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Abstract

Thermal effects are rapidly gaining importance in nanometer heteroge-
neous integrated systems. Increased power density, coupled with spatio-
temporal variability of chip workload, cause lateral and vertical tempera-
ture non-uniformities (variations) in the chip structure. The assumption of
an uniform temperature for a large circuit leads to inaccurate determina-
tion of key design parameters. For this reason, significant design margins
are taken to ensure safe operation of the device. To improve design qual-
ity, we need precise estimation of temperature at detailed spatial resolution
which is very computationally intensive. Consequently, thermal analysis
of the designs needs to be done at multiple levels of granularity.

To further investigate the flow of chip/package thermal analysis we exploit
the Intel Single Chip Cloud Computer (SCC) and propose a methodology
for calibration of SCC on-die temperature sensors. We also develop an
infrastructure for online monitoring of SCC temperature sensor readings
and SCC power consumption. We create a power and a thermal model for
Intel SCC. The accuracy of the models is verified through a set of prac-
tical experiments by performing direct comparisons with the real hard-
ware measurements. Considering the importance of Dynamic Voltage and
Frequency Scaling (DVFS) technique for reducing power consumption in
multi-core systems, we also quantify the effect of frequency scaling on
the performance and energy efficiency of parallel workloads in many-core
platforms.

Having the thermal simulation tool in hand, we propose MiMAPT, an ap-
proach for analyzing delay, power and temperature in digital integrated cir-
cuits. MiMAPT integrates seamlessly into industrial Front-end and Back-
end chip design flows. It accounts for temperature non-uniformities and



self-heating while performing analysis. MiMAPT performs thermal anal-
ysis at RT and gate-level with multiple scales of resolution and speed. It
considers non-uniform shapes of on-die units. We demonstrate the ca-
pability of MiMAPT in temperature variation aware delay/power analysis
using a widely-used digital IP block implemented in 65nm and 40nm tech-
nology nodes.

Furthermore, we extend the temperature variation aware analysis of de-
signs to 3D MPSoCs with Wide-I/O DRAM. We improve the DRAM re-
fresh power by considering the lateral and vertical temperature variations
in the 3D structure and adapting the per-DRAM-bank refresh period ac-
cordingly. We develop an advanced virtual platform which models the
performance, power, and thermal behavior of a 3D-integrated MPSoC with
Wide-I/O DRAMs in detail. On this platform we run the Android OS with
real-world benchmarks to quantify the advantages of our ideas.

Moving towards real-world multi-core heterogeneous SoC designs, a re-
configurable heterogeneous platform (ZYNQ) is exploited to further study
the performance and energy efficiency of various CPU-accelerator data
sharing methods in heterogeneous hardware architectures. A complete
hardware accelerator featuring clusters of OpenRISC CPUs, with dynamic
address remapping capability is built and verified on a real hardware. This
platform provides us with the possibility of performing further research
on mechanisms for CPU-accelerator memory sharing as well as improv-
ing energy efficiency by considering on-die spatio-temporal temperature
variations and scheduling processing tasks to accelerators accordingly.
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Chapter 1

Introduction

High power densities of today’s integrated circuits lead to on-chip thermal hotspots
which can compromise chip functionality [62]. The volumetric power density of a
20nm FinFET device is on the order of 10 TW/cm3 [117]. This power wall slows
down the progress toward higher transistor densities and faster clocks while keeping
reliability at acceptable levels [46]. Consequently, researchers and CAD vendors are
developing solutions and tools at different levels of abstraction (such as software [35],
micro-architecture [22], floorplanning and cell placement [49]) to facilitate prediction
and identification of thermal hazards.

To further complicate matters, operating temperature has significant impact on key
design characteristics such as speed and leakage power [89]. Consequently, to ensure
correct functionality for all of the targeted environmental conditions, work-loads and
self-heating effects, Front-end and Back-end flows are needed to account for many
operating points, tight design constrains with large safety margins [37]. Moreover the
design of essential components of the system (e.g. heat-sink and PCB) will be highly
affected by these constraints [114]. These directly translate into additional costs [85].
As a result, a big percentage of available resources are consumed to only guarantee the
safety of chip operation in situations that may never happen in practice. This is where
design-time thermal analysis can be useful. Conceptually, taking temperature variation
into account while doing delay/power analysis, allows lowering safety margins without
compromising design reliability. This is done by filtering out the constraints that never
happen in practice and satisfying only those which are really needed.

Spatial and temporal variability of chip workload results in non-uniform on-chip
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power density and thus localized temperature variations. Considering Intel Single-chip
Cloud Computer (SCC) many-core platform [60] as an example, the power consump-
tion of on-die CPU cores, while running Linux OS, changes more than 17X from idle
to full-load state. Accounting for the fact that each group of cores can have their own
different supply voltage and running clock, the same level of variation can be seen spa-
tially, in per-core power consumption. For today’s high-end multi-cores, temperature
gradients of more than 15 ◦C can be seen across different on-die units [99]. As a result,
considering the serious impact of temperature on device characteristics such as leakage
power and delay (which change non-linearly with temperature), and abrupt tempera-
ture variations across die area, the assumption of an averaged uniform temperature
value for entire die does no more lead to practically valid delay/power estimations. In
fact, today’s mainstream design flows assume a uniform temperature value for each op-
erating corner during design synthesis and evaluation and a quantification of the error
caused by this assumption is currently missing.

To clearly illustrate the idea, we assume that an 8-bits counter is the only timing
critical path of a sample design implemented using TSMC 40nm low power (LP) stan-
dard cell library [126]. As shown in table 1.1, for V DD = 0.81 V, considering the full
temperature range (0 ◦C to 125 ◦C), the maximum running frequency of the design
will be 457 MHz (period 2.18 ns). However, if through thermal simulations we show
that the temperature of timing critical path area never goes below 50 ◦C, the chip can
be safely clocked at more than 640 MHz (period 1.54 ns). The result of removing this
unnecessary safety margin is 1.4X improvement in performance. For V DD = 1.21 V
however, the impact of temperature on delay is not significant.

For V DD = 1.21 V, if we suppose that half of the chip area is covered by circuits
similar to the counter, and total chip area is 560 mm2 (similar to [60]), then con-
sidering full temperature range, the total power consumption changes by more than
21 Watts (from −40 ◦C to 125 ◦C). However, if through thermal simulations we show
that the temperature of these areas never grows over 50 ◦C, then the change in power
consumption will be lower than 11 W. This reduction in safety margins allows us to
use lighter cooling solutions as well as lower priced power supply components. For
V DD = 0.81 V the impact of temperature on power is not significant.

The increase in power density with temperature translates directly into increase in
localized temperature which again results in change over delay and power. The created
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Table 1.1: Delay and Power Densities (P.D.) for a 8-bits counter using 40nmLP RVT
cells. (Delay in ns and Power Density in W/cm2)

VDD Parameter Temperature
-40 0 50 125

0.81
Clk Period 2.1872 1.7269 1.5486 1.1450

P.D.@slowest Clk 11 12 12 12

1.21
Clk Period 0.1993 0.2029 0.2080 0.2138

P.D.@slowest Clk 270 279 289 307

iterative loop moves the actual operating condition of transistors to completely differ-
ent points than initially estimated ones. This highlights the importance of considering
self-heating effects while performing design validation.

Moreover, considering high power densities, precise localization of hotspots at gate
level is necessary for many high-performance designs. This however requires an ex-
tremely detailed spatial resolution for power/thermal simulation which is very com-
putationally intensive and almost impossible for large designs. This is where multi-
scale analysis techniques can help. Basically, power and temperature estimation can
be done at low resolution where it provides satisfactory level of accuracy at a high level
of speed. Resolution (and computational effort) should be increased only for areas of
interest, where hotspots are likely. The challenge lies in avoiding false negatives (i.e.
missing hot spots) while minimizing false positives to achieve significant speedups
w.r.t. fine-grained (gate level) thermal analysis.

The first step to tackle the aforementioned problems is to be able to practically es-
timate the temperature distribution across a given hardware platform. Thus, we first
focus on the procedure of performing thermal simulation for a given chip/package de-
sign. We study the principles of developing thermal models for integrated circuits.
Then we investigate the operation of various thermal models such as Hotspot [61] and
3D-ICE [120]. To further describe the flow of chip/package thermal simulation, we
create a thermal model for the Intel SCC [4]. Then we use the actual real hardware
and tune our thermal model. Finally we validate the accuracy of the proposed ther-
mal model through practical experiments. Towards this, we study the architecture of
temperature sensing hardware instantiated inside Intel SCC as well as development of

3



an infrastructure for online extraction of sensor readings from the hardware [2]. We
illustrate a method for calibration of thermal sensors [1]. We further study the effect
of frequency scaling on the performance and energy efficiency of parallel workloads
running on many-core platforms [2].

Having the thermal analysis tool in hand, we then propose MiMAPT (Micrel Multi-
scale Analyzer for Power and Temperature), a tool capable of performing temperature
variation aware delay/power and thermal analysis at RT and gate level with multiple
scales of resolution and speed. The tool starts coarse-grained transient power/thermal
analysis at RTL for the set of user-defined workloads. It considers non-uniform shapes
of on-die units during analysis. MiMAPT switches to accurate gate level simula-
tion only when a likely hot-spot is suspected. At gate level it performs iterative
power/thermal simulation while refining spatial resolution of the thermal floorplan just
for the areas which are suspected to contain hotspots. In addition, MiMAPT accounts
for on-die temperature variations and non-uniformities as well as self-heating effects
while performing delay/power and temperature analysis at gate level.

Furthermore, MiMAPT provides the designers with the possibility of early design
evaluation when the design is available as stand-alone IP blocks but not as the final
implemented chip. In fact, MiMAPT is capable of reading IP blocks and their work-
loads separately, and merging all IP units into a virtual chip with each unit placed at its
user-specified coordinates. On the virtual chip, MiMAPT performs thermal analysis
at RT and gate level, as well as temperature variation aware power/delay estimation.
MiMAPT handles all of the necessary translations in the provided RT and gate level
data files for each IP block automatically. In the special cases that an IP block is not
yet available, or is completely a black-box, MiMAPT allows the developer to define
a dummy block with an averaged power density to represent the missing unit dur-
ing chip-wide analysis. When the IP is available only at gate level but not at RTL,
MiMAPT can use the already available information of the IP along with the rest of the
design during its multi-scale analysis.

The tool integrates seamlessly into major industrial Front-end and Back-end chip
design flows. It exploits standard logic simulation engines to obtain circuit switching
activities required for design power estimation at RT and Gate level. It parses standard
cell library formats, as well as widely used file formats describing chip layout and
placement information. It is also capable of processing and using reported delay/power
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traces by major Front-end and Back-end tools. Furthermore, MiMAPT is designed so
that it can be easily connected to an external thermal simulation engine.

Thanks to MiMAPT we explore and model the sensitivity of key design parameters
to temperature in two recent technology nodes (65nm [127] and 40nm [126]), using
real-life industrial libraries. We further demonstrate the importance of considering
on-die temperature non-uniformities to obtain accurate temperature maps for the chip.
The principal ideas behind MiMAPT can be also applied to 3D integrated circuits.

Heterogeneous 3D integrated systems with stacked DRAMs are a promising so-
lution to squeeze more functionality and storage bits into an ever decreasing volume.
Unfortunately, with 3D stacking, the challenges of high power densities and thermal
dissipation are exacerbated. Energy and thermal dissipation are limiting the efficiency
of today’s applications performance on smartphones as well as high-end servers. The
thermal issues of 3D ICs cannot be solved by tweaking the technology and circuits
alone. In fact, a 3D stacked SoC aggravates the thermal crisis and forces enhance-
ments in the architecture and memory organization as well as detailed DVFS control
for CPUs and DRAMs. More than 40% of the system energy in existing platforms is
consumed by DRAMs [90].

Early detection of architectural shortcomings and thermal hazards is crucial to the
design of sub-20-nm 3D chips. For instance, current microprocessor architectures are
inefficient for running datacenter workloads mainly because of the mismatch between
the workload characteristics and the organization of the memory subsystem [45]. Con-
sequently, the detailed analysis of the memory subsystem is very important as it unveils
possible bottlenecks and issues which impact the system energy and efficiency.

Therefore, in this thesis, we perform an in-depth study on performance, timing,
power and leakage of 3D stacked Wide-I/O DRAMs and track their key parameters
with spatial and temporal variations in temperature. Through careful evaluation of
temperature distributions in a 3D IC with Wide-I/O DRAMs, we propose architectural
enhancements for the DRAM subsystem as well as thermal management solutions
which improve energy consumption. We consider the lateral and vertical variation in
temperature of the 3D DRAM dies and refresh each of the DRAM banks at a separate
rate according to its own temperature.

In order to assess and quantify the advantages of our proposed ideas, we build a
suitable virtual infrastructure which considers all key characteristics of a 3D MPSoC
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with Wide-I/O DRAMs in detail. Our virtual platform uses Transaction Level Models

(TLM), since they are well suited for fast system-level simulation and exploration of
designs. Moreover, Approximately Timed (AT) TLM2.0 models provide a sophisticated
balance between accuracy and execution speed of simulations.

The analysis of the memory subsystem requires a timing accurate behavior of the
CPU cores. The gem5 [21] architecture level full-system simulator is selected for this
purpose, since it models system operations at various levels of detail, balancing simu-
lation speed and accuracy. It generates realistic traces of memory accesses, which can
be replayed very fast inside the TLM environment. Detailed O3 CPU model of gem5

resembles the operation of a real hardware. As an outcome, the statistics generated by
the mentioned models can be utilized for estimation of power and temperature with
acceptable level of accuracy.

Our infrastructure integrates the gem5, TLM2.0 and our developed power and ther-
mal models, as well as various thermal, performance and operation management mod-
ules into a unified working set. Further speedup of simulation is obtained by adaptively
adjusting the sampling interval according to the chip temperature and accelerating the
thermal simulation. Our framework allows us to explore different thermal control and
DRAM refresh management strategies and assess the behaviour of the chip stack ther-
mal profile and its energy dissipation under the real-world workloads.

As the energy efficiency requirements (e.g. GOPS/W) of silicon chips are grow-
ing exponentially, computer architects are seeking solutions to continue application
performance scaling. One emerging solution is to use specialized functional units (ac-
celerators) at different levels of a heterogeneous architecture. These specialized units
cannot be used as general-purpose compute engines. However, they provide enhanced
execution speed and power efficiency for their specific computational workloads [26].
There exist numerous applications for accelarators in both of the embedded and high
performance computing markets. Examples include video processing [104], software-
defined radio [34], network traffic management [79], DNA computing [77] and fully
programmable hardware acceleration platforms [96].

In the final part of the thesis, we focus on heterogeneous MPSoCs which con-
tain a group of hardware accelerator units capable of executing computational tasks
in parallel with the host CPU. We study the idea of accounting for on-die tempera-
ture non-uniformities while assigning computational tasks to available hardware ac-
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celerators. We build a complete heterogeneous reconfigurable platform containing a
multi-core host CPU as well as a cluster of hardware accelerators. We first study the
possible mechanisms of assigning computational tasks to hardware accelerators by the
host CPU. Especially, we focus on CPU-Accelerator memory sharing mechanisms and
study the power and performance efficiency of each method through practical tests.
Then we illustrate the idea of implementing thermal sensors on various spatial coor-
dinates of the fabric which contains the accelerators cluster. Finally we focus on the
problem of scheduling the processing tasks to accelerator units based on the obtained
temperature readings.

Efficient sharing of data in a heterogeneous MpSoC which contains different types
of integrated computational elements is a challenging task. Especially when private
caches of CPU cores and dedicated memory of accelerators are used to store local
copies of data in a hierarchical memory structure, it is crucial to ensure that every pro-
cessing element has a consistent view of the shared memory space [122], [78]. The
Accelerated coherency port (ACP) [121] was developed by ARM R© as a hardware so-
lution to enable hardware accelerators to issue coherent requests to the CPU subsystem
memory space [67].

The memory used for sharing data between the host CPU and hardware accelera-
tor is primarily indicated by virtual address values allocated by the host CPU. These
addresses need to be converted into equivalent physical addresses before performing
any access to the actual physical memory. At CPU side, this address conversion is
automatically done by the MMU however, for hardware accelerator the CPU needs to
perform address conversion explicitly and send the physical address to the accelerator.
This conversion is simple if the shared object is a small chunk of continuous mem-
ory however, as soon as the size and complexity of the shared data object increases
and it spans several non-continuous physical regions, the simple method can no more
be used. To tackle this problem, we propose a new CPU-accelerator address passing
method in which the accelerator receives the virtual address from the CPU directly, and
then uses a specialized look-up table to obtain the equivalent physical address. This
scenario resembles the operation of a System-MMU such as the one disscussed in [66].

We need to assess our ideas on a real-world multi-core heterogeneous platform.
However, creating a TLM platform resembling the operation of such complex piece
of hardware with acceptable levels of simulation speed and accuracy is impossible.
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As a result we move to a real-world platform to continue our research. Xilinx ZYNQ
all-programmable SoC [140] provides the designers with an ARM Cortex-A9 MPCore

subsystem along with a high performance DRAM memory controller and various pe-
ripherals. It also implements a complete FPGA fabric. The CPU subsystem and FPGA
are connected through AXI [68] interfaces which allow the logic on the fabric to per-
form cache coherent accesses to the memory space of the cpu subsystem through the
ACP or directly perform accesses to the DRAM.

We use the ZYNQ device and build a complete infrastructure to evaluate the per-
formance and energy efficiency of different processor-accelerator memory sharing
schemes as well as our ideas on temperature variation aware hardware acceleration.

1.1 Thesis Outline

We first describe the methodology of performing thermal simulation for ICs in Chap-
ter 2. Primarily, we focus on principles of thermal simulation (Section 2.1). Section 2.2
contains a brief survey on available widely used thermal models. Then we introduce
our research vehicle: Intel SCC (Section 2.3). We focus on developing a power model
(Section 2.4.1) and a thermal model (Section 2.4.4) for Intel SCC. We describe the op-
eration of SCC integrated on-die thermal sensors (Section 2.4.2) and the required steps
for their calibration (Section 2.4.3). Next, we perform a practical comparison between
the temperature values reported by SCC thermal sensors and the obtained tempera-
tures from our thermal model (Section 2.4.5). Finally, we provide quantifications on
the effect of frequency scaling in many-core platforms on the performance and energy
efficiency of parallel applications (Section 2.5).

Chapter 3 is dedicated to detailed description of our RT and Gate Level, Adaptive
and Multi-scale delay, power and thermal analysis engine: MiMAPT. First in Sec-
tion 3.1 we illustrate the importance of considering temperature variation while doing
design analysis. The overall architecture of MiMAPT is described in Section 3.2. A
set of practical examples to show the effect of on-die temperature non-uniformities on
key design parameters is demonstrated in Section 3.3. Then we perform an evaluation
on the accuracy of our adaptive hotspot detection algorithm at RT level (Section 3.4).
Finally, through an example we show the full functionality of MiMAPT (Section 3.5).
This contains the multi-scale analysis capability of MiMAPT working jointly with its

8



temperature variation aware power/delay estimation engine.
Chapter 4 describes the TLM modeling of 3D MPSoCs with stacked DRAMs. It

also illustrates our ideas regarding considering the lateral and vertical temperature non-
uniformities in the 3D chip to optimize the energy consumption of DRAM memories.
To perform our assessments, we develop a detailed virtual platform containing TLM
models for 3D Wide-I/O DRAM memories. Section 4.2 explains this in detail. To
improve the energy consumption of the 3D MPSoCs a set of governor units are im-
plemented. Each governor is responsible for monitoring and managing one of the key
parameters of the system. Sections 4.2.4 to 4.2.6 describe these modules in detail. Fi-
nally we quantify the effectiveness of the developed ideas through a set of experiments
(Section 4.3).

Considering the fact that for real-world’s modern complex multi-core heteroge-
neous platforms, creating TLM models for the entire hardware with acceptable level
of speed and accuracy is impossible, we then focus on using re-configurable hetero-
geneous platforms like Xilinx ZYNQ to implment real heterogeneous systems and to
bring the possibility of continuing our research on a real test platform.

In Chapter 5, we first discuss the architecture of Xilinx ZYNQ (Section 5.2). We
then focus on measuring the performance and energy consumption of each of the avail-
able methods for sharing chunks of data between CPU and accelerator (Section 5.3).

Chapter 6 demonstrates the infrastructure that we develop on the Xilinx ZYNQ
device to further evaluate our ideas regarding CPU-Accelerator data and address shar-
ing, as well temperature variation aware assignment of computation tasks to hardware
accelerators. In this chapter, we desribe our fully functional OpenRISC based acceler-
ator. The details on the implemented cluster are presented in Section 6.1.

We propose two different ideas as our future research directions; The idea of imple-
menting a collaborative system MMU which enables the host CPU to pass the virtual
address of a data structure to the accelerator directly is disscussed in Section 6.2.1. In
Section 6.2.2 we show possible ways of implementing thermal sensors on the FPGA
fabric directly. Finally, in Section 6.2.3 we describe the idea of assigning compu-
tational tasks to hardware accelerator blocks according to their current temperature
state.
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Chapter 2

Thermal Models, Their Creation and
Validation

Upcoming many-cores platforms stress the limits of Moores law. Indeed high perfor-
mance rush translates in high power densities, that combined with high spatial paral-
lelism and workload variations produces non-uniform power dissipation that translate
in non-uniform silicon die thermal map. This leads to degradation, acceleration of chip
aging and increase in cooling costs. To help designers in studying and counteracting
this raising issue thermal modeling tools has been widely studied in the recent years,
nonetheless leading industries have started to deliver the firsts many-core prototypes
to push researchers toward creating solutions for the incoming challenges.

In this Chapter, we first study the principles of chip/package thermal simulation
briefly (Section 2.1). Then, we introduce the well-known available thermal modeling
tools (Section 2.2). Afterwards, in Section 2.3, we introduce our research vehicle: the
Intel Single Chip Cloud Computer (SCC). We develop a thermal model for Intel SCC
(Section 2.4) and we verify the validity of our model in practice (Section 2.4.5).

Dynamic voltage and frequency scaling (DVFS) is one of the most commonly
utilized techniques for reducing power consumption of chips. Recent research has
developed efficient DVFS techniques based on characterizing on-chip/off-chip work-
loads [33], identifying application phases with a high number of stall cycles [76], or
using machine learning techniques to adapt to changing workload [40]. The common
goal in these approaches is reducing the performance overhead of operating at lower
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frequencies, as DVFS may incur severe slow-downs. These techniques improve the
energy efficiency for the current single-core or multi-core systems with a few num-
ber of cores; however, they do not capture the unique performance-power trade-offs in
many-core systems. As a result, in the final part of this chapter, we study the effect
of frequency scaling on the performance and energy efficiency of parallel workloads
running on many-core platforms (Section 2.5).

2.1 Thermal Simulation Principles

The classical Fourier heat diffusion model is used to model heat transfer through chip
and cooling package. IC chip and cooling packages are spatially discretized into dis-
crete three-dimensional thermal elements. Compact heat transfer equations are then
derived and solved using numerical methods to characterize the thermal profile of IC
chip and cooling package. Both steady-state and dynamic analysis methods have been
developed for full-chip IC thermal analysis. Compared with steady-state thermal anal-
ysis, dynamic thermal analysis is much more challenging. The steady-state classical
Fourier model is characterized by the following equation:

∇ · (K∇T )+qvol = 0 (2.1)

where K is the thermal conductivity, T is temperature, and qvol is the volumetric heat
source. As [111] describes, the finite volume method can be used to solve this equation
by partitioning the domain into numerous discrete elements, and transforming it into a
set of discretized equations:

−2(Kx +Ky +Kz)Tp +Kx(Tc +Tw)+Ky(Tn +Ts)+Kz(Tt +Tb)+qvol∇x∇y∇z = 0
(2.2)

where Kx, Ky, and, Kz are the thermal conductances that element p shares with its
neighbors in the x, y, and, z directions and ∇x, ∇y, and ∇z are the element sizes in the
x, y, and z directions, and the subscripts e, w, n, s, t, and b refer to the east, west, north,
south, top and bottom directions relative to element p.

The Fourier model is capable of accurately modeling the thermal effects only at
feature length scales much longer than the mean free path of phonons [103]. As a re-
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sult, it can be used to model the thermal effects from the chippackage level down to the
functional unit level. To perform thermal analysis at device level, the computationally-
expensive BTE model should be utilized [59].

2.2 A Survey on Available Academic Thermal Models

HotSpot [61] is a fully parameterized, boundary condition independent, compact ther-
mal model which can be used for preliminary exploration of thermal characteristics
of electronic components at design time as well as when they exist as real hardware.
HotSpot provides detailed temperature distribution at different levels such as silicon
die layer, package and heat sink surface. It is capable of estimating steady state as
well as transient temperatures in two different (faster) block and (more accurate) grid
modes. The easy-to-use HotSpot user interface allows designers to perform complete
simulations in a short period of time.

Sridhar et. al. introduced 3D-ICE [120], a thermal modeling tool which is special-
ized to support 3D-ICs. It also takes on-chip inter-tier liquid cooling into account for
thermal simulation.

Allec et. al. introduced ThermalScope [17]. The work was then followed and ex-
tended by Yang et. al. to create ISAC [141] and also by Hassan et. al. which resulted
in creation of NanoHeat [58]. These packages build a platform capable of performing
thermal simulation at different scales of spatial and temporal resolutions. In [58] the
granularity of the defined mesh to solve the heat transfer equation gets adjusted dynam-
ically so that it uses higher spatial resolution at coordinates with higher temperature
gradient. The tool provides two solvers, one based on Fourier heat conduction, and the
other based on Boltzman heat transfer equations (BTE)[117]. The tool is claimed to be
able to estimate temperature variations at transistor device resolution which are missed
by traditional methods.

Chandra et. al. [87] described an efficient multi-griding approach for thermal sim-
ulation of ICs. The method also supports 3D structures.

Tang et. al. [128] introduced an improved adaptive finite element method for de-
tection of hotspots in the chip as well as the PCB. In these papers, the resolution of the
defined mesh which is used to solve the heat equation is refined adaptively according
to the physical and geometrical characteristics of the chip in each region. This results
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Figure 2.1: Block diagram of of Intel SCC.

in improved simulation speed while keeping accuracy at acceptable level.
Fourmigue et. al. [47] introduce ICTherm, a tool developed for thermal analysis

of 3D chips. The tool first performs a thermal evaluation of the target with a very high
spatial resolution. Based on the results it creates a multi-granularity mesh which is
used for thermal simulation.

2.3 Intel Single Chip Cloud Computer

The Single-Chip Cloud Computer (SCC) experimental processor [60] is a 48-core con-
cept vehicle created by Intel Labs as a platform for many-core research. It has 24
dual-core tiles arranged in a 6x4 mesh. Each core is a P54C core. Each tile can be
configured to run at its own clock frequency independent of other tiles. There exist 8
voltage islands on SCC die. The SCC die has four on-die DRAM memory controllers.
Each DRAM controller is responsible for handling memory transactions of 12 tiles of
the chip. Figure 2.1 shows a block diagram of the SCC chip. A Network-on-Chip
(NoC) connects all of the on-die units together. SCC hardware is connected to its host
PC through System Interface operating over a PCI Express link.

SCC also integrates a small amount of fast local memory located in each tile.
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(a) SCC die photo (b) One Tile

Figure 2.2: Die photo of of Intel SCC.

Message-passing support is provided and use shared regions of local memory or off-die
main memory.

Each tile integrates two thermal sensors based on a couple of ring oscillator, one
positioned in proximity of the router and the other positioned close to the top core L1
cache. The SCC hardware includes power sensors capable of measuring the full SCC
chip power consumption. Figure 2.2 shows the die photo of Intel SCC as well as the
dimensions of one tile.

We develop an infrastructure to accurately track performance, power, and temper-
ature of the SCC at runtime with very low performance overhead. Our setup collects
performance counter data from each core, tracks main memory accesses, logs mes-
sages passed among cores, and measures power and temperature [2].

2.4 Thermal Simulation for Intel SCC

To required inputs to perform temperature estimations of a device are the followings:
1- The thermal floorplan, indicating the coordinates and dimension of each on die
unit. 2- The estimated power values for each unit. These numbers are calculated by
the developed power model. 3- The chip/package physical characteristics, which are
provided by the manufacturer or measured using the real hardware.

The thermal floorplan of SCC has been derived directly from SCC specifications [60].
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Table 2.1: Power break-down of different units in Intel SCC for two different extreme
cases.

Unit Name
Full Power Low Power

Cores 1 GHz, Mesh 2 GHz Cores 125 MHz, Mesh 250 MHz
CPU Cores 87.7 5.1

DRAMs 23.6 17.2
Clocking 1.9 1.2

NOC (Routers) 12.1 1.2
SIF ≈ 0 ≈ 0

Total 125.3 24.7

The input power traces of each block composing the floorplan has been partially ex-
tracted from the real power measurements by interpolating the power brake-down
in [60]. For CPU cores, we develop a standalone power model. To assess model
accuracy, we perform a comparison with real measurements under various workloads.

2.4.1 A Power Model for Intel SCC

Accurate thermal simulation requires detailed power traces for each floorplan block.
As we can see from the floorplan there are the following basic blocks:

• CPU cores.

• DRAM controllers.

• Router + Clock.

• Serial interface engine (SIF) I/O.

We can obtain the power break-down for these blocks from [60]. In table 2.1, we show
the values for two extreme stress workloads.

From Table 2.1 we see that the main contribution to the total power is given by the
CPU and the DRAM controllers. Unfortunately, the power probes available on SCC
are not sufficient to probe directly the power consumption of each functional unit.
Indeed the available probes are:
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Table 2.2: Workloads used for stressing SCC. (One cache line of SCC is 32 bytes).

Workload Description

L1
16 KB circular buffer size.

Data increment of 32 Bytes (1 cache line).

L2
32 KB circular buffer size.

Address increment of 32 Bytes (1 cache line).

L2-2Access
32 KB circular buffer size.

Address increment of 16 Bytes (2 access for cache line).

DRAM
4 MB circular buffer size.

Address increment of 32 Bytes (1 cache line).

DRAM-2Access
4M B circular buffer size.

Address increment of 16 Bytes (2 access for cache line).

• Analog portion of DRAM memory controller.

• Digital portion of DRAM memory controller and SIF.

• CPU cores, Routers and global clocking.

We first evaluate the sensibility of these probes to different levels of utilization of SCC.
We then create a power model suitable to estimate the power consumption of each CPU
core given its utilization and workload properties. This will allow us to feed each func-
tional unit in the thermal floorplan with the proper power traces. The different stress
patterns are obtained by executing different sets of synthetic benchmarks. Each syn-
thetic benchmark is made-up of an infinite loop where an ALU operation is executed
on a circular data buffer. The dimension of the circular buffer increases within dif-
ferent benchmarks: moving from 16 KB to 4 MB. At each iteration it is executing a
read-write to an entry of circular buffer that moves with an incremental step of one
cache-line. By doing that, the various synthetic benchmarks are capable of hitting
always a data in the L1 cache, missing the L1 cache but hitting the L2 cache and miss-
ing L1, L2 and hitting the DRAM. These generate different memory stress patterns.
Table 2.2 describes workloads properties of different synthetic benchmarks.
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Figure 2.3: Core power consumption with number of active cores in each cluster for
each of the workloads. Dots are measured data; Lines are the result of linear fitting.

2.4.1.1 SCC Power Measurement

The first analysis we performed has highlights how the core power changes in between
different cores and workload under stable conditions. To do that, we divided SCC
into 4 quarters of 12 cores each. Then for each of them we increase the number of
active cores. We repeat this test for different synthetic benchmarks. As can be seen in
Figure 2.3, the power increases linearly with the number of active cores for all of the
stress workloads. This suggests that the contribution of the core power to the total chip
power consumption is independent of the core position. Thus for the workload used,
superposition principle is valid and we can obtain the single core power by dividing
the total power to the number of cores.

The second test aims to highlight the effect of frequency scaling on different bench-
marks. Figure 2.4 shows the cores power consumption when all of them are executing
the same benchmark while scaling the tile frequencies. We can notice that the power
changes linearly with the frequency with different slopes for each benchmark. Intu-
itively this is due to the different CPU-usage of the different synthetic benchmark.
A common metric of CPU-load [39] is the Clock Per Instruction (CPI). This can be

17



150 200 250 300 350 400 450 500 550
30

35

40

45

50

55

60

65

70

75

80

Core power consumption with frequency

freq

c
o

re
 p

o
w

e
r

 

 

L1

L2−2Access

L2

DRAM−2Access

DRAM

Figure 2.4: Core power consumption for each workload for different frequency values.
Dots are measured data values. Lines are the result of linear fitting.

directly measured at run-time by using the performance counters.
Figure 2.5 shows the CPI of the different benchmarks while changing the tile fre-

quency. We can notice that for L2 and L1 benchmarks the CPI does not change with
the frequency. This suggests that both the L1 and L2 are in the same clock domain of
the tile. For the DRAM benchmark instead the CPI scales with the frequency and the
slope is not constant but changes itself with the frequency.

These effects can be explained by looking at the digital part of DRAM controller
power consumption as shown in Figure 2.6. We notice the same effect. Indeed the
power of the DRAM controller shows a saturation effect at higher frequency. This
can be explained by bandwidth saturation due to the higher memory accesses issued at
higher frequencies.

2.4.1.2 Power Model for SCC CPU Cores

We combine the core power data values, to derive a power model suitable to predict
the core power consumption under different workload and tile frequency. For each
core the power consumption can be split in two main contributions: the idle power and

18



150 200 250 300 350 400 450 500 550
0

10

20

30

40

50

60

Average CPI value vs frequency

freq

C
P

I

 

 

L1

L2−2Access

L2

DRAM−2Access

DRAM

Figure 2.5: Changes of CPI for different values of frequency and different workloads.

150 200 250 300 350 400 450 500 550
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

freq

d
ra

m
 c

o
n

tr
o

ll
e

r 
p

o
w

e
r

DRAM controller power vs number of active cores

 

 

1 core active

12 cores active

Figure 2.6: Power consumption of DRAM controllers as a function of frequency and
number of active cores running.

19



the active power (Pcore = Pactive+Pidle). Whereas Pidle can be modeled as a function of
only the frequency (Pidle = g( fcore)), the active one can be modeled as a function of CPI
and frequency (Pactive = g(CPIcore, fcore)). As a result, idle power can be effectively
modeled as linear regression of the core clock frequency (Pidle = b+ a. fcore). Using
the experimental data a values a = 0.35×10−3 and b = 0.3872 are obtained. By using
equation 2.3 as the fitting function, a closed form model can be generated for the per-
core active power.

g(CPI, f ) = (a+b.CPIc). f +d +(a′+b′.CPIc′). f (2.3)

In equation 2.3, g(CPI, f ) is the per-core active power value. We use a least
square optimization algorithm to find the optimal coefficients that minimizes the error
value between estimated and real data. Values of a = 0.0131, b =−0.240, c = 0.085,
d = 0.021, a′ = 0.0131, b′ = 0.215 and c′ = 0.02 are obtained for the coefficients of
equation 2.3 as result. Figure 2.7 shows the fitting performance. Since no performance
counters are available in SCC to probe on-line the DRAM usage, we decided to use
directly the power measurement of the dram controller as input to the thermal model.
We feed each memory controller floorplan block in the thermal simulation with 1/4 of
the measured DRAM controller power consumption.

2.4.2 SCC Thermal Sensors

SCC integrates in each tile two built-in thermal sensors. The first thermal sensor is
placed close to the router and the second one is placed near the L1 cache of the bottom
core. Each thermal sensor is composed of two ring oscillators and the sensor output
(T S) is the difference of the two oscillators clock counts over a specific time window
tW . The difference is proportional to the local die temperature (T ) [74]. For each tile,
the time window (tW ) can be programmed through a per-tile control register [73] as a
number of tile clock cycle (NCC): tW = NCC/ fTile. Thus it needs to be updated each
time the tile frequency changes. There is a linear relationship between the value of T S

and the temperature (T ).

T S = (A+B.T ).tW (2.4)
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Figure 2.7: Power consumption of one CPU core based on CPI values and running
frequency. Dots are measured values. Lines are the model output.

In Equation 2.4, B < 0 meaning that T S decreases with the rising of temperature
and A > 0. T S is always positive and in the thousands. The A and B coefficients are
completely different for each of the on-chip sensors.

We first evaluate the spatial variation of the thermal sensor values under two dif-
ferent homogeneous stress conditions. Figure 2.8 shows the results of this test. The
X axis report the thermal sensors readings moving from the bottom-left corner to the
top-right one of SCC (odd ones refer to router sensors whereas even ones to core sen-
sor). The dashed line shows the thermal sensors output when all the cores are in idle
state (no task allocated) and are running at the smallest possible clock frequency (100
MHz): the coldest operating condition of the chip. Instead, the solid line shows the
thermal sensors output when all the cores are executing a power virus while running at
higher frequency (533 MHz).

In the coldest point we can assume that the real silicon temperature is roughly con-
stant across the chip area. However we can notice a strong variation in the raw sensor
values (> 50%). Moreover, it is notable that idle and full-load plots are very similar
in shape but for the hotter case (all cores busy) all the sensors output are significantly
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Figure 2.8: Raw thermal sensor values for two different tests.
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Figure 2.9: SCC thermal sensor readings with the change in total chip power consump-
tion.

lower, as expected because sensor count decreases when temperature is high. However
it must be noted that the variations due to temperature differences between minimum
and maximum load conditions is less than 20% compared to the un-calibrated spatial
sensors variation. This clearly highlights the strong need to the thermal sensor calibra-
tion step. We perform a second test with the goal of evaluating the relation between
SCC power and thermal sensor output while executing different benchmarks and while
running all the tiles together at different frequency levels. Figure 2.9 shows the results.
We can recognize that sensor values are linear with the power consumption. This prop-
erty can be exploited to characterize the thermal sensors taking advantage of the linear
relation between temperature and power (in steady-state condition).
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2.4.3 Thermal Sensors Calibration

If we consider the thermal transients are expired and we are in steady-state and we have
a stable workload homogeneously distributed along the multi-core surface by executing
same load/task in all of the cores, from equation 2.4 we can write the thermal sensor
output as a direct function of full chip power consumption and ambient temperature
(which can be measured easily by the end-user).

T Si = Ai +Bi.Ti = Ai +Bi.(Ki.Pcore +Tamb) = Ai +Bi.Ki.Pcore +Bi.Tamb (2.5)

Equation 2.5 can be formulated for each thermal sensor (i) as a least square problem
where the unknown parameters are Ai, Bi and Bi.Ki, and the input data are T Si, Pcore

and Tamb. Now if for each sensor i, we generate a cloud of N tuples {T S,Ptotal,Tamb}
by stressing all the cores of the target multi-core together at different frequencies and
workloads we can calculate the desired coefficients by solving the obtained system of
equations [1]. 

Yi = {T Si,h},h = 1, · · · ,N

Xi = {1,Pcore,h,Tamb,h},h = 1, · · · ,N

Θi = {αi,βi,γi},αi = Ai,βi = Bi.Ki,γ = Bi

Yi = Xi.Θi⇒Θi = X†
i .Yi

(2.6)

2.4.4 Hotspot Thermal Model for Intel SCC

We have developed a thermal model for SCC using HotSpot [61] thermal simulator.
This model is capable of predicting SCC chip temperature values at different on-die
locations according to input power to the chip. Since there is no public available infor-
mation on SCC physical process parameters and chip package characteristics, we use
the typical ones as provided in the default HotSpot model. Hotspot is capable of mod-
eling package heat-sink and forced air convection (using fan). In this case, package
convection resistance is computed using the details provided in package model file by
the user. This file contains parameters related to dimension of the heat-sink, fan and
also rotation speed for the fan. We obtain these by performing measurements on the
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Table 2.3: Important Hotspot thermal model configuration parameter values for Intel
SCC.

Parameter Value
Chip Thickness 0.15 mm

Silicon thermal conductivity 100 W/(m.K)
Silicon specific heat 1.75 J/(m3.K)
Heat spreader side 0.03 m

Heat spreader thickness 1 mm
Heat spreader thermal conductivity 400 W.(m.K)

Heat spreader specific heat 3.55 J.(m3.K)
Interface material thickness 2.0e-2 mm

Interface material thermal conductivity 4.0 W/(m.K)
Interface material specific heat 4.0e6 J/(m3.K)

Heat-sink fin height 8 cm
Heat-sink fin width 1 mm

Fan radius 9 cm
Fan motor radius 3 cm

Fan rotation speed 5000 rpm

real SCC heat-sink: (H = 8 cm, W = 9 cm, L = 9 cm). For the rotation speed of the fan
on SCC platform, there is no direct measurement capability. As a consequence we used
a typical fan rotation speed for high performance CPU cooling systems (5000rpm). Ta-
ble 2.3 shows values of important parameters used for Hotspot thermal model.

2.4.5 Validation of Thermal Model

In order to evaluate the performance of our thermal model, we create a set of test cases.
Each test case is composed by:

• A randomly created vector of active cores. This vector indicates for each core,
if the core will execute a workload or will be idle.

• A randomly created vector of workloads that will be executed on SCC cores.
Each element in the vector specifies one of the available stress workloads. (L1,
L2, L2half, DRAM, DRAM-half)
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Figure 2.10: Comparison of measured temperature values with Hotspot ones when half
of the chip is at idle state and the other half is at full load.

• A randomly created vector of tile frequencies. The items of this vector specify
the frequency (between 533 MHz to 100 MHz) of each SCC tile.

We apply each test case to real SCC platform and to our power and thermal model.
We then collect the results of each case and compare together. Table 2.4 shows the
results. The bitmap in the table shows the workload executed on each core and the
tile frequency used for each of the cores. The bitmap consists of two rows. Each row
contains 48 rectangles. In the top row each rectangle with gray scale, indicates the
workload executed on the specific core. The second row instead shows the value of tile
frequency. Again the darker the rectangle shows higher frequency.

As we can see in Table 2.4, our power model is capable of estimating SCC core
power consumption with a very good accuracy. Even if the max error value in temper-
ature is 2 ◦C, the average difference between Hotspot estimation and measured values
by thermal sensors is less than 1 ◦C.

Figure 2.10 shows the SCC thermal map obtained from calibrated sensors along
with the hotspot simulation when half of the chip is idle and the other half is working
at full load. The surface is the output temperature of the thermal model and bars
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Table 2.4: Comparison of real measurements with model computed data for 10 diiffer-
ent tests. Ambient temperature Tamb = 40 ◦C.

Test No
Measured

Core P. (W)
Estimated

Core P. (W)
Temperature Mean
Square Error (◦C)

Temperature Max
Error (◦C)

1 41.23 40.91 0.59 2.22

2 41.79 41.57 0.31 1.10

3 40.68 40.38 0.46 1.84

4 41.73 41.41 0.53 1.49

5 40.05 39.70 0.55 1.88

6 40.57 40.28 0.61 2.03

7 40.71 40.38 0.55 1.74

8 42.06 41.76 0.47 1.79

9 42.12 41.85 0.44 1.69

10 40.89 40.78 0.60 1.73

represent the calibrated sensors outputs with a tolerance range (1.5 ◦C). As we can
see, our thermal model is capable of tracking real temperature values under a random
workload with good accuracy.

Figure 2.11 shows the statistical distribution of error between real results and
hotspot one. As can be seen, less than 10% of points have error values larger than
1 ◦C. A comparison between the temperature measured by the thermal sensor located
near the SCC chip on the main-board and the calibrated sensor readings of SCC for a
sample stress workload is shown in Figure 2.12. As we see, the temperature measured
by on-die thermal sensors is always higher than on-board sensor.
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2.5 Quantifying the impact of frequency scaling on en-
ergy efficiency of SCC

The goal of this Section is to analyze the impact of core frequency perturbations on
the performance of many-core systems with Message Passing Interface (MPI). We use
the Intel SCC as our test bed which incorporates features such as a network-on-chip
(NoC), DVFS capabilities, and support for MPI.

To analyze the impact of frequency changes on the performance for many-core
systems with MPI, we develop a benchmark suite for the SCC. The benchmarks in
the suite cover a wide range of workload scenarios such as applications with different
levels of communication distances and intensity or applications that stress different
levels of the memory hierarchy.

We conduct a large set of experiments using the monitoring infrastructure and the
benchmark suite to measure the impact of frequency changes on performance and
power.

2.5.1 Tailored Benchmarks

We utilize a set of benchmarks to assess the performance of the SCC under a variety of
operating conditions. In addition to expanding the benchmarks provided by Intel, we
design several micro-benchmarks to stress different parts of the system. We select the
following application and synthetic benchmarks as they provide a heterogeneous set of
performance data to use during analysis and creation of our model.
Intel benchmarks:

• Share: Tests the off-chip shared memory access.

• Shift: Passes messages around a logical ring of cores.

• Stencil: Solves a simple PDE with a basic stencil code.

• Pingpong: Bounces messages between a pair of cores.

• NPB: NAS Parallel Benchmarks, LU and BT.

Custom-designed micro-benchmarks:
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Table 2.5: Benchmark Categorization
Benchmark L1CM Time Msgs IPC

Share High High Low Low
Shift High Low High Medium

Stencil Low Low Low High
Pingpong High Medium Medium Low

• Bcast: Broadcasts messages from one core to all other cores.

• DRAM: Executes an ALU operation on a circular buffer in memory. At each
iteration a read-write is performed for one entry of the circular buffer. The di-
mension of circular buffer is 4MB.

• L1 and L2: Have the same principle as the DRAM benchmark. Circular buffer
size for L1 is 16KB and buffer size for L2 is 32KB.

Table 2.5 categorizes the Intel benchmarks based on IPC, L1 instruction misses
(L1CM), number of messages (Msgs), and execution time. All parameters are normal-
ized with respect to the number of instructions executed to enable a fair comparison.
Each benchmark in this categorization runs on two neighbor cores on the SCC (only
2 cores active). We observe that Share does not have messages and is an example of
a memory-bounded application. Shift represents a message intensive application and
Stencil represents a high-IPC application. Finally, Pingpong is a low-IPC application
with a large number of L1 cache misses. Note that Stencil, Shift, Share, and Pingpong
benchmarks all rely on the blocking send / receive calls from the RCCE API [134].

We designed the Broadcast (Bcast) benchmark based on Pingpong, which sends
messages among cores and test latencies. Instead of having a source and a single
destination as in Pingpong, Bcast sends messages from a single core to multiple cores.
DRAM, L1 and L2 benchmarks are custom-designed applications that do not use the
RCCE library. We use these memory benchmarks to compare the execution time of
memory-intensive (DRAM) or cache-intensive (L1 and L2) applications in our analysis
and to analyze the tradeoffs under frequency scaling. The benchmarks are run with the
following configurations to cover a wide range of workload scenarios.
Intel benchmarks: Stencil, Shift, Share, and Pingpong benchmarks run on pairs of
cores in the following configurations:
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• 0-hop: Cores on the same tile. (e.g., cores 0-1)

• 1-hop: Cores on neighboring tiles (e.g., cores 0-2)

• 2-hops: Cores on tiles that are 2-hops distance away (e.g., cores 0-4)

• 3-hops: Cores on tiles that are 3-hops distance away (e.g., cores 0-6)

• 8-hops: Cores on corners (e.g., cores 0-47)

We run either a single pair (2 cores active) or concurrently run 24 pairs for each bench-
mark (48 cores active) in the experiments with Intel benchmarks.
NPB Benchmark: The LU benchmark runs on 32 cores and the BT benchmarks runs
on 36 cores. These choices are due to restrictions with LU and BT software preventing
execution on all 48 cores.
Bcast Benchmark: The Bcast benchmark is run with 1 core sending messages to N
cores (1≤ N ≤ 47).
DRAM, L1, L2 Benchmarks: Our custom-designed memory benchmarks are single-
threaded benchmarks. We run 48 instances on 48 cores.

2.5.2 Experimental Evaluation

We carry out a test to highlight how different benchmarks behave under frequency per-
turbation. For this experiment, we execute each of the Intel benchmarks on two cores
of the SCC. One of the cores (coreA) is always Core0 (corner core) while the second
one (coreB) moves step by step towards the opposite corner from 1-hop distance to
8-hop distance in the SCC floorplan. Then for each of these configurations we perturb
frequency of the tiles of the running cores to generate the following frequency patterns:
{tileA, tileB}: { fmin, fmin}, { fmax, fmin},{ fmin, fmax},{ fmax, fmax}. In our experiments,
fmax is 533 MHz and fmin is 166 MHz. These choices for fmax and fmin were made
considering the stability of the SCC system.

During each run, we probe the (1) execution time overhead, (2) the full chip power
saving, (3) the energy saving, (4) instructions per second (IPS), (5) message den-
sity, and (6) memory access density. For the first three metrics, the baseline has the
{ fmax, fmax} setting and coreA is adjacent to coreB. The message density is computed
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as the number of messages sent and received by a given core divided by the total num-
ber of instructions, whereas the memory access density is computed as a ratio of the
non-cacheable memory read performance counter over the total number of instruc-
tions1.

In Figure 2.13 we show the results of the stress patterns for nearest and farthest
position of coreB (denoted with “near” and “far”). Bcast is an asymmetric benchmark,
meaning the communication direction is always from a source core to a destination,
and has a high message density. In contrast to the other benchmarks, the performance
loss when only one core has lower frequency while running Bcast is significantly lower
when coreB (the destination core) is slowed down. This is not the case for the other
benchmarks, as other benchmarks include bidirectional communication among cores.
In addition, Bcast strongly benefits from running both cores at the same frequency, as
the execution time overhead and the energy are lower compared to running cores at
different frequencies. Note that as we do not scale the voltage of the cores, we do not
observe energy savings when both the cores run at the minimum frequency.

Pingpong and Share show similar trends even though they are significantly differ-
ent applications. Their execution times have lower sensitivity to frequency changes
compared to other benchmarks. For Share, this effect can be explained looking at
IPS, which is lower compared to the other benchmarks. Also, the memory read access
statistics show that Share is memory-bound.

Shift has high message density and, similar to Bcast, its execution time strongly
depends on the core frequency. Stencil, on the other hand, has low memory access
density and high IPS. Stencil’s throughput decreases significantly as we scale down
the frequency of one core. In addition, similar to Share, Stencil’s execution time in-
creases when running on cores far from each other. This increase is mainly due to the
usage of the shared memory buffers allocated off-chip (for Share) or in the MPB (for
Stencil). For Stencil, increasing the distance reduces the throughput (IPS) consider-
ably. The slow-down saturates when just one core runs at low frequency. In this case,
scaling down the other core does not affect the execution time as Stencil uses barrier
synchronization.

1Note that SCC does not include a performance counter to track the L2 miss rate. We tested the
memory read performance counter with micro-benchmarks and verified that there is a strong correlation
with off-chip memory access.
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We observe that all the benchmarks benefit from having the core frequencies equal-
ized. In fact, for most of the benchmarks we see significant energy savings when mov-
ing from only one core operating at low frequency to both cores operating at lower
frequency. An unbalanced frequency configuration can lead up to 2x energy efficiency
loss.

This analysis highlights the importance of predicting the impact of a generic fre-
quency perturbation on the execution time of a parallel benchmark. In addition, it sug-
gests that message density, IPS, and frequency can be utilized to estimate the changes
in execution time.
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Chapter 3

Temperature Variation Aware Delay,
Power and Thermal Analysis

In this Chapter, we introduce MiMAPT (Micrel Multi-scale Analyzer for Power and
Temperature) [5, 7], a completely stand-alone and fully functional software. It is ca-
pable of performing temperature variation aware delay/power and thermal analysis at
RT and gate level with multiple scales of resolution and speed.

We first describe research works related to studying the effect of temperature varia-
tion on the design of ICs. Then we focus on the architecture and operation of MiMAPT.

3.1 The Importance of Temperature Variation Aware
Analysis

The following research papers show the importance of accounting for temperature non-
uniformities for accurate evaluation of digital designs.

Mcallister et. al. [138] consider the effect of non-uniform temperature distribution
on the IR drop in 3D chips. It also accounts for the self-heating effect of power delivery
network.

Li et. al. [88] study the effect of temperature variation on IR-drop and propose a
solution for sophisticated creation of power-grid networks avoiding thermal-induced
IR-drop hazards.

Haghdad et. al. [57] study the effect of temperature and supply voltage variations
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on the estimated power yield. They show a significant yield loss can happen, if the
statistical measures of temperature and IR-drop are ignored.

Chakraborty et. al. [27] considers the effect of on-die temperature non-uniformities
on the delay and skew of clock tree. It shows that clock trees designed using stan-
dard methodology with assumption of an uniform on-die temperature, may suffer from
significant skew violations. To counteract this effect, it proposes new algorithms to
optimize the clock tree accounting for temperature variations.

Wu et. al. [137] proposes a bus-driven floorplaning method for multi-core SoC
designs considering thermal distribution of the chip.

Timar et. al. [131] introduced Logi-Therm. The tool performs concurrent electrical
and thermal simulation of standard cell ASIC circuits. It takes standard cells of the
digital design as basic building blocks and based on cell’s power characteristics and
switching activity calculates a power/thermal distribution map of the chip. Analysis
done by Logi-Therm however are based on a fixed resolution.

Moreover, in [130] they consider the effect of temperature variation while doing
timing analysis on a given design. The represented method to apply non-uniform tem-
perature map to the design however, can not scale well with the size of the design.
In fact, the proposed method updates the output of timing/power analysis tool based
on a given temperature map, so that by re-analyzing the output one can have updated
delay values. As a result,while the method by [130] can be used for small designs such
as ring-oscillators, it will face difficulties handling large designs of several thousand
cells.

In contrast, MiMAPT arms the timing/power analysis tool (e.g. PrimeTime [124])
to consider non-uniform temperature map of the die from the beginning of its analysis
procedure. Thus the tool has already considered non-uniformities in the temperature
when it generates the output reports. This is a significant advantage of MiMAPT over
similar research works. Indeed, MiMAPT does not introduce any timing estimation
system from its own, instead it is designed so that it integrates into standard chip de-
sign flow and enables the industry trusted timing analysis tool to produce more accu-
rate timing estimates which also consider on-die temperature non-uniformities. As we
show in Section 3.5, MiMAPT can be effectively applied to designs containing several
IP blocks and millions of standard cells.

Yuan et. al. [54] propose a method of leakage reduction using high voltage thresh-
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old (HVT) and low voltage threshold (LVT) standard cells. They consider non-uniform
temperature map of different die areas to estimate leakage and to determine if regular
cells should be replaced with HVT cells to reduce leakage or with LVT cells to im-
prove path delays. They create a simplified chip/package thermal model to estimate
steady-state temperature map of the die, based on which decisions are made.

Meterelliyoz et. al. [100] study the key characteristics of cache memories under
existence of hotspots. Toward this task, the paper focuses on basic building cells of the
memory components, and represents their behavior with temperature. The paper uses
available delay/power models of these cells to extract results. This work is only limited
to cache memories however, MiMAPT temperature variation aware analysis can be
used for any kind of integrated digital circuit. Moreover, MiMAPT utilizes standard
cell libraries provided by silicon foundry and the standard Back-end flow power/timing
analysis tools to study the effect of temperature variation on design characteristics.

Calimera et. al. [25] use inverse temperature dependence (ITD) effect of low
power cells to perform dual threshold voltage synthesis of the circuits. Since HVT
and LVT cell delays show contradictory trends with temperature for a specific range
of supply voltages, sophisticated use of them during synthesis can result in circuits
which have very low level of sensitivity to temperature changes. This work however,
assumes a uniform temperature across entire die. By using MiMAPT, this work can be
extended to also consider non-uniform temperature maps at the time of dual VTH cell
assignment.

Considering commercial software packages, Gradient Design Automation is known
to be able to perform concurrent power/thermal analysis with multiple scales of tempo-
ral and spatial resolution in transient and steady state [28, 29]. Compared to Gradient’s
solution, MiMAPT provides wider range of analysis speed and accuracy, since it ba-
sically performs thermal analysis at RT level, which is very fast, and switches to gate
level only when higher levels of resolution are demanded. Moreover, in contrast to
commercial solutions, MiMAPT is a free and open source tool. As we will show, it
provides a research vehicle for accurate evaluation of temperature variation impact on
deep sub-micron digital designs.

In fact, MiMAPT is an academic package which meets all of the following require-
ments together:

1. Power and temperature estimation at RT and gate level with different scales of
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spatial resolution.

2. Seamless integration into major design tool flows and compatibility with widely
used library standards.

3. Accounting for non-uniform on-die temperature distribution while estimating
critical timing path delays, consumed design power and temperature map.

4. Compatibility and open interfaces with commercial and academic thermal anal-
ysis tools (such as Hotspot[61], 3D-ICE[120] and FloTHERM[98]).

5. Early multi-scale power and thermal analysis of a design while the building IP
blocks are available as separate entities but the final chip is not implemented yet.

3.2 MiMAPT Architecture

MiMAPT mainly consists of two engines:

1. Temperature variation aware delay/power analyzer.

2. Multi-scale thermal simulator at RT and gate level.

In practice, these two engines operate jointly together to gain highest level of accu-
racy in results. We first describe how a given temperature map is applied to a de-
sign and how the effect of temperature variation is taken into account while doing de-
lay/power estimations (Section 3.2.1). Then, we focus on algorithms related to multi-
scale thermal simulation at RT and gate level and the joint operation of two engines
(Section 3.2.2). Finally, we illustrate the capability of MiMAPT in merging several
different IP blocks into a single virtual chip to perform analysis (Section 3.2.3).

3.2.1 Temperature Variation Aware Delay and Power Estimation

The algorithm described in this section is executed at gate level. It mainly provides the
delay/power analysis tool with two sets of data for each of the standard cell instances
in the design: 1) Operating temperature. 2) Temperature dependent delay/power cell
parameters. The first item is obtained from the on-die temperature map. The second
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Algorithm 1 Apply temperature map to design for power/timing analysis
Require: F = Thermal floorplan of the design
Require: T = Temperature map of the design
Require: C = Cell info (instance, location)

for all blocks b ∈ F do
< x1,y1,x2,y2 >← boundary o f b
Tb← Temperature o f b
A = /0
for all cellsc ∈C do

< lx, ly >← location o f c
if (lx ≥ x1),(lx < x2),(ly ≥ y1),(ly < y2) then

c ∈ A
end if

end for
cmd← (A,Tb)
U pdate cells operating condition (cmd)

end for

item is in fact the data provided by the standard cell libraries. The key point here
is the correct selection of libraries which can provide sufficient data for an accurate
delay/power estimation by the tool.

Algorithm 1 introduces non-uniform on-die temperature map to the delay/power
analysis tool for a design. It receives a previously generated temperature map, and cre-
ates a set of required commands which will be processed by the timing/power analysis
tool. These commands modify the operating condition of each cell based on the given
temperature map. The inputs to the algorithm are: the temperature map and the created
database which contains a list of design cell instance names, plus their physical on-die
coordinates.

Our approach targets the effect of temperature variation only on standard cells of
the design. For wires, as of our practical experiments, the effect of variation in tem-
perature is small in comparison with standard cells. As a result, for routing resources
we always use the typical operating corner. The modular architecture of MiMAPT
however, considers the possibility of adding required extensions to take the effect of
temperature variation on wire delays into account when they become strongly temper-
ature sensitive.

Standard Cell Libraries: Algorithm 1 is assuming that the delay/power analysis
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software (e.g. Synopsys PrimeTime [124] or Cadence SoC Encounter [24]) is capable
of considering non-equal temperature values for design cells.

In contrast to traditional design flows which are based on Non-linear Delay Model
(NLDM) cell libraries, MiMAPT requires the provided cell models to account for
wide-ranging voltage and temperature variations. Examples include the gate model
proposed in [63], Composite Current Source (CCS) [95] and Effective Current Source
Models (ECSM) [52, 55, 105] This is due to the fact that, characterized libraries pro-
vided by silicon foundries usually describe the behavior of standard cells for lim-
ited number of operating corners. However, for temperature variation aware analysis,
knowledge of cell behavior is required across a continuous range of temperature and
voltages values. As a result, library characterization should be done for all of the pos-
sible temperature and supply voltage combinations (which is impossible) or, the data
provided by characterized libraries at key corner cases should enable the tool to per-
form accurate enough corner case interpolation. This is what CCS and ECSM models
provide.

3.2.2 Multi-scale Thermal Simulation at RT and Gate Level

We first describe the procedure for estimation of temperature at RT level and the adap-
tive method used for detection of thermal hazards at RTL. Then we focus on gate level
thermal simulation where we represent the details on thermal simulation with multiple
levels of spatial granularity.

Our approach leverages power analysis features provided by state-of-the-art com-
mercial tools. Recent versions of logic synthesis tools (e.g. Cadence RC R© and Synop-
sys DC R©) are capable of estimating power at RTL based on switching activity obtained
from functional logic simulation. As a result, power estimation at RTL can be done
very fast, but it is not guaranteed to be fully accurate [23, 125]. On the other hand, very
accurate power estimate at gate level can be obtained after (or during) back-end flow.
The power analysis tool should be provided with the finished (placed, routed, clock
tree synthesized) design and also switching activity statistics obtained from logic sim-
ulation of the finished gate level netlist with timing delays annotated through an SDF
file.

In classical thermal simulation flow the power estimation at gate level is used to ob-
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Figure 3.1: MiMAPT Block Diagram

tain per-cell power values. This fine-grain power map is then used as input to fine-grain
thermal simulation [58, 61]. MiMAPT instead performs power/thermal simulation at
RT level with the goal of avoiding time consuming gate level simulation when hotspots
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do not exist.
A die area is defined as hotspot when its temperature (T ) is higher than a specified

threshold (T H). Figure 3.1 shows the basic building elements of MiMAPT multi-scale
engine which are divided into two major parts: RTL and gate level.

The simulation input sequence contains a set of subsequences called Test Frames.
Basically, each Test Frame (TF) represents a different use case (stress workload) of
the design and corresponds to a switching activity statistics for the circuit. For each
TF thermal simulation will be executed at RTL (as described in Section 3.2.2.1). Ex-
amining the obtained temperature map, we dynamically switch to gate level if needed
(Section 3.2.2.2).

3.2.2.1 RT Level Hotspot Detection

We perform logic simulation for each of the TFs at RTL to obtain switching activity
(SA(t)). This information are then fed to the synthesis tool to obtain power estimation
for each of the design sub-modules.

We define a new thermal floorplan for the design which divides chip area into
equally sized rectangular blocks. For each floorplan block (FB), we calculate what
percentage of each sub-module is located inside this block. Based on the percentage
we add a fraction of sub-module’s power to the total power of the block. Psudocode 2
shows this in more detail.

Figure 3.2 shows this procedure in more detail for a sample design. In this Figure,
(a) shows the defined floorplan for the chip in the layout tool. (b) shows the traditional
method of creating thermal floorplan in which we use the dimensions defined by the
default chip floorplan directly. (c) shows the chip after placement, as we see the real
placement of sub-modules is different than the default floorplan thus an accurate ther-
mal simulation is not possible using traditional methods. In (d) we show our method
of defining a new thermal floorplan. Each floorplan block contains one or more design
sub-modules. The synthesis tool provides us with the power consumption of each sub-
module. Using chip placement information that we have, we obtain the percentage of
each sub-module inside each floorplan block by counting the number of cells owned by
this sub-module inside the floorplan block. We suppose that the sub-module’s power
is uniformly divided between its cells thus, we use the obtained percentage to add the
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Algorithm 2 Generation of power map for thermal simulation at RTL
Require: C = Cell placement info
Require: N = total number of floorplan blocks
Require: K = total number of sub-modules in design
Require: P = computed per sub-module power values

for each block in floorplan do
blockPower← 0
A =(physical location of block ¡x1,y1,x2,y2¿)
for subModuleNo = 1→ K do

t =(total number of sub-module leaf-cells)
c =(number of sub-module leaf-cells in A)
tc = t/c
moduleBlockPower = P[subModuleNo]∗ tc
blockPower← blockPower+moduleBlockPower

end for
end for

fraction of sub-module’s power to the total power of the floorplan block.
Final obtained power map is then used by the thermal simulator [61] to estimate

per-block temperature map. Thermal simulation is done in transient mode and its dura-
tion is equal to the duration of the TF. The output of each transient thermal simulation
for each TF will be used as the initial temperature values for the thermal simulation
of the next TF. Obtained thermal map for each TF is compared with a set of adaptive
thresholds to identify if the TF contains critical areas. If this situation is detected we
trigger the gate level hotspot detection for the same TF. As shown in experimental re-
sults, RTL hotspot detection executes significantly faster than the gate level simulation.

Estimated power at RT level is usually not equal to gate level power since the de-
sign is not fully synthesized yet. Consequently, using a unique temperature threshold
value to identify hotspot blocks at RT and gate level may not lead to accurate detec-
tion of hotspots at RTL. Thus we use an adaptive method to detect hotspots at RTL.
Psudocode 3 describes this in detail.

We first select the TF in which every design sub-module has highest level of activity
and thus power, as reference. We perform thermal simulation for this TF at RTL and
gate level and we mark critical floorplan blocks (FB) by comparing their temperature
values at gate level (CMapGate) to a threshold (T High) which contains a safe margin
with respect to T H and is slightly lower (e.g. 1◦C) than it. We use the computed critical
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Figure 3.2: Generation of power map for thermal simulation at RTL

blocks map (CritMatrix) for identifying hotspots at RT level for the rest of TFs.
For each TF we perform thermal simulation at RTL and we compare each block

temperature value with an adaptive threshold. If the block is marked as critical, we act
more carefully, thus we create a reduced threshold value by multiplying a coefficient
A < 1.0 to the reference block temperature (CMapRT L). If the block is not critical we
use an increased threshold value by multiplying a coefficient B > 1.0 to the reference
block temperature to avoid unnecessary hotspot detection. The smaller values for A

make detection of hotspots at RT level safer however, they decrease overall operation
speed.

3.2.2.2 Gate Level Hotspot Detection

If T F( j) is detected as critical in RTL hotspot detector, it will be processed with high
accuracy at gate level to correctly estimate the hotspot position and temperature. This
is done by first performing logic simulation at gate level to obtain circuit switching
activity (SAGate( j)) used for power estimation. The power map (PGate(i, j)) is then
converted to temperature (T Gate(i, j)) using an iterative multi-granularity meshing
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Algorithm 3 Adaptive Hotspot Detection
Require: CMapRTL, CMapGate= Highest-workload frame, temperature map at RTL

and gate-level
Require: TMapRTL= current frame temperature map
Require: THigh= threshold value for critical block
Require: A, B: Coefficients (A < 1.0) and (B > 1.0)
Require: N= Total number of thermal floorplan blocks

for i = 1→ N do
t =CMAPGate(i)
if t > (T High) then

CritMatrix(i) = 1
else

CritMatrix(i) = 0
end if

end for
for i = 1→ N do

t = T MapRT L(i)
if CritMatrix(i) == 1 then

if t > A×CMapRT L(i) then
This Block is hotspot!

end if
else

if t > B×CMapRT L(i) then
This Block is hotspot!
CritMatrix(i) = 1

end if
end if

end for

scheme. Starting from an initial mesh granularity (initL) in each iteration (i) we in-
crease spatial resolution for on-die areas which are suspected to contain hotspots. In-
deed, in each iteration, we examine the temperature map for the current thermal floor-
plan. For every floorplan block with a temperature value higher than T H we break that
block and all of its adjacent blocks into M×M equal sized smaller blocks. The process
will continue until the finest spatial granularity ( f inL) is reached. initL, M and f inL are
constants mainly defined by the user. They should be selected according to the chip
die area and the desired spatial resolution and the accuracy with which detection of
hotspots should be done. Figure 3.3 shows an example output of our multi-granularity
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Figure 3.3: Increasing spatial resolution of thermal floorplan for the area of interest.
Example, one FFT unit implemented in 40nmLVT running at 800MHz.

thermal simulation for three continuous iterations. Psudocode 4 shows the algorithm
in more detail.

MiMAPT has the capability of updating delay and power estimates (PGate(i, j))
of the circuit according to obtained non-uniform temperature map (T Gate(i, j)) during
each iteration of simulation. At the first iteration, when gate level analysis is triggered,
the temperature map obtained at RTL (T RT L( j)) will be used to update the power map
of the chip. The updated power map is used for gate level thermal estimation. By the
increase in spatial resolution of thermal simulation the accuracy of estimated power at
each iteration will increase as well. This feature, also allows MiMAPT to account for

Algorithm 4 Multi-granularity Thermal Simulation
Require: initL: initial size of floorplan blocks
Require: finL: highest desirable spatial resolution
Require: TH: threshold value for hotspot temperature

minSize← initL
while minSize > f inL do

(Calculate gate-level power)
(Do gate-level thermal simulation)
for each block in floorplan do

if T > T H then
(Divide block & adjacents into smaller blocks)
(Update floorplan)

end if
end for
minSize←(Minimum block size in floorplan)

end while
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the self-heating effect of the chip during its analysis.

3.2.3 Merged Virtual Chip Analysis

MiMAPT allows designers to perform early evaluation when the design is available as
set of stand-alone IP blocks but not as the final implemented chip. Figure 3.4 shows
how MiMAPT performs early analysis of designs containing several IP blocks. Each
IP unit is available as a separate entity, containing its design data, stress patterns, sam-
ple synthesized and place&routed chip. Some IP blocks may be available as gate level
designs only. Some other IPs may not be available yet, but the designer has an approx-
imate idea regarding the power consumption of the IP block under typical workloads
as well as its dimensions. MiMAPT is able to create a virtual chip containing all of the
units and run the complete analysis flow on it.

MiMAPT receives a floorplan containing the coordinates for origin of each IP block
in the final chip. It then performs all of the required translations in the RTL power
reports, cell placement information and gate level power reports to create a unique
database containing the required entries for all of the blocks on the virtual chip. The
database will be used by the multi-scale RT and gate level thermal analysis engine
(described in Section 3.2.2) to obtain temperature estimates on the design.

The obtained temperature map at each iteration will be passed to temperature vari-
ation aware power estimation engine in which the power consumption data for each
IP unit will be updated according to its estimated temperature. This operation is done
with the aid of the translation unit. For the IP blocks which are available only as gate
level design, MiMAPT utilizes the cell level power estimates of the block in conjunc-
tion with RT level power estimates of other units to create the power trace required by
the thermal floorplan. For the black-box IP units which are available only as averaged
power density, this value will be used for power calculation during the entire flow.

3.3 Thermal Impact Exploration

In this section we present the effect of temperature variation on key design metrics.
We evaluate the effect of on-die temperature variation on the following key design
parameters:
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Figure 3.4: The operation of MiMAPT during merged virtual chip analysis flow.

• Critical timing paths delay and their physical location.

• Dynamic and static power consumption.

The target design that we use to represent the results needs to meet the following
constraints:

• Being representative of a general logic design and being widely used by design-
ers in various hardware platforms.

• Consuming reasonable amount of silicon area and containing an almost balanced
number of combinational and sequential elements.

• Being publicly and freely available as source RTL code.

Considering all of the available benchmarks such as [16] and [9], we select Spiral FFT
IP block [133] based on the above requirements.

We use two different real-life low-power technology nodes from TSMC R© for our
tests. Table 3.1 shows key characteristics of these standard-cell libraries. The standard
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Table 3.1: TSMC 40nmLP and 65nmLP technology nodes

Std-cell
Library

VDD
Range (V)

Temp.
Range (C)

Cell/Wire
Model

TSMC
40nmLP [0.81, 1.21]
TSMC

65nmLP [0.90, 1.32]
[-40, 125]

CCS/
TLUPLUS

temperature range is similar for both technology nodes however, considering supply
voltage, 40nm has 8% decrease compared to 65nm. For both of the technology nodes
9 layers of metals is used for power-grid synthesis and design routing.

As described in Section 3.2.1, we use CCS models for leaf-cells delay/power esti-
mations. TLUPLUS [123] models are used to calculate routing delays. Since we use
dense power-grids for all sample designs, the amount of IR-drop is negligible. As a
result, an equal supply voltage is considered for all design cells during timing/power
analysis.

For each technology node, we implement separate chips for each of Low Voltage
Threshold (LVT) and High Voltage Threshold (HVT) cells. We compare the behavior
of all of the created four chips when imposed to various temperature patterns and under
different supply voltage values. Each sample design is passed through the following
steps:

1. Multi-Corner Multi-Mode (MCMM) physical synthesis and optimization.

2. Design planning and Power Network Synthesis (PNS).

3. Clock Tree Synthesis (CTS).

4. Placement and Routing (PAR).

We use the latest Synopsys R© tools for the current flow.
MCMM physical synthesis is done using four characterized corners. A separate

scenario is created for each corner in which timing constraints are defined. Since one
of the main goals of our work is to investigate the effect of temperature variation over
design speed, we make sure that each design is as optimized as possible in terms of
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Table 3.2: Area, sequential to combinational cells ratio and number of clock buffers,
for each of 4 implemented chips. (Area: mm2)

Node VTH cells area Die area seq/comb % Clk Buf
40nm LVT 0.4531 1.021 66 734

HVT 0.4857 1.036 57 11965
65nm LVT 0.9327 1.985 42 321

HVT 0.9524 1.969 43 8302

clock speed. Figure 3.5 shows the corner cases which we have available as character-
ized libraries. LT, ML, WC and WCL corners which cover the full temperature and voltage
range are used during MCMM flow. We then use the same corners to perform library
interpolation, and to obtain design behavior in various operating conditions.

Table 3.2 shows key characteristics of synthesized chips. The averaged leaf-cells
area for 40nm chips is approximately 0.46mm2 and for 65nm chips around 0.93mm2

which is 2X larger. Area utilization factor for both of the nodes is approximately 46%.
A balanced number (between 40% to 60%) of sequential and combination cells for
both of the technology nodes can be seen. As we move from faster LVT to slower
HVT cells, number of clock buffers grow to meet timing constraints.

Figure 3.6 shows maximum running clock frequencies of final designs as well as
consumed dynamic and static power for the main 4 corners. All values are shown in
relative to 65nm HVT chip. To perform timing/power analysis at each corner we use
characterized cell library and extracted wire parasitics specific for that corner. For each
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Figure 3.6: Dynamic and static power density values and delay of 4 implemented
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dynamic power density 2.79×10−3 W/cm2/MHz and maximum clock frequency 61
MHz.

design we perform gate level simulation and we apply a unique work-load to the design
to obtain switching activities which will be used for power estimation.

As we see in Figure 3.6, the fastest running frequency of the design happens at
LT corner which has the lowest temperature and highest supply voltage. At WCL, we
see slowest clock for HVT designs. Highest leakage power densities can be seen at
ML corner. The fact that for LVT chips the leakage current at ML and LT is slightly
higher for 65nm compared to 40nm can be explained by the higher supply voltage of
65nm design. For the rest of the cases, the leakage power density at 40nm is always
approximately 2X bigger than 65nm. Considering dynamic power density, for 40nm
designs it is always larger than the corresponding 65nm design.

We quantify the sensitivity of each design to changes in temperature. Table 3.3
shows the relative sensitivity of estimated power/delay values to changes in temperate.
Here for each of the static/dynamic power density values and the clock period, we keep
the supply voltage fixed, and we calculate the rate of change in the parameter by the
increase in temperature (from -40 ◦C to 125 ◦C). In this table, the values are shown
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as percentages relative to each parameter’s final value at 125 ◦C. For static power we
show the absolute values.

Looking at clock period sensitivity, we see negative values for low supply voltage
and positive ones for high supply voltage. Indeed due to temperature inversion effect,
clock period decreases by the increase in temperature for lower supply voltages thus
the design gets faster.

Furthermore, in low supply voltages, the sensitivity of clock period to temperature
is orders of magnitude higher than high supply voltage values. Among these, the HVT
designs are always the most sensitive to temperature. 40nm designs are always more
sensitive than 65nm at low supply voltages. At high supply voltages however, 65nm
designs are more sensitive and LVT designs have the highest sensitivity to temperature.
Considering static power, we clearly note that HVT designs have always the least sen-
sitivity to changes in temperature. Looking at dynamic power, the relative sensitivity
to temperature is always very small and below 0.09%.

Based on represented results, we conclude that the behavior of delay/power in dif-
ferent circuits is heavily dependent on temperature and supply voltage concurrently
and it does not necessarily change in a monotonic way. As a result, accurate estima-
tions of delay/power values should be done considering temperature and supply voltage
simultaneously.

Table 3.3: Sensitivity of static/dynamic power and delay to changes in temperature for
fixed supply voltage. (Change over 1 ◦C, relative to final value at 125 ◦C in percents.
Static power absolute change value is in (W/Cm2)/C)

Node VDD VTH Sensitivity to Temperature
Static (Absolute) Dyn. % Period %

40nm 0.81 LVT 9.10E-04 0.00 -0.28
HVT 4.17E-05 0.05 -1.30

65nm 0.9 LVT 5.35E-04 0.02 -0.04
HVT 2.20E-05 0.04 -0.48

40nm 1.21 LVT 1.39E-01 0.07 0.09
HVT 2.05E-03 0.01 0.03

65nm 1.32 LVT 1.55E-01 0.09 0.11
HVT 8.44E-04 0.01 0.06
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Table 3.4: Estimated delay/power values for BC corner when using characterized li-
brary compared to library interpolation

Tech. VTH Characterized Interpolated Error %

Delay Power Delay Power Delay Power
40nm LVT 0.838 0.0221 0.832 0.0209 0.70 5.43

HVT 1.951 0.0221 1.932 0.0216 1.01 2.26
65nm LVT 0.844 0.0445 0.839 0.0441 0.62 0.90

HVT 1.987 0.042 1.973 0.0422 0.74 0.48

We quantify the effect of temperature variation on power and speed of the target
chips by creating the following two different test scenarios:

1. Temperature is uniform across entire die and sweeps from 0 to 100 ◦C. Here we
recognize how the design behaves across different temperature values.

2. Non-uniform on-die temperature distribution is a specific user-defined pattern.
Here we quantify the error caused by not considering on-die temperature varia-
tion on estimated delay/power values.

To accomplish the above objectives, we need first to measure the following items:

1. Accuracy of operating corner interpolation done using CCS models for standard
cells.

2. The effect of temperature on the delay of wires.

To quantify the accuracy of operating corner interpolation for standard cells, we
use four characterized boundary corners (as shown on Figure 3.5, ML, LT, WC and WCL)
to perform delay/power estimation for sample chips at Best Case (BC) corner point.
Next, since we have a separate characterized library at BC point itself, we use only this
library to estimate delay/power again. During both of the tests, routing delays are kept
the same (typical corner).

Table 3.4 shows the results. As we can see in table 3.4 the amount of difference in
estimated delay values is always below 2% and for power values lower than 6%.
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The distributed nature of routing resources inside the chip, makes temperature vari-
ation aware delay analysis for wires difficult. As a result, we use extracted parasitics at
typical corner point during the entire wire delay calculations. Thus we need to quantify
the effect of this assumption on the accuracy of obtained results.

We extract RC parasitics of the final routed design for all of the available corners.
For each corner we then perform delay/power estimation using the characterized stan-
dard cell library and extracted parasitics for that specific corner. We then perform
delay/power estimation again using characterized standard cell library for that corner,
but with extracted parasitics from typical corner and measure the difference in esti-
mated delay and power values. For power, the difference is always negligible. For
delay, the difference between estimated clock periods is always below 3%.

We evaluate the behavior of each chip with the sweep in uniform on-die temper-
ature from 0 ◦C and 100 ◦C. Table 3.5 shows the results. Dynamic power, changes
approximately linearly with temperature. Changes of static power density is exponen-
tial thus, we represent its absolute value.

For each (T,V DD) test point, we obtain the physical on-die location of first 10
timing critical paths. In table 3.5, we represent the amount of displacement for the first
timing critical path by the change in temperature. For 40nmLVT (V DD = 1.21) design
we have significant movement of timing critical path.

These changes emphasize the fact that the delay of leaf-cells used in the design do
not show similar behavior to changes in temperature. Figure 3.7 shows how the phys-
ical locations of first 10 timing critical paths change by temperature. For 40nmLVT
a significant jump happens between 75 ◦C and 100 ◦C. For 65nmLVT the location of
critical paths is different in 75 ◦C compared to rest of the cases.
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Figure 3.7: Physical location of first 10 timing critical paths of the design for different
uniform temperature values. First path is shown in black.

We apply a collection of non-uniform temperature maps to our chips. The follow-
ing temperature patterns are utilized:

1. Chess-board : we divide die area into equally sized rectangles. Two temperature
values are selected and applied to them. This case is representative of many-core
platforms like Intel SCC [60] in which a large number of CPU cores reside one
chip.

2. Gradient : we create horizontal gradients of chip temperature across the die.
This case is representative of many real-world situations such as PCBs in which
components with high power densities (such as DRAM modules) are located just
at one side of the CPU or cooling units are placed asymmetrically.

For each of the mentioned patterns we represent the results for two test cases: G1
and G2.

1. Chess-board: G1 pattern uses 40 ◦C and 60 ◦C for adjacent blocks. G2 uses 20
◦C and 80 ◦C. G1′ and G2′ patterns use the same temperature values as G1 and
G2 but the location of blocks is reversed.

2. Gradient: G1 is a horizontal gradient from 35 ◦C to 65 ◦C and G2 is from 20 ◦C
to 80 ◦C. For G1′ and G2′ the direction is reversed.
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For all of the produced temperature maps, the average on-die temperature is always 50
◦C. G2 and G2′ patterns are used as extreme cases of non-uniform on-die temperature
distribution.

Table 3.6 shows the results of this experiment. In this table we quantify the amount
of error caused by assuming a uniform averaged temperature for entire die and not
considering the effect of temperature variation on key design parameters. We calculate
the difference (relative error) between each estimated design parameter (considering
temperature non-uniformity) and the same parameter with the assumption of uniform
temperature of 50 ◦C. For dynamic power densities, since it changes linearly with
temperature the error values are very small (highest error: 0.7%). For static power,
significant error values (> 20%) can be seen for G2 and G2′. This is due to exponential
relationship of leakage and temperature.

The average relative error value of G2 pattern for all 40nm designs is 15.89% and
for 65nm is 13.03%. The higher error value for 40nm design emphasizes the fact
that by going into smaller scales of fabrication, the impact of temperature variation on
design parameters gets more severe.

Considering clock period, error values of up to 16% can be seen for HVT designs
at low supply voltages. For high supply voltage values however, LVT chips show
higher percentage of error than the rest. This is inline with our previous observations
(Table 3.3). As an example, for 40nmHVT chip at V DD = 0.81 V maximum clock
frequency of 54.8 MHz is estimated when entire die has a uniform temperature of
50 ◦C. However considering G2′ pattern, the real maximum clock frequency is just
45.7 MHz.

Considering the displacement of first timing critical path, it happens always for
40nm design at low supply voltage. For high supply voltage however, it happens
mostly for LVT designs.

Figure 3.8 shows how the on-die physical location of timing critical path changes
due to different temperature patterns and different supply voltages. The figure is show-
ing two designs: 40nmLVT and 65nmLVT. As we see, for low supply voltage, the
critical path usually happens in colder areas of the chip however, with the same tem-
perature pattern, at high supply voltage, it happens in hotter areas.
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Chess:G2 Chess:G2' Gradient:G2

40nmLVT - VDD=0.81

40nmLVT - VDD=1.21

65nmLVT - VDD=0.90

65nmLVT - VDD=1.32

Gradient:G2'

Figure 3.8: Location of first 10 timing critical paths for different temperature maps and
supply voltages. First critical path is in black.

3.4 Adaptive Hotspot Detection at RTL

In this section, we evaluate our adaptive hotspot detection algorithm at RTL. Based on
real power values, we create an ensemble of virtual gate level and RTL power maps by
adding Gaussian random variables to per-floorplan block power values at gate level.
We change random variable’s characteristics to simulate different situations of RTL
power estimation.

For each power map at gate level we create 10 different power maps at RTL by
changing the mean of the Gaussian random variable (µ = {−0.2,−0.1,0.0,0.1,0.2}).
We compare the output of thermal simulation for all of the gate level and RTL power
pairs. For each pair we obtain the number of hotspots and their locations at gate level
and we compare them with the output of hotspot detection methods at RTL.

Figure 3.9 shows the performance of our adaptive method (A-Temp) compared to
using a unique user defined threshold value (TH Only). In this figure, (a) shows the
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Figure 3.9: hotspot detection methods comparison (Adaptive vs. TH only)

percentage of situations that hotspots exist in the chip and gate level simulation should
be triggered, compared to percentage of situations that each of A-Temp and TH Only

trigger gate level simulation. (b) shows percentage of cases in which the estimated spa-
tial location of hotspot by each of A-Temp and TH Only is different than its estimated
location at gate level. As we can see, A-Temp estimates the spatial location of hotspots
correctly in all of the situations. Finally, (c) shows the percentage of detected false
positives and false negatives for each of A-Temp and TH Only methods considering all
of the 180 test cases. Different than TH Only, false-negative for our method is equal to
zero which means it captures all of the hotspots completely.

3.5 Example MiMAPT Operation

To evaluate MiMAPT in a real test case, we use the merged virtual chip creation capa-
bility of MiMAPT, and build a chip containing a grid of 16 FFT 40nmLVT units. Total
chip area is 4× 4 mm2. This approach (inspired by [113]), allows us to have various
power distribution patterns as well as significant on-die temperature variations during
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Figure 3.10: Total estimated power for each of the TFs at RT and Gate level. The chip
contains 16 instances of FFT unit. Red circles show TFs for which a suspicious block
is detected.

our tests.
We then create 150 different test frames (TFs) which impose different stress work-

loads and running clock frequencies (400 to 625 MHz) on units of the chip.
Duration of each TF is 0.2 seconds. Figure 3.10 shows the estimated total power

for each of the TFs at RT and gate level. Typical operating condition is used for power
estimation. The total power varies between 3.5 W to 6 W among different TFs. As we
see, the estimated power at RTL tracks the gate level power with a very good accuracy.
The maximum difference between gate level and RTL power is 2.2%.

We execute MiMAPT for all TFs and store spatial and temporal information re-
lated to detected hotspots. Then, we perform power and temperature estimation of the
design without MiMAPT for the same set of TFs at gate level and at the finest level of
granularity. We perform comparison between MiMAPT and fine-grain analysis results
for a threshold value of T H = 90.0 ◦C. During this experiment, the target is to study
the speedup of MiMAPT over fine-grain method thus the temperature variation aware
(TVA) power/delay re-calculation feature of MiMAPT is off. RTL floorplan and the
initial floorplan at gate level are 12× 12 blocks (initL). A and B coefficients in RTL
hotspot detection are 0.99 and 1.3 respectively. For increasing spatial resolution of the
thermal floorplan at gate level, we divide each hotspot block into 2× 2 equal sized
smaller blocks (M = 2).

60



0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0.
00
05

0.
00
1

0
.0
0
15

0.
0
0
2

0
.0
0
2
5

0
.0
03

0.
0
03
5

m
ax

: 8
8.

34

72

0

0
.0
0
0
5

0
.0
0
1

0
.0
0
1
5

0
.0
0
2

0
.0
0
2
5

0
.0
0
3

0
.0
0
3
5

0
0
.0
0
0
5

0
.0
0
1

0
.0
01
5

0
.0
0
2

0.
00
25

0.
00
3

0.
0
03
5

73

m
ax

: 9
0.

91

0

0.
00

05

0.
00

1

0.
00

15

0.
00

2

0.
00

25

0.
00

3

0.
00

35

0
0.
00

05
0.
00

1
0.
0
01

5
0.
00
2

0.
00

25
0.
0
03

0.
00

35

0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0
.0
00
5

0.
00
1

0
.0
01
5

0.
0
02

0
.0
02
5

0
.0
03

0
.0
03
5

74

0

0
.0
00
5

0.
00
1

0
.0
01
5

0.
00
2

0
.0
02
5

0.
00
3

0
.0
03
5

0
0
.0
00
5

0
.0
01

0
.0
01
5

0
.0
02

0.
00
25

0
.0
03

0.
00
35

82

0

0
.0
00
5

0.
0
01

0
.0
01
5

0.
0
02

0
.0
02
5

0.
0
03

0
.0
03
5

0
0.
00
05

0
.0
01

0.
00
15

0
.0
02

0.
00
25

0.
00
3

0.
00
35

0

0
.0
0
0
5

0
.0
0
1

0
.0
0
1
5

0
.0
0
2

0
.0
0
2
5

0
.0
0
3

0
.0
0
3
5

0
0
.0
0
0
5

0
.0
0
1

0
.0
0
1
5

0
.0
0
2

0
.0
0
2
5

0
.0
0
3

0
.0
0
3
5

m
in

: 7
6.

74

83

m
in

: 8
3.

51

0

0
.0
00
5

0.
00
1

0
.0
01
5

0.
00
2

0
.0
02
5

0.
00
3

0
.0
03
5

0
0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

70

m
ax

: 8
5.

38

0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
0
03

0.
00
35

69

m
ax

: 9
3.

42

0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0

0.
00

05

0.
00

1

0.
00

15

0.
00

2

0.
00

25

0.
00

3

0.
00

35

0
0.
00

05
0.
00

1
0.
00

15
0.
00

2
0.
00

25
0.
00

3
0.
00

35

0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

68

m
ax

: 8
3.

55

0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0.
00
05

0.
00
1

0.
0
01
5

0.
00
2

0.
00
25

0.
00
3

0.
00
35

65

m
ax

: 8
7.

65

0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

64

m
ax

: 8
9.

79

0

0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00
35

0
0.
00
05

0.
00
1

0.
00
15

0.
00
2

0.
00
25

0.
00
3

0.
00

35
0

0
.0
0
0
5

0
.0
0
1

0
.0
0
1
5

0
.0
0
2

0
.0
0
2
5

0
.0
0
3

0
.0
0
3
5

0
0
.0
0
0
5

0
.0
0
1

0
.0
0
1
5

0
.0
0
2

0
.0
0
2
5

0
.0
0
3

0
.0
03

5

m
ax

: 8
4.

22
R

T
L

G
at

e 
L

ev
el

It
er

at
io

n 
1

G
at

e 
L

ev
el

It
er

at
io

n 
2

te
st

 f
ra

m
 #

 (
tim

e)

fl
oo

rp
la

n
bl

oc
ks

: 4
32

si
m

 : 
20

2s

fl
oo

rp
la

n
bl

oc
ks

: 1
45

5
si

m
 : 

72
87

 s

fl
oo

rp
la

n
bl

oc
ks

: 2
43

si
m

 : 
60

s

fl
oo

rp
la

n
bl

oc
ks

: 4
56

si
m

 : 
70

8s

fl
oo

rp
la

n
bl

oc
ks

: 5
22

si
m

 : 
28

3.
2s

fl
oo

rp
la

n
bl

oc
ks

: 1
95

0
si

m
 : 

13
33

2s

fl
oo

rp
la

n
bl

oc
ks

: 1
44

si
m

 : 
11

.5
s

re
so

lu
tio

n:
 8

3.
22

um

re
so

lu
tio

n:
 1

66
.4

4u
m

fl
oo

rp
la

n 
bl

oc
ks

:1
44

re
so

lu
tio

n 
: 3

32
.8

8u
m

T
he

rm
al

 s
im

 ti
m

e 
pe

r 
te

st
 f

ra
m

e 
: 1

1.
5s

m
in

: 8
4.

57
m

ax
: 8

9.
20

m
in

: 8
5.

28
m

ax
: 9

3.
39

m
in

: 8
5.

32
m

ax
: 9

3.
32

m
in

: 8
2.

58
m

ax
: 9

0.
20

m
in

: 8
2.

62
m

ax
: 9

0.
21

m
in

: 8
3.

61
m

ax
: 9

2.
95

m
in

: 8
3.

98
m

ax
: 9

2.
97m
ax

: 9
3.

5
m

ax
: 8

5.
13

m
in

: 7
2.

44
m

in
: 8

2.
58

m
in

: 7
7.

01
m

in
: 7

5.
21

m
in

: 8
5.

57
m

in
: 7

2.
96

m
in

: 8
0.

37
m

in
: 8

4.
37

Fi
gu

re
3.

11
:S

am
pl

e
te

m
pe

ra
tu

re
gr

ad
ie

nt
s

ob
ta

in
ed

du
ri

ng
M

iM
A

PT
an

al
ys

is
on

th
e

sa
m

pl
e

ch
ip

.

61



We represent the results in terms of execution time and accuracy of detecting
hotspot location and temperature. Among 150 available TFs, for 39 of them MiMAPT
detects critical blocks at RTL and triggers gate level thermal analysis. For the other
111 TFs, gate level is not triggered, thereby saving considerable run-time. Among
critical TFs at RTL, 15 of them are false positives. Meaning that when accurate gate
level analysis is executed for them no thermal hotspot is detected.

When gate level is triggered MiMAPT performs three iterations of thermal simula-
tion to achieve required spatial resolution of 83.22 um. Figure 3.11 shows the operation
of MiMAPT for several TFs. The first row shows obtained temperature gradients dur-
ing RTL thermal simulation. The maximum and minimum temperatures for each of the
shown gradients is written at the top of it. Critical TF numbers are highlighted in red.
The second and third rows show the obtained temperature gradients during second and
third iterations of gate level thermal simulation. As we see, TF number 64 is a false
positive. TF numbers 69, 73 and 83 contain real hotspots and the resolution of ther-
mal floorplan increases for them during each iteration. The finest level of granularity
( f inL) is 83.22 um.

We then perform thermal simulation using only the fine-grain floorplan which
contains total 2304 blocks. Comparing the estimated temperature for hotspots us-
ing MiMAPT and the fine-grain method, The difference is around 0.02 ◦C. For every
hotspot block at fine-grain, there exists a corresponding block in MiMAPT which has
the same location and size and is announced as hotspot. As a result, the distance be-
tween location of hotspots detected by MiMAPT and fine-grain is zero. MiMAPT de-
tects all of hotspots with a very good level of accuracy, thus there is no false negatives.

Table 3.7 contains the averaged execution times for each step of thermal analysis
flow. Equation 3.1 shows the total execution time of MiMAPT.

tRT L =
N

∑
T F=1

(tRT L
sim (T F)+ tRT L

pwr (T F)+ tRT L
thr (T F))

tGate = ∑
T F∈N′

(tGate
sim (T F)+ tGate

pwr (T F)+
K

∑
i=1

tGate
thr (T F, i))

tMiMAPT
tot = tRT L + tGate

(3.1)

In these equations N is total number of TFs and N′ is the list of TFs detected as critical
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Table 3.7: Definition of symbols representing execution times of different tasks done
during analysis of one TF, and their average value for the example chip.

Symbol Description
Average

Value
tRT L
sim RTL Logic simulation 2.46

tGate
sim Gate level logic simulation with SDF 686.5
tRT L
pwr Power estimation at RT level 14.8

tGate
pwr Power estimation at Gate level 62.13

tRT L
thr Thermal simulation at RT level 11.5

tGate
thr (1) Thermal sim. at Gate level, first iteration 11.5
tGate
thr (i) Thermal sim. at Gate level, ith iteration variable
tGate
thr,Fine Thermal sim. at Gate level, fine grain 18439

at RTL. K is the number of iterations for which we do thermal simulation for one TF

at gate level (false positives: K = 1, others: K = 3).

tFine−grain
tot =

N

∑
T F=1

(tGate
sim (T F)+ tGate

pwr (T F)+ tGate
thr,Fine(T F)) (3.2)

Total execution time of fine-grain method is shown in Equation 3.2.
Table 3.8 shows the execution time of MiMAPT compared to fine-grain. Consid-

ering all the 150 TFs, total execution time at fine-grain is 2878× 103 seconds. In
contrast, total execution time for MiMAPT is 92×103 seconds. In total, MiMAPT is
31X faster than fine-grain at the same level of accuracy. It should be noted that, even
if we disable the multi-granularity floorplan definition of MiMAPT, and for each criti-
cal block at RTL initiate the gate level analysis at finest resolution directly, MiMAPT
is still 3.67X faster than the fine-grain method, thanks to its early thermal analysis at
RTL.

In order to provide a better perspective on the range of possible speedups for
MiMAPT, we calculate average MiMAPT time when all TFs are either non-critical,
false positive or critical frames. For our sample chip, for an assumed experiment in
which every TF is non-critical, MiMAPT reaches the maximum speedup of 667X .
However when every TF is false-positive, the speedup decreases to 24X . Finally if
every TF contains hotspots, considering an averaged execution time for each of the
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Table 3.8: Execution times comparison: MiMAPT vs fine-grain. (Time in
seconds×103)

RTL Gate

Method
logic
sim.

power
est.

thermal
sim.

logic
sim.

power
est.

thermal
sim.

MiMAPT 0.369 2.22 1.72 26.77 2.42 58.55
Fine-grain - - - 102.9 9.31 2765.8
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Figure 3.12: Physical coordinates of hottest point of the chip when TVA is disabled
(shown with n letter), TVA is active and temperature map is used (y), TVA is active
and averaged die temperature is used (v).

iterations of gate level thermal simulation, the speedup degrades to a lower bound of
8.3X .

We now enable the temperature variation aware (TVA) power/delay analysis feature
of MiMAPT. As described in Section 3.1, this makes MiMAPT consider the effect of
self-heating and on-die temperature non-uniformities during its analysis. As a result,
MiMAPT updates the estimated power of the design at the beginning of each iteration
according to the obtained temperature map during the previous iteration. It also updates
the reported timing/delay of the circuits. To quantify the impact of this method, we
select 10 TFs which contain hotspots and for each of them we compare the location and
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temperature of the hottest design points and also the highest reported design frequency
for these three cases:

1. Normal method in which the TVA analysis is off.

2. TVA is on however, the averaged chip temperature is used to update the power
map.

3. TVA is on and the full temperature map obtained from the previous step is used
to update the power map.

Figure 3.12 shows example physical locations of the hottest point of the design for
each of the TFs. Each set of points are indicated with their TF number. The points
marked by the ’n’ letter show the results when TVA is not active. The ’v’ points are
when averaged die temperature is used and ’y’ letters show when full temperature map
is utilized. As an example, for T F = 12, we notice 588.4 um difference in the loca-
tions of detected ’n’ and ’v’ points. Moreover, a distance of 372.1 um can be seen
between corresponding ’v’ and ’y’ points. As shown, the physical location of the de-
tected hotspot point can change significantly when TVA analysis is taken into consid-
eration. Even usage of averaged temperature value for entire die can lead to inaccurate
results. Comparing the estimated temperature values for ’v’ and ’y’ points, differences
of more than 0.8 ◦C can be seen. Looking at the maximum running frequency of the
design for each of ’v’ and ’y’ cases, we notice differences of more than 20 MHz (3.5%
of maximum design running frequency). Considering the leakage power, differences
of up to 30% can be observed for estimated leakage power of design units in each of
’v’ and ’y’ cases. The presented results highlight the importance of taking temperature
variation into account while doing power, delay and thermal analysis.
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Chapter 4

Temperature Variation Aware Energy
Optimization in 3D MPSoCs

In this Chapter, we perform an in-depth study on performance, timing, power and leak-
age of 3D stacked Wide-I/O DRAMs and track their key parameters with temperature
change [3, 8].

Through careful evaluation of temperature distributions in a 3D IC with Wide-
I/O DRAMs, we propose architectural enhancements for the DRAM subsystem which
improve energy consumption.

In order to assess and quantify the advantages of our proposed ideas, we build a
suitable virtual infrastructure which considers all key characteristics of a 3D MPSoC
with Wide-I/O DRAMs in detail.

First we study the academic research related to DRAM memories, stacked DRAM
memories in 3D ICs and energy optimization in them. Then we illustrate the developed
TLM environment (Section 4.2), and the DRAM (Section 4.2.1), CPU (Section 4.2.2)
and thermal (Section 4.2.3) models. Then we discuss the temperature variation aware
management of refresh rates for the 3D Wide-I/O DRAM (Section 4.2.4). The de-
sign and operation of a thermal controller is disscussed in Section 4.2.5. The adaptive
sampling method to improve simulation speed is described in Section 4.2.6. The ex-
perimental results are presented in Section 4.3. Our feasibility study on hardware
acceleration of the thermal simulation is discussed in Section 4.4.
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4.1 Related Research Works

Two integrated performance, power and thermal modeling infrastructures for evalua-
tion of energy and thermal management policies are presented in [115] and [97]. Both
of the tool-sets mainly integrate a group of simulation software (gem5, DRAMSim2,
Hotspot and etc.) to perform performance, power and thermal modeling. The advan-
tages of our infrastructure over these tool-sets are the followings:

1. We use TLM models to integrate different functional units of MPSoC together.
The TLM environment provides us a high level of flexibility in creating various
hardware structures and performing simulations.

2. Our infrastructure is tailored to the simulation of 3D-integrated Wide-I/O DRAM
memory systems and tracks the timing and power of Wide-I/O DRAMs with the
changes in temperature. This is contrary to other papers which rely on common
DRAM models (e.g. DDR3) to estimate the behavior of a 3D stacked DRAM
component.

3. Prior publications use adapted versions of 2D thermal simulators to perform 3D
thermal estimations. Unlike, we use the 3D-ICE [119] thermal simulator which
is inherently designed for 3D chips.

4. To mimic the workloads executed by today’s mobile phones, we run Android
OS and a set of real-world benchmarks on our multi-core ARM MPSoC. This
is opposed to papers, which run benchmarks in the bare-metal or at most Linux
environment.

5. We adaptively tune the sampling interval (tsim) of the simulation based on the
thermal profile of the chip. We also study the feasibility of hardware acceleration
of thermal simulation. These are not addressed in any prior academic research
contribution.

DoceaPower introduces Aceplorer[41], an ESL platform for exploring low power/temperature
architectures. It integrates with Synopsys Platform Architect environment and allows
developers to perform estimations on power and temperature at ESL. In order to have
accurate estimations on performance and power, the users must utilize cycle accurate

67



(CA) or approximately timed (AT) TLM models for CPU cores, memory units and
other key components of the system. However, these components are usually available
as separate units sold with separate license. Instead our solution practically integrates
the freely available gem5 models into the TLM environment, and prepares highly ac-
curate TLM2.0 DRAM models, providing the same functionality without the need to
any separate license.

A 3D MPSoC with Wide-I/O DRAM is presented in [42]. The 3D-IC features
thermal sensors which can be used for online monitoring of temperature and tuning
thermal models as well. The floorplan developed in this paper for the thermal model is
indeed inspired by this work.

A detailed thermal characterization of 3D ICs with Wide-I/O DRAM is presented
in [142]. The effect of different alignments for DRAM dies and TSVs in overall chip
temperature is evaluated. The paper focuses on thermal modeling only and does not
discuss architectural or thermal management ideas.

An exploration of 3D DRAM architecture which results in a highly efficient Wide-
I/O DRAM subsystem is presented in [14]. The work however, focuses on archi-
tectural issues only and does not consider the effect of temperature variation on the
performance metrics of the Wide-I/O DRAM. Indeed, we utilize the DRAM model
developed in [14] in our work.

A thermal model and a thermal management policy for DRAM modules is pro-
posed in [90]. As shown in the paper, the thermal control of the DRAM is mainly
obtained through decreasing the number of CPU accesses to the memory. The paper
discusses a 2D structure however, as we will see, similar to this paper, our main mech-
anism to govern the temperature of DRAM channels is scaling down the activity level
of the CPU cores.

The timing accurate DDR2/3 memory system simulator DRAMSim2 is introduced
in [116]. This tool targets DDR memories and not 3D Wide-I/O DRAMs. The model
is cycle accurate (CA), which burdens the integration into TLM environments. In
contrast, we can insert our DRAM TLM2.0 model into any TLM environment in which
a vast ensemble of other TLM models [132] is available as well.

A well-known and often used power model for DRAM is provided by Micron [69].
This model has certain limitations. First, Micron uses the minimal timing constraints
from the data sheet specifications instead of the actual timings. However, there are
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dependencies between consecutive memory accesses so that the controller may ac-
celerate or postpone commands. Second, Micron assumes that the controller uses a
close-page policy and that there is only one bank open at the same time. An improved
version of this power model was presented in [30], which uses actual timings from
transactions. We use an enhanced version of this power model in our design [11]. The
refresh rate of a DRAM device depends on its leakiest cells. However, the number of
low retention time cells is relatively small compared to the total number of cells in a
DRAM. A detailed study on data retention time in modern DRAM devices was done
in [92]. Software approaches to reduce refresh power by retention-aware placement of
data in the DRAM are presented in [136]. A method for reducing the total refresh rate
by grouping the DRAM rows into different retention time bins and applying different
refresh rates on them is presented in [91].

We extend these ideas by studying the relationship between refresh rate of a DRAM
bank and its temperature. We show that due to the lateral and vertical temperature
variations in 3D MPSoCs, it is not necessary to refresh all banks of a DRAM channel
at a similar rate.

4.2 The ESL Virtual Infrastructure

The developed infrastructure which is shown in Figure 4.1 contains five major parts:

1. The gem5 Environment: it models the operation of ARM CPU cores. The ARM
CPU cores simulated by gem5 are running Android OS and execute a set of well-
known real-world benchmarks. gem5 is configured to capture complete DRAM
access traces (after L2 cache). Further descriptions come in Section 4.2.2.

2. The TLM Environment: it models the entire MPSoC. It contains the TLM mod-
els for the DRAM memory units and their frontend and backend logic (Sec-
tion 4.2.1) as well as gem5 trace players which resemble the operation of CPU
cores in the TLM environment by re-playing the traces recorded in gem5.

3. Power models: receive the performance statistics of CPU cores and DRAMs
from the TLM environment and estimate their power and fill-up the power traces
used by the thermal model. Sections 4.2.2 and 4.2.1 discuss these in more detail.
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Figure 4.1: Virtual Platform with Thermal Control Loop

4. Thermal model: receives power traces, ambient temperature (Tamb), sampling in-
terval and previous thermal profile of the chip, and calculates the thermal profile
of the chip (Section 4.2.3).

5. Governors: are three different units to govern the sampling interval of simula-
tion; tsim (Section 4.2.6), the refresh rate of DRAM units (Section 4.2.4) and the
chip temperature (Section 4.2.5).

Considering the above descriptions, Figure 4.2 shows the detailed procedure for
one simulation step.

The TLM environment is created using the Synopsys Platform Architect and system
simulations are done using the Virtual Prototype Analyzer. This gives us complete
control over the execution flow of simulation as well as full access to configuration
and statistics registers of our simulated hardware (e.g. trace players and DRAMs).
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A set of TCL scripts control the flow of simulation and provide the required com-
munication between the TLM environment and the outside world.

A set of python scripts operate in parallel with the TLM environement. At the end
of each sampling interval (tsim), the performance metrics of CPU and DRAM are read
by TCL scripts. A Python script is then responsible for estimation of CPU and DRAM
power and invokation of the thermal simulation.

The governor units, implemented in Python, receive the simulated temperatures
and make decisions on sampling interval of the simulation, refresh rates of DRAM
units and the clock frequency and supply voltage of CPU blocks and DRAM channels.
In the following, we describe the important parts of the infrastructure in detail.

4.2.1 DRAM Model

The 3D-DRAM memory subsystem used in our platform, consists of a controller fron-
tend, a channel controller and a Wide I/O DRAM model. It is shown in Figure 4.1.
The standard TLM AT protocol is extended with a DRAM specific protocol (DRAM-
AT) [10] to provide very fast simulation speeds with high timing accuracy. We improve
the DRAM power model of [30] to create our DRAM power model for the TLM plat-
form [11].

For this work we extended the model of the DRAM controller to support in addition
to the auto-refresh command REFA, separate refreshes per bank or groups of banks:
REFB.
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The DRAM power model accepts per-bank activity statistics and generates per-
bank power values at each simulation step. This functionality is later exploited by the
refresh governor of the MPSoC to assign different refresh rates to the different banks
of a DRAM channel according to their temperature.

Table 4.1 represents the relationship between temperature and refresh rates of a
DRAM bank (50 nm technology). The refresh rates in this table are calculated based
on [102].

Table 4.1 is built taking into account that commercial DRAM products exploit
temperature sensors with high level of accuracy (±1 ◦C) around the calibrated junction
temperature range (90 ◦C).

The inputs required for calculation of power consumption of one DRAM bank in
a channel (c) during one sampling period of simulation are the following: Tave is the
temperature of the bank which is used to calculate the static power. f is the running
frequency of the DRAM channel and is similar for all of the banks within a channel
and Vstat is the input vector containing the activity statistics of the DRAM bank dur-
ing this sampling interval. It basically contains the number of issued DRAM ACT,
PRE, RD, WR and REFB commands. V′stat contains global DRAM channel statistics.
These include total number of bank activate and precharge commands issued in the
background. For a detailed description of the DRAM power model and its validation
methodology and results, please refer to [30] [14].

The quantized clock frequency values supported by our DRAM model are the fol-
lowings: {100,133,166,200}MHz. The supply voltage of the DRAM is always fixed
at 1.2 V.

Our MPSoC contains 4 channels of Wide-I/O DRAM. Each channel consists of 8
banks and spans 4 DRAM dies. Thus each DRAM die, contains 2 banks per DRAM
channel, see Figure 4.3 (Banks 0 and 1 belong to Mem Die 1, banks 2 and 3 belong to
Mem Die 2, etc.). Figure 4.4 (a) shows the placement of DRAM banks in each DRAM
die. The density of each DRAM die is 2 Gbit. Our virtual MPSoC contains total
memory of 1 GBytes. The physical dimensions of DRAM banks and the silicon die
are calculated based on 50 nm technology [81]. Section 4.2.3 describes the physical
properties of the chip in more detail.
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Table 4.1: Refresh rates of DRAM banks vs. temperature

Temp (◦C) 35 45 65 85 87.5 88.75 90
Refresh Rate (ms) 192 128 96 64 56 52 48

Temp (◦C) 91.25 92.5 95 100 105 bigger than 105
Ref Rate (ms) 44 40 32 24 16 8

4.2.2 CPU Model

Our CPU model consists of two distinct parts: the gem5 simulator and TLM gem5

trace players. Overall, we first run our benchmarks on the gem5 simulator and record
detailed traces of DRAM accesses (after L2 cache). Inside the TLM environment, we
build a complete virtual MPSoC which contains the gem5 trace players to represent
the CPU cores and other necessary glue logic. We then re-play the recorded traces
inside the TLM environment to perform different evaluations on temperature, power
and energy consumption of the MPSoC. The timings of the traces will be dynamically
adjusted at the time of play-back inside the TLM environment according to the timings
and latencies introduced by the DRAM models.

gem5 is configured for the ARM ISA and it is run in detailed, out-of-order mode.
We run Android 2.3 Gingerbread on this platform and use three real-world well-known
benchmarks to stress the CPUs and the memory. Our selected benchmarks are: An-

dEBench [43], 0xBench [51] and SmartBench [12]. In total the benchmarks perform
6.53×109 read and write transactions to the DRAM memory.

To configure the hardware architecture simulated by gem5 we refer to the ARM
sub-system of a real-world heterogeneous chip [140] (which contains a dual-core ARM
Cortex-A9 MPCore unit) as our reference hardware and use exactly similar architec-
tural parameters. This approach allows us to use the reported power consumption
values of the real hardware to create and accurate CPU power model.

In gem5 configuration, number of cores is set to 2 (n = 2), the system contains
separate private L1 caches for each of the cores and a shared L2. L1 instruction and
data caches are 32 KBytes. Each cache line is 32 Bytes and the L1 associativity is set
to 4. The size of shared L2 is 512 KBytes, it is 16 way set-associative and each cache
line is 32 Bytes. The size of DRAM is equal to 256 MBytes.
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We use Google protocol buffers to record memory traces. Each entry in the trace
contains: gem5 tick count in which the memory access has occured, type of access
and size of data transfered, access address and total number of instructions executed
by each of the two ARM CPU cores up to the this tick point. These information will
be used by the AT TLM trace player to generate proper transactions to the memory
subsystem. Since gem5 is simulating a detailed out-of-order model, each trace player
may be handling several transactions at the same time.

Our virtual MPSoC contains four gem5 trace players or equivalently four instances
of ARM MPCore units. This is equal to a total number of eight cores. Each MPCore
unit has its own running frequency and supply voltage. The total 1 GBytes DRAM
memory is evenly divided between 4 MPCore units.

The inputs to the power model of the CPU are: Tave, the averaged temperature of
the core to estimate static power, IPC is the average count of instructions executed
in one CPU clock cycle, f is the running clock of the MPCore block and VDD is the
supply voltage.

To implement the CPU power model we mainly rely on the power model provided
by [139] for the ARM sub-system of the device. Using [139] we create look-up tables
which contain static power of the cpu core for different temperatures and its dynamic
power for different IPC values. Considering the fact that dynamic power is propor-
tional to V DD2× f , [50] we update the dynamic power based on the current V DD(m)

and f (m).
The relationship between the maximum running clock of an ARM Cortex-A9 MP-

Core and its supply voltage is described in [82]. According to [82] for the following
frequency ranges f = {700,1050,1300,1600}MHz the following supply voltages are
used: VDD = {0.8,0.9,1.0,1.1} V.

To resemble a real-world MPSoC, all of the frequency and voltage values in our
system are quantized numbers; clock frequencies are all multiples of 50 MHz and
supply voltages are from the VDD array.

4.2.3 Thermal Model

We build our thermal model using the 3D-ICE [119] thermal simulator which supports
definition of layers with non-homogeneous materials in the chip stack. Considering the
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Figure 4.3: 3D stack-up of the virtual MPSoC

fact that, the 3D-ICE engine works in co-simulation with the TLM environment, the
initial temperature values for each thermal simulation should be exactly those obtained
during the previous thermal simulation. We have further extended 3D-ICE functional-
ity to dump its complete temperature distribution at the end of each simulation and to
re-load it in the beginning of the next one.

To create a complete realistic thermal model, real-world numbers are used to define
the key dimensions of the 3D structure [81] [129]. Figure 4.3 shows selected values
for 3D stackup. The thermal floorplan of each silicon die which is indicative of the
size and coordinates of on-die units is shown in Figure 4.4.

As Figure 4.4 shows each silicon die is 8.6×7.4 mm2. For thermal simulation, the
chip is divided into equal sized cubes of 0.3 mm3. Each transient thermal simulation is
done with a duration of tsim which is decided by the sampling governor unit (described
in section 4.2.6). The spatial resolution of the thermal model is fixed during the entire
simulation.

According to [81] the TSVs are built using tungsten. We define different material
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Figure 4.4: Geometries used for thermal model: (a) DRAM die (b) Core die.

floorplan file for each of the layers of our 3D structure. In Figure 4.4 the TSV area of
the DRAM die is shown as a light-pink rectangle. The TSV area is calculated based
on [81] and total number of pins for each of the Wide-I/O DRAM channels (6× 44
with a pitch of 50 um). Considering the fact that, our explorations targets low-cost
MPSoCs used in the embedded market, we do not use any kind of liquid cooling in our
thermal model. As of the relative position of silicon dies in the 3d stacked structure,
we have put the core die as the nearest one to the PCB and then four DRAMs dies are
located on the top of the core die. At first glance, a better thermal balance in the chip
may be obtained by putting the hottest die in the nearest position to the heat-sink. This
idea however, is not practically feasible due to the very large number of supply related
signals of the core die which should get connected to the suitable package pins.

For each thermal simulation, power trace for the core die, and separate power traces
for each of DRAM dies are get calculated (as described in sections 4.2.2 and 4.2.1).
The dimensions of the ARM Cortex-A9 CPUs are obtained from [31] and further
scaled to 32 nm technology. For the DRAM controller units in the center of the core
die, we use an averaged power value of a Wide-I/O DRAM controller reported by [14]
(80 mW per controller). Practically, the core die contains more units than just CPU
cores and DRAM controllers (such as GPU, WiFi, ...). We consider an averaged, typi-
cal power of 1.7 W (as reported by [56]) for all of these units and we divide this power
evenly to the rest of vacant area in the core die.

We use a copper heat-sink with a heat transfer coefficient of 1.3×10−9 W/(K.m2)

in our thermal model. This value is calculated based on [56, 101] and the chip dimensions.
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4.2.4 Refresh Governor

At each simulation step the refresh governor receives the estimated temperatures and
defines the refresh rates of DRAMs based on their maximum temperature (Table 4.1).

We perform statistical analysis on the temperature profile of our 3D MPSoC, and
we measure lateral and vertical variation in temperature across different coordinates in
the 3D structure.

For instance, with AndEBench, when all 8 CPU cores are running at 1.4 GHz, an
averaged vertical temperature variation of 5.6 ◦C can be seen across 4 DRAM dies. In
the first DRAM die, averaged lateral difference in temperature between two adjacent
DRAM banks of a same channel is 3.3 ◦C. As Table 4.1 shows when the averaged
DRAM die temperature is > 85 ◦C, the mentioned lateral and vertical temperature
variations cause significant differences in the required refresh rate of each DRAM
bank.

Due to these observations, we implemented the following key idea: instead of
defining the refresh rate based on the maximum temperature seen across the entire
channel and refreshing all DRAM banks at the same rate, we select the refresh rate of

each bank separately based on its own maximum temperature.
As described in 4.2.1 we have extended our DRAM subsystem model to support

handling of separate per-bank refresh commands. As we will show in section 4.3.1
this increases the overall refresh period (makes refreshes happen less frequently) and
improves the performance of the system as well as the energy consumption.

4.2.5 Thermal Governor

Our thermal management solution is based on PID controllers [118]. Since the core
die is always the hottest die in the chip, we focus on governing the temperature of the
core die which results in controlled temperature over DRAM dies as well.

According to Figure 4.4, for each quarter of the core die, which has a defined
threshold value (T core

T H ), we use a separate PID controller with its own error (e =

T core
T H −T quarter

max ) input. Each controller monitors the temperature of one MPCore unit.
Required manipulation in the performance knobs is decided separately by each con-
troller based on its error input and its state.

At each decision making step, for each performance knob, we evaluate the output
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of all controllers in each quarter and we select the maximum specified manipulation
values. This guarantees the safety of the system operation.

Available performance knobs in our system are the clock frequencies of each MP-
Core and each DRAM channel. The supply voltage of each MPCore unit also changes
according to its running frequency (Section 4.2.2).

Here, we focus on the operation and tuning of one controller. To be on the safe
side, for each user-defined TT H a lowered threshold T ′T H is created and used by the
controller. This ensures that the user specified threshold will never get crossed. T ′T H

depends on tmin
sim and thermal characteristics of the chip.

We estimate the maximum possible increase in the temperature of one on-chip
block during one sampling interval and call it Tj

◦C/s. For each on-chip unit, we
obtain Tj by applying a power pulse input to the chip and measuring the temperature
response of each unit. Power pulse is created by running a power virus on all of the
cores at the same time for a short time duration. Considering the fact that, static power
changes non-linearly with temperature, to have an accurate estimation for Tj, before
running the test, we first warm up the chip to a safe temperature region (≈ 70 ◦C).
Having Tj and tmin

sim , T ′T H should be selected so that:

TT H−T ′T H > Tj× tmin
sim (4.1)

The above equation is also the basis of selection of adaptive values of tsim as shown
in Table 4.2. In fact, with a maximum chip temperature of Tmax, tsim should always be
selected so that Tmax + tsim×Tj < TT H . As a result of our experiments, the maximum
Tj value for our 3D chip is below 7.0 ◦C/ms.

To obtain the proportional coefficient (KP) of the PID controller, we conduct a
calibration step. We set the KP to the maximum clock of the CPUs. Thus each time
the estimated temperature is higher than T ′T H by 1 ◦C, the core turns off until the next
sample point. Running the power virus on the system, we decrease KP step by step
until the temperature gets near to the T ′T H (e.g. T ′T H −T < 0.5). At this point, we stop
the calibration and KP will be set to its previous step value. For the values of KI and
KD we use Ziegler-Nicholas and Cohen-Coon tables [19, 118].
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Table 4.2: tsim vs. maximum chip temperature

Maximum Temperature 40 60 70 80 90 100
Sampling Interval (ms) 32 16 8 4 2 1

4.2.6 Sampling Governor

The tsim parameter affects the speed of the simulation significantly. It determines how
frequently the thermal profile of the chip should be estimated and governor routines
should be invoked. Basically, a high resolution sampling in time is only needed when
the temperature values for silicon dies are near critical 1 regions.

For each sampling interval, if Tmax is the maximum current temperature of the
entire 3D structure, and TT H is the defined hard threshold of the thermal controller tsim

will be set to its smallest value when Tmax approaches TT H so that TT H−Tmax < σ . We
quantify σ at section 4.2.5. tsim grows gradually as the distance between Tmax and TT H

increases.
In real-world applications, tsim may be as small as the sampling interval of the

thermal sensors of the chip. The speed of thermal sensor plays a crucial role to the
accuracy of the thermal controller. Practical examples show sampling intervals of 0.1
ms and less for real thermal sensors [60, 112]. Without loss of generality, we select
min(tsim) equal to tmin

sim = 1 ms during our simulations. This sampling period is small
enough to show the effectiveness of our thermal and energy closed loop management
ideas completely.

Table 4.2 shows selected sampling intervals for each temperature range with an
assumption of TT H = 95 ◦C for the threshold of the thermal controller. For T < 40 ◦C,
tsim of 32.0 ms and for 80 < Tmax < 90 ◦C, tsim of 2.0 ms are chosen. For temperature
values above 90.0 ◦C, tsim is 1 ms.

After each thermal simulation, the sampling governor obtains the new tsim. It then
updates the simulation interval in the TLM environment, as well as power and thermal
models.

1e.g. temperatures in which the refresh interval of the DRAM should change frequently, or defined
thresholds for the thermal controller units.
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4.3 Experimental Results

We conduct a set of experiments to demonstrate the advantages of the previously de-
scribed contributions. First, the temperature variation aware bank-wise refresh is pre-
sented. Then, the operation of thermal governor is evaluated. Finally, the speed-up
gained by adaptive sampling is quantified.

4.3.1 Temperature Variation Aware Bank-wise Refresh

We execute two sets of simulations; In the first set the bank-wise refresh is disabled.
For each DRAM channel, the refresh governor finds the maximum temperature of
the channel. Then suitable refresh period will be selected (Table 4.1) and used for
all DRAM banks of the channel. In the second set, the bank-wise refresh is active
(Section 4.2.4). We perform the test while the thermal controller is off and all CPU
cores are playing their own respective traces at 1.25 GHz. DRAMs are running at 200
MHz and ambient temperature (Tamb) is fixed at 45 ◦C (JEDEC standard [142]).

Figure 4.5 shows the refresh periods for 8 banks of the first DRAM channel. When
the bank-wise refresh is off, refresh periods are equal for all 8 banks. When bank-
wise refresh is active, the banks located on the lower dies have smaller refresh periods
compared to colder banks at higher dies. For example, at t = 20 s all of the banks are
refreshed with a period of 24 ms when the bank-wise refresh is off. However, when
the bank-wise refresh is active, only the bank 0 and bank 3 are refreshed at this period
and other banks are refreshed at higher periods. As we see in Table 4.3 the bank-
wise refresh results in an average improvement of 24% in refresh rate, and 16.4%
in averaged refresh power. In near future, half of the DRAM power will be related
to refresh [91]. Thus, the proposed idea can significantly improve the total energy
consumption.

4.3.2 Thermal Controller

We first quantify the impact of each of the mentioned performance knobs in Sec-
tion 4.2.5 in controlling the temperature of the chip. We also measure the drop in
performance while decreasing each of the DRAM and CPU clock frequencies.
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Figure 4.5: Refresh periods of Channel 3, (a) Bank-wise off (b) Bank-wise on (Smart-
Bench).

For the DRAM clock we run the simulation and we decrease the knob from its
highest value (200 MHz) towards the lowest (100 MHz). During these tests CPU clock
stays constant at 1.25 GHz. We report the averaged temperature of the core and first
memory die, as well as the total simulation time of the task and total consumed energy.
We then keep the DRAM clock at its highest value (200 MHz) and scale down the CPU
clock. Table 4.4 shows the results. Averaged execution time of each of the simulations
in this table is 150 minutes. As we see, when DRAM is slowed down to 100 MHz,
a decrease of 3 ◦C in DRAM die temperature will be obtained with 12.9% penalty in
performance. However, by decreasing MPCore units clocks to 1050 MHz (and thus
supply voltage to 1.0 V), the averaged temperature of first DRAM die will decrease by
8 ◦C while the performance drops only 11.3%.

As a result, for a desired decrease in temperature, scaling down the CPU clock gives
better overall performance compared to DRAM. As a conclusion, in our controller we
focus mainly on reducing the MPCore clock.
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Table 4.3: bank-wise refresh vs normal method. Thermal controller off, CPU cores
@1.25 GHz, All values are averaged.

Benchmark AndEBench 0xBench SmartBench

Bank-wise Refresh Off On Off On Off On
Refresh Period (ms) 26.27 30.57 29.06 37.18 33.81 43.68

REF Power (W) 0.0297 0.0262 0.0221 0.0177 0.0181 0.0149
DRAM Power (W) 0.0842 0.0820 0.160 0.1586 0.1247 0.1232

IPC 0.5176 0.5236 0.5436 0.5515 0.4690 0.4733

Table 4.4: Impact of each control knob on the temperature and performance of the chip
(Benchmark: smartbench)

Freq Core T. (C) MEM1 T. (C) Sim. Time (s) Energy (J) Exec. Time(s)
Knob : DRAM Clock Frequency (MPCore @1.25 GHz)

200 98.11 93.61 28.99 91.31 8915
166 96.16 91.88 30.86 91.65 8906
133 95.87 91.60 31.27 92.07 8936
100 94.74 90.60 32.73 92.62 9298

Knob : MPCore Clock Frequency (DRAM @200 MHz)
1200 97.13 92.75 29.74 91.03 8970
1150 96.10 91.85 30.54 90.39 8956
1100 95.07 90.06 31.44 90.23 9046
1050 88.66 85.30 32.39 75.14 8661

We demonstrate the advantages of our thermal controller in terms of total consumed
energy and the maximum temperature of the core and memory dies. For the set of
benchmarks, we first run simulations with the thermal controller turned off and we
record all the system statistics. Then we switch the thermal controller on and perform
the same test. In these tests, we set T core

T H to 100 ◦C. This indicates that our thermal
controller should always keep the junction temperature below 100 ◦C.

Table 4.5 shows the results of each of the tests. The averaged execution time of
each of the simulations in this table is 8 hours. As shown, in average, utilization
of the temperature control mechanisms results in over 23% reduction in total energy,
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Table 4.5: Key system statistics for each thermal controller test. (KP = 350, KI = 1.17,
KD = 0.2)

Benchmark SmartBench 0xBench

Test Cntrl. off Cntrl. on Cntrl. off Cntrl. on
Core die Ave. VDD (V) 1.1 0.98 1.1 1.04

Core die Ave. Frq (MHz) 1650.0 1181.8 1650.0 1374.3
DRAM Ave P. (W) 0.167 0.106 0.158 0.135

REF Ave P. (W) 0.0490 0.0118 0.0172 0.0110
Ave REF Period (ms) 20.97 53.83 41.58 56.63

Core+DRAM Ave P. (W) 4.66 2.83 3.81 2.96
Max Core Temp (C) 130.67 96.95 115.79 98.99

Max DRAM Temp (C) 119.5 91.86 102.82 91.80
Sim Time (s) 25.29 30.26 14.36 14.44

Total Energy (J) 117.85 85.63 54.71 42.74

25% decrease in DRAM power and more than 55% reduction in refresh power while
the performance drops only by 10% and maximum temperature of the core die never
passes the specified threshold.

To further stress the proposed thermal control policy and to show the flexibility of
our infrastructure, we perform another test in which we run the 0xBench benchmark
and increase ambient temperature with a rate of 1 ◦C/s from 45 ◦C to 55 ◦C. Total
simulation time is 14.68 and 15.14 seconds when the controller is off and on respec-
tively. When the controller is off, the core die temperature increases up to 130 ◦C while
with the controller active, the maximum seen temperature is 98.9 ◦C. The controller
results in 37% improvement in overall system energy and 65% better refresh rate with
a penalty of 17% in performance.

4.3.3 Adaptive Sampling

Figure 4.6 shows the dependency of tsim to the die temperature for a test in which we
turn off and on all CPU cores at t = 10 s and t = 20 s, respectively. The x axis is time,
the left y axis is temperature and the right y axis is tsim.

We quantify the speedup gained by adaptive sampling and ensure that the simula-
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Figure 4.6: Change in sampling interval relative to temperature

tion accuracy remains at acceptable levels. We perform two tests: first, we execute the
simulation task with the smallest fixed tsim = 1 ms. Then, we re-run the same simula-
tion and allow tsim to change adaptively. The thermal governor is off during these tests
and CPU cores are running AndEBench benchmark at 1.25 GHz.

For each test we record the total execution time of the simulation and complete
history of temperatures. The accuracy of the proposed adaptive method is acceptable,
if it reports similar critical temperature values at similar points in time as the fixed
method. We refer to the fixed trace containing temperatures of the core die and for each
point at time with temperature T > Tcrit we look-up the temperature of the identical
point in adaptive method and calculate the difference.

The execution time of the simulation is 1.46×104 and 6.6×103 seconds for fixed
and adaptive methods respectively. This is a speedup of 2.21X . Averaged tsim for
adaptive method is 1.99 ms. For Tcrit = 90 ◦C, the maximum temperature difference
between identical points in adaptive and fixed traces is 0.87 ◦C.

4.4 Hardware Acceleration of Thermal Simulation

Thermal simulation is very computational intensive. Based on our practical measure-
ments, more than 65% (with adaptive sampling) to 90% (fixed sampling) of the simu-
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lation time is dedicated to thermal simulation and its related sub-routines.
We study the feasibility of accelerating the execution of 3D-ICE with the aid of

two different approaches:

1. Running one thermal simulation task on multiple CPU cores in parallel.

2. Hardware acceleration of thermal simulation using a specialized hardware.

Using the OProfile [86] performance analyzer, we first identify the execution time

hotspots of the 3D-ICE. SuperLU [38] routines used for L-U factorization of matrices
and solving systems of linear equations are the most computational intensive parts.
SuperLU is built on the top of CBLAS [13]. Our investigations using OProfile show
that the tool is running the CBLAS DGEMV (matrix-vector multiplication) function
during more than 90% of its execution time.

First, we accelerated 3D-ICE by linking CBLAS against the Intel Math Kernel
Library (MKL) [75]. This enables the tool to run computational intensive matrix cal-
culation tasks on multiple CPU cores concurrently. We obtained a thermal simulation
speedup of > 2.1X on an Intel Core i7-860 CPU when utilizing 4 cores in parallel
using MKL.

Second, we select the Maxeler [96] hardware acceleration engine (featuring one
Xilinx Virtex6-SX475T FPGA) as target platform and adapt the 3D-ICE source code to
the Maxeler development flow. This allows us to off-load any computational intensive
part of the software to the hardware containing our computational kernels.

To obtain a measure of feasible level of speedup by the Maxeler hardware, we
focused on hardware acceleration of the key routine: DGEMV. We implemented the
computational kernel using maxj [96] and validated its functionality in practice. A
speedup of more than 12X is seen for execution of DGEMV in comparison with one
core of Intel i7-860 (at 2.8 GHz) while the FPGA is running at 150 MHz and 75% of
its hardware multipliers and less than half of its logic slices are consumed.

Considering the fact that DGEMV is the main computational element of the Su-
perLU subroutines, similar speedups are also possible if we efficiently port the whole
subroutine into the hardware. The detailed implementation of SuperLU routines for
the Maxeler flow is more involved and is considered as a future work.
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Chapter 5

Energy and Performance Evaluation
of CPU-Accelerator Memory Sharing
Using Xilinx ZYNQ

In the previous chapter, we studied the effect of considering for temperature variation
on optimizing energy consumption in Wide-I/O DRAM. We used a TLM model for
the DRAM to reach our goal. To continue research on temeprature variation aware
energy optimization in MPSoCs, we need to focus on platforms with the same level
of complexity as real-world ones. For such large platforms however, building TLM
models even for the entire platform can never provide us with acceptable level of speed
and accuracy.

As a consequence, we build multi-core heterogeneous system-on-chips using real-
world configurable FPGA chips. We use the Xilinx ZYNQ [140] all-programmable
heterogeneous SoC (APSoC) as our development platform. In the first part of this
Chapter, we provide an overview on the ZYNQ architecture.

Considering the significant impact of specialized hardware accelerator units on
the performance and energy consumption of modern MPSoCs, we also study efficient
methods of utilizing hardware accelerators in a multi-core hardware architecture. To-
wards this, we focus on the machanisms through which the CPU and accelerator share
the data and address values for processing tasks [6]. Through a set of practical ex-
periments, we quantify the performance and energy efficiency of each of the provided
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interfaces in the ZYNQ device for sharing of data between hardware accelerator and
the host.

In Chapter 6, we build a complete infrastructure featuring clusters of OpenRISC
cores on the ZYNQ device. This infrastructure can be used for our future research
regarding efficient methods of address sharing between the CPU and accelerator as
well as the ideas related to temperature variation aware hardware acceleration.

5.1 Related Research Works

Efficient sharing of data among computational units in a system plays a strategic role
in performance and energy optimization.

Heterogeneous System Architecture (HSA) foundation provides architectural and
application level solutions to help system designers integrate different kinds of hetero-
geneous computing units in a way that eliminates the inefficiencies of sharing data and
sending work items between them [83].

The developed acceleration hardware blocks become HSA compliant by declara-
tion of the necessary low-level interface layers. This frees the programmers from the
burden of tailoring a program to a specific hardware platform. As a part of HSA, [107]
describes AMD Fusion System Architecture; targeted to unify CPUs and GPUs in a
flexible computing fabric. This allows the accelerator logic located on the GPU to use
the virtual address values passed by the CPU directly without the need for conversion
to equivalent physical address. The proposed idea however, is mainly developed for
sharing memory between CPU and fully programmable GPU cores and is not targeting
reconfigurable heterogeneous architectures like ZYNQ.

A methodology for analyzing the impact of hardware accelerator data transfer gran-
ularity on the performance of a typical embedded system is presented in [84]. This
is particularly important because, as we will show, the granularity of data transfer be-
tween memory and accelerator, and thus, the interrupt rate to the CPU has direct impact
on the performance of the system.

The idea of using a portion of CPU sub-system caches as buffers for the accel-
erators is studied in [44]. This results in smaller silicon area since each accelerator
doesn’t instantiate its own buffer. The basic idea of dedicating a shared memory space
to accelerators is interesting because the ZYNQ device provides a dedicated On-Chip
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Memory (OCM) which can be used for the same purpose. We also consider processor-
accelerator memory sharing using OCM in our tests.

The problem of maintaining coherency between CPU caches and accelerator data in
a multi-core embedded system is addressed in [20]. The paper discusses possible hard-
ware architectures and related software solutions to tackle the problem. It concludes
that the optimal solution heavily depends on the characteristics of the application. The
paper discusses the solutions at architecture level and does not provide detailed practi-
cal comparisons on the performance and energy efficiency of each solution.

An area- and power-efficient many-core computing fabric which features clusters
of up to 16 processor cores is proposed in [18]. The developed platform delivers an
extraordinary level of computational speed (> 80 GOPS) while consuming relatively
small amount of power (< 2 W). The paper is of particular importance since it provides
ideas on the development of energy efficient accelerator logic. Indeed, the developed
architecture in our paper is partially inspired from [18].

A high-performance, energy improved mobile processing platform named big.-
LITTLE is introduced by [53]. The platform consists of high performance Cortex-
A15 processor and energy efficient Cortex-A7. The connection between the CPU sub-
systems is provided through the CCI-400 interconnect which facilitates full coherency
between Cortex-A15 and Cortex-A7 as well as GPUs, accelerators and I/O. This plat-
form, if connected to a programmable gate array, can provide a suitable testbed for
evaluation of various processor-accelerator memory sharing schemes.

The impact of cache architecture on the performance and area of FPGA based
processor and parallel accelerator systems is discussed in [32]. The paper proposes
a simple hardware containing one MIPS core, multiple accelerator units, a multi-port
shared L1 cache and a DRAM controller. It considers different structural parameters
for the L1 cache (such as number of ports, associativity, etc.) and defines a set of
computational tasks to be done only by accelerators. It then quantifies the impact of
cache structure on the overall speed of accelerators connected to the L1 cache. The
paper does not discuss the cooperative operation of CPU and accelerators. Moreover,
the developed hardware in the paper is very simple. It is not capable of booting an
operating system and communicating with the outside world.

The idea of adding hardware accelerators to reduce power in FPGAs is investigated
in [64]. The paper shows practical comparisons for the power consumption of sample
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Figure 5.1: A block diagram representing important elements of the Xilinx ZYNQ
device.

computational tasks, when they are executed by the CPU or the accelerator logic. The
paper does not address issues related to coherency and processor-accelerator memory
sharing.

To the authors knowledge, our work is the first one which practically quantifies the
potential processing bandwidth and energy efficiency of different processor-accelerator
memory sharing methods using the ZYNQ device.

Moreover, it is the first work which provides an explicit practical comparison in
terms of energy and speed, on processor-accelerator memory sharing using ACP and
other traditional methods. In addition, we also provide a flexible research vehicle
which facilitates evaluation of innovative ideas regarding the design of hardware ac-
celerators in heterogeneous architectures on programmable gate arrays.

5.2 Xilinx ZYNQ Heterogeneous System-on-Chip

Xilinx ZYNQ device [140] contains two parts:

• Programmable Logic (PL) which is roughly a full FPGA.

89



• Programmable System (PS) which is a complete sub-system with ARM CPU
cores and different peripherals.

The PS contains the following items:

• ARM MPCore-A9 dual core processing engines which also contain NEON SIMD
units.

• Each ARM core has its own L1 data and instruction caches. Each cache block
has a size of 32KBytes.

• One L2 cache with the size of 512KBytes which is shared between two CPU
cores. The ARM PL310 cache controller is used for implementation of this unit.

• A Snoop Control Unit (SCU) which ensures coherency between the contents of
the caches.

• An on-chip memory (OCM) which is a multi-port memory block of 256KBytes

and can be accessed by the CPU or other ports and units in the system.

• A DMA controller which can be used for transferring data between peripheral
and DRAM memories. It also provides 4 DMA channels to logic residing on the
PL side of ZYNQ. This unit is based on ARM PL330 PrimeCell.

• A multi-port memory controller, which is responsible for connecting to DRAM
memories and receiving reqd/write requests from different sections of the hard-
ware and passing them to DRAM. This block is mainly a design of Synopsys.

• A large ensemble of different peripheral such as UART, Gigabit ethernet, USB
peripheral and host, CAN bus, I2C Bus, SD Card interface, I2C interface, GPIO
and so on..., which can be configured and used by the ARM CPU cores very
easily.

• An interconnect based on ARM NIC-301 design which connects differnt blocks
of hardware inside PS together.

• Finally we have a set of AXI interfaces (as shown in Figure 5.1) are implemented
to make the communication between PS and the PL logic possible.
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Basically these AXI interfaces divide into two groups:

• AXI Master interfaces (GP), connect to AXI slaves residing on the PL. The CPU
is able to initiate read/write transactions over these AXI masters to transfer data
to PL modules. There are two 32 Bits AXI master ports available in the ZYNQ
device: GP0 and GP1.

• AXI Slave interfaces (HP, ACP and SGP), connect to the implemented AXI mas-
ters on the PL. There exist four High Performance (HP) ports and one Acceler-

ator Coherency Port (ACP). Each of these interfaces implements a full-duplex
64 Bits connection, meaning that at every clock cycle, total 16 Bytes of data can
be transferred on AXI read and AXI write channels concurrently. The two SGP0

and SGP1 interfaces implement 32 Bits connections.

There exists a defined memory map for the ZYNQ device [140] which indicates the
address range of each logic block. Every AXI slave unit, implemented on the PL will
also occupy a part of this address range. It should be noted that except the CPU cores
and their L1 instruction caches, the rest of the system is using physical address values.
The HP and ACP ports have both 64 Bits width.

The ACP port is connected to the ARM Snoop Control Unit (SCU). Thus it pro-
vides the possibility of initiating cache coherent accesses to the ARM sub-system by
the master on ACP. Careful use of ACP can improve overall system performance and
energy efficiency. Inappropriate usage of this port however, can adversely affect exe-
cution speed of other running applications because the accelerator can pollute precious
cache area.

5.3 Infrastructure for Energy and Performance Quan-
tification of CPU-Accelerator Data Sharing

We develop a complete infrastructure containing hardware, software and firmware
setup which enables us to perform evaluations on different processor-accelerator mem-
ory sharing methods. For the firmware, we basically use the generated firmware by
Xilinx tool-set for our target board (ZC-702). We ensure that AXI level shifters are
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enabled from the beginning of device operation. This is vital for the correct operation
of HP and ACP interfaces.

5.3.1 Hardware

Figure 5.2 shows a block diagram of the developed hardware on the ZYNQ device. As
we see, three AXI slave interfaces (ACP, HP0 and HP1) and one AXI master interface
(GP0) are enabled and used.

The AXI masters used in this design implement AXI 4.0 protocol specifications [68].
They are based on the AXI master template provided as a LogiCORE by Xilinx [71].
Each AXI master logic is further customized to issue an interrupt when it finishes a
transfer task. The interrupt signals are connected to the interrupt controller unit on the
PS. Each AXI master, also contains an AXI slave port, through which the CPU can
program and start the master. All of the AXI masters are configured to handle burst
lengths of up to 256 which is equal to 4096 Bytes of data (read+write). Each AXI
master, when programmed, is capable of handling transactions of up to 1 MBytes total
length. The AXI slave side of all of the AXI master units residing on ACP, HP0 and
HP1 ports are connected to GP0.

In order to push the processing speed to its maximum, we use two AXI master
blocks (called AXI read and AXI write) running in parallel to perform concurrent read
and write transactions on each PS interface. The masters are connected to the interface
using an AXI interconnect. In Figure 5.2 each AXI interconnect is depicted with a big
i letter. AXI interconnects are configured to their high performance cross-bar mode to
achieve maximum possible bandwidth.

As shown in Figure 5.2, between AXI read and AXI write there is a separate module
(called acceleration logic) which contains a FIFO and also the logic related to the
acceleration task. For our performance measurements, we have selected a 16 tap FIR
filter as the acceleration logic.

Each pair of AXI masters can operate in parallel, meaning that, while one of them
is reading a packet of data from the memory, the other one is writing the previous
processed packet back to its destination. The developed driver at software side is re-
sponsible for synchronization of these two units.

The proposed hardware provides the designers with an architecture which is very
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Figure 5.2: Block diagram of the developed hardware.

easy to customize. For any defined computational task, the acceleration logic, which
is based on an easy to understand FIFO interface, is the only block which needs to be
modified.

The hardware also includes an AXI monitor unit [70]. Its purpose is to be able to
monitor the AXI interface signals, so that we can debug possible problems and further
investigate latency values by directly looking at the actual waveforms.

If the AXI interfaces are running at 125 MHz the maximum theoretical full-duplex
bandwidth for them is 2 GBytes/s. For DRAM memory, the data bus width is 32 Bits
and if DDR3 DRAM is running at 533 MHz, we reach a theoretical bandwidth of 4.2
GBytes/s.

Finally, we have also placed a set of AXI masters on the HP1 port. The purpose of
these blocks is to be able to generate dummy traffic to the DRAM whenever required.
Using this block we will evaluate the performance of the accelerator running on HP0

while the DRAM is also busy handling other incoming requests.
We have implemented this hardware on the ZYNQ XC7Z020-1C device available

on Xilinx ZC-702 board. The total number of used logic slices is equal to 7324 which

93



corresponds to 55% of the total available slices. The design consumes 92 block memo-
ries of 36 Kbits size (65%) and 9 block memories of 18 KBits size (3%). The maximum
clock frequency for this design is 128.2 MHz.

5.3.2 Software

Our developed software is divided into two major parts: Linux kernel level drivers and
user level applications. At Linux kernel level, our infrastructure consists of two drivers
which are called axiD and axiD dummy generator.

axiD manages the AXI masters located on HP0 and ACP ports. The driver is re-
sponsible for:

• Memory allocation and obtaining the physical address of allocated memory buffers
which will be used by AXI masters. Memory can be allocated in either cachable
or non-cachable regions depending on the memory sharing method. (Further
descriptions in section 5.3.4.)

• Initializing, programming and triggering the AXI masters and handling the in-
terrupts generated by them.

• Calculating the source and destination addresses for the set of accelerators based
on the status of the ongoing processing tasks, number of passed loops and num-
ber of processed data chunks.

• Interaction with user-level applications: receiving raw input data from user side,
copying to source memory buffers and then writing back the processed results to
user-level.

• Providing an accurate tool to measure time intervals. The driver enables access
to the free running 64 Bits counters of the ZYNQ device [140] which are clocked
at 333 MHz (half CPU clock frequency).

• Configuring the PL310 [67] cache controller statistics unit so that it reflects total
number of read requests received at the cache and the total number of read hits.
The driver reflects these values at the beginning and ending time of each task.
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The developed axiD dummy generator, does not perform any acceleration related
task. When needed, it enables us to activate the dummy traffic generator AXI masters
residing on HP1 port.

At user level, we have prepared the following items:

• A simple application which communicates with the axiD driver.

• A simple memory intensive application (called background application), which
allocates a memory buffer and performs arbitrary read and writes to this buffer in
an endless loop. This application will be used to demonstrate the effect of cache
pollution on the performance of ACP accelerator.

• The Oprofile statistical performance monitoring tool [86] which we have ported
to the ZYNQ environment. This enables us to measure important performance
metrics of the CPU sub-system.

5.3.3 Power Measurement

Since we are interested in accurate quantification of the consumed energy of the ac-
celeration methods (disscussed in 5.3.4), we need a power measurement solution with
enough resolution in measured values and also in time.

The ZC-702 board is utilizing a set of power supply units which provide online
sensors for voltage, current and temperature measurement [72] 1. They are connected
to the outside world through the PMBus. Using the TI USB Interface Adapter PMBus

pod and the TI Fusion Digital Power Designer software we can monitor and log the
voltage and current values for different sections of the ZYNQ board.

Basically we sample the following consumed power values:

1. Core logic for the PL part of ZYNQ.

2. Internal logic of the PS.

3. Interfaces and I/O buffers of the PS

4. ob-board DRAM chips.

1This is also true for the ZC-706 board which we for implementation of our OpenRISC cluster
described in Section 6.1.
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Based on our practical observations, these four items are the most power hungry parts
of the system. The sampling frequency for measurement of voltage and current values
is equal to 2 Hz.

5.3.4 CPU-Accelerator Data Sharing Methods

In order to evaluate different processor-accelerator memory sharing methods in terms
of speed and energy efficiency, we first define a processing task. Then we define a
set of processing methods to accomplish this task. Each processing method utilizes
a different memory sharing scheme. We then execute each processing method on the
real hardware and measure performance and power.

Processing Task: For a sample image of i bytes, perform the following: read the
image from the source buffer, pass the image through the FIR filter, and finally write
the output back to the destination buffer. Source and destination buffers are different.
In practice, we continuously perform this operation a large number of times. This
enables us to have an accurate speed and power measurement.

Data Sharing Methods: Here, we describe the methods that we use to perform the
processing task. We assign a name to each method, which will be used during the rest
of this Section.

• HP0 Only: The accelerator located on HP0 is responsible to perform the process-
ing task alone. Image source and destination buffers are allocated on the DRAM
memory and in the non-cachable area. (Linux kernel call dma alloc coherent is
used for this purpose.)

• ACP Only: The accelerator located on ACP is responsible to accomplish the
processing task alone. Image source and destination buffers are allocated using
normal kmalloc Linux kernel call, thus, they are allowed to also be cached by
CPU sub-system.

• OCM Only: The accelerator located on ACP is responsible to accomplish the
processing task alone. However, image source and destination buffers are located
in the On-Chip Memory (OCM) block of the ZYNQ device. Here the allocation
will be done like other hardware peripherals using request mem region and then
ioremap Linux kernel calls.
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• CPU Cache: The CPU core is responsible for doing the processing task alone.
No accelerator is active. The source and destination image buffers are allocated
using kmalloc thus, they are allowed to get cached.

• CPU no Cache: Is similar to CPU Cache however, memory allocation for the
source and destination buffers is done using dma alloc coherent thus they are
located on non-cachable region of memory.

• CPU HP0: The CPU and the accelerator on HP0 port cooperate to perform the
processing task. At each iteration first the CPU reads the source image, performs
the processing and writes the result back to the memory. Then it is the turn of
the accelerator on HP port to perform the processing task. Image source and
destination buffers are allocated on non-cachable region of memory.

• CPU ACP: Is similar to CPU HP0 however, the accelerator on ACP cooperates
with CPU to accomplish the task and image buffers are allowed to be cached.

• CPU OCM: Is similar to CPU ACP however, source and destination image
buffers are located on the OCM.

5.3.5 Experimental Results

We consider the processing task described in section 5.3.4 and we use each of the
described methods to accomplish this task and to measure processing speed and energy.

We sweep over different image size i values to evaluate the effect of used memory
size on the speed of operation. (i = {4,16,64,128,256,1024,2048} KBytes). By
increasing i, we also increase the size of packets (p) transferred by the AXI masters
(p = {4,16,64,128,128,128,128} KBytes). Although our AXI masters are capable
of handling packets of up to 1 MBytes, we limit the packet size to 128 KB which is
the size of FIFOs inside acceleration logic. During these tests, we use a fixed running
frequency of 125 MHz for the entire logic residing on the PL.

We measure total execution time and thus total processing bandwidth (read+write)
for each case. During each test we also measure total number of L2 cache requests and
hits to have a better insight on L2 cache utilization.
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Figure 5.3: Processing bandwidth comparison of acceleration methods. Image size
sweeps from 4 KB to 2048 KB.

Figure 5.3 shows the total processing bandwidth for each method. The Y axis
represents total transferred data (read +write) in MB/s. X axis represents the size of
image (i) being processed in a logarithmic scale.

The following processing methods show highest performance: HP0 Only, ACP

Only and OCM Only. For OCM Only we can perform the processing task only for
limited values of i since, the total On-chip Memory available on the ZYNQ device is
limited to 256 KB. For i = {4,16,64} KB we see almost equal performance for each
of these three methods. At i = 128 KB and i = 256 KB, we notice a slight decrease in
the performance of ACP Only compared to HP0 Only (1708.5 MB/s for HP0 Only vs.
1665.9 MB/s and 1640.8 MB/s for ACP Only). When image size grows over 256 KB,
a significant drop appears in the performance of ACP Only (653.3 MB/s for ACP Only

vs. 1708.5 MB/s for HP0 Only).
This phenomena can be described as follows; For each processing task, the total

utilized memory (by source and destination image arrays) is 2× i. If the total available
cache size is L, then while 2× i < L the system is able to efficiently store local copies
of recently used ACP accelerator data on its caches, thus providing fast access to data
when needed. However when 2× i > L, it is no more possible to cache the entire data
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objects used by the accelerator. As a result, some accelerator requests to the cache
will fail and will eventually end-up the DRAM memory. The extra delay introduced
by passing through the caches to DRAM, causes a serious decrease in performance.
Either an increase in i (e.g. increasing the size of processed image) or a decrease in
L (e.g. a background application is also consuming available caches) can cause the
above phenomena. In Figure 5.3, no background application is running on the system.
The size of available shared L2 cache is 512 KB in the ZYNQ device. As we see,
performance drop happens when 2× i > 512 KB.

We now consider processing methods which fully or partially use the CPU cores to
perform the processing task. CPU no cache method is showing the lowest performance
(average 140 MB/s) and CPU cache is slightly higher (average 170 MB/s). Here, the
entire processing is done only with the ALU of the CPU. Enhancements in speed is
possible if we use the NEON SIMD engine of ARM CPU cores. But even in that case
the possible speed-up is around 8X [65].

Finally, we have CPU ACP, CPU OCM and CPU HP0 with speeds between CPU
only and hardware only methods. Here, cooperation of accelerator with the CPU
causes an speed-up in data processing. CPU ACP is always faster than CPU HP0.
This is because of the possibility of sharing the data between CPU and accelerator on
the cache (Thus the CPU can access data faster). The speed of CPU OCM is always
between the other two methods. For i ≤ 256 KB CPU ACP is approximately 1.22X

faster than CPU HP0. By growing the image size however, the speed of CPU ACP

begins converging to CPU HP.
Looking at the number of L2 cache hits, we notice a significant difference between

the methods which use ACP and methods which use HP0. For example, in ACP Only

we see more than 2 hits per each 32 bytes (one cache-line) of processed data while for
HP0 Only this value is practically zero (in the order of 10−5).

For each test point in Figure 5.3, we also measure power. Figure 5.4 shows the
results. Considering the fact that, power values do not change significantly by changing
the image size for each processing method, we only show the averaged power value
for all of the image sizes.

In Figure 5.4 we show the four major power sinks (as described in section 5.3.3) of
the ZC-702 board at the time of the tests.

As shown, HP0 Only method has the highest DRAM power. CPU cache causes
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highest power consumption by PS internal logic, and HP0 Only, ACP Only and OCM

Only show highest values of power consumption by the PL. Power consumption of PS

I/O buffers are at the same level for all methods.
Having the processing bandwidth and power, we calculate the energy consumed

for processing one byte of data. Figure 5.5 shows energy values for each of the test
points.

Looking at Figure 5.5 we see, for i≤ 256 KB, ACP Only and OCM Only consume
the least energy. For i > 256 KB however, HP0 Only shows better results. At the next
level, among methods which utilize the CPU, cooperation of CPU and accelerator over
ACP (CPU ACP) shows the lowest energy. After that, we have CPU OCM and then
CPU HP0 showing more energy consumption.

Effect of Background Workloads: Now, we study the effect of background work-
loads on the performance of ACP Only and HP0 Only methods. First, we turn on the
dummy traffic generator on HP1 AXI interface. This block continuously performs ar-
bitrary read and write operations to an allocated 2 MB DRAM area. At the same time
we measure the performance of ACP Only and HP0 Only for different values of i.

In another test, we execute a memory intensive background application on ARM
CPU cores. The dummy AXI traffic generator is off. The background application

performs arbitrary read and write operations to an allocated 2 MB array. The array is
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Figure 5.5: Energy consumed for processing of one byte of data for each processing
method.

allowed to be cached. Thus, it occupies CPU caches during execution. In fact, this test
shows the effect of decreasing L on the performance of the acceleration method.

Figure 5.6 shows the results of both tests. In this figure, X axis is i and Y axis is
total transferred data in MBytes/s. We first look at the effect of AXI dummy activity on
performance.

As we see, performance drop of (ACP Only) is negligible. However, a major drop
can be seen in the performance of HP0 Only. For example, at i = 128 KB, HP0 Only

speed is 1708.5 MB/s when there is no other activity going on DRAM. However, its
speed drops to 1382.2 MB/s when the AXI dummy interface is active and occupying
DRAM bandwidth. For ACP Only the corresponding numbers are 1665.9 MB/s and
1664.3 MB/s respectively.

Looking at the results of the second test where the cache is heavily occupied by the
background application, we see a clear drop in the performance of ACP Only while
HP0 Only shows a slight performance shift. In ACP + background application, the
speed of the ACP accelerator does not grow for i > 16 KB. For example at i = 128
KB, the speed of ACP Only is 1665.9 MB/s and 531.6 MB/s with and without the
background application running, respectively.

Another noticeable point during the second test is that: the operation speed of both
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Figure 5.6: Processing bandwidth comparison of ACP and HP0 accelerators at the
presence of background traffic.

ACP and HP0 accelerators, at i = 4 KB, is higher when the background application is
running on the CPUs compared to when the CPUs are not doing any specific task 1.

We describe this phenomena as follows: when the background application is run-
ning on CPU cores, it keeps the CPU sub-system active preventing it to go to idle state.
Thus when an AXI master finishes its current task and issues an interrupt request to
the CPU, the service routine will get executed in a shorter time, and the master begins
the next task faster. This description can be further confirmed by noting the fact that
when the packet size increases (and thus the rate of AXI master interrupts to the CPU
decreases) this speed-up disappears.

1700.0 MB/s for HP0 and 707.3 MB/s for ACP when background application is running compared
to 608.5 MB/s for HP0 and 631.8 MB/s for ACP while the CPUs are idle.
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Chapter 6

Temperature Variation Aware
Hardware Acceleration in
Heterogeneous MPSoCs

In this Chapter, we mainly emphasize on the future directions of our research. We
study the idea of accounting for on-die temperature non-uniformities while scheduling
computational tasks to hardware accelerator units.

First, we design and practically create a high performance computation architec-
ture which can be efficiently used towards our future research on temperature variation
aware hardware acceleration. This architecture also enables us to conduct research re-
garding efficient sharing of data between host CPU and accelerator units in a heteroge-
neous Multi-core SoCs. Section 6.1 illustrates the developed hardware infrastructure.
Section 6.2 describes our on-going and future research in more detail.

6.1 OpenRISC Based Heterogeneous Multi-Core SoC

We now build a complete architecture designed to be capable of accelerating applica-
tions developed by OpenCL [80] and OpenMP [110]. This allows for execution of a
wide range of real-life benchmarks on our platform. Our infrastructure contains two
clusters of fully functional 32 Bits OpenRISC [109] CPU cores as the acceleration
logic. Each cluster contains 4 OpenRISC cores. In addition, each cluster features
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512 KBytes of data memory. The data memory banks are acting as L1 memory and are
tightly coupled with OpenRISC cores, so throughout this text we name these memories
as Tightly Coupled Data Memories (TCDM). A logarithmic interconnect unit provides
the required connections between OpenRISC cores and each of these memory banks.
This architecture allows for efficient sharing of data between OpenRISC cores as well
as a high level of computational performance.

6.1.1 Hardware Architecture

In order to facilitate the understanding of this design, we show the implemented archi-
tecture using 3 figures. First we begin from the top-level block diagram. Then we go
towards the lower levels of the design.

Figure 6.1 shows a simplified top-level block diagram of the design. In this figure,
the two instances of OpenRISC clusters are indicated as Cluster Modules. The AXI
interconnectes are denoted with i letterns. The C blocks are responsible for keeping
the address bus width in the necessary range. Their operation will be further described
in Section 6.1.2. Throughout this text we call the ensemble of Cluster Modules, L2

memory, RAB Table and their connected AXI interconnects as accelerator or cluster

system.
As shown, each cluster module in the accelerator contains 2 AXI master interfaces

and 1 AXI slave interface. The AXI transactions initiated by each of OpenRISC CPU
cores inside the cluster, or by the central DMA units, will appear on either one of
these two AXI master interfaces. If the destination address for the AXI transaction is
in the address range of the accelerator (e.g. its destination is the L2 memory or the
other cluster module) then the AXI transaction will appear on the M AXI INT port,
otherwise it will be routed to the M AXI EXT.

In fact, whenever one of the OpenRISC cores, or the DMA engines inside one of the
cluster modules needs to fetch a chunk of data or program code from the shared DRAM
memory of the system, its initiated transaction will be routed over the M AXI EXT
port. These ports are connected to the HP0 slave port of the ZYNQ PS which can
be used to access the shared DRAM in the system. The RAB Table unit in the figure
is responsible for performing address translations on the incoming transactions from
M AXI EXT before passing them to HP0 if needed.
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In fact, the use of RAB Table enables us to isolate the address space used inside the
system of OpenRISC clusters, from the physical address map used by the ARM host.
It should be noted that the design of the cluster module is so that, the OpenRISC cores
can either directly execute programs from the shared DRAM memory (which is also
called L3) or the L2 memory which is a part of the cluster system.

The GP0 port of the ZYNQ PS is utilized to perform direct access to the address
space of the cluster system. Using GP0, the ARM host running on the ZYNQ PS is
capable of programming the L2 memory directly. As we show, using this port the ARM
host can also have direct access to the TCDM memories inside each cluster, as well as
all of the local peripherals of each of clusters. Futhermore, through GP0 the ARM host
is capable of programming the DMA engines instantiated inside each cluster module
to initiate data transfers from any point in the system to any other point.

Figure 6.2 represents the developed architecture for one Cluster Module. In the
heart of the cluster module there exists the Cluster Core which contains the OpenRISC
CPU cores. The Cluster Core unit constains a set of AXI interfaces:

• AXI M Instr: AXI master port through which the OpenRISC cores fetch pro-
gram code from L2 memory.

• AXI M Ext Instr: AXI master port used by OpenRISC core to execute program
code directly from L3.

• AXI M Internal: AXI master port used by OpenRISC cores to access local re-
sources on the cluster mapped on the alias address range. We will further de-
scribe this in Section 6.2.1.

• AXI M System: AXI master port on which transactions in the address range of
cluster system will be initiated.

• AXI M external: AXI master port dedicated to transactions to address ranges
outside the address range of cluster system. (Such as L3 memory.)

• AXI S demux config: AXI slave port through which the ARM host can write
key configuration parameters of each Cluster Core into its internal registers.
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• AXI S bram: A group of AXI slave ports which allow the ARM host, or the
OpenRISC cores in another cluster, or any DMA engine in the system to have
direct access to TCDM memory blocks of the Cluster Core.

In addition to the above AXI interfaces, there exists a direct connection between
the Cluster Core and the DMA engine. This interface is called DMA Prog. This port
provides the OpenRISC cores with an ultra-low latency interface to program the DMA
engine and to initiate data transfer tasks.

Each cluster also contains a set a AXI peripherals connected to the local AXI in-
terconnect of the cluster. From the view point of OpenRISC cores inside each cluster,
each of these peripherals will always be seen at a fixed address regardless of which
cluster the OpenRISC core resides in. The S AXI TARGET AXI slave interface of
the cluster allows accesses to the local peripherals from outside world. Furthermore,
through this port, incomming transactions can be routed to the AXI interconnect which
is connected to the second port of TCDM memories.

As can be seen in Figure 6.2, all of the AXI transactions to the external address
space are routed to the M AXI EXT port using an AXI interconnect. Similarly, all
of the transactions targeted to the address space of the cluster system (which covers
either another Cluster Module or the L2 memory) will be routed to the M AXI INT
port through another AXI interconnect.

The developed AXI Multi-Port Direct Memory Access (DMA) engine used in the
cluster is a highly flexible and high performance data mover engine. Our devel-
oped DMA is capable of transfering data from any point in the entire system to any
other point, with no exceptions. Our DMA engine can be programmed either through
an ultra-low latency DMA Prog port or its configuration AXI slave interface (called
SProg). It contains an internal FIFO for the incoming commands. Assigning a task to
the DMA engine is very simple: the source address, destination address and the length
of data transfer should be written to the command FIFO of DMA engine one after an-
other. As soon as the DMA engine is provided with a complete command it begins the
transfer task and as soon as one transfer task is finished, it fetches and initiates the next
transfer task if available.

The DMA engine has the following AXI interfaces:

• tcdm: An AXI master interface which is connected to the second port of TCDM
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memory blocks through an AXI interconnect.

• System: An AXI master interface used for transactions which are in the address
range of the cluster system.

• External: An AXI master interface used for transaction which is outside the
address range of the cluster system.

• SProg: Is an AXI slave port through which every master (either the ARM host, or
an OpenRISC core in the system) can assign transfer tasks to the DMA engine.

Based on the given source and destination address values for a transfer task, the engine
decides which of the AXI masters should be used for any of the source and destination
transactions. The DMA engine contains an internal buffer of 8 KBytes. It first perforsm
the read transaction and moves the data from the source address to its internal buffer,
then it initiates a write transaction from the buffer to the destination port.

As shown in Figure 6.2, there exist AXI mailbox units which are the interfacing
means between the host and the cluster when the host decides to offload a processing
task to the cluster. One mailbox is dedicated to transferring the task pointers pushed by
the host to the cluster. Another mailbox is used to pass the events and task execution
results generated by cluster CPU cores to the host CPU. A separate AXI peripheral
(which is called Cluster Controller) manages the reset and enable/disable status of
each of the CPU cores in the cluster. It also provides each OpenRISC core with its
own specific boot address. Thus the host has complete control over activity of each
OpenRISC CPU core inside each of the clusters through this unit. Another unit is
developed to monitor when each CPU core in the cluster finishes its assigned task and
to update the host CPU with the situation through interrupts.

Figure 6.3 represents the architecture of the Core Module. The cluster core contains
4 OpenRISC 1K CPU cores. Each core contains a 64 Bits Wishbone3 [108] interface.
We have developed a suitable bridge logic for translation of WishBone3 data transac-
tions into equivalent AXI4 transactions. The translation allows OpenRISC CPU cores
to talk to the developed AXI4 subsystem.
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At data side of OpenRISC cores, the tightly coupled shared L1 memory architecture
is used. A logarithmic interconnect [93] is exploited to connect the CPU cores to
the shared multi-banked data memory. In Figure 6.3 the logarithmic interconnect is
depicted with Log i. The logarithmic interconnect allows the CPU cores to have single
cycle read/write accesses to the shared data memory eliminating the need for a separate
data cache. The number of memory banks residing on the logarithmic interconnect is
a parametric value and currently is set to 8. There exists the possibility of attaching
additional hardware accelerator units dedicated to specific computational tasks (such
as FFT) to the logarithmic interconnect.

There exists a demultiplexer unit at the data port of each OpenRISC core. In Fig-
ure 6.3 the demultiplexer unit is indicated with a dashed line around it. This unit is
responsible for monitoring the address of each of the generated transactions by the
CPU core. It routes each transaction to its suitable destination according to the defined
address map of the system. The demultiplexer units is also responsible for translating
these transactions to suitable AXI transactions when the destination address is some
where in the AXI subsystem. Furthermore, the demultiplexer of each OpenRISC core
is responsible for providing it with the key configuration parameters of the core and
the cluster. Examples of this key configuration values include the core ID of each core
and the cluster ID to which each core belongs.

When the destination address is pointing to the shared L1 memory, the transac-
tions are passed through the TCDM interface of the demultiplexer to the logarithmic
interconnect. In all of the other cases the transactions are routed to a second demul-
tiplexer unit. When the OpenRISC needs to access a specific peripheral or resource
located inside the same cluster, the AXI M internal plug will handle the transaction.
However, if the OpenRISC requires access to resources of another cluster in the sys-
tem or to the program memory, then the demultiplexer initiates an AXI transaction on
the M AXI system port which is connected to AXI interconnects which eventually get
connected to other cluster units as well as the cluster’s program memory. When the
OpenRISC needs to read or write to shared system DRAM, the demultiplexer initiates
an AXI transaction on its M AXI External interface. As shown in Figure 6.1, this
interface is connected to an AXI interconnect which is a master HP0 port.

Our architecture exploits the available potential of FPGA block memories: for both
of the data memory banks and program memory the memory is instantiated as a full
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dual port memory and the second port is used to perform direct memory accesses in
parallel with the operation of the CPU cores. Our developed AXI Multi-Port Central

DMA unit is then instantiated in the system to handle the second port of these memory
banks. As described, either of the host or the OpenRISC CPU cores can schedule
DMA transfers to either of program or data memories of the cluster by programming
these DMA engines. Futhermore, as stated, in addition to DMA units, the host has also
direct access to both of program and data memory of the cluster through the GP0 AXI
master port of the ZYNQ PS.

Each OpenRISC core has its own separate input port through which the host can
define the boot address of the OpenRISC core. As shown in 6.2 the WB3 to AXI4

unit which is resided on the instruction bus of each OpenRISC core, contains two AXI
master ports. One of the ports is dedicated to fetching program code from L2 mem-
ory located inside the cluster system. Another port allows the OpenRISC to directly
execute programs stored on the shared system DRAM memory (L3).

6.1.2 Address Map and Dynamic Address Remapping

Our developed hardware architecture allows us to perform explorations on the efficient
mechanisms of CPU-Accelerator address sharing. Conceptually, when the host decides
to offload a processing task to an accelerator unit, it copies the data which should
be processed by the accelerator on the shared DRAM memory, and then passes the
physical address of the data array to the accelerator. The host CPU is using a memory
management unit (MMU), consequently all of the processes running on the host, as
well as all of the allocated data arrays are using virtual address values. Thus when the
host decides to pass the address pointer of a data object to the accelerator, it first needs
to convert the virtual address of that data object into its equivallent physical one.

In the cases where the shared data objects between the host CPU and accelerator are
single continuous arrays of data, this address passing mechanism is efficient however,
as soon as the complexity of the data objects which should be shared between the CPU
and the accelerator increases, the process of virtual to physical address conversion gets
more and more time consuming. As a result, we try to devise an architectural solution
which allows the host CPU to pass the virtual address of the data objects directly to the
hardware accelerator without the need to convert them into their equivallent physical
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address. The described architecture in Section 6.1.1 makes this operation possible
through the use of suitable address conversion units.

As shown in 6.1 the AXI transactions directed to the shared DRAM memory pass
the RAB Table unit. This unit can be programmed by the host CPU as well as the
OpenRISC cores, and is responsible for translating the address of the incoming AXI
transaction, which is basically a virtual address value, to its equivallent physical ad-
dress before sending it out to the HP0 port. Indeed the address value which is passed
to the cluster by the host throught the GP0 port or using the task allocation structures,
are virtual values. At the same time the RAB Table gets programmed with suitable ad-
dress translation entries, so that later, whenever during the operation, any of the cluster
modules required to access the DRAM memory it gets redirected to a correct location
on the DRAM.

This scenario however, may face a problem if the virtual address passed by the host
CPU to the accelerator is within the physical address range of the local resources and
peripherals of the accelerator itself. Indeed, we needed to devise a mechanism through
which we can make sure that this problem does never happen.

Towards this, the hardware architecture that we have created has one special ca-
pability: the base address for the entire cluster system can be changed on-the-fly and
during system operation, without the need for rebooting the ARM host CPU or re-
configuring the programmable logic. Indeed each time the host decides to use the ac-
celerator for a specific computational task, it first puts the accelerator into reset mode,
then it configures the base address for the entire accelerator system, then copies the
code that OpenRISC cores should execute into the L2 or L3 memory and initializes the
shared data objects and the mailbox contents inside the clusters. It then indicates the
boot address of each of the OpenRISC cores in the accelerator and then it brings the
accelerator out of reset state. From this point on, all of the OpenRISC cores inside the
accelerator, and also the DMA engines will see and will use the newly defined address
mapping.

Consequently, when an application running on the ARM host CPU needs to use the
accelerator, it first allocates a memory in its virtual address space with the same size as
the physical address range of the accelerator. It then uses the obetained virtual address
to configure the accelerator and to move its physical base address value to the same
value as the allocated virtual address. In our architecture since the physical address
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range for the accelerator is 256 MBytes, and address bus width is 32 bits, the upper
four bits of the virtual address will be used as the upper four bits of the physical base
address of the accelerator. From this point onward, whenever the application running
on the ARM host allocates a memory to share a data object with the accelerator, it is
completely sure that the virtual address of this new shared data object will not collide
with the address range of the accelerator hardware itself.

These descriptions now clarify why in the proposed architecture in Section 6.1.1 we
always use separate AXI ports for AXI transactions which remain internal to the cluster
system and those AXI transactions which are targeted to go completely outside the
address range of the accelerator. Moreover, addition of the C blocks at the enterance
port of AXI interconnects as shown in Figures 6.1 and 6.2 is also inline with our goal.
Indeed the C blocks always drop the upper bits of the address channels of an incoming
AXI bus allowing the AXI interconnect to perform address decoding based on only
lower bits of the address. This way we make sure that whenever one of the local
resources of the accelerator is accessed the transaction reaches the correct destination
regardless of the values of the upper bits of incoming address since in practice the
upper bits are only indicating the base address for the entire accelerator hardware.

Figure 6.4 shows an example address map of the system. In this address map
we have supposed that the ARM host has configured the upper 4 bits of address as
0x1. Thus the physical address range of accelerator begins from 0x10000000 and goes
up to 0x20000000. Each cluster occupies an address range of 4 MBytes. The alias

address range will be used uniquely by all the CPU cores inside all clusters. Indeed,
each OpenRISC core inside each cluster, can find its local cluster resources, such as
TCDM memory, DMA engine and local cluster peripherals in a same address position
as every other OpenRISC core. This is extremely important since, using this technique
the OpenRISC core does not practically need to cacluate its access address whenever
it wants to access one of the local resources of the cluster.

As an example, if an OpenRISC core wants to access the first memory location of
TCDM, it can always find it at address 0x18000000. However, if the same core wants to
access the first location of TCDM memory of the other Cluster Module, then if the core
belongs to Cluster Module 0 it should perform an access to 0x10400000, otherwise if
the core belongs to Cluster Module 1 it should initiate an access to 0x10000000 to read
the required memory location.
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As can be seen in Figure 6.4, the lowest address range for each cluster is occupied
by its TCDM memories. A total TCDM memory range of 1 MBytes is considered
for the design. Currenly, in the implemented hardware, total TCDM memory of each
cluster is 512 KBytes. When an OpenRISC core needs to read its Core ID value, it just
needs to perform a read access to the 0x18300000 address in the memory. This access
will be done in just one clock cycle since the these important registers are directly
stored in the demultiplexer unit. It should be noted that the values of these important
configuration registers can be only changed by the ARM host and not any unit inside
the accelerator.

6.1.3 Practical Implementation

The hardware is realized on the Xilinx ZYNQ XC7Z045 device on the ZC-706 board.
We have verified the correct functionality of this architecture in action using the real
hardware and a set of benchmarks. Table 6.1 shows the resource utilization of the
XC7Z045 device for our hardware architecture consisting two clusters. The running
frequency for the hardware is 70 MHz.

Figure 6.5 shows the layout of the final routed design on the ZYNQ device. In this
Figure, each of the major blocks in the hardware is highlighted with a different color.
All of the points with the same color belong to a similar hardware block. Each block
is identified using a marker.

Cluster Core unit which contains the OpenRISC cores and the TCDM, the intercon-
nect logic inside each cluster and the DMA engines have the highest levels of resource
usage in the design.

A Linux kernel level driver running on the ARM host is developed for interfacing
with the cluster. This includes programing the direct memory access engines, trans-
ferring compiled OpenRISC executables to the shared program memory of the cluster,
resetting and enabling cluster CPU cores and other similar tasks.

6.2 Future Work

As our ongoing research and the scheduled tasks to be done in future, we first adapt
the developed infrastructure described in Section 6.1 to run OpenMP applications on
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ZYNQ Subsystem
DRAM Controller

Empty Regions

Cluster Core 0

DMA Engines of
Cluster Module 0

Cluster Core 1

AXI Interconnects 
of Cluster Module 0

Interconnect Logic
of Top Level Module

DMA Engines of 
Cluster Module 1

AXI Interconnects
of Cluster Module 1

Figure 6.5: The layout of the final routed design on Xilinx XC7Z054 device. The
building elements of each of the major blocks in the design are highlighted with dif-
ferent colors.

it. Then, we study the efficiency of various CPU-accelerator address sharing schemes
using the created platform. Finally, we focus on addition of thermal sensors into the
system and using the temperature readings while scheduling computational tasks to the
hardware accelerator units.
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Table 6.1: Resource utilization of XC7Z045 APSoC for a cluster containing 8
OpenRISC CPU cores and all required glue logic.

Resource Utilization Available Utilization%
FF 97076 437200 22

LUT 136706 218600 63
Memory LUT 2141 70400 3

BRAM 300 545 55
DSP48 32 900 4
BUFG 11 32 34

6.2.1 Exploration of CPU-Accelerator Address Sharing Methods

We perform a detailed comparison between the traditional method of passing addresses
to hardware accelerators and our own developed new method. Towards this, we pre-
pare a set of computational benchmarks which operate on different types of data-sets.
We then develope the required firmware for partially accelerating these computational
tasks using our clusters of OpenRISC.

In the first test, we turn off the dynamic address remapping and address translation
capability of our hardware architecture and each time that the host CPU wants to share
a data chunk with the hardware accelerator, it first allocates the memory and calculates
all of the required physical address values and pass them to the accelerator. We mea-
sure the averaged power consumption of the system for running each benchmark, as
well as its processing bandwidth.

In the second test, we turn on the dynamic address remapping capability of our in-
frastructure. For each chunk of data that the host requires to share with the accelerator,
it first performs memory allocation, and then performed required configuration in the
RAB Table and passes directly the virtual address values to data arrays to the accelera-
tor. We compare the measured performance and power in this case with previous case,
for all of the benchmarks.
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6.2.2 Implementation of Thermal Sensors

Implementation of thermal sensing circuits on a programmable logic is a well studied
problem [94, 135]. The basic idea is to use a chain of Look Up Table (LUT) instances
to create a ring oscillator circuit. The oscillating output of the circuit acts as the clock
input for a counter. The rate of change in the counter value is sampled during fixed
intervals. Based on the readings the temperature of that specific physical coordinates
of the FPGA is estimated.

Another proposed solution is the thermal sensing method introduced by Xilinx for
its soft DRAM controller cores [106]. The architecture is based on a tap delay circuit.
Figure 6.6 shows the circuit. First, a continuous chain of inverters (Taps) is created
using LUTs. The output of each tap is sampled by a flip-flop and compared with the
output of the next tap. The comparison result is again captured by another flip-flop.
The whole circuit is driven by a clock source with a fixed clock frequency. In fact, the
clock signal which is the input to the chain of taps, is also driving the flip-flops.

Figure 6.7 shows example waveforms of the circuit. Depending on the delay of
each tap, and the period of the input clock, a fixed number of LUTs are in a clock
phase. For example, if the clock input frequency is 166 MHz and the LUT delay is
620 ps then 5 LUTs will be in one clock phase. Thus the output of the circuit will
be a constant pattern. By the change in temperature the delay of LUTs will change
however the clock period is fixed since it is driven by a clock oscillator from outside.
This results the number of LUTs in one clock phase to change. As a result the output
pattern of the circuit will change. This will be used to estimate the temperature.

We implement both of the aforementioned circuits and perform the calibration step
for both of them. A similar procedure as disscussed in Section 2.4.3 will be used
for this purpose. We then perform a set of evaluations and compare the performance
and accuracy of thermal sensors. The thermal sensor with better performance will be
selected as the online temperature sensing mechanism for our infrastructure. We then
create a network of temperature sensors distributed across the entire fabric. This allows
us to monitor on-die temperature with acceptable spatial accuracy.
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Figure 6.6: Tap delay circuit built using LUTs for temperature sensing.
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Figure 6.7: Sample waveforms of tap delay circuit operation.

6.2.3 Temperature Aware Assignment of Tasks to Accelerators

The idea of task migration between different CPU cores in a many-core architecture is
not new [36, 48].

We study the problem for heterogeneous architectures which feature reconfigurable
hardware. Basically, the host can decide weather to offload a computational task to the
accelerator cluster or to run the task itself, based on its temperature readings.

Moreover, when assigning a task to computational units in a cluster, the host can
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decide the units which will be involved in the computation according to the device tem-
perature map. Furthermore, there exist the possibility of reconfiguring some portions
of the cluster according to the obtained temperature map and the task being executed.

Finally it should be noted that some recent FPGAs created using the FinFET tech-
nology (similar to Achronix [15]) are already running in temperature inversion re-
gion. This means that the hardware will run faster by increasing the temperature. This
changes the decision making logic for task assignment completely. In fact, if a task
is critical, and should be executed withing the smallest possible duration, it should be
assigned to the CPU cores located in the hottest area of the fabric.
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Chapter 7

Conclusions

We introduced the concepts of chip/package thermal modeling in Chapter 2. We de-
scribed various available thermal models. We developed a thermal model for SCC chip
using Hotspot thermal model. We then presented a calibration approach for the SCC
on-die thermal sensors. We performed comparisons between the calibrated thermal
sensor readings and estimations provided by thermal model. Comparisons show an
error below 1.5◦C.

We then analyzed the impact of frequency changes on the performance of many-
core systems with MPI. We designed a large set of experiments using the monitor-
ing infrastructure. Our analysis demonstrates that the communication patterns have a
significant impact on performance and energy efficiency, varying from 0.1× to 2×,
compared to the baseline case without frequency perturbations.

In Chapter 3 we presented MiMAPT, a system capable of performing power, tem-
perature and delay analysis of digital ICs while considering on-die temperature vari-
ation. The importance of considering temperature variation for delay/power analysis
was demonstrated by practical examples. We showed that the sensitivity of delay and
power estimations to temperature variation grows with scaling down the fabrication
technology. We also quantified the estimation error that has to be expected when as-
suming an uniform temperature across the die. We highlighted several example cases
in which this assumption leads to major inaccuracies. We also presented the multi-
scale analysis capability of MiMAPT and its joint operation with a temperature vari-
ation aware power/delay estimation engine. Our results show that speed-ups can be
obtained for thermal analysis while keeping the error of temperature estimation below
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0.02 ◦C.
MiMAPT is implemented in Python and is available as a completely stand-alone

and fully functional software. It provides an easy-to-use interface for designers to
perform analysis without getting into details. Using the merged virtual chip analysis

capability of MiMAPT, the developer can perform detailed analysis of the complete
design before the final chip is implemented. The MiMAPT flow can be easily adapted
to 3D-ICs. Considering the fact that performing thermal analysis for a 3D-IC with dif-
ferent spatial granularities for different silicon layers is not an easy to handle problem,
the multi-granularity thermal floorplan creation feature of MiMAPT at gate-level may
no more be used for 3D-ICs. In spite of this, as we showed in Section 3.5 MiMAPT is
still faster compared to fine-grain method thanks to its early analysis at RTL.

During Chapter 4, We demonstrated the temperature variation aware bank-wise re-
fresh which improves the overall refresh rate of the system effectively and decreases
the power consumption of Wide-I/O DRAMs. We presented a thermal management
scenario which results in improved energy consumption while keeping the temperature
below the specified thresholds. To prove our ideas, we presented a virtual infrastruc-
ture featuring a TLM environment and detailed power and thermal models for the 3D
chip. To speedup simulations, we devised a method to tune the sampling interval of
simulation adaptively according to the thermal profile of the chip. We also studied
the feasibility of hardware acceleration of the thermal simulation using the Maxeler
engine.

In Chapter 6, we demonstrated an assessment on the performance of CPU-accelerator
data sharing over AXI interfaces. We also presented our OpenRISC based cluster in-
tended to be used for our future research on efficient CPU-accelerator address shar-
ing as well as temperature variation aware hardware acceleration. We selected Xilinx
ZYNQ APSoC as the target to develop required infrastructures.

Based on the obtained results in Chapter 6 (Section 5.3.5), we derive the following
design rules:

• If a specific task should be done by cooperation of CPU and accelerator: The
speed and energy consumption of CPU ACP and CPU OCM methods are always
better than (or in the worst case equal to) CPU HP.
The main drawback of using CPU ACP is that parts of the available cache space
will be occupied by the acceleration task. Thus if there exists any other critical
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application whose performance is heavily dependent on CPU caches, it may face
problems handling its duty on-time. In this case, using CPU OCM (for small
array sizes) and CPU HP (for big arrays) is recommended.

• If the task should be done by the hardware accelerator only (and then the CPU
will just use the final result), then ACP Only or ACP OCM might be used only
when the processed array blocks are small (smaller than the size of available
cache, or on-chip memory) and there is no other background application con-
suming these resources. Otherwise, HP Only always provides better results.

The above rules can also be expanded to other platforms with similar architectures as
the ZYNQ.

Finally, we introduced our multi-core heterogeneous architecture for the Xilinx
ZYNQ device. Our architecture features a hardware accelerator which contains sev-
eral clusters of OpenRISC CPUs. The special capability of the developed hardware
architecture is that its address mapping can change dynamically and during system op-
eration without the need to reboot the system or to re-generate the FPGA bitstream.
This eventually allows the accelerator hardware to accept virtual address pointers to
the shared data objects directly from the host CPU. We verified the correct function-
ality and operation of this platform on the Xilinx ZC-706 board. Our architecture
provides us with the possibility of extending our research on efficient mechanisms
of CPU-Accelerator data and address sharing as well as studying the ideas regarding
temperature variation aware hardware acceleration.
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