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Abstract  

 

The spectroscopic investigation of the gasphase molecules relevant for the chemistry of 

the atmosphere and of the interstellar medium has been performed. 

Two types of molecules have been studied, linear and symmetric top. Several 

experimental highresolution techniques have been adopted, exploiting the spectrometers 

available in Bologna, Venezia, Brussels and Wuppertal: FourierTransformInfrared 

Spectroscopy, CavityRingDown Spectroscopy, CavityEnhancedAbsorption Spectroscopy, 

TunableDiodeLaser Spectroscopy. Concerning linear molecules, the spectra of a number of 

isotopologues of acetylene, 12C2D2, H12C13CD, H13C12CD, 13C12CD2, of DCCF and 

monodeuterodiacetylene DC4H, have been studied, from 320 to 6800 cm1. This interval covers 

bending, stretching, overtone and combination bands, the focus on specific ranges depending on 

the molecule. In particular, the analysis of the bending modes has been performed for 12C2D2 

(4502200 cm1), 13C12CD2 (4501700 cm1), DCCF (320850cm1) and DC4H (4501100 

cm1), of the stretchingbending system for 12C2D2 (4505500 cm1) and of the 21 and 

combination bands up to four quanta of excitation for H12C13CD, H13C12CD and 13C12CD2 

(61306800 cm1). In case of symmetric top molecules, CH3CCH has been investigated in the 

21 region (62006700 cm1), which is particularly congested due to the huge network of states 

affected by Coriolis and anharmonic interactions. The bending fundamentals of 15ND3 

(4502700 cm1) have been studied for the first time, characterizing completely the bending 

states, v2 = 1 and v4 = 1, whereas the analysis of the stretching modes, which evidenced the 

presence of several perturbations, has been started. Finally, the fundamental band 4 of CF3Br in 

the 11901220 cm1 region has been investigated. Transitions belonging to the CF3
79Br and 

CF3
81Br molecules have been identified since the spectra were recorded using a sample 

containing the two isotopologues in natural abundance. This allowed the characterization of the 

v4 = 1 state for both isotopologues and the evaluation of the bromine isotopic splitting.  
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CHAPTER 1 

 

INTRODUCTION 

 

Rotational and vibrational spectroscopies, besides being techniques widely used to infer 

information on molecular structure [1], have a very important role in the investigation of the 

atmospheric chemistry and of the interstellar medium. Since the second half of the 1900, the 

study of Earth’s and planetary atmospheres and of the interstellar medium by means of 

spectroscopic techniques has greatly increased, due to the availability of data detected by 

radiotelescopes or by instruments on board of satellites, stratospheric balloons, aircrafts, and 

spacecrafts. Nowadays, remote sensing techniques are widely used to probe the atmosphere and 

to retrieve the concentration profiles for a number of species. Molecular spectroscopy has made 

three major contributions to projects for studying the atmosphere of the Earth: 1) the 

determination of the energy balance of the Earth associated with radiative gain and loss, in 

relation to the greenhouse effect; 2) the detection of naturally occurring trace molecules in the 

atmosphere; 3) the assessment of the impact of human activities on the atmospheric composition, 

in particular the introduction of harmful, anthropogenic gases [2,3]. In fact, composition changes 

of the Earth’s atmosphere, mainly due to various anthropogenic factors occurring in the last 

decades, are considered responsible for several adverse climate and environmental impacts. 

Climate change studies need the temporal trend of hazardous atmospheric pollutants, i.e. of both 

greenhouse and ozone depleting gases. Among them, particularly relevant are halogenated 

hydrocarbons, due to their role in stratospheric ozone depletion as well as in global warming.  

In the last decades the investigation of remote environments has been extended to the 

interstellar medium and to the atmosphere of other planets [46]. Nowadays, there is an 

increasing interest towards the detection and the determination of the abundance of organic and 

inorganic molecules, ions, and radicals in interstellar space to provide data for understanding the 

formation of the stars and the origin of living matter [3]. Several space missions have led to the 

identification of a large variety of chemical compounds in the space as well as in the planetary 

atmospheres by means of spectroscopic techniques. A classic example is the Voyager 

Programme, aimed to the exploration of the external solar system, which started in 1977 with the 

launch of the Voyager 1 and 2 spatial probes and is still in progress. Afterwards, the Infrared 

Space Observatory (ISO) mission (1997) and the Cassini spacecrafts (2004) have provided a 
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huge amount of spectroscopic data. More recently, laboratory studies have been greatly 

stimulated by three recent research projects: Herschel (previously named FIRST, Far InfraRed 

and Submillimeter Telescope), ALMA (Atacama Large Millimeter/submillimeter Array) and 

SOFIA (Stratospheric Observatory For Infrared Astronomy). These extend the range of 

observable frequencies from the millimeterwave region to the infrared. 

Despite the enormous work already carried out, many information are still lacking and 

numerous molecular species still need to be characterized. To fully exploit the considerable 

potential of spectroscopic techniques in the investigation of Earth’s and planetary atmospheres as 

well as of the interstellar medium, it is necessary to know accurately the values of several 

spectroscopic parameters for the investigated molecules. In particular, these parameters are the 

frequency and the intensity of the rotational, vibrational or rovibrational transitions, the 

corresponding pressure broadening coefficients and their temperature dependence. For the 

relevant species, these parameters obtained by experimental laboratory studies are collected in 

databases which are continuously updated and improved [7,8]. From the spectroscopic point of 

view, the whole characterization of molecules of either atmospheric or astrochemical interest 

relies on the determination of the above mentioned parameters. 

 Many polyatomic molecules discovered in space are carbon chains with an acetylenic 

structure, i.e. featuring alternating single and triple CC bonds. The simplest members of the 

family are acetylene (C2H2) and diacetylene (C4H2) which play a major role in the synthesis of 

complex interstellar molecules. Ionneutral or neutralneutral reactions between these moieties 

and C+ or CN lead to the production of larger hydrocarbons (CmHn) or cyanopolyynes (HC2nCN) 

[9]. In particular, the study of different isotopologues can provide a valuable piece of 

information about the isotopic composition in different environments. Various perdeuterated 

molecules have already been observed in many different sources [10 and refs. therein]: the study 

of multiply deuterated species provides much stronger constraints to discriminate between a 

gasphase or a grainsurface reaction, and therefore to understand the interstellar chemistry. As 

far as non linear molecules are concerned, ammonia is undoubtedly one of the most important 

and extensively studied. In fact it collects the interest of spectroscopists, astrophysicists and 

theoretical scientists. It is abundant in a wide variety of objects throughout the universe. It has 

been detected in the interstellar medium [11], in remote stars [12], and in the atmospheres of the 

giant planets of the solar system and of their moons. The 14N/15N isotopic ratio in Jupiter’s 

atmosphere from observation of NH3 transitions has been recently reported [13]. It has been 

detected also in low mass brown dwarfs [1416] and is expected in extrasolar planets [17,18]. In 
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particular, in recent publications [19,20] it has been highlighted the need for precise 

spectroscopic data for the less abundant ammonia isotopologues. 

 Another important molecule is methylacetylene, or propyne. It has been detected in the 

atmosphere of Titan [21,22], in the interstellar clouds [23], in the northern auroral region of 

Jupiter [24], and tentatively identified at the south pole of Saturn [21]. It was also observed in the 

Earth atmosphere by ACE mission in biomass burning plumes [25]. 

 Finally, for what concerns terrestrial atmosphere, a large variety of gases are responsible 

for greenhouse effects and ozone depletion. The brominated compounds, which include the 

longlived anthropogenic Halons and methylbromide, are highly dangerous pollutants of the 

Earth’s atmosphere, being the source of bromine radical which is so efficient as a catalyst of 

stratospheric ozone depletion to be considered responsible for about 25% of the ozone loss in the 

Antarctic ozone hole [26,27]. The catalytic cycle of destruction of ozone can be summarized in 

this way: 
 

X + O3  XO + O2 

XO + O  X + O2 
_________________________________________________   

O3 + O  2 O2 

 

where X is a radical species, the most important being H, N, Cl or Br. In particular, the last one 

is the most aggressive as its reservoir species (i.e. molecules that deactivate the radicals 

responsible for this process in the stratosphere) are not stable and all the bromine present in the 

stratosphere is active against the ozone layer. 

Furthermore, besides being a powerful destructor of the ozone layer, CF3Br is a relevant 

greenhouse gas since its infrared spectrum is characterized by strong absorptions mainly due to 

the 1 and 4 fundamentals in the region of the atmospheric transparency (between ca. 8 and 12 

m). Its radiative efficiency amounts to 0.32 W m2 ppb1 with a global warming potential 

(GWP) equal to 7140 over a 100year horizon [28]. CF3Br was banned from use in December 

2003 since its ozone depletion potential, ODP, is the worst one among the bromine sources, 

being equal to 10 referred to CFC11, a chlorinated compound. Its effects are quite important 

considering that bromine is up to 4570 times more efficient than chlorine as a catalyst of the 

stratospheric ozone depletion and that is characterized by a long stratospheric lifetime, about 65 

years [26]. 

This thesis is thus devoted to retrieve spectroscopic information for species of 

atmospheric and astrochemical importance. Accurate values of vibrational and rotational 

parameters, i.e. energies, anharmonicity constants, vibrational dependences of rotational 
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parameters obtained from rovibrational analysis, provide very valuable information for the 

determination of an accurate quartic anharmonic force field, which is very useful to predict for 

example the position of absorptions not yet detected or previously characterized.  

The thesis is essentially based on the list of publications reported at the beginning. It is 

structured as follows: in the first part the theoretical quantomechanics aspects are reported and 

the general theory of vibrational and rotational motions in linear and symmetric top molecules is 

described. In the second part the analysis of the molecules is discussed. The experimental 

techniques employed for the registration of the spectra are reported and the Hamiltonian model 

used for each specific molecule is detailed. Finally, in Chapter 5 the conclusions are presented.  
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CHAPTER 2 

 

THEORY 

 

Molecules can be classified according to their principal moments of inertia. A molecule 

contains a set of nuclei, each of which is taken to be a point mass mi with coordinates xi, yi, zi 

with respect to a set of cartesian axes whose origin is fixed onto the centre of mass of the set of 

nuclei. The moments of inertia about x, y, z are given by  

 2 2
x i i i

i

I m y z    

 2 2
y i i i

i

I m x z   (2.1) 

 2 2
z i i i

i

I m x y    

A more convenient labelling scheme for the axes is based upon the magnitude of the 

moments of inertia. These axes are the principal inertial axes a, b, c and they correspond to x, y, z 

cartesian axes in order to ensure the following inequality 

A B CI I I   (2.2) 

so that IC is always the largest moment of inertia and IA is the smallest one.  

 On the basis of the values of IA, IB, IC, a molecule can be classified as [13]: 

 

- Linear molecule, , 0B C AI I I  ; 

- Spherical top, A B CI I I  ; 

- Prolate symmetric top, A B CI I I  ; 

- Oblate symmetric top, A B CI I I  ; 

- Asymmetric top, A B CI I I  . 
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2.1 LINEAR MOLECULES 

 

2.1.1 Vibrational energy 

 

 Linear molecules belong to either the D∞h or C∞v point groups, depending on whether 

they do or do not have a centre of inversion [2]. The character tables for D∞h and C∞v point 

groups are reported in Appendix A, Tables I and II.  

The vibrational degrees of freedom are 3N5 in a Natomic linear molecule, where N is 

the number of nuclei: there are (N1) non degenerate stretching vibrations and (N2) 

twodimensional degenerate bending vibrations [4]. The last ones can be treated using the 

bidimensional harmonic oscillator model. If the two components of a degenerate bending 

vibration with a phase shift of 90° are superimposed, a simple motion of the same frequency is 

obtained, in which, however, not all the atoms move in phase and in straight line, although they 

do move with the same frequency. Each atom will swing along the axes x and y producing a 

circular movement around z and giving rise to a vibrational angular momentum   about the 

internuclear axis of the molecule [1]. In this case, the Schrödinger equation can be solved by 

using cylindrical coordinates, as a function of r (distance of the oscillator from the origin) and  

(angle between r and one of the Cartesian axes) [5].  

 The wavefunction for degenerate modes, expressed as a function of v and   quantum 

numbers (vibrational quantum number and vibrational angular momentum quantum number, 

respectively), is eigenfunction of the equations 

, ,( 1)H         (2.3) 

and 

, ,L      (2.4) 

where H is the energy Hamiltonian operator and L is the vibrational angular momentum operator, 

defined as 

x y y xL q p q p   (2.5) 

with qi and pi being the normal coordinate and the conjugate momentum operator, respectively.  

 Once v is known, it is possible to calculate the eigenvalue  , according to: 

, 2,......., 2,          (2.6) 
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It is possible to classify the vibrational levels by using the combination of v and   

quantum numbers. In case of vmultiple excitation of a doubly degenerate mode, there are 

several degenerated states, corresponding to (v + 1) values of  , obtained from Eq. (2.6). These 

states are designated on the basis of irreducible representations of the C∞v or D∞h point groups 

using the value of   [1], as reported in Table 2.1. 

 

Table 2.1: Classification of vibrational symmetry levels as a function of   

 

 

 

 

 

 

 

 

 

 

 

If a centre of symmetry is present (D∞h point group), all the levels in Table 2.1 have the 

adequate g/u subscript, corresponding to the symmetry of the wavefunction with respect to the 

inversion point group symmetry operation (with g g g  , u u g  , and g u u g u    ).  

In case of multiple v excitation of non degenerate stretching states, only a   or   

symmetry state is obtained, the latter symmetry corresponding to an odd excitation of a  mode, 

whereas if in addition bending modes are excited, more levels are present. For example, if the 

double vibrational excitation of the same bending mode is considered, three sublevels are 

generated: one of   symmetry and one of double degenerate   symmetry, for 0  and 

 2  , respectively. Differently, the combination of two different bending modes (t and t’) 

leads to four vibrational levels: for    '1 1 0     t t    and   levels are obtained, 

respectively, and one double degenerate   level for    '1 1 2       t t  [4]. Within the 

harmonic oscillator approximation, the energy is independent of  . When vibrational levels are 

generated by triple, or even higher, simultaneous excitation of bending modes, two states can 

Symmetry 
  

C∞V D∞h 
Degeneration 

0   /g u
  1 

0   /g u
  1 

1 
 /g u  2 

2   /g u  2 

3   /g u 2 

… …  … 
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have the same   value. In this case, I or II are used as left superscript, and for convention I refers 

to the higher energy state, II to the lower one. 

The degeneracy of sublevels with the same v and different   values is removed by 

diagonal anharmonic terms, while the one between +  and   components is affected when 

considering vibrationrotation interactions (see Section 2.1.3). In fact, the harmonic oscillator 

model is inadequate to describe in detail the vibrational energy of a molecule and the expression 

of the energy must be corrected taking into account anharmonicity contributions, by using a 

polynomial expansion that is function of 
2

n
d  

 
, where v is the vibrational quantum number, d 

is the degeneracy of the mode and 2n  . 

The Schrödinger equation in its more general formulation is: 

, ,vib vib vib vibH E      (2.7)

Its solution in terms of quantum numbers  and   gives the vibrational energy, represented by 

the spectroscopic vibrational term value G. The diagonal vibrational terms of the Hamiltonian in 

term of the Dunham expansion for a linear molecule with two degenerate bending vibrations is 

the following:  

' '
'

'
'

'

( , )
2 2 2

                     + .....
2 2 2 2

 

  

              
    

                 
      

  

 

  

 

ji i
i i ij i j bb b b

i i j t t

j bbi k i
ijk i j k i i b b

i j k i t t

dd dE
G x g

hc

dd d d
y y

    

   
 (2.8)

where: 

i, j, k = index of the normal modes of the molecule 

b,b’ = bending degenerate modes 

i = zeroth order vibrational frequencies (harmonic frequencies) 

xij , yijk, yi
bb’ = anharmonicity constants  

gbb’ = anharmonicity constants relative to  , responsible of the partial removal of the 

degeneration  

yi
bb’= higher anharmonicity constants as a function of v e   

di = degree of degeneracy of the vibration 

 

Offdiagonal terms are responsible for removing completely the degeneracy between 

levels. They will be taken into consideration below, in Section 2.1.3. 
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2.1.2 Rotational energy 

 

 The simplest model used to describe the rotation of a molecule is that of the rigid rotor. 

The rotational term value is a function of J, which is the quantum number of the total angular 

momentum, according to: 

2

( 1)
( ) ( 1)

8

hJ J
F J BJ J

cI


    (2.9)

where both F(J) and the rotational constant B have the dimension of wavenumbers [2]. However, 

Eq. (2.9) is not sufficient to describe the effects of the nonrigidity of the molecule. It is 

therefore necessary to introduce higher order correction terms containing the distortion constants 

D, H, L, P, … . They represent the influence of the centrifugal force which results in a very 

slight increase of the internuclear distances when the molecule is rotating. In addition, in case of 

a bending state, the structure is much more distorted. As explained before, if a degenerate 

vibration is excited, an angular momentum around the internuclear axis is generated and 

represented by the quantum number  . The rotational term assumes the form of the symmetric 

top one (see Section 2.2.2) as a function of J and  , where   is replaced by k in symmetric tops. 

For a molecule with two degenerate bending vibrations is: 

 

   

' ' 2
'

'

2 3' 2 2
'

'

( )
2

.....

bb bb i
b b i i b b

b b i i j

bb
b b

b b

d
F J B M

D M H M

 

 

  



 



        
  

 
      
 

 



    

   

    (2.10)

with 

2 2 2

.....
2 2 2

ji i
e i i ij i j

i i j

ji k
ijk i j k

i j k

dd d
B B

dd d

     

   



 

             
    

            
    

 


    (2.11)

.....
2 2 2i

ji i
e i ij i j

i i j

dd d
D D     



              
    

      (2.12)

.....
2

i
e i i

i

d
H H h      

 
     (2.13)

where ( 1)M J J  and  J , being   the projection of J along the internuclear axis. 

The constants appearing in the Eq. (2.10)  (2.13) are: 
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B  = rotational constant 

D  = quartic centrifugal distortion constant 

H  = sextic centrifugal distortion constant 

….. 

Be = rotational constant for the equilibrium configuration of the molecule (equilibrium point of 

the potential energy function) 

,ij,ijk = rovibrational interaction constants underlining the vibrational dependance of B 

De, He = centrifugal distortion constants at the equilibrium configuration of the molecule 

i, ij, hi = higher order centrifugal distortion taking into account the D e H dependence from the 

vibrational state 

 ss’ss’ = vibrational constants as function of   

'ss
i  = vibrational constants as function of  and   

 

2.1.3 Rovibrational energy and essential resonances 

 

 In molecules rotation can take place simultaneously with a vibration, giving rise to the 

rotational structure of infrared vibration bands [1]. The energy of the rotational levels belonging 

to a vibrational state is described as the sum of vibrational (2.8) and rotational (2.9) 

contributions. Taking into account Eqs. (2.11), (2.12) and (2.13), the rovibrational term T is 

obtained: 

( , , ) ( , ) ( , , )T J G F J       
(2.14) 

In Eq. (2.14) the G and F terms are supposed to be independent, even if there is the 

rovibrational coupling given by  constants. This means that the vibration is referred to a 

coordinates system fixed onto the molecule and uniformly rotating with her. 

 In such a system, it must be taken into account the presence of two apparent forces: the 

centrifugal force and the Coriolis force [1]. The magnitude of these forces is given by: 

2
centrifugalF m r  (2.15) 

2 v sinCoriolis aF m    (2.16) 

where: 

m  =  mass of the nuclei 

va = apparent velocity with respect to the moving coordinate system  



 15

r  = distance from the axis of rotation  

= angular velocity of the coordinate system with respect to a fixed coordinate system 

angle between the axis of rotation and the direction of va 

The introduction of the centrifugal force in the rovibrational Hamiltonian involves the 

inclusion of centrifugal distortion constants, as reported in Eq. (2.14), which are effective even if 

the system is not vibrating.  

 The introduction of the Coriolis force leads to an additional coupling between rotation 

and vibration (Coriolis coupling), which is in general stronger than the effect of the centrifugal 

force, since the velocity due to the vibration (va) is usually much larger than that due to rotation 

(r). However, this interaction occurs only when the molecule is vibrationally excited (va ≠ 0) 

and additional vibrational angular momenta appear. This is due to the fact that, in the rotating 

coordinates system, the nuclei will not move in straight lines, but in ellipses around the 

equilibrium position of each atom, inducing in bending vibrations a non zero additional 

vibrational angular momentum around the axis of the ellipses. This is described for a triatomic 

linear molecule in Figure 2.1.  







(a)

Y YX

(b)







Y YX
 

Figure 2.1: Coriolis components for a triatomic linear molecule XY2. 

(a) Continuous lines: nuclei motion; dashed lines: apparent Coriolis forces. 

(b) Motion of nuclei on account of Coriolis interaction 
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The Coriolis coupling is distinguished as First order and Second order. In the First order 

Coriolis interaction the interaction is between the two components of the same degenerate 

vibrational mode, whereas in the second case it occurs between two different vibrational modes. 

This will be discussed later in Section 2.3. 

The effect of a first order Coriolis interaction is the removal of the degeneracy between 

rovibrational levels of a degenerate state. The splitting between rotational levels in a vibrational 

state with  = 1 (type splitting) is given by: 
 

( 1) ( 1)q J J      (2.17) 

where e

e

B
q


  is called type doubling constant and e is the harmonic frequency of the 

specific normal mode.  

In case of absence of resonances, the rovibrational term gives the energies of the 

rotational levels of a vibrational state, corresponding to diagonal Hamiltonian matrix elements 

with basis function , , J , whose elements are obtained from Eq. (2.14).  

The offdiagonal matrix elements are: 

- offdiagonal in  , responsible for  type rotational splitting and for other resonances 

arising in bending modes; 

- offdiagonal in  , responsible for  type vibrational splitting and for other 

resonances arising in bending modes; 

- offdiagonal in v, representing Fermi, DarlingDennison and higher anharmonic 

interaction (strictly speaking, a Fermi resonance occurs between vibrational levels with 

2i    and 1j   , so between a fundamental mode and an overtone or a 

combination band; a DarlingDennison resonance occurs between vibrational levels with 

2i    and 2j   ; in other cases they are generally called anharmonic interactions). 

They will be discussed later in Section 2.3. 

Usually these terms include higher order contributions as a function of v,  , and J, i.e. diagonal 

cubic and quartic terms of vibrational energy (y and ). 

 The discussion about this item will be focused on acetylene and its isotopologues. 

In order to calculate the energies of bending levels, the Amat and Nielsen model for linear 

molecules [6], subsequently modified [714], is applied.  

 The energy levels of bending vibrations 4 and 5 can be numerically obtained as 

eigenvalues of the rovibrational energy matrix with basis eigenfunctions 4 4 5 5, , , , ,  J  . In 
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some cases of   type interaction, 4  and 5  are not good quantum numbers useful for the 

classification, but their sum is. Rovibrational levels are classified e or f in function of their parity. 

For a molecule in a singlet electronic state, the parity is: 

( 1)J   for e levels 

( 1)J   for f levels 

Using the convention of the Watson basis, if the rovibrational eigenfunctions are chosen 

following the symmetry with respect the inversion operation: 

* , , ( 1) , ,JE J J                  (2.18) 

the symmetrised eigenfunctions, called Wang basis, are defined as follows: 

4 5 0    ,0, , ,0,J e J   (2.19) 

4 5 0    1
, , , , , ( 1) , ,

2
J e J J       

   (2.20) 

with  

4 0 and/or 5 0  
1

, , , , , ( 1) , ,
2

J f J J       
   (2.21) 

Because of  type perturbations, the energies of the levels for bending modes of the 

molecule cannot be described by using closed algebraic expressions. These energy levels have to 

be obtained in a numerical way, diagonalizing appropriated rovibrational energy matrices. It is 

therefore necessary to build a matrix for every group of interacting states involved in the 

observed transitions, characterized by the same value of 4 5tot    , and to consider each time 

the offdiagonal matrix elements relative to the perturbations affecting these states.  

 Since bending modes are involved, Wang eigenfunctions are used, in order to have a 

factorization of Hamiltonian matrices: offdiagonal elements are responsible only for the 

coupling between e states or between f states. In this way the obtained matrices are smaller and 

easier to diagonalize. Perturbation matrices involving states with different vtot (including 

stretching and stretchingbending states) with offdiagonal elements for both type 

perturbations and anharmonic resonances, can be constructed.  

 Diagonal matrix elements determine the energy order of   sublevels for each vibrational 

state and they are obtained from the rovibrational term T. For bending states with vtot up to 3, 

when the energy of the levels and the relative vibrational constants are referred to the ground 



 18 

state (v = 0) and not to the minimum of the well of the potential energy surface, the matrix 

elements are: 

5 54 40 0
4 5 4 5( , ) ( , , )  G F M     (2.22)

540 0 0 0 2 0 2 0
4 5 4 4 5 5 44 4 55 5 45 4 5

0 2 0 2 0 0 3 0 3 0 2 0 2
44 4 55 5 45 4 5 444 4 555 5 445 4 5 455 4 5

44 2 45 55 2 44 2 45 55 2
4 4 4 4 4 4 5 4 4 5 5 5 4 5 5 4 5 5 5 5

( , )     

      

     



   

       

G x x x

g g g y y y y

y y y y y y

         

     

     

 (2.23)

540 44 2 45 55 2 44 2
4 5 4 4 5 5 4 4 4

45 55 2 44 2 45 55 2 2
4 4 4 5 4 4 5 5 5 4 5 5 4 5 5 5 5

44 2 45 55 2 2 2 2 3
4 4 5 5

( , , ) (

)( )

( )( ) ( )

F M B

M

D M H M



 

      

         

  

    

     

      

     

       

     

 (2.24)

where  

2 2
0 4 4 5 5 44 4 45 4 5 55 5

3 2 2 3
444 4 445 4 5 455 4 5 555 5

B B           

         

     

   
     (2.25)

2 2
0 4 4 55 44 4 45 4 5 55 5D D                     (2.26)

0 4 4 5 5H H h h          (2.27)

with B0, D0 and H0 being the rotational and centrifugal distorsion constants of the ground state.  

 Offdiagonal vibrational   terms, responsible of resonances and vibrational doublings, 

and rotational  type of bending modes are also present in the matrix. They are:  

     5 54 4
1

22' 2
4 5 2 4 5 45 4 4 4 4 5 5 5 5

1
, , , , , , 2 2

4
J H J r                        (2.28)

where r45 is the vibrational type doubling constant [15], whose effect is to split   and   

states belonging, together with a  state, to the vibrational sublevel of the combination 

4 51, 1   ; 

      
1

22'
2

1
, , , , 2 2 ( 1) ( 1) 2

4
            

         t t
t t t t t t tJ H J q M M     (2.29)

where tq  is the rotational type doubling constant [15], whose effect is to split the two 

components e and f of a double degenerate state. It also represents the resonance between states 

of different symmetry with the same v, as for example between the different components of the 

states  and  or  and ;  
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     

   

    

4'
2

1
2

1
, , , , 2 2 4

4

( 1) ( 1) 2

( 2) 3 ( 3) 4

t t
t t t t t t t t t t tJ H J

M M

M M

              

      

           

      

    

     

 (2.30)

where t is a rotational constant important at high J values and in case of at least a double 

excitation of the same bending mode, as illustrated in Fig. 2.2; 

 

Figure 2.2: Splitting of energy levels of the state vt = 2, with t = 4 or 5.  
 

      
      

5 54 4 22'
4 5 2 4 5 45

4 4 5 5 4 4 5 5

1
2

1
, , , , , , 4

16
2 2 ( 1)

( 1) 2 ( 2) 3 ( 3) 4

J H J

M

M M M

    

   

  

       

                  

   

     

        

 (2.31)

where 45 is the analogous of t in the case that both the bending modes are excited 

simultaneously [12], as illustrated in Fig. 2.3. 

 

 Figure 2.3: Splitting of energy levels and of Bv of the state v4 = v5 = 1.  
   g is the vibrational diagonal term 
   r is the vibrational offdiagonal term 
     is the rotational diagonal term 
   rJ is the rotational offdiagonal term 
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 The interaction constants present in the offdiagonal matrix elements are well 

represented by expressions containing a term of zeroth order and other terms of higher order 

which express the dependence from the quantum numbers J and v. Their general expressions are: 
 

0 2 2
45 45 45 45 445 4 455 5( 1) ( 1) ( 1) ( 1) .....         J JJr r r J J r J J r r       (2.32)

0 2 2 2
' ' ( 1) ( 1) ( 1) ...J JJ

t t tt t tt t t t tq q q q q J J q J J q                (2.33)

0
' ' ( 1) ....J

t t tt t tt t t J J                 (2.34)

In Eqs. (2.32) – (2.34) the first term is the zeroth order term. Offdiagonal interactions in   are 

all diagonal in v, being effective between rovibrational levels with the same value of vtot. 

As far as offdiagonal terms in v are concerned, they will be discussed in Section 2.3. 

 

2.2 SYMMETRIC TOPS 

 

2.2.1 Vibrational and rotational energies 

 

In contrast to linear molecules, all the other molecules, including symmetric tops, have 

3N6 vibrational degrees of freedom, where N is the number of the atoms.  

As far as the vibrational energy is concerned, symmetric tops are described by the same 

expression used for linear molecules, see Eq. (2.8). The situation is different for the rotational 

motion. In a symmetric top two inertia moments must be taken into account: IA and IB for a 

prolate top, IB and IC for an oblate top. The J quantum number is no more sufficient, and the 

component of the angular momentum about the axis of higher symmetry, k, must be taken into 

account. It can take 2J + 1 values from –J  to +J including 0 ( J k J   ). In the expression of 

the energy, the quantum number K ( K k ) is introduced. K assumes J + 1 values form 0 to J. 

All rotational levels with 0K   possess a double degeneracy which can be thought of, 

classically, as being due to the clockwise or anti clockwise rotation about the top axis. For K = 

0 there is no angular momentum about the top axis and therefore no K degeneracy. For a prolate 

top: 

    2( , ) 1F J K B J J A B K         (2.35)

where  
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...
2i

B i
e i

i

d
B B       

 
     (2.36)

...
2i

A i
e i

i

d
A A       

 
     (2.37)

28
e

B

h
B

cI
  and 

28
e

A

h
A

cI
  correspond to the value of B and A at equilibrium position, and i 

are the rovibrational interaction constants underlining the vibrational dependence of rotational 

constants.  

 If the top is oblate, the rotation constant C replaces A in Eq. (2.35) with  

 

...
2i

C i
e i

i

d
C C       

 
     (2.38)

where 
28

e
C

h
C

cI
 . 

Taking into account the non rigidity of the molecule, as already seen for linear molecules, 

centrifugal distortion constants must be considered.  

 

2.2.2 Rovibrational energy 

 

The first order Coriolis interaction is effective between the two components of a E 

degenerate vibrational state, and it is stronger than that active between non  degenerate states or 

degenerate states of linear molecules [1]. The result is a splitting of the degenerate vibrational 

levels into two levels whose separation increases with increasing rotation (K) about the top axis 

and is 0 for K = 0 (the same  doubling already seen for linear molecules). This is illustrated in 

Figure 2.4 for a prolate symmetric top. In addition, as already seen in Section 2.1.3, Coriolis 

force is produced by interaction of two vibrations of different species, which increases with 

increasing rotation and results in a contribution to the rotational constant . 
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Figure 2.4: Rotational energy levels of a prolate symmetric top molecule in a doubly degenerate 

vibrational state. 

 

The magnitude of the vibrational angular momentum in a degenerate vibrational state in 

which only one degenerate vibration i is singly excited is ( / 2 )i h  , where 0 1i  . So, the 

expression of the rotational energy for a prolate symmetric top is:  

   
   

     

22 2

2 4 3

3 2 2 4 6

( , , , ) 1 2( ) 1

                    1 1

                    + 1 1 1

                 

J

JK K J K

J JK KJ K

F J K B J J k A k A k D J J

D J J k D k J J k k

H J J H J J k H J J k H k

   

   

   

 

 

          
           

               

 

 

   2 3 5 3 3
*  1 1J JK K KJ J k J J k k k                    

  (2.39)

D and H are centrifugal distortion constants, and 

( ) ( ) ( ) ...
2i

A i
e i

i

d
A A 

      

 

(2.40)

2
i

A  is the coefficient of 
2

i
t i

d
k   

 
 . Maes introduced ηJ and ηK constants [16] using the 

relationship  

2
i

A = ηi,r (2.41)
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the  constants are higher order dependences of ηJ and ηK. 

 The rovibrational term value T is the sum of the vibrational and rotational term values, as 

explained above in Section 2.1.3 for linear molecules. In this case it is function of both J and K 

quantum numbers: 

( , , , ) ( , ) ( , , , )T J K G F J K       (2.42)

In case of symmetric top molecules, there are three rotational  doubling interactions, 

involving three different  doubling constants. The differences between them are associated to 

selection rules in k and   which govern the nonzero offdiagonal matrix elements. These are as 

follows:  

 2   , 2k   , denoted ( )
tq   type interaction 

 2   , 2k   , denoted ( )
tq   type interaction 

 2   , 1k   , denoted tr  type interaction. 

The last two occur only in certain symmetry point groups, owing to symmetry restrictions [17]. 

The first one is the most familiar type and the  doubling constant ( )
tq   defines the magnitude 

of the offdiagonal matrix elements according to equation: 

          
22 24

1/2
2( ) 2

, 1, , 1 / , 1, , 1

1
             1 1 1 1 1

4

t t t t

t t

J k H H hc J k

q J J k k J J k k

 



     

                

 


 (2.43)

 In a symmetric top additional symmetry properties of the rotational eigenfunctions have 

to be considered, since certain rotations are symmetry operations, depending on the point group 

to which the molecule belongs. Let us consider the case of C3V molecules. The character table for 

C3V point group is reported in Appendix A, Table III.  

The eigenfunction of the symmetric top may be written, as pointed out by Dennison [18] 

and Mulliken [19] 

( ) iM iK
r JKM e e      (2.44)

where  is the angle of rotation about the top axis. If  increases by 2/3 the rotational 

eigenfunction is unchanged if K is a multiple of 3. So the rotational eigenfunction for K= 3n (n= 

1, 2 ,3,…) are of species A1 and A2. This holds for both components of a doubly degenerate 

rotational levels when K ≠ 0. If K is not a multiple of 3, (K= 3n ± 1) the rotational eigenfunction 

does not remain unchanged, that is, it is of species E [1]. This is illustrated in Figure 2.5. 
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Figure 2.5: Symmetry properties of the rotational levels of a prolate top molecule for a) 

degenerate vibrational state, b) totally symmetric vibrational state. 
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2.3 ACCIDENTAL RESONANCES 

 

 A resonance is called accidental if the two resonanting vibrational states have close 

energy by chance. In such cases, the coupling matrix element is off–diagonal with respect to at 

least two quantum numbers v. These resonances are: 

   Fermi interactions (or more generally anharmonic interactions) 

   Coriolis interactions (or better second order Coriolis interactions) 

These two effects are frequently considered in order to explain changes in band origin positions, 

in rotational constants, in intensities and breakdown of selection rules.  

 

2.3.1 Anharmonic interactions 

 

 An anharmonic resonance is a purely vibrational interaction in origin, occurring between 

levels of the same symmetry species. The term “Fermi resonance” is used to describe the 

interaction between an overtone or a combination level and a fundamental one that have nearly 

coincident energies. This interaction is called first type or second type Fermi resonance, 

respectively [20]. An anharmonic resonance between two overtone levels is called 

DarlingDennison interaction. In all the other cases it is called more generally anharmonic 

interaction.  

 The energy matrix representing the interaction is:  

0
1

0
2

0
E E W

W E E





 (2.45)

with  

 0 0
11 1H E                0 0

22 2H E  

   
12 211 2 2 1i iH H W W W     

(2.46)

1,2 being the unperturbed eigenfunctions, 0
1E , 0

2E  the unperturbed energies of the two states, 

E  their energy separation induced by the perturbation and W is the interaction containing the 

coupling constant between the two levels. The energy difference between the unperturbed and 

the perturbed state is obtained from the solution of the secular determinant: 

 
1

2 20 2

*
4

2

W
E E

       
(2.47)

where  
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 * * *
1 2

1

2
E E E   is the barycentre of the perturbed or unperturbed levels 

 0 0 0
1 2E E    is the energy difference between the two unperturbed levels. 

This interaction occurs only between two levels having identical rotational wavefunction, i.e. 

identical rotational quantum numbers and identical symmetry species [13, 21]. In fact, as the H 

operator is totally symmetric with respect to every symmetry operation undergone by the 

molecule, the unperturbed eigenfunctions 0
1  and 0

2  must have the right symmetry to make the 

elements W12 of the matrix 

0 *0
12 1 2

ˆW H d     (2.48)

 

different from zero, i.e. their direct product must contain the totally symmetric representation. 

The vibrational eigenfunctions of the two interacting states are linear combinations of the 

two unperturbed eigenfunctions: 

0 0
1 1 2

0 0
2 1 2

 

 

a b

b a

  

  

 

 
 (2.49)

with 2 2 1a b  . 

As illustrated in Fig. 2.6, the smaller the energy difference between the two unperturbed levels, 

the larger the observed energy shifts from the expected values. 
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Figure 2.6 : Anharmonic resonance scheme. Dashed lines represent unperturbed (
0 0

  
m n

e  ); 

continuous lines represent real functions. 
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2.3.2 Coriolis interactions 

 

 The second order Coriolis interaction is a rovibrational interaction occurring between two 

vibrational levels of different symmetry. It is caused by terms of the rotation vibration kinetic 

energy operator Hrv that depend linearly on both a rotational angular momentum operator and a 

vibrational angular momentum operator [21]. This interaction can be foreseen by using Jahn rule 

[22]: a Coriolis interaction can occur between two levels A and B if the product of their 

symmetry species leads to an irreducible representation containing the species of a rotation 

around the axis x, y or z: 

,  or A B x y zR R R    (2.50)

Similarly to Fermi resonances, when two vibrational states are perturbed by a Coriolis 

interaction, near the point of intersection of the term curves a shift of the energy levels from the 

unperturbed positions is observed, that is, a rotational perturbation results. The 

Coriolisinteraction matrix elements vanish when the rotational quantum numbers are zero, so 

that the band origin positions are not changed by this effect. Furthermore, since the Coriolis 

interaction increases with increasing J, the shift from the unperturbed position does not go back 

to zero for large J, even thought the energy difference between levels of the same J is then fairly 

large [1].  

 

2.4 SELECTION RULES AND TRANSITIONS  

 In the process of absorption or emission of radiation involving transitions between a pair 

of vibrational states, usually the molecule interacts with the electric, rather than the magnetic 

component of the electromagnetic radiation. For this reason, the active selection rules are known 

as electric dipole selection rules or, simply, dipole selection rules [2]. These rules are based on 

symmetry criteria and vibrational transitions are observable only when they induce a variation of 

the dipole moment of the molecule. The equation of the transition moment is: 

' * '' 0R d    (2.51)

where '  and ''  are the vibrational functions of the states involved in the transition and  is 

the electric dipole moment operator 
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(2.52)
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The intensity of the transition is proportional to the square of the magnitude of the 

transition moment 
2

R . The requirement for the Eq. (2.51) to be satisfied, and for the transition 

to be allowed, is that the symmetry of the quantity to be integrated is totally symmetric (+ for a 

linear molecule, A for a symmetric top) 

     ' '' A       (2.53)

(A is used to denote the totally symmetric group of any point group). 

In addition, only transitions with = ±1 are allowed. This condition is obtained from 

the harmonic approximation, by breaking off of the Eq. (2.52) at the second term. By adding 

higher order terms this rule falls down, and transitions involving = ±2, ±3, … (overtones) are 

allowed, even if the intensity decreases with increasing [2]. 

 The transitions are classified depending on the direction of the variation of the transition 

moment during the vibration: if it is parallel to the principal axis of symmetry the transition is 

parallel, if perpendicular to it the transition is called perpendicular.  

 

2.4.1 Linear molecules 

 

 Linear molecules belong either to the D∞h or C∞v point group, depending on whether they 

do or do not have a centre of inversion. Adapting Eq. (2.53), the vibrational transitions are 

allowed if  

     ' ''  or u u          for D∞h (2.54)

     ' '' or           for C∞v  (2.55)

From the point of view of the parity of rotational eigenfunctions, the only allowed 

transitions are those for which    .  

 Combining these results, the selection rules reported in Table 2.2 are obtained, as a 

function of quantum numbers J and  . 
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Table 2.2: Selection rules for transitions in linear molecules 

PARALLEL BANDS: 0   

   1J    

 ,      0,  1J    

  

PERPENDICULAR BANDS: 1    

 ,   ,      0,  1J    

  
It must be pointed out that in case of parallel transitions ( 0  ), the spectral lines 

corresponding to transitions with 0J   have low intensity and can be observed only for low J 

values.  

 In addition, the mixing of the eigenfunctions of two or more perturbed states can lead to 

the observation of “perturbation allowed” transitions according to the rules mentioned above, as 

for example transitions   . 

 Another restriction follows from Eq. (2.53), for centrosymmetric molecules: only 

transitions g u  are allowed. 

 As a consequence of the convention for the parity of the levels explained in Section 2.1.3, 

the following selection rules in terms of “e, f ” are obtained:  

e f  0J   Q branches 

 , e e f f   1J    P, R branches 

 To predict the intensity of rovibrational lines, it is important to consider the symmetry of 

the molecule. If the molecule belongs to the point group C∞v, the statistical weight of a rotational 

level in a totally symmetric electronic state is given by the number of possible orientations of J 

in a magnetic field, that is 2J +1. The intensity of the lines is governed principally by Boltzmann 

factors. On the other hand, if the molecule belongs to the point group D∞h, the rotational 

eigenfunctions change sign with respect to the exchange of identical particles (nuclei). In fact the 

total eigenfunction is:  

e v r ns     (2.56)

where e ,  v , r  and ns  are the electronic, vibrational, rotational and the nuclear spin 

eigenfunctions. If e  and  v  are totalsymmetric, the sign of the total eigenfunction when all 

nuclei on one side of the centre are simultaneously exchanged with the corresponding ones on 

the other side depends on the behaviour of r  and ns . r ns  can change or maintain unaltered 
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its sign, and correspondingly the rotational levels are symmetric or antisymmetric with respect to 

the exchange of identical nuclei. The eigenfunctions have different statistical weights, depending 

on ns  and on the type of statistic they follow. If the molecule has an even number of fermions 

(half integer spin) on one side of the centre of symmetry it is subjected to the Bose  Einstein 

statistics, as it behaves as a boson (integer spin). Vice versa if the number of fermions is odd the 

Fermi  Dirac statistic is followed. The nuclear spin is half integer for nuclei with an odd mass 

number, integer for nuclei with even mass number and odd charge number, and it is zero for 

nuclei with even mass number and charge number. This is summarized in Table 2.3: 

 

Table 2.3: Assignment of nuclear spin quantum number to the nuclei as a function of their mass 

and charge number 

 

 

 

 

 

 

 

 If the spin of all the nuclei is zero, with the possible exception of the one at the centre of 

symmetry, the antisymmetric rotational levels are missing entirely, that is, for g
  electronic 

states the odd rotational levels are absent, assuming Bose  Einstein statistic for nuclei of spin 

zero [1]. 

In the other cases the ratio of statistical weights of the symmetric and antisymmetric 

rotational levels is 
1I

I


 or 

1

I

I 
, depending on whether the nuclei follow the Bose Einstein or 

Fermi Dirac statistic, respectively. 

 For 12C2H2 the total eigenfunction follows Fermi Dirac statistic as the nuclear spin 

quantum number is half integer 121(H) , ( C) 02I I    . This leads to an intensity alternation of 

1:3 for even and odd J values respectively, as the antisymmetric rotational levels have three 

times the statistical weight of the symmetric ones. For 12C2D2 Bose  Einstein statistic is 

followed, as 12(D) 1, ( C) 0I I    . In this case the intensity alternation is 6:3. 

 

 

I Mass Number Charge number 

0 Even Even 
1

2
 Odd Odd 

1 Even  Odd 



 31

 As a consequence the infrared bands have the following characteristics: 

-    parallel bands  they have two branches, R and P, with single 

rovibrational lines with 1J    and 1J   , respectively. Transition can be 

      e e  or       f f , while      e f  are 

forbidden (see Figure 2.7 (a)). 

-  ,   ,      parallel bands  they have three branches, R 

( 1J   ), P ( 1J   ) and Q ( 0J  ), and double rovibrational lines. Q 

branches are doublets of  e f  type, while P and R are doublets of  e e  

and   f f  type. In absence of strong perturbations, the Q transitions are 

much weaker than the P and the R (see Figure 2.7 (b)). It is important to 

underline that for  states J = 0 levels do not exist, as well as for , , ... states 

the lowest value for J are 2, 3, ... respectively, because J   . 

-   perpendicular bands  they present three branches: R ( 1J   ), P 

( 1J   ) and Q ( 0J  ) of single rovibrational lines. They can be: 

     Q  e f type, P and R   f f type 

     Q  f e  type, P and R  e e  type (Figure 2.7 

(c)) 

-  ,      perpendicular bands  they have three branches R ( 1J   ), 

P ( 1J   ) and Q ( 0J  ) formed by doublets of rovibrational lines. Q are 

 e f type, P and R are  e e  and   f f  type (Figure 2.7 (d)). In this 

case the Q lines are slightly more intense than the P and R ones. In addition, 

transition of     type, which are forbidden by the selection rules, can be 

observed as a consequence of the mixing of the eigenfunctions of the excited 

levels which are affected by a rovibrational interaction. 
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Figure 2.7: Selection rules for transitions of linear molecules; (a)  parallel band, (b) or  

parallel band, (c)  perpendicular band, (d)  or  perpendicular band. 
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2.4.2 Symmetric top molecules 

 

 The selection rules for rovibrational transitions of a symmetric top are reported in Table 

2.4.  

 

      Table 2.4: Selection rules for a symmetric top 

Parallel Bands:      '
' '''' 0,  z z            

Vibrational selection rule: ' ''  
 

A←A 
Es(± )←Es(± ) 

Rotational selection rule: 
 

K= 0; K = 0, J= ±1 
 K≠ 0; K= 0, J= 0,±1 

Perpendicular Bands:      '
' '''' 0,  xy xy            

Vibrational selection rule:  ' ''  
 

E(± )←A 
Es(± )←Es(± )  

 Rotational selection rule: 
 

 K= ±1, J= 0,±1 

 

 The rovibrational transitions are usually labelled with the values of J and K of the lower 

energy state and the J and K of the transitions. This notation is KJJ’’ (K’’) to identify a 

parallel transition, KJK’’ (J’’) for a perpendicular transition, and the nomenclature is reported in 

Table 2.5. 

 

      Table 2.5: Selection rules in J and K for rovibrational transitions of a C3v molecule 

PARALLEL BAND 

J = 1 K = 0 qPJ"(K") 

J =   0 K = 0, K≠0 qQJ"(K") 

J = +1 K = 0 qRJ"(K") 
   

PERPENDICULAR BAND 
J = 1 K = 1 pPk"(J") 
J = 1 K = +1 rPK"(J") 
J =   0 K = 1 pQK"(J") 
J =   0 K = +1 rQK"(J") 
J = +1 K = 1 pRK"(J") 
J = +1 K = +1 rRK"(J") 
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 As explained in Section 2.4.1 for linear molecules, the intensity of the lines is governed 

both by Boltzmann factors and by statistical weights. In fact, the levels with K = 3n (n = 0, 1, 2, 

3,…) have a larger statistical weight than those with K = 3n ± 1, resulting an alternation of the 

type: strong, weak, weak, strong, weak, weak, and so on. For molecules of the point group C3V, 

the general case in which the spin of the three identical nuclei is I, the weight factors due to the 

spin are:  

 

For K = 3n   21
2 1 4 4 3

3
I I I    (2.57)

For K = 3n±1   21
2 1 4 4

3
I I I   (2.58)

 

 The shape of parallel and perpendicular bands are reported in Figs. 2.8 and 2.9, 

respectively. In parallel bands only levels with the same K value are connected by transitions. So 

for each K value, a subband made of three branches P, Q and R is obtained. The band is 

obtained by the addition of many subbands, corresponding to the various K values populated at 

the temperature of observation, as shown in Fig. 2.8. 
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Figure 2.8: Structure of K subbands of a parallel band for a symmetric top. In b) the total 
structure of the parallel band is shown.  

 

 The overall shape of a parallel band is similar to that of a perpendicular band of a linear 

molecule, being characterized by subbands with a strong linelike Q branch and the P and R 

branches to lower and higher wavenumbers, respectively. For what concerns intensity, as 

discussed before in Section 2.2.2 and above, the subbands with K = 3n (with n = 1, 2, 3,…) are 

stronger than the others. 

 A perpendicular band consists of two series of subbands with K = ±1 for each K” 

value ≠ 0. The intensity of the Q branch in a subband is about the sum of the intensity of the P 

and R branches, therefore the series of lines formed by the Q branches in the subbands form the 



 36 

most prominent feature of a perpendicular band. Usually, when J = K the branch is stronger 

than in the case J ≠K. This is shown in Fig. 2.9. 

 

 

Figure 2.9: Structure of K subbands of a perpendicular band for a prolate symmetric top. In a) the total 
structure of the perpendicular band is shown.  
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CHAPTER 3 

 

ANALYSIS OF LINEAR MOLECULES 

 

 Acetylene is one of the most studied molecules, both theoretically and experimentally, 

since it represents the simplest model of linear tetratomic species. The spectroscopic studies on 

this molecule have a great importance in the fields of molecular dynamics, astrophysics, 

quantum theoretical calculations and molecular spectroscopy. It has been identified in the 

terrestrial [1] and planetary [2] atmospheres and in the interstellar medium [3]. Diacetylene too is 

of great interest, as it plays, with acetylene, a major role in the synthesis of complex interstellar 

molecules. Nowadays, the study of isotopically substituted species has attracted the attention of 

both spectroscopists and astrophysicists. In particular, the deuterated molecules can provide 

information on the H/D ratio in various regions of the interstellar medium and in planetary 

atmospheres. That is why a very detailed study of some acetylene isotopologues has been carried 

out.  

 The overview of the normal modes of vibration of acetylene is shown in Fig. 3.1, together 

with their symmetry for both the C∞v or D∞h isotopologues. 

 

    Figure 3.1: Normal modes of vibration of acetylene  
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3.1 12C2D2 

 

 The ground electronic state of the perdeuterated acetylene, 12C2D2, has been extensively 

investigated by infrared (IR) and Raman spectroscopy [419]. However, few studies of the 

spectrum below 5000 cm1 were reported more than forty years ago [8,9,11,16]. The most recent 

investigations have been published by Bermejo et al. [17], concerning the stimulated Raman 

spectrum of the 2 stretching fundamental and associated bending modes, by Yu et al. [18] on a 

reanalysis of the bending modes based on spectra recorded in the THz region, and by Weirauch 

et al. [19] on the analysis of the bands in the 10000  12500 cm1 range. For this reason an 

intensive and systematic analysis of the stretching modes has been accomplished from 900 to 

5500 cm1, taking into account their associated first overtones, combinations and hot bands 

involving bending modes. The wavenumbers of the normal modes of 12C2D2 are reported in 

Table 3.1. As this molecule has a centre of symmetry, it belongs to the D∞h point group.  

 

  Table 3.1: Normal modes of 12C2D2 

Band Symmetry Band centre (cm1) 

1 g
  2705.22201 

2 g
  1764.80624 

3 u
  2439.24673 

4 g    510.68219 

5 u    537.78665 

 

3.1.1 Experiment 

 

 The spectra were recorded in Bologna, between 900 and 5500 cm, using a Bomen 

DA3.002 Fourier transform (FT) spectrometer. In the region 900  2400 cm, a Globar source, a 

KBr beam splitter and a high sensitivity HgCdTe detector operating at liquid nitrogen 

temperature were used. In the interval 2400  5500 cm, the same source and beam splitter were 

used, whereas the detector was an InSb type. In both ranges, optical path from 0.18 to 10 m were 

adopted. The achieved resolution ranged from 0.004 to 0.009 cm. 12C2D2 was purchased from 

Cambridge Isotope Labs, with a purity of 99%. Different pressure conditions, from 26.6 Pa to 

1333.2 Pa, were used for recording the spectra. An overview about the general conditions for 

each recording are reported in Table 3.2. Rovibration transitions of H2O [20,21], CO2 [22] and 
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OCS [23], which was added in the sample cell, were used to calibrate the spectra. The calibration 

of the region 3800  5000 cm was performed by adding a small amount of N2O to the sample 

[24]. Particular care was devoted to the calibration of the spectra since consistent results had to 

be obtained from the analysis of different bands reaching the same excited state, which were 

observed in different spectral regions. 

 

Table 3.2: Experimental conditions for the recording of 12C2D2 spectra 

Spectrum 

Pressure 
of the 

sample 
(Pa) 

Range 

(cm1) 
Source Detector 

Resolution 
(cm1) 

#Scans 
Optical 

pathlength 
(m) 

a 26.6   900 1800 Globar MCT* 0.004 220 0.18 

b 266.6   900 2300 Globar MCT* 0.006 300 9 

c 29.0 2300 3900 Globar InSb 0.006 800 0.18 

d 266.6 2300 3900 Globar InSb 0.006 800 10 

e 1333.2 3800 4800 Globar InSb 0.009 800 10 

f 1333.2 3800 5000 Globar InSb 0.009 850 10 

g 1333.2 4500 5600 Globar InSb 0.009 1400 10 

h 66.6 4900 5500 Globar InSb 0.009 500 10 

i 133.3 4900 5500 Globar InSb 0.009 500 10 

l 266.6 4900 5500 Globar InSb 0.009 500 10 

* MCT is a HgCdTe detector 

 

 The estimated wavenumber accuracy and the precision of the measured transitions range 

between 0.0002 and 0.0006 cm1, depending on the signaltonoise ratio and on the Doppler 

width of the lines. This can be calculated according to the following equation: 

7
07.162 10

T

M
     (3.1)

where T is the temperature in Kelvin and M the molecular mass in atomic units. It may be noted 

that the Doppler broadening is proportional to the wavenumber (0). 
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3.1.2 Description of the spectra 

 

 In the region from 900 to 5500 cm1 of the 12C2D2 vibrational spectrum, the most evident 

features are the fundamental bands of the stretching motions and their first overtone and 

combination bands. In total, 92 bands were assigned, 44 of which were newly observed. The 48 

bands already present in the literature and recorded at medium resolution (see Table I of Ref. 

[15]) were measured anew at high resolution and the assignments were extended to higher J 

values. 

 

a) The 900  2200 cm1 region 

 

 This region contains the difference bands of the three stretching vibrations, namely 1  

5 at 2167.43 cm, 2  5 at 1227.02 cm, 3  4 at 1928.56 cm, and associated bands 

involving the bending modes. A difference band is a transition with v = 1 arising from an 

excited state. In the same region the Raman spectrum displays the very intense 2 band and all 

the related hot bands. Fig. 3.2 shows the 1  5 band and five accompanying hot bands of very 

low intensity with centres between 2151 and 2164 cm. Some very weak bands with 

4 5 3tot     or 4 of the pure bending excited states were also identified.  

 

Figure 3.2: Portion of the infrared spectrum of 12C2D2 in the range 2100 2200 cm1 showing 

the difference band 1  5 and associated hot bands. Experimental conditions are 

those of spectrum d in Table 3.2. 
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b) The 2200  2700 cm1 region 

 

 This region of the spectrum is dominated by the most intense band, 3  GS at 2439.25 

cm. A large number of hot bands can be observed in the same region, namely 3 + 4  4,    

3 + 5  5 and all the bands of the kind 3 + [(4 + 5) = 2]  [(4 + 5) = 2], where the two 

states in parenthesis are identical. A few bands having very low intensity with (4 + 5) = 4 

excited states can also be identified but they were not taken into consideration. Figure 3.3 shows 

the 3 band recorded at low pressure and short path length. 

 

Figure 3.3: Portion of the infrared spectrum of 12C2D2 in the range 2300 2650 cm1 showing 

the 3 parallel band, with a detail of the hot bands structures. Experimental conditions 

are those of spectrum c in Table 3.2. 
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c) The 2700  3500 cm1 region 

 

 Two bands of mediumlow intensity are present in this region of the spectrum: 3 + 4  

GS at 2944.32 cm1 and 1 + 5  GS at 3234.78 cm. Each band is accompanied by few hot 

bands from both 4 and 5. The 1 + 5  u  state can also be characterised by means of the 

weak ( u g ) band from 4 ( g ) at 2724.10 cm. In the 1 4 5 4( ) ( )u g        band only 

the Pf-f, Rf-f, and Qf-e branches have been identified. Doublets absorptions were expected, but no 

transitions involving the e levels of the u  state were observed. Probably, this is due to a strong 

 type interaction between the f levels of the u  and u  states of the 1 4 5     manifold 

which allows an intensity borrowing from the u g
   to the u g   band (in both cases the g 

state is 4). Other very weak bands are present in this region, namely 2 + 4 + 5  GS 

( u
  g

 ), at 2803.96 cm, 3 + 24  GS ( u
  g

 ) and ( u  g
 ) at 3452.73 and 3452.20 

cm, respectively, and 3 + 25  GS ( u
  g

 ) at 3499.87 cm. In Figure 3.4 an overview of 

the spectral region between 3205 and 3235 cm is shown, where the Q branches of the 

combination band 1 + 5 and associated hot bands are identified.  

 

 

Figure 3.4: Portion of the infrared spectrum of 12C2D2 showing the Q branches of the 1 + 5 

band and associated hot bands. Experimental conditions are those of spectrum d in 

Table 3.2. 



 47

d) The 3500  5500 cm1 region 

 

 Two bands are prominent in this region of the spectrum: the mediumweak 2 + 3  GS 

( u
  g

 ) at 4190.64 cm and the mediumstrong 1 + 3  GS ( u
  g

 ) at 5145.47 cm. 

Both bands are associated with hot bands from 4 and 5. Two other rather weak bands are 

observed, namely 23  5 at 4311.40 cm and 21  5 at 4848.40 cm. The inclusion of 

these bands in the analysis allowed the determination of the x33 and x11 anharmonicity constants. 

Figure 3.5 shows the 2 + 3 parallel band with the associated hot bands from 4 and 5. 

  

Figure 3.5: Portion of the infrared spectrum of 12C2D2 in the range 4120  4250 cm1 showing 

the 2+3 combination parallel band. Experimental conditions are those of spectrum l 

in Table 3.2. 

 

3.1.3 Analysis 

 

 All the 92 bands analysed are collected in Table 3.3, together with the symmetry of the 

vibrational states involved in the transition, the band centre, the observed range of J” values for 

the various branches, the number of the fitted and assigned lines and the RMS error resulting 

from the simultaneous least squares analysis described below. In the same Table are listed also 
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the 11 Raman bands involving 2 reported in [17] and the pure bending bands observed for the 

first time.  

 

Table 3.3: Bands of 12C2D2 included in the leastsquares fitting procedures 

    Transition Symmetry C 
a P, R, Q (Jmin, Jmax) (104 ) b 

n. fitted/ 
assign. lines

(a)  900 – 2200 cm 

   
Pure bending modes 

4 + 5  GS u
   g

  1048.4893 Pe-e (1-41); Re-e (0-40) 2.44 82/83 

4 + 25  5
IIg  u  1036.1751 

Pe-e (2-49); Re-e (1-43); Qf-e (1-22) 
Pf-f  (2-50); Rf-f (1-44); Qe-f (10-27) 

4.05 160/224 

4 + 5 4
IIu  g  1041.2146 

Pe-e (2-44); Re-e (1-44); Qf-e (1-18) 
Pf-f  (2-44); Rf-f (1-43); Qe-f (11-18) 

4.06 134/199 

4 + 5 GS
IIu  g

  1551.8973 Pe-e (4-22); Re-e (4-16); Qf-e (1-22) 4.56 39/56 

 Iu  g
  1561.6080 Qf-e (1-21) 6.65 19/21 

5 5 g
  u  1594.6866 Pe-e (3-23); Re-e (1-23); Qe-f (1-18) 5.39 47/61 

 g  u  1598.5331 Pe-e (10-14); Re-e (3-14);Qf-e (2-22); 
Pf-f  (10-14); Rf-f (3-14);Qe-f (2-21) 

5.45 55/75 

5 GS u  g
  1603.6858 Pe-e (1-35); Re-e (1-34); Qe-f (1-35) 4.86 87/99 

4 + 5 GS u
   g

  2064.4858 Pe-e (2-22); Re-e (0-22) 5.54 35/44 

Stretching – bending modes 

2 + 4 4 + 5 g  u
  1222.8899 Pf-f  (2-22); Rf-f (0-22); Qe-f (1-24) 4.38 50/67 

  g  u  1223.1834 
Pe-e (2-21); Re-e (2-21); Qf-e (2-23); 
Pf-f  (2-21); Rf-f (2-20); Qe-f (2-24) 

4.00 102/124 

 g  u
  1230.0653 Pe-e (3-23); Re-e (1-21); Qf-e (1-21) 4.57 50/63 

2  5 g
  u  1227.0196 Pe-e (1-35); Re-e (1-34); Qe-f (1-35) 3.06 102/104 

2 + 5  25 u
 
 g  1229.0972 

Pe-e (2-18); Re-e (2-19); Qf-e (2-26); 
Pf-f  (2-17); Rf-f (3-16); Qe-f (2-25);  

3.88 102/113 

 u  g
  1233.3727 Pe-e (1-24); Re-e (1-26); Qf-e (1-26) 4.04 70/76 

2 + 4  5 g  u  1733.7679 Pe-e (3-24); Re-e (1-21);  
Pf-f  (2-24); Rf-f (1-24)

4.29 85/89 

2 + 24 4 + 5 g
  u

  1741.6427 Pe-e (1-19); Re-e (5-15) 8.72 24/28 

2  2
c g

  g
  1756.0056 Qe-e (1-28) 2.95 27/28 

2 + 24 24
c g  g  1757.1101 Qe-e (2-26); Qf-f (2-24) 8.94 26/48 

 
g
  g

  1758.3197 Qe-e (2-26) 5.84 18/23 

2 + 4  4
c g  g  1760.8724 Qe-e (1-36); Qf-f (1-37) 5.06 58/73 

2 + 4 + 5  4 +5
c u   u  1762.3767 Qe-e (2-20); Qf-f (2-20)  9.31 14/38 

 
u
   u

  1762.3865 Qf-f (1-20) 9.07 13/20 
 

u
   u

  1762.4767 Qe-e (1-21) 8.29 11/19 

2  GSc g
  g

  1764.8062 Qe-e (1-46) 4.96 43/44 

2 + 5  5
c u  u  1766.4458 Qe-e (1-33); Qf-f (1-34) 4.49 52/62 

2 + 25 25
c g

  g
  1767.8361 Qe-e (2-22) 7.52 18/20 
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 g  g  1768.0076 Qe-e (2-23); Qf-f (2-23) 8.05 19/42 

2 + 5  4 u  g  1793.5502 
Pe-e (2-23); Re-e (1-24); 
Pf-f  (3-25); Rf-f (1-22) 

4.65 82/90 

3 + 4 24 u  g
  1919.5060 Qf-e (1-28) 3.86 27/28 

 u  g  1920.1117 
Pe-e (3-30); Re-e (2-24); Qf-e (2-18); 
Pf-f  (3-25); Rf-f (2-23); Qe-f (2-20)  

3.88 117/129 

3  4 u
  g  1928.5645 Pe-e (1-35); Re-e (1-36); Qe-f (1-31) 2.12 100/100 

3 + 5  4 + 5 g  u
  1923.2017 Pf-f  (3-24); Rf-f (0-22); Qf-f (1-24)  4.67 55/65 

 g  u  1923.4952 
Pe-e (3-20); Re-e (6-20); Qf-e (2-24); 
Pf-f  (2-21); Rf-f (3-21); Qe-f (3-23) 

4.38 93/106 

 g  u
  1930.3771 Pe-e (2-24); Re-e (0-21); Qf-e (1-23) 4.65 60/67 

1 + 4  4 + 5 g  u
  2151.9229 Pf-f  (4-22); Rf-f (1-18); Qe-f (2-22)  4.50 46/50 

 g  u  2152.2164 
Pe-e (3-17); Re-e (7-13); Qf-e (4-17); 
Pf-f  (3-23); Rf-f (3-16); Qe-f (2-22) 

4.20 63/70 

 g  u
  2159.0983 Pe-e (7-21); Re-e (2-21); Qf-e (3-20) 3.93 43/50 

1 + 5  25 u
 g  2159.6450 

Pe-e (2-18); Re-e (4-19); Qf-e (2-26); 
Pf-f  (2-19); Rf-f (5-19); Qe-f (2-27) 

3.93 105/116 

 u  g
  2163.9205 Pe-e (6-30); Re-e (2-16); Qf-e(2-20) 3.97 55/57 

1  5 g
  u  2167.4354 Pe-e (1-36); Re-e (1-33); Qe-f (1-36) 3.06 104/104 

(b)  2200 – 2700 cm 

2 + 24 5 g
  u  2245.3453 Qe-f (6-22);   9.24 11/12 

2 + 4 + 5 4 u
  g  2293.2777 Pe-e (1-24); Re-e (2-25); Qe-f (1-25); 3.99 66/69 

 u  g  2300.0457 
Pe-e (3-20); Re-e (1-20); Qf-e (5-27); 
Pf-f  (5-21); Rf-f (1-27); Qe-f (2-28) 

4.94 105/126 

 u
  g  2300.3690 Pf-f  (2-25); Rf-f (1-24); Qf-e (12-23) 4.46 52/58 

2 + 5 GS u  g
  2304.2324 Pe-e (2-35); Re-e (0-36); Qf-e (4-40)  3.29 101/107 

2 + 25 5 g
  u  2300.9092 Pe-e (1-31); Re-e (1-36); Qe-f (1-28) 4.14 82/93 

 g  u  2305.3562 
Pe-e (3-21); Re-e (1-24); Qf-e (2-36); 
Pf-f  (3-24); Rf-f (1-30); Qe-f (2-22) 

4.01 122/147 

3 + 24  4 u
  g

  2427.9171 Pe-e (1-38); Re-e (0-36) 3.29 73/75 

 u  g  2427.9926 
Pe-e (3-36); Re-e (2-35); 
Pf-f  (3-35); Rf-f (2-35)

3.15 117/135 

3 + 4 + 5  4 + 5 g
  u

  2428.1303 Pe-e (2-42); Re-e (0-41) 3.70 74/83 

 g  u  2428.1329 
Pe-e (3-39); Re-e (2-39); Qf-e (2-12); 
Pf-f  (3-43); Rf-f (2-41); Qe-f (2-12) 

3.98 142/178 

 g
  u

  2428.7443 Pf-f  (1-42); Rf-f (0-43) 2.77 84/86 

3 + 25  25 u  g  2428.8651 
Pe-e (3-47); Re-e (2-46); 
Pf-f  (3-41); Rf-f (2-41) 

3.42 157/168 

 u
  g

  2429.0075 Pe-e (1-42); Re-e (0-41) 2.92 84/84 

3 + 4  4 u  g  2433.6361 
Pe-e (2-51); Re-e (1-54); Qf-e (2-22); 
Pf-f  (2-51); Rf-f (1-52); Qe-f  (1-21) 

2.55 233/246 

3 + 5  5 g  u  2434.0797 
Pe-e (2-51); Re-e (1-52); Qf-e (3-22); 
Pf-f  (2-52); Rf-f (1-52); Qe-f (1-21) 

3.29 227/244 

3  GS u
  g

  2439.2467 Pe-e (1-58); Re-e (0-59) 3.01 111/118 

1 + 24  4 + 5 g
  u

  2658.7100 Pe-e (3-15); Re-e (1-12) 5.09 24/25 

1 + 4  5 g  u  2662.8009 
Pe-e (2-27); Re-e (1-25); 
Pf-f  (2-26); Rf-f (1-24) 

3.39 92/100 



 50 

(c)  2700 – 3500 cm 

1 + 5  4 u   g
 2724.0980 

Pe-e (2-30); Re-e (1-30); 
Pf-f  (2-31); Rf-f (1-28) 

3.49 107/115 

2 + 4 + 5  GS u
   g

  2803.9599 Pe-e (1-30); Re-e (0-26) 4.88 51/57 

3 + 4 + 5  5 g
  u  2931.8329 Pe-e (1-36); Re-e (1-34); Qe-f (1-28) 3.57 95/97 

 g  u  2938.7174 
Pe-e (3-28); Re-e (1-27); Qf-e (3-27); 
Pf-f  (3-31); Rf-f (3-27); Qe-f (6-32) 

3.09 152/159 

 g
  u  2939.6223 Pf-f  (2-34); Rf-f (1-30); Qf-e (2-31) 3.91 86/93 

3 + 24  4 u  g  2941.5170 
Pe-e (3-42); Re-e (1-36); Qf-e (6-29); 
Pf-f  (3-39); Rf-f (1-35); Qe-f (2-18) 

3.96 167/187 

 u
   g  2942.0472 Pe-e (1-20); Re-e (3-11); Qe-f (1-29) 3.01 52/57 

3 + 4  GS u  g
  2944.3182 Pe-e (1-44); Re-e (0-42); Qf-e (1-46) 2.13 126/131 

1 + 4 + 5  4 u
   g  3212.9892 Pe-e (2-34); Re-e (1-30); Qe-f (1-26); 4.48 81/89 

 u  g  3219.3541 Pf-f  (3-33); Rf-f (1-23); Qf-e (2-25) 4.54 64/78 

 u
   g  3219.7273 Pf-f  (3-30); Rf-f (3-27); Qf-e (3-24) 3.66 67/75 

1 + 25  5 g
  u  3221.5975 Pe-e (1-37); Re-e (1-32); Qe-f (1-27) 4.04 85/96 

 g  u  3226.1345 
Pe-e (3-35); Re-e (1-24); Qf-e (2-30); 
Pf-f  (3-38); Rf-f (1-30); Qe-f (2-35) 

3.55 145/186 

1 + 5  GS u  g
  3234.7802 Pe-e (2-44); Re-e (0-38); Qf-e (2-39) 3.06 114/120 

3 + 24  GSd u  g
  3452.1992 Pe-e (9-20); Re-e (6-17) 4.49 22/24 

 u
   g

  3452.7294 Pe-e (1-28); Re-e (0-28); 4.14 54/57 

3 + 25  GS u
   g

  3499.8672 Pe-e (1-28); Re-e (0-30); 4.70 57/59 

(d)  3500 –5500 cm     

1 + 4 + 5  GS u
   g

  3723.6714 Pe-e (1-32); Re-e (0-31) 3.56 61/64 

2 + 34 + 5  GS u
   g

  3821.7771 Pe-e (1-15); Re-e (0-15) 4.39 26/31 

2 + 5  GS u  g
  4061.8118 Pe-e (2-26); Re-e (0-26); Qf-e (1-33) 4.87 60/84 

2 + 3 + 24  4 u

 g  4172.0138 

Pe-e (3-30); Re-e (2-30); 
Pf-f  (3-28); Rf-f (2-27) 

4.81 87/108 

 u
   g

  4172.9860 Pe-e (1-29); Re-e (0-28) 4.63 45/57 

2+3+4+5  4+5 g  u  4177.2083 
Pe-e (3-29); Re-e (2-25); 
Pf-f  (3-30); Rf-f (2-26) 

7.92 84/104 

 g
  u

  4177.2950 Pe-e (1-33); Re-e (0-28) 8.28 50/62 

 g
  u

  4177.8378 Pf-f  (1-32); Rf-f (0-30) 7.53 51/63 

2 + 3 + 4  4 u
 
 g  4181.2577 

Pe-e (2-40); Re-e (1-38); Qf-e (1-5) 
Pf-f  (2-39); Rf-f (1-39); Qe-f (1-5) 

3.75 138/164 

2 + 3 + 25  5 u
   g

  4183.3423 Pe-e (1-29); Re-e (0-27) 4.78 44/57 

 u  g  4183.3823 
Pe-e (3-28); Re-e (2-28); 
Pf-f  (3-31); Rf-f (2-29) 

7.00 80/109 

2 + 3 + 5  5  g  u  4187.0696 
Pe-e (2-39); Re-e (1-37); Qe-f (1-6)  
Pf-f  (2-39); Rf-f (1-37); Qf-e (1-4) 

3.28 141/160 

2 + 3  GS u
   g

  4190.6395 Pe-e (1-46); Re-e (0-48) 3.14 95/95 

1 + 35  GS u  g
  4283.7206 Qf-e (1-20) 10.56 19/20 

23 5 g
  u  4311.4006 Pe-e (3-21); Re-e (1-23);Qe-f (1-26) 4.97 63/68 

2 + 3 + 24  4 u
   g  4687.0654 Qe-f  (5-19) 3.96 15/15 
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2 + 3 + 4  GS u  g
  4691.9360 Pe-e (2-30); Re-e (0-28); Qf-e (1-32) 4.53 89/90 

21 5 g
  u  4848.4109 Pe-e (1-28); Re-e (1-21); Qf-e (1-28) 5.44 52/76 

1 + 2 + 5  GS u  g
  4982.1510 Qf-e (2-26) 3.80 22/24 

1 + 3 + 24  4 u  g  5055.5466 
Pe-e (3-31); Re-e (2-30); 
Pf-f  (1-31); Rf-f (2-30) 

4.78 54/116 

 u
  g

  5055.8595 Pe-e (1-32); Re-e (0-30) 3.85 40/63 

1+3+4+5  45 g
  u

  5062.4808 Pf-f  (1-31); Rf-f (0-30) 4.47 54/62 

 g  u  5063.0325 
Pe-e (2-31); Re-e (2-29); 
Pf-f  (3-30); Rf-f (2-30) 

5.34 66/113 

 g
  u

  5063.1806 Pe-e (1-35); Re-e (0-33) 4.80 43/69 

1 + 3 + 25  5 u
  g

  5070.2493 Pe-e (1-25); Re-e (0-25) 5.24 36/51 

 u  g  5070.4295 
Pe-e (3-30); Re-e (2-27); 
Pf-f  (3-30); Rf-f (2-29) 

5.03 81/110 

1 + 3 + 4  4 u  g  5076.1170 
Pe-e (2-43); Re-e (1-41); 
Pf-f  (2-41); Rf-f (1-41) 

4.63 118/166 

1 + 3 + 5  5 g  u  5083.8130 
Pe-e (2-40); Re-e (1-40); 
Pf-f  (2-37); Rf-f (1-35) 

4.28 116/149 

1 + 3  GS u
  g

  5097.1857 Pe-e (1-48); Re-e (0-47) 3.99 82/96 

2 + 3 + 24 +55 g  u  5193.0072 
Pe-e (2-19); Re-e (2-17); 
Pf-f  (2-19); Rf-f (2-17) 

4.85 45/68 

2 + 3 + 34  4 u  g  5195.4746 
Pe-e (2-24); Re-e (1-19); 
Pf-f  (2-24); Rf-f (1-19) 

10.34 52/84 

2 + 3 + 24  GSd u  g
  5196.2204 Pe-e (8-33); Re-e (8-33) 4.37 42/52 

 u
  g

  5197.7983 Pe-e (1-35); Re-e (0-37) 4.84 64/73 

2 + 3 + 25  GS u
  g

  5254.2020 Pe-e (1-22); Re-e (0-22) 7.59 36/45 

1+2+4+5  GS u
  g

  5466.7403 Pe-e (1-26); Re-e (0-20) 4.65 43/47 

a In cm1. For the definition of the band centre C  see text. 
b  (in cm1) corresponds to the RMS value of the residuals for the various assigned lines  
   resulting from the simultaneous fit. 
c Raman and Infrared data from Ref. [17].

          d Perturbation allowed transition. 
 

 As already pointed out in Section 2.4.1, the assignment procedure was carried out taking 

into account the intensity alternation of adjacent lines due to 6:3 statistical weight ratio of 

symmetric and antisymmetric levels. Lower state combination differences (LSCD), calculated 

from the parameters reported in Table 3.5, were used to assign the J values of the transitions and 

to identify the lower vibrational state. The upper state was assigned on the basis of its symmetry, 

dictated by the selection rules illustrated in Section 2.4.1. Once the identification and 

characterization of the upper state was accomplished, a systematic search of all the allowed 

bands reaching the same state from different lower states was performed.  

 The spectroscopic analysis of the assigned bands was carried out in two steps. First, the 

transition wavenumbers for each band were fitted separately to effective upper state rovibrational 
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parameters, to check the correctness of the assignments and to extend the data set to higher J 

values. The basic Hamiltonian of a linear molecule, with distortion corrections up to high power 

in the rotational angular momentum was adopted for the analysis. For the transitions involving 

doubly degenerate states, the   doubling energy contributions were considered. So the 

rovibrational term values (see Eq. (2.14)) are given by 

   
      

0 0 2 3
c

2 31
2

( , ) ( ) ( 1) ( 1) ( 1) ...

( 1) ( 1) ( 1)

  

  

        

     J JJ

T J G B J J D J J H J J

q J J q J J q J J
(3.2) 

where the – and + signs are related to the e and f levels, respectively, and the centre energy is 

0 0 2 4
    cG G B k D k  (3.3) 

with 0
vG  being the pure vibrational term value defined in Eq. (2.8) and where 4 5k    . 

 The band centre is defined as  

0 2 4 0 2 4
' ' ' " " "( )C G B k D k G B k D k             (3.4) 

where 0
'G  and 0

"G  refer to the upper and lower state, respectively. 

 As a starting point, the calculation of the spectroscopic parameters of the lower states 

(involving pure bending modes) was accomplished. These were derived from the analysis of the 

IR data [14], the transition recorded in the THz region [18] and the newly observed 

   4 5 GSu g        band, fitting simultaneously only transitions with 2tot  . Since the 4 

and 5 bending mode are separated by about 27 cm1, vibrational coupling of DarlingDennison 

type occurs between levels of identical symmetry, such as 4 2   ( g
 and g) and 5 2   ( g

 and 

g). The 3tot   states were not included in the dataset since all the hot bands involving 

stretching modes identified in the spectra are from levels with 2tot  . Moreover, the 

anharmonic interaction between the 4  = 3 and 4  = 1, 5  = 2 levels cannot be properly 

accounted for, owing to the lack of experimental observations on the former state. The model 

Hamiltonian for the simultaneous analysis of bending modes is described by Eqs. (2.23)  (2.27) 

and (2.32)  (2.34). In addition there is also the parameter 

0 2
45 45 45

J JJM M      (3.5)

 The offdiagonal elements for the Darling  Dennison interaction are reported in Table I 

of Ref. [14], where s45 = K44,55: 
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    5 54 4

1
2' 2 2 2 2

4 5 2 4 4 44,55 4 4 5 5

1
, ( 2) , ( 2) 2

4
H K            

     (3.6)

where 

 0 2 4 5
44,55 44,55 44,55 44,55 44,55 4 44,55 5 2J JJK K K M K M K K       (3.7)

and 

 
   

5 54 4 22'
4 5 2 4 4 45 45 4 4

1
2

4 4 5 5 5 5

1
, ( 2) , ( 2) ( 2 ) 2

16

                                                         2 4

H r g    

  

     

    

    

  

(3.8)

 Once the analysis of the bending states was completed, the second step was started by 

analysing the stretching bending system. The bandbyband analysis revealed, as expected, 

that some bands are affected by perturbations. All the transition wavenumbers relative to a 

specific stretching mode, i.e. the fundamental band, its first overtone, the hot and combination 

bands involving bending modes, were fitted together. In this way, three sets of spectroscopic 

parameters, one for each stretching mode, were obtained from independent fits. In this case, the 

data were fitted following the Eqs. (2.8), (2.10)  (2.13). Moreover, the r, q, and  parameters 

are given by the expressions:  

0 2
45 45 45 45 ,J JJ

s s s sr r r M r M    (3.9)  

0 2
' ' ' ' ,J JJ

st st stt t stt t ss t s t st stq q q q q q M q M     v v v v (3.10)  

0 2 3,J JJ JJJ
st st st st stM M M         (3.11)

0
45 45 45 ,J

s s s M     (3.12)

 The Darling  Dennison interaction must be taken into account in the global fit of 

stretching  bending bands too. The offdiagonal elements (Eq. (3.5), with ss45 = Ks44,s55) contain 

the parameters in the following equations: 

0 2
44, 55 44, 55 44, 55 44, 55

J JJ
s s s s s s s sK K K M K M     (3.13)

where the subscripts s = 1, 2, 3 refer to one of the stretching modes, for the ,g u
  interacting 

states. For interacting g,u states the parameters are g45, r45 or rs45, as defined in Eqs. (2.23) for 

bending states and (2.8) for stretchingbending states, (2.32) and (3.9). The complete 

blockdiagonalized matrices illustrating the   type and the DarlingDennison interactions 

between the bending levels in the vibrational manifolds is reported hereafter in Table 3.4: 
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Table 3.4: Block  diagonalized matrices used for the interactions occurring in acetylene isotopologues 

 

vt = 0 t = 4, 5 [00 J] 

vt = 1 t = 4, 5 [1±1 J] 

 

v4 = 1, v5 = 1 
 1 1

45 5 4

1 1
45

1 1
1 1 ( 2) ( 2)

4 2

1 1

J M M q q M M

J r

 



        
 
     



 

v4 = 2 and v5 = 2 
a)                               

 2 0
4 45 45

0 2
5

1 1
2 0 ( 2) 2

2 2
1

0 2 ( 2)
2

J M M r g

J M M









       
 
       

 

 

b)                         

0 0
45 4

0 0
5

2 0
4 45 45

0 2
5

[2 0 ] ( 2) 0

[0 2 ] 0 ( 2)

1 1
[2 0 ] ( 2) ( 2 )

2 2
1

[0 2 ] ( 2)
2

J K q M M

J q M M

J M M r g

J M M





 
 

 
 
   
 
 
  
 

 

v4 = 2, v5 = 1 

and v5 = 3 

 

  

  

  

  

0 1 (3) (3)
5 45 45 44,55 5 5

2 1 (1)
45 4 5 4

0 1 (1)
5 4 45

0 3
45 45

2 1

1 3
0 3 ( 2 ) 2 2 6 0

2 2
1 1

2 1 2 0 2 6
2 2

1 1 1
2 1 0 2 6

2 22

3
0 3 ( 2 )

2

2 1

J q M r g K q M M M

J r q M q M M M

J q M q M M M

r g















 

 
         
 
             
          

    
    



 



 












 

with (3)
5q for 35, and (1)

5q  for 5 in 24 + 5. 

 

The stretching stretching combination bands, 1 + 2   GS,1 + 3  GS and 2 + 3 

 GS, with the associated hot and combination bands, were fitted separately. All the parameters 

related to the s  = 1 (s = 1, 2, 3) states in Eqs. (2.8) and (2.10), i.e.   0 0 0 0
', , , s ss s sx , etc., were 

constrained to the values obtained from the analysis of the corresponding stetching band system. 

In the simultaneous fits the ground state and the pure bending state parameters were held fixed to 

the values reported in Table 3.5. Identical unitary weights were assigned to all the transitions 

with the exclusion of the overlapping lines, which were given zero weight. In addition, transition 

wavenumbers that differed from the corresponding calculated values by more than a chosen limit 

(0.001 cm or 0.0015/0.002 cm in few cases) were excluded from the last cycle of the 

leastsquares procedure. The choice of the refined parameters in each fit was dictated by the 

structure of the data set. An identical strategy has been adopted for the simultaneous fit of the 

transitions involving each stretching or stretchingstretching mode. First, the bands 
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corresponding to the 1 and 2 s  (s = 1, 2, 3) states were fitted. The transitions to the 

corresponding associated bending states were successively added in blocks, starting with those 

involving 4 1   and 5 1  , then the manifold 4 5 1    ,  ,     u u u  was added, and, finally, 

the 4 2   and 5 2  , g
  and g  states were added, coupled by the Darling Dennison 

interaction. The enlargement of the dataset resulted in the refinement of the appropriate higher 

order parameters, necessary to adequately reproduce the experimental observations, according to 

some constraints. They must: a) correspond to lowerorder ones previously obtained, b) be 

statistically determined, c) improve the quality of the fit. The adequacy of the Hamiltonian 

model adopted was tested by comparing the results of the simultaneous analysis to those 

achieved in the single band fits mentioned above. 

 

3.1.4 Results and Discussion 

 

 The quality of the fit for each band in the single band fits or in the simultaneous fits is 

highlighted by the RMS values listed in the fifth column of Table 3.3: they are all better than 

0.0011 cm1. In the same table, very precise values for the band centres are also reported: their 

uncertainties are usually of the order of magnitude of a few parts in 104 cm1. 

 The parameters obtained for the bending states, in comparison with those from Ref. [17] 

(column 3) and Ref. [18] (column 4), are displayed in Table 3.5.  

 

Table 3.5: Spectroscopic parameters (in cm1)a of the bending modes of 12C2D2 

Parameter This work         Bermejo et al.b Yu et al.c 

0
4  509 .23325964(245) 509.2330789(270) 509.2607280(210) 
0
5  538 .02536058(249) 538.0252188(182) 538.006990(240) 
0
44x  1 .89165528(278) 1.891696(363) 1.94171(213) 
0
45x  1 .7407432(138) 1.7407768(131) 1.726368(367) 
0
55x  1 .60296682(272) 1.603037(363) 1.65901(247) 
0
44g  0 .40720362(173) 0.407158(363) 0.52043(213) 
0
45g  3 .3510743(135) 3.35106236(711) 1.64708977(407) 
0
55g  2 .21426400(173) 2.214306(363) 1.43786(213) 

445y     0.20499(196) 

555y  × 103    0.624(123) 
44
5y     0.22342(230) 
0

45r   3 .5876949(270) 3.58769929(906) 5.7730(740) 
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45
Jr  × 105 8.37963(630) 8.36107(398) 8.37619(340) 

45
JJr  × 108 2.3812(170) 1.9091(993) 1.4663(157) 

45
JJJr  × 1012 0.36743(777)  0.4340(147) 

445r    0.18426(600) 

455r    0.9086(801) 

0B  0.8478734706(168) 0.847874129(220) 0.8478734840(640) 
0
4  × 103 2.08049802(902) 2.080753(133) 2.0815510(767) 
0
5  × 103 2.16654528(895) 2.1664494(722) 2.162834(100) 

44  × 105 1.929906(813) 2.1922(251) 2.07330(987) 

45  × 105 0.19079(298) 0.20151(461) 0.6076(177) 

55  × 105 1.959146(841) 2.2075(256) 2.28485(874) 
(44)  × 105 0.838506(705) 0.5951(259) 0.64161(951) 
(45)  × 105 7.87940(315) 7.85862(451) 9.00656(767) 
(55)  × 105 5.120826(702) 5.3617(254) 4.8080(110) 

445  × 106   1.324(133) 

555  × 108   3.74(170) 
(45)
4  × 106   0.1473(107) 
(44)
5  × 106   6.664(245) 
(55)
5  × 106   0.7268(200) 

0D  × 106 0.8023884(490) 0.801900(363) 0.8025180(940) 

4  × 108 1.65751(300) 1.744(149) 1.4633(123) 

5  × 108 3.09829(298) 2.9604(623) 0.8496(244) 

44  × 109 3.0382(189) 4.473(705) 4.7203(543) 

45  × 109  0.0768(310) 16.612(117) 

55  × 109 5.5841(211) 6.484(330) 1.451(117) 
(44)  × 109 8.8406(307) 9.79(217) 12.258(157) 
(45)  × 109 21.566(167) 19.306(773) 6.841(297) 
(55)  × 109 17.4427(205) 17.115(945) 15.681(427) 

445  × 109   5.961(120) 

555  × 109   2.2182(644) 
(45)
4  × 109   5.374(193) 
(44)
5  × 109   2.261(287) 
(55)
5  x 109   6.054(147) 

0H  × 1012 0.8802(564) 0.302(179) 1.0850(470) 

4h  × 1012 0.2861(145) 0.5023(653) 0.1461(190) 

5h  × 1012 0.2850(125) 0.2021(218) 0.1421(163) 
0
4q  × 103 3.22881354(961) 3.229034(628) 3.239940(310) 
0
5q  × 103 3.2614320(190) 3.25890(161) 3.2338620(175) 

44q  × 105 1.301280(917) 1.2822(621) 4.1048(270) 
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45q  × 105 2 .1347(780)  7.95716(450) 

54q  × 105 1 .2411(780) 2.159(362) 1.1925(117) 

55q  × 105 1 .40188(190) 1.661(162) 4.7145(113) 

4
Jq  × 108 2 .25170 (120) 2.2459(106) 2.257130(190) 

5
Jq  × 108 2 .25445(132) 2.25759(678) 2.259100(217) 

4
JJq  × 1012 0 .16914(826) 0.1814(633) 0.30728(577) 

5
JJq  × 1012 0 .15902(958) 0.2353(339) 0.31228(647) 

4
Kq  × 105    1.9577(117) 

5
Kq  × 105    0.27766(284) 
0
4  × 108 2 .35173(951) 2.252(584) 3.09100(460) 
0
5  × 108 4 .22443(401) 3.814(247) 1.3220(130) 

4
J  × 1012 0 .1296(295)  1.1534(844) 

5
J  × 1012 0 .3769(442)  0.8866(630) 
0
45  × 108 8 .6567(653) 6.869(405) 5.0770(510) 

4
JJ × 1015    0.5023(394) 

5
JJ  × 1015 0 .1446(138)  0.2695(299) 

45
J  × 1012 1 .1790(622)  2.5458(544) 

45
JJ  × 1015    0.3923(247) 
0
44,55K  7 .3977269(196) 7.39823(427) 8.18790(260) 
4
44,55K  × 103    0.37943(314) 

44,55
JK ×103 0 .1164559(790) 0.14565(315) 0.109410(790) 

44,55
JJK ×106 0 .016560(202)   

    

N. of fitted / assigned lines  1372 / 1491 1039 / 1158 1938 / 2092 
RMS / cm1 (IR data)               0.00013 0.00019 0.00011 
RMS / MHz ( MW data)              0.092 0.038     0.092 
   

a Estimated uncertainties (1σ) are given in parenthesis in units of the last figure quoted.  
b From Ref. [17]. 
c From Ref. [18]. 

 

 The comparison between columns 2 and 3 shows that these values are in good agreement 

between them, with the exception of a few higher order parameters. A large number of 

spectroscopic parameters were determined more precisely due to the inclusion in the dataset of 

the measurements in the THz region. An analogous comparison with data in column 4 is more 

difficult to perform, since the model Hamiltonian adopted by Yu et al. [18] differs from the one 

of the present study in many respects, as for example opposite signs and/or different coefficients 

in their Hamiltonian. Moreover, some large differences are related to the presence of higher 

order corrections due to the inclusion in their analysis of 3tot   states. For example, the values 
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of 0
45r  in columns 2 and 4 are practically identical if the contributions of 445r  and 455r  are taken 

into account (see Eq. (2.32)). The parameters obtained in the simultaneous fits of each stretching 

or stretching stretching system are listed in Tables from 3.6 to 3.10, together with the number 

of assigned transitions and of those retained in the final fit according to the criterion for 

rejection, that is also reported. 

 

Table 3.6: Spectroscopic parameters (in cm1) of 12C2D2 resulting from the simultaneous  

fit of the 1 fundamental and its associated hot bands 

 

Parameter   Parameter   

0
1  2717.345212(123)   
0
11x  12.1232060(724) 45

1y  0.1606064(574) 
0
14x  15.623572(183) 55

1y  0.0107148(389) 

0
15x  8.2450668(963) 0

145r  3.3690433(612) 

144y  0.301172(129) 145
Jr 510  11.9052(434) 

145y  0.1376154(930) 145
JJr 810  1.0355(579) 

    

0
1

310  5.981994(285) 145 510  2.1840(397) 

11 510  8.2078(229) 15 510  0.5789(109) 

14 510  11.0950(190) 45
1

510  5.2106(407) 

  
145 910  6.917(398) 

    
0
14q 310  3.39571(483) 14

Jq 810  6.256(279) 
0
15q 310  3.326832(350) 15

Jq 810  2.4114(166) 

144q 510  9.500(467) 14
JJq 1210  49.16(248) 

145q 510  11.710(191) 0
14 810  -99.0(178) 

155q 510  0.8049(278) 0
15 810  4.5685(355) 

    
0
144,155K    7.678006(650) 

144,155
JK 310    0.10910(191) 

144,155
JJK 610    0.01889(185) 

      

N. of fitted / assigned data    1308/1471 

St. dev. of the fit (cm-1)           0.000392 
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Table 3.7: Spectroscopic parameters (in cm1) of 12C2D2 resulting from the simultaneous fit  

of the 2 fundamental and its associated hot bands 

 

Parameter   Parameter   

0
2  1769.206582(101) 0

255y  0.0374280(437) 
0
22x  4.4003408(641) 44

2y  0.2660039(886) 
0
24x  4.014847(153) 45

2y  0.0425694(572) 
0
25x  1.706545(140) 225y  0.0328287(652) 

0
244y  0.3437783(657) 0

245r  3.5456078(593) 

0
245y  0.020935(181) 245

Jr 510  8.2815(243) 
    

0
2

310  3.162298(170) 25 510  6.2440(151) 

22 510  0.3621(134) 44
2 510  2.6371(747) 

24 510  9.2327(758) 45
2 510  0.4281(451) 

    

24 910  117.07(288) 44
2 910  116.12(291) 

25 910  11.185(501) 55
2 910  9.914(420) 

    
0
24q 310  3.34499(184) 24

Jq 810  2.1745(411) 
0
25q 310  3.240958(935) 25

Jq 810  2.1220(296) 

244q 510  8.087(179) 225q 510  4.4298(433) 

245q 510  2.460(216) 0
24 810  35.85(103) 

254q 510  8.538(111) 0
25 810  1.281(147) 

255q 510  2.9874(884) 24 J 910  0.2808(149) 
    

0
244,255K  7.576259(388)   

244,255
JK 310  0.10303(239)   

    

N. of fitted / assigned data    1614/1924 

St. dev. of the fit (cm-1)           0.000481 
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Table 3.8: Spectroscopic parameters (in cm1) of 12C2D2 resulting from the simultaneous fit  

of the 3 fundamental and its associated hot bands 

 

Parameter   Parameter   

0
3  2453.8998296(796)   

0
33x  14.6531002(498) 0

355y   0.0192250(383) 

0
34x  5.5854373(583) 44

3y  0.0255495(247) 
0
35x  5.1522200(713) 45

3y  0.1610476(266) 

0
344y   0.0041588(306) 0

345r  3.8946969(355) 

0
345y  0.1838570(444) 345

Jr 510  8.6213(130) 
    

0
3

310  4 .491143(178) 345 510  0.24981(468) 

33 510  0.9277(135) 35 510  5.1303(160) 

34 510  2.56605(648) 45
3

510  0.4399(105) 

  55
3

510   

    
0
3 810     

34 910   35 910  0.1756(332) 

    
0
34q 310  3.228778(142) 354q 510  8.4142(309) 

0
35q 310  3.175816(195) 355q 510  1.4161(162) 

344q 510  1.62145(636) 34
Jq 810  2.24553(471) 

345q 510  14.7020(347) 35
Jq 810  2.22975(508) 

    
0
34 810  2.3054(120) 0

345 810  0.7197(354) 

0
35 810  4.5264(227)   

    

0
344,355K  7.898610(231)   

344,355
JK 310  0.103326(790)   

344,355
JJK 610  0.023998(608)   

      

N. of fitted / assigned data    2636 / 2844 

St. dev. of the fit (cm-1)           0.000352 
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Table 3.9: Spectroscopic parameters (in cm1) of 12C2D2 resulting from the simultaneous 

 fit of 1 + 3 or 2 + 3 and their associated hot bands 

 

Parameter a 1 + 3 2 + 3 

0
3ix  47 .2829951(888) 13 .4135050(932) 

0
34iy  0 .416912(182) 0 .182626(178) 

0
35iy  0 .059782(203) 0 .016131(188) 

0
344iy  0 .2903226(853)  .2852376(789) 

0
345iy  0 .233812(138) 0 .0957096(994) 

0
355iy  0 .0131750(926) 0 .0420135(857) 
(44)
3iy  0 .0149052(408)  .0601886(437) 
(45)
3iy  0 .4020405(626)  .0093238(510) 
(55)
3iy  0 .0239856(320) 0 .0169411(437) 

    

3i
510  7 .6196(227) 8 .5203(227) 

34i
510  0 .3432(229) 2 .9434(710) 

35i
510  1 .7896(528) 1 .4850(573) 

344i
510  0 .2963(132) 9 .922(198) 

345i
510  1 .8891(229)  

355i
510  0 .1208(203) 11 .307(225) 

(44)
3i

510   12 .543(189) 
(45)
3i

510  5 .3231(154)  
(55)
3i

510   10 .540(201) 

3i
910  1 .311(122) 1 .084(111) 

34i
910   44 .746(623) 

35i
910  2 .761(249) 2 .035(208) 

344i
910   43 .630(531) 

   
0
34iq 310  3 .275240(747) 3 .34103(110) 

0
35iq 310  3 .20992(101) 3 .17004(141) 

0
344iq 510  1 .1315(226) 6 .7208(949) 

0
345iq 510   4 .9936(902) 

0
355iq 510  1 .5291(422) 6 .771(130) 

34
J
iq 810  3 .297(116) 1 .9919(329) 
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35
J
iq 810  4 .008(189) 2 .1525(408) 

34
JJ
iq 1210   .289(508)  

35
JJ
iq 1210   .371(954)  

   
0
34i

810  0 .8652(495) 30 .950(386) 

0
35i

810   .4426(604)  .254(170) 

34
J
i

1210    .75(314) 

0
345i

810  10 .2297(836)  .610(124) 

   

0
345ir  3 .2377758(955) 3 .859076(102) 

345
J

ir
510   .7172(513)  .6751(629) 

345
JJ

ir
810  2 .2712(543) 1 .7699(720) 

0
344, 355i iK  7 .898610 

b 7 .898610
 b

 

344, 355
J
i iK 310   1 .57(280) 

N. of fitted / assigned lines 690/995 1061/1254 

St. dev. of the fit (cm-1) 0.000474 0.000544 
a
 i = 1 or 2, respectively. 

b
 Fixed to the value of 0

344,355K  in Table 3.8. 

 
 

Table 3.10: Spectroscopic parameters (in cm1) of 12C2D2 resulting from the  

simultaneous fit of the 1 + 2 and associated hot bands 

Parameter  

0
12x  17.20a 

125y  1.907831(204) 

1245y  3.752246(235) 

1245 510  19.608(143) 

1245 910  651.98(265) 
0
125q 310  3.57484(324) 

125
Jq 810  5.744(495) 

N. of fitted / assigned data    65/71 

St. dev. of the fit (cm-1)        0.000460 
a
 Fixed to value from Ref.[10] 
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 The number of data for 1 is smaller than that for the other stretching systems since 

transitions from the GS to the excited states of “g” symmetry are not allowed in IR and, 

differently from 2 [17], they are too weak to be observed in Raman. In total, 8762 transitions 

were fitted, 1246 of them (about 14%) were discarded because they were overlapping or 

exceeded the limit for rejection. 

 Thirty one parameters for 1, 36 for 2 and 35 for 3 were determined with high precision. 

The standard deviation of each fit is smaller than 0.0006 cm1, of the same order of magnitude of 

the estimated uncertainty of the experimental measurements. A comparison between the leading 

terms of the rotational and vibrational   type and Darling  Dennison interactions shows that 

the values in 1, 2 and 3 differ from the corresponding ones in the bending states by less than 

10%. As far as the stretching  stretching combinations are concerned, in the case of 1 + 2 only 

6 parameters were determined, because only two bands, namely 1 + 2 + 5 ( u ) GS and 1 + 

2 + 4 + 5 ( u
 ) GS, were observed. For 1 + 3 and 2 + 3 more than 30 parameters were 

determined, whereas all the vibrations and rotational constants of each stretching mode present 

in the stretching  stretching combination bands were constrained to the values listed in Tables 

3.5 – 3.8. In particular, in the global fits for 1 + 3 and 2 + 3, the 0
44,55K  Darling  Dennison 

interaction constant was constrained to the value obtained from the analysis of the 3 system, 

whereas 44,55
JK  was refined for the 2 + 3 system. For most of the parameters the estimated 

uncertainties are several orders of magnitude smaller than their values and, generally, low 

internal correlations are observed between them. The centre term values 0
CG , defined in Eq. 

(3.3), of the vibrationally excited states involved in the analysed bands are collected in Table 

3.11. 

 

                   Table 3.11: Vibrational term values (in cm1) of the levels involving stretching  

    and bending modes in 12C2D2 

1  2  3  4  5  4  5  Sym. 0
CG  

0 0 0 1 0 ±1 0 g  510.68219 
0 0 0 0 1 0 ±1 u  537.78665 
0 0 0 2 0 ±2 0 g  1024.20659 

0 0 0 2 0 0 0 g
  1024.81229 

0 0 0 1 1 1 –1 u
  1041.48926 

0 0 0 1 1 ±1 ±1 u  1048.37117 
0 0 0 1 1 –1 1 u

  1048.66465 
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0 0 0 0 2 0 0 g
  1070.85970 

0 0 0 0 2 0 ±2 g  1075.13524 

0 0 0 2 1 0 ±1 II
u  1551.89730 

0 0 0 2 1 ±2  1 I
u  1561.60795 

0 0 0 1 2 ±1 0 g  1573.96161 
0 0 0 0 3 0 ±1 u  1603.68581 
0 1 0 0 0 0 0 g

  1764.80624 

0 0 0 3 1 1 –1 u
  2064.48581 

0 0 0 0 4 0 0 g
  2132.47325 

0 0 0 0 4 0 ±2 g  2136.31979 

0 1 0 1 0 ±1 0 g  2271.55459 
0 1 0 0 1 0 ±1 u  2304.23241 
0 0 1 0 0 0 0 u

  2439.24673 
1 0 0 0 0 0 0 g

  2705.22201 

0 1 0 2 0 ±2 0 g  2781.31663 

0 1 0 2 0 0 0 g
  2783.13199 

0 1 0 1 1 1 –1 u
  2803.95993 

0 1 0 1 1 ±1 ±1 u  2810.72784 
0 1 0 1 1 –1 1 u

  2811.05117 
0 1 0 0 2 0 0 g

  2838.69581 

0 1 0 0 2 0 ±2 g  2843.14287 
0 0 1 1 0 ±1 0 u  2944.31825 
0 0 1 0 1 0 ±1 g  2971.86638 
1 0 0 1 0 ±1 0  g

 3200.58759 
1 0 0 0 1 0 ±1 u  3234.78021 
0 0 1 2 0 ±2 0 u  3452.19924 
0 0 1 2 0 0 0 u

  3452.72943 
0 0 1 1 1 1 –1 g

  3469.61959 

0 0 1 1 1 ±1 ±1 g  3476.50406 

0 0 1 1 1 –1 1 g
 3477.40899 

0 0 1 0 2 0 0 u
  3499.86718 

0 0 1 0 2 0 ±2 u  3504.00033 
0 2 0 0 0 0 0 g

  3520.81180 

1 0 0 2 0 0 0 g
  3700.19928 

1 0 0 1 1 –1 1 u
  3723.67139 

1 0 0 1 1 ±1 ±1 u  3730.03632 
1 0 0 1 1 1 –1 u

  3730.40948 
1 0 0 0 2 0 0 g

  3759.38414 

1 0 0 0 2 0 ±2 g  3763.92113 

0 1 0 3 1 1 1 u
  3821.77710 

0 2 0 0 1 0 ±1 u  4061.81183 
0 1 1 0 0 0 0 u

  4190.63947 
1 0 0 0 3 0 ±1 u  4283.72062 
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0 1 1 1 0 ±1 0 u  4691.93986 
0 1 1 0 1 0 0 g  4724.85628 
0 0 2 0 0 0 0 g

  4849.18726 
1 1 0 0 1 0 ±1 u  4982.15096 
1 0 1 0 0 0 0 u

  5097.18574 
0 1 1 2 0 ±2 0 u  5196.22036 
0 1 1 2 0 0 0 u

  5197.79829 
0 1 1 1 1 1 1 g

  5218.78431 

0 1 1 1 1 ±1 ±1 g  5225.57948 

0 1 1 1 1 1 1 g
 5226.50246 

0 1 1 0 2 0 0 u
  5254.20203 

0 1 1 0 2 0 ±2 u  5258.51755 
2 0 0 0 0 0 0 g

  5386.19760 
1 1 0 1 1 1 1 u

  5466.74027 
1 0 1 1 0 ±1 0 u  5586.79923 
1 0 1 0 1 ±1 0 g  5621.59962 
0 1 1 3 0 ±1 0 u  5706.15675 
0 1 1 2 1 0 ±1 g  5730.79388 
1 0 1 2 0 ±2 0 u  6079.75319 
1 0 1 2 0 0 0 u

  6080.67181 
1 0 1 1 1 1 1 g

  6104.66989 

1 0 1 1 1 1 1 g
 6111.14544 

1 0 1 1 1 ±1 ±1 g  6111.40371 
1 0 1 0 2 0 0 u

  6141.10897 
1 0 1 0 2 0 ±2 u  6145.56472 

 

 Sixteen term values are related to pure bending states and 59 to stretchingbending 

levels. Some local perturbations have been observed during the analysis. In the fit of the 21  

5 band, the discrepancies between observed and calculated wavenumbers increased with 

increasing J. The interacting state could be 1 2 1   , 4 2  , lying approximately 50 cm1 

apart, through the 1/244 anharmonic resonance as already pointed out by Weirauch et al. [19]. 

Another perturbation has been evidenced in the analysis of the 1 + 3 + 5  g ) 5 u ) band, 

localized between J = 33 and 34 e levels, while in 1 + 3 + 4 u )  4  g ) it is observed 

between the J = 22 and 23 f levels. Again, the latter perturbation can be explained by the 1/244 

interaction between the upper state and 2 3 1   , 4 3  . However, because the energy 

separation is larger, about 85 cm1, its effects are not as strong and evident as they are in case of 

several dyads at higher energies.  
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3.2 13C12CD2 

 

 In recent years, the bending states of all the 10 isotopologues of acetylene have been 

characterized up to vtot = 2, 3, or 4, depending on the molecule [2532], with the exception of 
13C12CD2 which, so far, received little attention. The accurate characterization of the bending 

rotation  vibration levels of any isotopologue of acetylene using high resolution IR 

spectroscopy is certainly the starting point for an extensive investigation of the vibrationally 

excited states of the molecule up to high energies. So, for the first time, a high resolution study 

of the bending states with vtot up to 3 for 13C12CD2 was performed. The obtained results will give 

a better insight into the isotopic dependence of the parameters characterising the bending states 

for all the fully deuterated acetylene isotopologues.  

 

3.2.1 Experiment 

 

 Two samples were synthesised using different amounts of the reagents. In particular, the 

sample #1 was synthesised as described in [33], aiming to obtain the maximum possible amount 

of the partially deuterated species, H12C13CD and H13C12CD. The reaction sequence is 

summarized hereafter: 

      12 13 12 13 13 12 12 13
3 3 2

12 13
1. BrH C CH Br

2 2

2. CH CO D
3 2

Si CH NLi   D C CD + H C CD + H C CD + H C CH

                                                                    30%        20%         20%        

   

    30% 

 

The precursor 12 13
2 2BrH C CH Br  was prepared starting from 12 13

3 2CH CH OH  as detailed in [27] 

and reported hereafter: 

4 10 2P O Br12 13 12 13 12 13
3 2 2 2 2CH CHOH H C = CH BrH C CH Br   

 
More recently, another sample, #2, was prepared using a larger amount of deuterated 

acetic acid and the percentage of 13C12CD2 in the mixture rose to about 60%. 

 The spectra were recorded in the region 450  1900 cm1 using a Bomem DA3.002 

Fourier transform spectrometer in Bologna, equipped with a Globar source, a KBr beam splitter 

and two types of HgCdTe detectors operating at the liquid nitrogen temperature. The first 

(MCT1, see Table 3.12) was adopted in the low frequency region to record the 4 and 5 

fundamentals and associated hot bands. The other (MCT2), with a detectivity D* about 50 times 

higher than that used in the low wavenumber region, operating from 800 cm, was used to 
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record overtones and combination bands from the ground state. The optical path, ranging from 

0.18 to 10 m, was obtained using a multipass Whitetype cell. Several scans, up to 1280, were 

coadded in order to improve the signaltonoise ratio and the quality of the spectra. The 

achieved resolution ranged from 0.004 to 0.006 cm. Different pressure conditions, from 133.3 

Pa to 1333.3 Pa, were adopted. Detailed conditions for each spectrum are collected in Table 

3.12. 

 

Table 3.12: Experimental conditions for the recording of 13C12CD2 spectra 

Spectrum 

Pressure 
of the 

sample 
(Pa) 

Range 

(cm1) 
Source Detector 

Resolution 
(cm1) 

#Scans 
Optical 

pathlenght 
(m) 

a 133.3 450  1100 Globar MCT1 0.004 880 0.18 

b 1333.3 950  1700 Globar MCT2 0.004 880 0.18 

c 1333.3 450  1900 Globar MCT1 0.006 300 0.18 

d   360.0  450  850 Globar MCT1 0.006 1280 6 

e   360.0 800  1800 Globar MCT2 0.006 1280 10 

 

 Rotation  vibration transitions of H2O [20] and CO2 [22] were used for calibration. 

Particular care was devoted to the calibration of the spectra since consistent results had to be 

obtained from the analysis of bands observed in different spectral regions reaching the same 

excited state. 

 

3.2.2 Description of the spectra 

 

The spectra, which appear very congested due to the presence of transitions belonging to 

four different isotopologues, show absorptions in two different regions, namely 450 600 cm1 

and 950 1900 cm1. The low wavenumber region contains the bending fundamentals 4 and 5 

and associated hot bands. Figure 3.6 shows the 5 band of the isotopologue under analysis 

together with the 4 fundamental of H12C13CD and H13C12CD. The 4 band of 13C12CD2, with 

centre at 504.97 cm cannot be observed in Fig. 3.6 since its intensity is at least two orders of 

magnitude smaller than that of 5. 
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Figure 3.6: Portion of the spectrum between 460 and 600 cm1 showing the 5 band of 
13C12CD2 and the 4 band of H12C13CD and H13C12CD. Experimental conditions: 

sample #1, condition of spectrum a in Table 3.12. 

 

The spectrum appears very crowded. As an example, three Qbranches related to hot 

bands involving states with vtot = 2 or 3 are shown in Fig. 3.7. The assignments are further 

complicated by the presence of lines due to other isotopologues. Nevertheless, the identification 

of transitions for the partially deuterated species, H12C13CD and H13C12CD, was facilitated by the 

accurate knowledge of their spectrum in the investigated region [30]. 
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Figure 3.7: Portion of the infrared spectrum between 530.4 and 534.4 cm1 showing the Q 

branches of three hot bands of 5. Experimental conditions: sample #2, condition of 

spectrum c in Table 3.12. 

 

 The region of the spectrum 950  1110 cm1 contains the strong 4 + 5 (+)  GS band 

at 1013.22 cm1, illustrated in Figure 3.8, and the hot bands, 4 + 5 (
II 4 (and 4 + 25 

(II 5 (. They are centred at 1035.61 and 1029.72 cm1, respectively. It is worth noting 

that the two strong bands centred at 1020.5 and 1030.3 cm1 are the 24 (+)  GS overtones of 

H12C13CD and H13C12CD, respectively, indicated in red in the figure. The same band for 
13C12CD2 is observed at 1013.22 cm1. The very weak 25 (+)  GS overtone is detected at 

1068.29 cm1. 
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Figure 3.8: Portion of the infrared spectrum between 970 and 1110 cm1 showing the bands 

present in this range for the different isotopologues. Experimental conditions:  

sample #2, condition of spectrum b in Table 3.12. 

 

The intensity pattern is different from what observed in the fundamental bands, since the 

intensity of the 5  GS band is at least two orders of magnitude higher than that of the 4  

GS band. In addition, the 35 5 band and the ‘perturbation allowed’  4  + 5 ) = 2, 24 (e) 

 GS and 4 + 5 (e)  GS bands were detected, whereas 25 (e)  GS is too weak to be 

observed in the adopted experimental conditions. 

Finally, in the region between 1500 and 1900 cm1 two   + transitions are detected, 

namely 4 + 5 (
II GS and 5 () GS; the last one is illustrated in Figure 3.9. The 

strong lines randomly distributed in the figure correspond to 2 absorptions of water, which was 

used for calibration [20]. 
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Figure 3.9: Portion of the infrared spectrum in the range 1550  1650 cm1 showing the 35  

overtone. Experimental conditions: sample #2, condition of spectrum e in Table 3.12. 

 

3.2.3 Analysis 

 

 Di Lonardo et al. reported in Ref. [34] on the high resolution IR and Raman spectra of 2 

and associated combination and hot bands for the molecule under study, together with a set of 

parameters for the ground and bending states with vtot ≤ 2, obtained from the simultaneous fit of 

1361 IR transitions. During this work an extension of the observation and analysis of the pure 

bending transitions with vtot up to 3 has been realised.  

Table 3.13 collects all the analysed bending bands, together with the symmetry of the 

vibrational states involved in the transitions, the band centre, the observed range of J” values for 

the various branches, the RMS error resulting from the simultaneous leastsquares analysis 

described below, and the number of fitted and assigned lines. In total, 27 vibrational bands have 

been characterized for 13C12CD2.  

 

  

 



 72 

Table 3.13: Bands of 13C12CD2 included in the leastsquares fitting procedures 

Transition Symmetry c
 a P, R, Q (Jmin, Jmax) (105 )

b
 

number fitted/ 
assigned lines 

(a)  450 – 600 cm1 

4  G.S.     504.9732 Pe-e (2-36); Re-e (0-42); Qf-e (1-37) 42 108/114 

5  G.S.    536.6340 Pe-e (2-51); Re-e (0-51); Qf-e (1-51) 28 151/153 

4  5     476.5902 Pe-e (1-21); Re-e (1-29); Qe-f (1-29) 42 68/79 

    476.0933 Re-e (11-16); Qe-f (2-31) 41 33/36 

4 + 5  4    530.2057 Pe-e (1-44); Re-e (1-46); Qe-f (6-38) 43 113/124 

    536.8154 Pf-f (1-42); Rf-f (1-45);  Qf-e (1-42) 35 119/127 

    536.5953 Pe-e (3-39); Re-e (1-37); Qe-f (2-36) 
Pf-f  (3-42); Rf-f (1-44); Qf-e (2-41) 

37 221/232 

5 5    531.6524 Pe-e (1-44); Re-e (1-46); Qe-f (1-39) 33 119/129 

    536.2430 Pe-e (3-37); Re-e (1-40); Qe-f (2-41) 
Pf-f (3-44); Rf-f (1-45); Qf-e (2-43) 

32 236/244 

4 + 5 4 
   527.3632 Pe-e (2-18); Re-e (0-13); Qf-e (1-27) 42 46/58 

    527.8602 Pe-e (2-32); Re-e (2-30); Qe-f (4-30) 
Pf-f (2-32); Rf-f (2-36); Qf-e (2-26) 

46 152/176 

4 + 25 4 + 5 
   531.1800 Pe-e (2-37); Re-e (0-39); Qe-f (1-29) 40 79/105 

    524.5703 Pf-f (3-25); Rf-f (8-25); Qe-f (4-24) 45 47/62 

    524.7903 Pe-e (2-24); Re-e (2-23); Qe-f (2-29) 
Pf-f (2-28); Rf-f (2-36); Qf-e (2-30) 

44 125/164 

5 5    531.4496 Pe-e (2-40); Re-e (0-41); Qf-e (1-27) 40 103/108 

    526.8590 Pe-e (2-26); Re-e (2-26); Qe-f (2-31) 
Pf-f (2-35); Rf-f (2-35); Qf-e (2-32) 

41 150/175 

    535.8696 Pe-e (4-34); Re-e (2-36); Qe-f (3-16) 
Pf-f (5-33); Rf-f (2-36); Qf-e (3-13) 

47 140/154 

(b)  950 – 1700 cm1 

4  G.S.     1013.2242 Pe-e (1-35); Re-e (0-34) 33 65/70 

   ) c 1012.7272 Pe-e (5-35); Re-e (4-35) 39 61/63 

4 + 5 G.S.    1035.1790 Pe-e (1-50); Re-e (0-47) 34 87/98 

   ) c 1041.5685 Pe-e (7-41); Re-e (4-38) 30 66/70 

5 G.S.    1068.2864 Pe-e (1-33); Re-e (0-33) 37 64/67 

4 + 5 4 
   1035.6142 Pe-e (2-41); Re-e (1-35); Qe-f (10-20) 

Pf-f (2-38); Rf-f (1-35); Qf-e (1-15) 
34 147/173 

4 + 25 5 
   1029.7250 Pe-e (2-40); Re-e (1-35), Qe-f (2-20) 

Pf-f (2-41); Rf-f (1-40); Qf-e (1-17) 
34 143/190 

5 5    1063.1021 Pe-e (2-26); Re-e (1-25); Qe-f (1) 
Pf-f (2-27); Rf-f (1-22) 

47 71/99 

4 + 5 G.S.    1540.5874 Pe-e (7-25); Re-e (7-14); Qf-e (5-25) 52 40/48 

5 G.S.    1599.7360 Pe-e (2-30); Re-e (0-30); Qf-e (1-32) 39 90/92 
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a 0 2 4 0 2 4
' ' ' " " "( )C G B k D k G B k D k            , as defined by Eq. (3.4). 

b  (in cm1) corresponds to the RMS value of the residuals for the various assigned lines resulting 
from the simultaneous fit.

c Perturbation allowed transition. 
 

 First, the spectrum below 600 cm1 was analyzed and the assignment of the transitions 

belonging to the bands previously reported, namely 4 + 5 (+)  5 (, 5 (  GS, and 25 

(+)  5 ([3537] was extended to higher J values. Then, transitions involving states not 

yet characterized were searched for, including the 4 fundamental. The assignment of the hot 

bands with vtot up to 2 was accomplished using the ground, v4 = 1 and v5 = 1 state combination 

differences, which unambiguously defined the low energy vibrational state of the transitions. 

Once precise values of the LSCD for the vtot = 2 states were determined, the search for 

transitions involving bending states with vtot = 3 was undertaken. The assignment of the upper 

state was done by comparison of the band centres with those of the corresponding bands of 
12C2D2 [31] and 13C2D2 [32]. All the components,  and , of the v5 = 3 manifold were 

identified from v5 = 2 (+ and ) in the region below 600 cm1, and the  component was 

observed also from 5 at 1063.10 cm1 and from the ground state at 1599.74 cm1. Differently, 

no transitions to the v4 = 3,  and , states nor to the I and  states of the v4 = 1, v5 = 2 or v4 = 

2, v5 = 1 manifolds could be identified, either in the low or in the high wavenumber region. The 

effects of strong  type interactions between rotation vibration levels are evident in the 

intensity of the Q branch of the 24 (  5 ( band. In fact, only Qe-f transitions were 

observed, the Qf-e components being too weak to be detected. A similar behaviour was already 

pointed out for 12C2D2 [14] and for 13C2D2 [32]. 

 The analysis was carried out in the same way as described in Section 3.1.3 for the 

bending modes of 12C2D2. At first the transition wavenumbers for each band were fitted 

separately to the upper state rotationvibration parameters, in order to check the correctness of 

the assignments and to extend the data set. The data were analysed using the basic Hamiltonian 

of a linear molecule, with centrifugal distortion corrections up to the sextic power and 

 doubling energy contributions containing vq , v
Jq  and v

JJq coefficients. Afterwords, 

simultaneous fits of the experimental data were performed. The data set contains the 

rotationvibration transitions listed in Table 3.13. The energies of the levels involved were 

obtained by diagonalizing the appropriate energy matrix containing the vibration (G0), Eq. (2.8), 

and rotation (F), Eqs. from (2.10) to (2.13), diagonal contributions. Vibrational and rotational 

 type resonances are expressed by Eqs. (2.32), (2.33), (2.34) and (3.5). In addition, because 
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the 4 and 5 bending modes are separated by about 32 cm, vibrational coupling of 

DarlingDennison type is expected between levels of identical symmetry, such as 4 = 2  

(  and  ) and 5 = 2  (  and  ), 4 5= 1, = 2   ( II , I  and  ) and 4 = 3  (  and  ), 

4 5= 2, = 1   ( II , I  and  ) and 5 = 3  (  and  ). These interactions, which have been 

treated in detail for 12C2D2 [14] and in the previous Section 3.1 of this thesis, were taken into 

account in the global fitting procedures. Unfortunately, due to the lack of experimental data for 

the 4 = 3  state, only the  type interactions were considered for the levels of the 4 5= 1, = 2   

manifold. That is why, also the offdiagonal matrix elements expressed by Eq. (3.7) have been 

taken into account for interacting   and   states, and the parameters 0
45g  and 45r , as defined in 

Eqs. (2.23) and (2.32), for interacting   and   states. (The complete blockdiagonalized 

matrices illustrating the  type and the DarlingDennison interactions between the bending 

levels in the various vibrational manifolds are reported in Table 3.4, Section 3.1.3). 

The weights of the experimental data were chosen proportional to the inverse of their 

squared estimated uncertainties, with the exclusion of the overlapping lines which were given 

zero weight. An uncertainty equal to 4.0 × 104 cm1, was assigned to each IR measurement, 

despite the fact that the lines had different S/N depending on their intensity and on the different 

experimental conditions of the recorded spectra. Finally, all the transition wavenumbers that 

differed from the corresponding calculated values by more than 0.001 cm1 (2.5 times their 

estimated uncertainties) were excluded from the data set in the final cycle of the refinement. 

 

3.2.4 Results and Discussion 

 

 In total, 3210 rotation vibration transitions were assigned to 27 bands involving bending 

states with v4 + v5 and |  4 +  5| up to 3. Two separate global fits were performed, fit #1 and fit 

#2. Fit #1 has been realised taking into account only transitions involving states with vtot up to 2, 

while fit #2 includes also states with vtot = 3. Fit #1 is necessary to obtain a consistent set of 

parameters before including in the dataset transitions with vtot = 3. In addition, all bending states 

involving vtot up to 2 were experimentally characterised, allowing a thorough analysis of the 

DarlingDennison interaction. Furthermore, in the future perspective of analysing the 

stretchingbending system, hot bands originate mostly from levels of the vtot ≤ 2 manifold. In 

total, 1512 out of 1606 transitions are retained in the final cycle of fit #1. 94 lines are rejected 

because they were overlapping, 75 of them, or exceeded the chosen limit for rejection of 0.001 
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cm1, 19. Unfortunately, some of the refined constants, i.e. 0
44x , 0

55x , 0
44g , 0

55g , and 0
44,55K  resulted 

100% correlated. They were anyway refined since, if anyone of these parameters is constrained 

to zero and not refined, the fit quality degrades severely since the number of rejected lines as 

well as the RMS value increase substantially. Thirtythree statistically welldetermined 

parameters obtained from fit #1 are listed in Table 3.14. 
 

Table 3.14: Spectroscopic parameters (in cm1) resulting from simultaneous fit of all the levels with          

v4 + v5 = 2 of 13C12CD2 

Parameter  Parameter 

0
4   503.5590227 (916) 

0
44g   0.528580 (783) 

0
5   536.8457377 (553) 

0
45g   3.2164363 (295) 

0
44x  1.720677 (801) 

0
55g   2.168679 (799) 

0
45x   1.5771690 (479) 0

45r   3. (407) 

0
55x   1.545358 (798) 45

Jr  310  0.086777 (129) 

0B   0.833118618 (476)  
   

4  310  1.942591 (479) 5  310  2.075082 (100) 

44  310  0.0127577 (719) 44 310  0.011627 (460) 

45  310  0.001626 (128) 45 310  0.079089 (105) 

55  310  0.0092852 (365) 55 310  0.0399346 (652) 

0D 610 0.772401 (191) 45  910  1.2342 (691) 

4  610  0.0208169 (752) 45  910  1.3781 (975) 

5  610  0.0169939 (348)     

0
4q  310  3.167414 (118) 4

Jq  610  0.0214603 (918) 

0
5q  310  3.1675169 (839) 5

Jq  610  0.0206686 (497) 

45q  310  0.21576 (340) 5
kq  310  .030631 (149) 

0
5  610  0.002577 (104)     

0
45  610  0.005038 (322) 0

44,55K  6.49161 (132) 

Number of fitted / assigned lines 1512 / 1606 
 

St. dev. of the fit ×104 3.5  
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These results can be compared with those obtained for 12C2D2, column 2 of Table 3.15, 

and 13C2D2, Table 2 in Ref. [32]. All the common parameters, but 45 , 0
5  and 0

45 , agree both in 

sign and order of magnitude. The differences between the parameters of the three molecules are 

in the range 0.2 – 10 %, with the exception of 0
44g  whose values differ by about 20 %. In 

addition, the leading vibrational and rotational parameters, 0
t , B0, t , D0, and the interaction 

constants 0
tq  show the expected trend associated with the increased molecular masses due to the 

isotopic substitution. 

The parameters in Table 3.14 were chosen as a starting point for fit #2. The inclusion in 

the data set of transitions with vtot = 3 made it necessary to refine additional constants, which are 

higher order dependences of the vibration and rotation parameters in Table 3.14. The 

DarlingDennison interaction has been taken into account for the interacting v5 = 3 and v4 = 2, 

v5 = 1 levels, despite the fact that the I and  states of the latter manifold were not detected. As 

a consequence, some of the refined parameters in fit #2 are effective. Several leastsquares fits 

were performed with different choices of parameters which had to meet the following 

requirements. The parameters have to: a) correspond to lowerorder ones previously refined; b) 

be statistically determined; c) adopt the correct order of magnitude; d) improve the quality of the 

fit; e) show low correlation. After each fit, the statistical significance of the obtained parameters 

was checked as well as their correlation coefficients. 

In total, 2450 out of 2689 transition wavenumbers were retained in the final cycle of the 

leastsquares procedure. Two hundred and thirtynine lines were excluded from the fit, because 

they were overlapping (187) or exceeded the chosen limit for rejection (52). The standard 

deviation of the fit, equal to 3.9  104 cm1, is again very close to the estimated precision of the 

measurements. 

The lack of experimental observations involving v4 = 3 prevented the treatment of the 

DarlingDennison interaction with v4 = 1, v5 = 2 states. So, the hot bands involving the 4 + 25 
II state in Table 3.13 were fitted apart simultaneously considering only the type interaction. 

Only transitions with J up to 30 were considered to refine the parameters in Eq. (3.2). In total, 

394 out of 462 transition wavenumbers were retained in the final cycle of the leastsquares 

procedure, with a standard deviation of the fit equal to 4.0  104 cm1. The set of obtained 

parameters is reported at the bottom of Table 3.15. 
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Table 3.15: Spectroscopic parameters (in cm1) resulting from the simultaneous fit of all the levels 

with v4 + v5 = 3 of 13C12CD2 

Parameter 
 Parameter 

 

0
4   503.5544841 (771) 0

44g   0.5557629 (659) 

0
5   536.8590584 (766) 0

45g   3.373394 (815) 

0
44x  1.6980310 (850) 0

55g   2.1493075 (562) 

0
45x   1.796163 (591) 45

4y   0.157040 (810) 

0
55x   1.5436945 (908) 55

5y   0.0038060 (110) 

445y   0.218922 (579) 0
45r   3. (443) 

555y   0.0082752 (142) 45
Jr  310  0.087166 (143) 

    45
JJr  610  0.003335 (120) 

0B   0.833118452 (416) 445  310  0.029001 (482) 

4  310  1.945954 (172) 555  × 103 0.0007510 (163) 

5  310  2.073341 (107) 44 310  0.0151602 (646) 

44  310  0.0127101 (665) 45 310  0.125865 (781) 

45  310  0.027179 (503) 55 310  0.0398678 (162) 

55  310  0.0114502 (719) 45
4  310  0.047603 (759) 

0D  610  0.772277 (183) 5  610  0.0168805 (315) 

4  610  0.0206989 (776) 45  910  1.1592 (725) 

0
4q  310  3.247345 (261) 55q  310  0.0283192 (367) 

0
5q  310  3.139017 (103) 4

Jq  610  0.0210648 (846) 

44q  310  0.080390 (225) 5
Jq  610  0.0205800 (465) 

45q  310  0.016761 (171) 4
kq  310  .077396 (231) 

0
5  910  2.2807 (388)     

0
45  910  9.528 (370) 0

44,55K  6.06725 (122) 

Number of fitted / assigned lines 2450 / 2689 
St. dev. of the fit ×104 3.9    

     
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Parameter a
 Parameter a

 

0
455G   1566.3588694 (454) 

0
455q  310  6.224095 (649) 

455B   0.839354476 (546)  
455
Jq  610  0.06831 (235)

455D  610  1.51798 (158)  
455
JJq  910  0.32450 (199) 

455H 1210 7.45 (122)     

Number of fitted / assigned lines 394 / 462    

St. dev. of the fit ×104 4.0    

 a Fit of the bands reaching the v4 = 1, v5 = 2 (II) state, see text. 

 

The selected set, which is reported in Table 3.15, contains 42 statistically 

welldetermined parameters. Most of the parameters are essentially uncorrelated, but, in 

contrast, 0
45x , 445y , 45

4y , and 0
45g , are strongly correlated.  

A few parameters of the model listed in Eqs. (2.8) to (2.13) and (3.12), which are not 

reported in Tables 3.14 and 3.15, were nevertheless allowed to vary in the fitting procedure, but 

they resulted statistically undetermined and were constrained to zero. A comparison between the 

results of fits #1 and #2 shows that the values of the leading parameters are consistent and their 

signs unchanged. The largest differences ( > 50%) are observed between the constants related to 

the characterization of the manifolds with simultaneous excitation of the 4 and 5 modes, 45 , 

45 , 45q , and 0
45 . Moreover, 45 and 45q have opposite sign. Finally, a list of the vibrational 

term values 0
cG  of the states for 13C12CD2 is reported in Table 3.16. 
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Table 3.16: Vibrational term values (in cm1) on the observed levels involving bending modes 

of 13C12CD2 

 

v4 v5 Symmetry 4
 

5
 0

cG  

1 0  1 0 504.9732 

0 1  0 1 536.6340 

2 0  0 0 1013.2242 

2 0  2 0 1012.7273 

1 1  1 1 1035.1790 

1 1  1 1 1041.7887 

1 1  1 1 1041.5685 

0 2  0 0 1068.2864 

0 2  0 2 1072.8770 

2 1  2  1 1540.5874 

1 2  1 0 1566.3589 

0 3  0 1 1599.7360 

0 3  0 3 1608.7466 
 

 

3.3 H13C12CD, H12C13CD, 13C12CD2 : 6200  6800 cm1 

 

 Rare acetylene isotopologues have received so far less attention compared to the others. 

In 2007 Hardwick et al. [38] recorded a diode laser spectrum of H12C13CD and H13C12CD in the 

region around 6500 cm1, studied the first overtone of 1 and improved the values of the ground 

state parameters B0 and D0. In the same year, Fusina et al. [39] reported on the high resolution IR 

spectra of the two isotopologues in the region 470 5200 cm1, whereas, more recently, the 

bending states up to 4 5 2    have been characterized [30]. In order to extend the observation 

in the region above 6000 cm1 for these 3 isotopologues, whose concentration in the sample is 

between 20% and 30%, a more sophisticated and sensitive apparatus than the conventional FT 

spectrometer has been adopted in the present study. In fact the investigation of overtone 

spectrum, in particular, fostered the development of new instrumental techniques [40]. A femto 

comb based technique, supported by conventional FTIR experiments, has been employed to 

investigate absorption bands belonging to the rare isotopologues H13C12CD, H12C13CD, 13C12CD2 

in the range 6130  6800 cm1.  
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3.3.1 Experiment 

 

 As far as the sample is concerned, the synthesis is described in Section 3.2.1. 

FTIR spectra were recorded in Bologna using a BomemDA3.002 interferometer. The 

region 5000  7800 cm1 was recorded by using a quartz source, a KBr beam splitter and an InSb 

type detector, operating at liquid nitrogen temperature. A sample pressure of 373 Pa was used, 

the optical path was 10 m and the instrumental resolution 0.01 cm1, the maximum achievable 

because of the Doppler broadening around 6500 cm1. 2000 scans were coadded in order to 

improve the signaltonoise ratio. Rovibration transition of H2O [41] were used for calibration.  

 The femtoFourier transformcavity enhanced absorption spectroscopy 

(femtoFTCEAS) instrument is set in Brussels. The experimental setup, described in detail in 

Ref. [4244] is shown in Figure 3.10. It is based on a Ti:Sa femtosecond laser, with a repetition 

rate of 80 MHz (Coherent Chamaleon Ultra II) and 140 fs laser pulse width, which is used to 

pump an OPO (Optical Parametric Oscillator, Coherent PP810) module, allowing for broader 

wavelength coverage towards the IR (generally called Laser in Fig 3.10). The output light spans 

the range 1000  1640 nm with a typical bandwidth of 100 cm1.  

 

Figure 3.10: Experimental setup for femtoFTCEAS with an OPO tunable source. Laser 

Ti:Sa, OPO signal or Idler; OI: HoYag optical isolator; M1, L1, L2, M3, M4, 

L3: steering optics; CM1 and CM2: high reflectivity cavity mirrors, PZT: 

piezoelectric modulator. Figure taken from Ref. [43]. 

 

 The comb laser beam was sent through a HoYag type optical Faraday isolator (Thorlabs) 

in order to avoid optical feedback in the laser oscillator (OI in Fig 3.10), before being injected 

into an external cavity. Proper mode matching in the absorption cavity is achieved using a pair of 

lenses with focal length f = 50mm. The cavity has a length L of 77 cm and is made of half inch 
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output couplers (CM1 and CM2, Layertec). The output cavity mirror is set on the piezoelectric 

translator (PZT), from Newtronics Model 200P, up to the maximum delivered frequency 

(20kHz). It is necessary in order to modulate the cavity length. By this way, cavity modes are 

jittering and every laser mode is about equally transmitted on average, and the noise level is 

reduced. Conditions must be adapted empirically by tuning the cell length to a slightly different 

value for each selected central wavelength and for each sample pressure conditions to optimise 

this fringing smoothing effect. The reflectivity of the mirrors is ~99.997 % in the central part of 

the explored spectral range. It corresponds to a finesse, defined as F = 
4

1 2

1 21

R R

R R




, where R1 and 

R2 are the reflectivities of the two mirrors, equal to 90000. The equivalent pathlength Leq, defined 

eq

FL
L


 , is about 12000 m at 6500 cm1. The laser beam exiting the absorption cavity was 

directed into the high resolution continuous scanning FTIR (Bruker IFS120HR) equipped with 

an InGaAs diode detector. The entrance FTIR iris was set to 1.5 mm, that is larger than the laser 

beam diameter focused to 10 m at the FTIR entrance using a 125 mm focal lens (L3). These 

conditions correspond to a minimal absorption coefficient of 5  109 cm1. The FTIR resolution 

was 0.02 cm1 and this is the main resolutionlimiting factor, also accounting for the comb 

structure of the absorption source (80 MHz or 2.4  103 cm1 free spectral range). The number 

of scans accumulated varied between 100 and 320, depending on the band strength and the noise 

conditions. Conditions for each spectrum are reported in Table 3.17. 

 

Table 3.17: Experimental condition for each femtoFTCEAS recorded spectrum 

Spectrum 

Pressure 
of the 

sample 
(Pa) 

Range 

(cm1) 

Resolution 
(cm1) 

#Scans 
Optical 

pathlenght 
(km) 

1 1443.6 6530 6650 0.02 200 6 

2 1443.6 6650 6800 0.02 200 6 

3 1443.6 6130 6390 0.02 200 6 

4   380.0 6300 6500 0.02 200 6 

5   380.0 6450 6620 0.02 200 6 

6 1333.3 6600 6750 0.02 200 12 

7 1333.3 6320 6450 0.02 200 8 

8 1333.3 6240-6400 0.02 200 6 
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The calibration of the spectra was performed using the transition wavenumbers of the 23 

and 1 + 3 bands of H13C12CH [45, 46]. 

The sensitivity achieved with the femtoFTCEAS experiment is best illustrated when 

comparing spectra of the same sample recorded using conventional FTIR and femtoFTCEAS 

setups, as shown in Fig. 3.11. 

 

 

Figure 3.11: Portion of the spectrum between 6275 and 6370 cm1, showing the 

1 4 52 GS      band of D12C13CD centred at 6324 cm1. Experimental 

conditions: a) FemtoFTCEAS apparatus, with conditions of spectrum 8 in 

Table 3.17, b) Bomem DA3.002 spectrum, optical path 10 m, pressure 379 Pa, 

resolution: 1.0  102 cm1, number of scans: 2000. 

 

3.3.2 Analysis, Results and Discussion  

 

 The spectra appear all very congested, due to the presence of four isotopologues of 

acetylene. Furthermore, in some regions of the spectra the presence of traces of partially 

deuterated mono13Cethylene complicates even more its interpretation, in particular in the 
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lower wavenumber side. The most intense lines actually belong to the 1 + 3 band of H13C12CH. 

An overview of the central part of the investigated region is shown in Figure 3.12. 

 

  

Figure 3.12: Portion of the infrared spectrum between 6400 and 6640 cm1, showing the density 

of signals due to the different molecules present in the sample. Experimental 

conditions: Bomem DA3.002 spectrum, optical path 10 m, pressure 379 Pa, 

resolution: 1.0  102 cm1, number of scans: 2000. 

 

The identification of the vibrational states involved in each band and the assignment of 

the transitions was facilitated using precise values of the LSCD for each molecule.  

 Concerning the band of 13C12CD2 in Fig. 3.11, only the   upper level of the 

1 4 52     manifold has been observed. The e)  GS perturbation allowed transitions are too 

weak to be detected in the spectrum. Three other bands belonging to the same species have been 

observed in the investigated region, 1 2 3 GS      and the associated ( hot bands 

1 2 3 4 4         and 1 2 3 5 5        , located at about 6780, 6755 and 6768 cm1, 

respectively. They are shown in Fig. 3.13. 
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Figure 3.13: Portion of the spectrum between 6720 and 6800 cm1, showing the 

1 2 3 GS      transition with associated hot bands from 4 and 5. 

Experimental conditions: spectrum 2 in Table 3.17. 

 

 All the bands observed in the investigated region belonging to the three isotopologues are 

reported in Table 3.18, together with their band centres, the observed branches and the standard 

deviation of each bandbyband fit.  
 

Table 3.18: Observed and analysed transitions for the three isotopologues 

Isotopologue Transition Symmetry C
 a P; R; (Jmin, Jmax) 

 

( 310 )b 

n. fitted/  

assig. lines 

H12C13CD 1 5 52       6530.6125 
Pe-e (2-26); Re-e (1-28); 
Pf-f  (2-26); Rf-f (1-29) 1.76 77/104 

 1 4 42       6556.8156 
Pe-e (2-31); Re-e (1-28); 
Pf-f  (2-31); Rf-f (1-28) 1.70 93/116 

 12 GS       6565.4918 Pe-e (1-40); Re-e (1-47) 0.32 74/88 

H13C12CD 1 5 52       6502.5194 
Pe-e (3-25); Re-e (1-23); 
Pf-f  (3-25); Rf-f (1-23) 1.66 44/90 

 1 4 42       6527.4129 
Pe-e (2-24); Re-e (1-24); 
Pf-f  (2-25); Rf-f (1-24) 1.44 62/95 

 12 GS        6536.3375 Pe-e (1-44); Re-e (0-44) 0.32 65/87 
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D12C13CD 1 4 52 GS          6324.4484 Pe-e (1-24); Re-e (0-30) 1.12 44/55 

 1 2 3 4 4           6755.5980 
Pe-e (2-34); Re-e (1-28); 
Pf-f  (2-34); Rf-f (1-28) 1.17 86/122 

 1 2 3 5 5           6768.1405 
Pe-e (2-35); Re-e (1-25); 
Pf-f  (2-37); Rf-f (1-25) 1.09 91/120 

 1 2 3 GS           6780.0709 Pe-e (1-44); Re-e (0-34) 0.41 76/78 

a In cm1.
C  is defined by Eq.(3.3). 

b  (in cm1) corresponds to the standard deviation of the fit. 

 

The transition wavenumbers for each band were fitted separately to the upper state 

rovibrational parameters by a leastsquared procedure. The parameters for the lower states 

involved in the investigated transitions are from Ref. [30] for H13C12CD and H12C13CD, and 

from Ref. [34] for 13C12CD2. The basic Hamiltonian for a linear molecule, with distortion 

corrections up to high power in the rotational angular momentum, was used for the analysis. In 

case of transitions involving doubly degenerate  states,   doubling contribution are included. 

The rovibrational term values are given by Eq. (3.2), the centre energy is expressed by Eq. (3.3) 

and the band centre by Eq.(3.4).  

 Unit weights were assigned to measurements for well isolated lines, while the weights 

were reduced to 1/n if n transitions were assigned to the same wavenumber. Finally, the 

transitions that differed from their corresponding calculated values by more than 2.0 × 103 cm1 

or 1.0 × 103 cm1, depending on the S/N, were excluded from the data set in the final cycle of 

the refinement. The spectroscopic parameters obtained for the analysed bands are reported in 

Table 3.19. 
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Table 3.19: Band centres and spectroscopic parameters (in cm1) for the analyzed bands of H12C13CD, H13C12CD and D12C13CD 

Isotopologue Transition Symmetry 
C
 B D 610  H 910  q 310  qJ 610  qJJ 910  

H12C13CD 1 5 52       6530 .61255(45) 0 .9675811(29) 1 .1387(38)  3 .4716(33) 0.0702(54)   

 1 4 42       6556 .81562(41) 0 .9679751(25) 1 .1053(30)  4 .3077(30) 0.0552(44)   

 12 GS       6565 .49176(65) 0 .96568621(19) 1 .085120(96)      

H13C12CD 1 5 52       6502 .51936(57) 0 .9592614(94) 1 .0791(94)  3 .7325(22)    

 1 4 42       6527 .41292(63) 0 .9583349(93) 0 .483(36) 0 .330(37) 3 .0986(96) 0.695(48) 0.594(56) 

 12 GS       6536 .33754(81) 0 .95773678(49) 1 .10171(68) 0 .0890(25)     

D12C13CD 1 4 52 GS           6324 .44837(38) 0 .8262657(44) 2 .678(12) 0 .4227(89)     

 1 2 3 4 4           6755 .59808(25) 0 .8221048(14) 0 .7873(14)  3 .2574(17) 0.0250(21)   

 1 2 3 5 5           6768 .14047(22) 0 .8221417(11) 0 .78726(96)  3 .1930(14) 0.0264(15)   

 1 2 3 GS           6780 .07093(98) 0 .82010234(72) 0 .77905(95) 0 .00472(37)   
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Consistent values for the rotational and quartic distortion constants are obtained, with just 

few exceptions. The analysis evidenced that the majority of the bands resulted unperturbed, since 

the values of the refined parameters are not too far from the corresponding ones in the ground 

state and in 4 1   and 5 1   states [39]. For the two bands 1 4 42     of H13C12CD and 

1 4 52 GS      of 13C12CD2, D and H distortion constants had to be refined in order to 

reproduce the experimental data. However, their values are anomalous. This suggests the 

presence of some kind of perturbation, which could not be identified nor assigned from the 

present data. As far as 21 bands of mixed isotopomers are concerned, results achieved in this 

study can be compared to the ones from Ref. [38]. The assignment of the transitions belonging to 

these bands was extended up to J” = 47 for H12C13CD and J” = 44 for H13C12CD. The new 

spectroscopic parameters agree with those in Ref. [38], but the D constants are more precise. 

 

3.4 DCCF 

 

 Monofluoroacetylenes, HCCF and DCCF, have been the subject of spectroscopic 

investigations for several reasons: to verify the linearity of the molecular structure, providing 

also the values of the internuclear distances [47,48], to determine the energies of fundamental 

and multiply excited vibrational levels [4953], and to test the suitability of the molecules for 

experiments using CO2 lasers. In fact, these molecules are good candidates for laser Stark and 

laser microwave double resonance experiments since the 3 (CF stretching) infrared 

fundamental band strongly absorbs at about 10 m [54,55]. Contrary to HCCF, spectroscopic 

information about DCCF is really scarce. Only the fundamental stretching bands and some bands 

involving bending modes, namely 4 ← GS, 24 ← GS and 4 + 5 ← GS, have been analysed, 

and no study of the region above 3800 cm1 has been performed. In Table 3.20 are listed the 

normal modes of vibration for DCCF.  

 

Table 3.20: Normal modes of DCCF 

Band Symmetry Wavenumber (cm1) 

1 
  2645.1 [56] 

2 
  2088.1 [56] 

3 
  1045.9 [57] 

4 Π   439.0 [58] 

5 Π   364.0 [56] 



 88 

 As far as the bending modes are concerned, 4 has been investigated at a medium 

resolution (about 0.03 cm1) [58], while for 5 a rovibration analysis has not been accomplished. 

That is why a systematic investigation of all the bands involving bending modes detected in the 

region 320 800 cm1 has been performed, including states with vtot up to 3. 

 

3.4.1 Experiment 

 

 The sample, which is a gift from Prof. I.M. Mills (Reading, UK), has been prepared by 

passing HCCF through a solution of NaOD in D2O. Spectra were recorded in Wuppertal 

employing a Bruker 120HR interferometer. Two spectra, namely #1 and #2, were recorded by 

equipping the spectrometer with a Globar source, a 3.5m Mylar beamsplitter and a liquid 

Hecooled Cu:Ge detector operating at 4.2 K temperature. A glass cell measuring 0.280 m 

length and outfitted with CsBr windows was used throughout. General conditions are reported in 

Table 3.21. 

 

Table 3.21: Experimental conditions for the recording of DCCF spectra 

Spectrum 

Pressure 
of the 

sample 
(Pa) 

Range 

(cm1) 
Source Detector 

Resolution 
(cm1) 

#Scans 
Optical 

pathlenght 
(m) 

#1 950  320 700 Globar Cu:Ge 0.0031 330 0.28 

#2 200 350 850 Globar Cu:Ge 0.0024 880 0.28 

 

 Calibration was done by comparison with lines belonging to the 2 band of residual CO2 

in the vacuum interferometer. The reference wavenumbers were taken from [22]. The estimated 

accuracy of the spectra is: spectrum #1 better than 3 × 104 cm1, spectrum #2 better than 2 × 

104 cm1. The precision of isolated, medium to strong, unblended lines in spectrum #1 is better 

than 2 × 104 cm1, in spectrum #2 better than 1 × 104 cm1. 
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3.4.2 Description of the spectra 

 

a) The 320  400 cm1 region 

 

 The 5 fundamental band is located at lowest wavenumbers, and its intensity can be 

considered as medium if compared to the 4 strong band. It is shown in Figure 3.14. 

 

Figure 3.14: Portion of the spectrum of DCCF between 364 and 370 cm1, showing the  

Q branch transitions of 5 and of some associated hot bands. Experimental  

conditions: spectrum #2 in Table 3.21. 

 

 Figure 3.14 is dominated by the Q branch of the 5 fundamental band (+), which is 

centred at 366.4 cm1. Among the associated hot bands, the strongest are 25  5 (  located 

at 364.9 cm1, and 25  5 ( at 368.0 cm1. The 4 + 5  4 ( hot band 

has three components at 366.0, 366.5, and 368.9 cm1, respectively. In addition, the weak Q 

branch of 35  25 () can be observed intermingled with the strong Q(J) transitions of 

the fundamental. The 35  25 () and ( components were not identified even after 

careful inspection, being too weak to be detected. In total, 11 bands have been investigated in 

this region with vtot up to 3.  
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b) The 400  500 cm1 region 

 

 The region is dominated by the 4 fundamental band. This spectral range is the more 

crowded of the entire spectrum, due to the presence of 19 hot bands overlapping each other. Two 

significant portions of this spectrum are shown in Figures 3.15 and 3.16. In the first one the more 

intense hot bands are shown: 24  4 (, whose Q branch starts at 431.8 cm1, and at 

higher wavenumbers 34  24 () at 435.4 cm1. Between these bands the two 

components 24 + 5  4 + 5 (
II) and (II) can be observed at 432.8 and 433.3 cm1. 

It is worth to point out that the most intense lines in Fig. 3.15 are P(J) transitions of the 4 

fundamental band, whose Q branch is centred at 441.1 cm1 and dominates Figure 3.16.  

 

 

Figure 3.15: Portion of the spectrum of DCCF between 431.5 and 437.5 cm1, showing the Q 

branch transitions of 24  4 (and of some associated hot bands. 

Experimental conditions: spectrum #2 in Table 3.21. 

 

 Figure 3.16, where nine hot bands are indicated, depicts very well the crowded situation 

around 4. From lower to higher wavenumbers, the ,  and + components of 4 + 5  5 are 

present at 440.7, 441.2, and 443.6 cm1, respectively and the  component of 24  4 at 444.4 
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cm1. The centre of this band is almost coincident with the intense Q branches of three hot bands 

overlapping each other: 4 + 25  25 (
I  ), 24 + 5  4 + 5 (

I+), and 24 + 5  4 

+ 5, () Finally, the Q branches of the two components II  + and    of 4 + 25 

 25 overlap that of 4. In total, 20 bands have been detected in this region, three of them with 

upper state of  symmetry.  

 

 

Figure 3.16: Portion of the spectrum of DCCF between 440.5 and 446.5 cm1, showing the Q 

branch transitions of 4  GS (and eight associated hot bands. 

Experimental conditions: spectrum #2 in Table 3.21. 

 

c) The 600  850 cm1 region 

 

 Just one band has been identified in the range 600  720 cm1: it is a difference band 

involving a stretching mode, namely 3  4, (+  , whose Q branch is centred at 605 cm1. 

Compared to the bending system under investigation, this band is so weak that transitions of the 

P and R branches could be identified and assigned only in spectrum #1 recorded at higher 

pressure. As shown in Figure 3.17, this weak band appears under the strong features of the 4 

fundamental band of HCCF.  
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

Figure 3.17: Portion of the spectrum of DCCF between 601 and 605 cm1, showing the Q 

branch transitions of 3  4 (difference band. Experimental conditions: 

spectrum #2 in Table 3.21. 

 

The first overtone band of 5 and its hot band from 5 appear at 731.3 and 731.6 cm1, 

respectively. The 780  840 cm1 portion of the spectrum, displayed in Fig. 3.18, is dominated 

by the medium strong 4 + 5 GS (+  +) band, with origin at 810 cm1, and associated hot 

bands from 4 or 5. In total, 7 bands have been identified and analyzed in the 600  850 cm1 

region

 

Figure 3.18: Portion of the spectrum of DCCF between 780 and 840 cm1, showing the P and R 

transitions of 4 + 5  GS (and some associated hot bands. 

Experimental conditions: spectrum #2 in Table 3.21. 
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3.4.3 Analysis 

 

 The assignment procedure was accomplished by using the LSCD calculated on the basis 

of the previously reported spectroscopic parameters of DCCF [48,57,58]. They allowed the 

identification of the lower vibrational state and the correct identification of the J quantum 

number for each transition. The upper state of transitions, which was not previously observed, 

was assigned by comparison of the term values with the bending states pattern of HCCF [50]. 

The following step was the systematic research of all the transitions reaching the same upper 

level from different lower states. In total, 6791 IR transitions have been assigned to 38 

vibrational bands, 37 of which involving pure bending states with vtot up to 3, while one is the 

difference band 3  4. All the assigned bands are collected in Table 3.22, as well as the 

symmetry of the vibrational states involved in the transitions, the band centre, the observed range 

of J values for the various branches, the number of fitted and assigned lines and the RMS error 

resulting from the simultaneous leastsquares analysis.  

 

Table 3.22: Bands of DCCF included in the leastsquares fitting procedure 

Transition Symmetry C a P; R; Q (Jmin, Jmax) (104)b No. fitted/ 
assigned lines 

4 + 25  4 + 5 II    362.7352 Pe-e (13-20); Re-e (13-25); Qf-e (4-30) 10.46 40/52 

 II    365.6314 Pf-f  (10-26); Rf-f (8-22); Qe-f (2-34) 9.34 57/64 

5   5      364.9503 Pe-e (2-49); Re-e (5-48); Qe-f (2-53) 5.50 136/141 

      367.9915 
Pe-e (6-44); Re-e (1-61); Qf-e (2-46) 
Pf-f  (7-44); Rf-f (3-48); Qe-f (2-66) 

7.95 264/292 

4 + 5  4      365.9905 Pf-f  (3-40); Rf-f (1-44); Qf-e (3-44) 5.31 116/122 

      366.4638 Pe-e (4-36); Re-e (1-40); Qf-e (3-45) 
Pf-f  (4-36); Rf-f (6-36); Qe-f (3-34) 

6.85 178/204 

      368.8867 Pe-e (5-37); Re-e (4-36); Qe-f (3-44) 4.97 96/105 

5   25      366.6679 Re-e (10-30); Qf-e (1-29) 7.94 46/49 

5  GS      366.3807 Pe-e (2-65); Re-e (0-65); Qf-e (1-76) 3.19 201/206 

4 + 5 4 I     369.0275 Qf-e (3-29); Qe-f (3-29) 7.91 41/54 

 I     381.6846 Qf-e (3-31) 9.05 25/29 

4  24      422.7556 
Pe-e (2-47); Re-e (2-44); Qf-e (2-49) 
Pf-f  (2-44); Rf-f (2-44); Qe-f (2-60) 

5.50 218/262 

      435.4126 Pe-e (2-55); Re-e (0-55); Qf-e (1-68) 4.64 163/177 

      447.8723 
Pe-e (4-52); Re-e (2-60); Qf-e (3-60) 
Pf-f  (4-59); Rf-f (2-58); Qe-f (3-60) 

4.07 307/333 
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4 + 5  4 + 5 II     430.3939 Pe-e (2-43); Re-e (1-39); Qf-e (1-54) 5.69 108/132 

 II     432.8168 
Pe-e (2-60); Re-e (2-55); Qf-e (1-48) 
Pf-f  (2-58); Rf-f (4-38); Qe-f (1-42) 

4.12 249/295 

 II     433.2902 Pf-f  (2-54); Rf-f (1-52); Qe-f (1-60) 4.26 145/165 

4   4      431.7600 Pe-e (1-81); Re-e (1-75); Qe-f (2-68) 2.99 211/214 

      444.4170 
Pe-e (3-68); Re-e (1-74); Qf-e (3-69) 
Pf-f  (3-72); Rf-f (1-73); Qe-f (3-67) 

3.27 408/412 

4 + 25 5 II     438.3823 Pe-e (4-38); Re-e (4-32); Qf-e (7-37) 
Pf-f  (4-33); Rf-f (4-29); Qe-f (5-43)

7.21 130/180 

 II     441.4235 Pe-e (2-43); Re-e (1-49); Qf-e (4-45) 3.90 115/133 

      441.3739 
Pe-e (4-41); Re-e (2-45); Qf-e (4-48) 
Pf-f  (4-57); Rf-f (2-58); Qe-f (4-42) 

6.24 217/272 

 I     444.5193 
Pe-e (3-48); Re-e (2-43); Qf-e (3-54) 
Pf-f  (2-48); Rf-f (3-46); Qe-f (3-57) 

7.41 218/284 

 I     447.5605 Pe-e (5-43); Re-e (3-43); Qf-e (5-42) 6.14 81/109 

4 + 5  5      440.7424 Pf-f  (1-63); Rf-f (1-55); Qf-e (1-68) 3.56 181/185 

      441.2157 
Pe-e (3-65); Re-e (1-74); Qf-e (4-62) 
Pf-f  (3-63); Rf-f (1-73); Qe-f (4-62) 

4.40 377/388 

      443.6386 Pe-e (2-56); Re-e (1-55); Qe-f (4-68) 4.17 171/175 

4  GS      441.1326 Pe-e (2-81); Re-e (0-82); Qf-e (1-95)  244/256 

4 + 5  4 + 5 I     444.5578 Pe-e (2-58); Re-e (0-62); Qf-e (1-53) 4.36 154/169 

      444.6302 
Pe-e (4-50); Re-e (2-53); Qf-e (4-52) 
Pf-f  (4-50); Rf-f (2-56); Qe-f (4-51) 

4.74 254/294 

 I     447.4541 Pf-f  (3-46); Rf-f (2-49); Qf-e (1-53) 4.56 134/145 

3  4      604.7915 Pe-e (4-47); Re-e (5-53); Qe-f (3-50) 4.63 131/141 

5   GS       731.3310 Pe-e (4-42); Re-e (3-42) 3.85 77/77 

35  5      731.6182 
Pe-e (7-39); Re-e (5-38) 
Pf-f  (5-39); Rf-f (2-39) 

8.21 116/132 

4 + 5  4
II     799.2806 

Pe-e (5-41); Re-e (3-38) 
Pf-f  (6-41); Rf-f (3-37) 

7.90 126/138 

4 + 5  GS      810.0193 Pe-e (1-58); Re-e (0-58) 3.00 114/116 

4 + 25  5
I     812.5108 

Pe-e (5-42); Re-e (3-38) 
Pf-f  (5-42); Rf-f (3-38) 

3.81 145/148 

4 + 5  4 I     813.4445 
Pe-e (5-41); Re-e (3-38) 
Pf-f  (5-44); Rf-f (3-41) 

3.65 136/141 

a In cm1. c is defined in Eq. (3.4). 

b  (in cm1) corresponds to the RMS value of the residuals for the various assigned lines  
   resulting from the simultaneous fit. 

 

 The analysis is similar to the one previously described for the bending states of the 

acetylene isotopologue 13C12CD2 in Section 3.2.3, with the exception that the DarlingDennison 
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interaction is not effective among the analysed vibrational states of DCCF. Initially the transition 

wavenumbers for each band were fitted separately to effective upper state rovibrational 

parameters in order to check the correctness of the assignments and to extend the data set to 

higher J transitions. The basic Hamiltonian of a linear molecule, with distortion corrections up to 

high power in the rotational angular momentum was adopted for the analysis. For the transitions 

involving doubly degenerate states, the  doubling coefficients, namely υq , J
vq , and JJ

vq , were 

taken into account. The rovibrational energies are given by Eqs. (3.2) and (3.3). Once this 

preliminary phase was completed, all the transition wavenumbers were fitted simultaneously by 

using the model Hamiltonian adopted for the analysis of acetylene isotopologues. The term 

values of the rotation vibration levels of the transitions were obtained by diagonalizing the 

appropriate energy matrix which contains the vibration and rotation term values, G0 and F, 

respectively, whose diagonal contributions are defined in Eqs. (2.8) and (2.10) – (2.13). 

Vibration and rotation  – type resonances contributions for the bending levels are expressed by 

off–diagonal matrix elements, see Eqs. from (2.32) to (2.34) and (3.5). First, the parameters of 

the v4 = 1 and v5 = 1 states were refined. Then, the transitions involving the vtot = 2 manifolds, 

i.e. v4 = 2, v5 = 2, and v4 = v5 = 1, were added to the data set one at a time. Using the same 

strategy, the data of each level of the vtot = 3 manifolds, v4 = 3, v5 = 3, v4 = 2 v5 = 1, and v4 = 1 

v5 = 2, and those of the 3 4   difference band were considered. New parameters or the 

coefficients of the rotation and/or vibration dependences of the previously determined constants, 

characterizing the investigated manifold, were refined. Finally, 91 pure rotational transitions in 

vibrational states with vtot up to 3 [48,57] were added to the data set. The refinement of the 

higher order parameters which were needed to satisfactorily reproduce the experimental 

observations had to meet the requirements a), b), c), d), e) illustrated in Section 3.2.4. 

 

3.4.4 Results and Discussion 

 

Two fits were performed: fit #1 was preliminary and included only the IR data (6791), in 

order to obtain a consistent set of parameters before including the much more accurate rotational 

transitions. In the final global fit, fit #2, 91 MW and mmW transitions were added to the dataset. 

The weights of the experimental data were chosen proportional to the inverse of their squared 

estimated uncertainties, with the exception of overlapping transitions, which were given zero 

weight. An uncertainty equal to 1.0 × 104 cm1 was assigned to each IR measurement, despite 

the fact that the lines had different S/N depending on their intensity and on the different 

experimental conditions of the two recorded spectra. The uncertainty of the MW and mmW 
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transitions was set equal to 1.0 × 107 cm1 for isolated lines, whereas blended lines were given 

an uncertainty of 1.0 × 106 cm1. 661 IR data, about 9.7%, were not included in the final fit 

because they were overlapping (418) or their observed – calculated values exceeded (243) the 

chosen tolerance for rejection, 2.0 × 103 cm1, 10 – 20 times the precision of the data. The 

discarded lines are randomly scattered over most of the bands. For the 24, 25 and 4 + 5  

states, the J’’ = 2 e/f components of the rotational lines were not resolved. Their observed – 

calculated values were derived from the comparison of the experimental frequency with the 

average of the frequencies calculated for the two components.  

The 57 spectroscopic parameters determined in the last cycle of fit #2 are listed in Table 

3.23. They are all statistically well determined and reproduce 6130 observed IR transitions with 

an RMS error of 5.3 × 104 cm1, and 90 MW and mmW frequencies with RMS = 77 kHz. Most 

of the parameters are essentially uncorrelated, apart from 0
tq  and ttq  with  4,5t  in Eq. (2.33), 

which are 100% correlated. However, if only the 0
tq  parameters are refined the fit quality 

degrades: the number of rejected IR lines increases to 803 (11.8%) and the RMS is 5.5 × 104 

cm1. Nearly all the 140 additional rejected transitions belong to the v4 = 3 and v5 = 3  states. 

 

Table 3.23: Spectroscopic parameters (in cm1) of the bending modes and of the v3 = 1 state of DCCF 

Parameter  Parameter  

0
4  439.5472335(889) (55)

4 × 106 .5538(224) 
0
5  365.4684847(784) (44)

5 × 106 .7076(138) 
0
44x  1.6567668(695) (45)

5  × 106 0.8753(281) 
0
45x  0.416350(110) 444  × 106 .51016(834) 
0
55x  0.0984956(331) 454  × 106 0.2242(179) 
0
44g  3.5051182(408) 455  × 106 .5171(217) 
0
45g  0.1471499(816)   
0
55g  1.1585161(993) 0D  × 106 0.0889017(285) 

444y  0.0531452(154) 4  × 109 1.15681(769) 

445y  0.1248306(342) 5  × 109 2.58533(684) 

455y  0.0869928(414) 44  × 109 0.04177(388) 
44
4y  .0242316(141) (44)  × 109 .08758(334) 
45
4y  .0143438(343) 

 
 

55
4y  .0125995(762) 0

45r   0.906608(522) 
44
5y  .0437386(467) 45

Jr  × 106 .3016(194) 
45
5y  .0347545(575) 454r  0.084438(248) 
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55
5y  .0525975(480) 455r  0.186317(121) 

  0
4q  × 103 0.4495625(123) 

0B  0.2914023717(174) 0
5q  × 103 0.5253172(230) 

4  × 103 .5147993(567) 44q  × 106 1.7614(124) 

5  × 103 .8257296(329) 45q  × 106 0.3113(385) 

44  × 106 .8944(417) 55q  × 106 .6865(230) 

45  × 106 .545(532) 4
Jq  × 109 .98161(142) 

55  × 106 .7781(121) 5
Jq  × 109 .42191(128) 

(44)  × 106 .8473(284) 0
4  × 109 .06879(633) 

(45)  × 106 .5873(632) 0
5  × 109 .2480(613) 

(55)  × 106 5.9389(102) 5
J  × 1012 1.5032(217) 

(44)
4  × 106 .81880(841) 0

45  × 109 .1732(190) 
(45)
4  × 106 0.3667(237)   

  0
3G  1045.924109(113) 

  3B  0.290361167(226) 

  3D  × 106 0.0890150(918) 
    

No. of fitted / assigned lines  6220 / 6882   

RMS / cm1 (IR data)               0.00053   

RMS / MHz ( MW data)              0.077   
   

 

The parameters in Table 3.23 are consistent with those from fit #1 and their signs 

unchanged, the largest differences being in the range 0 1 % (33 parameters), 1 10 % (12 

parameters), 10  30 % (12 parameters). However, the inclusion of the rotational transitions in 

the data set reduces drastically the correlation coefficients between some of the parameters and 

decreases the uncertainties of several rotational parameters. Moreover, only 16 additional IR 

transitions exceeding the rejection limit of 0.002 cm1 had to be discarded when the MW/mmW 

data were added to the IR data. This is a fairly good result since the MW and mmW transitions 

are more accurate than IR ones and have been attributed a larger weight in the fit procedure. 

The Fermi interaction effective between the v3 = 1 and v4 = 20 states in HCCF, with k344 

= 17.766 cm1, which has been reported in [36,17], has less effect on the energy of the 

corresponding states in DCCF owing to the different energy pattern of the vibrational levels in 

the two molecules. In fact, the term value difference between v3 = 1 and v4 = 20 is 95 cm1 in 

HCCF and 173 cm1 in DCCF. Qualitative indications of Fermi resonance in the spectra are 

present. Even if in DCCF it will be therefore weak and absorbed by the effective rovibrational 

state parameters, a proof for that is the nonzero but very small intensity of the 3 – 4 band at 604 
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cm1. This may be indicative of some v4 = 20 character in the v3 = 1 state, the difference band 

thus adopting some 24 – 4 hot band properties. A further indication is that the 24 ← 4 (+ – 

) hot band is redshifted more than 10 cm1 with regard to 4 and 24 – 4 ( ← ). This shift is 

accounted for by the substantial and positive value of 0
44g = 3.5 cm1, Table 3.23. 

In total, 19 components of the various manifolds up to vtot = 3 were characterized, with 

the exception of the v5 = 3, 5  = 3  state, and their term values are reported in Table 3.24. 

 

Table 3.24: Vibrational term values, 0
CG , (in cm1), of the levels involving  

bending modes and the v3 = 1 state in DCCF 

v4 4  v5 5  Sym. 0
CG  

0 0 1  1   366.3807 

1  1 0 0   441.1326 

0 0 2 0   731.3310 

0 0 2  2   734.3721 

1 –1 1 1   807.1231 

1  1 1  1   807.5964 

1 1 1 –1   810.0193 

2 0 0 0   872.8926 

2  2 0 0   885.5496 

0 0 3  1   1097.9989 

0 0 3  3    1104.0742a 

1  1 2 0 II  1172.7545 

1  1 2  2   1175.7461 

1  1 2  2 I  1178.8914 

2 0 1  1 II  1240.4132 

2  2 1  1   1252.2266 

2  2 1  1 I  1254.5771 

3  1 0 0   1308.3052 

3  3 0  0      1333.4219 

v3 v4 v5  Sym. 0
CG  

1 0 0    1045.9241 

a Calculated value of a state not observed experimentally in the IR spectra. 
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3.5 DC4H  

 

 Diacetylene has a great importance in astrophysics: it has been observed in the 

protoplanetary nebulae CRL618 and CRL 2688 [59], and also outside our galaxy in a similar 

object embedded in the Large Magellanic Cloud [60]. It is a well known constituent of the 

stratosphere of giant planets and their moons [6163]. Monodeuterated acetylene has been 

recently detected in Titan by Cassini/CIRS [64]. Diacetylene produces one of the strongest 

emission features of Titan below 1000 cm1, thus it is expected that also its monodeuterated 

isotopologue DC4H could be identified, providing further insight into the origin of Titan’s 

atmosphere. 

DC4H, because of the D substitution, does not own a centre of symmetry, so it belongs to 

C∞v point group, acquiring a small permanent dipole moment in its ground vibrational state, 

which allows the detection of pure rotational spectrum in the millimetre wave spectral region. 

The molecule has 13 vibrational degrees of freedom, originating 5 vibrations of   symmetry 

and 4 double degenerate of  symmetry, as shown in Table 3.25. 

 

Table 3.25: Vibrational normal modes of DC4H 

Band  Symmetry Wavenumber (cm1)a 

1 Stretching CH   3332 

2 Symmetric Stretching C≡C   2146 

3 Stretching CC   854 

4 Stretching CD   2600 

5 Antisymmetric Stretching C≡C   1938 

6 Bending CH  627 

7 Symmetric Bending C≡C-C  471 

8 Bending CD  499 

9 Antisymmetric Bending C≡CC  210 

a From Ref. [65]. 

 

The IR spectrum of DC4H has only been studied at high resolution at wavelength shorter 

than 10 m [65]. No high resolution study was performed below 1000 cm1, where the 
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fundamental bending bands are located. That is why an intensive investigation of the 450 1100 

cm1 has been undertaken.  

 

3.5.1 Experiment 

 

 The sample of DC4H has been synthesised by using the method described by Armitage et 

al. [66], i.e. by reaction of 1,4dichloro2butyne (purchased by Aldrich) with sodium 

hydroxide dissolved in a nearly equimolar mixture of H2O and D2O.  

 

2 2

NaOH NaOH
2 2 H O/D O

ClH C C C CH Cl ClHC=C=C=CHCl DC C C CH         

 

The synthetic outcome of this procedure is a mixture of about 50% DC4H, 25% HC4H and 25% 

DC4D. 

 Spectra were recorded in Bologna using a Bomem DA3.002 Fourier transform 

spectrometer. It was equipped with a Globar source, a KBr beam splitter and a HgCdTe detector 

operating at liquid nitrogen temperature. Spectra were recorded at different pressures in a cell 

0.18 m long. The attained resolution was 0.004 cm1. Up to 880 scans were coadded in order to 

improve the S/N ratio of the spectra. Experimental conditions for each recorded spectrum are 

reported in Table 3.26.  

 

 Table 3.26: Experimental conditions for the recording of DC4H spectra 

Spectrum 

Pressure 
of the 

sample 
(Pa) 

Range 

(cm1) 
Source Detector 

Resolution 
(cm1) 

#Scans 
Optical 

pathlenght 
(m) 

a   306.5 450 1100 Globar MCT 0.004 880 0.18 

b     66.7 450 1100 Globar MCT 0.004 800 0.18 

c 1333.3 450 1100 Globar MCT 0.004 800 0.18 

 

In order to calibrate the spectra, rovibrational transitions of H2O [20] and CO2 [67] were 

used. The precision of the measurements was estimated to be 4 × 104 cm1. 

In addition, rotational spectra of DC4H in the ground and excited bending states have 

been recorded between 85 and 615 GHz in collaboration with the group of the Department “G. 

Ciamician”, using a mmwave spectrometer.  
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3.5.2 Description of the spectra 

 

Due to the small value of the rotational constant B (B0 is about 0.136 cm1) and to the 

various isotopologues that are present in the sample, the spectrum is rather congested. An 

overview of the investigated spectral zone is shown in Figure 3.19. 

 

 

Figure 3.19: Overview of the investigated region of the spectrum, between 450 and 1100 cm1. 

Experimental conditions: see spectrum a) in Table 3.26. 

 

 Three fundamental bending bands +, namely 6, 7 and 8, have been observed and 

analysed. The strongest band present in the spectrum is assigned to 6 partially overlapping the 

8 of HC4H. Luckily, the HC4H fundamental bands have been already analysed [68], simplifying 

the assignment procedure and the identification of the weaker transitions belonging to the 

isotopologue under investigation. Besides, several hot, combination and overtone bands have 

been identified. The 6 region is the most crowded, due to the presence of many Q branches of 

hot bands, the strongest of them arising from 9, which is located at about 290 cm1. Towards 
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higher wavenumbers the spectrum appears less congested. Between 800 and 900 cm1 it is 

possible to detect the very weak 3 band. Finally, in the range 900  1100 cm1 the first 

overtones of 7 and 8 are observed, together with the combination band 7 + 8. For these three 

bands only the + component has been identified.  

 

3.5.3 Analysis, Results and Discussion  

 

 The list of the investigated bands in the infrared is reported in Table 3.27, together with 

the symmetry of the transitions, the value of the band centre, the observed range of J values for 

the various branches, the number of assigned lines and the root mean square (RMS) error. 

 

Table 3.27: Observed and analysed transitions for DC4H 

Transition Symmetry C
 a P; R; (Jmin, Jmax) 

 

( 410 )b 

n. assign. 
lines 

7 GS        471.2648 
Pe-e (3-81); Re-e (1-75);  
Qf-e (12-75) 3.5 246 

8 9 9          497.8842 Pe-e (6-79); Re-e (3-79); 5.3 132 

8 GS        498.2591 
Pe-e (11-96); Re-e (5-95);  
Qf-e (24-81); 3.4 184 

6 9 9          625.7766 Pe-e (6-79); Re-e (3-79); 5.0 184 

6 GS        626.8209 
Pe-e (2-117); Re-e (4-115);  
Qf-e (18-73); 3.5 246 

8 9 GS          708.5023 Pe-e (6-57); Re-e (9-65) 3.6 109 

72 GS          950.1728 Pe-e (1-97); Re-e (0-84) 3.6 170 

7 8 GS          969.4633 Pe-e (1-87); Re-e (0-90) 3.1 175 

82 GS        1005.1905 Pe-e (1-83); Re-e (0-85) 3.5 169 

a In cm1. 
C  is defined by Eq. (3.3). 

b  (in cm1) corresponds to the standard deviation of the fit. 

 

 A bandbyband fitting procedure was accomplished to analyse the assigned bands. The 

transition wavenumbers for each band were fitted separately to the upper state rovibrational 

parameters by a leastsquares procedure. The basic Hamiltonian for a linear molecule, with 

distortion corrections up to high power in the rotational angular momentum, was used for the 
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analysis. In case of transitions involving doubly degenerate  states,   doubling contribution 

are included. The rovibrational term values are given by Eq. (3.2), the centre energy is expressed 

by Eq. (3.3) and the band centre by Eq. (3.4). In this case, 't tk     with t,t’ = 6, 7, 8, 9. 

 Unit weights were assigned to measurements for well isolated lines, while the weights 

were reduced to 1/n if n transitions were assigned to the same wavenumber. Finally, the 

transitions that differed from their corresponding calculated values by more than 2.0 × 103 cm1 

or 1.0 × 103 cm1, depending on the S/N, were excluded from the data set in the final cycle of 

the refinement.  

 The fit of the transitions of the v6 = 1 bending state showed anomalous residuals. 

Considering that the excited state v9 = 3 is only 3 cm1 apart, it has been guessed that a quartic 

anharmonic interaction was effective between these two states. Since no experimental 

information about v9 = 3 was available, its spectroscopic parameters were calculated in the 

following way: the vibrational energy was assumed to be three time that one of the v9 = 1 state, B 

and D were linearly extrapolated from the corresponding values of the ground and v9 = 1, 

whereas the  doubling constants were constrained to the values determined from v9 = 1. The 

value of the interaction parameter W6999 has been determined. In addition, the resonant system 

near v3 = 1 has been taken into account. A diagram illustrating the interacting system centred on 

the v3 = 1 state is reported in Fig. 3.20. The dashed lined indicates the position of the 

unperturbed energy levels, while the large arrows indicate the energy displacement due to the 

anharmonic interactions. The six states resonant system deeply affects the analysis and, as a 

consequence, a global rovibrational analysis of all the bands has been performed. A detailed 

description of the model adopted for the analysis is in Ref. [69,70]. The offdiagonal matrix 

elements for the cubic interactions were inserted in the Hamiltonian: 
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The model adopted allowed the identification of transitions not previously observed. 
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Figure 3.20: Vibrational energy levels diagram of the resonance system centred on the v3 = 1 

state. Anharmonic interactions producing the displacement of the levels are 

indicated, as well as the value of the energy shift. The diagram in not to scale. 

 

The obtained spectroscopic parameters as well as the interaction parameters are reported 

in Table 3.28. In most cases, the observed wavenumbers were well fitted by adjusting the band 

centre, B, D and H, but in the hot bands, namely 8 9 9     and 6 9 9    , there are more 

prominent centrifugal trends which required the refinement of the octic parameter L.  
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 Table 3.28: Band centres and spectroscopic parameters for DC4H 

Band Symmetry C 

(cm1) 
B 

 (MHz) 
D  

(kHz) 
H  

(mHz) 
L 

(Hz) 
q  

(MHz) 
qJ  

(Hz) 

7 GS      471 .264817(80) 4090.6301(42) 0.4071(18) 0.60(21)  3.0392(24) 3.20(56) 

8 9 9        497 .88416(15) 4100.854(12) 1.3266(86) 107.6(21) 5.07(17)   

    498 .00022(19) 4100.923(10) 0.5547(42) 6.02(47)    

 e   498 .58134(20) 4100.763 0.556(16) 124.5(45) 6.60(41)   

 f   498 .58133(18) 4100.8094 0.2633(44) 7.28(57)    

8 GS      498 .259142(67) 4089.6482(23) 0.39577(66) 0.089(  2.6321(17) 0.88(34) 

6 9 9        625 .77660(23) 4096.9474(90) 0.8889(62) 35.0(15) 1.13(12)   

    626 .54962(21) 4097.428(14) 0.6358(87) 19.6(18) 0.72(12)   

 e   627 .02090(18) 4097.563(14) 0.0176(98) 31.5(23) 1.08(18)   

 f   627 .02116(11) 4097.5867(57) 0.2338(24) 8.70(28)    

6 GS      626 .820869(50) 4086.2057(16) 0.39835(35) 0.173(15)  2.1259(20) 2.04(46) 

8 9 GS        708 .502320(97) 4100.7709(71) 1.2278(41) 67.60(67)     

3 GS        855 .89272(18) 4081.1133(67) 0.3907(16)      

72 GS        950 .172799(57) 4093.5899(23) 0.36703(76) 0.685(65)     

7 8 GS        969 .463268(50) 4095.2028(22) 0.56660(75) 5.898(66)     

82 GS        1005 .190519(30) 4094.0138(14) 0.35758(54) 0.207(53)     
        

Interaction parameters         

 W6999(cm1) 0 .10804(89)  369
30JC (MHz) 0.2381(82)      

  377
30C (cm1) 12 .113  388

30C (cm1) 8.141      

  377
30JC (MHz) 0 .495  378

30C (cm1) 7.1559      

  369
30C (cm1) 2 .498        
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CHAPTER 4 

 

ANALYSIS OF SYMMETRIC TOP MOLECULES 

 

 The symmetric top molecules analysed belong to C3V point group.  

 

4.1 CH3CCH 

 

Propyne, or methylacetylene, is a prolate symmetric top molecule and it has a large value 

of the axial rotational parameter. As a consequence, the excitation energies of the levels increase 

rapidly with the K quantum number. Nevertheless, the K – components of a specific subbranch 

lie in a fairly narrow wavenumber range, in particular for low J values. These spectral structures 

are thus ideal probes for the kinetic energy of the interstellar medium [1]. In addition, propyne 

exhibits prototype behaviour for the investigation of intramolecular vibrational redistribution 

(IVR), induced by the methyl group rotation [211]. Propyne has 3N – 6 = 15 vibrational 

degrees of freedom, giving rise to 9 normal modes, as illustrated in Table 4.1. 

Table 4.1: Description of the normal modes of CH3CCH 

Mode Symmetry  
Band origin 

(cm) 

 A1 Acetylenic CH stretch  3335 .1 [7] 

 A1 
Symmetric methyl CH 

stretch 
2941 .0 [11] 

 A1 C≡C stretch 2142 .0 [12] 

 A1 Methyl deformation  1385 .6 [13] 

 A1 Stretching CC  930 .3 [14] 

 E 
Antisymmetric methyl 

CH stretch  
2980 .9 [3] 

 E 
Methyl skeletal 

deformation 
1450 .3 [13] 

 E Methyl rocking  1036 .1 [14] 

 E C≡CH bend  638 .6 [15] 

 E CC≡C bend  330 .9 [16] 
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The region of the first overtone of 1 is quite complex, because of a network of Coriolis 

and anharmonic interactions. That is why an accurate reinvestigation of the range 6200  6700 

cm1 is needed.  

 

4.1.1 Experiment 

 

 Spectra were recorded both in Bologna and in Brussels using different techniques. 

 

a) Supersonic expansion CRDS: FANTASIO+ 

 Low temperature spectra were recorded in specific ranges by Cavity Ring Down 

Spectroscopy (CRDS). Briefly, CRDS is a highly sensitive technique that enables measurements 

of samples which can absorb electromagnetic radiation. The principle is quite simple: a laser is 

used to illuminate a highfinesse optical cavity. When the laser is in resonance with a cavity 

mode, intensity builds up in the cavity due to constructive interference. The laser is turned off in 

order to allow the measurement of the exponentially decaying light intensity leaking from the 

cavity. During this decay, light is reflected back and forth thousands of times between the 

mirrors of the cavity giving a considerable effective path length. If something that absorbs the 

light is present inside the cavity, the decay of the radiation is even faster. A CRDS setup 

measures how long it takes for the light to decay to 1/e of its initial intensity. The instrumental 

system built up for recording the spectra is shown in Figure 4.1.  

 

Figure 4.1: Experimental setup of the FANTASIO+ instrumentation. 
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The CW CRDS spectrometer uses DFB tunable diode lasers (TDL) emitting in the 1.5 

m range (e.g. ILX light wave, 1 MHz line width). The TDL beam is sent through an optical 

isolator and then split by a coupler. Some 1% of the light intensity is sent via a fibre collimation 

package (f = 8 mm) into a Fabry Pérot interferometer made of two 50% reflectivity flat mirrors 

positioned on an Invar bar. The remaining 99% of the light is focused by a fibre collimation 

package (f = 4.5 mm) onto an acousto optical modulator (AOM) from AA Opto Electronic 

(MGAS 80 A1). The first order diffraction from the AOM is injected into the TEM00 mode of a 

linear ringdown cavity through two lenses (f1 = 30 mm, f2 = 50 mm) and two steering mirrors. 

The cavity is composed of two concave mirrors (Radius = 1000 mm) with reflectivity R = 

99.9986% (Layertec), separated by about 540 mm. The ring down time was about 130 μs [17], 

corresponding to about 72000 passes below the 1 cm slit, i.e. some 720 m effective absorption 

path in the cooled gas. The TDL frequency can be continuously tuned by sweeping the 

temperature using a home made PID stabilizer. The temperature tuning from about 60 °C to 5 

°C corresponds approximately to 30 cm of spectral range for each diode. 50 measured ring 

down times for each spectral point of the present recordings have been averaged. For 

linearization of the spectra, the transmittance of a Fabry  Pérot interferometer was recorded 

simultaneously, as described in [17]. FTIR spectra previously recorded [2] with an estimated 

precision of 10 cm were used for calibration. 

The free supersonic jet expansion is produced using two identical, large turbomolecular 

pumps (Leybold MAG W3200 CT; 3200 l/s). They are directly mounted below the cylindrical 

expansion cell, about 32 cm in diameter. The reservoir (p0) and residual (p) pressures are 

measured using MKS Baratron gauges (1000 and 1 torr full scale, respectively). The propyne, 

from Air Liquide (97 % purity) and used without further purification, and Ar carrier gas, flows 

were measured using MKS and Brooks flowmeters (10000 and 50000 cubic centimetre per 

minute at STP, respectively). The slit nozzle was about 1 cm long and 30 m wide. As the 

recorded bands differ strongly in intensity, the experimental conditions, listed in Table 4.2, have 

been tuned for each spectrum to reach an optimal signaltonoise ratio (min = 5  108 cm). 

The rotational temperature is estimated to be about 20 K, in each case. 
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Table 4.2: Experimental conditions used to record the propyne spectra with supersonic 

expansion 

Band p0 (kPa) p∞ (Pa) Ar flow (SCCM) 
Propyne flow 

(SCCM) 

21 75 1.3 4600 28 

1 + 2 / 1 + 6 61 1.9 4500 236 

1 + 3 + 5 80 1.7 4300 710 

 

b) FTIR 

 

 High resolution spectra were recorded at the university of Bologna using a Bomem 

DA3.002 Fourier Transform spectrometer. The sample of propyne (99% of purity) was 

purchased by Sigma Aldrich. The instrument was equipped with a quartz source, a quartz beam 

splitter and a InSb detector, operating at liquid nitrogen temperature. A multipass cell was used 

in order to obtain a maximum path length up to 10 m. Several scans up to 2400 were coadded 

in order improve the signaltonoise ratio. An instrumental resolution from 0.004 cm1 to 0.016 

cm1 was set, achieving a resolution of 0.016 cm1, close to the Doppler limit. Experimental 

conditions for each spectrum are reported in Table 4.3. 

 

Table 4.3: Experimental conditions for the recording of CH3CCH FTIR spectra 

Spectrum 

Pressure 
of the 

sample 
(Pa) 

Range 

(cm1) 
Source Detector 

Resolution 
(cm1) 

#Scans 
Optical 

pathlenght 
(m) 

a   267.0 6200 6700 Quartz InSb 0.004 880 6 

b 1333.3 6200 6700 Quartz InSb 0.008 1800 10 

c 2666.6 6200 6700 Quartz InSb 0.016 2400 10 

 

 The calibration was performed on the basis of the already calibrated low temperature 

CRDS spectra recorded in Brussels and on H2O rovibrational transitions [18,19]. 

 

c) Cavity Enhanced Absorption Spectroscopy (CEAS) 

 

 Spectra were recorded in Brussels using the apparatus already described in Section 3.3.1. 

Conditions needed to be adapted empirically by tuning the cell length to a slightly different value 
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for each selected central wavelength and for each sample pressure to optimize this fringing 

smoothing effect. The equivalent path length is  cavity
eq

FL
L


 ≈ 12000 m at 6500 cm, and is 

reduced to a minimum value of 1500 m on the edges of the explored spectral range (at 6200 

cm). The spectra were recorded using propyne (from Air Liquide, 97 % purity) at a pressure of 

267 Pa, retuning the laser output wavelength as often as necessary to cover the full range from 

6200 to 6700 cm. The pressure was kept low to reduce pressure broadening effects, actually 

producing a resolution most comparable to that in the conventional FTIR spectra, which 

benefited from a better instrumental resolution but presented more severe pressure broadening. 

For the range 6300 to 6700 cm, 50 scans were accumulated, leading to min = 5  10 cm. In 

the remaining part (6200 – 6300 cm), 200 scans were accumulated. The 

OPOfemtoFTCEAS spectra were calibrated using the FTIR spectra. 

 

4.1.2 Description of the spectra 

 

 The investigated region is between 6200 and 6700 cm, as shown in Figure 4.2. 

 

Figure 4.2: Fourier transform spectrum of propyne in the region 6200  6700 cm. Hot bands 

associated with 21 are indicated with a star, whereas a dot identifies bands not 

included in the considered system under investigation. Letters A, B, C indicates the 

techniques FTIR, CRDS, CEAS (respectively), providing data used in the analysis. 

Experimental conditions: see spectrum c in Table 4.3. 
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 Combination and overtone bands are observed in this region, namely 1 2  , 1 3 5    , 

12 , 0
1 3 92     (parallel) and 1

1 6    (perpendicular). All of them involve the acetylenic CH 

stretch 1. In addition, hot bands connected with 21 have been observed: they are indicated with 

a star in Fig. 4.2, but they are not considered in the analysis. Two new bands labelled with a dot 

in Figure 4.2 were identified and analysed apart and not included in the network of interaction 

considered during this investigation. They will be discussed in the next section. The origin of the 

data sets used in the analysis, in terms of one of the three instrumental techniques described in 

the previous section (A = FTIR; B = CRDS; C = CEAS) is indicated in the Fig. 4.2. A 

comparison between the spectra recorded with the three different techniques is illustrated in Fig. 

4.3. 

 

Figure 4.3: Comparison between the spectra of propyne recorded with the three different 

techniques, CRDS, FTIR and CEAS. 

 

 Some bands are too weak to be observed with conventional room temperature FTIR 

spectrum (black central trace). The CEAS spectrum (blue trace) provides additional sensitivity to 

highlight high J and K lines, while the jet cooled CRDS spectrum (red trace) provides a sensitive 

probe of simplified, low J and K structure. In fact, the recording of cold spectra was actually 

extremely important as they allowed the understanding and the analysis of the K structure of the 

parallel bands, unresolved in room temperature spectra. However, stronger bands are well 
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characterized from the conventional FTIR technique. CEAS data were recorded over the entire 

spectral range, but they were used only in a narrow interval around 6300 cm, either because the 

bands present outside this interval were strong and the FTIR data set was already complete, or 

because the additional information was of poorer quality and, as a consequence, not worth to be 

included in the fitting process.  

 

4.1.3 Analysis 

 

 The K structure of all the investigated parallel bands could not be completely resolved, 

since the spectrum is really complicated. For this reason the information available from cold 

spectra are indispensable to assign low K values, since the intensity of the lines decreases rapidly 

with increasing K, i.e. the K = 3 transitions are observable only in few cases. The Q branch 

structures for the first few K values are partially resolved on the cold spectra (see for instance the 

Q branches of the 1 2   band in Fig. 4.4). 

 

 

Figure 4.4: Detail of the CRDS spectrum of propyne showing the Q branches of the parallel 

band 1 2  . The red asterisk indicates a Q branch (presumably K = 1) of a band 

in interaction with 1 2  . Experimental conditions: see 1 2   in Table 4.2. 
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The analysis of room temperature spectra was useful to extend the assignments at higher 

J values, using the CEAS data, in particular, for the weaker bands around 6300 cm. 

- 12 : This is the strongest band present in the recorded range, already investigated by 

McIlroy et al. [6] under jetcooled conditions, at a rotational temperature of 5 K, which is 

slightly lower compared to 20 K as in these spectra. The K and J structures of the various P 

and R branches are well resolved. In Figure 4.5 a portion of the CRDS spectrum between 

6562.875 and 6563.025 cm is shown. From the irregular K pattern it is immediately clear 

that some perturbations are present: K = 3 should indeed appear at higher wavenumbers 

than K = 2, rather than between K = 1 and 2, as observed. Similar anomalies have already 

pointed out for J ” ≤ 11 [6]. Assignments has been extended up to J = 28 both for K = 0 and 

1 and up to J = 15 and 12 for K = 2 and 3, respectively, as summarized in Table 4.4, thanks 

to the high quality of the present CRDS data (S/N > 10000). Although 1 is the strongest 

band, only a relatively small number of lines has been assigned. This is due to the fact that 

in the cold spectra only low J and K values are observable and in the room temperature 

spectra the overlap between subbands with different K values did not allow to separately 

identify the corresponding transitions. 

 

 

Figure 4.5: Detail of the CRDS spectrum of propyne showing the K structure of the qP9(K). 

  Experimental conditions: see 12  in Table 4.2. 
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- 1 2  : This band is that at lowest wavenumbers among those investigated. Transitions 

with K = 0 and 1, up to J = 41 and 19, respectively, K = 2 and 3 up to J = 17 have been 

assigned, as summarized in Table 4.4. Another parallel weak band can be observed on the 

low temperature spectra at about 6275.4 cm (indicated with a red asterisk in Fig. 4.4), 

which is slightly redshifted with respect to the 1 2   origin. It will be called Band 1 

hereafter. Only few lines are observed (with 2 < J < 10, presumably K = 0), which are 

likely to borrow intensity from 1 2  , as further discussed in Section 4.1.4. 

- 1 3 5    : This band has an intensity comparable to that of 1 2   and is redshifted and 

close to 12 . It has been possible to assign the K = 0 and 1 lines, up to J = 35 and 24, 

respectively, and K = 2 up to J = 20, as reported in Table 4.4. Thanks to the 

highresolution and low temperature conditions, two others almost overlapping series of 

lines could be identified, belonging to two bands, labelled 2 and 3 hereafter. For Band 2, a 

few J values, up to J = 12, could be assigned to P and R transitions, leading to determine 

the origin, the rotational constant B and the quartic centrifugal distortion parameter DJ of 

the upper state, as reported in Section 4.1.4. For Band 3, only four P and four R lines are 

observed, but no useful information could be gained from them. In addition, there are two 

more bands in the range, identified by blue dots in Figure 4.2, labelled Bands 4 and 5. 

Their origins are close to 6371 and 6421 cm, respectively. No analysis has been 

performed since on the FTIR spectra they are too weak and their structure is not well 

resolved and no cold spectra in their ranges have been recorded. 

- 0
1 3 92    : It is the band at the highest wavenumber in the analysed spectral range. It is 

a strong band even if it corresponds to 4 quanta of excitation. It mainly gains intensity from 

the close and strong 2 1  overtone band. Also in this case cold spectra were not available 

and only room temperature spectra were analyzed. Only K = 0 and 1 transitions up to J = 

34 could be assigned. 

- 1
1 6   : This is the only perpendicular band observed in the investigated region. It 

appears between 1 2   and 1 3 5    , with slightly lower intensity. The structure of the 

PP, PQ, PR branches was initially assigned from the cold spectra, which significantly helped 

in the region where overlap occurs with 1 2   in the room temperature spectrum. Many 

Coriolistype perturbations could be observed, as discussed below.  

The assignments and band centre for each band are listed in Table 4.4. 
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 Table 4.4: Bands of propyne included in the leastsquares fitting procedure  

Vibrational 
transition 

Symmetry 0
a

 Lines assigned 

   K = 0 K = 1 K = 2 K = 3 

1 2   A1 6275.841723b 
qP (1-41) 
qR (0-40) 

qP (2-17) 
qR (1-19) 
qQ (1-14) 

qP (3-17) 
qR (2-17) 
qQ (2-11) 

qP (4-17) 
qR (3-17) 
qQ (3-14) 

1
1 6    E 6315.785910 

rP (2-28) 
rR (0-29) 

PP (1-29) 
PR (1-21) 
PQ (1-22) 
rP (3-13) 
rR (1-25) 

PP (2-24) 
PR (2-12) 
PQ (5-29) 
rP (6-22) 
rR (2-20) 

PP (3-26) 
PR (4-23) 
PQ (4-28) 
rP (7-16) 
rR (3-17) 

1 3 5     A1 6399.5024b 
qP (1-35) 
qR (0-33) 

qP (2-22) 
qR (1-24) 

qP (3-20) 
qR (2-18) 

 

12  A1 6567.8778b 
qP (1-28) 
qR (0-28) 

qP (2-28) 
qR (1-28) 
qQ (1-8) 

qP (3-15) 
qR (2-13) 

qP (4-12) 
qR (3-10) 

0
1 3 92     A1 6660.2223b 

qP (4-34) 
qR (2-30) 

qP (4-34) 
qR (2-30) 

  

a The band centre, 0 (in cm), is defined as 0 0
0 ' ''E E    . 

b Unperturbed value. 

 First, the quantum numbers for the lines in each band were assigned and fitted in a 

bandbyband analysis. As expected, the results were not satisfactory and a large number of 

higher order parameters (the distortion constants H) had to be refined. Most of them resulted 

poorly determined with anomalous values, order of magnitude larger than the corresponding 

ones in the ground state (GS). In addition, the number of lines discarded in the fits was rather 

large (in all 113 out of 616, about 14%) and the predicted position of the transitions did not allow 

the extension of the assignments at higher J and K values. This suggested clearly that it was 

necessary to analyse the bands all together, taking into account the interaction between them. 

Nevertheless, the outputs of this bandbyband analysis were used as input for the global fit. In 

each case, the assignment of the quantum numbers J and K was checked by means of ground 

state combination differences (GSCD), calculated using the GS parameters in Ref. [20] and 

reported in Table 4.5.  
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Table 4.5: Ground state parameters (in cm) of propyne 

A0 5.3083046 

B0 0.28505976 

D0J 106 0.09803546 

D0JK  106 5.450142 

D0K  103 0.09173 

H0J  1015 2.308 

H0JK  1011 2.94212 

H0KJ  1010 1.7406 

H0K  107 1.114 

 

 In order to perform the global fit, an upgraded version of a program described in [21] was 

used. For each value of J, the program constructs two Hamiltonian matrices of dimensions 

6 (2 1)J  : one is set up for levels of A+ and A symmetry, the other corresponds to one of the 

degenerate blocks of E symmetry. The diagonal matrix elements, containing the usual 

contributions up to the 6th power in the angular momentum operators, are given by: 

   
   

     

20 2 2

2 4 3

3 2 2 4 6

( , , ) 1 2( ) 1

                 1 1

                  + 1 1 1

                 

J

JK K J K

J JK KJ K

E J K E B J J k A k A k D J J

D J J k D k J J k k

H J J H J J k H J J k H k

    

   

   





 



           
           

               



 

 

   2 3 5 3 3
*1 1J JK K KJ J k J J k k k                 

    (4.1)

where terms containing   vanish for non degenerate states. 

The program can treat simultaneously up to 6 parallel and 6 perpendicular bands. In this 

case it has been adjusted for the bands analysed in the studied range (i.e. 4 parallel and 1 

perpendicular bands). Bands 15 previously described were not considered in the system 

because the very few lines observed did not allow an improvement of the global analysis. The 

offdiagonal elements are reported in Table 4.6. As far as anharmonic resonances are concerned, 

they are defined as follows:  

/35 /35

5/99 5/99

/399 /399

1

2 2
1

2
1

2

a a

a a

W k

W k

D K







 (4.2)
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where k and K are the cubic and quartic Nielsen’s anharmonic constants, respectively, the 

subscript represents the interacting vibrations, and a is 1 or 2. 

 

Table 4.6: Offdiagonal matrix elements of the vibrationrotation Hamiltonian in propyne. 

The basis functions are: ' '' ''' ' ' 1 2 3 5 6 6 9 9| , ,   | , ,s s s s t t t t J K J K                  

_________________________________________________________________________ 

Coriolis type resonances 
 

            1,6 1 1,6 3 1,6 3 2
1 21 23 1 6 11 11 11 12 , , ( ) / , , 1, 1 2 ( 1) (2 1)a bJ K H H hc J K C C J J C K F   

           

   1,6 2
1 22 1 6 11 12 , , / , , 1, 1 2 (2 1)J K H hc J K C K F         

   1,6 2
1 22 1 6 21 22 , , / , , 2, 1 2 J K H hc J K C F        

            2,6 1 2,6 3 2,6 3 2
1 2 21 23 1 6 11 11 11 1, , ( ) / , , 1, 1 2 ( 1) (2 1)a bJ K H H hc J K C C J J C K F    

            

   2,6 2
1 2 22 1 6 11 1, , / , , 1, 1 2 (2 1)J K H hc J K C K F           

   2,6 2
1 2 22 1 6 21 2, , / , , 2, 1 2 J K H hc J K C F          

0
1 3 9 31 1 6 3699 12 , , / , , 1, 1   B

AJ K H hc J K R F             

1 3 5 31 1 6 356 1, , / , , 1, 1   BJ K H hc J K R F             

 
Anharmonic resonances 
 

 1 3 530 12 , , / , ,J K H hc J K      1/35W  

3

0
1 30 1 9 1/3992 , , / 2 , ,J K H hc J K D       

 2 3 51 30 1, , / , ,J K H hc J K       2/35W  

0
1 3 5 30 1 3 9 5/99, , / 2 , ,J K H hc J K W          

3

0
1 2 40 1 9 2/399, , / 2 , ,J K H hc J K D        

Essential resonances 
 

   6
1 6 6 22 24 1 6 6 22 2

1
, , , / , 2 , 2 [ ]

2
J K H H hc J K q F             

   6
1 6 6 22 24 1 6 6 12 1, , , / , 2 , 1 2(2 1)[ ]J K H H hc J K K q F             

_________________________________________________________________________ 
a 1/ 2 1/ 2 1/ 2=[ ( 1) ( 1)] [ ( 1) ( 1)( 2)] .....{ ( 1) [ ( 1)]( )}            nF J J K K J J K K J J K n K n  
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In the leastsquares fits a statistical weight equal to the reciprocal of the squared 

estimated uncertainty has been attributed to each transition that corresponds to an isolated line, 

while the weight has been reduced to 1/n if n transitions are assigned to the same wavenumber. 

In particular, the precision of each line has been estimated as a ratio between the resolution and 

the signaltonoise ratio of the corresponding spectrum, since the data derive from spectra 

collected in very different experimental conditions. The analysis was accomplished as an 

iterative process, which consisted in improving the values of the excited state parameters by 

means of the assigned lines, also refining new constants when necessary, predicting the 

wavenumbers of higher J and K unassigned transitions to be searched in the spectra and 

enlarging the original data set. 

 

4.1.4 Results and Discussion 

 

In total, 1176 rovibrational transitions have been assigned, 179 of which belong to 1, 

254 to 1 2  , 145 to 1 3 5    , 120 to 0
1 3 92    , and 478 to 1

1 6   .  

Once all the transitions that could be unambiguously assigned were identified, a 

systematic investigation to derive the set of parameters that best reproduces the experimental 

data was carried out. Constants up to the third order of approximation, E0, B, A, A, 
 1

11C , 
 2

11C , 

 2

21C , 
 3a

11C , 
 3b

11C , J, K and the distortion constants D and H were refined. At the end of each 

fit it was checked that the newly, as well as the previously determined parameters, were 

statistically determined, that they improved the standard deviation of the fit and that large 

correlations between the parameters were not present. The parameters not fulfilling these 

requirements were constrained either to zero or to their corresponding GS values in the next fits.  

In the final cycle 109 transitions, about 9% of the assigned transitions, were excluded 

from the fit since the differences between their observed and calculated values exceeded the 

chosen limit for rejection of 0.01 cm. The standard deviation of the fit was 0.0029 cm. Table 

4.7 lists the parameters derived from the analyses of 1067 transitions retained in the final fit. All 

the parameters in Eq. (4.1) and in Table 4.6 which are not reported in Table 4.7 were set equal to 

zero and constrained in the refinement procedure. 
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Table 4.7: Spectroscopic parameters (in cm1) of propyne derived from the global analysis 

 1 2   1
1 6    1 3 5     12  0

1 3 92     

0E
a 6275.840664(455) 6315.786070(388) 6399.4632(238) 6567.8778(373) 6660.2220(286) 

A 5.269597(122) 5.283209(189) 5.35446(103) 5.326702(286) 5.306355(975) 

B 0.28444184(274) 0.28434889(304) 0.28239875(968) 0.28353125(345) 0.28329317(545) 

DJ x106 0.06096(196) 0.09610(428) 0.3543(234) 0.20215(349) 0.08081(533) 

DJK x106 80.07(196) 5.450142 83.11(205) 15.19(204) 5.450142 

DK x103 2.0292(102) 2.3000(112) 1.980(231) 2.9424(310) 9.173 

HJ x1015 2.308 b 2.308 b 148193(14600) 2.308 b 2.308 b 

HJK x1011 2.94212 b 2.94212 b 2.94212 b 2.94212 b 2.94212 b 

HKJ x1010 1.7406 b 1.7406 b 1.7406 b 1.7406 b 1.7406 b 

HK x107 1.114 b 1.114 b 1.114 b 1.114 b 1.114 b 

A  0.360832(196)    

  0.0102251(511)    

Interaction parameters     

   1,6 1
11C  0 .01290(146)      2,6 1

11C  0 .010053(711)  W135 15 .124(132) 

   1,6 2
11C  0 .07861(124)     2,6 2

11C  0 .049066(577)  D1399 9 .886(132) 

   1,6 3
11

bC x103 9 .7249(799)        

a Unperturbed values. 
b Constrained to the ground state value. 
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It is worth noting that while the rotational constants A and B and the quartic centrifugal 

distorsion constants DJ and DK are close to the corresponding values of the GS, the refined DJK 

values differ from the one of the GS both in order of magnitude and sign. This highlights that 

these parameters are effective since they absorb the effects of the interactions with unobserved 

dark states, which have not been taken into account in the model. An analogous explanation 

could be invoked for ηK and for the only sextic centrifugal distortion constant refined, HJ of 

1 3 5    , whose effective value is 5 orders of magnitude larger than that of the GS and 

opposite in sign. The obtained results, and in particular the fact that some interaction parameters 

cannot be quantified in a proper way, clearly suggest that in the investigated region a large 

number of interacting dark states is present and that they should be taken into account in order to 

better understand the observed features. In the case of 12 , for example, further interaction states 

are needed to explain the irregularity in the K structure. In order to identify all possible 

interactions between vibrational states containing 1 , 2 , 3 , 5  and 9 , which are involved in 

the analysed overtone and combination bands, we considered the polyad structure, defining 

1 2 3 5 95 5 3 2rN           and Ns = 1 + 2 + 3 [21, 22]. This could also help the assignment 

of the additional parallel bands 15. Other interactions of Coriolistype, in addition to that 

between 21 (A1) and 1 + 6 (E), are also possible. States of E symmetry close in energy to 21 

are for instance 22 + 9, 22 + 210, and 26 + 9. However, due to the lack of corresponding 

spectroscopic observations, only the pattern of anharmonic interactions between states within the 

same polyad has been taken into account. The polyad with 21 is therefore the one with Nr = 10, 

Ns = 2 and   = 0, i.e. { rN , sN ,   } = {10, 2, 0}. The states belonging to it and the anharmonic 

interaction network between them up to H40, are illustrated in Table 4.8. 

 

Table 4.8: Polyad matrix for propyne involving Nr = 10 ( 1 2 3 5 95 5 3 2rN          ) with 

structure: { rN , sN ,  } = {10, 2, 0}. 

2v2  W2/35        D2/399    D11/22     

  v2+v3+v5  W2/35  W1/35    W5/99  D2/399       

    2v3+2v5    W 1/35    W5/99       

      v1+v2  W2/35  D1/399      D2/399   

        v1+v3+v5    D1/399  W1/35  W5/99   

          v2+v3+2v9  W2/35      D2/399 

            2v3+v5+2v9    W1/35  W5/99 

              2v1  D1/399   

                v1+v3+2v9  D1/399 

                  2v3+4v9 
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The diagonal matrix elements from top to bottom represent the vibrational states in 

increasing order of energy. 

This scheme helped to assign Band 5, observed in the cryogenic spectrum, as 

0
3 5 92 2    . Consequently, the polyad size have been enlarged in order to provide further 

assignments, first including the vibrational mode 4, the only other mode of A1 symmetry not yet 

included, and next including mode 10, eventually defining 

1 2 3 4 5 9 1010 10 6 4 4 2rN              , with adequate, additional interaction terms in the 

matrix Hamiltonian. This extension suggested to assign Band 4 at about 6371 cm as 

0
2 4 102 2    . Other bands can be tentatively assigned in the studied range, all involving A1 

upper states, on the basis of reasonable agreement between observed and predicted band origins. 

As a result, Bands 1 and 2 at 6275 and 6398 cm, were assigned as 0
3 4 102 2     and 

1 3 9 10       respectively. Band 3 could be assigned as 33, by assuming a value of x3,3 equal 

to about 1.0 cm. They would belong to polyads with Nr = 18 (Bands 1 and 3) and 19 (Band 

2).  

The observed rovibrational transitions for Bands 1 to 5 made it possible to analyze only 

0
3 4 102 2     and 1 3 9 10      . The obtained spectroscopic parameters are listed in Table 

4.9. 

 

Table 4.9: Spectroscopic parameters (in cm1) of propyne for 0
3 4 102 2     and 

1 3 9 10       

 


Band 1 

0
3 4 102 2     

Band 2 

1 3 9 10       

0 6275.40954(101) 6398.33755(300) 

B 0.2842307(779) 0.284268(111) 

DJ 106 0.0001410(164) 1.727(757) 
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4.2 15ND3 

 

 Ammonia and its isotopologues are oblate symmetric top molecules and have been 

studied for many years as it is a prototype molecule of the hindered inversion motion at the 

pyramidal nitrogen atom. In fact, the equilibrium configuration of ammonia is pyramidal but, for 

large amplitude motion in vibrational mode, the molecule may go through the planar 

configuration to a pyramidal configuration which is identical with the initial one except that the 

pyramid has been inverted. The two pyramidal configurations correspond to two identical 

minima in the potential energy curve and the planar configuration to an energy maximum. This 

behaviour is illustrated in Figure 4.6. The potential energy curve is illustrated in the case of 2, 

where the barrier is about 2020 cm1.  

 

Figure 4.6: Potential energy curve for the inversion vibration 2 of NH3 molecule.  

However, the interconversion between the two forms is possible because of a 

quantummechanical tunnelling through the barrier. If the barrier is sufficiently low or narrow, 

the penetration may be so great that interaction may occur between the identical sets of 

vibrational level split into two components: a and s (antisymmetric and symmetric with respect 
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to the inversion), by mixing the wavefunctions of the two identical pyramidal forms. The 

splitting becomes greater towards the top of the barrier [23]. 

Nevertheless, the interpretation of its spectroscopic behaviour still poses a difficult 

challenge to both experimental and theoretical approaches. Moreover, in the last 10 years the 

interest in computation of the energies of vibration and rovibration levels up to high excitations 

has increased. An accurate reproduction of the observed transitions allows reliable predictions at 

room and higher temperatures [2527] and it can help the interpretation of data collected by 

astronomical missions [2830]. Up to now, spectroscopic investigation of fully deuterated 

ammonia has been limited to fundamentals [23,31] and to the GS [32] for 14ND3. In case of 
15ND3, only the GS and the state 2 1   have been investigated [33,34]. The analysis of the 

fundamental vibration for this isotopologue is then needed, and is presented hereafter.  

 

4.2.1 Experiment 

 

 The isotopically pure (99% atom D, 98% atom 15N) was purchased by Sigma Aldrich. 

The spectra were recorded between 450 and 2700 cm using a Bomen DA3.002 Fourier 

transform (FT) spectrometer in Bologna. A Globar source, KBr beam splitter and two high 

sensitivity HgCdTe detectors operating at liquid nitrogen temperature were used. The optical 

path was 0.18 or 10 m. The achieved resolution ranged from 0.004 to 0.009 cm. Before 

recording the spectra, the cell was flushed with pure 14ND3 several times in order to reduce as 

much as possible the H/D exchange with 15ND3. The calibration was performed by comparing 

absorption lines of residual CO2 [18,35] and H2O [36] in the spectrometer. Both the wavenumber 

precision and accuracy of the spectra are estimated to be 0.3  103 cm1. An overview of the 

general conditions for each recording are reported in Table 4.10. 

Table 4.10: Experimental conditions for the recording of 15ND3 spectra 

Spectrum 

Pressure 
of the 

sample 
(Pa) 

Range 

(cm1) 
Source Detector 

Resolution 
(cm1) 

#Scans 
Optical 

pathlenght 
(m) 

a     80.0   450  1600 Globar MCT* 0.004 1000 0.18 

b 1333.2   450  1600 Globar MCT* 0.006 1200 0.18 

c   360.0   800 2300 Globar MCT* 0.006 300 10 

d   546.5 1700  2700 Globar MCT* 0.004 870 0.18 

* MCT is a HgCdTe detector. 
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4.2.2 Description of the spectra 

 

 Although the cell was conditioned in order to minimize the H/D exchange, many lines 

belonging to 15ND2H and 15NH2D isotopologues are present all over the spectrum.  

 

a) The 450  1600 cm1 region 

 

 This region is dominated by the bending fundamental modes, i.e. 2 (parallel band) and 4 

(perpendicular band), at 743 and 1190 cm1, respectively, as shown in Figure 4.7. Some bands 

belonging to other isotopologues are present. In fact it is possible to identify 2, 4a and 4b of 
15ND2H and 2 of 15NH2D. Their assignments has been possible on the basis of the analysis for 

the two asymmetric isotopologues reported in Ref. [37] 

 

 

Figure 4.7: Overview of the bending region of 15ND3 between 550 and 1600 cm1. In red are indicated 

the bands of the isotopologue under investigation, while in blue and green those of two 

impurities presents in the sample. Experimental conditions: see spectrum a in Table 4.10.  
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 The parallel band 2 is stronger than 4, and its shape consists of two s  a and a  s 

subbands, centred at 739.5 and 742.8 cm1, respectively. The central Q branch region spans for 

about 9 cm1 and is quite crowded being formed by two series of Q subbranches, whose 

Kstructures degrade to low wavenumbers with increasing K value. The spacing between 

adjacent absorptions in a given subbranch is larger in the s  a component than in the a  s 

one, as illustrated in Figure 4.8.  

 

 

 Figure 4.8: Detail of the Q branch of 2 for 15ND3 near the band centre. 

          Experimental condition: see spectrum a in Table 4.10.  

 

As far as qP and qR branches are concerned, the adjacent J manifolds are separated by 

about 10 cm1. The wavenumber transitions of the P branch are reddegrading, increasing K, in 

both the a  s and s  a components ( see Figure 4.9a ), while the K structure is reddegraded 

in the s  a but bluedegraded in the a  s subbands of the R branch (see Figure 4.9b). It is 

possible to observe in Fig. 4.9 that the intensity of absorption lines with K = 0 is 10 for "J  even 
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and 1 for "J  odd in transitions from the s levels of the ground state (GS). The opposite holds for 

transitions arising from a levels of GS. From the nuclear spin statistical weights of the GS levels 

in deuterated ammonia [31], it is possible to observe an 8, 8, 11 intensity alternation of 

transitions for "K  = 3n +1, 3n +2 and 3n +3 with n = 0, 1, 2, … 

 

 

 Figure 4.9: Detail of the qPK(7) and qRK(8) branches of 2 for 15ND3. Experimental condition:  

  see spectrum a in Table 4.10.  

 

 The 4 perpendicular band, is characterized by a strong central feature constituted by the 
pQK(J) and rQK(J) subbranches, located at the higher and lower wavenumbers, respectively, 

with respect to rQ0(J) at the band centre, as illustrated in Figure 4.10. The effect of the intensity 

alternation due to statistical weights is evident also in the rQ0(J) subbranch constituted by 

transitions that alternatively start from the a and s GS levels for J = 1, 2, 3,… . The J structure of 

the Q subbranches degrades to the blue for increasing J. 
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Figure 4.10: Detail of 4 band for 15ND3 illustrating the  rQ0(J) and  rQ1(J) branches.  

  Experimental condition: see spectrum a in Table 4.10.  

 

The strong pPK(J) subbranches are reddegraded and and rRK(J) are bluedegraded, for 

increasing J. Each P and R subbranch for a given J value degrades to high wavenumbers with 

increasing and decreasing K, respectively. The separation of the a and s levels of v4 = 1 is very 

similar to that in the GS and since the selection rules allow the s  s and a  a transitions, the 

wavenumber difference within each a s doublet is equal to the difference between the inversion 

splittings in the ground and v4 = 1 states. In Fig. 4.11 it is shown that the separation of the a and 

s component of each doublet in the pPK(7) subbranch decreases from "K  = 1 to "K  = 5. For 

"K  = 6 the two absorption lines are overlapped. For "K  = 7 two lines are observed but with the 

a component of the doublet at higher wavenumbers. Moreover, in case of the "K  = 3 transitions, 

which are split in two doublet with the intensity ratio 10:1 due to the spin statistical weights [31], 

both the strong and the weak components of the quartet, rarely observed in the spectrum, are 

visible in Fig. 4.11. 
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Figure 4.11: Detail of 4 band for 15ND3 illustrating the pPK(7) branch for both a and s 

components. Experimental condition: see spectrum a in Table 4.10.  

 

b) The 2300  2700 cm1 region 

 

 This region is dominated by the stretching fundamental bands 1 and 3 centred at about 

2415 and 2552 cm1, as illustrated in Figure 4.12. These bands are much less intense than those 

in the bending range. The prominent feature at about 2350 cm1 is CO2, which is very useful for 

the calibration of the spectrum. 
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Figure 4.12: Portion of the spectrum of 15ND3 between 2300 and 2700 cm1. The band centre 

of the fundamental stretching modes are indicated, as well as the presence of 

CO2. Experimental conditions: see spectrum d in Table 4.10.   

  
 As 2, 1 is composed by two subbands (s  a and a  s), centred at 2415.7 and 

2416.4 cm1, respectively. The central Q branch region is much more compressed than the 2 one 

and covers about 5 cm1, being formed by two series of Q branches. Their K structure degrades 

towards lower wavenumbers with increasing K, as illustrated in Figure 4.13. It is worth noting 

that the a and s levels are closer than in 2, in fact in 1 they are only about 0.75 cm1 apart. The 

spacing between adjacent absorptions in a given subbranch is the same in the s  a and a  s 

components. As far as qP and qR branches are concerned, only the first few K values for each J 

subbranch can be identified and assigned. The features of both P and R branches have 

reddegrading K structure with increasing K, in both the a  s and s  a components. 
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 Figure 4.13: Detail of the Q branch of 1 for 15ND3 near the band centre. Experimental 

condition: see spectrum d Table 4.10.  

 

 The perpendicular band 3 has the same shape of 4. The effect of the intensity 

alternation due to statistical weights is evident in the rQ0(J) subbranch. In the spectrum are 

visible the close doublets due to transitions from the a and s GS levels for J = 1, 2, 3,… as 

illustrated in Figure 4.14. The J structure of the Q subbranches degrades to the red for 

increasing J, as well as for pPK(J) and rRK(J). This is opposite to what observed in 4. The 

splitting between a and s sublevels is quite constant all over the band, and only in few cases the 

two components result overlapped.  
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 Figure 4.14: Detail of the Q branch of 3 for 15ND3 near the band centre. Experimental 

condition: see spectrum d Table 4.10.  

 

4.2.3 Analysis 

 

 The assignments procedure was guided by the method of GSCD, calculated from the 

precise ground state parameters reported in Ref. [33], and by comparison with the corresponding 

bands in 14ND3. Another valuable support was provided by the relative intensity of the lines, 
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which is governed by the nuclear spin statistic weights, and by the very low intensity or absence 

of K’’= 0 lines for odd (s) or even (a) J’’ in various branches. The analysis was performed fitting 

simultaneously the bending fundamentals, and successively the stretching modes together.  

In total, 2217 transitions with max max
' ' 20J K   were assigned for the bending modes; of 

these, 876 belong to 2, 436 and 440 to the s  a and the a  s components, respectively, 

whereas 1341 belong to 4, 668 to the s  s and 673 to the a  a component, respectively. For 

the stretching modes, 535 transitions with max max
' '10,  7J K   were assigned; of these, 153 

belong to 1, 73 and 80 to the s  a and the a  s components, respectively, while 382 belong 

to 3, 193 to the s  s and 189 to the a  a component, respectively.  

 As the assignment procedure was guided by the pattern of the same bands in 14ND3, the 

same theoretical model, described in Ref. [24], has been adopted. Four levels have been taken 

into account simultaneously both for the bending and the stretching analysis, namely the s and a 

components of v2 = 1 and v4 = 1 in one case and the s and a components of v1 = 1 and v3 = 1 in 

the other case, taking explicitly into account all the symmetry allowed interactions between 2 

and 4 or 1 and 3, and the essential resonances active within 2 and 4, or 1 and 3. In the 

theoretical model the 0,  3k      interaction is comprised. It connects levels with opposite 

inversion symmetry in the same vibration state and it results to be effective also among the 

rotation levels of the GS [30,31]. For each value of J, the program constructs two Hamiltonian 

matrices of dimensions 4  (2J+1): one is set up for levels of A1', A2' and A1", A2" symmetry, 

and the other corresponds to one of the two (degenerate) blocks of E' and E" symmetry. The two 

blocks are numerically diagonalized to obtain the energy levels. The diagonal matrix elements, 

containing the usual contributions up to the 6th power in the angular momentum operators, were 

given by:  

 

       
   

 
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
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 (4.3)

 The equation is similar to Eq. (4.1); the superscript (i) refers to the parity of the level, s or 

a, with respect to the inversion. 

The offdiagonal elements are reported in Table 4.11. 
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Table 4.11: Offdiagonal matrix elelments of the vibrationrotationinversion Hamiltonian 

 

The basis functions are 2 4 4| , , , ,   | , , , ,s s
a s t t aJ k J k        or 1 3 3| , , , ,s

a J k    

_____________________________________________________________________________ 

Coriolis type resonances 
 

 
21 23

( ) (1) ( ) (3 ) ( ) (3 ) 2 2
11 11 11 1

, , , , ( ) / 1, 1, 1, , 1,

                                                    2 ( 1) ( 1)
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   
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 
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_____________________________________________________________________________ 

with 1/2 1/2 1/2=[ ( 1) ( 1)] [ ( 1) ( 1)( 2)] .....{ ( 1) [ ( 1)]( )}nF J J k k J J k k J J k n k n              

 

 In Table 4.11, if a constant is indicated without the left superscript (i) it corresponds to an 

s  a resonance, whereas if the superscript (i) is present it represents an interaction between 

levels of the same parity.  

 A weighted least–squares analysis was performed on all the assigned transitions 

belonging to the bending states to derive the spectroscopic parameters of the excited states. An 

analogous procedure was accomplished for the stretching modes. A unitary statistical weight has 

been attributed to each transition that corresponds to an isolated line, while the weight has been 

reduced to 1/n if n transitions are assigned to the same wavenumber. The GS term values were 

obtained using the parameters in Ref. [33] and collected in Table 4.12. The diagonal elements 

were calculated from the following expression: 
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(4.4)

 

 Table 4.12: Spectroscopic parameters (in cm1) for the GS of 15ND3 

Parameter s a  a a 

( ) 0i E  b 0 .0  0 .047793490(323) 
( )

0
i B  5 .123657150(665)  5 .123494406(665) 

( )
0

i C  3 .124569 c  3 .124648945(154) 
( )

0
i

JD 410  1 .975535(127)  1 .972658(127) 
( )

0
i

JKD 410  3 .513534(502)  3 .505049(502) 
( )

0
i

KD 410  0 .0 c  0 .00612448(816) 
( )

0
i

JH 810  2 .36008(615)  2 .33397(617) 
( )

0
i

JKH 810  7 .6191(242)  7 .4926(242) 
( )

0
i

KJH 810  8 .6593(308)  8 .4655(308) 
( )

0
i

KH 810  0 .0 c  0 .096091(447) 
( )

0
i

JL 1110  4 .1972(902)  10 .199(742) 
( )

0
i

JJKL 1110  1 .4289(411)  1 .4356(411) 
( )

0
i

JKL 1110  1 .3240(498)  1 .3240(498) 
( )

0
i

KKJL  0 .0 c  0 .0 c 
( )

0
i

KL  0 .0 c  0 .0 c 

Interaction parameters 

0
510  3 .7486(100)   

0
J 810  0 .9542(413)   

0
K 810  2 .3055(351)   

  a From Ref. [31]. The uncertainties as 1 given in parentheses refer to the last significant 
digits. 

       b ( ) 0a E  is the inversion splitting in the GS for J = K = 0. 
       c Fixed at the 14ND3 value or zero. 

 

 

 

 



 139

4.2.4 Results and Discussion 

 

 The analysis was accomplished in an iterative process, which consists in improving the 

values of the excited state parameters by means of the assigned lines, predicting the 

wavenumbers of higher J and K unassigned transitions to be searched in the spectra, enlarging 

the data set, and so on. Once all the transitions that could be unambiguously assigned were 

identified, a systematic investigation to derive the set of parameters that best reproduces the 

experimental data was carried out. Constants up to the third order of approximation, E0, B, C, 

C, 
 1

11C , 
 2

11C , 
 2

21C , 
 3a

11C , 
 3b

11C , J, K and the distortion constants D and H were refined. At 

the end of each fit we checked that the newly, as well as the previously determined parameters, 

were statistically determined, that they improved the standard deviation of the fit and that large 

correlations between the parameters were not present. The parameters not fulfilling these 

requirements were constrained either to zero or to their corresponding GS values in the next fit. 

Both the J and K dependences and, if present, the s and a components of a lower order 

coefficient, determined in the fit, i.e. J
12

f and K
12

f , were added simultaneously in the refinement.  

 

a) 2 1   and 4 1   

 

 In total, 1930 transitions were retained in the last cycle of refinement with a standard 

deviation of the fit = 0.00071 cm1. The number of rejected transitions is 286, about 13% of the 

assignments, and they are mostly constituted by poorly measured, weak or blended lines 

randomly distributed in the experimental dataset. They were excluded since the difference 

between the experimental and calculated wavenumbers exceeded the rejection limit, set at 0.002 

cm1. 

The overall results collected in Table 4.13 comprise 20 spectroscopic parameters of v2 = 

1, 26 of v4 = 1, and 11 coefficients of the offdiagonal matrix elements of the model 

Hamiltonian. The sextic distortion constants H could be significantly determined after the 

inclusion in the experimental dataset of transitions with J and K quantum numbers  15. All the 

parameters of Eq. (4.3) and of Table 4.11 not reported in Table 4.13 were constrained to zero in 

the refinement. 
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Table 4.13: Spectroscopic parameters (in cm1) of the v2 = 1 and v4 = 1 states of  15ND3 

2 1   4 1   
Parameter 

s a s a 

0E  739 .530096(126) 742 .775007(134) 1186 .910962(110) 1186 .9731061(113) 

B  5 .20781378(548) 5 .19946251(545) 5 .15566714(464) 5 .15545837(480) 

C  3 .08910256(450) 3 .09396727(477) 3 .10548954(404) 3 .10561845(405) 

JD 310  0 .2317821(358) 0 .2200535(371) 0 .2088482(414) 0 .2087342(435) 

JKD 310  0 .4193453(689) 0 .3813474(708) 0 .3888549(943) 0 .3863991(959) 

KD 310  0 .0380027(500) 0 .0085189(518) 0 .0247095(680) 0 .0225438(660) 

JH 710  0 .297521(579) 0 .205253(583) 0 .27053(107) 0 .27150(117) 

JKH 710  0 .92994(286) 0 .51063(265) 0 .94808(398) 0 .93440(400) 

KJH 710  1 .08400(448) 0 .44913(414) 1 .08345(516) 1 .07014(506) 

KH 710  0 .13363(224) 0 .18239(203) 0 .08338(231) 0 .08283(212) 

C     0 .927345(264) 0 .959500(132) 

J
310     0 .927427(335) 0 .927444(272) 

JK 610     0 .182577(697) 0 .180181(730) 

       

Interaction parameters 

      
( ) (1)

11
s C  3 .3777073(685)  ( ) (1)

11
a C  3 .3913751(647)  

( ) (3 )
11

s aC 310  0 .383697(397)  ( ) (3 )
11

a aC 310  0 .398221(404)  
( ) (2)

11
s C 310  4 .6221(109)  ( ) (2)

11
a C 310  4 .2430(109)  

( ) (3)
21

s C 310  0 .28725(201)  ( ) (3)
21

a C 310  0 .25232(201)  

12q    0.02029849(768)    

2
510  2 .4593(253) 4

510  4 .5720(163)  

     

N. fitted/N. assigned lines 1930/2217   

St. dev. of the fit  0.000714   
 

 

 

 All the parameters are statistically well determined. The values for most of them are also 

close to the corresponding ones in the ground state, both in sign and value. The values of the 

refined s and a rotation constants are very similar in the two studied vibrational states, apart from 

few exceptions. It is worth noting that the KD and KH  distortion constants are effective, being 

constrained to 0.0 in the s component of GS. 

 

 



 141

b) 1 1   and 3 1   

 

In total, 493 out of 535 transitions were retained in the last cycle of refinement with a 

standard deviation of the fit = 0.00146 cm1. The number of rejected transitions is 42, about 8% 

of the assignments, and they are mostly constituted by poorly measured, weak or blended lines 

randomly distributed in the experimental dataset. They were excluded since the difference 

between the experimental and calculated wavenumbers exceeded the rejection limit, set at 0.004 

cm1. The overall results are collected in Table 4.14 and they comprise 18 spectroscopic 

parameters of v1 = 1, 24 of v3 = 1 and 5 coefficients of the offdiagonal matrix elements of the 

model Hamiltonian.  

 

Table 4.14: Spectroscopic parameters (in cm1) of the v1 = 1 and v3 = 1 states of 15ND3 

1 1   3 1   
Parameters 

s a s a 

0E  2415 .669376(918) 2416 .389955(695) 2551 .681835(358) 2551 .703045(380) 

B  5 .115339(132) 5 .1173838(857) 5 .0550128(197) 5 .0551173(196) 

C  3 .103352(214) 3 .104652(178) 3 .1262963(560) 3 .1259504(552) 

JD 310  0 .08340(496) 0 .08334(259) 0 .189463(214) 0 .189166(237) 

JKD 310  0 .08389(541) 0 .04318(415) 0 .34065(161) 0 .34852(154) 

KD 310  0 .1000(101) 0 .03853(832) 0 .0a 0 .621448a 

JH 710  7 .205(524) 9 .234(220) 0 .2360a 0 .2334a 

JKH 710  0 .762a 0 .749a 1 .417(122) 1 .536(123) 

KJH 710  16 .32(247) 31 .80(200) 2 .0701(677) 1 .8935(607) 

KH 710  0 .0a 0 .0 a 0 .0a 0 .0961a 

C     0 .3848432(679) 0 .3846877(717) 

J
310     0 .77143(716) 0 .77921(726) 

JK 610     0 .5152(891) 0 .9942(867) 

      

Interaction parameters 

   a s  
(1)
11C    0 .442041(701) 0 .444435(651)  
(2)
21C 310    7 .758(267) 8 .103(218)  

12q    0 .0105687(349) 

N. fitted/N. assigned lines 493/535   

St. dev. of the fit  0.00146   

a Fixed to zero or to the GS value. 
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The sextic distortion constants HK could not be determined because of the few transitions 

included in the dataset and the low J and K quantum numbers observed in the spectrum 

( " "
max max8,  5J K   for 1 and " "

max max10,  7J K   for 3), except that for the a state of v3 = 1. All 

the parameters of Eq. (4.3) and of Table 4.11 not reported in Table 4.14 were constrained to zero 

in the refinement. 

 Differently from the bending states, in the stretching states more perturbations are 

present. In fact, distortion constants are quite different within the same state for s and a 

components, and in some case the parameters are different from the GS ones. For example, HKJ 

of the v1 = 1 state is abnormally huge. In addition, in order to reproduce in a satisfactory way the      

a a transitions of the 3 band, HK constant is required, despite of the very few lines observed 

(187). The analysis of the stretching region needs to be improved taking into account also the 

other states close in energy, first of all v4 = 20 and v4 = 2±2, and, if necessary, also the v2 = 2,      

v4 = 1 state. This will be further discussed in Section 5.2. 

 

 

4.3 CF3Br 

 

Bromotrifluoromethane, CF3Br, commercially known as Halon 1301 or Freon 13B1, was 

extensively adopted as fire extinguisher and in a variety of military or industrial uses, due to its 

longterm storage stability, safety and effectiveness at low concentration. It has been a well 

suited target for investigation by infrared laser chemistry and isotopically selective multiphoton 

induced dissociation, since it absorbs in regions accessible to CO2 laser radiation [3844].  

Given its adverse environmental effects (4 absorbs in the atmospheric window) and the 

proposed potential applications, in the last decades many spectroscopic studies have been carried 

out on this molecule. In particular, an accurate rovibrational analysis of the bands falling in the 

midinfrared region could support the quantitative detection and the temperature profile 

modelling of these halogenated pollutants.  

 CF3Br is present in nature as two isotopologues due to the almost equal amount of 

bromine isotopes, 79Br and 81Br. The molecule, a prolate symmetric top, has 9 vibrational 

degrees of freedom, whose description is reported in Table 4.15. 
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Table 4.15: Normal modes of CF3Br 

Mode Symmetry  Band origin (cm) a 

   CF3
79Br CF3

81Br 

 A1 
Symmetric 

stretching CF 
1084.763 1084.521

 A1 Stretching CBr 761.9 761.9 

 A1 
Symmetric bending 

CF3 
352.4 350.4 

 E 
Antisymmetric 
stretching CF 

1208.8 1208.8 

 E 
Antisymmetric 
bending CF3 

548.9 548.9 

 E Rocking CF3 302.7 302.7 

  a From Ref. [45]. 

 

4.3.1 Experiment 

 

The sample of CF3Br was purchased from Matheson, purity > 99 %, and used to record 

the spectra without further purification. The two bromine isotopologues are present in natural 

abundance in almost equal amount, i.e. 50.5 % CF3
79Br and 49.5 % CF3

81Br. 

 

High Resolution FreeJet TDL Spectra 

 

 The highresolution jet-cooled spectra, Spectra #1, were recorded in Venice with a 

homebuilt slitjet system. Details about the experimental set up were reported in [4648], so 

they are briefly reported here. The tunable IRradiation is emitted by a Pbsalt diode laser 

source (Laser Components GmbH) and modefiltered by a low resolution grating 

monochromator. A small fraction of the laser beam output is employed for calibration purposes, 

and the majority is directed through the supersonic slitjet (path length of 1.25 cm) expansion 

within the vacuum chamber (stagnation pressure in the range 120 – 180 kPa, background 

pressure below 0.5 Pa) and finally focused on to a HgCdTe detector. A fraction (about 0.3 cm1) 

of a whole emission mode has been scanned within the duration of a single gas pulse (about 2 

ms) by applying a 1 kHz rampshaped modulation to the injection current; typically 128 

transmittance scans were averaged to yield the final spectrum. The TDL spectra at 200 K (dry 

ice), Spectra #2, were recorded with a pressure in the range 4  10 Pa using a homemade 0.923 
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m long cell. Due to the operational range of the diode lasers at disposal in the apparatus, the 

spectra were registered in three ranges, namely 1202.5  1205.0 cm1, 1208.0  1210.1 cm1 and 

1212.5  1214.5 cm1. Those intervals match to portions of the J = 1, J = 0, and J = +1 

branches of 4, respectively.  

As far as the calibration of the spectra in concerned, a solid Ge etalon (with a free 

spectral range of about 0.05 cm1) and reference spectra of SO2 gas lines were employed. An 

accuracy better than 0.0007 cm1 has been estimated for resolved single lines. Resolution up to 

0.0008 cm1 and 0.0015 cm1 was achieved for Spectra #1 and Spectra #2, respectively. 

 

High Resolution FTIR Spectra 

 

The room temperature spectrum, indicated as Spectrum #3, was recorded between 1000 

and 1300 cm1 in Bologna using a Bomem DA3.002 Fourier transform (FT) interferometer, 

equipped with a Globar source, a KBr beamsplitter and a HgCdTe high sensitivity detector 

operating at liquid nitrogen temperature. The optical path length was 0.18 m long and the 

instrumental resolution was 0.004 cm1. A pressure of 13.3 Pa was introduced in the cell. In 

order to improve the signaltonoise ratio and the quality of the spectrum, 660 scans were 

coadded. The spectral resolution is estimated to be 0.004 cm1 from the convolution of the 

instrumental resolution and the Doppler broadening. Particular care was devoted to the 

calibration of the spectrum since results have to be obtained from the analysis of spectra 

recorded with different techniques in different conditions. Rovibration transitions of H2O [49] 

were used for the calibration of Spectrum #3. The accuracy of the spectrum and the precision of 

isolated, medium to strong, unblended lines are better than 1 × 104 cm1.  

 The general conditions for the three spectra are reported in Table 4.16.  

 

Table 4.16: Experimental conditions for the recording of CF3Br spectra 

Spectrum 
Pressure of 
the sample 

(Pa) 

Temperature 

(K) 
Source Detector 

Resolution 
(cm1) 

#Scans 
Optical 

pathlenght 
(m) 

#1    0.5a 50 Pb salt MCT 0.0008 128     0.0125 

#2 10.0 200 Pb salt MCT 0.0015 128   0.923 

#3 13.3 298 Globar MCT 0.0040 660 0.18 

* MCT is a HgCdTe detector. 
 a Background pressure below 0.5 Pa. 
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4.3.2 Description of the spectrum 

 

 The 4 is a perpendicular fundamental band which absorbs between 1195 and 1220 cm1. 

The highresolution infrared spectrum is very complex because of the very dense rotational 

structure, the simultaneous presence of absorption features due to bromine isotopologues (79Br 

and 81Br) in almost equal proportion and the absorptions of different hot bands. It is worth noting 

that the coarse and smoothed profile of Spectrum #3 corresponds closely to the resolved 

absorptions of Spectra #1 and #2. The overview of the band, together with the indication of the 

origin of some hot bands, is presented at the top of Figure 4.15.  

 

 
 

 Figure 4.15: Overview of the 4 fundamental perpendicular band of CF3Br from 1200.0 to 

1215.0 cm1. In the middle of the figure an expansion of the Q branches from 

1208.8 to 1210.4 cm1 is shown. At the bottom of the figure, a simulation of this 

spectral interval is performed for both the isotopologues using PGOPHER 

software. Experimental conditions: see Spectrum #3 in Table 4.16. 
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In the figure, an expansion of the Q branch is illustrated, showing the shape of the rQ and 
pQ branches, the location of rQ0 and the band head for K” = 36 of the pQ branches. At the bottom 

of the figure the simulation for both the isotopologues is reported and compared to the shape of 

the experimental spectrum. It is possible to see that the shape of the spectra of the two 

isotopologues are really very similar and so it is hard to distinguish which signal belongs to 

which isotopologue. The simulation was performed by using the PGOPHER software [50]. 

  

 
 

Figure 4.16: Portion of Spectrum #1 of CF3Br from 1208.5 to 1209.8 cm1 showing the Q branches of 

the investigated band. A focus on the pQ1(J) rQ0(J) and rQ1(J) branches is presented in the 

bottom of the Figure, together with the simulated traces of the two isotopologues, in 

absorbance. Experimental conditions: see Spectrum #1 in Table 4.16. 

 

 The middle range of the freejet TDL spectra (Spectrum #1) is shown in Figure 4.16. The 

adjacent pQK(J) and rQK(J) branches are not overlapped due to the low rotational temperature, 



 147

Trot = 50 K. In addition, it is possible to observe the effect of the spin statistic on the intensity of 

branches with K" = 3n, with n = 1 and 2, which are twice as strong as those with K" ≠ 3n. The 

structure of pQK(J) and rQK(J) branches is quite different. Whereas for rQK(J) it is evident that 

they are reddegraded for increasing J values, the structure is so packed in the case of pQK(J) 

branches that a doublet for each K value is observed, where the component at lower 

wavenumbers belongs to CF3
81Br and the other to CF3

79Br.  

The appearance of the pPK(J) branches is shown in Figure 4.17, where two experimental 

traces are depicted, from Spectra #2 (red trace) and Spectrum #3 (black trace), in order to 

illustrate the characteristics of these branches for high J and K values. The pPK(J) transitions 

degrade to higher wavenumbers for increasing K and accumulate into a band head for J" ≥ 36 

inverting their direction. 

 
 

 Figure 4.17: Portion of the spectrum of CF3Br from 1204.50 to 1204.75 cm1 showing the P 

branches of the 4. A focus on the pP39(J) and pP40(J) branches of the two 

isotopologues is presented. The red trace is Spectrum #2 and the black trace is 

Spectrum #3. See experimental conditions in Table 4.16. 

 

Concerning the rRK(J) branches, the K structure degrades to lower wavenumbers for 

increasing K. pPK(J) and rRK(J) transitions with low J and K values can be identified in Spectrum 
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#1 between the strong features of the Q branches. Their structure cannot be absolutely identified 

in Spectrum #3, as clearly represented in Figure 4.18, where rRK(J) transitions appear.  

 

 
  

 Figure 4.18: Portion of the spectrum of CF3Br from 1209.7 to 1210.3 cm1 showing some rR 

transitions of the 4 with low J and K values between the band head of the Q 

branches. The blue trace is Spectrum #1, the red trace is Spectrum #2 and the black 

trace is Spectrum #3. See experimental conditions in Table 4.16. 

 

A small portion of the spectrum including the absorptions with K" ≤ 6 for J = 31, 32, and 

33 is illustrated in Figure 4.19, where the red trace is from Spectra #2 and the blue trace from 

Spectra #1. The appearance of absorptions in the branches is rather regular but the line intensities 

are often quite different from what expected according to the spin statistics. This is caused by 

line overlapping due to the unavoidable congestion of the spectrum of the natural sample of 

CF3Br.  
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Figure 4.19: Portion of the spectrum of CF3Br from 1213.5 to 1213.7 cm1 showing the R branches of 

the 4. A focus on the rRK(J) branches with J = 31, 32, 33 showing the lower K values for 

the two isotopologues is presented. The blue trace is Spectrum #1 and the red trace is 

Spectrum #2. See experimental conditions in Table 4.16. 

 

4.3.3 Analysis, Results and Discussion 

 

 The spectrum of CF3
79Br was analysed first. The assignment procedure started from the 

1208.0  1210.1 cm1 range of the freejet TDL spectra to take advantage from the 

simplification on the absorption patterns. Unfortunately, the GSCD could not be applied: 
pRK(J2) and rPK(J) transitions connected by GSCD to pPK(J) and rRK(J2), respectively, were 

not present in the recorded ranges of the diode laser spectra, which cover only one fifth of the 4 

band, and GSCD from pPK(J) and pQK(J1) or rQK(J) and rRK(J1) transitions could not be 

used since the rotational structure of the Q branches is not resolved, but in rQ0(J) and rQ1(J) 

branches. Therefore, the first assignments were based on a spectrum calculated from the values 

of the band origin and of the rotational and distortion constants A [51], B, DJ, DJK [52] and A 

[53] reported in the literature. Once the first step was accomplished and the specific contribution 

to the overall spectrum of each isotopologue understood, the assignments could be extended and 
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some pPK(J) and rRK(J) transitions were identified. Next, the assignment procedure was carried 

on by means of Spectrum #3 to fill the two gaps of 2.5 cm1 in the recorded ranges of TDL 

spectra. The assignments were gradually extended from the 1208.0 1210.1 cm1 range to lower 

and higher wavenumbers up to the intervals 1202.5  1205.0 cm1 and 1212.5  1214.5 cm1 of 

Spectra #1 and #2.  

 The second step of the analysis was the identification of several pPK(J) transitions with 

low J" and K" values for both the isotopologues in order to estimate the isotopic splitting and to 

start also the assignments of the spectral features of CF3
81Br. The diagonal matrix elements, 

containing the usual contributions up to the 6th power in the angular momentum operators, are 

given by Eq. (4.1), where v = 4. The ground state energies used to calculate the transition 

wavenumbers were derived using the precise 0 0 0,   and J JKB D D  constants from MW and mmW 

spectra [52], the value of 0A  derived in [51] and KD  from [54]. Thanks to the extension of the 

assignments and the implementation of the dataset the upper state distortion constants were 

refined. This improved the overall quality of the fit and provided reliable predictions for 

transitions with higher J and K quantum numbers. Nevertheless, since the beginning of the 

analysis the effect of the rovibration perturbation with    = k = 2 selection rule became 

evident, making the (k,  ) = (1,1) and (1,1) levels of the excited state appreciably split. That is 

why the offdiagonal matrix element ( )
tq   (Eq. (2.43)) in the model Hamiltonian has been taken 

into account and refined during the fitting procedure in order to correctly reproduce the rQ0, 
rP0 

and the rR0 transitions. Finally, the J  and K  spectroscopic parameters were determined from 

the fit including transitions with J and K values larger than 30. Other offdiagonal contributions 

were tempted, but they resulted statistically undetermined and were constrained to zero. 

 The experimental dataset includes transition wavenumbers from the three spectra at 

disposal. Due to the large number of assignments and the difficulty of an adequate estimate of 

the uncertainties of the wavenumbers from Spectrum #3 with respect to the other spectra, several 

weighting schemes have been tried. In Fit #1, a unitary statistical weight has been assigned to 

each transition that corresponds to an isolated line in the leastsquares fits. The weight was 

reduced to 1/n if n transitions are assigned to the same wavenumber. In the last cycle of the 

refinements, all the experimental data that differed from the corresponding calculated values by 

more than 0.005 cm1, about fifty times the estimated precision of FTIR measurements and about 

seven times that of TDL, were excluded from the data set, Fit #1. The limit for rejection was set 

to such a large value compared to the precision of the data to avoid the a priori exclusion of a 

large number of transitions. 
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In Fit #2 the weights were set as follows: TDL wavenumbers, weight = 1, FTIR 

wavenumbers weight = 0.25. In fact, in Spectrum #3, because of its lower resolution, lines are so 

large that they cannot be univocally assigned. Also in this case the weight was reduced to 1/n if n 

transitions are assigned to the same wavenumber. The most appropriate rejection limit was found 

to be 0.004 cm1, which was the best compromise between number of rejected lines and quality 

of the fit. Finally, a third fitting procedure was accomplished, Fit #3, using only transitions from 

the diode laser spectra and giving them a weight following the criteria explained for Fit #1. In 

this case the limit for rejection in the last cycle of the fit was set to 0.003 cm1. 

The spectroscopic parameters, the numbers of assigned and fitted transitions, and the 

standard deviations of Fit #1, Fit #2 and Fit #3 are collected in Table 4.17, columns 3, 4 and 5 

respectively. 

 

Table 4.17: Spectroscopic parameters (in cm1) of CF3
79Br in the ground and v4 = 1 states a 

v4 = 1 
Parameter GS b 

Fit #1 Fit #2 Fit #3 

0E   1209.396509(66) 1209.396472(62) 1209.396418(64) 

A  0.1906c 0.18980081(12) 0.18980093(11) 0.18980104(12) 

B  0.069985970 0.06993950(11) 0.06993946(10) 0.06993947(11) 

JD 610  0.008989 0.007249(38) 0.007212(34) 0.007217(36) 

JKD 610  0.043393 0.040733(60) 0.040799(56) 0.040831(60) 

KD 610  0.007096d 0.007096e 0.007096e 0.007096e 
A   0.1476724(19) 0.1476691(18) 0.1476692(20) 

J
610   0.0866(22) 0.0898(21) 0.0916(23) 

K
610   0.0906(24) 0.0925(22) 0.0972(25) 

tq 610   9.17(42) 8.96(34) 9.59(36) 

         
Limit for rejection  0.005 0.004 0.003 

N°fitted/assigned lines       4380/4651 4123/4651     2730/3171 

St. dev. of the fit 310  
            1.98 1.69           1.41 

a The uncertainties as 1 given in parenthesis refer to the last significant digits. 
b From [50]. 
c From [49]. 
d From [52].  
e Constrained to the ground state value. 
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The analysis of 4 for CF3
81Br was performed in an analogous way. The results of Fit #1, 

Fit #2 and Fit #3 are listed in Table 4.18, columns 3, 4 and 5 respectively. 

 

Table 4.18: Spectroscopic parameters (in cm1) of CF3
81Br in the ground and v4 = 1 states a 

 v4 = 1  
Parameter GS b 

Fit #1 Fit #2 Fit #3 

0E   1209.389652(69) 1209.389635(70) 1209.389593(76) 

A  0.1906c 0.18982541(12) 0.18982545(11) 0.18982529(12) 

B  0.069334390 0.06927592(11) 0.06927595(11) 0.06927611(11) 

JD 610  0.008868 0.008865(38) 0.008892(34) 0.008945(36) 

JKD 610  0.04272 0.042882(62) 0.042858(57) 0.042747(61) 

KD 610  0.006279d 0.006279 e 0.006279 e 0.006279 e 
A   0.1476779(20) 0.1476788(20) 0.1476786(22) 

J
610   0.0896(22) 0.0888(22) 0.0883(24) 

K
610   0.0886(24) 0.0889(23) 0.0870(25) 

tq 610   10.87(36) 10.49(30) 10.64(29) 

         
Limit for rejection  0.005 0.004 0.003 

N°fitted/assigned lines       3896/4047 3706/4047     2385/2755 

St. dev. of the fit 310  
            1.93 1.69           1.40 

a The uncertainties as 1 given in parenthesis refer to the last significant digits. 
b From [50]. 
c From [49]. 
d From [52].  
e Constrained to the ground state value. 

 

 Precise values of the vibrational term values and of the spectroscopic rotational, 

distortion and interaction constants of v4 = 1 for both CF3
79Br and CF3

81Br have been obtained. 

All the parameters in Tables 4.17 and 4.18 are statistically well determined and the molecular 

constants decrease as expected with respect to the corresponding values in the ground state. The 

bromine isotopic splitting of v4 = 1 states obtained from the difference of their energies has been 

calculated and amounts to 6.9  103 cm1. 

In the case of Fit #1, 6% and 4% of lines were rejected for CF3
79Br and CF3

81Br, 

respectively. In Fit #2, 11% and 9%, and in Fit #3, 14% and 13%. They are randomly distributed 

in the various branches and correspond to blended lines. 
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Almost all the derived parameters are free from internal correlations, with the exception 

of DJ that resulted 91% and 92% correlated to B for CF3
79Br and CF3

81Br, respectively. The three 

sets of parameters from Fit #1, Fit #2 and Fit #3 overlap within 1 for both isotopologues. This 

indicates that the combination of the experimental wavenumbers obtained with different 

spectrometers do not introduce any systematic deviation in the results. The standard deviations 

of the fits are about ten times larger than the estimated experimental uncertainty of FTIR data 

and about two times that of TDL data. This reflects the crowded appearance of the spectra.  
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CHAPTER 5 

 

CONCLUSIONS AND PERSPECTIVES 

 

 

5.1 CONCLUSIONS 

 

 A careful analysis about relevant molecules for astrochemical and astronomical purposes 

has been performed by means of the highresolution infrared spectroscopy.  

  

5.1.1 Linear molecules 

 

 As far as the acetylene saga is concerned, a very detailed analysis for various 

isotopologues has been performed.  

The analysis of 12C2D2 was concentrated on the bending modes and stretchingbending 

system. The previous dataset for the bending modes [13] has been enlarged: the 4 + 5  GS 

and 8 pure bending bands involving 3 tot  and 4 have also been analyzed at high resolution for 

the first time. The transitions of the former band, the IR data from the analysis of the bending 

modes of Huet et al. [1] recalibrated, and the recent measurements in the THz region [3] were 

fitted simultaneously, considering only the bending states with 2tot  . 92 cold and hot IR bands 

involving fundamentals, overtones, stretchingbending and stretchingstretching combination 

bands were rotationally analysed. A total of 8345 IR transitions have been assigned and fitted 

together with 417 Raman transitions [2] in order to characterize all the levels with 1 s  

 1,2,3s , 4 5 2   ; 2 s  1,2,3s , and ' 1  s s , 4 5 2    , ' 1, 2,3s s  . An 

accurate set of vibration and rotation parameters, including  type, and DarlingDennison 

interaction constants between 4 2   and 5 2   levels, has been determined for each stretching 

mode. 

A global analysis of the bending modes has been performed for the 13C12CD2 

isotopologue, by recording the spectrum in the range 450 – 1700 cm1 and detecting 27 bands 
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involving bending modes with v4 + v5 up to 3. About 3200 transitions were assigned and 

analyzed. Two global rotationvibration leastsquares fits were performed, one considering level 

with vtot up to 3, without including the transitions to the v4 = 1, v5 = 2 IIstate, which were 

treated separately. The derived spectroscopic parameters reproduce the assigned transitions 

satisfactorily, with standard deviations of the fits very close to the quoted precision of the 

measurements. They adequately characterize the ground state and 13 excited bending states of 

the molecule. 

This isotopologue, together with the rare mixed isotopomers H12C13CD and H13C12CD, 

have been studied in the region 6130  6800 cm1 using the sophisticated highsensitivity 

apparatus FemtoFTCEAS in collaboration with the ULB in Brussels. This allowed the 

detection and the analysis of 10 bands belonging to these isotopologues, by extending the J 

assignments of the first overtone of 1 for both H12C13CD and H13C12CD, already reported in 

literature [4], and identifying combination bands involving three or four quanta of stretching and 

bending excitation of D12C13CD for the first time.  

The same analysis performed on bending modes for 13C12CD2 has been accomplished 

also for the molecule DCCF, in collaboration with the University of Wuppertal, where the 

spectrum was recorded in the range 320  850 cm1. A total of 6650 infrared transitions 

belonging to 38 bands up to v4 + v5 = 3 have been recorded, identified and analysed 

simultaneously. The 5 has been analysed for the first time and the global analysis allowed the 

characterisation of the ground state of the molecule and of 18 vibrational excited states. In 

addition, the difference band 3  4 has been identified and analysed, allowing the 

characterisation of the v3 = 1 state. The great accuracy of the 57 spectroscopic parameters 

determined was achieved also by adding to the dataset MW and mmW rotational transitions from 

the literature [5,6].  

 For what concerns monodeuterodiacetylene, an intensive analysis in the region 450  

1100 cm1 has been performed. The identification and analysis of the fundamental bending 

modes 6, 7 and 8 has been accomplished, together with overtone, hot and combination bands. 

A dataset of more than 2500 transitions have been created, which includes 10 out of the 16 

vibrational levels of DC4H lying below 1000 cm1. 
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5.1.2 Symmetric top molecules 

 

 The infrared spectrum of propyne has been recorded and investigated in the range       

6200 6700 cm1 both with a FTIR and a FANTASIO+ spectrometer, in collaboration with the 

ULB in Brussels. Five bands in Fermi and Coriolis interaction between them have been analysed 

simultaneously. Cold spectra helped the beginning of the analysis, by assigning low J and K 

quantum numbers, while FTIR spectra were useful to extend the assignments. A large number of 

effective diagonal spectroscopic parameters together with the main interaction constants have 

been obtained. Five additional very weak bands have been observed in this region and their 

assignment has been tentatively suggested with the help of the polyad structure scheme. The 

gathered experimental information allowed the determination of the origin, the rotational 

constant B and the centrifugal distortion constant DJ for only two of them.  

 The high resolution infrared spectrum of 15ND3 from 450 to 2700 cm1 has been recorded 

and studied in order to analyse the fundamental bands of this isotopologue of ammonia. In 

particular, the bending bands 2 and 4 have been considered simultaneously, as well as the 

stretching bands 1 and 3. The adopted inversionrotationvibration Hamiltonian model has 

been successful in rationalizing the complicated pattern of vibrationrotationinversion levels in 

the interacting states with a limited number of spectroscopic parameters. Accurate values for the 

spectroscopic constants and for the interaction coefficients have been obtained, together with 

accurate vibration tunnelling energies for v2 = 1 and v4 = 1. As far as the stretching modes 

analysis is concerned, preliminary results are quite good, even if the need for taking into account 

more states close in energy interacting with them is evident. 

 Finally, the high resolution infrared spectrum of bromotrifluoromethane has been 

recorded in the range 1190  1220 cm1 to investigate the 4 fundamental band of this molecule, 

which is a fairly severe pollutant of the atmosphere and absorbs radiations efficiently in the 

atmospheric window. In collaboration with the Università Cà Foscari of Venezia, the freejet 

diode laser technique was adopted to reduce the spectral congestion due to hot bands and the 

nearly coincident absorptions of CF3
79Br and CF3

81Br, which are present in almost equal 

abundance. The assignment procedure was successful since the absorptions of the two 

isotopologues were disentangled and the isotopic splitting quoted. Precise spectroscopic 

parameters and the energy of v4 = 1 for both the isotopologues have been derived from the 

analysis.  
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5.2 FUTURE PERSPECTIVES 

 

 The next step of the acetylene saga is to complete the analysis of the isotopologue 
13C12CD2, investigating the stretching modes and the stretchingbending bands system. Once this 

will be accomplished, data about the ten isotopologues of acetylene involving H, D, 12C and 13C 

will be available and it will be possible to calculate experimentally the equilibrium geometry of 

the molecule. Until now, this has been realised by considering only 4 or 5 isotopologues [7,8], 

whereas the number of data for all the isotopologues and their quality have greatly improved in 

recent years.  

 As far as diacetylene is concerned, the analysis of the bending modes below 1100 cm1 

has to be extended to other isotopologues, in primis C4D2 and then C4H2 with one 13C. This 

analysis is really useful for astronomical purposes, as this is the range where the spatial missions 

operate. 

 Furthermore, the analysis of the stretching modes of 15ND3 has just started. A careful 

inspection of the performed fit revealed the presence of deviations and anomalous values for 

some parameters. This is a clear signal of the fact that other perturbations must be taken into 

account in order to accomplish this analysis properly. In fact, as illustrated in Figure 5.1, several 

states lie in a narrow region around the system v1 = 1 and v3 = 1 for ammonia 14NH3.  

 

 

Figure 5.1: Structure of the energy states around v1 = 1 and v3 = 1 for 14NH3. 
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 The situation for the isotopologue under investigation is analogous, just shifted at lower 

wavenumbers between 2000 and 3000 cm1. At least four other states, namely v2 = 4; v2 = 2,     

v4 = 1; v4 = 20 and v4 = 22 (i.e. 8 states considering the s and a components) are present and 

interact with v1 = 1 and v3 = 1 and between them both through anharmonic (states of symmetry 

A1A1 or EE) or Coriolis (states A1E, EE) resonances. All these states have to be taken into 

account simultaneously in the analysis while analysing the stretching system, in order to obtain a 

satisfactory description of the absorptions observed in this spectral range. 
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APPENDIX A 

 

CHARACTER TABLES 

 

Table I: D∞h point group 

D∞h E 2C
  …   i 2 S

  … 2
C    

g
  1 1 …  1  1  1 …  1  x2+y2, z2

g
  1 1 … -1  1  1 … -1 Rz  

u
  1 1 …  1 -1 -1 … -1 z  

u
  1 1 … -1 -1 -1 …  1   

g  2 2cos  …  0  2  2cos  …  0 (Rx,Ry) (xz,yz) 

u  2 2cos  …  0 -2 -2cos  …  0 (x,y)  

g  2 2cos 2 …  0  2   2cos 2 …  0  (x2-y2,xy)

u  2 2cos 2 …  0 -2  -2cos 2 …  0   

g  2 2cos 3 …  0  2  2cos 3 …  0   

u  2 2cos 3 …  0 -2 -2cos 3 …  0   
… … … … …   …  0   

 

Table II: C∞v point group 

C∞v E 2C
  …    

A1 ≡ + 1 1 … 1 z x2+y2, z2 

A2 ≡ - 1 1 … -1 Rz  

E1 ≡  2 2cos  … 0 (x,y);(Rx,Ry) (xz,yz) 

E2 ≡  2 2cos 2 … 0  (x2-y2,xy)

E3 ≡  2 2cos 3 … 0   
… … … … …   

 

Table III: C3V point group 

C3V E 2C3 3V     

A1 1 1 1 z x2+y2,z2 

A2 1 1 -1 Rz  

E 2 -1 0 (x,y),(Rx,Ry) (x2-y2,xy)(xz,yz)
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