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Introduction

This thesis is the outcome of the work performed within my Ph.D. course in Telecom-

munications Engineering. The main research efforts were on Interference Manage-

ment and Link-Level Power Efficiency for Satellite Networks.

In the context of increasing demands in terms of wireless services performance,

as well as support for mobility, Satellite communications are pivotal to deploy ubiq-

uitous broadband access and will play a key role in future broadband communication

networks. To satisfy the ever growing bit rate request, a significant research effort

is being placed in the design of new techniques and system architectures able to

improve the overall system efficiency, both by increasing spectrum exploitation and

by reducing the design and operational system costs.

Traditionally, and for several decades, research efforts have been posed into the

development of technologies aimed at improving link-level performance, either in

terms of transfer rate, for instance with higher order constellations, or to achieve

better robustness over a noisy channel, such as with advanced encoding techniques,

or for dealing with the access to the radio environment, such as with Orthogonal

Frequency Division Multiplexing (OFDM), Code Division Multiple Access (CDMA),

Time Division Multiple Access (TDMA) and their subsequent and hybrid develop-

ments (such as Multi Frequency TDMA, or Single Carrier Frequency Division Mul-

tiple Access, SC-FDMA). This process has led to an exponential growth in link level

performance, which has approached very closely the theoretical bounds imposed by

Shannon’s Capacity Theorem ( [15]), suggesting that new research interests should

be posed in optimization and fine tuning of existing techniques on one hand, and

on the design of new smart system architectures and algorithms capable of better

exploiting the existing available resources.

The asymptotical trend of pure link level advancements motivates a change of
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perspective, according to which the design and research efforts start from the be-

ginning by looking at the overall system of interest, instead of focussing on the

pure link level, or other aspects, separately. This approach aims at improving the

performance of the system by increasing the efficiency in the use of the available

resources, hereby intended in a general sense, therefore including Spectrum bands,

Spatial domain and Power, pursuing the goal of increased system throughput and

capacity.

The work carried out in this thesis follows the described approach at different

levels, considering countermeasures to the mentioned challenges in terms of: i) inter-

ference, which has rapidly become the limiting nuisance in many wireless networks,

due to the growing need of reusing the available resources, thus generating more

interference, ii) power efficiency, which is critical for multiple applications, ranging

from mobile applications, in which power consumption is strictly related to battery

life, to satellite communications, in which power availability on the payload is one of

the key aspects to be taken into account when designing a system, also considering

inefficiencies related to high power amplifiers (HPA) non linearity.

The first part of this thesis relates to the possibility of managing the presence of

interference (i.e., interfering users allowed to use the same resources as the desired

users for a certain transmission), not only by avoiding it, but also, in turn for

increased computational capacity, treating interferers as part of the desired signal

set, and therefore decoding them and leveraging on such knowledge to increase the

capacity of the overall system. To this extent, the analysis covers different levels,

following a top-down approach across different scenarios, starting by system level

considerations on interference management (IM) strategies, then focussing on link-

level aspects in scenarios in which those will be shown to be critical for the feasibility

of the proposed approaches, and at last with reference to a specific scenario case-

study, where an interference mitigation solution is designed at intra-receiver level.

The second part is related to efficiency in the power domain, since power is one

of the limited resources available, and power efficiency can be included, as it will

be shown, in a generalization of the traditional Shannon plane Spectral Efficiency.

In this part of the thesis, the attention is posed on power efficiency, for instance in

terms of required Input Back-off (IBO) at the high power amplifiers, which is criti-

cal for classical Linearly Modulated (LM) waveforms, suffering from highly varying

envelopes. This motivates the analysis and the fair comparison between such wave-

forms and constant envelope modulation waveforms, carried out in this part of the
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thesis. It is shown that, for scenarios particularly exposed to terminals characteris-

tics (e.g., terminal amplifiers) such as the Return Link of satellite systems, or Mesh

non-infrastructured networks, constant envelope modulation represents a better per-

forming solution.

Thesis Outline

In this thesis, the two above mentioned main areas of study, focussed on improving

spectrum and power resources usage are investigated. In particular, the thesis outline

is as follows:

• in Part I, Interference Management is applied to Multi-Beam satellite systems.

First, in Chapter A an introduction on Beam Forming for satellite systems is

given, presenting the Multi-Beam reference architecture. Chapter 1 reports

the analysis of the interference environment in a real-life Multi-Beam satel-

lite system, and the design of Interference Management strategies, based on

Successive Interference Cancellation, to improve the system capacity. The

approach followed in this part of the study is inspired by terrestrial cellular

systems, by suggesting a similarity between terrestrial Cells and Base Stations

with Clusters of Beams and Gateways of a satellite system, even though with

significant differences in terms of scenarios, propagation channel and topology.

A cooperation strategy between multiple gateways is proposed to parallelize

the effect of interference cancellation. Chapter 2 extends the analysis to the

Forward Link of a satellite system, therefore implying that the interference

cancellation shall be done at the receiver terminal. It is shown that the pecu-

liarities of this scenario are significantly different with respect to the Return

Link, which might prevent successive interference cancellation completely. An

alternative modified approach to interference cancellation is thus presented,

based on the unbalancing of signals related to different beams (e.g. for in-

stance in terms of Modulation and Coding format employed) to overcome the

challenges of the Forward Link. Part I is concluded by Chapter 3 in which the

considered scenario is a more specific one, pertaining to the Telemetry, Track-

ing and Control channel of a satellite system, exposed to intentional jamming.

A robust receiver design is proposed to cope with intentional tone jamming

in the considered Binary Frequency Shift Keying Fast Frequency Hopping

(BFSK-FFH) scenario, outperforming existing architectures.
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• in Part II, the focus is on the concept of generalized efficiency, which stems from

the classical spectral efficiency Shannon’s plane by taking into account also

efficiency in the power domain. In fact, power is one of the limited resource in a

satellite link, especially considering the non-linearities of high power amplifiers,

that usually result in low efficiency in driving the amplifier operating point,

thus wasting available power. Chapter 4 presents the reference scenario for this

study, which is the case of Mesh Topology Satellite Networks, that is the case

of a single-hop communications between peers, thus without leveraging on a

Gateway or other ground stations, so that terminals can communicate directly

and with reduced latency. Power efficiency is critical in such scenario, since

both ends of the transmission are terminals, typically equipped with small,

low-gain antennas, and with cheaper amplifiers with respect to what can be

implemented at the gateway. The first part of the analysis, in Chapter 5, aims

at assessing the performance of classical Linearly Modulated waveforms against

waveforms based on continuous envelope modulations, considering waveforms

from existing standards, and real-life practical conditions in terms of channel

impairments and receiver non-idealities. Building on this analysis Chapter 6

reports the design of new waveforms for power-limited scenarios, in which there

is the need, at the cost of lower spectral efficiency, to extend towards lower

values the range of operating Signal-to-Noise Ratio (SNR). This activity is

carried out while maintaining compatibility with the techniques adopted in the

reference standard (DVB-RCS2) by selecting the most appropriate Continuous

Phase Modulation (CPM) and Convolutional Coding (CC) parameters to face

the described scenario.

• an overview on Satellite Communications Systems, definitions, architecture

elements and beam-forming, are presented in Appendix A.

Original Contributions in this Ph.D. program

The mentioned demand for higher system throughput and the limitation in spectrum

and resources availability, resulting in the need for energy efficiency requirements and

in reuse of spectrum portions, motivates the study carried out in this thesis: on one

hand interference limited Satellite Communications Systems need to be considered,

whereas typically SatComs have been considered only limited by noise; on the other

hand power limitations, particularly in return link scenarios or in Mesh Peer-to-peer
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connections, are an issue to be tackled by means of energy efficient link designs. The

activities performed during the three years of this doctorate study led me to obtain

original scientific contributions in several fields. With reference to the subjects of

Part I, the main contributions are the following:

• detailed system-level analysis of the interference environment in a real-life

multi-beam satellite system, according to parameters and antenna descriptions

provided by the European Space Agency [1].

• characterization of lower and upper bounds for the overall capacity of the

Return Link of a multi-beam satellite system in presence of interference [1,2].

• design of Successive Interference Cancellation strategies, inspired by terrestrial

cellular communications, for multi-beam multi-gateway satellite communica-

tions systems: a first technique is proposed for cancelling the interference

generated by co-channel transmissions from terminals in beams within the

cluster served by the same gateway (Successive Intra-Gateway Interference

Cancellation); a second architecture maintains the features of the first one but

also considers a cooperation structure between multiple Gateways on ground

(Successive Intra- and Inter-Gateway Interference Cancellation), which allows

exchange of decoded data and thus parallelization of interference cancellation

by removing also interference generated by users in beams served by other

gateways, improving the capacity, which is brought closer to the upper bound

at lower complexity than the optimal case. These strategies represent a de-

sign tool allowing a trade-off between computational complexity and achieved

performance, based on the requirements of the system and considered scenar-

ios. [2–4].

• analysis and physical layer performance assessment for the applicability of

Successive Interference Cancellation (as presented in Chapter 1 to the Forward

Link of a multi-beam satellite system, at the terminal side, as reported in [5].

• proposition of a modified novel Successive Interference Cancellation algorithm

for the Forward Link of a multi-beam satellite system, based on power or

Modulation and Coding format unbalance between beams, [5].

• design of a new receiver for the specific scenario of a Fast Frequency Hopping

- Frequency Shift Keying system, which is being proposed as a solution for
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the digitisation of the Telemetry, Tracking and Control subsystem of a satel-

lite. The idea is based on the use of two thresholds in the demodulator, to

which the received signal is compared and the output of this comparison is

handled by a logic unit that takes the demodulation hard decision, improving

the performance of existing receivers in presence of intentional interfering tone

jamming [6].

It is worthwhile highlighting that the activities related to Part I of this thesis were

performed in the context of, and represented valued contributions to, the following

European Space Agency studies:

• ESA Network of Experts “Satellite Communications Network of Experts (SatNEx-

III)”

• ESA Study ”Next Generation Waveforms for Satellite Systems”

• ESA Study “Spread Spectrum System for TT&C and payload control links”

Regarding the study of waveform efficiency in mesh satellite networks, reported

in Part II the most important contributions are:

• analysis of suitability of waveforms based on Linear and Continuous Phase

Modulation formats in mesh satellite networks architectures, in reference to

real-life scenarios and existing standards, and with the objective of jointly max-

imising spectral and power efficiency, performance evaluation and comparison,

for candidate techniques selection in the considered scenario. The outcome

of this activity proved that for applications with moderate required trans-

fer rates, CPM waveforms, in real-life conditions, outperform linear waveform

thanks to their constant envelope and resilience to impairments, in particular

non-linearities. ( [7, 8]).

• design of new proposed waveforms for the DVB-RCS2 standard, based on

Continuous Phase Modulation and specifically designed to cope with applica-

tions such as terminal-to-terminal (e.g., Mesh non-infrastructured networks)

in which the main requirements are imposed in terms of Power availability.

In such power limited cases, lower spectral efficiency is accepted in the de-

sign, leading to choices aimed at maximising the performance at the identified

spectral efficiency while using the minimum power ( [9]).

Activities reported in Part II of this thesis were performed in collaboration with
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• Mavigex Srl (Bologna, Italy)

• The ESA/ESTEC study “Cost Effective Satellite Terminals for MESH Overlay

Networking”

Further contributions related to Part I refer to Beam Forming techniques for

satellite systems, as in [10–14]
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Space division multiple access is usually adopted by organizing the satellite cov-

erage in separate beams, each serving a specific geographical area. Depending on

the target service, the geographical area dimensions can range from large, thus re-

quiring a small number of beams, to small, thus requiring a large number of beams

up to few hundreds. Notably, Multi-Beam coverage resembles the terrestrial cellu-

lar coverage approach. However, differently from terrestrial systems that rely on

multiple base stations each one with its own antenna, satellite systems are based on

the use of a single antenna at the satellite with multiple feeds. In turn, this poses

a significant burden on the design of the satellite antenna that must ensure enough

electromagnetic separation between beams in order to realize the target Multi-Beam

coverage. In this framework, single-feed per beam and multi-feed per beam archi-

tectures, possibly paired with beam forming techniques, are currently studied and

adopted.

In Multi-Beam satellite networks, beams are organized in clusters, each cluster

controlled by a different ground station (gateway) in order to allow for the adop-

tion of spatial division multiplexing in the feeder link, i.e., from the satellite to the

gateway. As a matter of fact, in high throughput Multi-Beam satellite communica-

tions systems, the feeder link may become the system bottleneck, since it represents

the mean to carry the entire aggregated user generated traffic from the satellite

towards the on ground core network. For this reason the total traffic at the satel-

lite is split on different feeder links each one feeding a different and geographically

separated gateway. For broadband satellite systems with hundreds of beams the

number of gateways goes up to several tens. Multi-beam coverage is then usually

combined with color reuse schemes, where a color is identified as a carrier frequency-

polarization pair. Color reuse aims at reducing the interference among adjacent

beams (inter-beam interference) in order to improve the user signal-to-interference-

plus-noise-ratio (SINR) at the expense of a reduced total achievable throughput, as

it happens with frequency reuse in terrestrial cellular systems. As a matter of fact,

a trade-off can be sought between colour reuse and system throughput, as a function

of the inter-beam interference that can be accepted by the system.

Conventional satellite systems try to avoid interference based on the orthogo-

nalization principle meaning that each user is allocated a separate channel in time,

frequency or code domain to mitigate such interference, or more recently in Multi-

Beam systems by exploiting the spatial dimension as well, separating users spa-

tially by means of sharp beams shape. In these cases then, Interference is therefore
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avoided, rather than handled. This could therefore be categorized as Interference

Avoidance (or Rejection), achieved for instance by means of orthogonal separation

methods or by using Spreading techniques such as CDMA and Frequency Hop-

ping [16–18]. Other approaches aimed at mitigating interference in satellite systems

are based on precoding [19, 20]. However, it is known that in many cases interfer-

ence can actually be actively exploited. Different ways of approaching Interference

are in fact Interference Cancellation and Multi-User Detection (MUD) [21–24], in

which the main idea is to exploit the presence of interfering signals, that can be

decoded significantly improving the real operating Signal-to-Interference plus Noise

(SINR). The main difference between these two approaches is that in interference

cancellation, one signal is typically decoded at each time, and an iterative process is

adopted to remove the interference from the original aggregate signal, progressively

improving the SINR, whereas in Multi-User Detection all the detectable signals are

decoded jointly, thus treating the aggregate signal as a single macro-signal, that can

be decoded, at the expense of higher complexity.

An overview on Satellite Multi-Beam Systems is given in Appendix A, in which

the concept of Beam Forming in satellite systems is presented. This also represents

the reference Multi-Beam architecture, that will be the reference for the remainder

of this Part.

This part is divided in two main distinguished study cases: Chapter 1 reports

the analysis of Interference Cancellation Strategies, inspired by terrestrial cellular

counterparts, in the Return Link of a Multi-Beam Satellite System, in which signals

are transmitted by terminals on ground, via the Satellite and to a Gateway (Earth

Station); Chapter 2 deals with the impact and challenges for Interference Cancel-

lation strategies on the Forward link of a Multi-Beam Satellite System, in which

signals are transmitted by the Gateway via the Satellite and to the terminal. It

will be shown that these two scenarios present significant differences that impose

specific considerations on the design and applicability of Interference Management

algorithms.

Part I is then concluded by Chapter 3 in which is considered the specific scenario

of a Fast Frequency Hopped - Binary Frequency Shift Keying system (FFH-BFSK),

which is being considered as a solution for the next generation Tracking, Telemetry

and Control channel of a Satellite System, reports the design of a novel receiver for

such scenario that outperforms existing receivers architectures in terms of resilience

to intentional interference (tone jamming in the considered case).



Chapter 1
Interference Management in SatCom

Systems: Return Link

Current satellite communication systems are subject to interference between dif-

ferent transmissions. The typical approach to face such nuisance is the design of

orthogonal transmissions, in the frequency domain, in the time domain or in the

code domain. The baseline solution for all other interference sources, coming from

resource reuse strategies, is to treat them as additional noise, therefore degrading

the performance of the system.

In the context of ever growing demands in transfer rates and overall system ca-

pacity, and with pure physical layer techniques approaching theoretical bounds on

the single link level, the trend has recently been a progressive increase in the reuse

of resources, which obviously generates more interference, and forces the systems to

operate in interference limited conditions. Instead of suppressing the interference

then, at the expense of increased complexity, where affordable, the idea is to ac-

knowledge the presence of interference, put in the system in a controlled way from

the design, and leveraging on its description. In a way it is like expanding the set of

useful signals to be decoded. This chapter analysis tackles the case of next genera-

tion FSS (Fixed Satellite Service) providing an interactive broadband type of traffic.

In particular, the Return Link of such system is considered, and the purpose is to

evaluate and analyse first the fundamental theoretical bound in terms of capacity

of the system in presence of interference, and subsequently, the use of interference

mitigation strategies, also accounting for the Multiple Gateway (GW) dimension,

which is motivated in Multi-Beam system with very large number of beams, by
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feeder link limitations, that is, bandwidth limitations on the link between the Satel-

lite and the Gateway in which typically signals from different beams are multiplexed

in frequency, thus requiring large bandwidths.

The optimal way to exploit the presence of interference is the one in the paradigm

of [22], in which Multi-User Detection is presented (see also [23, 25–28]). In this

context all signals are jointly decoded, by devising a more complex receiver. The

drawback of these approaches, that would prevent practical use in the scenario

considered in this chapter, is the complexity, that would be unmanageable since the

number of signals to be jointly decoded would be very high, as it will be shown

later when the scenario parameters will be presented. An alternative approach is

the so-called Iterative Interference Cancellation, [21] (see also [29, 30]), in which

instead of being jointly detected, signals are iteratively decoded one by one, and

then subtracted by the aggregated signal, therefore improving the SINR at each

step. In case of Minimum Mean Squared Error (MMSE) filtering, [31] it has been

shown that this approach has been proven to be capacity achieving, converging to

the upper bound on the capacity of the system, which is given by the multiple-input

multiple-output (MIMO) joint detection [32].

The objective of the study presented in this chapter, is to devise a system ar-

chitecture in which capacity is improved by means of interference mangement tech-

niques. The selected techniques refer to the Interference Cancellation paradigm, and

are designed to also exploit cooperation between gateways on ground.

In the following, first the reference scenario and parameters will be presented,

then the lower and upper bound for the system capacity will be characterized, and

then Interference Management strategies for such system architecture are discussed.

1.1 Scenarios and Parameters

The baseline Multi-Beam scenario of interest for this analysis is reported hereafter:

it is represented by the antenna beam pattern, provided by the European Space

Agency (ESA), and refers to a 245 single feed per beam pattern at 30 GHz for the

Return Link providing European coverage. The number of beams will be denoted by

K. The beam pattern is such that the edge at 4.3 dB below the maximum of each

beam pattern allow to cover Europe without holes (”tessellate”). Fig. 1.3 shows the

co-polar footprints, but the antenna pattern also includes cross-polar components,

considered in this analyisis. The coverage area can be defined as the union of the K
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footprints of the beams.

Numerically, the beam pattern provides, for each point of the grid that consti-

tutes the coverage area, the value of the co-polar and cross-polar component of the

radiation pattern for all K beams. More in detail:

• Gcp(k, u, v) is the co-polar (cp) transmit power gain between beam

k (k = 1, . . . ,K) and user terminal with coordinates (u, v) over the coverage

area.

• Gxp(k, u, v) similarly to Gcp(k, u, v) but reffering the cross-polar (xp) compo-

nent of the antenna pattern

Two main study cases have been considered, one with full European coverage

and one with a supernational area coverage, the latter being selected in order to

have a comparison of the impact of the considered techniques and of real-life effects

such as coverage edge regions in systems of different size, and five different scenarios

are considered:

• Scenario 1.a: Full coverage, 4 colours (Frequency Reuse factor FR = 4) and

chessboard colour reuse scheme, i.e., each gateway controls a number (which

varies from gateway to gateway since the overall number of beam is 245 and

the coverage region is irregular) of adjacent beams that uses 4 different colours,

see figure 1.1. The 4 colors are generated by considering 2 frequency bands

and 2 orthogonal polarizations. Consequently, the bandwidth per beam is 250

MHz.

• Scenario 1.b: Full coverage, 250 MHz bandwidth and uniform colour reuse

scheme, i.e., each gateway controls a subset of adjacent beams all of which use

the same colour, see figure 1.2.

• Scenario 1.c: Full coverage, full frequency reuse and constant feeder link band-

width, i.e., the total number of gateway is increased by a factor equal to the

number of frequency colours, and consequently the number of controlled beams

per gateway is reduced by the same factor, with respect to scenarios 1.a and

1.b in order to keep a constant feeder link bandwidth.

• Scenario 2.a: Supernational coverage (specifically over the France-Germany-

Italy-Benelux-Switzerland area) Corresponding to scenario 1.a but with re-

duced coverage, depicted in Figure 1.4 (4 Colours and 250 MHz of bandwidth)
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• Scenario 2.b: Supernational coverage, 500 MHz of bandwidth and full fre-

quency reuse. This is represented in Figure 1.5 (Equivalent to scenario 1.b but

with reduced coverage)

Figure 1.1: Traditional chessboard colour reuse scheme, FR = 4.

1.2 System model

In this section the return link system model is described, considering one use of

the same resources at the same time, which implies focussing on a single slot of the

Multi-Frequency Time Division Multiple Access (MF-TDMA) grid of the transmit-

ted signals. Considering a total of K beams in the system, the received signal at

the satellite can be represented as

y = Hx + n (1.1)

where x is the (K × 1) transmitted signal vector, that includes a power allocation

matrix, as

E
[
xxH

]
= diag(P1, . . . , PK) (1.2)

where Pi is the the i-th user transmitted signal power. Also, n is the (NA× 1) vector

of additive white Gaussian noise (AWGN), and H is the overall (NA ×K) channel

matrix. NA is the number of satellite antenna feeds, with NA ≥ K.
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Figure 1.2: Uniform colour reuse scheme, FR = 4.

Element Hjk of such matrix represents the aggregate complex coefficient related

to the link between the k-th user (i.e., the k-th beam) and the j-th satellite antenna

feed, accounting for several effects. It can be factorized as

Hjk =
√
GTkG

R
jk/
√
AIk (1.3)

in which GTk is the k-th user antenna gain, AIk is the isotropic attenuation between

the k-th user and the satellite, and GRjk is the antenna gain for the the j-th satellite

antenna feed in the direction of the k-th user’s location.

This system model is based on two main simplifications: first, all received signals

are detectable, i.e. have a strength higher than a receiver-specific threshold, which

might not be the case, and secondly, all the receive feed signals are available to the

ground station, which might be not true considering feeder link bandwidth limita-

tions (it will be the assumption for the ideal case, representing the upper bound for

overall system capacity). In order to extend the system model to further account

for the mentioned aspects, following the approach in [33], the structure of matrix H

can be decomposed in more detail, distinguishing between different contributions,

as follows. First, it can be written

H = D + P (1.4)

where matrix D represents only detectable paths, defined as those whose detected

power is above a physical threshold in the receiver’s hardware, and matrix P contains



18 Interference Management in SatCom Systems: Return Link

FSS Beam Coverage, 4.3 dB
 30

°
 W   0

°
    30

°
 E  60

°
 E 

 30
°
 N 

 45
°
 N 

 60
°
 N 

Figure 1.3: The FSS 245 beams antenna pattern. The triple point is 4.3 dB.

undetectable paths, which can be seen as a contribution to the noise floor. Hence

Djk =

Hjk if Pk|Hjk|2 > ξ

0 otherwise
(1.5)

where ξ is the receiver’s sensitivity. On top of this separation between detectable

and undetectable paths, a further, more important extension to this model is made:

matrix D can be written in terms of the sum of two contributions, one related to

beams served by the same GW serving, among others, the beam in which the random

location of the desired user falls, and the second one accounting for all the remaining

signals intended for beams served by different GWs. Focusing on a generic GW, it

can then be written

D = U + V (1.6)

where an element Ujk of U is non zero and equal to Djk if and only if the k-th user

is served by the GW receiving the j-th feed; on the other hand, an element Vjk of

V is non zero and equal to Djk if and only if the k-th user is not served by the GW

receiving the j-th feed.
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Figure 1.4: The FSS 61 beams Supernational antenna pattern.

In the next sections, dk, uk, vk, and pk will represent the k-th (NB × 1) column

vector of D, U, V, and P, respectively.

Table 1.1 summarizes the numerical parameters that have been used for all the

computer simulations in this chapter to obtain the results being presented. In the

following, only co-channel interference has been considered, being the focus of this

study, since cross-polarization antenna interference is negligible with respect to the

co-polar antenna pattern.

1.3 Return Link Interference Analysis

In this section the link budgets for the selected scenarios is reported first, and then

the interference environment in such Return Link scenarios is analysed. Starting

from C/I, C/N and C/(N+I) expressions for a generic user in the system, the anal-

ysis is based on the link budget reported in Table 1.2, and the Probability Densiti

Functions (PDFs) of C/I, C/N and C/(N + I) are shown in figures 1.6, 1.7, 1.8, 1.9

and 1.10. These values refer to an EIRP of 45 dBW, which is representative of the

typical operating range, and are calculated assuming that each gateway leverages
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Figure 1.5: The FSS 61 beams Supernational antenna pattern.

on multi-antenna processing, which means that the gateway can leverage on the

knowledge of the generic user’s signal at all feeds (not only the corresponding useful

one) to improve the signal to noise ratio for that user. These evaluations are con-

sidered a baseline, as there are no interference cancellation strategies involved, and

the receiver is assumed to be based on matched filters, instead of optimal solutions,

such as MMSE filtering. One user per beam has been considered, as it will be in

the remainder of this chapter. Following the classical SINR derivation for a linear

receiver as in [34], the expressions used for this evaluation are reported below, for

the k-th user in the system (see also [33])(
C

N

)
k

=
Pk‖uk‖4

u∗k (N0I) uk
(1.7)(

C

I

)
k

=
Pk‖uk‖4

u∗k

(∑NB
l=1, l 6=k Plulu

∗
l +

∑NB
l=1 Plvlv

∗
l +

∑NB
l=1 Plplp

∗
l

)
uk

(1.8)

(
C

N + I

)
k

=
Pk‖uk‖4

u∗k

(∑NB
l=1, l 6=k Plulu

∗
l +

∑NB
l=1 Plvlv

∗
l +

∑NB
l=1 Plplp

∗
l +N0I

)
uk
(1.9)

(1.10)
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Table 1.1: User link system parameters for the Return Link

Parameter Value

Satellite height 35786 km (geostationary)

Beam radiation pattern: Provided by ESA

Gcp(l, Uk, Uk), Gxp(l, Uk, Uk) (Single feed per beam antenna)

(l, k = 1, . . . ,K)

Total number of beams 245

Number of users served at each time slot 245

(in the frequency band of interest) (one per beam)

UTs location distribution Uniformly distributed

within each beam footprint

Carrier frequency 30GHz (Ka band)

Total user link bandwidth BT 500 MHz

User signal bandwidth BU 5 MHz

Polarization in user link dual

UT antenna gain G2
T 46 dBi

Satellite noise temperature Tn 515.7 K

Feeder link bandwidth 4 GHz (2 GHz on each polarization)

It is supposed that the interference relevance is much higher in scenarios 1.b

and 1.c, as in scenario 1.c there is no frequency reuse involved, while in 1.b, there

is a reuse factor 4 but the beams to gateways allocation forces the interferers to

be closer in space, which means that interfering beams have not vanished at the

point of crossing the edge of other beams, thus their impact is more significant. It

is interesting however to notice that, in the considered conditions, even scenario 1.a

is limited by the interference, thus suggesting the use of IC strategies even in this

case.

1.4 System Capacity upper and lower bounds

In this section the lower and upper bound for the system under analysis are discussed.

As previously mentioned in Section 1.3, the benchmark case is based on simple

Matched Filtering (MF) with no interference management processing on the signals

available to a single GW.
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Table 1.2: Return Link Single Beam Link Budget in Clear Sky Conditions

Parameter Four Colours Case Single Colour case

Transmit EIRP [dBW] 45

Isotropic attenuation at 30 GHz [dB] 213.50

Measured satellite antenna gain [dB] 57

Received power [dBW] -111.50

Satellite noise temperature [K] 515.70

Number of polarizations 1 2

System bandwidth [MHz] 250 500

User channel bandwidth [MHz] 5

Number of users per beam 50 200

Noise power [dBW] -134.49

C/N [dB] 22.99

The upper bound is based on the MMSE Successive Interference Cancellation

(SIC) approach with centralized processing, i.e. assuming that a single equivalent

GW performs of all the processing. This means that it is considered that a central

entity is able to process all the received signals from all beams, therefore neglecting

feeder link bandwidth limitations, to represent the ideal case leading to optimal

capacity. This processing has been shown to be capacity achieving, i.e. reaching the

limit for a MIMO channel given by the Telatar formula [32].

For a generic user k, its spectral efficiency can be written as

ηk = log2

(
1 +

1

Γ
SINRk

)
(1.11)

where Γ is the back-off factor accounting for non-idealities of the forward error

correction [35], in the following considered equal to 1 for simplicity.

Therefore, the average spectral efficiency among all users can be written as

η = E [log2 (1 + SINRk)] = E [ηk] (1.12)

from which the average throughput is easily obtained as

T = Buη (1.13)

where Bu is the user channel bandwidth.



Interference Management and Energy Efficiency in Satellite
Communications 23

−10 0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C/I, C/(N+I), C/N [dB]

P
D

F

 

 

C / (N+I)

C / I

C / N

Figure 1.6: C/I, C/N and C/(N + I) distributions for scenario 1.a at EIRP=45

dBW

MMSE-SIC is based on an iterative process composed of two stages, i.e. the

MMSE fltering of the received (and buffered) signals, and then the detection of the

strongest (i.e., having highest SINR) user signal and its subtraction from the re-

ceived signal. Considering the k-th user, the SINR in case of Successive Interference

Cancellation with Centralized Processing is

SINRk = Pkd
∗
k

(
RC
k

)−1
dk (1.14)

where the matrix RC
k includes all nuisances contributions, i.e. users signals to

be canceled, non-detectable signals, and noise, and can be written as

RC
k =

NB∑
l=1, l 6=k

Pldld
∗
l − β

k−1∑
l=1

Pldld
∗
l +

NB∑
l=1

Plplp
∗
l +N0I (1.15)

where N0 is the noise complex samples’ variance, β is a term with value between

0 and 1 that accounts for non-ideal cancellation (when lower than 1) and I is an

identity matrix.
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Figure 1.7: C/I, C/N and C/(N + I) distributions for scenario 1.b at EIRP=45

dBW

1.4.1 Simulation Results

Simulation results are reported for the benchmark configuration (MF processing on

a single GW) and for the upper bound (Centralized Processing (CP) MMSE-SIC)

in scenarios 1.a, 1.b and 1.c. More in detail, Figures 1.11 to 1.18 report the upper

bounds on the per-user spectral efficiency and on system throughput. Clearly, the

results for spectral efficiency and throughput confirm the fact that scenarios 1.b

and 1.c are strongly interference limited. Surprisingly, also in scenario 1.a, even

with much lower interference, the system is still essentially interference limited, as

it can be appreciated in the PDF plots in the previous sections. For this reason,

the expected impact of interference mitigation techniques is higher for scenarios 1.b

and 1.c. In general, scenarios 2.a and 2.b are fairly aligned to scenarios 1.a and 1.c,

respectively, on a subset of which they are indeed based, with a slight performance

improvement in 2.a and 2.b. This is due to the fact that there are less interferers in

the system, and therefore, each beam, when considered as the useful user’s beam, is

less affected by interference.
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Figure 1.8: C/I, C/N and C/(N + I) distributions for scenario 1.c at EIRP=45

dBW

−10 0 10 20 30
0

0.1

0.2

0.3

0.4

C/I, C/(N+I), C/N [dB]

P
D

F

 

 

C / (N+I)

C / I

C / N

Figure 1.9: C/I, C/N and C/(N + I) distributions for scenario 2.a at EIRP=45

dBW
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Figure 1.10: C/I, C/N and C/(N + I) distributions for scenario 2.b at EIRP=45
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Figure 1.11: Upper bound on spectral efficiency in scenario 1.a, including zoom

around EIRP=45dBW.



Interference Management and Energy Efficiency in Satellite
Communications 27

20 40 60 80 100 120
0

5

10

15

20

25

30

35

EIRP [dBW]

S
E

 [
b

it
/s

/H
z
]

 

 

MF

MMSE−SIC CP

40 45 50 55 60
0

5

10

15

20

EIRP [dBW]
S

E
 [
b
it
/s

/H
z
]

 

 

MF

MMSE−SIC CP

Figure 1.12: Upper bound on spectral efficiency in scenario 1.b, including zoom

around EIRP=45dBW.
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Figure 1.13: Upper bound on spectral efficiency in scenario 1.c, including zoom

around EIRP=45dBW.
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Figure 1.14: Upper bound on throughput in scenario 1.a, including zoom around

EIRP=45dBW.
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Figure 1.15: Upper bound on throughput in scenario 1.b, including zoom around

EIRP=45dBW.
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Figure 1.16: Upper bound on throughput in scenario 1.c, including zoom around

EIRP=45dBW.
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Figure 1.17: Upper bound on spectral efficiency and throughput in scenario 2.a
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Figure 1.18: Upper bound on spectral efficiency and throughput in scenario 2.b
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1.5 Interference cancellation strategies

In the following, the proposed interference cancellation strategies of interest are

presented. The core idea is to extend and adapt the approach followed for terrestrial

cellular cases, as in [33], in a Multi-Beam Satellite Scenario. It is proposed a double

strategy for dealing with co-channel interference, one of which leverages also on

gateway cooperation.

More in detail, intermediate solutions between lower and upper bound are repre-

sented by the Successive Intra-Gateway Interference Cancellation (SI2C) and Succes-

sive Intra- and Inter-Gateway Interference Cancellation (SI3C) which require differ-

ent level of coordination and cooperation amongst GWs. Assuming a Multi-Gateway

scenario, in Successive Intra-Gateway Interference Cancellation each gateway at each

iteration decodes the signal showing the highest SINR, and removes it from the ag-

gregate signal, therefore improving the SINR progressively. This is therefore a low

complexity (given the reduced number of signals to be decoded with respect to SIC-

CP) SIC solution. In Successive Intra- and Inter-Gateway Interference Cancellation,

on the other hand it is assumed that GWs are connected through a high-speed net-

work, and they could cooperate exchanging the decoded data, i.e. performing an

inter-GW interference cancellation [1, 40]. In this second case, at each iteration,

each gateway decodes the strongest signal and subtracts it from the aggregate sig-

nal composed by the signals pertaining to the beams it serves, but it also shares

this decoded signals to the other gateways. Gateways receive therefore information

on the interfering signals outside the cluster of beams they serve. By remodulating

such signals, each gateway can subtract those from their aggregate signals, therefore

obtaining a parallelization of the interference cancellation.

In the following the impact of such cancellation strategies on the SINR expression

is given.

Considering a simpler matched-filter processing, we can write

SINRk =
Pk‖uk‖4

u∗kRkuk
(1.16)

for the case of no-processing, intra GW processing and inter GW processing, these

cases differing only in the structure of the matrix R. In fact, for the case of no

processing, already introduced in Section 1.3 we have

R0
k =

NB∑
l=1, l 6=k

Plulu
∗
l +

NB∑
l=1

Plvlv
∗
l +

NB∑
l=1

Plplp
∗
l +N0I (1.17)
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For the case of intra-GW processing, it can be written

RI
k = R0

k − β
k−1∑
l=1,

Plulu
∗
l (1.18)

where β includes the effect of non-ideal interference cancellation. For the case of

inter-GW processing

RII
k = RI

k − β
k−1∑
l=1

Plvlv
∗
l (1.19)

Similarly

SINRk =
Pk‖dk‖4

d∗kR
C
k dk

(1.20)

holds for the case of a single equivalent GW, which can be achieved through coor-

dinated processing. Note that in this case column vectors in the expression of the

SINR take from matrix D instead of matrix U, since in the case of centralized pro-

cessing, all the antenna elements are used, therefore there is no distinction between

matrices U and V. Considering MMSE signal processing, the receiver SINR can be

written as

SINRk = Pku
∗
kR
−1
k uk (1.21)

where Rk has the same meaning as above (i.e. it may be equal to R0
k, RI

k, or RII
k )

1.5.1 Interference Cancellation: Performance Analysis

1.5.1.1 System Throughput

In this section the performance of the IC techniques previously described is shown, in

terms of average system throughput, in order to study how beneficial those could be

with respect to the baseline case, and how close to the upper bound the system can

get. Performance is evaluated in the AWGN channel as a reference, and considering

the effect of rain fading (accounted for as per the ITU p1853 Model, [36], parameters

being set for northern Italy) and the case of non-ideal cancellation. This latter

case translates into having β < 1 in the cancellation stage, for instance due to

non-ideal detection of the signals to be cancelled and non-perfect estimation of the

corresponding channel coefficients.

The behaviour of each IC technique varies depending on the considered scenario

as it can then be observed in Figures 1.19 to 1.23. As expected, in all cases, SIC

with Centralized Processing (which in case of MMSE filtering matches the optimal

Joint Detection performance) is the best performing technique. Depending on the
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Figure 1.19: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.a AWGN and AWGN with Rain Fading

Frequency Reuse pattern and on the scenario, SI3C can yield marginal benefits in

scenario 1.b, where the interference is mainly coming from inside the same cluster

(i.e., beams served by the same gateway) thus cancelling interference from other

gateways does not bring much improvement to system throughput, but also signif-

icant benefits to all other scenarios, in which gateways cooperation improves the

performance by about 15% to 50%, the highest referring, as expected, to the cases

of reuse factor 1, where there is more interference to be cancelled.

Similar conclusions are drawn from Figures 1.24 to 1.28, in which non-ideal can-

cellation is taken into account. More in detail, it is assumed that each cancellation,

being non-ideal, leaves a 1% residual, which means that the residual is 20 dB lower

than the original signal to be deleted. This represents a more harmful impact than

rain fading on the overall performance.

When both nuisances are considered, counter-intuitively, it can be seen that,

with non-ideal cancellation, the Rain Fading has a slight beneficial effect, being a

further attenuation for all signals, i.e., also for all the interferers. This is reported

in Figures 1.29 to 1.33.
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Figure 1.20: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.b AWGN and AWGN with Rain Fading
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Figure 1.21: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.c AWGN and AWGN with Rain Fading
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Figure 1.22: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 2.a AWGN and AWGN with Rain Fading
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Figure 1.23: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 2.b AWGN and AWGN with Rain Fading
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Figure 1.24: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.a AWGN and AWGN with Non-Ideal Cancellation (β = 0.99)
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Figure 1.25: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.b AWGN and AWGN with Non-Ideal Cancellation (β = 0.99)
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Figure 1.26: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.c AWGN and AWGN with Non-Ideal Cancellation (β = 0.99)
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Figure 1.27: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 2.a AWGN and AWGN with Non-Ideal Cancellation (β = 0.99)
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Figure 1.28: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 2.b AWGN and AWGN with Non-Ideal Cancellation (β = 0.99)
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Figure 1.29: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.a AWGN, Rain Fading, and Non-Ideal Cancellation (β = 0.99)
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Figure 1.30: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.b AWGN, Rain Fading, and Non-Ideal Cancellation (β = 0.99)
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Figure 1.31: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 1.c AWGN, Rain Fading, and Non-Ideal Cancellation (β = 0.99)
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Figure 1.32: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 2.a AWGN, Rain Fading, and Non-Ideal Cancellation (β = 0.99)
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Figure 1.33: IC Techniques Performance Average System Throughput vs. EIRP

[dBW] - Scenario 2.b AWGN, Rain Fading, and Non-Ideal Cancellation (β = 0.99)
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1.5.1.2 System Availability

The analysis carried out so far has been focussing on the throughput (or spectral

efficiency, equivalently) as the only measured figure of merit of the system. On top

of this, an evaluation of the system availability is presented in this section, intended

as the probability that the operating SINR (for instance, throughout the iterative

process) is greater than a certain design (or required) value. This analysis leverages

on the evaluation of the SINR probability distributions and can further assert the

soundness of the proposed solutions. To this extent, the Cumulative Distribution

Function (CDF) of the SINR for the IC techniques were computed. The results

are plotted in figures 1.34 and 1.35 for scenario 2.a and 2.b, respectively, while

the number of beams in scenario 1 does not allow to perform this analysis in an

acceptable computer time. Starting from the CDF of the SINR, which represent

the probability that the SINR is less or equal to a certain value, the availability is

simply given by 1 − CDF , to be evaluated at a relevant SINR. In figures 1.34 and

1.35 there are two vertical lines, representing the SINR threshold required for reliable

transmission with two DVB-RCS2 modcod, i.e. the ones having the lowest and the

highest spectral efficiency. As it can be seen, in Scenario 2.a, in which four frequency

colours are used, interference does not completely prevent the system availability:

the black vertical line represents in fact the minimum SINR required for the L1

waveform in the DVB-RCS2 standard, which corresponds to the lowest spectral

efficiency, i.e., the highest waveform protection, and the availability is 100% even

for the case of MF with no IC. On the other hand, if the highest spectral efficiency

waveform is considered, i.e. S10 in DVB-RCS 2, which is the least protected, with

simple MF, the availability would reach roughly 81% which is barely acceptable

in practice. This means that IC techniques allow for the adoption of the highest

MOD/COD, or, in future, include the presence of such techniques in the design of

even higher order MOD/CODs, thus increasing the overall throughput.

A different case is represented by scenario 2.b, in which only one colour is used,

thus much more interference is allowed into the system. In this case, even for the

lowest MOD/COD, without IC, successful transmission would be prevented, since

availability for MF would be around 55%, whereas the adoption of IC techniques

yields great benefits: already SI2C shows an availability of around 99%, while SI3C,

and the ideal case of CP-SIC tend to 100%. Moreover, in this case, is shown that

even with IC techniques, the availability for the highest MOD/COD (S10) is not

acceptable, except for CP-SIC, but intermediate MOD/CODs, higher than L1, could
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Figure 1.34: Availability for L1 and S10 Waveforms from the DVB-RCS2 standard

- Scenario 2.a

be safely used for successful transmission.
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Figure 1.35: Availability for L1 and S10 Waveforms from the DVB-RCS2 standard

- Scenario 2.b
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1.5.1.3 Decoding and Cancellation Order Analysis

In this section an additional investigation is reported, related to the decoding and

cancelling order and its impact on the overall system performance. The decoding

and cancellation ordering has been verified not to affect the system throughput (i.e.

the sum rate), as expected, in case of MMSE-SIC, since the SINR of all iterations is

employed in the calculations of the sum rate in any case, regardless of the order of

cancellation. This can be easily extended to the case of SI2C, which can be thought

as several small-scale CP-SIC systems affected by co-channel interference. This is

more interesting in case of SI3C, for which the optimal ordering is based on both

intra-gateway and inter-gateway interference reduction: in this case canceling with

a maximum SINR criterion of each gateway is not necessarily optimal for the other

gateways perceived interference, thus for the overall system.

However it can be seen that the maximum SINR cancellation ordering criterion

improves the SINR average distribution (over all the signals in the different itera-

tions), as it is shown in Figures 1.36 - 1.40, in which the PDFs are shifted to the right

(i.e., more contributions at higher values of SINR in dB) and the CDFs’ slope is in-

creased as a consequence, which is in line with what expected. The interpretation of

this is an increased fairness among the users: when random order (e.g. no ordering)

is adopted, although the end sum rate remains the same for the system, there might

be larger unbalance between users SINR. On the other hand, it is shown that with

ordering based on the highest SINR at each stage, the SINR PDFs are shifted to

the right (and correspondingly, the CDFs show increased slope) with higher average

value peak (i.e., larger number of occurrences around the average), which indicates

that the SINRs of all users are distributed more fairly towards an higher average

value.

The evaluations shown in the previous section already include this ordering strat-

egy.
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Figure 1.36: SINR PDF and CDF: fixed vs. maximum SINR based cancellation

ordering at EIRP=45dBW - Scenario 1.a
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Figure 1.37: SINR PDF and CDF: fixed vs. maximum SINR based cancellation

ordering at EIRP=45dBW - Scenario 1.b
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Figure 1.38: SINR PDF and CDF: fixed vs. maximum SINR based cancellation

ordering at EIRP=45dBW - Scenario 1.c
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Figure 1.39: SINR PDF and CDF: fixed vs. maximum SINR based cancellation

ordering at EIRP=45dBW - Scenario 2.a
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Figure 1.40: SINR PDF and CDF: fixed vs. maximum SINR based cancellation

ordering at EIRP=45dBW - Scenario 2.b
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1.6 Results Summary

The target of this chapter analysis was to devise a Multi-Beam satellite system

architecture capable of managing co-channel interference. Starting by the charac-

terization of lower and upper bound in system capacity, the design was based on

Successive Interference Cancellation within the cluster of beams served by one gate-

way and also allowing a degree of cooperation between gateways. This analysis

has shown that, although a reuse factor of 4 reduces the relevance of interference,

thus the gaps to be filled by IC techniques with respect to the ideal joint detection

bound are smaller, still, significant benefits are brought to the system performance

by removing interference, and it was shown that, unlike classical satellite systems,

Multi-Beam architecture, based on real-life parameters and antenna descriptions,

operate in interference limited mode, rather than in noise limited mode. There-

fore IC techniques and gateway cooperation are of interest to both cases of full

frequency reuse, and reuse factor 4. In the first case, a large amount of interfer-

ence is allowed into the system, therefore the benefits coming from the use of IC

techniques is macroscopic, both in terms of throughput and availability, whereas in

the latter case, overall system benefits are achieved, as the adoption of less TWTA

amplifiers due to frequency reuse, which might be a requirement for the satellite

platform, while still bringing throughput and availability improvements, although

less dramatically in this case.

Tables 1.3 and 1.4 summarize the results achieved in terms of throughput and

availability, at a practical EIRP value of 45 dBW, for each scenario and each IC

techniques, highlighting the relative gain in percentage with respect to the reference

case of no IC and MF filtering. Availability is reported for the lowest and highest

DVB-RCS2 ModCods.

This activity suggests, as an inspiration for future works already ongoing at the

moment of submitting this thesis, that the design of IC techniques shall be performed

jointly with the design of the antenna system. In fact existing antennas are designed

without taking into account the possibility of cancelling interference, thus aiming

at great directivity. If the antenna is redesigned starting from acknowledging the

presence of IC capabilities in the system, relaxed constraint, allowing more overlaps

between beams (i.e., more interference) might be envisaged thus resulting in reduced

antenna system costs at the same level or even at higher level of performance.
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Table 1.3: Supernational System (61 beams): results summary - Scenario 2.a (with

DVB-RCS2 ModCods)

Scenario RF IC

scheme

Sum

Through-

put [Gb/s]

% gain Availability

(L1 DVB-

RCS2 Mod-

Cod)

Availability

(S10 DVB-

RCS2 Mod-

Cod)

2.a Ref-

erence

4 NoIC-

MF

81 / ≥ 99.99% ≥ 81%

2.a 4 SI2C-

MMSE

102 26% ≥ 99.99% ≥ 99.99%

2.a 4 SI3C-

MMSE

106 31% ≥ 99.99% ≥ 99.99%
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Table 1.4: Supernational System (61 beams): results summary - Scenario 2.b (with

DVB-RCS2 ModCods)

Scenario RF IC

scheme

Sum

Through-

put [Gb/s]

% gain Availability

(L1 DVB-

RCS2 Mod-

Cod)

Availability

(S10 DVB-

RCS2 Mod-

Cod)

2.b Ref-

erence

1 No IC -

MF

74 / ≥ 55% 0

2.b 1 SI2C -

MMSE

182 146% ≥ 99% ≥ 15%

2.b 1 SI3C -

MMSE

240 223% ≥ 99.85% ≥ 40%



Chapter 2
Interference Management in SatCom

Systems: Forward Link

Different considerations hold for the Forward Link (or Downlink, using a more

terrestrial-like names set). The first, and perhaps most important difference in

this case, is in the fact that the receiving end of the transmission is the terminal,

not the gateway, which implies several considerations. On one hand, hardware com-

plexity and capabilities are significantly reduced with respect to the return link,

since a terminal typically has to cope with reduced size, computational capabilities

and available power resources, and on the other hand, the interference generation

process happens in a significantly different way than on the Return Link; in fact,

whereas in the Return Link the overall SINR at the receiving end depends on the

positions of all users on the coverage region (i.e.: antenna gains and channel state

of each transmitting terminal location), in the Forward Link signals are transmit-

ted by the gateway to the terminals through the satellite. This means that the

interference contributions and the SINR level only depend on the reference (desired)

user position (i.e., reference and interferers antenna gains and channel state in its

location).

Typical approaches to Interference Management in the Forward Link are based

on Precoding, and several instances of it ( [19, 20] and references therein), and it

has been shown to potentially have a significant impact on the system performance.

There are, however, several technological aspects that suggest that interest should

be posed also into other solutions for managing interference. First, practical aspects

such market penetration or time to market of a system being designed, suggest that
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the system could benefit from being based on existing, widely diffused standards,

for instance a broadband system based on the DVB-S2 specifications. In such case,

although supported, non-broadcast transmission is based on the creation of a frame

which comprises information bits directed to different users, which are then coded,

interleaved and modulated, therefore, in this scenario, the transmitting end might

have to change precoding matrix at a rate down to symbol time order of magnitude.

On a second level, precoding relies on feedbacks from the terminals, used for channel

estimation, so on the presence of a Return Channel in the system, which is true in

an interactive system, but might not be the case for Direct-to-Home (DTH) services,

therefore Precoding might not be an option. Also, one side effect of precoding is

typically an increased signal dynamic due to linear combinations of signals by means

of the precoding matrix, and this too might be a relevant nuisance for the satellite

on board amplifier.

Building on these consideration, in this chapter, the applicability on the Forward

Link of a Satellite System, of Interference Management strategies based on Succes-

sive Interference Cancellation, as presented in Chapter 1 is discussed. In particular

this part of this thesis focusses on IM approaches at the user terminal side, i.e. at

the receiver side of the forward link of satellite communication systems, with the

objective of reducing the impact of co-channel interference on the desired signal.

2.1 Forward Link Scenario and System Model

The considered scenario refers to a single Satellite Forward Link with Co-Channel

Interference generated by beams at the same frequency reuse color. More in detail,

this scenario models the CCI generated on the user terminal by a Multi-Beam trans-

mission from the satellite also with challenging frequency reuse which, due to the

interference level, would prevent correct decoding of the reference signal by means

of a conventional DVB-S2 receiver without any interference mitigation technique.

In compliance with ESA Channel Model for DVB-SX [37], a Multi-Beam system is

considered, with a Color Reuse equal to 2, in which two interferers are considered to

affect the reference signal, i.e., only the neighbouring beams on the same frequency

actually interfere with the reference signal, meaning that farther interfering beams

are negligible.

Mainly, two cases are considered for the C/I analysis using two interferers, both

referring to practical conditions of real-life applications:
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• Case 1: Interferer 1 : C/I1 = 0dB ; Interferer 2 : C/I2 = 10dB ;

• Case 2: Interferer 1 : C/I1 = 4dB ; Interferer 2 : C/I2 = 6dB .

The reference scheme for this scenario is shown in Figure 2.1.

Figure 2.1: General Block Diagram for the considered Scenario

The forward link system model is based on a K-user, time-invariant, downlink

DVB-S2 system [38]. The transmitted signal to the k-th user can be modelled as

Xk(t) = Ak

LF−1∑
n=0

bk(n)g(t− nTs) (2.1)

where Ak represents the k-th user signal amplitude, LF is the frame length in

number of symbols of the DVB-S2 standard, bk(n) is the k-th transmitted symbol

drawn from a complex-valued PSK or APSK signal constellation [18] with cardinal-

ity M , g(t) denotes the normalized squared root raised cosine filter and Rs = 1/Ts

is the symbol rate.

The baseband equivalent received signal can be written as:

r(t) =

K∑
k=1

Ak

LF−1∑
n=0

bk(n)gr(t− nTs) + w(t) (2.2)

where gr(t) = g(t) ∗ h(t), h(t) represents the baseband impulsive response of the

communication channel and w(t) is the complex additive white Gaussian noise with

zero mean and variance σ2
n.

The received signal has unknown delay, frequency and phase at the output of the

matched filter, taken into account by the parameters τk, νk and θk, which express
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the uncertainty about the beginning of the symbol interval and the carrier frequency

and phase, respectively, all for the k-th user. Therefore, the received signal can be

written as:

r(t, τk, νk, θk) =
K∑
k=1

Ak

LF−1∑
n=0

bk(n)ej(2πνkt+θk))gr(t− nTs − τk) + n(t) (2.3)

where n(t) is the complex additive white Gaussian noise at the output of the

matched filter with zero mean and variance σ2
n = N0/2.

2.2 Decodability Analysis: Es/(N0 + I0) vs. Es/N0

The peculiarities of this forward link scenario motivate considerations on the decod-

ability of the received signals at the terminal. In fact, the interference cancellation

techniques, based for example on an instance of the ones presented in Chapter 1,

work differently in the forward link. In the return link, cancellation is performed by

the gateway, that decodes all the received signals, all of which are of interest for the

gateway, since all carry relevant information. In the return link, thus, the order in

which signals are decoded and cancelled is not relevant as far as the decoding of the

signals itself is concerned, although (as shown in Chapter 1) it affects the fairness

between users in terms of average SINR.

On the other hand, in the forward link considered scenario, the receiving end of

the transmission is the user terminal, which, unlike the gateway in the return link, is

only interested in decoding the single signal being transmitted to it. This motivates

an analysis of physical layer decodability of the reference and interfering signals in

the considered scenario, which, as it will be shown in the following, depends on the

relative values of the interferers with respect to the reference signal.

In order to speculate on the possible behavior of the system in the considered

scenario, in Figure 2.2 and Figure 2.3, for the two cases 1 and 2, the achievable

Energy per Symbol over Noise plus Interference spectral density ratio Es/(N0 + I0)

is studied as a function of the single signal Energy per symbol over Noise spectral

density ratio Es/N0, with the decoding thresholds of three DVB-S2 mod-cods, i.e.

QPSK-1/4, QPSK-1/2, and QPSK-2/3.

Figure 2.2 reports the achievable Es/(N0 + I0) vs. Es/N0, for scenario A Case



Interference Management and Energy Efficiency in Satellite
Communications 53

1, i.e. interferer 1 at C/I1 = 0dB and interferer 2 at C/I2 = 10dB. The results of

this analysis are based on the following receiver definitions:

• Ref. Signal - no IC : Es/(N0+I0) for the reference receiver with no interference

management;

• Interf. 1 - no IC : Es/(N0 + I0) for the first (strongest) interferer with no

interference management;

• Interf. 2 - no IC : Es/(N0 + I0) for the second (weakest) interferer with no

interference management;

• Ref. Sign - IC on Interf. 1 : Es/(N0 + I0) for the reference receiver after

ideal cancellation of the first (strongest) interferer; this is to be considered

as a theoretical behaviour obtained in presence of two interferers when the

strongest one is ideally cancelled, hence when only interferer 2 is present;

• Interf. 2- IC on Interf. 1 : Es/(N0 + I0) for the second (weakest) interferer

receiver after ideal cancellation of the first (strongest) interferer;

• No Int : it represents the ideal case of no interference and hence it represents

a the upper bound the achievable Es/(N0 + I0);

• QPSK 1/4 : decoding threshold at BER=10−4;

• QPSK 1/2 : decoding threshold at BER=10−4;

• QPSK 2/3 : decoding threshold at BER=10−4.

The decoding thresholds (above which the receiver can decode the signal in

waterfall region) reported in Figure 2.2 and Figure 2.3 are taken from the DVB-S2

standard, [38].

The interpretation of these results is as follows: whenever a particular curve,

therefore a particular receiver case, exceeds one of the modcods decoding thresholds

then the receiver is also able to decode. On the contrary, if a curve remains under

the threshold, the corresponding receiver cannot decode the corresponding signal.

In particular, by inspection of Figure 2.2 it can be observed that the Receiver perfor-

mance for the reference signal and the strongest interference, i.e., ”Ref Signal no IC”

and ”Interf 1 - no IC” respectively, can successfully decode only QPSK-1/4 when

Es/N0 is above 1 dB, while they are not able to decode for any other modcod at any

Es/N0 and also the two receivers have the same performance since the C/I for the
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Figure 2.2: Es/(N0 + I0) analysis for Case 1

first interferer is equal to 0 dB. Moreover, when the first interferer is ideally removed

from the input signal then the reference receiver performance, i.e., ”Ref Sign – IC on

Inter 1”, converges to the ”No Int” reference behaviour since the remaining nuisance

attains only the second interferer which is at C/I=10dB, thus, almost negligible for

moderate to low SNR, whereas it becomes relevant for very high SNR, thus when

the interference contribution becomes greater than the noise, which motivates the

compression of the ”Ref Sign – IC on Inter 1” curve with respect to the case of no

interference . Also, the SINR curve of the weakest interferer receiver, i.e. ”Interf 2

– no IC” and ”Interf 2 – IC on Inter 1” always remains below threshold because of

the reference signal interference, which means that the second interferer can never

be decoded.

The same analysis is reported for Case 2 in Figure 2.3, i.e. Interferer 1 at C/I1

= 4 dB and Interferer 2 at C/I2 = 6 dB, for the same receiver configurations of

Figure 2.2 along with the additional configuration ”Ref Signal -1 Interf (C/I=4dB)

– no IC”: Es/(N0 + I0) for the case of the reference receiver with no interference

management in presence of a single interferer at C/I=4dB.

Considering Figure 2.3 it can be observed that the two interferer receivers do not

decode at anyEs/N0 when the reference signal is present, which means that decoding

shall start from the reference signal. Also, the reference signal receiver decodes at

different values of Es/N0 with an impact of the interferers that clearly increases

when reducing waveform protection and that is almost negligible for QPSK-1/4.
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Figure 2.3: Es/(N0 + I0) analysis for Case 2

From the above analysis it can be observed that in Case 1 the receiver is not

able to decode if no interference mitigation techniques is used. On the other hand,

conventional IC techniques are not suitable due to the impossibility of decoding

either the reference signal or the interferer. The same consideration apply to Case

2 in terms of feasibility of the conventional IC techniques.

It is worthwhile noting that the above analysis of decodability is based on the

assumption that noise plus interferer can be approximated as a Gaussian process,

which is usually verified for a relatively large number of interferers. In order to

validate this assumption, Figure 2.4, reports histograms of the interferer, the noise,

and the interferer plus noise amplitude for C/I =0dB and Es/N0=4dB showing

that the histogram of noise plus interferer maintains a Gaussian behaviour for the

considered case.

Figure 2.4: Histograms plot for interferer, noise, and interferer plus noise

On the basis of the previous analysis the several interesting considerations can be
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drawn on the applicability of MUD techniques at the terminal side. First, IC/MUD

at the user terminal (forward link) differs from classical IC/MUD at the gateway

(return link), because the interest is just on a single signal (i.e. the Reference Signal),

which in general, in the considered scenarios, according to realistic conditions, is also

the strongest one, and not necessarily to the entire set of received signals. The case

can happen often of the reference signal being stronger than the interferers, in which

case no advantage is brought by interference cancellation, since the reference signal

has already been decoded. This means that in the forward link, it is likely that some

interferers might never be decoded, because the reference signal is always decoded

first, e.g., the second interferer in the considered scenario. Hence, these interfering

signals are to be considered additional background noise, which cannot be exploited

for processing.

As a consequence, the number of interferers to be considered is limited to a few.

For example, in the VSAT scenario devised by ESA [37], the number of interferers to

be processed equals 1 (interferer 1), since the second interferer would always decode

after the reference signal. In this case, it is very likely that the reference signal

and the interferer to-be-cancelled have about the same SINR or the interference

has lower SINR than the useful signal. Hence, either the reference signal can be

decoded, and thus there is no need to perform IC, or the reference signal can’t be

decoded, in which case, obviously, the interferer can’t be decoded as well. In this

sense therefore, it appears that in the considered scenario, interference cancellation,

at least if adopted exactly as described in chapter 1, is either unfeasible, or not

beneficial.

These considerations coming from the analysis of decodability are proved by

means of computer simulation in next section.

The main outcome of this analysis is that in order for the interference cancella-

tion strategy to bring a benefit to the reference signal decoding, interferers should be

higher in power than the reference signal itself, since, in that case, the iterative pro-

cess would start from the decoding of the interfering signal, therefore improving the

conditions for the reference signal. Based on these considerations, in next sections,

the focus will be posed on Case 1 of the considered scenario, since all the limiting

aspects for interference cancellation of the above scenario are further highlighted in

Case 2, whereas in Case 2 conventional single user detection, i.e., no interference

management would bring better performance due to a lower interference.



Interference Management and Energy Efficiency in Satellite
Communications 57

2.3 Performance evaluation

2.3.1 Baseline Performance without Interference Cancellation

In this section, numerical simulation results are reported in order to assess the

achievable performance of IC/MUD techniques in the considered scenario.

In order to validate through simulation the analytical approach used in the pre-

vious section, it is important to verify the decoding performance at the receiver side

without any interference mitigation techniques in terms of error rate, both for case

1 of the considered Scenario.

The general simulation chain used for this purpose is shown in figure 2.5.

Figure 2.5: Block diagram of the simulation chain for the considered scenario without

IC

The first branch is the canonical DVB-S2 transmission chain where the Channel

Encoder block is composed of a BCH (Bose, Chaudhuri, Hocquenghem) encoder,

and Low Density Parity Check (LDPC) encoder and an interleaver. Since, there

is no need to perform the Forwar Error Correction (FEC) operations for the two

interferers in this test, the corresponding FEC blocks are not here reported.

The multiplicative constants, γ1 and γ2, are due to the C/I value of the two

interferer and so, for example, considering Case 1 they are equal respectively to 1

and 0.316 (normalized to the reference signal). At the receiver side, since the aim

of this simulation is to validate the Es/(N0 + I0) vs. Es/N0 analytical model, all

channel offsets introduced by the block Channel 0 are considered as known and so

it is assumed an ideal parameters estimation processing. It is also important to let

the de-mapping stage be aware of the actual the noise power which is not only given
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by N0 but by (N0 + I0). Case 1 BER performance are shown in 2.6 where:

• No Interferer LOGMAP refers to known BER performance behaviour for

QPSK 1/2 mod-cod in DVB-S2 when LOG-MAP algorithm for LLRs is adopted

[40,41].

• No Interferer LOGMAX refers to known BER performance behaviour for

QPSK 1/2 mod-cod in DVB-S2 when LOG-MAX algorithm for LLRs is adopted

[40,41].

• 1 Interferer C/I=0dB LOGMAP : BER performance in presence of a single

interferer with C/I=0dB with no interference management when LOG-MAP

algorithm for LLRs is adopted.

• 1 Interferer C/I=10dB LOGMAP : BER performance in presence of a single

interferer with C/I=10dB with no interference management (LOG-MAP).

Figure 2.6: BER performance Case 1 without IC/MUD: QPSK 1/2 MODCOD

The “No Interferer LOGMAP” and “No Interferer LOGMAX” curves are re-

ported in order to validate the simulation chain. The green curve is obtained by

setting γ1 = 1 and γ2 = 0 (without Interferer 2). Considering QPSK 1/2 MODCOD,

it is quite evident that the receiver is not able to decode in presence of an interferer

at the same power because it never starts to decode . As a consequence, there is

no need to perform simulation with also interferer 2. These results confirm the de-

codability analysis reported in the previous section. It must be underlined that the

this result is obtained using QPSK1/2 MODCOD because, as it could be seen in

Figure 2.7, the receiver is able to decode using QPSK 1/4, QPSK 1/3 and QPSK 2/5
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MODCODs. To further confirm the validity of the approach, the BER performance

is shown in the presence of Interferer 2 but without Interferer 1, which corresponds

to the assumption of ideal cancellation of the interferer 1. The 0.5dB loss shown in

Figure 2.2 is also apparent in the numerical simulation results, represented by the

purple line.

The analysis done for the QPSK 1/2 MODCOD utilization, can be easily ex-

tended to other low order MODCODs in the DVB-S2 standard. In order to antici-

pate simulation results it is possible to extend the Es/(N0 +I0) vs. Es/N0 analytical

model as shown in Figure 2.7 where additional thresholds with respect to the pre-

vious decodability analysis are reported, corresponding to other MODCODs.

Figure 2.7: Es/(N0 + I0) analysis for Case 1 for extended set ofMODCODs

Considering the curve pertaining to the case of no interference cancellation at

the receiver, named ”Ref Signal - no IC”, it is easy to see that there are only three

MODCODs able to decode in this scenario which are QPSK 1/4, QPSK 1/3 and

QPSK 2/5, respectively pointed out by A, B and C circle. The analysis shows in

addition that the required Es/N0 at the receiver for Single-User Detection (SUD)

(i.e., no Interference Cancellation) are respectively 1 dB, 4 dB and 8 dB. Without

any interference management techniques all the other modcod cannot be decoded.

Simulations performed using QPSK 1/4, QPSK 1/3 and QPSK 2/3 MODCODs

for SUD, in addition to QPSK 1/2 which was already shown in Figure 2.6, are

reported in Figure 2.8. All curves plotted confirm respectively, that the first two
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MODCOD are able to decode in this Scenario at about Es/N0 equal to 1 dB and 4

dB while the other two are not able to decode.

Figure 2.8: BER performance for Case 1 without IC/MUD

2.3.2 Interference Cancellation at the Terminal

2.3.2.1 Conventional Interference Cancellation

As clearly shown in Figure 2.2, and following the considerations made in section

2.2, and after having underlined that for the purpose of the interference cancellation

paradigm, Case 1 is the most relevant to this analysis, it is very easy to understand

that if the reference signal and the main interferer are at the same level, as a C/I of

0 dB indicates, then conventional interference cancellation strategies are unable to

improve the system performance, since, unlike the return link scenario, in this case,

the receiver is either able to decode directly the reference signal, for which the same

SNR is needed as for the main interefer, or it is not able to decode neither of the

two signals. Therefore in this scenario, conventional interference cancellation is not

helpful.

This result is also apparent if looking again at figure 2.8: indeed, for the low-

est modcods, the system is able to operate in single user detection, and since the

interferer is at the same level, no benefit is brought by interference cancellation;

for higher modcods, decoding is not possible, therefore, single user detection is not

possible on one hand, but on the other hand, interference cancellation does not kick
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in since the receiver can’t decode the interfering signal either.

These results motivated the seek for an alternative solution, with respect to

traditional interference cancellation, which is presented in the next section.

2.3.2.2 Interference Cancellation Based on ModCod Unbalance

Since traditional interference cancellation in practical forward link scenario such as

case 1 and 2 of the considered scenario does not work, or works at most with the

same performance of single user detection, due to the fact that the interference is too

low to being successfully decoded before the reference signal and bring benefit after

cancellation, the main idea, represented in this section, is to devise a modified version

of the cancellation algorithm, operating at the system level (or at the scheduling layer

of the system) to generate an element of distinction between the signals, so that the

cancellation process can work.

All the results and considerations made so far in this analysis have been based

on the assumption that, besides the C/I definitions for the scenario under analysis,

all the signals use the same modcod.

The above mentioned distinction can be achieved by forcing neighbouring beams

not to use the same modcod: in particular, it is considered the case in which the

interfering signal uses a more protected modcod. In the considered algorithm, the

reference signal uses a QPSK 1/2 modcod, and the main interferer uses a QPSK

1/4 modcod (more protected). Considering figure 2.2, when the aggregation of

reference signal, interferer 1 and noise, arrives at the receiver, both the reference

signal and the interferer decodability is represented by the green curve: this means

that the reference signal could never be decoded, since it never gets over the decoding

threshold, even for very large SNR, whereas the interfering signal can be decoded

after around 1 dB of SNR.

The algorithm is therefore as follows: first the interfering signal is decoded,

provided a sufficient SNR (which is more likely, since the interferer uses a very

protected modcod) to fall above the decoding threshold. The interferer is therefore

removed from the aggregated signal. At this point then, the aggregate signal is

made of the reference signal plus the noise, assuming error-free cancellation of the

interfering signal, and the second interferer.

This means that the reference signal decodability, after the first decoding and

cancellation iteration, is represented by the purple curve, referring to the case in

which interference cancellation is successfully performed on the first interferer. At
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this stage therefore, the reference signal can be decoded, as indicated by figure 2.2,

therefore allowing the system to operate in a condition where it would not otherwise.

The performance of interference cancellation based on ModCod Unbalance is re-

ported in figure 2.9, in which the black curves represent different modcods behaviour

in the case of no interference, the rightmost curves, green line with triangle marker

and blue solid line, represent the case of no interference cancellation in presence of

interferers as per Case 1 of the considered scenario.

Notably, the blue and green lines with square markers, represent the performance

of QPSK 1/2 and QPSK 2/3 at the reference user, after a cancellation phase in which

the first interferer has been remove successfully. In this case the reference signal can

be decoded thanks to interference cancellation, whereas without any interference

management this would not be possible. The degradation with respect to the case

of no interference is acceptable being 0.5 dB for QPSK 1/2 and around 1 dB for

QPSK 2/3 (both cases referring to the interfering signal using QPSK 1/4), and being

mainly due to the residual presence of the second interferer that cannot be decoded

and therefore does not enter the interference cancellation process.

Figure 2.9: BER performance for Case 1 using different MODCOD for Reference

Signal and Interferers

It is interesting also to note that similar results can be achieved by forcing an

unbalance in power, meaning that different beams transmit different power levels.

This is a different way of implementing the same strategy, that aims at allowing

reference signal and interferers to have different operating decoding thresholds: in

the case of ModCod Unbalance, the thresholds are adapted since different modcods

are chosen, whereas in the case of Power Unbalance, the same modcod can still be
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used since the unbalance is in power, therefore one of the two signals (the interferer

to be compliant to the modcod unbalance example) can be above the threshold

allowing decoding and cancellation.

Other research interests on this subject are being posed on pure Multi-User

Detection, mainly considering that the typical drawback of optimal joint detection

approaches is the complexity at the receiver, and that in this case this might not be

an issue, since the number of signals to be decoded is very limited (up to 3 signals

if considering both interferers in this scenario). Examples of this approaches are

based on specific instances of the Sum-Product algorithm and on Factor Graphs,

implementing a Soft Input Soft Output (SISO) receiver and are found in [42] and

references therein.

2.4 Results Summary

In this chapter, the analysis of interference cancellation strategies reported in chapter

1 has been extended to the case of the forward link of a satellite system. Due to the

peculiarity of this scenario, it was shown that interference is generated in a different

way than in the return link, and that interference cancellation cannot be applied in

the same fashion since in the forward link the end of the transmission is the terminal

(as opposed to the gateway, in the return link), that is only interested in decoding

the reference signal. A detailed analysis of the scenario and a physical layer analysis

of the decodability of reference and interfering signals has been presented, the main

outcome of which was acknowledging the fact that interference cancellation cannot

be implemented as in the return link.

This issue was overcome by the proposition of a modified version of the interfer-

ence cancellation algorithm, based on ModCod (or Power) unbalance: in this case

it is shown that interference cancellation is still beneficial to the system, at physical

layer. The impact of such interference management on the overall system through-

put is strictly related on the design of the ModCod allocation (if fixed) or scheduling

(if it is designed to change dinamically).

The results presented in this chapter clearly show that thanks to the proposed

technique it is possible to decode a ModCod that would otherwise be undecodable

due to severe interference in the practical scenario, and this technique is particularly

beneficial in limited transfer rate applications.
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Chapter 3
Interference Management for the

TT&C component of a SatCom

System: Receiver Design for a

BFSK-FFH Control Channel

In this chapter, Interference Management is considered, according to the mentioned

top-down approach, at intra-receiver level. In fact in this chapter a specific appli-

cation case is considered, related to the Telemetry, Tracking and Control subsystem

and the corresponding communication link. This is therefore a specific case which

does not refer necessarily to a multi-beam scenario, but rather to a satellite system

more in general, but in which the main focus is still dealing with interference, only

from a different perspective, which motivates it being reported in Part I of this

thesis.

The Telemetry, Tracking, and Control (TT&C) subsystem of a satellite is de-

signed to establish a connection between the satellite itself and the ground stations.

The purpose of this subsystem is to monitor the satellite and make sure that it

behaves as expected. Among the main tasks carried out by the TT&C subsystem

there is the constant monitoring of data coming from other elements of the plat-

form, such as to track the health of the satellite, as well as precise positioning and

other features. Recent research interests have been posed into the design of the next

generation communication channels for the TT&C subsystem.

In this context, a particularly suitable waveform for operating in presence of
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interference is the FSK-FFH (Frequency Shift Keying - Fast Frequency Hopping)

[43]. The advantage of Frequency Hopping lies essentially in providing frequency

diversity, i.e. different replicas of the same signal, since some of them are likely to

be unaffected by the interference. Similarly, the advantage of FSK is given by its

non-coherent detector, which does not require the estimation of channel parameters,

since this task is particularly difficult in presence of strong interference.

Several improvement were studied with respect to the classical FSK-FFH demod-

ulator [44], [45]. These improvements provide an increased robustness with respect

to the interference while requiring a very slight complexity increase. The authors

of [46], on the other hand, follow a different approach, i.e. reducing the complexity

of the ML (maximum likelihood) demodulator for jammed FSK-FFH signals [47],

in the same way the authors of [48] have done with respect to the ML demodulator

for AWGN only.

In the proposed approach, which holds some of the advantages of [44], perfor-

mance is enhanced by examining the energy values on both the BFSK demodula-

tor branches before the accumulation stages. The following sections describe the

proposed demodulator. Assuming BFSK as the reference modulation, Section 3.1

presents the system model, Section 3.2 briefly introduces the reference existing tech-

nique [44], then presenting the details of the novel approach proposed, Section 3.3

provides numerical results showing the performance of the proposed demodulator,

and results are summarized in Section 3.4.

3.1 System Model

The reference system model for this work is based on Binary FSK (BFSK) modu-

lation, in combination with Frequency Hopping as baseline countermeasure against

the effects of the intentional jamming. Information bits are mapped on binary sym-

bols denoted by dj ∈ {−1,+1}, each corresponding to a tone on either frequency

f0 or frequency f1, and it will be assumed, in the following, that binary data are

mapped to FSK tones as

dj = −1→ f0 dj = 1→ f1

The frequency separation ∆f between the two BFSK frequencies has to be chosen

such as to ensure orthogonality between the two tones: for FFH it can be written

∆f =
1

TH
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in which TH represents the time interval between two hops (i.e. the duration of a

single hop). Using FH implies that the frequency bin corresponding to the BFSK

tones is free to move in the frequency domain, according to some pseudo-random

pattern defined in a sequence. Fast Frequency Hopping (FFH) has been considered

in this work, which means considering a number of hops per symbol NHS ≥ 2, since

this allows the exploitation of diversity receptions.

The complex envelope of the BFSK-FFH modulated signal can be expressed as

s(t)=
∞∑

i=−∞
exp

[
2π

(
∆f
2 d

⌊
i

NHS

⌋+∆fHci

)
t+φi

]
rect
(

t
TH
−i
)

(3.1)

where

rect(x) =

1 x ∈
[
−1

2 ,
1
2

]
0 elsewhere

and the summation in Eq 3.1 is over the hop intervals1 i. The frequency hopping is

taken into account by the bin spacing ∆fH , while ci, the bin number, is randomly

drawn for each hop from the set

C =

{
−NB + 1

2
,
−NB + 3

2
, ... ,

NB − 3

2
,
NB − 1

2

}
where NB is the total number of FFH bins. Finally, φi represents a phase term

which can vary hop-by-hop.

Note that there are no constraints in terms of FH bin separation (∆fH), and two

strategies are presented in the literature [16]: overlapped and non-overlapped tone

allocation. The former strategy adopts ∆fH = ∆f , such that one tone can be f1 for

a bin, and f0 for the successive bin; on the contrary, the latter strategy presents a

clear distinction between f0 and f1 tones, requiring ∆fH = 2∆f . In this study the

second strategy has been adopted.

For what concerns the Jammer, it is assumed to have perfect knowledge of the

system, except for the hopping sequence, which is the key element of the envisaged

interference mitigation strategy.

The reference Jamming signal model used in this work is that of Continuous

Wave (CW) multi-tone Jammer, which can be seen as a sum of Nint sinusoidal

tones which can periodically change frequency, according to a hopping pattern, as

it happens for the useful signal, therefore the CW Jammer can be assumed as an

1assuming that hopping intervals and symbol intervals are synchronous, for the symbol time j,

then j = bi/NHSc
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hopping Jammer with hopping rate having the same order of magnitude of the useful

signal. Moreover, for simplicity, the assumption was made that the Jammer hopping

instants are perfectly synchronized (in time) with the useful signal ones and that it

can use, as interference tones, only the frequency range used as FSK-FH tone set.

This assumption assures perfect orthogonality between FSK-FH tones and Jamming

tones, leading to an error probability depending only on the distribution of hopping

sequence.

As a reference, the analytical expression of the probability of error for the CW

Jammer is provided for the case of negligible noise contribution (i.e., the system is

interference limited), and with CW jamming tones, each having power just higher

than the useful signal tones, as derived in [16]. This means that in a jammed chip,

a slightly higher energy is fed into the accumulator on the wrong FSK tone branch.

This probability equals to

Pe =

(
Nint

2NB

)NHS

(3.2)

which takes into account that an error occurs when a Jammer tone falls onto the

complementary FSK frequency of a FSK bin, with respect to the useful tone, in

all the diversity receptions (i.e., in all the hops). This latter aspect motivates the

exponent term, whereas the base term takes into account the probability of the

jammer falling on the bin where there is no signal, which is 1/2 in a regular FSK

system, and on top of which the number of FFH bins must be taken into account.

Finally the fact that there is more than one interferer is taken into account. Indeed,

in the case of having NHS ties between useful signal and jammer, even a NHS-fold

diversity cannot protect the desired signal, causing the useful information to be lost.

However, this event’s probability is now reduced with respect to the same probability

for a non-hopped reception, exponentially depending on NHS .

3.2 Double-Threshold Demodulator

The classical FSK-FFH demodulator takes as input the energy values measured on

each FSK branch, and then feeds it to an accumuator. After the accumulation,

carried out over all the diversity receptions (i.e., all the hops), the decision is made

in favor of the frequency, thus the symbol, corresponding to the branch with the

highest accumulated energy.

In this study an enhanced demodulator is proposed, which can achieve better

protection against the jammer, even in severe jamming condition, with respect to
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Figure 3.1: Clipper Demodulator

existing receivers. Prior to introducing the proposed technique, a classical improve-

ment to the baseline FSK-FFH receiver is presented.

3.2.1 Clipped-Linear Combining

In [44], the classical BFSK-FFH demodulator resilience to intentional interferers is

improved by means of a clipping stage, operating on both the BFSK branches. The

aim of the clipping operation is to cut the maximum energy per chip which is fed

into the accumulation block, to avoid those cases in which jammed chips accumulate

enough energy on the wrong FSK frequency that the useful symbol is lost. In fact

the useful energy per symbol (Es) is NHS times the energy per chip (Ec), whereas

the jamming energy over a single chip can be much higher than Es, depending

on the jamming power. By clipping the energy of all the FSK branches to some

optimized value (i.e., a threshold) less than or equal to the useful signal chip energy,

a jammed chip is only affected by a so-called tie situation, in which the same energy

is accumulated on both branches of a BFSK modulation. In this way, a jammed

chip will not affect the decision process, and the demodulator will leverage on the

other diversity receptions (i.e. the other chips). Errors occur when there is a tie

(i.e. when same energy is detected on both demodulator branches) in every chip,

this event being the more unlikely the larger the number of hops per symbol (NHS).

A pictorial representation of the BFSK-FFH clipper demodulator is given in Fig.

3.1. The received signal r(t) is sent to two branches, each corresponding to a BFSK

tone, and the correlation of the received signal with both the possible FSK tones

is calculated. This could result in high energy values, measured at the output of

each correlator, due to either presence of useful signal tone, presence of jamming, or

superimposition of both. These energy values are then clipped to a threshold, and
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then sent to the accumulator stage. The demodulator makes a decision in favor of

the branch, i.e. the FSK tone, which shows the higher energy.

Note that, in this way, the expression of the probability of error in Eq.3.2 is

scaled by a factor 2 as

Pe =
1

2

(
Nint

2NB

)NHS

(3.3)

This is due to the fact that in presence of a tie in all the hops, having the same

value at the output of the accumulator on both branches, the Clipper receiver chooses

randomly the detected symbol with equal probability.

3.2.2 Double-Threshold approach

The proposed demodulator represents an improvement of the existing one presented

above since it exploits more of the available information, i.e. it considers the energy

values of both branches for each chip at the same time.

If the useful signal is present on a tone and a high power jammer is present on

the other tone of the same BFSK bin, a clipper demodulator would face a tie because

the same value, due to thresholding, would be accumulated on both branches, while

a second threshold (which gives the Double-Threshold receiver its name) can instead

improve the performance, since the presence of the jamming can be detected with

more accuracy by the second threshold comparison for both BFSK branches. Once

the jammer has been detected, the signal on a BFSK branch can be either blanked

out or threshold-limited, based on the value of the energy on the other BFSK branch.

The Double-Threshold Demodulator block diagram can be shaped as in Figure

3.2, in which a logic unit is in charge of feeding the accumulators of both branches

with the most suitable value, operating accordingly to Table 3.1, and based on the

energy measured on the FSK tones.

If a tone energy is above the higher threshold and the other one is below the

lower threshold, then the accumulation is performed as in the clipper demodulator.

On the other hand, the difference with respect to the clipper is twofold: first, if both

tones show energy levels between the two thresholds, one of them is likely to have

been jammed, and then both are nulled out, to avoid jammed tones to affect the

combining statistics; secondly, if a tone energy is above the higher threshold and the

other tone energy is between the two thresholds, only the second one is accumulated,

since the first one is believed to be affected by the jammer.

In this case the optimization of the threshold values is an important issue, since

it can affect the performance. The lower threshold can be optimized according to
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Figure 3.2: Double-Threshold Demodulator

the same criterion used for the Clipper, while the upper threshold requires different

considerations: first of all, it has to be larger than the useful signal chip expected

energy Ec and lower than jammer energy per tone. However if the threshold does

not respect this last constraint, the demodulator performance does not worsen with

respect to the clipper, therefore the sensitivity to the upper threshold value is not

high. Nevertheless, for a good performance, this threshold must be adapted to the

Jammer power. In this study the following expression has been considered

ξU = Ec +
1

α

J/S

Nint
(3.4)

which shows that the threshold is set to an higher value when the jammer is more

relevant, i.e. when the jammer-to-signal J/S ratio is higher. The rationale behind

this strategy is that if the jammer has higher energy, it is more easily distinguishable

from the useful signal energy, thus the higher threshold can be set significantly far

from the lower one, while still ensuring that the jammer presence is detected. Note

that hereby J/S is intended as overall, i.e. J is the overall jamming tones power,

this being the reason for introducing the parameter Nint in Eq 3.4. The additive

constant value Ec is used to set a lower bound for the threshold, to prevent it from

falling under the value of the lower threshold in the case of high jammer-to-signal

ratios (or jammer absence), and α is an optimization parameter. Tuning runs of the

simulator have suggested the use of α = 3 for this implementation, since this is the

value that has lead to the overall best performance in terms of BER. This is due to

the fact that, as it has been observed by simulation, tuning both thresholds affects

different ranges of J/S in different ways, in some cases bringing benefits, in others

worsening the performance.
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Table 3.1: Description of the Logic Unit of the Double-Threshold Demodulator

E0 E1 OUT0 OUT1

E0 < ξL E1 < ξL E0 E1

E0 < ξL ξL ≤ E1 < ξU E0 E1

E0 < ξL E1 ≥ ξU E0 ξL

ξL ≤ E0 < ξU E1 < ξL E0 E1

ξL ≤ E0 < ξU ξL ≤ E1 < ξU 0 0

ξL ≤ E0 < ξU E1 ≥ ξU E0 0

E0 ≥ ξU E1 < ξL ξL E1

E0 ≥ ξU ξL ≤ E1 < ξU 0 E1

E0 ≥ ξU E1 ≥ ξU 0 0

Table 3.2: Simulation scenario

Parameter Value

Total Bandwidth 1 MHz

Bit-Rate 5 kbit/s

Hop-rate 25 khop/s

FFH bins type non-overlapping

FFH bins number 20

Number of interfering tones 5

J/S 20 dB

3.3 Performance Analysis

The proposed demodulation scheme shows its effectiveness when operating with high

jammer to signal ratio (J/S), since in such cases jammed chips present a high energy

and can be easily discarded by the double-threshold demodulator, while the values

accumulated by a clipper demodulator would affect the decision statistics, leading

to errors.

In order to evaluate the improvement of the Double Threshold demodulator, an

uncoded BER performance comparison is presented in Figure 3.3, considering as a

reference scenario the simulation parameters reported in Table 3.2

The solid line represents the performance in case of no jammer and standard

FSK-FFH receiver. The squares marked line shows the improvements the proposed

demodulator yields with respect to the linear clipped combining receiver (triangles
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marked line) in the considered scenario. More precisely, a gain of around 2 dB is

achieved at a BER of 10−3, but the gain is significantly larger in higher SNR ranges.

In fact Figure 3.3 also shows that the Clipper receiver’s performance converges, as

ES/N0 grows, to the theoretical expression given in Eq. 3.3, represented by the

dashed line, and which represent the performance floor given by the presence of

interferers. This is not the case for the proposed demodulator, which instead, does

not show a lower bounded performance curve, since the interferers effects are, at

least partially, nulled out. This translates into a gain of around 4 dB at a BER of

10−4 and an even larger gain for higher SNR, considering that there is no longer a

performance floor. For instance, it can be noticed that the performance curve of the

Clipper receiver does not even reach a BER of 10−5.
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Figure 3.3: BER performance with 5 interference tones, 5 hops per symbol, 20

frequency bins, and J/S = 20 dB

The Double Threshold receiver, then, outperforms the Clipper Demodulator with

a significant BER improvement in the range of high Jammer which is the intended

scenario for such receiver. On the other hand, this receiver’s advantages become

progressively lower or null, when the level of the single interferer is close to the
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level of the useful tone. In fact, it is easy to understand that the worst case for

the presented Double Threshold demodulator is the case of the useful tone and the

jammer being at exactly the same level, hence the performance degradation towards

that critical point, which is however outside of the target scenario of application for

this receiver.

	
  

Figure 3.5: Clipper Demodulator Behaviour: Full Range Analysis

However, even in this case, when the jammer is not particularly strong, i.e., it is

not appreciably higher in level than the useful signal, the presented technique still

performs very closely to the clipped linear combining receiver. This means that this

anti-jammer strategy does not particularly suffer cases outside its design scenario.

This is shown in Figure 3.4, in which the case of low J/S is considered, since it

represents a potential issue for such receiver because the interferer level might be

very close to the useful signal, making it difficult for the demodulator to distinguish

and take a hard decision based on the thresholds. In this case in fact a low J/S has

been considered, while all the other parameters have been kept to the values already

listed above. As it can be observed, the gap between the Clipper receiver and the

proposed demodulator in this condition is less than 1 dB in this case, whereas for

high J/S values there is a significantly larger gain. This can be better appreciated by
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Figure 3.6: Double Threshold Demodulator Behaviour: Full Range Analysis

comparing the full range behaviour of both the Clipper and the Double Threshold

Demodulators, in Figure 3.5 and 3.6, where the Bit Error Rate is shown in a 3D plot,

with respect to both the SNR and the J/S. It can be see that the double threshold

demodulator begins to suffer a performance degradation towards the -10 dB region

in S/J (inverted J/S, here used for sake of plot readablity). In fact, a -10 S/J ratio

(corresponding to a 10dB J/S) means that the aggregate interference power is 10 dB

higher than the useful signal, which, spreading across 5 interfering tones (assuming

equal power for interferers) becomes 3dB of J/S per-tone, as considered in Figure

3.4.

Therefore the double threshold receiver, appears to be the best performing tech-

nique for high J/S since it discards the chips above the second threshold (which must

be set to a high value, to discard the chips which are most likely to have been hit

by the jammer). This is due to the underlying principle on which it is based, which

is to examine both branches before accumulating the energy. The mentioned non-

monotonous behavior of double-threshold demodulator performance with respect to

the J/S can be justified considering that the circuit has been devised for an high

J/S scenario, while for lower J/S, the threshold values may require a different op-



Interference Management and Energy Efficiency in Satellite
Communications 77

timization to avoid the intermediate range of values in which the double threshold

approach shows a penalty with respect to the clipper demodulator.

3.4 Results Summary

A novel FSK-FFH demodulator is presented, that outperforms the clipped-linear

combining receiver in high J/S scenarios, i.e., in severe jamming conditions, by

jointly observing the energy per branch and discarding the chips which are most

likely to have been jammed. Performance results indeed show that, by properly

setting the thresholds, this circuit is able to achieve better performance in terms of

error probability with a negligible complexity increase. Moreover it has been shown

that even being designed to work in the above described scenario, this receiver

still performs close to the existing technique previously used as countermeasure for

jamming (i.e., the Clipper receiver).

This demodulator could be further improved, in future research activities, by

providing an optimal expression for both the thresholds. These optimal threshold

values will be dependent on the signal-to-noise ratio and the jamming-to-signal ratio,

thus the double-threshold demodulator will operate in an adaptive fashion. Further-

more, the behaviour of the double-threshold itself can be modified dynamically, in

order to provide the optimal performance with different J/S ranges. For example,

the behaviour of the circuit for low J/S could be made more similar to the linear

clipper, while for higher J/S the chips affected by the jammer are easily detected

and their contribution can be blanked out.

Acknowledgements

This work has been supported in part by ESA Project AO/1-5836/08/NL/JK “Spread

Spectrum System for TT&C and Payload Control Links”.



78
Interference Management for the TT&C component of a SatCom

System: Receiver Design for a BFSK-FFH Control Channel



Part II

Part II: Waveform Energy

Efficiency for SatCom Systems





81

As described in Part I of this thesis, one of the key challenges of wireless com-

munications is Efficiency. Although efficiency is typically mainly related to the best

exploitation of Spectral Resources, limited by nature, another major aspect in which

Efficiency is the ultimate goal for the design stage, is the best use of the available

transmission power. This is for different sorts of reasons, starting from the need

of extended battery life in mobile scenarios, moving to requirements that my be

imposed by regulation or devices capabilities, and also down to the waste of power

that might result from non-linearities involved in the system (e.g., Power Ampli-

fiers). Of course this applies to the case of Satellite Communications, in which some

aspects are even magnified with respect to terrestrial wireless communications. In

fact, sensitivity to such aspects is particularly magnified in specific cases, such as the

return link of a satcom system, in which the transmitting end of the communication

is the terminal, which is typically equipped with small antennas, which translates in

gain loss (with respect to ground stations) in the link budget, and with smaller and

cheaper internal components, such as filters and power amplifiers, that make the

transmission suffer for more severe nuisances. This rationale extends also to emerg-

ing scenarios, such as Mesh Networks, in which the idea is to lose the infrastructure

of the network, which means operating in absence of a gateway and other central

control entities, in order to allow direct (one-hop) connectivity between peer termi-

nals via the satellite. This is very important in a number of applications related to

emergency scenarios and disaster recovery situations, in which terrestrial links might

be unavailable, including terrestrial components of satellite systems, therefore mak-

ing Mesh systems a very appealing solution for directly connecting emergency (fixed,

mobile or nomadic) facilities with each other and potentially allowing a temporary

partial services in the involved area. Obviously, such network topologies can also be

of interest for regular use, since, as it will be shown in this part of this thesis, mesh

connectivity significantly helps real-time applications, by reducing latency to half.

This is achieved thanks to a single hop connection, since it is no longer required an

intermediate hop towards the gateway.

This part is organized as follows: first an introduction on Mesh Network Sce-

narios is given in Chapter 4, providing highlights on the use cases and on the major

challenges involved; a detailed link level analysis of waveform trade-offs for mesh

satellite networks is reported in Chapter 5, where it is shown that for scenarios

in which the transfer rate required is limited, such as Machine to Machine (M2M)

applications for instance, waveforms based on constant envelope modulations out-
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perform linearly modulated waveforms; building on the previous analysis, the design

of new better performing waveforms is proposed in Chapter 6, for application cases

in which the main constraints are imposed on the operating SNR, which must be

very low, even accepting lower spectral efficiency. To this extent a design of new

waveform is carried out for this specific case, which is shown to outperform existing

solutions. Results are summarized at the end of the chapter.



Chapter 4
Mesh SatCom Networks

An interesting evolution of the future satellite communication systems is the possibil-

ity to allow mesh connectivity among user terminals as opposed to star connectivity,

which is currently dominant in the market. This will lead to a growth of the satellite

market deriving from the enabling of peer-to-peer applications which are currently

not well served by satellite networks based on a star topology. A double hop is in

fact required for peer-to-peer connections in star networks which doubles the latency

and the satellite resources consumption. Such large latency is unacceptable in ap-

plications like VoIP, collaborative conferencing (including video, audio and data),

cellular systems backhauling, teleconsultation, etc. Mesh approach appears very

promising for several market segments including enterprise, government, emergency,

e-health, etc.

Notably, mesh connectivity with single beam coverage or fixed/semi-static rout-

ing has been already considered and implemented, [49–51]. In the latter case, beam

routing is pre-defined or is controlled by the on-ground hub; however this is much

slower than that achievable with On Board Processing (OBP), thus limiting the mesh

system performance and applicability scenarios. A different approach is pursed by

the authors of [52–54], in which on-board switching based on header-only demodula-

tion has been considered and compared in terms of switching flexibility, complexity,

spectral efficiency and cost.

This chapter is organized as follows. Section 4.1 describes alternative mesh

network solutions, considered as the reference in this chapter, detailing the main on-

board features and the related link budgets for each topology, respectively. Section

4.2 presents the trade-off analysis carried out in order to assess the different solutions
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in terms of key performance parameters.

This scenarios represent the reference for the analysis carried out in the next

chapters.

Figure 4.1: Mesh System Scenario

4.1 Satellite Mesh Solutions

The reference scenario set for this study is based on both semi-transparent and

regenerative satellites with on-board packet processing. This allows full-mesh con-

nectivity between two or more terminals without an on-ground Hub station for

routing and controlling traffic, thus implementing a real-time collaborative network,

as depicted in Figure 4.1. In order to establish a single-hop connection between

two peers without using a gateway, on-board switching capabilities are required. In

addition, this halves the transmission delay, which becomes around 300 ms, thus

offering quality improvements with respect to a double hop connection. In order

to clearly show the advantages coming from each of the analysed strategies, the

reference model has been subdivided into several architectures, differing from each

other for the resource assignment strategy, but all sharing the goal to optimize the

complexity-flexibility trade-off. In this way, the most significant differences between

the considered approaches can be shown incrementally.

Alternative Mesh network solutions are presented hereafter:
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• Semi-Static inter-beam interconnection Matrix (SSM)

In this case, spectral resources are allocated on a semi-static basis, by using

a frequency plan that is set up by the Satellite Processor Controller (SPC),

thus imposing a fixed routing rule between uplink and downlink beams until

a new configuration is provided by the SPC. This translates into reducing the

required signalling resources. Unfortunately, in this case a limited number of

beams can be effectively managed.

• Dynamic Selection of inter-beam interconnection Matrix (DSM)

In this second network solution, a dynamically established slot-by-slot relation-

ship for time-frequency uplink resources and downlink beams is considered,

represented by the interconnection matrices. The interconnection matrix is

selected by the SPC slot-by-slot. This solution can be implemented in the

payload with limited complexity by storing a pool of interconnection matrices.

In this case a higher number of beams can be supported.

• On-board Header Demodulation for packet routing (HD)

This case represents a trade-off between the fully regenerative and the trans-

parent solutions, since, in this architecture, the satellite is able to demodulate

only the signalling which is contained in the headers of the packets, [52]- [53]-

[54]. Thus, the satellite can route uplink packets to the corresponding downlink

beams, on the base of the received signalling information. This represents a

more dynamic solution, pursuing a fully mesh network. In this case, a further

increase on the number of beams, yielding an enhancement of the network

flexibility.

• Complete on-board Packet Demodulation (PD)

In opposition with the first solution, in which the complexity is reduced at the

minimum, but the performance is limited by the low degree of the dynamic,

in this last case it is assumed a fully regenerative payload. This means that

the on-board processing is not only related to the switching, but also to the

complete demodulation of the incoming packets. This brings further complex-

ity but allows a regeneration of the signal. Here the satellite is supposed to

operate with 64 beams, and the dimensioning is carried out under the hypoth-

esis that the whole system is limited by the link having the worse transmission

conditions. This means that the mutual information for the cascade of uplink

and downlink is equal to the lower one, and equivalently, the total C/N is lim-
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ited by the minimum one. However, this results in higher C/N with respect

to the HD solution, because of the signal regeneration.

Detailed Link-Budgets and parameters for all the above scenarios can be found

in [7].

4.2 Trade-offs in Mesh SatCom Networks topologies

The four network topologies described in the previous section can be assessed in

terms of flexibility, complexity, cost and capacity in order to highlight the strengths

and weaknesses of each proposed solution.

One of the most interesting features offered by the proposed architecture schemes

is the switching level flexibility. This feature is mandatory to enable a fully meshed

satellite network. On the other hand, another crucial aspect that must be carefully

addressed in the design of a satellite system is the on-board hardware complexity.

Indeed, a high-complex payload may be considered economically unacceptable, and

it will be more exposed to hardware failures.

For each of the four network solutions illustrated in Section 4.1, a different trade-

off between the offered switching level flexibility and the on-board hardware com-

plexity is reached. As detailed in the following, the different solutions provide an

increasing degrees of flexibility at the expense of on-board implementation complex-

ity.

SSM is characterised by the lowest on-board complexity enabling both low com-

plex payload implementations and minimum signalling requirements. On the other

hand, the switching flexibility offered by this scheme is limited to the semi-static

nature of the resources allocation.

DSM solution deals with this problem by allowing dynamic beam routing. In this

case the switching matrix is selected slot-by-slot from a preset alphabet of matrices.

HD and PD solutions enable the highest degree of switching level flexibility,

since the header of each packet, containing the routing signalling data is decoded

and processed on-board. These solutions enable a fully mesh network connectivity.

On the other hand, the full demodulation of the signal will significantly increase the

on-board hardware complexity. In order to overcome this problem, HD proposes

a semi-transparent payload design where only the headers are decoded so that the

amount of digital operation in charge of the payload can be significantly reduced

without any loss in term of switching level flexibility.



Chapter 5
Waveform trade-offs in Mesh SatCom

Systems

In this chapter the focus is moved from the system point of view to the link level,

focusing on waveform-level aspects and on the effect of channel impairments and

transceivers non-idealities in the selection of the most suitable waveform parameters

for Mesh Satellite Systems in the considered scenarios.

This chapter presents a performance assessment carried out in presence of real-life

channel imperfections, i.e., adjacent channel interference, phase noise, and frequency

offset, or transmitter non-linearities. Particularly this latter aspect is greatly mag-

nified in mesh systems, since both ends of the communication link will be terminals,

which implies that a small antenna will be used. This is different to a conventional

2-hop satellite link in which one end is a terminal and the other is typically a Gate-

way, i.e., an earth station, equipped with significantly larger antennas. Indeed, in

a double hop link the antenna gateway, that acts as receiving antenna in the first

hop and as transmitting antenna in the second hop, is typically characterized by an

extremely large gain, that makes the link budget challenges be easier to cope with.

In a single hop, like a mesh link, the communication link terminates at both ends at

the user terminal that is equipped with a small and low cost antenna. In addition,

the need of keeping the terminal cost at a market competitive level imposes also the

use of low cost amplifiers at the user side that further make the non-linear distortion

effects critical for such applications.

The analysis carried out in this chapter is largely based on seeking a the trade-off

between error rate performance, resilience to receiver instabilities, robustness against
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non-linearities and achievable spectral efficiency. This is motivated by the fact that,

on one hand, linear modulations are able to provide high spectral efficiencies, but

suffer from highly varying envelope, which imposes stringent requirements in terms of

amplifiers back-off; on the other hand, Continuous Phase Modulations’ main feature

is having constant envelope, which allows signals not to suffer distortion when fed

through a power amplifier, without any need of back-off. This directly translates in

power savings, but at the expense of a limited spectral efficiency.

5.1 Reference Scenario

The reference system on which this analysis is based, is the mesh scenario presented

depicted in Figure 4.1, as described in chapter 4 [7]. More in detail, semi-regenerative

capabilities are taken as a reference for the satellite segment [52–54], in order to

achieve full-mesh connectivity of multiple terminals in complete absence of ground

stations like Hub or Gateways.

The satellite HPA is set to operate in linear region, in order to prevent non-linear

distortion on the multiplex of signal presented to its input, that would affect the

frequency orthogonality, i.e., users separation. On the other hand, user terminals

implement low cost HPAs, set at a working point as close as possible to compression.

Therefore, both in-band distortion and out-of-band spectral regrowth can be easily

generated at the user side of the transmission chain.

As mentioned, this study compares the behaviour in the above Mesh scenario of

Linear Modulation and Continuous Phase Modulation based waveforms, by taking

actual real-life waveform parameter sets, as defined in the new DVB-RCS2 stan-

dard [55]. The choice of this particular standard is based on the simple considera-

tion that these waveforms have been designed for a mass-market terminal-to-satellite

return link, which is very similar in its characteristics to each link of a single hop

mesh network. On top of this, to keep the analysis as realistic as possible, chan-

nel impairments considered in this study have been taken from the ones adopted

throughout the DVB-RCS2 standardization process, i.e., the frequency error is uni-

formly distributed over [−4kHz, 4kHz], the phase noise model is reported according

to what is described in [55]. For what concernsadjacent channel interference (ACI),

6 interferers are considered, all having equal power among them and with respect

to the useful signal.
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5.2 Waveform Solutions

In the following, the alternative link level solutions for the considere link, in terms

of waveform are presented, primarily subdivided into Linear and Continuous Phase

Modulations.

5.2.1 Linear Modulation Waveforms

Waveforms based on Linear modulation schemes as included in the DVB-RCS2 stan-

dard are based on QPSK, 8PSK and 16QAM constellations and a 16 circular states

turbocode (known also as Turbo-Φ) operated in a circular manner with nominal

code rate equal to 1/3, whereas, as typical, it is possibla to obtain intermediate code

rates by means of puncturing. The interleaver is embedded in the turbo encoder

and there is a bit ordering specific for each modulation and code-rate combination

(ModCod). Overall, by spanning across al tunable variables mentioned, there are

30 possible DVB-RCS2 Linear Modulation (LM) waveforms.

For this analysis two waveforms have been selected as a reference benchmark:

QPSK with code rate 1/3, and 8PSK with code rate 2/3, as they are in a range in

which it is possible to have a meaningful comparison with CPM counterparts. The

complete parameters set is reported in Table 5.1 together with other specific values

and simulation parameters used for performance evaluation.

Table 5.1: Linear Modulation Waveform Parameters

DVB-RCS2 Waveform ID 3 8

Modulation QPSK 8PSK

Code-rate 1/3 2/3

Packet length (bit) 304 920

Roll-off 0.2

Spectral efficiency 0.606 1.818

HPA type Ka-band SSPA

HPA IBO [dB] 0 4

HPA OBO [dB] 0.422 1.134

Normalized Carrier Spacing 1.1

Number of Adjacent channels 6

The spectral efficiency computation is based on the carrier spacing, i.e., the

spacing between adjacent channels, therefore the spectral efficiency can be defined
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as
r · log2(M)

Bcs

where M is the modulation cardinality, r is the code-rate and Bcs is the carrier

spacing normalized to the symbol-rate.

A first stage of this study is related to finding the most suitable operating poing

forthe user SSPA (Solid State Power Amplifier). To this extent, two criteria have

been considered: first, the aim is being compliant with the RCS2 spectral mask [55],

second, the minimization of the degradation of the useful signal is sought. The first

criterion relates to out of band emissions, which are highlighted by non linear effects

but must be kept under control, while the second one aims at minimizing the effect

of in-band distortion without excessively reducing the transmit power. For the latter

task, the total degradation (TD) has been computed, defined as:

TD = ∆SNR+OBO [dB]

where ∆SNR is the difference (in dB) between the required SNR (signal-to-noise

ratio) for a given quality of service in the scenario under investigation and in a

linear channel, and OBO is the output back-off of the amplifier, defined as the ratio

between output saturation power and output average power.

The outcome of this first step in the analysis shows that QPSK has good resilience

to non-linearity issues, at least in terms of fulfilling the DVB-RCS2 spectral mask,

meaningh that no additional back-off is necessary, while still achieving a very low

degradation. The most suitable working point in this case is, therefore, the one

reported in Table 5.1. Different conclusions are drawn in case of 8PSK: in this case

the emission in the nearest adjacent channels has to be limited artificially. This is

achieved, in practice, by backing off the working point of the amplifier in order to

comply with the spectral mask. Figure 5.1 reports an example of TD plot vs. OBO

in the absence and in presence of adjacent channel interference (ACI): as it can be

seen, in such a case, the most appropriate working point is shifted to higher OBO

values because the total degradation is affected also by the ACI spectral regrowth

as well as by the useful signal distortion. Obviously, the TD does not tend to the

OBO straight line (as it does in absence of ACI) because the considered OBO range

is too low for this asymptotic convergence.

The LM receiver structure, depicted in Figure 5.2, is based on Rife and Boorstyn

[56] coarse frequency estimation, modified as in [57] to let the estimator operate on

different data fields, and on a Gardner timing estimator [58]. The phase noise
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Figure 5.1: Total Degradation analysis for LM waveform 8: 8PSK 2/3

compensation can be performed by a digital phase locked loop (PLL) [59] operating

on both known symbols and hard decisions as in [60], or, when necessary, by the CBC

demodulation algorithm [61], which yields finer estimation, being thus advisable for

high order modulations, at expense of additional complexity.

Figure 5.2: Block Diagram of the LM receiver

5.2.2 Continuous Phase Modulation Waveforms

The considered partial response CPM schemes, as per DVB-RCS2 [55], are serially

concatenated with a convolutional code. This study has started with the analysis of

two waveforms which provide spectral efficiencies equal to 0.5 and 1.8 bit/s/Hz. A

second step in the analysis has led to investigate also waveforms with intermediate

spectral efficiencies, as explained in the following of this chapter. The waveform

parameters for all the considered CPM schemes are reported in Table 5.2, in which

the pulse type refers to the CPM pulse shape, which is the weighted average (AV)

of the raised-cosine (RC) and rectangular (REC) pulse shapes [55], such that

g(t) = αRCgRC(t) + (1− αRC)gREC(t) (5.1)
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Table 5.2: CPM Modulation Waveform Parameters

DVB-RCS2 CPM Waveform ID 3 5 7 8

Pulse Type Q2AV

AV Pulse αRC 0.98 0.75 0.75 0.625

Modulation index h 2/5 2/7 1/4 1/5

Code-rate 1/2 2/3 4/5 6/7

Packet length (bit) 400

Spectral efficiency 0.5 1.1 1.5 1.8

HPA type Ka-band SSPA

HPA IBO [dB] 0

HPA OBO [dB] 0

Normalized Carrier Spacing 2 1.21 1.0667 0.974

where both gRC(t) and gREC(t) have time support 0 ≤ t ≤ 2T , and are defined,

respectively, as gRC(t) = 1
4T

(
1− cosπtT

)
and gREC(t) = 1

4T .

The CPM signal can, therefore, be written as:

s(t) = cos

[
2πfct+ 2πh

∞∑
k=−∞

ak

∫ t

−∞
g(τ − kT )dτ

]
(5.2)

where fc is the carrier frequency, h is the CPM modulation index, and ak is the data

symbol at time interval k.

Also, due to the CPM waveform constant envelope, the user terminal HPA does

not need any input back-off (IBO), hence resulting in no output back-off (OBO).

On the receiver side, in ideal channel conditions, coherent detection based on

the Rimoldi decomposition of the CPM signal [62], is performed. When channel

impairments are considered, non-coherent detection is performed instead.

Figure 5.3: Block Diagram of the CPM receiver

The CPM receiver for non-coherent detection is reported in Figure 5.3. It is based

on a phase synchronization technique embedded in the BCJR algorithm of the CPM

detector leveraging on the Bayesian approach [57], in which a statistical model is
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Figure 5.4: PER comparison: LM vs. CPM, RCS2 waveform ID = 3, considering

phase noise (PN), frequency errors (FE), and ACI

assumed for the phase noise process. A Laurent decomposition is used [63,64] which

is truncated to the first M −1 components, for complexity reduction, and the phase

is discretized into R values, where R depends on the CPM modulation index h.

It is worth mentioning that the demodulation process is performed in an iterative

fashion together with decoding, yielding a better performance. In addition, the

considered CPM non-coherent receiver employs a Rife and Boorstyn coarse frequency

estimator [56] and the timing estimator proposed in [65].

5.3 Performance Analysis

In the following, numerical simulations of LM and CPM performance are presented

and compared in order to draw conclusions for the analysis. In particular, Figure 5.4

and Figure 5.5 show performance in terms of PER (Packet Error Rate) as a function

of the overall C/N (carrier to noise ratio) plus OBO for both CPM and LM, and

refer to two spectral efficiencies, 0.5 and 1.8 bit/s/Hz, respectively.

In Figure 5.4, considering the square and cross marked lines (both solid and

dashed) it can be seen that CPM performs close to QPSK 1/3 in AWGN. When

the effect of the user HPA and of the ACI is considered, CPM outperforms LM by

around 1 dB (at PER= 10−4). This is due to the fact that CPM waveforms pass

undistorted through the user HPAs. This can be appreciated observing the good

match between CPM performance with and without HPA and ACI.
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Figure 5.5: PER comparison: LM vs. CPM, RCS2 waveform ID = 8, considering

phase noise (PN), frequency errors (FE), and ACI

The analysis is further extended by taking into account receiver instabilities in

the performance assessment. Considering the solid and dashed circle marked lines

in Figure 5.4, it can be seen that the degradation due to channel impairments is

almost negligible, in the order of 0.1 dB for CPM, bringing the CPM advantage on

LM to 1.1 dB.

In the same channel conditions, CPM and LM are compared for spectral effi-

ciency of 1.8 bit/s/Hz in Figure 5.5. In this case, CPM shows a significant degrada-

tion when ACI is considered because of the tighter spacing between carrier that is

needed to reach such high spectral efficiency. On the other hand, the gap between

the ideal AWGN case and the case with ACI and HPA is significantly lower for

CPM than for LM, implying that CPM waveform can better cope with user HPA

non idealities in the characteristics and in the control of the operating point. Re-

garding LM, on the other hand, the performance improvement obtained by using a

CBC demodulator rather than a PLL is about 1 dB at PER= 10−4, thus confirming

the interest in more robust (although more complex) demodulation schemes for high

order constellations.

When channel impairments are also considered, the same considerations hold

true: the overall gap from the AWGN performance is larger for LM than for CPM.

This observation suggests to investigate the CPM waveform behavior also for inter-

mediate spectral efficiencies in order to assess performance trends of such promising

scheme in the considered channel conditions. Figure 5.6 shows a comparison between
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Figure 5.6: CPM waveforms comparison

CPM waveforms for spectral efficiencies η equal to 0.5, 1.1, 1.5, and 1.8 bit/sec/Hz.

As it can be seen, for η = 1.1 the degradation coming from ACI and non idealities

with respect to AWGN is of the order of 0.4 dB, while for η = 1.5 is of around 1 dB.

Therefore, both are more resilient to ACI and non idealities than the highest spectral

efficiency waveform (η = 1.8) while still providing significantly better performance

in terms of PER. This behaviour can be justified considering that for high SNR the

system is ACI-limited rather than AWGN-limited, and that a similar behaviour has

been observed in several other studies on CPM modulation, e.g. in [66] .

Finally, Figure 5.7 reports all the considered waveforms on the Shannon plane,

and it is worthwhile recalling the following ideal conditions assumed for comparison

purposes:

• the ACI power is perfectly balanced with the power of the useful signal;

• the ACI HPAs working point is ideally controlled;

• the useful signal HPA working point is the optimal one (i.e., non-ideal SSPA

control is neglected).

The above assumptions have a significant impact on the analysis, as they rep-

resent an optimistic baseline for the LM performance, hence suggesting that CPM

waveforms can be suitable for mesh applications, since such applications are sup-

posed to operate in a low SNR range, and for this case properly designed CPM

waveforms do not suffer for any additional degradation due to channel imperfec-

tions.
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Figure 5.7: Spectral Efficiency: CPM vs. LM comparison

5.4 Results Summary

In this chapter an analysis of air interfaces performance into a Mesh satellite scenario

was presented. Non-linearities, receivers instabilities, channel imperfections (i.e.

user terminal characteristics, phase noise and carrier recovery errors) were taken

into account in this analysis, along with the effect of adjacent channel interference

(ACI) caused by signals directed to other users but in the same multiplex of signals

forwarded to the satellite.

It is shown that CPM is potentially suitable for the Mesh scenario under consid-

eration, since it is more resilient to real-life impairments that affect transmissions

for low to medium spectral efficiencies. For high efficiency cases, LM waveforms

performs better, thanks to higher cardinality and lower coderate (i.e., better protec-

tion of data bits). CPM is however more appealing because, thanks to its constant

envelope, is prone to mesh mass-market system characterized by low cost devices

that will increase the need of robust and resilient waveforms.



Interference Management and Energy Efficiency in Satellite
Communications 97

Acknowledgment

This work has been in part supported by the ESA Project n. 4000102296/11 “Cost

Effective Satellite Terminals for MESH Overlay Networking”.



98 Waveform trade-offs in Mesh SatCom Systems



Chapter 6
Energy Efficient CPM Waveform

Design for SatCom Mesh Systems

The analysis carried out in the previous chapter show that CPM is a good candidate

solution for satellite mesh networks with single or multi beams coverage for low to

medium spectral efficiencies, due to its constant envelope and its resilience to im-

pairments that affect transmissions, such as Adjacent Channel Interference (ACI),

phase noise, uncompensated frequency offset, and transmitter non-linearities. Satel-

lite mesh networks in hub-less configurations are in fact characterized by terminals

with a small and low-cost antenna as well as a transmit amplifier with moderate to

low output saturated power, which impose several constraints on the link budget.

This chapter considers such power-limited scenarios, in which the main require-

ment is to fulfill power constraint mainly due to the characteristics of the terminals,

translating in imposing a range of useful operating SNR values, in which, thus, the

decoding of the signal must be successful. In this context, the attention is drawn to

the design of new waveforms to meet the above power constraints, based on CPM

since it has been shown that CPM waveforms have advantages in terms of power

efficiency with respect to LM alternatives. Note that the ultimate goal is, consid-

ering a constraint on the terminal power, to achieve the best performance in terms

of Packet Error Rate vs. SNR, at a given spectral efficiency, extending the SNR

operating range towards lower SNR with respect to existing DVB-RCS2 waveforms

in the most efficient way. This analysis, thus, can have an impact on the definition

of applications and services that are feasible, since power constraint are related via

the link budget also to antenna size and other characteristics.



100 Energy Efficient CPM Waveform Design for SatCom Mesh Systems

The easiest way to obtain a lower spectral efficiency waveform, for instance in

order to comply with tight power requirements, is the so-called Burst Repetition

(BR) technique, based ontransmitting each burst twice over the channel, at least

to increase the capabilities of the receiver to successfully detect the signal. This is

beneficial, for example, for fading channels, due to the exploitation of time diversity.

Since each burst is transmitted two times, a 3dB gain in C/N is achieved with

respect to the conventional single transmission, where C is the received power of

each received replica. Burst repetition therefore produces a 3dB power gain in turn

for a 3dB spectral efficiency loss. It must be noted , however, that such gain is not

achieved in Eb/N0, since Eb is the average energy per information bit, and although

each burst is transmitted twice, the transmitted information content is not increase

in the double trasnmission. Also, the mentioned gain in C/N is only achievable under

the assumption of perfect combining, which involves an ideal channel and timing

estimation. Therefore, although attractive, due primarily to the straightforward

implementation in an existing standard, is not the optimal one as it does not fully

exploit the introduced redundancy.

These considerations have motivated the design of a completely new CPM wave-

form, which, can be more suitable to cope with challenging requirements imposed

by power-limited scenarios, thanks to increased robustness, even if at the expense

of lower efficiency.

6.1 CPM Scheme Selection

This study’s objective is the selection of the most suitable modulation and coding

parameters for CPM waveforms to be employed in power-limited scenarios, which

typically translates into lower spectral efficiency values with respect to usual oper-

ating conditions. In particular, the spectral efficiency value η = 0.25 b/s/Hz has

been selected. The investigation starts with the selection of the most effective CPM

modulation parameters to cope with the mentioned scenario, which are mainly the

modulation index h, the cardinality of the modulation M , the modulation memory

length in symbols L, the phase pulse type, and the bandwidth normalized to the

symbol rate (FT , where F is the frequency spacing between two adjacent users and

T is the symbol time). The most effective modulation formats have been first se-

lected by using the information-theoretic analysis described in [66]. A set of binary

modulation formats with rectangular (REC) and raised-cosine (RC) frequency pulse



Interference Management and Energy Efficiency in Satellite
Communications 101

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-2 -1  0  1  2  3  4  5

S
E

 [
b

it
/s

/H
z
] 

E
b
/N0 [dB]

2RC, h=1/3
2RC, h=2/3
2RC, h=2/5
2RC, h=3/5
2REC, h=1/3
2REC, h=2/3
2REC, h=2/5
2REC, h=3/4
2REC, h=3/5
2REC, h=4/5

Figure 6.1: Maximum achievable spectral efficiency as a function of Eb/N0 for dif-

ferent CPM formats.

has been considered, with at most L = 2, to guarantee that the receiver can be

designed by considering the principal component of the Laurent decomposition [63]

only, as proved in [67]. For the considered CPM formats, the spectral efficiency

versus Eb/N0 is reported. It is worthwhile pointing out that, when computing the

spectral efficiency for a given value Eb/N0, it is assumed that adjacent users were

present with the same power and the same modulation formats of the useful signal.

Also, as in [66], the spacing between two adjacent signals is taken as a measure of

the bandwidth, optimized for each CPM modulation format and each Eb/N0 value.

In Fig. 6.1, the maximum achievable Spectral Efficiency (SE) as a function of Eb/N0

is represented for the selected CPM schemes with REC and RC pulses. From these

curves, it can observed that for low Eb/N0 values, where the systems are thermal-

noise limited, the selected modulation formats have a similar performance in terms

of maximum achievable spectral efficiency.

The selected CPM schemes perform similarly for low achievable spectral effi-

ciency values, therefore the selection has been made according to an EXIT chart

analysis, following the paradigm provided in [68–70]. This has been done by plotting
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Pulse h Spacing Code rate

2REC 4/5 1 1/4

2RC 2/3 1 1/4

Table 6.1: Selected CPM modulation formats

the complete EXIT chart for the CPM modulation formats and for several potential

convolutional codes. The selection of the most suitable CPM formats has been car-

ried out by neglecting all the formats that would lead to a so-called closed tunnel in

the EXIT chart, which means that the iterative decoding process can never reach

convergence, and those which, even before selecting the most appropriate Convolu-

tional Code, would show a very narrow tunnel or other characteristics that would

imply worse performance of the iterative decoding process, such as higher number of

required iterations. The end result of this EXIT chart based selection is represented

in Figure 6.2, in which is also the selected CPM formats are reported together with

the characteristic of a 16-state and a 4-state convolutional codes. After these two

steps, the modulation formats in Table 6.1 have been selected. Notice that the code

rate is uniquely determined by the spectral efficiency and the (optimal) channel

spacing.

Once the CPM modulation parameters have been determined, the second step

has been to seek for the convolutional codes to be concatenated with the selected

modulation formats. The investigation based on EXIT charts has been taken as the

first step in the code selection. In Fig. 6.2,the two schemes in Table 6.1 are considered

and the two rate-1/4 convolutional codes with 16 (generators [21, 23, 27, 31]) and 4

(generators [5, 5, 7, 7]) states, respectively. The EXIT curves for the CPM detector

have been computed at Eb/N0 =1 dB, which corresponds to a point in the waterfall

region of the decoder for the better performing waveforms, as it will be shown, thus

is a proper observation point for comparison.

This analysis suggested that 4-state convolutional codes with rate 1/4 shall be

considered, since 16-state code would end up, as shown, in a closed tunnel in the

EXIT chart (see Fig. 6.2), which as anticipated, results in a crossing between the

inner and outer code mutual information characteristics. When this is the case, it is

always prevented the possibility of reaching the top-right corner of the EXIT chart

throughout the iterative process, which means that some information will always be

lost, regardless of the number of iterations allowed. On the contrary, the 4-state

code is more powerful in the start of the iterative process, thanks to a wider open
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Figure 6.2: EXIT Chart for the two selected CC-CPM schemes with code rate 1/4.

tunnel in the EXIT chart. However, this code can have worse performance in the

error floor region with respect to its 16-state counterpart, although EXIT charts

investigations are able to only predict the waterfall and not a possible error floor

behaviour. Therefore, to cope with this partial unpredictability, PER computer

simulations have been carried out, as reported in Fig. 6.3.

Fig. 6.3 shows a comparison between the performance of the CPM waveforms at

η = 0.5 b/s/Hz spectral efficiency specified in the DVB-RCS2 standard, considered

as a reference in this work, and the new waveforms, at η = 0.25 b/s/Hz. It can be

seen that among the considered waveforms, the best performance is given by the

one with the REC pulse and h = 4/5, by around 0.2 dB both in AWGN and AWGN

with ACI. In particular, 6 Adjacent Channel Interferers are considered, with power

perfectly balanced with that of the user carrier, i.e., no ACI power unbalance is

taken into account. This test has been carried out by considering the code identified

by generator polynomials [5, 7, 7, 7], that is reported as the optimal code in terms

of free distance for that constraint length [71], [72]. On the basis of such results,

a further analysis on the selection of the optimal code has been carried out and

discussed in detail in the next section.
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6.2 Code Selection

CPM waveforms in the DVB-RCS2 standard are designed with a rate-1/2 convolu-

tional code, possibly punctured to achieve a desired code rate, identified by generator

polynomials [5, 7] in the case of constraint length K = 3 and [15, 17] in the case of

constraint length K = 4, which are reported in [71] and [72] as the optimal codes

in the sense of the free distance (dmin). When designing the new binary (M = 2)

CPM waveforms in power-limited environments, thus for lower operating spectral

efficiencies (η = 0.25 bit/s/Hz) the same criterion, based on the free distance, has

been originally followed in order to select the most suitable rate-1/4 code. How-

ever, there are multiple suggestions in the literature for this case. For K = 3 both

generators [5, 5, 7, 7] and [5, 7, 7, 7] were found to be the best choice (respec-

tively [71], [72]). Preliminary tests have shown that between such two generators,

the latter performs better in the considered system and scenario, but the next step

has been to evaluate the best convolutional code to be concatenated with the se-

lected CPM formats. More precisely, in a “turbo-like” system, as the Convolutional

Code-CPM (CC-CPM) scheme, the dmin optimality criterion plays no more a fun-

damental role. In fact, aspects such as the iterative behaviour, and the minimum

distance between signal trajectories (in the trellis) in the signal space might affect

the asymptotic behavior for high Eb/N0 value (in the so called floor region) whereas

the waterfall behavior is determined by the distance spectrum. The minimum Eu-

clidean distance between signal trajectories is also considered in [72]. It must be

noted, however, that [72] does not consider bit interleaving nor iterative demodu-

lation and decoding, and that there is no mathematical technique for finding the

best codes (in the sense of the minimum Euclidean distance), but rather a series of

considerations that can help in dramatically reduce the number of codes (i.e., gener-

ators polynomials) to be considered in the optimal code search, which is being still

carried out by means of a brute force approach. In [72] it is also shown that optimal

codes often share recurring characteristics, regarding the trellis branches labeling.

In this analysis, due to the relatively limited number of codes to be generated using

the specified parameters, a code search has been performed by means of computer

simulations, building on some considerations that can reduce the codes set cardi-

nality: for instance, the “all-zero” code [0, 0, 0, 0] is not considered, as well as the

generators with all polynomials set to the same value. Also, generator polynomials

which are merely time-reversal of one another have been considered only once.
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6.3 Performance Analysis

The results of the mentioned code search are reported in Fig. 6.4 where the dotted

lines represent the available benchmarks, i.e. the DVB-RCS2 CPM waveform at

η = 0.5 b/s/Hz and the same waveform considering the adoption of the Burst

Repetition technique, which achieves spectral efficiency η = 0.25 b/s/Hz but has

performance which is indistinguishable in the PER vs. Eb/N0 plane. Three sets of

closely spaced lines summarize the outcome of the code search over the considered

set of code generator polynomials, after having removed equivalent polynomials,

and other codes as per considerations made in the previous section. It can be seen

that there are subsets of codes (here grouped by lines in dashed styles) that perform

very close to each other and each of these families shows different performance. Note

that, in order to ease the reading of the performance chart, only some representative

curves have been reported here from the comprehensive analysis, precisely two for

each subset of codes. The gain achieved with the best performing codes with respect

to other sets of codes and to the BR technique is significant: at a PER of 10−4, up

to more than 1 dB of gain in Eb/N0 is observed between the waveform adopting the

best code and the DVB-RCS2 waveform with Burst Repetition.

Moreover, for the codes set represented by the solid lines, the waterfall region

seems to start before that for the codes represented by dashed lines. However, at

higher values of Eb/N0, the performance of the two families of codes crosses, also

because several other codes of the solid lines subset show an error floor.

Finally, Fig. 6.5 shows the same comparison in the PER vs. C/N , in which

is further appreciated the benefit brought by the design of the new waveforms.

Indeed, as said, BR yields a gain of exactly 3 dB, due to the fact that each burst

is transmitted twice, but the new binary CPM waveforms, along with the selection

of the most suitable code, can bring another gain of more than 1dB with respect

to the BR solution, up to a total of more than 4 dB with respect to the existing

DVB-RCS2 waveform at η = 0.5 b/s/Hz.

To the above reported results, which show a significant gain of the new wave-

forms, a performance assessment in presence of other impairments has been added.

For this reason a phase noise process was considered(described by the spectral mask

in [73]). This imposes to move to a non-coherent detector [67], that is based on

a phase synchronization technique embedded in the BCJR algorithm of the MAP

CPM detector, in which a statistical model is assumed for the phase noise process.

The achieved results are reported in Fig. 6.6, in which the focus is on the
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behavior of the most promising waveform, the one having generator polynomials

for the convolutional code equal to [1, 1, 6, 6]. The performance of this waveform

in presence of AWGN, ACI and phase noise is compared with the performance of

the existing CPM DVB-RCS2 waveform at η = 0.5 b/s/Hz with burst repetition

in AWGN only, i.e. without ACI and phase noise. As it clearly appears, the new

waveform impaired by phase noise and ACI outperforms the BR solution even with

coherent detection and no impairments, thus further showing the robustness of the

proposed solution.

6.4 Results Summary

In this chapter, building on the outcomes of chapter 5, an energy efficient waveform

design was carried out, particularly oriented to power limited scenarios, in which the

main requirements are in available power. In this context, lower spectral efficiencies

are considered, and it was performed a selection of the most suitable modulation and
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coding scheme, based on constant envelop modulations. The results show clearly

that the proposed waveform outperforms the typical solution for the considered

scenario (Burst Repetition technique).



Appendix A
Satellite Communications: an

Introduction

Satellite Communications represent an important part of wireless communications

enabling unique applications, both for military and mass market purposes, mainly

due to the achievable coverage that satellites link, by nature, allow. Satellite com-

munications date back almost 70 years, from the first visionary publications by Sir

Arthur C. Clarke, [74] and have evolved significantly, up to being integrated with

terrestrial wireless systems. An overview on the history and evolution from early

years to current and future technologies is provided in [75].

In this appendix, a brief introduction on a Satellite Communications System

is given, with the purpose of providing definitions and descriptions for the general

architecture that is widely referred to throughout this thesis.

A.1 Satellite Communications Systems Architecture

The reference Satellite Communications System architecture, with the main charac-

terizing elements is depicted in Figure A.1

The main elements in the architecture of figure A.1 are:

• the Gateway, or earth-station, which is connected to a Wide Area Network

(WAN) on ground, and to other control elements via the feeder-link (i.e., the

link between the satellite and the gateway, as opposed to the link between the

terminal and the satellite, called user-link)
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Figure A.1: Reference Satellite Communications System Architecture

• the Satellite, which relays signals transmitted from the ground, with several

possibilities in terms of regeneration of the signals

• the Terminal, which is the second end of the communication link, and can be

a fixed or a mobile terminal, based on the application, with varying size and

weight, ranging from parabolic antennas (diameter in the order of magnitude

of 1 meter) to handheld device

The general operation involves communication between the two ends of the trans-

missions, i.e., the gateway and the terminal, via the Satellite, acting as a relay. The

satellite can either be completely transparent, therefore representing what’s called a

bent-pipe link (in which, thus, the satellite is simply a relay for the communication

between gateway and terminal), or have some switching and processing capabilities

that can reconstruct or route the signals at the expense of higher complexity.

The most typical satellite link, for instance in reference to broadcast services,

is the link in which the gateway operates as the transmitter, and the terminal as a

receiver. This is called Forward Link (black line in figure A.1), and it is equivalent in

principle to the Uplink of a terrestrial wireless system. More recently, the possibility

of allowing a reverse link enabling interactive broadband satellite services, has been

conceived. This is referred to as Return Link (red line in figure A.1) and in this
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case the terminal is the transmitting side, which generates several considerations

with respect to the forward link. For instance transmission power is typically more

limited at the terminal side, and also, the terminal is typically equipped with small

low-gain antennas, and with cheaper RF components, such as power amplifiers, that

impose bespoke designs in this link.

Figure A.1 also highlights the levels of investigation typically involved in the

study and design of a satellite system. First the so-called System Level, which over-

looks the complete system architecture, thus the coverage area, the overall system

capacity and other aspects related to the entire system rather than on the single

communication link. The Link Level, on the other hand, involves investigations more

related to physical layer and waveforms aspects, such as Error Rate performance,

estimation and synchronization aspects and waveform parameters. A more in-depth

level of study focusses on intra-receiver (or intra-transmitter, equivalently, although

different receiver architectures are possible for the same transmission scheme) as-

pects, such as modulator/demodulator design and low level signal processing related

to a single device.

Satellite Communications Systems were initially based on single coverage region

in which users channels were separated in frequency, time and code. The develop-

ment of Multi-Antenna systems, has had an impact on satellite as well on terrestrial

communications, leading to the exploitation of a fourth dimension for the separation

of user transmission, which is the spatial dimension. As a result, the coverage area

can be divided into several spots of coverage, separated spatially by directive anten-

nas generating narrow beams. This defines the so-called Multi-Beam architecture,

which is taken as a reference in this thesis, and that leverages on the concept of

beam-forming, and its application to satellite network, which are presented in next

sections to introduce the multi-beam architecture on which this thesis is based.

A.2 Beam Forming in Satellite Systems

This chapter introduces the concept of Beam Forming and its applications to satellite

systems, which will be used to describe the reference multi-beam scenario for Chapter

1 and Chapter 2, in which interference management strategies will be discussed.

Beam Forming refers to signal processing techniques used to achieve Spatial fil-

tering of signals transmitted by an array of antennas [76]. Physically this is achieved

by allowing that each antenna elements in the antenna (array) system is driven by
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a coefficient (in amplitude and phase) such that for a certain range of angles with

respect to the radiating antennas, signals transmitted by each antenna element inter-

fere constructively and destructively for other angles (i.e., transmission directions).

This translates into the possibility of determining by design the spatial selectivity,

or directivity of the transmission.

This represents therefore a first way of dealing with interference, since it enables

the exploitation of another dimension in which signals can be separated. On top of

classical orthogonalization domains, such as Frequency, Time and Code (FDM, TDM

and CDM), signals can be also separated in space. Beam Forming is widely used in

already existing technologies, such as WiFi (IEEE 802.11n and later revisions, [77]),

3G and 4G terrestrial cellular standards [78,79].

Beam Forming has been also considered in recent Satellite Systems. The main

difference with terrestrial beam forming is the topology of the transmission: due to

the position of the satellite with respect to the earth, by means of beam forming it

is possible to achieve a tessellation of the coverage area, allowing for frequency reuse

and supporting a higher number of active user in the same time-frequency resources.

Beam Forming techniques in Satellite Systems can be broadly distinguished in

on-ground, hybrid and on-board beam forming. On-ground beam forming [80] refers

to the case of the spatial processing being carried out at the gateway, in which case

all signals pertaining to each antenna element (feed) are transmitted to the ground

station on the so-called Feeder Link. On-board beam forming is implemented in the

payload subsystem of the satellite itself, which means that only the beams signals

are transmitted through the feeder link, yielding bandwidth reductions in all the

cases in which the beam-forming is operated in a multi-feed per beam fashion. The

hybrid beam forming [81,82] is based on partitioning the beam forming process be-

tween the satellite, in which a form of coarse beamforming is carried out, and the

gateway, where a fine beamforming is applied. The target of this split processing

is the reduction of the feed signal space to a subspace of lower dimension, which

translates into reducing the required feeder link bandwidth. The idea is to apply

an appropriate transformation to the N feed signals, in order to project them on

a subspace with reduced dimensions, thus frequency multiplexing a number (lower

than the number of feeds) of partially-processed signals (beamlets) in order to de-

liver them to the gateway over the feeder link [10, 11, 14]. Alternative approaches

have been proposed [83] for determining the most appropriate weighting to be ap-

plied to the feed outputs to obtain the signal from a desired direction in space. The
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target is to apply a suitable transformation to the feed signals in order to obtain a

reduced set of values, that can still allow the reconstruction of the original signal.

For instance, on board solutions based on 2D Butler Matrix or analog FFT [81] can

be adopted. Practical imlpementations of these concepts require a trade-off between

the number of beamlets and the performance, since a reduction of the number of

signals (semi-processed, or coarsely beamformed) also implies a reduction in the de-

grees of freedom that the beam forming will leverage on, in terms of beam width

precision, placing nulls in the interferers directions and so on. To this extent, differ-

ent transformations were compared in [11, 14], in which Digital Fourier Transform

(DFT) and Karhunen–Loève Transform (KLT) [84] are compared, showing that the

latter is better performing, and that savings of up to the 20% can be achieved by

compacting the feeder link bandwith thanks to neglecting less relevant coefficients

of the transformed signals, while still being able to recover the original signal on

ground.

A.3 Multi-Beam Satellite Scenario

In this section, a practical application of Beam Forming to a satellite system, in-

tended for the coverage of Europe, is reported to introduce the Multi-Beam architec-

ture that will be taken as a reference for the analysis of the Chapter 1 and Chapter

2.

The practical case study hereby considered is based on an antenna model pro-

vided by ESA and on the assumption that multiple feeds constitutes each beam,

by proper beam forming weights. This will help better depicting the beam forming

operation.

The following example is based on a 155 feeds antenna system at the satellite, on

top of which a fixed beam forming is applied using 20 weighted feeds signals to shape

100 beams. Figure A.2 reports the radiation pattern in dB of a typical antenna feed

(i.e., feed number 10 of the considered antenna). It can be clearly seen that each

feed is quite directive even before beam forming, focussing on a narrow region of the

coverage area, and the superimposition of all the feeds will be necessary in achieving

the intended coverage.

In Figure A.3 the radiation patterns of all of the 155 feeds are represented to-

gether, therefore the entire coverage area is depicted. Note that the depicted ra-

diation patterns refer to the value in dB of the antenna gain calculated using the
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Figure A.2: Radiation Pattern of a single satellite antenna feed

Co-polar component of the antenna, since, although a Cross-polar component is

typically present, cross-polarization rejection is usually such that the interference

generated is negligible.

Figure A.3: Radiation Pattern of all the 155 antenna feeds (No Beam Forming)

Even though antenna feeds have already good directivity, beam forming is still

very beneficial, as it is aimed at providing uniform coverage by tuning the contri-

butions coming from clusters of feeds so as to close the coverage gaps rather than
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only steering the beam radiation pattern towards a specific spatial sector. For each

beam, among the feeds used to shape it, there exists typically a single feed weight

close to unity, for the most representative feed in that geographical area, and other

weights set to much smaller absolute values, and phase corrections defined so as to

reduce the interference carried by neighboring locations feeds, that are forced to only

superimpose constructively. In turn, this leads to a conveniently shaped beam with

coverage extended up to the beam edge without gaps or overlaps. The radiation

pattern of one Beam is depicted in Figure A.4.

Figure A.4: Radiation Pattern of a single Beam

The overall coverage achieved by beams is shown in Figure A.5. It is easier

to appreciate the impact of the beam forming if looking at the C/I distribution

over the coverage area before and after beam forming. As clearly shown in Figure

A.6, when no BF is performed, the C/I spatial distribution is only acceptable in

confined small areas, and it is not uniform over the whole coverage area. Indeed,

this is due to radiation pattern generated by the feeds, that although directive,

does not provide a uniform tessellation of the coverage area (in part also due to the

curvature of the earth). When beam forming is used, as shown in Figure A.7, the

C/I spatial distribution is much more uniform, thanks to convenient combinations of

feed contributions. Therefore, besides a good coverage, a fair C/I spatial distribution

is obtained on the coverage area. Note that in Figure A.6 and in Figure A.7 the

whole spatial coverage grid has been considered.

When beam forming is used, as shown in Figure A.7, the C/I spatial distribution
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Figure A.5: Radiation Pattern of al the 100 beams

Figure A.6: Distribution of the C/I over the coverage region without beam forming

is much more uniform, thanks to convenient combinations of feed contributions.

Therefore, besides a good coverage, a fair C/I spatial distribution is obtained on the

coverage area.

The above satellite beam forming example represents a reference for a multi

beam scenario, which is adopted throughout this thesis in terms of architecture,

although with different numerical parameters if specified.
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Figure A.7: Distribution of the C/I over the coverage region with beam forming
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Conclusions

This thesis has addressed at several levels the problem of interference in wireless

communications, with particular reference to satellite systems, as well as energy ef-

ficiency for power limited scenarios. In the first part of this work, the concept of

beam forming applied to satellite systems has been presented, in order to introduce

the multi-beam satellite scenario, taken as the reference for the following chapters

analysis. In Chapter 1 a system architecture was designed, starting from concepts

seen in terrestrial wireless counterparts, that is based on the cancellation of co-

channel interference. To this extent, first upper and lower bounds for the system

capacity were introduced, and then two interference cancellation approaches were

presented, with the possibility of leveraging on cooperation between gateways to

parallelize the effect of interference cancellation. It was shown that the performance

increase in terms of overall system capacity is significant in practically all the con-

sidered scenarios, with peak gains in the cases of full frequency reuse, i.e., where

there is more interference to be removed. It is also suggested that the design of the

interference cancellation based architecture should be done jointly with the design

of the antenna system, since the antenna pattern determines the generation of the

co-channel interference. In chapter 2 the application of the interference cancellation

strategies discussed in chapter 1 to the forward link of a multi-beam satellite system

is analysed. Considerations on the forward link scenario lead the analysis to phys-

ical layer decodability issues, which are evaluated theoretically and confirmed by

computer simulations. The first result shown consists in asserting that conventional

interference cancellation strategies, as presented in chapter 1, cannot be adopted

in the forward link of a multi-beam satellite system in the practical scenario con-

sidered. On top of this, a modified version of the interference cancellation strategy

is proposed, based on ModCod (or power) unbalance as a means for distinguishing
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the signals transmitted by interfering beams. It is shown that the proposed strat-

egy allows the interference cancellation to be able to decode from a physical layer

perspective, whereas the impact on the system capacity depends on the ModCod-

to-beam allocation or scheduling. Concluding Part I, in chapter 3 the specific case

of the Tracking, Telemetry and Control channel for a satellite system is considered,

based on a BFSK-FFH communication scheme, and the issue of intentional inter-

ference (jamming) is tackled by designing a novel robust receiver based on a double

threshold approach and a logic unit that outperforms existing receivers in terms of

resilience to multi-tone jammers.

Part II of this thesis is focussed on efficiency in the power domain. In particular,

energy efficiency is considered in reference to the return link of interactive satellite

communications by introducing the Mesh architecture in chapter 4 in which there

is no infrastructure in the network, therefore allowing a single-hop communication

between peers. In this case then, energy efficiency if even more critical than in the

return link of a two-hop classical satellite system, since both ends of the transmission

are terminals, having limited power resource and small antennas, therefore small

antenna gains affecting the link budgets. In chapter 5 a fair comparison between

linear and CPM modulation based waveforms for Mesh scenarios is carried out in

real-life conditions, accounting for channel impairments and terminals non-idealities,

and it is shown that CPM waveforms are a better solution for applications with

moderate requirements in terms of transfer rates. This analysis is taken as the

starting point for the study in chapter 6 in which the design of new waveforms

for power-limited scenarios is carried out, aiming at extending the range of low

operating SNR. This is achieved by choosing CPM as the candidate modulation

format, as per the analysis in chapter 5, and selecting the most appropriate CPM

modulation format and Convolutional Code parameters by means of both theoretical

and practical considerations.

Overall, the problem of better exploitation of limited resources in wireless com-

munications has been tackled in this thesis, at different layers, starting from the

system level architecture and aiming at increasing the system capacity. The anal-

ysis then moved to the link layer, on one hand extending to the forward link of

satellite systems the activity carried out for the return link, and on the other hand

by considering the design of energy efficient waveforms for power limited scenarios,

and then further down to the demodulator design, inside the receiver structure.

This work has been performed within the Digicomm group within ARCES/DEI
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at the University of Bologna, led by Professor G.E. Corazza, under the co-tutoring

of Professor A. Vanelli-Coralli. Many of the activities were performed in the context

of European Space Agency (ESA) studies and international research projects, to

which several of the activities reported in this thesis brought valued contribution.

Activities related to Part II of this thesis were also carried out in collaboration with

Mavigex Srl.
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