Taroni, Matteo
  
(2014)
Earthquake forecasting and seismic hazard analysis: some insights on the testing phase and the modeling, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. 
 Dottorato di ricerca in 
Geofisica, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6422.
  
 
  
  
        
        
        
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
    
  
  
    
      Abstract
      This thesis is divided in three chapters.  In the first chapter we analyse the results of the world forecasting experiment run by the Collaboratory for the Study of Earthquake Predictability (CSEP). We take the opportunity of this experiment to contribute to the definition of a more robust and reliable statistical procedure to evaluate earthquake forecasting models. We first present the models and the target earthquakes to be forecast. Then we explain the consistency and comparison tests that are used in CSEP experiments to evaluate the performance of the models. Introducing a methodology to create ensemble forecasting models, we show that models, when properly combined, are almost always better performing that any single model.
In the second chapter we discuss in depth one of the basic features of PSHA: the declustering of the seismicity rates. We first introduce the Cornell-McGuire method for PSHA and we present the different motivations that stand behind the need of declustering seismic catalogs. Using a theorem of the modern probability (Le Cam's theorem) we show that the declustering is not necessary to obtain a Poissonian behaviour of the exceedances that is usually considered fundamental to transform exceedance rates in exceedance probabilities in the PSHA framework. We present a method to correct PSHA for declustering, building a more realistic PSHA.
In the last chapter we explore the methods that are commonly used to take into account the epistemic uncertainty in PSHA. The most widely used method is the logic tree that stands at the basis of the most advanced seismic hazard maps. We illustrate the probabilistic structure of the logic tree, and then we show that this structure is not adequate to describe the epistemic uncertainty. We then propose a new probabilistic framework based on the ensemble modelling that properly accounts for epistemic uncertainties in PSHA. 
     
    
      Abstract
      This thesis is divided in three chapters.  In the first chapter we analyse the results of the world forecasting experiment run by the Collaboratory for the Study of Earthquake Predictability (CSEP). We take the opportunity of this experiment to contribute to the definition of a more robust and reliable statistical procedure to evaluate earthquake forecasting models. We first present the models and the target earthquakes to be forecast. Then we explain the consistency and comparison tests that are used in CSEP experiments to evaluate the performance of the models. Introducing a methodology to create ensemble forecasting models, we show that models, when properly combined, are almost always better performing that any single model.
In the second chapter we discuss in depth one of the basic features of PSHA: the declustering of the seismicity rates. We first introduce the Cornell-McGuire method for PSHA and we present the different motivations that stand behind the need of declustering seismic catalogs. Using a theorem of the modern probability (Le Cam's theorem) we show that the declustering is not necessary to obtain a Poissonian behaviour of the exceedances that is usually considered fundamental to transform exceedance rates in exceedance probabilities in the PSHA framework. We present a method to correct PSHA for declustering, building a more realistic PSHA.
In the last chapter we explore the methods that are commonly used to take into account the epistemic uncertainty in PSHA. The most widely used method is the logic tree that stands at the basis of the most advanced seismic hazard maps. We illustrate the probabilistic structure of the logic tree, and then we show that this structure is not adequate to describe the epistemic uncertainty. We then propose a new probabilistic framework based on the ensemble modelling that properly accounts for epistemic uncertainties in PSHA. 
     
  
  
    
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Taroni, Matteo
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze matematiche, fisiche ed astronomiche
          
        
      
        
          Ciclo
          26
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Probabilistic forecasting; statistical testing of models; Earthquake interaction, forecasting, and prediction; statistical seismology.
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/6422
          
        
      
        
          Data di discussione
          7 Maggio 2014
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di dottorato
      
      
      
      
        
      
        
          Autore
          Taroni, Matteo
          
        
      
        
          Supervisore
          
          
        
      
        
      
        
          Dottorato di ricerca
          
          
        
      
        
          Scuola di dottorato
          Scienze matematiche, fisiche ed astronomiche
          
        
      
        
          Ciclo
          26
          
        
      
        
          Coordinatore
          
          
        
      
        
          Settore disciplinare
          
          
        
      
        
          Settore concorsuale
          
          
        
      
        
          Parole chiave
          Probabilistic forecasting; statistical testing of models; Earthquake interaction, forecasting, and prediction; statistical seismology.
          
        
      
        
          URN:NBN
          
          
        
      
        
          DOI
          10.6092/unibo/amsdottorato/6422
          
        
      
        
          Data di discussione
          7 Maggio 2014
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: