Synthesis of Biologically Active Small Molecules: Different Approaches to Drug Design

Ianni, Cristina (2014) Synthesis of Biologically Active Small Molecules: Different Approaches to Drug Design, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6403.
Documenti full-text disponibili:
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (3MB) | Anteprima


In the past years, genome biology had disclosed an ever-growing kind of biological targets that emerged as ideal points for therapeutic intervention. Nevertheless, the number of new chemical entities (NCEs) translated into effective therapies employed in the clinic, still not observed. Innovative strategies in drug discovery combined with different approaches to drug design should be searched for bridge this gap. In this context organic synthetic chemistry had to provide for effective strategies to achieve biologically active small molecules to consider not only as potentially drug candidates, but also as chemical tools to dissect biological systems. In this scenario, during my PhD, inspired by the Biology-oriented Synthesis approach, a small library of hybrid molecules endowed with privileged scaffolds, able to block cell cycle and to induce apoptosis and cell differentiation, merged with natural-like cores were synthesized. A synthetic platform which joined a Domino Knoevenagel-Diels Alder reaction with a Suzuki coupling was performed in order to reach the hybrid compounds. These molecules can represent either antitumor lead candidates, or valuable chemical tools to study molecular pathways in cancer cells. The biological profile expressed by some of these derivatives showed a well defined antiproliferative activity on leukemia Bcr-Abl expressing K562 cell lines. A parallel project regarded the rational design and synthesis of minimally structurally hERG blockers with the purpose of enhancing the SAR studies of a previously synthesized collection. A Target-Oriented Synthesis approach was applied. Combining conventional and microwave heating, the desired final compounds were achieved in good yields and reaction rates. The preliminary biological results of the compounds, showed a potent blocking activity. The obtained small set of hERG blockers, was able to gain more insight the minimal structural requirements for hERG liability, which is mandatory to investigate in order to reduce the risk of potential side effects of new drug candidates.

Tipologia del documento
Tesi di dottorato
Ianni, Cristina
Dottorato di ricerca
Scuola di dottorato
Scienze chimiche
Settore disciplinare
Settore concorsuale
Parole chiave
drug design, drug discovery, BIOS, TOS, microwave, natural-like small molecules, hERG blockers.
Data di discussione
14 Aprile 2014

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi