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Chapter 1

Introduction

1.1. Networks, Uncertainty and Applications

Networks is an ubiquitous concept in a countless number of theoretical and practical

areas such as combinatorics, optimization, computer science, transportation, telecom-

munications and bioinformatics, to mention few of them. Networks usually embody

both the input and output of a generic tool called Network Design or Network Opti-

mization. With input we not only mean an arrangement of binary relations (typically

represented by edges or arcs) among discrete units (typically referred as nodes), but

a wide spectrum of data such as installation costs, distances, travel times, capaci-

ties, hierarchies, revenues, commodities, demands, reliability measures, connectivity

requirements, and a lot more.

Network Design (ND), one of the most prominent subjects in the disciplines of Opera-

tions Research (OR) and Management Sciences (MS), can be synthesized as the process

of designing, under one or more criteria of optimality (objectives), a network and a

corresponding operating regime that meets a certain set of topological and/or opera-

tive requirements (constraints). Usually, we are given an existing or potential network

from which we want to find a target (or optimally designed) network. The topology

of such target network can be, for instance, a path, a cycle, a collection of routes, a

tree, a forest or a generic connected sub-network; and the operating regime can be

represented, for instance, by the frequency in which a client is visited by a vehicle

through a route, a dynamic allocation of bandwidth through a local-access network,

or a dispatching scheduling of a commodity through a tree-like distribution network.

It is obvious that the quality or effectiveness of the designed network strongly relies

on the data used in the decision making process. In a real-world application context,

it is very unlikely that values such as the travel time between two cities, the future

demand of a client, or the relevance of a protein-complex in a biological process can be

estimated with absolute certainty. Likewise, the dynamism of real processes usually

1



2 Chapter 1 Introduction

bans the possibility of foreseeing with complete precision the classification of clients

within different hierarchies, the availability of a place for hosting a facility, or whether a

pair of genes actually interacts in a particular process. Therefore, uncertainty cannot be

ignored and should be taken into account when (i) gathering the data of the problem,

(ii) defining the corresponding mathematical model, (iii) designing the algorithmic

tools to solve it, and (iv) assessing the obtained results.

The incorporation of uncertainty is not a new element in OR. The seminal work of G.

Dantzig in the 50’s [see Dantzig, 1955], provided the foundations for the development

of optimization under uncertainty and, in particular, of Stochastic Programming (SP).

SP is comprised by set of powerful modeling and algorithmic tools, in constant progress,

that are broadly applied in different fields of OR and MS such as finance, transportation

or energy optimization [see Ruszczyński and Shapiro, 2003, Birge and Louveaux, 2011].

A crucial element in the application of SP is the characterization of the uncertain data

by means of probabilistic measures. Although such characterization can be suitable

in some cases, there are situations in which problem parameters cannot be modeled

by means of probability functions. Instead, the values of these parameters belong to

known sets (e.g., ellipsoidal sets, polyhedral sets, closed intervals, or sets of discrete

scenarios) from where they can deterministically realize as any element. This type of

uncertainty, usually referred as deterministic uncertainty, cannot be tackled by SP and

it is incorporated in the decision-making process through Robust Optimization (RO).

RO is an optimization framework consisting of different approaches sharing a com-

mon paradigm: “to hedge against deterministic uncertainty providing solutions that

ensure to perform reasonably well (in terms of optimality and/or feasibility) for all

possible realizations of the parameter values”. This guarantee of good performance,

robustness, is obtained by a sort of immunization against the effect of data uncertainty.

Commonly, for a given optimization problem we refer to its deterministic version as

the nominal problem, and to the version incorporating robustness as its robust counter-

part. The origins of RO can be traced back to 50’s when the max-min model proposed

by A. Wald, a decade before, became a state-of-the-art decision making approach for

tackling severe uncertainty [see Wald, 1945]. A couple of decades later, RO started to

be regarded as an stream of OR [see Gupta and Rosenhead, 1968, Rosenhead et al.,

1972, Soyster, 1973]. A revival of RO started in 90’s when many efforts were inde-

pendently devoted for the establishment of different concepts and models within the

framework of optimization under deterministic uncertainty [see Mulvey et al., 1995,

Kouvelis and Yu, 1997, El Ghaoui et al., 1998, Ben-Tal and Nemirovski, 2000]. In

the last 15 years, RO approaches have been extensively considered in several areas of

mathematical optimization leading to both practical and theoretical results. Moreover,

new models are constantly developed along with different definitions of uncertainty and

more sophisticated concepts of robustness [Ben-Tal et al., 2010, Gabrel et al., 2014].
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The core of this thesis is mainly composed by the concepts described above. That is, we

address ND problems, with a strong practical motivation, and in most cases we model

them by means of RO due to the presence of deterministic uncertainty in some of their

parameters. The problems we consider in this thesis are the Prize Collecting Steiner

Tree Problem, the Two-Level Network Design Problem, the Uncapacited Facility Lo-

cation problem, the Maximum Weight Connected Subgraph Problem, the Minimum

Spanning Tree Problem, the Single Commodity Flow Problem and a variant of a Net-

work Interdiction Problem. These problems naturally appear in applications such as

telecommunications, supply chain, bioinformatics and humanitarian relief planning.

For these problems, we recognize the presence of uncertainty in different parameters

such as transportation times, customer revenues, clients’ hierarchies or facility avail-

ability. Depending on the application and the nature of uncertainty, different RO

approaches are used for formulating the corresponding robust optimization problem;

in particular we use the Bertsimas & Sim [Bertsimas and Sim, 2003], the Recoverable

Robust [Liebchen et al., 2009], the Minmax Regret [Kouvelis and Yu, 1997] and the

Soyster [Soyster, 1973] approaches.

1.2. A Crusade for Optimality

In the previous section we motivated the need of formulating ND problems under

the framework of RO. Although the process of devising a suitable mathematical opti-

mization model could entail a scientific task in itself, it is not enough for providing a

decision-making tool for more realistic applications.

Classical ND problems are typically represented as Mixed Integer Programming (MIP)

formulations, and in most cases, their robust counterparts are represented as MIP

models as well. This means that standard mathematical programming techniques such

as branch-and-cut, Benders decomposition, heuristics, etc., can be applied to solve

these new models. Therefore, the next natural step is the design, implementation and

assessment of an algorithmic methodology that effectively solves a given robust ND

problem. This process is what we refer to as a Crusade for Optimality.

In this thesis, we study both nominal and robust ND problems and, in most cases,

we design algorithmic frameworks to solve them. Out of seven problems, five of them

are tackled by means of specially-tailored exact algorithms, one by means of a novel

hybrid heuristic approach, and one using a general-purpose MIP commercial solver.

In particular, note that designing an exact algorithm such as branch-and-cut or Ben-

ders decomposition, refers to a more general process comprised by: (i) the definition

of suitable (and strong) MIP formulation, possibly strengthen by non-obvious valid

inequalities; (ii) the election of a basic algorithmic approach (e.g., branch-and-cut or

Benders decomposition) that naturally tackles the defined formulation; (iii) the imple-

mentation of algorithmic enhancements such as complementary separation procedures,
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sophisticated primal heuristics or branching strategies; and (iv) the evaluation of the

proposed algorithmic framework on a sufficiently large set of meaningful instances. The

previously described steps not only entail a methodological task, but also a theoretical

one. For instance, proving that the studied problem is polynomially solvable for a

particular class of instances, can be used in the design of an efficient primal heuristic

or separation procedure. Likewise, discovering new facet-defining inequalities and in-

cluding their separation in the algorithm, is also a theoretical result that it is used to

enhance the algorithmic performance.

1.3. Content of the Thesis

The contribution of this thesis is contained in Chapters 2-10, where the main outcomes

obtained during the three years of the PhD program are exposed. Each of the nine

chapters corresponds entirely to a research article whose status (submitted, accepted

or published) at the moment of writing this manuscript is described below. The reader

should be aware that although the notation among the chapters is very similar, it might

not be exactly the same. Moreover, she/he can regard each chapter as a self-contained

manuscript whose comprehension does not strictly rely on any of the other chapters.

1.3.1 Chapter 2

This chapter is based on the article “Exact approaches for solving robust prize-collecting

Steiner tree problems”, co-authored with I. Ljubić (Universität Wien) and Prof. P.

Toth. This article has been published in European Journal of Operational Research [Álvarez-

Miranda et al., 2013e]. A preliminary version of this work appeared in [Álvarez-

Miranda et al., 2011].

In this chapter we deal with Prize Collecting Steiner Tree problem (PCStT) under

uncertainty. Typically in the PCStT, we are given a set of customers with potential

revenues and a set of possible links connecting these customers with fixed installation

costs. The goal is to decide which customers to connect into a tree structure so that the

sum of the link costs plus the revenues of the customers that are left out is minimized.

The problem, as well as some of its variants, is used to model a wide range of appli-

cations in telecommunications, gas distribution networks, protein-protein interaction

networks, or image segmentation.

In many applications it is unrealistic to assume that the revenues or the installation

costs are known in advance. In this work we consider the well-known Bertsimas and

Sim (B&S) robust optimization approach, in which the input parameters are subject to

interval uncertainty, and the level of robustness is controlled by introducing a control
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parameter, which represents the perception of the decision maker regarding the number

of uncertain elements that will present an adverse behavior.

We propose branch-and-cut approaches to solve the robust counterparts of the PCStT

and the Budget Constraint variant and provide an extensive computational study on

a set of benchmark instances that are adapted from the deterministic PCStT inputs.

We show how the Price of Robustness influences the cost of the solutions and the

algorithmic performance.

Finally, we adapt our theoretical results regarding algorithms for a general class of

B&S robust optimization problems for the robust PCStT and its budget and quota

constrained variants.

1.3.2 Chapter 3

This chapter is based on the article “The Recoverable Robust Two-Level Network

Design Problem”, co-authored with I. Ljubić, S. Raghavan (University of Maryland)

and Prof. P. Toth. This paper is currently under the second round of reviews in

INFORMS Journal on Computing.

We consider a network design application which is modeled as the two level network

design problem under uncertainty. In this problem, one of the two available technolo-

gies can be installed on each edge and all customers of the network need to be served

by at least the lower level (secondary) technology.

The decision maker is confronted with uncertainty regarding the set of primary cus-

tomers, i.e., the set of nodes that need to be served by the higher level (primary)

technology. A set of discrete scenarios associated with the possible realizations of pri-

mary customers is available. The network is built in two stages. In the first-stage the

network topology must be determined. One may decide to install the primary tech-

nology on some of the edges in the first stage, or one can wait to see which scenario

will be realized, in which case, edges with the installed secondary technology may be

upgraded, if necessary to primary technology, but at higher recovery cost. The overall

goal then is to build a “recoverable robust” spanning tree in the first stage that serves

all customers by at least the lower level technology, and that minimizes the first stage

installation cost plus the worst-case cost needed to upgrade the edges of the selected

tree, so that the primary customers of each scenario can be served using the primary

technology.

We discuss the complexity of the problem, provide mixed integer programming models

and develop a branch-and-cut algorithm to solve it. Our extensive computational

experiments demonstrate the efficacy of our approach.
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1.3.3 Chapter 4

This chapter is based on the article “The Recoverable Robust Facility Location Prob-

lem”, co-authored with E. Fernández (Universitat Politècnica de Catalunya) and I.

Ljubić. This article is currently under the first round of reviews in Operations Re-

search.

This work deals with a facility location problem in which location and allocation policy

is defined in two stages such that a first-stage solution should be robust against the

possible realizations (scenarios) of the input data that can only be revealed in a second

stage. This solution should be robust enough so that it can be recovered promptly

and at low cost in the second stage. In contrast to some related modeling approaches

from the literature, this new recoverable robust model is more general in terms of the

considered data uncertainty; it can address situations in which uncertainty may be

present in any of the following four categories: provider-side uncertainty, receiver-side

uncertainty, uncertainty in-between, and uncertainty with respect to the cost parame-

ters.

For this novel problem, a sophisticated algorithmic framework based on a Benders

decomposition approach is designed and complemented by several non-trivial enhance-

ments, including dual lifting, branching priorities, matheuristics and zero-half cuts.

Two large sets of realistic instances that incorporate spatial and demographic infor-

mation of countries such as Germany and US (transportation) and Bangladesh and

the Philippines (disaster management) are introduced. They are used to analyze in

detail the characteristics of the proposed model and the obtained solutions as well as

the effectiveness, behavior and limitations of the designed algorithm.

1.3.4 Chapter 5

This chapter is based on the article “Single-commodity Robust Network Design Prob-

lem: Complexity, Instances and Heuristic Solutions”, co-authored with V. Cacchiani,

A. Lodi, T. Parriani (Università di Bologna) and D. Schmidt (Universität zu Köln).

This paper is currently under the second round of reviews in European Journal of Op-

erational Research. A preliminary version of this work appeared in [Álvarez-Miranda

et al., 2012].

In this work, we study a single-commodity Robust Network Design problem (RND)

in which an undirected graph with edge costs is given together with a discrete set of

balance matrices, representing different supply/demand scenarios. In each scenario, a

subset of the nodes is exchanging flow. The goal is to determine the minimum cost

installation of capacities on the edges such that the flow exchange is feasible for every

scenario.
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Previously conducted computational investigations on the problem motivated the study

of the complexity of some special cases and we present complexity results on them,

including hypercubes. In turn, these results lead to the definition of new instances

(random graphs with {-1,0,1} balances) that are computationally hard for the natural

flow formulation. These instances are then solved by means of a new heuristic algorithm

for RND, which consists of three phases. In the first phase the graph representing the

network is reduced by heuristically deleting a subset of the arcs, and a feasible solution

is built. The second phase consists of a neighborhood search on the reduced graph

based on a Mixed-Integer (Linear) Programming (MIP) flow model. Finally, the third

phase applies a proximity search approach to further improve the solution, taking

into account the original graph. The heuristic is tested on the new instances, and

the comparison with the solutions obtained by CPLEX on a natural flow formulation

shows the effectiveness of the proposed method.

Note This chapter appears in the PhD thesis of Tiziano Parriani (PhD Program in

Automatic Control and Operational Research, Cycle XVI, Dipartimento di Ingegneria

dell’Energia Elettrica e dell’Informazione, Università di Bologna, 2014).

1.3.5 Chapter 6

This chapter is based on the article “On Exact Solutions for the Minmax Regret Span-

ning Tree Problem”, co-authored with A. Candia, F. Pérez-Galarce (Universidad de

Talca) and Prof. P. Toth. This paper has been accepted for publication in Computers

& OR.

The Minmax Regret Spanning Tree problem is studied in this chapter. This is a

generalization of the well known Minimum Spanning Tree problem, which considers

uncertainty in the cost function. Particularly, it is assumed that the cost parameter

associated with each edge is an interval whose lower and upper limits are known, and

the Minmax Regret is the optimization criterion. The Minmax Regret Spanning Tree

problem is an NP-Hard optimization problem for which exact and heuristic approaches

have been proposed.

Several exact algorithms are designed and computationally compared with the most

effective approaches of the literature. It is shown that a proposed branch-and-cut

approach outperforms the previous approaches when considering several classes of in-

stances from the literature.

1.3.6 Chapter 7

This chapter is based on the article “A Note on the Bertsimas & Sim Algorithm for

Robust Combinatorial Optimization Problems”, co-authored with I. Ljubić and Prof.
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P. Toth. This article has been published in 4OR [Álvarez-Miranda et al., 2013d].

In this chapter we propose some improvements and extensions to the algorithmic result

presented in [Bertsimas and Sim, 2003]. For the case studied in their paper, we show

that instead of solving n + 1 deterministic problems, the robust counterpart can be

computed by solving n−ΓX + 2 deterministic problems (Lemma 1); this improvement

is particularly interesting for those cases for which a high level of conservatism, i.e., a

large value of ΓX , is suitable. Additionally, we show that if a knapsack-type constraint

is part of a problem and m of its coefficients are affected by uncertainty, an equivalent

algorithmic approach can be applied, and the robust counterpart can be computed by

solving m − ΓY + 2 deterministic problems (Lemma 2), for 0 < ΓY ≤ m. Likewise,

we show that if the uncertain coefficients in the objective function are associated with

two disjoint sets of variables, of size n and m respectively, the robust problem can be

computed by solving of (n− ΓX + 2)(m− ΓY + 2) deterministic problems (Lemma 3),

giving to the decision maker the flexibility to define different levels of conservatism to

different sets of uncertain parameters. A similar result is also shown for the case that

uncertainty is present in a set of n objective function coefficients and in a set of m

coefficients of a knapsack-type constraint (Lemma 4). Combining the previous results,

we provide a more general result which considers the case in which the uncertain

coefficients in the objective function are associated with K disjoint sets of variables

and there are L knapsack-type constraints (each of them involving a different set

of variables) with uncertain coefficients. For this type of problems, we show that

the robust counterpart can be computed by solving a strongly-polynomial number of

deterministic problems (Theorem 1), assuming that K and L are constant.

1.3.7 Chapter 8

This chapter is based on the article “Vulnerability Assessment of Spatial Networks:

Models and Solutions”, co-authored with A. Candia, F. Pérez-Galarce and E. Carri-

zosa (Universidad de Sevilla). This article has been accepted for publication in the pro-

ceedings of the 3rd International Symposium on Combinatorial Optimization (March

5-8, 2014, Lisbon), edited by L. Gouveia and R. Mahjoub and published in the series

LNCS by Springer.

Based on a well-known network interdiction model we formulate a framework of com-

binatorial optimization problems whose solutions can be used for assessing the vul-

nerability of spatial networks in the case of disruptions. We design a flexible model

of network disruption based on the geometric characteristic of spatial networks. This

model incorporates the nature of disruptions present in different situations such as

military planning [Golden, 1978, Israeli and Wood, 2002], terrorist attacks [Salmeron

et al., 2009] or emergency control of infectious disease spreading [Assimakopoulos, 1987]

. The proposed problems, along with the model of disruption, span several realizations
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of network interdiction providing a useful tool to characterize network vulnerability. In

a way, our aim is to propose a methodology that uses network optimization problems

to characterize the robustness of a network in the presence of multiple failures.

1.3.8 Chapter 9

This chapter is based on the article “The Maximum Weight Connected Subgraph Prob-

lem”, co-authored with I. Ljubić and P. Mutzel (Technische Universität Dortmund).

This article is the 11th chapter of the book Facets of Combinatorial Optimization,

edited by M. Jünger and G. Reinelt in the occasion of the 65th birthday of Martin

Grötschel [Álvarez-Miranda et al., 2013a].

The Maximum (Node-) Weight Connected Subgraph Problem (MWCS) searches for a

connected subgraph with maximum total weight in a node-weighted (di)graph. It has

various applications in systems biology, computer vision, communication network de-

sign, forestry, and wildlife preservation planning. In this work we introduce a new

integer linear programming formulation built on node variables only, which uses new

constraints based on node-separators. We theoretically compare its strength to previ-

ously used MIP models in the literature and study the connected subgraph polytope

associated with our new formulation. In our computational study we compare branch-

and-cut implementations of the new model with two models recently proposed in the

literature: one of them using the transformation into the Prize-Collecting Steiner Tree

problem, and the other one working on the space of node variables only. The obtained

results indicate that the new formulation outperforms the previous ones in terms of the

running time and in terms of the stability with respect to variations of node weights.

1.3.9 Chapter 10

This chapter is based on the article “The Rooted Maximum Node-Weight Connected

Subgraph Problem”, co-authored with I. Ljubić and P. Mutzel. This article has been

published in the proceedings of the 10th Conference on Integration of Artificial Intelli-

gence (AI) and Operations Research (OR) techniques in Constraint Programming (May

18-22, 2013, Yorktown Heights), edited by C. Gomes and M. Sellman and published

in the series LNCS by Springer [Álvarez-Miranda et al., 2013b].

Given a connected node-weighted (di)graph, with a root node r, and a (possibly

empty) set of nodesR, the Rooted Maximum Node-Weight Connected Subgraph Problem

(RMWCS) is the problem of finding a connected subgraph rooted at r that connects

all nodes in R with maximum total weight. In this work we consider the RMWCS as

well as its budget-constrained version, in which also non-negative costs of the nodes

are given, and the solution is not allowed to exceed a given budget. The considered
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problems belong to the class of network design problems and have applications in var-

ious different areas such as wildlife preservation planning, forestry, system biology and

computer vision.

We present three new integer linear programming formulations for the problem and

its variant which are based on node variables only. These new models rely on a differ-

ent representation of connectivity than the one previously presented in the RMWCS

literature that rely on a transformation into the Steiner Arborescence problem. We

theoretically compare the strength of the proposed and the existing formulations, and

show that one of our models preserves the tight LP bounds of the previously proposed

cut set model of Dilkina and Gomes. Moreover, we study the rooted connected sub-

graph polytope in the natural space of node variables. We conduct a computational

study and (empirically) compare the theoretically strongest one of our formulations

with the one previously proposed using ad-hoc branch-and-cut implementations.

1.3.10 Chapter 11

General conclusions and final remarks are drawn in this chapter. The potential of

extending the obtained results for other problems is also discussed.



Chapter 2

Exact Approaches for Solving

Robust Prize-Collecting Steiner

Tree Problems

2.1. Introduction

When defining an expansion plan of a fiber optic network in a given area and for a

given planning horizon, a telecommunication company needs to decide to which subset

of customers a service should be provided. Thereby, two elements need to be taken

into account: potential gains in revenue (that will be referred to as prizes) of each

customer, and infrastructure costs needed to connect them. This problem can be

formulated as a network optimization problem called the Prize-Collecting Steiner Tree

Problem (PCStT). In this chapter we will focus on the PCStT and the Budget and

Quota constrained variants, under data uncertainty assumption.

When facing strategic decisions modeled by the PCStT, companies should consider the

presence of uncertainty in problem parameters as an inevitable feature of the decision-

making process. In our particular case, customer revenues and connection costs are

uncertain parameters since they are affected by many external economic or even social

factors. Consequently, uncertainty in both groups of parameters (or at least one of

them) should be part of any decision model in order to obtain reliable and robust

solutions from the economic point of view.

In our models, robustness can be seen as a guarantee of protection against data uncer-

tainty. This guarantee is provided by the use of the Bertsimas and Sim (B&S) Robust

Optimization (RO) approach [see Bertsimas and Sim, 2003], which entails the adoption

of protection functions that are included in the objective function and/or constraints.

Protection functions depend on both, the uncertainty present in the problem’s input

11
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parameters and the intuition of the decision maker. These protection functions are all

in all what determines the Price of Robustness [see Bertsimas and Sim, 2004] which

can be defined as the worsening of the economic performance of the solutions while

ensuring higher level of robustness in presence of higher levels of uncertainty. The

resulting model will be called robust counterpart of the original deterministic problem.

The PCStT arises as an important problem in Network Optimization from both the

algorithmic and practical points of view (see Section 2.2). Therefore, we believe that

studying the robust counterpart of the PCStT will help in solving and better under-

standing not only the robust PCStT itself, but also other related problems in the area

of robust network optimization.

In this work we propose several RO variants of the PCStT and establish some con-

nections between them. As main contribution, we propose three different strategies

to exactly solve the Robust PCStT (RPCStT). These exact algorithms are all based

on Branch-and-Cut techniques and the differences among them are implied by the

underlying mathematical programming formulations and the different cutting-plane

techniques. An extensive analysis of computational results is carried out in order to

assess the performance of the proposed algorithms and their dependence on the prob-

lem parameters, and the nature and characteristics of the obtained solutions. This

analysis concerns a qualitative study of the solutions in terms of the Price of Robust-

ness and an interpretation and assessment of the different algorithmic performances.

To complement this analysis, we also consider a budget-constrained variant of the

PCStT and adapt the developed algorithms to solve its robust counterpart.

Structure of the Paper In Section 2.2, the PCStT is formally defined, a review of

the main literature is presented, two important variants of the problem, i.e., Budget

and Quota PCStT, are defined, and an integer programming formulation is provided.

In Section 2.3, motivations and alternatives to consider parameter uncertainty are

presented with an emphasis on the B&S robust optimization model. Subsequently,

different Mixed Integer Programming (MIP) formulations for the robust counterpart

of the PCStT and the Budget and Quota Constraint variants are presented. Branch-

and-Cut algorithms are presented in Section 2.4. In Section 2.5 we present and analyze

the computational results obtained for different sets of benchmark instances for the

robust counterparts of the PCStT and its budget-constrained variant. In Section 2.6,

our recent theoretical results regarding algorithms for a general class of B&S robust

optimization problems [see Álvarez-Miranda et al., 2013d] are adapted for the robust

PCStT and its variants. Finally, concluding remarks and paths for future work are

presented in Section 2.7.
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2.2. The Prize Collecting Steiner Tree Problem

The term Prize Collecting was used for the first time by Balas [see Balas, 1989], in the

context of the traveling salesman problem. However, it was in [Bienstock et al., 1993]

where the PCStT has been introduced. It is worth to mention that in [Segev, 1987],

Segev studied for first time the closely related Steiner tree problem with node weights.

A formal definition of the PCStT can be given as follows.

Given is an undirected graph G = (V,E) with n = |V |, m = |E|, edge costs ce ∈ R>0

for all e ∈ E, and node prizes pv ∈ R≥0 for all v ∈ V . The PCStT consists of finding

a tree T = (VT , ET ) of G, that minimizes the function

f (T ) =
∑
e∈ET

ce +
∑

v∈V \VT

pv. (2.1)

For a feasible solution T , function (2.1) corresponds to the sum of the costs ce of

the edges in the tree, e ∈ ET , plus the sum of the prizes pv of the nodes that are

not spanned by the tree, v ∈ V \VT ; this definition of the PCStT is known as the

Goemans and Williamson PCStT (GW-PCStT) [Bienstock et al., 1993]. In the context

of the expansion of fiber optic networks mentioned above, graph G = (V,E) is the

potential network for which we want to find an expansion plan, so edges e ∈ E are

the possible links with construction costs ce and nodes v ∈ V represent customers or

street intersections with potential revenues pv > 0 or pv = 0, respectively. By Vpi>0

(n′ = |Vpi>0|) we will denote the set of potential customers and by Vpi=0, the set of

potential Steiner nodes.

The PCStT can be also defined as the problem of finding a tree T that minimizes

fNW (T ) =
∑
e∈ET

ce −
∑
v∈VT

pv. (2.2)

Function (2.2) corresponds to the minimization version of the Net-Worth PCStT (NW-

PCStT) which was introduced in [Johnson et al., 2000]. Although functions (2.1) and

(2.2) are equivalent in the sense that both produce the same optimal solutions, they

are not equivalent regarding approximation algorithms [see Johnson et al., 2000].

Approximation algorithms for the GW-PCStT are discussed in [Bienstock et al., 1993,

Goemans and Williamson, 1997, Johnson et al., 2000] and recently in [Archer et al.,

2011]. Heuristic procedures are implemented in [Canuto et al., 2001, Klau et al., 2004]

and [Salles da Cunha et al., 2009]. The first published work on polyhedral studies for

the PCStT is [Lucena and Resende, 2004], where a cutting plane algorithm is proposed.

The cuts are efficiently generated when a violation of a generalized subtour elimination

constraint (GSEC) is verified. In [Ljubić et al., 2006], a branch-and-cut algorithm

based on a directed cut-set MIP formulation has been designed and implemented.

Several state-of-the-art methods are combined and pre-processing techniques are used.
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The proposed procedure has significantly improved the algorithm presented in [Lucena

and Resende, 2004]. The same set of benchmark instances has been solved by two

orders of magnitude smaller running times. Optimal solutions have also been achieved

for large-scale real-world instances concerning the design of optical fiber networks.

Another important algorithmic efforts for the PCStT and some of its variants have

been presented in [Canuto et al., 2001, Haouari and Siala, 2006, Haouari et al., 2008]

and [Haouari et al., 2010].

In [Ljubić et al., 2006] an application of the problem is approached for the first time;

the exact algorithm developed in the paper is used to solve real world instances for the

design of fiber optic networks of a German city where an existing subnetwork needed

to be augmented in order to serve new customers in the most profitable way. Over the

last few years various other applications have been studied in which the PCStT has

shown to play a crucial role in the modeling process. These problems arise from very

different industrial and scientific contexts, showing the potential and versatility of the

PCStT as a modeling tool.

Relevant applications of the PCStT are found in Bioinformatics in the context of

protein-protein interaction networks (PPIN). In [Dittrich et al., 2008, Bailly-Bechet

et al., 2009, Huang and Fraenkel, 2009] and [Bailly-Bechet et al., 2010] the PCStT is

applied to network optimization problems arising in the analysis of PPIN for different

datasets of biological processes. The PCStT is used to model an “inference problem”

in order to find, or rather “to infer”, functional modules in PPIN. These networks rep-

resent signal pathways (constructed by edges) between proteins or protein complexes

(represented by nodes). These biological networks are modeled as a graph G = (V,E),

where edge costs ce represent the confidence of interaction between the source and the

target of the given edge e, and node prizes pv corresponds to the differential expres-

sion of node v in the network for a given biological process. In [Lasher et al., 2011],

where a survey of models and algorithms for cellular response networks is provided,

the PCStT and the algorithm studied in [Dittrich et al., 2008] (which is based on the

exact approach developed in [Ljubić et al., 2006]) are presented as state-of-the-art tools

for the detection of response networks in the context of analysis of gene expressions.

Recently in [Huang, 2011], the author emphasizes the quality of the results obtained

using the PCStT model compared with other modeling and algorithmic approaches for

the analysis of signaling networks carried out over different gene databases.

The design of a leakage detection system using the PCStT is performed in [Prodon

et al., 2010]. The problem consists of finding the optimal location of detectors in

an urban water distribution network so that, given a budget constraint, a desired

coverage is provided. The instance considered in the paper corresponds to the urban

water distribution network of the city of Lausanne, Switzerland.
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In [Vijayanarasimhan and Grauman, 2011], the PCStT is used to efficiently detect

region-based objects in the context of image recognition. Nodes v represent super-

pixels and edges e connect pairs of superpixels that share a boundary. Node prizes

pv represent the contribution of the superpixel to the classifier score, and edge costs

are a measure of the probability of two superpixels to belong to the same element.

The objective is to find a best-scoring subregion identifying the most likely region

of the object of interest. It is important to remark that in [Dittrich et al., 2008]

and [Vijayanarasimhan and Grauman, 2011] the equivalence between the PCStT and

the Maximum-weight connected subgraph problem (MWCS) is exploited to model the

particular problem. For more details we refer the reader to [Ideker et al., 2002].

2.2.1 A Integer Programming Formulation for PCStT

To characterize the set of feasible solutions for the PCStT, i.e., subtrees of G, we con-

sider a directed graph model and use connectivity inequalities to guarantee connectivity

of the solution.

We transform the graph G = (V,E) into the directed graph GSA = (VSA, ASA). The

vertex set VSA = V ∪ {r} contains the nodes of the input graph G and an artificial

root vertex r. The arc set ASA is defined as ASA = {(r, i) | i ∈ Vpi>0} ∪ A, where

A = {(i, j), (j, i) | e = {i, j} ∈ E}. A subgraph TSA of GSA that forms a directed

tree rooted at r such that for each node i in TSA there is a directed path between

r and i, is called a Steiner arborescence and is a feasible solution of the problem in

case there is only one outgoing arc from r. We will use the following notation: A

set of vertices R ⊂ VSA and its complement R = VSA\R, R 6= ∅, induce two directed

cuts: δ+ (R) =
{

(i, j) | i ∈ R, j ∈ R
}

and δ− (R) =
{

(i, j) | i ∈ R, j ∈ R
}

. Let zij ,

∀(i, j) ∈ A, be a binary variable such that zij = 1 if arc (i, j) belongs to a feasible

arborescence TSA and zij = 0 otherwise. Let yi, ∀i ∈ V , be a binary variable such

that yi = 1 if node i belongs to TSA and yi = 0 otherwise. The set of constraints that

characterizes the set of feasible solutions of PCStT is given by:∑
(j,i)∈δ−(i)

zji = yi ∀i ∈ VSA\ {r} (2.3)

∑
(i,j)∈δ−(R)

zij ≥ yk, k ∈ R, ∀R ⊆ VSA \ {r}, R 6= ∅ (2.4)

∑
(r,i)∈δ+(r)

zri = 1 (2.5)

Let xe, ∀e ∈ E, be a binary variable such that xe = 1 if edge e belongs to a feasible

subtree T (induced by TSA) and xe = 0 otherwise. The connection between x and z

variables is given by

xe = zij + zji ∀e = {i, j} ∈ E (2.6)
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The corresponding set of feasible solutions satisfying these inequalities is given as:

T = {(x,y) ∈ {0, 1}|E|+|V | | (x,y, z) satisfies (2.3)− (2.6) and z ∈ {0, 1}|ASA|}.

Constraints (2.4), also known as cut or connectivity inequalities, are the directed coun-

terpart of undirected GSECs used in [Lucena and Resende, 2004]. They ensure that

there is a directed path from the root r to each customer k such that yk = 1. In-degree

constraints (2.3) guarantee that the in-degree of each vertex of the tree is equal to one.

The root-out-degree constraint (2.5) makes sure that the artificial root is connected

to exactly one of the terminals. In addition, the following inequalities are used to

initialize the MIP model:

zrj ≤ 1− yi, ∀i < j, i, j ∈ Vpi>0 (2.7)∑
(j,i)∈δ−(i)

zji ≤
∑

(i,j)∈δ+(i)

zij , ∀i ∈ Vpi=0. (2.8)

Constraints (2.7), the so-called asymmetry constraints, ensure that for each feasible

solution the customer vertex adjacent to the root is the one with the smallest in-

dex. Inequalities (2.8) are the flow-balance constraints, originally introduced for the

Steiner tree problem [see Koch and Martin, 1998]. Constraints (2.7) cut off symmetric

solutions, while constraints (2.8) improve the quality of lower bounds of the Linear

Programming (LP) relaxation of the MIP model.

In the remainder, let T = (VT , ET ) denote the tree induced by a pair (x,y), such that

ET = {e | xe = 1} and VT = {v | yv = 1}. For simplicity of notation we state that

T ≡ (x,y).

2.2.2 Variants of the PCStT: Budget and Quota PCStT

Two well-known variants of the PCStT are the Budget Constrained PCStT (B-PCStT)

and the Quota Constrained PCStT (Q-PCStT), which are presented for the first time

in [Johnson et al., 2000], where also approximation algorithms and computational

studies have been provided.

Given a cost budget B, B ∈ R≥0, representing the maximum total cost allowed for the

construction of the solution, the B-PCStT is defined as

f∗B (T ) = min
T∈T

 ∑
v∈V \VT

pv

∣∣∣∣∣∣
∑
e∈ET

ce ≤ B

 . (2.9)



Chapter 2 Exact Approaches for RPCStT 17

Given a prize quota Q, Q ∈ R>0, representing the maximum total prize allowed to be

left out of a solution (or the total prize allowed to be lost), the Q-PCStT is defined as

f∗Q (T ) = min
T∈T

∑
e∈ET

ce

∣∣∣∣∣∣
∑

v∈V \VT

pv ≤ Q

 . (2.10)

Problem (2.9) and (2.10) are natural extensions of the problem that appear in the

bi-objective optimization framework. There are two conflicting goals, namely, mini-

mization of the cost and maximization of the profit, and typically, one can solve these

problems in iterative frameworks by e.g., the weighted sum approach or ε-constrained

based approaches [see Ehrgott and Gandibleux, 2000].

2.3. Formulations for Robust PCStT and its Variants

2.3.1 Robust Optimization Approaches

In this work we consider decision-making environments with a lack of complete knowl-

edge about the uncertain state of data and instead of dealing with probabilistic uncer-

tainty (as in stochastic optimization [see Uryasev and Pardalos, 2001]) we actually deal

with deterministic uncertainty [Bertsimas and Sim, 2003]. In contrast to probabilis-

tic models, that treat the input parameters as random variables, in the deterministic

uncertainty models we assume that the input parameters belong to a known determin-

istic set. This is in the core of many real world applications and it is the motivation

supporting the robust optimization approaches, where the essential objective is to find

solutions that will have a reasonably good performance (of optimality and/or feasibility)

for all possible realizations of the parameter values.

In the last 20 years several RO models have been proposed, corresponding to different

motivations and conceptual definitions; for a deep and extensive study on the RO

we refer the reader to [Ben-Tal et al., 2010]. In our opinion there are three main

characteristics that define the differences among RO models: (1) The nature of the

input data; whether the data belong to e.g., an ellipsoidal set or polyhedral set, a closed

interval, or a set of discrete scenarios; (2) If robustness is considered with respect to

the value of the objective function (robust solution), to the feasibility of the solution

(robust model) or both; (3) The definition of reasonably good performance of a solution,

which is what determines the main features of the model.

In this work we consider the RO concept by Bertsimas and Sim (B&S) defined in [Bert-

simas and Sim, 2003] and [Bertsimas and Sim, 2004]. This model is considered as one

of the most important references in the field of RO. Regarding the first characteristic

mentioned above, this approach tackles interval uncertainty. Regarding robustness,

the B&S model allows to find solutions that are robust in terms of optimality and/or
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feasibility of the solution. The definition of what is a reasonably good performance of

a solution is given by the protection against a pre-defined number of parameters that

might be subject to uncertainty.

In this work we consider interval uncertainty, which means that associated with each

input parameter there is a closed interval with its lower and upper bounds. Formally,

in the case of the PCStT, an interval [c−e , c
+
e ], such that 0 < c−e ≤ c+

e , is associated

with each edge e ∈ E, and an interval [p−v , p
+
v ], such that 0 ≤ p−v ≤ p+

v is associated

with each customer v ∈ Vpi>0. To simplify the notation, we will define 0 ≤ p−v ≤ p+
v

for all nodes v ∈ V , where p−v = p+
v = 0 for potential Steiner nodes v ∈ Vpi=0. Since we

consider deterministic uncertainty, each input parameter can take any value from the

corresponding interval without any specific (or known) behavior and independently

of the values taken by the other parameters. The lower interval values c−e and p−v
will be referred to as nominal values, i.e., they are the values to be considered if the

deterministic PCStT is solved. Deviations from the nominal values are defined as:

de = c+
e − c−e , for all e ∈ E and dv = p+

v − p−v , for all v ∈ V . In the following we will

present two ways to derive mathematical programming formulations for the robust

counterpart of the PCStT and its variants.

The PCStT under interval uncertainty has been considered before in [Álvarez-Miranda

et al., 2010]. The authors used an alternative RO model based on a Risk/Cost trade-

off concept defined in [Chen et al., 2009] and provided polynomial time algorithms

for solving both the PCStT and its robust counterpart on 2-trees. In this context,

our work is complementary since we consider a different RO model and we provide a

more general algorithmic framework focusing on graphs with general structure. The

PCStT under interval uncertainty with the B&S RO model has been introduced in

our preliminary work [Álvarez-Miranda et al., 2011]. In that work, one of the three

approaches studied in this work has been computationally tested; however, only for

the robust version of the PCStT and on a subset of the instances that are considered

here.

2.3.2 The B&S Robust PCStT

Suppose that a decision maker wants to solve the PCStT in which the input parameters,

edge costs and node prizes, are subject to interval uncertainty. In many practical

applications it is unlikely that all of edge costs and/or node prizes will present an

uncertain behavior at the same time. Therefore, we assume that only a subset of

input data is subject to uncertainty, while the remaining parameters are fixed to their

nominal values. More precisely, the decision maker may assume that only ΓE edges

and ΓV nodes (ΓE ∈ [0,m] and ΓV ∈ [0, n′]) will be subject to uncertainty, although

she/he does not know exactly which they are. Without loss of generality, we will

assume that the values of ΓE and ΓV are integral.
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The essence of the model is to find a solution that is “robust” considering all scenarios

in which ΓE edges and ΓV nodes present an adverse behavior. If ΓE = 0 and ΓV = 0,

then uncertainty is ignored and the problem to solve is nothing but the nominal prob-

lem, whereas if ΓE = m and ΓV = n′, i.e., full uncertainty is assumed, the most

conservative robust solution is sought.

Considering the general mathematical programming formulation for combinatorial op-

timization problems with interval uncertainty presented in [Bertsimas and Sim, 2003],

the B&S RPCStT can be formulated as

ROPT (ΓE ,ΓV ) = min
T∈T

∑
e∈ET

c−e + β∗E(ΓE) +
∑

v∈V \VT

p−v + β∗V (ΓV )

 , (2.11)

where

β∗E(ΓE) = max

 ∑
e∈Ẽ∩ET

de | ∀Ẽ ⊆ E, |Ẽ| ≤ ΓE


and

β∗V (ΓV ) = max

 ∑
v∈Ṽ ∩{V \VT }

dv | ∀Ṽ ⊆ V, |Ṽ | ≤ ΓV

 .

These last two functions are the so-called protection functions and they provide ro-

bustness to the solutions in terms of protection of optimality in presence of a given

level of data uncertainty, represented by ΓE and ΓV .

An optimal solution for (2.11) can be interpreted as the one that minimizes the total

nominal cost plus the cost of the maximal ΓE deviations in the cost of the edges of the

solution plus the maximal ΓV deviations in the prizes of the nodes that are not spanned

by the solution. If ΓE = m and ΓV = n′, the solution will obviously correspond to

the optimal (worst-case) deterministic solution in which all edge costs and node prizes

will be set to their upper bounds. The flexibility provided by ΓE and ΓV is the main

advantage of the model from the practical point of view, because it allows the decision

maker to include her/his preferences in order to control the level of conservatism of

the solutions.

Formulation Based on Compact Robust Constraints: To find a mixed integer

programming formulation for (2.11), it is necessary to rewrite protection functions

β∗E(ΓE) and β∗V (ΓV ) using auxiliary variables ue ∈ [0, 1], ∀e ∈ E and uv ∈ [0, 1], ∀v ∈ V ,

which represent the portion of the corresponding deviation, de and dv respectively,

included into the protection function. We thus obtain

β∗E(ΓE) = max

∑
e∈ET

deue | ue ∈ [0, 1] ∀e ∈ E,
∑
e∈E

ue ≤ ΓE

 (2.12)
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and

β∗V (ΓV ) = max

 ∑
v∈V \VT

dvuv | uv ∈ [0, 1] ∀v ∈ V,
∑
v∈V

uv ≤ ΓV

 . (2.13)

When considering (2.12) and (2.13) it is clear that the objective function of (2.11)

contains two non-linear nested maximization problems. To overcome this, one can use

strong duality. Let T ∗ ≡ (x∗,y∗) be an optimal tree for (2.11). Objective functions

of problems (2.12) and (2.13) can be written as
∑

e∈E dex
∗
eue and

∑
v∈V dv(1− y∗v)uv,

respectively. By strong duality [see Bertsimas and Sim, 2003], we have:

β∗E(ΓE) = min

{
θΓE +

∑
e∈E

he | he + θ ≥ dex∗e and he ≥ 0 ∀e ∈ E, θ ≥ 0

}
(2.14)

and

β∗V (ΓV ) = min

{
λΓV +

∑
v∈V

kv | kv + λ ≥ dv (1− y∗v) and kv ≥ 0 ∀v ∈ V , λ ≥ 0

}
, (2.15)

respectively.

Combining (2.11), (2.14) and (2.15), we can formulate the B&S RPCStT as the fol-

lowing Mixed Integer Programming (MIP) model:

ROPT (ΓE ,ΓV ) = min
∑
e∈E

c−e xe + θΓE +
∑
e∈E

he +
∑
v∈V

p−v (1− yv) + λΓV +
∑
v∈V

kv

(2.16)

s.t.

he + θ ≥ dexe, ∀e ∈ E (2.17)

kv + λ ≥ dv (1− yv) , ∀v ∈ V (2.18)

he ≥ 0 ∀e ∈ E, kv ≥ 0 ∀v ∈ V and θ, λ ≥ 0 (2.19)

(x,y) ∈ T . (2.20)

In this model, variables he, kv, θ and λ are called “robust variables”, while con-

straints (2.17) and (2.18) are called “compact robust-constraints” as their number

is linear in m and n.

Formulation Based on Robustness Cuts: One can also use Benders decomposi-

tion to project out robust variables from the previous formulation. Since every solution

(x,y) ∈ T is feasible for the robust counterpart of the problem, only Benders opti-

mality cuts will be needed to describe the robustness of an optimal solution. These
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optimality cuts are given by constraints (2.22) and (2.23) below:

ROPT (ΓE ,ΓV ) = min
∑
e∈E

c−e xe + Θ +
∑
v∈V

p−v (1− yv) + Λ (2.21)

s.t.

Θ ≥
∑
e∈S

dexe, ∀S ⊆ E, |S| ≤ ΓE (2.22)

Λ ≥
∑
v∈R

dv(1− yv), ∀R ⊆ V , |R| ≤ ΓV (2.23)

Θ,Λ ≥ 0 (2.24)

(x,y) ∈ T . (2.25)

In this model, additional variables Θ and Λ and constraints (2.22) and (2.23) allow

to model the two nested maximization problems β∗E(ΓE) and β∗V (ΓV ), respectively.

Constraints (2.22) and (2.23) are called “robustness cuts”. In this model we enforce

robustness by working directly on the space of variables (x,y) at the expense of adding

an exponential number of robustness constraints. In Section 2.4, we will show that

these constraints can be separated in polynomial time. In Section 2.5 we will provide

a computational study comparing the practical performance of the compact robust

constraints versus these robustness cuts. In [Fischetti and Monaci, 2012], the authors

have proposed to use robustness cuts for modeling robust linear optimization problems

with uncertainty in the constraint parameters.

2.3.3 The B&S Robust NW-PCStT and Equivalences

It is known that for the deterministic case the connection between f(T ) and fNW (T )

is given as

fNW (T ) = f(T )−
∑
v∈V

pv,

i.e., the two formulations of deterministic GW-PCStT and NW-PCStT find the same

solution because the sum of node revenues is constant. However, when node revenues

are subject to interval uncertainty and a B&S robust solution is sought, this sum is not

constant anymore. In this case, the robust counterpart of the NW-PCStT is essentially

solving a different problem. To better understand this difference, assume for a moment

that edge costs are deterministic. Recall now that in the robust counterpart of the

GW-PCStT, nominal values for node revenues are set to conservative lower bounds

and, therefore ROPT corresponds to a potential increase of revenues, which a decision

maker can miss. On the other hand, conservative setting for the node revenues in the

robust NW-PCStT case is to assume the values are set to their upper bounds, p+
v , for

all v ∈ V .
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By following the same ideas presented above for the GW-PCStT, the B&S Robust

counterpart of the NW-PCStT is defined as:

ROPTNW (ΓE ,ΓV ) = min
(x,y)∈T

{∑
e∈E

c−e xe + β∗E(ΓE)−

(∑
v∈V

p+
v yv − η∗V (ΓV )

)}
(2.26)

where

η∗V (ΓV ) = max

{∑
v∈V

dvuv |
∑
v∈V

uv ≤ ΓV , uv ∈ [0, 1] ∀v ∈ V

}
.

In other words, when assuming deterministic edge costs, ROPTNW corresponds to

a potential decrease of revenues, that the decision maker can experience. It can be

easily seen from (2.26) that larger values of ΓV will increase the total value of the

solution (i.e., decrease the total revenue) as it is expected in this RO model. A MIP

formulation can be obtained accordingly by following the same procedure explained

for the GW-PCStT.

Despite the fact that these two robust formulations essentially model different prob-

lems, the next result shows that in particular cases the two formulations are the same.

Observation 1. For a fixed value of Γ̃E ∈ [0,m], and ΓV ∈ {0, n′}, the robust coun-

terparts of the GW-PCStT and of the NW-PCStT are equivalent, i.e., they produce

identical optimal subtrees. The following connection exists between the corresponding

objective values:

ROPTNW (Γ̃E , 0) = ROPT (Γ̃E , n
′)−

∑
v∈V

p+
v

and

ROPTNW (Γ̃E , n
′) = ROPT (Γ̃E , 0)−

∑
v∈V

p−v .

2.3.4 The B&S Robust B-PCStT and Q-PCStT

In the case of both the GW-PCStT and the NW-PCStT, uncertainty is present only in

the coefficients of the objective function, which means that their robust counterparts

provide protection with respect to the optimality of the solutions. However, in the case

of the B-PCStT and if the Q-PCStT, the presence of uncertainty in edge costs and

in node prizes affects not only their corresponding objective functions but also their

budget and quota constraints, respectively. Therefore, for a given level of uncertainty,

the robust counterpart of these problems should not only provide protection in terms

of optimality but also in terms of feasibility.
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Adopting the ideas presented in the previous sections, the Robust B&S Budget Con-

strained PCStT (B-PCStT), is defined as:

ROPTB = min
(x,y)∈T

{∑
v∈V

p−v (1− yv) + β∗V (ΓV )

∣∣∣∣∣∑
e∈E

c−e xe + β∗E(ΓE) ≤ B

}
.

According to the previous section, for a given description T of the deterministic prob-

lem, one can consider four possible ways to derive a valid MIP model for this robust

counterpart of the problem. The objective function can be modeled using compact or

Benders robust constraints. But also the budget constraint can be modeled using one

or the other variant. To model the budget constraint using Benders reformulation, we

will need to insert the following family of inequalities into the MIP:∑
e∈E

c−e xe +
∑
e∈S

dexe ≤ B ∀S ⊆ E, |S| ≤ ΓE (2.27)

These cuts are similar to (2.22) (see also [Fischetti and Monaci, 2012]).

Similarly, the Robust B&S Quota Constrained PCStT (Q-PCStT), is defined as:

ROPTQ = min
(x,y)∈T

{∑
e∈E

c−e xe + β∗E(ΓE)

∣∣∣∣∣∑
v∈V

p−v (1− yv) + β∗V (ΓV ) ≤ Q

}

and again one can consider four ways of deriving a MIP model for this problem.

2.4. Branch-and-Cut Algorithms

The MIP formulations considered throughout this chapter cannot be solved directly,

even for small instances, since there is an exponential number of connectivity con-

straints of type (2.4) and, in addition, if Benders cuts are used to model the protection

functions, there is also an exponential number of robustness cuts to be considered.

Consequently, more sophisticated and specific techniques should be designed and im-

plemented to solve these models.

In this section we propose three ways to develop a branch-and-cut (B&C) algorithm

for solving the robust PCStT and its budget and quota constrained variants. We will

explain the main ideas for solving the RPCStT, and a similar scheme needs to be

applied in order to solve the B-RPCStT or the Q-RPCStT.

B&C with Compact Robust Constraints (Compact): In this approach, we

are solving the MIP model in which the deterministic model (2.3)-(2.8) is extended

by a compact set of auxiliary variables and constraints (2.17)-(2.19) that model the

protection functions (see Section 2.3.2). In this approach, only connectivity constraints

will be separated within a B&C framework. The separation algorithm is an adaptation
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of the exact approach presented in [Ljubić et al., 2006]. The MIP initially contains

all variables and the constraints (2.3), (2.5)-(2.8). In addition, we explicitly insert the

subtour elimination constraints of size 2:

xij + xji ≤ yi, ∀i ∈ VSA\ {r} , j ∈ δ+(i)

to avoid too frequent calls of the maximum flow procedure. The connectivity con-

straints are separated within the B&C framework by means of the maximum flow

algorithm given in [Cherkassky and Goldberg, 1995]. This separation randomly selects

a terminal i ∈ Vpi>0, calculates the maximum flow between an artificial root and i

and inserts the corresponding (2.4), if violated. Instead of adding a single violated

cut per iteration, we use nested, back-flow and minimum cardinality cuts to add as

many violated cuts as possible [see for details Koch and Martin, 1998]. We restrict

the number of inserted cuts within each separation callback to 25.

B&C with Separation of Robustness Cuts (R-Cuts): In this approach, we con-

sider the MIP model in which protection functions are modeled by means of robustness

cuts of type (2.22) and (2.23). We initialize the model using only the following bounds

for Θ and Λ variables:

Θ ≤
∑
e∈S∗ΓE

de and Λ ≤
∑
e∈S∗ΓV

dv

where S∗ΓE
(S∗ΓV

) is the subset of edges (nodes) containing ΓE (ΓV ) edges (nodes) with

largest deviations. The correctness of the bounds comes from the fact that both Θ

and Λ accumulate the deviations of the nominal costs for the solution edges and for

the nodes left out of the solution, respectively.

The separation problem for robustness cuts of type (2.22) is as follows: given the

current LP solution (x̂, ŷ, Θ̂, Λ̂), find a set S ⊆ E such that |S| ≤ ΓE and
∑

e∈S dex̂e is a

maximum. Assume that a subset of edges S∗ satisfies these properties. If
∑

e∈S∗ dex̂e >

Θ̂, the current LP solution violates constraint (2.22) and hence we insert the cut

Θ ≥
∑

e∈S∗ dexe into the model. To determine the set S∗, we associate with each

edge e ∈ E a weight we = dex̂e. The separation problem consists in finding the subset

of edges of size ΓE with the maximum weight, which can be done in O(|E|) time [see

Fischetti and Monaci, 2012]. This idea was first implemented in [Fischetti and Monaci,

2012] in the context of robust optimization for linear and integer programming under

uncertainty. The authors report a remarkable improvement in the running times when

using these robustness cuts in the formulations and separation framework instead of a

compact formulation.

Robustness cuts are added on the fly, within the B&C framework, i.e., we are not

waiting to find an LP-solution that satisfies all the connectivity cuts. Instead, within
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one separation callback, we insert all the violated connectivity cuts detected plus the

(one or two) robustness cuts associated with (2.22) and (2.23).

B&C with Separation of Robust Compact Constraints (C-Cuts): We have

observed that not all of compact constraints associated with a protection function are

tight in an optimal solution. On the other hand, when the number of nodes and/or

edges increases, the size of the compact block of constraints associated with β∗V (ΓV )

or β∗E(ΓE) may become a bottleneck of the implementation. Therefore, instead of

inserting all these constraints at once, we propose to separate them within a B&C

framework. We start with an LP model in which there are no constraints associated

with robust variables, except the following ones:∑
e∈E

he + θ ≤
∑
e∈S∗ΓE

de and
∑
v∈V

kv + λ ≤
∑
v∈S∗ΓV

dv

and

θ ≤ dΓE
and λ ≤ dΓV

where S∗ΓE
(S∗ΓV

) has been described above, dΓE
is the ΓE-th largest edge cost deviation

and dΓV
the ΓV -th largest node prize deviation (see Lemma 1 in Álvarez-Miranda et al.

[2013d]).

The separation of constraints (2.17) can be stated as follows: given an LP-solution

(x̂, ŷ, ĥ, k̂, θ̂, λ̂), find a set Ê ⊆ E of maximum cardinality for which ĥe + θ̂ < dex̂e

∀e ∈ Ê and insert the corresponding constraints of type (2.17). Of course, the separa-

tion of constraints (2.17) and (2.18) can be performed in O(|E|) and O(|Vpi>0|) time,

respectively.

Within the B&C framework we first separate all the connectivity constraints (2.4),

and once we find an optimal LP solution, we find a subset of violated compact robust

constraints, and insert all of them at once into the current LP.

2.5. Computational Results

Benchmark InstancesIn our computational experiments four sets of benchmark in-

stances have been tested: C, D, K and P. These instances have been used in most of

the papers discussing algorithm design for the PCStT [Lucena and Resende, 2004,

Ljubić et al., 2006] and [Salles da Cunha et al., 2009]. Instances of group P were

introduced in [Johnson et al., 2000] – they are unstructured and designed to have con-

stant node degree and a constant prize/cost ratio. Group K are randomly generated

geometric graphs designed to have a structure similar to street maps [Johnson et al.,

2000]. Groups C and D were presented in [Canuto et al., 2001]. These two groups of
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instances are derived from the instances of the Steiner tree problem provided in the

OR-Library [Beasly, 1990].

Groups C and D are composed by 40 instances each with 500 and 1000 nodes, re-

spectively, and the number of edges goes from 625 to 12500 and from 1250 to 25000,

respectively. Group P is composed by 11 instances with 100, 200 and 400 nodes and

the number of edges goes from 300 to 1185. Finally, group K is formed by 23 instances

with 100, 200 and 400 nodes and the number of edges goes from 344 to 1493. For more

details on the description of instances see the first four columns of Table 2.9.

Given an original instance Prob for the deterministic PCStT, the corresponding robust

instance, named Prob-α-β, (α ∈ [0, 1] and β ∈ [0, 1]) is derived as follows: the number

of nodes and edges are left unchanged. Lower limits, c−e and p−v , for intervals defining

edge costs and node prizes are set to the corresponding deterministic values ce and

pv, i.e., c−e = ce ∀e ∈ E and p−v = pv ∀v ∈ V . The upper limit of edge costs, c+
e ,

is set to (1 + α)ce ∀e ∈ E. Similarly, the upper limit of node prizes, p+
v , is set to

(1 +β)pv ∀v ∈ V . Parameters α and β allow to control the width of the corresponding

intervals and, consequently, the level of uncertainty of the problems. For most of our

experiments we consider (α = 0.05, β = 0.05) (unless mentioned otherwise), which

means that both edge costs and node prizes present a deviation equal to the 5% of

their corresponding nominal values. In preliminary experiments we also considered

deviations of 1% and 2.5%, however, these instances did not allow to clearly show the

impact of considering higher levels of uncertainty on both the solution structure and

the algorithm performance. A deviation of 5% is in the middle of the values considered

in most of the literature which range from 1% up to 10%; [see Bertsimas and Sim, 2003,

2004, Fischetti and Monaci, 2012], among other papers. Almost the same criterion to

generate interval data instances is also used in [Ben-Tal et al., 2004, Klopfenstein and

Nace, 2012, Lee et al., 2012] and [Solyali et al., 2012].

Machine and Implementation All the experiments were performed on a Intel Core2

Quad 2.33 GHz machine with 3.25 GB RAM, where each run was performed on a single

processor. The Branch-and-cut algorithms were implemented using CPLEX 12.2 and

Concert Technology. All CPLEX parameters were set to their default values, except

the following ones: (i) Branching: we set the highest branching priorities to variables

yv, v ∈ Vpi>0; (ii) Emphasis: this parameter was set to optimality. (iii) Maximum

Running Time was set to 500 seconds.

In the following tables and figures, the running times are expressed in CPU seconds.

2.5.1 Results for the RPCStT

Reduction Tests Reduction tests for the deterministic PCStT have been implemented

in [Canuto et al., 2001, Lucena and Resende, 2004, Ljubić et al., 2006] and [Uchoa,
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2007]. It has been demonstrated that the utilization of some of these preprocessing

procedures can lead to remarkable improvements of the algorithmic performance. For

our interval data instances we have adapted one of these reduction tests, which is

described in the following. Robust Least-cost Test Let SPij(ΓE) be the cost of the

B&S robust shortest path between a pair of nodes i and j calculated for ΓE in G. If

there is an edge e connecting i and j such that SPij(ΓE) ≤ c−e , then edge e can be

eliminated from G.

Since the calculation of SPij(ΓE) requires O(m) shortest path calculations [see Bertsi-

mas and Sim, 2003], in our implementation we have used only a weaker variant of this

test in which SPij(ΓE) is replaced by SPij(|E|). Although somehow conservative, this

reduction criterion provides a unique reduced graph valid for any value of ΓE < |E|
when solving the RPCStT or any of its variants. For larger instances, the reduced

graphs have less than 50% of the original number of edges. It is important to observe

that applying this test requires only a few seconds even for large instances. It turned

out that the other robust reduction tests cannot be easily derived from their determin-

istic counterparts – an illustrative example is a degree two test on a potential Steiner

node. After merging two edges and two intervals into one, we basically obtain a new

edge whose interval contains an extra break point that is needed to model 0, 1 or 2

deviations from the nominal edge costs.

2.5.1.1 The Price of Robustness

As mentioned above, the Price of Robustness corresponds to the increase of the cost

of a robust solution with respect to the nominal cost when increasing the level of

robustness, i.e., when increasing the values of ΓE and ΓV . For each group of instances,

we report in Table 2.1 the minimum, mean and maximum values, computed over all the

instances of the corresponding setting and group, of the relative increase of the cost of

the solutions, ∆ROPT (%), for different combinations of ΓE and ΓV . For each instance

and setting, ∆ROPT (%) is defined as (ROPT −OPT )∗100/OPT , where ROPT and

OPT are the corresponding optimal values1 of the robust and of the nominal solution,

respectively. For each instance, we consider 16 settings obtained by combining the 16

pairs of ΓV ,ΓE ∈ {0, 5, 20, 50}. Since we chose (α = 0.05, β = 0.05) for generating

the instances, we would expect ∆ROPT (%) to be always not greater than 5%. The

difference between 5% and ∆ROPT (%) can be seen as the level of protection provided

by the robust model and the chosen values of ΓE and ΓV . From the information

reported in Table 2.1, two main observations can be made: (i) the B&S model seems

to provide more protection against uncertainty to groups C and D than to groups K and

P, and (ii) in the case of groups C, D and P, parameter ΓE has a stronger impact on

1In case that none of the exact approaches was able to find an ROPT optimal solution within the
specified time limit, we used the best known upper bound to calculate ∆ROPT (%), which is a good
approximation considering the quality of the gaps.
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the price of robustness than ΓV , while in the case of group K, parameter ΓV is the one

with a stronger influence on the price of robustness.

Both observations can be explained by considering the relation between the particular

values of ΓE and ΓV and the size (i.e., the number of edges and nodes) of the obtained

solutions, whose statistics are given in the last 6 columns of Table 2.9. In the case of

C, D and P instances, the average number of edges in the solutions is almost always

greater than the chosen values of ΓE , which means that in many cases the cost of some

edges in the solution will remain within the corresponding lower limit. This explains

why, for a given ΓV , the average value of ∆ROPT (%) does not reach 5% even when

ΓE = 50. When comparing the average number of all customers and the average

number of customers connected by the solutions for groups C and D (see Table 2.9), it

can be easily seen that many customers are taken into the solution. This means that

the number of non-connected customers, i.e., those nodes whose prizes and deviations

are added in the objective function, is generally smaller than ΓV = 50. This explains

why, for a given value of ΓE , a variation of ΓV does not strongly increase the value of

∆ROPT (%). In the case of group P, particularly for instances P400.{0− 4}, the ratio

between the connected versus non-connected customers might be a little bit smaller

than in the case of C and D, which explains why ∆ROPT (%) can be as high as 4.44%

for the maximum values of ΓE and ΓV .

In contrast to what happens for C, D and P groups, in the case of instances of group K,

most of the solutions are on average relatively small, which explains why the mean value

of ∆ROPT (%) can reach almost 5% for large values of ΓE and ΓV . The particular

Euclidean geometric topology of these instances might also give hints to understand

these results; nodes are ”locally connected” within a neighborhood, so despite the

increase in the prize of non-connected nodes these are not reached because there are

no direct connections between a given component and these attractive nodes, which

increases the overall cost of the solution.

To look deeper into the impact of ΓE and ΓV on the structure of the solutions, Fig-

ures 2.1(a) and 2.1(b) show two optimal solutions obtained for the instance K400.4-

0.05-0.05 for ΓE = 0, ΓV = 50 and for ΓE = 50, ΓV = 0, respectively. The ROPT

value of the first solution is 403 036 while that of the second is 393 919, which repre-

sents a relative difference of only 2.3% although the structure of the solutions are quite

different; just as a reference, the value of ROPT for ΓE = 0 and ΓV = 0 is 389 451.

These two figures put in evidence the capability of the B&S model to produce very

different robust solutions for different levels of conservatism, and, at the same time,

to provide a guarantee of protection in terms of the relative increase of the solution

cost. This important feature of the model offers the possibility to choose a solution

according to the perception of the uncertain state of the decision-making environment.
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∆ROPT (%)

C D K P

ΓE ΓV min mean max min mean max min mean max min mean max

0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 5 0.00 0.71 5.00 0.00 0.62 5.00 0.67 2.02 3.74 0.36 0.66 1.74

0 20 0.00 0.95 5.00 0.00 0.81 5.00 1.79 3.54 5.00 0.45 0.94 1.89

0 50 0.00 1.11 5.00 0.00 0.93 5.00 1.79 4.07 5.00 0.45 0.98 1.89

5 0 0.00 0.78 3.00 0.00 0.60 3.10 0.00 0.39 1.73 0.46 0.96 1.92

5 5 0.15 1.49 5.00 0.03 1.22 5.00 0.98 2.42 4.41 0.89 1.65 2.87

5 20 0.15 1.72 5.00 0.05 1.41 5.00 2.50 3.99 5.00 1.25 1.93 3.03

5 50 0.15 1.89 5.00 0.06 1.54 5.00 2.67 4.52 5.00 1.25 1.96 3.03

20 0 0.00 1.82 5.00 0.00 1.46 5.00 0.00 0.65 1.98 1.38 2.45 4.00

20 5 0.43 2.53 5.00 0.19 2.16 5.00 0.98 2.72 4.84 1.83 3.18 4.74

20 20 0.43 2.77 5.00 0.20 2.34 5.00 3.05 4.30 5.00 2.23 3.47 5.00

20 50 0.43 2.93 5.00 0.19 2.48 5.00 3.78 4.88 5.00 2.23 3.50 5.00

50 0 0.00 2.39 5.00 0.00 1.88 5.00 0.00 0.73 2.51 2.50 3.34 4.44

50 5 0.72 3.12 5.00 0.47 2.62 5.00 0.98 2.81 4.84 3.01 4.10 5.00

50 20 0.97 3.36 5.00 0.47 2.81 5.00 3.05 4.40 5.00 3.49 4.40 5.00

50 50 0.98 3.53 5.00 0.47 2.95 5.00 4.92 4.99 5.00 3.49 4.44 5.00

Table 2.1: Basic statistics of ∆ROPT (%) (Price of Robustness) for different values
of ΓE and ΓV , groups C, D, K and P

(a) ΓE = 0 and ΓV = 50. (b) ΓE = 50 and ΓV = 0.

Figure 2.1: Optimal solutions for the instance K400.4-0.05-0.05
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2.5.1.2 Algorithmic Performance

As mentioned before, to solve the RPCStT we used three different B&C strategies:

Compact, R-Cuts and C-Cuts. The performance of these different approaches depends

not only on the instance group, and the size of the instances therein, but also on the

particular selection of the parameters ΓE and ΓV .

Figure 2.2(a) shows the cumulative percentage of instances of group C solved to opti-

mality within a given time ranging from to 0 to 500 seconds. We compare the three

different approaches for 16 settings across all values of ΓE ,ΓV ∈ {0, 5, 20, 50} and

across all 40 instances of group C. From this figure we conclude that Compact seems

to be the best approach for this group since a larger percentage of instances can be

solved within smaller running times than those of the other two approaches. How-

ever, we also observe that C-Cuts behaves similarly. To solve 90% of the instances,

Compact requires less than 30 seconds, C-Cuts slightly more than 30 seconds, and

R-Cuts more than 400 seconds. To solve an extra 5% of instances, Compact requires

about 300 seconds, while both C-Cuts and R-Cuts reach the time limit (500 seconds).

Overall, R-Cuts presents a performance clearly worse than that of C-Cuts, and C-Cuts

is slightly outperformed by Compact.

To complement the previous analysis, Figure 2.2(b) shows the cumulative percentage

of instances solved by Compact considering four different combinations of ΓE and

ΓV , for the 40 instances of group C. We can see that for the nominal case (ΓE = 0

and ΓV = 0), Compact can solve to optimality all the instances within just a few

seconds. However, when increasing the values of ΓE and ΓV , the running times begin

to increase quickly, and even for ΓE = 5 and ΓV = 5 there are a few instances that

cannot be solved to optimality within 500 seconds. Further increasing of the values

of ΓE and ΓV produces a severe deterioration of the algorithmic performance. For

example, when taking ΓE = 50 and ΓV = 50, almost 15% of the instances can not be

solved to optimality within the given time limit. Hence, this is another aspect of the

price of robustness: obtaining more robust solutions, in terms that they provide more

protection against uncertainty, requires willingness to accept higher running times to

calculate the optimal solutions.

Tables 2.2-2.5 provide more detailed statistics for the four groups of instances and the

three algorithmic approaches. On the left hand side, for each of the approaches, we

report the number of instances that are solved to optimality. On the center, statistics

on the running times are reported considering only those instances that can be solved

to optimality within 500 seconds by all three approaches. On the right hand side, we

provide statistics for the remaining problems (i.e, for those that can not be solved to

optimality by at least one of the approaches). For each approach, we report statistics

on the final gap (calculated with respect to the corresponding lower bound) over these

problems. These statistics indicate that, for the three approaches and across the four
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Figure 2.2: Cumulative percentage of the total number of solved instances of group
C within 500 seconds

Running time statistics (t ≤ 500 s) Gaps (%) statistics ( t > 500 s)

Approach #Opt Min Median Mean Max Min Median Mean Max

Compact 608/640 0.063 0.693 6.210 275.600 0.000 0.009 0.038 0.618

R-Cuts 577/640 0.031 0.773 12.380 419.200 0.000 0.223 0.287 0.817

C-Cuts 605/640 0.047 1.320 7.106 318.800 0.000 0.019 0.024 0.297

Table 2.2: Algorithmic performance statistics for group C

Running time statistics (t ≤ 500 s) Gaps (%) statistics ( t > 500 s)

Approach #Opt Min Median Mean Max Min Median Mean Max

Compact 553/640 0.156 5.719 23.690 407.200 0.000 0.029 0.048 0.327

R-Cuts 513/640 0.141 4.484 27.690 476.600 0.000 0.095 0.132 1.745

C-Cuts 544/640 0.141 8.297 30.430 402.600 0.000 0.047 0.060 0.609

Table 2.3: Algorithmic performance statistics for group D

Running time statistics (t ≤ 500 s) Gaps (%) statistics ( t > 500 s)

Approach #Opt Min Median Mean Max Min Median Mean Max

Compact 368/368 0.047 1.156 10.680 133.000 0.000 0.000 0.000 0.000

R-Cuts 365/368 0.047 0.766 13.270 476.500 0.020 0.059 0.064 0.114

C-Cuts 368/368 0.310 0.719 11.190 197.400 0.000 0.000 0.000 0.000

Table 2.4: Algorithmic performance statistics for group K

family of instances, there is a relatively small number of cases (given by a particular

combination of ΓE and ΓV ) that are intractable by the used algorithms. Although

optimality is not always verified (especially by R-Cuts), the quality of the solutions

obtained when reaching the time limit is remarkably good, as it can be seen from the

statistics on the final gaps. The values of the median and the average of the gaps in

Tables 2.2-2.5 indicate that the chosen formulations and approaches guarantee that

solutions of a good quality can be obtained within a reasonable running time, in case

that are not proven to be optimal. This observation complements the analysis of

Figure 2.2(b).

Further information about algorithmic performances is presented in Tables 2.10-2.13.
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Running time statistics (t ≤ 500 s) Gaps (%) statistics ( t > 500 s)

Approach #Opt Min Median Mean Max Min Median Mean Max

Compact 176/176 0.031 0.180 0.974 8.703 0.000 0.000 0.000 0.000

R-Cuts 176/176 0.031 0.297 4.622 84.200 0.000 0.000 0.000 0.000

C-Cuts 176/176 0.031 0.242 1.731 20.380 0.000 0.000 0.000 0.000

Table 2.5: Algorithmic performance statistics for group P

The evolution, over time, of the gap between lower and upper bounds in the B&C

tree for a subset of the most difficult instances is also analyzed in Section 2.8 (see

Figures 2.11 and 2.12).

The overall superiority of Compact might be explained by the fact that from the

beginning of the optimization process the underlying LP contains complete information

regarding the robustness of the solution. Although at the root node we obtain tight

bounds even if we consider R-Cuts or C-Cuts, after starting the branching process, a

large sequence of re-optimizations (each time that a set of cuts is inserted we need to

solve the underlying LP) deteriorates the optimization process entailing higher running

times. In particular, in the case of R-Cuts, the convergence of the values of Θ and Λ

becomes slower, i.e., more cuts have to be added and more branch-and-bound nodes

have to be enumerated in order to reach optimal values. The combination of these

two elements is responsible for the poor performance of this approach with respect to

the others. A similar observation is pointed out in [Fischetti and Monaci, 2012] when

analyzing the performances of the compact formulation and robustness cuts to solve

generic MIP problems.

2.5.1.3 Influence of α and β

As mentioned before, robust instances were created from original instances using

(α = 0.05, β = 0.05). In order to provide a more complete analysis of the robust

model and the proposed approaches, we have also generated instances considering

three additional combinations taken from α, β ∈ {0.05, 0.10}. For these experiments,

we have considered groups C and K. We first present results regarding the Price of

Robustness and then results regarding the performance of the proposed approaches.

Price of Robustness It is clear that if the interval width is increased (by augment-

ing α and/or β), the presence of uncertainty also increases; therefore, the price of

robustness paid for a given level of uncertainty will be greater.

In Table 2.6, similar to Table 2.1, we report statistics of the relative increase of the

objective function value (∆ROPT (%)), when solving the RPCStT on instances of

group C, for different values of ΓE and ΓV and considering the four resulting combi-

nations of α and β. As expected, the value of ∆ROPT (%) increases when increasing

the values of α and β. In the four cases, one can recognize a common pattern: the
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value of ΓE is more responsible for the increase of ROPT than ΓV . As explained

before for the (α = 0.05, β = 0.05) case, this is mainly due to the relation between

the particular values of ΓE and ΓV and the size (number of edges and nodes) of the

corresponding solutions; on average, the produced solutions have a quite similar size

regardless of the values of α and β (see Table 2.14). Roughly speaking, the solutions

are on average comprised by 100 edges and a few nodes with positive prize are left out

of the tree, which means that increasing α (uncertainty on the edges) has more impact

on the solution cost than increasing β (uncertainty on the nodes). On the contrary, for

instances of group K, the value of β, along with the value of ΓV , has more influence on

∆ROPT (%) (see Table 2.15); this can be concluded by taking into account the same

arguments presented before for the (α = 0.05, β = 0.05) case.

In summary, we can see that the effect produced on the price of robustness by different

values of α and β follows a common pattern determined by the ratio between the size

of the produced solutions and the corresponding values of ΓE and ΓV .

∆ROPT (%)
α = 0.05, β = 0.05 α = 0.05, β = 0.10 α = 0.10, β = 0.05 α = 0.10, β = 0.10

ΓE ΓV min mean max min mean max min mean max min mean max
0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0 5 0.00 0.71 5.00 0.00 1.42 10.00 0.00 0.71 5.00 0.00 1.42 10.00
0 20 0.00 0.95 5.00 0.00 1.89 10.00 0.00 0.95 5.00 0.00 1.89 10.00
0 50 0.00 1.11 5.00 0.00 2.21 10.00 0.00 1.11 5.00 0.00 2.21 10.00
5 0 0.00 0.78 3.00 0.00 0.78 3.00 0.00 1.55 6.00 0.00 1.55 6.00
5 5 0.15 1.49 5.00 0.13 2.20 10.00 0.26 2.26 6.00 0.26 2.98 10.00
5 20 0.15 1.72 5.00 0.13 2.67 10.00 0.26 2.50 6.00 0.26 3.44 10.00
5 50 0.15 1.89 5.00 0.13 2.99 10.00 0.26 2.66 6.00 0.26 3.77 10.00
20 0 0.00 1.82 5.00 0.00 1.81 5.00 0.00 3.60 10.00 0.00 3.60 10.00
20 5 0.43 2.53 5.00 0.43 3.24 10.00 0.88 4.35 10.00 0.90 5.06 10.00
20 20 0.43 2.77 5.00 0.43 3.71 10.00 0.88 4.59 10.00 0.90 5.54 10.00
20 50 0.43 2.93 5.00 0.43 4.04 10.00 0.88 4.76 10.00 0.90 5.87 10.00
50 0 0.00 2.39 5.00 0.00 2.38 5.00 0.00 4.71 10.00 0.00 4.71 10.00
50 5 0.72 3.12 5.00 0.99 3.83 10.00 0.91 5.47 10.00 1.45 6.20 10.00
50 20 0.97 3.36 5.00 0.99 4.31 10.00 1.91 5.72 10.00 1.99 6.69 10.00
50 50 0.98 3.53 5.00 0.99 4.64 10.00 1.92 5.89 10.00 1.99 7.03 10.00

Table 2.6: Basic statistics of ∆ROPT (%) (Price of Robustness) for different values
of ΓE and ΓV , considering different values of α and β, group C

Algorithmic Performance In Table 2.7, similar to Tables 2.2-2.5, we report statistics

for group C with ΓE ,ΓV ∈ {0, 5, 20, 50} and four combinations of α and β. The first

observation is that the proposed approaches behave quite similarly for the four pairs

of α and β values: the number of instances solved to optimality is similar in each

case, the running times are comparable and also the attained gaps are alike. The

second observation is that regardless of the values of α and β, R-Cuts is the the

approach with the poorest performance. Regarding the other two algorithms, both are

quite effective for all pairs (α, β), but looking at the number of instances solved to

optimality we see that C-Cuts slightly outperforms Compact. Also in the case of group
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K (see Table2.16), α and β only slightly influence the algorithmic performance of the

considered approaches, in which case, Compact marginally beats C-Cuts.

Running times (t ≤ 500 s) Gaps (%) ( t > 500 s)
α, β Approach #Opt Min Median Mean Max Min Median Mean Max

Compact 608/640 0.063 0.693 6.210 275.600 0.000 0.009 0.038 0.618
0.05, 0.05 R-Cuts 577/640 0.031 0.773 12.380 419.200 0.000 0.223 0.287 0.817

C-Cuts 605/640 0.047 1.320 7.106 318.800 0.000 0.019 0.024 0.297
Compact 603/640 0.063 1.172 10.030 461.500 0.000 0.007 0.026 0.540

0.05, 0.10 R-Cuts 582/640 0.063 0.875 15.610 461.200 0.000 0.295 0.444 4.264
C-Cuts 609/640 0.063 1.125 7.142 248.200 0.000 0.007 0.034 0.372

Compact 592/640 0.063 1.195 6.667 145.000 0.000 0.037 0.122 0.967
0.10, 0.05 R-Cuts 572/640 0.047 1.016 13.800 465.900 0.000 0.456 0.528 1.243

C-Cuts 601/640 0.063 1.297 7.459 402.800 0.000 0.008 0.115 1.054
Compact 602/640 0.063 1.734 11.930 307.100 0.000 0.010 0.121 0.926

0.10, 0.10 R-Cuts 587/640 0.063 1.312 23.470 496.000 0.000 0.464 0.585 1.345
C-Cuts 608/640 0.078 1.609 10.830 318.900 0.000 0.010 0.115 0.922

Table 2.7: Algorithmic performance statistics for different combinations of α and
β, group C

More details regarding the influence of α and β on the algorithmic performance of

C-Cuts are shown in Figures 2.3(a) and 2.3(b), where the cumulative percentage of

solved instances within a given running time (that goes from 0 up to the time limit of

500 seconds) is shown for group C and K, respectively, for the four combinations of α

and β. In Figure 2.3(a) one can see that the four curves are quite close to each other,

reinforcing the conclusions obtained from Table 2.7 regarding the independence of the

algorithms with respect to α and β when solving instances of group C. In the case of

K instances, in Figure 2.3(b) we see that when increasing the values of α and β some

outliers appear and very few problems, 4 out of 386 in the case of (α = 0.10, β = 0.05)

and 5 out of 386 in the case of (α = 0.10, β = 0.10), cannot be solved to optimality

within the time limit of 500 seconds (among these 9 problems, gaps of at most 0.5%

are reached). Equivalent conclusions can be drawn for Compact when analyzing the

reported results in Figures 2.8(a) and 2.8(b). Hence, α and β have both a very limited

influence on the algorithmic performance for the considered instances.
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(a) Comparing performance of CCuts for different
α and β, group C.
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Figure 2.3: Cumulative percentage of the total number of solved instances of groups
C and K within 500 seconds for different values of α and β (C-Cuts)
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2.5.2 Results for the Robust B-PCStT

In order to complement the analysis of the computational results presented for the

RPCStT, we developed a similar experimental framework for the robust counterpart

of the B-PCStT which, as we mentioned before, is an important variant of the PCStT.

Because of the restriction on the length of the paper, we only present results obtained

for group P and for eleven instances of group K (K100.{0 − 10}) considering (α =

0.05, β = 0.05).

As part of the Robust B-PCStT model, it is necessary to provide a given budget B,

which represents the maximum allowed sum of the edge costs, considering uncertainty,

that the decision maker is willing to pay. Since different instances, even within the

same group, have different cost structures, a given value of B might not be suitable for

all of them, so it is necessary to establish a fair criterion to define appropriate values

of B. In order to do so, we set the budget to be a percentage of a potential maximum

robust budget value Bmax, associated with each particular instance. If the input graph

is connected, Bmax represents the cost of the optimal robust Steiner tree in which all

the customers are connected and the cost of at most ΓE edges is allowed to deviate

from its nominal value. If the input graph is not connected, Bmax is the cost of the

robust Steiner sub-tree connecting as many customers as possible. To calculate the

value of Bmax, we set the node prizes to a big-M -value and ΓE to 50, and use one

of the algorithms for the RPCStT proposed before. The selected value of ΓE = 50

ensures feasibility for all the other values of ΓE as long as they are not greater than 50,

which is the maximum value we consider for this parameter in our experiments. We

note that it was necessary to set the node prizes to a big-M -value, instead of simply

adding the constraints yv = 1 ∀v ∈ Vp−v ≥0 into the MIP model, because the considered

instances are not necessarily connected.

B&C Variants Since there are more alternatives to formulate the Robust B-PCStT

as a MIP, there are also more alternatives to design a B&C algorithm. Besides the sep-

aration of the connectivity inequalities, we have considered four alternatives to manage

the different types of robust constraints: (i) B&C using the compact robust constraints

of type (2.17) and (2.18) (Compact); (ii) B&C with separation of the robustness cuts

of type (2.27) and type (2.23) including variable Λ in the objective function (R-Cuts);

(iii) B&C with separation of the robust compact constraints of type (2.17) and (2.18)

(C-Cuts); (iv) B&C with separation of the robustness cuts of type (2.27) but including

all the compact constraints of type (2.18) (R-Cuts+Compact).

2.5.2.1 The Price of Robustness

In Figure 2.4 the value of ROPTB is reported for different values of the budget B and

for four different combinations for ΓE and ΓV for instance K100.10-0.05-0.05. As
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Figure 2.4: Values of ROPTB for different values of B, ΓE and ΓV , instance
K100.10-0.05-0.05

expected, and independently of the values of ΓE and ΓV , there is a monotone decrease

of the value of the objective function (recall that this is the sum of the prizes of the

nodes that are not connected) when increasing the value of the available budget. When

considering a particular value of B, we observe that the differences of ROPTB, among

different values of ΓE and ΓV , do not present a clear pattern as in the case of the

RPCStT. This can be explained by the fact that ΓE is not included in the objective

function but in the budget constraint, so it has an indirect influence on the objective

function value. For example, when considering a budget given by 25% of Bmax, the

four considered combinations produce significantly different values of ROPTB; while

for a budget given by 90% of Bmax, the four values of ROPTB are almost the same.

Another characteristic that we can observe, is that for tight budgets (0% - 20%) the

value of ΓV has more impact on the model than ΓE , while for large budgets (80% -

100%) it is just the opposite.

As this was the case for the RPCStT, the latter behaviors are related to the size of the

corresponding optimal solution and to its interaction with the problem parameters B,

ΓE and ΓV . For a tight budget, an optimal solution is made up of only a few edges and

many customer nodes are left unconnected, which explains why increasing the value of

ΓV strongly increases the value of the objective function, while increasing ΓE barely

produces changes since only a few edges can be taken into account. On the other hand,

for a large budget, most of the customers are connected and an increase of ΓV might

not significantly affect the value of ROPTB, but increasing ΓE will indeed strongly

influence the value of ROPTB because the budget feasibility will enforce a solution

of a smaller cardinality, i.e., it will be necessary to “disconnect” some customers and

consequently the value of ROPTB will be increased. An example that illustrates these

dependencies is shown in Figure 2.14.
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2.5.2.2 Algorithmic Performance
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Figure 2.5: Cumulative percentage of the average number of solved instances of group P within

t = 500 seconds considering different values of B ∈ {0, 5, 10, . . . , 95, 100}Bmax%, and ΓE ,ΓV ∈
{0, 5, 20, 50}

Figure 2.5(a) shows the cumulative percentage of instances of group P solved to opti-

mality within time t with a time limit of 500 seconds, comparing the four approaches

described above. In a more detailed plot (see Figure 2.5(b)), only Compact and C-Cuts

are compared. We observe that Compact and C-Cuts are substantially better than the

other two approaches (which are both based on the utilization of robustness cuts). For

example, to solve 95% percent of the instances of group P, Compact needs less than

20 seconds, C-Cuts less than 30 seconds, while the other two approaches need almost

150 seconds to solve the same percentage of instances. Moreover, in a small number of

cases (less than 2%), R-Cuts and R-Cuts+Compact reach the time limit without being

able to find optimal solutions within the given time limit.

More details about the running times needed to solve the instances, as well as the

statistics on the gaps for those instances where at least one of the approaches failed

to find an optimal solution, are reported in Table 2.8. For group P, Compact is the

best in terms of average running times. However, C-Cuts has a similar performance

and provides better minimum and median running times, but a few outliers (see Fig-

ure 2.5(b)) deteriorate the overall statistics. The same table shows that, in 14 out of

1056 cases, R-Cuts and R-Cuts+Compact do not solve all the instances to optimality,

but provide very small final gaps.

Running time statistics (t ≤ 500 s) Gaps (%) statistics ( t > 500 s)
Approach #Opt Min Median Mean Max Min Median Mean Max
Compact 1056/1056 0.031 0.500 3.621 65.831 0.000 0.000 0.000 0.000
R-Cuts 1042/1056 0.031 0.546 16.450 477.900 0.000 0.417 0.671 1.811
C-Cuts 1056/1056 0.015 0.453 4.791 162.100 0.000 0.000 0.000 0.000

R-Cuts+C 1042/1056 0.015 0.546 16.630 486.000 0.000 0.811 0.836 2.332

Table 2.8: Algorithmic performance statistics for group P (Robust B-PCStT)

Comparing the statistics for the RPCStT (see Table 2.5) with the results presented

in Table 2.8 for the Robust B-PCStT, we may conclude that the Robust B-PCStT is
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a considerably more complex problem. With an inclusion of a budget constraint the

search for an optimal solution becomes a more difficult numeric task. The influence

of the budget level on the algorithmic performance is shown in Figure 2.6, where the

average running times over all the instances of group P are displayed for different budget

levels and different values of ΓE and ΓV . Our first observation is that, independently of

the values of the budget, increasing values of ΓE and ΓV directly influence the running

times as it was the case of the RPCStT (see Figure 2.2). However, budgets levels set

between [0%, 25%] or [75%, 100%] entail a better algorithmic performance than those

taken from [25%, 75%], and the influence of ΓE and ΓV is more accentuated in the

latter case.

These relations between the running times and the budget levels can be explained

by the way how different values of B reduce the space of feasible solutions. Tight

budgets, let us say [0%, 25%], strongly limit the set of feasible solutions, i.e., they

usually correspond to small trees connecting a few customer nodes. Therefore, and

considering that most of the P instances are sparse graphs (see Table 2.9), the opti-

mal solutions can be quickly obtained. On the other hand, optimal solutions for large

budgets, as those defined by [75%, 100%], will be usually comprised by almost all the

customer nodes; hence, solutions will be similar to the robust Steiner tree connecting

those customers, which explains the decrease of the running times. On the contrary,

for B chosen from [25%, 75%] of Bmax, the combinatorial nature of the problem seems

to have more influence on the algorithmic performance and there are more solutions,

probably each of them with a very different structure, that might verify the optimal-

ity. Consequently, the computational effort to find an optimal solution is greater as

illustrated in Figure 2.6.
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Figure 2.6: Average running times for group P for different values of B ∈
{0, 5, 10, . . . , 95, 100}Bmax, and the four selected combinations of (ΓE ,ΓV )

A similar analysis of the results obtained for instances K100.{0− 10} (see Figure 2.13

and Table 2.17) lead us to conclude that C-Cuts is the best approach, both in terms of

average and median running times. Once more, the robustness cuts based approaches

do not seem to be competitive although they solve to optimality all instances within
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the given time limit. Consequently, we may say that both Compact and C-Cuts are the

most effective approaches for solving the robust B-PCStT for the considered instances.

2.6. Improved B&S Algorithms for the RPCStT and its

Variants

Although in this work we presented MIP-based exact approaches for solving the robust

counterparts of the PCStT and its variants, it is also possible to solve them by suc-

cessively solving a finite number of classical instances of the corresponding problem.

The next corollaries are derived from the more general results presented in [Álvarez-

Miranda et al., 2013d]. To apply the results below, we assume that the customers

and the edges are sorted in non-increasing order with respect to their deviations, i.e.,

d1 ≥ d2 ≥ d3 . . . and the last deviations dn′+1 (for the customers) and dm+1 (for the

edges) are set to zero.

Lemma 1. Given ΓE ∈ {0, . . . ,m} and a given ΓV ∈ {0, . . . , n′}, the B&S Robust

Counterpart of the GW-PCStT can be solved by solving (n′ − ΓV + 2)(m − ΓE + 2)

nominal problems

ROPT (ΓE ,ΓV ) = min
a∈{ΓE ,...,m+1}
b∈{ΓV ,...,n′+1}

Ga,b,

where for a ∈ {ΓE , . . . ,m+ 1} and b ∈ {ΓV , ..., n′ + 1}:

Ga,b = ΓEda + ΓV db + min
(x,y)∈T

∑
e∈E

c−e xe +
a∑

e=1

(de − da)xe +
∑
v∈V

p−v (1− yv) +

b∑
v=1

(dv − db) (1− yv)

 .

Lemma 2. Given ΓE ∈ {0, . . . ,m} and ΓV ∈ {0, . . . , n′}, the Robust B&S B-PCStT

can be solved by solving (n′ − ΓV + 2)(m− ΓE + 2) nominal problems

ROPTB (ΓE ,ΓV ) = min
a∈{ΓE ,...,m+1}
b∈{ΓV ,...,n′+1}

Ga,bB , (2.28)

where for a ∈ {ΓE , ...,m+ 1} and b ∈ {ΓV , ..., n′ + 1}

Ga,b = ΓV db + min
(x,y)∈T

∑
v∈V

p−v (1− yv) +

b∑
v=1

(dv − db)(1− yv)

∣∣∣∣∣∣
∑
e∈E

c−e xe +

a∑
e=1

(de − da)xe + ΓEda ≤ B.



Lemma 3. Given ΓE ∈ {0, . . . ,m} and ΓV ∈ {0, . . . , n′}, the Robust B&S Q-PCStT

can be solved by solving (m− ΓE + 2)(n′ − ΓV + 2) nominal problems

ROPTQ (ΓE ,ΓV ) = min
a∈{ΓE ,...,m+1}
b∈{ΓV ,...,n′+1}

Ga,bQ , (2.29)
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where for a ∈ {ΓE , ...,m+ 1} and b ∈ {ΓV , ..., n′ + 1}

Ga,b = ΓEda + min
(x,y)∈T

∑
e∈E

c−e xe +
a∑

e=1

(de − da)xe

∣∣∣∣∣∣
∑
v∈V

p−v (1− yv) +
b∑

v=1

(dv − db)(1− yv) + ΓV db ≤ Q.



Lemmas 1-3 are particularly useful when polynomial-time algorithms are available for

graphs with some special structures (see, e.g., Corollary 1). We want to point out

that for the case of general graphs, where the deterministic counterparts are NP-Hard,

branch-and-cut algorithms like the ones presented in this work remain a preferable

option.

Corollary 1. If the input graph is a tree, a series-parallel graph or a 2-tree, the robust

counterpart of the PCStT can be solved in O(|V |3) time.

Proof. The deterministic PCStT can be solved in O(|V |) time on trees [see Klau et al.,

2004]. A series-parallel graph can be completed in linear time into a 2-tree. In [Álvarez-

Miranda et al., 2010] it has been shown that the PCStT can be solved in O(|V |)
time on 2-trees. We complete the proof by combining these results with the result of

Lemma 1.

2.7. Conclusions and Future Work

In this chapter we studied the PCStT and its budget and quota constrained variants

assuming interval uncertainty associated with their input parameters. To include and

handle this uncertainty we considered the B&S robust optimization (RO) approach,

formulating the robust counterpart of the problems by means of different mixed integer

programming formulations. Specific branch-and-cut algorithms were implemented to

solve these problems. The algorithms were tested on a set of benchmark instances

generated from state-of-the-art instances of the deterministic version of the problem.

The obtained computational results suggest that: (1) the RO model allows to produce

different robust solutions for different levels of conservatism. These solutions provide

a protection in terms of the relatively small increase of the solution cost in presence

of an increased uncertainty. This important feature of the model offers to the decision

maker more flexibility to choose a solution according to her/his perception of the

uncertain state of the decision-making environment. (2) The algorithmic performance

strongly depends on the model parameters, ΓE and ΓV (and B in the case of the

Robust B-PCStT). There is a strong correlation between the size of the optimal solution

and the corresponding values for B, ΓE and ΓV . (3) Among three possibilities to

deal with robustness in a MIP model, the addition of a compact set of constraints

right at the beginning of the Branch-and-Bound process, outperforms the remaining

two (cutting planes) approaches. This can be explained by the fact that from the
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beginning of the optimization process the underlying LP contains complete information

regarding the robustness of the solution, which allows CPLEX to exploit its powerful

preprocessing, heuristics and MIP algorithms, while this is not possible for the cutting

plane approaches.

As possible directions for future work, it would be interesting to develop algorithms

for 2-trees (or, graphs with a bounded tree-width, in general) that improve the trivial

running times obtained by running O(|V ||E|) iterations of the deterministic problem.

In addition, a strategy combining the results described in Section 2.6 and the utilization

of further polyhedral techniques might improve the results we obtained in terms of

algorithmic performance.

2.8. Complementary Results

A more detailed analysis of the price of robustness can be done by observing Figure 2.7,

where the value of ROPT is shown for different values of ΓE and ΓV for instance

K400.4-0.05-0.05. As expected, the value of ROPT increases when increasing ΓE

and ΓV . We can observe that different solution values are obtained, for a given value

of ΓE , for different values of ΓV not greater than 50, but greater values of ΓV do

not produce different objective function values, i.e., different solutions. This behavior

can be also explained by considering the relation between ΓV and ΓE and the size of

the obtained solutions. In particular, we observed that when ΓE = 40 and ΓV = 50

the solution is made up of 32 edges and 51 customer nodes are not connected, which

means that the cost of all the edges in the solution and the prize of almost all the

non-connected nodes are set to their upper bounds. This explains why the solutions

do not present further changes when increasing the values of ΓE and ΓV , since the

worst-case solution has been already achieved.

|ET | |VTpv>o |
Instances |V | |E| |Vpv>0| min mean max min mean max
C-{a, b}-{1− 5} 500 625 65 0 91 315 1 60 236
C-{a, b}-{6− 10} 500 1000 65 0 108 318 1 72 242
C-{a, b}-{11− 15} 500 2500 65 0 121 306 1 87 248
C-{a, b}-{16− 20} 500 12500 65 10 107 263 5 94 250
D-{a, b}-{1− 5} 1000 1250 187 0 179 648 1 115 477
D-{a, b}-{6− 10} 1000 2000 187 0 215 625 1 142 489
D-{a, b}-{11− 15} 1000 5000 187 0 243 627 1 171 495
D-{a, b}-{16− 20} 1000 25000 187 6 211 532 3 139 500
P100.{0− 4} 100 300 30 20 33 42 14 23 32
P200.0 200 587 48 62 62 64 32 34 35
P400.{0− 4} 400 1185 106 115 131 151 64 80 101
K100.{0− 10} 100 344 13 0 2 12 1 2 8
K200.0 200 691 33 7 7 7 8 8 8
K400.{0− 10} 400 1493 60 1 20 57 2 14 33

Table 2.9: Sizes of instances and their best-known solutions for (α = 0.05, β = 0.05)
(average values across all combinations of ΓE ,ΓV ∈ {0, 5, 20, 50} are shown)
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Table 2.10: Algorithmic performance for C instances

Compact Robustness-Cuts Compact-Cuts
ΓE ΓV Gap(%) t(s) #ConCuts #BBNs Gap(%) t(s) #ConCuts #RCuts #BBNs Gap(%) t(s) #ConCuts #CCuts #BBNs
0 0 0.000 3.44 552.40 0.73 0.000 2.39 492.33 0.00 0.00 0.000 2.29 373.25 0.00 0.00
0 5 0.000 3.32 472.55 0.30 0.000 3.24 537.53 1.18 0.95 0.000 3.17 431.78 6.33 1.08
0 20 0.000 3.09 424.95 0.70 0.000 2.90 630.13 1.15 0.18 0.000 3.41 480.75 11.05 0.43
0 50 0.000 2.45 320.03 0.28 0.000 3.28 524.60 1.08 1.03 0.000 3.31 469.93 15.05 0.95
5 0 0.000 28.35 673.73 33.35 0.000 37.95 1281.23 33.05 32.55 0.000 32.11 682.25 36.85 28.53
5 5 0.000 29.54 552.25 24.43 0.002 46.85 1314.10 38.35 24.40 0.001 36.57 910.95 42.75 32.00
5 20 0.000 31.58 557.25 29.83 0.001 39.29 1597.98 31.73 16.45 0.001 35.92 789.55 47.13 27.90
5 50 0.000 29.12 853.68 25.88 0.001 40.51 1170.10 36.18 20.53 0.000 32.39 677.98 52.10 26.23
20 0 0.000 31.31 816.53 59.10 0.037 71.45 1762.78 139.38 16.43 0.002 44.27 1005.63 64.18 82.68
20 5 0.001 36.92 910.00 40.20 0.037 71.59 1542.53 151.68 14.60 0.000 36.50 1069.13 70.88 51.48
20 20 0.001 38.40 1132.78 78.55 0.039 73.07 1458.78 204.68 31.08 0.000 37.03 826.90 74.83 78.53
20 50 0.001 38.76 881.58 46.98 0.033 70.51 2040.58 156.23 13.60 0.000 34.42 911.25 78.95 44.83
50 0 0.017 80.95 2056.60 296.50 0.078 123.12 1765.20 653.13 54.08 0.014 93.14 1631.78 107.50 394.43
50 5 0.010 75.90 1549.23 395.68 0.076 127.51 1837.75 702.20 79.33 0.007 86.94 1374.63 109.40 462.93
50 20 0.008 84.19 2092.70 626.65 0.075 131.15 1614.23 757.23 58.10 0.006 95.64 1939.50 117.30 716.03
50 50 0.020 84.51 2478.50 667.98 0.080 135.58 1870.48 847.75 82.23 0.005 89.34 1588.48 121.18 693.05

Table 2.11: Algorithmic performance for D instances

Compact Robustness-Cuts Compact-Cuts
ΓE ΓV Gap(%) t(s) #ConCuts #BBNs Gap(%) t(s) #ConCuts #RCuts #BBNs Gap(%) t(s) #ConCuts #CCuts #BBNs
0 0 0.000 39.75 1295.40 0.05 0.000 18.76 745.95 0.00 0.03 0.000 23.15 720.10 0.00 0.00
0 5 0.000 32.94 867.03 0.30 0.000 21.28 740.85 2.05 0.10 0.000 30.88 973.15 9.50 0.33
0 20 0.000 28.90 789.20 0.68 0.000 22.92 818.35 2.08 0.05 0.000 30.49 865.75 16.53 0.38
0 50 0.001 35.73 1206.78 0.48 0.000 17.96 733.20 2.50 0.20 0.000 26.04 690.75 23.85 0.23
5 0 0.003 74.28 1372.08 7.18 0.006 84.22 1129.38 19.40 3.13 0.006 105.62 2092.73 52.93 8.30
5 5 0.008 79.83 2043.83 7.15 0.006 91.51 1241.18 24.23 4.48 0.005 99.33 1599.48 63.85 8.50
5 20 0.004 83.16 1899.65 7.56 0.011 83.12 918.90 25.25 4.68 0.007 94.61 1525.78 69.83 10.25
5 50 0.004 79.76 1269.30 8.35 0.007 88.14 1014.98 28.43 4.73 0.006 95.18 1278.33 78.40 9.48
20 0 0.012 109.56 1738.18 29.65 0.025 163.98 1372.65 74.90 10.13 0.012 137.22 1737.88 90.00 32.13
20 5 0.011 119.90 1204.00 38.78 0.020 172.99 1339.70 86.65 11.08 0.011 135.33 1568.70 98.30 40.13
20 20 0.008 120.07 1049.40 45.40 0.021 179.12 1280.50 117.90 24.38 0.011 139.24 1645.03 106.65 46.48
20 50 0.009 122.25 1123.38 45.25 0.021 169.16 1259.73 126.13 20.83 0.013 141.34 1573.78 113.50 48.70
50 0 0.026 173.48 1753.03 60.75 0.067 200.48 1481.73 118.78 6.25 0.024 184.34 1530.88 136.10 51.20
50 5 0.032 173.50 1589.38 65.68 0.101 202.67 1392.23 127.60 8.55 0.043 186.03 1758.83 141.73 49.68
50 20 0.020 176.41 1448.95 69.05 0.072 211.01 1476.03 176.70 14.30 0.025 182.73 1415.30 154.33 60.03
50 50 0.018 192.68 1462.35 170.40 0.070 235.17 1488.95 275.00 19.30 0.032 210.00 1754.75 160.68 203.75
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Table 2.12: Algorithmic performance for K instances

Compact Robustness-Cuts Compact-Cuts
ΓE ΓV Gap(%) t(s) #ConCuts #BBNs Gap(%) t(s) #ConCuts #RCuts #BBNs Gap(%) t(s) #ConCuts #CCuts #BBNs
0 0 0.000 5.45 1105.96 0.00 0.000 4.14 1082.74 0.00 0.13 0.000 4.20 1091.61 0.00 0.09
0 5 0.000 6.53 1177.78 0.09 0.000 5.29 1172.87 7.70 0.30 0.000 6.37 1146.39 28.74 0.30
0 20 0.000 7.93 1358.70 0.13 0.000 6.96 1363.26 10.35 0.65 0.000 7.33 1296.09 30.83 0.57
0 50 0.000 7.70 1377.30 0.17 0.000 7.63 1420.09 8.83 0.30 0.000 7.15 1425.13 29.13 0.26
5 0 0.000 9.17 1131.73 0.78 0.000 7.12 1129.35 11.96 1.91 0.000 7.85 1146.04 11.65 2.35
5 5 0.000 8.02 1164.78 0.61 0.000 9.22 1179.52 21.30 2.35 0.000 9.03 1252.70 41.09 2.04
5 20 0.000 12.17 1315.57 0.87 0.000 10.56 1386.04 25.48 2.26 0.000 10.11 1307.00 46.61 2.61
5 50 0.000 12.29 1460.52 0.96 0.000 10.92 1482.91 23.96 2.74 0.000 11.61 1477.26 53.17 2.96
20 0 0.000 13.53 1290.22 6.91 0.000 17.10 1171.78 121.44 19.74 0.000 14.82 1301.87 22.30 19.83
20 5 0.000 12.79 1291.48 5.09 0.000 18.43 1250.65 127.35 20.70 0.000 16.57 1392.78 52.13 20.44
20 20 0.000 15.19 1363.57 7.043 0.000 21.49 1356.09 139.26 22.00 0.000 16.85 1537.26 57.30 22.65
20 50 0.000 17.36 1533.39 8.83 0.000 22.89 1433.22 147.09 25.26 0.000 18.95 1633.39 60.57 25.74
50 0 0.000 10.07 1178.13 1.57 0.000 17.07 1194.65 66.35 2.78 0.000 10.94 1304.22 26.17 2.35
50 5 0.000 11.52 1258.96 1.35 0.000 17.24 1306.78 66.22 2.00 0.000 13.25 1347.78 56.22 3.83
50 20 0.000 17.44 1337.87 16.00 0.006 49.93 1416.45 304.39 13.13 0.000 18.50 1518.09 67.87 28.09
50 50 0.000 17.34 1454.65 21.57 0.003 49.86 1491.78 384.39 18.83 0.000 22.66 1676.74 66.74 53.44

Table 2.13: Algorithmic performance for P instances

Compact Robustness-Cuts Compact-Cuts
ΓE ΓV Gap(%) t(s) #ConCuts #BBNs Gap(%) t(s) #ConCuts #RCuts #BBNs Gap(%) t(s) #ConCuts #CCuts #BBNs
0 0 0.000 0.63 198.09 0.00 0.000 0.60 156.82 0.00 0.00 0.000 0.61 181.27 0.00 0.00
0 5 0.000 0.60 159.09 0.00 0.000 0.62 132.09 2.64 0.46 0.000 0.66 154.55 21.91 0.55
0 20 0.000 0.57 146.27 0.00 0.000 0.66 161.55 3.09 0.64 0.000 0.65 162.18 16.09 0.46
0 50 0.000 0.55 142.64 0.00 0.000 0.51 151.27 2.09 0.00 0.000 0.70 175.36 16.18 0.00
5 0 0.000 0.74 140.64 0.18 0.000 0.85 170.00 5.09 1.73 0.000 0.86 164.36 80.18 2.09
5 5 0.000 0.58 173.91 0.27 0.000 1.06 174.73 10.18 3.09 0.000 0.99 147.27 102.36 3.55
5 20 0.000 0.62 138.00 0.55 0.000 1.13 156.00 9.64 2.82 0.000 0.92 152.36 103.82 2.73
5 50 0.000 0.65 171.18 0.27 0.000 0.82 139.55 8.36 1.64 0.000 0.99 160.36 104.09 2.36
20 0 0.000 0.83 154.64 2.00 0.000 3.30 178.64 24.27 6.82 0.000 1.51 222.91 82.73 7.18
20 5 0.000 0.81 174.00 1.73 0.000 4.23 177.91 33.91 10.09 0.000 1.89 211.82 107.54 10.00
20 20 0.000 0.79 116.55 1.82 0.000 3.83 162.82 30.55 9.27 0.000 1.82 206.18 110.00 7.82
20 50 0.000 0.78 148.55 1.27 0.000 3.22 159.27 23.82 6.73 0.000 1.45 187.27 108.09 5.91
50 0 0.000 1.79 176.27 8.00 0.000 13.70 253.36 85.36 20.00 0.000 3.64 248.64 92.64 24.18
50 5 0.000 2.11 194.64 11.55 0.000 17.59 217.45 118.00 27.00 0.000 4.42 240.09 119.09 31.09
50 20 0.000 1.96 166.18 11.45 0.000 12.02 210.46 83.72 19.36 0.000 3.92 230.64 117.09 25.82
50 50 0.000 1.58 153.55 7.09 0.000 9.82 193.36 67.46 13.27 0.000 2.68 271.18 116.91 14.00
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Complementary information about the algorithmic performances for the RPCStT is

presented in Tables 2.10 - 2.13 for instances generated using (α = 0.05, β = 0.05).

These disaggregated statistics once again confirm that higher values of ΓE and ΓV

produce a clear increase of the running times. The gain of the problem’s complexity

and the corresponding increment of the computational effort can be observed from

the increasing values of the number of connectivity cuts (columns #ConCuts), robust-

ness cuts (columns #RCuts), compact cuts (columns #CCuts) and Branch-and-Bound

nodes (columns #BBNs). From these four extensive tables, in which each line report

an average value over the whole group for a particular setting of ΓV and ΓE , we con-

clude that the Compact approach is the most effective one, although the Compact-Cuts

strategy behaves quite similarly.

α = 0.05, β = 0.10 α = 0.10, β = 0.05 α = 0.10, β = 0.10
|ET | |VTpv>o | |ET | |VTpv>o | |ET | |VTpv>o |

Instance min mean max min mean max min mean max min mean max min mean max min mean max
C-{1− 5} 0 92.11 315 1 60.57 236 0 90.63 316 1 59.61 236 0 90.85 314 1 59.72 236
C-{6− 10} 0 107.7 318 1 71.22 242 0 107.9 318 1 71.42 242 0 108.1 318 1 71.64 242
C-{11− 15} 0 120.8 304 1 85.97 248 0 121.4 305 1 86.76 248 0 121.4 304 1 86.81 248
C-{16− 20} 10 106.7 263 5 93.06 250 10 107.7 263 5 93.98 250 10 107.6 263 5 93.94 250
K100.{0− 10} 0 2.36 12 1 2.53 8 0 1.64 13 1 2.14 8 0 1.99 13 1 2.32 8
K200.0 7 7.00 7 8 8.00 8 7 7.00 7 8 8.00 8 7 7.00 7 8 8.00 8
K400.{0− 10} 1 23.33 67 2 16.22 43 1 18.59 53 2 13.61 36 1 21.76 64 2 15.29 43

Table 2.14: Sizes of the obtained solutions (average values across all combinations
of ΓE ,ΓV ∈ {0, 5, 20, 50} are shown), groups C and K and different values of α, β

∆ROPT (%)
α = 0.05, β = 0.05 α = 0.05, β = 0.10 α = 0.10, β = 0.05 α = 0.10, β = 0.10

ΓE ΓV min mean max min mean max min mean max min mean max

0 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0 5 0.67 2.02 3.74 1.35 4.00 7.48 0.67 2.02 3.74 1.35 4.00 7.48

0 20 1.79 3.54 5.00 3.57 6.96 10.00 1.79 3.54 5.00 3.57 6.96 10.00

0 50 1.79 4.07 5.00 3.57 7.71 10.00 1.79 4.07 5.00 3.57 7.71 10.00

5 0 0.00 0.39 1.73 0.00 0.39 1.73 0.00 0.74 3.18 0.00 0.74 3.18

5 5 0.98 2.42 4.41 1.71 4.44 7.79 1.00 2.79 5.20 1.86 4.83 8.83

5 20 2.50 3.99 5.00 4.35 7.48 10.00 2.91 4.37 6.10 4.76 7.93 10.00

5 50 2.67 4.52 5.00 4.38 8.26 10.00 3.09 4.91 6.10 4.79 8.73 10.00

20 0 0.00 0.65 1.98 0.00 0.65 1.98 0.00 1.19 3.40 0.00 1.19 3.40

20 5 0.98 2.72 4.84 1.85 4.74 7.79 1.00 3.28 6.04 1.86 5.37 8.90

20 20 3.05 4.30 5.00 5.45 7.83 10.00 3.07 4.91 7.01 5.99 8.54 10.00

20 50 3.78 4.88 5.00 5.49 8.76 10.00 5.00 5.53 7.01 7.01 9.60 10.00

50 0 0.00 0.73 2.51 0.00 0.73 2.51 0.00 1.27 4.43 0.00 1.27 4.43

50 5 0.98 2.81 4.84 1.85 4.84 7.79 1.00 3.37 6.04 1.86 5.46 8.90

50 20 3.05 4.40 5.00 5.73 7.95 10.00 3.07 5.03 7.04 5.99 8.70 10.00

50 50 4.92 4.99 5.00 6.79 9.06 10.00 5.00 5.73 7.56 9.09 9.93 10.00

Table 2.15: Basic statistics of ∆ROPT (%) (Price of Robustness) for different values
of ΓE and ΓV , considering different values of α and β, group K
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Running time statistics (t ≤ 500 s) Gaps (%) statistics ( t > 500 s)
α, β Approach #Opt Min Median Mean Max Min Median Mean Max

Compact 368/368 0.047 1.156 10.680 133.000 0.000 0.000 0.000 0.000
0.05, 0.05 R-Cuts 365/368 0.047 0.766 13.270 476.500 0.020 0.059 0.064 0.114

C-Cuts 368/368 0.310 0.719 11.190 197.400 0.000 0.000 0.000 0.000
Compact 368/368 0.063 0.969 9.726 147.100 0.000 0.000 0.000 0.000

0.05, 0.10 R-Cuts 362/368 0.047 0.945 13.250 364.000 0.083 0.163 0.187 0.329
C-Cuts 368/368 0.047 0.875 9.669 211.200 0.000 0.000 0.000 0.000

Compact 368/368 0.047 0.938 8.175 75.250 0.000 0.000 0.000 0.000
0.10, 0.05 R-Cuts 359/368 0.047 0.969 11.000 273.700 0.246 0.762 1.605 8.423

C-Cuts 364/368 0.047 0.734 7.606 102.900 0.000 0.010 0.046 0.154
Compact 365/368 0.047 1.031 9.865 112.100 0.000 0.010 0.130 0.940

0.10, 0.10 R-Cuts 357/368 0.063 0.969 13.950 282.400 0.154 1.059 3.086 10.580
C-Cuts 363/368 0.031 0.797 9.672 309.400 0.000 0.010 0.127 0.510

Table 2.16: Algorithmic performance statistics for different combinations of α and
β, group K
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(a) Comparing performance of Compact for differ-
ent α and β, group C.
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(b) Comparing performance of Compact for differ-
ent α and β, group K.

Figure 2.8: Cumulative percentage of the total number of solved instances of groups
C and K within 500 seconds for different values of α and β (Compact)
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(a) Comparing performance of Compact for differ-
ent ΓE and ΓV , group C.
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(b) Comparing performance of Compact for differ-
ent ΓE and ΓV , group K.

Figure 2.9: Cumulative percentage of the total number of solved instances by Com-
pact of groups C and K within 500 seconds for different values of ΓE and ΓV (α = 0.05,

β = 0.10)
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(a) Comparing performance of C-Cuts for different
ΓE and ΓV , group C.
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(b) Comparing performance of C-Cuts for different
ΓE and ΓV , group K.

Figure 2.10: Cumulative percentage of the total number of solved instances by C-
Cuts of groups C and K within 500 seconds for different values of ΓE and ΓV (α = 0.05,

β = 0.10)

A deeper analysis of the algorithmic performance for the RPCStT can be carried out

when studying the evolution, over time, of the gap between the global lower and upper

bounds for each of the proposed strategies. For this more specific analysis, we consider

only the most difficult instances from each group. From groups C and D we took the six

largest instances and from groups K and P the five largest ones. In Figures 2.11 and 2.12

we show the evolution of the average gap over time for the subsets of C and D and the

subsets of K and P, respectively. Figure 2.11(a) shows that Compact is the approach

that reaches smaller gaps in less time and R-Cuts is approach that needs more time to

obtain similar gaps. However, Figure 2.11(b) indicates that R-Cuts allows to obtain

smaller gaps in smaller running times than those of the other approaches. For these

two subsets of instances of groups C and D the time needed to obtain almost 0% of gap

is around 100 and 400 seconds, respectively, but a gap of less than 1% (resp. 0.25%)

can be achieved (by at least one approach) in less than the 25% (resp. 50%) of this

time. Similarly, Figure 2.12(a) suggests that C-Cuts is the best approach in the case

of the K instances; but for P instances, the Compact is the best approach.
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Figure 2.11: Evolution of Gap (%) considering all combinations of ΓE ,ΓV ∈
{0, 5, 20, 50}
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Figure 2.12: Evolution of Gap (%) considering all combinations of ΓE ,ΓV ∈
{0, 5, 20, 50}

Running time statistics (t ≤ 500 s) Gaps (%) statistics ( t > 500 s)
Approach #Opt Min Median Mean Max Min Median Mean Max
Compact 1056/1056 0.031 1.000 1.474 22.330 0.000 0.000 0.000 0.000
R-Cuts 1056/1056 0.015 0.718 3.665 218.800 0.000 0.000 0.000 0.000
C-Cuts 1056/1056 0.015 0.703 1.272 23.160 0.000 0.000 0.000 0.000

R-Cuts+C 1056/1056 0.015 0.742 3.436 323.500 0.000 0.000 0.000 0.000

Table 2.17: Algorithmic performance statistics for group K (Robust B-PCStT)
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Figure 2.13: Cumulative percentage of the average number of solved instances of group K within

t = 500 seconds considering different values of B ∈ {0, 5, 10, . . . , 95, 100}Bmax%, and ΓE ,ΓV ∈
{0, 5, 20, 50}

For the Robust B-PCStT, interactions among the size of the optimal solution and the

corresponding values of B, ΓE and ΓV are illustrated in Figure 2.14. Although solutions

in Figures 2.14(a) and 2.14(b) are the same, the corresponding ROPTB values are

different because of the difference between the values of ΓV and their relation with the

number of customer nodes that are not connected. Solutions shown in Figures 2.14(c)

and 2.14(d) illustrate how large budgets allow to connect a large number of customers

while ΓE exhibits a greater influence on the solution structure. When taking ΓV = 50

and ΓE = 0 we see that all customer nodes are connected and that is why ROPTB = 0,
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but when taking ΓE = 50 two customers are disconnected with the corresponding

increase in the value of ROPTB.

(a) B = 5%, ΓE = 0, ΓV = 50, ROPTB =
138910.

(b) B = 5%, ΓE = 50, ΓV = 0, ROPTB =
132295.

(c) B = 100%, ΓE = 0, ΓV = 50,
ROPTB = 0.

(d) B = 100%, ΓE = 50, ΓV = 0,
ROPTB = 3531.

Figure 2.14: Optimal solutions for the Robust B-PCStT for instance K100.10-0.05-0.05

considering different values of B, ΓE and ΓV





Chapter 3

The Recoverable Robust

Two-Level Network Design

Problem

3.1. Introduction

In many real-world settings, when planning an expansion of a telecommunication or

power distribution network, a network has to be built even before the set of cus-

tomers is known with complete certainty. In addition, if different services are offered

to customers, uncertainty could be present regarding the type of service that each of

the customers needs. Usually, complete information regarding the underlying demand

patterns becomes available much later in the planning process. In that case, applying

standard deterministic optimization by considering only one of the possible realiza-

tions of the input data leads towards solutions that might not be optimal, or for that

matter even feasible, for the final data realization. A wait-and-see approach might also

be unacceptable from the economical perspective, since the infrastructure cost might

significantly increase as time progresses.

Two-stage stochastic optimization and robust optimization (RO) are two possible

approaches to deal with these kind of problems. In two-stage stochastic program-

ming [Birge and Louveaux, 2011], the solution is built in two stages. In the first phase,

a partial network is built which is later on completed, upon the realization of the un-

certain data. The objective is to minimize the cost of the first-stage decisions plus the

expected cost of the recourse (second-stage) decisions. However, this approach relies

on the accuracy of the random representation of the parameter values (such as proba-

bility distributions) that allow one to estimate the second-stage expected cost. When

such accuracy is not available, the use of deterministic uncertainty models arises as a

suitable alternative [Kouvelis and Yu, 1997, Bertsimas and Sim, 2003, Ben-Tal et al.,

51
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2010]. In these models no assumptions are made about the distribution of the uncer-

tain input parameters. Consequently, in these RO approaches, single-stage decisions

are made and solutions are sought that are immune in a certain sense to all possible

realizations of the parameter values. Clearly, such solutions may be over conservative,

since the networks constructed minimize the investment costs for the worst possible

data realization.

Two-Stage Robust Optimization (2SRO) is a modeling approach that combines clas-

sical two-stage optimization with robust optimization. In this case, probability distri-

butions are unknown, so the cost of the second-stage decisions is calculated by looking

at the worst-case realization of data. The goal is to find a first-stage solution that

minimizes the first-stage costs plus the worst-case second-stage costs across all pos-

sible data outcomes. For references on different models of 2SRO we refer the reader

to [Ben-Tal et al., 2004, Atamtürk and Zhang, 2007, Thiele et al., 2009] and [Zhao and

Zeng, 2012].

Recoverable Robustness is an approach that falls within the framework of 2SRO [see

Liebchen et al., 2009]. Recalling our practical context, assume that the network is built

in two stages and we are required to find a first-stage solution that should be robust

against many possible realizations (scenarios) of the input data in a second-stage.

Robustness in this context means that the first-stage solutions are expected to provide

a reasonable performance in terms of optimality and/or feasibility, for any possible

realization of the uncertain data. For this model, it is instructive to think there is a

possibility to recover the solution constructed in the first stage in a second stage (i.e.,

to modify the previously defined network in order to make it feasible and/or cheaper)

once the uncertainty is resolved. The set of allowed recovery actions and their cost

may be known in advance for each of the possible data/scenario realizations. These

recovery actions are limited, in the sense that the effort needed to recover a solution

may be algorithmically (in terms of how a solution may be modified) and economically

(in terms of the cost of recovery actions) limited. Therefore, instead of looking for

a solution that is robust against all possible scenarios without allowing any kind of

recovery [which is the case for many RO approaches, see Ben-Tal et al., 2010] we want

a solution robust enough so that it can be “recovered” promptly and at low cost once

the uncertainty is resolved. This balance between robustness and recoverability is what

defines a recoverable robust optimization problem.

The Two-Level Network Design (TLND) problem [Balakrishnan et al., 1994a,b] models

the design of telecommunication and power distribution networks, in which two types

of customers (requiring two different levels of service) are taken into account. Primary

customers require a higher level of service and are required to be connected using a

higher level (primary) technology; secondary customers can be connected either by the

primary or a secondary, and cheaper, technology. The difference between the cost of

the primary and secondary technology is often called the upgrade cost.
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In the deterministic version of the TLND problem the set of primary customers and

its complement, the set of secondary customers, are known in advance. However, when

long term decisions need to be made (i.e., when the topology of the network needs to

determined), there is not always complete knowledge about the set of primary cus-

tomers. The topology of the network needs to be determined well before a precise

knowledge of the demand is available because of the long lead times involved in con-

structing physical links (edges) in telecommunications and power distribution networks

(for example in telecommunications networks fiber cables need to be installed under-

ground which can take a significant period of time). Further, even if some rough idea

of demand is known, changes in demographic, socio-economic, or political factors can

lead to changes in the structure of the demand during the planning horizon. Under

these conditions, a decision maker needs to find a first-stage solution (a spanning tree

comprised by secondary and primary technology edges) that can be recovered in the

second stage, and turned into a feasible one, once the actual set of primary nodes

becomes known. For this case the recovery action is the late upgrade of a given edge

from secondary to primary technology. (In telecommunications networks once a fiber

link is in place it can be relatively quick to upgrade the capacity/technology on a link

by changing the equipment at the end points of the link.) For each possible scenario,

this upgrade incurs an extra cost, recovery cost, defined as the sum of all late upgrades

that are needed to ensure that all primary nodes are connected by the primary tech-

nology. The Recoverable Robust TLND (RRTLND) problem searches for a solution

that minimizes the sum of the first-stage cost and the recovery cost of the second stage

defined as the worst case recovery cost over all possible scenarios.

3.1.1 Our Contribution and Outline of the Paper

The RRTLND problem is a new problem not studied previously in the literature. We

first study the problem on trees: we show that the RRTLND problem is NP-Hard

even on a star (a star is a tree where all nodes except the central one have degree 1)

with uniform upgrade and recovery costs; we then propose a preprocessing procedure

and a Mixed Integer Programming (MIP) model with a linear number of variables for

solving the RRTLND problem on trees to optimality. In the second part of the paper

we propose a MIP formulation for the problem on general networks and develop a

branch-and-cut algorithm to solve it. We develop problem-dependent techniques for

efficiently separating the underlying inequalities within the branch-and-cut framework.

In addition, we use a primal heuristic that relies upon the ideas of matheuristics and

uses an embedded MIP for solving the problem on trees. Finally, an extensive set of

computational experiments are carried out in order to assess (1) the performance of the

proposed algorithm and its dependence on the problem parameters, and (2) the nature

and characteristics of the solutions obtained. The analysis includes a qualitative study

of the solutions in terms of Robustness and Recoverability and an assessment of the
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algorithmic performance. To complement this analysis, we also consider a Steiner-tree

variant of the TLND problem and adapt the algorithm to solve its recoverable robust

counterpart.

In Section 3.1.2, the TLND problem is formally defined and a review of the main lit-

erature presented. In Section 3.2 the concept of Recoverable Robustness is discussed

further, and the RRTLND problem is formally defined. Results regarding the com-

putational complexity of the RRTLND problem on trees are discussed therein and a

new MIP model is shown. A MIP formulation for the RRTLND problem on general

graphs together with the elements of our branch-and-cut approach is described in Sec-

tion 3.3. In Section 3.4 the Steiner tree variant of the TLND problem, the Two-Level

Steiner Tree (TLStT) Problem, is defined and a MIP formulation is presented for its

Recoverable Robust counterpart (RRTLStT). In Section 3.5 we present and analyze

the computational results obtained for two sets of instances for the RRTLND problem

and for the RRTLStT problem. Concluding remarks are provided in Section 3.6.

3.1.2 The Two-Level Network Design Problem

In this section we provide a formal definition of the TLND problem and give a review

of the previous literature on this problem.

The Two-Level Network Design Problem We are given an undirected con-

nected graph G = (V,E), |V | = n, |E| = m, with a set P ⊆ V , which corresponds to

the set of primary nodes. On each edge e ∈ E one of two given technologies (primary

or secondary) can be installed. Correspondingly, primary and secondary edge costs, ae

and be are associated with each edge e ∈ E, ae ≥ be ≥ 0, where ue = ae − be; ue is

referred to as the upgrade cost as it can be viewed as the cost of upgrading a secondary

edge to a primary one. Let X ∈ {0, 1}|E| be a binary vector such that Xe = 1 if edge

e ∈ E is used in the spanning tree and Xe = 0 otherwise; and let Y ∈ {0, 1}|E| be

a binary vector such that Ye = 1 if on edge e ∈ E primary technology is installed

and Ye = 0 otherwise. Consequently, if Xe = 1 and Ye = 0, secondary technology is

installed in e. Let E(X) and E(Y) represent the subsets of edges associated with X

and Y, respectively. The TLND problem consists of finding (X∗,Y∗) such that

f (X∗,Y∗) = min
(X,Y)∈D

 ∑
e∈E(X)

be +
∑

e∈E(Y)

ue

 (3.1)

where D = {(X,Y) ∈ {0, 1}|E| × {0, 1}|E|} such that E(X) is a spanning tree in G,

E(Y) is a Steiner Tree connecting P , and Y ≤ X.

Literature Review The history of the TLND problem begins with the introduction

of the Hierarchical Network Design problem (HND) [see Current et al., 1986], which

is a special case of the TLND problem with |P | = 2. In [Duin and Volgenant, 1989]
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the author presents structural properties and reduction tests for the HND; in [Pirkul

et al., 1991] a Lagrangian-relaxation based heuristic is developed; in [Sancho, 1995]

the author proposes a dynamic programming procedure; and recently, branch-and-cut

algorithm is presented in [Obreque et al., 2010].

The TLND problem was introduced in [Duin and Volgenant, 1991] where two heuristics

and preprocessing procedures are proposed. Several network flow based models for the

TLND problem have been proposed and compared in [Balakrishnan et al., 1994b].

The authors also propose a composite heuristic that provides an approximation ratio

of 4
4−ρ if the embedded Steiner tree is solved with an approximation ratio of ρ < 2.

In [Balakrishnan et al., 1994a], the authors provide a dual ascent method derived from

a flow-based model presented in [Balakrishnan et al., 1994b]. More recently, [Gouveia

and Telhada, 2008] discuss alternative MIP formulations for the problem and solve

them using Lagrangian relaxation approaches. Some extensions of the TLND problem

combine it with the facility location problem [see Current, 1988, Gollowitzer et al.,

2013]. In addition to telecommunication applications the TLND problem appears in

the design of Internet Protocol networks [Chamberland, 2010] and electrical power

distribution systems [Costa et al., 2011].

The Multi-Level Network Design Problem (MLND) corresponds to the more general

case in which L types of customers and L technologies are available, and the goal is

to find a subtree that enables each node at level ` to communicate with other node of

the same type, by using a tree built of edges of type at most `, for each 1 ≤ ` ≤ L,

L ≥ 2. The problem has been defined by [Mirchandani, 1996], who called the problem

the Multi-Tier Tree Problem and provided a heuristic based on the one proposed for

the TLND problem in [Balakrishnan et al., 1994a]. In [Chopra and Tsai, 2002], a

branch-and-cut approach derived on a layered graph formulation of the problem has

been applied to problems with three to five levels.

3.2. The Recoverable Robust TLND (RRTLND) Prob-

lem

In this section we provide references to the recent applications of the recoverable robust

optimization, define the RRTLND problem and study the properties of the problem

on trees.

Recent Applications of Recoverable Robust Optimization In [Liebchen et al.,

2009] the authors introduce the Recoverable Robust Optimization (RRO) concept and

provide a general framework for optimization problems affected by uncertainty, while

focusing on the applications arising in the railway scheduling. Recently, the concept of

RRO has also been applied to other application areas as well. The recoverable robust

knapsack problem considering different models of uncertainty is studied in [Büsing
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et al., 2011]. Formulations and algorithms for different variants of the recoverable

robust shortest path problem are given in [Büsing, 2012]. Finally, in [Cicerone et al.,

2012] a more general framework of the RRO is studied in which multiple recovery stages

are allowed. The authors apply the new model to timetabling and delay management

applications.

As other robust optimization approaches the RRO approach allows different models of

the uncertainty set, e.g., interval, polyhedral and discrete. In this work, as in [Büsing

et al., 2011], we use the discrete set model of uncertainty.

3.2.1 The Recoverable Robust TLND Problem

Suppose that in a given application of the TLND problem it is not known exactly which

elements comprise the set of primary customers P . Instead, we are given a finite set of

scenarios K such that, for each k ∈ K, there is a set P k ⊆ V of nodes corresponding

to the primary customers if scenario k is realized. Additionally, motivated by the

practical applications, we are given a root node r such that r ∈ P k for all k ∈ K.

We note that while the application typically has a root node (the root represents, for

example, a central office, i.e., a connection to the backbone network), if this is not the

case it is easy to modify the formulations and procedures described in this work to

address the situation.1

The decision maker needs to determine the topology of the spanning tree connecting

the nodes in the network in the first stage. He/she may decide to install the primary

technology on edge e ∈ E in the first stage, or to recover the edge in the second

(recovery) stage by upgrading it from the secondary to the primary technology (in case

scenario k is realized and set P k requires it). Hence, for each edge e and for each

scenario k, we also define the late upgrade (or recovery) cost rke ≥ ue = ae − be that

needs to be paid if secondary technology is upgraded on edge e in the second stage

when scenario k is realized; as opposed to ue being the regular (or first-stage) upgrade

cost.

In our problem, for each scenario k ∈ K, each of the customers v ∈ P k is to be served

by the primary technology, i.e., there exists a path between r and v along that tree,

consisting of solely primary edges. These primary edges can either be installed in the

first stage, or recovered in the second stage. Further, in the practical application (for

administrative reasons generally) it is required that the primary edges form a connected

network (i.e., there can be no isolated primary edges). Our goal is to find a spanning

tree (along with a prescription of which edges should be installed as primary in the first

1Simply create a fictitious root node that has an edge to every node in the graph, and either
(i) make these new edges have zero cost and add the requirement that the degree of the root node is 1,
or (ii) give a sufficiently large cost to these new edges so that only one of them will be in the optimal
solution.
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stage) that minimizes the overall installation cost in the first stage (given as the sum

of the costs of primary and secondary edges), plus the worst recovery costs, calculated

over all scenarios k ∈ K.

More formally, let X ∈ {0, 1}|E| be a binary vector as defined in §3.1.2. Let Y0 ∈
{0, 1}|E| be a binary vector such that Y 0

e = 1 if on edge e the primary technology is

installed in the first-stage and Y 0
e = 0 otherwise. Let Yk ∈ {0, 1}|E|×|K| be a binary

vector such that Y k
e = 1 if the secondary technology that was installed in the first-stage

on edge e is upgraded into the primary one in scenario k ∈ K.

Given a scenario k ∈ K and a first-stage solution
(
X,Y0

)
(X associated to a spanning

tree of G and Y0 ≤ X), the recovery cost is the minimum total upgrade cost needed

to provide feasibility to
(
X,Y0

)
by recovery actions Yk. This cost can be expressed

as

min
Yk∈Y(X,Y0,k)

 ∑
e∈E(Yk)

rke

 ,

where Y
(
X,Y0, k

)
is the set of all possible late upgrades for pair (X,Y0) and the set

of primary customers P k. In other words, vector Yk expresses how to recover the

solution
(
X,Y0

)
in scenario k in order to make it feasible. For each k ∈ K, the set of

all feasible recoveries is given as:

Y
(
X,Y0, k

)
= {Yk ∈ {0, 1}|E|×|K| |E(Y0) ∪ E(Yk) is a Steiner tree spanning P k,

Yk ≤ X−Y0}.

Note that because of the requirement that the final network (after the uncertainty is

resolved) does not allow for isolated primary edges (i.e., E(Y0)∪E(Yk) is connected),

it is easy to see that E(Y0) must be connected if rke ≥ ue. Notice that, given the first

stage decision, for each k ∈ K, the optimal recovery solution can be found in O(n)

time. The following second-stage objective function, R(X,Y0), expresses the robust

recovery cost (which is the maximum recovery cost over all scenarios k ∈ K):

R(X,Y0) = max
k∈K

min
Yk∈Y(X,Y0,k)

 ∑
e∈E(Yk)

rke

 .
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(a) Instance of the RRTLND prob-
lem.

(b) Recovery costs are re = 1.5 ∀e ∈
E.

(c) Recovery costs are re = 3 ∀e ∈
E.

Figure 3.1: Instance and optimal solutions for the RRTLND problem; node with
symbol N corresponds to r, nodes denoted by 3 are primary nodes in scenario k = 1
and nodes denoted by © are primary nodes in scenario k = 2; for each e ∈ E, its
primary and secondary costs are ae = 2 and be = 1, respectively. Dotted, bold, dashed
and dot-dashed edges correspond to E(X), E(Y0), E(Y1) and E(Y2), respectively.

The Recoverable Robust TLND (RRTLND) problem is defined as follows

OPTRR = min{
∑

e∈E(X)

be +
∑

e∈E(Y0)

ue+R(X,Y0) | (X,Y0) ∈ {0, 1}|E| × {0, 1}|E|,

(3.2)

E(X) is a spanning tree on G,

Y0 ≤ X and E(Y0) is connected }.

In Figure 3.1(a) an instance of the RRTLND problem with two scenarios is shown. In

Figures 3.1(b) and 3.1(c) optimal solutions for different cost structures are presented.

In the first case, recovery (i.e., late upgrade) costs are 50% more expensive than regular

upgrade costs while in the second case the difference goes to 200%. This difference in

the cost structure explains why in the solution shown in 3.1(b) there are edges that

are recovered in a second stage for each of the scenarios, while in the solution shown

in 3.1(c) no recovery is performed since it is cheaper to install primary edges in the

first stage than recover edges in a second stage. The cost of the first solution is given

by OPTRR = 1× 9 + 1× 4 + max{1× 1.5, 1× 1.5} = 14.5 and the cost of the second

solution is given by OPTRR = 1× 9 + 1× 6 + max{∅} = 15.

A first-stage solution (X,Y0) is robust because, regardless of which scenario is realized,

it ensures that the second-stage actions will be efficient (due to the minimization of

the worst case) and easy to implement (because only upgrades are needed). In this

sense, the more scenarios we take into account to find (X,Y0), the more robust the

solution is; because we are foreseeing more possible states of the future uncertainty.

Along the same line, recoverability is the capability of a first-stage solution to become

feasible by means of second-stage actions.
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We wish to emphasize that in this two-stage setting the classical single-stage RO ap-

proaches such as those proposed in [Kouvelis and Yu, 1997] or [Ben-Tal and Nemirovski,

2000] are not good models, and can be overconservative. In intuitive terms, because

the typical RO approaches are single-stage approaches without the possibility of re-

covery in the second stage, they require the constructed solutions to be feasible for all

scenarios!

In RRO the first-stage solution lies between two extremes: an absolute robust (AR)

solution and a pure wait-and-see (W&S) solution. The first case corresponds to a

solution for which no recovery is allowed, i.e., E(Y0) spans P̌ =
⋃
k∈K P

k, so the

solution is feasible for all scenarios (this solution in the first case can be viewed as one

that would be obtained under the classical single-stage RO approach). On the contrary,

the second case corresponds to a solution for which E(Y0) = ∅, so a complete primary

Steiner tree should be constructed (but only the most expensive one is considered in

the total cost) in the second-stage for each P k, k ∈ K (the solution in the second case

can be viewed as one with maximum recovery as it requires each primary edge to be

obtained via recovery). Both solutions can lead to very high total costs, either because

unnecessarily many primary edges have to be installed in the first-stage or because the

second-stage primary costs are considerably higher than those of the first stage. The

Gain of Recovery (GoR) is defined as the relative difference between OPTRR and the

cost of these two solutions, i.e., GoR(AR) = OPTAR−OPTRR
OPTAR

×100% and GoR(W&S) =
OPTW&S−OPTRR

OPTW&S
× 100%, where OPTAR and OPTW&S are the costs of the optimal AR

and W&S solutions respectively.

3.2.2 The RRTLND Problem on Trees

In this section we consider the RRTLND problem on trees.

3.2.2.1 Complexity of the RRTLND Problem on Trees

Theorem 1. Solving the RRTLND problem is NP-hard even if the input graph G is a

tree, and all regular and late upgrade costs are uniform.

Proof. Because the input graph is a tree, every edge in the graph will have at least

secondary technology installed. Therefore the optimization only needs to consider

regular and late upgrade costs.

We will show the result by a transformation [the main idea in this transformation is

similar to Garg et al., 1997] from the minimum vertex cover problem. Given a graph

H = (VH , EH), VH = {v1, . . . , vn}, a set of vertices such that each edge of the graph is

incident to at least one vertex of the set is called a vertex cover. In the minimum vertex

cover problem we wish to find a vertex cover of smallest cardinality. Given an instance
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of a vertex cover on the graph H, construct an instance of the RRTLND problem with

K scenarios as follows. First, construct a star graph S = (VS , ES) from H as follows.

Let VS = v0 ∪ VH , and ES =
⋃
i=1...,n{v0, vi}. Let the upgrade costs in the first stage

be ue = 1, for all e ∈ ES , and let M = n/2 be the uniform second-stage upgrade cost,

i.e., rke = M , for all e ∈ ES , k ∈ K. For each edge {uk, vk} in EH , create a scenario

k ∈ K in S, by setting P k = {v0, uk, vk}.

We now show that the optimal solution of the RRTLND problem on S provides us the

minimum vertex cover on H. Without loss of generality, assume that the value of the

vertex cover, C, on H is such that C ≤ n−1
2 .2 Consider the possible values for the

maximum recovery cost R∗: (i) If there exists k ∈ K, such that the edges {uk, v0} and

{v0, vk} were not purchased in the first stage, then the maximum recovery cost will be

R∗ = 2M . (ii) If for all k ∈ K at least one of the two edges is purchased in the first

stage, but there also exists k̂ such that exactly one of the two edges is purchased, then

R∗ = M . Since for each scenario k ∈ K, at least one of the edges {uk, v0}, {v0, vk} need

to be installed in the first stage, the minimum cost first-stage solution that satisfies

this property corresponds to the minimum vertex cover on H (edge {v0, vk} installed in

the first stage (on S) corresponds to node vk in the vertex cover on H). Therefore, the

total cost of such a constructed solution is upper bounded by C+M . (iii) Finally, if for

all k ∈ K, both edges are purchased in the first stage, R∗ = 0, but the first-stage cost

is equal to n. It is not difficult to see that the second solution will be the optimal one

(recall that we chose H such that C < n/2) since: C +M < 2M and C +M < n.

3.2.2.2 A MIP Model for the RRTLND Problem on Trees

We now provide a MIP formulation for the RRTLND problem on trees for which it

is necessary to perform an O (nK) preprocessing. For K = const , this formulation

is of compact size. Furthermore, it involves only binary variables associated with the

installation of the primary technology in the first stage. Due to the preprocessing, this

model does not involve the variables associated with the second-stage decisions.

Preprocessing: Given G that has a tree structure, for each scenario k ∈ K we

first solve the Steiner tree problem with the set P k being the terminal nodes of that

tree. We assume that on all edges in G secondary technology is installed in the first

stage, so that all edges of the Steiner Tree need to be recovered in the second stage.

Therefore, to find the optimal Steiner tree, we consider the edge cost defined by rke , for

each e ∈ E, for each k ∈ K. Let Pk be the set of edges corresponding to the optimal

Steiner tree, for k ∈ K, and let ωk =
∑

e∈Pk
rke be the recovery cost for that tree,

2Given a graph H we can create another graph H ′ by duplicating the set of nodes and add an
additional node (i.e., VH′ = VH ∪ v0 ∪ {vn+1, . . . , v2n}). The set of edges EH′ in this new graph
includes the previous edges and an edge from v0 to each node vi, i = 1, . . . , 2n. It is easy to see that
the minimum vertex cover on VH′ is the union of v0 and the minimum vertex cover on VH , and satisfies
our assumption on the size of the vertex cover.
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assuming that there were no primary edges in the first stage. Obviously, finding the

optimal Steiner trees can be done in O(n) time, for each k ∈ K. We now state a useful

property concerning the structure of RRTLND problem solutions on trees.

Property 1. Let P =
⋂
k∈K Pk 6= ∅ denote the set of edges for which the recovery is

needed over all scenarios k ∈ K. Given that for all e ∈ E, k ∈ K we have rke ≥ ue,

there always exists an optimal solution to the RRTLND problem on trees such that

the primary edges are installed in the first stage along all edges in P. Further, the

subgraph induced by P is connected.

Hence, the optimal primary subtree of the first stage is a rooted subtree of G which

is a superset of P and a subset of E. Therefore, if P 6= ∅, we can shrink all the

edges of P into the root node and continue solving the problem on the shrunken tree.

Consequently, we can assume w.l.o.g. that P = ∅. Given that G is a tree with a pre-

specified root node, for each edge e : {u, v} ∈ E (u, v 6= r), we can uniquely determine

the predecessor edge e′ on the path between r and e. Let s ∈ {0, 1}|E| be a binary

vector such that se = 1 if a primary technology is installed in the first stage and se = 0

otherwise. The following formulation allows us to solve the RRTLND problem on trees:

f (s∗) = min
∑
e∈E

uese + λ (T.1)

s.t. se′ ≥ se ∀e ∈ E, e′ is predecessor of e : {u, v}, u, v 6= r (T.2)

λ ≥ ωk −
∑
e∈Pk

rkese ∀k ∈ K (T.3)

s ∈ {0, 1}|E|, λ ≥ 0 (T.4)

In the formulation (T.1)-(T.4) we only have one set of binary variables, s, and O(n+

K) constraints. Therefore, for a constant number of scenarios, this is a compact

formulation. Constraints (T.2) force first-stage primary edges to form a connected

component rooted at r. Inequalities (T.3) model the nested maximization problem

associated with the robust recovery cost; if primary technology is installed on edge e

in the first stage, then its recovery cost is subtracted from ωk for those sets for which

e is supposed to be upgraded in the second stage (i.e., for e ∈ Pk). This MIP model

will be used in a matheuristic fashion for finding feasible solutions of the RRTLND

problem in general graphs. This will be the core of the primal-heuristic embedded into

a branch-and-cut approach framework that we discuss in §3.3.2.

3.3. MIP Model and Branch-and-Cut Algorithm

Before we provide a MIP model for the RRTLND problem, we observe that for every

feasible solution of the problem, we can associate a rooted spanning arborescence

consisting of a rooted primary sub-arborescence embedded into the secondary one. In
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addition, for each k ∈ K, edges from E(Yk) can uniquely be oriented, so that the set

of directed primary edges from the first-stage solution, plus the set of directed edges

from E(Yk) builds a Steiner arborescence spanning P k. Henceforth, instead of dealing

with MIP models containing binary variables associated with edges of the graph G, we

will consider its bidirected counterpart, GA = (V,A), where A = {(r, i) | e : {r, i} ∈
E} ∪ {(i, j), (j, i) | e : {i, j} ∈ E, i, j 6= r}.

3.3.1 MIP formulation for the RRTLND Problem

The MIP formulation investigated in this work is based on directed cut-set inequalities.

The LP-relaxation of this model usually accomplishes good quality lower bounds, since

many facet-defining inequalities can be projected out of the directed model for tree

problems [see Grötschel et al., 1992].

Let x ∈ {0, 1}|A| be a binary vector such that xij = 1 if arc (i, j) ∈ A belongs to the

spanning arborescence and xij = 0 otherwise, let y0 ∈ {0, 1}|A| be a binary vector

such that y0
ij = 1 if primary technology is installed in arc (i, j) ∈ A in the first stage

and y0
ij = 0 otherwise. Let yk ∈ {0, 1}|A|×|K| be a binary vector such that ykij = 1

if the secondary technology installed on arc (i, j) ∈ A is upgraded into the primary

one in scenario k ∈ K and ykij = 0 otherwise. We use the following notation: A

set of vertices S ⊆ V (S 6= ∅) and its complement S = V \S, induce two directed

cuts: δ+ (S) =
{

(i, j) | i ∈ S, j ∈ S
}

and δ− (S) =
{

(i, j) | i ∈ S, j ∈ S
}

; we write

x (A′) =
∑

(i,j)∈A′ xij for any subset A′ ⊂ A.

Vector x is associated with a directed spanning tree of GA (spanning arborescence)

rooted at r if it satisfies the following set of inequalities

x
(
δ− (S)

)
≥ 1 ∀S ⊆ V \ {r} , S 6= ∅, (3.3)

a vector y0 is associated with a directed arborescence of GA rooted at r if it satisfies

y0
(
δ− (S)

)
≥ y0

(
δ− (i)

)
∀i ∈ S, ∀S ⊆ V \ {r} , S 6= ∅, (3.4)

and a vector of recovery actions yk along with a vector y0 are associated with a directed

Steiner arboresence of P k for all scenarios k ∈ K if they fulfil(
y0 + yk

) (
δ− (S)

)
≥ 1 ∀S ⊆ V \ {r} , S ∩ P k 6= ∅, ∀k ∈ K. (3.5)

Constraints (3.3), (3.4) and (3.5) are called x-cuts, y0-cuts and scenario-cuts, respec-

tively. As we will describe in detail later, our branch-and-cut performs at a given node

of the branch-and-bound tree a separation procedure of x-cuts, y0-cuts and scenario-

cuts by means of (i) the resolution of a max-flow problem on a support graph induced
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by the Linear Programming (LP) relaxation and (ii) a combinatorial enumeration of

those cuts on a support tree also induced by the current LP relaxation.

The MIP model for the RRTLND problem reads then as follows:

min
∑
e∈E

beXe +
∑
e∈E

ueY
0
e + ω

s.t. ω ≥
∑
e∈E

rkeY
k
e ∀k ∈ K (3.6)

(3.3), (3.4), (3.5)

Xe = xij + xji Y 0
e = y0

ij + y0
ji Y k

e = ykij + ykji ∀e : {i, j} ∈ E,∀k ∈ K (3.7)

Xe, Y
0
e , Y

k
e ∈ {0, 1} ∀e ∈ E, k ∈ K (3.8)

Before concluding this section we note that it is possible to also write a compact

formulation using three sets of flow variables—to model the three sets of connectivities

imposed by constraints (3.3), (3.4) and (3.5). However, given the number of scenarios,

this model blows up rapidly and is not a computationally viable approach for the

problem.

3.3.2 Branch-and-Cut Algorithm

The MIP formulation based on cut-set inequalities for the RRTLND problem cannot

be solved directly, even for small instances, since there are an exponential number

of x-, y0- and scenario-cuts. In this section we describe a branch-and-cut approach

used for solving the problem. We first explain different schemes designed to separate

the directed cut-set constraints (i.e., (3.3), (3.4) and (3.5)). Next, the initialization

performed to improve the quality of the lower bounds of the initial MIP model is

described. Finally, we provide a description of the primal heuristic embedded within

the branch-and-cut framework that helps in establishing high-quality upper bounds

early in the search process.

3.3.3 Separation of Cut-set Inequalities

Cut-set inequalities are usually separated using maximum-flow algorithms. Basic ideas

of this separation for the RRTLND problem are provided below. In addition, we also

explain two advanced separation mechanisms that are called mixed and combinatorial

cuts separation. The latter approach uses the problem-specific structure to speed-up

the separation process and improves lower bounds in the earlier phase of the search

process.

Basic Separation Procedures (Max-Flow Based Cuts) Violated cut-set in-

equalities can be found in polynomial time using a maximum-flow algorithm on the
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support graph with arc-capacities given by the current fractional solution
(
x̃, ỹ0, ỹk

)
.

When separating x-, y0- and scenario-cuts, the capacities of the support graph are set

to be equal to the values of x̃, ỹ0 and
(
ỹ0 + ỹk

)
, respectively. For finding the max-

imum flow in a directed graph, we used an adaptation of [Cherkassky and Goldberg,

1995] maximum flow algorithm.

The separation is performed in the following order: First, we randomly select a node

from V \{r} and if there is a violated x-cut separating v from r, we insert it into the LP

(together with the corresponding set of nested and backward cuts, see the explanation

below). We resolve the LP and continue as long as such violated cuts are found. After

that, we attempt to find violated y0-cuts. This time, we perform the maximum-flow

calculation between r and each i ∈ V \ {r}, such that y0(δ−(i)) > 0. In the final

phase, when no more violated x-cuts and y0-cuts can be found, we search for violated

scenario-cuts. For each scenario k ∈ K, we perform the maximum-flow calculation

between r and each i ∈ P k.

By following this order in the separation procedure, we avoid inserting cuts that have

a greater likelihood of being weak (i.e., dominated by others) and thus reduce the

computational effort of the separation. For example, for a given set S and i ∈ S such

that y0(δ−(i)) = 1, the corresponding y0-cut dominates all scenario-cuts associated

with the same S.

Mixed Separation Because y0 ≤ x, if a set S ⊆ V \{r} induces a violated

x-cut then it might also induce a violated y0-cut, if there exist i ∈ S such that

y0(δ−(S)) < y0(δ−(i)). Because yk ≤ x − y0, if there exists a scenario k ∈ K,

such that S ∩ P k 6= ∅, the same set S also induces a violated scenario-cut. Hence,

within the separation process applied to x-cuts we can also separate y0-cuts and sce-

nario-cuts without solving another max-flow problem. We use these facts to develop a

separation procedure that we refer to as mixed separation. The outline of this proce-

dure is given in Algorithm 1. In this procedure, we call the maximum-flow algorithm

MaxFlow (GA, x̃
′, r, v, Sr, Sv) that, for a given directed graph GA, calculates the max-

imum flow between r and v with capacities x̃′. The algorithm returns two subsets of

nodes: Sr, r ∈ Sr and Sv, v ∈ Sv, such that the edges of the cut δ+ (Sr) and δ−(Sv)

induce the maximum flow. Inequalities associated with the set Sr and Sv are called

forward and backward cuts, respectively. Then, we continue recalculating maximum

flows on the same graph GA, on which the capacities of the edges from the two previ-

ously found cut-sets δ+ (Sr) and δ−(Sv) are set to one. That way, we detect disjoint

cuts and we reuse the previous maximum flow computation to speed up the overall

separation. The latter strategy is known as the nested cuts approach [see Ljubić et al.,

2006]. Variable MAX-CUTS denotes the number of cuts to be inserted before the LP

is resolved. In our implementation MAX-CUTS was set to 25.

Finally, we apply two variants of the mixed cut separation. The first one is described in

Algorithm 1: whenever we detect a violated x-cut, we also add corresponding violated
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Algorithm 1 Mixed Separation

Input: Graph GA = (V,A), fractional solution
(
x̃, ỹ0, ỹk

)
1: Choose a random node v from V \ {r}
2: x̃′ = x̃
3: repeat
4: f = MaxFlow(GA, x̃

′, r, v, Sr, Sv)
5: Detect the cut δ+ (Sr) such that x̃′

(
δ+ (Sr)

)
= f , r ∈ Sr

6: if f < 1 then
7: Insert violated cut x

(
δ+ (Sr)

)
≥ 1 into the LP

8: ĩr = arg maxi/∈Sr ỹ
0
(
δ− (i)

)
9: if ỹ0

(
δ+ (Sr)

)
< ỹ0

(
δ−
(
ĩr
))

then

10: Insert violated cut y0
(
δ+ (Sr)

)
≥ y0

(
δ−
(
ĩr
))

into the LP

11: for all k ∈ K, Sr ∩ P k 6= ∅ do
12: Insert the violated cut

(
y0 + yk

) (
δ+ (Sr)

)
≥ 1 into the LP

13: x̃′ij = 1, ∀(i, j) ∈ δ+ (Sr)
14: Detect the cut δ− (Sv) such that x̃′

(
δ− (Sv)

)
= f , v ∈ Sv

15: if Sv 6= Sr then
16: Insert the violated cut x

(
δ− (Sv)

)
≥ 1 into the LP

17: ĩv = arg maxi∈Sv ỹ0
(
δ− (i)

)
18: if ỹ0

(
δ− (Sv)

)
< ỹ0

(
δ−
(
ĩv
))

then

19: Insert the violated cut y0
(
δ− (Sv)

)
≥ y0

(
δ−
(
ĩv
))

into the LP

20: for all k ∈ K, Sv ∩ P k 6= ∅ do
21: Insert the violated cut

(
y0 + yk

) (
δ− (Sv)

)
≥ 1 into the LP

22: x̃′ij = 1, ∀(i, j) ∈ δ− (Sv)
23: until f ≥ 1 or MAX-CUTS constraints added

24: Resolve the LP

y0-cuts and scenario-cuts. On the other hand, when performing the separation of

y0-cuts in a later phase, we basically use the same idea to add violated scenario-cuts,

whenever a violated y0-cut is detected.

Combinatorial Cuts The separation of combinatorial cuts relies on the following

idea: if we knew the structure of the optimal spanning tree built in the first stage,

to find the optimal recoverable robust solution it is sufficient to consider the cut-sets

associated with the edges of that tree. Let T̃ = (Ṽ , Ã) denote the rooted spanning

arborescence associated with x-variables of the optimal solution. Observe that the

removal of an arc (j, `) ∈ Ã separates T̃ into two components. Let V` be the set of

nodes of the sub-arborescence rooted at `, and K` be the set of relevant scenarios, i.e.,

K` = {k ∈ K | V` ∩ P k 6= ∅}. The values of the variables y0 and yk could then be

determined by solving the following Integer Program (IP):

min
∑

(i,j)∈Ã

uijy
0
ij+ max

k∈K
min

∑
(i,j)∈Ã

rkijy
k
ij (3.9)

s.t. (y0 + yk)(δ− (V`)) ≥ 1 ∀(j, `) ∈ Ã, ∀k ∈ K` (3.10)

y0(δ−(V`)) ≥ y0(δ−(i)) ∀i ∈ V`, ∀(j, `) ∈ Ã (3.11)

y0 ∈ {0, 1}|Ã|,yk ∈ {0, 1}|Ã| ∀k ∈ K (3.12)

Obviously, in this model there are only O(nK) constraints, and the associated sets V`
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Algorithm 2 Combinatorial Cuts

Input: Graph GA = (V,A), T̃ =
(
Ṽ , Ã

)
a spanning arborescence of GA, fractional solution(

x̃, ỹ0, ỹk
)

1: L =
{
v ∈ Ṽ | δ+ (v) = ∅

}
2: for all ` ∈ L do
3: V` = {`}
4: K` =

{
k ∈ K | ` ∈ P k

}
5: repeat
6: Chose ` ∈ L

7: Let j be the parent of ` in T̃ , i.e., (j, `) ∈ Ã
8: if ỹ0

j` < 1 then
9: for all k ∈ K` do

10: if
(
ỹ0 + ỹk)(δ−(V`))

)
< 1 then

11: Insert the violated cut
(
y0 + yk)(δ−(V`))

)
≥ 1 into the LP

12: Kj = K` ∪ {k ∈ K | j ∈ P k}
13: Vj = V` ∪ {j} ; L = L\{`}; L = L ∪ {j}
14: until L = {r}

can be determined in O(n) time using a dynamic programming procedure. Further-

more, formulation (3.9)-(3.12) is equivalent to formulation (T.1)-(T.4).

Since we do not know the structure of the optimal arborescence in the first stage, we

try to heuristically approximate it and generate cut-sets of type (3.10) and (3.11) on

graph G (with the heuristic tree) and insert them into the model. Thus, we are able to

insert O(nK) cuts into the LP, in O(mK) running time. For good approximations of T̃ ,

these combinatorial cuts can bring a significant speed-up to the separation procedure,

especially in the early stages of the cutting plane algorithm. In Algorithm 2 the outline

of the procedure is presented. The main idea of the algorithm is to recursively generate

sets V` and K` and insert the violated cuts into the current LP. We start with the leaf

nodes of T̃ and process the arborescence in a bottom-up fashion until reaching the root

node. Whenever we process an arc of T̃ , we insert violated cuts into the current LP.

In total, each edge from G is “visited” at most twice and therefore, the total running

time of this procedure is at most O(mK).

Combinatorial cuts are separated together with y0-cuts and before the (more time

consuming) separation of scenario-cuts is performed. To approximate the tree T̃ , we

run the minimum spanning tree algorithm on G with edge weights set to

we = be min{(1− x̃ij) , (1− x̃ji)} for each e : {i, j} ∈ A, (3.13)

where x̃ is the value of the current fractional solution. Combinatorial cuts are also

added, whenever in the current LP, x is a binary vector.
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3.3.4 MIP Initialization

In our branch-and-cut approach we first drop all x-, y0- and scenario-cuts, and add

them in an iterative fashion only when violated. However, to improve the quality of

the lower bounds we incorporate additional constraints to the initial model. Since for

the RRTLND problem the x variables should construct a spanning arborescence of G,

the following in-degree constraints

x
(
δ−(i)

)
= 1, ∀i ∈ V, (3.14)

are valid inequalities that stress the tree-like topology of the corresponding solution.

We also include the constraints(
y0
ij + ykij

)
+
(
y0
ji + ykji

)
≤ 1, ∀(i, j) ∈ A, ∀k ∈ K, (3.15)

that correspond to subtour elimination constraints of size 2 for arcs with primary

technology.

Finally, we also use combinatorial cuts described above as part of the initialization of

the MIP model. The arborescence T̃ is approximated by the minimum spanning tree

considering edge weights be, ∀e ∈ E. This initialization provides good initial lower

bounds since many important cut-sets are inserted into the model at an early stage of

the cutting plane procedure without the resolution of a maximum flow problem.

3.3.5 Primal Heuristic

An important component of our branch-and-cut is the embedded Primal Heuristic,

whose pseudo-code is given in Algorithm 3. The core of the heuristic is to solve

an instance of the RRTLND problem on an induced spanning arborescence T̃ of GA

to optimality. For constructing the spanning arborescence T̃ we use LP-values of x

variables from the current LP relaxation. We run the minimum spanning tree algorithm

on G with edge weights defined by (3.13) (Step 1 of the algorithm).

In the loop (2-4) the preprocessing described in §3.2.2.2 is applied. We find the optimal

Steiner Tree (constructed by recovered edges) on T̃ considering terminal set P k; ωk

denotes the corresponding total recovery cost for each scenario. The main step of the

algorithm is Step 5, where the MIP problem (T.1)-(T.4) is solved. The feasible primal

solution
(
x̂, ŷ0, ŷk

)
of our problem is obtained by mapping the solution s∗ and the

structure of T̃ as shown in Step 6. All arcs in T̃ define the spanning arborescence

associated with x̂. The values of ŷ0 correspond to the values of s∗ and the values of ŷk

are calculated by a simple inspection using the information contained in Pk, ∀k ∈ K,

and s∗.
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Algorithm 3 Primal Heuristic

Input: Graph GA = (V,A), fractional solution
(
x̃, ỹ0, ỹk

)
, cost vectors a, b, u = a− b and r.

Output: A feasible solution
(
x̂, ŷ0, ŷk

)
for the RRTLND problem

1: T̃ = (VT̃ , E (x̃)) =spanningTree(G,w), where w is defined by (3.13).
2: for all k ∈ K do
3: Pk = steinerTree

(
P k, T̃

)
4: ωk =

∑
(i,j)∈Pk

rkij

5: Solve problem (T.1)-(T.4) with T̃ as input graph, cost vectors u and r, and vectors Pk and ωk.

6: Let s∗ be an optimal solution for (T.1)-(T.4) and A (x̃) be the arcs of E (x̃) oriented away from

r. A feasible solution
(
x̂, ŷ0, ŷk

)
for the RRTLND problem is defined by x̂ij = 1 if (i, j) ∈ A (x̃)

and x̂ij = 0 otherwise, ŷ0
ij = 1 if s∗ij = 1 and ŷ0

ij = 0 otherwise, ŷkij = 1 if (i, j) ∈ Pk and s∗ij = 0

and ŷkij = 0 otherwise.

Although we know that the problem is NP-Hard, in practice the computational effort

to solve the problem is remarkably little (usually only a fraction of a second or a couple

of seconds). This makes the primal heuristic very effecive since feasible solutions are

quickly computed.

3.4. The RR Two-Level Steiner Tree Problem

In some real-world instances of the TLND problem, in addition to the customer nodes,

there are additional nodes in the network (corresponding to street intersections, for

example) that do not require any service. The definition of the TLND problem can be

extended correspondingly. In this variant of the TLND problem that we refer to as the

Two-Level Steiner Tree (TLStT) problem, we are given a set R ⊂ V representing the

customers that have to be served either by primary or secondary technology. The set of

primary customers, P , is such that P ⊆ R. The goal is to find a minimum-cost Steiner

tree in G spanning all nodes from R and such that all nodes from P are connected with

each other using the primary technology. Using the notation presented before, binary

vector X instead of being associated with a spanning tree of G is now associated with

a Steiner tree connecting nodes from R. The remaining conditions remain the same

(Y is associated with a Steiner Tree connecting P , Y ≤ X, and the objective function

is given by (3.1)). Those nodes that do not belong to R but that are spanned by a

solution given by a pair (Y,X) are called Steiner-nodes.

The RRTLStT Problem For the Recoverable Robust counterpart of the TLStT

problem (RRTLStT) the set R ⊂ V is given at the outset, while the set of primary

customers is only determined after the uncertainty is resolved (i.e., the scenarios are

such that P k ⊆ R, ∀k ∈ K).

The MIP formulation provided for the RRTLND problem can be easily adapted for

the RRTLStT problem by imposing that feasible values of vector x instead of being

associated with a spanning arborescence of GA, have to instead be associated with a
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Steiner arborescence of set R. This is expressed by replacing x-cuts by

x
(
δ− (S)

)
≥ 1, ∀S ⊆ V \ {r} , S ∩R 6= ∅. (3.16)

This set of constraints, which we call xR-cuts, ensures that there is a directed path

from r to every node in R\{r}.

In the algorithmic framework outlined in §3.3.2 some procedures should be adapted

for solving the RRTLStT problem. In the MIP initialization, the “=” sign in (3.14)

should be replaced by “≤”. In the separation described in Algorithm 1, xR-cuts are

separated instead of x-cuts; in this case instead of selecting a random node v in V \{r}
and performing the separation from r to v, the separation is performed from r to every

node in v ∈ R\{r}. When applying Combinatorial-Cuts, instead of giving as input a

spanning arborescence T̃ of GA, we give as input a Steiner arborescence which spans

all nodes in R; this arborescence is found by means of an algorithm that succesively

solves shortest-path problems from r to v ∈ R\{r} with arc costs given by (3.13) and

merges these paths to conform an arborescence of GA spanning R. The same idea is

used in our primal heuristic, in which instead of finding an spanning arborescence of

GA we find a Steiner arborescence connecting nodes in R.

3.5. Computational Results

In this section we report on our computational experience on two sets of instances that

are used to test the branch-and-cut algorithm for both, the RRTLND problem and the

RRTLStT problem.

All the experiments were performed on an Intel CoreTM i7 (2600) 3.4GHz machine

with 16 GB RAM, where each run was performed on a single processor. The branch-

and-cut was implemented using CPLEXTM 12.3 and Concert Technology framework.

All CPLEX parameters were set to their default values, except the following ones: (i)

All cuts were turned off, (ii) heuristics were turned off, (iii) preprocessing was turned

off, (iv) time limit was set to 1800 seconds, and (v) higher branching priorities were

given to y0 variables. We have turned these CPLEX features off in order to make a

fair assessment of the performance of the techniques described in §3.3.2.

Interestingly, and somewhat to our surprise, it turns out that turning on CPLEX cuts

and heuristics actually slows down the performance of our algorithm. With regards

to the branching priorities, notice that whenever a variable, say y0
` , is fixed to one,

variables x` and yk` , ∀k ∈ K can be immediately fixed as well (x` = 1 and yk` = 0

∀k ∈ K). Furthermore, we know that only a few y0 variables (at most n− 1) will, at

the end of the optimization, take the value of 1. Therefore, we give higher branching

priorities to these variables, as they mostly influence the overall solution structure and

reduce the underlying search space.
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3.5.1 Instances

We consider two classes of randomly generated instances, that we refer to as G and SC

instances. Their topologies resemble different geographic local structures of communi-

cation and distribution networks.

G Instances This group of instances is generated following a similar scheme as [John-

son et al., 2000] (where the authors intended to generate instances that coincide with

the street maps of real-world instances). Here n nodes are randomly located in a unit

Euclidean square. An edge e between two nodes is created if the Euclidean distance

between them is no more than α/
√
n, for a fixed α > 0. Coordinates are generated

with five significant digits. The secondary cost of an edge be corresponds to the Eu-

clidean distance between its end points multiplied by 104 and rounded to the closest

integer; the primary cost ae is calculated as (1 + β) be, where β ∈ [0, 1] is a pre-defined

parameter and the recovery cost re = rke is assumed to be equal for all k ∈ K and is

set to (ε+ β) be, for a fixed ε ∈ [0, 1]. Both, primary and recovery costs are rounded

to the nearest integer value. A single node is randomly selected and chosen to be the

root node r. For the RRTLND problem, in each scenario k ∈ K, π% of nodes are

uniformly randomly selected from V to constitute the set of primary nodes P k. For

the RRTLStT problem, the set R of all potential customers is constructed by uniformly

randomly selecting ϕ% of all nodes from V . Similarly as for the RRTLND problem,

π% of all nodes from R are then uniformly randomly selected to build the set P k, for

each k ∈ K.

In our experiments we consider the following parameter settings: β ∈ {0.5, 1.0, 2.0, 3.0},
ε ∈ {0.5, 1.0, 2.0, 3.0} (which produces re/ue ∈ {7/6, . . . , 7}), π ∈ {10%, 20%, 30%},
and ϕ = 50%. Four instances were generated for each combination of those parameters.

Graphs of different size are considered as well. We choose n ∈ {50, 75, 100, 250} and

set α = 0.6. The value of α is incremented in steps of 0.001 until a connected graph

is obtained (in only one case, for n = 250, 0.6 was not enough to define a connected

graph and the real value of α was 0.613). This leads to 192 instances for a given n.

Figure 3.2(a) illustrates an example of a graph with 250 nodes and α = 0.6 (which

produces 1134 edges).

SC Instances These instances are generated on the basis of the well-known scale-

free networks [see Barabasi and Albert, 1999]. Scale-free networks frequently appear

in the context of complex systems, including the World Wide Web, the internet back-

bone, infrastructure networks, airline connections, cellular networks, wireless networks,

electric-power grids and many other contexts. Using the igraph library package [see

igraph Project, 2012] a scale-free graph of n nodes is created using default settings.

This actually produces a tree since linear preferential attachment (power-law equal 1)

is the default parameter for the generation. The resulting graph is simply an array

of binary relations. We then use the yEd Graph Editor software [see yWorks, 2012]
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(a) G instance with α = 0.6. (b) Scale-free tree with n = 250. (c) SC instance with α = 0.2.

Figure 3.2: Examples of the generated instances.

and draw the tree using the “organic” layout. This layout determines node coordi-

nates which are then used to add additional edges and augment the tree. A new edge

between two nodes is added if its Euclidean distance is no more than α/
√
n. The

root node corresponds to the node with label 0 in the scale-free tree. Edge costs (ba,

ae, re) and scenarios for both the RRTLND problem and the RRTLStT problem are

generated identically as the G instances.

In Figure 3.2(b) we show a scale-free tree with a layout fixed by yEd and in Figure 3.2(c)

the same instance augmented with a set of complementary edges (922 in total). For n =

50, 75, 100, 250, 500, 750, 1000 we use α = 0.1, 0125, 0.15, 0.2, 0.3, 0.35, 0.4 respectively.

The other parameters were set as in the case of the G instances. Four instances were

generated for each combination of the parameters n, π, β and ε. This leads to 192

instances for a given n.

3.5.2 Robustness and Recoverability

In our computations we consider up to 30 scenarios which are created in advance.

By doing this, when considering problems with 10 scenarios, we simply use the first

10 scenarios out of those 30. The same applies when considering 20 scenarios. The

scenarios are identical for the different values of β and ε. By proceeding in this way, it

is easier to measure the impact of considering a larger number of scenarios.

The way that robust first-stage solutions and the corresponding recovery actions are

calculated depends not only on the scenario structure but also on the cost structure;

the relations between ae, be and re. If the recovery costs re are high compared to the

first-stage upgrade costs ue = ae − be, then the solutions of the RRTLND problem

are more likely to have a larger first-stage primary tree. On the contrary, if recovery

is relatively cheap, then the optimal solutions will be comprised by a smaller first-

stage primary tree and more recovery actions will be performed (as in a wait-and-see

approach). This can be seen when comparing the solutions in Figures 3.3(a) and 3.3(b)

of a 250 nodes G instance with 20 scenarios. In the first case, recovering an edge in the

second stage is seven times more expensive than installing a primary technology in the

first stage (which is 50% more expensive than secondary technology), consequently the
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(a) β = 0.5, ε = 3, OPTRR = 50982,
∣∣E(y0)

∣∣ = 187,∣∣E(yk)
∣∣ / |K| = 4.

(b) β = 3, ε = 0.5, OPTRR = 96795,
∣∣E(y0)

∣∣ = 95,∣∣E(yk)
∣∣ / |K| = 34.

Figure 3.3: Examples of the solution of the RRTLND problem for a G instance
with 250 nodes and α = 0.6, |K| = 20, with different values of β and ε. Bold edges
correspond to first-stage primary edges, dashed edges are secondary edges that might

be recovered in some scenarios.

first-stage primary tree (bold edges, E
(
y0
)
), spans a large portion of the graph (186

nodes) and only a few recovery actions are needed per scenario (
∣∣E(yk)

∣∣ / |K| = 4).

The opposite occurs in the second case, when recovery cost is slightly more expensive

than the upgrade cost (which is four times more expensive than secondary cost); in

this case, the E
(
y0
)

component is smaller, spanning only 94 nodes, and much more

recovery actions take place in each scenario (
∣∣E(yk)

∣∣ / |K| = 37). The differences in

the value of the objective functions, OPTRR, can be explained similarly.

In Table 3.1 we report average values of the experimental results obtained for the

RRTLND problem for classes G and SC considering different number of nodes and dif-

ferent number of scenarios (columns Class, n and |K| respectively). The presented

statistics concern the solution characteristics as well as indicators of the algorithmic

performance. Column m corresponds to the average number of edges among the in-

stances created for each value of n. Column Gap(%) shows the average gap obtained

after the time limit of 1800 seconds is reached. This average is calculated over 64 in-

stances per each group. The corresponding average running times are shown in seconds

in column Time(s). The average size of the first-stage primary subtree of the optimal,

or best known feasible solution, is indicated in column
∣∣E(y0)

∣∣. The mean number of

recovery actions performed in each scenario can be expressed by
∣∣E(yk)

∣∣ divided by

|K|; the average values of this measure, for the optimal or best known solution, are

reported in column
∣∣E(yk)

∣∣ / |K|. In column #Opt the number of problems that can

be solved to optimality (out of 64 for each row) is shown.

A first-stage solution is expected to be more robust with respect to data perturbations

if more scenarios (possible data realizations) are taken into account. However, this

robustness is not for free. On the one hand the difficulty of the problem increases since

a larger search space should be considered; while on the other hand, the cost of the
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Class n m |K| Gap(%) Time(s)
∣∣E(y0)

∣∣ ∣∣E(yk)
∣∣ / |K| PH(%) #BBN’s #(3.3) #(3.4) #(3.5) #Opt

10 0.01 31.27 17 5 7.62 367 25 131 1459 64
50 163 20 0.01 222.60 17 5 6.79 837 30 207 4314 63

30 0.01 230.31 18 5 7.5 642 28 181 5554 64
10 0.01 53.11 24 6 7.91 471 50 151 1986 64

75 257 20 0.09 540.85 25 6 7.02 1197 54 272 6407 56
30 0.24 1004.85 25 6 6.78 1416 57 264 9292 40

G 10 0.01 458.67 35 9 7.54 1491 105 292 4136 62
100 356 20 0.36 1470.20 35 10 6.61 1056 105 344 9066 23

30 0.83 1780.54 36 10 6.95 434 103 271 11426 2
10 0.86 † 90 23 9.81 237 64 172 6861 0

250 1114 20 6.10 † 111 23 11.26 15 36 37 7497 0
30 10.67 † 119 23 15.28 5 24 13 6995 0
10 0.00 32.31 11 6 5.93 198 2 38 409 64

50 175 20 0.01 81.68 11 6 7.48 439 1 63 1162 64
30 0.01 150.98 12 6 6.45 769 1 84 2167 64
10 0.01 196.53 17 8 7.04 4016 15 109 1202 63

75 287 20 0.02 470.32 18 9 7.05 1460 15 151 3126 61
30 0.08 820.36 18 9 7.23 1486 15 185 5446 49
10 0.01 452.42 23 11 7.45 2490 13 149 1540 61

100 410 20 0.08 878.75 25 11 7.75 2731 11 179 3559 42
30 0.14 1177.93 24 12 7.7 1779 10 212 6096 32
10 0.07 1778.68 60 29 5.76 1313 59 288 3826 1

SC 250 932 20 0.17 † 62 32 5.63 518 55 217 6342 0
30 0.26 † 63 32 5.54 228 53 121 6896 0
10 0.06 † 124 58 5.44 385 36 243 5689 0

500 2345 20 0.26 † 126 63 5.26 16 20 93 7706 0
30 1.53 † 142 65 5.36 1 15 68 9289 0
10 0.08 † 189 87 5.39 132 38 210 7095 0

750 3460 20 0.95 † 209 94 5.39 4 20 94 10051 0
30 3.50 † 241 94 6.38 1 11 50 10622 0
10 0.16 † 261 114 5.58 65 36 201 8792 0

1000 4658 20 2.34 † 308 125 5.83 1 16 88 11970 0
30 6.64 † 367 124 8.34 0 7 33 9911 0

Table 3.1: Solution characteristics and algorithm performance averages for different
values of |K| for classes G and SC (RRTLND problem, π = 10%, β, ε ∈ {0.5, 1, 2, 3}).

†: Time limit (1800 s).

solutions, OPTRR, increases due to a possible enlargement of the first-stage primary

component or because a new worst-case scenario induces a higher robust recovery cost.

The first phenomenon is what we call the Effort for Robustness. Table 3.1 demon-

strates this phenomenon. Increasing the number of scenarios results in a deterioration

of the algorithmic performance for both classes of instances: (i) the average running

times increase (this is more apparent in the case of small instances, which could be

solved to optimality within the time limit); (ii) the average gap of the obtained solu-

tions deteriorates; and, therefore, (iii) the number of solution for which the proof of

optimality is obtained decreases. From the perspective of the solutions structure and

the corresponding cost, from columns
∣∣E(y0)

∣∣ and
∣∣E(yk)

∣∣ / |K| we can see the size

of the first-stage primary tree is almost constant for a given n, as well as the average

number of recovery actions performed by scenario. The fact that the average values

are almost constant for a given n means that our recoverable robust solutions are pro-

tected against data perturbation and are able to balance robustness and recoverability:

the robust first-stage solutions and their corresponding recovery actions depend more

on the cost structure (as shown in the Figure 3.3 example) than on the level of un-

certainty. Nevertheless, the absolute number of recovery actions (
∣∣E(yk)

∣∣) increases

proportionally to |K|, which means that the cost of the corresponding solutions is also
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Running times statistics (t ≤ 1800s) Gap (%) statistics (t > 1800s)

Class |K| # Min Median Mean Max # Min Median Mean Max

10 190 0.30 40.11 164.00 1690.00 66 0.02 0.25 0.84 12.39
G 20 142 2.56 189.40 372.80 1605.00 114 0.07 0.62 3.68 22.98

30 106 6.79 216.80 360.00 1594.00 150 0.07 0.78 5.01 29.60
10 189 0.72 60.00 194.20 1787.00 259 0.01 0.05 0.10 1.14

SC 20 167 4.60 125.60 278.70 1758.00 281 0.03 0.22 0.87 6.39
30 145 5.59 222.20 364.80 1535.00 303 0.03 0.90 2.56 13.86

Table 3.2: Running times and gap statistics of all instances of classes G and SC for
different values of |K| (π = 10%, β, ε ∈ {0.5, 1, 2, 3}, RRTLND problem)

likely to increase due to the augmentation of the worst-case recovery cost induced by

a new scenario.

Table 3.2 provides further analysis on the the impact of |K| on the algorithmic perfor-

mance. We report the statistics (the number of instances (#), min, median, mean and

max values) of the running times of those problems that are solved to optimality and

the statistics of the gaps of those problems that cannot be solved within 1800 seconds;

these statistics are summarized for all values of n, β, ε and π, for the two classes of

instances. Hence, each row summarizes statistics over 256 instances of each group.

As observed before, increasing the number of scenarios, |K|, clearly deteriorates the

performance of the algorithm: the median and mean running times of those problems

that are solved to optimality increase notably; while the median, mean and maximum

gaps of those problems that cannot be solved within the time limit, and their quantity

also increases.

In Table 3.3 we report basic statistics (Min, Median, Mean, Max) of the values of the

Gain of Recovery of the recoverable robust solutions with respect to the AR and W&S

approaches for a subset of instances of classes G and SC. The economical advantage

of the RR solutions is clearly shown by the reported values: both AR and W&S

solutions are, in general, more than 15% more expensive than the recoverable robust

ones. Moreover, the AR solutions can be 39% more expensive, while the W&S solutions

49% more expensive! This means that the recoverable robustness approach is able to

provide economically robust solutions by means of balancing first-stage and second-

stage actions depending on the cost and scenario structure.

3.5.3 Algorithmic Performance

More specific performance measures are presented in the remaining columns of Ta-

ble 3.1. In column PH(%) we report the average gap between the initial upper bound

(obtained by running Algorithm 3 in which w = b in Step 1) and the optimal, if

known, or the best lower bound attained within the time limit. The average number of

nodes of the branch-and-bound tree is shown in column #BBN’s. In columns #(3.3),
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GoR with respect to AR GoR with respect to W&S

Class n |K| Min Median Mean Max Min Median Mean Max
10 0.00 13.56 13.45 29.89 3.58 16.58 18.48 44.04

75 20 1.01 19.35 18.77 37.15 3.52 17.09 19.27 45.16
G 30 0.84 20.89 19.84 39.39 3.62 17.46 18.98 44.82

10 0.00 13.15 13.57 31.44 2.39 16.97 18.54 45.35
100 20 0.79 19.28 18.77 36.68 3.18 18.66 19.92 45.27

30 0.96 19.79 19.50 37.58 4.85 19.26 20.29 47.55
10 0.00 13.23 13.65 33.71 3.25 15.37 17.32 43.53

75 20 0.00 17.56 17.38 38.08 3.28 15.60 17.60 44.46
SC 30 1.01 20.22 19.23 38.43 1.70 15.85 17.73 43.56

10 0.39 13.81 13.86 31.18 4.31 19.04 21.14 49.02
100 20 0.71 16.57 16.14 32.26 3.44 19.88 21.36 48.09

30 1.03 17.85 17.44 34.24 3.00 19.31 20.87 47.44

Table 3.3: Gain of Recovery with respect to the Absolute Robustness and the Wait-
and-See approaches for instances of classes G and SC (RRTLND problem, π = 10%,

β, ε ∈ {0.5, 1, 2, 3}).

#(3.4) and #(3.5) we summarize the average number of x-, y0- and scenario-cuts,

respectively, that are added during the optimization process.

As discussed in §3.3.2, one of the main features of our branch-and-cut is the embedded

primal heuristic. From column PH(%) we observe that, in most cases, this average

value is below 10%, which reinforces our conviction that this procedure is crucial as

part of the algorithmic approach. These initial upper bounds can be obtained in a

couple of seconds or even fractions of a second for small instances.

For small instances (50 and 75 nodes for G instances, and 50 nodes for SC instances),

we notice that the number of nodes of the branch-and-bound tree increases with the

number of scenarios. However, for larger instances the situation is the opposite: an

increased number of scenarios implies a reduced value of #BBN’s. The more scenarios

we consider, the more complex the problem is. In some cases, especially for the largest

instances, only a few nodes are explored or, even worse, no branching is performed

and the optimization terminates while cutting planes are still being added at the root

node.

With respect to the separation of x-, y0- and scenario-cuts, the first observation is

that, for small and medium size instances, when increasing the number of scenarios the

number of x- and y0-cuts that are added is approximately constant and, the number

of scenario-cuts increases proportionally. Additionally, as might be expected, for a

given n and a given |K|, more scenario-cuts are added than y0-cuts, and more y0-cuts

are added than x-cuts. These behaviors are not verified for larger instances, which is

probably due to the fact that in this case the separation is mainly performed at the

root node, while it is actually during branching that the separation reaches a more

stable behavior. Despite the differences, it is interesting to notice that, in general, not

many cutting planes are needed to obtain strong lower bounds, which is the case for a

large percentage of instances.
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(b) Influence of β and ε in the algorithm performance
for the 250 nodes group of class G (|K| = {10, 20, 30},
π = 10%, RRTLND problem).

Figure 3.4: Cumulative percentage of instances with a given gap (%) obtained
within the time limit for the RRTLND problem

In Figure 3.4(a), we show the cumulative percentage of problems of class G, for different

values of |K|, for which we reach less than a given gap (%) within the time limit

(for each number of scenarios there are 256 problems to be solved in class G). This

complements the information presented in Tables 3.1 and 3.2 about the average gap in

relation to the number of scenarios. For 10 scenarios, we notice that more than 95% of

problems can be solved with less than a 2% gap within the time limit, and only a few

outliers present gaps greater than 5%. When considering problems with 20 scenarios

approximately 85% of the instances are solved to within a 2% gap in the time limit.

In this case, almost 10% of the instances present a gap larger than 10%, which can be

even higher than 20% for a few cases (less than 2% of the problems). However, when

considering |K| = 30, the quality of the solutions significantly deteriorates. More than

15% of the instances present gaps greater than 10% when reaching the time limit, and

these gaps are even higher than 25% for a few problems.

Figure 3.4(b) considers the group of instances with 250 nodes of class G (considering

|K| = {10, 20, 30} and π = 10%) and provides the cumulative percentage of problems

(%), for four combinations of β and ε, for which we reach less than a given gap (%)

within the time limit. It follows that when the recovery costs are significantly higher

than the upgrade costs the problem turns out to be easier to solve. This can be

explained by the fact that if recovery costs are expensive, then the induced solutions

tend to be comprised of a larger first-stage primary component (reducing the number

of recovery actions, see Fig. 3.3(a)). These solutions have a closer resemblance to the

easier deterministic TLND problem with P =
⋃
k∈K P

k. On the other hand, when

recovery costs are more “comparable” to first-stage upgrade costs the structure of

solutions has more of a “wait-and-see” flavor: the first-stage primary component is

smaller and a large number of recovery actions is performed in the second stage; this

emphasizes the combinatorial nature of the problem and it makes the optimization

task harder.
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Running times statistics (t ≤ 1800s) Gap (%) statistics (t > 1800s)
Class π # Min Median Mean Max # Min Median Mean Max

10% 87 6.01 368.80 555.80 1690.00 105 0.07 0.48 0.73 5.18
G 20% 57 5.85 486.80 605.80 1630.00 135 0.02 0.47 0.60 3.95

30% 64 6.13 506.30 649.10 1790.00 128 0.01 0.37 0.43 1.41
10% 135 12.01 263.60 429.00 1787.00 57 0.03 0.21 0.23 0.67

SC 20% 71 1.23 486.60 520.20 1785.00 121 0.01 0.23 0.32 3.22
30% 62 0.97 369.10 524.00 1744.00 130 0.03 0.20 0.22 0.54

Table 3.4: Influence of the value of π on the algorithmic performance for instances
with 100 nodes of both classes G and SC ( β, ε ∈ {0.5, 1, 2, 3}, |K| = {10, 20, 30},

RRTLND problem).

In all the results analyzed so far, we have considered π = 10% (in each scenario 10% of

the nodes are primary nodes). However, and in order to provide an accurate evaluation

of our algorithm we have performed computations by also considering π = 20% and

π = 30%. For both class G and class SC we selected the group of instances with 100

nodes and tested the developed algorithm for β, ε ∈ {0.5, 1, 2, 3} and |K| = {10, 20, 30},
considering π = 20% and π = 30%. For each value of π, 256 problems are solved. In

Table 3.4 we report the statistics regarding the running times of those instances that

are solved to optimality and the statistics of the gaps of those that reached the time

limit before optimality. We observe that increasing the fraction of nodes that are

primary in each scenario results in a fewer number of instances that are solved to

optimality. However, the gap statistics (over the instances not solved to optimality)

are similar for different values of π, in particular the median and mean values remain

in all cases below 1%. Hence we may conclude that the overall quality of the solutions

produced by our algorithm is not significantly affected for different values of π.

To give clear insights about the utility of the specific separation strategies designed

for our algorithmic framework (Mixed Separation and Combinatorial Cuts) Table 3.5

provides a comparison scheme that helps to evaluate the improvement of the algorith-

mic performance when including these two procedures. We have selected the groups

of instances of class G with 50, 75 and 100 nodes and considered β, ε ∈ {0.5, 1, 2, 3},
|K| = {10, 20, 30}, π = 10%; therefore, 192 problems were solved for each value of n.

Rows denoted by “Basic” correspond to the results obtained without Mixed Separation

and Combinatorial Cuts, rows “+Mixed Sep.” represent those results obtained when

Mixed Separation is included in the separation as described in §3.3.3, and in rows

“+Comb. Cuts” we report the results obtained when also the Combinatorial Cuts

are included. The most important indicator is the number of instances that can be

solved to optimality and the average time needed to solve them. As can be seen the

performance of the algorithm notably improves when mixed separation and combina-

torial cuts are turned on. For the group of instances with 250 nodes, only the gaps

are compared since no instance could be solved to optimality. Before we conclude this

section, we should note that our instances are motivated by real-world applications and

are thus somewhat sparse. It should be clear that as graph density increases the num-

ber of variables in our model will increase and the performance of the branch-and-cut
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Running times statistics (t ≤ 1800s) Gap (%) statistics (t > 1800s)
n Separation Strategy # Min Median Mean Max # Min Median Mean Max

Basic 56 2.51 129.00 290.70 1487.00 136 0.01 0.21 0.25 0.99
50 + Mixed Sep. 186 1.44 153.40 267.50 1550.00 6 0.08 0.24 0.25 0.50

+ Comb. Cuts 191 0.30 62.79 152.80 1589.00 1 0.46 0.46 0.46 0.46
Basic 56 4.23 342.50 463.00 1700.00 136 0.01 0.15 0.27 2.84

75 + Mixed Sep. 142 4.09 275.60 430.10 1712.00 50 0.05 0.45 0.60 3.01
+ Comb. Cuts 160 0.98 128.20 279.50 1594.00 32 0.07 0.45 0.63 3.02

Basic 40 27.13 457.40 650.60 1724.00 152 0.01 0.38 0.59 6.09
100 + Mixed Sep. 64 27.80 527.90 637.50 1773.00 128 0.03 0.59 0.89 5.14

+ Comb. Cuts 87 6.01 368.80 555.80 1690.00 105 0.07 0.48 0.73 5.18
Basic 0 - - - - 192 0.03 16.36 17.70 44.50

250 + Mixed Sep. 0 - - - - 192 0.02 3.69 7.99 30.65
+ Comb. Cuts 0 - - - - 192 0.02 0.99 5.88 29.60

Table 3.5: Impact of the branch-and-cut strategies on the algorithmic performance
for instances of class G ( β, ε ∈ {0.5, 1, 2, 3}, |K| = {10, 20, 30}, π = 10%, RRTLND

problem).

algorithm will deteriorate.

3.5.4 Results for the RRTLStT Problem

For the RRTLStT problem, we performed the same computational experiments as the

RRTLND problem. The corresponding adaptations of the branch-and-cut algorithm

were previously described in §3.4.

Robustness and Recoverability As expected, for the RRTLStT problem the

Effort for Robustness is paid as well. As for the RRTLND problem, increasing the

number of scenarios results in a deterioration of the algorithmic performance which

can be seen from the columns Gap(%), Time(s) and #Opt of Table 3.6. In general,

the average value of these indicators are slightly better than for the RRTLND problem.

A deeper analysis can be done on the basis of the results presented in Table 3.7, where

statistics of the running times and of the gaps are presented for both classes of instances.

We observe that the number of instances that are solved to optimality decreases and

the gap of those that are not solved to optimality increases when increasing |K|. These

measures are quite similar to those for the RRTLND problem in the case of G instances;

but it seems that on average for the SC instances the effort for robustness is “lower”

than for the RRTLND problem.

As can be seen from the columns
∣∣E(y0)

∣∣ and
∣∣E(yk)

∣∣ / |K| of Table 3.6, just like

the RRTLND problem there is a clear balance between the robustness of the first-

stage solutions and their recoverability. In this case, again the cost structure has more

influence on the configuration of solutions than the level of uncertainty.

Algorithmic Performance For the class G the average values of PH(%) in Table 3.6

are considerably worse than those for the RRTLND problem presented in Table 3.1

(the values are almost doubled). Nevertheless, for the case of class SC the first primal
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Class n m |K| Gap(%) Time (s)
∣∣E(y0)

∣∣ ∣∣E(yk)
∣∣ / |K| PH(%) #BBN’s #(3.16) #(3.4) #(3.5) #Opt

10 0.00 24.01 12 3 13.25 677 207 60 330 64
50 163 20 0.00 51.73 13 3 11.32 202 218 98 867 64

30 0.00 80.54 13 3 10.36 288 227 110 1369 64
10 0.00 78.52 18 4 13.62 260 318 125 1496 64

75 257 20 0.14 768.01 18 4 13.49 577 352 220 3973 49
30 0.38 1250.94 19 4 13.81 274 346 195 5470 33

G 10 0.01 341.89 22 6 16.65 637 732 338 1421 64
100 356 20 0.34 1154.46 22 6 16.31 653 726 365 3315 34

30 1.00 1435.43 22 6 17.05 323 687 287 4379 21
10 1.45 † 55 14 19.24 204 505 0 4604 0

250 1114 20 7.58 † 64 14 22.90 8 252 0 5157 0
30 13.24 † 71 14 28.16 1 157 0 5262 0
10 0.00 21.77 7 3 3.93 251 167 27 96 64

50 175 20 0.00 31.07 7 4 4.01 58 165 32 209 64
30 0.00 42.73 8 3 4.15 154 163 47 356 64
10 0.00 62.38 10 5 5.34 124 371 57 302 64

75 287 20 0.00 120.31 10 6 4.63 352 364 77 631 64
30 0.01 155.90 10 5 4.7 282 373 87 1009 63
10 0.01 159.72 12 7 2.87 5192 501 84 318 63

100 410 20 0.01 276.45 12 7 3.09 3372 511 130 728 60
30 0.01 302.83 12 7 3.66 2013 496 136 1142 62
10 0.04 1050.02 29 18 4.15 1581 1782 315 1194 45

SC 250 932 20 0.12 1400.67 28 18 4.16 1025 1786 315 2347 25
30 0.29 1581.26 31 19 4.12 448 1733 245 3151 19
10 0.10 1778.98 61 37 5.98 972 425 0 4179 2

500 2345 20 0.19 † 61 39 5.79 56 188 0 6262 0
30 0.72 † 62 39 5.85 3 125 0 8074 0
10 0.18 † 95 56 5.97 172 454 0 5344 0

750 3460 20 1.15 † 101 57 6.35 1 164 0 8436 0
30 3.75 † 111 60 8.02 0 94 0 10196 0
10 0.59 † 134 68 6.73 95 570 0 7245 0

1000 4658 20 2.37 † 141 76 7.73 1 193 0 11440 0
30 6.52 † 160 81 10.83 0 103 0 12947 0

Table 3.6: Solution characteristics and performance measures for different values of
|K| for classes G and SC (RRTLStT problem, π = 10%, β, ε ∈ {0.5, 1, 2, 3}). †= Time

limit (1800 s).

solutions are, on average, as good as for the RRTLND problem. The fact that x, instead

of defining a spanning arborescence onGA, actually defines a Steiner arborescence onR,

helps to explain this. The initial secondary Steiner arborescence on which we calculate

the corresponding feasible solution is obtained by means of a heuristic procedure as

explained in §3.4; while in the case of the RRTLND problem we find the primal solution

on the optimal spanning arborescence with costs equal to be, ∀e ∈ E.

The average number of explored branch-and-bound nodes (column #BBN’s) has, more

or less, the same order of magnitude and the same dependance on n and |K|, as in

the case of the RRTLND problem. From columns #(3.16), #(3.4) and #(3.5), where

the average numbers of inserted xR-, y0- and scenario-cuts are reported, we notice

that the separation process behaves differently from the one of the RRTLND problem.

Since the separation of xR-cuts is performed by solving a max-flow from r to all nodes

in R\{r} (instead of a max-flow from r to a single node in V \{r}), more xR-cuts are

added compared to the number of x-cuts that are added for the RRTLND problem. We

observe that fewer y0-cuts are inserted during the separation than for the RRTLND

problem. This can be explained by the size of the primary subtree built in the first

stage which is much smaller for the RRTLStT problem.
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Running times statistics (t ≤ 1800s) Gap (%) statistics (t > 1800s)

Class |K| # Min Median Mean Max # Min Median Mean Max

10 192 2.86 61.07 148.10 1349.00 64 0.10 0.43 1.45 12.08
G 20 147 4.91 126.00 308.40 1728.00 109 0.08 1.39 4.73 22.27

30 118 6.27 136.30 371.60 1750.00 138 0.12 1.51 6.77 27.59
10 238 1.44 46.16 204.40 1708.00 210 0.01 0.08 0.27 3.48

SC 20 213 3.53 54.72 185.40 1552.00 235 0.02 0.31 1.04 6.58
30 208 4.85 78.50 224.70 1730.00 240 0.02 1.56 3.01 16.42

Table 3.7: Running times and gap statistics of all instances of classes G and SC (
β, ε ∈ {0.5, 1, 2, 3}, π = 10%, RRTLStT problem)
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Figure 3.5: Cumulative percentage of instances with a given gap (%) obtained
within the time limit for the RRTLStT problem

In Figure 3.5(a) we find further insights about the quality of the solutions for the

RRTLStT problem for class G and its dependence to |K|. The results are analogous to

those for the RRTLND problem. The influence of the cost structure, which depends

on β and ε, on the algorithmic performance is outlined in Figure 3.5(b), where results

for the group of instances with 250 nodes are shown.

3.6. Conclusions

RRO is a concept that falls within the framework of 2SRO. In a certain sense, RRO can

be viewed as two-stage robust optimization with limited recourse (where the practical

recovery action constitutes the limited recourse available to the decision maker). It

models the practical contexts where a robust solution is desired, but where it is possible

to “recover” the solution appropriately (i.e., make it feasible using the limited set of

recourse actions available) once the uncertainty is resolved. While there has been a

lot of work on robust optimization, the work on 2SRO and RRO, especially in the

discrete optimization context is somewhat limited. Our work contributes to the 2SRO

and RRO literature in the context of the TLND problem.
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The recoverable robust counterpart of the TLND problem studied in this chapter ad-

dresses uncertainty in the set of primary nodes, which we modeled by means of a set of

discrete scenarios. We showed that when the input instance corresponds to a tree, the

problem remains NP-Hard and we propose a MIP formulation with a linear number

of variables for this case. For general networks we developed a MIP formulation based

on cut-set inequalities, and we designed specialized techniques to solve the problem

exactly within a branch-and-cut framework. A Steiner variant of the problem was also

considered and the exact approach was suitably adapted.

Our branch-and-cut approach was tested extensively on two classes of instances for

both the RRTLND and RRTLStT problems. As noted in our experiments the cost

structure of the problem has a significant effect on both the solution structure and

the running times. We evaluated the benefit of RRO against a traditional (one-stage)

Robust Optimization approach and a Wait-and-See approach using a concept termed

the Gain of Recovery [used previously by Büsing et al., 2011]. Our computational

results clearly demonstrate the significant benefits of the RRO approach.





Chapter 4

The Recoverable Robust Facility

Location Problem

4.1. Introduction

Nowadays, we are more and more aware of the growing presence of dynamism and

uncertainty in decision making. Fortunately, as the decisions become more complex,

the availability of modeling, algorithmic and computational tools increases as well. Fa-

cility location and allocation decisions are among the most relevant decisions in several

private and public logistic contexts and they usually involve strategic and operative

policies with mid and long term impacts. Precisely because of the practical relevance

of these decisions, it is important that they incorporate the uncertainty that naturally

appears during the planning, modeling and operative process. Such uncertainty can be

represented by different realizations of the input data: customers that actually require

a commodity or a service, locations where the facilities can be located, the network

that can be used for connecting customers with facilities, and the corresponding costs.

The true values of this data usually become available later in the decision process. In

such cases a standard deterministic optimization model that considers a single possible

outcome of the input data can lead towards solutions that are unlikely to be optimal,

or for that matter even feasible, for the final data realization.

Supply chain management is a strategical area in which both uncertainty and facility

location are core elements. For instance, as it is pointed out in [Snyder and Daskin,

2005], supply chains are particularly vulnerable to disruptions (intentional or acciden-

tal), imposing the need of taking into account the possible availability of depots and

roads and different structures of the demand. Likewise, short-term phenomena such

as fluctuations in commodity prices (such as oil) or long-term public policies (such

as new toll road concessions) might lead to operational cost increases that should be

considered when deciding the transportation network to be used.

83
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In another context, natural events such as tsunamis, hurricanes or blizzards can pro-

duce disastrous effects with unpredictable intensity on populated areas and on the

transportation infrastructure. Countries such as Bangladesh and the Philippines are

two typical examples; both of them are regularly hit by hydrological disasters such

as floods and typhoons. According to the Department of Disaster Management of

Bangladesh [DDM, 2014], every year around 18% of the country is flooded, which

produces over 5000 causalities and the destruction of more than 7 millions of homes.

However, flooded areas my exceed the 75% of the country in case of severe events

(as in 1988, 1998 and 2004). In the case of the Philippines, between 6 to 9 typhoons

make landfall every year producing thousands of human losses and incalculable urban

destruction; in November of 2013, typhoon Haiyan produced 6241 causalities and ma-

terial damage of over 809 millions USD [see PAGASA, 2014]. In these examples, it is

crucial to be able to count with a robust system of humanitarian relief facilities that

even in the worst possible scenario can provide assistance with the quickest possible

response reducing the number of human loses after the occurrence of the event.

The Uncapacitated Facility Location Problem (UFL), also referred as the Simple Plant

Location Problem, is one of the fundamental models in the wide spectrum of Facility

Location problems [see, e.g., recent overviews presented in Eiselt and Marianov, 2011,

Daskin, 2013]. In the classical deterministic version of the UFL one is given the set of

customers, the set of locations, the facility set-up costs and the allocation costs. The

goal is to define where to open facilities and how to allocate the customers to them so

that the sum of set-up plus allocation costs is minimized.

In practice, it is usually the case that from the moment that the information is gathered

until the moment in which the solution has to be implemented, some of the data might

change with respect to the initial setting. As mentioned above, even if some (rough)

idea about customers and locations is known, changes in demographic, socio-economic,

or meteorological factors can lead to changes in the structure of the demand during

the planning horizon, and/or the availability of a given location to host a facility

(even if a facility has been already installed). This means that the solution obtained

using a classical method might become infeasible and a new solution might have to be

redefined from scratch. In these cases it would be better to recognize the presence of

different scenarios for the data and find a solution comprised by first- and second-stage

decisions.

Two well-known approaches to deal with uncertainty in optimization are Two-stage

Stochastic Optimization (2SSO) and Robust Optimization (RO). In 2SSO [see Birge

and Louveaux, 2011] the solutions are built in two stages. In the first stage, a partial

collection of decisions is defined which are later on completed (in the second stage),

when the true data is revealed. Hence, the objective is to minimize the cost of the

first-stage decisions plus the expected cost of the recourse (second-stage) decisions. The

quality of the solutions provided by this model strongly depends on the accuracy of



Chapter 4 The Recoverable Robust Facility Location Problem 85

the random representation of the parameter values (such as probability distributions)

that allow to estimate the second-stage expected cost. Nonetheless, sometimes such

accuracy is not available so the use of RO models dealing with deterministic uncertainty

arises as a suitable alternative [see Kouvelis and Yu, 1997, Bertsimas and Sim, 2004,

Ben-Tal et al., 2010]. On the one hand these models do not require assumptions about

the distribution of the uncertain input parameters; but on the other hand, they are

usually meant for calculating single-stage decisions that are immune (in a certain sense)

to all possible realizations of the parameter values.

A novel alternative that combines RO and 2SSO is Two-stage Robust Optimization

(2SRO); as in RO, no stochasticity of the parameters is assumed, and as in 2SSO,

decisions are taken in two stages. In this case, the cost of the second-stage decision is

computed by looking at the worst-case realization of the data. Therefore, the goal of

2SRO is to find a robust first-stage solution that minimizes both the first-stage cost

plus the worst-case second-stage cost among all possible data outcomes. 2SRO is a

rather generic classification of models; for references on different 2SRO settings we

refer the reader to [Ben-Tal et al., 2004, Zhao and Zeng, 2012].

One of the possibilities in the 2SRO framework is Recoverable Robustness [see Liebchen

et al., 2009]. Recalling our practical motivation, assume that the facility location and

allocation policy is defined in two stages such that we are required to find a first-stage

solution that should be robust against the possible realizations (scenarios) of the input

data in a second stage. This means that the first-stage solution is expected to perform

reasonably well, in terms of feasibility and/or optimality, for any possible realization

of the uncertain parameters. An essential element of this approach is the possibility

of recovering the solution built in the first stage (i.e., to modify the previously de-

fined location-allocation policy in order to render it feasible and/or cheaper) once the

uncertainty is resolved in a second stage. The recovery plan is comprised by recovery

actions which are known in advance and whose costs might also depend on the possible

scenario. This recovery plan is limited, in the sense that the effort needed to recover a

solution may be limited algorithmically (in terms of how a solution may be modified)

and economically (in terms of the total cost of recovery actions). Therefore, instead

of looking for a static solution that is robust against all possible scenarios without

allowing any kind of recovery [which is the case for many RO approaches, see Ben-Tal

et al., 2010], we want a solution robust enough so that it can be recovered promptly

and at low cost once the uncertainty is resolved. This balance between robustness and

recoverability is what defines a recoverable robust optimization problem.

With respect to the UFL, we want to find a solution whose first-stage component

(opening of some facilities and allocating some customers) is implemented before the

complete realization of the data. This solution can then be recovered in the second

stage (to turn it into a feasible one) once the actual sets of customers and locations
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become available. In this case the recovery actions correspond to the opening of new

facilities, the establishment of new allocations and the re-allocation of customers.

The Recoverable Robust UFL (RRUFL) looks for a solution that minimizes the sum

of the first-stage costs plus the second-stage robust recovery cost defined as the the

worst case recovery cost over all possible scenarios. A formal definition of the RRUFL

is given in §4.2.1.

4.1.1 Our Contribution and Outline of the Paper

The contributions of this work can be summarized as follows: (i) Due to the nature of

the considered uncertainty, we use a recent concept of recoverable robust optimization

to formulate a Mixed Integer Programming (MIP) model that allows to derive a facility

location and allocation policy composed by first- and second-stage decisions; (ii) for

this novel problem we design a sophisticated algorithmic framework based on Benders

decomposition which is complemented by several non-trivial enhancements; (iii) using

instances from two different large classes (representing transportation and disaster

management settings) we analyze in detail the characteristics of the proposed model

and the obtained solutions as well as the effectiveness, behavior, and limitations of the

designed approach.

In §4.2 the concept of Recoverable Robustness is presented and the RRUFL is formally

defined. The proposed algorithmic framework is described in §4.3. The description

of the benchmark instances and a detailed analysis of the computational results are

presented in §4.4. Finally, conclusions and final remarks are given in §4.5.

4.1.2 The Uncapacitated Facility Location Problem

It is hard to establish a single seminal work presenting the UFL, nonetheless [Kuehn

and Hamburger, 1963] is usually regarded as the earliest work where the UFL is pre-

sented as commonly known today. We refer the reader to [Cornuejols et al., 1990,

Verter, 2011] (including the references therein) for comprehensive surveys on the UFL

and some of its variants.

A MIP formulation for the UFL can be given as follows. Let R be the set of customers,

J the set of potential location of facilities, and A a set of links (i, j) connecting cus-

tomers i in R with locations j in J (A ⊆ R × J). The cost of opening a facility at

location j ∈ J is given by fj , and the cost of assigning customer i ∈ R to facility j ∈ J
using an existing link (i, j) is given by cij . Let y ∈ {0, 1}|J | be a vector of binary

variables such that yj = 1 if a facility is opened at location j ∈ J and yj = 0 otherwise,

and let x ∈ {0, 1}|A| be a vector of binary variables such that xij = 1 if customer i ∈ R
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is allocated to a facility in j ∈ J using link (i, j) ∈ A. Using this notation, the UFL

can be formulated as follows:

OPT = min
∑
j∈J

fjyj +
∑

(i,j)∈A

cijxij

s.t.
∑

(i,j)∈A

xij = 1, ∀i ∈ R

xij ≤ yj , ∀(i, j) ∈ A, ∀j ∈ J

y ∈ {0, 1}|J | and x ∈ [0, 1]|A|.

Despite its simple definition, the UFL is known to be NP-Hard [Cornuejols et al.,

1990]; however, the current advances in MIP solvers, computing machinery and the

development of sophisticated preprocessing techniques allow to find optimal or nearly

optimal solutions for large instances of the UFL within reasonable time. We refer

to [Letchford and Miller, 2012] for recent works on reduction procedures for the UFL.

The incorporation of different types of uncertainty when modeling and solving the

UFL is not new; in §4.2.2 we will provide a brief review of Facility Location under

uncertainty and compare our setting with previously proposed problems.

4.2. The Recoverable Robust UFL

In this section we present a literature review on Recoverable Robustness and formally

define the RRUFL.

Recoverable Robust Optimization Recoverable Robust Optimization (RRO)

was first introduced in [Liebchen et al., 2007, 2009] as a tool for decision making under

uncertainty in applications arising in the railway scheduling. In [Cacchiani et al., 2008]

and [D’Angelo et al., 2011] one can find further applications of RRO in the context of

railway scheduling.

In the last couple of years, RRO has been applied to other problems. The recover-

able robust knapsack problem considering different models of uncertainty is studied

in [Büsing et al., 2011]. Formulations and algorithms for different variants of the re-

coverable robust shortest path problem are given in [Büsing, 2012]. Models, properties

and exact algorithms for recoverable robust two-level network design problems are

presented in [Álvarez-Miranda et al., 2013c]. A more general framework of the RRO

is studied in [Cicerone et al., 2012] where multiple recovery stages are allowed. The

authors apply this new model to timetabling and delay management applications.

Different types of uncertainty, e.g., interval, polyhedral and discrete sets, can be in-

cluded in the decision process trough RRO. In this paper, we use discrete sets to model

the uncertainty.
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4.2.1 A Formulation of the RRUFL

As mentioned above, facility location along with the corresponding allocation decisions

are typically exposed to uncertainty in different input data. As described in [Shen

et al., 2011], it is possible to classify uncertainty in three categories: provider-side un-

certainty, receiver-side uncertainty, and in-between uncertainty. The first corresponds

to the uncertainty in facility capacity, facility reliability, facility availability, etc.; the

second is related to the uncertain structure of the set of customers, customer demands,

customer locations, etc.; and the third refers to the lack of complete knowledge about

the transportation network topology, transportation times or costs between facilities

and customers. The proposed recoverable robust UFL model is a general approach

and it can address situations in which uncertainty may be present in any of these three

categories.

Suppose we are given an instance of the UFL in which uncertainty is present in the set of

customers R, the set of locations J , the set of allocation links A and the corresponding

set-up and allocation costs. Such application might arise, for instance, in the event of

natural disasters. In these cases it can be very hard to estimate in advance (i) which

areas will require humanitarian relief, (ii) where the emergency facilities (e.g., Red

Cross facilities) can be located and (iii) how the damaged areas can be reached by the

emergency brigades coming from the installed facilities. Therefore, instead of dealing

with deterministic sets R, J and A we are given a finite set K of discrete scenarios

such that each scenario k ∈ K is characterized by its own sets Rk, Jk and Ak and also

by the corresponding set-up and allocation costs.

Formally, let K be a set of scenarios representing possible realizations of the problem

data, more precisely, for a given k ∈ K: let Rk be the set of customers that require

the service if scenario k is realized; let Jk be the set of locations where facilities can

be opened if scenario k is realized; and let Ak be the set of links that can be used

if scenario k is realized. We define R0 =
⋃
k∈K R

k as the set of potential customers,

J0 =
⋃
k∈K J

k as the set of potential locations and A0 =
⋃
k∈K A

k as the set of potential

connections. We assume that the classical UFL has at least one feasible solution for

R0, J0 and A0, and that each customer i ∈ Rk can be reached by some link from Ak.

The decision maker faces a two-stage decision: she/he needs to define a first-stage plan

(to open some facilities and to allocate some customers to these open facilities) without

knowing in advance the actual data that will be revealed. Once the actual information

is available in a second stage (i.e., a single k ∈ K and its corresponding Rk, Jk and

Ak) additional decisions can be taken in order to recover the first-stage plan and turn

it into a feasible solution for the revealed data. A second-stage decision is said to be

feasible if for all k ∈ K each customer i ∈ Rk is allocated to one installed facility

in j ∈ Jk and the allocation link is operational, i.e., (i, j) ∈ Ak. These second-stage

decisions consist of (i) the opening of new facilities, (ii) the allocation of customers to
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(a) RRUFL instance (b) A 1st-stage solu-
tion

(c) Solution for k = 1 (d) Solution for k = 2

Figure 4.1: Example of an instance and first- and second-stage solutions for the RRUFL.

facilities that are either opened in the second-stage or were opened in the first-stage,

and (iii) the re-allocation of customers that were allocated in the first-stage to facilities

that are actually not available in the realized scenario.

In Figure 4.1(a) an instance of the RRUFL with set of facilities J0 = {A,B,C}, set

of customers R0 = {1, 2, 3, 4} and with two scenarios is shown. Scenario k = 1 is

given by R1 = {1, 3, 4}, J1 = {A,B}, A1 = {(1, A), (1, b), (3, A), (4, B)}, and scenario

k = 2 is given by R2 = {2, 3, 4}, J2 = {B,C}, A2 = {(2, B), (4, B), (3, C)}. In

the first stage, allocation and facility set-up costs are 1 and 2, respectively. In the

second stage, allocation and set-up costs are 1.5 and 3, respectively, the cost of re-

allocating a customer is 2 and the penalty for a facility opened at a non-available site

is 3.5. A first-stage solution is shown in Figure 4.1(b); a facility at site A is opened,

customers 1 and 3 are allocated to it and the total cost is: 2 (one opening) + 1 +

1 (two allocations) = 4. For this given first-stage decision, we present in Figure 4.1(c)

the optimal second-stage solution in case scenario k = 1 is realized: a facility at site

B has to be installed while the facility at A remains open, customers 1 and 3 keep

their allocations while customer 4 is allocated to the facility in B; so the second-

stage cost is: 3 (one opening) + 1.5 (one allocation) = 4.5. The optimal second-stage

solution in case scenario k = 2 is realized is shown in Figure 4.1(d): facilities at B

and C have to be installed while the facility at A becomes unavailable, customers

2 and 4 are allocated to the facility at B, while customer 3 has to be re-allocated

to the facility in C; the cost is: 3 + 3 (two opening) + 1.5 + 1.5 (two allocations) +

2 (one re-allocation) + 3.5 (one penalty) = 14.5. Therefore, in the worst case, the

overall cost of establishing this first-stage solution and recover it in the second stage is

given as max{4 + 4.5, 4 + 14.5} = 18.5. Our goal will be to find the optimal first-stage

decision, so that in the worst-case total cost of the first- and second-stage is minimized.

For this example, the optimal first-stage solution is defined by the installation of a

facility in B and the allocation of 4 to it; this solutions induces a first-stage cost of 3

and worst case second stage cost of 6, yielding a total cost of 9.

MIP Formulation In the first stage, decisions are modeled as follows: let y0 ∈
{0, 1}|J0| be a vector of binary variables such that y0

j = 1 if a facility is opened at
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location j ∈ J0 in the first stage (at cost f0
j ) and y0

j = 0 otherwise; let x0 ∈ {0, 1}|A0|

be a vector of binary variables such that x0
ij = 1 if the link (i, j) ∈ A0 is used to allocate

customer i ∈ R0 to the facility at j ∈ J0 (at cost c0
ij) and x0

ij = 0 otherwise. For a

given scenario k ∈ K, second-stage decisions are defined as follows: let yk ∈ {0, 1}|Jk|

be a vector of binary variables such that ykj = 1 if a facility is opened at location

j ∈ Jk in the second stage (at cost fkj ) and ykj = 0 otherwise; let xk ∈ {0, 1}|Ak| be a

vector of binary variables such that xkij = 1 if the link (i, j) ∈ Ak is used to allocate

customer i ∈ Rk to the facility at j ∈ Jk (at cost ckij) and xkij = 0 otherwise; and let

zk ∈ {0, 1}|Ak| be a vector of binary variables such that zkil = 1 if the link (i, l) ∈ Ak is

used to re-allocate customer i ∈ Rk to the facility at l ∈ Jk (at cost rkil) and zkil = 0

otherwise. If a facility is installed in the first stage at a given location j ∈ J0 (y0
j = 1)

and this location is available if scenario k is realized in a second stage (j ∈ Jk), then

this facility remains open and no extra cost is incurred; if the location is not available

in the second stage (j ∈ J0 \ Jk), then a penalty pkj must be paid.

With this definition of variables, a first-stage solution is a pair (x0,y0) ∈ {0, 1}|A0|+|J0|

satisfying

x0
ij ≤ y0

j , ∀(i, j) ∈ A0 (FS.1)∑
(i,j)∈A0

x0
ij ≤ 1, ∀i ∈ R0. (FS.2)

Given a first-stage solution (x0,y0) and a scenario k ∈ K, the recovery cost is the

minimum total cost ρ(x0,y0, k) of the second-stage recovery actions (xk,yk, zk) needed

to render the solution feasible. Hence, ρ(x0,y0, k) is found by solving the following

recovery problem:

ρ
(
y0,x0, k

)
= min

∑
j∈Jk

fkj
(
ykj − y0

j

)
+

∑
(i,j)∈Ak

ckijx
k
ij +

∑
(i,l)∈Ak

rkilz
k
il +

∑
j∈J0\Jk

pkj y
0
j (R.1)

s.t.
∑

(i,j)∈A0

x0
ij +

∑
(i,j)∈Ak

xkij = 1, ∀i ∈ Rk (R.2)

∑
(i,j)∈A0\Ak

x0
ij ≤

∑
(i,l)∈Ak

zkil, ∀i ∈ Rk (R.3)

xkij + zkij ≤ ykj , ∀(i, j) ∈ Ak, ∀i ∈ Rk (R.4)

y0
j ≤ ykj , ∀j ∈ Jk (R.5)

yk ∈ {0, 1}|J
k|, xk ∈ {0, 1}|A

k|, zk ∈ {0, 1}|A
k|. (R.6)

Objective function (R.1) is comprised by the set-up cost of facilities in the second-

stage (
∑

j∈Jk fkj (ykj − y0
j )), the allocation cost in the second-stage (

∑
(i,j)∈Ak ckijx

k
ij),

the cost of re-allocating customers (
∑

(i,l)∈Ak rkilz
k
il), and the total penalty paid by those

facilities opened in the first stage that can not operate if scenario k ∈ K is realized

(
∑

j∈J0\Jk pkj y
0
j ). Constraints (R.2) state that a customer is either allocated in the first

stage (
∑

(i,j)∈A0 x0
ij) or in the second-stage (

∑
(i,j)∈Ak xkij). Constraints (R.3) model the

fact that if a customer i ∈ Rk has been allocated in the first-stage to a facility j ∈ J0 by
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means of a link (i, j) ∈ A0\Ak then it has to be re-allocated to another facility l ∈ Jk

through a link (i, l) available in the second-stage (
∑

(i,l)∈Ak zkil). Constraints (R.4)

impose that if a customer is allocated or re-allocated to a facility j ∈ Jk, then that

facility has to be available and reachable in the second-stage. The fact that a facility

that has been opened in the first stage should remain opened in the second stage is

modeled by (R.5). The nature of the variables is imposed in (R.6) (note that one can

also relax the integrality constraints for xk and zk, ∀k ∈ K).

For a given first-stage solution (x0,y0) the robust recovery cost R(x0,y0) corresponds

to the maximum recovery cost among all k ∈ K, i.e.,

R
(
x0,y0

)
= max

k∈K
ρ
(
x0,y0, k

)
. (RR)

Combining (FS.1)-(FS.2), (R.1)-(R.6) and (RR), we define the Recoverable Robust

UFL problem (RRUFL) as

OPTRR = min
∑
j∈J0

f0
j y

0
j +

∑
(i,j)∈A0

c0
ijx

0
ij +R

(
x0,y0

)
(4.1)

s.t. (FS.1)-(FS.2), (R.2)-(R.6) and (x0,y0) ∈ {0, 1}|A0|+|J0|. (4.2)

In the proposed formulation of the RRUFL we impose that each customer i ∈ Rk has

to be assigned (or re-assigned) to exactly one available facility j ∈ Jk for any given

k ∈ K. It is possible to relax this and, instead, impose a penalty, say tki , if customer

i ∈ Rk is not served by any facility if scenario k is realized. This can be done by

introducing a dummy facility πk with a set-up cost equal to 0 and connecting it to

every customer i ∈ Rk with an allocation (and re-allocation) cost ckiπ = rkiπ = tki .

In many applications it is natural to think that whichever decision we take in the

future it will be more expensive than if it would have been taken at present. For

instance, opening a facility at a given location is likely to be more expensive later

on in the planning horizon than now (fkj ≥ f0
j ). Likewise, an agreement between a

depot (facility) and a customer is expected to have better conditions (for one of the

two parties at least) if it is established earlier than if it is defined when the market

conditions have evolved (ckij ≥ c0
ij). Furthermore, it is also natural to think that if

an already agreed pact between a depot and a customer is forced to be changed (e.g.,

because no allocation link is available between them), this will entail an additional

re-allocation cost possibly higher than the original one (rkil ≥ c0
ij , for all l ∈ Jk).

An optimal first-stage solution (x0,y0) is robust because, regardless which scenario

occurs, it guarantees that the second-stage actions will be efficient (due to the min-

imization of the worst case) and easy to implement (because only a simple UFL has

to be solved). Hence, the more scenarios we take into consideration to find (x0,y0),

the more robust the solution is; because we are foreseeing more possible states of the
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future uncertainty. Unlike common approaches of RO that protect solutions against

perturbations in parameters as costs or demands, our approach also hedges against

uncertainty in the very topology of the network. Likewise, a first-stage solution is re-

coverable, or possesses recoverability, because it can become feasible in a second stage

by means of second-stage actions.

The Robust UFL without Recovery To assess the effectiveness and benefits of

the RRULF, we also introduce another natural, but more conservative, model. Assume

a decision-making context equivalent to the one taken into account before. Consider a

model in which first-stage decisions are comprised only by y0 and second-stage decisions

only by xk, ∀k ∈ K. This is, an 2SRO model in which facilities can be opened only in

the first stage and allocations can be decided only in the second stage. We will refer to

this new problem simply as Robust Uncapacitated Facility Location without Recovery

(RUFL). This alternative model lacks the concept of recoverability since the solution

cannot be intrinsically changed: no new facility can be opened and there is no need to

re-allocate any customer in the second stage. Therefore, the solutions of such model

although possibly more robust (since they are more conservative) are expected to be

more expensive, either because unnecessarily many facilities have to be opened in the

first stage or because the second-stage allocation costs are considerably higher than

those of the first stage. If we consider again the instance in Figure 4.1(a), one can

easily see that for this new model the optimal (and only feasible) first-stage solution

would be given by the installation of facilities in A, B and C (with a cost of 6). In

both k = 1 and k = 2 the optimal second-stage cost would be 8. This leads to a total

cost equal to 6 + max{8, 8} = 14, which is more than the cost of the optimal solution

of the RRUFL which is 9.

4.2.2 The RRUFL and Previously Proposed Problems

Already in the 70’s efforts were devoted to provide both theoretical and algorithmic

contributions on Stochastic UFL. In [Snyder, 2006] one can find an excellent review

on Facility Location under uncertainty, describing contributions not only from the

stochastic but also from the RO perspective. More recent references to Facility Loca-

tion under uncertainty include [Snyder and Daskin, 2005, Averbakh, 2005, Snyder and

Daskin, 2006, Cui et al., 2010, Shen et al., 2011, Albareda-Sambola et al., 2011, Adji-

ashvili, 2012, Gao, 2012, Alumur et al., 2012, Albareda-Sambola et al., 2013, Gı̈lpinar

et al., 2013] and [Li et al., 2013].

Our definition of the RRUFL, as well as the algorithmic framework described later,

spans different possible cases of uncertainty in Facility Location. Some of them have

been already addressed in the literature by the use of stochastic and robust two-stage

models.
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For instance if Jk = J0 and Ak = A0, ∀k ∈ K, then we are only addressing uncertainty

in the set of customers and, eventually, in the second-stage costs. A 2SSO approach

for this problem has been considered in [Ravi and Sinha, 2006], where approximation

algorithms have been proposed. In [Snyder and Daskin, 2005, Cui et al., 2010, Shen

et al., 2011] and [Li et al., 2013], uncertainty has been addressed only in the set of

locations (Rk = R0 and Ak = A0, ∀k ∈ K). As stressed by the authors, this model

is suitable for applications where facilities might become unavailable in a second stage

due to disruptions caused by natural disasters, terrorists attacks or labor strikes [see

Cui et al., 2010]. These papers share two important features. First, uncertainty is

tackled by means of 2SSO since probabilities of facility failure are known in advance

for each scenario. Second, a user is assigned to a so-called primary facility that will

serve it under normal circumstances, as well as to a set of ordered backup facilities such

that the first of them that is available will serve the customer when the primary is not

available [see Snyder and Daskin, 2005]. This second feature cannot be included in our

framework without introducing additional binary variables; nonetheless decision-maker

preferences about the re-allocation of a customer in case the originally assigned facility

fails can be incorporated by a proper definition of the re-allocation second-stage costs.

A third case is the one where only connections are subject to uncertainty (Rk = R0

and Jk = J0, ∀k ∈ K). A 2SRO model of this case is studied in [Hassin et al., 2009]

where the relevance of such a model of uncertainty is emphasized in the context of

response planning after disasters.

4.3. Algorithmic Framework

Note that formulation (4.1)-(4.2) has a polinomial number of variables and constraints

with respect to |R0|, |A0| and |K|. Therefore it can be solved directly (as a compact

model) through any state-of-the-art MIP solver (e.g., CPLEX). However, as we will

show later, when large realistic instances have to be solved, the direct use of solvers

turns out to be impractical.

Model (4.1)-(4.2) is a natural candidate to be solved by means of a Benders-like de-

composition approach: the first-stage variables (x0,y0) are incorporated in the mas-

ter problem (MP) and the second-stage variables (xk,yk, zk) are projected out and

replaced by a single variable ω representing the robust recovery cost, for a given

(x̃0, ỹ0), that is computed by solving |K| slave problems (SPs). Thus, the objec-

tive function (4.1) becomes OPTRR = min
∑

j∈J0 f0
j y

0
j +

∑
(i,j)∈A0 c0

ijx
0
ij + ω, where

ω ≥ ρ
(
x0,y0, k

)
, ∀k ∈ K. Hence, for each given value of

(
x0,y0, k

)
, ω can be com-

puted by independently solving |K| problems (R.1)-(R.6).

One of the main drawbacks of traditional implementations of Benders decomposition

for two-stage integer problems is the need for solving several MIP problems (MP and
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SPs) at each iteration in order to obtain a single Benders-cut. Nonetheless, nowadays

most of MIP optimization suites provide branch-and-cut frameworks supported by the

use of callbacks. Therefore, a Benders decomposition algorithm can be transformed

into a pure branch-and-cut approach by the use of callbacks. Benders cuts are added

to the model as valid lower-bounds on ω each time a potential solution of the MP

is found by means of solving a Linear Programming (LP) problem in a given node

of the enumeration tree. This technique exploits the benefits of the decomposition

allowing to implement additional methods for heuristically finding more cuts and/or

for strengthening the obtained ones. That way, both, the speed and the convergence

of the algorithm can be improved [see Ljubić et al., 2013, Pérez-Galarce et al., 2014].

Basic Separation of L-shaped and Integer L-shaped Cuts In our approach,

a valid lower bound on ω is iteratively imposed by means of L-shaped and integer L-

shaped cuts [see Van Slyke and Wets, 1967, Laporte and Louveaux, 1993]. For a given

first-stage solution, the second-stage problem can be decomposed into |K| independent

problems: dual variables of the LP-relaxations of these SPs yield L-shaped cuts that

are added to the MP while integer solutions of the SPs yield integer L-shaped cuts.

At a given node of the enumeration tree, let (x̃0, ỹ0) be a first-stage solution satisfy-

ing (FS.1)-(FS.2) and let ω̃ be the current value of variable ω. For a given k ∈ K, the

dual of (R.1)-(R.6) after removing the integrality constrains can be formulated as

max
∑
i∈Rk

αi

1−
∑

(i,j)∈A0

x̃0
ij

+ γi

 ∑
(i,j)∈A0\Ak

x̃0
ij

+
∑
j∈Jk

(
εj − fkj

)
ỹ0
j +

∑
j∈J0\Jk

pkj ỹ
0
j

(D.1)

s.t. αi − δij ≤ ckij , ∀(i, j) ∈ Ak, ∀i ∈ Rk (D.2)

γi − δil ≤ rkil, ∀(i, l) ∈ Ak, ∀i ∈ Rk (D.3)

εj +
∑

(i,j)∈Ak

δij ≤ fkj , ∀j ∈ Jk (D.4)

(α, γ, δ, ε) ≥ 0, (D.5)

where (α,γ, δ, ε) correspond to the dual variables of constraints (R.2), (R.3), (R.4)

and (R.5), respectively. Let (α̃, γ̃, δ̃, ε̃) be an optimal solution to (D.1)-(D.5) with

optimal value ρ̃k. Following the LP-duality theory, an L-shaped (optimality) cut is

given by

ω ≥
∑
i∈Rk

α̃i

1−
∑

(i,j)∈A0

x0
ij

+ γ̃i

 ∑
(i,j)∈A0\Ak

x0
ij

+
∑
j∈Jk

(
ε̃j − fkj

)
y0
j +

∑
j∈J0\Jk

pkj y
0
j ,

(LS)

which is added to the model if ω̃ < ρ̃k. Note that an L-shaped cut (LS) can be found

regardless of (x̃0, ỹ0) being integer.

Now suppose that (x̃0, ỹ0) is integer. If there is no k ∈ K with ω̃ < ρ̃k, then one

can attempt to find integer L-shaped cuts [see Laporte and Louveaux, 1993]. For a
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given k ∈ K, let ρ̌k be the optimal value of (R.1)-(R.6) (preserving the integrality

constraints), if ω̃ < ρ̌k, then the following valid inequality can be added to the MP,

ω ≥ ρ̌k
 ∑

(i,j)∈Ak

(x0
ij − 1)−

∑
(i,j)∈Ak\Ak

x0
ij +

∑
j∈Jk

(y0
j − 1)−

∑
j∈Jk\Jk

y0
j + 1

 , (i-LS)

where Ak = {(i, j) ∈ Ak | x̃0
ij = 1} and Jk = {j ∈ Jk | ỹ0

j = 1} are the index sets of

the links (i, j) ∈ Ak and locations j ∈ Jk chosen in the first stage, respectively.

4.3.1 Strengthening and Calculating Additional L-shaped Cuts

In the following we will describe the different enhancements that we have incorporated

into our algorithmic framework.

Scenario Sorting Formally speaking, when separating (LS) cuts we only need to

add the cut associated with the worst-case scenario k∗ = arg maxk∈K(ρ̃k) for a given

(x̃0, ỹ0). However this entails an important disadvantage: exactly |K| LP and/or ILP

problems have to be solved to optimality, and only a single cut is generated out of this

eventually large computational effort.

In order to overcome the above described drawback we have designed a strategy that

first sorts scenarios dynamically according to the information of previous iterations

and then attempts to add not a single but many potentially good cuts. We first note

that as long as ω̃ < ρ̃k, one can add an (LS) cut. Secondly, it is intuitive to think that

for a given instance there is a subset of scenarios that systematically induce violated

cuts, while another subset of scenarios rarely do so. Therefore, on the basis of the

cut violation values, ρ̃k − ω̃, one can dynamically update a list K = [k1, k2, . . . , kK ],

placing in the first positions those scenarios that consistently induce large cut violation

and at the end those that rarely satisfy ω̃ < ρ̃k.

In our strategy we apply learning mechanisms to identify K and prioritize the search

of violated L-shaped cuts using the first elements of the list until a pre-fixed number

MAXcut ≤ |K| of violated cuts has been found or a pre-fixed number MAXfail ≤ |K|
of failed attempts has been reached.

In Algorithm 4 we present the general scheme of the separation of L-shaped cuts using

the scenario sorting strategy. For each scenario k ∈ K, the value freq[k] accumulates

the number of separation calls in which we have solved the corresponding SP. Likewise,

the value viol[k] is a cumulative cut violation value of scenario k, over all previous

separation calls. In Step 1 the list K is created and its elements are sorted in decreasing

order with respect to viol[k]/freq[k], which represents the average violation that each

scenario has induced in the previous iterations. In loop 3-12 the L-shaped cuts are

added: in line 4 the first scenario in the list K is taken and removed; the k−th SP
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Algorithm 4 Basic L-shaped cut Separation with Scenario sorting

Input: Fractional solution (x̃0, ỹ0, ω̃); vectors freq and viol; MAXcut and MAXfail.

1: K = sortScenarios(K,viol, freq);
2: Set ccut = 0 and cfail = 0;
3: repeat
4: k = getFirst(K);
5: Solve the LP-relaxation of the k−th SP (R.1)-(R.6) and let ρ̃k be the corresponding optimal

value;
6: freq[k] = freq[k] + 1 and viol[k] = viol[k] + (ρ̃k − ω̃);
7: if ω̃ < ρ̃k then
8: Insert an L-shaped cut given by (LS) into the LP;
9: ccut++;

10: else
11: cfail++;
12: until ccut = MAXcut or cfail = MAXfail
13: Resolve the LP;

is solved in line 5; both vectors needed to sort scenarios are updated in line 6; if the

solution of the SP induces a violated cut (line 7) then the corresponding inequality is

added in line 8 and the counter of added cuts is increased (line 9); if no violated cut is

generated, the corresponding counter is increased in line 11.

In our default implementation (and after parameter tuning), we have set MAXcut =

0.25× |K| and MAXfail = 0.25× |K|.

Dual Lifting Clearly, the strength of the generated L-shaped cuts will strongly

influence the performance of the algorithm; the stronger they are, the less MP iterations

(hence, the less explored nodes in the enumeration tree) are needed. In this paper we

use a recently proposed technique to strengthen L-shaped cuts [see Ljubić et al., 2013].

In contrast to other approaches for generating stronger cuts [see, e.g., Magnanti and

Wong, 1981], this method does not require to solve any additional LP problem and the

strengthening process can be performed in linear time (with respect to the number of

variables).

Let (x̃0, ỹ0) be a pair satisfying (FS.1)-(FS.2), ω̃ the current value of variable ω, and

(α̃, γ̃, δ̃, ε̃) an optimal solution to (D.1)-(D.5) that satisfies ω̃ < ρ̃k. The scheme

to strengthen the corresponding L-shaped cut is the following: (i) If a for customer

i ∈ Rk we have
∑

(i,j)∈A0 x̃0
ij = 1, then the corresponding dual variable αi does not

appear in (D.1). (ii) If a for customer i ∈ Rk we have
∑

(i,j)∈A0\Ak x̃0
ij = 0, then the

corresponding dual variable γi does not appear in (D.1). (iii) If for a facility j ∈ Jk

we have ỹ0
j = 0, then the corresponding dual variable εj does not appear in (D.1).

(iv) Moreover, variables δ do not appear in the objective (D.1) neither. On the basis

of (i)-(iv) we observe that we deal with a highly degenerate LP and one can expect

that the optimal solutions to (D.2)-(D.4) usually produce positive slacks (typically, an

LP solver will fix the associated dual variables to zero). The idea is now to produce

another LP optimal solution of the dual SP such that these slacks are reduced to zero.
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Therefore, the values of the dual coefficients in (LS) will be lifted as follows:

α̌i =

α̃i if
∑

(i,j)∈A0 x̃0
ij < 1

min(i,j)∈Ak{ckij + δ̃ij} otherwise

γ̌j =

γ̃j if
∑

(i,j)∈A0\Ak x̃0
ij > 0

min(i,j)∈Ak{rkij + δ̃ij} otherwise

ε̌j =

ε̃j if ỹ0
j > 0

fkj −
∑

(i,j)∈Ak δ̃ij otherwise
.

This is why we refer to this procedure as dual lifting. If α̌i > α̃i, γ̌j > γ̃j or ε̌j > ε̃j for

at least one i ∈ Rk or j ∈ Jk, respectively, then the lifted L-shaped cut is given by

ω ≥
∑
i∈Rk

α̌i

1−
∑

(i,j)∈A0

x0
ij

+ γ̌i

 ∑
(i,j)∈A0\Ak

x0
ij

+
∑
j∈Jk

(
ε̌j − fkj

)
y0
j +

∑
j∈J0\Jk

pkj y
0
j .

(l-LS)

Lemma 4.1 (Ljubić et al. [2013]). The lifted L-shaped cuts (l-LS) are valid and strictly

stronger than the standard L-shaped cuts (LS).

From the algorithmic point of view, to apply this approach one simply has to insert a

cut of type (l-LS) instead of one of type (LS) in line 8 of Algorithm 4.

Zero-half-L-shaped Cuts Zero-half cuts are a subclass of rank-1 Chvátal-Gomory

cuts with multipliers restricted to
{

0, 1
2

}
[Caprara and Fischetti, 1996]. They play an

important role in polyhedral theory, and nowadays they are also incorporated in major

MIP solvers. Instead of using a generic zero-half cut generation [see, e.g., Andreello

et al., 2007], we impose zero-half cuts in combination with the learning mechanisms

introduced in the previous section. To this end, for a given k ∈ K, observe that by

reordering terms, an arbitrary (LS) or (l-LS) can be written as

ω ≥ Λ(ξ
k
) +

∑
(i,j)∈A0

ξ
k
ijx

0
ij +

∑
j∈J0

εkj y
0
j , (4.3)

where Λ(ξ
k
) is a constant value and ξ

k
and εk are the corresponding condensed dual

multipliers. Now, let us consider two scenarios k1 and k2 inducing cuts (l-LS) in a

given node of the search tree and such that all coefficients of (4.3) are integer for k1

and k2 (with a least one odd value). By first multiplying each coefficient of the two

induced cuts by 1/2 and then summing the two resulting inequalities, we get:

ω ≥ 1

2

(
Λ(ξ

k1
) + Λ(ξ

k2
)
)

+
∑

(i,j)∈A0

1

2

(
ξ
k1

ij + ξ
k2

ij

)
x0
ij +

∑
j∈J0

1

2

(
εk1
j + εk2

j

)
y0
j . (4.4)
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By rounding up the constant term and each of the coefficients of the above inequality,

we get the following zero-half cut:

ω ≥
⌈

1

2

(
Λ(ξ

k1
) + Λ(ξ

k2
)
)⌉

+
∑

(i,j)∈A0

⌈
1

2

(
ξ
k1

ij + ξ
k2

ij

)⌉
x0
ij +

∑
j∈J0

⌈
1

2

(
εk1
j + εk2

j

)⌉
y0
j .

(zh-LS)

Now, suppose that the cut induced by k1 is stronger than the one induced by k2; in

this case the resulting zero-half cut (zh-LS) is stronger than the L-shaped cut corre-

sponding to k2. We use this observation to incorporate zero-half cuts (zh-LS) into the

scheme described in Algorithm 4 for separating L-shaped cuts as follows: Let k1 be

the first scenario in K that induces an L-shaped cut (l-LS); afterwards, for all other

scenarios explored in K inducing violated cuts we obtain the corresponding (l-LS) and

we combine it with the one obtained by k1, which yields a stronger violated (zh-LS).

This strategy is justified by the fact that the ordering of the elements in K is based on

how strong the previously produced cuts have been with respect to the cut violation.

A Matheuristic for Generation of Additional L-shaped Cuts We have de-

scribed how we use the current fractional solution (x̃0, ỹ0) in order to obtain a collection

of valid inequalities of type (LS), (l-LS), (zh-LS) and (i-LS). The idea now is to use

(x̃0, ỹ0) in order to heuristically obtain an alternative feasible pair (x̂0, ŷ0) and use it

to find additional L-shaped cuts at the root node.

The pair (x̂0, ŷ0) is found by a matheuristic that resembles the basic ideas of Local

Branching [see Fischetti and Lodi, 2003, Rei et al., 2009]. Let Sx0 = {(i, j) ∈ A0 |
x̃0
ij > π} and Sy0 = {j ∈ J0 | ỹ0

j > π}, be the sets of first-stage allocation and location

decisions whose corresponding optimal LP-values are greater than π, where π is a

predefined threshold value. If (x̃0, ỹ0) is integer, sets Sx0 and Sy0 exactly represent a

feasible first-stage solution. Hamming distances of an arbitrary pair (x0,y0) to (x̃0, ỹ0)

can be defined as

∆
(
x0, x̃0

)
=

∑
(i,j)∈Sx0

(1− x0
ij) +

∑
(i,j)∈A0\Sx0

x0
ij

and

∆
(
y0, ỹ0

)
=
∑
j∈Sy0

(1− y0
j ) +

∑
j∈J0\Sy0

y0
j .

For a given (x̃0, ỹ0), the alternative solution (x̂0, ŷ0) is found as follows. Let Φ be the

set of points
(
x0,y0, ω

)
defined by the cuts of type (LS), (l-LS), (zh-LS) or (i-LS) that

have been added to the model before. The solution (x̂0, ŷ0) is found by solving the
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following LP problem:

(
x̂0, ŷ0

)
= arg min

∑
j∈J0

f0
j y

0
j +

∑
(i,j)∈A0

c0
ijx

0
ij + ω (MH.1)

s.t. ∆
(
x0, x̃0

)
≤ κx (MH.2)

∆
(
y0, ỹ0

)
≤ κy (MH.3)

∆
(
y0, ỹ0

)
≥ 1 (MH.4)(

x0,y0, ω
)
∈ Φ (MH.5)

(FS.1), (FS.2) and (x0,y0) ∈ [0, 1]|A0|+|J0|, (MH.6)

where the constants κx and κy of (MH.2) and (MH.3), respectively, define the neigh-

borhood within which we want to find
(
x̂0, ŷ0

)
. Constraint (MH.4) ensures that the

new solution will differ from the original one in at least 1 unit of distance with respect

to y0. The later condition is imposed considering that a small change regarding the set

of opened facilities is more likely to yield a different (and potentially useful) solution

than a change on the allocation decisions.

Once that (MH.1)-(MH.6) is solved, the solution
(
x̂0, ŷ0

)
is used to obtain cuts of

type (l-LS) (or (zh-LS) if the feature is enabled) applying the same procedures ex-

plained above. Furthermore, we have implemented an iterative process in which prob-

lem (MH.1)-(MH.6) is solved Mh times, such that the neighborhood size is slightly

increased in each following iteration. More precisely, at a given iteration t, κx and κy

are given by:

κx = d(1 + t)× ϑ× |Sx0 |e and κy =
⌈
(1 + t)× ϑ× |Sy0 |

⌉
,

where ϑ ∈ [0, 1] is a user defined parameter. In our default implementation, parameters

π, ϑ and Mh are set to 0.1, 0.75 and 2 respectively.

It is well-known that the incorporation of constraints such as (MH.2) and (MH.3)

usually decreases the practical difficulty of a model [see Fischetti and Lodi, 2003],

therefore, finding these additional cuts is computationally inexpensive.

4.3.2 Primal Heuristic

Another component of our algorithm is a primal heuristic that uses the information of

the current fractional solution (x̃0, ỹ0) and attempts to construct a feasible solution

(x̌0, y̌0, ω̌) that improves the current upper bound. The scheme of the primal heuristic

is presented in Algorithm 5.
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Algorithm 5 Primal Heuristic

Input: Fractional solution (x̃0, ỹ0, ω̃); threshold Θ.
1: y = averageLP-Val(ỹ0,Θ);
2: x = averageLP-Val(x̃0,Θ);
3: Initialize J̌0 = ∅, Ř0 = ∅ and ω̌ = 0;
4: J̌0 = {j ∈ J0 | ỹ0

j > rand[Θ, y]};
5: Ř0 = {i ∈ R0 |

∑
(i,j)∈A0 x̃

0
ij > rand[Θ, x]};

6: if |J̌0| > 0 then
7: Set y̌j = 1 if j ∈ J̌0 and y̌j = 0 otherwise;
8: Set x̌ij∗ = 1 if i ∈ Ř0 and j∗ = arg min{(i,j)∈A0|j∈J̌0} cij and x̌ij = 0 otherwise.

9: ω̌ = maxk∈K ρ
(
x̌0, y̌0, k

)
10: Try to set (x̌0, y̌0, ω̌) as incumbent solution;

Function averageLP-Val(ỹ0,Θ) (see line 1), is given by∑
j∈J0:ỹj>Θ ỹ

0
j

|J0 : ỹ0
j > Θ|

;

which means that y is computed using only those elements whose LP-values are larger

than Θ, where Θ is a predefined threshold value. The value x is computed similarly

(see line 2).

A key element of the proposed heuristic is given in lines 4 and 5: set J̌0 (resp. Ř0)

is built by adding an element j (resp. i) if ỹ0
j (resp.

∑
(i,j)∈A0 x̃0

ij) is greater than

a value, uniformly randomly generated in the interval [Θ, y] (resp. [Θ, x]). Thanks

to the use of average LP-values x and y, important information about the solution

topology is transferred from the current LP solution to the heuristic solution. On the

other hand, the use of random thresholds (lines 4 and 5) provides diversification to the

heuristic and helps in escaping local optima. The feasible first-stage solution (x̌0, y̌0)

is computed in lines 7 and 8 by means of a very simple greedy heuristic. The heuristic

value of ω̌ is found in line 9. Although |K| ILP problems (R.1)-(R.6) have to be solved

they are not solved to optimality but until a gap of less than 1% is reached (which

typically takes at most a few seconds). The default value of Θ was set to 0.01.

4.3.3 Auxiliary Variables and Branching Priorities

Looking more carefully at the objective function of a k-th subproblem, one easily

observes that for each customer i ∈ R, its assignment variables are grouped together

into binary decisions: (i) the customer is served in the first stage (
∑

(i,j)∈A0 x0
ij), and

(ii) the customer is served in the first stage by a wrong facility (
∑

(i,j)∈A0\Ak x0
ij). This

motivates us to introduce additional binary decision variables and impose a new non-

standard branching on them. More precisely, we introduce auxiliary binary variables
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q, s ∈ {0, 1}|Rk|, for all k ∈ K, as follows:

qki =
∑

(i,j)∈A0

x0
ij , ∀i ∈ Rk, ∀k ∈ K (4.5)

ski =
∑

(i,j)∈A0\Ak

x0
ij , ∀i ∈ Rk, ∀k ∈ K. (4.6)

These auxiliary variables play two important roles in our algorithmic framework. First,

they are useful in the efficient construction of the LP (and ILP) SPs. The right-hand-

side of (R.2) and (R.3) can be fixed for each i ∈ Rk without the need of any extra loop

to sum up the values of the first-stage solution x̃0. Second, and more important, these

auxiliary variables are used to guide the branching in a more effective way by imposing

higher branching priorities on them. Clearly, fixing to 0 or to 1 one of these variables

immediately fixes the value of other variables. For instance if qki = 1 and ski = 0 for

a given i ∈ Rk (customer i ∈ Rk has been allocated in the first-stage to a facility

through a link that is available in scenario k in the second stage), then xkij = zkij = 0

∀(i, j) ∈ Ak. Otherwise, if qki = 0 (customer i ∈ Rk has not been allocated in the

first-stage to any facility), then ski = 0,
∑

i∈Rk xkij = 1 and zkij = 0 ∀(i, j) ∈ Ak. Other

combinations can be analyzed straightforwardly.

Adding these variables and constraints (4.5)-(4.6) does not modify the polyhedral char-

acterization of (4.1)-(4.2), so the computational effort does not intrinsically change by

including them.

4.4. Computational Results

In this section we first introduce two sets of benchmark instances that resemble appli-

cation of facility location in transportation networks and in the disaster management,

respectively. We use these instances (i) to analyze the properties of the obtained so-

lutions and their dependence on the cost structure, (ii) for showing the advantages

of the recoverable robustness, and (iii) for assessing the performance of the proposed

branch-and-cut algorithm. Finally, we also compare the performance of the proposed

algorithm with the performance of CPLEX when solving formulation (4.1)-(4.2) di-

rectly (i.e., as a compact model).

All the experiments were performed on an Intel CoreTM i7 (4702QM) 2.2GHz machine

(8 cores) with 16 GB RAM. The branch-and-cut was implemented using CPLEXTM

12.5 and Concert Technology framework. When testing our branch-and-cut all CPLEX

parameters were set to their default values, except the following ones: (i) All cuts were

turned off, (ii) heuristics were turned off, (iii) preprocessing was turned off, (iv) the

time limit was set to 600 seconds. Besides, higher branching priorities were given to

y0 and to the auxiliary variables q and s as described in §4.3.3.
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We have turned some CPLEX features off (only when running our algorithm) in order

to make a fair assessment of the performance of the techniques described in §4.3.

4.4.1 Benchmark Instances

We consider two classes of instances, that we refer to as Trans and Dis. Instances

of the first class are intended to resemble real transportation networks in which the

transportation costs depend on both the distance to be covered and the amount of

commodities to be transported, and where the set-up cost of facilities strongly depends

on the demographic characteristics of the corresponding (urban) area. Dis instances

approximate situations such as humanitarian relief in natural disasters in which some

transportation links are interdicted, i.e., they are damaged so that the transportation

time can be severely increased. We assume that if a given city i ∈ Rk requires to be

served but each path from any j ∈ Jk to i contains at least one interdicted link, then

the city is still assisted although at a very high response time. Besides, set-up costs f0
j

are such that one might favor to install facilities in cities where the average distance

to all the potential customers is relatively small.

Trans Instances In this class of instances we consider three groups: US, Germany

and ND-I. In groups US and Germany we consider the geographical coordinates and

updated data of population of the 500 most populated cities in each country [see

United Nations Statistics Division, 2013]. In group ND-I we consider random instances

with up to 500 nodes randomly located in a unit square and population being an integer

number taken uniformly at random from the interval [1 × 104, 2.5 × 106]. We denote

by dij the Euclidean distance between cities i and j, and by popi the population size

of city i.

Given the coordinates and the population size associated with each node, an instance

of the RRUFL is then generated as follows:

(i) take the first n cities in terms of population;

(ii) define R0 by randomly selecting 50% of the cities;

(iii) for k ∈ K define Rk by randomly taking |R0| × rand[0.4, 0.6] cities from R0;

(iv) for k ∈ K define Jk by randomly taking (n − |Rk|) × rand[0.2, 0.3] cities from

1, . . . , n (J0 = ∪k∈KJk);

(v) for k ∈ K define Ak = Rk × Jk (A0 = R0 × J0);

(vi) first- and second-stage transportation/allocation costs are defined as c0
ij = dij ×

1
2(popi + popj)× ϕ, ckij = (1 + σ1)× c0

ij and rkij = (1 + σ2)× c0
ij for k ∈ K;

(vii) first- and second-stage set-up costs and penalties are defined as f0
j = ρ × popj ,

fkj = (1 + σ3)× f0
j and pkj = (1 + σ4)× f0

j for k ∈ K.
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(a) Trans-US (b) Trans-Germany

Figure 4.2: Representation of Trans Instances.

All coefficients are finally rounded to their nearest integer values.

Parameter ϕ is given in $ per unit of distance per unit of demand, so the allocation

costs are purely expressed in $; parameter ρ is given in $ per inhabitant (so the larger

a city is, the more expensive the set-up of a facility is); parameters σ1, σ2, σ3 and

σ4 are [0, 1] factors representing the increase of the allocation and set-up costs in the

second stage.

Figures 4.2(a) and 4.2(b) show the graphical representation of the 500 cities used in

groups US and Germany respectively (the name of the first 25 cities are provided). For

n = 500, each scenario resembles a UFL instance with ≈ 125 customers and ≈ 100

locations (the sets Jk and Rk may intersect).

In our experiments we use: n ∈ {100, 250, 500}, ϕ ∈ {10−5, 10−4, 10−3, 10−2}, ρ ∈
{0.001, 0.01, 0.1, 1} σ1, σ2 ∈ {0.05, 0.5}, and σ3, σ4 ∈ {0.10, 1}. In our computations we

consider up to 75 scenarios which are created in advance. By doing this, when dealing

with instances with 25 scenarios, we simply use the first 25 scenarios out of those 75.

The same applies for 50 scenarios. The scenarios are identical for the different values

of all other parameters. By proceeding in this way, it is easier to measure the impact

of considering a larger number of scenarios. For a given group (US, Germany, or ND-I)

there are 3× 4× 4× 2× 2× 2× 2× 3 = 2304 instances to be solved.

Dis Instances In this class of instances we consider three groups: Bangladesh,

Philippines and ND-II. In group Bangladesh (resp. Philippines) we consider the

geographical coordinates and updated data of population of the 128 (resp. 100) most

populated cities in each case [see United Nations Statistics Division, 2013]; in group

ND-II we consider random instances with 100 nodes randomly located in a unit square

and the size of the population is taken uniformly at random from [1×104, 2.5×106]. In

the case of groups Bangladesh and Philippines we use pairwise Euclidean distances

between selected cities and embed them in a network N = (V,A), with V being the
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(a) Nodes of the input network (b) N = (V,A) after adding
links

(c) Example of a 1st-stage
solution

Figure 4.3: Construction process of Dis Instances and an example of a first-stage solution.

Bangladesh Instances.

set of n cities and A the allocation links (n = 128 for group Bangladesh and n = 100

for group Philippines). For the case of the group ND-II, the network N = (V,A)

is obtained such that a link is established between two cities i and j if the Euclidean

distance is smaller than or equal to α/
√
n (α is an input parameter fixed to 1.6 in our

computations). Figure 4.3(a) shows the location of the 128 cities for the Bangladesh

group of instances, Figure 4.3(b) illustrates the embedded network N = (V,A) of the

same group, and Figure 4.3(c) shows an example of a first-stage solution.

With the information of each group, Bangladesh, Philippines or ND-II, an instance

of the RRUFL is generated as follows:

(i) define R0 by randomly selecting t% of the cities, with t ∈ {25, 50, 75};

(ii) for k ∈ K define Rk by randomly taking |R0| × rand[0.4, 0.6] cities from R0;

(iii) for k ∈ K define Jk by randomly taking (n− |Rk|)× rand[0.08, 0.12] cities from

1, . . . , n (J0 = ∪k∈KJk);

(iv) first-stage allocation costs c0
ij are equal to the shortest path cost between i and

j in N = (V,A) using Euclidean distances duv.

(v) for the second-stage allocation costs we consider random link interdiction, that

is: let Ik be a set of f × |A| × rand[0.8, 1.2] links randomly chosen from A. Then

dkuv = duv, for all {u, v} ∈ A \ Ik, and dkuv = 100× duv, for all {u, v} ∈ Ik, so ckij
is equal to the cost of the shortest path between i and j with edge costs given

by dk. Reallocation cost rkij is 1.5× dkij , for k ∈ K;

(vi) first-stage set-up costs are given by f0
j =

∑
i∈R0 c0

ij/|R0|, and second-stage set-up

and penalty costs are given by fkj = (1 + σ3) × f0
j and pkj = (1 + σ4) × f0

j , for

k ∈ K.

The remaining parameters are f ∈ {0, 0.10, 0.25, 0.50}, σ3 = {0.00, 1.00} and σ4 =

{0.10, 1.0, 4.0}. All possible parameter settings, in combination with k ∈ {25, 50, 75}
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(a) (0.1, 1.0), |y0| = 3, |x0| = 8 (b) (1.0, 0.1), |y0| = 14, |x0| = 54

Figure 4.4: Solutions considering different combinations of (σ3, σ4) (Instances US, n =
500, ϕ = 0.001, ρ = 0.1 σ1 = 0.5, σ2 = 0.05 and |K| = 25)

imply that there are 3× 4× 2× 3× 3 = 216 instances to be solved for each fixed value

of n within each group.

4.4.2 Trans Instances: Robustness and Recoverability

Influence of the Cost Structure The characteristics of a robust first-stage solu-

tion and the corresponding recovery actions depend not only on the scenario structure

but also on the cost structure. If, for example, for a given instance the second-stage

costs are very high with respect to the first-stage costs then the solutions of the RRUFL

will tend to have more facilities and assignments defined in the first stage. Likewise,

if the second-stage set-up costs are much higher than the penalty costs (fkj >> pkj ),

we would expect that more facilities will be opened in the first-stage (and eventually

more assignments) than if fkj ≤ pkj , where the cost of setting-up a facility in the second

stage is cheaper than the penalty for a facility placed at a non-available location.

In Figure 4.4 we show the later case by comparing two solutions of an instance of group

US. For the first one (Figure 4.4(a)), the penalties are ≈ 81% more expensive than the

second-stage set-up costs, while for the second one (Figure 4.4(b)), the penalties are

45% cheaper. We can see how changing the relation between fkj and pkj leads to very

different solutions: while in the first case 3 facilities are opened in the first stage and 8

customers are allocated to them, in the second case 14 facilities are opened in the first

stage and 54 customers are allocated.

The relation between parameters ϕ ($ per unit of distance per inhabitant) and ρ ($

per inhabitant), also influences the solution structure. Assume that we are given an

instance with ϕ < ρ (set-up costs are higher than the allocation costs) and another
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(a) (0.0001, 0.01), |y0| = 1, |x0| = 5 (b) (0.01, 0.001), |y0| = 8, |x0| = 12

Figure 4.5: Solutions considering different combinations of (ϕ, ρ) (Instances Ger, n = 250,
σ1 = 0.5, σ2 = 0.5 σ3 = 0.1, σ4 = 1.0 and |K| = 25)

instance with ϕ > ρ (allocation costs are higher than the set-up costs). We would

expect that the solution of the second instance will be comprised by a larger first-stage

component compared to the solution of the first instance. Figure 4.5 depicts this by

comparing the solution obtained for ϕ = 0.0001 and ρ = 0.01 (Figure 4.5(a)) with the

one obtained for ϕ = 0.01 and ρ = 0.001 (Figure 4.5(b)). In the first case, only one

facility is open in the first stage and 5 allocations are defined, while in the second case

8 facilities are installed and 12 allocations are established. This effect is quite intuitive

considering that the second stage costs are proportional to the first stage costs for

these instances: it is better to open facilities in the same place where the demand is

located, i.e., in a subset of R0 ∩J0, in order to avoid high allocation expenses (ϕ > ρ).

The Gain of Recovery A more accurate measure of the benefits of the recovery can

be calculated by comparing the solutions obtained for the RRUFL with those obtained

for the RUFL presented in §4.2.1. Recall that the RUFL model is such that facilities

can only be opened in the first stage, whereas allocations can only be established in

the second stage. Hence, no recovery actions (in terms of setting-up new facilities or

re-allocating customers) are allowed. To illustrate the benefits of the recovery, we now

define a measure that we will refer to as the Gain of Recovery (GoR). GoR is defined as

the relative gain in terms of cost when using the solution produced by our recoverable

robust approach instead of the one produced by the approach without recovery (the

RUFL, in our case).

In Table 4.1 we report on statistics regarding the GoR. Columns GoR(OPTRR) corre-

spond to statistics of the GoR defined as GoR(OPTRR) = OPTR−OPTRR

OPTR
×100%, where

OPTR is the objective function value produced by the RUFL. Columns GoR(OPTω)

correspond to statistics of the GoR defined as GoR(OPTω) = ωR−ω
ωR
× 100%, where ωR
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GoR(OPTRR) GoR(ω)

Group |K| Median Ave. Max Median Ave. Max

25 34.73 36.28 89.07 31.55 33.96 82.87

US 50 38.64 39.30 91.94 35.52 37.31 87.46

75 41.34 40.81 93.50 34.61 36.29 89.95

25 29.17 32.73 90.01 24.91 26.39 84.37

Ger 50 29.44 34.39 92.65 26.66 28.31 88.61

75 32.52 37.26 93.90 28.40 32.05 90.62

25 24.69 25.31 79.84 29.41 30.24 70.47

ND-I 50 23.47 25.75 83.49 22.57 26.18 75.79

75 24.12 26.79 85.22 22.76 27.33 78.32

Table 4.1: Statistics of two measures of the Gain of Recovery for different values of n and

|K| (Groups US, Germany and ND-I with n = 100)

is the worst-case second stage cost for the RUFL. The obtained values emphasize the

practical benefits of recoverable robustness in cases in which recovery is possible; both,

the costs of the complete policy (first- and second-stage solutions) and the worst-case

second stage solutions are on average 25-40% cheaper (and the difference can scale

above 90%). These results clearly justify the benefits of the recovery in the second

stage, when compared to a less flexible decision making policy.

The Effort for Robustness and the Price of Robustness The more scenar-

ios (possible data realizations) we take into account, the more robust the first-stage

solution is expected to be. Nonetheless, this additional robustness is obtained at the

expenses of (i) an increase of the difficulty of the problem, since a larger search space

must be considered, and (ii) an increase of the total solution cost, OPTRR, because

more facilities have to be opened and more allocations have to be established in the

first stage or because a new worst-case scenario induces a higher robust recovery cost

(i.e., ω increases). The first of these effects has been coined as the Effort for Robustness

in [Álvarez-Miranda et al., 2013c] ; the second effect is similar to what is called the

Price of Robustness in [Bertsimas and Sim, 2003].

To illustrate these effects, in Table 4.2 we report average values of the results obtained

for groups US, Germany and ND-I for varying number of nodes and scenarios (columns

Group, n and |K|, respectively). The presented values are related to the solution

characteristics and to the algorithmic performance. Each row corresponds to the results

of 256 instances. Column Time [s] reports the average running times expressed in

seconds; column Gap (%) shows the average gaps attained within the time limit; the

average number of facilities opened in the first stage is reported in column |y0| and the

average number of first-stage allocations is given in column |x0|; in columns ∆OPT%

and ∆ω% we report the average relative increase in the value of OPTRR, resp. ω, when

considering 50 and 75 scenarios with respect to the value obtained for 25 scenarios. In

column #Opt the number of instances that were solved to optimality (out of 256) is

shown.
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Group n |K| Time [s]Gap (%) |y0| |x0|∆OPT% ∆ω% #(l-LS)#(l-LS)MH #(i-LS)#BBN#Opt

US

100 25 44.94 0.00 5 7 0.00 0.00 54 4 0 342 251

50 72.09 0.01 5 6 0.12 0.64 79 4 1 284 252

75 86.56 0.01 5 6 1.11 5.23 96 3 0 219 250

250 25 243.26 0.18 11 14 0.00 0.00 105 9 0 183 175

50 229.45 0.06 11 11 2.89 5.61 89 3 0 125 197

75 285.92 0.07 11 11 3.50 6.68 99 2 0 84 172

500 25 458.06 1.10 18 25 0.00 0.00 61 11 0 19 82

50 586.68 1.32 15 19 2.66 3.90 67 5 0 7 11

75 600.00 1.99 16 20 3.63 5.06 79 2 0 1 0

Ger

100 25 21.52 0.00 6 5 0.00 0.00 43 4 0 143 256

50 45.97 0.00 6 5 0.01 0.01 67 4 0 169 252

75 70.71 0.00 6 6 1.51 1.00 98 4 1 171 249

250 25 347.82 0.36 13 14 0.00 0.00 274 9 1 243 134

50 407.43 0.37 12 13 2.94 4.15 172 6 1 165 107

75 449.38 0.55 12 13 3.03 4.25 158 6 0 98 92

500 25 431.51 0.52 17 20 0.00 0.00 59 9 0 31 96

50 542.32 0.58 17 18 1.34 2.78 65 3 0 13 43

75 600.00 2.50 23 28 8.13 6.27 79 1 0 1 0

ND-I

100 25 37.22 0.00 7 10 0.00 0.00 94 5 0 282 256

50 31.60 0.00 6 10 6.44 11.85 66 3 0 99 256

75 48.10 0.00 6 10 6.45 11.82 91 3 0 100 256

250 25 296.20 0.07 16 18 0.00 0.00 103 5 0 287 153

50 384.78 0.12 15 18 7.32 8.22 103 5 1 167 115

75 330.24 0.13 14 16 8.86 10.71 106 4 1 106 151

500 25 543.29 1.98 25 38 0.00 0.00 77 15 0 30 33

50 584.45 2.01 24 33 0.67 5.07 63 7 0 6 12

75 600.00 2.38 23 36 12.25 18.06 79 2 0 1 0

Table 4.2: Statistics of solution characteristics and algorithmic performance for different

values of n and |K| (Groups US, Germany and ND-I)

The Effort for Robustness is clearly illustrated by the worsening of the algorithmic

performance when increasing the number of scenarios: (i) the running times increase

(cf. column Time [s]); (ii) the attained gaps increase (cf. column Gap (%)); and,

hence, the number of solutions solved to optimality (cf. column #Opt) decreases.

The Price of Robustness is demonstrated in columns ∆OPT% and ∆ω%, where one

can see that, without exception, the average values of the solution cost and the robust

recovery cost increase when increasing |K| from 25 to 50 and from 25 to 75. We observe

that in all cases (except for two entries of the group Germany) the value of ∆OPT%

is smaller than the value of ∆ω%. This means that the obtained first-stage solutions

are such that they allow to reduce the impact of a higher robust recovery cost by

balancing robustness and recoverability. This difference between ∆OPT% and ∆ω%

can be regarded as the marginal cost benefit due to the possibility of defining a first-

stage solution that can be recovered in a second-stage. The two entries in which the

average value of ∆OPT% is greater than the average value of ∆ω%, can be explained

by the fact that not all instances are solved to optimality (especially for n = 500 and
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|K| = 75), so the non-optimal first-stage solutions are such that the corresponding

recovery costs are sub-optimally high.

In columns |y0| and |x0| one can see that the size of the first-stage solution is more

or less constant for a given n, regardless of the value of |K|. Because of the chosen

criterion for generating scenarios, solutions are rather balanced : none of them is too

different from the others. Hence, our model is able to capture the nature of the

uncertainty already with 25 scenarios, so increasing the number of scenarios does not

produce a measurable effect on the structure of the first-stage solution but only on the

second-stage recovery actions (which induces a higher value of ω).

4.4.3 Trans Instances: Algorithmic Performance

Assessment of Algorithmic Enhancements In §4.3 we have described several

enhancements for our algorithm: cut strengthening based on dual-lifting, scenario sort-

ing, zero-half cuts, matheuristic generation of cuts and branching priorities on auxiliary

variables. In Figure 4.6 we show box-plots of the gaps attained when solving instances

of group US with n = 250 when incrementally including the proposed techniques. Each

box represents the distribution of the obtained gaps over a set of 678 instances. The

first box-plot corresponds to the basic setting of the algorithm, that is, with the cuts

of type (LS) and (i-LS); the second box-plot shows the gaps obtained when using

the strengthening technique based on dual variables (i.e., when adding (l-LS) instead

of (LS)); in the third box-plot we display the gaps obtained when adding the strat-

egy of scenario sorting; the fourth box-plot shows the gaps attained when adding cuts

generated by our matheuristic approach; the gaps attained when strengthening found

cuts using zero-half cuts are given in the fifth box-plot; finally, in the sixth box-plot

we show the gaps obtained when imposing higher branching priorities on the auxiliary

variables (this last configuration is our default one). The bold points are the maximum

gaps, asterisks are the average gaps and on top of each box we show the total number

of instances (out of 678) that were solved to optimality.

The results clearly demonstrate that all the proposed techniques contribute to the ef-

fectiveness of the algorithm and complement each other: the average gap decreases,

more instances are solved to optimality and the performance is more stable. In terms of

the marginal contribution to the algorithmic performance, the strengthening technique

based on dual-lifting and imposing higher branching priorities on the auxiliary vari-

ables seem to be the techniques that produce largest improvements of the algorithmic

performance. Using the basic strategy, only 131 instances can be solved to optimality.

On the contrary, using a combination of our enhancement methods, 544 instances are

solved to optimality within the same time limit.

More detailed indicators of the effectiveness of the considered cuts and their algorithmic

performance are provided in Table 4.2. In columns #(l-LS), #(l-LS)MH and #(i-LS) we
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Figure 4.6: Influence of the special enhancement strategies on the algorithmic performance

(Group US, n = 250)

report the average number of L-shaped Cuts, L-shaped Cuts found via the matheuris-

tic approach, and integer L-shaped Cuts, respectively, that are added during the opti-

mization process. Column #BBN reports the average number of enumeration nodes

explored within the running time.

It is remarkable that (cf. column #(i-LS)), integer L-shaped cuts are added in very

rare cases. In a more detailed analysis we observed that whenever the current solution

(x̃0, ỹ0) was integer, usually (l-LS) were able to close the gap, so no attempt was made

to find integer L-shaped cuts.

The number of explored enumeration nodes (column #BBN ) clearly shows that in-

creasing the size of the instance and the number of scenarios produces a slowdown in

the exploration of the search-space. This happens because more time is spent at each

node solving the separation problem and performing the algorithmic enhancements

described before.

The effectiveness of the proposed solution approach on the 2034 instances derived

from group US is shown in Figure 4.7. The performance profile of the attained gaps for

different values of |K| in Figure 4.7(a) shows that (regardless of the value of |K|): (i)

about 65% of the instances are solved to optimality or a very small gap is reached, (ii)

for almost 80% of the instances a gap of less than 1.5% is reached, and (iii) for almost

all, expect 5 instances, the attained gap is less than 4.7%. As for the running times,

Figure 4.7(b) shows that: (i) between 20% and 40% of the instances can be solved

in less than 60 seconds, (ii) about 50% can be solved in less than 300 seconds, and

(iii) for almost 45% of the instances the time limit is reached. Detailed performance

profiles of the attained gaps for different values of n are provided in the Appendix

(Figure 4.10). The observed behavior is not very different in the case of the group
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Figure 4.7: Performance Profile of attained gaps and running times for different number

of scenarios (Group US, 2034 instances)

Germany (Figure 4.11 in the Appendix), nor in the case of the group ND-I (Figure 4.12

in the Appendix).

Recall that for our branch-and-cut approach we have disabled some CPLEX features

(pre-processing, heuristics and general-purpose cutting planes) in order to get a bet-

ter assessment of the proposed techniques. For the sake of completeness, we have

performed some experiments where all CPLEX parameters are set to their default val-

ues. In Table 4.6 in the Appendix we report statistics on the algorithmic performance

when solving instances with n = 100 of groups US, Germany and ND-I with the default

CPLEX settings. Comparing this table with Table 4.2, one observes that enabling

these CPLEX features does not produce any improvement on the algorithmic perfor-

mance; moreover, it actually deteriorates it: fewer instances are solved to optimality

within the same time limit and the attained gaps are slightly worse.

As mentioned above, formulation (4.1)-(4.2) can also be solved directly through any

state-of-the-art MIP solver such as CPLEX. Nonetheless, this straightforward strategy

cannot be applied successfully, even to our smallest instances (n = 100). In Table 4.3

(cf. Table 4.7) we report statistics on the performance of CPLEX with default con-

figuration when solving instances of class Trans with n = 100 (within the same time

limit of 600 seconds). We observe that much less instances are solved to optimality,

and the gaps of the unsolved instances can be as high as 99%(!) and average gaps

can range from 17.0% to more than 60.0%. In the table we also report the number

of explored enumeration nodes (#BBN) and the number of cuts added by the solver

(#CPX Cuts). What seems surprising is the small number of general-purpose cuts

added during the optimization with respect to the number of explored nodes; this

means that cutting planes as those included in CPLEX are insufficient to tackle the

structure of the RRUFL (at least for the considered instances) and the lower-bound

improvement mainly relies on branching.
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Opt. Times Attained Gaps B&C Indicators

Group k Ave. #Opt Ave. max #Nopt #BBN #CPX Cuts

US

25 17.43 256 – – 0 213 14

50 36.08 237 39.56 84.34 19 182 26

75 54.16 221 62.72 99.1 35 190 22

Ger

25 14.20 256 – – 0 72 9

50 41.87 244 17.8 42.85 12 133 19

75 66.25 206 31.6 98.01 50 269 25

ND-I

25 7.72 253 – – 0 138 13

50 38.10 256 – – 0 131 17

75 54.40 228 49.48 99.63 28 175 31

Table 4.3: Algorithmic performance of CPLEX when solving the compact model. Trans

Instances with n = 100 (256 instances per row).

4.4.4 Dis Instances: Solutions and Algorithmic Performance

Solutions Dis class is intended to represent situations of natural disasters in which

different number of cities are likely to need assistance (t = {0.25, 0.50, 0.75}), few cities

are in conditions to host a facility, a portion of the allocation links can be heavily

damaged (f = {0.00, 0.10, 0.25, 0.50}) and the attractiveness of a location depends

more on its position than on its economical characteristics.

As in the case of Trans instances, the structure of the first-stage solutions strongly

depends on the instance definition. Figure 4.8 displays solutions of instances of group

Philippines considering different combinations of (t, f). We can observe that for a

fixed value of t (Figures 4.8(a)-4.8(c) for t = 0.50 and Figures 4.8(d)-4.8(f) for t = 0.75),

a larger first-stage component is defined when increasing f , i.e., more facilities are

opened and more allocations are defined. This behavior is expected due to the dramatic

effect produced by the presence of road failures; it is better to define robust first-stage

allocations to prevent from very high transportation times in the second stage.

Note that, from a practical point of view, if a given city i is assigned in the first

stage to a facility j, the actual allocation cost (the one incurred when assistance comes

from j to i after the disaster) will still be scenario dependent (chosen roads might be

damaged in any case). However, this first-stage decision can help to decision makers

(i) to define preventive plans to endure some roads, (ii) to have in mind how to access

the affected areas regardless of the presence of failures, and (iii) to make sure that if

a given allocation should be re-defined, this re-allocation will be economically efficient

(due to the worst-case emphasis of the model).

Figures 4.8(a)-4.8(f) have been produced by transforming our solutions into kml files

that can be displayed with the Google Earth free software [see Google, 2014].

In Table 4.4 (equivalent to Table 4.2) additional information on solutions’ structure is

provided. As in the case of Trans instances, we can see that the number of scenarios

does not change the average values of |y0| and |x0|, which again shows that our model
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(a) (0.50, 0.10), |y0| = 3, |x0| = 11 (b) (0.50, 0.25), |y0| = 4, |x0| = 5 (c) (0.50, 0.50), |y0| = 7, |x0| = 13

(d) (0.75, 0.10), |y0| = 3, |x0| = 2 (e) (0.75, 0.25), |y0| = 5, |x0| = 29 (f) (0.75, 0.50), |y0| = 7, |x0| = 58

Figure 4.8: Solutions considering different combinations of (t, f) (Group Philippines,

σ3, σ4 = 1, |K| = 50)

tackles uncertainty in a way that cost structure influences more the characteristics of

first-stage solutions than the uncertainty. The values reported in columns ∆OPT%

and ∆ω% reinforce the previous observation. There is an important increment of the

total cost of the solutions (∆OPT%) when increasing |K| but most of this increment is

due to the second-stage component (∆ω%). The marginal difference between ∆ω% and

∆OPT% is due to the robustness cost of the corresponding first-stage solutions. The

values of ∆OPT% and ∆ω% are one order of magnitude larger than those obtained

for Trans; this can be explained by the great increase in the second stage costs.

Further insights on the influence of the cost structure on the first-stage solutions are

shown in the Appendix: Figures 4.13 and 4.14 (Bangladesh group), Figures 4.16

and 4.17 (Philippines group), and Figures 4.19 and 4.20 (ND-II group). From these

figures we can see that the average values of |y0| and |x0| depend more on factors t

and f (as previously shown in the examples) than on (σ3, σ4) (the second-stage set-up

and penalty factors).

Algorithmic Performance As in the case of Trans instances, one can identify the

Effort for Robustness when solving Dis instances. From columns Time [s], Gap (%)

and #Opt in Table 4.4 we observe that the greater the value of |K|: (i) the greater
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Type n |K| Time [s] Gap (%) |y0| |x0| ∆OPT% ∆ω% #(l-LS) #(l-LS)MH #(i-LS) #BBN #Opt

Bang

128 25 208.84 0.73 3 10 0.00 0.00 90 3 0 1548 54

50 308.63 1.81 3 11 23.50 23.60 138 3 0 1128 42

75 293.61 1.75 3 10 29.69 30.82 145 3 0 665 43

Phi

100 25 169.79 0.31 3 12 0.00 0.00 120 3 0 2126 61

50 265.63 1.53 3 12 29.30 32.15 119 2 0 1872 52

75 341.57 2.90 3 14 34.83 36.86 153 2 0 1480 39

ND

100 25 219.90 0.56 3 8 0.00 0.00 104 2 0 2661 55

50 249.05 1.74 3 7 10.39 13.05 133 2 0 1394 47

75 294.59 2.75 3 7 22.64 25.12 142 2 0 1105 39

Table 4.4: Statistics of solution characteristics and algorithmic performance for different

values of |K| (Groups Bangladesh, Philippines and ND-II)

Bangladesh-128 Philippines-100 ND-II-100

Opt. Times Attained Gaps Opt. Times Attained Gaps Opt. Times Attained Gaps

|K| Ave. #Opt Ave.max#Nopt Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt

25 78.45 54 2.92 7.43 18 92.21 61 2.04 3.93 11 102.41 55 2.38 5.09 17

50 100.51 42 4.33 9.75 30 137.03 52 5.48 15.11 20 62.38 47 5.00 9.20 25

75 86.98 43 4.33 9.94 29 122.90 39 6.32 15.60 33 36.16 39 6.00 10.87 33

Table 4.5: Running times needed for optimality and attained gaps when reaching the time

limit for different values of |K| (Groups Bangladesh, Philippines and ND-II)

the average running time, (ii) the greater the average attained gap, and (iii) the fewer

instances are solved to optimality. From columns #(l-LS) and #BBN, we observe

that, compared with Trans instances of almost the same size, much more (l-LS) cuts

are added but also much more nodes are explored. This means that, on average,

fewer cuts are added per enumeration node. This can be explained by the increase

of numerical instability due to the presence of coefficients with different orders of

magnitude. These differences lead to weaker or non-violated cuts. Therefore, our

scenario sorting strategy interrupts the cut-generation cycle and forces more branching.

A similar argument applies for explaining the small amount heuristically generated cuts

(column #(l-LS)MH) and of integer L-shaped cuts (column #(i-LS)).

Table 4.5 reports more details regarding the algorithmic performance. The results

indicate that Dis instances are more difficult to solve than Trans instances. Even if

the running times for reaching optimality are still quite reasonable, the attained gaps

are high (especially when considering the maximum values). The additional difficulty

of these instances is explained by their more complex structure entailed by the presence

of link failures (that can be very different from one scenario to another).

The relatively high average gaps, according to Table 4.5, are a consequence of the pres-

ence of a few outliers with high gaps. The performance profiles of the gaps attained for

different |K| are shown in the Appendix in Figures 4.15, 4.18, and 4.21 corresponding

to groups Bangladesh, Philippines, and ND-II respectively. One can conclude that

in all cases the following pattern is observed: (i) for at least 60% of the instances op-

timality or a very small gap is reached (regardless of the value of |K|); (ii) for 75-85%
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of the instances a gap below 5% is attained (regardless of the value of |K|); (iii) for at

most 5% of the instances gaps above 10% are obtained (only for |K| = {50, 75}).

The previously described instability of the attained gaps and their dependence on

the instance structure is clearly depicted in the complementary charts provided in

the Appendix. One observes that factors t and f (Figures 4.13, 4.16 and 4.19) have

more influence on the stability of the algorithmic performance, than factors σ3 and σ4

(Figures 4.14, 4.17 and 4.20).

4.5. Conclusions

The UFL is a classical combinatorial optimization problem of an enormous practical

and theoretical relevance. Its simplicity and versatility makes it suitable to model dif-

ferent problems of real-world decision making. Nonetheless, when truly implementable

solutions are sought, the consideration of uncertainty is unavoidable. For the UFL

under different sources of uncertainty, we applied a new recoverable robust optimiza-

tion approach (RRO) that falls within the framework of 2SRO. In this new concept,

a robust solution is sought such that it can be recovered (i.e., rendered feasible using

a limited set of recovery actions) once the uncertainty is revealed in a second stage.

For the resulting problem, RRUFL, we designed an algorithmic framework based on

Benders decomposition and we included several tailored enhancements to improve its

performance.

The proposed algorithm was extensively tested on more than 7500 realistic instances

divided into two groups. The results show the efficacy of the algorithm to find good

quality solutions within a short running time. Moreover, the results demonstrate the

strong influence of the instance cost structure on both the algorithmic performance and

solution characteristics. Our computational study also illustrates how robustness and

recoverability are expressed in the structure of optimal solutions, and it demonstrates

the benefits of RRO when compared to a RO model without recovery.

Finally, the obtained results indicate that solving the RRUFL is a not an easy task

for general purpose MIP solvers. To cope with the size of realistic instances, it is

inevitable to use more sophisticated decomposition techniques, like the one presented

in this study.
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4.6. Appendix

4.6.1 Additional Results

In our deafult runs of the proposed branch-and-cut approach we have disabled some

CPLEX features (pre-processing, heuristics and general-purpose cutting planes) in

order to get a better assessment of the proposed techniques. For the sake of complete-

ness, we have performed some experiments where all CPLEX parameters are set to

their default values. In Table 4.6 we report statistics on the algorithmic performance

when solving instances with n = 100 of groups US, Germany and ND-I with the default

CPLEX settings.

US Germany ND-I

Opt. Times Attained Gaps Opt. Times Attained Gaps Opt. Times Attained Gaps

|K| Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt

25 22.85 244 0.06 0.10 12 17.16 253 0.03 0.07 3 38.64 238 0.26 1.04 18

50 41.95 250 0.07 0.32 6 32.66 253 0.03 0.04 3 40.80 251 0.06 0.10 5

75 54.15 246 0.08 0.60 10 59.74 245 0.05 0.13 11 52.36 238 0.09 0.29 18

Table 4.6: Running times needed for optimality and attained gaps when reaching the

time limit for different values of n and |K| when enabling CPLEX Heuristics, Cuts and

Preprocessing (n = 100, Instances US, Germany and ND-I)

Regarding the impact of |K| and n on the algorithmic performance of our branch-and-

cut, further information is provided in Table 4.7. In columns Opt. Times we show

the average running times (Ave.) needed to reach optimality as well as the number

of instances solved to optimality (#Opt); in columns Attained Gaps, we report the

average gaps of those instances that were not solved to optimality (Ave.), the maximum

attained gap (max ) and the number of instances that were not solved to optimality

(#Nopt). These values are calculated considering 256 instances per row. This table

further illustrates how incorporating more robustness influences the difficulty of the

problem: running times and attained gaps increase while the number of instances

solved to optimality decreases. Nonetheless, one observes that even for the largest

instances (500 nodes) our algorithmic framework is able to provide reasonable gaps

(around 2.2% on average over all instances) even for 75 scenarios.

Besides the influence of n and |K| on the solution structure and algorithmic perfor-

mance, the coefficients (ϕ, ρ) and (σ1, σ2, σ3, σ4) also play an important role in both

aspects. In Figure 4.9(a) we show the box-plots of the attained gaps for all the com-

binations of (ϕ, ρ) when solving Germany group with n = 250. Each box-plot contains

information about 48 instances. The maximum and attained gaps are marked with a

bold circle and an asterisk, respectively, and the number of instances solved to opti-

mality is displayed under each box-plot. Recall that ϕ is a factor expressed in $ per

unit of distance per unit of demand, and ρ is expressed in $ per inhabitant. We can

observe the following: (i) The problem becomes easier (more instances can be solved
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US Germany ND-I

Opt. Times Attained Gaps Opt. Times Attained Gaps Opt. Times Attained Gaps

n |K| Ave. #Opt Ave.max#Nopt Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt

100 25 33.89 251 0.04 0.06 5 21.52 256 – – 0 37.22 256 – – 0

50 63.71 252 0.59 0.88 4 37.18 252 0.01 0.01 4 31.60 256 – – 0

75 74.23 250 0.30 0.95 6 55.83 249 0.02 0.03 7 48.10 256 – – 0

250 25 78.14 175 0.57 2.32 81 118.23 134 0.75 2.54 122 91.68 153 0.16 1.59 103

50 118.48 197 0.25 2.12 59 139.28 107 0.63 2.17 149 120.91 115 0.22 1.94 141

75 132.53 172 0.22 1.40 84 180.89 92 0.86 4.82 164 142.65 151 0.32 6.35 105

500 25 156.86 82 1.62 3.81 174 150.70 96 0.83 2.30 160 160.04 33 2.27 10.65 223

50 290.02 11 1.38 4.66 245 256.63 43 0.70 2.59 213 268.23 12 2.11 6.19 244

75 – 0 1.99 9.38 256 – 0 2.50 13.95 256 – 0 2.38 7.93 256

Table 4.7: Running times needed for optimality and attained gaps when reaching the time

limit for different values of n and |K| (Instances US, Germany and ND-I)

to optimality) when ϕ is considerably smaller than ρ (103−105 times smaller), that is,

for those instance where the set-up costs are considerably higher than the operating

costs (transportation). (ii) When ρ < ϕ we have that the transportation costs are

larger than the set-up costs; in these cases the attained gaps are relatively small. (iii)

The problems become harder when ϕ
ρ > 10−2. These three behaviors can be explained

by the fact that in the easier first two cases there is not as much symmetry in the cost

structure between opening and transportation costs as in in the third case (where the

opening and transportation costs are of the same magnitude).

In Figure 4.9(a) we show the box-plots of the attained gaps for the 16 combinations of

(σ1, σ2, σ3, σ4). Average and maximum gaps are marked with bold circles and asterisk

as before, and under each box-plots we provide the average value of the number of fa-

cilities open in the first stage and the number of first-stage decisions (opened facilities

and defined allocations). From this graphic, one can highlight the following observa-

tions: (i) The largest first-stage components (as well as high gaps) are obtained when

the factor of the re-allocation cost σ2 is 0.05 and, especially, when σ1 = 0.5 (the in-

creasing factor of the second-stage allocation costs). (ii) The algorithmic performance

is considerably more stable (but not better on the average) when σ1 is 0.05 than when

it is 0.5. (iii) The algorithm behaves better when the penalty factor σ4 is 0.1 than

when it is 1.0 (the difference is more clear when σ1 = 0.5). These outcomes can be

explained as follows. When the second-stage allocation costs are expensive (50% higher

the first-stage value), but the re-allocation costs are cheap (only 5% higher), then an

optimal or nearly optimal first-stage solution will tend to consist of several allocations

which, therefore, implies that several facilities have to opened in the first-stage. On the

other hand, if both costs are expensive (σ1 = σ2 = 0.5), then having a large first-stage

component does not pay off. Having expensive second-stage allocation costs (σ1 = 0.5)

implies that the xk variables will likely be equal to 0 (regardless of k); this immedi-

ately reduces the average computational effort of the separation problem. At the same

time, this implies that a good first-stage policy is required for having a globally good

solution. However, such a first-stage solution might be hard to find quickly, which



118 Chapter 4 The Recoverable Robust Facility Location Problem

●

●

●

●● ●●●●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●●●
●
●●
●
● ●

●

●●

(ϕ,ρ)

G
ap

 [%
]

(10−5,10−3) (10−5,10−2) (10−5,10−1) (10−5,100) (10−4,10−3) (10−4,10−2) (10−4,10−1) (10−4,100) (10−3,10−3) (10−3,10−2) (10−3,10−1) (10−3,100) (10−2,10−3) (10−2,10−2) (10−2,10−1) (10−2,100)

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

1.05 %

●

3.18 %

13 Opt
0.09 %

●

1.73 %

43 Opt 0 % ●

0.01 %48 Opt
0.02 %

●

0.43 %

46 Opt

0.62 %

●

2.38 %

0 Opt

1.08 %

●

2.75 %

8 Opt
0.08 %

●

1.59 %

43 Opt
0.03 %

●

1.31 %

47 Opt
0.11 %

●

0.37 %

3 Opt

0.51 %

●

1.46 %

0 Opt

1.13 %

●

3.73 %

9 Opt

0.29 %

●

4.82 %

42 Opt
0.09 %

●

0.38 %

16 Opt

0.14 %

●

1.78 %

5 Opt

0.48 %

●

1.19 %

1 Opt

1.09 %

●

2.79 %

9 Opt

(a) Box-plots of attained Gap (%) vs. (ϕ, ρ)

●
●
●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

(σ1,σ2,σ3,σ4)

G
ap

 [%
]

(0.05,0.05,0.1,0.1)  (0.05,0.05,1,0.1)  (0.05,0.5,0.1,0.1)  (0.05,0.5,1,0.1)  (0.5,0.05,0.1,0.1)  (0.5,0.05,1,0.1)  (0.5,0.5,0.1,0.1)  (0.5,0.5,1,0.1)  
 (0.05,0.05,0.1,1)  (0.05,0.05,1,1)  (0.05,0.5,0.1,1)  (0.05,0.5,1,1)  (0.5,0.05,0.1,1)  (0.5,0.05,1,1)  (0.5,0.5,0.1,1)  (0.5,0.5,1,1)

0
0.

5
1

1.
5

2
2.

5
3

3.
5

4
4.

5
5

0.54 %

●

2.47 %

( 6 , 7 )

0.43 %

●

1.91 %

( 5 , 6 )

0.64 %

●

2.64 %

( 9 , 8 )

0.55 %

●

1.86 %

( 9 , 7 )

0.45 %

●

2.18 %

( 4 , 5 )

0.36 %

●

1.87 %

( 4 , 5 )

0.47 %

●

2.79 %

( 8 , 4 )

0.53 %

●

2.12 %

( 8 , 4 )

0.22 %

●

4.82 %

( 32 , 37 )
0.07 %

●

0.38 %

( 28 , 32 )

0.73 %

●

3.73 %

( 34 , 39 )

0.31 %

●

1.92 %

( 29 , 34 )

0.13 %

●

0.84 %

( 5 , 7 )
0.07 %

●

0.55 %

( 4 , 6 )

0.8 %

●

3.18 %

( 6 , 9 )

0.47 %

●

2.73 %

( 5 , 8 )

(b) Box-plots of attained Gap (%) vs. (σ1, σ2, σ3, σ4)

Figure 4.9: Influence of cost parameters (ϕ, ρ) and (σ1, σ2, σ3, σ4) on the algorithmic

performance and the solution structure (Group Germany, n = 250)

explains the large dispersion of gaps observed when σ1 = 0.5. Likewise, if the penalty

paid for having a first-stage facility in a non-available location is expensive (σ4 = 1.0),

then the first-stage solutions will tend to consist of as few facilities as possible (so the

total second-stage penalty for the misplaced facilities is as small as possible); again,

the need of a good first-stage policy (at least better than when σ4 = 0.1) explains why

the problem becomes harder, especially when a greater value of σ1 pushes towards

solutions with more facilities opened in the first stage.



Chapter 4 The Recoverable Robust Facility Location Problem 119

4.6.2 Additional Performance Profiles of Trans Instances
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Figure 4.10: Performance Profile of attained gaps for different |K| (Group US with n ∈
{250, 500})
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(b) Performance Profile of running times

Figure 4.11: Performance Profile of attained gaps and running times for different |K|
(Group Germany)
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Figure 4.12: Performance Profile of attained gaps and running times for different |K|
(Group ND-I group)
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4.6.3 Detailed Results for Bangladesh Instances
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Figure 4.13: Box Plot of attained gaps for different combinations of (t, f) (Group Bangladesh,

under each box-plot the number of optimally solved instances and the average values of (|y0|, |x0|)
are reported)
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Figure 4.14: Box Plot of attained gaps for different combinations of (σ3, σ4) (Group Bangladesh,
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Figure 4.15: Performance Profile of attained gaps for different number of scenarios (Group
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4.6.4 Detailed Results for Philippines Instances
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Figure 4.16: Box Plot of attained gaps for different combinations of (t, f) (Group Philippines,

under each box-plot the number of optimally solved instances and the average values of (|y0|, |x0|)
are reported)
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Figure 4.18: Performance Profile of attained gaps for different number of scenarios (Group

Philippines)
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4.6.5 Detailed Results for ND-II Instances
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Figure 4.19: Box Plot of attained gaps for different combinations of (t, f) (Group ND-II, under

each box-plot the number of optimally solved instances and the average values of (|y0|, |x0|) are

reported)
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Figure 4.20: Box Plot of attained gaps for different combinations of (σ3, σ4) (Group ND-II,
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Figure 4.21: Performance Profile of attained gaps for different number of scenarios (Group

ND-II)





Chapter 5

Single-commodity Robust

Network Design Problem:

Complexity, Instances and

Heuristic Solutions

5.1. Introduction

Network design problems arise in many different areas, such as transportation and

telecommunication. Recently, the class of robust network design problems has received

increasing attention. The term robust can represent the capability of the network to

cope with disruptions or to deal with different traffic scenarios in different times of the

day, as is the case of our work.

In this work, we study the single-commodity Robust Network Design problem (RND)

defined as follows. We are given an undirected graph G = (V,E), a cost vector (ce)

(e ∈ E) and an integer balance matrix B = (bqi ) (i ∈ V , q = 1, . . . ,K). The q-th row

bq of B is called the q-th scenario.

For a given scenario, we call a node with nonzero balance a terminal. More specifically,

a node i with positive balance is called a source and we call the balance of i its supply.

A node with negative balance is called a sink and its balance is called demand.

Let us denote by (i, j) and (j, i) the arcs (directed from i to j and from j to i, respec-

tively) corresponding to edge e = {i, j} ∈ E. In addition, let us call f qi,j ∈ Z+ the

integral amount of flow that is sent along arc (i, j) from i to j in scenario q and by f q

the corresponding flow vector.

127
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RND calls for determining integer capacities (ue) ∈ Z|E|+ (e ∈ E) with minimal costs

cTu such that, for each q (q = 1, . . . ,K), there is a directed network flow f q in G

that is feasible with respect to the capacities and the balances of the q-th scenario. In

particular, the flow f q (q = 1, . . . ,K) must fulfill the following constraints:

1. f qi,j + f qj,i ≤ ue for all edges e = {i, j} ∈ E, which imposes that the sum of the

flows going along every edge (in both directions) must respect the installed edge

capacity, for every scenario,

2.
∑
{i,j}∈E(f qi,j − f

q
j,i) = bqi for all nodes i ∈ V , which implies that the flow must

satisfy the required integer balances.

An overall natural model for RND reads as follows

min
∑
{i,j}∈E

cijuij (5.1)

∑
j:{j,i}∈E

f qji −
∑

j:{i,j}∈E

f qij = bqi ∀i ∈ V, q = 1, . . . ,K (5.2)

f qij + f qji ≤ uij ∀{i, j} ∈ E, q = 1, . . . ,K (5.3)

f qij ≥ 0 ∀{i, j} ∈ E, q = 1, . . . ,K (5.4)

uij ∈ Z+, ∀{i, j} ∈ E (5.5)

where the objective function (5.1) is to minimize the total cost of the installed capaci-

ties. Constraints (5.2) ensure flow-conservation in each scenario and impose to satisfy

the required balances. Constraints 5.3 model that the capacity of an edge is at least

as large as the flow it carries. Integral flows are enforced through integrality of the

capacity variables, as all balances are integral [Ford and Fulkerson, 1957].

As described in [Buchheim et al., 2011], an example of a practical application of the

considered problem is the following: some clients wish to download some program

stored on several servers. For a client, it is not important which server he or she is

downloading from, as long as the demand is satisfied. In other words, we consider

servers that store identical data: examples are video on demand or large datacentre in

which one mirrors his data over several locations. This is opposed to multi-commodity

network design, in which point-to-point connections are considered, i.e. each client

requests a specific server. In addition, we consider the robust version of the problem:

at different times of the day, the demands may change (e.g. different clients show

up), and the goal is to design a network that is able to route all flow in all different

scenarios. In particular, we consider a finite list of demands, i.e. we sample different

times of the day.

Contribution of the paper Preliminary computational investigations have been

performed on classical graphs from the literature with random balances [Buchheim
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et al., 2011] and on special hypercubes with {−1, 0, 1} balances [Álvarez-Miranda et al.,

2012]. The results in both papers have shown that the former instances are surprisingly

easy for a general-purpose Mixed-Integer Programming (MIP) solver on the natural

flow-formulation (5.1)-(5.5), while the latter instances are structurally difficult. The

first contribution of the paper is in studying the complexity of some RND special

cases1 associated with the above instances and enlightening the reasons of the observed

computational behavior. Second, based on the complexity results, we propose a new

family of randomly generated RND instances that are computationally challenging for

the natural flow formulation already for |V | = 50 and K = 10. Third, motivated by

those instances (available upon request from the authors), we propose new and general

heuristic approaches that provide high-quality approximated solutions for large graphs

(tests are reported for |V | up to 500) in short computing times2.

Organization of the paper Section 5.2 reviews the (vast) related literature by

pointing out differences and similarities. In Section 5.3 we present the complexity

results we achieved on special classes of instances, while Section 5.4 describes the

proposed heuristic algorithm and its performance is reported in Section 5.5. Finally,

in Section 5.6 we draw conclusions and describe ideas for future research.

5.2. Related Literature

The work on classical (i.e., non-robust) network design goes back as far as the early

1960s where it was studied by Chien [Chien, 1960] and Gomory and Hu [Gomory and

Hu, 1961, 1962]. Since then, network design has evolved to a vast field of research

which we cannot fully discuss in the scope of this article. We rather refer to [Chekuri,

2007] for a complete overview and restrict ourselves to a few exemplary related works

that are of direct importance for us here.

The common theme of network design problems is installing optimum-cost capacities

in a given network topology such that a set of traffic requests can be routed through the

network. In practice, however, the traffic requests are not exactly known in advance.

This can be due to measuring errors or simply because they cannot be predicted [see

Ben-Tal and Nemirovski, 2000]. Here, the robustness comes in: Following an idea

by Soyster [Soyster, 1973], Ben-Tal and Nemirowski [Ben-Tal and Nemirovski, 1999]

coined the term of an uncertainty set that is added to the model and contains all

possible (or likely) scenarios against which the robustness should protect. Since then,

robust network design has been very actively studied. The notions of network topology,

1The RND problem is strongly NP-hard [see Sanità, 2009].
2A preliminary version of the heuristic approaches described here was introduced in [Álvarez-

Miranda et al., 2012] where the first phase of the investigation on RND, which was the topic of
the “Vigoni 2011-2012” project between the University of Köln and the University of Bologna, was
summarized.
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cost, capacity, traffic request and routing can vary – as well as the exact way in which

the problem is robustified.

In this work, we study a worst-case robust model in the sense of [Ben-Tal and Ne-

mirovski, 1999]. This means that our solutions must be feasible for all the scenarios

from the uncertainty set. The uncertainty set is finite and explicitly given as part of

the input (an idea that goes back to [Minoux, 1981]). We use an undirected graph

as the network topology and allow dynamic routing (each scenario may be routed on

different paths). Furthermore, we assume linear costs for the capacities and integer

multiples of a unit capacity may be installed on each edge. Each node specifies its

traffic request by a scalar number that gives its supply or demand and each such traffic

request may be routed on an arbitrary number of paths (the routing is splittable) as

long as each edge carries an integer amount of flow in total. Therefore, the underlying

flow model is a standard single-commodity, splittable network flow in our case.

To the best of our knowledge, only two prior publications on this specific problem exist.

The problem was first studied in [Buchheim et al., 2011]. They gave an exact branch-

and-cut algorithm that solves a flow-model MIP through sophisticated general-purpose

cutting planes. Lately, in [Álvarez-Miranda et al., 2012] is introduced a capacity-based

MIP-model, and discussed a preliminary set of results of the biennial “Vigoni 2011-

2012” between the universities of Köln and Bologna.

Atamtürk [Atamtürk, 2000] considers a variant of the non-robust single-commodity

network design problem where integer multiples of a facility with fixed capacity can

be installed on each arc. Ortega and Wolsey [Ortega and Wolsey, 2003] report on the

performance of general MIP solvers on various network design problems and develop

an exact algorithm for the single-commodity fixed-charge network design problem (all

arcs may be bought at a fixed-charge and then be used at full capacity).

A close variant of single-commodity RND is the multi-commodity robust network design

problem. Here, the traffic requests specify the amount dij of flow that should be

exchanged among all pairs of nodes i and j. In particular, this defines fixed source/sink

pairs – which is not the case in our problem. Also, each commodity has a single source

(or sink). While this condition can also be established in the single-commodity case, it

requires the use of fixed-capacity edges and therefore, our single-commodity variant is

not a true special case of the multi-commodity problem. Sanità showed in her doctoral

thesis [Sanità, 2009] that the multi-commodity variant is NP-hard even if there are

only three scenarios, all scenarios use a unique source node and all demands are from

{−1, 0, 1}. This immediately implies that the single-commodity variant is NP-hard as

well. The thesis contains many further complexity results; among others Sanità gives

a O(log |V |)-approximation for the multi-commodity robust network design problem

with unsplittable routing and shows that removing the integrality constraint from the
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capacities makes the problem polynomial time solvable. This is also true for the single-

commodity RND. The multi-commodity RND was also first considered as a classical

(non-robust) problem [Bienstock et al., 1998].

A vast variety of problems exists in the multi-commodity case. The case where the

uncertainty set is finite was studied by Minoux [Minoux, 1981], though fractional

capacities are assumed in [Minoux, 1981], and in Labbé et al. [Labbé et al., 1999].

In [Duffield et al., 1999], the authors introduced the Hose uncertainty model in which

the uncertainty set is defined by inflow and outflow bounds on all nodes. Ben-Ameur

and Kerivin [Ben-Ameur and Kerivin, 2005] observed that this type of uncertainty

set is a polytope and developed an exact approach that additionally assumes static

routing (i.e., in all scenarios, the flow must be routed along the same subset of paths).

This configuration is also known as the Virtual Private Network problem. An exact ap-

proach for this problem was given in [Altin et al., 2007] under the additional constraint

that each commodity may only use a single path (unsplittable routing).

In the case of dynamic routing, an exact approach by Mattia [Mattia, 2013] exists.

Bertsimas and Sim [Bertsimas and Sim, 2004] introduced Γ-robustness as a general

model for robustification. Exact approaches that apply this type of robustness to

multicommodity network design are presented in [Koster et al., 2013].

Finally, one of the most basic network design problems, the Steiner Tree problem,

is the special case of the single-commodity robust network design problem where for

each pair i, j of Steiner nodes, there exists a scenario in which exactly i and j are

terminals with supply/demand of 1/ − 1. If not all the Steiner node scenarios are

present, the single-commodity RND instance is instead a special case of the survivable

network design problem. Note, however, that, in general, RND does not consider the

requirement of disjointness that is in Survivable Network Design. We refer the reader

to [Kerivin and Mahjoub, 2005] for an extensive survey on this subject.

5.3. Complexity

In this section, we characterize the complexity of some RND special cases. The RND

case in which we have a single scenario (K = 1) corresponds to a standard polynomial

time minimum cost flow problem. Already for K = 3, RND is NP-hard (see [Sanità,

2009]): the reduction comes from the 3-Dimensional Matching Problem for the special

case of RND in which there is the same source in each scenario and balances are

{−1, 0, 1}.

Motivated by the computational investigations in [Buchheim et al., 2011, Álvarez-

Miranda et al., 2012], in the following, we analyze some special cases:

• RND with balances different from 1 and -1;
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• RND on hypercubes with all balances equal to 1, 0, or -1;

• RND on hypercubes with all balances equal to r, 0, or −r, with r integer and

> 1.

The analysis is intended to show some classes of hard instances and some classes of

easier instances. According to the results that we present in the following subsections,

we are able to get a better understanding of empirical results in [Buchheim et al.,

2011, Álvarez-Miranda et al., 2012], and we propose a family of randomly generated

instances that are challenging for the natural flow formulation already for |V | = 50

and K = 10.

5.3.1 All balances different from 1 and -1

Because instances defined on random graphs with random integer balances on the

(randomly chosen) terminals turn out to be surprisingly easy for a general-purpose

MIP solver on the natural flow-formulation (5.1)-(5.5), a natural question to ask is if

this special case remains NP-hard. The following theorem answers positively through

a reduction from Hamiltonian cycle [see Sanità, 2013].

In order to prove that RND, defined on graph G = (V,E) (|V | ≥ 3), with balances

different from 1 and -1, is NP-hard, let us define the following RND instance IR. We

use G without modification and install a cost of 1 on each edge. We choose some

arbitrary numbering of the nodes. We install |V | − 1 scenarios. In scenario i, only

nodes 1 and i + 1 are terminals; the node 1 gets a balance of 2 while the node i + 1

has a balance of −2.

Theorem 1. A graph G = (V,E) (with |V | ≥ 3) has a Hamiltonian cycle C if and only

if the described RND instance IR has a solution with cost equal to |V |.

Proof. If G has a Hamiltonian cycle C, we build a feasible solution for IR by installing

a capacity of 1 on each edge of C. In each scenario i, both unique terminals 1 and

i+ 1 lie on C. The node i+ 1 decomposes C into two paths P1, P2 from 1 to i+ 1 (one

clockwise, one counterclockwise). We can route one unit of flow on P1 and one unit of

flow on P2, satisfying the demands of scenario i. Thus, our solution for IR is feasible

and additionally, it has cost of |C| = |V |.

On the other hand, suppose we have a solution for IR of cost |V |. By our choice of

scenarios (we have a single source at node 1 and all other nodes are terminals in some

scenario), each node must be connected to node 1. Therefore, any feasible solution

for IR must have a support S that induces a connected component of G containing all

nodes. S must contain at least |V | − 1 edges, otherwise it cannot be connected. If S

contains exactly |V | − 1 edges, a capacity of 2 must be installed on each edge in S in
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order to route all demands. However, such a solution has cost of 2 · |V | − 2 > |V | and

therefore S must contain at least |V | edges. If some node in G[S] has a degree of 1,

then we must install a capacity of 2 on its unique incident edge. By the same argument

as before, the remaining nodes |V | − 1 nodes must be connected by at least |V | − 1

edges. Then again, the cost of the solution is at least |V | − 1 + 2 > |V |. Therefore, all

nodes in G[S] must have a degree of at least 2 and because we can have at most |V |
edges in S, each node must have exactly degree 2. Together with our observation that

G[S] is connected and contains all nodes, we have a Hamiltonian cycle.

5.3.2 Hypercubes

The authors defined a structurally difficult class of instances in [Álvarez-Miranda et al.,

2012], based on d-dimensional hypercubes. In the following we repeat the construction.

Definition 1. A d-dimensional hypercube Hd is the result of the following recursive

construction: H0 is the graph that consists of a single node. For d > 0, Hd is obtained

by duplicating the nodes and edges of Hd−1 and connecting each node v to its copy v′

with an additional edge {v, v′}.

Definition 2. We say that two nodes v, w are diagonally opposite on Hd iff the shortest

path from v to w in Hd has maximum length, i. e., length d.

Notice that for every node v in Hd there is exactly one node vo that is diagonally

opposite to v. It is well-known that Hd has Nd := 2d nodes and Md := d · 2d−1 edges.

We can now define a class of instances on d-dimensional hypercubes as follows. For

d ∈ Z+, consider the following instance Id of the RND problem on Hd. Observe that

Hd is composed of two hypercubes Hs, Ht of dimension d− 1. Add 2d−1 scenarios to

Hd. In scenario 1 ≤ q ≤ 2d−1, assign a supply of 1 to the q-th node vq (in some fixed

numbering) of Hs and a demand of −1 to its diagonally opposite node voq which lies in

Ht by our construction. Set all other balances of scenario q to zero and set the costs

for each edge to 1. Figure 5.1 shows the construction.

1 1

1 2

12

1 2

34

3 4

12

7 8

56

3 4

12

1 2

34

5 6

78

Figure 5.1: The hypercubes in 1, 2, 3 and 4 dimensions. Copied nodes are displayed
in gray. The node numbering refers to the scenarios.

We denote the instance obtained in this way by H1
d. Scaling all balances in H1

d by

r ∈ Z+, we obtain the instance Hr
d.
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5.3.2.1 All balances equal to 1, 0, or -1

It is shown in [Álvarez-Miranda et al., 2012] that this class of instances is difficult for

MIP-based solution approaches as the integrality gap (i.e., the ratio of an optimum

integral solution value and an optimum fractional solution value) of H1
d converges to

2 as d→∞. We refer the reader to [Álvarez-Miranda et al., 2012] for details.

5.3.2.2 All balances equal to r, 0, or −r, r integer and > 1

We characterize the integrality gap for r > 1. The optimum values for integer and

fractional solutions are the same, i.e. the integrality gap is 1. We need a series of

Lemmata to prove this result, stated and proven at the end of this section.

It is a well-known fact that Hd is hamiltonian for any d ≥ 2 and we shall use this fact

on several occasions. In particular, we can obtain a feasible integer solution for H2
d by

installing a capacity of 1 on each edge of a Hamiltonian cycle in H2
d.

Lemma 1. For any d ≥ 2, there is a feasible integer solution for H2
d with costs 2d.

To derive the cost of this solution, recall that Hd has 2d nodes. Similarly, we can state

a feasible integer solution for H3
d.

Lemma 2. For any d ≥ 3, there is a feasible integer solution for H3
d with costs 3 · 2d−1.

Proof. Let d ≥ 3. Then Hd decomposes into two copies H1, H2 of Hd−1 and a set of

edges F connecting H1 and H2. We install a capacity of 1 on each edge in F . Since

d− 1 ≥ 2, we find Hamiltonian cycles C1, C2 in H1 and H2, respectively, and install a

capacity of 1 on each edge of C1 and of C2.

This solution is feasible: For any scenario i ∈ {1, . . . , q}, let si, ti be the corresponding

terminal pair. We need to route three units of flow from si to ti. To do that, let s′i ∈ H2

and t′i ∈ H1 be the unique nodes such that e1 = {si, s′i} ∈ F and e2 = {t′i, ti} ∈ F .

Also, let e3 = {u, v} ∈ F with u ∈ H1 and v ∈ H2 be an arbitrary connecting edge

that is different from e1 and e2. Mark here that F contains at least four edges because

d ≥ 3. Figure 5.2 shows an example for the situation on H3
4. Now, by sending one

unit of flow over each of e1, e2, e3, we have reduced the instance to two instances on

Hd−1: The first instance is defined on H1; here, si has a balance of 2 and both u and

t′i have a balance of −1. However, these balances can be routed along the Hamiltonian

C1. In the second instance, which is defined on H2, the sink ti has a balance of −2

and both s′i and v have a balance of 1. Again, these balances can be routed along the

Hamiltonian cycle C2.

Both C1 and C2 contain exactly 2d−1 edges, each with capacity 1. There are 2d−1

edges in F , all of them having capacity 1. This gives a total cost of 3 · 2d−1.



Chapter 5 Single-commodity Robust Network Design Problem 135

si

u

t′i

s′i

v

ti

Figure 5.2: An example for H3
4.

We show next that we can construct an integer feasible solution for any Hr
d using the

two previous ones.

Lemma 3. Let d ≥ 2 and let r = 2m+ 3n with m ∈ Z+ and n ∈ {0, 1}. If there exists

an integer feasible solution for H2
d with cost at most c2 and an integer feasible solution

for H3
d with cost at most c3, then there exist an integer feasible solution for Hr

d with

cost at most

m · c2 + n · c3.

Proof. We can decompose Hr
d into m copies of H2

d and, if r is odd, a single copy of

H3
d. The copies have costs of c2 and c3 each, respectively. For the i-th copy and

i = 1, . . . ,m + n, we have an integer capacity vector ui that allows for routing all

scenarios. Then, u =
∑m+n

i=1 ui is an integer capacity vector that admits a routing of

all scenarios of Hr
d and has exactly cost mc2 + nc3.

To calculate the integrality gap for our solutions, we also need the value of an optimum

fractional solution. Such a solution can be obtained by installing r/d units of capacity

on each edge of Hd and since Hd has d · 2d−1 edges, this gives the following result.

Lemma 4. An optimum fractional solution for Hr
d has a value of r · 2d−1.

Proof of Lemma 4. If we define the set

S :=
{
S ⊂ V d | S is connected and separates at least one vq from its partner voq

}
,
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we can find an optimum fractional solution for Hr
d with the following linear pro-

gram [Álvarez-Miranda et al., 2012].

min
∑
e∈Ed

ue∑
e∈δ(S)

ue ≥ r for all S ∈ S

ue ≥ 0 for all e ∈ E
(CAP )

If d = 2, it holds that |S| = d = 2 for all S ∈ S. Consequently, if we set ue = r/2 for all

e ∈ Ed, all primal constraints are satisfied with equality and the solution is optimal.

If d ≥ 3, we introduce dual variables ξS for all S ∈ S and obtain the following dual

program:

max
∑
S∈S

r · ξS∑
S∈S:
{i,j}∈S

ξS ≤ 1 for all {i, j} ∈ Ed

ξS ≥ 0

(CAP ∗)

We consider the following pair of primal and dual solutions:

ue := r/d for all e ∈ Ed ξS :=

0, if |δ(S)| > d

1/2, if |δ(S)| = d
for all S ∈ S.

To prove our claim, we need to show that u and ξ are feasible and satisfy complementary

slackness. Feasibility of u follows by the first part of Lemma 5: For all S ∈ S, we have

|δ(S)| ≥ d and thus
∑

e∈δ(S) ue = |δ(S)|(r/d) ≥ r. Observe that by the second part of

Lemma 5 equality holds if and only if |δ(S)| = d. Thus, we have (
∑

e∈δ(S) ue−r)·ξS = 0

for all S ∈ S, yielding primal complementary slackness. To see why ξ is feasible

for (CAP ∗) we need to show that∑
S∈S:
{i,j}∈S

ξS =
∑
S∈S:
|δ(S)|=d
{i,j}∈S

ξS ≤ 1 for all {i, j} ∈ Ed.

By applying Lemma 5, we can rewrite this as

∑
S∈S:
|δ(S)|=d
{i,j}∈S

ξS =
∑
S∈S:
|S|=1
{i,j}∈S

ξS = ξ{i} + ξ{j} = 1 for all {i, j} ∈ Ed

which also yields that (
∑

S∈S:e∈S ξS − 1) · ue = 0 for all e ∈ Ed, i.e., we have dual

complementary slackness. Finally, both solutions yield the desired objective value of



Chapter 5 Single-commodity Robust Network Design Problem 137

∑
e∈Ed r/d = d · 2d−1 · (r/d) = r · 2d−1.

The following lemma provides the missing piece for the above proof.

Lemma 5. Let d ≥ 3. Then in Hd, |δ(S)| ≥ d for all ∅ ( S ( V d. Moreover, equality

is attained if and only if |S| = 1 or |S| = |V d| − 1.

Proof. The first part of the lemma is well-known: Saad and Schultz [Propositions 3.2

and 3.3 Saad and Schultz, 1988] proved that for any two nodes i, j of a d-dimensional

hypercube, there are at least d node disjoint paths between i and j. By Menger’s

Theorem [Menger, 1927], this implies that |δ(S)| ≥ d for all ∅ ( S ( V d. Also, if

S contains a single node i, then |δ(S)| = |δ(i)| = d. It remains to show that the

inequality is strict if 2 ≤ |S| ≤ |V d| − 2. Without loss of generality, we can assume

that |S| ≤ 1
2 |V

d| since δ(S) = δ(V \ S).

Now, choose an arbitrary decomposition of Hd into two (d−1)-dimensional hypercubes

H1 = (V1, E1), H2 = (V2, E2) such that neither of S1 := S ∩ V1 and S2 := S ∩ V2 is

empty. This is possible because S contains at least two and at most |V |/2 nodes. It

also implies that neither S1 = V1 nor S2 = V2, as otherwise S2 or S1 would be empty,

respectively.

For i = 1, 2, the node set Si defines a cut δi(Si) in Hi. Since Si 6= ∅ and Si 6= Vi,

we know that |δi(Si)| ≥ d − 1, since Hi is a (d − 1)-dimensional hypercube. Also,

δ1(S1), δ2(S2) ⊆ δ(S) and therefore |δ(S)| ≥ 2 · (d− 1) > d for d ≥ 3.

We can now prove that the optimum values for integer and fractional solutions are the

same:

Theorem 2. For d ≥ 3 and r ≥ 2, an optimum integer solution for Hr
d has value r ·2d−1.

In particular, the integrality gap for Hr
d is 1.

Proof. Let r = 2m + 3n with m ∈ Z+ and n ∈ {0, 1}. Putting together Lemma 3

with Lemma 1 and Lemma 2, we obtain that there is an integer solution for Hr
d with

value cr := m · 2d + n · 3 · 2d−1. If r is even, we have n = 0 and m = r/2. Therefore,

cr = r · 2d−1. On the other hand, if r is odd, we have n = 1 and m = (r− 3)/2. Then,

cr = (r− 3)/2 · 2d + 3 · 2d−1 = r · 2d−1− 3 · 2d−1 + 3 · 2d−1 = r · 2d−1. By Lemma 4, this

is optimal.

5.3.3 Challenging Instances

In the previous sections we have shown that, although computationally easy [Buchheim

et al., 2011, Álvarez-Miranda et al., 2012], RND instances defined on random graphs

with random balances are difficult in theory. The explanation of this is suggested by the
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fact that structurally hard instances like those defined on hypercubes and {−1, 0, 1}
balances become theoretically easy when balances are in r, 0, or −r, with r integer

and r > 1. have an integrality gap of value one. Building on top of those results,

we concentrate on instances on random graphs with balances {−1, 0, 1} that turn

out to be computationally challenging for the natural flow formulation already for

|V | = 50 and K = 10. An effective heuristic approach for this family is described and

computationally evaluated in Section 5.4 and Section 5.5, respectively.

5.4. Heuristic Algorithm

In this section, we present our heuristic algorithm, which, although general, is designed

having in mind the class of hard instances introduced in the precious section, i.e.,

random graphs with balances of {−1, 0, 1}. It consists of three phases. In the first

phase (constructive phase, CP), the graph is reduced by heuristically deleting a subset

of the arcs, and a feasible solution is built. The second phase (neighborhood search

phase, NSP) consists of a neighborhood search on the reduced graph in order to improve

the solution found: in particular, the MIP flow-formulation is solved, within a time

limit, by the general-purpose MIP solver Cplex. Finally, the third phase (proximity

search phase, PSP) consists of iteratively applying a local search (by solving a carefully

constructed MIP) to further improve the solution, taking into account the original

graph, and is based on the recent work [Fischetti and Monaci, 2013].

In the following, we describe the three phases in detail.

5.4.1 Constructive Phase

Initially, the graph we are dealing with is reduced, and then a solution is built. Our goal

is to reduce the graph so that we are able to quickly compute a feasible solution, and

we can warm start the NSP described in 5.4.2. At the same time, the graph reduction

should not be too “aggressive”, because the NSP should be able to improve the solution

found. In other words, we need to find a trade-off between reducing the computing

time and reducing the solution space. Note that, since the (nonzero) balances are 1

or -1 in our problem, it is not common to have large capacity values installed on the

edges. Therefore, solutions differ mainly because of the different set of edges on which

capacity is installed. Our goal is to select a “large enough” set of edges for our reduced

graph.

The following steps are executed in the CP:

1. Consider the scenarios from 1 to K and multiply all balances by a given constant

F ;
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2. construct a feasible solution for the new obtained RND instance (see Section 5.4.1.1);

3. reduce the graph by deleting all the edges that are not used in the solution found

(and the nodes such that they do not have any incident edge after edge deletion)

and obtain graph G = (V ,E);

4. set back the balances to 1 and -1, and construct a feasible solution (see Sec-

tion 5.4.1.1) for the original RND instance on the reduce graph G.

Step 1 is used to define the search space that we want to use in the NSP. Indeed,

by increasing the absolute value of the balances, more edges are likely to be used in

the solution computed in step 2 and they constitute the neighborhood of the solution

computed in step 4. The next section describes how to compute a feasible solution for

an RND instance.

5.4.1.1 Construction of a Feasible Solution

In the case of a single scenario, an algorithm for the Minimum Cost Flow (MCF)

problem can be used to solve RND as follows: we define a directed graph having the

same set of nodes as G and two arcs for each edge of G (one for each direction) with

infinite upper bounds on the capacities. The flows that we obtain by solving the MCF

problem on the defined graph determine the edge capacities, i.e., the RND solution.

In the case of K scenarios, ordered from 1 to K, in a generic scenario q we can use for

free the capacities that have already been installed on the edges in scenarios 1, . . . , q−1.

A straightforward heuristic algorithm consists of iteratively solving a MCF problem

for each scenario (in the order from 1 to K), updating the capacities that can be used

for free after each MCF execution. In particular, we define an auxiliary directed graph

Gdir = (V,A) having the same set of nodes of G and the set of arcs defined as follows.

For each edge e = {i, j} ∈ E, we introduce four arcs ae1, ae2, ae3 and ae4: ae1 and ae2 are

directed from i to j, while ae3 and ae4 are directed from j to i. Two arcs are needed

for each direction in order to take into account, in a generic scenario q, the previous

scenarios 1, . . . , q−1: one arc has an upper bound on its capacity equal to the capacity

already installed on the corresponding edge in the previous scenarios 1, . . . , q − 1 and

has zero cost; the other arc has an infinite upper bound on its capacity and has cost

equal to the cost of the corresponding edge. More precisely, for each arc a ∈ A, we

initialize the upper bounds UBa on the capacities and the costs ca as UBae1 := ∞,

UBae2 := 0, UBae3 :=∞ and UBae4 := 0; cae1 := ce, cae2 := 0, cae3 := ce, cae4 := 0. A MCF

problem is then solved for each scenario and the upper bounds are updated according

to the capacities installed on each arc.

The described algorithm follows a greedy approach. It would be useful if, when solving

scenario q, we could know what happens in the next scenarios q+ 1, . . . ,K so that we
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could choose accordingly the best capacity installation. In addition, a MCF solution

for a generic scenario q that installs capacity on more edges (at the same cost) should

be preferred: indeed, it is more likely that free capacity can be used in scenarios

q + 1, . . . ,K. Therefore, a MCF solution with integer flows split over disjoint paths

should be preferred with respect to a MCF solution that sends flows along a single

path.

Based on these two observations, we derive an improvement of the described heuristic

algorithm. We apply a preprocessing in which we divide each scenario q = 1, . . . ,K in

R sub-scenarios gq1, . . . , g
q
R, where R is an integer positive number. We consider the sub-

scenarios in the order gq1, (q = 1, . . . ,K), gq2, (q = 1, . . . ,K), up to gqR, (q = 1, . . . ,K).

In this way, the generic sub-scenario gql of scenario q can already take into account the

partial solution computed for all the scenarios 1, . . . ,K. The balances are defined as

follows: b
gq1
v = bbqv/Rc, b

gq2
v = bbqv/(R − 1)c, up to b

gqR
v = bqv, v ∈ V . This means that

the complete MCF solution of a generic scenario q will more likely have a split integer

flow over disjoint paths, because each sub-scenario might use different subsets of arcs.

The improved heuristic algorithm iteratively solves a MCF problem for each sub-

scenario gql (l = 1, . . . , R, q = 1, . . . ,K). Let us call uRND the RND solution that

we compute with the improved heuristic algorithm. At h = 0, uRND is initialized to be

the zero vector. Let fh∗ be the MCF solution obtained at iteration h corresponding to

sub-scenario gql . The flows in fh∗ along the arcs with infinite upper bound determine

the additional capacities that must be installed on the corresponding edges: for each

e = {i, j} ∈ E, uRNDe = uRNDe + fh∗ae1
+ fh∗ae3

. Note that, in each sub-scenario, there will

always be an optimal solution using, for each edge, only arcs in one of the two direc-

tions: it is a single commodity flow, so we could simply do flow cancellation on cycles.

In addition, the values uRND are used to update the upper bounds on the capacities,

before considering the following sub-scenario: UBae2 := uRNDe and UBae4 := uRNDe .

When all the sub-scenarios have been considered, the algorithm returns the solution

found uRND.

Note that in step 2 the described algorithm is used to define the reduced graph G: all

the edges such that uRND = 0 are deleted from G and the nodes that do not have

anymore incident edges are removed as well. Step 4 is instead used to obtain a first

feasible solution to our problem and is executed on the reduced graph G. Let us call

uCP the solution obtained at the end of the constructive phase.

5.4.2 Neighborhood Search Phase

This phase consists of solving an MIP flow-formulation for RND (5.1)-(5.5) on the

reduced graph G defined in the previous section.
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Then, NSP explores the neighborhood of solution uCP by allowing the use of different

edges belonging to G and by allowing the installation of different capacities on the

edges. The neighborhood is explored by solving the proposed model, initialized with

uCP , by Cplex within a given time limit. Let us call uNSP the obtained improved

solution and cNSP its cost. Since we consider the reduced graph, this phase is able to

quickly obtain an improved solution, as it will be seen in Section 5.5.

5.4.3 Proximity Search Phase

Recently, Fischetti and Monaci [Fischetti and Monaci, 2013] investigated the effects of

replacing the objective function of a 0-1 Mixed-Integer Convex Programming problem

with a “proximity” one, i.e., with minimizing the distance from a feasible solution of

the problem, with the aim of enhancing the heuristic behavior of a black-box solver.

In particular, they consider the Hamming distance:

∆(x, x̃) :=
∑

j∈J :x̃=0

xj +
∑

j∈J :x̃=1

(1− xj), (5.6)

where xj ∈ {0, 1}, ∀j ∈ J , and x̃ is a feasible solution to the considered problem. The

idea consists of starting with an initial feasible solution x̃ with cost f(x̃), and iteratively

searching for an improved solution by adding a cutoff constraint that imposes the cost

of the improved solution to be smaller than f(x̃) by at least a quantity θ. The search

is performed by solving with a black-box solver the new model with objective function

that minimizes the Hamming distance from x̃, until a termination condition is reached,

namely, until the first improved solution has been found. If no improved solution is

found, θ is reduced. The process is then iterated by using the improved solution

found as new x̃. The algorithm is terminated when a given time limit is reached.

The method can be enhanced by providing an incumbent solution to each iteration of

proximity search. This is obtained by adding an auxiliary continuous variable z which

is used to keep the cutoff constraint feasible:

f(x) ≤ f(x̃)− θ + z (5.7)

and has a large cost M in the objective function. In this way, x̃ is a (very costly)

feasible solution for the MIP it defines. As soon as z becomes 0, an improved solution

is found.

We apply this idea to RND, i.e. we deal with an MIP. We start with initial solution

uNSP and we consider the original graph G (instead of the reduced one) in order to have

a higher probability of improving uNSP . Since capacities assume integer (and not only

binary) values, we need to modify the definition of distance presented in [Fischetti and

Monaci, 2013]. Instead of expressing the distance as |u−uNSP |, uij integer ∀{i, j} ∈ E,

we fix upper bounds on the capacity variables, based on the values of uNSPij , as follows.
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For each edge {i, j} ∈ E such that uNSPij > 0, the upper bound is set to uNSPij . For

all the remaining edges the upper bound is the set to be infinite. The distance is then

defined as ∑
{i,j}∈E:uNSP

ij =0

uij +
∑

{i,j}∈E:uNSP
ij >0

(uNSPij − uij). (5.8)

By imposing upper bounds on the capacity variable, we limit the search space and,

consequently, the computing time, by using the solution found uNSP . At the same

time we leave the possibility of installing capacity on edges that were not used in

the previous solution. Note that, by imposing upper bounds on the capacities, the

proximity search becomes a heuristic method for RND. Given this distance measure

definition, we iteratively solve the following proximity search model

min
∑

{i,j}∈E:uNSP
ij =0

uij −
∑

{i,j}∈E:uNSP
ij >0

uij +Mz (5.9)

∑
{i,j}∈E

cijuij − zθ ≤ cNSP − θ, (5.10)

∑
j:{j,i}∈E

f qji −
∑

j:{i,j}∈E

f qij = bqi ∀i ∈ V, q = 1, . . . ,K (5.11)

f qij + f qji ≤ uij ∀{i, j} ∈ E, q = 1, . . . ,K(5.12)

uij ≤ uNSPij ∀{i, j} ∈ E : uNSPij > 0 (5.13)

f qij ≥ 0 ∀{i, j} ∈ E, q = 1, . . . ,K(5.14)

uij ∈ Z+ ∀{i, j} ∈ E (5.15)

z ∈ {0, 1}, (5.16)

where the auxiliary variable z is to guarantee feasibility of uNSP . The objective func-

tion (5.9) calls for minimizing the distance from the previous solution uNSP and for

obtaining a solution with z = 0, i.e., an improved solution that respects the cutoff

constraint (5.10). Constraint (5.10) imposes to obtain a reduction in the cost of the

improved solution of at least θ. Constraints (5.11) and (5.12) correspond to the RND

problem constraints. Constraints (5.13) impose the upper bounds on the capacity

variables. Finally, constraints (5.14)-(5.16) impose variables’ bounds. Note that z is

defined as binary as it turned out in our computational experiments that it is very

effective to impose branching priority on z, in order to quickly obtain a solution with

z = 0.

Model (5.9)-(5.16) is solved by Cplex until the first feasible solution with z = 0 is

obtained. In our experiments θ was set to 1. Therefore, if z = 1 the process is stopped.

On the first feasible solution found, Cplex polishing (see, Rothberg [Rothberg, 2007])

is applied until the first improved solution is found. Formulation (5.9)-(5.16) is then

solved again by replacing uNSP with the improved solution. The proximity search
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phase is executed until a given time limit is reached. When the time limit is reached,

PS returns the best solution found uPSP .

5.5. Computational Results

In this section, we report the computational results that we achieved on instances gen-

erated on random graphs with balances {−1, 0, 1}. Instances are generated as follows:

n nodes are randomly located in a unit Euclidean square. Two nodes are connected

with an edge if the Euclidean distance is less than α/
√
n where α is a parameter set

to 2 in our generator. The edge cost for capacity installation is proportional to the

Euclidean distance. For each scenario, 25%, 50% or 100% of the nodes are randomly

selected to be terminals. We consider 5 or 10 scenarios.

The heuristic was developed in C language, and Cplex version 12.5 with 4 threads

was used as a general purpose solver. The tests were executed on a PC 1.73 GHz,

6 GB Ram. The computing times are expressed in seconds. The algorithm CS2 by

Goldberg [Goldberg, 1997] was used for solving the Minimum Cost Flow. The following

parameter setting is used for the heuristic: a time limit of 300 seconds is given to NSP

and a time limit of 600 seconds is given to PSP. The total time limit for the heuristic

is fixed to 900 seconds, because the computation time of the CP is negligible. We fix

F = 100, R = 10, θ = 1 and M = 100uNSP , based on parameter tuning.

An important feature of our heuristic algorithm is that it is robust to parameter setting,

i.e. the efficacy of the algorithm is not really dependent on the specific parameter

values, as long as balances are increased and scenarios are split in sub-scenarios (i.e.,

F > 1 and R > 1). In particular, the difference between average gaps, computed with

respect to the solutions obtained by Cplex 5h, for different combinations of F and R

(with F > 1 and R > 1) are negligible (below 1%). Among all combinations, the one

that has the best balance between gap and standard deviation is given by R = 10 and

F = 100. The other parameter used in our heuristic algorithm is θ. We choose θ = 1 as

a conservative value, i.e. a value that allows us to obtain good solutions on average on

all the instances. In particular, we observed that, on the small instances (with 50 to 100

nodes), larger values for θ do not produce high quality solutions. When the instances

get larger, a more aggressive policy (e.g. with θ = 100) can give better results. We

decided to keep a conservative value, in order to avoid parameter overtuning.

In Figure 5.3, we show the results obtained, with a time limit of 900 seconds, by the

proposed method after each of the three phases described in Section 5.4. In particular,

we show one graphic for each class of instances (from 50 nodes to 500 nodes). In this

graphic, the comparison is presented with respect to the solutions obtained after the

constructive phase and we show in black the percentage improvement of the solutions
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Figure 5.3: Comparison of the results obtained after NSP and after PSP with those
obtained after CP.

obtained after the neighborhood search phase (NSP) and in gray the percentage im-

provement of the solutions obtained after the proximity search phase (PSP). On the

right of the figure, we also show the average and standard deviation for each class of

instances. As it can be seen, both the NSP and the PSP are effective in obtaining im-

provements for all instances but six, on which only PSP is able to improve the solution

found uCP after the constructive phase. The detailed results are reported in Table 5.2

in Section 5.7.

In the following, we present a comparison of the results obtained by the proposed

heuristic (indicated as RND Heur.) with those obtained by Cplex applied to the MIP

flow model (5.1)-(5.5) on the original graph G. In particular, we show the results

obtained when Cplex is run with a time limit of five hours (Cplex 5h) in default

setting, and the results obtained with Cplex in the effective heuristic configurations

suggested in [Fischetti and Monaci, 2013] (Cplex Pol. 900s), i.e., solution polishing is

applied, and the time limit is set to 900 seconds. The proposed method, Cplex 5h

and Cplex Pol. 900s are initialized with the solution uCP constructed as explained in

Section 5.4.1.

In Table 5.1, we report the results obtained by Cplex 5h, which will be used as our

benchmark for comparison. In particular, we report the data on the instances, the

solution (uCP ) obtained at the end of the constructive phase and used for initializing
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Cplex 5h
Inst. n t% K uCP LB UB Gap% BBn Time

1 50 25 5 22904 22438 22438 0.00 1977 6
2 50 50 5 60921 52947 52952 0.01 602223 2666
3 50 100 5 79487 66334 66340 0.01 968741 4634
4 50 25 10 52835 44129 47272 6.65 464679 18000
5 50 50 10 66781 55277 57861 4.47 374536 18000
6 50 100 10 88323 70085 71526 2.01 544735 18000
7 100 25 5 39255 36741 37031 0.78 960936 18000
8 100 50 5 89264 76498 78702 2.80 430334 18000
9 100 100 5 81126 74331 74822 0.66 675507 18000
10 100 25 10 86929 67148 71192 5.68 63827 18000
11 100 50 10 115437 92265 97246 5.12 44262 18000
12 100 100 10 132233 112062 114624 2.24 76558 18000
13 200 25 5 98497 77288 85676 9.79 67461 18000
14 200 50 5 142509 113158 122062 7.29 53440 18000
15 200 100 5 169962 139302 144508 3.60 75979 18000
16 200 25 10 134999 98358 114995 14.47 11630 18000
17 200 50 10 173335 133819 148087 9.63 9406 18000
18 200 100 10 219903 175660 184992 5.04 14684 18000
19 300 25 5 92259 73805 83302 11.40 28125 18000
20 300 50 5 139954 115164 128296 10.24 22212 18000
21 300 100 5 183689 150048 162860 7.87 22284 18000
22 300 25 10 148349 103953 148349 29.93 2927 18000
23 300 50 10 201301 151200 199456 24.19 2198 18000
24 300 100 10 271340 214577 268072 19.96 2603 18000
25 400 25 5 109241 87877 98297 10.60 14881 18000
26 400 50 5 217300 175286 190328 7.90 12671 18000
27 400 100 5 291469 234266 252987 7.40 18336 18000
28 400 25 10 158033 117143 158033 25.87 1191 18000
29 400 50 10 253648 191242 253648 24.60 1239 18000
30 400 100 10 325512 255769 325512 21.43 1278 18000
31 500 25 5 106191 75197 98778 23.87 7576 18000
32 500 50 5 189269 159465 177572 10.20 10186 18000
33 500 100 5 261922 216832 241684 10.28 8584 18000
34 500 25 10 214149 153247 214149 28.44 325 18000
35 500 50 10 262379 196930 262379 24.94 315 18000
36 500 100 10 323275 249201 323275 22.91 564 18000

Table 5.1: Results obtained with Cplex on the MIP flow formulation in five hours
of time limit.

each of the methods, the best lower bound (LB) and the best upper bound (UB)

obtained by Cplex 5h, the duality gap (Gap%), the number of branch and bound

nodes (BBn), and the computing time. As it can be seen from Table 5.1, the time

limit is reached for all instances but the three smallest ones for which Cplex is able to

prove optimality. For the remaining instances, the duality gaps are often quite large

and for seven instances Cplex is not even able to improve the initial solution.

In order to measure the performance of the proposed method, we show in Figure 5.4 the

comparison between the results we obtain in 900 seconds of time limit and the results

obtained by Cplex 5h and by Cplex Pol. 900s. The detailed results are reported in
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Figure 5.4: Comparison of the proposed heuristic RND (time limit of 15 minutes)
with Cplex Pol. 900s and with Cplex 5h.

Table 5.3 in Section 5.7. In particular, we show one graphic for each class of instances

(from 50 nodes to 500 nodes). In this graphic, the comparison is presented with respect

to the solutions obtained by Cplex 5h and we show in black the percentage gap of the

solutions obtained by Cplex Pol. 900s and in gray the percentage gap of the solutions

obtained by RND Heur. On the right of the figure, we also show the average and

standard deviation for each class of instances.

As it is evident from Figure 5.4, the three methods obtain comparable results for

instances with up to 100 nodes. However, as the instances get larger, the proposed

method becomes more effective than the other ones, and it is able to improve the results

obtained by the other two methods. In particular, compared to Cplex Pol. 900s that

has the same time limit, the proposed method always obtains better solutions for

instances with at least 300 nodes. It obtains solutions with a cost less or equal than

those obtained by Cplex Pol. 900s for 27 out of 36 instances, and is at most 1.05%

worse for a single instance. The improvement is significant (between 3% and more

than 14%) for 14 out of 36 instances. Even compared to Cplex run for five hours,

the proposed method performs on average better on instances with at least 200 nodes,

especially when we have 10 scenarios. It is able to obtain better or equal solutions for

20 out of 36 instances. The average percentage improvement with respect to Cplex 5h

and Cplex Pol. 900s is 2.38% and 2.90%, respectively.
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Figure 5.5: Comparison of the three methods on additional instances with 300 and
400 nodes.

In order to further validate the results presented in Figure 5.4, we performed ex-

tensive computational experiments on instances with n = 300 and n = 400 nodes.

In particular, we considered five instances for each sub-class, defined by selecting

t ∈ {25%, 50%, 100%} and k ∈ {5, 10}. This gives a total testbed of 60 instances.

In Figure 5.5, we show the comparison between the three methods. The comparison

is presented with respect to the solutions obtained by Cplex in five hours. We show

in black the percentage gap of the solutions obtained by Cplex Pol. 900s and in gray

the percentage gap of the solutions obtained by RND Heur in 900s. Compared to

Cplex Pol. 900s, that has the same time limit, the proposed method always obtains

better solutions, and, compared to Cplex 5h, performs better on all instances with 10

scenarios, confirming the effectiveness of the proposed approach.

5.6. Conclusions and Future Research

We have presented a single-commodity robust network design problem and we have

shown complexity results for special classes of instances, including hypercubes. By

the complexity analysis, we have shown that instances with random integer balances

different from 1 and -1 are NP-hard, even if computationally easy [see Buchheim et al.,

2011, Álvarez-Miranda et al., 2012]. In order to explain why, we have shown that

instances defined on hypercubes with balances in {−r, 0, r} (r integer, r > 1) are

theoretically easy, while instances defined on hypercubes with balances in {−1, 0, 1}
are structurally hard. This has motivated us to study instances (defined on random

graphs) with balances of {−1, 0, 1}. We have developed a heuristic algorithm composed

of three phases. The first one reduces the instance graph and constructs a feasible
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solution, the second one solves an MIP flow-formulation of the problem on the reduced

graph for a given time limit, in order to improve the solution found, and the last

phase applies a modified version of the recent technique of proximity search to further

improve the solution. We have tested the proposed method on randomly generated

instances with balances of {−1, 0, 1}, and we have compared the obtained results with

those obtained by Cplex both in 5 hours (default version) or by using the polishing

algorithm to enhance its heuristic behavior (for 900 seconds). The results show that

our method is comparable with the other ones for instances with up to 100 nodes,

but obtains better solutions for larger instances. Future research can be devoted to

extend the proposed algorithm to the multi-commodity case. In addition, the proposed

method takes into account the balances of all the scenarios, but a less conservative

approach could be considered, for example, by taking into account the probability of

each scenario. Other extensions could be to tackle related variants of robust network

design, such as Survivable Network Design: mostly the constructive phase needs to

be modified, as long as a good MIP formulation exists. Additional parameter tuning

might be necessary as well.

5.7. Complementary Results

In Table 5.2, we show the results obtained by the proposed method after each of the

three phases described in Section 5.4. In particular, we show the instance name (Inst.),

the number n of nodes in the graph G, the percentage t% of nodes that are terminals,

the number K of considered scenarios, the solution (uCP ) obtained at the end of the

constructive phase, the solution uNSP obtained after the neighborhood search phase

(and the corresponding percentage improvement ImpruCP % with respect to uCP ) and

the final solution uPSP provided by our method by applying proximity search (and

the corresponding percentage improvement ImpruNSP % with respect to uCP ). We do

not report the computing times, as the time limit of 900 seconds is reached for all

instances.

In Table 5.3, we report the value of the best solution obtained by each method, and, for

Cplex Pol. 900s and for RND Heur., we show the percentage gap GapC5h% to the best

upper bound computed by Cplex 5h. In the last column, we also show the percentage

gap GapC900s% between the solutions obtained by RND Heur. and Cplex Pol. 900s.

Finally, in the last rows of the table, we show the average (Avg.), the median (Median)

and the standard deviation (StDev.) of the percentage gaps, as well as the minimum

(Min) and the maximum (Max) percentage gap.
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Inst. n t% K uCP uNSP ImpruCP % uPSP ImpruNSP %
1 50 25 5 22904 22904 0.00 22438 -2.03
2 50 50 5 60921 53443 -12.27 52952 -13.08
3 50 100 5 79487 67250 -15.39 66340 -16.54
4 50 25 10 52835 47419 -10.25 47272 -10.53
5 50 50 10 66781 58928 -11.76 58346 -12.63
6 50 100 10 88323 73352 -16.95 71530 -19.01
7 100 25 5 39255 37624 -4.15 37041 -5.64
8 100 50 5 89264 80139 -10.22 79088 -11.40
9 100 100 5 81126 76247 -6.01 75012 -7.54
10 100 25 10 86929 72399 -16.71 71694 -17.53
11 100 50 10 115437 99155 -14.10 97703 -15.36
12 100 100 10 132233 116100 -12.20 115107 -12.95
13 200 25 5 98497 87562 -11.10 86855 -11.82
14 200 50 5 142509 122543 -14.01 122032 -14.37
15 200 100 5 169962 148214 -12.80 145826 -14.20
16 200 25 10 134999 113380 -16.01 111439 -17.45
17 200 50 10 173335 148397 -14.39 147487 -14.91
18 200 100 10 219903 190824 -13.22 189406 -13.87
19 300 25 5 92259 85518 -7.31 84681 -8.21
20 300 50 5 139954 129723 -7.31 129709 -7.32
21 300 100 5 183689 164206 -10.61 163699 -10.88
22 300 25 10 148349 122424 -17.48 121953 -17.79
23 300 50 10 201301 172539 -14.29 170487 -15.31
24 300 100 10 271340 235728 -13.12 232706 -14.24
25 400 25 5 109241 98219 -10.09 98176 -10.13
26 400 50 5 217300 190677 -12.25 190492 -12.34
27 400 100 5 291469 253378 -13.07 251291 -13.78
28 400 25 10 158033 136413 -13.68 135968 -13.96
29 400 50 10 253648 253648 0.00 244109 -3.76
30 400 100 10 325512 325512 0.00 314428 -3.41
31 500 25 5 106191 93433 -12.01 93425 -12.02
32 500 50 5 189269 174540 -7.78 174082 -8.02
33 500 100 5 261922 245907 -6.11 242828 -7.29
34 500 25 10 214149 214149 0.00 209360 -2.24
35 500 50 10 262379 262379 0.00 254891 -2.85
36 500 100 10 323275 323275 0.00 315955 -2.26

Avg. -9.91 -11.02

Table 5.2: Results obtained by the proposed method within 900 seconds of time
limit.
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Cplex 5h Cplex Pol. 900s RND Heur. 900s
Inst. n t% K UB UB GapC5h% uPSP GapC5h% GapC900s%

1 50 25 5 22438 22438 0.00 22438 0.00 0.00
2 50 50 5 52952 52952 0.00 52952 0.00 0.00
3 50 100 5 66340 66546 0.31 66340 0.00 -0.31
4 50 25 10 47272 47272 0.00 47272 0.00 0.00
5 50 50 10 57861 57861 0.00 58346 0.83 0.83
6 50 100 10 71526 71526 0.00 71530 0.01 0.01
7 100 25 5 37031 37031 0.00 37041 0.03 0.03
8 100 50 5 78702 78702 0.00 79088 0.49 0.49
9 100 100 5 74822 74822 0.00 75012 0.25 0.25
10 100 25 10 71192 71189 0.00 71694 0.70 0.70
11 100 50 10 97246 98409 1.18 97703 0.47 -0.72
12 100 100 10 114624 115068 0.39 115107 0.42 0.03
13 200 25 5 85676 85947 0.32 86855 1.36 1.05
14 200 50 5 122062 122522 0.38 122032 -0.02 -0.40
15 200 100 5 144508 145770 0.87 145826 0.90 0.04
16 200 25 10 114995 116786 1.53 111439 -3.19 -4.80
17 200 50 10 148087 148138 0.03 147487 -0.41 -0.44
18 200 100 10 184992 204936 9.73 189406 2.33 -8.20
19 300 25 5 83302 87723 5.04 84681 1.63 -3.59
20 300 50 5 128296 130825 1.93 129709 1.09 -0.86
21 300 100 5 162860 168882 3.57 163699 0.51 -3.17
22 300 25 10 148349 129877 -14.22 121953 -21.64 -6.50
23 300 50 10 199456 195300 -2.13 170487 -16.99 -14.55
24 300 100 10 268072 259317 -3.38 232706 -15.20 -11.44
25 400 25 5 98297 101115 2.79 98176 -0.12 -2.99
26 400 50 5 190328 206445 7.81 190492 0.09 -8.37
27 400 100 5 252987 252842 -0.06 251291 -0.67 -0.62
28 400 25 10 158033 150661 -4.89 135968 -16.23 -10.81
29 400 50 10 253648 253648 0.00 244109 -3.91 -3.91
30 400 100 10 325512 325512 0.00 314428 -3.53 -3.53
31 500 25 5 98778 102182 3.33 93425 -5.73 -9.37
32 500 50 5 177572 177292 -0.16 174082 -2.00 -1.84
33 500 100 5 241684 251807 4.02 242828 0.47 -3.70
34 500 25 10 214149 214149 0.00 209360 -2.29 -2.29
35 500 50 10 262379 262379 0.00 254891 -2.94 -2.94
36 500 100 10 323275 323275 0.00 315955 -2.32 -2.32

Avg. 0.51 -2.38 -2.90
Median 0.00 0.00 -1.35
StDev. 3.67 5.75 3.96

Min -14.22 -21.64 -14.55
Max 9.73 2.33 1.05

Table 5.3: Comparison of the proposed heuristic (time limit of 15 minutes) with
Cplex (time limit of 5 hours or 15 minutes).



Chapter 6

On Exact Solutions for the

Minmax Regret Spanning Tree

Problem

6.1. Introduction

The classical (deterministic) Minimum Spanning Tree problem (MST) is a fundamental

problem in combinatorial optimization, and it can be applied in several areas like

logistics or telecommunications. It consists of finding a spanning tree of minimum

total cost in a connected and undirected graph with non-negative edge costs. Very

simple and fast greedy algorithms are able to solve large MST instances in a few

seconds. We refer the reader to [Ahuja et al., 1993] for algorithms and applications of

the MST.

The purpose of this work is to present exact approaches for the Minmax Regret Span-

ning Tree problem (MMR-ST), a generalization of the MST, where the problem is to

find a feasible solution that is ε-optimal for any possible realization of the vector of

the objective function parameters, with ε as small as possible. The objective function

parameters are the costs of the edges of the graph and each of them is associated with

a real cost interval. It is supposed that there is independence among the different

cost intervals and that the uncertainty is only considered in the cost function. Prob-

lems with this type of data uncertainty are known as Interval Data Minmax Regret

problems; for other types of uncertain data [see Aissi et al., 2009, Candia-Véjar et al.,

2011].

It is known that many MMR combinatorial optimization problems are NP-Hard even

if the corresponding deterministic version is polynomially solvable; for example, the

151
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Shortest Path problem and the Assignment problem are NP-Hard in their MMR ver-

sions (MMR-P and MMR-A, respectively). Only for few problems, the corresponding

MMR counterpart is polynomially solvable [see Candia-Véjar et al., 2011]. Several ex-

act and heuristic approaches have been proposed for different MMR problems including

MMR-ST [Yaman et al., 2001, Montemmani and Gambardella, 2005, Montemmani,

2006, Nikulin, 2008, Kasperski, 2008, Kasperski et al., 2012], MMR-P [Karasan et al.,

2004, Montemmani, 2005, Kasperski, 2008], MMR-A [Pereira and Averbakh, 2011a],

MMR Set Covering [Pereira and Averbakh, 2011b], MMR-TSP [Montemmani et al.,

2007].

Literature Review It is known that the MMR-ST is also an NP-Hard prob-

lem [Averbakh and Lebedev, 2004, Aron and Van Hentenryck, 2004]; therefore, the

existing exact algorithms are able to solve only small instances. In [Yaman et al.,

2001], a compact formulation is presented and a set of instances (Ya) comprised by up

to 25 nodes are solved by using CPLEX.

Later on, in [Aron and Van Hentenryck, 2002], a constraint programming algorithm for

the MMR-ST was developed; this method outperformed the one proposed in [Yaman

et al., 2001], allowing to solve to optimality instances of a new class (He1) with up to

40 nodes. In [Montemmani and Gambardella, 2005], a branch-and-bound algorithm

was designed and applied to the Ya instances and to a new group of complete graph

instances (Mo). For both classes of instances, the proposed algorithm outperformed the

exact approach developed in [Aron and Van Hentenryck, 2002].

A Benders Decomposition (BD) algorithm for the MMR-ST was proposed in [Mon-

temmani, 2006], and it was used to solve Ya and Mo instances. For the first group of

instances, the BD approach solved all the instances to optimality, outperforming the

results reported by [Yaman et al., 2001, Aron and Van Hentenryck, 2002, Montemmani

and Gambardella, 2005]. For the second set of instances, the author considered a pa-

rameter p to control the width of the cost intervals; this allowed to conclude that the

performance of the algorithm depended strongly on the value of p (the larger p was,

the more difficult the optimization task became).

With respect to the heuristic approaches for the MMR-ST, three classes of algorithms

are found in the literature: (i) the two “one-scenario” heuristics HM and HU, the

first proposed in [Kasperski and Zieliński, 2006] (where it is shown that it has an

approximation ratio 2) and the second proposed in [Montemmani et al., 2007]; (ii) a

simulated annealing (SA) proposed in [Nikulin, 2008]; and (iii) a tabu search (KMZ-

TS) proposed in [Kasperski et al., 2012]. The SA approach was applied to small

instances of the MMR-ST (up to 30 nodes) and reasonable results were obtained; the

author pointed out that the approach should also work properly for large instances due

to the search scheme used in the algorithm. In [Kasperski et al., 2012], the KMZ-TS

algorithm was extensively tested on different sets of instances (Ya, He1, Mo and others),
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and it is shown that its performance is remarkably better than the one reported for

the SA.

Our Contribution and Paper Outline Different algorithmic strategies for solving

the MMR-ST to optimality are proposed. More precisely, a BD and a branch-and-cut

approach are designed to solve benchmark instances that extend the size of instances

for which an exact algorithm gets optimal solutions or small gaps. Additionally, the ob-

tained lower bounds allow to improve the knowledge about the quality of the solutions

given by the approach proposed in [Kasperski et al., 2012].

In Section 6.2 basic notation and special results for the MMR-ST are presented. Sec-

tion 6.3 presents two mathematical programming formulations which will be used later.

The proposed algorithms are described in detail in Section 6.4. Computational results

and their analysis are presented in Section 6.5. Conclusions and future work are pre-

sented in Section 6.6.

6.2. Minmax Regret Spanning Tree (MMR-ST)

Let G = (V,E), where |V | = n and |E| = m, be an undirected connected graph with V

being the set of nodes and E being the set of edges. Suppose that for every edge e ∈ E
an interval [c−e , c

+
e ] is given (0 ≤ c−e ≤ c+

e ). The values c+
e and c−e will be referred as the

upper and lower limit, respectively, of the corresponding interval. It is assumed that

the cost of edge e ∈ E can take any value on its corresponding interval, independently

of the values taken by the cost of other edges. Let Γ be defined as Γ = ⊗e∈E [c−e , c
+
e ],

i.e., the set of all possible realizations of edge costs. Thus, an element s ∈ Γ is a

so-called scenario, because it represents a particular realization of edge costs; these

costs will be denoted by cse for each e ∈ E. Let X ∈ {0, 1}|E| be a binary vector such

that Xe = 1 if e ∈ E belongs to a spanning tree of G and Xe = 0 otherwise. For a

given scenario s and a given vector X, the cost of the corresponding spanning tree is

given by Fs(X) =
∑

e∈E(X) c
s
e, where E(X) corresponds to the subset of edges such

that Xe = 1 ∀e ∈ E(X) and Xe = 0 otherwise. The classical MST for a fixed scenario

s ∈ Γ is:

F ∗s = min {Fs(X) | X ∈ Φ} , (MST)

where Φ is the set of all binary vectors associated with spanning trees of G.

For a fixed X ∈ Φ and s ∈ Γ, the function R(s,X) = Fs(X) − F ∗s is called the regret

for X under scenario s. For a given X ∈ Φ, the worst-case regret or robust deviation

is defined as:

Z(X) = max {R(s,X) | s ∈ Γ} . (MR)
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The minmax regret version of the MST problem (MMR-ST) is given by:

Z∗ = min {Z(X) | X ∈ Φ} . (MMR)

In [Yaman et al., 2001], it is shown that an optimal solution for the right-hand-side

of (MR) (the worst-case scenario for a given X) holds the following property.

Theorem 6.1. [Yaman et al., 2001] The worst-case scenario for a solution X, sX,

is obtained when the cost of the edges in E(X) are set to the corresponding upper

limits and the cost of all other edges to the corresponding lower limits, i.e., cs
X

e = c+
e

∀e ∈ E(X) and cs
X

e = c−e ∀e ∈ E \ E(X).

Combining the previous property with (MMR), one can derive the following formula-

tion for the MMR-ST.

Z∗MMR = min
∑

e∈E(X)

c+
e − θ (6.1)

s.t. θ ≤
∑

e∈E(Y)

c−e +
∑

e∈E(Y)∩E(X)

(c+
e − c−e ), ∀Y ∈ Φ (6.2)

θ ∈ R≥0 and X ∈ Φ. (6.3)

Note that this formulation has an exponential number of constraints (6.2) (one per

each spanning tree of G).

Let sM be the scenario defined by cs
M

e = 1/2(c−e + c+
e ), ∀e ∈ E. An important

algorithmic result for a wide class of MMR problems (including MMR-ST) was provided

by [Kasperski and Zieliński, 2006] using sM , where an approximation algorithm of ratio

2 was designed; the result reads as follows:

Lemma 1. [Kasperski and Zieliński, 2006] Let XM be a minimum spanning tree for

the midpoint scenario sM . This solution holds Z(XM ) ≤ 2Z∗MMR.

Thus, a solution with an approximation ratio at most 2, XM , is obtained by simply

solving a classical MST problem on G with edge costs defined by sM . In practice, these

approximate solutions have shown a good performance [see, e.g., Montemmani et al.,

2007, Kasperski, 2008].

The solution obtained for the scenario s+ defined by the upper limits of the intervals,

i.e., cs
+

e = c+
e , has also shown an interesting performance [psee, e.g., Montemmani

et al., 2007, Kasperski, 2008, Kasperski et al., 2012], although it has been proved that

this solution can be arbitrarily bad [see Kasperski, 2008]. Both solutions, XM and

X+, will be used as part of the exact approaches proposed in this work.



Chapter 6 On Exact Solutions for the MMR-ST 155

6.3. MIP Formulations for the MMR-ST

Notation Let r ∈ V be an arbitrary node of V which we will denote as the root

node. Let A be the set of arcs of the bi-directed counterpart of G, GA = (V,A), such

that A = {(i, j), (j, i) | e : {i, j} ∈ E}; likewise, c−ij = c−ji = c−e and c+
ij = c+

ji = c+
e

∀e : {i, j} ∈ E.

6.3.1 Formulation#1

This first formulation is based on directed cut-set inequalities. The Linear Program-

ming relaxation of this type of formulations usually provides good quality lower bounds,

since many facet-inducing inequalities can be projected out of the directed model for

optimal tree problems [Grötschel et al., 1992]. Consequently, instead of looking for a

spanning tree of G we look for a spanning arborescence of GA.

Let x ∈ {0, 1}|A| be a binary vector such that xij = 1 if arc (i, j) ∈ A belongs to a

spanning arborescence of GA and xij = 0 otherwise. We will use the following notation:

A set of nodes S ⊆ V (S 6= ∅) and its complement S = V \S, induce two directed cuts:

δ+ (S) =
{

(i, j) | i ∈ S, j ∈ S
}

and δ− (S) =
{

(i, j) | i ∈ S, j ∈ S
}

.

A vector x is associated with a directed spanning tree of GA (spanning arborescence)

rooted at r if it satisfies the following set of inequalities:∑
(i,j)∈δ−(S)

xij ≥ 1, ∀S ⊆ V \ {r} S 6= ∅ (6.4)

∑
(i,j)∈δ−(j)

xij = 1, ∀j ∈ V \ {r}. (6.5)

Constraints (6.4), which are exponential in number, are known as cut-set or connec-

tivity inequalities and they ensure that there is a directed path from the root r to

each node v ∈ V \ {r}. This type of constraints is usually used in the context of

effective branch-and-cut procedures [see, e.g., Koch and Martin, 1998]. Its separation

can be performed in polynomial time using a maximum-flow algorithm on a support

graph with arc-capacities given by the current fractional solution x̃. Constraints (6.5),

commonly referred ad in-degree constraints, ensure the solution to be cycle-free.

The connection between X and x variables is given by

Xe = xij + xji, ∀e : {i, j} ∈ E. (6.6)

Therefore, the set Φ can be defined as:

Φ = {X ∈ {0, 1}|E| | (X,x) satisfies (6.4)-(6.6) and x ∈ {0, 1}|A|}. (6.7)
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By replacing this definition of Φ in (6.1)-(6.3) we obtain a MILP formulation for the

MMR-ST. In the resulting formulation, each of the constraints of type (6.2) contains

an exponential number of connectivity constraints of type (6.4); furthermore, con-

straint (6.3) also contains an exponential number of connectivity constraints. In the

following section we describe two exact methods that tackle this formulation by using

Benders decomposition combined with branch-and-cut strategies.

6.3.2 Formulation#2

Instead of using cut-set inequalities to model set Φ, which are exponential in number,

one can use a polynomial size representation of Φ in order to derive a compact MILP

formulation for (6.1)-(6.3). Using a multi-commodity flow formulation to characterize

X ∈ Φ and the dual of a single-commodity flow formulation of the nested maximization

problem embodied by θ, Yaman et. al [see Yaman et al., 2001] designed the following

compact MILP reformulation of (6.1)-(6.3).

Z∗MMR = min
∑
e∈E

c+
e Xe −

∑
k∈V,k 6=r

(
αkk − αkr

)
− (n− 1)µ (6.8)

s.t. σkij ≥ αkj − αki , ∀(i, j) ∈ A, ∀k ∈ V \ {r} (6.9)∑
k 6=r

σkij + µ ≤ c−ij +
(
c+
ij + c−ij

)
Xij , ∀{i, j} ∈ E (6.10)

∑
k 6=r

σkji + µ ≤ c−ij +
(
c+
ij + c−ij

)
Xij , ∀{i, j} ∈ E (6.11)

∑
(i,j)∈A

fij −
∑

(i,j)∈A

fji =

n− 1, if i = r

−1, ∀i ∈ V \ {r}
(6.12)

fij ≤ (n− 1)Xij , ∀{i, j} ∈ E (6.13)

fji ≤ (n− 1)Xij , ∀{i, j} ∈ E (6.14)∑
e∈E

Xe = n− 1 (6.15)

f , σ ∈ R|A|≥0, α ∈ R|V |×|V |≥0 , µ unrestricted and X ∈ {0, 1}|E| . (6.16)

Despite the fact that this MILP formulation contains a larger number of variables, any

standard MILP solver can be used to solve it directly (up to a limited size). In the

remainder we will refer to this model as simply “MILP”, and it will be used as an

algorithmic strategy in our computational experiments. Computational results using

this formulation are presented in [Yaman et al., 2001, Montemmani and Gambardella,

2005, Montemmani, 2006, Kasperski et al., 2012].
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6.4. Exact Approaches for the MMR-ST

6.4.1 Benders Decomposition Approaches

As said before, formulation (6.1)-(6.3) is comprised by an exponential number of con-

straints of type (6.2). In order to tackle the resulting model, we have designed an

ad-hoc Benders decomposition approach: at each iteration, a relaxed version of (6.1)-

(6.3) with only a subset of constraints (6.2) (Master Problem) is solved; using the

obtained solution, the so-called Slave Problem seeks for a violated constraint (6.2) (a

Benders cut) which is added to the Master for the next iteration.

The outline of the basic version of the Benders Decomposition (BBD) is given in Al-

gorithm 6. Note that in this approach, the Master Problem (MP.1)-(MP.4) is modeled

using (6.7) to characterize the feasibility of X. Therefore, at each iteration, prob-

lem (MP.1)-(MP.4) is solved (see line 3) within a branch-and-cut framework which

has as main feature the separation of cut-set inequalities (6.4). In the separation, a

random node i ∈ V \ {r} is selected, the maximum flow between r and i is calculated

and the corresponding constraint (6.4) is added (if violated). In our implementation,

we use nested, back-flow and minimum cardinality cuts to add as many violated cuts

as possible through the resolution of a single auxiliary maximum-flow problem [see,

e.g., Koch and Martin, 1998, Ljubić et al., 2006].

Algorithm 6 Basic Benders Decomposition (BBD)

Input: Graph GA = (V,A), intervals
[
c−ij , c

+
ij

]
∀(i, j) ∈ A, a root node r such that r ∈ V and TimeLim.

1: Solve problem (MST) with s = s+ and s = sM ; let Y + and YM be the corresponding solutions.
Set t := 1, Φt := {Y +, YM} and STOP:=FALSE;

2: repeat
3: (Master Problem) Solve the following problem:

Zt
MMR = min

∑
e∈E

c+e Xe − θ (MP.1)

s.t. θ ≤
∑
e∈E

c−e Ye +
∑
e∈E

Xe(c+e − c−e )Ye, ∀Y ∈ Φt (MP.2)

(6.4)-(6.6) (MP.3)

X ∈ {0, 1}|E|, x ∈ {0, 1}|A| and θ ∈ R≥0; (MP.4)

let (Xt, θt) be the optimal solution of (MP.1)-(MP.4);

4: (Slave Problem) Solve problem (MST) with s = sX
t

(see Theorem 6.1); let Y t be the
corresponding solution;

5: if mint′=1,...,t Z(Xt′) ≤ Zt
MMR or TIME ≥ TimeLim then

6: A (optimal) solution X′ = arg mint′=1,...,t Z(Xt′) has been found, set STOP:=TRUE;
7: else
8: Set Φt+1 := Φt ∪ {Y t} and t := t+ 1;

9: until STOP = TRUE

The cut-set inequalities found by the embedded branch-and-cut, at a given iteration

of the decomposition, are kept in the model for the following iterations. This avoids

to solve unnecessarily many maximum flow problems.
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Clearly, the corresponding Slave Problem (line 4) is nothing but a simple MST problem

with edge costs defined by the scenario induced by the optimal solution Xt of the

corresponding Master Problem.

Note that the set of Benders cuts, derived from set Φt, is initialized in line 1 with two

cuts, those corresponding to Y + and YM respectively. Afterward, a single Benders cut

is added to the model at each iteration (see line 8).

The algorithm terminates either when an optimal solution is found or when the time

limit TimeLim (3600 sec in our case) is reached (see line 5).

Enhancements to the Benders Decomposition

As described before, at each iteration of loop 2-9 a non-trivial Master Problem has to

be solved in order to find a single Benders cut. Nevertheless, a common practice when

using Benders Decomposition is including heuristic procedures in order to find addi-

tional Benders cuts. We have implemented two strategies that (heuristically) produce

alternative slave solutions Ŷt and thus increase the pool of cuts induced by Φt.

The first strategy is to apply a local-search approach to the solution Yt to obtain

an alternative solution Ŷt. The used procedure, a 3-OPT -based approach, works as

follows: we first identify up to 3 edges of Yt that after their removal the graph remains

connected; then, the cost of remaining edges is set to a uniformly randomly generated

value in the interval [c−e , c
+
e ] and finally a solution Ŷt is calculated. If the obtained

solution is better than the original one, it is used (as done in line 8) to create a new

constraint. Five attempts are performed, which means that up to six new Benders

cuts are added in a given iteration. We refer to this approach as Heuristic Benders

Decomposition (HBD). A similar idea is used in [Pereira and Averbakh, 2011a] in the

context of the MMR Assignment Problem.

The second enhancement to the BBD corresponds to an idea originally proposed

by [Fischetti et al., 2010] and later used in [Pereira and Averbakh, 2011b] also in

the context of MMR. Roughly speaking, the idea is the following: each of the incum-

bent solutions X̂t found while solving (MP.1)-(MP.4) is used to generate a Benders

cut (induced by the corresponding Ŷt solution) that will be added to the model in

the next iteration. This means that potentially many additional cuts are generated

with a very reduced algorithmic effort. We refer to this variant as Extended Benders

Decomposition (EBD).

6.4.2 Branch-and-Cut Approach

Nowadays, several MILP optimization suites provide branch-and-cut frameworks sup-

ported on the use of callbacks. Therefore, an algorithm as the BBD described before

can be transformed into a pure branch-and-cut approach by the use of callbacks. This
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is done by managing Benders cuts as Optimality Cuts that are added to the model

each time a potential solution to the Master Problem is found in a given node of the

branch-and-bound tree.

In the case of our problem, this approach basically works as follows. Let (X̃, θ̃) be a

solution at a given node of the branch-and-bound tree (i.e., obtained by the resolution

of an LP problem): if X̃ is integer and does not violate any cut-set inequality (6.4)

then it can be used as Master solution; if the corresponding induced solution Ỹ (the

Slave solution) is such that Z(Ỹ) < θ̃, then a violated constraint of type (6.2) has been

found and it is added to the model. We refer to this approach as B&C.

On one hand, this approach avoids the need of solving a complex MILP model at each

iteration; instead, only a linear programming problem has to be solved at each node of

the branch-and-bound tree and a more efficient strategy is performed to search in the

space of the solutions. On the other hand, many more cuts will be added to the model

(one per each new integer solution) which may increase the overall running time of the

algorithm.

Enhancements to the Branch-and-Cut Approach As we described above, we

add a Benders cut only when a new feasible solution is found: when the current vector

X̃ is associated with a spanning tree of G. However, even if X̃ is fractional, one can

try to find a valid Benders cut by rounding this fractional solution to a feasible one;

to do so, we find a near integer vector X̃′ by solving the MST on G with edge costs

defined by

c̃e = (c−e + c+
e ) min{1− x̃ij , 1− x̃ji}, ∀e : {i, j} ∈ E; (6.17)

using the obtained vector, X̃′, an induced solution Ỹ′ is calculated and the correspond-

ing Benders cut is added to the model, if violated. Moreover, using X̃ (feasible or not)

we apply a local-search (similar to that used in the HBD approach) in order to find

still more violated constraints of type (MP.2) and add them to the model.

We have also embedded into the B&C a primal heuristic which attempts to provide

better upper bounds using the information of the fractional solution X̃; a feasible vector

X̃′ is calculated by solving the MST on G with edge costs defined by (6.17) and the

value θ̃′ is calculated correspondingly. The obtained pair (X̃′, θ̃′) is then a candidate

to be a new incumbent solution. This procedure has been also included within the

Benders Decomposition approaches (BBD, HBD and EBD) as a sub-routine of the

branch-and-cut that solves (MP.1)-(MP.4).

6.5. Computational Results

Benchmark Instances
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In this work we used a subset of instances considered in [Kasperski et al., 2012],

these are: (i) Ya(l,u)-n instances (n ∈ {10, . . . , 100} corresponds to the number of

nodes and l,u ⊂ {10, 15, 20, 30, 40}2 are parameters that control the interval cost

structure), introduced in [Yaman et al., 2001]; (ii) He1-n and He2-n instances (n

∈ {10, . . . , 100}), proposed in [Aron and Van Hentenryck, 2002]; (iii) Mo(p)-n in-

stances (n ∈ {10, . . . , 100} and p ∈ {0.15, 0.50, 0.85} which controls the intervals

width), presented in [Montemmani and Gambardella, 2005]; and (iv) La-n instances

(n ∈ {10, . . . , 50}), introduced in [Averbakh and Lebedev, 2004].

These instances present very different topologies, cost interval structure and entail

a different computational difficulty; for further details regarding the description of

these instances we refer the reader to [Kasperski et al., 2012]. In that paper, the

authors generated 10 instances for a given setting (instance type, number of nodes,

cost structure, etc.). In total, we consider 122 different settings, which leads to 120×10

= 1220 instances. The size of the considered instances ranges from 10 nodes and 45

edges up to 100 nodes and 4950 edges.

Preprocessing and MILP Initialization In [Yaman et al., 2001] different poly-

nomial time reduction and preprocessing procedures were proposed for the MMR-ST.

They rely on the identification of edges that will be part of every optimal solution

(strong edges) and edges that will never participate of any optimal solution (weak

edges). These procedures have been used in our computations as well as in [Aron

and Van Hentenryck, 2002, Montemmani and Gambardella, 2005, Montemmani, 2006,

Nikulin, 2008, Kasperski et al., 2012].

For all proposed approaches we have initialized the corresponding mathematical pro-

gramming models by considering the following constraints:∑
(r,j)∈δ+(r)

xrj ≥ 1 (6.18)

xij + xji ≤ 1, ∀(i, j) ∈ δ+(i), ∀i ∈ V \ {r}; (6.19)

Constraint (6.18) imposes that at least one outgoing arc from r has to be active,

and constraints (6.19) are the subtour elimination constraints of size 2 that avoid too

frequent executions of the maximum flow procedure.

In the case of the B&C approach the best between XM and X+ is set as initial solution.

Likewise, both solutions are used to induced two Benders cuts that are part of the initial

model.

Implementation The proposed approaches were implemented using CPLEX 12.3

and Concert Technology. All CPLEX parameters were set to their default values,

except the following ones: (i) CPLEX cuts were turned off, (ii) CPLEX heuristics were

turned off, (iii) CPLEX preprocessing was turned off, (iv) the time limit was set to
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BBD EBD HBD MILP B&C BBD EBD HBD MILP B&C

Ya(l-u)-10 40 40 40 40 40 He2-10 10 10 10 10 10

Ya(l-u)-20 28 30 30 40 40 He2-20 10 10 10 10 10

Ya(l-u)-30 5 9 5 40 33 He2-30 7 7 7 10 10

Ya(l-u)-40 0 0 0 17 24 He2-40 0 1 0 9 5

Ya(l-u)-50 0 0 0 0∗ 12 He2-50 0 0 0 8 1

Ya(l-u)-60 0 0 0 0∗ 1 He2-60 0 0 0 2 0

He1-10 10 10 10 10 10 Mo(p)-10 30 30 30 30 30

He1-20 10 10 10 10 10 Mo(p)-20 30 30 30 30 30

He1-30 6 6 6 0 10 Mo(p)-30 26 26 26 30 30

He1-40 0 1 0 0 7 Mo(p)-40 17 22 17 22 27

Mo(p)-50 10 10 10 11∗ 17

Mo(p)-60 10 10 10 10∗ 10

Mo(p)-80 6 6 6 8∗ 10

Mo(p)-100 2 4 5 9∗ 10

Table 6.1: Number of instances solved to optimality within the time limit by the
different approaches.

3600 seconds. All the experiments were performed on a Intel Core i7-3610QM machine

with 8 GB RAM, where each execution was run on a single processor.

6.5.1 Algorithmic Performance

For comparing all the described approaches (MILP, BBD, HBD, EBD and B&C) we

have first considered those classes of instances that appear more frequently in the

literature: Mo, Ya, He1 and He2. In Table 6.1 we report the number of instances that

are solved to optimality (within the time limit) for those groups of instances for which

at least one approach is able to prove optimality for at least one instance. In this table,

for a given value n, we report the results corresponding to: 40 Ya instances (given by

4 combinations of l,u), 10 He1 instances, 10 He2 instances, and 30 Mo instances (given

by three values of p). Those entries of the MILP approach that are marked with

an asterisk correspond to cases in which at least one problem couldn’t be solved due

to memory failure (CPLEX ran out-of-memory). From the reported results, the first

observation is that different instances entail a quite different computational difficulty;

while instances with up to 100 nodes can be solved by all approaches in the case of

class Mo, for the class He1 the limit for proving optimality is 40 nodes. The second

observation is that among the Benders Decomposition approaches, the EBD turns

out to be, in general, the most effective one. Although the MILP approach seems to

be quite effective for most of the reported cases, the combinatorial explosion appears

already for instances with 50 nodes (Ya and Mo instances); moreover, although not

reported, the MILP approach ran out-of-memory for all instances with more than 70

nodes for the case of Ya, He1 and He2 instances.

As conclusion of the results presented in Table 6.1, one can say that only up to 40 nodes

a deeper analysis comparing the running times between MILP, EBD and B&C might
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MILP EBD B&C

Min Av. Max #Opt Min Av. Max #Opt Min Av. Max #Opt

He1-20 4.41 25.38 142.29 10 0.64 46.63 214.56 10 0.08 1.93 5.68 10

He1-30 - - - 0 104.71 1089.13 2403.56 6 4.98 114.67 578.11 10

He1-40 - - - 0 2220.6 2220.6 2220.6 1 189.28 1759.71 3069.07 7

He2-20 0.30 3.10 8.92 10 1.46 34.12 220.6 10 0.19 1.41 7.07 10

He2-30 4.28 38.88 145.24 10 56.78 811.69 2740.43 7 3.39 306.03 1487.95 10

He2-40 21.81 312.20 1227.26 9 600.24 600.24 600.24 1 46.3 1218.34 2154.09 5

Mo(p)-20 0.03 11.46 177.84 30 0.02 57.80 1502.53 30 0.02 0.93 16.97 30

Mo(p)-30 0.06 208.09 1699.90 30 0.03 151.03 1672.29 26 0.02 14.50 104.47 30

Mo(p)-40 0.19 564.79 3533.03 21 0.11 260.53 2270.13 19 0.03 135.94 1131.38 27

Ya(l,u)-20 2.71 25.21 78.56 40 17.58 483.77 2385.05 30 1.22 48.64 359.60 40

Ya(l,u)-30 26.41 434.75 887.80 40 332.93 1463.18 3089.89 9 10.20 433.13 3414.71 33

Ya(l,u)-40 716.18 2110.20 3552.50 17 - - - 0 52.07 1241.10 3487.28 24

Table 6.2: Statistics of the running times for instances in which optimality is at-
tained by at least one approach for at least one, out of ten, problem.

make sense. For larger instances, either the time limit is always reached or memory

problems appear. In Table 6.2 we report basic statistics about the running times

of those cases for which optimality is proven; note that instances with 20, 30 and 40

nodes are considered. Columns “Min” show the minimum running time, columns “Av.”

the average running time, columns “Max” the maximum running time and columns

“#Opt” report the number of instances for which optimality is achieved. Those cases

marked with “−” correspond to the cases where no optimal solution is found within the

time limit. It is clear that in most cases the EBD approach is outperformed by both the

MILP and the B&C approaches. Albeit in the case of Mo instances the average running

times reported for the EBD are smaller than those reported for the MILP approach,

the corresponding number of instances solved to optimality is smaller, meaning that

the effectiveness is minor. When comparing only the MILP and the B&C approaches,

we see that the B&C approach outperforms the MILP approach except for the He2

instances where the MILP approach not only solves more instances to optimality but

also solves them faster. On the contrary, for He1 and Mo instances, the B&C approach

is clearly more effective than the MILP approach.

As a complement of the results shown in Table 6.1, in Table 6.3 we present some

measures of the quality of the solutions attained for those cases in which optimality is

not reached within the time limit. Columns Gap correspond to the average deviation

attained by a given algorithm, calculated with respect to its Upper bound (UB) and

Lower bound (LB); columns Gap∗ correspond to the average deviation of the UB

reached by the algorithm and the best UB obtained among the three approaches;

columns “#NOpt” show the number of instances that are not solved to optimality.

Again, it is clear that the EBD approach is beaten in most cases by the other two

approaches. Nevertheless, the MILP approach is the one that presents very unusual

outliers, in particular for the He1 instances. In the case of He1-30 instances, the

average Gap of the MILP approach is 117%; however, the average Gap∗ is 0% (note

that both measures are 0% for the B&C approach): this means that the UB’s are the

optimal ones but the LB’s are still quite far when reaching the time limit. For the
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MILP EBD B&C

Gap Gap∗ #NOpt Gap Gap∗ #NOpt Gap Gap∗ #NOpt

He1-30 117% 0% 10 2% 1% 4 0% 0% 0

He1-40 207% 42% 10 27% 21% 9 3% 0% 3

He2-30 0% 0% 0 3% 1% 3 0% 0% 0

He2-40 0% 0% 1 21% 11% 9 4% 2% 5

Mo(0.50)-40 0% 0% 1 6% 6% 3 0% 0% 0

Mo(0.85)-30 0% 0% 0 1% 0% 4 0% 0% 0

Mo(0.85)-40 15% 14% 8 22% 11% 8 2% 0% 3

Ya(10-10)-20 0% 0% 0 3% 1% 7 0% 0% 0

Ya(10-10)-30 0% 0% 0 21% 17% 10 2% 0% 4

Ya(10-10)-40 4% 0% 8 34% 20% 10 7% 0% 8

Ya(15-15)-20 0% 0% 0 2% 1% 3 0% 0% 0

Ya(15-15)-30 0% 0% 0 17% 13% 9 1% 0% 3

Ya(15-15)-40 0% 0% 2 30% 24% 10 5% 5% 6

Ya(10-20)-30 0% 0% 0 10% 10% 8 0% 0% 0

Ya(10-20)-40 7% 3% 7 23% 20% 10 3% 0% 1

Ya(15-30)-30 0% 0% 0 6% 6% 4 0% 0% 0

Ya(15-30)-40 9% 5% 6 30% 28% 10 0% 0% 1

Table 6.3: Statistics of the gaps attained by each algorithm when reaching the time
limit. Gap is calculated using the LB and UB obtained by each approach, while
Gap∗ compares the best known UB among the three approaches and the UB of the

corresponding approach.

He1-40 instances, the situation is a little bit different because the UB’s are also quite

far (42% in average) from the best known ones. For the remaining instances (He2, Mo,

Ya), one can conclude that up to this size of instances (40 nodes) the MILP approach

is competitive with respect to the B&C.

In Figure 6.1(a) and 6.1(b) we provide a clearer comparison between the MILP, EBD

and B&C approaches for instances with 20, 30 and 40 nodes; the first graphic corre-

sponds to the performance profile of the percentage (%) number of solved instances,

while the second one corresponds to the performance profile of the attained gaps,

both with respect to the running time. From these figures one can conclude that the

B&C approach is the most effective one: on one hand it allows to solve to optimality

more instances than the other two approaches (Figure 6.1(a)); and on the other hand,

the obtained gaps (when not proving optimality) are remarkably smaller than those

produced by the other two approaches (Figure 6.1(b)).

Tables 6.2 and 6.3 show that both the MILP and the B&C approach are valid strategies

to tackle instances with up to 40 nodes; however, in Table 6.1 we have seen that when

increasing the number of nodes the difficulty of the problems turns the MILP approach

unpractical; a similar observation is outlined in [Kasperski et al., 2012].

In Table 6.4 we show the gaps attained by the B&C approach for instances with more

than 40 nodes. First of all, it is clear that the instances of classes He1 and He2 are

very hard and within 1 hour the B&C is not able to obtain reasonable gaps. The



164 Chapter 6 On Exact Solutions for the MMR-ST

0 1000 2000 3000

20
40

60
80

10
0

Time (s)

%
 C

um
ul

at
iv

e 
of

 s
ol

ve
d 

in
st

an
ce

s

B&C
EBD
MILP

500 1500 2500 3500

20
30

40
50

60
70

80
90

(a) Performance profile of the running times.

0 50 100 150 200

40
50

60
70

80
90

10
0

gap [%]

C
um

ul
at

iv
e 

%
 o

f i
ns

ta
nc

es
 w

ith
 g

ap
 [%

]

B&C
EBD
MILP

25 75 125 175

90

(b) Performance profile of the attained gaps.

Figure 6.1: Performance profile of the running times (a) and attained gaps (b)
comparing MILP, EBD and B&C approaches. All instances of classes Ya, He1, He2,

Mo (20, 30 and 40 nodes)

practical difficulty of these instances can be explained by fact the that these are two-

level networks, where each level is comprised by “clusters” of Ya(10,10)-5 instances;

this particular topology entails higher efforts due to the presence of many symmetries

among the feasible solutions. For the remaining instances, the algorithmic performance

is strongly influenced by the cost structure, i.e., parameters l and u in the case of Ya

instances, and parameter p in the case of Mo instances. For Ya instances one can

see that when l = u the problem is harder than when l < u. In the first case, the

produced intervals are very similar among each other, which increases the symmetry

among the solutions; while in the second case, the intervals are more diverse which

allows to quickly detect sub-optimality during the exploration of the search tree and

so to reduce the computational effort. Likewise, for Mo instances we see that the larger

the value of p the harder the instances become; this behavior is explained by noticing

that parameter p controls the interval width, which means that an increase of its value

corresponds to an increase of the level of uncertainty in the corresponding instance and

therefore of the difficulty of the problem [see, e.g., Montemmani and Gambardella,

2005, Montemmani, 2006, Kasperski et al., 2012].

Figures 6.2(a) and 6.2(b) complement the analysis about the influence of the interval

cost structure on the algorithmic performance. From Figure 6.2(a) we can see how

the difficulty of the problem changes between those instances where l = u and those

where l < u. Likewise, from Figure 6.2(b) we see that increasing the value p has as a

consequence a decrease of the algorithm effectiveness. In both cases, the combinatorial

explosion appears in the range of 40-60 nodes.

In the analysis presented so far we have excluded La instances which are the hardest

ones from the computational point of view [see Kasperski et al., 2012]. These instances

are comprised by three layers of nodes and all cost intervals are [0, 1]. In Table 6.5

we summarize the average gaps obtained by the B&C approach for different values of

n. We can see that already from 30 nodes the gaps attained within 3600 seconds are
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#Opt Min Av. Max #Opt Min Av. Max

Ya(10-10)-50 0 4% 9% 13% Ya(10-20)-50 5 0% 2% 5%

Ya(10-10)-60 0 9% 11% 14% Ya(10-20)-60 1 0% 5% 10%

Ya(10-10)-80 0 8% 10% 13% Ya(10-20)-80 0 4% 6% 8%

Ya(10-10)-100 0 7% 9% 11% Ya(10-20)-100 0 4% 6% 7%

Ya(20-20)-50 1 0% 9% 16% Ya(15-15)-50 0 7% 9% 13%

Ya(20-20)-60 0 9% 11% 15% Ya(15-15)-60 0 2% 10% 15%

Ya(20-20)-80 0 7% 11% 13% Ya(15-15)-80 0 7% 10% 14%

Ya(20-20)-100 0 8% 10% 11% Ya(15-15)-100 0 8% 10% 12%

Ya(15-30)-50 7 0% 1% 5% Ya(20-40)-50 5 0% 2% 5%

Ya(15-30)-60 0 1% 4% 8% Ya(20-40)-60 3 0% 4% 7%

Ya(15-30)-80 0 2% 5% 8% Ya(20-40)-80 0 4% 6% 9%

Ya(15-30)-100 0 4% 6% 7% Ya(20-40)-100 0 3% 6% 7%

He2-50 1 0% 10% 23% He1-50 0 4% 11% 17%

He2-60 0 10% 17% 23% He1-60 0 4 % 16% 23%

He2-80 0 22% 26% 30% He1-80 0 19% 22% 29%

He2-100 0 25% 29% 31% He1-100 0 24% 29% 32%

Mo(0.85)-50 0 2% 7% 12% Mo(0.5)-50 7 0% 1% 8%

Mo(0.85)-60 0 7% 12% 17% Mo(0.5)-60 5 0% 3% 13%

Mo(0.85)-80 0 12% 18% 21% Mo(0.5)-80 0 15% 19% 24%

Mo(0.85)-100 0 17% 20% 23% Mo(0.5)-100 0 17% 22% 27%

Table 6.4: Gaps attained by the B&C approach for larger instances within the time
limit.
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Figure 6.2: Impact of the instance size and the cost structure on the algorithmic
performance in classes Ya and Mo.

quite large and the proposed approach seems to be impractical for larger instances.

Again, it seems that the remarked presence of symmetries, due to the topology and

the intervals structure, is the responsable for the practical difficulty of the resulting

problems.

6.5.2 Comparing the B&C and the KMZ-TS Approach

The best known upper bounds for the instances considered in this work have been

provided by the algorithm KMZ-TS proposed in [Kasperski et al., 2012], where a
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#Opt Min Av. Max

La-10 10 0% 0% 0%

La-20 1 0% 8% 11%

La-30 0 12% 15% 21%

La-40 0 20% 24% 27%

La-50 0 25% 28% 30%

Table 6.5: Gaps attained by the B&C approach for La instances within the time
limit.

sophisticated Tabu Search is designed and extensively tested. In Table 6.6 we present

a detailed comparison between our B&C approach and the KMZ-TS algorithm; in

columns Gap we report the average gaps attained by our B&C and in columns GapKMZ

the average gaps obtained by [Kasperski et al., 2012]. Both average gaps are computed

with respect to the LB provided by the B&C approach. Two interesting remarks can

be pointed out from the reported values. First, the values Gap and GapKMZ are quite

similar, which means that the upper bounds calculated by both approaches are quite

similar. Second, the values in the GapKMZ column are usually smaller than those in

the Gap column, meaning that the upper bounds provided by the KMZ-TS approach

are better than the ones obtained by the B&C approach. These two remarks allow the

reader to understand better the real quality of the proposed approaches: on one side,

it is clearer now that the algorithm proposed in [Kasperski et al., 2012] is able to find

very good, or even optimal, solutions for an important portion of the instances; and

on the other side, we can see that although our approach is not “UB oriented”, as the

KMZ-TS heuristic, it is still able to attain good UB due to an effective exploration of

the polyhedron through the improvements of the lower bounds.

6.6. Conclusions and Future Work

Different exact approaches have been presented for getting exact solutions for the Min-

max Regret Spanning Tree problem, a generalization of the known Minimum Spanning

Tree. It was shown that the branch-and-cut (B&C) approach outperforms previously

proposed approaches for minmax regret optimization combinatorial problems. A broad

set of benchmark instances was used for studying the performance of the algorithms.

Two important conclusions can be established after the extensive computational ex-

perience: (i) The B&C approach was able to extend the limits for which an algorithm

gets optimal solutions; it achieved optimal solutions for several instances with 40 nodes

or more, while the traditional approaches were not able to obtain these results due to

time constraints or memory failure. (ii) The B&C approach reached relatively small

gaps for all the instances where it was not able to prove optimality. In particular, this

fact also allows to prove the good quality of the feasible solutions calculated by the

heuristic presented in [Kasperski et al., 2012].
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Gap GapKMZ Gap GapKMZ

Yaman(10,10)-10 0.00% 0.00% He1-10 0.00% 0.00%

Yaman(10,10)-20 0.01% 0.01% He1-20 0.00% 0.00%

Yaman(10,10)-30 1.95% 1.94% He1-30 0.01% 0.01%

Yaman(10,10)-40 6.75% 6.71% He1-40 2.68% 2.64%

Yaman(10,10)-50 8.79% 8.64% He1-50 10.63% 10.16%

Yaman(10,10)-60 11.02% 10.86% He1-60 15.92% 15.28%

Yaman(10,10)-80 10.39% 10.16% He1-80 22.49% 21.41%

Yaman(10,10)-100 9.48% 9.37% He1-100 28.95% 27.29%

Yaman(15,15)-10 0.00% 0.00% He2-10 0.00% 0.00%

Yaman(15,15)-20 0.01% 0.01% He2-20 0.00% 0.00%

Yaman(15,15)-30 1.17% 1.16% He2-30 0.01% 0.01%

Yaman(15,15)-40 4.29% 4.21% He2-40 3.82% 3.77%

Yaman(15,15)-50 9.47% 9.33% He2-50 10.31% 10.12%

Yaman(15,15)-60 9.73% 9.48% He2-60 15.93% 15.71%

Yaman(15,15)-80 10.38% 10.10% He2-80 24.95% 24.30%

Yaman(15,15)-100 9.81% 9.65% He2-100 27.25% 24.96%

Yaman(20,20)-10 0.00% 0.00% Mon(0.15)-10 0.00% 0.00%

Yaman(20,20)-20 0.00% 0.00% Mon(0.15)-20 0.00% 0.00%

Yaman(20,20)-30 1.58% 1.55% Mon(0.15)-30 0.00% 0.00%

Yaman(20,20)-40 6.25% 6.04% Mon(0.15)-40 0.00% 0.00%

Yaman(20,20)-50 9.37% 9.14% Mon(0.15)-50 0.00% 0.00%

Yaman(20,20)-60 11.26% 11.00% Mon(0.15)-60 0.00% 0.00%

Yaman(20,20)-80 11.45% 11.23% Mon(0.15)-80 0.00% 0.00%

Yaman(20,20)-100 10.09% 9.93% Mon(0.15)-100 0.00% 0.00%

Yaman(10,20)-10 0.00% 0.00% Mon(0.50)-10 0.00% 0.00%

Yaman(10,20)-20 0.00% 0.00% Mon(0.50)-20 0.00% 0.00%

Yaman(10,20)-30 0.01% 0.01% Mon(0.50)-30 0.00% 0.00%

Yaman(10,20)-40 0.07% 0.07% Mon(0.50)-40 0.01% 0.01%

Yaman(10,20)-50 1.95% 1.92% Mon(0.50)-50 1.49% 1.43%

Yaman(10,20)-60 4.91% 4.83% Mon(0.50)-60 3.36% 3.08%

Yaman(10,20)-80 5.77% 5.70% Mon(0.50)-80 19.07% 17.16%

Yaman(10,20)-100 5.55% 5.51% Mon(0.50)-100 22.46% 19.99%

Yaman(15,30)-10 0.00% 0.00% Mon(0.85)-10 0.00% 0.00%

Yaman(15,30)-20 0.00% 0.00% Mon(0.85)-20 0.00% 0.00%

Yaman(15,30)-30 0.01% 0.01% Mon(0.85)-30 0.01% 0.01%

Yaman(15,30)-40 0.36% 0.36% Mon(0.85)-40 1.68% 1.68%

Yaman(15,30)-50 0.98% 0.98% Mon(0.85)-50 6.69% 6.63%

Yaman(15,30)-60 4.48% 4.43% Mon(0.85)-60 12.22% 11.85%

Yaman(15,30)-80 5.04% 5.00% Mon(0.85)-80 17.50% 16.61%

Yaman(15,30)-100 5.97% 5.94% Mon(0.85)-100 19.75% 18.74%

Yaman(20,40)-10 0.00% 0.00% Yaman(20,40)-50 1.56% 1.56%

Yaman(20,40)-20 0.00% 0.00% Yaman(20,40)-60 2.64% 2.62%

Yaman(20,40)-30 0.01% 0.01% Yaman(20,40)-80 5.99% 5.93%

Yaman(20,40)-40 0.81% 0.81% Yaman(20,40)-100 5.60% 5.56%

Table 6.6: Comparisons between the gaps attained by the B&C approach (Gap)
and the gap obtained by [Kasperski et al., 2012] (GapKMZ). In both cases the values

are calculated using the LB provided by the B&C approach.

For future work we want to emphasize that the proposed strategy for solving the MMR-

ST can be easily adapted for other MMR combinatorial optimization problems with

interval data. In particular, if the problem is NP-Hard in its deterministic version (e.g.,

Steiner Tree), the proposed framework can be modified, for example, by embedding

another exact method to solve the Slave Problem. However, such an approach might

lead to very high computational effort. In these cases, instead of solving the Slave
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Problem exactly, one can use heuristic procedures that although sacrifice guarantee of

convergence might yield very good lower bounds in relatively short time. On the top

of this, the use of more sophisticated primal heuristics, for example one integrating a

Tabu Search as the one designed in [Kasperski et al., 2012], can help to improve the

generation of good upper bounds and thus the overall performance of the algorithm.



Chapter 7

A Note on the Bertsimas & Sim

Algorithm for Robust

Combinatorial Optimization

Problems

7.1. Introduction and Motivation

We address a general class of Combinatorial Optimization problems in which both the

objective function coefficients and the constraint coefficients are subject to interval un-

certainty. When uncertainty has to be taken into consideration, Robust Optimization

(RO) arises as methodological alternative to deal with it. The Bertsimas & Sim Robust

(B&S) Optimization approach, introduced in [Bertsimas and Sim, 2003], is one of the

most important approaches devised to incorporate this type of uncertainty into the de-

cision process. By means of protection functions, the obtained solutions are endowed

with protection, i.e., they are robust, in terms of feasibility and/or optimality for a

given level of conservatism denoted by a parameter ΓX , defined by the decision maker.

When the coefficients associated with a set of n variables are subject to uncertainty,

the level of conservatism is interpreted as the number of coefficients that are expected

to present uncertainty, i.e., 0 < ΓX ≤ n.

For the case that the uncertain coefficients are only present in the objective function,

a well-known result of [Bertsimas and Sim, 2003] states that the robust counterpart

of the problem can be computed by solving at most n + 1 instances of the original

deterministic problem. Thus, the robust counterpart of a polynomially solvable binary

optimization problem remains polynomially solvable.

169
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Our Contribution In this work we propose some improvements and extensions to

the algorithmic result presented in [Bertsimas and Sim, 2003]. For the case studied in

their paper, we show that instead of solving n+ 1 deterministic problems, the robust

counterpart can be computed by solving n−ΓX+2 deterministic problems (Lemma 1);

this improvement is particularly interesting for those cases for which a high level of

conservatism, i.e., a large value of ΓX , is suitable. Additionally, we show that if a

knapsack-type constraint is part of a problem and m of its coefficients are affected

by uncertainty, an equivalent algorithmic approach can be applied, and the robust

counterpart can be computed by solving m−ΓY +2 deterministic problems (Lemma 2),

for 0 < ΓY ≤ m. Likewise, we show that if the uncertain coefficients in the objective

function are associated with two disjoint sets of variables, of size n and m respectively,

the robust problem can be computed by solving of (n−ΓX+2)(m−ΓY +2) deterministic

problems (Lemma 3), giving to the decision maker the flexibility to define different

levels of conservatism to different sets of uncertain parameters. A similar result is also

shown for the case that uncertainty is present in a set of n objective function coefficients

and in a set of m coefficients of a knapsack-type constraint (Lemma 4). Combining the

previous results, we provide a more general result which considers the case in which the

uncertain coefficients in the objective function are associated with K disjoint sets of

variables and there are L knapsack-type constraints (each of them involving a different

set of variables) with uncertain coefficients. For this type of problems, we show that

the robust counterpart can be computed by solving a strongly-polynomial number of

deterministic problems (Theorem 1), assuming that K and L are constant.

The presented results are important when solving robust counterparts of some well-

known combinatorial optimization problems in which different levels of conservatism

are associated to disjoint subsets of binary variables. For example, in Prize-Collecting

Network Design Problems (PCNDPs) (e.g., TSP, Steiner Trees), binary variables are

associated to edges and nodes of a graph, and we might associate different levels of

conservatism to their corresponding coefficients, costs and prizes, respectively. Besides

defining the objective function as the sum of edge costs and node prizes, PCNDPs are

frequently modeled using knapsack-type Budget or Quota constraints, and our results

can be used in these cases as well, when the coefficients of these constraints are subject

to interval uncertainty.

Similarly, in facility location problems, location and allocation decisions need to be

taken. Each of these decisions involves disjoint sets of variables and, possibly uncertain,

coefficients. In these conditions, different levels of conservatism might be suitable for

different sets of coefficients. Other prominent examples of problems that fall into

this framework are generalizations of the vehicle routing problem, involving routing,

assignment, location, inventory decision variables and more – for solving the robust

counterparts of these problems, the presented result can be used as well.
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The viability of the proposed methods strongly relies on the efficacy to solve the de-

terministic counterparts.

7.2. Main Results

Let us consider the following generic Combinatorial Optimization problem with linear

objective function and binary variables x ∈ {0, 1}n:

OPTP1 = min

{∑
i∈I

cixi | x ∈ Π

}
, (P1)

where c ≥ 0, I = {1, 2, . . . , n} and Π is a generic polyhedral region.

Let us assume now that instead of having known and deterministic parameters ci,

∀i ∈ I, we are actually given uncertain intervals [ci, ci + di], ∀i ∈ I. Assume that

variables x are ordered so that di ≥ di+1, ∀i ∈ I, and dn+1 = 0.

For a given level of conservatism ΓX ∈ {1, . . . , n}, the robust formulation of (P1) is

defined in [Bertsimas and Sim, 2003] as:

ROPTP1(ΓX) = min

{∑
i∈I

cixi + β∗X (ΓX ,x) | x ∈ Π

}
, (RP1)

where β∗X (ΓX ,x) is the corresponding protection function defined as:

β∗X (ΓX ,x) = max

{∑
i∈I

dixiui |
∑
i∈I

ui ≤ ΓX and ui ∈ [0, 1]∀i ∈ I

}
. (7.1)

This protection function endows robustness to the solutions in terms of protection of

optimality in presence of a given level of data uncertainty, represented by ΓX .

In the context of RO, (P1) is referred to as the nominal problem and (RP1) as the

corresponding robust counterpart.

After applying strong duality to (7.1), problem (RP1) can be rewritten as

ROPTP1(ΓX) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

hi (7.2)

s.t. hi + θ ≥ dixi, ∀i ∈ I (7.3)

hi ≥ 0, ∀i ∈ I and θ ≥ 0 (7.4)

x ∈ Π. (7.5)

The previous formulation of the robust counterpart of (P1) has been presented in [Bert-

simas and Sim, 2003] and the authors provide a combinatorial framework that computes
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ROPTP1(ΓX) by solving n + 1 nominal problems (Theorem 3, p. 56). The following

lemma provides an improvement to this result by reducing the number of iterations of

the algorithmic procedure.

Lemma 1. Given ΓX ∈ {1, . . . , n}, the problem (RP1), the robust counterpart of

problem (P1), can be computed by solving (n − ΓX + 2) nominal problems in the

following scheme:

ROPTP1(ΓX) = min
r∈{ΓX ,...,n+1}

Gr,

where for r ∈ {ΓX , . . . , n+ 1}:

Gr = ΓXdr + min
x∈Π

(∑
i∈I

cixi +
r∑
i=1

(di − dr)xi

)
.

Proof. The first part of the proof consists of proving that any optimal solution of (RP1),

given by (x∗,h∗, θ∗), satisfies: θ∗ ∈ [0, dΓX
].

Given the structure of constraints hi + θ ≥ dixi, ∀i ∈ I, it follows that any optimal

solution (x∗,h∗, θ∗) satisfies:

h∗i = max (dix
∗
i − θ∗, 0) ,

and since xi ∈ {0, 1}, then it is true that

max (dix
∗
i − θ∗, 0) = max (di − θ∗, 0)x∗i .

Therefore, the objective function of (7.2)-(7.5) can be rewritten as

ROPTP1(ΓX) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

max (di − θ, 0)xi.

Let x be a feasible solution for a given ΓX . Let Nx be the set of indices i ∈ I such that

xi = 1. Let I(Nx,ΓX) be a subset of Nx associated with (at most) the ΓX largest di

values.

Let us assume that |Nx| ≤ ΓX , then we have I(Nx,ΓX) = Nx, which implies that the

cost of each element corresponding to an index i ∈ Nx will be set to its corresponding

upper bound ci+di. This means that if x is optimal, the minimum value ROPTP1(ΓX)

can be calculated as
∑

i∈Nx
(ci + di), which implies that θ∗ = dn+1 = 0. Let us

now assume that |Nx| ≥ ΓX + 1. Then, by definition, we have |I(Nx,ΓX)| = ΓX .

Let r∗ be the index of the ΓX -th largest di value taken into the solution, i.e., r∗ =
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max{i |i ∈ I(Nx,ΓX)}. Then we have:∑
i∈Nx

ci +
∑

i∈I(Nx,ΓX)

di =
∑
i∈Nx

ci +
∑

{i∈Nx:i≤r∗}

di −
∑

{i∈Nx:i≤r∗}

dr∗ +
∑

{i∈Nx:i≤r∗}

dr∗

=
∑
i∈Nx

ci +
∑

{i∈Nx:i≤r∗}

(di − dr∗) + ΓXdr∗

=
∑
i∈I

cixi +

r∗∑
i=1

(di − dr∗)xi + ΓXdr∗ .

Note that r∗ ≥ ΓX since |Nx| ≥ ΓX + 1. Therefore, the minimum value ROPTP1(ΓX)

will be reached for θ∗ = dr, where r ≥ ΓX , and hence, θ∗ ∈ [0, dΓX
], which completes

the first part of the proof.

We now present the second part of the proof, where the previous result is plugged

into the procedure devised in [Bertsimas and Sim, 2003], and we find the optimal

values of θ by using an equivalent decomposition approach. We decompose the real

interval [0, dΓX
] into [0, dn], [dn, dn−1], . . ., [dΓX+1, dΓX

]. Observe that for an arbitrary

θ ∈ [dr, dr−1] we have:

∑
i∈I

max(di − θ, 0)xi =

r−1∑
i=1

(di − θ)xi.

Therefore, ROPTP1(ΓX) = minr∈{ΓX ,...,n+1}G
r where for r ∈ {ΓX , . . . , n+ 1}

Gr = min
∑
i∈I

cixi + ΓXθ +
r−1∑
i=1

(di − θ)xi,

where θ ∈ [dr, dr−1] and x ∈ Π. Since we are optimizing a linear function of θ over the
interval [dr, dr−1], the optimal value of Gr is obtained either by θ = dr or by θ = dr−1.
So, for r ∈ {ΓX , . . . , n+ 1}:

Gr = min

ΓXdr + min
x∈Π

∑
i∈I

cixi +

r−1∑
i=1

(di − dr)xi

 , ΓXdr−1 + min
x∈Π

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi


= min

ΓXdr + min
x∈Π

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi

 , ΓXdr−1 + min
x∈Π

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi

 .
Therefore,

ROPTP1(ΓX) = min

ΓXdΓX
+ min

x∈Π

∑
i∈I

cixi

 , . . . , ΓXdr + min
x∈Π

∑
i∈I

cixi +
r∑

i=1

(di − dr)xi

 , . . . ,

min
x∈Π

∑
i∈I

cixi +
∑
i∈I

dixi

 ,
which completes the proof.
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Consider now the following problem that we will refer to as (P2):

OPTP2 = min

∑
i∈I

cixi |
∑
j∈J

bjyj ≤ B and (x,y) ∈ Ψ

 , (P2)

where y ∈ {0, 1}m are decision variables, B ∈ R≥0 is a constant, b ≥ 0, J =

{1, 2, . . . ,m}, and Ψ is a generic polyhedral region.

Let us assume that c is known with certainty, but instead, the elements of b are given

as uncertain intervals [bj , bj + δj ], ∀j ∈ J , and that the variables are ordered so that

δj ≥ δj+1, ∀j ∈ J , and δm+1 = 0. Given ΓY ∈ {1, . . . ,m}, the robust counterpart of

the nominal problem (P2), given the interval uncertainty of vector b, is:

ROPTP2(ΓY ) = min

∑
i∈I

cixi |
∑
j∈J

bjyj + β∗Y (ΓY ,y) ≤ B and (x,y) ∈ Ψ

 . (RP2)

In this case, β∗Y (ΓY ,y) provides protection of feasibility in presence of a level of con-

servatism given by ΓY . This problem can be rewritten as

ROPTP2(ΓY ) = min
∑
i∈I

cixi (7.6)

s.t
∑
j∈J

bjyj + ΓY λ+
∑
j∈J

kj ≤ B (7.7)

kj + λ ≥ δjyj , ∀j ∈ J (7.8)

kj ≥ 0, ∀j ∈ J and λ ≥ 0 (7.9)

(x,y) ∈ Ψ. (7.10)

The following lemma extends for (RP2) the result of Theorem 3 in [Bertsimas and Sim,

2003], and adapts the result of Lemma 1.

Lemma 2. Given ΓY ∈ {1, . . . ,m}, the problem (RP2), the robust counterpart of

problem (P2), can be computed by solving (m − ΓY + 2) nominal problems, in the

following scheme:

ROPTP2(ΓY ) = min
s∈{ΓY ,...,m+1}

Hs,

where for s ∈ {ΓY , . . . ,m+ 1}:

Hs = min
(x,y)∈Ψ

∑
i∈I

cixi |
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj + ΓY δs ≤ B

 .
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Proof. The core of the proof consists of showing that for any feasible solution of (7.6)-

(7.10) we have λ ∈ [0, δΓY
].

For any feasible solution of (7.6)-(7.10) holds that kj = max (δjyj − λ, 0) ; thus, con-

straint (7.7) can be written as∑
j∈J

bjyj + ΓY λ+
∑
j∈J

max (δj − λ, 0) yj ≤ B. (7.11)

Let (x,y) be a feasible solution for a given ΓX and a given ΓY . Let My be a set of

indices j ∈ J such that yj = 1. Let J(My,ΓY ) be a subset of My associated with (at

most) the ΓY largest values δj . Since (x,y) is a feasible solution, then the following

holds: ∑
j∈My

bj +
∑

j∈J(My,ΓY )

δj ≤ B.

Let us assume that |My| ≤ ΓY , then we have J(My,ΓY ) = My, which implies that the

cost of each element corresponding to index j ∈ My will be set to its corresponding

upper bound bj + δj , and hence constraint (7.11) is satisfied for λ = dm+1 = 0.

Let us now assume that |My| ≥ ΓY +1. Then, by definition, we have |J(My,ΓY )| = ΓY .

Let s∗ = max{j |j ∈ J(My,ΓY )}. So∑
j∈My

bj +
∑

j∈J(My,ΓY )

δj =
∑
j∈My

bj +
∑

{j∈My:j≤s∗}

δj −
∑

{j∈My:j≤s∗}

δs∗ +
∑

{j∈My:j≤s∗}

δs∗

=
∑
j∈My

bj +
∑

{j∈My:j≤s∗}

(δj − δs∗) + ΓY δs∗

=
∑
j∈J

bjyj +

s∗∑
j=1

(δj − δs∗)yj + ΓY δs∗ ≤ B.

Note that s∗ ≥ ΓY since |My| ≥ ΓY + 1, and therefore constraint (7.7) will be satisfied

for all λ = δs such that s ≥ ΓY . Therefore for any feasible solution we have λ ∈ [0, δΓY
].

By following similar arguments as those presented in the decomposition approach of

the proof of Lemma 1, it holds that

ROPTP2(ΓY ) = min

 min
(x,y)∈Ψ

∑
i∈I

cixi |
∑
j∈J

bjyj + ΓY δΓY
≤ B

 , . . . ,

min
(x,y)∈Ψ

∑
i∈I

cixi |
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj + ΓY δs ≤ B

 , . . . ,

min
(x,y)∈Ψ

∑
i∈I

cixi |
∑
j∈J

bjyj +
∑
j∈J

δjyj ≤ B

 ,
and the proof is completed.
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We now present a second extension of the algorithm proposed in [Bertsimas and Sim,

2003]. Let us consider now the following nominal problem:

OPTP3 = min

∑
i∈I

cixi +
∑
j∈J

bjyj | (x,y) ∈ Ψ

 . (P3)

In case that the elements of both vectors c and b are given in terms of closed intervals,

the corresponding robust counterpart (for a pair (ΓX ,ΓY )) is given by

ROPTP3(ΓX ,ΓY ) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

hi +
∑
j∈J

bjyj + ΓY λ+
∑
j∈J

kj (7.12)

s.t. (7.3),(7.4),(7.8),(7.9) and (x,y) ∈ Ψ. (7.13)

The following result extends Lemma 1 and provides an algorithmic procedure to

solve (7.12)-(7.13).

Lemma 3. Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, the robust counterpart of

problem (P3) can be computed by solving (n−ΓX + 2)(m−ΓY + 2) nominal problems

as follows:

ROPTP3(ΓX ,ΓY ) = min
r∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Gr,s,

where for r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}:

Gr,s = ΓXdr + ΓY δs + min
(x,y)∈Ψ

(∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

)
.

Proof. Using an analogous analysis to the one in the proofs of Lemma 1 and 2, we

have that for any optimal solution (x∗,y∗, θ∗, λ∗), it holds θ∗ ∈ [0, dΓX
] and λ∗ ∈

[0, dΓY
]. Then, by decomposition, the optimum can be found as ROPTP3(ΓX ,ΓY ) =

minr∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Gr,s where for r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}

Gr,s = min
∑
i∈I

cixi + ΓXθ +

r−1∑
i=1

(di − θ)xi +
∑
j∈J

bjyj + ΓY λ+

s−1∑
i=1

(δj − λ) yj , (7.14)

for which θ ∈ [dr, dr−1], λ ∈ [δs, δs−1] and (x,y) ∈ Ψ. Since we are optimizing a linear

function of θ over the interval [dr, dr−1] and also a linear function for λ over the interval

[δs, δs−1], the optimal value of Gr,s is obtained for

(θ, λ) ∈ {(dr, δs), (dr−1, δs), (dr, δs−1), (dr−1, δs−1)} .

So, for r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}:
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Gr,s = min

ΓXdr + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs) yj

 ,

ΓXdr−1 + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs) yj

 ,

ΓXdr + ΓY δs−1 + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 ,

ΓXdr−1 + ΓY δs−1 + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj


= min

ΓXdr + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

 ,

ΓXdr−1 + ΓY δs + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

 ,

ΓXdr + ΓY δs−1 + min
(x,y)∈Ψ

∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 ,

ΓXdr−1 + ΓY δs−1 + min
(x,y)∈Ψ

∑
i∈I

cixi +

r−1∑
i=1

(di − dr−1)xi +
∑
j∈J

bjyj +

s−1∑
j=1

(δj − δs−1) yj

 .
Therefore,

ROPTP3(ΓX ,ΓY ) = min

[
ΓXdΓX + ΓY δΓY + min

(x,y)∈Ψ

(∑
i∈I

cixi +
∑
j∈J

bjyj

)
, . . . ,

ΓXdr + ΓY δs + min
(x,y)∈Ψ

(∑
i∈I

cixi +

r∑
i=1

(di − dr)xi +
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj

)
, . . . ,

min
(x,y)∈Ψ

(∑
i∈I

cixi +
∑
i∈I

dixi +
∑
j∈J

bjyj +
∑
j∈J

δjyj

)]
,

which completes the proof.

As a complementary result, one can observe that if in (P2) the cost vector c is also

subject to interval uncertainty (along with the coefficient vector b), the corresponding

robust counterpart is given by

ROPTP4(ΓX ,ΓY ) = min
∑
i∈I

cixi + ΓXθ +
∑
i∈I

hi (7.15)

s.t. (7.3), (7.4), (7.7), (7.8), (7.9) and (x,y) ∈ Ψ. (7.16)

Combining the results of Lemma 1 and 2, we have the following result,

Lemma 4. Given ΓX ∈ {1, . . . , n} and ΓY ∈ {1, . . . ,m}, the robust problem (7.15)-

(7.16) can be solved by solving (n−ΓX + 2)(m−ΓY + 2) nominal problems as follows:

ROPTP4(ΓX ,ΓY ) = min
r∈{ΓX ,...,n+1}
s∈{ΓY ,...,m+1}

Hr,s,
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where for r ∈ {ΓX , . . . , n+ 1} and s ∈ {ΓY , . . . ,m+ 1}:

Hr,s = ΓXdr + min
(x,y)∈Ψ

(∑
i∈I

cixi +

r∑
i=1

(di − dr)xi |
∑
j∈J

bjyj +

s∑
j=1

(δj − δs) yj + ΓY δs ≤ B

)
.

We omit the proof of this result as it follows from the proofs of Lemma 2 and 3.

7.3. General Result

In light of Lemmas 3 and 4, we now generalize the previous results considering a more

general Combinatorial Optimization problem under interval uncertainty and propose

a combinatorial framework to solve its robust counterpart.

Let us consider a case in which the set of binary variables is partitioned into K+L sub-

sets given by (x1, . . . ,xK ,y1, . . . ,yL), associated with indices (I1, . . . , IK , J1, . . . , JL).

Variables (x1, . . . ,xK) appear in the objective function with non-negative cost vec-

tors (c1, . . . , cK), and (y1, . . . ,yL) variables appear in L disjoint knapsack constraints

with non-negative coefficients (b1, . . . ,bL) and non-negative right-hand-side bounds

(B1, . . . , BL). Let Ψ′ be a generic polyhedron containing the feasibility conditions for

(x1, . . . ,xK ,y1, . . . ,yL). With these elements we define nominal problem (P5) as

OPTP5 = min
(x1,...,yL)∈Ψ′

∑
i∈I1

c1ix
1
i + . . .+

∑
i∈IK

cKi x
K
i |

∑
j∈J1

b1jy
1
j ≤ B1, . . . ,

∑
j∈JL

bLj y
L
j ≤ BL

 .

(P5)

We assume now that all elements of the cost vectors (c1, . . . , cK) and all elements

of the knapsack coefficients (b1, . . . ,bL) are subject to interval uncertainty; the cost

coefficient of variable xki is taken from [cki , c
k
i + dki ], for each i ∈ Ik and k ∈ K =

{1, . . . ,K}, and the coefficient of variable ylj is taken from [blj , b
l
j + δlj ], for each j ∈ J l

and l ∈ L = {1, . . . , L}. Assume that variables (x1, . . . ,yL) are ordered so that

dki ≥ dki+1 and dk|Ik|+1
= 0, for all i ∈ Ik and k ∈ K, and δlj ≥ δlj+1 and δl|J l|+1

= 0, for

all j ∈ J l and l ∈ L.

To each set of cost coefficients we associate a level of conservatism 0 ≤ ΓkX ≤ |Ik|,
for all k ∈ K, and to each knapsack constraint we associate a level of conservatism

0 ≤ ΓlY ≤ |J l|, for all l ∈ L. The following Theorem unifies the previous results.

