
A L M A M AT E R S T U D I O R U M - U N I V E R S I TÀ D I B O LO G N A
department of computer science and engineering

Ph.D. Course in
electronics, computer science and telecommunications

Cycle X X V I

Examination Sector 0 9 / H 1
Scientific Disciplinary Sector I N G - I N F / 0 5

Q U A L I T Y O F S E R V I C E I N D I S T R I B U T E D
S T R E A M P R O C E S S I N G F O R L A R G E S C A L E

P E R VA S I V E E N V I R O N M E N T S

Candidate: Supervisor:
andrea reale prof. antonio corradi

Advisor:
prof. paolo bellavista

Ph.D. Course Coordinator:
prof. alessandro vanelli-coralli

Final Examination Year 2 0 1 4

Andrea Reale: Quality of Service in Distributed Stream Processing for
Large Scale Pervasive Environments, © 2014.

website:
http://middleware.unibo.it/people/ar

e-mail:
andrea.reale@unibo.it

http://middleware.unibo.it/people/ar
mailto:andrea.reale@unibo.it

A B S T R A C T

The wide diffusion of cheap, small, and portable sensors integrated
in an unprecedented large variety of devices and the availability of
almost ubiquitous Internet connectivity make it possible to collect an
unprecedented amount of real time information about the environ-
ment we live in. These data streams, if properly and timely analyzed,
can be exploited to build new intelligent and pervasive services that
have the potential of improving people’s quality of life in a variety of
cross concerning domains such as entertainment, health-care, or en-
ergy management. The large heterogeneity of application domains,
however, calls for a middleware-level infrastructure that can effec-
tively support their different quality requirements.

In this thesis we study the challenges related to the provisioning of
differentiated quality-of-service (QoS) during the processing of data
streams produced in pervasive environments. We analyze the trade-
offs between guaranteed quality, cost, and scalability in streams dis-
tribution and processing by surveying existing state-of-the-art solu-
tions and identifying and exploring their weaknesses. We propose an
original model for QoS-centric distributed stream processing in data
centers and we present Quasit, its prototype implementation offering
a scalable and extensible platform that can be used by researchers
to implement and validate novel QoS-enforcement mechanisms. To
support our study, we also explore an original class of weaker qual-
ity guarantees that can reduce costs when application semantics do
not require strict quality enforcement. We validate the effectiveness
of this idea in a practical use-case scenario that investigates partial
fault-tolerance policies in stream processing by performing a large
experimental study on the prototype of our novel LAAR dynamic repli-
cation technique.

Our modeling, prototyping, and experimental work demonstrates
that, by providing data distribution and processing middleware with
application-level knowledge of the different quality requirements as-
sociated to different pervasive data flows, it is possible to improve
system scalability while reducing costs.

iii

P U B L I C AT I O N S

Part of the work in this thesis have previously appeared in the follow-

ing publications:

[1] P. Bellavista, A. Corradi, and A. Reale, “Effective epidemic dissem-
ination of multimedia metadata in peer-to-peer overlay networks:
The metis architecture and prototype,” in Proc. of the 16th IEEE
Symposium on Computers and Communications, (Kerkyra, Greece),
pp. 1073–1080, IEEE, 2011.

[2] P. Bellavista, A. Corradi, and A. Reale, “Design and implemen-
tation of a scalable and qos-aware stream processing framework:
The quasit prototype,” in Proc. of the 2012 IEEE International Con-
ference on Cyber, Physical and Social Computing, (Besançon, France),
pp. 458–467, IEEE, 2012.

[3] P. Bellavista, A. Corradi, and A. Reale, “Quality-aware, reliable,
and scalable crowdsensing in smart cities,” in Proc. of the 1st Inter-
national Workshop on Reliable Cyber Phyisical Systems, (Irvine, CA,
USA), 2012. Informal proceedings.

[4] P. Bellavista, A. Corradi, and A. Reale, “The quasit model and
framework for scalable data stream processing with quality of
service,” in Proc. of the 5th International Conference on Mobile Wire-
less Middleware, Operating Systems, and Applications, vol. 65, (Berlin,
Germany), pp. 92–107, Springer Berlin Heidelberg, 2013.

[5] P. Bellavista, A. Corradi, and A. Reale, “Scalable stream process-
ing with quality of service for smart city crowdsensing applica-
tions,” EAI Endorsed Transactions on Mobile Communications and Ap-
plications, vol. 13, no. 3, 2013.

[6] P. Bellavista, A. Corradi, S. Kotoulas, and A. Reale, “Dynamic dat-
acenter resource provisioning for high-performance distributed
stream processing with adaptive fault-tolerance,” in Proc. of
the 14th ACM/IFIP/USENIX International Middleware Conference —
Demo & Poster Track, (Beijing, China), pp. 13:1–13:2, ACM, 2013.

[7] P. Bellavista, A. Corradi, S. Kotoulas, and A. Reale, “Adaptive
fault-tolerance for dynamic resource provisioning in distributed
stream processing systems,” in Proc. of the of 17th International Con-
ference on Extending Database Technology, (Athens, Greece), ACM,
2014. In press.

v

[8] A. Reale, P. Bellavista, A. Corradi, and M. Milano, “Evaluating cp
techniques to plan dynamic resource provisioning in distributed
stream processing,” in Proc. of the 11th International Conference on
Integration of Artificial Intelligence and Operation Research techniques
in Constraint Programming, (Cork, Ireland), Springer-Verlag, 2014.
In press.

[9] P. Bellavista, A. Corradi, and A. Reale, “Quality-of-service in data
center stream processing for smart city applications,” in Handbook
on Data Centers (S. U. Khan and A. Y. Zomaya, eds.), New York,
NY, USA: Springer-Verlag, 2014. In press.

[10] P. Bellavista, A. Corradi, and A. Reale, “Quality of service in
wide scale publish-subscribe systems,” IEEE Communications Sur-
veys & Tutorials, 2014. In press.

A W A R D S

For his work on distributed stream processing in collaboration with
IBM Research Dublin, the author has been granted a 2013–2014 IBM
Ph.D. Fellowship award.

vi

C O N T E N T S

abstract iii

publications and awards v

contents vii
1 introduction 1

1.1 Architecture 3

1.1.1 Sensing and actuation 4

1.1.2 Data distribution 5

1.1.3 Data analysis 6

1.2 Example scenario 7

1.3 Research questions and methodology 9

1.4 Thesis contributions and outline 9

2 quality of service in pub/sub data distribution 11

2.1 Positioning our contribution 13

2.2 Model 14

2.2.1 Basic model 15

2.2.2 QoS-aware model 18

2.2.3 Classification of QoS properties 21

2.3 Systems survey 29

2.3.1 Centralized and topic based 31

2.3.2 Overlay and topic based 32

2.3.3 Overlay and content based 33

2.3.4 Peer-to-peer and topic based 35

2.4 Discussion 38

2.4.1 Delivery semantics 38

2.4.2 Persistence 39

2.4.3 Latency 40

2.4.4 Priorities and weak timing indications 41

2.4.5 Ordering 41

2.5 Directions for future research work 42

2.6 Summary and conclusions 43

3 quality of service in data streams processing 45

3.1 Positioning our contribution 46

3.2 Data-intensive scalable computing 48

3.3 Model 51

3.3.1 Basic model 51

3.3.2 QoS-aware model 56

3.3.3 Classification of QoS properties 58

3.4 Systems survey 66

3.4.1 Data stream management systems 67

vii

viii Contents

3.4.2 Distributed stream processing engines 69

3.5 Discussion 72

3.5.1 Processing semantics 72

3.5.2 Load management 74

3.5.3 Fault tolerance 74

3.6 Directions for future work 75

3.7 Summary and conclusions 76

4 a framework for quality of service aware
stream processing 79

4.1 Related work 80

4.2 Design principles 81

4.3 The Quasit model 82

4.3.1 Abstract model 82

4.3.2 Development model 90

4.3.3 Execution model 91

4.4 Architecture 93

4.4.1 Quasit domain manager 93

4.4.2 Quasit runtime node 94

4.4.3 Quasit operator repository 96

4.4.4 QoS management 96

4.5 Implementation 97

4.5.1 Quasit domain manager 99

4.5.2 Quasit runtime node 100

4.5.3 Quasit operator repository 104

4.6 Experimental evaluation 104

4.6.1 Scenario description 105

4.6.2 Ideal parallel processing 108

4.6.3 Horizontal scalability 109

4.6.4 Apache S4 111

4.7 Lessons learned 113

4.8 Future work 114

4.9 Summary and conclusions 115

5 adaptive fault-tolerance in distributed
stream processing systems 117

5.1 Related work 119

5.2 Service model 120

5.3 Load-adaptive active replication 122

5.3.1 LAAR in a simple application 122

5.3.2 Model and definitions 124

5.3.3 Internal completeness metric 126

5.4 Replica activation problem 127

5.4.1 Failure model 128

5.4.2 Constraint programming solutions 129

5.5 Runtime architecture 134

5.6 Experimental evaluation 136

5.6.1 Off-line optimization 136

Contents ix

5.6.2 On-line execution 140

5.7 Future work 147

5.8 Summary and conclusions 148

6 conclusions 151

6.1 Major contributions 151

6.2 Future research directions 152

6.3 Final remarks 154

acronyms 157

list of figures 161

list of tables 162

list of listings 163

bibliography 165

1 I N T R O D U C T I O N

The deep integration of computing systems into everyday life has
been envisioned long ago [1], but it is only in the last years that perva-
sive technologies are assuming a prominent and growingly important
role in our society. The reasons behind this phenomenon are mani-
fold, and have to be sought in the convergence of many advances in
computing technologies and simultaneous favorable social factors.

One of the driving socio-technical motivations can be identified
in the wide availability of cheap, small, and portable computing de-
vices integrated with rich sensing capabilities and heterogeneous net-
work interfaces. Tablet computers, smartphones, or smart watches are
very well known examples, and their diffusion can give a quite pre-
cise idea of the deep penetration of such devices in our society. All
these objects, even those considered to be “low-end”, are normally
equipped with a surprisingly large number of sensors, such as micro-
phones, cameras, accelerometers, gyroscopes, GPS receivers, or light
and proximity sensors [2]. Besides these personal devices, stationary
or mobile sensor nodes are often deployed and largely used into other
common environments such as vehicular networks [3, 4], utility grids
[5, 6], healthcare [7], education [8], or environmental monitoring [9].
At the same time, also thanks to ubiquitous high-speed Internet ac-
cess, people is changing their way of using the Web and, from being
simple consumers, they have become active producers of informa-
tion [10]. New user-generated content is now continuously created
and published on blogs, social networks, or multimedia sharing plat-
forms, and movements like citizen journalism are becoming increas-
ingly popular [11].

This incredible amount of digital information, practically a constant
live coverage about our physical and social environment, provides an
unmatched opportunity to build new services seamlessly integrated
into the physical world fabric and supporting people in their daily
actions, with the potential for improving their quality of life by en-
hancing cross-concerning areas such as healthcare, transportation, de-
cision making, and energy management. Smart pervasive services can
use the continuous streams of data from the cyber-physical world to
give valuable real time insights about what is happening around us;
more interestingly, they can exploit this information to act, in a sort
of self-corrective feedback loop, on the environment itself.

However, the availability of these big data streams alone is not
enough to implement smart and useful applications, because they

1

2 introduction

are normally unstructured, highly redundant, and often reflect par-
tial and local views of real world events. Other fundamental steps are
to collect their content, route it through a scalable data distribution
infrastructure, and, most importantly, distill, from the raw data, con-
densed knowledge that can be more easily leveraged by pervasive
services. All this process is at the core of Smart Pervasive Environ-
ments (SPEs), which represent the synthesis of ubiquitous sensing,
efficient data distribution, smart data analysis, and a possibly large
number of heterogeneous pervasive applications.

Yet, to build the infrastructure supporting SPEs can be a very hard
task because of the many technical challenges deriving from both
the characteristics of the input data streams and the unique process-
ing requirements of these scenarios. Scalability is the most obvious
one, with the extraordinary volume of data pushing traditional dis-
tribution and management infrastructures to their limits. Addition-
ally, data analysis must often satisfy near real time requirements and
results must be promptly produced in response to new data being
pushed from their sources, since significant delays can reduce or inval-
idate the usefulness of the processing efforts. The number of possi-
ble data sources and their sparse geographical distribution represent
other obstacles to overcome, calling for cost-effective mechanisms for
efficient data collection and distribution. Furthermore, the large het-
erogeneity of data sources puts additional requirements on the analy-
sis process, which needs to adaptively deal with different representa-
tion formats, non-uniform data semantics, and with missing, incom-
plete, or erroneous values. Finally, the possibly many SPE applications
can have highly differentiated goals, with consequently different re-
quirements that must be properly taken into account at both data
streams distribution and processing levels.

The ability to understand and exploit these requirements by offer-
ing differentiated Quality of Service (QoS) to different applications
is a fundamental feature for SPE-supporting platforms. QoS describes
the expected infrastructure behavior with respect to a set of perfor-
mance metrics, called QoS properties. Data delivery guarantees, la-
tency, throughput, priorities, or processing accuracy are common ex-
amples. Whichever aspect they regulate, the enforcement of quality
requirements always translates to the presence of mechanisms that
control, either statically or dynamically, the allocation of distributed
networking and computational resources to different tasks so that
the promised performance goals are met at runtime. While desirable
in many telecommunications and computing scenarios, we are con-
vinced that QoS-awareness is an indispensable property for infrastruc-
tures supporting the vision of smart pervasive applications and ser-
vices. Using the available resources adaptively and according to the
actual needs of different applications, in fact, enables them to scale
to larger and larger scenarios while efficiently managing the related

1.1 architecture 3

cost growth. Moreover, when resources are limited, as they almost
always are in real-world settings, the specification of quality require-
ments permits to assign the right priority to concurrent tasks. This is
particularly important, for example, when the rate of the processed
input streams changes in in ways that were not expected at applica-
tion deployment time: these situations, very common in our scenarios
where data is produced by external and uncontrolled sources, might
cause the resources available for data dissemination and analysis to
become suddenly insufficient to handle the whole input load, so it
is even more important to allocate them intelligently. For example,
think about a pervasive application managing emergency situations
compared to another one offering entertainment services: by under-
standing the different quality expectation of the two applications, the
platform would be able to offer prioritized service to the first and
most important one.

This thesis studies middleware-level infrastructures for real time
distribution and analysis of large data streams generated in pervasive
sensing scenarios. In particular, our focus is concentrated on their en-
hancement through QoS-based behavior, and on the design and imple-
mentation consequences of these extensions. We investigate the trade-
offs between guaranteed quality levels, scalability, and runtime costs
by reviewing previous state-of-the-art solutions, and by contributing
with our own proposal of a QoS centric distributed stream process-
ing system and of a novel fault-tolerance technique that optimizes
runtime costs according to application specific QoS requirements.

In the rest of this chapter, we expand our analysis of SPEs and intro-
duce a simple conceptual architecture that models infrastructures for
smart pervasive services (Section 1.1). We emphasize the possible ben-
efits that QoS-based behavior can provide at each architectural level
and present, in Section 1.2, an example scenario motivating our ideas.
Finally, in Section 1.3 we formulate the main research questions that
we try to answer in this dissertation, and, in Section 1.4, we conclude
the chapter by outlining the main contributions of our work and by
presenting the structure of the remainder of the thesis.

1.1 architecture

With the expression smart pervasive environment we refer to the col-
lection of hardware, software, and networking elements that sup-
port the execution of pervasive services. As described previously,
these services operate and act in the cyber-physical world in a self-
reinforcing sensing, processing, and actuation loop, which we repre-
sent through a simple conceptual model made of three main compo-
nents and shown in Figure 1.1. At the bottom level, the sensing and
actuation layer interfaces with the cyber-physical world; the data dis-

4 introduction

Real Time Data Analysis
(Stream Processing)

Data Distribution

Sensing / Actuation

Figure 1.1: An architecture for smart pervasive environments.

tribution layer is responsible of the efficient dissemination of data to
and from the sensing layer, while the top data analysis level performs
continuous processing of the data streams coming from the lower lay-
ers and produces results that can be translated to actions eventually
fed back downward to the physical world.

1.1.1 Sensing and actuation

Behind our vision of SPEs, there is the large availability of informa-
tion that describes, continuously and in real time, features and events
of the real world. With the expression “sensing data”, we refer gener-
ically to these data streams. In our scenario, we consider two main
types of sensing data sources, i.e., physical sensors and virtual sensors.

Physical sensors correspond to computing nodes equipped with
actual sensor devices and capable of measuring objective physical
quantities, such as temperature, light, mechanical vibration, magnetic
field magnitude, or concentration of air particulates. Normally, these
nodes have one or more network interfaces that are used to communi-
cate sensed data with very limited or no human intervention. Today,
physical sensors are ubiquitously deployed as fixed or mobile ad-hoc
environmental monitoring nodes, or integrated in other objects like
smartphones, cars, or even household appliances.

Virtual sensors encompass all the data sources that, while not mea-
suring real physical quantities directly, nonetheless provide informa-
tion about important real world aspects. Live social networks feeds
are a classic example of virtual sensors (they also have been called
social sensors [12]); other examples are RFID streams [13], phone call
records [14], or results of crowdsensing tasks [15].

At the other end of the SPE processing loop, there is the actuation
process. Once sensing data streams have been distributed, analyzed,
and their content have been used to take adaptive feed-back decisions,
these decisions must be applied on the physical world. The process
of actuation can be much more complex than the sensing process and
depends strictly on the specific application scenario. In the simplest
cases, it can be performed by using physical actuator devices, like
circuit breakers in a smart electrical grid [16], or automatic traffic
light controls in a road-network management system [17] (see also

1.1 architecture 5

Section 1.2). However, other forms of more complex actuation are
also common: for example, data analysis steps can produce accurate
management plans that are then put in action by human operators
[18], or behavior recommendations displayed on users’ smartphones.

1.1.2 Data distribution

Modern sensor nodes are commonly equipped with richer and richer
processing capabilities. For instance, average smartphones have multi-
core general purpose processors and an amount of main memory in
the gigabyte range, allowing many filtering and pre-processing tasks
to be successfully performed in place. However, the view of the cyber
physical world that a single sensor device builds through its sensing
actions is local, partial, and can be highly imprecise due to sensing
errors. Furthermore, many data analysis methods (e.g., deep learning
algorithms [19]) can be still too demanding for the locally available
resources. For these reasons, to make good use of them, sensing data
must be routed from the sensing layer to destinations that have a
wider view of the global system status and a much greater amount
of computational resources. The role of the data distribution layer is
to move data efficiently from their sources to the data analysis layer,
and, once processing results are transformed in actuation tasks, route
them back to actuators in the lower-layer levels.

Building data distribution services is a very hard task, and we iden-
tify five main challenges in their realization. First, the conspicuous
volume of data produced and exchanged in SPEs can easily push
existing infrastructures to their limits, and the distribution service
must be also able to deal with possible shortage of network resources.
Second, the data production rate can be high and highly variable: it
is important that the real time requirements of the processing tasks
involving these data are taken into account in the data distribution
layer to avoid potential bottlenecks. Third, the exchanged data can be
highly variable not only in their content and semantics, but also in
their encoding. Given the high heterogeneity of the data distribution
network participants (i.e., sensor nodes, actuators, and data process-
ing sites), a big challenge is to provide interoperability despite data
variety. Fourth, the data distribution service must support many dif-
ferent and coexisting network access technologies, from high-speed
cabled interfaces to low-power and low-speed wireless ones. Fifth, it
must efficiently and elastically scale [20] to the geographical distribu-
tion of its participants, in order to enable the realization of SPEs at
neighborhood, city, or regional scale.

Our opinion is that a key to face these challenge is to allow deep
QoS-based configuration of the distribution service. By offering dif-
ferentiated service levels to different participants and different data
flows, the data distribution layer can adapt to their specific require-

6 introduction

ments and optimize the way possibly limited network resources are
allocated and used. For example, some data flows may be more tol-
erant to delays than others, thus allowing a more generous use of
network-level batching to optimize channel exploitation. Likewise,
data from sources producing highly redundant data streams can be
disseminated using lossy channels.

1.1.3 Data analysis

The last but essential layer of our conceptual architecture is the data
analysis level. Its role is to process the big data streams generated in
the sensing layer and received through the data distribution layer, and
produce always up-to-date results that reflect the high-level knowl-
edge extracted from their content. These results can be used either
directly to acquire a better understanding of the pervasive environ-
ment, or to produce commands sent back to the cyber-physical world
with the objective of modifying it according to application goals.

A common trend to face the challenge of processing this huge
amount of data is to leverage the computing power of commodity
computers inside data centers [21]: by using highly-parallel and fault-
tolerant software architectures, extremely complex processing tasks
can be performed while keeping costs reasonably limited. Running
intensive data processing operations in large data centers brings two
important benefits: from a performance point of view, data centers
represent the ideal environment for the implementation of highly par-
allel processing algorithms thanks the availability of very high-speed
cluster-local Local Area Networks (LANs); furthermore, management
costs can be significantly reduced thanks to extensive use of resource
virtualization [22] and workload consolidation [23] techniques. For
these reasons, frameworks that handle the complexities of parallel
processing on large clusters (e.g., [24–29]) have recently received enor-
mous attention and are currently used in many production scenarios.

Among them, the class of Distributed Stream Processing Systems
(DSPSs) includes solutions that are specifically designed for the paral-
lel and scalable analysis of big data streams. In our SPE architecture,
data analysis services are modeled as stream processing applications
over sensing data that run on top of DSPSs hosted in large data centers
infrastructures. DSPSs, differently from other, batch-oriented, parallel
processing frameworks (a very popular example of this last category
being Apache Hadoop [30]), put the assumption of continuous input
at the core of their design and implementation principles, and model
data analysis tasks as permanent queries on these transient data [31].
Moreover, they usually optimize processing latency rather than pure
data throughput, making their model particularly attractive for the
real time data analysis scenarios of smart pervasive services.

1.2 example scenario 7

D
ata

D
istribution

Traffic Control

Emergencies

Navigation

Stream Processing

Figure 1.2: Traffic management system data flow.

Like for the data distribution services, we believe that to recognize
the different quality requirements of different processing tasks in the
data analysis layer can be extremely important to implement cost-
effective and scalable SPEs. These tasks, in fact, normally run concur-
rently on a shared data-center infrastructure and they should be exe-
cuted according to intelligent resource allocation policies that reflect
their specific goals and consequent priorities. For example, tasks re-
quiring bounded processing latency, such as those related to the mon-
itoring of health parameters in smart tele-care services [32], should
receive a guaranteed allocation of CPU time, memory, and network-
ing resources, also at the expenses, if necessary, of less time-sensitive
services, like, for example, pollution monitoring [33]. When resource
allocation is made even more difficult by dynamically changing input
load — a typical case in distributed stream processing —, knowledge
about application-level QoS requirements can be a valuable informa-
tion that dynamic schedulers can exploit to adapt to new conditions.

1.2 example scenario

There are countless possible ways in which the large data streams
from the sensing layer in a smart environment can be exploited to
build useful pervasive services. In this section, we present a simple
example that describes the architecture of a smart Traffic Manage-
ment System (TMS) within an SPE architecture.

The high level goal of this system is to optimize the management
of the public road network in a smart city through real time anal-
ysis of cars periodical position reports. By using vehicle-to-vehicle
and vehicle-to-infrastructure communications [4], cars continuously
exchange encrypted packets containing detailed information about
their route and, when they pass by wireless data collection points
installed in highly trafficked junctions, they relay the collected pack-
ets to the data distribution infrastructure. In their turn, the collection
points route this information to a data center-hosted stream process-
ing application, that processes it in order to build a global view of the
current road network status with the goal of realizing the core TMS
functionalities. As shown in Figure 1.2, the TMS implements three

8 introduction

main high-level services:

• Traffic flow control. By analyzing short term and long term vari-
ations in car speeds along different roads, the system adapts
the traffic lights timings according to the current road network
conditions.
• Management of road emergencies. In case of accidents, the vehi-

cles involved and other cars nearby immediately start sending
messages about the event to on-road collection points, which
relay them to the data center application. By analyzing these
messages, the TMS detects the emergency condition, notifies the
appropriate emergency service (e.g., ambulances), and tries to
adapt the traffic flow accordingly, for example, by suggesting
drivers to take alternative paths (see next point).
• Real-time navigation. Cars traveling in the city can query the TMS

for advanced navigation services. The system will answer by
providing an always up-to-date route that takes into account
road load conditions and possible emergency situations.

The three TMS tasks, although based on the same input data streams,
have very different quality requirements. For example, the traffic light
timers must be promptly and quickly adapted to new road load con-
ditions, meaning that the related processing actions should be per-
formed with bounded latency. Similarly, processing of emergency no-
tifications should be performed within deterministic time limits, in
order to allow immediate rescue actions to take place. For the same
reason, the management of all the emergency situations must take pri-
ority over other computations; this is especially useful during periods
of high traffic load when the available network and computational
resources might not be sufficient to satisfy all the application flows.
Accident notification messages should be transferred and processed
reliably because the consequences of information loss can be very se-
vere. On the other hand, the analysis of vehicles’ position and speed
to determine road load conditions can be performed best-effort: the
related processing tasks can be executed with lower priority; in addi-
tion, data loss can be largely tolerated in this case, given the implicit
spatial and temporal information redundancy in the corresponding
data streams.

This simple but, we believe, very representative example, shows
how important can be for SPE data distribution and stream process-
ing infrastructures to provide a rich and native support for differenti-
ated QoS. By using this type of support, developers can focus their at-
tention on application-level modeling and implementation problems,
while delegating the realization of complex quality enforcing mecha-
nisms to the underlying platforms.

1.3 research questions and methodology 9

1.3 research questions and methodology

In this work, we investigate design and implementation issues related
to the enforcement of differentiated QoS in SPE middleware infrastruc-
tures based on the architecture presented previously in this chapter.
The two main research questions that motivate our work are:

• What is the role of quality and quality requirements in SPE en-
vironments and how can we model them? What QoS policies
should SPEs middleware support and what are the related de-
sign and implementation issues? Can we organize these policies
into useful taxonomies to help build future large scale SPEs?
• Can we exploit rich knowledge of application-level quality re-

quirements to optimize SPE infrastructures? In particular, is it
possible to leverage this information to improve scalability and
reduce platform runtime costs?

In this dissertation, we throughly analyze and discuss these ques-
tions with an engineering-oriented perspective. Starting from deep
technical analyses of existing and state-of-the-art contributions from
industry and academia, we build simple and practical models of QoS-
aware data streams distribution and processing and draw general and
reusable principles for the design and implementation of future QoS-
aware systems. We validate our ideas by building prototypes of sys-
tems, techniques, and algorithms and by evaluating them through ex-
tensive experimental campaigns on small to large scale distributed
deployments of realistic application scenarios. We do not use any
simulation-based validation method: although they can often provide
quick feedback about the effectiveness of new complex solution ap-
proaches, we have preferred to base our conclusions on direct and on-
the-field performance measurements of real system prototypes, since
we believe that the complexities involved in SPE scenarios are very
difficult to capture in discrete simulations. Demonstrating its claims
with this type of validation methodology, the thesis proposes our an-
swers to the above research questions through several contributions,
briefly introduced in the next section.

1.4 thesis contributions and outline

In this thesis, we study the technical challenges behind the realization
of scalable and cost-effective Smart Pervasive Environments (SPEs),
i.e., computing environments that integrate ubiquitous sensing, large
scale data distribution, and parallel stream processing to build a new
class of services that can improve people’s quality of life by acting on
the physical world based on real time analysis of sensing data.

In particular, we focus on the middleware-level infrastructure sup-
porting the analysis of big sensing data streams, corresponding to the

10 introduction

data distribution and stream processing levels of the SPE architecture
presented previously in this chapter. The main claim of this thesis
is that streaming data distribution and processing can be improved
by supporting and exploiting a deep knowledge of the Quality of
Service (QoS) required by different data flows and applications. We
support this claim by providing the following contributions:

• Chapter 2. We analyze the requirements of data distribution ser-
vices for SPEs and identify in the Publish/Subscribe (PUB/SUB)
communication model a promising solution to answer the strong
need of scalability, interoperability, and QoS-based configurabil-
ity coming from the considered scenarios. To support this claim,
we survey a selection of widespread PUB/SUB architectures and
emphasize the trade-offs between design choices, implementa-
tion details, scalability, and supported QoS levels.
• Chapter 3. Orthogonally to our study of data distribution ser-

vice architectures, we survey the state-of-the-art of Distributed
Stream Processing Systems (DSPSs) and investigate their abil-
ity to support differentiated QoS for data analysis tasks in SPEs.
This study leads to our conclusion that, in order to fully support
the requirements of future pervasive services, DSPSs should of-
fers comprehensive solutions for QoS-based data analysis.
• Chapter 4. We propose an original architecture for QoS-centric

DSPSs, called Quasit, and present the lessons learned while de-
signing and implementing a working prototype of our ideas.
The goal of the architecture is to allow deep QoS-based cus-
tomization of every aspect of the stream processing platform,
and our prototype, freely available for download, aims at being
a shared platform that researchers can use to develop and vali-
date new QoS mechanisms for distributed stream processing.
• Chapter 5. We investigate the possibility to offer dynamically

flexible quality guarantees to stream processing applications
that can tolerate them, in order to adapt platform runtime costs
to their exact requirements. We do so by proposing LAAR, an
original fault-tolerance technique for DSPSs that supports the
specification and runtime enforcement of customizable consis-
tency levels. Through a thorough experimental evaluation on
a large distributed stream processing deployment, we demon-
strate the effectiveness of our proposal.

The thesis is concluded by Chapter 6, where we summarize the
most important findings of our work and highlight interesting and
still open research directions.

2 Q U A L I T Y O F S E R V I C E I N
P U B / S U B DATA D I S T R I B U T I O N

The unprecedented amount of data generated in SPEs needs to be
effectively distributed before it can be processed, analyzed, and used
to build useful applications. We identify three major requirements for
data distribution in SPEs.

1. Interoperability.
2. Scalability.
3. QoS-based configurability.

In a highly heterogeneous environment, where sources and destina-
tions with different hardware capabilities and running different soft-
ware stacks produce and consume information, interoperability plays a
fundamental role. It enables composition of information and services,
encouraging the emergence of reusable components, thus improving
the offered services and reducing their cost. Scalability is probably
one of the most important technical properties to achieve in order
to build the large SPEs envisioned in the previous chapter. The cost
of running and managing the data distribution infrastructure should
increase in a graceful and controlled way as more entities join the
system (participants scalability), as the systems expands over larger ge-
ographical areas (geographical scalability), and as the volume of the
data exchanged grows (data scalability). We believe that the key to
achieve scalability lays in the possibility to customize the data dis-
tribution service with detailed QoS-related configurations. If properly
leveraged, QoS-based configurability lets services adapt their protocols
to the specific requirements of different scenarios and avoids to use-
lessly over provision resources that are not strictly needed to satisfy
the overall application quality requirements.

The Publish/Subscribe (PUB/SUB) messaging pattern is widely rec-
ognized as an important solution to address many of the require-
ments of flexibility posed by highly distributed systems. In PUB/SUB
systems, communications between parties are decoupled in space,
time, and synchronization [34]. Decoupling is a fundamental prop-
erty to implement truly scalable systems: space decoupling means
that two parties do not need to know each other to exchange informa-
tion; time decoupling removes the requirements of parties being on
line and active at the same time, while asynchronicity avoids block-
ing operations on both producing and consuming endpoints, thus
promoting a reactive style of interactions [35] that favors scalability.
Moreover, PUB/SUB systems have been used often and successfully as

11

12 quality of service in pub/sub data distribution

message buses bridging the functionalities of heterogeneous compo-
nents [36–39] thanks to a communication paradigm that has essen-
tially the advantages of message-based decoupling and to the adop-
tion of open protocols and data representations.

Among the three requirements of scalability, interoperability and
QoS-based configurability stated before, the latter is the one that, at
least apparently, fits the PUB/SUB model less naturally. In fact, guar-
anteed behaviour has been more often associated to multimedia sys-
tems [40] or to synchronous and point-to-point messaging solutions
like Remote Method Invocation (RMI) [41] or Web Services [42, 43]
rather than asynchronous, many-to-many ones such as PUB/SUB ar-
chitectures. In addition, scalable limited overhead and deterministic
quality are, in many cases, contrasting requirements from the point
of view of design/implementation choices: this is especially true in
wide area network deployments, where the satisfaction of these re-
quirements is made even more challenging by the difficulty to esti-
mate and predict network performance at runtime. Nonetheless, in
the last decade, several works [20, 44–48] have analyzed and investi-
gated mechanisms and techniques for the design/implementation of
scalable PUB/SUB middleware, and many solutions emerged for their
ability to satisfy more or less strict quality requirements in highly
different application scenarios [49]. The experience made with the
development and deployment of these systems has given relevant in-
formation on how design/implementation choices can impact on the
ability of PUB/SUB middleware to offer different QoS-related perfor-
mance at runtime.

In this chapter we support the claim that the PUB/SUB model of in-
teraction is the most suitable to satisfy the data distribution require-
ments of interoperability, scalability, and quality of SPEs. To this pur-
pose, we present a simple and original model for the classification of
PUB/SUB systems that considers both functional and non-functional
aspects of data interactions, and we survey a selection of widespread
PUB/SUB systems from both academia and industry in order to shed
light on the adopted trade-offs between design choices, implementa-
tion details, scalability, and QoS levels. We finally identify the current
issues and limitations of PUB/SUB supports, and we propose direc-
tions of investigation for building new systems capable of properly
balancing the design and performance trade-offs depending on the
target deployment scenarios.

The rest of the chapter is organized as follows. We start by an-
alyzing the previous literature that, like us, has attempted to un-
derstand the trade-offs in the implementation of quality-related be-
havior in PUB/SUB infrastructures (Section 2.1). In Section 2.2, we
present our model for PUB/SUB data dissemination that can also de-
scribe QoS-aware interactions, and we propose a classification of com-
mon PUB/SUB QoS properties that captures their common character-

2.1 positioning our contribution 13

istics and concerns. A survey of a selection of PUB/SUB systems that
emerged for their original support of QoS properties is presented in
Section 2.3, followed by a comparative discussion in Section 2.4. Fi-
nally, in Section 2.5, we define a set of guidelines for future research
in QoS-aware data distribution, and, in Section 2.6, we summarize and
conclude the chapter.

2.1 positioning our contribution

A conspicuous amount of work has been done in the research field
of distributed PUB/SUB systems and middleware in the last 15 years,
demonstrating the widespread interest in the topic. In this section we
position the surveying work we perform in this chapter by analyzing
previous contributions that either give a conceptual grounding to the
ideas that we use and develop here, or that are close to our proposal
of PUB/SUB modeling and classification.

In their popular and seminal article, Eugster et al. [34] make a thor-
ough comparison of various distributed communication models, and
single out the identifying characteristic of the PUB/SUB paradigm. The
paper proposes a basic and widely accepted taxonomy of PUB/SUB
systems, which classifies them according to their subscription model.
The authors also define some basic QoS properties, but very little
space is dedicated to the description of design/implementation trade-
offs related to the defined parameters.

Baldoni et al. [45] analyze different PUB/SUB solutions under two
orthogonal perspectives that they call subscription model and architec-
tural model. The article also dedicates a section to one specific quality
aspect, i.e., reliability, but it does not cope with many other important
quality concerns that we believe of primary importance in PUB/SUB
data distribution, such as delivery latency, persistence, or ordering.

A detailed survey of routing algorithms for PUB/SUB communica-
tion can be found in [46] and [50]; in particular, the two papers focus
on the sub-field of content-based routing. Although QoS related issues
are out of the scope of those articles, their contribution is significant
to our work because they perform a detailed discussion of design/im-
plementation details specifically associated with content-based event
routing techniques, which were helpful to better understand specific
facets of different technical solutions.

In their book chapter, Corsaro et al. [51] directly face the problem of
QoS in PUB/SUB middleware: the authors review the requirements and
the semantics of three important categories of QoS parameters, i.e., reli-
ability, timeliness, and security & trust. A careful analysis is performed
to illustrate how two important standards for industrial messaging
systems support the aforementioned parameters. Compared to ours,
that work differs in two main directions. First, our survey is signifi-

14 quality of service in pub/sub data distribution

cantly more comprehensive in the variety of solutions discussed, in
particular about PUB/SUB contributions from academia. Second, this
chapter has a much stronger focus on proposing guidelines that help
to properly understand and improve the quality/complexity trade-
offs existing in current state-of-the-art solutions.

Behnel et al. [52] identify and define a set of meaningful QoS poli-
cies for PUB/SUB systems and group them in two macro groups, i.e.,
quality at global infrastructure level and quality at notification/subscrip-
tion level. While that work is successful in building a common dictio-
nary and in defining the semantics of many QoS properties commonly
available in PUB/SUB systems, it does not investigate how these prop-
erties can be effectively achieved in wide-scale PUB/SUB systems with
different design/implementation trade-offs, as we aim at doing.

The paper by Mahambre et al. [49] is probably the most similar to
the work in this chapter in terms of goals. It surveys state-of-the-art
PUB/SUB systems by focusing on their support to different QoS classes.
Conversely to [51], the article focuses on solutions coming from the
academia and omits to compare significant industrial ones. More im-
portantly, the paper differs from our work in the fact that its primary
objective is to give a high-level architectural and conceptual model
for PUB/SUB systems that support QoS, rather than to deeply identify
technical issues and the associated spectrum of solution guidelines,
with technical advantages and weaknesses, for the implementation of
scalable and QoS-enabled PUB/SUB systems.

2.2 model

In this section we present a unified model for PUB/SUB systems that
captures, at the same time, their functional aspects, i.e., the set of
features that relate directly to data distribution, and the properties
connected to QoS-based configurability, i.e., their non functional as-
pects. Our proposal, which takes into account previous PUB/SUB mod-
els but originally extends them for what concerns QoS representation,
is centered on the concept of notification space, an abstract geometri-
cal space that we use to represent PUB/SUB distribution actions and
requirements. We relevantly modify and extend the model already in-
troduced by [46] in two main directions. First, we augment the space
dimensions with the concept of time, which lets us model dynamic
and evolving aspects of data distribution more naturally. Secondly,
we present a concise and coherent model of how PUB/SUB actors can
offer/request QoS levels in data delivery and how these offers/re-
quests can be effectively matched by the PUB/SUB system.

The presentation is organized as follows. First, in Section 2.2.1, we
overview our notification space model and use it to describe the be-
havior of PUB/SUB middleware at a high abstraction level. Soon after,

2.2 model 15

we introduce two commonly accepted taxonomies for PUB/SUB sys-
tems: later in this chapter, we show that the positioning within these
two taxonomies affects many relevant PUB/SUB design/implementa-
tion choices and, in particular, the ability to offer QoS-enabled and
scalable data distribution. Finally, in Section 2.2.2 we extend the noti-
fication space model by supporting QoS requests and offers.

2.2.1 Basic model

A PUB/SUB middleware is a distributed platform that allows its par-
ticipants to exchange information with each other in the form of data
samples (or simply, samples). A participant enters information in the
system by publishing and expresses its data interests by means of sub-
scriptions. The middleware delivers samples to subscribers according to
their subscriptions. A sample e is a set of key-value pairs, whose mean-
ing is generally application-dependent. Without loss of generality, we
assume key and values to be arbitrary strings of finite length.

The notification space is an m-dimensional space (m > k+ 1). A
point in the space is called notification and describes the publication
of a sample. The first k dimensions correspond to the k sample keys,
while the (k+ 1)th dimension models the time when the publication
has occurred1. The remaining (m − k − 1) dimensions are optional;
they can be used to model behavioral extensions such as possible
non-functional aspects of sample publication. As a relevant example,
an additional dimension could be used to model the geographical co-
ordinates of a publisher, and thus could enable subscription filtering
based on physical proximity. In Section 2.2.2, we use these dimen-
sions to extend the model and represent QoS based interactions.

When a participant publishes a sample, a notification n is created
and represented as a point in the space whose coordinates correspond
to the sample values. In order to subscribe, participants select sub-
spaces of interest within the notification space with subscription filters,
i.e., boolean function expressing constraints over the k dimensions.

Whenever e is published, the system dispatches it to a set of partic-
ipants P that have specified a subscription filter σp matching the sam-
ple. A filter is said to match a sample when the corresponding notifi-
cation belongs to the subspace identified by the filter. Any consistent
implementation of PUB/SUB middleware guarantees that subscribers
receive only samples that match at least one of their subscription fil-
ters. Let us point out that, for several design/implementation reasons,
in many systems it is not necessarily true that a participant receives
all the samples matching its subscriptions. Figure 2.1 schematically
shows a possible PUB/SUB interaction, where circles represent partici-

1 To simplify the discussion, our model assumes the existence of a global clock, but
such a clock is used only for modeling purposes and does not have to be available
(usually it is not) in PUB/SUB implementations.

16 quality of service in pub/sub data distribution

subscribe publish deliver

PUB/SUB
Middleware

P1
P2

P5

P3

P4

e1

e1
e2

e2

e1
σ1

σ2

σ3
{ topic=weather }

{ topic=weather,
city=BO }

{ topic=news }

{ topic: weather, city:
BO, forecast: fair }

{ topic: weather, city:
DUB, forecast: rainy }

σ1

σ2

σ3

e1

e2

Sym. Content

Figure 2.1: P2, P4, and P5 subscribe with subscription filters σ1, σ2, and σ3;
P1 and P3 publish samples e1 and e2 that the system delivers
to subscribers. The side table describes the represented subscrip-
tions and samples.

k1

k2

e1

e2
Σ1 Σ2

Σ3

t

k2

e1
e2

Σ1
Σ2

Σ3

Figure 2.2: Representation of a three-dimensional notification space. On the
left a projection of the space on two dimensions (k1 and k2); on
the right a view of the same space projected on k2 and the time
dimension t.

pants, and arrows represent actions. Figure 2.2 pictures a similar sit-
uation in the notification space.

A publisher can optionally declare its publishing intents and de-
scribe beforehand the type of samples it will produce through adver-
tise actions. An advertisement includes an advertisement filter that,
similarly to subscription filters, is a boolean function over the func-
tional and non-functional dimensions of the notification space, and
it identifies the subspace where the notifications generated by the
publisher samples will fall. Advertisements are a very valuable mech-
anism to provide PUB/SUB middleware with additional knowledge
about the samples that will be generated in the future. This knowl-
edge could be used, for example, to support discovery services or to
optimize data routing and matching. Most importantly for the spe-
cific goals of our survey, the advertisement mechanism can be lever-
aged as a building block for modeling advanced interactions between
participants, such as QoS requests and offers.

PUB/SUB systems have often been classified according to two alter-
native taxonomies: the first, model-level, taxonomy organizes systems

2.2 model 17

R
ou

tin
g

To
po

lo
gy

overlay of brokers

centralized

peer-to-peer

Su
bs

cr
ip

tio
n

M
od

el
content-based

topic-based

(a) (b)

Figure 2.3: Two common taxonomies of PUB/SUB systems. (a) Classification
according to the subscription model (the dashed arrow empha-
sizes the fact that the topic-based model can be seen as special-
ization of the content-based). (b) Classification based on sample
routing topology.

according to the way subscribers express their subscriptions (i.e., their
subscription model) [34, 49, 51], while the second, architectural-level,
taxonomy classifies them based on their distributed deployment (i.e.,
their routing topology) [45, 46]. The two taxonomies are complemen-
tary to understand the characteristics of a PUB/SUB system: while the
first has a direct impact on the high-level interface of the middleware,
the second is useful to correlate these features to lower level and im-
plementation details.

The subscription model taxonomy (Figure 2.3a) organizes systems in
two main classes2:

• Topic-based. In topic-based (sometimes also called subject-based)
PUB/SUB middleware, one of the sample key-value pairs, called
topic, is given a special meaning and subscribers specify their
interests by providing an equality predicate on the topic value.
• Content-based. In content-based PUB/SUB, subscribers can create

complex predicates using all the samples fields or only part of
them (in the last case they are also referred to as header-based).

Topic-based PUB/SUB systems are very diffused in both industry [62–
64] and academia [65–68] mainly because of their simplicity; by in-
troducing topics, PUB/SUB systems partition subscribers into groups,
each associated to a topic, and including all and only the participants
who have subscribed to it. For this reason, the efficient routing of
topic-based samples is equivalent to the well-known problem of mul-
ticast messages distribution [69]. In contrast, content-based subscrip-
tions (e.g., [57, 58, 60, 61, 70]) give participants more flexibility, but
can complicate PUB/SUB matching and routing functions [71].

The routing topology taxonomy, instead, identifies three main system
organization alternatives, as shown in Figure 2.3b.

2 In the literature other classes have been identified, e.g., type-based [53–56], or context-
aware [57–61] systems. Here we omit them because they can be easily mapped on
the content-based model, and because their specific peculiarities do not have direct
relations with the implementation of quality-aware behavior.

18 quality of service in pub/sub data distribution

• Centralized Broker. In centralized PUB/SUB systems, a conceptu-
ally central entity, called broker, stores and manages all the sub-
scriptions and acts as the unique data dispatching component.
• Overlay of Brokers. The system is organized as a network of peer

brokers, i.e., infrastructure nodes realizing the PUB/SUB func-
tions. With this organization, participants connect to one broker
that acts as their proxy to the middleware; sample matching and
routing are performed in terms of distributed algorithms over
the broker network, potentially improving system scalability.
• Peer to Peer. Differently from the overlay of brokers network or-

ganization, where, even though brokers themselves constitute
a Peer to Peer (P2P) network, the interactions between bro-
kers and participants follow a client/server model, in fully dis-
tributed peer-to-peer architectures, there are no intermediary
nodes between participants and samples flow directly from pub-
lishers to subscribers. All the matching and routing responsibil-
ities are carried on by participants themselves.

Centralized architectures, such as [67] or [72], do not scale well
when either the number of participants or the publication rate signifi-
cantly grow since the broker server has to keep (at least partial) state
for all its clients and has to process and route all samples. Notwith-
standing that, one central entity with global knowledge of the PUB/SUB
network allows easier administration of the available resources and,
hence, a simpler implementation of QoS properties.

Topologies based on overlay of brokers [57, 58, 73, 74] enable, in
general, improved scalability because the responsibility of matching
and routing decisions is spread across the overlay nodes [75]. The
presence of a distributed infrastructure allows to leverage geographic
and semantic proximity of nodes to optimize routing paths or to im-
plement in-network filtering of samples [56, 58] at the expense of
increased complexity in system management and of worse dissemi-
nation latency caused by the overhead of middleware-level routing.

P2P topologies [55, 76, 77] are best suited for the dissemination
of samples between a limited number of participants and in a small
scale geographical deployment. They potentially guarantee small la-
tencies and high throughput given the absence of intermediate hops
and thanks to the exploitation of techniques leveraging the co-locality
of participants, such as multicast-based message dissemination.

2.2.2 QoS-aware model

The basic notification space model presented in the previous section
was intentionally used to represent only the functional features com-
monly offered by PUB/SUB systems. However, in many application
scenarios it can be important to have visibility and control over more
implementation-related system details, i.e., its non-functional aspects.

2.2 model 19

Non-Functional

Semi-Functional

Functional • PUB/SUB primitives

• Delivery Semantics
• History
• ...

• Network Protocol
• Resources Usage
• ...Q

oS
-a

w
ar

en
es

s

A
bs

tr
ac

tio
n

le
ve

l

Figure 2.4: QoS specifications configure non-functional properties. By set-
tings what properties are configurable, designers control the
level of abstraction offered.

Let us emphasize that functional and non-functional behavior are cor-
related: choices taken at one level impose constraints or at least guide
design/implementation decisions at the other.

This relation is often so strong that it becomes very difficult to draw
a line to perfectly separate features of real systems into two different
categories. Consider, for instance, delivery reliability. Under one per-
spective, it could be considered a functional aspect because it alters
the semantics of how information is delivered to participants (receive
all the samples of interest rather than just a subset of them); from
a different point of view, instead, reliability could be seen more as
an implementation-related feature that sometimes participants could
even be unaware of. We believe that this is the natural consequence
of different application scenarios having very different requirements
and thus needing diverse levels of visibility and control over the com-
munication process. For this reason, we see the features offered by
PUB/SUB middleware better organized as a continuum of levels of in-
creasing abstraction: at the top there are features that are part of the
operational semantics; the bottom level includes design/implementa-
tion details, sometimes platform-dependent, that strongly affect the
performance results achievable.

In this vision, a central role is played by QoS specifications and their
emerging visibility. Different specifications can be used to tune, with
different granularity, configuration details that permit to achieve the
desired level of quality. By using QoS specifications, users are willing
to sacrifice transparency from implementation-oriented details (and
the accompanying ease of use) to have a deeper control of the mecha-
nisms that realize abstract services in return. PUB/SUB systems design-
ers, by choosing the set of QoS properties to expose, decide the set of
low-level configuration aspects exposed to their users, practically set-
ting the maximum visibility they have on middleware non-functional
features. Figure 2.4 summarizes this concept; for the sake of repre-
sentation clarity, in the figure, we have grouped PUB/SUB properties
in three groups; the semi-functional level collects system properties
that represent intermediate abstractions between full visibility of im-
plementation details, the lowest level, and “pure” PUB/SUB semantics,
the highest one.

20 quality of service in pub/sub data distribution

In QoS-based services, the involved parties usually perform a qual-
ity agreement process to determine the service level to be provisioned
at runtime [78]. This process, in the context of PUB/SUB systems, has
been modeled through a Offer – Request (O-R) pattern in the past
[49, 63], according to which publishers offer a set of supported qual-
ity properties, and subscribers choose the desired service level among
these possibilities. We claim that this basic agreement model misses to
properly emphasize the fundamental role of the middleware, which
must decide whether to dedicate resources, possibly distributed, to
QoS provisioning and confirm its decision to clients; hence we ex-
plicitly refer to a generalized three-way Offer – Request – Confirm
(O-R-C) agreement model in all the cases where middleware resource
management is critical in order to achieve the required quality.

To represent QoS agreements and enforcement in the proposed no-
tification space model, we exploit its optional non-functional dimen-
sions, that we call, in this context, QoS dimensions. In the notification
space, a QoS dimension qi is associated with a QoS property and its ad-
missible values represent possible values of the property. For instance,
if we consider delivery reliability, possible discrete values are best-effort
or reliable. The introduction of the QoS dimensions modifies the oper-
ations described in Section 2.2.1 as follows. Publish actions now allow
the publishing participant to specify QoS parameters that influence
the delivery of its generated samples. When publishing data, it can
specify a set of values for each QoS dimension; this will represent
its QoS offer. Note that, now, a publish action corresponds to multi-
ple points in the notification space. With subscribe actions, subscribers
can request a QoS-level for the delivery of samples belonging to the
subscribed space: this is achieved by extending subscriptions with
an additional filter made of equality constraints on the QoS dimen-
sions. Together with the subscription filter, these constraints identify
a subspace of the extended notification space. Advertise actions are
similarly modified and permit publishers to declare the QoS proper-
ties they intend to offer beforehand. Within this extended model, we
say that a sample matches a subscription if one of the notifications
generated by the sample publishing action fall within the subscrip-
tion subspace and — at the same time — if the middleware confirms
the QoS agreement.

In the following subsection, we survey and classify a selection of
QoS properties for PUB/SUB data delivery that we consider central for
PUB/SUB middleware design/implementation choices. This selection
has a twofold rationale: on the one hand, we aim at representing
what is most commonly supported in state-of-the-art academic and
industrial PUB/SUB systems. On the other hand, we include also a few
QoS properties that, although uncommon in currently widespread so-
lutions, we believe will be central in the design of next generation
PUB/SUB architectures.

2.2 model 21

2.2.3 Classification of QoS properties

We propose a clean and simple three dimensional classification scheme
of QoS properties that emphasizes common features, trade-offs, and
design/implementation problems. The three dimensions look at QoS
properties each from a different perspective:

• Granularity. Is the property enforceable with the granularity of
a single publication, or does it make sense only considering
sequences of samples (i.e., flows)?
• Agreement mode. Does the QoS property require O-R-C agreements

or does it involve only the end parties (O-R)? In other words,
does the enforcement of the property require resources from
distributed components other than participants?
• Quality Domain. What aspect of the PUB/SUB functionality does

the property regulate?

The granularity dimension analyzes the scope of enforcement of a
QoS property. Many QoS properties cannot be defined in the context
of an isolated sample. For instance, consider a subscriber that needs
to receive data at fixed intervals and wants to be sure that publisher
and middleware can satisfy its requirement: the concept of period
intrinsically relates to a sequence of samples and cannot be properly
applied to isolated ones. We identify two types of granularity:

• Sample Granularity.
• Flow Granularity.

The former includes QoS properties that are defined with respect to
the delivery of a single sample; the latter, instead, comprises the prop-
erties that only apply to temporal sequence of samples, or flows.

The agreement mode specifies which quality agreement process (O-R
or O-R-C) is required to establish and enforce the property at run-
time. Let us remark again that the most important difference between
properties agreed with or without middleware involvement is that
they may require additional resources from intermediary components
other than source and destination endpoints. It is easy to understand
that it is critical to accurately consider this difference during the de-
sign of quality-supporting mechanisms.

Finally but not less significantly, the quality domain dimension classi-
fies QoS properties according to the specific aspect of data distribution
they regulate. We further identify five groups within it:

• Delivery semantics.
• Time-related constraints.
• Persistence.
• Adaption indications.
• Security.

22 quality of service in pub/sub data distribution

Table 2.1: Three-dimensional taxonomy of PUB/SUB QoS properties. (LH:
Limited History; FH: Full History).

Sample Granularity Flow Granularity
O-R O-R-C O-R O-R-C

Delivery Reliabilitya Reliabilitya Ordering —

Uniquenessa Uniquenessa

Time Related Latency Lifespan — Periodicity

Freshness

Persistence Not Ack. (net.) Not Ack. (client) LH (net.) LH (client)

FH (net.) FH (client)

Adaption Ind. — Priorities — Probabilistic

Security Confidentialitya Integritya — —

Confidentialitya Integritya

a The agreement model is implementation-specific (see the property description
for details).

The boundaries between these categories are sometimes weak, as QoS
properties are often closely related to each other; for instance, this
may occur because one property is a prerequisite of another, or be-
cause there is a trade-off between the two (e.g., ensuring one property
might hinder the enforcement of the other). Furthermore, it is some-
times difficult to strictly confine a cross-concerning QoS property in
only one group. In our presentation, we will stress situations where
categories are partially overlapping.

Table 2.1 summarizes the QoS properties surveyed in the remainder
of this section and their position within our simple three-level clas-
sification. For the sake of descriptive fluency, the following analysis
groups the properties based on their quality domain.

Delivery Semantics

This class groups QoS properties that determine the characteristics
(and related guarantees) of data delivery. Recalling Section 2.2.1, the
basic PUB/SUB delivery guarantee is the following: if a sample is deliv-
ered to a subscriber, then at least one of its subscriptions will match
the sample. We already emphasized that this means that a subscriber
is not guaranteed to receive all the data of interest: the PUB/SUB mid-
dleware has the only duty of routing an arbitrary set of samples to it,
ensuring that this set does not include non-matching samples. This is
an undesirable and oversimplified behavior in many scenarios. What
normally happens is that a PUB/SUB system tries to route all the sam-
ples with best-effort semantics. However, this is often insufficient for
applications that need always-deterministic behavior. In the follow-
ing of this subsection, we will discuss the QoS properties related to
the extension of the above basic guarantees.

2.2 model 23

delivery reliability We identify as delivery reliability properties
the set of functions that try to ensure that every sample is delivered to all
the subscribers that have matching subscriptions. This property is called
liveness in [79, 80] and [51]. Liveness can be hindered by any kind
of failure, in and between PUB/SUB system components (e.g. network,
software, or hardware issues). In PUB/SUB implementations, replica-
tion of links, nodes, and messages is the well-known countermeasure
to deal with these fault situations. The most commonly adopted tech-
niques can be coarsely classified in two classes: probabilistic and de-
terministic. On the one hand, with probabilistic approaches (e.g., [81–
83]), multiple copies of samples are sent through redundant nodes
and links, increasing the chances that at least one copy arrives cor-
rectly at destination. On the other hand, with deterministic methods
(e.g., [64, 84–86]), acknowledgments are used to detect when mes-
sages are lost and to trigger retransmissions. In PUB/SUB systems that
route samples via an overlay of brokers, it might be also necessary to
reconfigure and repair the overlay topology when transient or perma-
nent failures of brokers occur [87–89]. Note that, when retransmission
is used, some forms of message buffering and/or persistence (see also
the following subsections) are needed at some point in order to make
the data to retransmit available. Reliability influences the delivery of
single samples (sample granularity), and may need the intervention of
intermediate components, for instance, for in-network buffering and
persistence [67, 80]. In such cases the agreement follows the O-R-C
pattern.

uniqueness With uniqueness, we identify the property that guar-
antees that subscribers receive samples no more than once. Several
reasons can lead to duplicate deliveries: for instance, it can happen
when data is routed through multiple paths for redundancy, or when
retransmissions occur due to elapsed timeouts or lost acknowledg-
ments. The simpler and probably most common approach is to de-
tect duplicates at the destination by attaching a unique identifier to
every sample and by having destination endpoints record the his-
tory of already received identifiers [55, 61]. Duplicate avoidance is
performed at single publication-level (sample granularity) and may
require resources from components other than publishers and sub-
scribers, for example, if duplicates detection is performed along rout-
ing paths [83].

The combination of duplicate avoidance and guaranteed delivery
can be used to single out three classes of delivery semantics. Tradi-
tionally, they have been used to describe the invocations in Remote
Procedure Call (RPC) or Remote Method Invocation (RMI) supports,
but their meaning is very easily extensible to the context of PUB/SUB.
They are:

24 quality of service in pub/sub data distribution

• At most once: duplicate samples are discarded, but data delivery
is not guaranteed.
• At least once: delivery of samples is reliable, but subscribers

could receive duplicate data.
• Exactly once: at-most-once and at-least-once semantics are satis-

fied at the same time.

ordering This property regulates the order in which subscribers
receive samples. In the literature, a classification very similar to the
one defined by Defago et al. [90] for ordered multicast is often used;
this is scarcely surprising because the one-to-many dissemination of
a sample can be modeled as a multicast message to all the subscribers
having matching subscriptions.

• No order: a subscriber receives samples in any order, regardless
of their publication time.
• Publisher order: if one publisher s publishes sample e1 before
e2, then every subscriber receiving both e1 and e2 will receive
them in their publishing order. This type of ordering is often
also referred to as First In, First Out (FIFO).
• Causal order: if the publication of a sample e1 happened before

the publication of e2 (according to the happened-before relation
defined in [91]), then every participant receiving both samples
will receive e1 before e2.
• Total order: Given any two samples e1 and e2, if the system de-

livers e1 before e2 to any subscriber, then all the subscribers
receiving both e1 and e2 will do that in the same order. Total
order does not imply causal or publisher order.

Ordering has flow granularity. Generally, the implementation of pub-
lisher order does not involve parties other than publishers and sub-
scribers (usually it is implemented leveraging publisher specific sam-
ple sequence numbers [55, 80]). However, implementing causal or to-
tal order may require additional resources possibly offered by the
PUB/SUB middleware; thus, it usually requires a more expensive three-
way agreement.

Time-related constraints

Samples are often generated in response to real-world phenomena
that subscribers need to be informed about to perform proper reac-
tions. For instance, a sample could represent an alarm ringing or the
completion of a commercial transaction, or it could describe a pe-
riodic sensor reading. In this section we review the most relevant
time-related QoS properties that PUB/SUB middleware can implement.

delivery latency The latency property expresses an upper bound
on the time elapsed between sample production and delivery. If the

2.2 model 25

middleware guarantees to deliver samples with latency τ (τ > 0), it
means that if a publisher p publishes a sample e at time tp, then
any subscriber s interested in e will receive it within the time in-
terval (tp, tp + τ]. This property generally applies to single samples
and requires the agreement of the PUB/SUB middleware to be granted
because it needs the availability (and possible pre-allocation) of suffi-
cient distributed resources [92].

lifespan Sometimes also referred to as Time To Live (TTL), the lifes-
pan property sets temporal frames of validity for samples. For in-
stance, in an e-commerce scenario, a store may be willing to publish
its commercial promotions, some of those having limited validity in
time: after the deadline, to deliver related samples would induce a
useless consumption of resources. A lifespan of l time units associ-
ated to a sample e means that if the sample is published at time t,
then, after time t+ l, the PUB/SUB middleware has the option to save
some resources and not deliver it anymore [55, 64]. It is important
to remark the difference between the latency and lifespan require-
ments: while the former expresses a hard constraint in terms of de-
livery delay, lifespan represents a publisher-side indication about the
application-level validity of some data. This information is typically
exploited to optimize the use of distributed resources. The property
granularity is single sample. It is specified by publishers and not sub-
ject to negotiation by subscribers. The agreement associated with this
property is always confirmed by the middleware because its enforce-
ment does not consume resources.

freshness While lifespan expresses a publisher-side application
requirement, freshness represents its subscriber-side counterpart. A
subscriber can use this property to specify that it does not want to
receive samples older than a time threshold f, where f is the value of
the freshness property. As the lifespan property, a freshness specifica-
tion can be useful to influence the PUB/SUB middleware decisions for
what concerns the usage of its routing resources [55, 64]. For this rea-
son, freshness requires a simple two-way agreement. Its granularity
is at the level of single sample.

periodicity In many scenarios, samples are generated periodically.
This is the case, for example, of a publisher associated to a sensor
making its readings available to interested destinations. The periodic-
ity parameter expresses the expectations of publishers and subscribers
with respect to the timing of periodic data. In particular, a publisher
can associate an advertisement (and hence the corresponding flow)
with a publishing period pp: in this way, it commits itself to publish
a new sample at most within pp time units after its last publication.
Conversely, a subscriber can request to receive new data at least once

26 quality of service in pub/sub data distribution

every pd seconds. Periodicity specifications can serve mainly for two
purposes. On the one hand, they can provide information about the
publication rate that the middleware can use for optimization pur-
poses. On the other hand, they can be used to save resources: in fact,
if the delivery period requested by a subscriber is significantly greater
than the publishing period, the system could decide not to dispatch
data that is not strictly necessary to satisfy the subscriber QoS require-
ments [55, 67]. Periodicity has flow granularity. If specified on the
subscriber side, it does not require any middleware resource to be en-
forced; on the contrary, depending on its implementation, publisher
side periodicity might require middleware confirmation to guarantee
that the required data rate is sustainable.

Persistence

An important parameter affecting the QoS of PUB/SUB systems is per-
sistence. A sample can be generated by a publisher, propagated to-
ward its subscribers, and removed by an intermediary node as soon
as it is routed toward the next hop. Although this is the cheapest so-
lution in terms of resource consumption, it may be undesirable some-
times. In fact, the persistence cross-cutting concern is crucial in sev-
eral scenarios: it may be necessary to realize delivery reliability through
Automatic Repeat-reQuest (ARQ) mechanisms [93]; it may be used as
the basic mechanism to implement an history that participants are
allowed to browse [67], or it could be used to offer permanent subscrip-
tions that allow publishers to receive samples published while they
were off line [58, 64].

In defining persistence-related QoS properties, there are three main
concerns to take into account, which deal respectively with the per-
sistence mode, the persistent storage technique, and the distributed
architecture that realizes the storage.

persistence mode Depending on the goal of persistence, we iden-
tify three main persistence modes. With non-acknowledged only persis-
tence, samples are persisted until they are acknowledged by destina-
tion subscribers [64, 94]. This solution is mainly used for reliability
purposes. Differently, with limited history persistence, only the last r
samples generated by each publisher are persisted, where r is said to
be the history size [55, 67]. Finally, a full history approach aims at sav-
ing the complete history of samples [55]. This last mode may appear
equivalent to the limited history strategy when considering limited
storage space. However, the difference between the two categories
stands on a conceptual level: in limited history there is an explicit inten-
tion to preserve only recent history; full history persistence, instead,
aims at keeping as much data as resource availability allows.

2.2 model 27

storage technique This property characterizes the persistence
services according to the storage techniques and supports used to
make data persistent. With in-memory storage, samples are kept in a
buffer allocated in main memory. If the storage node crashes, all the
data it was responsible for are lost. On the contrary, if a distributed
cache is used, persistence is obtained via main-memory storage repli-
cated across a set of nodes3. In this way, even though each process
keeps data in volatile memory, the storage as a whole is resilient to
data losses. Finally, samples can also be saved in stable storage, rela-
tional databases [95], or distributed non-relational systems [96].

storage architecture The storage architecture of a PUB/SUB sys-
tem determines how the storage solution is implemented on its dis-
tributed infrastructure. A fundamental decision is where to deploy
the persistence service and where to keep the persistent data. If data
are saved at the publisher side [55, 84, 85] the responsibility of re-
transmission or retrieval of old samples always involves the original
publisher, who must be on line to make its data available. Moreover,
the capacity of the persistent storage for a publisher is strongly cou-
pled to its resource availability. On the opposite, with subscriber side
persistence [84, 85, 97], samples are stored on the subscriber nodes.
This allows faster access to old data and relieves applications from
the duty of implementing their own storage. However, this solution
is not appropriate to implement middleware-driven retransmission
policies and persistent subscriptions. Finally, samples can be stored
in the network [58, 80, 97], i.e., data is persisted by the middleware
infrastructure of intermediate nodes so that no responsibility is given
to participants, which are free to connect and disconnect from the
system without compromising data availability. This is probably the
most common solution in industry-adopted architectures.

Limited or full history persistence are only applicable to flows,
while persisting only non-acknowledged data is meaningful with sin-
gle sample granularity as well. The agreement type strongly depends
on the implementation of the persistence strategy and in particular
on data placement: for instance, in-network persistence requires the
middleware to grant sufficient distributed storage resources; differ-
ently, if storing responsibility is held only by the end parties, the O-R
agreement is sufficient.

Adaption indication

Adaption indications are a special class of QoS properties that do
not influence low-level implementation mechanisms directly, but are

3 These nodes can be either be PUB/SUB participants, routing elements, or dedicated
components.

28 quality of service in pub/sub data distribution

rather high-level concise properties that guide the dynamically adap-
tive behavior of the PUB/SUB middleware infrastructure. These QoS
properties are used to let PUB/SUB administrators/deployers express
their requirements by means of simple and coarse-grained indications
and to let systems configure their inner mechanisms accordingly.

priorities In many systems, subscribers or publishers can specify
priorities for their data [55, 64, 95]. A priority specification is an inte-
ger value chosen from an arbitrary (and usually very limited) range
of possible values (e.g., ten priority levels). Thanks to priority spec-
ifications, the middleware can perform differentiated management
of samples based on their relative importance. Possible implemen-
tations of the priority idea in PUB/SUB systems can involve differen-
tiated routing queues for Weighted Fair Queueing (WFQ) algorithms
[98]. Another idea is to use priorities as hints to decide which samples
to sacrifice in case other QoS requirements (e.g., delivery latency) can
no longer be satisfied. Priorities have sample granularity, and, since
priorities represent hints rather than constraints, their enforcement
does not usually require an O-R-C agreement.

probabilistic specifications Probabilistic specifications can en-
hance the semantics of QoS properties by allowing to reformulate re-
quirements and offers in probabilistic rather than deterministic terms.
Consider, for instance, reliability or latency properties: in a determin-
istic view, reliability guarantees that the ratio between the number of
unique samples published and the number of interested subscribers
receiving them is exactly one, while latency ensures that exactly every
sample is received within a given time interval. The idea of probabilis-
tic QoS starts from the consideration that a PUB/SUB system could ben-
efit from the opportunity of being requested weaker and non-strictly
mandatory quality specifications. Going back to the reliability and la-
tency examples, a subscriber could request the delivery of some kind
of sample to be guaranteed with probability p < 1, or it could specify
a Cumulative Distribution Function (CDF) that describes the desired
behavior for data distribution latency [81–83]. The main advantage
of supporting this kind of specification is the derived flexibility in
the implementation of QoS mechanisms, which permit a smarter and
less constrained exploitation of resources at runtime. For instance, in
the case of reliability, if at some point 100% of samples have been
delivered correctly while a 90% success rate was requested, the mid-
dleware could voluntary drop some data, e.g., to save resources to
dedicate to another resource-greedy flow.

Security

Security is a relevant non-functional aspect which contributes to de-
termine, to some extent, the quality provided by a PUB/SUB system.

2.3 systems survey 29

For the sake of briefness and in order to keep the focus of the sur-
vey well targeted, we consider security aspects of PUB/SUB middle-
ware not central to the scope of this chapter. Nonetheless, given the
criticality of these concerns in production scenarios, it is worth to re-
port here a concise overview of the most relevant security properties
emerging from the literature. PUB/SUB security relates to two main
problems: creating mechanisms that let subscribers verify the authen-
ticity of samples, and allowing the production and dispatching of
samples that can be read only by authorized subscribers. These two
aspects correspond to the classical security concerns of integrity and
confidentiality, respectively.

The effective implementation of security mechanisms is still an
open problem in PUB/SUB research. The main difficulty rises from
the fact that achieving integrity and confidentiality partially contrast
with the decoupling principles of PUB/SUB delivery. Integrity, in fact,
assumes that a subscriber knows the publisher in order to be able
to check authenticity of samples. Similarly, participants must share
some secret for easy solutions to confidentiality. Moreover, encryp-
tion makes routing data based on their content a very hard task.

In general, both integrity and confidentiality can be established
with sample granularity. For both, the type of agreement depends on
whether PUB/SUB intermediaries, if present, need to dedicate comput-
ing resources to enable secure communication. If, for instance, secrets
are exchanged by interacting parties with out-of-band mechanisms,
then, obviously, the involvement of PUB/SUB middleware components
is not necessary for the agreement. Other solutions, such as [99], al-
low routing nodes to perform content matching in a way that keeps
data undisclosed at the price of increased processing complexity: in
that case a three-way agreement ensures that it is possible to allocate
sufficient resources for the required security features.

2.3 systems survey

In this section, we provide an in-depth technical overview of how
quality of service properties have been successfully implemented in
relevant and state-of-the-art architectures for PUB/SUB data distribu-
tion over the last years. Given the important amount of work available
in the field and in order to keep this work concise and focused, our
technical investigation is based on a thorough analysis of a short selec-
tion of representative examples from industry and academia. Three
main goals have guided this selection process:

• Choose systems that support a representative selection of most
relevant, diffused, and original PUB/SUB QoS properties.

30 quality of service in pub/sub data distribution

Table 2.2: List of surveyed PUB/SUB systems.

System Subsection
Data Turbine (RBNB) [67, 86] 2.3.1

Java Message Service (JMS) [64, 100] 2.3.1

DCRD [83] 2.3.2

IndiQoS [92, 101] 2.3.2

Costa et al. [84, 85] 2.3.3

Gryphon [80, 93, 102] 2.3.3

Data Distribution Service (DDS) [55, 63] 2.3.4

STEAM [76, 103] 2.3.4

Table 2.3: Classification of surveyed PUB/SUB systems.

Centralized Overlay Peer-to-peer
Topic based RBNB DCRD DDS

JMS IndiQoS STEAM

Content based – Costa et al. –

Gryphon

• Present significant architectures that allow us to discuss prob-
lems and trade-offs for the achievement of quality aware data
distribution.
• Cover as many application and deployment scenarios as pos-

sible, ranging from small ad-hoc networks, to large wide area
networks with fixed and mobile participants.

While we recognize the important influence that some well known,
seminal PUB/SUB architectures (e.g., Hermes [56], PADRES [70], RE-
BECA [60], or SIENA [57]) had on the design of some aspects of the
PUB/SUB solutions discussed in this section (for example, the basic
ideas of their routing algorithms), we decided not to include them
in our systems selection because they do not fully satisfy the ratio-
nale stated above by lacking, most significantly, the implementation
of original quality-aware strategies for data distribution.

To facilitate the discussion and the comparison between different
systems, we organize this survey in four parts, each corresponding
to a different cell in the bi-dimensional grid that organizes systems
according to their subscription model and routing topology. Table 2.2
lists the systems surveyed in this chapter, while Table 2.3 shows their
position within the grid that organizes this section.

This thorough system analysis will pose the basis for the discussion
in Section 2.4, where, starting from the comparison of the selected sys-
tems and extending the analysis to other similar architectures, we will
derive general principles about the trade-offs in the practical imple-
mentation of QoS in PUB/SUB data dissemination.

2.3 systems survey 31

2.3.1 Centralized and topic based

The first group of systems includes those using a central broker to per-
form routing and management tasks and having a topic-based data
model. This is certainly the simplest logical organization considered
in this section. However, we show that the simplicity behind this orga-
nization favors an easier implementation of sophisticate quality guar-
antees. The systems that we describe in this group are Data Turbine
[67, 86] and the Java Message Service (JMS) [64, 100].

Data Turbine (RBNB)

Data Turbine, based on the Ring Buffer Network Bus (RBNB) archi-
tecture, is a middleware for the dissemination of data originated by
distributed and stationary sensors; it is used in production in sev-
eral environment monitoring projects. Data publishers organize their
samples into RBNB channels, each being a logical container for a data
stream from one source. The RBNB subscription model is a restriction
of the topic-based one, where a topic is mapped one-to-one to a data
source. Data Turbine is designed around a centralized architecture,
with the RBNB server at its core: samples flow from sources to the
server and from the server to sinks. Federations of servers is possible
trough so called routing or mirroring configurations.

A central feature of the Data Turbine solution, is its support for
ring buffer persistence. As servers receive data from their clients, they
store the last n samples received on each channel on Ring Buffer
Objects (RBOs), special data structures implemented as a mix of in-
memory and secondary storage. All the communications channels
offer exactly-once delivery semantics, and some basic support for
timely sample delivery is available via monitor subscriptions, which
guarantee that subscribers always receive “sufficiently” recent data by
automatically (and arbitrarily) dropping unnecessary samples. Sam-
ples are delivered according to publisher order thanks to explicit
timestamps assigned by sources.

Java Message Service (JMS)

The Java Message Service (JMS) is a standard defined in the Java Spec-
ification Request (JSR) 914 [100] and part of the Java Platform, Enter-
prise Edition (Java EE). It defines an Application Programming Inter-
face (API) for the implementation of message-oriented middleware tar-
geted at business enterprise applications. JMS defines point-to-point
and PUB/SUB communication models. Given the scope of this chap-
ter, we focus only on the latter. The JMS architecture is based on the
concept of message broker, which mediates all the actions of PUB/SUB
participants. The specification does not enforce any deployment ar-
chitecture for JMS brokers, so it is up to the different vendors to im-
plement more or less complex solutions.

32 quality of service in pub/sub data distribution

Although very simple in its data model and in the topologies used
by many of its implementations, the JMS standard supports a rich
range of QoS parameters, demonstrating the strong request for quality
guarantees coming from the enterprise realities that JMS targets. The
delivery semantics can be influenced by controlling the acknowledg-
ing behavior of the underlying distribution protocol and by deciding
whether samples are saved in persistent storage or main memory be-
fore delivery to participants. Durable subscriptions set up the system
for storing samples so that off-line subscribers can receive them once
the are again on line. JMS also supports priority indications, speci-
fied with single sample granularity; however, the standard does not
require that JMS-compliant implementations actually use these val-
ues. Finally, through the TTL property, publishers can set a sample
expiration time, which can be exploited by the JMS broker to avoid
delivering messages that are no longer valid.

2.3.2 Overlay and topic based

Topologies based on overlays of brokers try to overcome the scalabil-
ity limitations introduced by the presence of a single broker. The price
to pay is the increased complexity in their routing algorithms, which
also leads to more complex mechanisms for QoS enforcement. For the
systems discussed in this group, this complexity is partially reduced
thanks to the fact that only one data dimension, i.e., the topic, is used
for routing purposes. The systems chosen to represent this category
are DCRD [83] and IndiQoS [92, 101].

DCRD

The Delay-Cognizant Reliable Delivery (DCRD) protocol is a data de-
livery protocol for PUB/SUB broker overlay networks that, similarly
to [81] and [82], try to maximize the probability of timely delivery
with respect to user-specified latency requirements despite possible
link failures or packet loss. DCRD is designed to work on topic-based
PUB/SUB systems and does not rely on any particular structural orga-
nization of the broker network.

In DCRD, periodically, every broker measures and stores, for any
possible link–destination pair (l,d), the routing delay and delivery
ratio expected (in probabilistic terms) in case a sample for d is routed
via l. Whenever a broker receives a sample to dispatch, it first filters
out all its output links whose expected routing delay is greater than
the time left to deliver the sample, and forwards it on the link that
minimizes the ratio between the expected delay and delivery ratio.
The authors show that this choice is optimal with respect to the pro-
tocol goals. No QoS parameter other than latency is supported, but it
is easy to imagine an extension that supports the probabilistic speci-
fication of the desired level of reliability.

2.3 systems survey 33

BrokerReserv.RSVP Chan. Advert. Subs. Ack.

S

R

P

2

1

3

Figure 2.5: IndiQoS reservation process in a simplified DHT overlay. 1. The
publisher broker P sends an advertisement message to the ren-
dezvous node R. 2. The subscriber broker S sends its subscrip-
tion to R. 3. R sends back acknowledgment messages that reserve
resources along its path.

IndiQoS

The main goal of the IndiQoS system is to provide QoS-aware rout-
ing in type-based PUB/SUB systems. Publishers must announce the
characteristics of their future publications through advertisements
that include a QoS profile representing the offered quality level; sym-
metrically, subscriptions include participants QoS requests. IndiQoS
topology is built over a graph of brokers organized according to a
Distributed Hash Table (DHT) [104], which is used to route adver-
tisement and subscription requests, and it uses what is commonly
known as rendezvous routing [56, 66, 68] to dynamically build non-
optimal sample distribution multicast trees rooted at the brokers of
publishing participants.

IndiQoS focuses on timeliness-related QoS parameters and in par-
ticular to low-level features influencing delivery latency, all enforced
with flow granularity. The system leverages the Integrated Services
(IntServ) architecture [105] and the Resource Reservation Protocol
(RSVP) [106] to reserve enough resources along the data distribution
branches sot that the required latency dissemination bounds are met
(Figure 2.5).

2.3.3 Overlay and content based

Overlays of brokers that route data based on all content fields pro-
vide maximum flexibility to users and maximum decoupling between
PUB/SUB participants. However, the absence of a dimension that, like
the topic, partitions data consumers in disjoint groups makes the
implementation of QoS features a very hard technical challenge. We
discuss the work by Costa et al. [84, 85] and the Gryphon system

34 quality of service in pub/sub data distribution

[80, 93, 102] as examples of implementation of QoS-mechanism in
overlay and content-based PUB/SUB networks.

Costa et al.

Costa et al. describe an approach that realizes reliable data delivery
in content-based PUB/SUB through epidemic-style protocols, designed
to work on top unreliable routing protocols based on subscription
forwarding [57]. The goal is to provide at least once delivery semantics
in spite of message loss and link or broker failures.

The proposal includes three protocol variants. All of them assume
that every broker keeps a limited history of the last routed samples.
The first variant implements a proactive and push-based recovery
strategy, in which brokers periodically gossip the list of samples in
their local history and can respond, upon receiving these messages,
by requesting samples that they are missing. Differently, the second
and third variants implement a reactive and local loss detection strat-
egy, in which brokers detect missing data by looking at the sequence
of sample identifiers. Periodically, they try to retrieve those missing
samples by propagating ad-hoc recovery gossip messages. The two
proposed strategies differ in the direction along which gossips are
propagated: the second variant directs requests toward the publisher
(increasing the chances to find valid copies of the sample), while the
third sends them toward subscribers, potentially reducing the pres-
sure on “popular” publishers.

Gryphon

Gryphon is a PUB/SUB middleware by IBM Research putting together
the results of several efforts in different sub-areas of content-based
routing. Gryphon models flows through information flow graphs that
describe the logical topology of the data distribution network.

In the original Gryphon proposal [93], data dissemination is best-
effort. A later article [80] proposes a variant of the system supporting
publisher-order and exactly-once delivery semantics despite failures
of links and brokers. The fault-tolerant architecture is based on a syn-
chronous abstract model built around the concepts of knowledge and
curiosity, which extend the information flow graph model. This model
is implemented in the Guaranteed Delivery (GD) protocol. In partic-
ular, the combination of knowledge and curiosity states is imple-
mented through a system of Acknowledgement (ACK) and Negative
Acknowledgement (NACK) messages that propagate in the informa-
tion graph triggered by two configurable timeouts (the Gap Curiosity
Threshold (GCT) and the Ack Expected Threshold (AET)). By regulat-
ing the duration of GCT and AET, a combination of publisher-driven and
subscriber-driven liveness can be obtained.

2.3 systems survey 35

2.3.4 Peer-to-peer and topic based

This last group of systems includes two examples of PUB/SUB middle-
ware architectures where data flows from participant to participant
without the mediation of any infrastructure. Both these systems fol-
low a topic-based data model: we are not aware of P2P systems re-
alizing relevant QoS-related behaviors adopting a content-based sub-
scription model. The systems we review are the Object Management
Group (OMG) Data Distribution Service (DDS) [55, 63, 107] and STEAM
[76, 103].

Data Distribution Service (DDS)

DDS is an OMG standard that defines the interfaces and the behavior
of PUB/SUB middleware for soft real-time and mission-critical appli-
cations. Central to the DDS middleware architecture is the concept of
QoS that publishers and subscribers can use to specify their require-
ments and let the middleware adapt accordingly. The DDS specifica-
tion is organized in different layers, each providing an increasingly
higher level of abstraction to DDS users: we concentrate mainly on
the Data-Centric Publish Subscribe (DCPS) layer, which realizes the
PUB/SUB semantics. The DCPS specification, being an open standard,
does not mandate any specific topology for the deployment of DDS
implementations, but RTI Connext DDS [108] (also known as RTI
DDS) and PrismTech OpenSplice DDS [98], two of the DDS market
leaders, rely on a completely decentralized peer-to-peer architecture
that enables direct data exchange between participants.

All DDS system entities (e.g., topics, publishers, and subscribers) are
associated with a list of QoS policies that regulate some of their behav-
ioral aspects. The standard defines twenty-two policies, and vendors
have added many others in their custom implementations. In this
subsection we discuss those that we believe most significant.

Through the history QoS policy publishers and subscribers4 decide
whether to store locally only the last n samples received or all of them
(up to a configurable resource limit). The durability policy determines
whether subscribers will receive samples that were published before
their creation, and reliable data delivery is achieved through the use
of the reliability property. This property strongly interacts with the his-
tory policy, because the reliability protocol retrieves messages from
the publisher history queue for retransmission purposes. The presen-
tation policy can be used to configure ordering guarantees, support-
ing publisher order and a form of total-order based on publisher-side
timestamps. About timeliness-related parameters, the latency budged
and transport priority policies complementary regulate the urgency

4 The DDS specification uses the concepts of data writer and data reader to refer to the
entities we defined as publishers and subscribers in this chapter. The specification uses
the terms publisher and subscriber to refer to slightly different concepts.

36 quality of service in pub/sub data distribution

P

S1

S2

S3

e

e

Mobile Node

P Proximity

N

e Sample

Figure 2.6: A STEAM publisher P publishes samples whose topic is of inter-
est for S1, S2 and S3. However, only S1 and S2 are delivered e,
since S3 is not physically located in the proximity defined by P.

and importance of data samples. In particular, the latency budget al-
lows publishers and subscribers to express the maximum amount of
time for a sample to be dispatched, i.e., its urgency, and the transport
priority indicates the relative importance of a sample within those
dispatched through the same transport. Publishers can also declare a
validity interval for a sample, after which it is considered stale and
discarded, through the lifespan property, while a time based filter policy
specification allows subscribers to request a minimum separation in-
terval between consecutive data deliveries. Finally, for periodic pub-
lications, the deadline property specifies the timing expectations of
publishers and subscribers.

STEAM

STEAM is a PUB/SUB middleware designed for location-aware data
distribution in wireless and mobile local area networks. Both pub-
lishers and subscribers are mobile nodes moving in the same physi-
cal environment and sharing information via PUB/SUB exchanges. A
distinctive aspect of the system is that it allows expressing location-
dependent subscriptions: as shown in Figure 2.6, publishers can de-
fine geographical proximities for their samples, and the system will
deliver them only to subscribers physically located in their proxim-
ity. Subscriptions and data delivery are handled by a proximity group
communication service [109] that permits to send multi-hop wireless
multicast messages to nodes in the same proximity group.

STEAM delivery semantics, in the implementation described in
[76], are basically best-effort, because the proximity group multicast
is implemented with IP multicast. However, in [110], the authors pro-
pose to use STEAM on top of TBMAC, a time division and layer 2 pro-
tocol that provides deterministic upper bounds on the time needed
to access the communication medium. Together with accurate estima-
tions of the time required by subscription matching algorithms, this

2.3 systems survey 37

Table 2.4: Summary of supported PUB/SUB QoS properties w.r.t. subscrip-
tion model.

Reliability Persistence Latency Priorities Fresh.
Topic Based RBNB RBNB DCRD JMS JMS

JMS JMS DDS DDS DDS

DDSa DDSa STEAM

IndiQoS

Content Based Gryphon — — — —

Costa et al.

Periodicity Pub. Order Causal Order Total Order
Topic Based RBNB DDS — RBNB

DDS DDS

Content Based — Gryphon — —
a See system description for detailed semantics.

Table 2.5: Summary of supported PUB/SUB QoS properties w.r.t. routing
topology.

Reliability Persistence Latency Priorities Fresh.
Centralized RBNB RBNB JMS JMS —

JMS JMS

Overlay Gryphon — IndiQoS — —

Costa et al. DCRD

Peer-to-Peer DDSa DDSa STEAM DDS DDS

DDS

Periodicity Pub. Order Causal Order Total Order
Centralized RBNB — — RBNB

Overlay — Gryphon — —

Peer-to-Peer DDS DDS — DDS
a See system description for detailed semantics.

extension enables the implementation of QoS mechanisms related to
the timeliness of data delivery. For instance, [103] suggests a deadline-
based scheduling algorithm. Sørensen et al. [111] leverage the original
STEAM proposal to build CORTEX, a framework for context-aware
PUB/SUB interactions. CORTEX includes a dedicated component for
QoS admission control and provisioning, based on the Timely Comput-
ing Base (TCB) framework [112], which allows CORTEX to compute
the maximum delivery latency expected to be supported [113].

38 quality of service in pub/sub data distribution

2.4 discussion

In the previous section, we have surveyed the quality-related features
of a selection of relevant QoS-aware PUB/SUB systems. Our primary
goal was to point out the relationships between their deployment
architecture, their routing techniques, and their support to different
QoS parameters. Tables 2.4 and 2.5 summarize the main characteristics
of these systems, and classify them according to their subscription
model, their distributed architecture, and their QoS support.

In this section we try to sum up what emerged from our analysis,
by emphasizing the practical design/implementation elements that
characterize the complex set of trade-offs between middleware de-
sign and quality aspects. To make these trade-offs come forth clearly,
we will analyze how certain design choices influence the QoS proper-
ties that can be easily (or feasibly) granted. To this purpose, whenever
possible, we will also discuss possible extensions to the surveyed sys-
tems that could enrich them with additional QoS-related features, by
carefully considering the need of a limited impact on their existing
design and architecture. The remainder of this section is organized in
five parts, each examining one of the different quality aspects central
for PUB/SUB middleware with rich QoS support, i.e., delivery semantics,
persistence, latency, priorities & weak timing indications, and ordering.

2.4.1 Delivery semantics

Our survey work shows that the most widely supported QoS prop-
erty is undoubtedly delivery reliability. Many of the surveyed systems
implement guaranteed delivery with exactly-once semantics through
the use of application-level dissemination protocols with positive or
negative acknowledgment mechanisms: this is the case of DataTurbine,
Gryphon, JMS, and DDS. IndiQoS, instead, exploits TCP/IP links be-
tween brokers in their overlays to offer exactly-once semantics in spite
of lossy communication channels; however, all of them do not take
special countermeasures to deal with extended link or broker fail-
ures. DHT-based PUB/SUB overlays, such as the ones used by IndiQoS,
can leverage the auto-reconfiguration features usually provided by
DHT services to re-establish delivery paths in case of link or node
failures; they could be easily extended with simple application-level
ARQ protocols to issue retransmissions after broken paths are repaired,
and thus obtain stronger reliability guarantees. If, instead, the over-
lay does not implement self-organizing features, proper overlay re-
configuration procedures need to be executed before retransmission
protocols can operate [114].

We have seen that other forms of weaker reliability can be envisioned,
and are actually implemented by some systems: the common aspect
of these solutions is that, although they implement dedicated tech-

2.4 discussion 39

niques to increase the chance of sample delivery, they do not try to
achieve 100% success ratio. In [81] and [115], for example, the proba-
bility of successful delivery is increased by using path and message
redundancy. Costa et al., instead, exploit the inherent resilience of
gossip-based protocols and uses epidemic-style message exchanges to
retrieve lost samples through an out-of-band protocol. A very similar
approach has been proposed by Malekpour et al. [97], which adopt a
Bloom filters [116] based subscription matching algorithm to identify
and re-route lost samples. A further approach, used in DCRD, lever-
ages information about single-hop link reliability (inferred from his-
torical data) to build probabilistic reliability models of the network that
are exploited in their routing algorithms.

STEAM and its CORTEX [111] extension do not provide reliability-
related guarantees, but use a special-purpose proximity-based group
multicast to disseminate samples with best-effort semantics in Mobile
Ad-hoc Networks (MANETs). However, on top of it, reliable multicast
protocols for ad-hoc networks could be adapted: many alternatives
have been proposed in the literature, for example in [117] and [118].

2.4.2 Persistence

Only DataTurbine, JMS, and DDS offer QoS policies that control data
persistence directly; the fact that all of them are widely used produc-
tion systems highlights how the ability to explicitly specify persistence-
related parameters is a central feature in real world scenarios.

Because of the strong relationship between reliable delivery and per-
sistence, the majority of the systems offering some form of delivery re-
liability also implements dedicated mechanisms to persistently store
published data. An exemplar case is the relation between DDS his-
tory and reliability policies: the size of the history kept by publish-
ers closely interacts with the type of reliability requested by the end-
points to determine the delivery guarantees and the semantics of pub-
lisher operations. Similarly, in the JMS specification, the semantics of
reliability properties and the provided delivery guarantees depend
on the chosen type of persistence: for instance, if in-memory persis-
tence is used, reliability is not guaranteed in case of server crash.

In PUB/SUB systems based on broker overlay topologies, the choice
of the storage architecture can impact even more on reliability perfor-
mance. For instance, the gossip protocols by Costa et al. leverage in-
network persistence and show that distributing storage responsibilities
on nodes other than end-participants can help implementing fast and
lightweight reliability solutions. Similarly, Gryphon provide its bro-
ker nodes with limited history caches, used by intermediate brokers
to reply to retransmission requests in place of source nodes, thus sim-
plifying and alleviating their responsibilities. These examples empha-
size another important aspect to consider while designing in-network

40 quality of service in pub/sub data distribution

storage, i.e., the placement of historical data. Storing them close to their
destinations allows faster retrieval of lost information but is gener-
ally more expensive because samples might need to be persisted on a
larger number of branches to be accessible by all subscribers. On the
contrary, keeping them close to their source increases the probability
of them being on paths shared by several destinations, but at the same
time it increases the expected retrieval time and the load on shared
storage nodes. Cross-considerations using sample priority awareness
could help in placement optimization: urgent data could benefit from
being persisted close to destinations, while resources could be saved
by storing less important samples near their sources.

2.4.3 Latency

In many mission-critical application scenarios a very important and
desirable feature is the ability to request and offer upper bounds on deliv-
ery latency. However, especially in large scale systems, this is a very
difficult goal to achieve. A first consideration is that the minimum
delivery delay possible depends on four main factors: i) the number
of routing hops, ii) the algorithmic complexity of determining each routing
step, iii) the geographical distance between source and destination, and iv)
the efficiency in combining single-hop links. While the contribution of
the first three factors is likely to be relatively easy to estimate, several
difficulties are associated with the fourth aspect. The problem strictly
relates to the best-effort semantics of the underlying IP network and
to its intrinsically unpredictable performance. This is the main reason
why the majority of PUB/SUB solutions do not support hard latency re-
quirements. The only example of this kind of support is provided by
IndiQoS, which builds on the IntServ model to offer guaranteed timing
bounds for its distribution service. In general, any PUB/SUB system
based on brokers (either through a distributed infrastructure or a cen-
tralized organization) could support some forms of latency require-
ments via resource reservation on routing nodes. However, designers
should consider that, in real world wide-area networks spanning over
multiple domains, it is often impossible to control resource allocation,
thus making this kind of approaches ineffective.

DCRD (and, similarly, [81] and [82]) recognize this intrinsic difficulty
and adopt a more flexible approach that optimizes the probabilistic
expectation of samples being delivered according to their latency re-
quirements, by leveraging the knowledge of more easily measurable
single-hop latencies. Analogously, CORTEX uses the model and ser-
vices provided by TCB [113] to predict routing delay bounds.

Notwithstanding the recognized value of supporting bounded de-
livery latency, most PUB/SUB solutions operate best-effort. Peer-to-peer
architectures, where the actual data exchange occurs directly between
source/destination pairs without the help of intermediate compo-

2.4 discussion 41

nents, generally offer lower (although still not deterministic) routing
delay and higher throughput. DDS, STEAM, and CORTEX are all ex-
amples of that. In addition, DDS enables the fine-grained configura-
tion of low-level details of its transport protocol, thus providing ways
to further influence its delivery latency.

2.4.4 Priorities and weak timing indications

Although very different in terms of semantics, QoS properties like
priority or weak timing indications such as freshness, lifespan, or period-
icity, can be effectively used for the common purpose of optimizing
resource usage trough the exploitation of application-level awareness.

Both JMS and DDS support, in different variants, freshness, lifespan,
and priority properties. DDS also lets publishers and subscribers spec-
ify periodicity offers and requests. DataTurbine offers an abstraction
similar to subscriber-side periodicity through the notion of monitor
subscriptions: the difference is that periodicity is not explicitly chosen
by subscribers, but automatically determined by the middleware de-
pending on network status.

Let us remark once again that an important common element of
these properties is that PUB/SUB middleware usually exploits them as
optimization hints rather than dissemination constraints. For this rea-
son, we believe they could be beneficially implemented, with the nec-
essary adroitness, on almost any PUB/SUB solution, independently on
its specific routing architectures. For example, in STEAM, the mem-
bership of proximity groups could be dynamically modified accord-
ing to the value of these properties. Information like priority level
or expiration time could be exploited also to optimize batching and
consolidation techniques used to aggregate multiple samples or ac-
knowledgments in single transmissions, like Gryphon and JMS do.

2.4.5 Ordering

Some form of ordering is supported by almost all the surveyed PUB/SUB
systems, but most solutions only implement simple variations of pub-
lisher order: in fact, since the publisher itself is a serialization point
for all its samples, ordering enforcement is straightforward.

Only two solutions, i.e., DDS and DataTurbine, support totally or-
dered delivery by using timestamps generated at data sources. Vector
clocks [91] or their variants could be adopted to realize causal order
in small deployment environments with limited numbers of partic-
ipants: however, as the size grows, the complexity associated with
their use is likely to become unmanageable.

