency and instruction throughput of single cores, the trend for electronic

systems in the last 30 years, has proved to be not viable anymore [6, 13, 33]. As a

1



consequence, computing systems moved to multi-core1 designs and subsequently,

thanks to the integration density, to the many-core era where energy-efficient

performance scaling is achieved by exploiting large-scale parallelism, rather than

speeding up the single processing units [6, 13, 33, 51].

Such trend can be found in a wide spectrum of platforms, ranging from general

purpose computing, high-performance to the embedded world.

In the general purpose domain we observed the first multi-core processors al-

most a decade ago. Intel core duo [35] and Sony-Toshiba-IBM (STI) Cell Broad-

band Engine [41] are notable examples of this paradigm shift. The trend did

not stop and nowadays we have in this segment many-core examples such as the

TILE-Gx8072 processor, comprising seventy-two cores operating at frequencies

up to 1.2 GHz [22]. Instead, when performance is the primary requisite of the ap-

plication domain, we can cite several notable architectures such as Larrabee [81]

for visual computing, the research microprocessors Intel’s SCC [40] and Tera-

scale project [88] and, more recently, Intel’s Xeon Phi [38]. In the embedded

world, we are observing today a proliferation of many-core heterogeneous plat-

forms. The so-called asymmetric of heterogeneous design features many small,

energy-efficient cores integrated with a full-blown processor. Its is emerging as

the main trend in the embedded domain, since it represents the most flexible and

efficient design paradigm. Notable examples of such architectures are the AMD

Accelerated Processing Units [15], Nvidia TEGRA family [68], STMicroelectron-

ics P2012/STHORM [11] or Kalray’s many-core processors [44].

The work presented in this thesis is focused on the embedded domain where,

more than in other areas, modern high-end applications are asking for increas-

ingly stringent and irreconcilable requirements. An outstanding example consist

of the mobile market. As highlighted in [87], the digital workload of a smartphone

(all control, data and signal processing) amounts to nearly 100 Giga Operations

Per Second (GOPS) with a power-budget of 1 Watt. Moreover, workload re-

quirements increase at a steady rate, roughly by an order of magnitude every 5

1For clarity, the multi-core term is intended for platforms with 2 to few tens cores, while
with many-core we refer to systems with tens to hundreds of cores. The distinction is not rigid
and throughout the dissertation, the terms multi-core and many-core may be used indistinctly.

2



years.

From the architectural point of view, with the evolution from tens of cores to

the current integration capabilities in the order of hundreds, the most promising

architectural choice for many-core embedded systems is clustering. In a clustered

platform, processing cores are grouped into small- medium-sized clusters (i.e.

few tens), which are highly optimized for performance and throughput. Clusters

are the basic “building blocks” of the architecture, and scaling to many-core is

obtained by the replication and global interconnection through a scalable medium

such as a Network-on-Chip (NoC) [10, 24]. Figure 1.1 shows a reference clustered

CLUSTER

#0

NI

SW

CLUSTER

#1

NI

SW

CLUSTER

#2

NI

SW

CLUSTER

#3

NI

SW

MAIN

MEM

(off-chip)

Figure 1.1: Clustered many-core architecture organized in a 4x4 mesh and off-chip
main-memory

many-core architecture, organized in 4 clusters with a 4x4 mesh-like NoC for

global interconnection. Next section reports some representative examples of

recent architectures with a focus at the cluster level.

1.1.1 Cluster Architecture: Relevant Examples

The cluster architecture considered in this work is representative of a consoli-

dated trend of embedded many-core design. Few notable examples are described,

highlighting the most relevant characteristics of such architectures.
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1.1.1.1 ST Microelectronics P2012/STHORM

Platform 2012 (P2012), also known as STHORM [11], is a low-power programma-

ble many-core accelerator for the embedded domain designed by ST Microelec-

tronics [83]. The P2012 project targets next-generation data-intensive embedded

applications such as multi-modal sensor fusion, image understanding, mobile aug-

mented reality [11]. The computing fabric is highly modular being structured in

clusters of cores, connected through a Globally Asynchronous Network-on-Chip

(GANoC) and featuring a shared memory space among all the cores. Each cluster

is internally synchronous (one frequency domain) while at the global level the sys-

tem follows the GALS (Globally Asynchronous Locally Synchronous) paradigm.

In Figure 1.2 is shown a simplified block scheme of the internal structure of a single

cluster. Each cluster is composed of a Cluster Controller (CC) and a multi-core

computing engine, named ENCore, made of 16 processing elements. Each core

is a proprietary 32-bit RISC core (STxP70-V4) featuring a floating point unit, a

private instruction cache and no data cache.

Processors are interconnected through a low-latency high-bandwidth logarith-

ENCORE

TCDM
(32 banks)

DMA #0

STxP70

# 15…
TIMER

HWS

STxP70

# 0

I$
CC

I$

TCDM

IC

DMA #1

HWPE

WRAP

HWPE

WRAP

HWPE

WRAP

IC

…

IF

NI

IF LIC P
IC

CVP

I$

…

Figure 1.2: Overview (simplified) of P2012/STHORM cluster architecture
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mic interconnect and communicate through a fast multi-banked, multi-ported

tightly-coupled data memory (TCDM). The number of memory ports in the

TCDM is equal to the number of banks to allow concurrent accesses to differ-

ent banks. Conflict-free TCDM accesses are performed with a two-cycles latency.

The logarithmic interconnect consists of fully combinatorial Mesh-of-Trees (MoT)

interconnection network. Data routing is based on address decoding: a first-stage

checks if the requested address falls within the TCDM address range or has to be

directed off-cluster. The interconnect provides fine-grained address interleaving

on the memory banks to reduce banking conflicts in case of multiple accesses to

logically contiguous data structures. If no bank conflicts arise, data routing is

done in parallel for each core. In case of conflicting requests, a round-robin based

scheduler coordinates accesses to memory banks in a fair manner. Banking con-

flicts result in higher latency, depending on the number of concurrent conflicting

accesses. Each cluster is equipped with a Hardware Synchronizer (HWS) which

provides low-level services such as semaphores, barriers, and event propagation

support, two DMA engines, and a Clock Variability and Power (CVP) module.

The cluster template can be enhanced with application specific hardware pro-

cessing elements (HWPEs), to accelerate key functionalities in hardware. They

are interconnected to the ENCore with an asynchronous local interconnect (LIC).

The first release of P2012 (STHORM) features 4 homogeneous clusters for a to-

tal of 69 cores and a software stack based on two programming models, namely

a component-based Native Programming Model (NPM) and OpenCL-based [84]

(named CLAM - CL Above Many-Cores) while OpenMP [23] support is under

development.

1.1.1.2 Plurality HAL - Hypercore Architecture Line

Plurality Hypercore [2] is an energy efficient general-purpose machine made of

several RISC processors. The number of processors can range from 16 up to 256

according to the processor model.

Figure 1.3 shows the overall architecture and the single processor structure,

which is designed with the goal of simplicity and efficiency in mind (no I/D caches
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Figure 1.3: Plurality HAL architecture overview

nor private memory, no branch speculation) to save power and area. The memory

system (i.e., I/D caches, off-chip main memory) is shared and processors access

it through a high-performance logarithmic interconnect, equivalent to the inter-

connection described in Section 1.1.1.1. Processors share one or more Floating

Point Units, and one or more shared hardware accelerators can be embedded in

the design. This platform can be programmed with a task-oriented programming

model, where the so-called “agents” are specified with a proprietary language.

Tasks are efficiently dispatched by a scheduler/synchronizer called Central Syn-

chronizer Unit (CSU), which also ensures workload balancing.

1.1.1.3 Kalray MPPA MANYCORE

Kalray Multi Purpose Processor Array (MPPA) [44] is a family of low-power

many-core programmable processors for high-performance embedded systems.

The first product of the family, MPPA-256, deploys 256 general-purpose cores

grouped into 16 tightly-coupled clusters using a 28nm manufacturing process

technology.

The MPPA MANYCORE chip family scales from 256 to 1024 cores with a
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Figure 1.4: Overview (simplified) of Kalray MPPA architecture

performance of 500 Giga operations per second to more than 2 Tera operations per

second with typical 5W power consumption. Global communication among the

clusters is based on a Network-on-Chip. A simplified version of the architecture

is shown in Figure 1.4.

Each core is a proprietary 32-bit ISA processor with private instruction and

data caches. Each cluster has a 2MB shared data memory for local processors

communication and a full-crossbar. Clusters are arranged in a 4x4 mesh and

four I/O clusters provide off-chip connectivity through PCI (North and South)

or Ethernet (West and East). Every I/O cluster has a four-cores processing unit,

and N/S clusters deploy each a DDR controller to a 4GB external memory. The

platform acts as an accelerator for an x86-based host, connected via PCI to the

North I/O cluster. Accelerator clusters run a lightweight operative system named

NodeOS [67], while I/O clusters run an instance of RTEMS [69].
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1.2 Challanges

This section provides a brief overview of the most relevant research topics ad-

dressed in this thesis. It is not a comprehensive coverage of the complex chal-

lenges faced today by many-core systems, though it provides a background to

understand the motivations behind this work.

Many-core architectures provide a new dimension to scale up the number of

processing elements (cores) and, therefore, the potential computing capacity. To

deploy the disruptive performance offered by such architectures, key challenges

have nowadays to be faced. If we look at the mobile market, the goal is to pro-

vide 100GOPS within a 1W power budget [87]. As predicted in [13], energy will

be the key limiter of performance, forcing processor designs to use large-scale

parallelism with heterogeneous cores, or a few large cores and a large number of

small cores operating at low frequency and low voltage, near threshold. Hetero-

geneity in compute and communication hardware will be essential to optimize

for performance for energy-proportional computing and coping with variability.

Aggressive use of customized accelerators will yield the highest performance and

greatest energy efficiency on many applications. Efficient data orchestration will

increasingly be critical, evolving to more efficient memory hierarchies and new

types of interconnect tailored for locality and that depend on sophisticated soft-

ware to place computation and data so as to minimize data movement.

This work focuses mainly on two aspects among the aforementioned challenges

faced nowadays: scalable performance and energy efficiency.

Scalable Performance

Despite Pollack’s Rule, which states that performance increase is proportional

to the square root of the increase in complexity, clearly points to the direction

of using a large number of small cores integrated on the same chip, some other

bottlenecks in performance exist.

If we consider the cluster architectures presented in the previous section, it

is clear that an efficient memory hierarchy utilization plays a key for a scalable
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sustainable performance [85]. For any actual application with reasonable size,

data may have to be accessed through the memory hierarchy, where long data-

access delay occurs, in addition to the contention of the shared data structures

in the lower levels of the memory hierarchy. The memory-wall problem [92] is

due to the disparity of technology advance between CPU speed and memory data

access latency. During last three decades memory latency in terms of processor

cycles has increased, and the gap is still growing [13], requiring exploration of

efficient usage of the memory hierarchy.

Moreover, data orchestration will increasingly be critical in such complex plat-

forms. The many-core paradigm devise scalability by means of clusters com-

bined with an highly scalable interconnection medium such as a Network-on-

Chip. When highly parallel computation is allowed by the application running

on the architecture, communication between the several nodes becomes a major

concern for coordination and synchronization between remote clusters. Barrier

synchronization becomes increasingly challenging as the level of integration in

multi-processor systems-on-chip keeps growing. There is today little doubt on the

fact that pure software implementations are not suitable to provide the needed

scalability of barrier synchronization in embedded systems and that some form

of hardware support is essential.

Energy Efficiency

Power consumption has become one of the main barriers in embedded com-

puting systems and modern applications requirements, combined with a typically

tight power budget, have made energy efficiency fundamental. By shrinking fea-

ture sizes, in deep-submicron technology (beyond 65nm) the supply voltage of

digital systems has remained essentially constant and improvements on dynamic

energy efficiency have dramatically stagnated, while leakage currents continue to

increase. To face the reduced energy gains of classical super-threshold operation,

a promising scenario is represented by the near-threshold computing (NTC) do-

main [13, 29, 59]. By reducing the supply voltage from the nominal value to the

level of the threshold voltage the energy per operation has a tenfold improve-
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ment with similar impact on performance penalties. [29, 31, 59, 96]. Reducing

further the supply voltage in the sub-threshold region is less attractive since the

performance will dominate the efficiency improvement. Although NTC provides

excellent energy-frequency trade-offs, it faces three key barriers that must be

overcome for widespread use: performance loss, performance variation and func-

tional failure. In the context of this work, parallel architecture are the focus and

they intrinsically provide a remedy to the reduced performance when not extreme

computation is required.

Variability, is on the other hand, a great issue and it is testified by the huge

amount of research effort to address this problem. Systematic and random vari-

ations are already significant issues in today’s advanced technological nodes and

operating at low-voltages exacerbates the effects of both. Performance uncer-

tainty in the near-threshold region due to the global process variation alone in-

creases to 5x from 1.3x at nominal supply voltage [20, 29]. Operating at this

voltage also heightens sensitivity to temperature and supply ripple, both can

have a detrimental effect on system reliability.

Also functional failure must be taken into account: more than the logic cells,

embedded SRAM cells will suffer from static and random variations with the high

risk of causing several functional failures. For instance, a typical 65nm SRAM

cell has a failure probability of 10−7 at nominal voltage. However, at NTC this

failure rate increases by 5 orders of magnitude to approximately 4%. Keeping

the power supply of SRAM cells slightly higher than the core logic will reduce

the error rate [20, 29], the leakage power and produce faster memory. On the

other hand, the power-hungry memories of modern technology, cannot benefit

from additional voltage-scaling if reliability aspects are not taken into account.

10



1.3 Thesis Outline

In this section we describe the organization of the remainder of the present thesis

work.

Chapter 2 presents the Virtual Platform (VirtualSoC) that has been de-

veloped, targeting the full-system simulation of massively parallel heterogeneous

Multi-Processor Systems-on-Chip (MPSoCs). Driven by flexibility, performance

and cost constraints of demanding modern applications, heterogeneous MPSoC

is the dominant design paradigm in the embedded system computing domain.

The necessity to efficiently cope with the huge HW/SW design space provided by

this scenario makes clearly a virtual platform capable of accurate architectural in-

sights and full-system simulation one of the most important tool for both research

and design purposes. All the analyses presented in this work and described in the

next chapters, leverage ad-hoc versions of the VirtualSoC simulator customized

for the specific goals.

Chapter 3 compares different architectures for instruction caching targeting

tightly-coupled clusters. The analysis involves (i) private instruction caches per

core and (ii) a shared instruction cache per cluster. Indeed, an effective instruc-

tion cache architecture is key to support the instruction fetch bandwidth required

to have high-throughput and efficient systems. Due to the lack of sophisticated

HW support to hide memory latency, the simple processors embedded in many-

core systems may experience prolonged stalls on long-latency instructions fetch,

with negative effects both on performance and energy consumption. An in-depth

study of the two architectural templates is shown, based on the usage of both

synthetic micro-benchmarks and real program workloads.

Chapter 4 focuses on a different architectural aspect: barrier synchroniza-

tion mechanisms. Barrier synchronization is a key programming primitive for

shared memory embedded MPSoCs. Communication plays a crucial role when

different clusters work on a parallel distributed workload, a common application

scenario for many-core systems. As the core count increases, software imple-

mentations cannot provide the needed performance and scalability, thus making

hardware acceleration critical for such platforms. The proposed interconnect
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extension proves its efficacy and the area overhead is marginal with respect to

the performance improvements. As a final exploration, a comparison with tradi-

tional software implementations is assessed by integrating the HW barriers into

the OpenMP programming model and synchronization efficiency is discussed.

Chapter 5 studies energy efficiency and reliability aspects. When the work-

load requirements of the application vary throughout time, the energy efficiency

of the system can greatly benefit from dynamic voltage scaling. Unfortunately,

due to physical limitations, aggressive voltage scaling can not be applied because

of the lack of reliability. The failure probability of the conventional 6-Transistors

SRAM cell increases considerably as the supply voltage is scaled down. To avoid

reliability issues and improve energy efficiency we studied a novel hybrid mem-

ory architecture that guarantees correct operation in a single voltage domain

and adapts the reliable memory portion to workload requirements substantially

improving the overall energy efficiency.

Chapter 6 presents a solution to extend the baseline architecture to be re-

silient to variability. Indeed, Near-threshold Operation is plagued by greatly

increased sensitivity to threshold voltage variations, potentially leading to timing

failures. In this chapter we devise an architectural scheme to tolerate ambient

temperature-induced variations, capable of statically (off- line) and dynamically

(on-line) adapting the processor-to-memory latency without compromising exe-

cution correctness. Extensive tests in different scenarios validate the approach

and different design trade-offs are presented showing the cost, performance and

reliability gain compared to state-of-the-art static solutions.

Finally, Chapter 7 summarizes the main research contributions of the present

thesis work.
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Chapter 2

VirtualSoC - Virtual Platform

2.1 Overview

Performance modeling plays a critical role in the design, evaluation, and develop-

ment of computing architectures of any segment, ranging from embedded to high

performance processors. Simulation has historically been the primary vehicle to

carry out performance modeling, since it allows for easily creating and testing new

designs several months before a physical prototype exists. Performance modeling

and analysis are now integral to the design flow of modern computing systems,

as it provides many significant advantages: i) accelerates time-to-market, by al-

lowing the development of software before the actual hardware exists; ii) reduces

development costs and risks, by allowing for testing new technology earlier in the

design process; iii) allows for exhaustive design space exploration, by evaluating

hundreds of simultaneous simulations in parallel.

High-end embedded processor vendors have definitely embraced the hetero-

geneous architecture template for their designs as it represents the most flexi-

ble and efficient design paradigm in the embedded computing domain. Parallel

architecture and heterogeneity clearly provide a wider power/performance scal-

ing, combining high performance and power efficient general-purpose cores along

with massively parallel many-core-based accelerators. Examples and results of

this evolution are AMD Fusion [15], NVidia Tegra [68] and Qualcomm Snap-
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dragon [75]. Besides the complex hardware, generally these kinds of platforms

host also an advanced software eco-system, composed by an operating system,

several communication protocol stacks, and various computational demanding

user applications.

Unfortunately, as processor architectures get more heterogeneous and com-

plex, it becomes more and more difficult to develop simulators that are both

fast and accurate. Cycle-accurate simulation tools can reach an accuracy error

below 1-2%, but they typically run at a few millions of instructions per hour.

The necessity to efficiently cope with the huge HW/SW design space provided

by this target architecture makes clearly full-system simulator one of the most

important design tools. Clearly, the use of slow simulation techniques is challeng-

ing especially in the context of full-system simulation. In order to perform an

affordable processor design space exploration or software development for the tar-

get platform, trade-off accuracy for speed is thus necessary by implementing new

virtual platforms that allow for faster simulation speed at the expense of model-

ing fewer micro-architecture details of not-critical hardware components (like the

host processor domain), while keeping high-level of accuracy for the most critical

hardware components (like the manycore accelerator domain).

We present in this chapter VirtualSoC, a new virtual platform prototyping

framework targeting the full-system simulation of massively parallel heteroge-

neous system-on-chip composed by a general purpose processor (i.e. intended

as platform coordinator and in charge of running an operating system) and a

many-core hardware accelerator (i.e. used to speed-up the execution of com-

puting intensive applications or parts of them). VirtualSoC exploits the speed

and flexibility of QEMU, allowing the execution of a full-fledged Linux operating

system, and the accuracy of a SystemC model for many-core-based accelerators.

The specific features of VirtualSoC are:

� Since it exploits QEMU for the host processor emulation, unmodified op-

erating systems can be booted on VirtualSoC and the execution of unmod-

ified ARM binaries of applications and existing libraries can be simulated

on VirtualSoC.
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� VirtualSoC enables accurate manycore-based accelerator simulation. We

designed a full software stack allowing the programmer to exploit the hard-

ware accelerator model implemented in SystemC, from within a user-space

application running on top of QEMU. This software stack comprise a Linux

device driver and a user-level programming API.

� The host processor (emulated by QEMU) and the SystemC accelerator

model can run in an asynchronous way, where a non-blocking communi-

cation interface has been implemented enabling parallel execution between

QEMU and SystemC environments.

� Beside the interface between QEMU and the SystemC model, we also im-

plemented a synchronization protocol able to provide a good approximation

of the global system time.

� VirtualSoC can be also used in stand-alone mode, where only the hardware

accelerator is simulated, thus enabling accurate design space explorations.

This chapter focuses on the implementation details of VirtualSoC and eval-

uates the performance of various benchmarks and presents some example case

studies using VirtualSoC.

The rest of the chapter is structured as follows: in Section 2.2 we provide

an overview of related work, in Section 2.3 we present the target architecture,

focusing on the many-core accelerator in Section 2.4. The implementation of

the proposed platform is discussed in Section 2.5. Software simulation support is

described in Section 2.6, finally experimental results and conclusions are presented

in Sections 2.7 and 2.8.

2.2 Related work

The importance of full-system emulation is confirmed by the considerable amount

of effort committed by both industry and research communities in developing such

designing tools as more efficient as possible. We can cite several examples, like
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Bochs [52], Simics [56], Mambo [12], Parallel Embra [50], PTLsim [94], AMD

SimNow [8], OVPSim [86] and SoCLib [61].

QEMU [9] is one of the most widely used open-source emulation platform.

QEMU supports cross-platform emulation and exploits binary translation for em-

ulating the target system. Taking advantage of the benefits of binary translation,

QEMU is very efficient and functionally correct, however it does not to pro-

vide any accurate information about hardware execution time. In [37] authors

have implemented program instrumentation capabilities to QEMU for user ap-

plication program analysis. This work has only been done for the user mode of

QEMU and it cannot be exploited for system performance measurements (e.g.

device driver). Moreover, profiling based on program instrumentation can heavily

change the execution flow of the program itself, leading to behaviors which will

never happen when executing the program in the native fashion. Authors in [62]

have instead presented pQEMU, which simulates the timing of instruction exe-

cutions and memory latencies. Instruction execution timings are simulated using

instruction classification and weight coefficients, while memory latency is simu-

lated using a set-associative cache and TLB simulator. This kind of approach can

lead to a significant overhead due to the different simulation stages (i.e. cache

simulation, TLB simulation), and even in this case the proposed framework can

only run user-level applications without the support of an operating system.

QEMU lacks also of any accurate co-processors simulation capabilities. Au-

thors in [76] interfaced QEMU with a many-core co-processor simulator running

on an nVidia GPGPU [72]. Despite the co-processor simulator described in [72]

is able to simulate thousands of computing units connected through a NoC, it

runs at a high level of abstraction and does not provide precise measurements

from the simulated architecture. Moreover authors do not address the problem

of timing synchronization between QEMU and the co-processor simulation.

Other works have been mainly concentrated on enabling either cycle accurate

instruction set simulators for the general purpose processor part or SystemC-

based simple peripherals, without considering complex many-core-based acceler-

ators [34].
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When interfacing QEMU with the SystemC framework, several implementa-

tion aspects and decisions need to be accurately taken into account, since devel-

opment choices can limit and constraint the performance of the overall emulation

environment. The optimal implementation should not possibly affect efficiency,

flexibility and scalability.

Establishing the communication between QEMU and SystemC simulator through

inter-process communication socket is another approach. Authors in [74] use such

facility between a new component of QEMU, named QEMU-SystemC Wrapper,

and a modified version of the SystemC simulation kernel. The exchanged mes-

sages have the purpose not only to transmit data and interrupt signals but also to

keep the simulation time synchronized between the simulation kernels. However

using heavy processes does not allow fast and efficient memory sharing, which in

this case can be achieved only using shared memory segments. Moreover, Unix

Domain Sockets are less efficient, in terms of performance and flexibility, than

direct communication between threads.

QEMU-SystemC [65] allows devices to be inserted into specific addresses of

QEMU and communicates by means of the PCI/AMBA bus interface. How-

ever, QEMU-SystemC does not provide the accurate synchronization information

that can be valuable to the hardware designers. [53] integrates QEMU with a

SystemC-based simulation development environment, to provide a system-level

development framework for high performance system accelerators. However, this

approach is based on socket communication, which strongly limits its perfor-

mance and flexibility. Authors in [93] suggested an approach based on threads

since context switches between threads are generally much faster than between

processes. However, communication among QEMU and SystemC uses a unidirec-

tional FIFO, limiting the interaction between QEMU and the SystemC model.

We present in this chapter our new emulation framework based on QEMU and

SystemC which overcomes these issues. We chose QEMU amongst all simulators

cited (e.g. OVPSim [86], SoCLib [61]) because it is fast, open-source and also

very flexible enabling its extension with a moderate effort. Our approach is based

on thread parallelization and memory sharing to obtain a complete heterogeneous
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SoC emulation platform. In our implementation the target processor and the Sys-

temC model can run in an asynchronous way, where non-blocking communication

is implemented through the use of shared memory between threads. Beside the

interface between QEMU and a SystemC model, we also present a lightweight

implementation of a synchronization protocol able to provide a good approxima-

tion of a global system time. Moreover, we designed a full SW stack allowing the

programmer to exploit the HW model implemented in SystemC, from within a

user-space application running on top of QEMU. This software stack comprise a

Linux device driver and a user-level programming API.

2.3 Target Architecture

Modern embedded SoCs are moving toward systems composed by a general pur-

pose multi-core processor accompanied by a more energy efficient and powerful

many-core accelerator (e.g. GPU). In these kinds of systems the general purpose

processor is intended as a coordinator and is in charge of running an operat-

ing system, while the many-core accelerator is used to speed up the execution of

computing intensive applications or parts of them. Despite their great computing

power, accelerators are not able to run an operating system due to the lack of

all needed surrounding devices and to the simplicity of their micro-architectural

design. The architecture targeted by this work (shown in Figure 2.1) is represen-

tative of the above mentioned platforms and composed by a many-core accelerator

and an ARM-based processor.

The ARM processor is emulated by QEMU which models an ARM926 proces-

sor, featuring an ARMv5 ISA, and interfaced with a group of peripherals needed

to run a full-fledged operating system (ARM Versatile Express baseboard). The

many-core accelerator is a SystemC cycle-accurate MPSoC simulator. The ARM

processor and the accelerator share the main memory, used as communication

medium between the two. The accelerator target architecture features a config-

urable number of simple RISC cores, with private or shared I-cache architecture,

all sharing a Tightly Coupled Data Memory (TCDM) accessible via a local inter-
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Figure 2.1: Target simulated architecture

connection. The state-of-the-art programming model for this kind of systems is

very similar to the one proposed by OpenCL [48]: a master application is running

on the host processor which, when encounters a data or task parallel section, of-

floads the computation to the accelerator. The master processor is in charge also

of transferring input and output data.
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2.4 Many-core Accelerator

The proposed target many-core accelerator template can be seen as a cluster

of cores connected via a local and fast interconnect to the memory subsystem.

The following sub-sections describe the building blocks of such cluster, shown in

Figure 2.2.
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Figure 2.2: Many-core accelerator

2.4.1 Architectural components

In this section we describe the most relevant architectural elements of the many-

core accelerator that constitutes the baseline architecture considered throughout

the present work.

Processing Elements

Our shared L1 cluster consists of a configurable number of 32-bit ARMv6 pro-

cessor (ARM11 family [7]). There are several ARMv6 instruction set simulator

already available, Skyeye [45], SoClib [36] and SimSoc [39] are just a few repre-

sentative examples. We chose the one in [39] as our base ISS. To obtain timing

accuracy, after modifying its internal behavior to perform concurrent load/store

and instruction fetch (Harvard Architecture), we wrapped the ARMv6 Instruc-

tion Set Simulator (ISS) in a SystemC module.
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L1 Instruction Cache Module

The Instruction Cache Module has a core-side interface for instruction fetches

and an external memory interface for refill. The inner structure consists of the

actual memory (TAG + DATA) and the cache controller logic managing the

requests. The module is configurable in its total size, associativity, line size and

replacement policy (FIFO, LRU, random).

Logarithmic interconnect

The logarithmic interconnect module has been modeled, from a behavioral stand-

point, as a parametric, Mesh-of-Trees (MoT) interconnection network to sup-

port high-performance communication between processors and memories in L1-

coupled processor clusters resembling the hardware module presented in [77],

shown in Figure 2.3.

The module is intended to connect processing elements to a multi-banked

memory on both data and instruction side and is parametric in both master

(cores) and slave (banks) ports. Data routing is based on address decoding: a

first-stage checks if the requested address falls within the intra-cluster memory
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address range or has to be directed off-cluster. To increase module flexibility this

stage is optional, enabling explicit main memory (L31) data access on the data

side while, on the instruction side, can be bypassed letting the cache controller

take care of L3 memory accesses for lines refill. The interconnect provides fine-

grained address interleaving on the memory banks to reduce banking conflicts

in case of multiple accesses to logically contiguous data structures. The last

log2(interleaving size) bits of the address determine the destination. The crossing

latency consists of one clock cycle. In case of multiple conflicting requests, for fair

access to memory banks, a round-robin scheduler arbitrates access and a higher

number of cycles is needed depending on the number of conflicting requests, with

no latency in between. In case of no banking conflicts data routing is done in

parallel for each core, thus enabling a sustainable full bandwidth for processors-

memories communication. To reduce memory access time and increase shared

memory throughput, read broadcast has been implemented and no extra cycles

are needed when broadcast occurs.

L1 Tightly Coupled Data Memory

On the data side, a multi-ported, multi-banked, Tightly Coupled Data Memory

(TCDM) is directly connected to the logarithmic interconnect. The number of

memory ports is equal to the number of banks to have concurrent access to

different memory locations. Once a read or write requests is brought to the

memory interface, the data is available on the negative edge of the same clock

cycle, leading to two clock cycles latency for conflict-free TCDM access. As

already mentioned above, if conflicts occur there is no extra latency between

pending requests, once a given bank is active, it responds with no wait cycles.

Banking factor (i.e. ratio between number of banks and cores) can be configured

to explore how this affects banking conflicts.

1in the naming convention used in this work, when referring to L3 memory we are consid-
ering an off-chip memory. In modern embedded many-core systems such memory consists of
DRAM/LPDDR memories.
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Synchronization

To coordinate and synchronize cores execution, we modeled two different syn-

chronization mechanisms. The first one consists of HW semaphores mapped in

a small subset of the TCDM address range. They consist of a series of reg-

isters, accessible through the data logarithmic interconnect as a generic slave,

associating a single register to a shared data structure in TCDM. By using a

mechanism such as a hardware test&set, we are able to coordinate access: if

reading returns ’0’, the resource is free and the semaphore automatically locks

it, if it returns a different value, typically ’1’, access is not granted. This module

enables both single and two-phases synchronization barriers, easily written at the

software level. Theoretically all cores can be resumed at the same time (reading

broadcast the value of the semaphore), but there is no guarantee that this hap-

pens because of execution misalignment. To get tight execution alignment, we

developed two fast synchronization primitives based on a HW Synchronization

Handler Module (SHM). This device acts as an extra slave device of the logarith-

mic interconnect and has a number of hardware registers equal to the number of

cores, where each register is mapped in a specific address range. When a write

operation is issued to a given register, a synchronization signal is raised to the

corresponding core suspending its execution after one cycle, when the synchro-

nization signal is lowered the execution is resumed. The SHM is programmable

in different ways from the software level via APIs. Writing to the OP MODE

register, different synchronization mechanisms can be enabled: if operating in

SYNC MODE, synchronization signals are lowered when all cores have executed

the sync() API (writing to their respective register, increasing an HW counter

inside the SHM), obtaining a cycle-accurate execution alignment. When oper-

ating in TWO PH MODE, a simple state machine inside the SHM distinguishes

cores behavior between master and slaves enabling a two-phases barrier. When

the master reaches a master wait barrier() endsmall primitive, it is suspended

until all slaves have reached the slave enter barrier(). After that, the master

is awakened and is the only core executing until the master release barrier()

primitive is reached, reactivating all slaves exactly in the same clock cycle. These
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APIs and the underlying HW mechanism offered by the SHM are fundamental

for the OpenMP library described in Section 3.4.2.

Instruction Cache Architecture

The L1 Instruction Cache basic block has a core-side interface for instruction

fetches and an external memory interface for refill. The inner structure consists

of the actual memory and the cache controller logic managing the requests. The

module is configurable in its total size, associativity, line size and replacement

policy (FIFO, LRU, random). The basic block can be used to build different

Instruction Cache architectures:

� Private Instruction Cache: every processing element has its private I-cache,

each one with a separate cache line refill path to main memory leading to

high contention on external L3 memory.

� Shared Instruction Cache: there is no difference between the private ar-

chitecture in the data side except for the reduced contention L3 memory

(line refill path is unique in this architecture). Shared cache inner structure

is made of a configurable number of banks, a centralized logic to manage

requests and a slightly modified version of the logarithmic interconnect de-

scribed above: it connects processors to the shared memory banks operating

line interleaving (1 line consists of 4 words). A round robin scheduling guar-

antees fair access to the banks. In case of two or more processors requesting

the same instruction, they are served in broadcast not affecting hit latency.

In case of concurrent instruction miss from two or more banks, a simple bus

handles line refills in round robin towards the L3 bus.

2.5 Host-Accelerator Interface

In this section we describe the QEMU-based host side of VirtualSoC (VSoC-

Host), as well as the many-core accelerator side (VSoC-Acc).
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Parallel Execution

In a real heterogeneous SoC host processor and accelerator can execute in an

asynchronous parallel fashion, and exchange data using non-blocking commu-

nication primitives. Usually the host processor, while running an application,

offloads asynchronously a parallel job to the accelerator and goes ahead with its

execution (Figure 2.4). Only when needed the host processor synchronizes with

the execution of the accelerator, to check the results of the computation.

In our virtual platform the host processor system and the accelerator can run

in parallel, with VSoC-Host and VSoC-Acc running on different threads: when

the thread of VSoC-Acc starts its execution triggers the SystemC simulation. It is

important to highlight that the VSoC-Acc SystemC simulation starts immediately

during VSoC-Host startup, and the accelerator starts executing the binary of a

firmware (until the shutdown) in which all cores are waiting for a job to execute.
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Figure 2.4: Execution model
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Time Synchronization Mechanism

VSoC-Host and VSoC-Acc run independently in parallel with a different notion

of time. The lack of a common time measure leads to only functional simulation,

without the possibility of profiling applications performance even in a qualita-

tive way. Application developers often need to understand how much time, over

the total application time, is spent on the host processor or on the accelerator.

Also, without a global simulation time it is not possible to appreciate execution

time speedups due to the exploitation of the many-core accelerator.To manage

the time synchronization between the two environments, it is necessary that both

VSoC-Host and VSoC-Acc have a time measurement system. VSoC-Host does

not natively provide this kind of mechanisms, so we instrumented it to imple-

ment a clock cycle count, based on instructions executed and memory accesses

performed. On the contrary for VSoC-Acc there is no need for modifications be-

cause it is possible to exploit the SystemC time. The synchronization mechanism

used in our platform is based on a threshold protocol acting on simulated time:

at fixed synchronization points the simulated time of VSoC-Host and VSoC-Acc

is compared. If the difference is greater than the threshold, the entity with the

greater simulated time is stopped until the gap is filled.

At fixed synchronization points, cycles count from VSoC-Host (CH) and VSoC-

Acc (CA) are multiplied by the respective clock period (PH and PA) and com-

pared. Given a time threshold h if |CA∗PA−CA∗PA| > h, one of the two systems

is forward in the future in respect to the other and its execution is stopped until

|CH ∗ pH − CA ∗ PA| > 0. The Global simulation time is always the greater of

the two. It is intuitive to note that the proposed mechanism slows down the sim-

ulation speed, due to synchronization points and depending on the difference of

simulation speed between the two ecosystems. To avoid unnecessary slowdown,

we provide an interface to activate and de-activate the time synchronization when

it is not needed (e.g. functional simulation).
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2.6 Simulation Software Support

In this section we provide a description of the software stack provided with the

simulator to allow the programmer to fully exploit the accelerator from within

the host Linux system, and to write parallel code to be accelerated.

Linux Driver

In order to build a full system simulation environment we mapped VSoC-Acc

as a device in the device file system of the guest Linux environment running on

top of VSoC-Host. A device node /dev/vsoc has been created, and as all Linux

devices it is interfaced to the operating system using a Linux driver. The driver

is in charge of mapping the shared memory region into the kernel I/O space.

This region is not managed under virtual memory because the accelerator can

deal only with physical addresses, as a consequence all buffers must be allocated

contiguously (done by the Linux driver). The driver provides all basic functions

to interact with the device.

Host Side User-Space Library

To simplify the job of the programmer we have designed a user level library,

which provides a set of APIs that rely on the Linux driver functions. Through

this library the programmer is able to fully control the accelerator from the host

Linux system. It is possible for example to offload a binary, or to check the status

of the current executing job (e.g. checking if it has finished).

Accelerator Side Software Support

The basic manner we provide to write applications for the accelerator is to di-

rectly call from the program a set of low-level functions implemented as a user

library, called appsupport. appsupport provides basic services for memory man-

agement, core ID resolution, synchronization. To further simplify programming

and raise the level of abstraction we also support a fully-compliant OpenMP v3.0

programming model, with associated compiler and runtime library.
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2.7 Evaluation

In this section two use cases of the simulation platform are presented. We will

show how the proposed virtual platform can be exploited for both software veri-

fication or design space exploration.

2.7.1 Experimental Setup

Table 2.1 summarizes the experimental setup of the virtual platform used for all

benchmarks discussed. We chose as ARM core clock frequency of 1GHz, even

if the ARM modeled by QEMU works at up to 500MHz, to resemble a state of

the art ARM processor performance. The frequency would only affect results in

terms of global values, all considerations done in this section remain valid even if

the ARM core clock frequency is changed.

Table 2.1: Experimental Setup

parameter value
platform

L3 latency 200 ns
L3 size 256 MB

accelerator
PE 16

frequency 250 MHz
L1 I$ size 16 KB

thit = 1 cycle
tmiss ≥ 50 cycles

TCDM banks 16
TCDM size 256 KB

host
ARM Core clock frequency 1GHz

Guest OS Debian for ARM (Linux 2.6.32)
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2.7.2 VirtualSoC Use Cases

Full System Simulation

As first use case of the simulator we propose the profiling of an application involv-

ing both the ARM host and the many-core accelerator. In this example we want

to measure the speedup achievable when accelerating a set of algorithms onto the

many-core accelerator. The algorithms chosen are: Matrix Multiplication, RG-

BtoHPG color conversion, and Image Rotation algorithm. All the benchmarks

follow a common scheme: the computation starts from the ARM host which in

turn will offload a parallel task, one of the algorithms, to the accelerator. Then

we compare simulated time obtained varying the number of cores present in the

accelerator, with the time taken to run each benchmark on the ARM processor

only (i.e. no acceleration).

