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Introduction 

 

“Il calcolo delle probabilità, sorto da umili origini, attira ogni giorno più 

l'interesse dei matematici e dei cultori delle scienze fisiche e sociali. Per 

quale ragione questa disciplina, di cui l'antichità classica non avrebbe forse 

nemmeno inteso lo spirito, ha preso uno sviluppo così rigoglioso nell'epoca 

che vede il trionfo dei metodi sperimentali? Il ravvicinamento non è fortuito. 

Stretti e molteplici sono i legami tra il calcolo delle probabilità e le scienze di 

osservazione.” 

 

“The calculus of probability, born from humble origins, attracts every day 

more the interest of mathematics and researchers of physical and social 

sciences. Why this subject, of which maybe the ancient Greek thinking 

doesn't have understood the wit, is growing so high during the age of 

experimental methods? This approaching is not made by chance. There are 

various and strong connections between the calculus of probability and the 

observational sciences.” 

 

This is the first paragraph of the introduction of the Guido Castelnuovo's book “Calcolo delle 

probabilità” that he wrote in 1918. 

Why starting a thesis in geophysics using the words of a book on calculus of probability? The 

calculus of probability and statistics became very important in seismology since the '50s when 

Gutenberg and Richter formulated their famous law about the (statistical) distribution of the 

magnitudes of earthquakes. In the following decades there has been a substantial increase of the use 

of probabilistic and statistics methods in seismology.   

Nowadays one of the main goals of modern seismology is to forecast the future seismic activity in 

one region. When deterministic predictions are not possible, we can only rely on probabilities.  

Paraphrasing Decker, concerning potentially active volcanoes, "geologists can find out what did 

happen, geophysicists can determine what is happening, but to find out what might happen requires 

statistics." 

De facto, probabilities are the basic component of probabilistic seismic hazard analysis (PSHA). 

The scope of the PSHA is to calculate the probability to exceed a certain level of PGA (Peak 

Ground Acceleration) in a defined space-time domain. A trustworthy PSHA has to be based on 

reliable seismological information and models, and a proper probabilistic framework to combine all 
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of them. The evaluation of the reliability of models and the definition of a proper probabilistic 

framework to combine all information and uncertainties are the main targets of this thesis. The 

study covers both general and specific aspects of these issues.   

 

Using a metaphor that was used at the beginning of the past century relatively to mathematics, the 

tree of the modern statistical seismology applications grows very rapidly increasing the number of 

branches in the last years; nevertheless, we note that this increase was not balanced by careful 

evaluation of the state of the roots of this discipline. A tall tree without robust roots may collapse. 

Some evidence of the lack of robust roots can be found in the recent critics to the probabilistic 

assessment of the seismic hazard made by several authors and that are not yet seriously tackled. 

 

 

 

In the first chapter we analyse the results of the world forecasting experiment run by the 

Collaboratory for the Study of Earthquake Predictability (CSEP), that is an international 

cooperation of researchers conducting numerical seismicity forecast experiments. After many 

decades of ex post facto earthquake predictions and individual case studies exploring precursory 

seismicity patterns, earthquake scientists now broadly view prospective forecast experiments, such 

as those that CSEP conducts, as the only ‘true’ test of a model. 

Models that forecast earthquake rates in one specific space-time domain are an important part of the 

PSHA procedure. We take the opportunity of this experiment to contribute to the definition of a 

more robust and reliable statistical procedure to evaluate earthquake forecasting models. In this 

chapter we first present the models and the target earthquakes to be forecast. Then we explain the 

consistency and comparison tests that are used in CSEP experiments to evaluate the performance of 

the models. 

Our contribution consists of:  

i) Putting forward a new method to evaluate models that does not use the classical log-likelihood 

as measure of the performance. This is important because the log-likelihood tends to privilege 



4 
 

models that never fail with respect to model that may fail once but they may have a much 

better overall performances over the rest of earthquakes.  

ii) Providing some clues about how to rank the models' performance. This is very important to 

understand which model is better and to quantify these differences. 

iii) Introducing a methodology to create ensemble forecasting models. We show that models, 

when properly combined, are almost always better performing that any single model. This 

modelling is very important from practical purposes because it offers a model that can be used 

in any kind of PSHA and it accounts for the so-called epistemic uncertainty. 

 

In the second chapter we discuss in depth one of the basic features of PSHA: the declustering of the 

seismicity rates. We first introduce the Cornell-McGuire method for PSHA and we present the 

different motivations that stand behind the need of declustering seismic catalogs. Our contribution 

to this topic consists is summarized here: 

i) We show that declustering seismic catalogs unavoidably brings to an underestimation of 

PSHA. 

ii) Using a theorem of the modern probability (the Le Cam's theorem) we show that the 

declustering is not necessary to obtain a Poissonian behaviour of the exceedances that is 

usually considered fundamental to transform exceedance rates in exceedance probabilities in 

the PSHA framework.  

iii) We present a method to correct PSHA for declustering, building a more realistic PSHA. 

 

In the last chapter we explore the methods that are commonly used to take into account the 

epistemic uncertainty in PSHA. The most widely used method is by far the logic tree that stands at 

the basis of the most advanced seismic hazard maps. In the first part of the chapter we illustrate the 

probabilistic structure of the logic tree, and then we show that this structure is not adequate to 

describe the epistemic uncertainty. This means that then output of the logic tree is often 

misinterpreted. We then propose a new probabilistic framework based on the ensemble modelling 

that properly accounts for epistemic uncertainties in PSHA. Noteworthy, we show that in most of 

practical applications the logic tree is not implemented in its standard (and proper) way, but de facto 

as a tool to create an ensemble model.  

  

I want to thank Warner Marzocchi, who worked more than he should for this thesis, Jeremy Zechar, 

Pamela Roselli and the pollajo's guys who helped me in many different ways.  
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Abstract 

We consider a seismicity forecast experiment conducted during the last four years. At the beginning 

of each year, 3 models make a 1-year forecast of the distribution of large earthquakes everywhere 

on Earth. The forecasts are generated and the observations are collected in the Collaboratory for the 

Study of Earthquake Predictability (CSEP). We apply CSEP likelihood measures of consistency and 

comparison to see how well the forecasts match the observations, and we compare results from 

some intuitive reference models. These results illustrate some undesirable properties of the 

consistency tests: the tests can be extremely sensitive to only a few earthquakes, and yet insensitive 

to seemingly obvious flaws—a naïve hypothesis that large earthquakes are equally likely 

everywhere is not always rejected. The results also suggest that one should check the assumptions 

of the so-called T and W comparison tests, and we illustrate some methods to do so. As an extension 

of model assessment, we explore strategies to combine forecasts, and we discuss the implications 

for operational earthquake forecasting. Finally, we make suggestions for the next generation of 

global seismicity forecast experiments. 

Key words:  

Probabilistic forecasting; statistical testing of models; Earthquake interaction, forecasting, and 

prediction; statistical seismology. 
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Introduction 

"Prediction is very difficult, especially when it is about the future." This statement, attributed to 

Niels Bohr (or Yogi Berra, depending on whom you ask), highlights the importance of testing a 

model out-of-sample: checking if a model can forecast data that were not used to build the model. 

In a recent article, Marzocchi & Zechar (2011) emphasized the dual importance of this type of 

forecasting for seismology: from a philosophical point of view, forecasting is the cornerstone of 

scientific knowledge (AAAS, 1989); and from a practical perspective, forecasting is crucial for 

forming sound risk mitigation strategies. In other words, forecast experiments allow us to 

understand what we really know about earthquake occurrence processes, and they also guide our 

efforts to provide the best model for reducing risks. For philosophical and practical ends, thorough 

model assessment is essential, and this is the main goal of the Collaboratory for the Study of 

Earthquake Predictability (CSEP), an international cooperation of researchers conducting numerical 

seismicity forecast experiments (Jordan 2006; Zechar et al. 2010). After many decades of ex post 

facto earthquake predictions and individual case studies exploring precursory seismicity patterns, 

earthquake scientists now broadly view prospective forecast experiments, such as those that CSEP 

conducts, as the only ‘true’ test of a model. This follows the pioneering work of: Y. Kagan & L. 

Knopoff on statistical earthquake forecasting (Kagan & Knopoff 1977, 1987); Y. Kagan & D. 

Jackson on the seismic gap hypothesis (Kagan & Jackson 1991, 1995; Rong et al. 2003) and 

smoothed seismicity forecasting (Kagan & Jackson 1994, 2000); and F. Evison & D. Rhoades in the 

development of the precursory swarm hypothesis (Evison & Rhoades 1993, 1997, 1999) and 

practical applications of forecast models (Rhoades & Evison 1989). One disadvantage of 

prospective seismicity forecasting is that relatively short regional experiments might result in small 

samples, meaning that one might have to wait to obtain ‘meaningful’ results or that one earthquake 

sequence may dominate the results of an experiment. (Let us ignore the problem of unambiguously 

delimiting a sequence.) For example, in the CSEP-Italy experiment (Schorlemmer et al. 2010a), 

only 9 target earthquakes have occurred since the experiment began on August 1, 2009, which 

makes it difficult to make robust inferences. To address this deficiency, one can do what D. Jackson 

calls ‘trading space for time’: consider larger regions to obtain larger samples. Again following the 

trail blazed by Kagan & Jackson (1994), researchers began a prototype experiment in the western 

Pacific in late 2008, with 3 models participating as of 1 Jan 2009 (Eberhard et al. 2012). At that 

time, these researchers agreed to participate in a prototype global experiment with the same three 

models. The current western Pacific and global experiments are prototypes in the sense that only a 

few researchers are participating and model development has been minimal: the models were 

adapted from regional CSEP experiments with few changes. Along with accumulating larger 



7 
 

samples, the primary motivations for the prototype global experiment were to explore the 

availability and reliability of global earthquake catalogs and to determine the testing center features 

needed for future large-scale, multi-investigator experiments. 

A global seismicity forecast experiment can be thought of as a sandbox in which to test hypotheses 

related to seismogenesis and earthquake triggering. In addition to advancing basic understanding of 

large earthquake nucleation, a global experiment with broad participation has the potential to impact 

seismic risk reduction. For instance, such an experiment may indicate the best models to be used for 

operational earthquake forecasting (OEF) at different time scales (Jordan et al., 2011). Findings 

from a global CSEP experiment could also influence development of related projects such as the 

Global Earthquake Model (http://www.globalquakemodel.org).  

Because a global seismicity forecast experiment has the potential to impact basic research and 

seismic risk mitigation, the prototype CSEP experiment is worthy of careful consideration. In this 

article, we present results from the assessment of the three participating models. In this context, we 

are also interested in exploring how CSEP model assessment works, how it could be improved, and 

how CSEP models could be applied in the context of OEF.  

In the following section, we describe the participating models, methods for combining them, and 

conceptual reference models that are useful for understanding the assessment results. In sections 3 

and 4, we describe the data and assessment techniques, respectively, used in this study. We present 

the results of the first 4 years of the prototype global experiment in section 5. In Section 6, we 

discuss the results and suggest strategies for improving CSEP assessment and selecting the best 

model for operational purposes. We conclude by making recommendations for a full-fledged global 

experiment.  

 

Models 

In this article we consider three classes of models: those that have been running in the US CSEP 

testing center, those that are formed via combinations of the first group, and hypothetical reference 

models used to impart understanding of the model assessments. For brevity, we call these groups 

the CSEP models, the ensemble models, and the reference models, respectively. Only the CSEP 

models formally participated in the experiment; the others were constructed after the experiment 

ended  

The CSEP models are fully-specified stochastic models represented by codes running in the testing 

center; at the beginning of each calendar year, these codes generate a one-year forecast. We assess 

the resulting forecasts by comparing them with each other and with the observed seismicity. We 

apply the same assessments to the ensemble and reference models.   
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Every forecast consists of 64 800 1° longitude x 1° latitude cells in which the number of expected 

earthquakes with moment magnitude Mw≥5.95 and depth ≤30 km in the next year is forecast. As in 

other CSEP experiments, every modeler has agreed that the Poisson distribution should be used to 

represent the uncertainty in the annual rate in each cell. 

 

CSEP models 

The three CSEP models in the prototype global experiment are the same as those in the western 

Pacific experiment (Eberhard et al. 2012): DBM, the double branching model (Marzocchi & 

Lombardi 2008); KJSS, the Kagan and Jackson smoothed seismicity model (Kagan & Jackson 

2000, 2010); and TripleS, a time-invariant simple smoothed seismicity model (Zechar & Jordan 

2010). Although the prototype global experiment began in 2009, the KJSS model was not 

implemented in the testing center until 2010, so we can only present results for KJSS in 2010, 2011, 

and 2012. In the supplement to this article, we show map-views of each forecast and the observed 

target earthquakes. 

The DBM attempts to model two types of temporal clustering. One represents the well-known 

short-term clustering that characterizes classical aftershock sequences (Ogata 1988, 1999) and the 

other is related to clustering that was found on a longer timescale and may be due to the post-

seismic effects of earthquakes or other long-term modulation of seismic activity. The KJSS model 

is a probabilistic model based on smoothed seismicity with an anisotropic smoothing kernel; this 

type of kernel uses an orientation function that depends on the presumed fault plane of the 

earthquake being smoothed. The kind of focal mechanism is also taken into account. In contrast to 

the DBM model, KJSS uses a tapered version of the Gutenberg-Richter relation (Kagan & Jackson 

2000). TripleS uses a two-dimensional Gaussian smoothing kernel with only one parameter to 

smooth past seismicity and construct a predictive density. One peculiarity of this model is that in its 

implementation all earthquakes in the catalog are used, even the ones below the completeness 

magnitude; this is intended to allow for a more accurate spatial description of seismicity. Another 

peculiarity is that, owing to an optimization in the model code (see Zechar & Jordan 2010, eq. 5, 

and recall Knuth’s (1974) warning that “premature optimization is the root of all evil”), TripleS 

forecasts have many cells with zero expected earthquakes. This implies that earthquakes are 

impossible in these cells. Because some earthquakes happened in cells with zero expectation in 

2009, 2010 and 2012, the TripleS models in these years have likelihood equal to zero. To better 

understand the performance of this model, we consider a modified TripleS model (TripleS*), 

replacing the rates in these zero cells with a rate of 10-300, which is the smallest nonzero number that 

is representable on the computer we used for assessment. We do this so that we can explore the 
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forecasting capabilities of TripleS, even though, officially, this model fails all CSEP tests that are 

based on likelihood. We note that these zero rates did not have an effect in the CSEP-Italy 

experiment for which the TripleS code was developed. We suggest that future applications of 

TripleS adopt a minimum rate greater than zero for each cell. 

 

Ensemble models 

While CSEP experiments primarily emphasize the scientific study of seismicity in isolation—that 

is, divorced of its ultimate impact on society–the results of these experiments can have practical 

implications. For example, these experiments can inform how we select the best model (Marzocchi 

& Zechar 2011). But Marzocchi et al. (2012) suggested that rather than selecting the best model 

from those in a testing center, one can create ensemble models based on CSEP experiment 

outcomes; in particular, they also showed that an ensemble model can outperform the single best 

model. Along the same lines, Rhoades & Gerstenberger (2009) conducted similar analyses in which 

they mixed a long-term model and a short-term model and obtained a yet more informative model. 

In this study, we investigated four types of ensemble models distinguished by how they were 

constructed: score model averaging (SMA), generalized score model averaging (gSMA), Bayes 

factor model averaging (BFMA), and parimutuel gambling model averaging (PGMA). The first two 

models were described and illustrated by Marzocchi et al. (2012), as was Bayesian model averaging 

(BMA), which is based on the Bayesian posterior probability. Despite its widespread use, 

Marzocchi et al. (2012) found that BMA is not particularly well-suited to seismicity forecast 

experiments because the resulting ensemble average is often dominated by the single best model, 

regardless of its reliability.  

 

These ensemble models are built by calculating a weighted average of the rates in each cell of the 

CSEP forecasts. SMA uses a weight that is inversely proportional to a model’s log-likelihood, while 

gSMA uses a weight that is inversely proportional to the difference between a model’s log-

likelihood and a reference value (if set to 0, gSMA is the same SMA; see Marzocchi et al., 2012). 

Following Marzocchi et al. (2012), we choose the reference value to be the best model’s log-

likelihood: 

 



i
SMA 

1

Li                                                                                                                                            (1) 



i
gSMA 

1

Li  L0 1
                                                                                                                              (2)
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where Li is the log-likelihood of the i-th model and L0 is the log-likelihood of the best performing 

model; the value 1 in the denominator of (2) ensures finite weight for the best model. 

In contrast to SMA and gSMA, PGMA does not use model likelihood; instead it uses the results of 

a parimutuel gambling analysis that is inherently comparative (Zechar & Zhuang 2012); see Section 

4.3 for details. PGMA assigns a weight to the i-th model according to this formula: 

 

i

PGMA

i V  1                                                                                                                              (3)  

 

where Vi is the parimutuel gambling score of the model, 



 
0.90

Vmax

, and Vmax is the maximum loss 

among all models; in this case, therefore, a model’s weight can be reduced at most by 90%. 

 

The fourth ensemble model, BFMA, blends concepts from the others: it is based on likelihood but 

imposes a penalty similar to that used for PGMA. Each model is weighted according to its total 

Bayes factor which in a purely prospective experiment is the total likelihood ratio (Kass & Raftery, 

1995). One calculates the total Bayes factor of a model by summing the log-Bayes factor of the 

model with respect to all the others. The corresponding weight is: 

 



i
BFMA 1 TBFi

                                                                                                                           (4)
 

 

where TBFi is the total Bayes factor of the i-th model, 



 
0.90

TBFmin

, and TBFmin is the minimum TBF 

among all models. 

  

For PGMA and BFMA, the value of 0.90 in the penalty term is arbitrary, but it is necessary to have 

a number less than 1 to keep the weights positive. 

For 2009, because we have no measure of past model performance, so all 4 ensemble models are 

identical and give 50% weight to the DBM forecast and 50% weight to TripleS. For 2010, we 

constructed the ensemble models using the DBM and TripleS performances in 2009 (KJSS does not 

have any performance for 2009). For 2011 and 2012, all 3 models contribute to build the 4 

ensemble models; in this case we have 3 models that compose the ensemble so we also adjust the 

coefficient to account for the correlation of the forecasts (Marzocchi et al. 2012 paragraph 4.1). The 

composition of each ensemble model for each year is shown in Figure 1. 
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Figure 1.  

Composition of ensemble models for each annual experiment. In 2009, KJSS was not available and 

there was no prior performance result, so every ensemble was simply 50% TripleS, 50% DBM. 

 

 

Reference models  

To better understand the consistency and comparison tests, we consider three simple reference 

models (following Werner et al. 2010): the Uniform model (UNIF), which has the same rate for 

each cell (scaled to the area of the cell) and a total rate that is equal to the number of target 

earthquakes in the previous year; the Perfect Poisson model (PPM), which in each cell has a rate 

equal to the number of observed target earthquakes in that cell, and the Semi-Perfect Poisson model 

(SPPM) which is obtained by dividing PPM by two everywhere. We note that the PPM does not 

have likelihood equal to 1, because in the CSEP experiment Poisson uncertainty is assumed (a 

likelihood of one could only be achieved with Dirac distribution in each cell); nevertheless, it has 

the best possible performance given the Poisson restriction. 

 

Data 

Experiment participants agreed to use the Global Centroid Moment Tensor (GCMT) catalog 

(Dziewonski et al. 1981; Ekström et al. 2005) for model development and assessment. Compared 

with other global earthquake catalogs, the GCMT catalog is homogeneous: the time, location, and 

size of each earthquake are estimated using the same procedure for each earthquake. In this study, 

we use the epicentroid and, following Eberhard et al. (2012), we calculate the moment magnitude 

Mw from the total moment M0 reported in the catalog. Kagan (2003) suggested that the catalog is 
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complete for earthquakes occurring at depths no greater than 70 km at Mw 5.3. For the prototype 

global experiment, participants agreed that target earthquakes would be all those with magnitude 

not smaller than Mw 5.95 and depths not greater than 30 km—we did not decluster the catalog. In 

the first four years of this experiment, the number of target events was 92, 103, 108, and 91, 

respectively.    

 

 Assessment techniques 

 

The statistical tests used in CSEP testing centers can be grouped in two categories: consistency and 

comparison. The purpose of consistency tests is to determine whether the observed distribution of 

target earthquakes is consistent with a given forecast. When discussing consistency tests in the 

context of RELM assessment, Schorlemmer et al. (2007) proposed that a model that failed a 

consistency test should be ‘rejected.’  But the consistency and comparison tests can yield a 

counterintuitive situation: a model that fails a consistency test may, in a comparison test, be deemed 

better than a model that passes all consistency tests. To understand this apparent paradox, consider 

the following: in the 2009-2010, 2010-2011, and 2011-2012 seasons, Kevin Durant led the National 

Basketball Association in scoring, averaging 30.1, 27.7, and 28.0 points per game, respectively. On 

26 November 2012 against the lowly Charlotte Bobcats, Durant scored only 18 points, nowhere 

near his 2012-2013 season average of 28.1. And yet no other player on either team scored as many 

points. In this example, Durant would be judged the best scorer among the players, but the 

observation would be inconsistent with expectations. 

 

Currently CSEP testing center use the following consistency tests: the N(umber)-test, the 

L(ikelihood)-test, the S(pace)-test, and  the M(agnitude)-test (Zechar et al. 2010). Because the 

forecasts in this study only have one magnitude bin per spatial cell (Mw  5.95), we disregard the 

M-test, which is used to assess the magnitude distribution of a forecast. In planning the RELM 

experiment, the likelihood ratio was suggested for testing the hypothesis that two models have equal 

forecast skill (Schorlemmer et al., 2007). But Rhoades et al. (2011) highlighted flaws with the 

corresponding so-called R-test and suggested applying classical tests to the rate-corrected average 

information gain per earthquake in the T- and W-tests. In this study, we check the assumptions of 

the T- and W-tests and, when the assumptions appear to be violated, especially the symmetry of the 

distribution, we suggest using the Sign-test (Dixon & Mood 1946) that emphasizes median behavior 

rather than mean behavior. The rationale for using the Sign-test is that for asymmetric distributions 

the median is a more appropriate indicator of the center of the distribution with respect to the mean, 
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it is less sensitive to outliers. We also consider two assessment methods that do not involve 

statistical hypothesis tests: the Bayes factor and parimutuel gambling.  

Note that we do not intend to replace any of the metrics currently being used in CSEP experiments, 

but we do urge researchers to consider the assumptions of the tests. Moreoever, the approaches we 

suggest are intended to be informative in situations where the assumptions of the existing tests are 

violated, and they allow one to answer a wider range of questions that could be raised by different 

stakeholders.  

 

Consistency tests 

N-test 

This test compares the total number of earthquakes forecast (Nfore) with the observed number (Nobs); 

the N-test result is summarized by two quantile scores, δ1 and δ2, that are 

 



1 1F((Nobs 1) |N fore)                                                                                                                 (5)
 



2  F(Nobs |N fore)                                                                                                                            (6)
 

 

where F(.) is the cumulative Poisson distribution. If one of these scores is below the critical 

threshold value, the forecast is deemed to be overpredicting or underpredicting, respectively; 

because the N-test is a two-sided test, using a critical value of 0.025 corresponds to 5% 

significance. 

 

L-test 

This test compares the likelihood of a model with a set of likelihoods simulated to be consistent 

with the model being assessed (Zechar et al. 2010); the L-test result is summarized by a quantile 

score,  : 

 



 
# {Lx | Lx  L,Lx  LS}

# LS                                                                                           (7)
 

 

where {LS} is the set of simulated likelihoods, L is the likelihood of the model with respect to the 

observed catalog, and #{A} indicates the number of elements in a set {A}. If  is below the critical 

threshold value, the forecast is deemed to be inconsistent with the space-rate distribution of the 

observation; because the L-test is a one-sided test (it has been noted that very high values of  
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should not be used to judge a forecast (Schorlemmer et al. 2007)), a critical value of 0.05 

corresponds to 5% significance. 

 

S-test 

This test is very similar to the L-test, but it is applied to a forecast after normalizing it so the total 

forecast rate matches the observed number of earthquakes, thereby isolating the spatial component 

of the forecast. After normalizing the forecast, the comparison is the same as in the L-test and the S-

test result is likewise summarized by a quantile scores, :

 
 



  
# {Sx | Sx  S,Sx  SS}

# SS                                                                                                (8)
 

 

where {SS} is the set of simulated spatial likelihoods and S is the likelihood of the spatial forecast 

relative to the observed catalog. If  is below the critical threshold value, the spatial forecast is 

deemed inconsistent. 

 

Comparison tests 

The T-test, W-test, and Sign-test are based on the information gain (IG) of one model relative to 

another (Rhoades et al. 2011, Eberhard et al. 2012). This measure is intended to indicate which of 

two models is more informative and for Poisson forecasts, the information gain for the i-th event is 

defined as:   

 

N
BAIG BA

BAi ii


 )ln()ln(),( 

                                                                                        (9)
 

 

where Ai is the rate of model A in the bin where the i-th earthquake occurs, Bi is the same for 

model B,  A is the total rate for the model A, B is the same for model B, and N is the total 

number of target earthquakes. 

 

T-test 

In the context of CSEP experiments, the T-test is an application of Student’s paired two-sample t-

test (Student 1908) to the IGs of two models. The null hypothesis is that the information gains are 

independent samples from a normal population with zero mean. This null hypothesis suggests that 

the models are equally informative. The T-test assumes that the IGs are normally distributed; we 
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check this assumption using the Lilliefors test (Lilliefors 1967), which is a variant of the one-

sample Kolmogorov-Smirnov test. When the normality assumption does not hold, the Central Limit 

theorem guarantees that the T-test becomes increasingly accurate as N → ∞. In this study we have 

for some cases (year 2009) fewer than 100 samples, raising some doubts on the validity of the 

Central Limit theorem. To be conservative, we follow the suggestion of Rhoades et al. (2010): when 

the sample IGs are not normally-distributed, we use the W-test instead of the T-test. 

 

W-test 

The Wilcoxon signed-rank test (e.g. Siegel 1956) is a nonparametric alternative to Student’s paired 

two-sample t-test. The null hypothesis of the W-test is that the median information gain is zero. The 

W-test assumes that the IGs are symmetrically distributed; we use the Triples test (Randles et al. 

1980) to check this assumption. If the Triples test indicates that the samples are not symmetric, both 

the W-test and the T-test are not appropriate.  

 

Sign test 

The Sign test (Dixon & Mood 1946) is another non-parametric alternative to Student’s paired two-

sample T-test. The null hypothesis for the Sign test is that the medians of the two models likelihood 

are equal. In contrast to the T- and W-test, the Sign-test does not assume that the information gains 

are symmetric (Gibbons and Chakraborti, 2003). Hence, the Sign-test is more widely applicable, but 

it is less powerful than the other tests when the information gain distribution is symmetric (Gibbons 

and Chakraborti, 2003). 

 

Bayes factor (likelihood ratio) 

In a prospective experiment, the likelihood ratio and the Bayes factor are equal. Nonetheless, the 

Bayesian interpretation of this ratio allows us to overcome the problems inherent to the likelihood 

ratio tests (Rhoades et al., 2011; Marzocchi et al., 2012) and to score the forecasting capabilities of 

each model. Specifically, if we have two models A and B, and a set of observations , the posterior 

odds of A and B can be expressed as: 

 



P(A |)

P(B |)

P(A)

P(B)

P( | A)

P( | B)

P(A)

P(B)
BF(A,B)

                                                                         (10)
 

 

where BF(A,B) is the Bayes factor (Kass & Raftery, 1995) of A versus B; when two models have 

the same prior and zero degrees of freedom, as in CSEP experiments, the posterior odds are exactly 

equal to BF, that is the likelihood ratio. Generally speaking, when log(BF) > 0 model A is more 
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supported by the data than B. Kass & Raftery (1995) proposed a guide to interpreting the numerical 

values of the Bayes factor; we reproduce this in Table 1. We stress that the Bayes factor is not a 

test, like the T-, W- or Sign-test; it is only a metric to compare model performance. This allows us 

to rank the performance of the models in a straightforward way.  

 

 log(BF)                Evidence against M1 

0 to 1.1 Hardly worth mentioning 

1.1 to 3 Positive 

3 to 5 Strong 

> 5 Very strong 

 

Table 1. Guide to interpreting the log-Bayes factor (after Kass & Raftery 1995).  

 

 

Parimutuel gambling score 

Unlike the other comparison tests discussed in this subsection, the parimutuel gambling approach 

simultaneously compares all models, rather than considering each pair. The parimutuel gambling 

analysis also yields a ranking of models determined by the total amount ’won’ by each model in the 

following game: for each cell of the grid, each model bets one credit (one unit of probability spread 

across the expected number of earthquakes), and at the end of the experiment is returned an amount 

proportional to the total number of competing models and to the probability of occurrence provided 

for that cell. The score for the first model in the j-th cell is:  





n

i

i

j

j

j

p

p
nR

1

1

1 1

                                                                                                                              

(11)

 

where n is the total number of models and pj is the respective probability for that cell. The 

parimutuel gambling score is obtained by summing these returns over all cells. Unlike the measures 

based on likelihood, this type of score is much less sensitive to a target earthquake occurring in a 

cell with very low or zero rate, because each model can lose at most one credit in any cell. 

 

Results 
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The results of the consistency tests and the comparison tests are reported in Figure 2 and Tables 2 

and 3.  

 

Figure 2. Results of CSEP consistency tests for CSEP and reference models. For the N test we 

consider the total number of earthquakes forecast by each model (the total rate), for L test and S test 

we consider the log-likelihood and the space log-likelihood of each model, respectively. The gray 

line shows the non-rejection region, at 5% significance; green squares show the values that have 

passed the test, while the red circles show the values that did not pass the test. A red circle on the 

left edge of the box indicates a very low value that falls outside the x-axis scale. 

   

 2009 2010 2011 2012 

DBM 

TripleS* 

KJSS 

 

    L S 

 n/a 

    L S 

N L S 

    L S 

 N  

 N L  

 

 

    L S 

       S 

SMA 

gSMA 

PGMA 

BFMA 

 

      

    L  

    L  

N L S 

    L S 

 

 

 

N       

 

       S 

 

     

UNIF 

PPM 

SPPM 

N    S 

 

N L  

       S 

 

N L  

       S 

 

N L  

       S 

 

N L  

 

Table 2. Results of consistency tests for CSEP, ensemble and reference models in 2009, 2010, 2011 

and 2012. The letters indicate the test that has been rejected at a 0.05 significance level. 
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 DBM vs. TripleS* DBM vs. KJSS TripleS* vs. KJSS 

Sign- or  

W-test 

Bayes 

factor 

Sign- or 

W-test 

Bayes 

factor 

Sign- or 

W-test 

Bayes 

factor 

2009 TripleS* (Sign) 

(-2.90 -0.40  0.75) 

DBM 

608 

n/a n/a n/a n/a 

2010 DBM (W)                

(-3.45 -0.99  1.83) 

DBM 

1980 

=                         

(-2.68 -0.37  0.91) 

KJSS 

75 

TripleS* (Sign)               

(-1.84  0.36  2.26)   

KJSS 

2056 

2011 = 

(-3.30 -0.11  1.08) 

TripleS     

52 

= 

(-2.33 -0.15  0.88) 

KJSS 

50 

= 

(-1.66  0.07  1.49)  

= 

2.3 

2012 DBM (W)                

(-3.30 -0.51  0.65) 

DBM 

616 

=                         

(-2.75 -0.41  1.16) 

KJSS 

46 

KJSS (W)                

(-1.15  0.36  1.95) 

KJSS 

663 

2010-

12 

DBM (W)                

(-3.36 -0.33  1.23) 

DBM 

2544 

= 

(-2.63 -0.23  1.00) 

KJSS 

171 

TripleS* (Sign)              

(-1.70  0.23  1.64) 

KJSS 

2716 

 

Table 3. Results of the comparison tests. In each cell, we report the better model according to the 

W- or Sign-test, followed by the better model according to the Bayes factor analysis. We use ‘=’ to 

indicate that the models are not significantly different (W-, Sign-test) or that the differences are 

hardly worth mentioning or positive (Bayes factor < 3). In the second line of each cell we report the 

10th, 50th and 90th percentile of IG and the absolute value of the log-Bayes factor.     

 

 

No CSEP model passes all 3 consistency tests (N-, L-, and S-test) in the 4 years considered (2009, 

2010, 2011, 2012). TripleS models spatial clustering and fails 9 of 12 consistency tests, while the 

very simple UNIF model fails only 5 and almost always passes the N-test and the L-test. Moreover, 

SPPM never passes the N-test or the L-test, despite obtaining a much higher likelihood (annual 

mean log-likelihood -109.3) than all CSEP models and UNIF (annual mean log-likelihood -755.1). 

(SPPM fails the N-test because it was designed to fail the N-test—recall that its forecast values are 

one-half of the observed values everywhere. And it fails the L-test because, as Schorlemmer et al. 

(2010b) noted, the L- and N-tests are dependent.) .  

In considering the consistency tests for the RELM experiment, Marzocchi et al. (2012) pointed out 

that all models are wrong, so it must be only a matter of collecting enough data to show a statistical 

discrepancy and thereby fail a model with a consistency test. Here, we see that the consistency tests 

may be also misleading: some "good" models (e.g., SPPM and TripleS) may be dismissed more 
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often than "bad" models (e.g. UNIF). Hence, the consistency tests should not be used to reject any 

model but rather to understand where (the number of event, spatial or magnitude forecasts) a model 

can be improved. 

For comparison tests, we explore the distribution of information gains to see which tests apply (Fig. 

3). We begin with the Lilliefors test to check the assumption that information gains are normally 

distributed. If this assumption is not violated, we apply the T-test, and otherwise we use the Triples 

test to check the symmetry of the distribution. If the symmetry assumption does not hold, we apply 

the Sign-test. For all of the experiments in this study, we found that information gains are not 

normally distributed so we did not apply the T-test. The Bayes factor and the parimutuel gambling 

score do not include assumptions about the distribution of information gains and so we apply them 

in each experiment. 

In Table 4 we report the ranking of the CSEP models according to the different comparison tests. 

For the W-, and Sign-test, the model with the first rank performs significantly better than the other 

models; a model with rank 2 performs significantly better than the model ranked 3 or higher. If the 

result of the applied test is not statistically significant, the models have the same rank. For the 

Bayes factor test, a model has a better rank if it scores "Positive", "Strong" or "Very strong" (see 

Table 1). Parimutuel gambling rankings do not include statements of statistical significance. 

 

 

 

Figure 3. Information gain histograms for each pair of models (DBM vs TripleS*, DBM vs KJSS, 

TripleS* vs KJSS) for 2009, 2010, 2011, 2012, and all years considered jointly. The null hypothesis 

of a normal distribution was rejected at < 0.05 significance with a Lilliefors test for all model pairs. 
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Plots with the label “Sym” are of distributions for which the null hypothesis of a symmetric 

distribution was not rejected at < 0.05 significance with a Triples test. Plots with an asterisk have 

one or more outliers beyond the x-axis scale shown here. 

 

 Sign- or W-test  Bayes factor PGS 

2009 

(92) 

1. TripleS* 

2. DBM 

1. DBM 

2. TripleS* 

1. TripleS 

2. DBM 

2010 

(103) 

1. DBM, TripleS*, KJSS 1. KJSS 

2. DBM 

3. TripleS 

1. TripleS 

2. KJSS 

3. DBM 

2011 

(108) 

 

1. DBM, TripleS, KJSS 1. TripleS, KJSS 

2. DBM 

1. TripleS 

2. KJSS 

3. DBM 

2012 

(91) 

1. DBM, KJSS 

2. TripleS* 

1. KJSS 

2. DBM 

3. TripleS* 

1. TripleS 

2. KJSS 

3. DBM 

2010-12 

(302) 

1. DBM, TripleS*, KJSS 1. KJSS 

2. DBM 

3. TripleS 

1. TripleS 

2. KJSS 

3. DBM 

 

Table 4. Rank of the CSEP models for 2009, 2010, 2011, 2012 and the cumulative 2010-2012 using 

the Sign- or W-test, the Bayes factor, and parimutuel gambling score. Below the year we report the 

number of target earthquakes. For the parimutuel gambling score we don’t need to use the TripleS* 

(with the rate correction) instead the TripleS.  

 

The most striking feature of Table 4 is that the model ranking is not the same for each comparison 

test. But this is not entirely unexpected: each comparison looks at different features of model 

performance. For example, the gambling score comparison is not sensitive to events that occur in 

cells with a very low rate, while the Bayes factor, based on joint likelihood, is. This explains why 
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TripleS is ranked as the top model for all four years using the gambling score test, but not according 

to the Bayes factor. Indeed, TripleS is the worst model in 2009, 2010 and 2012 according to the 

Bayes factor because one or a few target earthquakes occurred in cells where TripleS assigned very 

low rates. These ranking differences are closely linked to deciding what it means to be the ‘best’ 

model (Marzocchi & Zechar 2011): is it more important for a forecast not to miss any earthquake, 

or for a forecast to be very good for most earthquakes? Of course, one goal of building ensemble 

models is to try to balance these desires, and this balance is also related to the general problem of 

decision-making in the context of earthquake preparedness (Kantorovich & Keilis-Borok 1991).   

The W- and Sign-tests emphasize the median of the information gain distribution, and therefore 

they are slightly less sensitive to extreme values that can arise from target earthquakes occurring in 

cells with very low forecast rates. This explains the difference between the Sign-test and Bayes 

factor rankings in 2009. In 2010 the information gain results are ambiguous; DBM is better than 

TripleS according to the W-test, while the Sign-test indicates that DBM and KJSS are not 

significantly different and TripleS is better than KJSS. In 2011 the models are not significantly 

different according to the information gain tests (Table 4). The same kind of ambiguity persists 

when the period 2010-2012 is considered.  

In Table 5 we show the likelihood of CSEP models and of different ensemble models. The results 

indicate that the ensemble models are almost always better than the CSEP models. This is even true 

in 2009, when the ensemble model is simply made by averaging TripleS and DBM: the likelihood 

of the ensemble model is much higher than the likelihood of TripleS or DBM. In the four years 

considered in the prototype global experiment, the PGMA ensemble obtains the highest likelihood 

of any model. This can be explained by considering the performance of the individual CSEP 

models. The TripleS model is best—i.e., has the highest forecast rate—for many target earthquakes 

but is terrible for a few target earthquakes; those few target earthquakes cause the very low 

likelihood of TripleS in 2009, 2010 and 2012. But the PGMA ensemble does not harshly penalize 

TripleS for these few events and it therefore gives TripleS substantial weight; it also makes up for 

those shortcomings by mixing in the other CSEP models.  

The gSMA model is the worst ensemble model because it tends to assign most weight to the model 

that has the highest cumulative likelihood, underweighting all the other models. Marzocchi et al 

(2012) showed that gSMA weighting scheme takes into account only the relative scoring, without 

considering the absolute performances of each model. In other words, two models that have the 

same difference in cumulative likelihoods have the same weights regardless of the absolute value of 

their likelihoods. On the contrary, SMA and BFMA ensembles take into account the absolute 

performances of each model and perform better than gSMA.  
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2009 2010 2011  2012 

EM: -451.5 PGMA: -513.6 PGMA: -469.2  PGMA: -419.5 

DBM: -507.9 SMA: -536.5 SMA: -478.0  SMA: -438.3 

TripleS*: -1160 KJSS: -539.5 BFMA: -482.0  BFMA: -449.6 

 BFMA: -584.8 TripleS: -483.1  gSMA: -455.4 

 gSMA: -612.6 gSMA: -484.8  KJSS: -456.1 

 DBM: -615.1 KJSS: -485.5  DBM: -502.7 

 TripleS*: -2649 DBM: -535.5  TripleS*: -1119 

 

Table 5. CSEP and Ensemble models ordered by their joint log-likelihood for 2009, 2010, 2011 and 

2012 (best model first). For 2009 we consider only one ensemble model (EM), which is an equal 

mixture of DBM and TripleS. Ensemble models are shown in bold. 

 

  

Discussion 

The statistical analysis of the annual global forecasts since 2009 highlights several interesting 

aspects related to the performances of the models, the testing procedures, and the definition of the 

"best" model to be used for practical purposes. 

 

Model performance 

The results of this study show that our impression of model performance heavily relies on the 

metric used to evaluate them. For example, TripleS is intuitively a good model: of the CSEP 

models, it often has the highest rate where target earthquakes occurred. But any score based on the 

log-likelihood tends to penalize TripleS because it grossly fails in forecasting a few target 

earthquakes. In particular, any score based on log-likelihood deems TripleS to be worse than the 

most basic earthquake occurrence model where earthquakes may occur everywhere with the same 

probability (UNIF). Using another metric, such as the gambling score, TripleS appears to be the 

best model.  

Among the CSEP models, only DBM is truly time-dependent and takes into account long-term 

variation of the seismicity (Lombardi & Marzocchi, 2007). But DBM fares no better than the time-
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independent models (KJSS and TripleS) using annual forecasts. This suggests that time-dependent 

models based on earthquake clustering may improve forecasts only when regularly updated after an 

event. On the other hand, the spatial distribution of seismicity appears to be a key issue. We 

speculate that TripleS has a better spatial forecast for most earthquakes because it uses also the 

spatial distribution of events smaller than Mw 5.95. 

 

Improving the testing procedures  

The analyses carried out in this study highlight several key issues that should be taken into account 

to improve CSEP experiments. First, the consistency tests used in CSEP experiments cannot be 

used to 'reject' any model, but they are important to identify the weaknesses of a forecast model. For 

example, one model may appear unreliable because it grossly fails the N-test but it may score quite 

well in the S-test, indicating a good spatial forecasting capability. This is the case for SPPM.   

Second, we agree with Marzocchi et al. (2012) that model comparisons are enlightening and should 

be emphasized in future CSEP experiments. These comparisons are fundamental for ranking models 

according to their forecast performance. There is a wide range of possible tests and none is best in 

every situation. We should choose the comparison test based on what aspect of the model we’re 

interested in assessing, and we should check the underlying assumptions. Another basic difference 

in comparison tests is about their intrinsic nature. Classical statistical tests consider the null 

hypothesis of equal model performance. If we have more than two models, the results of the 

classical statistical tests are not well-suited to establish a simple ranking; in fact in table 4 for these 

reason we have a lot of apparent ties. The Bayes factor and gambling score are more suitable to 

provide a ranking of models; this avoids the ambiguities that may arise with classical tests results. 

 

 Looking for the "best" model 

Marzocchi and Zechar (2011) suggested that the term "best" model may have different meanings to 

different potential users. For operational purposes, Jordan et al. (2011) suggested that the model 

used has to be "authoritative." The results obtained here are in agreement to what has been found in 

Marzocchi et al. (2012) and suggest that the term authoritative may be attributed to a suitable 

ensemble model. In particular, Marzocchi et al. (2012) show that the forecasts of a sound ensemble 

model perform better than the forecast made by the best performing model at the time of the 

forecast during the RELM experiment; here, we show that a sound ensemble model produce 

forecasts that are always better than the ones of each single model. Such empirical findings seem to 

indicate that, when only rough models are available, a sound ensemble model is less likely to fail 

dramatically. As a rule of thumb, we conclude that the kind of weighting scheme is not dramatically 
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important and the appropriate choice may depend on the specific nature of the forecast models 

considered. 

 

Conclusions  

Conducting a full-fledged global seismicity forecast experiment should be a high priority for CSEP 

scientists and anyone interested in learning more about large earthquake occurrence, seismic hazard, 

and seismic risk. But a global seismicity forecast experiment should not be a mere aggrandizement 

of the regional CSEP experiments. The results of this paper and of other papers recently published 

(Eberhard et al., 2012) suggest a number of ways in which future CSEP experiments might be 

different. In particular, we conclude this article by describing our vision of a global seismicity 

forecast experiment. 

Relative to the current experiment configuration, we agree with the following changes suggested by 

Eberhard et al. (2012): 

 The GCMT catalog should be used, and forecasts could target events as small as Mw 5.5;  

 Unlike the forecasts in this study, each cell should specify a magnitude distribution, rather 

than lumping earthquakes of different sizes together 

 Any assessment that can reveal model features to be improved, or differences between 

models, should be used 

 Catalog uncertainties should be accounted for in model development and model assessment 

 

Eberhard et al. (2012), following the analyses of Werner & Sornette (2008) and Lombardi & 

Marzocchi (2010), also discussed the ‘Poisson assumption’ used in CSEP experiments. This is the 

assumption that earthquake counts follow a Poisson distribution, and making this assumption 

simplifies model development and model assessment: participants only have to specify one number 

per cell. In addition to being wrong in most cases—earthquake counts have super-Poisson 

variance—this assumption can conceal that each forecast specifies not only an expectation in each 

cell, but a complete probability mass function. In other words, CSEP forecasts are fully-specified 

stochastic models in the sense that one can compute the likelihood of any observation.  

To preserve the ease of model development but allow greater flexibility, we suggest these 

alternative forecast formats for a future global seismicity forecast experiment: 

1. Expected rate in every space/magnitude bin 

2. Gutenberg-Richter a-value in every spatial cell and 

a. a global Gutenberg-Richter b-value, or 

b. b-value per spatial cell 
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3. Probability in every space/magnitude/number voxel (any non-specified voxels are 

assumed to have zero probability)  

 

If you use one of the first two formats, you must also specify an analytical forecast uncertainty: you 

could choose Poisson, or you could choose negative binomial. If you choose negative binomial, 

which is characterized by two parameters, you could choose to have the other global parameter 

value automatically estimated from historical seismicity by CSEP, or you could provide this extra 

parameter value globally, or at the cell level, or at the bin level.  Or you could choose another 

analytical distribution so long as it is calculable at the voxel level. 

Certainly one could argue that, even with this added flexibility, the forecast format is rather 

restrictive. A global seismicity forecast should be inclusive, and any model or scientist that 

produces falsifiable predictive statements about earthquake occurrence should be considered. We 

should strike a balance between the limiting the number of forecast formats (so many forecasts can 

be readily compared) and maximizing participation, both in number of participants and distinct 

earthquake occurrence hypotheses. 

In the context of a global experiment, it may also be worthwhile to expand the scope of what is 

forecast. So far, it has been the space-time-size distribution of epicenters (or epicentroids), because 

these are commonly estimated by network agencies and it is relatively straightforward to assign a 

point to a grid cell. But a point source does not adequately represent large earthquakes, and the 

shaking that results from earthquakes is of far greater practical importance. Models that are 

developed for seismicity forecasting could be extended to forecast measures of ground shaking. 
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Online supplementary material: 

the next figures show the log-rate of each cell and the target events for TripleS, DBM and KJSS 

model for all years. 
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Abstract 

In this paper we discuss in depth one of the basic procedures that stand behind probabilistic seismic 

hazard analysis (PSHA), i.e., the declustering of the seismicity rates. First, we explore the technical, 

scientific and practical motivations which led to introducing the declustering of seismicity rates. 

Then, we show that for PSHA declustering is essential only to minimize a spatial distorsion of the 

earthquake occurrence process, but, conversely, it may lead to significant underestimation of the 

true seismic hazard. This underestimation precludes the possibility to test PSHA against real 

observations, and it may lead to underestimate the seismic risk, whenever seismic hazard maps are 

used for risk assessment. Finally, we propose a methodology that can be used in PSHA to avoid this 

potential bias. 

Keywords. Seismic hazard, declustering, exceedance probability 
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Introduction 

Probabilistic seismic hazard analysis (PSHA) is the main scientific component that stands at the 

basis of the definition of a suitable building code in many countries. In essence, PSHA is a forecast 

of how intense the ground motion will probably be at one specific site on Earth’s surface during a 

future interval of time. PSHA is articulated by means of a complex procedure that involves many 

scientific issues and often a lot of subjective expert opinions. In this paper we discuss one specific 

scientific issue related to PSHA. PSHA practice requires that seismicity rates are ’declustered’, i.e., 

triggered events are removed from the calculation, leaving only the largest independent 

earthquakes. 

Cornell (1968) introduced the PSHA concepts that are still widely used today. In this framework, 

the seismic hazard in each arbitrary location is represented by an hazard curve that represents the 

exceedance rate of one specific ground motion parameter z in a reference period of time; hereafter, 

we set this reference period of time; hereafter, we set this reference period to one year, thus the rate 

is always meant to be an annual rate. In a general form, the exceedance rate reads 

𝜆𝑧(𝑍 > 𝑧) = ∫ 𝑃[𝑍 > 𝑧|𝜉]⃗⃗  ⃗
Ξ

 𝜆𝑠 (𝜉 )𝑑𝜉                       (1) 

where λz is the exceedance rate for the ground motion parameter z, λs is the seismicity rate above a 

threshold magnitude (usually PSHA considers only earthquakes that can produce a significant 

ground motion), and 𝜉 ∈  Ξ is a vector that contains all relevant earthquake source parameters like, 

for instance, the location and the magnitude (other parameters like focal mechanism may be 

included here). 𝑃[𝑍 > 𝑧|𝜉 ] is the so-called ground motion prediction equation (GMPE) that gives 

the exceedance probability of the ground motion value z given the knowledge of source parameters. 

PSHA is usually expressed in probabilistic terms, for example, indicating the specific ground 

motion parameter value that has 10% of probability to be exceeded in a time interval of 50 years. 

So, it is necessary to pass from the rate of equation 1 to probability. This transition is made 

assuming that earthquakes have a Poisson distribution in time, and so the number of exceedance in 

terms of ground motion. 

The exceedance probability for an arbitrary site is then 

𝑃𝑧(𝑍 > 𝑧) = 1 − exp[−𝜆(𝑍 > 𝑧)𝛥𝜏]                 (2) 

Here 𝛥𝜏 = 50 years. Since the beginning, almost all PSHA have considered that the seismicity rate 

must be Poisson, i.e., the earthquakes have to be time independent. However, it is well know that 
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the real seismic catalogs show significant departures from the Poisson distribution, being usually 

much more clustered in time and space (Kagan, 2010). So, the usual PSHA practice demands to 

decluster the seismicity in order to get a set of time independent earthquakes. There is a wide range 

of declustering techniques (VanStiphout et al., 2011; 2012). 

This large variety reects the intrinsic difficulty to define what an aftershock is. In PSHA practice, 

the most basic declustering methods are usually applied (e.g. Gardner and Knopoff, 1974), because 

they produce declutered catalogs that resemble a Poisson dataset. The other more sophisticated 

declustering techniques produce declustered catalogs that are not usually distributed according to a 

Poisson process (Van Stiphout et al., 2012). 

Taking into account that the declustering procedure brings to an underestimation of the seismicity 

rates that will be observed in the future and the apparent controversy and subjectivity in deciding 

what an aftershock is, we wonder if the declustering is really necessary for PSHA. Reading the 

literature we think that the basic rationales of declusterting seismicity rates are: 

1. The Poisson assumption holds for declustered catalogs and it is necessary to move from rates to 

probabilities (see equations 1-2) 

2. Keeping the largest events, we remove earthquakes which have a negligible contribution in terms 

of ground shaking, and in terms of earthquake risk as well (Lomnitz, 1966); consequently, 

declustering is assumed to induce a negligible effect for engineering practice. 

3. Non declustered seismic catalogs give a biased view of the true spatial variability seismicity rates 

In this paper we discuss all of these issues and we show that a more accurate PSHA should not 

consider declustered seismicity rates. 

 

The Poisson assumption for PSHA and the distribution of the seismicity rate 

Consider a practical PSHA calculation for one particular site. Here we assume that 𝜆𝑠 (𝜉 ) of 

equation 1 can be written as 

𝜆𝑠 (𝜉 ) ≡ 𝜆𝑒(𝑚, 𝑥 )                             (3) 

where m is the magnitude of the source event and 𝑥  the geographical location of its epicenter. The 

seismicity rate can be calcolated in a grid of cells, so equation 1 can be written as 
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𝜆𝑧(𝑍 > 𝑧) = ∑∑ 𝜆𝑖𝑎𝑖𝑘𝑃𝑖𝑘                      (4)

𝑀

𝑘=1

𝑁

𝑖=1

 

where N is the total number of cells in which the whole region is divided, M is the total number of 

magnitude bins, 𝜆𝑖 is the cumulative seismicity rate in the specified space cell, 𝑎𝑖𝑘 is the percentage 

of the rate 𝜆𝑖  in each magnitude bin (this value depends by the frequency-magnitude distribution) 

and 𝑃𝑖𝑘 is the GMPE that provides the probability that each event in the i-th geographical cell and 

of the k-th class of magnitude will produce a ground shacking parameter Z > z in the specific site 

considered. Note that in equation 4 and hereafter the Einstein summation convention of repeatable 

indices is suppressed. 

If the seismicity rate 𝜆𝑖  is the rate of a Poisson distribution, the GMPE operates as a random 

selection of events, then the rate of ground motion exceedance due to events in the k-th class of 

magnitude and occurring in the i-th geographical cell is a Poisson distribution with rate 𝜆𝑖𝑎𝑖𝑘𝑃𝑖𝑘 

(Cornell, 1968). The total exceedance rate 𝜆𝑧(𝑍 > 𝑧) is a sum of Poisson independents random 

variables, so it follows a Poisson distribution. 

What happens if 𝜆𝑖 is the rate of a non-poissonian distribution? 

Earthquakes are not independent because they are clustered in space and time, so we expect that the 

seismicity rate and the exceedance rate of one specific site (equation 4) may depend on time. 

Consider a sequence of a possible dependent Bernoulli variables (0 or 1) that represents the 

exceedance of one specific ground shaking threshold in one specific site, Xt (t=1, … , NT) where NT 

is the number of time windows of length 𝛥𝜏 in which we subdivide the whole time interval 

considered T (𝛥𝜏 can contain only 0 or 1 event), with probability 𝜃𝑡 = 𝑃(𝑋𝑡 = 1|𝑋𝑡−1 = 𝑥𝑡−1, … ); 

here the index t mimics a possible time variability of the quantities in different time windows. Now 

let X*
t (t=1, … , NT) the sequence of an independent Bernoulli variables with a constant probability 

𝑃(𝑋𝑡
∗ = 1) = 𝜋 = 𝜆𝑧Δ𝜏. The Le Cam's theorem (Le Cam, 1960; Serfling, 1975) evaluates the 

Poisson approximation for dependent Bernoulli variables. It reads 

∑|𝑃(𝑆𝑇𝑂𝑇 = 𝑗) − Λ𝑋
𝑗 𝑒−Λ𝑋

𝑗!
|

∞

𝑗=0

< 2∑𝜃𝑡
2

𝑁𝑇

𝑡=1

+ 2∑𝜖𝑡                      (5)

𝑁𝑇

𝑡=1

 

Where  𝑆𝑇𝑂𝑇 = ∑ 𝑋𝑡
𝑁𝑇
𝑡=1  , Λ𝑋 = ∑ 𝜃𝑡

𝑁𝑇
𝑡=1  , 𝜖𝑡 = 𝐸(|𝜃𝑡 − 𝜋|), and E(.) is the expectation value. The 

first right hand side addend accounts for the fact that each single Bernoulli variable does not come 

from a Poisson distribution, while the second right hand side addend accounts for the possible 
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correlation between variables. Equation 5 implies that a sum of non-negative random variables may 

be treated as a Poisson variable if Xt have a su_ciently high probability of taking 0 value (i.e., 1-θt), 

and sufficiently weak mutual dependence (Sering, 1975). 

It is useful to consider the case of the Le Cam's theorem applied to PSHA practice where the 

exceedance probability threshold is often set to 10% (or less) for a time interval of 50 years (or 

more). In this case, the probability is small enough to assume Λ𝑋~𝑃(𝑍 > 𝑧) = 0.1, and the first 

right hand side addend can be approximated as 

2∑𝜃𝑖
2

𝑁𝑇

𝑡=1

< 2(Λ𝑋)2 ≈ 0.02                        (6) 

The evaluation of the second right hand side addend of equation 5 requires more elaborated 

thoughts. Let us consider a simplified case in which an earthquake can induce another earthquake 

on the next time window with a probability a. So, the total number of earthquakes generated by one 

event is 

𝑏 = ∑𝑎𝑗 = (
1 − 𝑎𝑁𝑇

1 − 𝑎
) − 1

𝑁𝑇

𝑗=1

                                  (7) 

The value of b represents the ratio between triggered events and the total number of events. This 

ratio can be obtained by dividing the number of earthquakes in a declustered catalog and the 

undeclustered catalog. If we take b = 0.43 (a typical figure that derives from real seismic catalogs 

after GK declustering), inverting equation 7 we obtain 𝑎 ≈ 0.3. This means that every earthquake 

has about 30% of probability to trigger another earthquake. This correlation is not mapped in a 

similar correlation of exceedances. The total number of exceedances is smaller than the total 

number of earthquakes, and it depends on the threshold of ground shaking used; higher thresholds 

lead to smaller numbers of exceedances. In our simplified example, the average conditional 

exceedance probability given an exceedance at t-1 (Xt-1=1) is 𝜃𝑡 = 𝛽 ∙ 𝑎 = 𝛽 ∙ 0.3 , where 𝛽 is the 

average proportion of ground shaking exceedances over the total number of earthquakes that may 

affect the site. The value of 𝛽 is usually very low in PSHA practice, because we usually have many 

earthquakes in a 50 years period, but in one site we expect on average 0.1 number of exceedances. 

Thus, | θt – π | will be approximatively zero when Xt-1 = 0 (i.e., θt = π), and it will be (𝛽 ∙ 𝑎 −  π) 

when Xt-1 = 1 that has probability 𝜋 =
Λ𝑋

𝑁𝑇
. 
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2∑𝜖𝑡 = 2∑𝐸(|𝜃𝑡 − 𝜋|) = 2∑(𝛽 ∙ 𝑎 − 𝜋)
Λ𝑋

𝑁𝑇
= 2(𝛽 ∙ 𝑎 − 𝜋)Λ𝑋 ≤ 0.2 ∙ 𝑎 ∙

𝑁𝑇

𝑡=1

𝑁𝑇

𝑡=1

𝑁𝑇

𝑡=1

𝛽      (8) 

Using a = 0.3 and very cautelative values for 𝛽 (for instance 𝛽 = 0.1 means that we have in average 

10 earthquakes and 1 exceedance), we always get the second right hand side addend of equation 5 

less than 0.01, making the correlation between exceedances unnoticeable. Note that if the ground 

shaking threshold is very low then 𝛽→1 (all earthquakes will overcome the threshold) and a > 0.3 

(a higher percentage of earthquakes that can contribute to the number of exceedances will be 

removed by declustering); in this case, the second right hand side addend would not be anymore 

negligible. In conclusion, in most of pratical PSHA applications, where exceedance probabilities 

smaller than 10% are required and the ground shaking thresholds are not very small, 𝜋 and 𝜖𝑡 are 

small enough to assume that the exceedance times follows a Poisson distribution with Λ𝑋, 

independently of the distribution and time dependence of the number of earthquakes. 

 

Influence of declustering on PSHA 

Here we show that the statement keeping the largest events, we also keep the largest ground shaking 

for a specific site is not necessarily true. In figure 1 we report the probability that an aftershock 

having different degrees of magnitude less than the mainshock gives a ground motion larger than 

the mainshock. Here we have used the GMPE proposed by Cauzzi and Faccioli (2008) without 

considering the information on focal mechanism. The distance of mainsock and aftershock from the 

site plays also a role, so we plot this probability as a function of the ratio of the distance of the 

mainshock from the site over the distance of the aftershock from the site (a large number means that 

the aftershock is closer to the site with respect to the mainshock). From the figure we observe that 

for a unit magnitude difference between mainshock and aftershock and if the mainshock and 

aftershock occur at the same place (distance ratio equals to 1), there is about 20% probability that 

the aftershock produces a larger ground shaking. This probability becomes even larger if the 

aftershocks get closer to the site reaching 60% when the aftershock is at 1/3 of the distance from the 

mainshock. We think that these numbers are hardly negligible for practical calculations. 

One implicit assumption of our thought is that the same GMPE holds for mainshocks and 

aftershocks. Some practitioners argue that aftershocks might have a different GMPE because their 

stress drop is smaller on average. This may make the inuence of aftershocks less important. Yet, this 

assumption has not yet proved with real observations, and real recent cases, like the Christchurch 
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earthquake and the second largest shock on May 29 of the Emilia sequence (Fry et al., 2011; 

Scognamiglio et al.,2012) showed that aftershocks may induce a significantly high ground motion. 

 

Figure 1: Probability that the peak ground acceleration (PGA) caused by an aftershock with 

magnitude M0+DM is higher that the PGA caused by the mainshock with magnitude M0, as a 

function of the distance ratio. The distance ratio is the ratio between the distance of the mainshock 

and the aftershock from the site. 

 

Declustering or not? 

In the previous sections we have showed that the declustering is not a necessary technical 

requirement, and that it may lead to a significant underestimation of the true hazard (Boyd, 2012; 

Iervolino et al., 2013). On the other hand, the seismicity rates obtained by the real seismic catalog 

represent a biased view of the real long-term seismicity rates. In fact, clusters of large earthquakes 

do not occur always in the same way (Kagan and Jackson, 2000; Faenza et al., 2003; Cinti et al., 

2004); using a nondeclustered seismic catalog, the seismicity rate may be overestimated for the 

regions that recently experienced a strong seismic cluster with respect to areas that did not 

experience clusters in the time interval covered by the catalog. In other terms, the limited length of 

the seismic catalogs does not allow us to have a complete view of all areas where clusters may 

occur in the future, and of their frequency of occurrence. 
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As a consequence, we argue that declustering is a necessary step in order to avoid this bias, 

provided that the seismicity rates will be eventually corrected for declustering. Here, we show the 

effects of this procedure in a simplified example for the Italian territory. Here, we do not aim at 

replicating the seismic hazard map in Italy (Gruppo di Lavoro MPS 2004), but we intend to show 

the e_ects of maps with and without declustering and corrections in a realistic case. In particular, 

the seismic hazard map for Italy is calculated with these components (table 1 contains the 

parameters used in this application): 

• the seismic zonation used for the actual seismic hazard map in Italy (Meletti et al., 2007); 

 

• the CPTI11 (Rovida et al., 2011) seismic catalog; earthquakes with 𝑀𝑊 ≥ 4.8 in the time interval 

1901-2006. 

 

• the Gardner and Knopoff (GK) declustering technique has been used to decluster CPTI11; 

 

• the b-value for each zone is considered the same that we calculate for the whole Italian territory by    

the seismic catalog and we set a maximum magnitude equal to 8 for the whole territory. 

 

• the Cauzzi and Faccioli (2008) GMPE. 

Figure 2a shows the seismic hazard map in Italy using these components. Figure 2b-c report the 

map corrected for declustering, and the map obtained by the catalog without the declustering, 

respectively. Among the components used for this application, the choice of the seismic catalog is 

probably the most important to discuss. CPTI11 starts only from the 1901, while the CPTI04 

seismic catalog used for the national seismic hazard map covers a longer time interval (CPTI 

Working Group 2004); on the other hand, CPTI11 is mostly nondeclustered (some aftershocks are 

still missing) while the CPTI04 catalog is already a declustered seismic catalog. 

 

Figure 2: Seismic hazard map (10% of exceedance probability in 50 years) using (A) the 

declustered seismicity rates, (B) the corrected seismicity rates, and (C) the observed (undeclustered) 

seismicity rates. 
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We apply the GK declustering that the GK declustering is the most used because the residuals (the 

declustered catalog) resembles Poissonian distributed (VanStiphout et al., 2012). GK declustering 

leads to some effects worth noting: first, the overall seismicity rate is lowered (from 502 events to 

357); second, the real frequency-magnitude distribution is distorted, because GK removed only the 

smaller earthquakes (Kagan, 2010); the spatial distribution tends to be modified because the spatial 

location of large aftershocks and foreshocks is not considered. 

The latter is implicitly accounted for when the spatial smothing of declustered events is applied (the 

characteristic dimension of the spatial filter is usually larger than the aftershock/foreshock area). 

The other two issues are not usually systematically compensated in PSHA practice. We argue that 

the easiest way to correct for declustering is to multiply the declustering seismicity rate of each cell 

of the grid λi by a factor γ that is defined as 

𝛾 =
∑𝜆𝑖

∗

∑𝜆𝑖
                                      (9) 

where 𝜆𝑖
∗ is the real seismicity rate in each cell and the summation is made for all the cells of the 

spatial grid. In other words, the new non-declustered seismicity rates are the declustered seismicity 

rates multiply by a factor in a way that the total seismicity rate matches to the whole observed 

seismicity rate. In this way we are assuming that each cell of the grid has similar clustering 

properties. However, we can easily generalize equation 9 to take into account possible spatial 

heterogeneities of the clustering properties (e.g., Boyd 2012). For example, we can define a spatial  

factor 𝛾𝑖
∗ = 𝛾 × 𝜔𝑖 where ωi is the normalized clustering capability of the i-th cell. Then, the 

cumulative rate can be subdivied for each magnitude bin, using the frequency-magnitude 

distribution (for instance, the same b-value of the G-R law) of the nondeclustered seismic catalog. 

This procedure differs in few basic points from the method proposed by Boyd (2012) and Iervolino 

et al. (2013). In essence, their methods are based on the identi_cation of independent clusters, where 

each cluster is described by the probability to overcome a specific ground motion threshold in one 

specific site. This probability is larger than the one due only to the mainshock, because it considers 

also the foreshocks and aftershocks. In practice, this new probability is estimated by simulating the 

ground motion of the clusters in space (Boyd, 2012) and time through the Omori law (Iervolino et 

al., 2013). Noteworthy, this procedure precludes the possibility that the ground motion threshold 

can be overcome more than once inside the same cluster, unavoidably leading to an underestimation 

of the real exceedance rate. 

Our procedure has some basic features worth remarking. First, we consider the possibility to get 

more than one exceedance inside the same cluster, thus avoiding a systematic underestimation. 
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Second, we do not use simulations to correct for the missing rate due to declustering. As a matter of 

fact, the parameters of any aftershock/foreshock model do not have a real physical meaning, but 

they depend on how the catalog has been declustered. Different declustering techniques remove 

significantly different percentages of earthquakes, hence the parameters found in literature should 

be used with extreme caution. In essence, our procedure assumes that the basic constraint for the 

correction of the seismicity rate is to preserve the total number of earthquakes observed (equation 

9), without specifying when the events occur and their spatial distribution that is already accounted 

for the spatial smoothing of the mainshocks. This implicitly assumes that the number of earthquakes 

observed in the catalog allows an accurate estimation of the average number of earthquakes in the 

time period of interest. 

The effects of declustering can be appreciated looking at figure 3 where we show the ratio of the 

exceedance probabilities for the corrected and declustered seismic hazard map using a spatially 

uniform correction factor given by equation 9. The probabilities are calculated for ground 

acceleration thresholds z = 0.1; 0.2, and 0.3g. The figures show that the corrected hazard maps have 

probabilities that can be up to 35% higher than the correspoding probabilities for the declustered 

hazard map. Noteworthy, the percentage of probability increase is not constant through space, while 

γ is. This is due to two different issues. The first one is the saturation effect of the probability for the 

cells with high rate; in fact, the correction factor is multiplicative on the exceedance rates that are 

unbounded, while the exceedance probability is bounded to 1. So, we expect to have a smaller ratio 

of probabilities for the regions with higher probabilities. This is shown in figure 3 where the smaller 

ratios are relative to the regions of the Appennines where the hazard is higher (cf. figure 2). A 

second factor that inuences the rate is the decrease of the b-value due to the declustering. A decrease 

of the b-value implies that the declustering affects more the probability of smaller events rarther 

than the probability of large earthquakes. So, in regions of low hazard (e.g., the Tyrrhenian offshore 

region) that are mostly affected by large inland earthquakes we expect to have a smaller ratio of 

probabilities (see figure 3). If we consider both effects, the higher ratios are expected in areas of 

medium hazard. In figure 4 we show the differences between the PGA values with exceeding 

probability of 10% in 50 years calculated with the corrected seismicity rates and with the 

declustered rates. The regions with higher differences are the ones with the higher earthquake rates. 

Probably more interesting is the map of figure 5 where we show the percentage of the variation of 

the peak ground acceleration at 10% and 50 years using the corrected and declustered hazard 

analysis. The regions with higher percentages are the same where we observe the higher ratios of 

the exceedance probabilities. Interestingly, the maximum peak ground acceleration can have 

variations up to 35-40% of the value calculated from the declustered seismicity rates. 
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Figure 3: Ratio of the exceedance probabilities calculated using the corrected and declustered 

seismicity rates for a ground motion acceleration of (A) 0.1g, (B) 0.2g, and (C) 0.3g 

 

Figure 4: Differences between PGA values with exceeding probability of 10% in 50 years 

calculated with the corrected seismicity rates and with the declustered rates. 
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Figure 5: The same as figure 4, but normalized to the value of the declustered map. 

 

Conclusions 

We have discussed one of the basic and very common procedures of the probabilistic seismic hazard 

analysis, i.e., the declustering of seismicity rates. The declustering is meant to achieve two main 

goals: (i) to get a Poisson distribution for the (declustered) earthquakes in order to move from 

exceedance rates to probabilities; (ii) to remove the spatial bias of undeclustered catalogs that is 

caused by the fact that the few clusters recorded in the catalog are not representative of the whole 

distribution of possible clusters.  

In this paper we have showed that the Poisson distribution for earthquake is a sufficient, but not 

necessary condition to have a Poisson distribution for the exceedances. In fact, for most of practical 

applications (where the exceedance rate is equal or smaller than 0.10 and the ground shaking 

thresholds are not negligible), a more realistic clustered distribution of earthquakes lead to a 

distribution of exceedances that is still well approximated by a Poisson distribution. This implies 

that declustering is necessary only to remove the spatial bias, but it is also necessary that the rates 

have to be corrected for compensating the seismicity rate reduction due to declustering. In fact, the 

seismic hazard analysis based on declustered seismicity rates leads to underestimate significantly 
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the exceedance probabilities, and, consequently, it may lead often to reject hazard maps in a testing 

phase and to underestimate the seismic risk. 

One of the main risk reduction action linked to the seismic hazard map is the definition of the 

building code. However, we think that a discussion of the appropriateness of the actual building 

code definition has to be made by regulators, not by seismologists (Marzocchi, 2013). Building 

codes are usually defined for ground acceleration thresholds that have 10% of probability to be 

overcome in the next 50 years. These parameters (10% in 50 years) were not chosen because they 

own a specific physical meaning, but they represent a balance between safety and feasibility, 

because too stringent regulations may lead to prohibitive costs for the new buildings and for 

retrofitting. Our results show that the ground acceleration thresholds for building code adopted 

using hazard maps based on declustered seismicity rates have a higher exceedance probability than 

10% in 50 years. In principle, regulators may either keep the existing ground acceleration values 

increasing the exceedance probabilities associated to them, or maintaining the exceedance 

probabilities to 10% in 50 years, and increasing the ground acceleration thresholds. 

 

Data and Resources 

We have used the CPTI11 database that is available online at http://emidius.mi.ingv.it/CPTI.  

The last access is in March 2013. 
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Abstract 

 

The logic tree scheme is the probabilistic framework that has been widely used in the last decades 

to incorporate epistemic uncertainties into probabilistic seismic hazard analysis (PSHA). 

Notwithstanding its vast popularity, the use of the logic tree in a PSHA context has few important 

conceptual drawbacks. Some of these drawbacks have been reported in the past, but a careful 

evaluation of their impact on PSHA is still lacking. Specifically, in this work we explore in detail 

the most controversial issues related to the application of the logic tree on PSHA and suggest a 

possible alternative framework to incorporate formally epistemic uncertainty in the calculations. 

First, we show that the output of a logic tree is often misrepresented; for example, the use of 

percentiles (median included) is not consistent with the probabilistic framework of the logic tree 

scheme. Second, we show that the output of a logic tree model necessarily represents a biased view 

of the real hazard, posing significant challenges for testing the seismic hazard model. Nonetheless, 

we also show that in most of practical applications the logic tree is not implemented in its standard 

(and proper) way, but de facto as a tool to create an ensemble model. In this perspective, the term 

logic tree is no longer necessary and should be avoided because its use gives only a basis for 

criticism. Finally, we show that the ensemble modeling accounts for epistemic uncertainties in a 

sound probabilistic framework and it provides PSHA outputs that are in a testable format.   
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Introduction 

 

Any reliable hazard assessment has to incorporate in a proper way the most relevant uncertainties, 

or, using the D. Rumsfeld's words, all known unknowns. Many hazard practitioners distinguish 

uncertainties of different nature in a convenient way, adopting the term aleatory 

uncertainty/variability to describe the intrinsic irreducible variability of the natural process, and 

epistemic uncertainty to characterize all reducible uncertainties due to our limited knowledge about 

the process.  

Notwithstanding the popularity, many authors take the view that this subdivision does not have a 

theoretical significance because, as far as our knowledge of the system increases, all uncertainties 

become epistemic. Recently, Marzocchi and Jordan (2014) suggest that a clear and univocal 

distinction between aleatory and epistemic uncertainty can be made only in the framework of a well 

defined experimental concept. In general, the experimental concept defines collections of data, 

observed and not yet observed, that are judged to be exchangeable (Draper et al., 1993); for 

instance, when we decide the set of data that will be used to test the model, we are implicitly 

defining an experimental concept. In this view, the distinction between aleatory and epistemic 

uncertainty is not only of practical convenience, but it is of primary importance to make any 

probabilistic assessment testable, and consequently scientific (see Marzocchi and Jordan, 2014 for 

more details).  

In probabilistic seismic hazard analysis (PSHA), a typical experimental concept consists of the 

collection of the number of exceedances (the number of times in which a specific ground motion 

parameter overcomes a preselected threshold) in one specific site or in one region that are then 

considered an exchangeable dataset. In this experimental concept, epistemic uncertainty is 

represented by the lack of knowledge of what is the right model to describe this set of data, both in 

terms of functional mathematical formulation and/or of its parameters, and the probability is 

interpreted as the frequency of this exchangeable dataset.  

 

The inclusion of the epistemic uncertainty is tackled using the logic tree structure as originally 

suggested by Kulkarni et al. (1984). In essence, all epistemic uncertainties related to PSHA should 

be represented by different branches in a graphical logic tree structure. Despite the use of the logic 

tree scheme has become de rigoeur (Bommer and Scherbaum, 2008), it is well known that there are 
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potential pitfalls that should be taken seriously into account, and there is still discussion on the real 

meaning of the logic tree output (cf. Abrahamson and Bommer, 2005; McGuire et al., 2005). In this 

paper, we explore in detail how the logic tree concept is applied into PSHA practice, pointing out 

potential problems and possible solutions. In particular, we introduce a procedure based on 

ensemble modeling that has a formal probabilistic interpretation, and it avoids the pitfalls intrinsic 

to the use of the logic tree in PSHA practice.   

 

The probabilistic structure of the logic tree  

The logic tree is one of the several flavors of graphical probability trees (issue tree, event tree, fault 

tree, etc) that aim to dissect a specific problem into its basic components. The structure and the kind 

of the tree are defined according to its practical use. Yet, we can identify one common feature for all 

the tree structures: the branches emerging from each node must represent a mutually exclusive and 

collectively exhaustive (MECE) set of events. The most important consequence is that one path of 

the tree must represent the truth. The need to have a MECE set of events is imposed by how 

probabilities are combined in the probability tree. For example, consider a logic tree where we are 

interested in the probability of one specific event E and the terminal branches of the tree mimic 

different ways (different models) that can be used to get such a probability. The final assessment is 

given by the law of total probability that reads 



Pr(E)  Pr(EHi) 

i1

N

 Pr(E | Hi) Pr(Hi)

i1

N


   (1) 

where Pr(E) is the probability of the event of interest, Pr(E|Hi) is the conditional probability of the 

event E given the model Hi, and Pr(Hi) is the probability that the model Hi is the true model. As 

long as equation 1 is used in the probability tree, the models Hi must represent a set MECE.  

The functioning of the logic tree can be grasped through a simple example (figure 1) where there 

are two boys (Tim and Tom) having two and three coins each. The Tim's coin are biased, i.e., 

Pr(head) is 0.4 and 0.3. The Tom's coins are biased as well, having Pr(head) equal to 0.7, 0.7, and 

0.8.  If we do not know who will toss the next coin (Tim and Tom have the same probability) and 

the coin that will be used (each coin has the same probability to be thrown), the tree has five 

terminal branches with different weights, i.e., each one of the Tim's branches has Pr(Hi) =0.25, 

while the Tom's branches have weight  Pr(Hi) =



0.16 . In this case, using equation 1, we get 

Pr(E)=0.54. This value has a frequentist interpretation. If we run a simulation in which, for each 

run, we select randomly the boy who will toss the coin and the coin to be tossed, the expected long-

term frequency of head is 0.54. This example does not pretend to be exhaustive of the functioning 
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of any possible probability tree, but it underlies the basic features that we are going to discuss in the 

next sections of the paper.  

 

 

Figure 1. Logic tree of the Tim & Tom example 

 

The logic tree in PSHA 

In PSHA, the different branches of the logic tree are meant to describe the epistemic uncertainties 

related to the different components (nodes) of the hazard model.  Since no practitioner believes that 

one of the path of the logic tree represents the true hazard, the MECE assumption is pragmatically 

resumed replacing the term true with the one that should be used (Scherbaum and Kuhen, 2011). 

However, we note that since the beginning (Kulkarni et al., 1984) the logic tree has been sometimes 

used in PSHA in a peculiar way. For instance, it has been used to define percentiles of the expected 

ground shaking probability, reporting the average value (given by equation 1) and a confidence 

interval defined through the percentiles. In some cases, it has been argued that the hazard should be 

represented by a percentile instead of the average (Abrahamson and Bommer, 2005). The use of 

percentiles is questioned by other practitioners (McGuire et al., 2005; Musson, 2005) who assert 

that a logic tree can provide only one number; using their words, the mean hazard is the hazard that 

is obtained over epistemic uncertainties. In this paper we argue that both views can lead to 

misunderstandings and conceptual problems.  

The essence of these conceptual problems is captured by comparing the PSHA practice with a case 

in which the logic tree can be applied in a proper way. In particular, let us to come back to the 

example of figure 1 where equation 1 applies and it is certainly meaningful. In that case, the 

average probability represents the long-term frequency of the event conditioned to the fact that each 

run will follow a different path of the tree. This is fundamentally different from the PSHA case, 

where we expect that the branch that should be used is always the same after each earthquake. It is 
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like to toss always the same coin by the same boy. In this case we would be sure that the average of 

0.54 is wrong. In brief, we can be sure that the average hazard will be certainly wrong because it 

will never coincide with the branch that should be used.  

Often the logic tree is used to provide an interval of values instead of a single value. The interval is 

usually bounded by two percentiles, like, for example, the 10-th and 90-th percentiles. In practice, 

this interval is meant to describe a range that has a 0.8 probability to include the branch that should 

be used.  In our view, this peculiar use of the logic tree makes sense in practice, but it is hardly 

justifiable in terms of the logic tree structure described in the previous section. For instance, what is 

the meaning of a confidence interval that can be obtained by the logic tree reported in figure 1? In 

that case, the average has a specific meaning, but an interval defined by the percentiles of the 

different branches would not have sense from a probabilistic point of view.  

In the following section we discuss in detail a more proper probabilistic framework to interpret such 

an interval.  

 

Logic tree or ensemble modeling? 

Reading the literature on the logic tree applications to PSHA we feel that practitioners use the logic 

tree to sample, rather than to fully describe the epistemic uncertainty. This is not a trivial semantic 

difference. This means that practitioners use the terminal branches of the logic tree like a sample of 

a parent (unknown) distribution of the expected exceedance frequency. Noteworthy, the definition 

of the parent distribution for a set of values can be considered as equivalent to the definition of an 

ensemble model (Marzocchi et al., 2012) 

In figure 2, we show a simple example of seismic hazard analysis made with a logic tree and the 

interpretation of the same hazard model based on the ensemble modeling. Figure 2a shows the logic 

tree that is composed by two different seismicity rates, two b-values, two maximum magnitude, and 

two ground motion prediction equations (GMPEs) (Cauzzi & Faccioli, 2008, Bindi et al., 2011) for 

a 16-branches tree. Panel 2b reports the discrete distribution of the exceedance probability for all 

branches and the parent distribution that can be obtained by the values of the sixteen branches. At 

first, we note that the ensemble model has a continuous distribution, so it does not consider the 

sixteen values as belonging to a MECE dataset. Indeed, the most probable values are not the ones of 

the branches. Second, it considers as possible (even unlikely) values that are larger (smaller) than 

the highest (lowest) of the sixteen values. In this case, we have modeled the parent distribution 

using a Beta distribution that is particularly suitable for describing random variables bounded 

between 0 and 1 and having a unimodal distribution. This assumption can be checked quantitatively 

through classical goodness-of-fit tests. In case, other more appropriate distributions can be used.  
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Figure 2.  Panel a) logic tree of the seismic hazard example; panel b) the 16 values of the final 

branches of the logic tree and the Beta distribution made by these values. 

The exceedance frequencies of the different branches usually incorporate a significant amount of 

expert opinions, for instance, when the weights of the branches are subjectively assigned by experts. 

The use of subjective expert opinion raised several critics to the scientific meaning of PSHA. 

However, we think that the use of different degrees of subjective expert opinion in hazard modeling 

does not pose any specific problem. In fact, Marzocchi and Jordan (2014) show that all critics on 

the use of subjective expert opinion in scientific modeling are based on the wrong dichotomy 

subjective/unscientific (non testable). This wrong dichotomy is well depicted by the experiment set 

up by Sir Francis Galton early in the 20th century. During a tour of the English countryside, he 

recorded 787 guesses of the weight of an ox made by a farming crowd and found that the average 

was correct to a single pound (Galton, 1907). The collection of subjective measurements he 

tabulated passes the appropriate Student-t test (retrospectively, of course, since this test wasn’t 

invented until 1908). It is worth noting a difference between expert farmers and PSHA experts. In 

PSHA, the experts' opinion depicts the epistemic uncertainty at a particular epoch, which may be 
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larger or smaller depending on how the experts are able to sample the appropriate information 

space. In Galton’s experiment, a farmer looks individually at the ox, reaching his estimate 

independently of his colleagues. As more farmers participate, they add new data; i.e., the epistemic 

uncertainty is reduced by averaging out their guesses, because each experts' opinion counts like a 

real measure. At a particular epoch, adding more PSHA experts will better determine, but usually 

not reduce, the epistemic uncertainties, because they do not make independent observations, but 

work from a common body of knowledge.  

We underline that the ensemble modeling has several remarkable advantages and avoids the pitfalls 

of the logic tree. First, the structure of the logic tree makes complex the inclusion of epistemic 

uncertainty coming from different types of modeling. For example, some GMPEs require an 

estimation of the focal mechanism that is not provided by all available earthquake occurrence 

models. In practice, if we want to use such GMPEs, we are forced to exclude a priori some reliable 

earthquake occurrence model just because it does not provide a forecast of the focal mechanism.  

Second, the logic tree structure may lead to some inconsistencies among the branches. For example, 

when a logic tree structure is particularly complex, one of the alternatives in a specific node may be 

not consistent with alternatives of previous nodes. This happens when the nodes are not completely 

independent. For example, in figure 2, it may be argued that the seismicity rate and the b-value are 

not independent, so, one particular b-value may be not consistent with one of the seismicity rate 

adopted (Musson, 2005). Ensemble modeling does not have these limitations. Different measures of 

the exceedance probability (frequency) can be obtained in different ways, using a logic tree or using 

completely independent approaches, leaving more flexibility to incorporate all epistemic 

uncertainty. Noteworthy, in the ensemble modeling the correlation among models can be included 

and properly managed. To this purpose, Marzocchi et al. (2012) proposed a method to assign the 

weights of each model taking into account also the correlation among the forecasts.  

Third, as said before, the logic tree requires a MECE set of models, while the ensemble modeling 

does not. Besides to be more appropriate from a conceptual point of view, relaxing the MECE 

assumption has also the important advantage to make easier the interpretation of the weight of each 

model that basically represents the 'confidence' of the experts about the output of that specific 

model, once the correlation of models has been taken into account.  

Four, the use of ensemble modeling legitimates the use of percentiles in a meaningful way. For 

example, the interval bounded by the 10-th and 90-th percentiles represents the range of values 

having a 0.8 probability to include the real value (Marzocchi and Jordan, 2014).    
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Ensemble modeling in PSHA 

To build an ensemble model, we may simply collect the output of independent models and use them 

to build a parent distribution for the seismic hazard. This is what has been done in Figure 2 where 

the sixteen branch values have been used to define the ensemble Beta distribution. In principle, we 

may also merge two different ensemble models, one for the earthquake occurrence, and one for the 

ground motion prediction equations. Mathematically, this may be accomplished replacing the single 

seismic and exceedance rates in the classical seismic hazard equation with statistical distributions. 

In this case, the exceedance rate of the ground motion parameter z at one specific site is calculated 

through 



 (Z  z)  P(Z  z |
r 
)  (

r 
) 


 d

r 


      (2) 

where 



r 
   is a vector that contains all relevant earthquake source parameters like, for instance, 

the location and the magnitude; 



 ()  is the rate of occurrence; 



P(Z  z |
r 
)  is the GMPE that gives the 

exceedance probability of the ground motion value z given the knowledge of source parameters. In 

equation 2 the square brackets stand for a distribution. For example, the rate of occurrence is not 

anymore given by a single number, but by an ensemble distribution that represents the epistemic 

uncertainty over that quantity. The distribution on the left hand side can be obtained simulating 

random values from the two distributions on the right hand side.  

 

Conclusions 

In this work we have discussed the methods to incorporate epistemic uncertainties into PSHA. We 

have argued that the logic tree, which is by far the most used technique, has few important 

drawbacks that make it inappropriate to describe the epistemic uncertainty in PSHA and that have 

drawn harsh critics in the past to the use of PSHA.  

We have introduced the basic principles of a method, based on ensemble modeling, that overcomes 

the pitfalls of the logic tree and should be preferred to describe the epistemic uncertainties in PSHA. 

Fundamentally, the ensemble modeling is based on a more appropriate probabilistic scheme that 

allows us to overcome all major obstacles to the use of the logic tree. Moreover, the ensemble 

modeling is more flexible than the logic tree to incorporate different types of modeling. As final 

consideration, we have noted that the logic tree is usually implemented in PSHA practice in an 

unusual way that makes it similar to an ensemble modeling. 
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