42 quality of service in pub/sub data distribution

2.5 directions for future research work

Relevant research results on PUB/SUB systems have been achieved in
the last years, leading to a wide set of different solution and imple-
mentation guidelines. Many authors have recognized the importance
of augmenting PUB/SUB middleware by means of QoS guarantees, and
the variety of QoS-related configuration parameters supported in suc-
cessful industrial standards like JMS and DDS clearly confirms the
relevant need for QoS-based customization capabilities in enterprise
scenarios. However, techniques for the effective implementation and
deployment of PUB/SUB QoS have been only partially explored, espe-
cially for what concerns their scalability along the three dimensions
of volume of event data, number of participants, and network size.

As motivated in Chapter 1, we believe that, in the near future, there
will be a growing number of application scenarios where the pos-
sibility of using QoS handles to customize the behavior of the data
distribution and processing infrastructures will be fundamental. Our
analysis of the state-of-the-art PUB/SUB middleware has shown that,
as long as the scale remains constrained to small and locally con-
trolled networks, well-known techniques can be adopted to provide
relatively strong QoS guarantees with predictable and limited cost.
But as the scale grows and the possibility to have full control on
physical resources decreases, the provisioning of deterministic QoS
becomes harder and significantly more expensive. However, in our
opinion, there are many applications that do not necessarily need
to pay the full price of strong QoS guarantees, but could take high
benefit from different and more flexible models that provide interme-
diate alternatives between hard QoS enforcement and no QoS at all. We
claim that novel PUB/SUB QoS models and implementation techniques
that leverage soft and approximated QoS indications are very promis-
ing for the near future. New systems should support the relaxation of
global and strict quality constraints, and let users control the trade-off
between scale, quality, and runtime dissemination costs by choosing
the level of uncertainty that they can sustain. In this perspective, we
envision two main research directions to improve current PUB/SUB
systems through the exploitation of soft QoS constraints: probabilistic
QoS specifications and locality-aware QoS management.

As it emerged from our survey, there is already an important and
recent research trend that is starting to explore some first probabilis-
tic approaches to QoS modeling and provisioning in PUB/SUB middleware
[81, 83, 115, 119]. Expressing guarantees through probabilistic specifi-
cations allows systems to benefit from additional degrees of freedom
in their event routing choices, which can be dynamically leveraged
to optimize delivery quality and resource consumption. Developing
new smart and optimized event routing techniques that exploit this
improved flexibility is maybe the most relevant and promising re-

2.6 summary and conclusions 43

search direction to face, but many less obvious and nonetheless chal-
lenging related issues are open, including the need for efficient re-
source prediction algorithms and for effective models that map these
predictions on reliable estimations of the service quality achievable.

Exploitation of locality is another central design principle that we be-
lieve should be extensively considered to develop PUB/SUB solutions
suitable for the new scenarios of unprecedented large scale. This prin-
ciple can be leveraged in many forms, with the common goal of relax-
ing global system properties and constraints in favor of simpler but more
scalable local ones. For instance, visibility of data should be defined
by taking into account the geographical co-location or the interaction
patterns of PUB/SUB participants, and by defining layered logical do-
mains, where lower layers have a more detailed view of local events
but a narrower visibility scope, while upper layers have a more ab-
stract and concise knowledge about a wider visibility scope. Simi-
larly, we believe that QoS management and provisioning themselves
should be based on locality considerations: these could be used to
determine partitions of very large scale networks into smaller logical
units, each managing its own independent QoS control and provision-
ing; in this way, loosely-coupled QoS administration domains could decide
autonomously (and possibly dynamically) the extent of QoS guaran-
tees to offer to their local participants, and dynamically negotiate the
quality of inter-domain communication. Where necessary, this idea of
federated QoS management can be further evolved to the more complex
perspective of multi-level QoS management, where big independent do-
mains can be further partitioned by need.

2.6 summary and conclusions

In this chapter, we claim that the PUB/SUB communication paradigm
can properly satisfy the strong requirements of interoperability and
scalability that emerge from SPEs if properly extended with the pos-
sibility to configure QoS parameters that regulate the behavior of the
underlying data distribution infrastructure. To support this claim, we
propose a model that unifies the functional and non-functional as-
pects of PUB/SUB behavior under a single notification space abstraction.
In addition, we survey and classify a selection of common QoS prop-
erties supported and supportable by PUB/SUB middleware implemen-
tations, emphasizing the technical aspects that regulate the trade-offs
between strong quality guarantees and system scalability. In partic-
ular, we propose a detailed survey of eight PUB/SUB solutions that
emerged in the literature for their support to QoS-aware interactions.
Our survey offers several technical insights about the extent to which
QoS is explicitly or implicitly supported in academic and industrial
PUB/SUB solutions.

44 quality of service in pub/sub data distribution

Our analysis shows that there are several open opportunities for fu-
ture research, especially in the efficient implementation of differenti-
ated QoS levels in large-scale scenarios. We envision two main promis-
ing research directions: i) the development of more flexible and adap-
tive models based on probabilistic QoS, and ii) a deeper exploitation
of the locality principle for effective data distribution and QoS enforce-
ment. Both these development directions are motivated by our claim
that, in many modern real-world application scenarios, protocols, al-
gorithms, and decisions based on global system knowledge should
be often sacrificed in favor of mechanisms and techniques leveraging
partial and incomplete knowledge with local focus, in order to en-
able scalable, even though approximated, management decisions and
optimization.

3 Q U A L I T Y O F S E R V I C E I N DATA
S T R E A M S P R O C E S S I N G

In the previous chapter, we have discussed QoS-aware PUB/SUB sys-
tems as a promising communication paradigm and architecture for
the distribution of data in large scale SPEs. Delivered by the data dis-
tribution infrastructure, endless flows of sensing data need to be ana-
lyzed and transformed from row information to usable knowledge.
However, the characteristics of these data pose several hard chal-
lenges that need to be solved. In the literature, the three ‘V’s mantra
[120] has been used often to summarize and communicate effectively
the unique features of these data (e.g., in [121–123]). The three ‘V’s
stand respectively for volume, velocity, and variety. The volume of the
data has two orthogonal consequences: i) data cannot be feasibly han-
dled by a single storage or processing location but they need to be
distributed across multiple sites; ii) it is not possible to store data
for off-line analysis but they must be continuously processed on-the-
fly. Tightly linked to this latter aspect is data velocity: new data is
constantly produced at different and increasing rates; in this context,
processing platforms must provide sustained data throughput for in-
definite periods of time and handle expected and unexpected varia-
tions of the input data rates (i.e., load peaks) through dynamic load
adaption mechanisms. Finally, data can be extremely heterogeneous
in their representation, semantics, and value: processing platforms
need to deal with this variety by supporting extensible sets of data for-
mats and by providing customization mechanisms that can be used
to adapt to scenario-specific data characteristics.

In the last ten years, distributed and scalable processing systems
like MapReduce [24] or Dryad [25] have emerged and are having an
important industrial success, also thanks to the wide availability of
industrial-quality open-source implementations [30]. These solutions,
which have been often referred to as Many-Tasks Computing (MTC)
[124, 125] or Data-Intensive Scalable Computing (DISC) [126, 127] sys-
tems in the literature [128], share the common goal of processing
large volumes of data by leveraging in parallel the distributed re-
sources provided by commodity hardware in large data centers [21].
We believe that the reason for their success is twofold: on the one
hand, by adopting a shared-nothing architecture [129], they provide
easy scalability when the operations on the input can be partitioned
in a number of independent tasks; on the other hand, they are usually
programmed using familiar general-purpose languages that reduce
the framework learning curve, making their adoption faster.

45

46 qos in data streams processing

In this chapter, we concentrate on one particular category of DISC
systems, i.e., Distributed Stream Processing Systems (DSPSs). Differ-
ently from batch-oriented DISC systems, designed to analyze very big
but fixed data sets, DSPSs have the primary goal of providing scal-
able tools for for processing continuous and theoretically unbounded
flows of data, i.e., data streams. DSPSs represent promising architec-
tures to address the data analysis requirements of the emerging large
scale scenarios scenarios described in Chapter 1, where it is often nec-
essary to produce near-real-time feedback in response to real world
events. In such scenarios, DSPSs must handle a possibly very large
number of incoming data streams, serving the needs of a usually
high number of applications executing concurrently. We have seen
that these applications normally expect very different quality levels
from the data processing service. Think about an application that
monitors road traffic to detect accidents [17] (see also Section 1.2) and
about another managing distributed energy smart meters data [130]:
while both applications require limited and controlled latency, it is
very likely that the guarantees required by to the first are stronger
and have priority on those given to the second.

Similarly to what we have done in Chapter 2 for our PUB/SUB sys-
tems analysis, in this chapter we discuss the state-of-the-art of DSPSs
and their ability to provide configurable QoS to applications requiring
it. The remainder of this chapter is organized as follows. In Section 3.1
we position our work by reviewing the contributions in the literature
that, before us, have partly analyzed DSPSs and their quality-related
characteristics. Then, in Section 3.3, we propose a general model that
captures at the same time, functional DSPS features and QoS-related
characteristics; in the same section, using a simple bi-dimensional
classification, we present common or possible QoS properties that
DSPS either do or can feasibly implement, and we emphasize their
mutual interactions. Under the light of this classification, we survey,
in Section 3.4, a collection of relevant DSPSs that emerged in the liter-
ature for their support to unique QoS-related features, and we discuss
the related implementation/cost trade-offs in Section 3.5. Before con-
cluding the chapter, in Section 3.6, we sum up the lessons learned
from our surveying work and propose design and research directions
that we envision for the development of future DSPSs.

3.1 positioning our contribution

The problems and issues related to continuous data stream process-
ing have been widely studied in the last decade, and the very recent
industrial success of scalable systems for data-intensive applications
of the last few years has created a renewed interest in this research
topic. Several works have already tried to build common models and

3.1 positioning our contribution 47

to indicate design/implementation principles for stream processing
systems, each focusing on different aspects of the problem space. In
this section, we position the work presented in this chapter within
the existing literature and we point out common aspects and unique
original contributions of this work compared to previous material.

Sakr et al. [131] discuss state-of-the-art approaches for satisfying
the requirements of data-intensive applications in virtualized data
center environments and analyze the existing trade-offs between the
achievement of guaranteed performance levels, including latency and
consistency, and the associated runtime costs. Differently from us,
their contribution focuses mainly on batch-oriented systems rather
than streams-oriented ones. In addition, we also propose a simple
but comprehensive QoS-aware model that provides a consistent frame-
work that we use to compare DSPSs.

In their work [132], Cugola and Margara survey the large domain
of Information Flow Processing (IFP) systems, i.e. every kind of infor-
mation management system that deals with continuous flows of data,
including active databases [133], Complex Event Processing (CEP) sys-
tems [134], and DSPSs. Within the last category, which is the subject of
our work, the survey focuses especially on Data Stream Management
Systems (DSMSs), which, as thoroughly explained in the next section,
represent only a part of the larger DSPS domain. The authors present
a very general model that, as the one we propose in this chapter, is
based on a layered architecture. However, while their model aims at
covering a heterogeneous set of very different system types and, for
this reason, is very general, ours is specifically tailored to DSPSs, and
tries to capture with a more precise detail their unique features also
by focusing focus on their specific QoS-related characteristics.

A very recent book chapter by Sandra Geisler [135] provides a thor-
ough overview of DSPS features and architectures. Like [132], the at-
tention is mainly centered on DSMSs and the work misses to discuss
some interesting aspects peculiar of recent scalable stream process-
ing engines. Interestingly, the survey dedicates an entire section to
the analysis of QoS in DSMSs, where the author proposes a simple dis-
tinction between application-based and system-based quality dimension,
the first group relating to data processing reliability, the second to
system-wide performance indicators. In our work, we do not use this
classification perspective because we believe that such a distinction
misses to capture the strong relationships between the implementa-
tion of data processing reliability and consistency mechanisms and
the achievable platform runtime performance.

48 qos in data streams processing

3.2 data-intensive scalable computing

We use the term Data-Intensive Scalable Computing (DISC) to refer
to the wide class of systems for distributed data management and
analysis that achieve scalability to data volumes by exploiting the
parallelism opportunities offered by large cluster of computing nodes
connected in high speed LANs.

Systems belonging to this class share four cardinal characteristics:

• Shared-nothing distributed architecture.
• Processing operations divided in smaller computational tasks.
• Execution of tasks across multiple cores and nodes.
• Minimized inter-task and inter-node communication.

Shared-nothing architectures describe distributed systems that share
nothing else than (usually asynchronous) communication channels,
as opposed to shared-memory or shared-disk architectures [129]. They
are characterized by a simplified distributed organization and enable
better scalability because they require less or no synchronization to
access shared resources. In order to leverage at best the parallelization
opportunities offered by this kind of architectures, DISC systems de-
compose their workload in small and distributable tasks. This can be
done either by partitioning input data into independent groups (data
parallelism), by partitioning subsequent processing steps (pipelined par-
allelism), or by combining the two strategies. Tasks are executed across
all the computing resources in a way that tries to minimize their co-
ordination. A similar goal is to isolate the execution of tasks as much
as possible, with minimum inter-task data exchange; on a further-
level, communication between different cluster nodes should be re-
duced with even greater care.

We propose a simple and original classification of DISC systems
based on a two levels hierarchy (Figure 3.1) . The first classifica-
tion level distinguishes between batch-oriented and streams-oriented sys-
tems. As the names suggest, batch-oriented systems are designed for
off-line analyses of static data sets, while streams-oriented systems
are built for handling endless flows of data and for executing perma-
nent queries on them, i.e., queries that update their results as new data
is available. While the optimization goal of the first group of systems
is usually high throughput, in the second case it is also very desir-
able to obtain low latency responses [136]. The second classification
dimension relates to the data model that systems adopt. In particular
we consider structured versus semi-structured data models: structured
models organize data according to formal representations, such as
the relational one [137], and normally define more or less complex
query algebras that are used to interrogate the available data; on the
contrary, semi-structured models are based on more flexible data rep-
resentations, like key-value bags, and usually allow the definition of

3.2 data-intensive scalable computing 49

DISC Systems

streams-oriented (DSPSs)batch-oriented

PDBMSs DDPEs DSMSs DSPEs

Figure 3.1: A two levels classification of DISC systems.

custom functions for data analysis, for example, built using general
purpose programming languages.

The first examples of batch-oriented systems with a strong data
model can be traced back to the late 80s [138, 139] with seminal
Parallel Data Base Management Systems (PDBMSs), such as Gamma
[140] or Teradata [141]. Based on the relational model, the core idea of
these systems is to work on horizontally partitioned data tables and
to rewrite and distribute Structured Query Language (SQL) queries
across these partitions. As today, modern commercial PDBMS imple-
mentations, such as Microsoft Parallel Data Warehouse [142], and the
Database Partitioning Feature in IBM DB2 Enterprise Server [143] are
still based on the same core concepts.

Batch-oriented systems with a semi-structured data model began
to spread in the first decade of the 2000s. Their data model flex-
ibility allows easier processing of semi-structured or unstructured
data, and their user interfaces, usually based on main-stream general-
purpose programming languages, promote a quicker developer adop-
tion. We call this class of systems Distributed Data Processing En-
gines (DDPEs). Compared to PDBMSs, DDPEs have a much stronger
focus on boosting system scalability, often also at the expense of trans-
actional properties — such as Atomicity, Consistency, Isolation, and
Durability (ACID) — that, instead, are commonly supported by PDBMSs
[144]. The MapReduce processing model, promoted by Google in [24],
is probably the best known example of DDPE. In MapReduce, data is
modeled as a collection of key-value pairs, and tasks, which can be of
only two types — either map or reduce tasks —, define isolated compu-
tational units that process key-based subsets of input data. Also fol-
lowing the success of MapReduce, many other DDPEs have emerged.
Some of them generalize the MapReduce concepts and offer process-
ing structures that go beyond the simple map and reduce schema;
some examples are Dryad [25], Nephele [26, 145], or Hyracks [146].