Figure 2.5 shows the results of this experiment. Using the accelerator with 8

cores we can see a speedup of ≈ 3× times for the matrix multiplication, ≈ 3× for

the rotate benchmark and ≈ 5× for the RGBtoHPG benchmark. When running

with 16 cores we can appreciate an almost double execution speedup for all the

proposed benchmarks.
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Figure 2.5: Speedup due to accelerator exploitation
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Standlone Accelerator Simulation

In this section we show an example of stand-alone accelerator analysis by us-

ing two real applications, namely a JPEG decoder and a Scale Invariant Feature

Transform (SIFT), a widely adopted algorithm in the domain of image recogni-

tion. Our analysis will as first evaluate the effects of L3 latency over the execution

time of each benchmark. In a second experiment we evaluate the instruction cache

usage made by each application in terms of hit rate and average hit time. Fig-

ure 2.6 shows the execution time when varying the L3 latency, and as expected

the time increases when increasing the external memory access latency.

The instruction cache utilization is shown in Figure 2.7, depending on the

application parallelization scheme the hit rate changes as well as the average hit

time. The JPEG benchmark has been implemented in two different schemes: a

data parallel implementation and a pipelined implementation. Results show that

the data parallel version is more efficient in terms of cache hit rate and globally

in terms of execution time. A deeper analysis will be the object of the research

work presented in the next chapter.
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Figure 2.7: Benchmarks hit rate and average hit cost

2.8 Conclusions

VirtualSoC leverages QEMU to model a ARMv6 host processor, capable of run-

ning a full-fledged Linux operating system. The many-core accelerator is modeled

with higher accuracy using SystemC. We extended this combined simulation tech-

nology with a mechanism to allow for gathering timing information that is kept

consistent over the two computational sub-blocks. A set of experiments over a

number of representative benchmarks demonstrate the functionality, flexibility

and efficiency of the proposed approach.
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Chapter 3

Instruction Caching Strategies

3.1 Overview

To keep the pace of Moore’s law, several Chip-Multiprocessors (CMP) platforms

are embracing the many-core paradigm, where a large number of simple cores are

integrated onto the same die. Current examples of many-cores include GP-GPUs

such as NVIDIA Fermi [21], the HyperCore Architecture Line (HAL) [2] proces-

sors from Plurality Ltd., ST Microelectronics Platform 2012 [11] or Adapteva

[5]. While there is renewed interest in Single Instruction Multiple Data (SIMD)

computing, thanks to the success of GP-GPU architectures, strict instruction

scheduling policies enforced in current GP-GPUs are being relaxed in the most

recent many-core designs to exploit data parallelism in a flexible way. Single

Program Multiple Data (SPMD) parallelism can thus be efficiently implemented

in these designs, where processors are not bound to execute the same instruction

stream in parallel to achieve peak performance.

All of the cited architectures share a few common traits: their fundamental

computing tile is a tightly coupled cluster with a shared multibanked L1 memory

for fast data access and a fairly large number of simple cores, with ≈ 1 Instruction

Per Cycle (IPC) per core. Key to providing I-fetch bandwidth for a cluster is an

effective instruction cache architecture design. Due to the lack of sophisticated

hardware support to hide L2/L3 memory latency (e.g. prefetch buffers), the
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simple processors embedded in many-cores may indeed experience prolonged stalls

on long-latency I-fetch.

The main contribution of this work is the analysis and comparison of the

two main architectures for instruction caching targeting tightly coupled CMP

clusters: (i) private instruction caches per core and (ii) shared instruction cache

per cluster. We developed a cycle-accurate model of the target cluster with the

two cache organizations, and with several configurable architectural parameters

for exploration. The private template achieves higher speed, due to its simpler

design, but the smaller L1 memory space seen by each core may induce a lower hit

ratio. Moreover, the co-existence of multiple program copies in the system may

require more bandwidth to main memory in case of multiple concurrent misses.

In contrast, the shared template can offer a lower miss ratio and better memory

utilization (less copies) at the cost of increased hardware complexity and thus

lower speed.

To efficiently analyze and assess pros and cons of the two architectures we also

developed a programming environment targeted at efficient data-parallel comput-

ing and based on the popular OpenMP programming model. The compilation

toolchain and runtime support have been tailored to the target cluster, thus allow-

ing effective benchmarking. We first characterize the two architectural templates

by using synthetic microbenchmarks, useful to stress specific corner cases and to

assess the best and worst operating conditions for the two cache architectures.

Then we further validate the two approaches with several kernels from representa-

tive applications from the image processing and recognition domain, parallelized

with OpenMP.

The rest of the chapter is organized as follows: In Sec. 3.2 we discuss related

work to ours. The target tightly-coupled cluster and the two cache architectures

are described in Sec. 3.3, while the programming framework, compiler and run-

time support are discussed in Sec. 3.4. We describe our experimental setup and

results in Sec. 3.5, while Sec. 3.6 concludes the chapter.
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3.2 Related Work

The organization of memory hierarchy is one of the most important and critical

phases in architecture design. This aspect has become more relevant with the

advent of modern many-core platforms. Dealing with massively parallel systems,

instruction caching plays a fundamental role since it must provide the required

bandwidth to all cores and software tasks, complying with tight constraints in

terms of size and complexity [80].

The Fermi-based General Purpose Graphic Processing Units (GPGPU) com-

prises hundreds of Streaming Processors (SP) organized in groups of Streaming

Multiprocessors (SM) [21]. The numbers of SMs and SPs per device vary by

device. GPGPUs employ massively multi-threading in order to hide the latency

of main memory. The GPU achieves indeed efficiency by splitting application

workload into multiple groups of threads (called warps) and multiplexing many

of them onto the same SM. When a warp that is scheduled attempts to execute

an instruction whose operands are not ready (due to an incomplete memory load,

for example), the SM switches context to another warp that is ready to execute,

thereby hiding the latency of slow operations such as memory loads. All the SPs

in an SM execute their threads in lock-step, according to the order of instructions

issued by the per-SM instruction unit. SPs within the same SM share indeed one

single instruction cache [91].

Plurality’s HyperCore Architecture Line (HAL) family includes 16 to 256 32-

bit RISC cores, a shared memory architecture, and a hardware-based scheduler

that supports a task-oriented programming model [2]. HAL cores are compact

32-bit RISC cores, which execute a subset of the SPARC v8 instruction set with

extensions. The memory system is composed by a single shared memory which

operates also as instruction cache. The shared memory holds indeed program,

data, stack, and dynamically allocated memory. Each core has two memory ports:

an instruction port that can only read from memory, and a data port that can

either read or write to memory. Both ports can operate simultaneously, thus

allowing an instruction fetch and a data access by each individual core at each

clock cycle. The processors do not have any private cache or memory, avoiding
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coherency problems. However, conflicting accesses cannot be avoided causing

latency increasing for not-served requests [2].

STMicroelectronics Platform 2012 (P2012) is a high-performance architecture

for computationally demanding image understanding and augmented reality ap-

plications [11]. P2012 architecture is composed by several processing clusters

interconnected by a Network on Chip (NoC). Each computing cluster features a

shared instruction cache memory.

All of the cited platforms have adopted different instruction cache architec-

tures, meaning that there is still not a dominant paradigm for instruction caching

in the manycore scenario. Clearly, a detailed design space exploration and anal-

ysis are needed to evaluate how micro-architectural differences in L1 instruction

cache architectures may affect the overall system behavior and IPC.

3.3 Target cluster architecture

The building blocks of the baseline architecture considered here are the one pre-

sented in Section 2.4. Moreover, to help system designers to compare different

L1 instruction cache architectures, we have developed a flexible instruction cache

architecture system. The proposed templates, written in SystemC [3], can be

used either in stand-alone mode or plugged into any virtual platform, we inte-

grated them in an accurate virtual platform environment specifically designed

for embedded MPSoC design space explorations [14]. Our enhanced virtual plat-

form is highly modular and capable of simulating at cycle-accurate level an entire

shared L1 cluster including cores, instruction caches, shared tightly coupled data

memory, external (L3) memories and system interconnections.

3.3.1 Private Instruction Cache Architecture

All the previously described architectural elements are combined together to form

the private instruction cache architecture as shown in Figure 3.1.

The cluster is made of 16 ARMv6 cores, each one has its own private instruc-

tion cache with separate line refill paths while the L1 data memory is shared
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Figure 3.1: Cluster with private L1 instruction caches

among them. An optional DMA engine can be used to carry out L3 to TCDM

data transfers. Access to the off-cluster L3 memory is coordinated by the L3

BUS, requests are served in a round-robin fashion. On the data side all cores are

able to perform access to TCDM, L3 memory and eventually to HW semaphores

or SHM. The logarithmic interconnect is responsible of data routing based on ad-

dress ranges as already described in the previous section. Default configuration

for the private instruction cache architecture and relevant timings are reported

in Table 3.1.

Table 3.1: Default private cache architecture parameters and timings

parameter value
ARM v6 cores 16

I$i size 1 KB
I$i line 4 words
thit = 1 cycle
tmiss ≥ 59 cycles

TCDM banks 16
TCDM size 256 KB
L3 latency 50 cycles

L3 size 256 MB
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3.3.2 Shared Instruction Cache Architecture

Shared instruction cache architecture is shown in Figure 3.2. From the data side

there is no difference between the private architecture except for the reduced

contention for data requests to L3 memory (line refill path is unique in this

architecture).

Shared cache inner structure is represented in Figure 3.3. A slightly modified

version of the logarithmic interconnect described in Section 2.4.1 (the first stage
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Figure 3.3: Shared instruction cache architecture

38



of address deconding is disabled) connects processors to the shared memory banks

operating line interleaving (1 line consists of 4 words). A round robin scheduling

guarantees fair access to the banks. In case of two or more processors requesting

the same instruction, they are served in broadcast not affecting hit latency. In

case of concurrent instruction miss from two or more banks, a simple MISS BUS

handles line refills in round robin towards the L3 BUS. Table 3.2 summarizes the

main configuration parameters for the shared cache cluster.

Table 3.2: Shared cache architecture parameters and timings

parameter value
I$ size 16 KB
I$ line 4 words
thit ≥ 1 cycle
tmiss variable
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3.4 Software Infrastructure

In this section we briefly describe the software infrastructure: first compiler and

linking strategies used to compile and allocate all the data needed for the ex-

ecution of all benchmarks. In the second part we will introduce our custom

implementation of the OpenMP library, developed to run on the proposed target

architectures.

3.4.1 Compiler and Linker

Before describing compiling and linking strategies applied to our benchmarks, it

is of primary importance to introduce the memory map seen by all processors

in the architecture. Figure 3.4 shows the global memory map of one cluster,

in which it is possible to distinguish two memory regions: the L3 MEMORY

REGION and the TCDM MEMORY REGION with nominal sizes of 256 MB

and 256 KB respectively. The first is the off-chip (L3) memory used to store the

executable of the applications, and data too big to be stored in the on-chip data

memory. The TCDM region, mapping the shared data scratchpad, is in turn
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MEMORY 

SPACE

(256 KB)

LOCAL SHARED

(128 KB)

STACKS

(64 KB)

L3 MEMORY 

SPACE

(256 MB)

0x00000000
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Figure 3.4: Cluster global memory map
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divided in three sub-regions: LOCAL SHARED, STACK and HEAP.

The LOCAL SHARED region is intended to maintain variables of static

size (known at compile time) explicitly defined to be stored in TCDM. To force

the allocation of a variable in the on-chip data memory we combined the use of

a linker script and gcc attributes. We defined a new section in the ARM binary,

namely .local shared, used to contain variables to be stored in this region of

the memory map as shown in Listing 3.1.

MEMORY {

GLOBAL_SHARED : org = 0x0, l = 256M

LOCAL_SHARED : org = 0x08020000 , l = 128K

}

SECTIONS {

...

.global_shared : {

*(. global_shared)

}>GLOBAL_SHARED

.local_shared : {

*(. local_shared)

}>LOCAL_SHARED

}

Listing 3.1: Linker script memory layout and output sections

The STACK region is defined to maintain the stack of all 16 processors, with

a nominal stack size of 4K assigned to each of them. Each processor calculates

its own stack top at simulation startup using a combination of linker script and

an assembly boot routine. In the linker script side the symbol stack start

is defined, pointing to the top of the STACK region. In the boot routine each

core, using the stack start symbol, computes its stack top according to its

processor id (See Listing 3.2).
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// get processor ’s id

mov r10 , #0 x7f000000

ldr r11 , [r10 , #0x20]

sub r11 , r11 , #1

// spacing stack pointers

// stride = 0x1000 (4KB)

mov r9 , #0 x1000

mul r10 , r11 , r9

sub sp , sp , r10

Listing 3.2: Stack pointer assignment in Boot Sequence

Finally, the HEAP region is used for dynamically allocated structures. The

allocation is allowed through the shmalloc() function, provided by VirtualSoC’s

applications support (appsupport).

3.4.2 Custom OpenMP Library

To parallelize our benchmarks we used a custom implementation of the OpenMP

APIs for parallel programming, adapted to run on our VirtualSoC based archi-

tecture. The OpenMP parallel programming paradigm considered is based on

two different parallel constructs:

� #pragma omp parallel

� #pragma omp sections

The first allows the exploitation of SIMD or SPMD parallelism, the iterations

of the for cycle are divided in chunks and assigned to the available cores. The sec-

ond describes task parallel sections of a program, each core can execute a different

portion of code therefore a different task. To tailor these two constructs to the

target architecture it is necessary to consider that our software infrastructure has

no Operating System. In our implementation all cores execute the same binary

image as a single process running on each processor, and the work performed

is differentiated according to the processor’s id. The Master-Slave mechanism
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on which OpenMP is based is realized using the two-phase barriers described in

Section 2.4.1. We also modified the compiler (arm-elf-gcc 4.3) to transform

OpenMP annotations in a correct binary form for the VirtualSoC architecture.

The compiler is in charge of creating all the structures needed to run a certain

application and to differentiate the work to be performed by single processors by

means of appsupport functions.

Our OpenMP runtime has a thin software layer based on a set of shared

data structures used by the processors to synchronize, share data and control

the different parallel regions of the applications. All these structures are stored

in TCDM memory using both statically (LOCAL SHARED) and dynamically

allocated structures (shmalloc()), some structures are protected by a lock which

is implemented via the hardware semaphores as described in Section 2.4.1.
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3.5 Experimental Results

As already outlined in previous sections, we considered a cluster made of 16

ARMv6 cores connected through a low latency logarithmic interconnect to a mul-

tiported, multibanked 256 KB TCDM memory. On the instruction side, private

and shared architectures differ in the cache architecture. An off-cluster (L3) 256

MB memory is accessible through the data logarithmic interconnect or through

the line refill path. Our investigations focus on varying the total instruction cache

size, and hereafter the L3 memory latency.

3.5.1 Microbenchmarks

In this section we present the results of three synthetic benchmarks intended to

characterize both architectures and to highlight interesting behaviors. The syn-

thetic benchmarks were written using ARM Assembly Language [32] in order to

have complete control of the software running on top of the architectural tem-

plates. They consist of a set of iterated ALU or MEMORY instructions performed

to highlight a specific behavior. All the synthetic benchmarks share the common

structure shown in Listing 3.3 below.

mov r6 , N_LOOP

mov r5 , #0

_loop: cmp r5, r6

blt _body

b _end

_body: ...

add r5 , r5 , #1

b _loop

_end: ...

Listing 3.3: Synthetic benchmarks structure
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The performance metrics considered here are the Cluster IPC (IPC, 0 <

IPC ≤ 16) and its average value, computed as

IPC =
16∑
i=1

Ni

Tcl
(3.1)

where Ni represents the number of instructions executed by PEi and Tcl =

tstoplast − tstartfirst, computed as timestamps difference of the last core exiting the kernel

region (tstoplast ) and first entering (tstartfirst).

Cold misses

The body of this benchmark consists of only ALU operations (i.e. mov r0, r0)

leading to a theoretical IPC = 16 (and average IPC = 1) for both architectures.

The plot in Figure 3.5 shows on the y-axis the cluster average IPC while x-axis

reports how many times the loop is executed.

Increasing N LOOP both architectures tend to the theoretical value, but the

private architecture starts from a lower IPC due to the heavy impact of cold

misses serialization (16 cores contending for L3 access).
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Conlict free TCDM accesses

This benchmark adds the effect of TCDM access. As already mentioned before,

in case of conflict free access, TCDM latency is two cycles leading to a single

cycle stall between two consecutive instruction fetches. The loop is iterated a

fixed number of times (4K in order to lower cold misses effect) and has a variable

number of memory operations inside its body. We are considering a banking

factor of 1, allowing every core to access a different bank without conflicts. The

plot in Figure 3.6 shows on the y-axis the average cluster IPC while on x-axis

varies the percentage of memory instructions over the number of instructions of

the loop. Both architectures are affected in the same way, with IPC tending to

the asymptotic value value of 1
2

and cluster IPC respectively to 8 because of the

absence of any conflict leading to misalignment. In fact, a program consisting of

only ALU (1 cycle) or MEMORY (2 cycles for TCDM access) operations gives a

per-core IPC equal to:

IPC =
Nalu +Nmem

1 ·Nalu + 2 ·Nmem

(3.2)
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Figure 3.6: Private vs. Shared architectures IPC with conflict free TCDM ac-
cesses
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Increasing Nmem/Nalu ratio in equation 3.2, leads to an asymptotic value value of

1/2. Cluster IPC, in this case of perfectly aligned execution, is IPC = 16 · IPCi
and its average is equal to the IPC of a single core. Private architecture has an

initial lower IPC due to the cold misses effect discussed in the previous paragraph.

Conflicts on TCDM accesses

This benchmark adds another aspect of TCDM accesses: conflicts. Conflicting

accesses to the same bank increase TCDM latency thus affecting IPC. In this

scenario we considered a realistic ratio between memory and ALU operations

of 20%. As before, the loop is iterated 4K times to reduce cold misses effect.

The plot in Figure 3.7 shows on the y-axis the cluster IPC while on the x-axis

varies the percentage of memory accesses creating conflicts on the same bank. It

is interesting to notice that, while there are no conflicts on TCDM, the shared

architecture performs better the private one because of its intrinsic lower miss

cost, in presence of TCDM conflicts the execution misalignment penalizes the

shared cache architecture increasing the average hit time. It is important to

underline that just a single conflict creates execution misalignment.

To explain the sharp reduction of the IPC for the shared cache due to TCDM
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Figure 3.8: Misalignement in instruction fetching for shared cache

conflicts, let us consider a simple program consisting of 16 instructions. Be-

fore any TCDM conflict occur, the execution is perfectly aligned leading to syn-

chronous instruction fetching. The conflicting access in TCDM leads to a single-

cycle misalignment among all cores in the next instruction fetch. As shown in

Figure 3.8, assuming a cache line is made of 4 32-bit words, there will be 4 groups

of 4 processors accessing the same line (i.e. bank) but requesting instructions at

different addresses. When this situation arises, the average hit time increases

from 1 cycle (concurrent access) to 4 cycles (conflicting requests are served in a

round-robin fashion). This particular case clearly shows how this architecture is

sensitive to execution misalignment.

This phenomenon can stand out in an even worse case when the 4 blocks of
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Figure 3.9: Worst case for instruction fetching in shared cache due to misalign-
ment
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instructions that are fetched by processors reside in the same bank (situation de-

picted in Figure 3.9). This leads to the worst-case for instruction fetch, increasing

average hit time from 1 to 16 cycles.

3.5.2 Real Benchmarks

In this section we compare the performance of the private and shared I-cache

architectures by using two real applications, namely a JPEG decoder and a Scale

Invariant Feature Transform (SIFT) [54], a widely adopted algorithm in the do-

main of image recognition. In particular, our aim is to evaluate the behavior of

the two target architectures when considering different types of parallelism at the

application level. Therefore we parallelized our benchmarks with OpenMP [60],

and considered three different scenarios.

The first case expresses data-parallelism at the application level. Thus we

focused on the two data-independent computational kernels in JPEG: Dequanti-

zation (DQTZ) and Inverse Discrete Cosine Transform (IDCT) [1]. With this

parallelization scheme all processing elements execute the same instructions, but

over different data sets. In the second case we adopted pipeline parallelism in the

same JPEG application, where each of the four stages of JPEG [1] - Huffman DC,

Huffman AC, DQTZ, IDCT - is wrapped in an independent task and assigned

to a core. To keep all the 16 cores busy we execute 4 pipelines in parallel. The

third example considers three main kernels from SIFT: Up-sampling, Gaussian

Convolution, and Difference of Gaussians, all leveraging data-parallelism [54].

In relation with the JPEG data parallel application, SIFT is composed of more

complex computational steps that can stress the cache capacity causing more

miss.

In what follows we carry out two main experiments, evaluating the perfor-

mance by (i) varying the cache size and (ii) the L3 latency.

Figure 3.10 shows the results of the first experiment. We considered a fixed la-

tency of 50 clock cycles for the L3 memory, and we varied the cache size. Focusing

on the plots on the left side of Figure 3.10, for each of the three benchmarks and

for the two architectures we show execution time, normalized to the slowest value
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(i.e. the longest execution time for that benchmark). Looking at the data par-

allel variant of JPEG (JPEG par) it is possible to see that the shared cache

architecture performs worse than the private cache. We would expect the SIMD

parallelism exploited by this application to be preferred for the shared cache ar-

chitecture, so this finding is seemingly counterintuitive. The reason for this loss

of performance is to be found in an increased average hit cost, due to the banking

conflicts in the instruction cache as described in the previous section (Figure 3.7).

If we consider an analytical model the overall execution time of an application

expressed as

TEX = NH × CH +NM × CM (3.3)

where NH and NM represent the number of hit and miss, and CH and CM rep-

resent the average cost for a hit and for a miss, CH may be higher than 1 for

the shared cache. To confirm this assumption we report the average cache hit

ratio (left y-axis, solid lines) and cost (right y-axis, dashed lines) in the plots

on the right side of Figure 3.10. It is possible to see that the average cache hit

cost for the shared cache architecture is ≈ 2.4 cycles, while the number of miss is

negligible (miss rate = 0.003%). As a consequence, the right-hand part of the for-

mula above does not contribute to the overall execution time. To understand the

absence of cold cache miss impact we analyzed the disassembled program code.

The DQTZ kernel consists of a loop composed by a few tens of instructions, while

the IDCT kernel loop contains roughly 200 instructions. Overall this results in

a hundred miss, and no capacity miss are later experienced. Due to the SIMD

parallelism all cores fetch the same instructions, thus only the first core executing

the program incurs cold cache miss. Instruction fetch from the remaining cores

always results in a hit. In the private cache architecture, on the contrary, each

core individually experiences 104 miss for cache sizes of 32 and 64 KB, while ≈
400 for 16 KB. This results in a cluster miss rate (total number of miss over total

number of instructions) of 0.05% for the private cache and 0.003% for the shared

cache.

When considering the SIFT application the difference in the number of miss

between the shared and the private architecture is major, as we can see in Fig-
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Figure 3.10: Impact of varying the cache size for different benchmarks

ure 3.10. In this case, due to the high average miss cost, the shared architecture

provides best results despite the high average cost of an instruction hit (more

than 2.25 cycles). Indeed, the average cost of a miss is ≈ 800 cycles for the pri-

vate cache (any size), while for the shared cache it is ≈ 300 cycles. Again, this is
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due to the fact that for the private cache multiple refills from different cores are

serialized on the L3.

For the JPEG pipelined application, the shared cache has a miss rate of 0.03%

against 0.3% (64 KB) of the private cache. Moreover in this case the shared cache

has lower average costs for a hit (around 1.5 cycles) when compared to the other

applications. The shared approach delivers 60% faster execution time for small

cache sizes (16 KB), which is reduced to ≈ 10% for bigger caches.

It is important to distinguish when an instruction miss occurs for the first

time or not. In the first case we refer it as cold miss, while in the second case as a

capacity miss. Table 3.3 shows the number of capacity miss on the total number

of miss in percentage for the private cache architecture across all the applications.

The shared cache architecture can better exploit the total cache size, therefore it

does not experience capacity miss.

Table 3.3: Percentage of capacity miss over total number of miss

jpeg par jpeg pipe sift

SIZE 16KB 73% 88% 86%
SIZE 32KB 5% 41% 84%
SIZE 64KB 5% 4% 52%

Figure 3.11 shows the results for the second experiment, where we considered

a fixed cache size (32 KB) and varied the latency of the L3 memory. The plots on

the left side show normalized execution time (to the slowest, as before), whereas

the plots on the right part show the average cost of a miss. Overall, it is possible

to see that for L3 latency values beyond 100 cycles the shared cache architecture

always performs better than the private cache architecture.

Considering equation 3.3 again, CM is the parameter which is mostly affected

by the varying L3 latency. In particular, the term NM × CM linearly increases

with the L3 latency as we can see on the lower part of Figure 3.11. In the data

parallel applications (first JPEG variant and SIFT), the average cost for a miss

in the private cache architecture sharply increases with the L3 latency, whereas

the same curve for the shared cache has a much smaller slope. This is due to
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Figure 3.11: Impact of varying the latency of L3 memory for different benchmarks

the fact that private caches generate much more traffic towards the L3 memory

(16 line-refill requests against a single refill needed by the shared cache). Then,

despite the very low number of miss for the JPEG data parallel application, their

contribution accounts for 50% of the overall execution time in equation 3.3.

Regarding the pipelined JPEG application, different from the other examples
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the average miss cost is slightly higher for the shared cache. However, the miss

rate for the shared cache is ≈ 0.02%, while for the private cache it is ≈ 0.2%,

thus the shared architecture achieves slightly faster execution times.

3.5.3 Frequency Comparison

As a last experiment we investigated how faster the private cache design should

be clocked to deliver the same performance achieved with the shared cache ar-

chitecture. We considered as baseline configuration a L3 latency of 150 cycles

and an I-cache of 32 KB. To carry out this comparison increasing the frequency

of the clock within the cluster, we kept constant the L3 latency: our default Tclk

is 10 ns leading to 1500 ns. The plot in Figure 3.12 shows on the y-axis the

ratio between shared and private execution time for the benchmarks described in

Section 3.5.2, while on the x-axis varies the percentage of frequency speedup.

Increasing cluster clock frequency has significant effect only for JPEG parallel

while private architecture is quite insensitive for both SIFT and JPEG pipeline

benchmarks. To explain such behavior we have to look at the execution time
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Figure 3.12: Frequency comparison of private and shared cache architectures
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Table 3.4: Execution time breakdown for JPEG parallel, JPEG pipelined and
SIFT benchmarks

HIT & TCDM MISS & L3 DATA
JPEG PAR 51.13% 48.87%
JPEG PIPE 14.72% 85.28%

SIFT 0.96% 99.04%

breakdown. A faster clock inside the cluster affects hit time and TCDM latency

but has negligible effect on miss latency (dominated by L3 latency) and L3 data

accesses. Table 3.4 shows execution time breakdown for all benchmarks.

Approximately 51% of execution time is affected by cluster clock frequency

and determines the performance improvement of the private architecture for

JPEG parallel. The same is not true for JPEG pipelined and SIFT benchmarks.

This behavior underlines cluster performance is not affected by clock frequency

when the program running has the execution time dominated by L3 memory

accesses.

3.6 Conclusions

Key to providing I-fetch bandwidth for cluster-based CMP is an effective in-

struction cache architecture design. We analysed and compared the two most

promising architectures for instruction caching targeting tightly coupled CMP

clusters, namely private instruction caches per core and shared instruction cache

per cluster. Experimental results showed that private cache performance can be

significantly affected by the higher miss cost, on the other hand the shared cache

has better performance, with speedup up to ≈ 60%. However, it is very sensitive

to execution misalignment, which can lead to cache access conflicts and high hit

cost.
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Chapter 4

HW/SW Communication

Mechanisms

4.1 Overview

Barrier synchronization becomes increasingly challenging as the level of integra-

tion in multi-processor systems-on-chip (MPSoC) keeps growing. There is today

little doubt on the fact that software implementations are not suitable to provide

the needed scalability of barrier synchronization in embedded systems and that

some form of hardware support is essential.

Barrier optimization techniques in the embedded MPSoC domain often consist

of optimized memory controller or communication controller interfaces [64], which

aim at reducing the overhead of busy wait synchronization algorithms. These ap-

proaches focus on accelerating the barrier logic (i.e., loop over the participants

for gathering and releasing them) and removing memory and interconnect con-

gestion by providing dedicated local polling registers. However, the exchange of

synchronization messages takes place through the main system interconnect, typ-

ically a Network-on-Chip (NoC) [90]. This solution is however non optimal, since

communication requirements for synchronization and large-grain data movements

are very different, and thus it is difficult to devise a topology which efficiently

satisfies both. Moreover, the mutual interference between the two traffic flows on
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one hand degrades application quality of service and on the other hand fails to

provide ultra-low latency synchronizations.

A few solutions for embedded MPSoCs propose the adoption of dedicated

communication infrastructures to carry synchronization-related traffic [70] [4].

However, these techniques rely on non-standard implementation technology to

materialize congruent savings in synchronization latency. None of these tech-

nologies is within reach of a standard cell design methodology and hence of

cost-effective implementations in the embedded computing domain. They are

rather targeted to chip multiprocessors, where full-custom design techniques are

commonly used for performance boosting.

In this chapter we propose a dedicated communication infrastructure imple-

mented with standard cells and with a mainstream industrial toolflow. The supe-

rior efficiency, and above all scalability, of our target implementation is non-trivial

to materialize because of several challenges. First, the RC propagation delay of

on-chip interconnects degrades as feature sizes shrink, hence making global wires

increasingly slow. Expected communication performance can be partially restored

by routing tools by means of aggressive buffer insertion but at a relevant area and

power cost [55]. Even tolerating this overhead, repeater insertion can only delay

but not entirely stop the progressive shrinking of the wire feasibility region in the

length-operating speed design space as an effect of technology scaling [73]. As

an effect, the theoretical latency of different barrier algorithms (e.g., master-slave

or tree-based) may not be reflected in the final implementation because of the

interconnect bottleneck. Second, propagation delay of logic controllers required

by each scheme affects their operating speed, again making relative performance

non-trivial.

The most advanced MPSoC platforms achieve scalability through IP core

clusterization and cluster replication [2] [11], where each cluster can potentially

operate at an independent frequency for the sake of power efficiency. This ar-

chitectural template is considered in this chapter and adds two new variables

to the design space. On one hand, the most efficient hardware barrier imple-

mentation at cluster-level may not be the same for the top level, where global
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synchronization between large clusters must be achieved. On the other hand, con-

veying synchronization messages at inter-cluster level is a globally asynchronous

locally synchronous (GALS) communication issue that has never been adequately

investigated before.

Our first contribution with this chapter consists of a physical design space

exploration of collective communication structures at the intra- and inter-cluster

level in an advanced 40nm technology library. We search for the most lightweight

and performance efficient connectivity pattern for different clustering granulari-

ties and layout sizes.

In addition, we compare a global barrier approach independent of GALS par-

titioning with more sophisticated hierarchical barriers, employing a master-slave

or a tree connectivity pattern at each layer of the hierarchy. While our results

show that in absolute terms a global, system-wide barrier always provides the

smallest synchronization latency, the hierarchical barrier enables an interesting

feature, namely it supports multiple co-existing HW barriers (one per cluster).

This is a very important feature for large systems capable of running different

applications (or nested parallelism from within a single application) which need

to synchronize independently.

As a second contribution, layout-aware performance of the most promising

communication structures is annotated in the HDL (SystemC) models of a real-life

MPSoC system. This virtual patform is enriched with a software stack composed

of a OpenMP-based programming model, compiler and runtime system [23, 60].

The lower level barrier primitives of the OpenMP runtime environment have been

customized to sit on top of our hardware support. This allows us to accurately

quantify performance improvements with respect to the most efficient software

implementations of barrier synchronization.
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4.2 Hardware Support for Barrier Synchroniza-

tions

We do not rely on full-custom design techniques to achieve low-latency synchro-

nization signaling but rather rely on mainstream industrial toolflows. Therefore,

connectivity patterns are fully exposed to the effects of interconnect-dominated

nanoscale technologies. Our choice is therefore for simple patterns and for low-

bandwidth on-chip Links (1-bit width in most cases). These considerations led

us to discard the butterfly and the all-to-all barriers presented in [90]. Their high

number of links makes them unsuitable for a hardware implementation, especially

in light of the high link inference cost that will be highlighted in Section 4.3. We

rather selected three connectivity patterns and associated synchronization pro-

tocols that hold promise of better silicon implementation efficiency: the Central

barrier, the Gline barrier and the Tree barrier, illustrated in the following sec-

tions. Since the focus of this work is on clusterized systems, the hardware-barriers

under test are explored within a single cluster, which we assume to be covered by

a single clock domain, and among clusters, where clock domain crossing becomes

an issue.

4.2.1 Intra-Cluster barriers

All the proposed intra-cluster barriers execute the same two-phase protocol of a

typical Master-Slave Barrier [90]: the account phase and the release phase. How-

CBarrier GBarrier TBarrier

Figure 4.1: Intra-cluster Barriers for a 9-core Cluster.
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ever, unlike the software-based schemes, when a thread arrives at the barrier,

it has to activate its corresponding intra-cluster barrier’s Controller in order to

initialize the hardware barrier. Hence, once all threads have reached the barrier,

the account phase is completed and the release phase starts. Then, the hard-

ware barrier has to command all threads through the corresponding intra-cluster

barrier’s Controllers to quit the synchronization phase. Moreover, without lack

of generality, we consider a cluster architecture composed of 9 single-threaded

cores interconnected by a 2D-mesh topology in order to illustrate our hardware

barriers.

4.2.1.1 The Central Barrier architecture

CBarrier is schematically shown in Figure 4.1. Links are represented with finer

black lines1, while Controllers are depicted as dark gray boxes. In particular,

there are two kind of controllers, namely Master and Slave (M and S boxes,

respectively). We selected CBarriers for the minimum number of synchronization

stages, a desirable property for hardware acceleration.

The synchronization protocol for the CBarrier architecture relies on the ex-

change of 1-bit messages (signals) between the master and slave controllers. It

uses a centralized approach where the master controller is responsible for col-

lecting all signals from slaves (account phase), and then, for instructing them

to resume execution (release phase). As an example, Figure 4.2 represents the

1For clarity, we represent links taking into account neither their width nor their physical
placement.

Figure 4.2: Account phase for CBarrier architecture.
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account phase for the CBarrier protocol when all cores participate in the barrier

and they execute it at the same time. The release phase is exactly the same ex-

cept for the notifications flowing in the opposite direction. Only communications

between controllers are global and are denoted with solid lines.

4.2.1.2 The Gline-based Barrier architecture

GBarrier is shown in Figure 4.1. As we can observe, there are a number of Links

that interconnect four sort of Controllers. We selected GBarriers since they

match the 2D mesh structure of the regular array fabric of processing elements.

This hardware barrier mechanism is based on the work in [4]. However, rather

than leveraging full-custom G-lines technology and S-CSMA technique, in the

present work we implement and assess GBarriers with a standard cell design

methodology. First, G-lines are implemented through conventional on-chip wires,

allocating a different line per slave controller (in contrast to [4], where G-lines

could be shared by different slaves connected to the same master controller).

Second, we mimic the S-CSMA technique, that allows a master controller to

determine the number of simultaneous slaves’ signals transmitted over a particular

G-line, by instructing the master to sample its different slaves’ lines in a loop until

all expected signals have been received.

The synchronization protocol for GBarrier is depicted in Figure 4.3 for the

account phase (further details can be found in [4]).

Figure 4.3: Account phase for GBarrier architecture.
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4.2.1.3 The Tree Barrier architecture

(TBarrier) is shown in Figure 4.1. As we can observe, there are three kind of

Controllers as a consequence of the role that they are playing in this tree-based

architecture to implement barrier operations: L stems from leaf nodes; I is for an

internal node; and R is for the root of the tree. We selected TBarriers for their

nice theoretical scalability property with the number of cores, although this may

be questioned by performance degradation effects in the physical implementation.

The synchronization protocol for the account phase is illustrated in Figure 4.4.

It implements a tree-based approach where the Root controller is responsible to

count the number of participant threads in the barrier. For the first phase, all

L controllers send one 1-bit message towards their corresponding I controller.

Then, the I calculates how many signals has received and builds a new message

that is sent towards the R controller. In this case, the Link will be of greater

width than the former between L and I controllers. In general, these Links will be

of log2(Leaves)-bit width (e.g. 2-bit width for the layout in the Figure because

it could be necessary to transmit a message containing a maximum value of 3).

Hence, we depict these Links with wider lines in Figure 4.4. Finally, R receives

three messages from I controllers and calculates the sum of all messages’ numbers

received (i.e. a maximum value of 9 for this setting). In the release phase (not

shown for lack of space), the main difference lies in the fact that only 1-bit width

Links are needed to command the completion of the synchronization.

Figure 4.4: Account phase for TBarrier architecture.
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4.2.2 Inter-cluster Barriers

We have designed inter-cluster barriers spanning multiple clock domains by means

of asynchronous global Links (gLinks). In order to avoid metastability at the

controller in the receiving cluster, we use brute-force synchronizers. We found

this kind of synchronization interface more suitable with respect to alternative

ones such as dual-clock FIFOs because of the tiny width of our links and of the

one-shot nature of communications over them. Also plausible clocking is not

suitable due to the multi-port nature of controllers.

As an example, Figure 4.5 shows our CBarrier architecture when used at the

top layer to carry out inter-cluster synchronizations. For communication between

Master and Slave controllers, we use two brute-force synchronizers (BFsynch0

and BFsynch1 ). Similarly, by simply adding one brute-force synchronizer for

every gLink, the inter-cluster schemes for GBarrier and TBarrier would be im-

plemented. Therefore, we omit these explanations for sake of brevity. However, it

is worth noting that, every BFsynch is 1-bit width except for the TBarrier imple-

mentation. As pointed out in Section 4.2.1.3, communications between internal

and root controllers utilize up to log2(Leaves) bits, thus requiring log2(Leaves)-

bit width BFsynchs. We illustrate in Figure 4.6 how the overall synchronization

process works for a platform composed of two 2-core clusters covered by two dif-

ferent clock domains. In the example, we assume the CBarrier design for both

intra- and inter-cluster levels. As we can see, we distinguish between local and

Figure 4.5: Inter-cluster CBarrier architecture for 2 clusters.
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Figure 4.6: Account phase for CBarrier at intra- and inter-cluster levels.

global controllers (L and G prefixes, respectively) depending on the level of the

synchronization. Notice that, Local Master controllers have also been extended

to locally communicate with their corresponding global controller enabling the

interplay between the two levels. We highlight in black color the arrows for gLinks

among the two clusters. Using GBarriers and TBarriers for inter-cluster syn-

chronization can be done in a similar way. Also, it is possible to use different

protocols at each layer of the design hierarchy.
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4.3 Evaluation

4.3.1 Experimental Setup

For a realistic characterization of our proposals for hardware barrier acceleration

at intra- and inter-cluster levels, this work makes use of a mainstream indus-

trial synthesis toolflow and of an STMicroelectronics 45nm standard cell technol-

ogy library [83]. Placement-aware logic synthesis is performed through Synopsys

Physical Compiler. The final place-and-route step is performed with Cadence

SoC Encounter which also involves clock tree synthesis. We assume a single

clock domain with a unique clock tree for the intra-cluster barriers, meanwhile

for inter-cluster barriers we consider different clock domains/clock trees for ev-

ery cluster of the configurations. Finally, a sign-off procedure is run by Synopsys

PrimeTime to accurately validate the timing properties of our designs. Moreover,

our mechanisms have been studied by defining non-routable obstructions. Such

obstructions are placed to mimic the area of every core of the simulated systems.

In this work, we assume that this area is equal to 0.55×0.55mm2. Additionally,

fences are defined to limit the area where the cells of each barrier’s controller can

be placed. Such obstructions and fences also ensure minimum-length routing for

the links in order to reduce their impact on performance and area overhead as

the wire length increases.

4.3.2 Intra-cluster Barriers

Assuming that all cores arrive at the barrier at the same time, the theoretical

numbers of clock cycles that our intra-cluster barriers take are the following: 6

cycles for CBarrier; 14 for GBarrier; and, 10 for TBarrier. These numbers are

derived from the set of operations carried out by the synchronization protocols

explained in Section 4.2.1. We point out that each barrier’s controller has been

implemented by separating the delay that signals take along the wires, from the

effective computation that the controllers require to generate their output sig-

nals. For small clusters, the critical path is defined by the most complex barrier’s

controller (e.g. the Master for CBarrier), but as the wire length increases for
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Figure 4.7: Maximum frequency and minimum latency for intra-cluster barriers
depending on cluster size.

bigger clusters, the wires could represent such critical path. Consequently, sep-

arating wire delays from controllers delays becomes essential in order to achieve

maximum clock speeds.

Figure 4.7 depicts the maximum frequencies reached by each intra-cluster

barrier depending on the cluster size. As we can observe, each design can run

faster depending on the number of steps required to perform a barrier synchro-

nization. That is, the greater number of steps, the higher the frequency that

will be achieved. For this reason, the higher frequencies are obtained for the

GBarrier design. Moreover, as the size of the clusters becomes larger, the timing

critical paths obtained for barrier’s controllers and wires are longer translating

into lower achievable frequencies. Regarding barrier latencies, CBarrier is the

faster architecture for all settings despite of running at lower frequencies for all

configurations. It is due to the fact that, CBarrier operates in almost half num-

ber of cycles than the other designs, but there is not such difference between the

achievable frequencies.

When we consider area figures using the maximum performance setting, faster

and greater cells (higher drive strengths) are instantiated in all solutions, therefore

area gaps illustrated in Figure 4.8 are reduced, although the most expensive and

the cheapest solutions remain the same. For this reason, the relative plot is

omitted.

67



Figure 4.8: Area overhead for intra-cluster barriers running at 600MHz.

4.3.3 Inter-cluster Barriers

In this section, we study our hardware-based barriers at inter-cluster level in

terms of area overhead and barrier latency when multiple clock domains/clusters

are considered. Particularly, 2x2 and 4x4 clusters, composed of 4x4 cores per

cluster. At this layer, gLinks could introduce an unpredictable delay since they

are considered as asynchronous and potentially unconstrained by the routing tool.

Since we are targeting ultra-low latency communications, we explicitly constrain

propagation delay across asynchronous links through a set max delay command

equal to a quasi-zero value for every gLink in the three designs.

As explained above in Figure 4.6, the synchronization protocol for a system

composed of multiple clusters/clock domains is split into two levels of synchro-

nization. On one hand, the first level that is implemented by using a single

intra-cluster barrier for every cluster/clock domain. On the other hand, the top

level that is implemented by employing inter-cluster barriers to enable the in-

terplay between the different clusters/clock domains. This means that barrier’s

controllers at inter-cluster level could run using different clock speeds depending

on the cluster/clock domain they belong to. Therefore, the maximum frequency

at top level for a particular inter-cluster controller is limited by the maximum

operating speed achieved at the first level and vice-versa. For the scenarios dis-

cussed above, we obtained that the maximum operating speed is imposed by the

intra-cluster barrier. Therefore, assuming the most efficient intra-cluster bar-
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Figure 4.9: Latency for inter-cluster barriers running at maximum frequency.

rier for a 4x4-core cluster (intra-CBarrier), our inter-cluster barriers have been

synthesized at 950MHz (see Figure 4.7).

Figure 4.9 shows the barrier latencies for 2x2 and 4x4 clusters (i.e. 64 and 256

cores, respectively) running at the maximum speed discussed above (950 MHz).

We would like to point out that these latencies correspond to the inter-cluster

barrier operation without adding up intra-cluster time. Besides, we also depict

the barrier delay that the three designs take in theory running at the target

frequency. As we can observe, the most efficient implementation is still CBarrier

for these particular configurations. The only reason why CBarrier could not be

the most efficient architecture is when gLinks are too long, thus vanishing the

benefits of having less number of stages in comparison to the other GBarrier

and TBarrier designs. From the Figure, we can observe the higher effect of the

length-delay phenomenon of gLinks for the CBarrier architecture, as compared to

theoretical barrier latencies for the three designs. Nonetheless, this is not enough

for outperforming the GBarrier and TBarrier designs. We analyze in depth this

issue by using a sign-off tool (i.e. Synopsys PrimeTime). This tool reports that

the timing of links as a function of their lengths are as follows: 0.7, 1.2 and 2.2

ns; for 2.2, 4.4 and 8.8 mm respectively. As our architectures do not use longer

links than 8.8 mm, negligible penalties in latency are reported thus explaining
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Figure 4.10: Area overhead for inter-cluster barriers.

the higher efficiency of the inter-cluster CBarrier.

Moreover, Figure 4.10 shows the area overhead for the three designs, again

ignoring the contribution of the intra-cluster infrastructure. As we can see, gLinks

constitute the most consuming part of the designs thus introducing the major

overhead for CBarrier, since it is the design with the longest wires.

Finally, the above inter-cluster barriers have been also analyzed in terms of

barrier latency when different clusters operate at different frequencies for a 4x4-

cluster platform. In particular, we use two frequencies (300 and 600 MHz) that

have been assigned throughout the 16 clusters in a combinatorial way (see Fig-

ure 4.11). We show the barrier latencies for the three inter-clusters in function of

all the combinations (X-axis). As we can observe, intra-CBarrier is the most effi-

Figure 4.11: Barrier latency for inter-cluster barriers for frequencies from 300 to
600 MHz.
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cient implementation and barrier delay increases from left (all clusters at 600MHz)

to right (all clusters at 300MHz), that is, from the fastest to the slowest configu-

ration. Moreover, inter-GBarrier and inter-TBarrier report closer times to those

obtained by the inter-CBarrier only when either the top-level hMaster/vMaster

for the former, or Internal or Root controllers for the latter operate at the maxi-

mum frequency (600 MHz). In those cases, the accounting of signals is performed

faster what improves the barrier efficiency.

4.3.4 Clusterization Overhead

So far the cluster structure of the MPSoC system has been equally reflected in

the cluster structure of the custom interconnect for synchronization signaling.

Such an approach has an unique advantages: it is capable of supporting mul-

tiple co-existing barriers in the system. Indeed, each of the controllers can be

independently programmed by the software, thus enabling disjoint synchroniza-

tion domains. In this section, we aim at quantifying the overhead with respect

to a flat interconnect solution. As a case study, we consider a 64-core platform

split into four different clusters/clock domains in which independent applications

could run simultaneously on the available 16 cores. This could be likely one of the

most appropriate scenarios considering such amount of cores in order to exploit

available hardware resources.

From Sections 4.3.2 and 4.3.3, we derive that the inter- and intra-CBarrier

architectures are the preferred choice for the target platform when the hierarchical

approach is taken (see Figure 4.12).

Notice that, black boxes represent the top level of the hierarchy, that is, the

inter-cluster controllers (for the sake of clarity, we do not show the gLinks and

brute-force synchronizers explained in Section 4.3.3). The remaining controllers

are for the four intra-cluster CBarriers. Besides, we highlight with different colors

the four clusters/clock domains. We compare the hierarchical CBarrier with a

flat layout composed of a single level in which all controllers are logically placed

(see non-hierarchical scheme in Figure 4.12) and connected through the CBarrier

pattern to a centralized global master. Of course, brute force synchronizers have
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Figure 4.12: Hierarchical/non-hierarchical CBarrier architecture.

been used for all clock domain crossings.

In Table 4.1, we report the performance results in terms of maximum fre-

quency, barrier latency and the area overhead for the hierarchical and non-

hierarchical CBarrier layouts. As we can see, the maximum frequency is achieved

by the hierarchical design. It is due to the fact that for both scenarios, the Mas-

ter controllers constitute the critical path to performance (remember that gLinks

are considered as false paths for their asynchronous nature, thereby not limiting

the maximum achievable operating speed). Then, the more complex Master, the

lower frequency will be achieved. Since, there is only a single Master in the flat

scenario that gathers all signals from all Slaves in comparison to the four smaller

Masters presented in the hierarchical design, the latter can support a higher op-

erating speed. Regarding the latency, the flat design is more efficient. First, the

hierarchical layout nearly doubles the number of steps (clock cycles) carried out

by the flat design, and this is not the case for the gaps between the maximum

frequencies. Second, the longest link for both designs has the same length of

Table 4.1: Performance statistics for CBarrier designs.

Frequency Latency Area Wires Area Ctrls
Hierarchical 950 MHz 22 ns 4,935 µm2 5,922 µm2

Non-Hierarchical 620 MHz 17 ns 6,137 µm2 7,977 µm2
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4.4mm. However, according to our previous study, this wire length introduces a

delay of 1.2ns which is enough to cover one clock cycle in the flat design (1.61ns)

but not for the other one (1.05ns). This means that the hierarchical design takes

in the longest link 2 clock cycles, thus keeping away a little more the distance in

terms of barrier latency as compared to the flat design. Regarding area overhead,

the flat scheme is the most consuming design. First, it is mainly due to the very

huge number of brute-force synchronizers that this layout requires in comparison

to the 6 that the hierarchical uses. In more detail, the flat design utilizes as

many synchronizers as the number of Slave controllers that do not belong to the

Master’s clock domain (i.e. 48 Slaves), multiplied by 2 to cover the two senses of

the communication. Second, the average link length of the flat design is longer

than the hierarchical layout, thus requiring a higher area overhead.

As a conclusion of this study, we could say that the flat architecture is the

best design in terms of latency at the expenses of higher area overhead. The main

drawback of this design is that it cannot take benefit from mapping a different

application to each of the four different clusters, thus vanishing the benefits of

using clusterized multiple-domain platforms.

4.3.5 Full-system Simulation

As a final exploration, we want to assess the impact of coupling our HW barriers

with a real-life software stack. To this aim, we developed SystemC models of the

two main components of our hierarchical barriers, namely the local and global

controllers described in Section 4.2. We annotate these models with the latencies

extracted from the characterization presented in Table 4.1. The models are finally

integrated in a cycle-accurate full-system simulator which allows us to build an

instance of the 64-core, 4-cluster MPSoC considered as a use case in Section 4.3.4.

Clusters are interconnected through a global NoC. Each of them features 16 cores,

communicating through a fast multi-banked, multi-ported Tightly-Coupled Data

Memory (TCDM). The number of memory ports in the TCDM is equal to the

number of banks to allow concurrent accesses to different banks. Conflict-free

TCDM access have two-cycles latency.
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To accurately account for the overheads introduced by a realistic software

stack, we integrate our HW barrier into a widespread programming model such

as OpenMP. In OpenMP, parallelism is specified at a very high level by inserting

directives (annotation) to a sequential C program. The compiler is responsible

for translating these directives into parallel threads of execution. Many of the

parallelization services provided by OpenMP are implemented within a runtime

library, queried by the parallel threads. We re-wrote the low level OpenMP

runtime primitives for barrier synchronization so that we can select between an

optimized software implementation and the invocation of our HW controllers.

As a software implementation, we consider the topology-aware variant of the

tree barrier discussed in [60]. We choose this barrier because it is reported in

literature as one of the best-performing for distributed systems, and because it

has in practice an analogous behavior to its hardware counterpart. Processors in

the system are classified into three entities:

� One Global Master

� One Local Master per cluster

� Local Slaves (the remaining processors)

The SW barrier operates in four steps:

1. In the Local Gather phase, each of the Local Masters wait for each of its

slaves to notify its arrival on the barrier on a private status flag (LO-

CAL NOTIFY array). After arrival notification, Local Slaves check for

barrier termination on a separate private location (LOCAL RELEASE ar-

ray).

2. In the Global Notify phase, the Global Master waits for all Local Masters

to notify their arrival in a private status flag (GLOBAL NOTIFY array).

After arrival notification, Local Masters wait for global synchronization

termination on a local flag (GLOBAL RELEASE).
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3. In the Global Release phase, the Global Master notifies the termination

of the global synchronization step by writing into each Local Master’s

GLOBAL RELEASE flag.

4. In the Local Release phase, each Local Master notifies the termination of

the whole barrier by writing into each Local slave’s private flag from the

LOCAL RELEASE array.

To prevent polling activity from injecting interfering traffic on the intercon-

nect, we distribute notification and release flags so that each processor does busy

waiting on a private, local memory cell. In particular, we leverage the multi-

banking feature of on-cluster TCDMs to make sure that each slave directs its

polling transactions to a different memory bank. Regarding the HW barriers, we

considered both the Hierarchical and Non-hierarchical barriers described in the

previous sections. The number of threads involved in a parallel region can be

set by the programmer with the clause num threads when invoking the OpenMP

#pragma omp parallel directive. Our barriers are capable of synchronizing a

smaller number of cores than the total, but a Setup phase is necessary to appro-

priately program the controllers. For the Non-hierarchical HW barrier this setup

only consists of a write to the controller’s max events memory-mapped register.

For the Hierarchical HW barrier and for the SW barrier the setup is slightly more

complex.

Based on the number of cores in each cluster (CPC) and the number of threads

participating in the parallel region, it is necessary to figure out the number of

clusters involved in the synchronization operation (FC). This number must be

annotated into the memory-mapped register of the global controller. All the

processors belonging to the first FC - 1 clusters will take part to the barrier,

thus corresponding local controllers must be programmed to synchronize all of

them. On the contrary, not all the processors belonging to the FC-th cluster may

be involved in the barrier, thus the appropriate number must be computed and

registered in the pertinent local controller.

The more natural way to integrate barrier setup into the OpenMP execution

model is to let the master thread accomplish this programming stage upon parallel
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Figure 4.13: HW (left) and SW (right) barriers cost

region creation. We thus inserted this set of write operations inside the runtime

library function parallel start. These setup operations are regular writes into

memory mapped registers. The corresponding transactions travel through the

NoC, directed to each active cluster’s controller. Once every controller has been

programmed, the underlying hardware mechanism can be triggered via SW by

writing/reading into the bar reg in and bar reg out registers.

As a first experiment, we compare the cost, in terms of cycles, of both HW and

SW barrier implementations. To avoid measuring wait time due to misaligned

thread arrival on the SW barrier, we measured SW barrier time from the master

thread, ensuring that all slaves have already entered the barrier. The barrier

cost breakdown for the SW tree barrier is shown in Figure 4.13 (right). The SW

barrier costs approximately 700 cycles, considering the net time for gathering and

releasing slaves locally and globally. An additional hundred cycles are induced by

call overheads in the OpenMP runtime environment, plus the cost to initialize the

barrier itself (setup phase), which amounts to 104 cycles. Overall, synchronizing

64 cores from OpenMP costs slightly more than 900 cycles.

In Figure 4.13 (left) we report the cost for the two HW barrier implementa-

tions. It is possible to see that, while the barrier time itself is not very different in

the two cases, the setup phase, as expected, takes quite longer for the Hierarchical
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barrier. It has however to be pointed out that the cost for the setup phase has

to be paid only when opening a parallel region with a different number than the

previous. If the number of threads does not change among two parallel regions,

the cost for the setup phase is drastically reduced (around 15 cycles).

As a second experiment, we want to estimate the granularity of parallelism

enabled by the different barrier implementations. To this aim we use a small syn-

thetic loop, which repeatedly invokes a small assembly routine composed uniquely

of ALU instructions (to avoid memory contention effects). This routine is an-

notated with a #pragma omp parallel directive, which replicates its execution

among all the participating threads. This routine can be parameterized to gen-

erate increasing granularities of parallel tasks (10 to 10000 cycles), so as to study

how the parallelism is affected by barrier time.

Plots are shown in Figure 4.14 for both HW and SW barriers. Here we show

the percentage of time spent in syncronization when the granularity of the parallel

task (i.e. the cycles taken for its execution) increases. For extremely small tasks

(10 cycles) the barrier time is dominating in all cases (≥ 90%). However, it
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is possible to see that clearly hw barriers cut down on latency by one order of

magnitude with respect to the sw barrier. If we qualitatively establish that a 5%

overhead for synchronization is negligible, it is possible to see that this point is

reached by HW barriers at a granularity of thousand cycles, while this same point

is reached by the SW barrier at ten thousand cycles. It is also worth underlining

that from the software perspective the difference in latency between the two HW

barriers is not appreciable, since the overheads introduced by the software stack

tend to hide it.

4.4 Conclusions

Designing a dedicated collective communication infrastructure for synchroniza-

tion signaling with standard design tools and technology libraries is a challenging

task since it is directly exposed to the effects of interconnect-dominated deep sub-

micron technologies. In spite of this, hardware barriers with the lower number

of stages proved the most performance efficient in our physical implementation

framework although using longer links. This is because the interconnect delay

is not such to offset the inherent lower cycle count these schemes take to syn-

chronize the system. Where instead the interconnect delay plays a role is in

determining area of the hardware barrier, since the place-and-route tool operates

aggressive repeater insertion to sustain performance over long links. However,

from the software perspective the picture changes slightly. When integrating

our HW barriers into complete software stacks (i.e., a programming model and

its runtime environment) we saw that the difference in latency between the most

performance-efficient implementation and the second best is not that relevant, be-

cause the software support for parallelism creation introduces sources of overhead

that tend to hide it. Our experiments with OpenMP demonstrate that both the

explored HW barrier solutions enable one order of magnitude-finer grained par-

allelism than pure-software implementations. Moreover, the hierarchical barrier

allows to independently synchronize multiple processor groups (one per cluster)

concurrently. This is something that is extremely important, for example, when
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nested parallelism comes into play, or when multiple disjoint parallel applications

are running on the system.
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Chapter 5

Memory Energy Efficiency

In this chapter the focus is on Technology scaling enables today the design of

sensor-based ultra-low cost chips well suited for emerging applications such as

wireless body sensor networks, urban life and environment monitoring. Energy

consumption is the key limiting factor of this up-coming revolution and memo-

ries are often the energy bottleneck mainly due to leakage power. In this chapter

we devise an ultra-low power version of our multi-core architecture targeting e-

Health monitoring systems, where applications involve collection of sequences of

slow biomedical signals and highly parallel computations at very low voltage. By

combining 6T-SRAM and 8T-SRAM memory portions, operating in the same

voltage domain, such architecture is capable of dispatching at high voltage a nor-

mal operation and at low voltage a fully reliable small memory partition (8T),

while the rest of the memory (6T) is state-retentive. Our architecture offers sig-

nificant energy savings with a low area overhead in typical e-Health Compressed

Sensing-based applications.

5.1 Overview

Emerging and future healthcare policies are fueling up an application driven shift

toward long term monitoring of bio-signals by means of embedded ultra-low power

(ULP) devices. Modern human behavior-related diseases, such as cardiovascular
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diseases, require accurate and continuous medical supervision, which is unsus-

tainable for the traditional healthcare system due to increasing costs and medical

management needs [71]. Personal health monitoring systems are able to offer

large-scale and cost-effective solutions to this problem.

Wearable health monitoring systems, enabled by Wireless Body Sensor Net-

works (WBSNs), face contrasting requirements such as a continuously tighter

power budget and an increasing demand of computation capabilities to pre-

process locally the sensors information so as to reduce the amount of data trans-

mitted, as well as response time. To ensure minimal energy several aspects must

be considered, combining optimizations of the signal processing aspects and of

the technological layers of the ULP architecture.

Several works in literature [58, 78] show that embedded feature extraction al-

gorithms and data compression schemes greatly contribute to minimizing energy.

Compressed Sensing (CS) signal acquisition/compression paradigm has recently

proved to be effective in reducing energy consumption in embedded ECG moni-

tors. Enabling a sub-Nyquist sampling rate for sparse signals, authors in [58] show

a 37.1% improved lifetime compared to state-of-the-art compression techniques.

At the architectural level, voltage scaling has been widely used and proved

its effectiveness though it faces several challenges. Supply voltage has remained

essentially constant beyond 65nm and dynamic energy efficiency improvements

have stagnated, while leakage currents continue to increase.

Motivated by the inherent parallel nature of medical grade ECG monitoring,

where multi-channel signal analysis is often embarrassingly parallel, multi-core

architectures proved their efficiency compared to single-core solutions [25, 27]. In

[25] authors introduced a multi-core architecture where individual leads are pro-

cessed on different cores in parallel. Parallel processing enables more aggressive

voltage-frequency scaling than single-core solutions, though at low workload re-

quirements the single-core solution proved to be more efficient. The efficiency of

the multi-core architecture was further extended in [26], by deploying broadcast

mechanism in the instruction memory and clock gating on memories, achieving

extra 39.5% power savings at high workload requirements. While at low workload
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requirements leakage power, mainly due to data and instruction memories, has

a big impact and aggressive voltage scaling cannot be applied due to reliability

issues for the memories.

Unfortunately, the failure probability of the conventional 6-Transistors (6T)

SRAM cell increases considerably as the supply voltage is scaled down [16]. Read

failure, due to the lack of Static Noise Margin (SNM), is one of the major failure

factors, limiting the efficiency of dynamic voltage scaling. The usage of more

reliable SRAM bit-cells, such as 8-Transistors (8T) or 10-Transistors (10T) cells,

allows scaling to lower supply voltage, however, such solutions incur in large area

penalties (at least 30% overhead for 8T compared to 6T bit-cells [19]).

In the context of CS algorithm, the reliable memory footprint requirement

greatly varies according to the different phases of the execution: the sensing

phase requires the system enough memory to store the sampled data, while the

compressing phase has a bigger memory footprint to correctly access the data

structures used for computation and temporary storage. A typical system per-

forming CS on biomedical signals in real-time, spends most of the time in low

workload phases (sensing), while a small portion of its time is spent in high work-

load phases (compression). In [46], where a single-core CS is implemented in real

HW, the ratio between high workload and low workload phases is below 5%.

These considerations motivate the idea of the architecture presented in this

chapter: using a hybrid memory architecture, combining classic 6T-SRAM cells

with 8T-SRAM cells, we are able to offer reliable operation at lower supply volt-

age. In the sensing phase of the CS execution, the system works in a low-power

state (600mV), where only the memory (8T) needed to store sampled data is

active and reliable [89], while the other portion (6T) is idle. In this phase the 6T

memory has enough hold SNM to be in data-retentive mode [16] though it cannot

be correctly accessed. When compression is performed, the system increases its

performance, operating at a higher voltage (1.2V) and the whole 6T/8T memory

is active and reliable.

The concept of hybrid memory has already been introduced in literature

[19, 28]. The work presented in [19] tolerates an error on the computation related
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to the 6T memory when operating at low voltage, while in our architecture such

behavior would compromise execution correctness. Moreover, their approach is

highly customized for the specific application, avoiding the usage of standard

memory compilers. In [28] authors propose a cache architecture with ways capa-

ble of operation at near-threshold voltage. The usage of separate voltage domains

for cores, 6T and 8T cache ways has a non negligible overhead on the area, mak-

ing it not feasible for scratchpad memories [57]. Our architecture can therefore

benefit from using a single voltage domain, adapting its operating point to dif-

ferent workload scenarios.

The main contributions introduced in this chapter are the following:

� a novel hybrid memory architecture for ULP multi-core biomedical pro-

cessors is proposed. The combination of 6T and 8T-SRAM banks enables

aggressive power management during workload phases with low memory

usage and low computational requirements.

� the proposed architecture leads to a significant improvement in energy sav-

ing (≈ 25% in a typical scenario) when compared to a standard architecture

that uses solely 6T-SRAM banks.

� we demonstrate that our solution has a negligible area overhead (≈ 2%)

with respect to the baseline solution making it preferable to a solution with

only 8T-SRAM due to its higher area overhead.

The rest of the chapter is organized as follows. In Section 5.2 the baseline

architecture is introduced. Section 5.3 discusses the main features of CS algorithm

and execution and describes the proposed hybrid memory architecture for ULP

biomedical processors. Next, in Section 5.4 we describe the experimental setup

and the results of the comparative study of our architecture with the baseline

in terms of energy efficiency and area overhead. Finally, the conclusions are

presented in Section 5.5.
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5.2 CS Architecture

We consider a baseline architecture similar to several current multi-core architec-

tures targeting biomedical signals processors [26, 27]. The considered architec-

ture, presented in Figure 5.1, features 8 Processing Elements (PEs) each one with

a private Instruction Cache. The PEs do not have private data caches, therefore

avoiding memory coherency overhead, while they all share a L1 multi-banked

tightly coupled data memory (TCDM) acting as a shared data scratchpad mem-

ory. The TCDM has a number of ports equal to the number of banks to have

concurrent access to different memory locations.

Intra-cluster communication is based on a high bandwidth logarithmic inter-

connect (LIC). It consists of a Mesh-of-Trees (MoT) interconnection network able

to support single-cycle communication between PEs and memory banks (MBs),

resembling the hardware module presented in [77]. In case of multiple conflicting

requests, for fair access to memory banks, a round-robin scheduler arbitrates the

accesses. To ease the negative impact of banking conflicts we consider a banking

factor of 2 (16 banks). Moreover, to reduce memory access time and increase

shared memory throughput, PEs can benefit from the broadcast mechanism of

the interconnect.

The DMA shown in Figure 5.1 is in charge of periodically moving the data

TCDM

DMA. . .  

. . .  

BANK0 BANK15

LIC (MoT)

PE7PE0

I$ I$

AFE
Samples Buffer (SB)

. . .  S
1
S
2
S
3

S
N

S
1
S
2
S
3

S
N

ECG leads

(samples vectors)

Figure 5.1: Baseline multi-core architecture for CS
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sampled by the analog front-end (AFE) buffer to the TCDM making it available

to the multi-core processor to perform compression.

5.3 Hybrid Memory Architecture

In this section the baseline multi-core ULP architecture to perform Compressed

Sensing (CS) on biomedical signals is presented. We introduce then the CS

phases with a qualitative analysis on their characteristics in terms of memory

footprint and processing requirements. Finally the proposed memory architecture

is presented.

5.3.1 Compressed-Sensing Application

Typical WBSNs-based biomedical applications require to sense biological signals

from the patient (i.e. ECG, EMG, EEG) and send them to a more powerful com-

puting node for further analysis. The recently-developed Compressed Sensing

(CS) theory states that sparse (and thus compressible) signals can be recon-

structed from a smaller number of samples than required by Nyquist sampling

frequency [58]. By deploying this sparsity property, which applies to many classes

of biomedical signals, the CS paradigm can be suitable for implementing low-

resource sensor applications [78], since it reduces the amount of samples required

in processing and storage.

In the hereby considered CS architecture, the input multi-channel signal is

sampled by the analog front-end (AFE), with a sampling frequency (fs) according

to the dynamics of the signal to analyze and the accuracy needed. The samples

(si), corresponding to different leads, are stored in a buffer inside the AFE. Once

the values are sampled, the DMA is triggered to move the samples from the

buffer to the local memory of the CS multi-core processor. Then CS compression

algorithm starts, where each core operates on its own subset of the sampled data.

We assume that the computation phase must be completed before the first sample

of the next window (N + 1) is available to avoid double buffering overhead.
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Figure 5.2: Active/inactive architectural elements during CS execution (LP and
HP phases)

Such CS application, similarly to other sensor-data based computation, is

composed of two phases: data collection and computation. The first phase is

characterized by low-workload/low-memory requirements and a long duration,

thus it will be referred as LP Phase (Low Performance). The latter instead will

be named HP Phase (High Performance). This concept is depicted in Figure 5.2

where data collection and computation are shown.

Data Collection (LP Phase)

During the data collection phase the ULP processor waits for the number of

samples (N) required to perform CS computation. Considering typical sampling

frequencies for biomedical signals, this phase exceeds in time the phase of com-

putation. For instance, with fs = 250Hz and N = 512, the data collection phase

lasts 2048 ms. During data collection the only requirement for the architecture is

to make available enough memory to store locally the data sampled by the AFE.

It is clear that during this phase for most of the time the system is idle thus

requiring a ultra-low power state to avoid unnecessary consumption. Figure 5.2

shows a timing diagram of the status of the architectural elements during the LP
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phase. The only active elements are the DMA and the portion of the TCDM

memory where samples are moved for future elaboration. The required active

memory, varies according to system specification (sampling frequency, compres-

sion algorithm).

Computation (HP Phase)

Once the data collection phase is over, the DMA has already copied the buffer

with N samples to the local (TCDM) memory and the computation phase starts.

As introduced before the considered architecture performs a burst of computation

on the available data for future transmission. During this phase the system

is in an operating point characterized by high workload requirements and high

memory footprint. All the processing elements are active and working on the

data sampled during the last observation window. The amount of active memory

required in HP phase is higher then in LP Phase because of all data structures

needed to perform the convolution kernel of the CS algorithm (Section 5.4.1).

Moreover, considering that the compression kernel is memory-bound by nature,

the bandwidth requirements in core-memory bandwidth implies higher supply

voltage for the memory in order to sustain the throughput.
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5.3.2 6T/8T Hybrid Architecture

Considering the limitation imposed by classic 6T-SRAM memory when operating

aggressive voltage scaling and the characteristics of biomedical applications, as

outlined in the previous section, we consider an alternative memory architecture.

By combining 6T and 8T-banks the reliable operating range is further extended

to lower supply voltage. The proposed 6T/8T hybrid architecture is schematized

in Figure 5.3 and compared to the baseline architecture introduced in Section 5.2,

it features:

� single voltage domain for the whole architecture. This reduces area over-

heads and design complexity.

� 8T portion of the TCDM (LP memory) able to offer reliable operation down

to 600mV.

� 6T portion of the TCDM with reliable access down to 800mV but able to

operate in data retentive mode (sufficient hold SNM) at 600mV.

� at voltages higher than 800mV all the TCDM (6T + 8T) operates correctly

(HP memory).
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Figure 5.3: Hybrid 6T/8T memory architecture
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Figure 5.4: Contiguous memory map of hybrid 6T/8T memory

� the interleaving on different banks operated by the logarithmic interconnect

(Section 5.2) enables to have a contiguous memory map among the 6T and

8T portions. This concept is depicted in Figure 5.4.

5.4 Experimental Setup and Results

In this section we present the experimental setup and the results of the evaluation

of the proposed hybrid memory architecture in terms of energy efficiency and area

overhead.

5.4.1 CS Algorithm Analysis

The reference benchmark is a real-time multi-lead ECG processing application

composed of two main kernels: Compressed Sensing (CS) and Huffman Coding

(HC). The CS kernel [58] performs compression (50% ratio) on a block of 512

samples of ECG data per lead with a sampling period of 4ms. The HC kernel

performs the Huffman encoding on the compressed data, reducing its footprint

further for wireless transmission [58]. The CS algorithm operates on 8 leads in

parallel where each Processing Element (PE) works on a separate lead data-set.
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The CS part has a constant program flow without any dependence on the input

data, while the HC part adds a short section of data-dependent program flow.

Considering a single lead ECG, the memory footprint of the CS algorithm consists

of 648 bytes for instructions and 16 KB for data. The data section consists of

two contributions: working data (the samples) and read-only data with a memory

footprint of 2048 and 14336 bytes respectively. More in detail the read-only data

consists of 3 Look-Up Tables (LUTs), i.e. a vector of random coefficients for the

CS kernel (12288 bytes) and two data dependent LUTs (1024 bytes each) for the

HC kernel.

Such CS algorithm analysis was used at design time to choose the appropriate

memory cuts, for both baseline and hybrid architectures, and to statically allo-

cate the memory structures. The TCDM size is assumed to be 128KB in both

architectures, while an instruction cache of 1KB (per-core) is chosen. Consider-

ing that during compression every core operates on 512 samples, the 8T-SRAM

memory (where sampled data is stored during LP phase) is chosen to be 16KB

with 16 banks of 1KB each.

5.4.2 Hybrid Memory Analysis

Table 5.1 shows the power numbers (dynamic and leakage) considered for the

evaluation of the proposed architecture. For 6T/8T memories the power values

were extracted from the data-sheets of the respective SRAM architectures for a

low power 65nm technology library. The memory numbers reported here refer

to 1024x32 bits arrays (mux column = 4). The idle power is the standby power

of the SRAM, where only the clock and address pins are toggling. Write and

read power were measured with 100% activity (back to back cycling), with half

of the address and data inputs (only for write) toggling. All inputs are stable

(no toggling) for deriving the leakage power. We further assumed the worst case

for leakage (i.e. best case for the technology). 8T cells considered here are Low-

Leakage (LL) cells, a register-file architecture, which offer better performance and

reliability. On the other hand, for the 6T-SRAM, the LL cells incur in reliability

problems when reducing the supply voltage to 600mV [16].

91



Table 5.1: 6T/8T memories and PE energy numbers

DYNAMIC [µW/MHz]

6T-mem 8T-mem pe

hp lp hp lp hp lp
idle 2.20 0.54 2.32 0.56
read 11.79 2.87 12.04 2.93 68.76 16.74
write 13.88 3.38 14.11 3.43

LEAKAGE [µW]

6T-mem 8T-mem pe

hp lp hp lp hp lp
-40 C 0.61 0.31 0.27 0.13 0.63 0.32
25 C 11.56 5.89 5.35 2.63 11.18 5.69
125 C 326.77 166.23 158.77 80.77 338.44 172.17

For the Processing Element (PE), we considered an average active energy

of 68.76 µW/MHz and 16.74 µW/MHz when operating at 1.2V and 0.6V, re-

spectively. These numbers are based on post-synthesis characterization of an

openRISC core. For the DMA and the logarithmic interconnect our characteri-

zation estimates 63.13 µW/MHz and 54.73 µW/MHz respectively at 1.2V as av-

erage active energy (15.37 µW/MHz and 13.13 µW/MHz, respectively, at 0.6V).

Comparing the number of NAND equivalent gates of the DMA and the 8x16

interconnect with respect to a single PE, we derived corrective factors for the

leakage power equals to 0.92x and 2.19x, respectively. Leakage power is scaled to

0.6V considering the relation expressed in [79].

5.4.3 Area Overhead

To evaluate the area overhead of our solution, in an iso-size comparison, we

quantified the overhead introduced by the 8T memory portion in the hybrid

architecture compared to the baseline (6T-only) solution. Table 5.2 shows the

impact of each element on total area.

The overhead of extra-circuitry for the hybrid memory, required by the sep-

aration of logical banks in 6T and 8T banks is negligible, leading to a total
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Table 5.2: Area comparison (Hybrid vs Baseline)

element hybrid [mm2] baseline [mm2]

PEs 0.85408 0.85408
6t tcdm 0.70652 0.80746
8t tcdm 0.13323 -

6t I$ (DATA) - 0.05047
8t I$ (DATA) 0.06662 -

dma 0.09801 0.09801
logint 8x16 0.23348 0.23348

TOTAL 2.09194 2.04349

overhead below 2%. If instead we consider an architecture with only 8T-SRAM,

the overhead on the overall system would be non negligible (≈ 14%) and leakage

contribution would affect the energy efficiency.

5.4.4 Hybrid Memory Efficiency

To evaluate the energy efficiency of the proposed architecture, the power numbers

of Section 5.4.2 have been integrated in a SystemC-based cycle-accurate virtual

platform [14]. The architecture was configured with 8 cores, 1 DMA, an 8x16

logarithmic interconnect and 6T/8T portions as determined in Section 5.4.1. The

HP phase is performed in 94.56k clock cycle, while the LP phase takes 24.12k

clock cycles (sum of all DMA data movements in an observation window).

HP Phase

The first set of experiments was aimed at comparing the energy efficiency of

the proposed 6T/8T hybrid memory architecture to the baseline case of an ULP

multi-core architecture where all the TCDM is composed of 6T-SRAM cells. Dur-

ing the HP phase, all cores are active and executing the CS kernels described in

Section 5.4.1 operating in parallel on its separate data set. On the memory side,

the whole TCDM memory is active, as well as the I-caches. The DMA is idle,
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Figure 5.5: Power breakdown for HP phase (hybrid, T=25◦C)

contributing only for leakage power. The operating point considered in this ex-

periment is a clock frequency of 100 MHz and a supply voltage of 1.2V.

In Figure 5.5 a power breakdown for the hybrid architecture (T=25◦C) is

shown. Total power consumption has two main contributions: PEs and HP

TCDM (6T-SRAM) as expected. The number of accesses in the HP portion of

the TCDM exceeds the number of accesses in the LP portion, mainly due to data

structures of the CS kernels and stack. For completeness a separated breakdown

for dynamic and leakage is presented, though the dynamic power contributes for
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99% to total power.

Figure 5.6 shows the average power during HP phase for the baseline and

the proposed architecture. At different temperature leakage contribution (exac-

erbated at T=125◦C) impact both architectures, though the 8T Low Leakage

(LL) cells can amortize this effect. As expected in the HP phase our solution

has a lower energy efficiency compared to the baseline, mainly due to the higher

contribution of dynamic power for the 8T-memory. The impact of the hybrid

architecture in the HP phase is very low, being below 1% for all the considered

temperatures.

LP Phase

As a second experiment we compared the energy efficiency of our solution and the

baseline during the data collection phase. During the LP phase all cores are idle

waiting for the sampled data to be ready. Only the amount of memory needed

to store the samples is active, while the other portion of memory is clock gated,

contributing only for leakage. The DMA is in charge of moving the sampled data

from the AFE buffer to the LP-portion of the memory. The operating frequency

considered in this phase is 10 MHz. For a fair comparison with the baseline, we

consider only 16KB active of TCDM, with the other portion being clock-gated.

Considering reliability issue for 6T-SRAM [16], the baseline has a supply voltage

of Vdd = 0.8V , while our solution thanks to the higher reliability of 8T-SRAM
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Figure 5.7: Power breakdown for LP phase (hybrid, T=25◦C)
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memory can operate at 0.6V.

For completeness, in Figure 5.7 is shown a breakdown of total power for the

hybrid architecture at the temperature of 25◦C.

Figure 5.8 shows the average power during the LP phase for the baseline and

the proposed architecture at different temperatures. These results confirm the

effectiveness of the proposed solution: thanks to the extended voltage scaling

range offered by the reliability of 8T-SRAM the dynamic component can be

greatly reduced. At T=25◦C the overall reduction of power compared to the

baseline is 24.5%.
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Overall Efficiency

The last set of experiments was intended to evaluate the efficiency of the 6T/8T

hybrid memory architecture varying the amount of time spent in LP and HP

phases. The average power consumption shown before demonstrates a good im-

provement for the proposed solution in the HP phase and a small penalty in the

HP phase but is not taking into consideration the time spent in the two phases

during a period of Compressed Sensing. The results of this analysis are presented

in Figure 5.9, where on the x-axis is shown the ratio between HP and LP phases

and on the y-axis is shown the energy efficiency of the hybrid architecture with

respect to the baseline.

The proposed solution improves energy efficiency of the system for the range

0-90% of HP/LP ratio, with a crossing point at ≈ 90% where the baseline archi-

tecture outperforms the hybrid solution. Considering a typical scenario with a 5%

ratio between HP and LP phases [46], the proposed solution proves to be ≈ 25%

more efficient than the baseline architecture. This result is valid on the whole

temperature range considered. The quadratic trend in efficiency validates the

motivation behind our solution. Power consumption has a quadratic dependency
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on supply voltage for the dynamic component and increasing the amount of time

spent in LP phase, the more effective becomes the aggressive voltage scaling that

can be operated on our hybrid architecture.

5.5 Conclusions

In this chapter we introduced a 6T/8T hybrid memory architecture for multi-

core biomedical processors. Classic memory architectures composed of 6T-SRAM

memories face reliability issues when reducing supply voltage to threshold. Static

noise margin for such memory cells compromise execution correctness making ag-

gressive voltage scaling not feasible. The proposed architecture greatly benefits

from the varying workload/memory footprint requirements of biomedical process-

ing, adapting in a reliable way to different operating points. Our solution offers

significant improvements in energy saving (≈ 25% in a realistic scenario) when

compared to a 6T-only architecture with a negligible (≈ 2%) area overhead.

Future research directions comprise an extension to perform runtime data al-

location and memory management. The OpenMP programming model offers, by

means of #pragmas, an easy way for programmers to specify, based on workload

requirements, in which memory portion allocate the data.
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Chapter 6

Variation tolerance

Near-Threshold operation is today a key research area in Ultra-Low Power (ULP)

computing, as it promises a major boost in energy efficiency compared to super-

threshold computing and it mitigates thermal bottlenecks. Unfortunately near-

threshold operation is plagued by greatly increased sensitivity to threshold volt-

age variations, such as those caused by ambient temperature fluctuation. In this

chapter we propose an architectural scheme to tolerate ambient temperature-

induced variations capable of statically (off-line) and dynamically (on-line) adapt-

ing the processor-to-L1-memory latency without compromising execution correct-

ness. The resilient version of our target architecture has been tested in different

scenarios, evaluating the different design trade-offs, showing the cost, performance

and reliability gain compared to state-of-the-art static solutions.

6.1 Overview

The pace dictated by Moore’s law has slowed down and classical CMOS scal-

ing, which drove the semiconductor growth during the past several decades, is

delivering reduced energy gains [13, 29, 47]. Beyond the 65nm technological

node the supply voltage has remained essentially constant and improvements

on dynamic energy efficiency have dramatically stagnated, while leakage cur-

rents continue to increase. In this “Moore’s law twilight era”, further energy
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gain can be achieved by moving to the near-threshold computing (NTC) domain

[13, 29, 31, 47, 49, 59, 96]. By reducing the supply voltage (Vdd) from the nominal

value to the level of the threshold voltage (Vt) the energy per operation decreases

by 10x with performance penalties of 10x [29, 59]. Reducing further the Vdd in

the sub-threshold region is less attractive since the performance will drop by an

additional 50-100x with an energy improvement of only 2x [95]. Although NTC

provides excellent energy-frequency trade-offs, it faces three key barriers that

must be overcome for widespread use: performance variation, performance loss

and functional failure.

Systematic and random variations are already significant issues in today’s

advanced technological nodes and operating at low-voltages exacerbates the ef-

fects of both. Performance uncertainty in the near-threshold region due to the

global process variation alone increases to 5x from 1.3x at nominal supply voltage

[20, 29]. Operating at this voltage also heightens sensitivity to temperature and

supply ripple, both can add another factor of 2x to the performance variation

resulting in a total performance uncertainty increase of 20x. This issue cannot be

tackled with the worst case design common practice, since taking margins with

over-design will result in chips running way below of their potential performance,

which is wasteful both in performance and in energy due to leakage current.

Another main issue with low-voltage operation is the potential performance

loss, which can seriously limit the degree of use of voltage-scaling for a given

processing requirement. Parallel computing using multiple cores can alleviate

this issue, provided that the algorithms to be executed can be parallelized. The

authors in [25] explored the power/performance trade-offs between sequential

and parallel near-threshold computations for various biomedical signal processing

requirements. They estimate a 34% [25] of energy loss in the single-core design

when compared with the multi-core one under high workload requirements. To

achieve the same throughput the single-core needs to operate with a Vdd twice

higher than that of the multi-core solution. In [26] authors show that exploiting

NTC in conjunction with multi-core architecture design enables ULP wearable

health monitoring systems achieving up to 39.5% power savings with respect to
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the state-of-the-art.

Also functional failure must be taken into account: more than the logic cells,

embedded SRAM cells will suffer from static and random variations with the high

risk of causing several functional failures. For instance, a typical 65nm SRAM

cell has a failure probability of 10−7 at nominal voltage. However, at NTC this

failure rate increases by 5 orders of magnitude to approximately 4%. Keeping the

power supply of SRAM cells higher than the core logic will reduce the error rate

[20, 29], the leakage power and produce faster memory therefore enabling single

cycle latency L1 memory.

Variability constraints when operating in NTC push the architecture toward

a topology in which several processing elements communicate with each other

through a shared L1 memory system. Recently, several many-core architectures

have been proposed that leverage tightly-coupled clusters as a building block

[2, 11, 26, 82]. In a shared memory paradigm, these designs try to overcome

the scalability limitations encountered when increasing the number of Process-

ing Elements (PEs) that share a unique interconnection and memory system by

creating a hierarchical design where PEs are clustered into small-medium sized

subsystems. The small number of PEs makes it possible to design a low-latency

interconnect between processors and L1 (in-cluster) memories, while scaling to

larger system sizes is enabled by replicating clusters and a scalable medium like

a Network-on-Chip.

Putting variability in the picture, in such chip multiprocessor architectures

the interconnect clearly becomes a single point of failure. Authors in [42, 43] in-

troduced a resilient single-cycle interconnection network, based on pipeline stages

[30], that can statically (boot-time) tolerate delay variations due to aging or static

variations which is based on a fully combinational Mesh-of-Tree (MoT) intercon-

nection network proposed in [77] suitable for tightly-coupled processor clusters.

Since ULP devices operating at near-threshold voltages due to the low power

dissipated are safe from self-heating effects, die temperature is hot-spot free and

mainly follows ambient temperature [17, 18, 29] which can greatly vary (dai-

ly/seasonal fluctuations, indoor/outdoor transitions). As a consequence of this,
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performance variability cannot be effectively addressed only by adopting static

solutions, requiring lightweight solutions reactive to dynamic variations that can

lead to functional failure when ambient temperature significantly changes.

In this chapter we this issue is tackled by introducing an architectural scheme

to achieve resiliency to critical path variations induced by ambient temperature

fluctuations. This is done by exploiting the resilient logarithmic interconnect

presented in [42, 43] and integrating it with a set of new HW modules capable

of sensing the current ambient temperature, recognize possible hazards, checking

memory and link consistency and react by reconfiguring, through a SW procedure,

the interconnect delays.

The rest of this chapter is organized as follows. In Section 6.2 the baseline

target architecture is introduced. Section 6.3 discusses in detail the proposed so-

lutions (both static and dynamic approaches) with details on the building blocks

of the schemes as well as their working principle. Next, in Section 6.4 we describe

the experimental setup and the simulation framework used to compare the pro-

posed schemes with state-of-the art static solutions. Finally, the conclusions are

presented in Section 6.5.

6.2 Baseline Architecture

The recent shift towards many-core architectures brings new architectural paradigms:

today several academic and commercial many-cores architectures deploy a hier-

archical design where processing elements are organized into small-medium sized

tightly-coupled clusters. We chose as a target cluster architecture one similar to

[11]. Our shared L1 cluster, shown in Figure 6.1, features 16 Processing Elements

(PEs) each one with a private Instruction Cache.

The PEs do not have private data caches or memories, therefore avoiding

memory coherency overhead. They all share a L1 multi-banked tightly coupled

data memory (TCDM) acting as a shared data scratchpad memory, not as a data

cache. Intra-cluster communication is based on a low-latency high bandwidth

Logarithmic Interconnect (LIC). It consists of a Mesh-of-Trees (MoT) intercon-
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Figure 6.1: Target architecture: baseline and variation tolerant version extension

nection network (Figure 6.2) able to support single-cycle communication between

processors and memories, resembling the hardware module proposed in [77]. As

shown in Figure 6.2, the MoT network connects N = 2n PEs and M = 2m Mem-

ory Banks (MBs). It contains Log2(M) levels of routing primitives and Log2(N)

levels of arbitration primitives.

The interconnect operates word-level address interleaving on the memory
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Figure 6.2: Mesh-of-Trees interconnection network (4 cores and 8 memory banks)
with 2 reconfigurable stages per link
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banks to reduce banking conflicts in case of multiple accesses to logically con-

tiguous data structures. The LSBs of the address field determine the routing

path to the destination. In case of multiple conflicting requests, for fair access to

memory banks, a round-robin scheduler arbitrates the access and a higher num-

ber of cycles is needed depending on the number of conflicting requests. In case

of no banking conflicts data routing is done in parallel for each PE, thus enabling

a sustainable full bandwidth for PEs-memories communication.

The TCDM has a number of memory ports equal to the number of banks

to have concurrent access to different memory locations. Once a read or write

requests is brought to the memory interface, the data is available on the negative

edge of the same clock cycle, leading to a total latency of two clock cycles for

conflict-free TCDM accesses. Main memory (where program and global data are

stored) is accessible by PEs through explicit data access or by Instruction Caches

logic to perform instruction refills.

To make this architecture tolerant to ambient temperature induced variability,

we propose a solution whose building blocks (highlighted blocks in Figure 6.1)

and their interaction will be described in the next section.
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6.3 Temperature Tolerant Scheme

In this section we present all the architectural elements and how they interact to

offer both static (off-line) and dynamic (on-line) tolerance to ambient tempera-

ture induced variations. The dynamic variant is an architectural extension of the

baseline static scheme. Both solutions consist of different phases: the detection

of a possible hazard, the reconfiguration of the interconnect to tackle variations

and a control policy. This is obtained by means of the basic building blocks

hereby described: Variation Tolerant Interconnection, Detection Units and Con-

trol Unit. Both static and dynamic architectures deploy the same HW version

of the interconnect, while they differentiate in the detection phase carried out by

the Detection Units and in the behavior of the Control Unit.

6.3.1 Variation Tolerant Interconnection

To tackle ambient temperature-induced delay variations, we exploit the logarith-

mic interconnect introduced in [42] to perform static and dynamic reconfiguration.

The approach uses two reconfigurable modules, based on Flip-Flops (FFs), to be

used respectively, on the request and response paths as shown in Figure 6.3. As
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Figure 6.4: Reconfigurable pipeline stage: when the flip-flop (FF) is in the path
an extra cycle of latency is inserted

stated by authors, the most critical paths are between processors and the TCDM.

They also found that the delay of the paths whose sources and targets are inside

the processors is almost 2/3 of that of the critical path (PEs to TCDM). If any

variation occurs, those paths that are inside the processors have reasonable mar-

gins to tolerate it, thus, we have to take care of the paths between processors and

memories.

The FFs can compensate the effect of delay variations by inserting one extra

cycle of latency each (up to two cycles per processor-memory path), thus relaxing

timing constraints. This operating mode is referred to as pipeline mode and is

depicted in Figure 6.4. Without delay variations a memory access is completed

without increasing the latency. The main property of the variation tolerant in-

terconnect is the capability of introducing up to two cycles for static or dynamic

variations for each processor-memory path independently. Since the PEs supports

only blocking accesses to the memory, therefore the messages traveling between

PEs and TCDM are intrinsically not subject to out-of-order issues.

Every PE has associated one HW Detection Unit (DU) which can detect faults

when accessing memory similar to the one in [42]. Detection can be performed

both off-line and on-line as described later. If the tester does not find any tim-

ing error, the reconfigurable pipeline reconfigures itself in such a way that the

processor-memory path becomes fully combinational by selecting the second in-

put of the multiplexer (Figure 6.4) with the FFs out of the path. If variation

happens, the FFs can be activated/deactivated to adapt communication latency

in processor-memory paths. The interconnect configuration can be stored in a

structure where the bit fields drive the multiplexers in the reconfigurable stages.
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6.3.2 Detection Units

This module is replicated for each PE and has a key role in the detection phase. In

both static and dynamic solutions hereby presented, the Detection Units (DUs)

perform a detection of possible failures when accessing the L1 memory, thor-

oughly scanning all the routing paths of the logarithmic interconnection. A DU

implements two similar state machines which generate data and address for the

write and read transactions and verify the incoming data from memories. During

their activity, all the detected faults are signaled to the CU which in turn man-

ages the information to perform delay insertions to avoid timing errors. There is

a slight difference between the static and dynamic version of the DUs as will be

explained in Section 6.3.4.

6.3.3 Control Unit

The Control Unit (CU) has a centralized role of control and coordination for

detection phase and interconnection reconfiguration. We present hereby both

static and dynamic versions of the CU.

Static Control Unit

The static version of the Control Unit coordinates a one-time detection and

configuration of the interconnection at boot-time. Figure 6.3 shows a schematic

view of the interaction between the CU and the other architectural elements.

When a detection phase starts at boot-time, the CU is in charge of freezing PEs,

trigger the self-tuning routine and reconfiguring the Reconfigurable Stages (RSs)

updating the content of the Configuration Register (CR) whose bit fields drive

multiplexers selectors.

The functionality of the CU is based on:

� Configuration Register : such register stores the configuration information of

the resilient interconnect, i.e. the configuration bits for the RSs distributed

in the architecture. Considering N cores, M memory banks and 2 RSs per

link, the memory footprint of this register is 2·N·M bits.
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� Ultrasafe Configuration: this configuration guarantees execution correct-

ness in the worst-case operating point considering PVT variations. It is the

initial configuration loaded at boot-time before detection will be performed.

This delays configuration is determined at manufacturing time, hard-coded

at design time, loaded at boot time and represents the delays configuration

that avoids timing faults. It is a sort of rollback mechanism, since no infor-

mation is available on the current operating point and interconnect delays

margins are unknown, this configuration is the only one that ensures zero

timing faults when the system starts but at the same time is the slowest

possible.

Dynamic Control Unit

In the dynamic version of the proposed architecture, the Control Unit (CU) has

a role of on-line control and coordination of the other HW components: sensor

readout, dynamic interconnect reconfiguration and control policy. The CU is

in charge of periodically sensing the ambient temperature sensor, this is done

by hysteresis thresholding to avoid spurious detection activities due to minor

temperature oscillations as well as filtering potential sensor readout noise. When

the CU detects a potential hazard, PEs execution is frozen and, if necessary,

the CU reconfigures the interconnect updating the content of the Configuration

Register (CR) whose bit fields drive the reconfigurable stages of the interconnect.

To perform on-line monitoring (details in Section 6.3.6) of the current operat-

ing point (T ◦) and reconfigure the interconnect delays accordingly, the dynamic

CU further extends the static version by means of:

� Threshold Temperatures : these temperatures (T thi ), stored in a 8-bit mem-

ory structure within the Control Unit, consist of all the threshold temper-

atures that will trigger the Monitoring Algorithm for a potential hazard.

The thresholds can be determined at design time based on static timing

violations analysis for different operating points (T, V ) or as an arbitrarily

fine grid of temperatures in the operating range. According to the rela-

tive Enabled bit (Ei), a tag for currently enabled thresholds, the set of
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temperatures can be refined during execution thus limiting the overhead of

the dynamic solution. The enabled temperatures serve as indexes for the

Reconfiguration Cache.

� Reconfiguration Cache: this memory is intended to store the delays con-

figuration bits (DATA) associated to different threshold temperatures (IN-

DEX). The structure of the reconfiguration cache is shown in Figure 6.5.

Every entry consists of the configuration bits for the reconfigurable stages

(flip flops) of the possible N·M PE-memory paths. Since every path can

have up to 2 reconfigurable stages in pipeline mode, an entry needs 2·N·M
bits to store the information. For instance, considering N = 16 PEs and M

= 32 banks, entry size is 128B. The Reconfiguration Cache implements a

LRU eviction policy. The usage of the Enabled bits for threshold temper-

atures combined with the caching mechanism allows a learning procedure

that reduces the runtime overhead.

It is important to outline here the mechanism used by the Control Unit to

search entries in the Reconfiguration Cache. A given configuration is safe (zero

timing faults) in a specific temperature range according to the thermal behavior

of the system. As will be described in Section 6.4.1, we consider two different

thermal behaviors for temperature induced variations, namely Thermal Inversion

(TI) and Non Thermal Inversion (NTI).

When considering TI, at higher temperatures the critical path gets faster while

the opposite holds for NTI. This affects which “safe” entry should be looked-up

in the Reconfiguration Cache when a hazard is detected. The concept is depicted
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in Figure 6.6, where the hazard detected is always related to threshold T thi but

according to the thermal behavior and the temperature trend (arrows) the safe

index to be looked-up in cache varies.