Theorem 1. For given 0 ≤ ΓkX ≤ |Ik|, for all k ∈ K, and 0 ≤ ΓlY ≤ |J l|, for all l ∈ L,

the robust counterpart of (P5), ROPTP5(Γ1
X , . . . ,Γ

K
X ,Γ

1
Y , . . . ,Γ

L
Y ), can be computed

by solving ∏
k∈K

(|Ik| − ΓkX + 2)
∏
l∈L

(|J l| − ΓlY + 2)
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problems given by

ROPTP5(Γ1
X , . . . ,Γ

K
X ,Γ

1
Y , . . . ,Γ

L
Y ) = min

r1∈{Γ1
X ,...,|I

1|+1}
...

...
sL∈{ΓL

Y ,...,|J
L|+1}

F (r1,...,rK ,s1,...,sL),

where for r1 ∈ {Γ1
X , . . . , |I1|+1}, . . . , rK ∈ {ΓKX , . . . , |IK |+1} and s1 ∈ {Γ1

Y , . . . , |J1|+
1}, . . . , sL ∈ {ΓLY , . . . , |JL|+ 1}, we have that

F (r1,...,rK ,s1,...,sL) =Γ1
xdr1 + . . .+ ΓKx drK + min

(x1,...,yK)∈Ψ′
{ϕ1(r1) + . . .+ ϕK(rK) |

ξ1(s1) ≤ B1, . . . , ξL(sL) ≤ BL},

such that

ϕl(rk) =
∑
i∈Ik

cki x
k
i +

rk∑
i=1

(
dki − dkrk

)
xki , ∀k ∈ K,

and

ξl(sl) =
∑
j∈J l

bljy
l
j +

sl∑
j=1

(
δlj − δlsl

)
ylj , ∀l ∈ L.

Proof. The robust counterpart of (P5) can be written as

ROPTP5(Γ1
X , . . . ,Γ

K
X ,Γ

1
Y , . . . ,Γ

L
Y ) = min

∑
k∈K

∑
i∈Ik

cki x
k
i + ΓkXθ

k +
∑
i∈Ik

hki

 (7.17)

s.t.
∑
j∈J l

bljy
l
j + ΓlY λ

l +
∑
j∈J l

klj ≤ Bl, l ∈ L (7.18)

hki + θk ≥ dki xki and θk ≥ 0, ∀i ∈ Ik, k ∈ K

(7.19)

klj + λl ≥ δljylj and λl ≥ 0, ∀l ∈ J l, l ∈ L

(7.20)

hki ≥ 0, ∀i ∈ Ik, k ∈ K (7.21)

klj ≥ 0, ∀j ∈ J l, l ∈ L. (7.22)

From Lemma 1 and 2, one can show by mathematical induction that any optimal

solution for (7.17)-(7.22) satisfies θk
∗ ∈ [0, dk

Γk
X

], for each k ∈ K, and λl
∗ ∈ [0, δl

Γl
Y

],

for each l ∈ L. Finally, mathematical induction is applied to the previously used

decomposition approach to derive the result for computing ROPTP5(Γ1
X , . . . ,Γ

L
Y ).
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As stressed in the Introduction, several Combinatorial Optimization problems are par-

ticular cases of (P5), and if interval uncertainty in their parameters is brought into

play, the algorithmic procedure described by Theorem 1 could be an alternative for

solving their robust counterparts.



Chapter 8

Vulnerability Assessment of

Spatial Networks: Models and

Solutions

8.1. Introduction

Shortest path problems correspond to an old and very known class of problems in com-

binatorial optimization. A variant of one of these basic problem consists on analyzing

the effects of removing arcs from a network. In Wollmer [1964] the problem of removing

k arcs that cause the greatest decrease in the maximum flow from a source to a sink

in a planar network is studied. This problem is a special case of a broad class of net-

work optimization problems known as interdiction problems. Applied to the shortest

s, t-path problem, the interdiction problem can be defined in the following way. Given

a graph G = (V,E) with a non-negative length function on its arcs l : E → R and

two terminals s, t ∈ V , the goal is to destroy all (or the best) paths from s to t in G

by optimally eliminating as many arcs of A as possible (usually respecting a so-called

interdiction budget). Interdiction problems are often used to measure the robustness of

solutions of network optimization problems. In Khachiyan et al. [2008] several versions

of these problems are studied; they consider the case of total limited interdiction when

a fixed number of k arcs can be removed, and node-wise limited interdiction (for each

node v ∈ V a fixed number k(v) of out-going arcs can be removed). For a complete

survey on early interdiction problems with different underlying network properties the

reader is referred to Church et al. [2004]. For a more general discussion regarding

network vulnerability approaches we suggest to see Murray [2013].

Based on a well-known network interdiction model we formulate a framework of com-

binatorial optimization problems whose solutions can be used for assessing the vulner-

ability of spatial networks in the case of disruptions. We design a flexible model of

181
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network disruption based on the geometric characteristics of spatial networks. This

model incorporates the nature of the disruptions present in different situations such as

military planning Golden [1978], Israeli and Wood [2002], terrorist attacks Salmeron

et al. [2009] or emergency control of infectious disease spreading Assimakopoulos [1987].

The proposed problems, along with the model of disruption, span several realizations

of network interdiction providing a useful tool to characterize network vulnerability.

Our aim is to propose a methodology that uses network optimization problems to

characterize the robustness of a network in the presence of multiple failures.

In §8.2 we present the optimization framework for vulnerability assessment; in §3.5 we

report computational results on realistic instances; these results show the versatility

of the proposed models to characterize the robustness of the network infrastructure.

Finally, in §3.6 we draw final conclusions and propose paths for future work.

8.2. Vulnerability Measures as Optimization Problems

Notation Let G = (V,E) be a spatial network such that |V | = n and |E| = m. Let

s, t ∈ V be a source and a target node respectively; le, ∀e : {i, j} ∈ E, be the cost of

edge e (distance between i and j); and ` be the cost of the shortest s, t-path on G with

edge costs given by le, ∀e ∈ E.

Let X ⊂ R2 be an arbitrary sub-region of R2. An element x ∈ X is a point in X; for a

given point x and a given edge e, let d(x, e) be the minimum distance between x and the

line segment defined by e (recall that e : {i, j} links node i with node j, whose positions

are given). For a given R ∈ R>0 and a given x ∈ X, let Ex = {e ∈ E | d(x, e) > R}
and Ex = {e ∈ E | d(x, e) ≤ R}. In other words, Ex is the set of edges that are not

reached by the disk of radius R centered at x (the disruption disk ρ(x,R)), and Ex is

the set of disrupted or interdiced edges. We will refer to Gx = (V,Ex) as the operating

network with respect to ρ(x,R). Note that Gx might be disconnected.

The model of failure represented by ρ(x,R) embodies a characteristic of disruption

produced by many different sources: instead of having isolated failures, we have a set

of failures all of them circumscribed within a delimited area. This naturally occurs in

the application contexts that we have already mentioned.

8.2.1 The Max-Cost Single-Failure Shortest Path Problem

Let us assume that X is a finite set of points x in R2 and that R can take values in

R which is a finite subset of R>0. Given a radius R ∈ R and a discrete set X, we are

interested in knowing what is the maximum length Ω of a shortest s, t-path across all

possible locations x ∈ X of the disruption disk ρ(x,R).
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(a) No failure disk. (b) A disk ρ(x1, R1). (c) Two disks ρ(x1, R1) and
ρ(x2, R2).

Figure 8.1: Example of a network G = (V,E), nodes s and t, a region X and different

interdiction cases.

Knowing Ω is threefold: (i) It tells us how severe can a disruption be by comparing the

value of Ω with respect to `; in other words, the increase of the transportation time

between s and t induced by a failure located in the worst location x∗ = argx∈X{Ω}.
(ii) From the tactical point of view, preventive actions can be taken in order to reduce

the chances that a failure can be produced at x∗ or the edges Ex∗ can be reinforced to

increase their reliability. And (iii) we can know whether the network is so vulnerable

that s and t might be disconnected, which can be verify if Ω =∞.

The problem of calculating Ω will be called the Max-Cost Single-Failure Shortest Path

Problem (MCSFSPP). Therefore, the MCSFSPP is an optimization problem whose

objective function value is a vulnerability measure of the network on which it is solved.

Intuitively, the MCSFSPP can be solved as follows. For a given x ∈ X, let `x be the

cost of the shortest s, t-path on Gx with edge costs lxe defined as lxe = le if e ∈ Ex and

lxe = M if e ∈ Ex, with M = O(mmaxe∈E le); therefore, Ω = maxx∈X `x. If Ω > M

then there is at least one x for which s and t cannot be connected.

In Figure 8.1(a) it is shown a network G = (V,E) where s and t correspond to the

nodes represented with triangles and X is represented by a grid of 8 × 7 points in

the background of part of G; an optimal s, t-path is shown with bold edges. In Fig-

ure 8.1(b) we show the case where a disruption disk ρ(x1, R1) interdicts the network

such that an alternative (an more expensive) s, t-path has to be established (Ω < M).

And in Figure 8.1(c) a more complex situation is shown; here two disruption disks,

ρ(x1, R1) and ρ(x2, R2), are simultaneously interdicting the network. In the latter case

all possible s, t-paths (one of them is shown in bold dashed lines) have at least one

interdicted edge, i.e., Ω > M .

The MCSFSPP is closely related with the network interdiction problems studied from

the 70’s up to now [Fulkerson and Harding, 1977, Golden, 1978, Phillips, 1993, Cormi-

can et al., 1998, Israeli and Wood, 2002] and [Hemmecke et al., 2003]. In the following,

we will use this basic definition to construct generalizations addressing different, but

complementary, measures of vulnerability under different models of failure.
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Mixed Integer Programming Formulation for the MCSFSPP

Let f ∈ [0, 1]m be a vector of [0, 1]-flow variables. An s, t-path p in G is induced by a

given allocation of flows f if the following constraints are satisfied:

∑
k∈V |e:{j,k}∈E

fj,k −
∑

i∈V |e:{i,j}∈E

fi,j =


1, if j = s

0, if j ∈ V \ {s, t}

−1, if j = t.

(SP.1)

For a given x ∈ X, the problem of finding `x can be defined as

`x = min

{∑
e∈E

lxefe | (SP.1) and f ∈ [0, 1]m

}
. (`x)

Let y ∈ {0, 1}|X| be a vector of binary variables such that yx = 1 if the failure disc is

centered at x and yx = 0 otherwise. Now, let z ∈ {0, 1}m be a set of binary variables

such that ze = 1 if edge e is operative and ze = 0 otherwise for any given x ∈ X.

Variables y and z are related as follows

yx + ze ≤ 1, ∀e ∈ E | d(x, e) ≤ R, ∀x ∈ X (YZ.1)∑
x∈X|d(x,e)>R

yx − ze ≤ 0, ∀e ∈ E. (YZ.2)

Constraints (YZ.1) and (YZ.2) state that, for any x ∈ X, an edge e has to be operative

(ze = 1) if is not reached by the disruption disk ρ(x,R). Since a single disruption disk

affects the network, we have that ∑
x∈X

yx = 1. (YZ.3)

Using (YZ.1) and (YZ.2), for a given x ∈ X the edge costs lxe can be written as

lxe = leze + (1− ze)M, ∀e ∈ E. Hence, the MCSFSPP is as follows

Ω = max
x∈X

{
`x | (YZ.1), (YZ.2), (YZ.3) and (y, z) ∈ {0, 1}|X|+m

}
. (Ω)

Problem (Ω), as it is, is non-linear. To linearize it, we will convert the max min

objective into a pure max one; to do so, let us consider the dual of (`x), which is given

by

`x = max {γt − γs | γj − γi ≤ lijzij + (1− zij)M, ∀e : {i, j} ∈ E and γ ∈ Rn} . (λ)
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Embedding (λ) into(Ω), we get the next MILP formulation for the MCSFSPP:

Ω = max γt − γs (MCSF.1)

s.t (YZ.1), (YZ.2) and (YZ.3) (MCSF.2)

γj − γi ≤ lijzij + (1− zij)M, ∀e : {i, j} ∈ E (MCSF.3)

(y, z) ∈ {0, 1}|X|+m and γ ∈ Rn. (MCSF.4)

Note that in our approach we assume that ρ(x,R) can be located in any point x ∈ X

without any stochastic characterization. That is, any point x ∈ X is likely to “host”

the center of the failure.

In the proposed setting we assume that if an edge e is disrupted by at least one failure

disk ρ(x,R), then it becomes inoperative. However, one can easily extend this to a

more general case by defining a coefficient de ≥ 0 ∀e ∈ E representing the delay on

edge e in case of interdiction (in our setting de = M ∀e ∈ E). The MCSFSPP can be

redefined by replacing constraint (MCSF.3) with

γj − γi ≤ lij + (1− zij)dij , ∀e : {i, j} ∈ E. (MCSF.3b)

The Shortest-Path Network Interdiction problem presented in [Israeli and Wood, 2002]

is very similar to the definition of the MCSFSPP using (MCSF.3b) instead of (MCSF.3).

In that problem, edges can be interdicted without any geometrical pattern among them;

instead, they consider interdiction costs so that any feasible disruption of the network

should not cost more than a given interdiction budget. Later we formally define these

concepts and adapt them to our setting.

8.2.2 The Multiple Failures case

As described above, in the MCSFSPP only a single failure ρ(x,R) occurs. However,

there are applications in which this characteristic does not hold and, instead, multi-

ple failures occur simultaneously. More precisely, we now have that k failure disks

ρ(x1, R), . . . , ρ(xk, R) of radius R are located in X, resulting in an operative network

Gxk = (V,Exk) where Exk = {e ∈ E | minx∈{x1,...,xk} d(x, e) ≤ R}. Under these condi-

tions, finding the maximum cost, across all possible {x1, . . . , xk} ∈ Xk, of the shortest

s, t-path on Gxk can be done by modifying MCSFSPP as follows. Instead of (YZ.2),

we have ∑
x∈X

yx = k. (YZ.1k)
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Besides, constraint (YZ.2) should be now adapted in order to impose that ze = 1 if

none of the k failure disks reaches e; the new constraint is∑
x∈X|d(x,e)>R

yx − ze ≤ 1−
∑
x∈X

yx, ∀e ∈ E, (YZ.2k)

clearly if k = 1, then (YZ.2k) corresponds to (YZ.2). Therefore, the Max-Cost
Multiple-Failure Shortest Path Problem (MCMFSPP) can be formulated as

Ωk = max {γs − γt | (YZ.1), (YZ.1k), (YZ.2k), (MCSF.3) and (MCSF.4)} (MCMF)

Note that in formulation (MCMF) it is assumed that R ∈ R is known in advance.

Maximal Disruption for an interdiction budget Similar as in [Cormican et al.,

1998, Israeli and Wood, 2002, Hemmecke et al., 2003], let us consider that associated

with each point x ∈ X there is a disruption cost cx > 0. Assume that the interdic-

tors have a budget B of interdiction resources, so that they can disrupt the network

using several disks ρ(x,R) as long as the total cost does not exceed B. Formally, the

interdiction-budget constraint is given by∑
x∈X

cxyx ≤ B; (IB)

so the Budget Constrained MCMFSPP is formulated as

Ωk = max{γs − γt | (YZ.1), (IB), (YZ.2k), (MCSF.3) and (MCSF.4)} (B)

By solving (B) we can know how vulnerable the network is if the interdictors are able to

optimally use their resources to disrupt it. Models as the one presented in [Israeli and

Wood, 2002, Hemmecke et al., 2003] are particular cases of (B) in which X coincides

with the midpoint of every edge e ∈ E and R = ε (ε being infinitesimally small).

Minimum Simultaneity for Complete Vulnerability: Critical k One might

be interested in knowing the minimum number of failures (the critical k or kc) that

should occur simultaneously in order to have at least one set ρ(x1, R), . . . , ρ(xk, R) that

damages the network so that s and t cannot be connected anymore or the shortest

length between them is greater than a threshold Θ.

The value kc and the corresponding collection {x1, . . . , xkc} will enable a decision
maker to perform more general preventive actions to endure the network not in a
single but a in several areas. In many practical contexts, the possibility of multiple
and synchronized failures might be the rule, so knowing kc might play a strategical role.
Clearly, for a given R, the larger kc is the more robust the network is. Mathematically,
one can formulate the search for kc as

kc = min {k | (YZ.1), (YZ.1k), (YZ.2k), (MCSF.3), (MCSF.4) ,

γs − γt ≥ Θ and k ∈ Z≥0 } (kc)
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If Θ = M , then (kc) aims at finding the minimum k such that allocating k disks

produces a disconnection between s and t. A similar model is presented in [Hemmecke

et al., 2003] in the context of interdiction in stochastic networks.

If instead of kc one is interested in knowing the minimum cost needed to produce a

damage represented by Θ, model (kc) can be easily modified by replacing the objective

function of (kc) with Cc = min
∑

x∈X cxyx.

8.3. Computational Results

8.3.1 Instance Benchmark and Solver Setting

Instance Benchmark For our experiments we consider three sets of instances: ND,

US and Bangladesh.

In the first set, the instances are generated as follows: (i) n points are randomly

located in a unit Euclidean square; (ii) a minimum spanning tree connecting all points

is calculated; (iii) β×n additional edges are added to the network such that an edge is

added if lij (euclidean distance) satisfies lij ≤ α/
√
n and the planarity of the network

is still preserved; (iv) the set X is created by randomly located K points within the

are area defined by points (x1, y1), (x2, y1), (x1, y2) and (x2, y2).

For experiments we have considered n ∈ {500, 1000}, β = 1.5, α = 1.6, (x1, x2, y1, y2) =

(0.3, 0.7, 0.0, 1.0) (X1) and (x1, x2, y1, y2) = (0.1, 0.9, 0.1, 0.9) (X2), and K = 100.

In Figure 8.2(a) it is shown an example of an instance with 500 nodes and X contained

in (0.3, 0.0), (0.7, 0.0), (0.3, 1.0) and (0.7, 1.0).

In the case of groups US and Bangladesh we consider the geographical coordinates of

the most populated cities in each case [see United Nations Statistics Division, 2013]

to define the set V . Then, we used an approximation of their highway and interurban

road system with the information available in [Google, 2013] to approximate the set

of edges E. The set X is created by randomly located K points within the are area

defined by points (x1, y1), (x2, y1), (x1, y2) and (x2, y2). In Figures 8.2(b) and 8.2(c)

we show the networks used to generate the instances US and Bangladesh respectively.

In the case of US, the area X is given by placing 100 points in the so-called south area.

With this we intend to represent possible cases of failure produced by hurricanes and

other natural disasters. For the Bangladesh instances, we have created X by placing

100 points in squared area in the very center that covers around the 15% of the total

area.

In the case of instances ND, nodes s and t are selected as those with the longest euclidean

distance. In the case of instances US we have used s ∈ {NY:New York,CH:Chicago}
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(a) ND with n = 500. (b) Network of US. (c) Network of Bangladesh.

Figure 8.2: Representation of the instances used for computations.

and t ∈ {LA:Los Ángeles,HS:Houston}; likewise, in the case of instances Bangladesh

we have used s = Rajshahi and t = Silhat.

Solver Setting Models (MCSF.1)-(MCSF.4), (MCMF) and (kc) were solved using

CPLEX 12.5 (all CPLEX parameters were set to their default values). The experiments

were performed on a Intel Core i7-3610QM machine with 8 GB RAM.

8.3.2 Vulnerability Assessment of Spatial Networks: Solutions

From the operative perspective, the value of R corresponds to the intensity of a disrup-

tion. If we consider the MCSFSPP or the MCMFSPP we would expect that a vulnerable

network is such that Ω increases quickly (up to M) when R increases marginally. On

the other hand, a reliable network is such that the cost of the shortest s, t-path does

not change too much even if R increases considerably.

In Table 8.1 we report solutions for the MCSFSPP for instances of group ND considering

different values of n, different compositions of set X and different values of R (columns

1, 4, 7 and 10). In columns ∆%Ω is reported the relative increase of Ω, for a given X

and a given R, with respect to cost of the shortest s, t-path without any failure. In this

column, ”-” means that all paths have been disrupted. In columns t[sec] are reported

the running times in seconds needed to reach optimality. One can observe from this

table that when the area where the failure can occur, X, is such that covers a stripe on

the network (as X1) then it is more vulnerable (see the values ∆%Ω for different R)

than a network in which the failure area, although larger, still leaves corridors where

s, t-paths can be constructed, as for X2. In a warfare context, if we were to be the

enemies, this analysis would suggest us that is better to concentrate our resources in

a narrower area potentially spanning a complete stripe of the network than in a larger

area (which might be more expensive) that does not properly covers the network. On

the other hand, who wants to protect the network should concentrate the efforts in

protecting at least one corridor connecting s and t.
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n = 500 n = 1000

X1 X2 X1 X2

R ∆%Ω t[sec] R ∆%Ω t[sec] R ∆%Ω t[sec] R ∆%Ω t[sec]

0.01 2.17 38.92 0.01 0.00 32.93 0.01 2.48 115.39 0.01 0.14 144.66

0.02 3.93 46.46 0.02 1.64 36.83 0.02 2.93 153.58 0.02 0.69 215.16

0.03 3.93 65.63 0.03 1.64 49.73 0.03 5.38 235.95 0.03 1.52 240.88

0.04 5.15 80.79 0.04 1.64 63.06 0.04 7.31 258.85 0.04 1.52 265.00

0.05 5.15 103.01 0.05 1.64 79.67 0.05 7.17 395.46 0.05 1.52 259.80

0.10 5.15 97.83 0.10 1.64 112.76 0.10 8.69 917.78 0.10 3.87 373.61

0.15 - 53.70 0.15 10.64 111.65 0.15 9.93 587.27 0.15 6.19 843.45

Table 8.1: Solutions for the MCSFSPP considering different values of R (Instances
ND)

In Tables 8.2 and 8.3, results for (MCMF) and (kc), respectively, are reported. The

analysis is similar as for Table 8.1. From Table 8.2 we can see that the increase of

∆%Ω (due to a larger k), is greater for X1 than for X2. Along the same lines, we see

from Table 8.3 that the minimum resources needed to disconnect s and t (see columns

kc) are greater for X2 than for X1. In Table (kc), when results for a given R are not

reported (e.g., R = 0.01 for n = 500 and X1) is because not even |X| failure disks

are enough to make the s, t connectivity collapse. This applies for all the remaining

Tables.

From the algorithmic point of view, we can notice in Tables 8.1, 8.2 and 8.3 that the

search for an alternative path in a disrupted network is not for free. In all cases we see

an increase of the algorithmic effort (time) needed to find such a path (if exists). This

is due to the high combinatorial nature of the problem when more edges are subject

500 1000

X1 X2 X1 X2

R k ∆%Ω t[sec] R k ∆%Ω t[sec] R k ∆%Ω t[sec] R k ∆%Ω t[sec]

0.01 1 2.17 24.15 0.01 1 0.00 22.51 0.01 1 2.48 88.16 0.01 1 0.01 88.64

2 3.93 25.07 2 0.00 21.96 2 3.03 94.80 2 0.09 96.35

3 4.74 25.02 3 0.00 22.11 3 3.03 93.90 3 1.63 93.57

4 5.56 24.87 4 0.00 22.21 4 3.03 95.08 4 1.63 95.08

5 6.79 24.52 5 0.00 22.14 5 3.03 94.15 5 1.63 94.4

0.1 1 5.15 59.94 0.1 1 1.64 69.61 0.1 1 8.68 889.61 0.1 1 3.87 222.36

2 - 26.43 2 13.82 142.93 2 17.89 3448.93 2 8.16 1012.06

3 - 98.05 3 13.92 297.95 3 21.24 75319.9 3 12.45 5434.01

4 - 526.47 4 - 63.01 4 28.14 26123.3 4 21.99 13130.3

5 - 147.39 5 - 149.54 5 - 16576.5 5 - 742.63

Table 8.2: Solutions for the MCMFSPP considering different values of R and k
(Instances ND)
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n X R kc t[sec] n X R kc t[sec]

500 X1 0.10 2 170.76 1000 X1 0.10 5 628.76

0.15 1 43.09 0.15 2 805.32

X2 0.03 10 39.05 X2 0.02 19 219.38

0.04 9 109.70 0.03 13 621.60

0.05 7 161.06 0.04 11 933.85

0.10 4 274.20 0.05 8 1759.32

0.15 3 162.47 0.10 5 1277.24

0.15 3 1214.14

Table 8.3: Solutions of (kc) considering different values of R (Instances ND)

to be interdicted (when R increases and/or when k is either greater than 1 or when it

is a variable).

In the case of USA Instances, we report in Table 8.4 results of the MCSFSPP considering

different pairs of s and t and different values of R. In this case, we can see that different

combinations of s and t yield to different levels of vulnerability in the system. For

instance, the network is considerably more vulnerable when it is intended to host a

path from Chicago to Los Ángeles than when the path should be established from

Chicago to Houston. This is due to the fact that, in our instance, the system of roads

connecting the north of the Midwest with the south of the West Coast is composed

by relatively few elements. Hence, a single disruption disk (that is optimally placed)

is enough to interrupt the communication between the cities. In this case the values

of ∆%Ω are particularly important from the tactic point of view; if it is up to the

decision maker to decide where to establish both the source and the target of the

transportation system, then it might preferable to have New York - Houston than, for

instance, Chicago - Los Ángeles. However, this analysis is valid only when a single

failure occurs. For an approximate equivalence to real distances, R should be multiply

by 1700.

In Figure 8.3(a) we show the solution of the shortest path problem between New York

{NY,LA} {CH,LA} {NY,HS} {CH,HS}
R ∆%Ω t[sec] R ∆%Ω t[sec] R ∆%Ω t[sec] R ∆%Ω t[sec]

0.01 9.00 17.22 0.01 0.00 17.43 0.01 13.00 17.25 0.01 0.00 17.22

0.02 10.00 21.42 0.02 20.00 25.05 0.02 13.00 26.83 0.02 2.00 20.12

0.03 10.00 24.77 0.03 20.00 33.17 0.03 15.00 22.25 0.03 2.00 35.27

0.04 10.00 23.57 0.04 20.00 31.29 0.04 18.00 23.07 0.04 2.00 28.31

0.05 10.00 25.30 0.05 20.00 35.51 0.05 19.00 25.04 0.05 8.00 36.15

0.10 30.00 34.16 0.10 - 33.67 0.10 45.00 42.31 0.10 - 30.67

0.15 - 40.22 0.15 - 28.41 0.15 - 29.69 0.15 - 28.17

0.20 - 28.00 0.20 - 48.14 0.20 - 27.16 0.20 - 37.13

Table 8.4: Solutions for the MCSFSPP considering different values of R (Instances
USA)



Chapter 8 TVulnerability Assessment of Spatial Networks 191

R = 0.01 R = 0.1

R ∆%Ω t[sec] R kc t[sec] K ∆%Ω t[sec] K ∆%Ω t[sec]

0.01 3.76 8.72 0.05 3 10.06 1 3.76 7.69 1 24.17 8.11

0.02 2.93 7.44 0.10 2 28.52 2 5.48 8.75 2 - 38.28

0.03 3.76 8.99 0.15 1 24.01 3 5.48 8.42 3 - 26.75

0.04 3.76 9.53 4 5.48 8.41 4 - 28.32

0.05 4.78 19.03 5 5.48 7.64 5 - 10.55

0.10 24.17 36.97

0.15 - 11.19

Table 8.5: Solutions for MCSFSPP, MCSFMPP and kc, s =Rajshahi and t =Silhat
(Instances Bangladesh)

and Houston when there is no disruption. In Figure 8.3(b) is shown the solution of

the MCMFSPP when 5 disruption disks with R = 0.01 are optimally located. In

Figure 8.3(b) is shown the solution of the MCMFSPP with k = 1 and R = 0.10. These

figures show how different the optimal s, t-paths can be when the network is disrupted

by failures of different magnitude.

(a) k = 0 (b) k = 5 and R = 0.01 (c) k = 1 and R = 0.1

Figure 8.3: Solutions for the MCMFSPP for different k and R (Instances USA)

Finally, in Table 8.5 we report results for the Instances Bangladesh. From the solutions

of the MCSFSPP (reported in columns 1-3) we can see that the relatively dense road

system of this country is able to resist (small values of ∆%Ω), reasonably well the

optimal location of a single failure disk up to R = 0.05. For greater values, the

network can be dramatically damaged. This later observation is reinforced by the

results reported in columns 4-6 in the same table: a critical k can be found only if

R ≥ 0.05. When looking at the results of the MCSFMPP (columns 7-9 for R = 0.01

and 10-12 for R = 0.1) we can see that the network resists well (∆%Ω ≈ 5%) several

failures with R = 0.01; however, if R = 0.1 then the network collapses even if k = 2.

8.4. Conclusions and Future Work

We have presented a collection of combinatorial optimization problems that in com-

bination allow to measure the vulnerability of a network. Vulnerability is represented

by the relative increase of the cost of a s, t-shortest path when part of the network is
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disrupted. By analyzing the solutions of these problems for different instances, we have

highlighted how different aspects of both the failure and the network yield to different

levels of vulnerability.

Two main paths of future work can be identified. First, we should consider the case in

which X is not given by a discrete set of points, but rather as continuous area. Second,

at the light of the large computational effort needed to solve some of the instance

considered here, we think it is important to design and implement more sophisticated

algorithmic techniques such as decomposition approach in order to be able to consider

larger and more complex instances.



Chapter 9

The Maximum Weight

Connected Subgraph Problem

9.1. Introduction

The Maximum (Node-) Weight Connected Subgraph Problem (MWCS) is the prob-

lem of finding a connected subgraph with maximum total weight in a node-weighted

(di)graph. It belongs to the class of network design problems and has applications in

various different areas such as forestry, wildlife preservation planning, systems biology,

computer vision, and communication network design.

Lee and Dooly [Lee and Dooly, 1998] introduced a cardinality-constrained version of

the problem for building a designed fiber-optic communication network over time,

where the given node weights reflect their degree of importance. They defined the

maximum-weight connected graph problem for an undirected graph with given node

weights, in which they search the connected subgraph of maximum weight consisting

of exactly a predescribed number of nodes. The same problem version was considered

already in [Hochbaum and Pathria, 1994] (the authors called it Connected k-Subgraph

Problem) for a Norwegian off-shore oil-drilling application.

Another application arises in the area of system biology [see Dittrich et al., 2008, Ya-

mamoto et al., 2009, Backes et al., 2011]. In [Yamamoto et al., 2009], the authors

suggest the cardinality-constrained MWCS in order to detect core source components

in gene networks, which seem to be responsible for the difference between normal cells

and mutant cells. The input graphs are constructed from gene regulation networks com-

bined with gene expression data provided as node weights. Maximum weight connected

subgraphs are considered to be good candidates for these core source components. A

directed version of the MWCS has been considered in [Backes et al., 2011], where the

most deregulated connected subnetwork in regulatory pathways with the highest sum

of node scores (arising from expression data) is searched. In their model, they call a

193
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subgraph connected if all the nodes are reachable from one node, also called the root

in the subgraph. The detected roots are likely to be the molecular key-players of the

observed deregulation.

A budgeted version arises in conservation planning, where the task is to select land

parcels for conservation to ensure species viability, also called corridor design [Dilkina

and Gomes, 2010]. Here, the nodes of the graph do not only have node weights associ-

ated with the habitat suitability but also some costs, and the task is to design wildlife

corridors that maximize the suitability with a given limited budget. Also in forest

planning, the MWCS arises as a subproblem, e.g., for designing a contiguous site for

a natural reserve or for preserving large contiguous patches of mature forest [Carvajal

et al., 2013].

A surprising application of the MWCS arises in activity detection in video sequences.

Here, a 3D graph is constructed from a video in which the nodes correspond to local

video subregions and the edges to their proximity in time and space. The node weights

correspond to the degree of activity of interest, and so the maximum weight con-

nected subgraph corresponds to the portion of the video that maximizes a classifier’s

score [Chen and Grauman, 2012].

All the above mentioned applications have in common that the MWCS arises with

node weights only. In many papers, the MWCS has been solved by transforming the

given instance to the Prize-Collecting Steiner Tree Problem. Here, the given graph has

non-negative node weights and negative edge costs, and the task is to find a maximum

weight subtree, where the weight is computed as the sum of the node and edge weights

in the subtree. The Prize-Collecting Steiner Tree Problem has been studied intensively

in the literature [see Johnson et al., 2000, Ljubić et al., 2006], and the publicly available

branch-and-cut (B&C) code of [Ljubić et al., 2006] is used in many recent applications

to solve the underlying problems to optimality.

However, in their recent work, [Backes et al., 2011] attack the MWCS directly, which

has the advantage to avoid variables for the arcs. The authors suggest a new integer

linear programming formulation which is based on node variables only. The intention of

our research was to study the MWCS straightly, and to suggest tight MIP formulations

that improve the MIP models from the literature in theory and practice.

Our Contribution: We propose a new MIP model for the MWCS based on the

concept of node separators in digraphs. We provide a theoretical and computational

comparison of the new model with other models recently used in the literature. We

show that the new model has the advantage of using only node variables while preserv-

ing the tight LP bounds of the Prize-Collecting Steiner Tree (PCStT) model. Further-

more, we study the connected subgraph polytope and show under which conditions the

newly introduced inequalities are facet defining. In an extensive computational study,

we compare different MIP models on a set of benchmark instances used in systems
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biology and on an additional set of network design instances. The obtained results in-

dicate that the new formulation outperforms the previous ones in terms of the running

time and in terms of the stability with respect to variations of node weights.

The paper is organized as follows. Section 9.2 contains a formal definition of the MWCS

and some complexity results. The following Sections provide four different MIP for-

mulations and polyhedral studies. Our B&C algorithm and the practical experiments

are discussed in Section 9.5.

9.2. The Maximum Weight Connected Subgraph Prob-

lem

In this section we formally introduce the MWCS for directed graphs and discuss some

complexity results.

Definition 1. (The Maximum Weight Connected Subgraph Problem, MWCS) Given

a digraph G = (V,A), |V | = n, with node weights p : V → Q, the MWCS is the

problem of finding a connected subgraph T = (VT , AT ) of G, that maximizes the score

p (T ) =
∑

v∈VT pv and such that there exists a node i ∈ VT (called root or key player )

such that every other node j ∈ VT can be reached from i by a directed path in T .

The MWCS in undirected graphs is to find a connected subgraph T that maximizes the

score p(T ). However, if G = (V,E) is an undirected graph, without loss of generality

we will consider its bidirected counterpart (V,A) where A is obtained by replacing each

edge by two oppositely directed arcs. Hence, it is sufficient to present results that hold

for digraphs (which are more general), and the corresponding results for undirected

graphs can be easily derived from them. We assume that in our MWCS instances

always positive and negative node weights are present, otherwise, the solution would

be trivial. Observe that any feasible solution of the MWCS contains a tree with the

same solution value. Hence it is equivalent to search a maximum node-weighted tree

in the given graph.

Furthermore, it can be distinguished between the rooted and unrooted MWCS, i.e.,

a root node r can be pre-specified or not. In this work we will concentrate on the

unrooted MWCS, or simply the MWCS in the rest of the paper.

Regarding the complexity of the MWCS, it has been shown that the problem is NP-

hard (in the supplementary documentation of the paper by [Ideker et al., 2002], the

authors provide an NP-hardness proof sketched by R. Karp). Since it is possible to

translate the problem to the Prize-Collecting Steiner tree problem, all its polynomially

solvable cases carry over to the MWCS. E.g., the PCStT is solvable in polynomial time

for the graph class of bounded treewidth [Bateni et al., 2011].
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Furthermore, one can show that the following result holds even when the MWCS is

defined on undirected graphs:

Proposition 1. It is NP-hard to approximate the optimum of the MWCS within any

constant factor 0 < ε < 1.

Proof. For a given MWCS instance, let APP be the objective function value of an

approximate solution, and let OPT be the optimal solution value. Recall that for a

given constant 0 < ε < 1, a given problem can be approximated within factor ε if and

only if APP/OPT ≥ ε, for any problem instance. To prove this result for the MWCS

it is sufficient to make a reduction from the SAT problem that works similarly to the

one given in [see Theorem 4.1 Feigenbaum et al., 2001]. By doing so, we can show that

for a given formula φ for SAT, we can build an instance G = (V,E) of the MWCS in

polytime, such that: (i) if φ is a yes-instance, then the optimal MWCS solution on G

has value ε(1 + ε3), and (ii) if φ is a no-instance, then the optimal MWCS solution on

G has value ε2.

Some applications consider the cardinality-constrained MWCS, where the task is to

find a connected subgraph with K nodes. Hochbaum and Pathria in [Hochbaum and

Pathria, 1994] have shown that this problem version is NP-hard even if all node weights

are 0 or 1 and the graph is either bipartite or planar. For trees and for complete

layered DAGs, it is solvable in polynomial time via dynamic programming [Hochbaum

and Pathria, 1994, Lee and Dooly, 1998]. Observe that for this problem version, the

node weights can be assumed to be all positive, and the maximization variant and

the minimization variant are equivalent. Goldschmidt [O. and Hochbaum, 1997] noted

that no approximation algorithm is known with a factor better than O(K), and such

an algorithm is almost trivial to find. The cardinality-constrained MWCS (and also

the MWCS) can be solved by translating it into the edge-weighted version, which has

been studied as the k-Minimum Spanning Tree Problem (k-MST) or k-Cardinality Tree

Problem in the literature [see, e.g., Fischetti et al., 1994, Chimani et al., 2009].

9.3. MIP Formulations for the MWCS

In this section we revise three MIP models for the MWCS recently presented in the

literature, and propose a novel approach based on the concept of node separators in

digraphs.

The MIP formulations considered in this chapter are based on the observation that if

there is a path between i and any other node in T = (VT , AT ), then we will search

for a subgraph which is an arborescence rooted at i ∈ VT . In our models, two types

of binary variables will be used to describe a feasible MWCS solution T = (VT , AT ):

binary variables yi associated to nodes i ∈ V will be set to one iff i ∈ VT , and additional
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binary variables xi will be set to one iff the node i ∈ V is the key player, i.e., if it is

used as the root of the arborescence.

Notation and Preliminaries: A set of vertices S ⊂ V (S 6= ∅) and its complement

S = V \ R induce two directed cuts: (S, S) = δ+ (S) =
{

(i, j) ∈ A | i ∈ S, j ∈ S
}

and

(S, S) = δ− (S) =
{

(i, j) ∈ A | i ∈ S, j ∈ S
}

. When there is an ambiguity regarding

the graph in which the directed cut is considered, we will sometimes write δG instead

of only δ to specify that the cut is considered w.r.t. graph G. For a set C ⊂ V ,

let D−(C) denote the set of nodes outside of C that have ingoing arcs into C, i.e.,

D−(C) = {i ∈ V \ C | ∃(i, v) ∈ A, v ∈ C}.

A digraph G is called strongly connected (or simply, strong) if for any two distinct

nodes k and ` from V , there exists a (k, `) path in G. A node i is a cut point in a

strong digraph G if there exists a pair of distinct nodes k and ` from V such that there

is no (k, `) path in G− i.

For two distinct nodes k and ` from V , a subset of nodes N ⊆ V \ {k, `} is called

(k, `) node separator if and only if after eliminating N from V there is no (k, `) path

in G. A separator N is minimal if N \ {i} is not a (k, `) separator, for any i ∈ N . Let

N(k, `) denote the family of all (k, `) separators. Obviously, if ∃(k, `) ∈ A or if ` is not

reachable from k, we have N(k, `) = ∅. Let N` = ∪k 6=`N(k, `) be the family of all node

separators with respect to ` ∈ V that we will refer to as `-separators.

For binary variables a ∈ {0, 1}|F |, we denote by a(F ′) the sum
∑

i∈F ′ ai for any subset

F ′ ⊆ F .

9.3.1 The Prize-Collecting Steiner Tree Model

In [Dittrich et al., 2008] the authors observed that the MWCS on undirected graphs

is equivalent to the Prize-Collecting Steiner Tree Problem (PCStT), in the sense that

there exists a transformation from the MWCS into the PCStT such that each optimal

solution of the PCStT on the transformed graph corresponds to an optimal MWCS

solution from the original graph. Recall that, given an undirected graph H = (VH , EH)

with non-negative node weights p̃v and non-negative edge costs c̃e, the PCStT is the

problem of finding a subtree TH ofH that maximizes the function
∑

v∈TH p̃v−
∑

e∈TH c̃e,

i.e., the difference between the collected node prizes and edge costs. The transformation

from the MWCS into the PCStT is given as follows: Given an input graph G of the

MWCS we set H := G and w = minv∈V pv (note, that w < 0). In order to get non-

negative node weights, we set p̃v := pv − w ∀v ∈ V and c̃e = −w, for all e ∈ E. This

transformation also works for digraphs, i.e., if H is a digraph, the PCStT consists

of finding a subarborescence of H (rooted at some node i ∈ V ) that maximizes the

given objective function. The transformation is correct, since any feasible solution is
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an arborescence, which has indegree 1 for every node, and the weight transformations

neutralize each other.

We now present the MIP model proposed in [Ljubić et al., 2006] for the PCStT that is

used for solving the MWCS after transforming it into the PCStT [see Dittrich et al.,

2008]. Consider a transformation from a (directed or undirected) PCStT instance into

a rooted digraph Gd = (Vd, Ad) that works as follows: If the input graph G = (V,E)

is undirected, then we create the arc set A by bidirecting each edge. In any case we

now have a directed graph G = (V,A). The vertex set Vd = V ∪ {r} contains the

nodes of the input graph G and an artificial root vertex r. We add new arcs from the

root r to nodes v whose out-degree is non-empty in order to get the arc set Ad i.e.,

Ad = A∪{(r, v) | v ∈ V and δ+(v) 6= ∅}. All arc weights are set to the weights of their

undirected counterparts, and the weight of an arc (r, v) ∈ Ad is set to w.

In the graph Gd, a subgraph Td = (VTd , ATd) that forms a directed tree rooted at r

is called a rooted Steiner arborescence. It is a feasible solution of the PCStT if the

out-degree of the root is equal to one. To model feasible Steiner arborescences in Gd,

we will use two types of binary variables: (a) binary variables yi introduced above

associated to all nodes i ∈ V , and (b) binary variables zij , such that zij = 1 if arc (i, j)

belongs to a feasible Steiner arborescence Td and zij = 0 otherwise, for all (i, j) ∈ Ad.

The set of constraints that characterizes the set of feasible solutions of the unrooted

PCStT is given by:

z(δ−(i)) = yi, ∀i ∈ V \ {r} (9.1)

z(δ− (S)) ≥ yk, ∀S ⊆ V \ {r}, k ∈ S (9.2)

z(δ+(r)) = 1. (9.3)

The in-degree constraints (9.1) guarantee that the in-degree of each vertex of the tree

is equal to one. The directed cut constraints (9.2) ensure that there is a directed path

from the root r to each costumer k such that yk = 1. The equality (9.3) makes sure

that the artificial root is connected to exactly one of the nodes. Thus, the MWCS can

be formulated using the following model that we will denote by (PCStT ):

max

∑
v∈V

(pv − w)yv +
∑

(i,j)∈Ad

wzij | (y, z) satisfies (9.1)-(9.3), (y, z) ∈ {0, 1}n+|Ad|

 .

The (PCStT ) model uses node and arc variables (y and z) given that it relies on an

equivalence with the PCStT. However, considering Definition 1 it seems more natural

to find a formulation based only in the space of y variables since no arc costs are

involved. In the next section we will discuss several models that enable elimination of

arc variables in the MIP models.
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9.3.2 Model of [Backes et al., 2011]

Recently, in [Backes et al., 2011] a new MIP model for the MWCS is introduced which

avoids the explicit use of arc variables. Let C denote the family of all directed cycles

in G. The new model, that we will denote by (CYCLE ), reads as follows:

x(V ) = 1 (9.4)

xi ≤ yi, ∀i ∈ V (9.5)

y(D−(i)) ≥ yi − xi, ∀i ∈ V (9.6)

y(C)− x(C)− y(D−(C)) ≤ |C| − 1, ∀C ∈ C (9.7)

(x,y) ∈ {0, 1}2n. (9.8)

Inequalities (9.4) make sure that one node is selected as a root, and inequalities (9.5)

state that if the node is chosen as a root, it has to belong to the solution. Con-

straints (9.6) are the in-degree constraints – they ensure that for each node which is

not the root, at least one of the incoming neighbors needs to be taken into the solution.

In a directed acyclic graph, in-degree constraints are sufficient to guarantee connectiv-

ity, but in general, imposing only the in-degree constraints may allow solutions that

consist of several disconnected components. To avoid this, cycle constraints (9.7) are

added to guarantee connectivity. These constraints make sure that whenever all nodes

from a cycle are taken in a solution, and none of them is set as the root, at least one

of the neighboring nodes from D−(C) has to be taken as well.

Observation 1. Constraints (9.7) are redundant for those C ∈ C such that C∪D−(C) =

V .

To see this, observe that using the root constraint (9.4), the cycle constraints (9.7) can

be rewritten as follows:

y(C) ≤ y(D−(C)) + |C| − 1 + x(C) = y(D−(C)) + |C| − x(D−(C)),

which is always satisfied by the model due to constraints (9.5) and yi ≤ 1, for all i ∈ V .

In this model an artificial root node r is not explicitly introduced. However, it is not

difficult to see that for any feasible MWCS solution there is a one-to-one mapping

between variables zri introduced above and the variables xi, for all i ∈ V .

The following result shows that the (CYCLE ) model provides very weak upper bounds,

in general.

Lemma 1. Given an instance of the MWCS, let OPT be the value of the optimal

solution, and let UB be the upper bound obtained by solving the LP relaxation of the

(CYCLE ) model. Then, there exist MWCS instances for which UB/OPT ∈ O(n).
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Figure 9.1: An example showing that the LP bounds of the (CYCLE ) model can
be as bad as O(n). The labels of nodes represent their weights: M > 0 and L >> M .

Proof. Consider an example given in Figure 9.1. The variables of the LP relaxation

of the (CYCLE ) model are set as follows: yi = xi = 0 for the nodes i with negative

weights; yi = 1/2 and xi = 0 for the nodes i in the 2-cycles, and xi = yi = 1 for the

node in the center. There are Kn = (n− 1)/3 ∈ O(n) branches in this graph. We have

UB = KnM + 2M and OPT = 2M , which concludes the proof.

9.3.3 A Model Based on (k, `) Node Separators

We now present an alternative approach to model the MWCS in the space of (x,y)

variables that relies on the constraints that have been recently used by [Fügenschuh

and Fügenschuh, 2008] and [Carvajal et al., 2013] to model connectivity in the context

of sheet metal design and forest planning, resp. Notice that for an arbitrary pair of

distinct nodes (k, `) in G, if ` is taken into the solution and k is chosen as root, then

either (i) there is a direct arc from k to `, or (ii) at least one node from any (k, `)

separator N ∈ N(k, `) has to be taken into the solution. The latter fact can be stated

using the following inequalities that we will refer to as node-separator constraints:

y(N)− x(N) ≥ y` + xk − 1, ∀k, ` ∈ V, ` 6= k, N ∈ N(k, `). (9.9)

If the nodes k and ` are connected by an arc, then N(k, `) = ∅, in which case we need

to consider the in-degree inequalities (9.6) to make sure k is connected to `. Thus, we

can formulate the unrooted MWCS as

(CUT )k,` max

{∑
v∈V

pvyv | (x,y) satisfies (9.4)-(9.6), (9.9) and (x,y) ∈ {0, 1}2n
}
.

Inequalities (9.9) can be separated in polynomial time in a support graph that splits

nodes into arcs. Given a fractional solution (x̃, ỹ), for each pair of nodes (k, `) such

that ỹ`+ x̃k−1 > 0 we generate a graph Gk` in which all nodes i 6= k, ` are replaced by

arcs. Arc capacities are then set to 1, except for the arcs associated to nodes, whose
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capacities are set to ỹi − x̃i. If the maximum flow that can be sent from k to ` in Gk`

is less than ỹ` + x̃k − 1 > 0, we have detected a violated inequality of type (9.9).

Using the root constraint (9.4), inequalities (9.9) can also be reformulated as follows:

y(N) ≥ y` + x(N ∪ {k})− 1 ⇒ y(N) + x(V \ (N ∪ {k, l})) ≥ y` − x`,

which can be interpreted as follows: If node ` is in the solution and it is not the root,

then for each k ∈ V such that N(k, `) 6= ∅ and each N ∈ N(k, `), either one of the

nodes from N is part of the solution, or none of the nodes from N ∪ {k} is chosen as

the root node.

Inequalities (9.9) are quite intuitive, however they are not facet defining. In the next

section we will show how the (k, `) node separator constraints can be lifted to obtain

facet defining inequalities.

9.3.4 A Model Based on Generalized Node Separator Inequalities

Observe that the inequality (9.9) can be lifted as follows: Assume that N ∈ N(k, `) also

separates another node k′ 6= k from `. Since at most one node can be set as a root, the

right-hand side of (9.9) can be increased as follows: y(N)−x(N) ≥ y`+xk+xk′−1. In

fact, this motivates us to introduce a generalized family of node separator inequalities,

that can be obtained by a parallel lifting of (9.9).

Generalized Node-Separator Inequalities Let ` be an arbitrary node in V and

let N ∈ N` be an arbitrary `-separator. Let WN,` be the set of nodes i such that there

is a directed (i, `)-path in G−N . More formally:

WN,` = {i ∈ V \N | ∃(i, `) path P in G−N} ∪ {`}.

Then, for any feasible MWCS solution, the following has to be satisfied: if node ` is

part of a solution, then either the root of the solution is in WN,`, or, otherwise, at least

one of the nodes from N has to be taken. Hence, the following inequalities, that we

will refer to as generalized node-separator inequalities, are valid for the MWCS:

y(N) + x(WN,`) ≥ y`, ∀` ∈ V, N ∈ N` (gNSep)

Notice that the in-degree inequalities (9.6) are a subfamily of (gNSep): The in-degree

inequality can be rewritten as
∑

j∈D−(`) yj +x` ≥ y`, i.e., they are a special case of the

generalized node-separator cuts for N = D−(`) in which case WN,` = {`}. In order to

see that (gNSep) are lifted inequalities (9.9), notice that (gNSep) can be rewritten as

follows:

y(N)− x(N) ≥ y` + x(V \ (N ∪WN,`))− 1, ∀` ∈ V, N ∈ N`.
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Together with this observation this proves that the following model is a valid MIP

formulation for the MWCS:

(CUT ) max

{∑
v∈V

pvyv | (x,y) satisfies (9.4)-(9.5), (gNSep) and (x,y) ∈ {0, 1}2n
}
.

Proposition 2. Generalized node-separator inequalities can be separated in polynomial

time.

Proof. Consider an auxiliary support graph in which the nodes are splitted as follows:

each node i ∈ V is replaced by an arc (i1, i2). All ingoing arcs into i are now connected

to i1, all outgoing arcs from node i are now connected to i2. In other words, we create

a graph G′ = (V ′, A′) such that V ′ = {i1 | i ∈ V } ∪ {i2 | i ∈ V } ∪ {r} (r is an artificial

root), A′ = {(i2, j1) | (i, j) ∈ A} ∪ {(i1, i2) | i ∈ V } ∪ {(r, i1) | i ∈ V }. For a given

fractional solution (x̃, ỹ) arc capacities in G′ are defined as:

capuv =


ỹi, if u = i1, v = i2, i ∈ V,

x̃i, if u = r, v = i1, i ∈ V,

1, otherwise.

(9.10)

We calculate the maximum flow on G′ between r and (`1, `2) in G′ for a node ` such

that ỹ` > 0. To check whether there are violated inequalities of type (gNSep), it only

remains to show that (i) every minimum cut (S, S) in G′ such that the corresponding

flow is less than ỹ` corresponds to a (gNSep) inequality for the given ` ∈ V and some

N ∈ N`, or (ii) that a corresponding violated (gNSep) cut can be generated from (S, S)

in polynomial time. Observe that any minimum cut (S, S) in G′ which is smaller than

ỹ` can be represented as union of arcs adjacent to the root, plus union of arcs of type

(i1, i2). Hence, each (S, S) cut implies the following inequalities:∑
(r,j)∈δ−(S)

xj +
∑

(i1,i2)∈δ−(S)

yi ≥ y`. (9.11)

We can now define a partitioning (U,N,W ) of the node set V such that:

W = {i ∈ V | i1, i2 ∈ S}, N = {i ∈ V | i1 6∈ S, i2 ∈ S}, U = V \ (W ∪N).

Rewriting the inequality (9.11), we obtain: x(W ) + y(N) ≥ y`. Observe that U 6= ∅.
Indeed, if U = ∅ then N ∪W = V , but then we have x(N) + y(W ) ≥ x(V ) = 1 ≥ ỹ`,

i.e., such cuts will never be violated. Hence, given the proper partition (U,N,W ), the

set N is obviously a (k, `) separator for any k ∈ U (after removing (r, i1) arcs from G′,

the arcs (i1, i2) ∈ δ−(S) are arc-separators that separate U from the rest of the graph).

If W contains only nodes that can reach ` in G−N , then inequality (9.11) belongs to

the (gNSep) family. Otherwise we reverse all arcs in G−N and perform a breadth-first
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search from `. All nodes that can be reached from ` (notice that they cannot belong to

U), by definition, determine the set WN,`. If the original cut (9.11) was violated, the

new one with the left-hand side equal to y(N) + x(WN,`) will be violated as well.

9.3.5 Some More Useful Constraints

In this section we present additional constraints that are useful for practically solving

MWCS instances.

Connected Component Inequalities In some applications of the MWCS, a K-

cardinality constraint is imposed:
∑

i∈V yi = K. For a given node k ∈ V , let Pk

contain all the nodes that are further than K − 1 hops away from k. In that case, the

following inequalities are valid for the MWCS:

xk + y` ≤ 1, ∀` ∈ Pk. (9.12)

Rewriting the connected component cuts, we obtain:∑
j 6=k

xj ≥ y`, ∀` ∈ Pk,

these constraints can be further strengthened by down lifting the coefficients of the

left-hand side. Whenever node ` is in the solution, then either ` is the root, or the root

cannot be more than K−1 hops away from `. Let W` be the set of such potential root

nodes including `. We have

x(W`) ≥ y`, ∀` ∈ V.

Out-Degree Inequalities: The following set of inequalities state that whenever a

node i such that pi ≤ 0 is taken into a solution, this is because it leads us to another

node with positive weights:

y(D+(i)) ≥ yi, ∀i ∈ V s.t. pi ≤ 0. (9.13)

Observe that these constraints are not valid if K-cardinality constraints are imposed.

Symmetry-Breaking Inequalities: In case the input graph is undirected, there

exist many equivalent optimal solutions with different orientations. In order to break

those symmetries, we can impose the following constraint that chooses the node with

the smallest index to be the root of the subgraph:

xj + yi ≤ 1, ∀i < j. (9.14)
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9.4. Polyhedral Study

Let P denote the connected subgraph (CS) polytope in the space of (x,y) variables:

P = conv{(x,y) ∈ {0, 1}2n | (x,y) satisfies (9.4), (9.5), (gNSep)}.

In this section we compare the proposed MIP formulations with respect to their qual-

ity of LP bounds and we show that, under certain conditions, the newly introduced

generalized node-separator inequalities are facet defining for the CS polytope.

9.4.1 Theoretical Comparison of MIP Models

Let PLP(.) denote the polytope of the LP relaxations of the MIP models presented

above obtained by replacing integrality conditions by 0 ≤ xi, yi ≤ 1, for all i ∈ V ,

and let vLP (.) be the optimal LP values of the associated MIP relaxations. For the

PLP(PCStT ) polytope, we set Proj (x,y)(PLP(PCStT )) = {(x,y) ∈ {0, 1}2n | xi =

zri and (y, z) ∈ PLP(PCStT )}. We can show that:

Proposition 3. We have:

1. Proj (x,y)(PLP(PCStT )) = PLP(CUT ) ( PLP(CUT k`) and PLP(CUT ) ( PLP(CYCLE ).

2. Moreover, there exist MWCS instances such that vLP (CYCLE )/vLP (CUT ) ∈ O(n).

3. The polytopes PLP(CYCLE ) and PLP(CUT k`) are not comparable.

Proof. 1. Assume that Proj (x,y)(PLP(PCStT )) = PLP(CUT ): We first show that

Proj (x,y)(PLP(PCStT )) ⊆ PLP(CUT ). Let (ŷ, ẑ) be a feasible solution for the relax-

ation of the PCStT model, we will show that the solution (x̂, ŷ) such that x̂i = ẑri

belongs to PLP(CUT ). Let ` ∈ V be an arbitrary node such that ŷ` > 0, choose some

N ∈ N` and consider the associated WN,` ⊂ V . Let Gd be the corresponding directed

instance of the PCStT with the root r (Section 9.3.1). Consider now a cut (W d,Wd) in

Gd where Wd = N ∪WN,`. We have: δ−Gd
(Wd) = {(r, i) ∈ Ad | i ∈WN,`} ∪Rest , where

Rest = {(j, i) ∈ Ad | j ∈ W d, i ∈ N}. Observe that Rest ⊆ δ−Gd
(N) ⊆ ∪i∈Nδ−Gd

(i).

Therefore, we have:

ŷ(N) =
∑
i∈N

ẑ(δ−Gd
(i)) ≥ ẑ(δ−Gd

(N)) ≥ ẑ(Rest). (9.15)

Since (W d,Wd) is a Steiner cut in Gd, it holds that ẑ(δ−Gd
(Wd)) ≥ ŷ`. This, together

with (9.15) implies:

ŷ(N) + x̂(WN,`) ≥ ẑ(Rest) + x̂(WN,`) = ẑ(δ−Gd
(Wd)) ≥ ŷ`.
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Figure 9.2: An example showing that PLP(CUT k`) 6⊆ PLP(CYCLE ). The LP
solution y4 = y5 = y6 = 1, y1 = y2 = y3 = x1 = x2 = 1/2 is feasible for the (CUT k`)

model and infeasible for (CYCLE ).

To show that PLP(CUT ) ⊆ Proj y(PLP(PCStT )) consider an LP solution (y̌, x̌) ∈
PLP(CUT ). We will construct a solution (ŷ, ẑ) ∈ PLP(PCStT ) such that y̌ = ŷ and

ẑrj = x̌j , ∀j ∈ V . On the graph G′ (see Proof of Proposition 2) with arc capacities

of (i1, i2) set to y̌i for each i ∈ V , arc capacities of (r, j1) set to x̌j , and capacities set

to 1 for the remaining arcs, we are able to send y̌` units of flow from the root r to

every `1 ∈ V ′ such that y̌` > 0. Let fkij denote the amount of flow of commodity k,

associated with k1 ∈ V ′, sent along an arc (i, j) ∈ A′. Let f be the minimal feasible

multi-commodity flow on G′ (i.e., the effective capacities on G′ used to route the flow

cannot be reduced without violating the feasibility of this flow). We now define the

values of (ŷ, ẑ) as follows: ẑrj = x̌j , ∀j ∈ V and

ẑij =

maxk∈V f
k
i2j1

, i, j ∈ V

maxk∈V f
k
rj1
, i = r, j ∈ V

,∀(i, j) ∈ A; ŷi = ẑ(δ−(i)) ,∀i ∈ V.

Obviously, the constructed solution (ŷ, ẑ) is feasible for the (PCStT ) model and, due

to the assumption that f is minimal feasible, it follows that y̌ = ŷ and x̌ is equivalent

to ẑ, which concludes the proof.

PLP(CUT ) ( PLP(CYCLE ): Let (x̂, ŷ) be an arbitrary point from PLP(CUT ). In

order to prove that (x̂, ŷ) ∈ PLP(CYCLE ) we only need to show that constraints (9.7)

are satisfied (recall that in-degree inequalities (9.6) are contained in (gNSep)). Given

the Observation 1, it is sufficient to consider cycles C such that C ∪ D−(C) ⊂ V .

Since for any such cycle C the set D−(C) defines a separator for any node ` ∈ C, from

constraints (gNSep) we have that ŷ(D−(C)) + x̂(C) ≥ ŷ`. For the remaining nodes

j ∈ C, j 6= k, we apply the bounds 1 ≥ ŷj . Summing up together these |C| inequalities,

we obtain (9.7).

2. Consider the example given in Figure 9.1 for which the (CUT ) model finds the

optimal solution.

3. The example given in Figure 9.1 shows an instance for which the LP solution is

feasible for the (CYCLE ) and infeasible for the (CUT k`) model. The example given

in Figure 9.2 shows an instance for which the LP solution is feasible for the (CUT k`)

and infeasible for the (CYCLE ) model.
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9.4.2 Facets of the CS Polytope

In this section we establish under which conditions some of the presented inequalities

are facet defining for the CS polytope.

Lemma 2. If G is a strong digraph, then the dimension of the polytope P is dim(P) =

2n− 1.

Proof. We will construct the set of 2n feasible, affinely independent solutions as follows:

Since G is strong, we can find n spanning arborescences by choosing each i ∈ V as

a root. That way, we build n affinely independent solutions. In addition, consider n

single node solutions (for each i ∈ V ), in which we have xi = yi = 1 and all remaining

xj = yj = 0, for all j 6= i. The matrix obtained by merging the characteristic vectors

of these solutions has full rank, 2n.

Lemma 3. Trivial inequalities xi ≥ 0 are facet defining if G is strong and i is not a cut

point in G.

Proof. Consider a family T of spanning arborescences on the set V \ {i} in which each

j 6= i is taken once as a root. This is possible because G− i remains a strong digraph.

There are n−1 such solutions, and they are affinely independent. Add now to T single

node solutions, for each j ∈ V \ {i}. Finally, add to T a spanning arborescence in G

with a root j 6= i. The matrix associated to incidence vectors from T has full rank,

2n− 1.

Lemma 4. Trivial inequalities yi ≤ 1 are facet defining if G is strong.

Proof. Consider a spanning arborescence T rooted at i. We will then apply a pruning

technique in order to generate n affine independent feasible MWCS solutions. We start

with T in which case y consists of all ones. We iteratively remove one by one leaves

from T , until we end up with a single root node i. Thereby, we generate a family T of n

affinely independent solutions. We then add to T n− 1 solutions obtained by choosing

a spanning arborescence rooted at j, for all j 6= i. The matrix associated to incidence

vectors from T, has full rank, 2n− 1.

Notice that yi ≥ 0 are not facet defining inequalities because yi = 0 implies xi = 0.

Similarly, xi ≤ 1 do not define facets of P because they are dominated by xi ≤ yi.

Lemma 5. Coupling inequalities yi ≥ xi are facet defining if G is strong and i is not a

cut point in G.

Proof. Construct a family T of n affinely independent solutions by applying pruning

to a spanning arborescence rooted at i. Add then to T additional n− 1 arborescences

on the set V \ {i} in which each j 6= i is taken once as a root (this is possible because
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G − i remains strong). The matrix associated to incidence vectors from T, has full

rank, 2n− 1.

Proposition 4. Given ` ∈ V and N ∈ N`, the associated (gNSep) inequality is facet

defining if G is strong, N is a minimal `-node separator and the subgraph induced by

WN,` (|WN,`| ≥ 2) is strong.

Proof. We prove the result by the indirect method. Let F (`,N) = {(x,y) ∈ {0, 1}2n |
y(N) + x(WN,`) = y`}. Consider a facet defining inequality of the form ax + by ≥ a0.

We will show that if all points in F (`,N) satisfy

ax + by = a0, (9.16)

then (9.16) is a positive multiple of (gNSep). Consider `′ ∈ W , `′ 6= `. A path from `

to `′, completely contained in WN,` and rooted at ` exists in G (WN,` is strong) and it

is a feasible MWCS solution that belongs to F (`,N). Let (x1,y1) be the characteristic

vector of this path. A subpath obtained after removing `′ from this path, also rooted

at `, is another feasible solution from F (`,N), and let (x2,y2) be the corresponding

characteristic vector. We have: ax1 + by1− ax2−by2 = 0. Therefore we have b′` = 0,

for all `′ ∈ W , `′ 6= `. Consider now a node k ∈ U = V \ (N ∪WN,`). To show that

bk = 0, for all k ∈ U , we distinguish the following cases:

(1) If D−(k) ∩ U 6= ∅, then there exists an arc (k′, k), k′ ∈ U that builds a feasible

MWCS solution B from F (`,N). Also, the single node solution B′ = {k′} belongs

to F (`,N). After subtracting the equations (9.16) with the substituted characteristic

vectors of B and B′, we obtain bk = 0.

(2) If there exists an arc (i, k) ∈ A for some i ∈ N , then, consider a path P from

i to ` that does not cross N ∪ U (such P exists because N is minimal) and a path

P ′ = P ∪ {(i, k)}, in both of them we set i as root. Both P and P ′ belong to F (`,N).

After subtracting the equations (9.16) with the substituted characteristic vectors of P

and P ′, we obtain bk = 0.

(3) Finally, if there exists an arc (j, k) ∈ A for some j ∈ WN,`, we consider a path

Q from ` to j in WN,` (such path exists because WN,` is strong) and a path Q′ =

Q ∪ {(j, k)}. Both Q and Q′ belong to F (`,N). After subtracting the equation (9.16)

with the substituted characteristic vectors of Q and Q′, we obtain bk = 0. Hence, the

equation (9.16) can be rewritten as ax +
∑

i∈N∪{`} bixi = a0. Notice that a single

node solution {k} belongs to F (`,N), for each k ∈ U . By plugging the associated

vector into (9.16), it follows that ak = a0, for all k ∈ U . Consider now two spanning

arborescences in WN,`, one rooted at `, the other rooted at arbitrary `′ 6= ` (this

is possible, because WN,` is strong). After subtracting the equation (9.16) with the

substituted characteristic vectors of those two arborescences, we obtain a`′ = a` = α,

for all `′ ∈WN,`. Since N ∈ N` and it is minimal, for each i ∈ N there exist k ∈ U such

that there exist a path Pk from k to ` that crosses N exactly at the node i. Let P ′k be
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a subpath of Pk from i to `. Both paths belong to F (`,N) and after subtracting the

associated equations (9.16), it follows that ai = ak, and hence ai = a0, for all i ∈ N .

So far, (9.16) can be rewritten as a0x(WN,`) +αx(WN,`) +
∑

i∈N∪{k} biyi = a0. After

plugging in the characteristic vector of P ′k into this equation, it follows that a0+bi+b` =

a0, and therefore we have bi = −b` = β, for all i ∈ N . Equation (9.16) becomes now

a0x(WN,`) + αx(WN,`) + βy(N) − βy` = a0. Notice that solution {`} also belongs

to F (`,N), which implies that α − β = a0. Finally, substituting a0 in the previous

equation, and using the equation (9.4), x(V ) = 1, we end up with the following form

of (9.16):

β[−x(WN,`) + y(N)− y` = −1],

which together with equation (9.4) concludes the proof.

9.5. Computational Results

For testing the computational performance of the presented formulations we have

considered both directed and undirected MWCS instances. The (CYCLE ) model

of [Backes et al., 2011] has been developed for directed graphs (regulatory networks)

with K-cardinality constraints, i.e., any feasible solution has to be comprised by ex-

actly K nodes (for a given K > 1). Executables of this implementation are available

online [see GeneTrail]. For the (PCStT ) and (CUT ) models we have developed our

own B&C implementations that work with and without cardinality constraints. The

real-world instances used in [Backes et al., 2011] require K-cardinality constraints.

Therefore, in the part of our computational study conducted on digraphs, we impose

cardinality constraints for all three models, (PCStT ), (CUT ) and (CYCLE ). For

the other set of instances we take the size of the unconstrained optimal solution (ob-

tained by the (CUT ) model) and provide the corresponding value of K as input to the

(CYCLE ) model.

In the following, we describe (i) components of the designed B&C algorithms and some

implementation details, (ii) a testbed used for the experiments, and (iii) an extensive

analysis of the obtained results.

9.5.1 Branch-and-Cut Algorithms

Separation of Inequalities For the (PCStT ) model, connectivity inequalities (9.2)

are separated within the B&C framework by means of the maximum flow algorithm

given by [Cherkassky and Goldberg, 1995]. The separation problem is solved on a

support graph whose arc capacities are given by the current LP value of z variables.

We randomly select a terminal v ∈ V such that pv > 0 and yv > 0, and calculate
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the maximum flow between the artificial root and v, and insert the corresponding

constraint (9.2), if violated.

For the (CUT ) formulation, the separation of (gNSep) is performed by solving the

maximum flow problems as described in the proof of Proposition 2, with arc capacities

given by (9.10).

In all cases, instead of adding a single violated cut per iteration, we use nested, back-

flow and minimum cardinality cuts [see Koch and Martin, 1998, Ljubić et al., 2006] to

add as many violated cuts as possible. We restrict the number of inserted cuts within

each separation callback to 25.

Primal Heuristic Our primal heuristic finds feasible solutions using the information

available from the current LP solution in a given node of the branch-and-bound tree.

Although we develop two different B&C algorithms, derived from two MIP models,

the embedded primal heuristics are based on the same idea. We select a subset of

potential “key-players” (nodes with a positive outgoing degree and with sufficiently

large y values) and run a restricted breadth-first search (BFS) from each of them.

Out of the constructed connected components, i.e., feasible solutions of the MWCS,

we select the one with the largest total weight.

MIP Initialization We initialize the (PCStT ) model with the root out-degree con-

straints (9.3). For the undirected MWCS, we also add symmetry-breaking constraints

(similar to (9.14)) and inequalities zji + zij ≤ yi, for all e : {i, j} ∈ E since they avoid

too frequent calls of the maximum flow procedure. For the variants where no cardinality

constraint is defined, we also include the flow-balance constraints: z(δ−(i)) ≤ z(δ+(i)),

for all i ∈ V such that pi ≤ 0. These constraints ensure that a node with non-positive

weight can not be a leaf in an optimal PCStT solution.

We initialize the (CUT ) model with the constraints (9.4), (9.5), (9.6). For the cases

where no cardinality constraint is imposed, the out-degree constraints (9.13) are also

included. Finally, the symmetry-breaking constraints (9.14) are added for the undi-

rected case.

Implementation The proposed approaches were implemented using CPLEXTM12.3

and Concert Technology. All CPLEX parameters were set to their default values,

except the following ones: (i) CPLEX cuts were turned off, (ii) CPLEX heuristics

were turned off, (iii) CPLEX preprocessing was turned off, (iv) the time limit was set

to 1800 seconds [except for the instances from Backes et al., 2011], and (v) higher

branching priorities were given to y variables, in the case of the (PCStT ) models, and

to x variables, in the case of the (CUT ) model. All the experiments were performed

on a Intel Core2 Quad 2.33 GHz machine with 3.25 GB RAM, where each run was

performed on a single processor.
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9.5.2 Benchmark Instances

We have considered two sets of benchmark instances arising from applications in sys-

tems biology and from network design.

System Biology Instances We have considered instances used in [Dittrich et al.,

2008] and [Backes et al., 2011]. In [Dittrich et al., 2008], only a single protein-protein

interaction network is considered. The instance is presented as an undirected graph

comprised by 2034 nodes (proteins) and 8399 edges (interactions). The considered

protein-protein interaction network corresponds to a well studied human one and the

protein scores come from a lymphoma microarray dataset (LYMPH). The instance is

available at [PlanetLisa].

In [Backes et al., 2011], six instances of regulatory networks, i.e., directed graphs,

were considered. These instances have the same underlying network (KEGG human

regulatory network of protein complexes), which is a graph comprised by 3917 nodes

and 133 310 arcs. The differences between the six benchmark instances of this set

are the scores associated to the proteins (or protein complexes) which depend on the

pathogenic process under consideration. All the instances are available online [see

GeneTrail]. For providing a valid comparison with the method proposed in [Backes

et al., 2011], it is necessary to impose cardinality constraints to the solutions. Values

K ∈ {10, 11, . . . , 25} are considered. This leads to 16 different instances for each of the

six different score settings.

Network Design Instances These are Euclidean random instances which are gen-

erated as proposed by Johnson, Minkoff, and Phillips in their paper on the Prize-

Collecting Steiner Tree Problem [Johnson et al., 2000]. The topology of these instances

is similar to street networks. First, n nodes are randomly located in a unit Euclidean

square. A link between two nodes i and j is established if the Euclidean distance dij

between them is no more than α/
√
n, for a fixed α > 0.

To generate node weights, we performed the following procedure: δ% of the nodes

are randomly selected to be associated with non-zero weights. Out of them, ε% are

associated with a weight taken uniformly randomly from [−10, 0] and the remaining

ones are associated with a weight taken uniformly randomly from [0, 10].

When generating these instances we do not impose whether links are directed or not.

When reading the input files we define if the link between i and j corresponds to an

edge e : {i, j} or to an arc a : (i, j). This allows us to use the same set of instances for

both, the directed and the undirected case.

For the computational experiments we considered n ∈ {500, 750, 1000, 1500}, α ∈
{0.6, 1.0}, δ ∈ {0.25, 0.50, 0.75}, ε ∈ {0.25, 0.50, 0.75}. This leads to 18 instances for

each fixed value of n.
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Figure 9.3: Box plots of log10-values of the running times [sec] (instances
from [Backes et al., 2011], K ∈ {10, . . . , 25}).

9.5.3 Algorithmic Performance

MWCS on Digraphs For this study, we consider the instances GSE13671, GDS1815,

HT-29-8, HT-29-24, HT-116-8 and HT-116-24 from [Backes et al., 2011], and our randomly

generated instances.

In Figure 9.3, using the box plots we show the log10-values of the running times for

the three approaches considering all instances of [Backes et al., 2011] and all values of

K. There are 16 × 6 = 96 problems in total for each approach. The values marked

with an asterisk correspond to the log10-values of the mean running time (shown as

the label next to the asterisk). The values marked with symbol × correspond to the

log10-values of the maximum running times (the label next to it shows the name of

the instance, K, and the running time). The obtained results indicate that, for this

group of instances, (PCStT ) is the approach with the worst performance since most

of the running times are at least one order of magnitude larger than the ones of the

other two approaches. When comparing (CUT ) and (CYCLE ), one can observe that

the distribution of the running times of the (CYCLE ) model has a larger dispersion

(the box is wider) and its outliers are almost one order of magnitude larger than the

maximum running times of the (CUT ) model. In a few cases however the (CYCLE )

model solves some instances faster than the (CUT ) model (which can be seen from the

minimum values and the values in the first-quartile). Overall, the mean value of the

running times of the (CUT ) model is 22 sec which is almost three times smaller than

the mean running time of the (CYCLE ) model (77 sec). The value of the maximum

running time of the (CUT ) model is 193 sec which is more than 10 times smaller than

the maximum running time of the (CYCLE ) model (2245 sec, reached for K = 18 for

the instance GSE13671, see Figure 9.3). The fact that the box of the (CUT ) model is

considerably narrower than the box of the (CYCLE ) model, indicates that the (CUT )

approach is more robust regarding the variation of the scores of protein complexes and

the value of K.
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In Table 9.1 we report for each instance from [Backes et al., 2011] the average values

(over all K ∈ {10, . . . , 25}) of the running times and the average number of cuts added

for each of the (PCStT ), (CUT ) and (CYCLE ) models (columns Time(sec), #(9.2),

#(gNSep) and #(9.7), respectively). In column δ we show the fraction of nodes with a

score different than 0 and in column ε the fraction of them with a negative score. The

results indicate that the performance of the (CYCLE ) model strongly depends on the

instances under consideration (the average running times of GSE13671 are two orders

of magnitude larger that the ones of HT-116-8), which also explains the dispersion

shown in Figure 9.3. Likewise, for the (PCStT ) model, the average running time for

the instance HT-29-8 is an order of magnitude larger than for the instance GSE13671.

In contrast to the unstable performance of (PCStT ) and (CYCLE ) models, the (CUT )

model seems to be more independent on the type of considered instances. From the

same table we may conclude that the number of cuts needed to prove the optimality is

one order of magnitude smaller for the (CUT ) model than for the other two models.

This means that the (gNSep) cuts are more effective in closing the gap than the (9.7)

and (9.2) cuts. Regarding δ and ε, it seems that the (CUT ) model is not sensitive to

their values, while the (CYCLE ) model performs better when ε is smaller.

For the set of Euclidean network instances, running times of the (CUT ) and (CYCLE )

model are given in Figure 9.4(a) and 9.4(b), respectively (for many instances we

reached the time-limit for the (PCStT ) model, so we do not consider it here). This

time we group instances according to different combinations of (δ, ε) values. Each

box contains 16 × 8 = 128 values obtained for the settings: K ∈ {10, . . . , 25}, n ∈
{500, 750, 1000, 1500} and α ∈ {0.6, 1.0}. Comparing Figure 9.4(a) and 9.4(b) we ob-

serve that although the average running times (marked with asterisk) of the (CUT )

model are in general one order of magnitude smaller than those of the (CYCLE ) model,

both of them present a similar pattern: (i) For a given δ, the increase of ε from 0.25 to

0.75 produces a worsening of the algorithmic performance. This worsening is visible

not only in the increase of the running times, but also in their higher dispersion (wider

boxes and more outliers). Increasing ε (for a fixed δ), means that a larger proportion

of nodes has a negative weight; since our goal is to find a connected component of

exactly K nodes the more nodes with negative weight, the more difficult is the task

of reaching the “attractive” nodes that lead to a better solution. (ii) On the other

hand, increasing δ from 0.25 to 0.75 produces an improvement of the algorithmic per-

formance, i.e., the more nodes with non-zero weights, the easier the problems. One

possible reason for this could be the symmetries induced by a large portion of nodes

with zero weight (as it is the case for δ = 0.25). Hence, by decreasing this portion (i.e.,

increasing δ) the cutting-planes that are added through the separation become more

effective, and the primal heuristic is able to find more diverse, and eventually better,

incumbent solutions.

MWCS on Undirected Graphs For this computational comparison we do not

impose cardinality constraints. In order to be able to perform a comparison with the
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Figure 9.4: Dependance of the running times on the (δ, ε) settings.

(CYCLE ) model that requires a digraph G and K as its input, we run the (CYCLE )

model with (i) G transformed into a digraph, and (ii) with the value of K set to be

the size of the optimal unconstrained MWCS solution (obtained by, e.g., the (CUT )

model). For these graphs we impose a time limit of 1800 seconds. Figure 9.5 shows

the performance profile of the three approaches regarding the total running time. Fig-

ure 9.6 shows the performance profile of the achieved gaps within this time limit. We

observe that also in the case of undirected graphs, the (CUT ) approach significantly

outperforms the (CYCLE ) and the (PCStT ) approach: While the (CUT ) approach

produces solutions of less than 1% of gap in almost 100% of the instances, the (PCStT )

approach produces solutions with more than 15% of gap in more than 40% of the in-

stances. The (CYCLE ) approach solves about 50% of instances to optimality, with

most of the gaps of the unsolved instances being below 15%.

In Table 9.2 we provide more details on these results. Each row corresponds to a

fixed value of n, with 18 different instances obtained by varying δ, ε and α. Column

#NOpt indicates how many out of those 18 instances were not solved to optimality



214 Chapter 9 The Maximum Weight Connected Subgraph Problem

Time [sec]

C
um

ul
at

iv
e 

%
 o

f I
ns

ta
nc

es
 w

ith
 a

 T
im

e 
t [

%
]

●●
●●
●●
●●
●●
●●●

●● ● ● ●●●●
● ●●

●● ● ●●
● ●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

0 100 250 500 1000 1500 1800

0
10

20
30

40
50

60
70

80
90

10
0

●

Model

PCStT
CUT
CYCLE

Figure 9.5: Performance profile of running times on random undirected instances.
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Figure 9.6: Performance profile of final gaps (%) on random undirected instances.

within the imposed time limit of 1800 seconds. For a given n, and for each of the

three approaches we additionally report on the following values: the average running

time (column Time(sec)); the average gap of those instances that were not solved

to optimality (column Gap(%)), and the average number of inserted cutting planes

(columns #(9.2), #(gNSep) and #(9.7), respectively). These results show that the

(CUT ) model is by far more effective than the (CYCLE ) model for this group of

instances. The average running times of the (CUT ) model are one order of magnitude

smaller than those of the (PCStT ) and (CYCLE ) model. All but four instances can

be solved by the (CUT ) model to optimality, while in the case of the (CYCLE ) and

(PCStT ) model, 29 and 42 instances remain unsolved, respectively. The number of

cutting planes of type (gNSep) needed to close the gap is one order magnitude smaller

than the number of cuts of type (9.7) or (9.2).

So far, it seems clear that for the considered instances the (CUT ) model significantly

outperforms the (PCStT ) approach. However for the LYMPH instance studied in [Dit-

trich et al., 2008], for which δ = 1.0 and ε = 0.97, the (PCStT ) model takes only 3.19

seconds to find the optimal solution while the (CYCLE ) model takes 15.56 seconds,

and the (CUT ) model 50.70 seconds. The optimal solution, whose objective value is
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(PCStT ) (CUT ) (CYCLE )

Instance δ ε Time(sec) #(9.2) Time(sec) #(gNSep) Time(sec) #(9.7)

GSE13671 0.89 0.73 176.11 1206 17.85 97 341.95 3754
GDS1815 0.92 0.64 878.63 3565 46.09 225 37.95 1264
HT-29-8 0.92 0.66 2846.36 5400 22.03 182 14.17 178
HT-29-24 0.92 0.61 196.56 1292 11.40 61 60.59 1330
HT-116-8 0.92 0.54 623.10 2214 15.26 108 3.21 129
HT-116-24 0.92 0.55 237.78 1149 19.82 93 4.19 130

Average 826.42 2471 22.07 128 77.01 1131

Table 9.1: Average values for instances from [Backes et al., 2011] (K ∈ {10, . . . , 25}).

70.2, is comprised by 37 nodes with positive weight and 9 with negative weight. It is

not easy to derive a concrete answer of why, for this particular instance, the (PCStT )

model is faster than the (CUT ) model. The following two factors could be responsible

for this behavior: (i) the sparsity of the graph (the number of edges is approximately

four times the number of nodes, while in random instances this ratio is almost 10)

which means that the number of z variables is not too large, and (ii) there are sig-

nificantly less symmetries due to the fact that there are no nodes with zero weight.

These factors might explain why, in this particular case, it becomes easier to solve

the problem with the prize-collecting Steiner tree reformulation, rather than directly

looking for a connected component that maximizes the objective function.

(PCStT ) (CUT ) (CYCLE)
#nodes#arcs Time Gap(%)#(9.2)#NOpt Time Gap(%)#(gNSep)#NOpt Time Gap(%)#(9.7)#NOpt

500 4558 677.24 >15.00 1055 5 15.30 – 69 0 615.36 5.50 4289 6
750 7021 1243.57 >15.00 1552 11 108.78 1.27 99 1 471.68 2.64 1721 4
1000 9108 1304.76 >15.00 1955 12 150.03 0.29 201 1 990.84 6.76 3176 9
1500 14095 1526.41 >15.00 2021 14 453.82 2.08 373 2 1086.19 10.55 2139 10

Table 9.2: Average values for different values of n (random instances, α ∈ {0.6, 1.0},
δ, ε ∈ {0.25, 0.50, 0.75}, 18 problems per each n).

9.6. Conclusion

Our work was motivated by the wide range of applications of the MWCS and a recent

work in [Backes et al., 2011] who were the first ones to propose a MIP model for

the MWCS derived on the set of node variables only. In this work we were able to

provide a tight MIP model that outperforms the model from [Backes et al., 2011] both

theoretically and computationally. The new model also works on the space of node

variables and is valid for all previously studied variants of the MWCS (cardinality

constrained, budget constrained and undirected/directed one). We have studied the

CS polytope and we have shown that the newly introduced family of generalized node-

separator inequalities is facet defining. Our computational study has shown that the

new approach outperforms the previously proposed ones, in particular if the inputs are

digraphs with non-empty subsets of zero-weight nodes.





Chapter 10

The Rooted Maximum

Node-Weight Connected

Subgraph Problem

10.1. Introduction

In this work we study a variant of the connected subgraph problem in which we are given

a graph with a pre-specified root node (and possibly an additional set of terminals).

Nodes of the graph are associated with (not necessarily positive) weights. The goal is

to find a connected subgraph containing the root and the terminals that maximizes

the sum of node-weights. In addition, a budget constraint may be imposed as well: in

this case, each node is additionally associated with a non-negative cost, and the cost of

connecting the nodes is not allowed to exceed the given budget. Both problem variants

are NP-hard, unless all node weights are non-negative and no budget is imposed,

in which case the problem is trivial. The problem is called the Rooted Maximum

Node-Weight Connected Subgraph Problem (RMWCS), or the RMWCS with Budget

Constraint (B-RMWCS), respectively.

The problem has been introduced by [Lee and Dooly, 1998] in the context of the

design of fiber-optic communication networks over time, where the authors refer to the

problem as the constrained maximum weight connected graph problem. The authors

impose K-cardinality constraints, i.e., they search for a connected subgraph containing

K nodes (including a predetermined root) that maximizes the collected node-weights.

Obviously, K-cardinality constraints are a special form of the budget constraints in

which every node is associated a cost equal to one, and the budget is equal to K.

A budgeted version arises in the wildlife conservation planning, where the task is to

select land parcels for conservation to ensure species viability, also called corridor

217
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design [see, e.g., Conrad et al., 2012, Dilkina and Gomes, 2010]. Here, the nodes cor-

respond to land parcels, their weights are associated with the habitat suitability, and

node costs are associated with land value. The task is to design wildlife corridors

that maximize the suitability with a given limited budget. Also in forest planning,

the connected subgraph arises as subproblem, e.g., for designing a contiguous site for

a natural reserve or for preserving large contiguous patches of mature forest [Carva-

jal et al., 2013]. [Moss and Rabani, 2007] have proposed an O(log n) approximation

algorithm for the B-RMWCS with non-negative node-weights, where n is the number

of nodes in the graph. For more details on the problems related on the RMWCS, see

e.g., the literature review given in [Dilkina and Gomes, 2010].

In this chapter we will address the RMWCS in digraphs as well. This is motivated by

some applications in systems biology where regulatory networks are represented using

(not necessarily bidirected) digraphs and with node weights that can also be negative.

The goal is to find a rooted subgraph in which there is a directed path from the root

to any other node that maximizes the sum of node weights. In systems biology, the

roots are frequently referred to as “seed genes” as they are assumed to be involved in

a particular disease. In [Backes et al., 2011], for example, the authors search for the

connected subgraph in a digraph without a prespecified root node (i.e., determination

of the seed gene, also called the key player, is part of the optimization process). To

solve the problem of [Backes et al., 2011] one can, for example, iterate over a set of

potential key players, solve the corresponding RMWCS and choose the best solution.

Our Contribution. Previously studied mixed integer programming (MIP) formula-

tions for the (B-)RMWCS use arc and possibly flow variables to model the problem [see

Dilkina and Gomes, 2010]. In this work we propose three new MIP models for the (B-

)RMWCS derived in the natural space of node variables. We first provide a theoretical

comparison of the quality of lower bounds of these models. We also show that one of

our models which is based on the concept of node separators, preserves the tight LP

bounds of the previously proposed cut set model of [Dilkina and Gomes, 2010]. In the

second part of the paper we study the rooted connected subgraph polytope (in the

natural space of node variables) and show under which conditions the node separator

inequalities are facet-defining. In an extensive computational study, we compare the

node-separator and the cut-set model on a set of benchmark instances for the wildlife

corridor design problem used in [Dilkina and Gomes, 2010] and on a set of network

design instances.

Outline of the Paper. Three new MIP models for the (B-)RMWCS are proposed

in Section 10.2. A comparison of the MIP models and results regarding the facets of

the rooted connected subgraph polytope are given in Section 10.3 and computational

results are presented in Section 10.4.
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10.2. MIP Formulations for the RMWCS

In this section we present three new MIP models for the RMWCS and its budget-

constrained variant. Before that, we first review the model recently proposed by [Dilk-

ina and Gomes, 2010] which is based on the reformulation of the problem into the

(budget-constrained) Steiner arborescence problem. The latter model is derived on

the space of arc variables, while the remaining ones are defined in the natural space of

node variables.

Since every RMWCS on undirected graphs can be considered as the same problem on

digraphs (by replacing every edge with two oppositely directed arcs), in the remainder

of this chapter we will present the more general results for digraphs. The corresponding

results for undirected graphs can be easily derived from them.

Definitions and Notation.

Formally, we define the RMWCS as follows: Given a digraph G = (V ∪ {r}, A), with

a root r, a set of terminals R ⊂ V , and node weights p : V → R, the RMWCS is the

problem of finding a connected subgraph T = (VT , AT ), that spans the nodes from

{r} ∪ R and such that every node j ∈ VT can be reached from r by a directed path

in T , and that maximizes the sum of node weights p (T ) =
∑

v∈VT pv. Additionally, in

the B-RMWCS, node costs c : V → R+ and a budget limit B > 0 are given. The goal

is to find a connected subgraph T that maximizes p (T ) and such that its cost does not

exceed the given budget, i.e., c (T ) =
∑

v∈VT cv ≤ B.

A set of vertices S ⊂ V (S 6= ∅) and its complement S = V \ R, induce two di-

rected cuts: (S, S) = δ+ (S) =
{

(i, j) ∈ A | i ∈ S, j ∈ S
}

and (S, S) = δ− (S) ={
(i, j) ∈ A | i ∈ S, j ∈ S

}
. For a set C ⊂ V , let D−(C) denote the set of nodes outside

of C that have ingoing arcs into C, i.e., D−(C) = {i ∈ V \ C | ∃(i, v) ∈ A, v ∈ C}.

A digraph G is called strongly connected (or simply, strong) if for any two distinct

nodes k and ` from V , there exists a (k, `) path in G. A node i is a cut point in a

strong digraph G if there exists a pair of distinct nodes k and ` from V such that there

is no (k, `) path in G − i. A node i is a cut point with respect to r if there exists a

node k 6= i, r such that there is no (r, k) path in G − i. For two distinct nodes k and

` from V , a subset of nodes N ⊆ V \ {k, `} is called (k, `) (node) separator if there

exists a (k, `) path in G and after eliminating N from V there is no (k, `) path in G.

A (k, `) separator N is minimal if N \ {i} is not a (k, `) separator, for any i ∈ N . Let

N(k, `) denote the family of all (k, `) separators. Obviously, if ∃(k, `) ∈ A or if ` is not

reachable from k, we have N(k, `) = ∅.

For variables a defined on a finite set F , we denote by a(F ′) the sum
∑

i∈F ′ ai for any

subset F ′ ⊆ F . Throughout the paper, let the graph G = (V ∪ {r}, A), n = |V |, and

m = |A|.
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10.2.1 Directed Steiner Tree Model of [Dilkina and Gomes, 2010]

[Dilkina and Gomes, 2010] propose to solve the B-RMWCS as a budget-constrained

directed Steiner tree problem rooted at r. Their models are based on the observation

that it is sufficient to search for a subtree (subarborescence) since no costs are asso-

ciated to arcs in G, hence every solution containing cycles can be reduced without

changing the weight. It is sufficient to use arc variables to model the problem since

in a directed tree, the in-degree of every node is equal to one, so that the objective

function can be expressed as max
∑

i∈V piz(δ
−(i)), where z are binary variables as-

sociated with the arcs of A that encode the subarborescence. [Dilkina and Gomes,

2010] proposed three MIP models for the B-RMWCS. Two of them are flow based

formulations (a single-commodity flow and a multi-commodity flow based one). The

authors showed that the flow-based formulations are computationally outperformed by

the cut-set model which is presented below.

We further use a set of auxiliary binary variables y for the vertex set V , where yi will

be equal to one if node i is part of the subtree, and zero, otherwise. In other words,

we basically perform the substitution yi = z(δ−(i)). The set of feasible B-RMWCS

solutions can be described using inequalities (10.1)-(10.4). Constraints (10.1) and

(10.2) ensure that the solution is a Steiner arborescence rooted at r, equations (10.3)

make sure that all terminals are connected and (10.4) is the budget constraint:

z(δ−(i)) = yi ∀i ∈ V \ {r} (10.1)

z(δ− (S)) ≥ yk ∀k ∈ S, ∀S ⊆ V \ {r}, S 6= ∅ (10.2)

yi = 1 ∀i ∈ R (10.3)

cT y ≤ B (10.4)

Constraints (10.2), also known as cut or connectivity inequalities ensure that there

is a directed path from the root r to each node k such that yk = 1. In-degree con-

straints (10.1) guarantee that the in-degree of each vertex of the arborescence is equal

to one. Thus, the rooted Steiner arborescence model for the B-RMWCS (denoted by

(SAr)) is given as

(SA)r max
{
pT y | (y, z) satisfies (10.1)-(10.4), (y, z) ∈ {0, 1}n+m

}
.

We notice that in [Ljubić et al., 2006] these sets of constraints and the transformation

into the directed Steiner tree were used for solving the Prize-Collecting Steiner Tree

problem (PCStT). A connection between the PCStT and the unrooted MWCS has been

observed by [Dittrich et al., 2008]: the authors showed that the unrooted MWCS can be

transformed into the PCStT and used the branch-and-cut approach from [Ljubić et al.,

2006] to solve the MWCS on a large protein-protein interaction network. Consequently,

the same relation holds for the rooted MWCS as well.
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The previous model uses node and arc variables (y and z) given that it relies on a

transformation into the Steiner arborescence problem. However it seems more natural

to find a formulation based only in the space of y variables since no arc costs are

involved in the objective function. In the next section we will discuss several models

that enable elimination of arc variables in the MIP models.

10.2.2 Node-Based Formulations for the RMWCS

We now propose three MIP models that are derived in the natural space of y variables

defined as above. We search for an arborescence rooted at r, but this time, we avoid

explicit use of arc variables.

Model Based on Subtour Elimination Constraints. This model is an adapta-

tion of the model by [Backes et al., 2011] that was recently proposed for the unrooted

MWCS on directed graphs. The following inequalities will be called the in-degree

constraints:

y(D− (i)) ≥ yi, ∀i ∈ V \ ({r} ∪D+(r)) (10.5)

They ensure that, whenever a node i is taken into a solution, at least one of its incoming

neighbors has to be in the solution as well (notice that we do not need to impose this

constraint for the outgoing neighbors of the root node). Constraints (10.5) however

do not guarantee that the obtained solution is connected to the root. Let C denote

the family of all directed cycles in G that do not contain the root node and are not

“neighbors” of the root, i.e.:

C = {C | C is a cycle in G, s.t. r 6∈ C, and r 6∈ D−(C)}.

In order to ensure connectivity of the solution, [Backes et al., 2011] add the following

constraints, that we will refer to as the subtour elimination constraints:

y(C)− y(D−(C)) ≤ |C| − 1, ∀C ∈ C. (10.6)

These constraints state that for each cycle C ∈ C whose node set is contained in the

solution, at least one of the neighboring nodes outside of that cycle needs to belong to

the solution as well. The model, that we will denote by CYCLE r reads as follows:

(CYCLE r) max
{
pT y | y satisfies (10.3)-(10.6), y ∈ {0, 1}n

}
.

A Flow-Based Model. Alternatively to the previous model, to ensure connectivity,

we can use multi-commodity flows where the available arc capacities are defined as the

minimum node capacities at each end of an arc. Finding a feasible solution now means

allocating node capacities that will enable to send one unit of flow from the root to each
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of the nodes taken into the subnetwork. In this context, constraints (10.5) and (10.6)

can be replaced by the following set of constraints that ensure that there is enough

capacity on the nodes so that a unit of flow can be sent from the root to any other node

i ∈ V \ {r} with yi = 1. These constraints state that (i) whenever an arc is part of a

feasible solution of the RMWCS, both of its end nodes are included into the solution

and (ii) the induced subgraph is connected:∑
(i,j)∈δ−(S)

min{yi, yj} ≥ yk, ∀k 6∈ {r} ∪D+(r), ∀S ⊆ V \ {r}, k ∈ S. (10.7)

Constraints (10.7) represent just a compact way of writing 2|δ−(S)| inequalities;see

also [Chen et al., 2013] where these constraints have been proposed for a problem arising

in the design of telecommunication networks. They can be separated in polynomial

time by solving a maximum-flow problem in an auxiliary support graph. Observe

finally that indegree constraints (10.5) are also implied by these constraints: For each

node i 6∈ r ∪ D+(r), we have y(D−(i)) ≥
∑

(j,i)∈δ−(i) min{yj , yi} ≥ yi. We can now

define the B-RMWCS as

(CUTm) max
{
pT y | y satisfies (10.3),(10.4),(10.7) and y ∈ {0, 1}n

}
.

Formulation Based on Node Separators. The other way of modeling the con-

nectivity of a solution using only node variables is to consider node separators. This idea

has been recently used in [Fügenschuh and Fügenschuh, 2008, Carvajal et al., 2013]

and [Chen et al., 2013] to model connectivity in the context of sheet metal design,

forest planning, and telecommunication network design, respectively. The following

inequalities will be called node-separator constraints:

y(N) ≥ yk, ∀k 6∈ {r} ∪D+(r), N ∈ N(r, k). (10.8)

These constraints ensure that for each node k taken into the solution, either k is a

direct neighbor of r, or there has to be a path from r to k such that for each node i

on this path, yi = 1. Notice that whenever N(k, `) 6= ∅, D−(k) ∈ N(k, `) and in this

case the in-degree inequalities (10.5) are contained in (10.8). Thus, we can formulate

the B-RMWCS as

(CUT r) max
{
pT y | y satisfies (10.3),(10.4),(10.8), y ∈ {0, 1}n

}
.

10.2.3 Some More Useful Constraints

In case that the budget constraint (10.4) is imposed, the following family of cover

inequalities can be used to cut off infeasible solutions. Cover Inequalities. We

say that a subset of nodes VC ⊂ V is a cover if the sum of node costs in VC is greater
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than the allowed budget B. In that case, at least one node from VC has to be left

out in any feasible solution. A cover VC is minimal if C \ {i} for any i ∈ VC is not a

cover anymore. Let VC be a family of all minimal covers with respect to B. Then, the

following cover inequalities are valid for the B-RMWCS:∑
i∈VC

yi ≤ |VC | − 1, ∀VC ∈ VC (10.9)

For further details on cover inequalities, [see, e.g., Kaparis and Letchford, 2010].

10.3. Polyhedral Results

In this section we compare the proposed MIP formulations with respect to their quality

of LP bounds and we show that, under certain conditions, the newly introduced node-

separator inequalities are facets of the rooted connected subgraph polytope.

10.3.1 Theoretical Comparison of MIP Models

Let PLP(.) denote the polytope of the LP-relaxations of the MIP models presented

above and vLP (.) their optimal LP-values. We can show that:

Proposition 1. We have PLP(CUT r) ( PLP(CUTm) ( PLP(CYCLE r), and there exist

instances for which the strict inequality holds.

Proof. PLP(CUTm) ( PLP(CYCLE r): Consider a feasible solution ŷ of the LP relax-

ation of model CUTm. We will show that each such solution is feasible for the model

CYCLE r. Let C be an arbitrary cycle from C. Then, obviously, for any node k ∈ C,

we have ŷi(D
−(C)) ≥

∑
(i,j)∈δ−(C) min{ŷi, ŷj} ≥ ŷk. Adding up this inequality with

inequalities 1 ≥ ŷi, for each i ∈ C \ {k}, we obtain: ŷ(D−(C)) + |C| − 1 ≥ ŷ(C) which

is exactly the subtour elimination inequality associated to C. To see that the strict

inequality holds, consider the directed graph shown in Figure 10.1(a).

PLP(CUT r) ( PLP(CUTm): Consider a feasible solution ŷ of the LP relaxation of the

CUT r model. Let k ∈ V \ ({r}∪D+(r)) be an arbitrary node such that ŷk > 0 and let

S ⊂ V \{r} be a set such that k ∈ S. Then, we will show that
∑

(ij)∈δ−(S) {ŷi, ŷj} ≥ ŷk,
i.e., ŷ satisfies (10.7). Let N1 = {i | (i, j) ∈ δ−(S)}. Observe that r 6∈ N1 and by defi-

nition, N1 is a node separator for k, i.e., N1 ∈ N(r, k). Let N2 = {j | (i, j) ∈ δ−(S)}:
(i) If k /∈ N2, then N2 is a node separator for k (N2 ∈ N(r, k)). Consider the bipartite

graph defined by δ−(S). Each possible vertex cover N ′ ⊂ N1 ∪ N2 on this graph,

induces a node separator for k, i.e., N ′ ∈ N(r, k). There are 2|δ
−(S)| vertex covers in

total, and constraints (10.8) associated to them imply constraint (10.7); (ii) if k ∈ N2,

then all vertex covers involving k trivially satisfy ŷ(N ′) ≥ ŷk for k ∈ N ′. Together
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Figure 10.1: Examples that prove the strength of the new formulations. (a) The LP-
solution of CYCLE r sets y2 = y3 = y4 = 2/3 and y1 = 0, and this solution is infeasible
for the model CUTm. (b) The LP-solution of CUTm satisfies y1 = · · · = y5 = 1/2

and y6 = 1. This solution is infeasible for CUT r.

with the remaining vertex covers, inequality (10.7) is implied. An example shown in

Figure 10.1(b) shows an instance for which the strict inequality holds.

Proposition 2. The (SAr) model and the (CUT r) model are equally strong, i.e.,

vLP (SAr) = vLP (CUT r).

Proof. We first show that vLP (SAr) ≥ vLP (CUT r): Let (ẑ, ŷ) be a feasible solution

for the relaxation of the SAr model. Let k ∈ V \{r} be a node such that ŷk > 0 and

let N ∈ N(r, k). Because of in-degree constraints of the SAr model, we have that∑
i∈N ŷi =

∑
i∈N ẑ(δ−(i)). If N is removed from G, k cannot be reached from r. Let

Sr ⊆ V , r ∈ Sr, be all the nodes i that can be reached from r after removing N , and let

Sk = V \ (N ∪Sr), k ∈ Sk. Because of inequalities (10.2), it holds that ẑ(δ+(Sr)) ≥ ŷk.
Moreover, observe that for each (i, j) ∈ δ+(Sr) we have that i ∈ Sr and j ∈ N , which

means that
∑

i∈N ẑ(δ−(i)) ≥ ẑ(δ+(Sr)). Therefore,
∑

i∈N ŷi ≥ ŷk, which proves that

any LP solution of the SAr model can be projected into a feasible solution of the CUT r

with the same objective value.

To show that vLP (CUT r) ≥ vLP (SAr) consider a solution y̌ ∈ PLP(CUT r). We

will construct a solution (ŷ, ẑ) ∈ PLP(SAr) such that y̌ = ŷ. On the graph G′ (see

Section 10.4.1, separation of separator inequalities) with arc capacities of (i1, i2) set

to y̌i for each i ∈ V \ {r} and to 1 otherwise, we are able to send y̌k units of flow

from the root r to every (k1, k2) such that y̌k > 0. Let fkij denote the amount of flow

of commodity k, sent along an arc (i, j) ∈ A′. Let f be the minimal feasible multi-

commodity flow on G′ (i.e., the effective capacities on G′ used to route the flow cannot

be reduced without violating the feasibility of this flow). We now define the values of

(ŷ, ẑ) as follows:

ẑij =

maxk∈V \{r} f
k
i2j1

, i, j ∈ V \ {r}

maxk∈V \{r} f
k
i,j1
, i = r, j ∈ V \ {r}

, ∀(i, j) ∈ A, and



Chapter 10 Rooted Maximum Node-Weight Connected Subgraph Problem 225

let ŷi = ẑ(δ−(i)), for all i ∈ V \ {r}. Obviously, the constructed solution (ŷ, ẑ) is

feasible for the (SAr) model, and, due to the assumption that f is minimal feasible, it

follows that y̌ = ŷ, which concludes the proof.

Finally, regarding the strength of the three MIP models studied by [Dilkina and Gomes,

2010], we notice that their single-commodity flow model is weaker than the multi-

commodity model, which is equally strong as the cut-set model (SAr) [see, e.g., Ljubić,

2004].

10.3.2 Facets of the RCS Polytope

In this section we consider the RMWCS with R = ∅, and let P denote the rooted

connected subgraph (RCS) polytope defined in the natural space of y variables:

P = conv{y ∈ {0, 1}n | y satisfies (10.8)}.

In this section we establish under which conditions some of the presented inequalities

are facets of the RCS polytope.

Lemma 1. The RCS polytope is full-dimensional (i.e., dim(P) = n) if and only if there

exists a directed path between r and any i ∈ V .

Proof. We first generate a spanning arborescence T in G rooted at r. We will then

apply a tree pruning technique in order to generate n + 1 affine independent feasible

RMWCS solutions. We start with the arborescence T in which case y consists of all

ones. We iteratively remove one by one leaf from T , until we end up with a single root

node (in which case y is a zero vector). Thereby, we generate a set of n + 1 affinely

independent solutions. Conversely, if P is full dimensional, then in order to create a

feasible solution containing an arbitrary node i ∈ V , there has to be a directed path

between r and i in G.

Lemma 2. Inequality yi ≥ 0 for i ∈ V is facet defining if and only if in the graph G− i,
any node j ∈ V \ {i} can be reached from r.

Proof. Assume that in G − i every node can be reached from r. Then, in G − i we

can build an arborescence T spanning all the nodes from V \ {i}. By applying the tree

pruning technique from above, we generate n affinely independent RCS solutions such

that yi = 0. Conversely, assume that yi ≥ 0 is a facet for some i ∈ V for which there

exist some j 6= i such that j cannot be reached from r in G − i. Therefore, by fixing

yi = 0 we also have yj = 0, which is a contradiction.
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Lemma 3. Inequality yi ≤ 1 for i ∈ V is facet defining if and only if every node in V

can be reached from r and there either exists (r, i) ∈ A, or there exist two node disjoint

paths between r and i in G.

Proof. Assume that every node from V can be reached from r and (r, i) ∈ A. We

build a spanning arborescence T using this arc, and apply the tree pruning until we

end up with this single arc. Thereby, we generate n affinely independent solutions.

Alternatively, assume that (r, i) 6∈ A but there are two node-disjoint paths P and P ′

between r and i. Let `P ≥ 1 be the number of internal nodes on the path P . We

build a family T of n affinely independent solutions as follows: Let T be a spanning

arborescence T such that P is fully contained in T . We apply the tree pruning until we

end up with the path P and insert all those solutions in T. Thereby, we will generate

n − `P affinely independent solutions. We now consider another spanning subtree T ′

such that P ′ is fully contained in T ′. We apply pruning on T ′ until only P ′ remains.

Subtrees Ti obtained by the pruning procedure in which i ∈ P was a leaf which has

been just deleted, are inserted in T. That way, we create additional `P solutions such

that yi = 1, that are affinely independent with the previously generated ones.

To prove that the conditions are sufficient, assume that yi = 1 is a facet of P and

there is a single path P (with `P ≥ 1) connecting r with i in G or the paths are not

node-disjoint, i.e., there exist j 6= i such that every r-i path passes through j. Then,

obviously, each RMWCS feasible solutions such that yi = 1 also satisfies yj = 1, which

is a contradiction.

Given some k ∈ V and N ∈ N(r, k), let us now consider the corresponding node

separator inequalities: y(N) ≥ yk. Let Sr ⊂ V denote the subset of nodes that can be

reached from r in G−N , and let Sk be the remaining nodes, i.e., Sk = V \ (N ∪ Sr).
Then, we have:

Proposition 3. Given some k ∈ V and N ∈ N(r, k), the associated node separator

inequality y(N) ≥ yk is facet defining if N is minimal, every node in V can be reached

from r and every node in Sk can be reached from k.

Proof. For a given k ∈ V and N ∈ N(r, k), that satisfy the above properties we prove

the statement using the indirect method. Let F (k,N) = {y ∈ {0, 1}n |
∑

i∈N yi = yk}.
Consider a facet defining inequality of the form aty ≥ a0. We will show that if all

points in F (k,N) satisfy

aty = a0 (10.10)
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then aty ≥ a0 is a positive multiple of (10.8). Observe first that the zero vector belongs

to F (k,N). By plugging it into (10.10), we get a0 = 0. Consider now an arbitrary node

` ∈ Sr. Consider a path P from r to ` in Sr, and its subpath Q obtained by deleting

`. Characteristic vectors of both of them belong to F (k,N), and by subtracting them,

we obtain a` = 0, for all ` ∈ Sr. Consider now an arbitrary ` ∈ Sk. Let P be a path

from r to ` that passes through exactly one node i ∈ N and through k. We can find

such a path for the following reasons: (i) A path from r to k over a single node i ∈ N
exists because N is minimal. (ii) A path from k to ` fully contained in Sk also exists

by our assumption. Let Q be a subpath of P obtained by deleting `. Characteristic

vectors of P and Q belong to F (k,N), and by subtracting them, we obtain a` = 0,

for all ` ∈ Sk. Finally, consider an arbitrary i ∈ N and a path P ′ from r to k passing

through i and no other nodes from N . Characteristic vector of P ′ belongs to F (k, n)

and after plugging it into (10.10), we obtain ai + ak = 0, for all i ∈ N . Therefore, we

have ai = −ak = α, and (10.10) can be written as α(y(N)− yk) = 0, which concludes

the proof.

10.4. Computational Results

In this section, we study the computational performance of Branch-and-Cut (B&C) al-

gorithms for the models (SAr) and (CUT r) for both the RMWCS and the B-RMWCS.

10.4.1 Branch-and-Cut Algorithms

Constraint Separation At each node of the search tree, constraints (10.2) of the

(SAr) formulation are separated by solving a max-flow problem [see for further details

Ljubić et al., 2006]. For the (CUT r) model, inequalities (10.8) can be separated in

polynomial time on an auxiliary support graph G′ that splits all nodes except the root

into arcs so that each i ∈ V is replaced by an arc (i1, i2). All ingoing arcs into i are now

connected to i1, and all outgoing arcs from i are now connected from i2. For a given

node fractional solution ỹ and k ∈ V \({r}∪D+(r)) such that ỹk > 0, to check whether

there are violated inequalities of type (10.8) we calculate the maximum flow between

r and (k1, k2) in G′ whose arc capacities are defined as ỹi for splitted arcs and to zero,

otherwise. For both cases, we also use nested, back-flow and minimum cardinality cuts

in order to insert as many violated cuts as possible [see Koch and Martin, 1998, Ljubić

et al., 2006]. At each separation callback, we limit the number of inserted cuts to 25.
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For the B-RMWCS, the cover inequalities (10.9) are separated by solving a knapsack

problem (which is weakly NP-hard) for each fractional solution ỹ:

(PCI) min{
∑
i∈V

(1− ỹi)ai |
∑
i∈V

ciai > B, ai ∈ {0, 1}n};

if the optimal value of (PCI) is less than one, the nodes i ∈ V such that ai = 1 are the

nodes of a cover VC for which the corresponding inequality (10.9) is violated. Finally,

once the violated cover inequality is detected, we insert the following extended cover

inequality in the MIP: ∑
i∈VC∪V ∗(C)

yi ≤ |VC | − 1, ∀VC ∈ VC (10.11)

where V ∗(C) = {i ∈ V \ VC | ci ≥ maxj∈VC cj}. We solve the knapsack problem PCI

within the B&C using CPLEX. Only at the root node of the branch-and-bound tree the

problem PCI is solved to optimality; in the remaining nodes it is solved until reaching

a 0.01% gap. Primal Heuristic. At a given node of the branch-and-bound tree, we

use the information of the current LP solution ỹ in order to construct feasible primal

solutions for the (B-)RMWCS. The procedure, which is equivalent for both (SAr)

and (CUT r), consists of a (restricted) breadth-first search (BFS) that starts from the

root node r and constructs a connected component. A node is incorporated into this

component if its weight p̃v := pvỹv is non-negative and its cost cv added to the cost

of the current component does not violate the budget B. MIP Initialization. As

described in §10.4.2, part of our benchmark set consists of 4-grid graphs. In this case,

all 4-cycles are easily enumerated by embedding the grid into the plane and iterating

over all faces except for the outer face. Let C4 be the set of all 4-cycles C such that

r 6∈ C ∪D−(C) and let A[C] be the set of arcs associated to it. Therefore, in case of

4-grids, the (SAr) model is initialized with the following 4-cycle inequalities:

z(A[C]) ≤ y(C \ i), ∀i ∈ C, ∀C ∈ C4. (10.12)

The corresponding 4-cycle inequalities for the (CUT r) model are:

y(D−(C)) ≥ yi, ∀i ∈ C, ∀C ∈ C4. (10.13)

Additionally, indegree constraints (10.1) (or (10.5)) and zij + zji ≤ yi ∀e : {i6=r, j} ∈ E
are added to the MIP. Implementation. The B&C algorithms were implemented

using CPLEXTM12.3 and Concert Technology. All CPLEX parameters were set to

their default values, except that: (i) CPLEX cuts, CPLEX heuristics, and CPLEX

preprocessing were turned off, and (ii) higher branching priorities were given to y

variables in the case of the (SAr) model. All the experiments were performed on a Intel

Core2 Quad 2.33 GHz machine with 3.25 GB RAM, where each run was performed on

a single processor. We denote as “Basic” the B&C implementation for which neither
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the separation of CI nor the addition of 4-cycle inequalities, (10.12) or (10.13), is

considered.

10.4.2 Benchmark Instances

Wildlife Corridor Design Instances. We have considered three real instances

provided in [Dilkina and Gomes, 2010] that are instances of the corridor design problem

for grizzly bears in the Rocky mountains, labeled as CD-40×40-sq (242 nodes, 469

edges), CD-10×10-sq (3299 nodes, 6509 edges) and CD-25-hex (12889 nodes, 38065

edges). In all of them, three reserves are given and the root is chosen as one of them.

We have also considered 4-grid instances generated using the generator of [Dilkina and

Gomes, 2010]. The description of the parameters used for setting up the instances and

the generator itself are available online at [Dilkina and Gomes, 2012]. These instances

are labeled as CD-O-C-T [see for further details Dilkina and Gomes, 2012]. In our

experiments we have generated instances with n+ 1 = O2, where O ∈ {10, 15, 20}. We

also generated both, correlated and uncorrelated instances (C = {U,W}). Weights and

costs are independently and uniformly taken from {1, . . . , 10}. We also considered T

= {2fR,R} and, in addition to the root, we consider two more terminals. For each

combination of these parameters we have generated 20 instances.

These instances were used for both the RMWCS and the B-RMWCS. For the B-

RMWCS, for a given instance I with set of terminals R, let Ĉmin be the cost of the

minimum Steiner Tree on R with arc costs ĉij = cj . Values of the available budget B

are defined using slacks over Ĉmin [see also Dilkina and Gomes, 2010]. For example, a

10% of budget slack corresponds to B = 1.10 × Ĉmin. For the RMWCS, we redefine

weights as w′v = pv − cv, which can be done because pv and cv have comparable units.

That way, w′v somehow represents the net-profit of including node v into the solution.

For the RMWCS we set R = ∅ and we take as root node the reserve node with the

smallest index.

Network Design Instances. These Euclidean instances with a topology similar to

street networks are generated as proposed in [Johnson et al., 2000]: First, n nodes are

randomly located in a unit Euclidean square. A link between two nodes i and j is

established if the Euclidean distance dij between them is no more than α/
√
n, for a

fixed α > 0. For a given n and a given α, weights and costs are independently and

uniformly taken from {1, . . . , 10}.

We generated instances using n = {500, 750, 1000} and α = {0.6, 1.0}; in case that for

a given distribution of n nodes in the plane the value of α is not enough for defining

a connected graph, it is increased by 0.01 until connecting all components. For each

combination of n and α, 20 instances are generated. We take as root the node with
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SAr CUT r

Instance Tav(s) Tmed(s) Gap #(10.2) #NOpt Tav(s) Tmed(s) Gap #(10.8) #NOpt

CD-40×40-sq 5.28 4.45 0.00 388 0 4.28 3.27 0.00 90 0
CD-10×10-sq 619.58 332.40 0.07 1262 10 1389.07 1441.68 1.39 871 14
CD-25-hex – – 5.17 11524 18 – – 4.81 2958 18
CD-10-U-2fR 1.67 1.12 – 527 0 2.71 1.82 – 360 0
CD-10-W-2fR 1.80 1.00 – 535 0 2.22 1.50 – 389 0
CD-10-U-3R 0.91 0.71 – 362 0 0.63 0.38 – 157 0
CD-10-W-3R 3.08 0.50 – 389 0 0.82 0.42 – 190 0
CD-15-U-2fR 12.47 7.71 – 1085 0 26.33 13.78 – 883 0
CD-15-W-2fR 12.40 8.08 – 1222 0 26.61 10.98 – 1071 0
CD-15-U-3R 4.56 2.98 – 814 0 7.84 2.81 – 513 0
CD-15-W-3R 4.86 2.88 – 809 0 7.34 3.24 – 539 0

Table 10.1: Computational performance on B-RMWCS (+C4+CI) instances
from [Dilkina and Gomes, 2010].

index 0 and when considering a set of terminals, these correponds to those nodes with

labels 1 and 2.

10.4.3 Analyzing the Computational Performance

Results for the B-RMWCS. Table 10.1 shows a comparison of (SAr) and (CUT r)

models (including 4-cycle and CI) on the set of corridor design instances. The first

three rows correspond to the real instances provided by [Dilkina and Gomes, 2010], so

for each of them we report statistics over a set of 18 problems (obtained for different

budget slacks taken from {10, 15, . . . , 95}). For the remaining rows, since we create

20 instances for each parameter setting, the reported values correspond to statistics

over 18×20 = 360 instances. In columns Tav(s) and Tmed(s) we report the average and

median running times (in seconds), respectively, of those instances solved to optimality,

in columns Gap we show the gaps (as percentages) of those instances that were not

solved to optimality within 1800 seconds. Columns #(10.2) and #(10.8) show the

number of connectivity cuts of the (SAr) and (CUT r) model, respectively. Column

#NOpt shows the number of instances that are not solved to optimality within 1800

seconds. We observe that for all 4-grid instances, except for the CD-10×10-sq graph

for which a more detailed analysis is given below, both approaches are able to solve all

instances in more or less reasonable times, although the (SAr) model is slightly better

than the (CUT r) model. On the other hand, the number of inserted violated cuts of

the (CUT r) model is in all of the cases significantly smaller than the corresponding

number for the (SAr) model. The efficacy of the (SAr) model can be explained by the

sparsity of 4-grid graphs. On the contrary, for the only more dense instance of this

group, namely CD-25-hex, which is a 6-grid with 12889 nodes and 38065 edges, the

(CUT r) model performs better than the (SAr) model. More precisely, the avg. gap

and its standard deviation for the (SAr) model are 5.17% and 1.11%, resp., while for

the (CUT r) model these values are 4.81% and 0.81%, resp.’
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To analyze the effects of special inequalities, namely 4-cycle and CI, we compare three

approaches: Basic, Basic plus 4-cycle inequalities (denoted by “+C4”) and Basic plus

4-cycle and CI (denoted by “+C4+CI”). In Figure 10.2 we present the box-plots of

the gaps attained within 1800 seconds when solving real instance CD-10×10-sq for

budget slacks taken from {10, 15, . . . , 95}. The values marked with an asterisk and ×
correspond to the mean and maximum running time, respectively. Below the bottom

of each box the number of instances solved to optimality is indicated, and next to

“#Cuts:” we report the average number of detected cuts of type (10.2) and (10.8),

respectively.

The box-plots indicate that for the Basic setting the (CUT r) model significantly out-

performs the (SAr) model on this instance, in terms of the quality of the solutions

(smaller gaps), the stability of the approach (smaller dispersion), and the number of

instances solved to optimality. This is mainly due to the fact that in the (CUT r) model

there are less variables, so the optimization becomes easier and more stable. However,

when including 4-cycle inequalities, although both approaches perform better, (SAr)

now outperforms (CUT r). The average number of inserted cuts of type (10.2) de-

creases from 5989 to 1264 when 4-cycle inequalities are added, while for the (CUT r)

model this reduction is more attenuated (only 18%). This means that for this instance

constraints (10.12) are empirically more effective than (10.13) in reducing too frequent

calls of the maximum flow procedure. When adding the separation of CI (“+CI”) we

observe that these constraints are more beneficial for the (SAr) model than for the

(CUT r) model - the latter one even slows down with addition of these cuts. This

can be explained by some numerical instability that can appear when dealing with the

separation of CI. We conclude that the advantage of the (CUT r) model of having less

variables vanishes when more sophisticated ideas are considered.

For the Network Design instances (whose complete results are not reported due to

space limitation), the graph density plays a role in the performance of the two models.

For instance, for n ∈ {500, 750} and α = 0.6, the (SAr) model solves 536 instances

out of 760 within the time limit, while the (CUT r) model solves 443. However, when

α = 1.0, the (SAr) approach solves 483 while the (CUT r) approach solves 502. In both

cases, the average running times of the (CUT r) model needed to prove optimality are

smaller than those of the (SAr) model.

Results for the RMWCS. For the RMWCS we have considered the same corridor

design instances and, in addition, the network design instances with a weight transfor-

mation as described in § 10.4.2. In Table 10.2, equivalent to Table 10.1, we report the

results obtained for the corridor design instances. In this case, time limit is set to 3600

seconds. We observe that the (CUT r) model outperforms the (SAr) model on real

instances, and on random lattices it is the other way around, although the differences

are less visible.
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Figure 10.2: Box-plots of the gaps [%] reached within 1800 sec for the CD-10×10-sq
instance considering (SAr) and (CUT r) and three different settings of the B&C (Bud-

get slack [%] taken from {10, 15, . . . , 95}).

SAr CUT r

Instance Time(sec) Gap(%) #(10.2) #NOpt Time(sec) Gap(%) #(10.8) #NOpt

CD-40×40-sq 0.70 – 254 0 0.16 – 10 0
CD-10×10-sq 316.11 – 3998 0 88.70 – 60 0
CD-25-hex 3600.00 1.99 20304 1 2611.13 – 14756 0

CD-10-U-2fR 0.15 – 231 0 0.14 – 34 0
CD-10-W-2fR 0.14 – 239 0 0.18 – 40 0
CD-10-U-3R 0.13 – 226 0 0.13 – 28 0
CD-10-W-3R 0.15 – 241 0 0.12 – 26 0
CD-15-U-2fR 1.28 – 720 0 11.59 – 99 0
CD-15-W-2fR 1.35 – 755 0 3.66 – 94 0
CD-15-U-3R 1.24 – 763 0 2.02 – 73 0
CD-15-W-3R 1.45 – 809 0 2.26 – 78 0
CD-20-U-2fR 7.67 – 1618 0 166.32 – 223 0
CD-20-W-2fR 7.41 – 1615 0 74.46 – 234 0
CD-20-U-3R 7.57 – 1667 0 16.90 – 133 0
CD-20-W-3R 8.39 – 1765 0 86.18 – 195 0

Table 10.2: Computational performance on instances from [Dilkina and Gomes,
2010] when solving the RMWCS.

The results on the network design instances are reported in Table 10.3. For a given n

and α equal to 0.6 and 1.0, respectively, column #nodes shows n+1 and column #edges

shows the average number of edges for a set of 20 instances created using this setting.

All instances of this group were solved to optimality, therefore in Table 10.3 we only

report the average running times and the average number of detected connectivity cuts.

For these instances, the (CUT r) approach clearly outperforms the (SAr) approach; for

these instances, the ratio between the number of edges and the number of nodes is,

depending on the value of α, around 5 or 13, in contrast to the corridor design instances,

where this ratio is close to two. This characteristic implies a practical difficulty for the
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SAr CUT r

#nodes #edges Time(sec) #(10.2) Time(sec) #(10.8)

500 2535 11.42 1218 2.29 22.8
500 6484 3.50 211 0.84 <10
750 3845 57.07 2541 5.67 25.8
750 9944 7.69 287 1.71 <10
1000 5180 97.41 3188 15.59 36.3
1000 13397 10.16 302 2.77 <10

Table 10.3: Computational performance on the RMWCS network design instances.

(SAr) model due to the increase of the number of variables. Besides, for this group of

instances, 4-cycle constraints and CI cannot be used in the initialization.

10.4.4 Conclusion.

The obtained computational results let us conclude that both models (CUT r) and

(SAr) perform very well in practice, and that their performance is complementary.

Using the (CUT r) model (i.e., having less variables ) pays off for denser graphs with

many zero-weight nodes for both, B-RMWCS and RMWCS.





Chapter 11

Final Remarks

In this thesis we have addressed a collection of Network Design problems which are

strongly motivated by applications from Telecommunications, Logistics and Bioinfor-

matics. In most cases we have justified the need of taking into account uncertainty in

some of the problem parameters, and different Robust Optimization models have been

used to hedge against it. Mixed integer linear programming formulations along with

sophisticated algorithmic frameworks have been designed, implemented and rigorously

assessed for the majority of the studied problems. The obtained results let us draw

the following general conclusions: (i) relevant real problems can be effectively repre-

sented as (discrete) optimization problems within the framework of network design;

(ii) uncertainty can be appropriately incorporated into the decision process if a suit-

able robust optimization model is considered; (iii) optimal, or nearly optimal, solutions

can be obtained for large instances if a tailored algorithm, that exploits the structure

of the problem, is designed; (iv) a systematic and rigorous experimental analysis al-

lows to understand both, the characteristics of the obtained (robust) solutions and the

behavior of the proposed algorithm.

Most of the models and algorithmic tools developed in this thesis can complement each

other and can be extended to other related network design problems. For instance, the

considered applications in Bioinformatics (see Chapters 9) suggest that the Minmax

Regret criterion is appropriate for incorporating uncertainty in this context. Therefore,

we can use the models and the algorithms proposed for the Maximum Weight Con-

nected Subgraph problem and combine them with the algorithmic framework designed

for the Minmax Regret Spanning Tree (see Chapter 6). Likewise, one might be inter-

ested in studying the Connected Facility Location problem under uncertainty. Hence,

the approach developed in Chapter 4 for the Robust Uncapacitated Facility Location

problem can be extended to this variant by borrowing some additional modeling and

algorithmic techniques from the methodology presented in Chapter 3 for the Robust

Two-Level Network Design.
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Overall, this thesis intends to contribute, mainly from a methodological point of view,

to the fields of Network Design and Robust Optimization.
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E. Álvarez-Miranda, I. Ljubić, and P. Toth. Exact solutions for the robust prize-

collecting steiner tree problem. In Proceedings of the IEEE International Congress

on Modern Telecommunications and Control Systems 2011, pages 1–7, 2011.
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C. Buchheim, F. Liers, and L. Sanità. An exact algorithm for robust network design.

In J. Pahl, T. Reiners, and S. Voß, editors, Proceedings of INOC 2011, volume 6701

of LNCS, pages 7–17. Springer, 2011.
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A. Candia-Véjar, E. Álvarez-Miranda, and N. Maculan. Minmax regret combinatorial

optimization: An algorithm perspective. RAIRO-OR, 45(2):101–129, 2011.

S. Canuto, M. Resende, and C. Ribeiro. Local search with perturbations for the prize-

collecting Steiner tree problem in graphs. Networks, 38(1):50–58, 2001.

A. Caprara and M. Fischetti. {0, 1
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C. Liebchen, M. Lübbecke, R. Möhring, and S. Stiller. The concept of recoverable

robustness, linear programming recovery, and railway applications. In R. Ahuja,
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L. Sanità. Private communication, 2013.

A. Segev. The node-weighted Steiner tree problem. Networks, 17(1):1–17, 1987.

Z. Shen, R. Zhan, and J. Zhang. The reliable facility location problem: Formulations,

heuristics, and approximation algorithms. INFORMS Journal on Computing, 23(3):

470–482, 2011.

L. Snyder. Facility location under uncertainty: a review. IIE Transactions, 38(7):

547–564, 2006.

L. Snyder and M. Daskin. Reliability models for facility location: The expected failure

cost case. Transportation Science, 39(3):400–416, 2005.

http://www.planet-lisa.net/


250 BIBLIOGRAPHY

L. Snyder and M. Daskin. Reliability models for facility location: The expected failure

cost case. IIE Transactions, 38(11):971–985, 2006.

O. Solyali, J. Cordeau, and G. Laporte. Robust inventory routing under demand

uncertainty. Transportation Science, 46(3):327–340, 2012.

A. Soyster. Convex programming with set-inclusive constraints and applications to

inexact linear programming. Operations Research, 21(5):1154–1157, 1973.

A. Thiele, T. Terry, and M. Epelman. Robust linear optimization with recourse. Tech.

Report TR09-01, University of Michigan, 2009.

E. Uchoa. Reduction tests for the prize-collecting Steiner problem. Operations Research

Letters, 34(4):437–444, 2007.

United Nations Statistics Division. UNSD Statistical Databases, 2013. URL http:

//millenniumindicators.un.org/unsd/databases.htm.

S. Uryasev and P. Pardalos, editors. Stochastic Optimization: Algorithms and Appli-

cations, volume 54 of Series on Applied Optimization. Springer, 1st edition, 2001.

R. Van Slyke and R. Wets. L-shaped linear programs with applications to optimal

control and stochastic programming. SIAM Journal of Applied Mathematics, 17(4):

638–663, 1967.

V. Verter. Uncapacitated and capacitated facility location problems. In H. A. Eiselt and

V. Marianov, editors, Foundations of Location Analysis, volume 155 of International

Series in Operations Research & Management Science, pages 25–37. Springer, 2011.

S. Vijayanarasimhan and K. Grauman. Efficient region search for object detection. In

Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2011,

pages 1401–1408. IEEE, 2011.

A. Wald. Statistical decision functions which minimize the maximum risk. Annals of

Mathematics, 46(2):265–280, 1945.

R. Wollmer. Removing arcs from a network. Operations Research, 12(6):934–940, 1964.

T. Yamamoto, H. Bannai, M. Nagasaki, and S. Miyano. Better decomposition heuris-

tics for the maximum-weight connected graph problem using betweenness centrality.

In J. Gama, V. Costa, A. Jorge, and P. Brazdil, editors, Discovery Science, volume

5808 of LNCS, pages 465–472. Springer, 2009.

H. Yaman, O. Karasan, and M. Pinar. The robust spanning tree problem with interval

data. Operations Research Letters, 29:31–40, 2001.

yWorks. yEd Graph Editor, 2012. URL http://www.yworks.com/.

L. Zhao and B. Zeng. An exact algorithm for two-stage robust optimization with mixed

integer recourse problems. Tech. Report - University of South Florida, 2012.

http://millenniumindicators.un.org/unsd/databases.htm
http://millenniumindicators.un.org/unsd/databases.htm
http://www.yworks.com/

	1 Introduction
	1.1 Networks, Uncertainty and Applications
	1.2 A Crusade for Optimality
	1.3 Content of the Thesis
	1.3.1 Chapter 2
	1.3.2 Chapter 3
	1.3.3 Chapter 4
	1.3.4 Chapter 5
	1.3.5 Chapter 6
	1.3.6 Chapter 7
	1.3.7 Chapter 8
	1.3.8 Chapter 9
	1.3.9 Chapter 10
	1.3.10 Chapter 11


	2 Exact Approaches for Solving Robust Prize-Collecting Steiner Tree Problems
	2.1 Introduction
	2.2 The Prize Collecting Steiner Tree Problem
	2.2.1 A Integer Programming Formulation for PCStT
	2.2.2 Variants of the PCStT: Budget and Quota PCStT

	2.3 Formulations for Robust PCStT and its Variants
	2.3.1 Robust Optimization Approaches
	2.3.2 The B&S Robust PCStT 
	2.3.3 The B&S Robust NW-PCStT and Equivalences
	2.3.4 The B&S Robust B-PCStT and Q-PCStT

	2.4 Branch-and-Cut Algorithms
	2.5 Computational Results
	2.5.1 Results for the RPCStT
	2.5.1.1 The Price of Robustness
	2.5.1.2 Algorithmic Performance
	2.5.1.3 Influence of Lg and Lg

	2.5.2 Results for the Robust B-PCStT
	2.5.2.1 The Price of Robustness
	2.5.2.2 Algorithmic Performance


	2.6 Improved B&S Algorithms for the RPCStT and its Variants
	2.7 Conclusions and Future Work
	2.8 Complementary Results

	3 The Recoverable Robust Two-Level Network Design Problem
	3.1 Introduction
	3.1.1 Our Contribution and Outline of the Paper
	3.1.2 The Two-Level Network Design Problem

	3.2 The Recoverable Robust TLND (RRTLND) Problem
	3.2.1 The Recoverable Robust TLND Problem
	3.2.2 The RRTLND Problem on Trees
	3.2.2.1 Complexity of the RRTLND Problem on Trees
	3.2.2.2 A MIP Model for the RRTLND Problem on Trees


	3.3 MIP Model and Branch-and-Cut Algorithm
	3.3.1 MIP formulation for the RRTLND Problem
	3.3.2 Branch-and-Cut Algorithm
	3.3.3 Separation of Cut-set Inequalities
	3.3.4 MIP Initialization
	3.3.5 Primal Heuristic

	3.4 The RR Two-Level Steiner Tree Problem
	3.5 Computational Results
	3.5.1 Instances
	3.5.2 Robustness and Recoverability
	3.5.3 Algorithmic Performance
	3.5.4 Results for the RRTLStT Problem

	3.6 Conclusions

	4 The Recoverable Robust Facility Location Problem
	4.1 Introduction
	4.1.1 Our Contribution and Outline of the Paper
	4.1.2 The Uncapacitated Facility Location Problem

	4.2 The Recoverable Robust UFL
	4.2.1 A Formulation of the RRUFL
	4.2.2 The RRUFL and Previously Proposed Problems

	4.3 Algorithmic Framework
	4.3.1 Strengthening and Calculating Additional L-shaped Cuts
	4.3.2 Primal Heuristic
	4.3.3 Auxiliary Variables and Branching Priorities

	4.4 Computational Results
	4.4.1 Benchmark Instances
	4.4.2 Trans Instances: Robustness and Recoverability
	4.4.3 Trans Instances: Algorithmic Performance
	4.4.4 Dis Instances: Solutions and Algorithmic Performance

	4.5 Conclusions
	4.6 Appendix
	4.6.1 Additional Results
	4.6.2 Additional Performance Profiles of Trans Instances
	4.6.3 Detailed Results for Bangladesh Instances
	4.6.4 Detailed Results for Philippines Instances
	4.6.5 Detailed Results for ND-II Instances


	5 Single-commodity Robust Network Design Problem: Complexity, Instances and Heuristic Solutions
	5.1 Introduction
	5.2 Related Literature
	5.3 Complexity
	5.3.1 All balances different from 1 and -1
	5.3.2 Hypercubes
	5.3.2.1 All balances equal to 1, 0, or -1
	5.3.2.2 All balances equal to Lg, or Lg integer and Lg

	5.3.3 Challenging Instances

	5.4 Heuristic Algorithm
	5.4.1 Constructive Phase
	5.4.1.1 Construction of a Feasible Solution

	5.4.2 Neighborhood Search Phase
	5.4.3 Proximity Search Phase

	5.5 Computational Results
	5.6 Conclusions and Future Research
	5.7 Complementary Results

	6 On Exact Solutions for the Minmax Regret Spanning Tree Problem
	6.1 Introduction
	6.2 Minmax Regret Spanning Tree (MMR-ST)
	6.3 MIP Formulations for the MMR-ST
	6.3.1 Formulation#1
	6.3.2 Formulation#2

	6.4 Exact Approaches for the MMR-ST
	6.4.1 Benders Decomposition Approaches
	6.4.2 Branch-and-Cut Approach

	6.5 Computational Results
	6.5.1 Algorithmic Performance
	6.5.2 Comparing the B&C and the KMZ-TS Approach

	6.6 Conclusions and Future Work

	7 A Note on the Bertsimas & Sim Algorithm for Robust Combinatorial Optimization Problems
	7.1 Introduction and Motivation
	7.2 Main Results
	7.3 General Result

	8 Vulnerability Assessment of Spatial Networks: Models and Solutions
	8.1 Introduction
	8.2 Vulnerability Measures as Optimization Problems
	8.2.1 The Max-Cost Single-Failure Shortest Path Problem
	8.2.2 The Multiple Failures case

	8.3 Computational Results
	8.3.1 Instance Benchmark and Solver Setting
	8.3.2 Vulnerability Assessment of Spatial Networks: Solutions

	8.4 Conclusions and Future Work

	9 The Maximum Weight Connected Subgraph Problem
	9.1 Introduction
	9.2 The Maximum Weight Connected Subgraph Problem
	9.3 MIP Formulations for the MWCS
	9.3.1 The Prize-Collecting Steiner Tree Model
	9.3.2 Model ofLg
	9.3.3 A Model Based on Lg Node Separators
	9.3.4 A Model Based on Generalized Node Separator Inequalities
	9.3.5 Some More Useful Constraints

	9.4 Polyhedral Study
	9.4.1 Theoretical Comparison of MIP Models
	9.4.2 Facets of the CS Polytope

	9.5 Computational Results
	9.5.1 Branch-and-Cut Algorithms
	9.5.2 Benchmark Instances
	9.5.3 Algorithmic Performance

	9.6 Conclusion

	10 The Rooted Maximum Node-Weight Connected Subgraph Problem
	10.1 Introduction
	10.2 MIP Formulations for the RMWCS
	10.2.1 Directed Steiner Tree Model ofLg
	10.2.2 Node-Based Formulations for the RMWCS
	10.2.3 Some More Useful Constraints

	10.3 Polyhedral Results
	10.3.1 Theoretical Comparison of MIP Models
	10.3.2 Facets of the RCS Polytope

	10.4 Computational Results
	10.4.1 Branch-and-Cut Algorithms
	10.4.2 Benchmark Instances
	10.4.3 Analyzing the Computational Performance
	10.4.4 Conclusion.


	11 Final Remarks
	Bibliography