6.3.4 Detection

To determine the optimal delays configuration for the current operating point,

our dedicated HW testing modules are in charge of detecting faults in L1 memory

accesses. The complete test is performed during M phases where M is the number

of memory banks. During each phase all DUs write the test pattern a given bank

and then read and verify them. The test pattern (data and address) contains one

W/R sequence. The data that is written is 01010....01 (TEST). The pseudo-

code of the Detection Phase is shown in Listing 6.1.

Each DU writes data to the specified address of each bank and then reads

from the same location. Exploiting word interleaving it is possible to have each

DU accessing a different bank reducing bank conflicts and detection cost. If the

DU reads the wrong data, it means the write or read operations or both do not

work correctly due to delay variations and the DU signals the path to the CU for

delay insertion. The interaction between DU and CU is repeated until the delays

inserted are compensating the variations up to a maximum of two cycles.
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DU:: DETECTION(addr_range ):

foreach addr in addr_range

curr = read(addr) /* dynamic only*/

write(TEST ,addr)

if(read(addr) != TEST)

mark_inc[addr] = true

CU:: DELAY_RECONFIG ()

else

write(curr ,addr) /* dynamic only*/

CU:: DELAY_RECONFIG:

foreach addr in mark_inc

if(delay(path) < 2)

delay(path )++;

else

shutdown(PE(i))

DU:: DETECTION(mark_inc)

Listing 6.1: Pseudo-code of Detection (DETECTION) and Re-

configuration (DELAY RECONFIG) for DU and CU

If the maximum number of two extra cycles is already reached (both reconfig-

urable stages are in pipeline mode), our baseline policy is considering the PE as

faulty and shut it down.

The address range on which we operate faults detection is the whole TCDM

address range since we do not know a priori which memory location can be more

affected by temperature-induced variations. When performing an online detection

we must preserve memory content. As shown in Listing 6.1, to have a non-

destructive diagnosis we save and restore current value as first and last step of

our detection procedure. On the other hand for the static solution, the detection

phase is carried off-line out at boot-time and there is no need of preserving

memory content since it is not set when the system starts. The test performed at

boot time takes into account static delay variations due to random and systematic

process variations or aging effects.
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6.3.5 Reconfiguration

If during the detection phase a faulty PE-memory path is detected, the DUs notify

the CU the marked addresses, updating the relative Configuration Register bit-

fields, in order to perform the reconfiguration. Suppose DU(i), associated to

PE(i), detects an error accessing a given address physically located in memory

bank MB(j) of the TCDM, i and j are signaled to CU. CU checks the relative

bit-fields of the Configuration Register CR(i,j) and if the maximum number (2)

of reconfigurable stages is not reached, it operates a delay insertion. Otherwise

PE(i) is considered a faulty processor and an interrupt signal to freeze PE(i) is

raised until the end of program execution thus shutting down the core.

Reconfiguration cost is negligible with respect to detection since it barely con-

sists of driving multiplexer selectors according to Configuration Register content.

6.3.6 Working Principle

All the aforementioned blocks cooperate to provide static or dynamic tolerance

to temperature-induced delay variations that may lead to functional failure.

Static Tolerance (off-line)

The baseline static version of the architecture operates a one-time action to detect

potential timing failures and to reconfigure interconnect such as to void them.

Modules interaction occurs as shown in Figure 6.7. At boot time (t=0) the Static

Control Unit (SCU) loads the ULTRASAFE configuration described in Section
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Figure 6.7: Block scheme and timing diagram of static solution
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Figure 6.8: Block scheme and timing diagram of dynamic solution (MISS)

6.3.3, this configuration guarantees no errors in cores-memory communication.

All Processing Elements are stalled in this early stage with fetch enabled signal

forced to low. The SCU triggers the detection procedure as explained above and

once the DUs have notified the delays to be inserted, the interconnect reconfig-

uration takes place. The configuration loaded at this point will not change until

the device is shut down.

Dynamic Tolerance (on-line)

With reference to Figures 6.8 and 6.9, modules interaction occurs as follows:

when the the Dynamic Control Unit (DCU) is triggered by an enabled threshold

temperature (1), all PEs are forced to idle mode and, in case of MISS in the

Reconfiguration Cache (Figure 6.8), all the DUs are simultaneously triggered to

perform the diagnosis (2). After detection is carried out, the delay configuration
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Figure 6.9: Block scheme and timing diagram of dynamic solution (HIT)
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associated to current temperature threshold is stored in the cache and the DCU

performs the dynamic reconfiguration (3) of the interconnect loading the UL-

TRASAFE configuration in the Configuration Register. When PEs are resumed

from idle mode, program execution continues as before with degraded perfor-

mance due to the safe configuration loaded. In case of a HIT in Reconfiguration

Cache (Figure 6.9) the DCU skips the unnecessary detection for current threshold

temperature and directly reconfigures the interconnect loading the cached con-

figuration in the Configuration Register. According to current operating point

and thermal behavior, when PEs are resumed from idle mode, program execution

continues as before with the new delays configuration for current temperature.

The DCU is in charge of performing the Monitoring Algorithm and its flow

is represented in Figure 6.10. Once the ambient temperature Ta is read from the
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Figure 6.10: Online Monitoring Algorithm (Dynamic Control Unit)
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sensor, for each enabled (Ei == 1) threshold temperature T thi , the DCU checks

if Ta is close to T thi (|T thi − Ta| ≤ ε). If a hazard is detected, the DCU looks

up that particular entry in the Reconfiguration Cache. A certain delays pattern

may be already stored in the Reconfiguration Cache because the system has

already been at current Ta leading to a previous detection phase. As explained

before, the index to be looked-up in the cache depends on the thermal behavior.

In case of a HIT in Cache, the configuration is directly used by the DCU to

reconfigure the interconnection and adapt safely to current operating point (see

next paragraph). In case of MISS in Reconfiguration Cache, DUs are triggered to

perform Delays Detection and ULTRASAFE configuration is loaded right after.

If the configuration detected by the DUs passes the insertion test it is stored in

the Reconfiguration Cache, otherwise the threshold T thi is disabled (Ei = 0) to

not trigger further undesired detections. The R$ Insertion Test (Figure 6.10) test

checks if current configuration is different from both the current configuration

loaded and the last entry added in Cache. This mechanism enables the DCU

to learn which threshold temperatures are significant thus reducing at runtime

detection overhead.
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6.4 Evaluation

In this section the temperature induced variation modeling is presented as well

as the simulation infrastructure. Finally tests and performance evaluation are

described.

6.4.1 Modeling

In this section we describe the mathematical modeling of static delay variations

and the temperature effect on the critical paths distribution.

Static Delay Variations

Static variations due to aging, random and systematic variations lead to a normal

distribution N(µ, σ) of the critical path delay [29], shown in Figure 6.11.

In our experiments we take as nominal critical path delay for the variation

tolerant logarithmic interconnect τd = 4ns (corner plus 3σ safety margins) as de-

scribed in [42] and a critical delay variation, for near-threshold operating circuits,

characterized by στd = 15.1% as stated in [63]. Without loss of generality, we con-

sider a single realization (Figure 6.11) of the Probability Distribution Function

(PDF) with a critical path delay hereafter referred as τd.
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Figure 6.11: Critical path delay variability
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Temperature Effect

Sub-micrometer devices are inherently affected by dynamic variations such as

ambient temperature. We have modeled this dependency with a linear model.

To cover different scenarios we have chosen a set of sensitivity values (S = ∆τd
∆T

),

two in Thermal Inversion (TI) [17] and two Not in Thermal Inversion (NTI). For

both regions we chose an High and Low sensitivity value. Table 6.1 shows the

average delay ∆τd variation induced by a temperature variation ∆T of 80oC.

Table 6.1: Sensitivity and average critical path variation
sensitivity variation

nti low 23%
high 139%

ti low 19%
high 135%

6.4.2 Simulation Infrastructure

Our evaluation is based on a Matlab/SystemC co-simulation infrastructure. The

reason behind is the different time-scales involved in the ambient temperature

changes (hours/months) and in the micro-architecture domain in which acts the

detection phase as well as the interconnect reconfiguration mechanism.

The modules of our solution, modeled in SystemC, were integrated in a flex-

ible and accurate virtual platform environment based on VirtualSoC [14]. Our

enhanced virtual platform is highly modular and capable of simulating at cycle-

accurate level an entire shared L1 cluster including cores, instruction caches,

shared L1 data scratchpad (TCDM), external memories and system intercon-

nections. Our shared L1 cluster consists of a configurable number of 32-bit

instruction-accurate ARMv6 processors. The target architecture features pri-

vate Instruction Caches per core. The logarithmic interconnect module has been

modeled, from a behavioral standpoint, as a parametric, Mesh-of-Trees (MoT) in-

terconnection network capable of dynamically changing PE-memory paths delay
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at runtime so as to mimic the real HW described previously. On the data side, a

multi-ported, multi-banked (banking factor 2x) TCDM is directly connected to

the logarithmic interconnect.

The main simulation parameters regarding the architecture are as follows:

PEs = 16, TCDM banks = 32, TCDM size = 256 KB, fCLK = 250 MHz. This

setup mimics the configuration of [11].

We have integrated the SystemC cycle accurate simulator and architecture

model as a back-end of a Matlab model of the proposed solution and temper-

ature profile (shown schematically in Figure 6.12). Our simulation flow acts as

follows: in the high level Matlab simulator we generate a temperature profile,

we generate the delay table of the interconnect as realization of the static pro-

cess variation discussed in Section 6.4.1. For each time step of the temperature

profile (minutes) we collect a trace of the thermal hazards and the relative delay

table updated with the ambient temperature-delay model as discussed in Sec-

tion 6.4.1. These information are then passed to the cycle accurate simulation to

evaluate detection/reconfiguration costs and the final performance gain consider-

ing a matrix multiplication benchmark. This is done by simulating the detection

and reconfiguration costs accordingly with the cache size and the current delays

configuration and updating it based on our proposed policy.

Matlab VirtualSoC

Figure 6.12: Co-simulation infrastructure
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6.4.3 Tests and Performance

In this section we discuss the performance of the proposed solutions, both static

(off-line) and dynamic (on-line). The first set of experiments was carried out

to compare with a classic zero-area-overhead solution (clock scaling). Ambient

temperature effect is later introduced to quantify the performance of the dynamic

solution and finally the overhead of both solutions is discussed.

Clock Scaling

As a first test we compared the static solution against the classical clock scaling

approach (operated at cluster level, thus affecting all processing elements) to

compensate variations. We iterated 100 times a matrix multiplication benchmark

(a memory-bound application, thus worst case for our architecture), taking the

case without variability as the baseline.

To compare our solution with the frequency scaling we considered different

realizations of the static process variation and finely tuned the cluster frequency

to tolerate the maximum critical path delay. Results of the comparison are shown

in Table 6.2 where a reference temperature of T = 25oC is considered. The table

shows that increasing the number of delays insertions required, considering 16

Table 6.2: Clock Scaling Comparison

frequency scaling var. tolerant

max(τd) freq overhead delays overhead
(ns) (MHz ) (%) (%)

4.00 250.00 0 0 0
4.66 214.51 16.55 19 1.83
5.49 181.99 37.37 79 4.52
6.33 158.04 58.19 179 8.17
7.49 133.45 87.34 298 12.39
8.83 113.30 120.65 404 14.73
9.66 103.53 141.47 464 17.01
10.49 95.32 162.29 519 20.10
11.99 83.40 199.77 618 21.52
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PEs, 32 banks and 2 delays per path, the maximum number of delays is 1024.

Our solution has a very small overhead compared to the baseline (no variation,

ideal case) with a slowdown in average ≈ 10x smaller compared to clock scaling.

Speedup

To evaluate the performance of our resilient architecture, we compared it to a

static solution which takes into account PVT variations at design time, i.e. adapt-

ing the frequency. In this experiment we are also considering the effects of the

ambient temperature, which has a great impact on ULP systems.

We analyzed different temperature values at which the device is operating,

thus determining the delay configuration at boot-time and measured its perfor-

mances in terms of speedup compared to a non-resilient frequency-scaling solu-

tion. We are considering here 16 PEs and 32 TCDM banks.

The performance metric is the daily throughput measured as the total number

of benchmarks (matrix multiplication) executed in one day. Clock frequency

is set accordingly to the maximum critical path delay taking into account the

temperature effect The operating temperature range considered here is between

−20oC and 60oC and we chose the “high” Sensitivity parameters to increase

the overhead of our solution while both TI (Thermal Inversion) and NTI (Not

Table 6.3: Speedup with temperature effect

temperature (oC)
speedup (%)
(nti) (ti)

-20 9.99 23.10
-10 14.61 22.41
0 15.14 21.86
10 15.87 17.92
20 17.10 17.47
30 17.86 16.83
40 20.08 15.64
50 22.08 14.81
60 24.62 13.52

120



in Thermal Inversion) models are considered. The speedup values presented in

Table 6.3 are computed as average speedup of a consistent number of instances

of the random process described before.

Yearly Throughput

We compared our dynamic approach against the static case, consisting of the

ULTRASAFE configuration loaded at boot time. If no dynamic information on

ambient temperature are exploited, the ULTRASAFE configuration is the only

one that ensures correct operation under all possible ambient temperature con-

ditions. These tests have been performed for three representative yearly temper-

ature profiles (also considering daily temperature variations), based on a public

meteorologic database1, namely “San Francisco”, “Shanghai”and “Moskow” and

by varying the temperature thresholds step (∆T ) and the number of entries in the

Reconfiguration Cache. We have tested them for 4 different delay-temperature

sensitivity values.

For the “San Francisco” temperature profile we show the impact of the thresh-

1http://www.weather-and-climate.com
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olds step (y-axes) and the number of cache lines (x-axes) on the performance gain

and detection/reconfiguration overhead compared to the static case. Figure 6.13

shows on the z-axes the average throughput measured as the total number of

benchmarks executed in one year with our solution normalized to the no-delay

configuration whereas Figure 6.14 shows in logarithmic scale the overhead in

milliseconds of our solution when compared to static and no-delay (ideal) config-

uration. Compared with the latter our solution implies a cost for detection and

reconfiguration.

As we can see from the figure, cache size and the chosen threshold have a strong

impact on the final overhead. Lower threshold values imply more monitoring and

potential detection activities and consequently a higher number of detection and

reconfigurations. This has a negative effect on the cache locality increasing the

eviction rate. Moreover, it must be considered that when a threshold triggers the

Dynamic Control Unit, if a valid entry is not present in the cache the algorithm

selects the ULTRASAFE configuration to ensure the absence of errors. This has

the negative effect of decreasing the overall throughput as it can be observed in

Figure 6.13.

On the other hand this effect almost disappeared when bigger threshold steps
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were used (i.e. 5◦C). This is primarily due to the fact that consecutive days show

similar temperature profiles, thus increasing the hit-rate in the Reconfiguration

Cache. Figure 6.15 shows the performance gain of our solution compared to the

ULTRASAFE one in terms of average throughput in an year of execution. With

respect to Figure 6.13 it takes into account the costs of on-line detection and re-

configuration. We can notice that our solution achieve up to 25% of performance

gain without compromising the system reliability. The caching mechanism effec-

tively hides the overhead of hazard detection and reconfiguration. On the other

side, to limit the area overhead we chose as best trade-off the configuration with

4 cache lines and ∆T = 5◦C. In Table 6.4 we show the average performance

gain of our solution for the three different temperature profiles and for different

Table 6.4: Performance Speed-Up for all temperature profiles

profile ti high ti low nti high nti low

san francisco 25.25% 27.74% 19.23% 24.73%
shanghai 16.67% 17.98% 14.66% 17.19%
moskow 23.15% 25.28% 20.08% 22.94%
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sensitivity values as discussed in Section 6.4.1.

Area Overhead

To evaluate the impact of our approach, we synthesized our HW modules on

a general purpose 65nm commercial technology library [83]. Considering our

architecture, we have 16 detection units and 32 pipeline modules for the whole

system. As outlined in the previous section, we chose as configuration for the

dynamic solution a Reconfiguration Cache with 4 entries and ∆T = 5◦C, leading

to 16 threshold temperatures for our operating range (−20◦C, 60◦C).

Table 6.5 shows the area impact of our solution. To compare the impact of

HW modules on a per-core basis, we also present the total overhead relative to the

Mega-Leon design considered in [42]. These results show that the HW modules

to make the baseline architecture resilient to variations have a very low overhead

for both static and dynamic solutions.

Table 6.5: Area Overhead of Static and Dynamic solutions

module area (µm2) units overhead (%)

tu (stat/dyn) 2180 / 2676 16 0.87 / 1.07 %
reconf stage 1230 48 1.48 %
cu (stat/dyn) 12097 / 49598 1 0.31/1.24 %

total (stat/dyn) 113953 / 151454 - 2.58/3.79 %

6.5 Conclusions

In this chapter we showed an architectural scheme to increase system resiliency to

dynamic critical path variations, induced by ambient temperature fluctuations.

This problematic is exacerbated in ULP devices operating at the near-threshold

voltage when compared to nominal supply voltage. Our solution exploits a re-

silient logarithmic interconnect and integrates it with a set of new HW modules

capable of sensing the current ambient temperature, recognize possible temper-
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ature hazards, checking the memory and link consistency and react by reconfig-

uring, through a SW procedure, the interconnect delays. The solution has been

evaluated on our cycle-accurate simulator. The results show that our solution is

suitable for bio-sensors and Wireless Body Area Sensor Networks and compared

to state-of-the-art static solutions is resilient to the Ambient Temperature vari-

ation achieving a performance gain up to ≈ 25% in a typical use case scenario,

with a very low area overhead.
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Chapter 7

Conclusions

The extraordinary computing performance achievable by the many-core paradigm

is limited not only by Amdahl’s law, but several other factors concur in reduc-

ing the degree of effectiveness of modern MPSoCs. An inefficient memory hier-

archy usage, a problem exacerbated in many-core systems, combined with the

lack of efficient synchronization mechanisms can severely overcome the potential

computation capabilities. Moreover, the quest for energy efficiency by means of

near-threshold operation, exposes such platforms in today’s technological nodes

to other challenges: reliability and variability.

In this dissertation we firstly introduced our Virtual Platform, coded in Sys-

temC, that has been developed to serve as a simulation infrastructure targeting

modern many-core architectures. In the first part of the thesis the focus is on scal-

able performance, addressing two architectural aspects: first, we conducted an

in-depth study of two instruction cache templates, based on the use of both syn-

thetic micro-benchmarks and real program workloads, providing useful insights

and guidelines for designers. Next, we moved to barrier synchronization mecha-

nisms, is a key programming primitive for shared memory embedded MPSoCs.

We integrated our custom barrier implementation into a widespread programming

model for shared memory systems such as OpenMP, and discussed synchroniza-

tion efficiency compared to traditional software implementation.

Beside architectural implications of modern many-core SoCs, another para-
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mount issue of embedded systems is considered in this work: energy efficiency.

The second part of the dissertation, focuses on reliability and resiliency aspects

of Near Threshold Computing, a promising way to achieve ultra-low-power oper-

ation. When operating at near-threshold, especially memory operation becomes

unreliable and can compromise system correctness. We introduced a novel hybrid

memory architecture to overcome reliability issues and at the same time improve

energy efficiency by means of aggressive voltage scaling when allowed by workload

requirements. Finally, the implications of increased variability effects are taken

into considerations. By means of a micro-architectural knobs inserted at design

and a lightweight runtime control unit, we extend the baseline architecture to be

dynamically tolerant to variations.
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