In the same period, another class of systems began to emerge,
with contributions coming especially from the Data Bases commu-
nity. These systems, called Data Stream Management Systems (DSMSs),
recognize the different requirements posed by the management of
continuous data flows as opposed to those offered by traditional or
parallel Data Base Management Systems (DBMSs) [147]. Among those,
there are the ability to act on live data by removing the requirement

50 qos in data streams processing

of storing information before processing it, the ability to offer mini-
mal latency by reducing the platform overhead, the creation of formal
models and query algebras that define operations for streaming data,
and the ability to provide repeatable, consistent, and fault-tolerant pro-
cessing [31]. At the foundations of DSMSs there is the idea of letting
users write permanent queries on input data streams by using ad-
hoc query languages that usually resemble SQL [148–150], decompose
complex queries into query graphs made of simpler and atomic tasks,
and finally distribute components of the query graphs on cluster
nodes [151, 152]. Noteworthy examples of DSMSs are TelegraphCQ
[153, 154], STREAM [155, 156], and Aurora/Borealis [27, 157–159].

Finally, we call Distributed Stream Processing Engines (DSPEs)
those streams-oriented architectures that do not follow a rigid data
model or adopt a formal query algebra; similarly to DDPEs, these sys-
tems are better suited for scenarios where the information delivered
by streams has weak or no structure. Differently from DSMSs, DSPEs
do not have the realization of strong consistency properties among
their main requirements, but they principally aim at offering theo-
retically unlimited scalability and minimal processing latency. Proba-
bly trying to exploit its widespread industrial success, many authors
have proposed adaptations of the MapReduce model to continuous
stream processing scenarios (e.g., [160–163]), usually based on the ex-
ecution of sequences of MapReduce jobs on data stream windows.
However, a large collection of literature have also proposed “stand-
alone” DSPEs, with their own processing model and programming in-
terfaces specifically designed for data streams analysis scenarios. As
explained in more detail in the rest of this chapter, most of these so-
lutions model stream processing problems as processing graphs made
of user-defined operators, i.e., components implementing isolated and
well defined functionalities and deployed as distributed tasks on data
center resources. Given their enormous flexibility, these systems are
perfectly suited to answer the novel requirements of SPE data process-
ing applications, a fact that is also demonstrated by the widespread
academic interest and industrial adoption that DSPEs are gathering in
the last few years. Open source frameworks like Storm [29], Apache
S4 [164], and Samza [165], or commercial solutions like IBM InfoS-
phere Streams [28, 166] are only a few examples of well-known and
largely used DSPEs available today.

In the following, we concentrate on stream-oriented systems by an-
alyzing in deeper detail their peculiar models and characteristics and
by focusing on existing or possible quality-related features. Given the
many common characteristics, we use the term DSPS to refer to DSMSs
and DSPEs collectively: we use the more specific term only when we
want to emphasize that some characteristic or property only applies
to systems belonging to one of the two groups.

3.3 model 51

Abstract Model
- Defines Stream Processing Concepts

Development Model
- Defines the DSPS programming interfaces

Execution Model
- Defines the interfaces between the DSMS
 and the underlying platform

Runtime Platform
(e.g. OS specific abstractions and APIs)

DSPS

Figure 3.2: A three-layers model of Distributed Stream Processing Systems.

3.3 model

In this section, we propose an original framework for the modeling of
DSPSs. This framework helps to organize the description of DSPSs by
emphasizing their common characteristics and unique features, and
we will use it to this purpose throughout the rest of this thesis. In
Section 3.3.1, we introduce the architecture of the model, based on
three description layers — called respectively abstract, development,
and execution layers — and, in Section 3.3.2, we enrich it with the
ability to describe QoS-related features. Under the light of this discus-
sion, we survey and classify, in Section 3.3.3, common or envisioned
QoS properties for DSPSs.

3.3.1 Basic model

We propose an original representation model for DSPSs that helps an-
alyzing them according to a simple schema based on three layers. The
layers are complementary: each of them describes a different aspect
of the stream processing system, and they are called abstract model,
development model, and execution model, respectively (Figure 3.2).

• The abstract model defines high-level stream processing concepts.
For instance, it gives precise definitions of data streams and rel-
evant system events; it determines the characteristics of data
processing flows, and the type, role, and granularity of process-
ing components.

• The development model defines the set of interfaces given to devel-
opers to build the stream processing components of the abstract
model. A development model, for example, could map system-
specific concepts to syntactic constructs of special-purpose stream

52 qos in data streams processing

O0

O1

O2

O3

S0

S1

K0

component nodes

data source data sink operator

Figure 3.3: A DSPS processing graph.

processing languages, such as formal query languages, or to ad-
hoc APIs and libraries for general-purpose languages.

• The execution model determines how abstract model components
are mapped to runtime objects (e.g., Operating System (OS) en-
tities) that are then executed by the distributed hosts where the
DSPS is deployed. For example, an application could be mapped
on just one process of the host OS at execution time, or it could
be split into several interacting processes.

While the three models may, in theory, vary from system to sys-
tem largely, in practice, it is easy to identify several recurring aspects
among the most common solutions. In the following paragraphs, we
discuss the three models, and overview how they are commonly real-
ized in existing state-of-the-art DSPS solutions.

Abstract model

The abstract model of a DSPS defines the high level concepts on which
the system is based, including the system-dependent definitions of
stream, stream processing application, and the processing work flow
that the system adopts. While development and execution models
usually present very significant differences among different systems,
abstract models tend to be very similar and based on the common
abstraction of processing graph (e.g., [27–29, 156, 157, 164, 166, 167]).

A processing graph (Figure 3.3) is a directed graph whose nodes
represent data processing steps, and whose edges represent streams
flowing between components. A stream is an unbounded sequence
of discrete elements, often called tuples (more common in DSMSs) or
samples (more common in DSPEs). The type of a sample defines its
structure, and every stream contains samples all of the same type.
Depending on the system, a sample type could be a primitive type —
such as an integer or floating point number — or it could be a com-
posite type, similar to a structure in the C programming language, or,
in some cases, to objects of an object oriented type system. A process-

3.3 model 53

ing graph is fed by one or more input streams and produces one or
more output streams as a result. The origin and destination of input
and output streams can be highly heterogeneous, such as, a file, a
network socket, a PUB/SUB endpoint, or a relational database. Since
input streams are theoretically unbounded, a characterizing feature
of stream processing applications is that, once started, they execute
forever unless explicitly stopped. In some cases it is useful to rea-
son about limited portions of streams: a finite temporal sequence of
samples belonging to a stream is called trace.

A graph node can be of three different kinds, i.e., data source, data
sink, and operator. A data source node identifies a data stream gener-
ated outside the application: its role is to abstract from the actual
nature of the stream producer, and it can represent either an external
stream source or the output of another application running concur-
rently on the same system. A data sink node, conversely, represents
the destination of an application output; data sinks can be used either
to redirect output streams to other systems for additional processing
or storage, or to connect the output of one application with the in-
put of another one. An operator node is associated with one or more
input data streams and generates one or more output streams. Opera-
tors are the core of stream processing applications: they define the set
of operations that can be performed on streams. Operators can im-
plement, for example, relational manipulations of single or moving
windows of samples, such as projections or joins [150]; they can per-
form aggregation or filtering actions [168], or implement more com-
plex and arbitrary User Defined Functions (UDFs) [26, 29]. Operators,
data sources, and data sinks are collectively called graph components
or, more simply, components.

Samples are received and produced by stream components on their
input and output ports, each having its own type, which corresponds
to the type of the stream it receives or produces. Every component
performs its processing operations on data samples according to an
asynchronous processing model; conceptually they all operate in par-
allel and perform their processing actions as soon as data samples are
available at their input ports.

Development model

A development model maps the concepts defined in the abstract model
to programming-level constructs that are used to program stream pro-
cessing applications. These constructs should allow to:

1. Define new applications by describing sources, operators, sinks,
and their connections in a processing graph.

2. Customize component instances by specializing their behavior
for particular application needs (e.g., to bind graph source nodes
to actual external sources).

54 qos in data streams processing

3. Develop new components implementing UDFs (optional).

Any DSPS development model should at least define the tools to
achieve the first two goals stated above; in fact, in many cases, it
might be not necessary to create new or custom components, for ex-
ample, because the system comes bundled with collections of ready-
to-use components (often known as toolkits in DSPEs [168]), or because
streaming queries are built via ad-hoc query languages, as it is often
the case for DSMSs [150].

In the available literature, two families of application development
models are common. The first includes the models where the map-
pings are based on special-purpose languages; the second family uses
general purpose languages. The use of one model rather than the other is
very often dependent on the system being a DSMS or a DSPE. However,
DSPEs offering simplified stream processing languages [166, 168, 169]
that can be used complementary with respect to their operator defi-
nition APIs are not uncommon.

Special-purpose stream processing languages are usually tightly bound
to the system they have been designed for. They normally allow a
very concise definition of applications and components, by having
stream processing concepts mapped one-to-one to language-level con-
cepts. For example, STREAM [156] defines the Continuous Query Lan-
guage (CQL), which permits to develop stream processing applications
by writing continuous queries in a syntax that strongly resembles SQL.
These queries are processed by the underlying system and decom-
posed in a processing graph of pre-defined operators. If applications
written in an ad-hoc language are usually simpler to write, they lack
of the flexibility of general-purpose languages and, more importantly,
they require developers to learn new languages and new develop-
ment processes.

Development models based on general-purpose languages, instead,
have a less steep learning curve because system-specific stream pro-
cessing concepts are defined through familiar constructs offered by
main-stream programming languages, such as C++, Java, or Python.
For example, in Apache S4 [164], operators are written as standard
Java classes that inherit from a common abstract superclass defined
by the framework. The developer has to “fill-in” a few methods, and
the runtime takes care of automatically invoking them when events
of interest occur. Using general-purpose languages has several bene-
fits, including the possibility to re-use pre-existing libraries and soft-
ware modules seamlessly inside custom stream processing applica-
tions. However this usually comes at the expense of conciseness and
prototyping speed, as APIs can be verbose and sometimes complex.

Execution model

An execution model maps the elements defined in the abstract model
and described through the development model to runtime objects (or

3.3 model 55

tasks) that run natively on the platform hosting the stream processing
framework. An execution model defines:

1. The platform-specific execution units on which DSPS elements
are mapped, and the scheduling policies for local resources.

2. The distribution of the execution units on cluster servers.
3. The mapping of graph edges on communication channels, such

as shared memory, pipes, or network sockets.

The first important aspect of an execution model is the mapping
of operators, sources, and sinks on concepts native to the host plat-
form, such as OS processes or threads. With a process-per-operator allo-
cation, operators are instantiated individually as separate processes
with one or more concurrent threads of execution (e.g., one per input
port). That schema grants maximum isolation because any problem
occurring to one component does not affect other concurrently run-
ning ones. Normally, when this architecture is used, the local schedul-
ing of resources is demanded to the standard facilities of the host OS
CPU and memory schedulers. The first implementations of the Stream
Processing Core (SPC) [28] used a similar approach, by isolating sin-
gle components into their own containers corresponding to standard
Unix processes.

A process-per-server allocation creates just one process per server. All
the components are hosted as separate software modules within this
process, for example, as instances of a some class in case of a class-
based object oriented implementation [164]. While, on the one side,
this arrangement does not grant the same execution isolation as the
process-per-operator allocation, on the other side, it gives tighter con-
trol on resource scheduling policies. For example, every in-process
component could be executed by a dedicated thread, or, more inter-
estingly, they could share a pool of threads scheduled according to
internal policies or QoS requirements (e.g., for a priority-proportional
scheduling of resources). Another advantage of this architecture re-
lates to the fact that communication of components running within
the same process is usually more effective, thanks to channels based
on shared memory. The process-per-server allocation is used, for ex-
ample, in Apache S4 [164] and Quasit [167], which start a Java Virtual
Machine (JVM) [170] on each cluster server and deploy sources, opera-
tors, and sinks as objects running within the local JVM.

Somewhere between the previous solutions, the cluster-of-operators
approach fuses subsets of tightly coupled components into one pro-
cess. For example, operators with strong reciprocal communication
dependencies are good candidates for fusion. Again, within every
process, very flexible resource scheduling approaches and faster com-
munication channels can be used. Different operator clusters, how-
ever, are still mapped to different processes, isolated from each other.
IBM InfoSphere Streams [166] uses a similar hybrid approach through

56 qos in data streams processing

a technique called operator fusion [171] that groups multiple operators
into single execution units.

Knowing what the execution units are, the application processing
graph can be rewritten in the corresponding runtime graph where
nodes represent individual runtime objects (e.g., processes) and edges
communication channels. A further role of the execution model is
the definition of a placement strategy for runtime objects. A placement
strategy decides the distribution of runtime objects on the available
cluster servers: a good solution should take into account the resources
requirements of every object, the resources availability of each server,
and the expected/declared application communication patterns, and
it should satisfy the application quality requirements while minimiz-
ing its execution cost. The assignment can be static-only, or can have
dynamic phases as well. During the static phase, an initial assignment
is decided based on a-priori knowledge of the application and input
streams characteristics. Due to changing load conditions, for exam-
ple caused by load spikes, the initial assignment could be no longer
adequate to satisfy the application QoS requirements; in these cases,
a dynamic phase can be performed at runtime to incrementally deal
with load variations. The works in [172] and [173] are examples of
algorithms performing both static and dynamic assignment phases,
while [174] tries to find an initial static assignment that maximizes
the system robustness to possible load variations.

Finally, an execution model should decide how communication
channels are instantiated at runtime. For in-process communication,
function calls or shared memory-based message passing are the most com-
mon alternatives. While the first binds the execution thread of the
caller to that of the callee, the second allows independent execution of
the communicating parties. For what concerns inter-process commu-
nication, the choice depends on whether the channel endpoints reside
on the same host or on remote hosts. In the first case, solutions such
as system-level shared memory or OS pipes can be adopted for faster
and cheaper communication solutions; in case of remote communi-
cation, the choice of the protocol depends very much on the desired
communication cost and QoS level. For example, if cheap, unordered,
and unreliable communication is enough, UDP-based channels are a
commonly adopted solution.

3.3.2 QoS-aware model

In Information and Communications Technology (ICT) infrastructures
serving mission-critical applications, e.g., in the areas of health-care,
finance, or transportation, it is very important that services behave
in conformance to a well-defined Service Level Agreement (SLA) that
determines the required QoS level. An SLA normally constraints func-
tional and non functional runtime parameters according to a pre-

3.3 model 57

defined set of performance indicators. The range of possible perfor-
mance indicators is, in general, very large and application-dependent:
before, in this chapter, we already introduced two common and sim-
ple examples of general and high-level metrics such latency — mea-
suring the maximum time interval between a service request and the
corresponding response — and throughput — measuring the average
number of samples per time unit that the DSPS can process. Other
indicators can refer to non-functional aspects such as availability, i.e.,
a measure of the fraction of time the service is up and running, or to
lower-level details like memory or CPU usage. Every constraint that,
in an SLA, binds some performance indicator to its required value is
said to represent a QoS property for the service.

In all kind of distributed scenarios, the implementation of QoS-
aware services, i.e., services that are guaranteed to deterministically
operate according to a set of QoS properties, is a very difficult task,
and maps to the ability to allocate, statically and dynamically, the
proper amount of computational resources to different processing
components. The technical challenge is even harder in the case of
stream processing: differently from simple request-response or batch-
oriented services, where characteristics of computational tasks are
known a-priori and easier to reason about, in stream processing, the
properties of input streams (e.g., their data rate) change continuously
and they can be partially or completely unknown in advance and
very difficult to predict. The consequent uncertainty that platforms
have to deal with during long provisioning times makes the imple-
mentation of effective and adaptive resource scheduling techniques a
very challenging task.

Nonetheless, there is a growing number of real-world large data
streams analysis applications that requires predictable performance
guarantees. For example, think again about the SPE scenarios de-
scribed in Chapter 1, where the results results of stream analysis is
used to trigger real time feedback actions on physical aspects of the
cyber-physical world. These actions can be responses to emergency
conditions, such as the activation of alarms in smart tele-care systems
[32], or the computation of emergency rescue plans in a smart traffic
management system [17], which obviously need to be performed in
a timely and reliable fashion.

We strongly believe that the described scenarios call for a strong
integration of QoS in novel DSPSs, and that QoS-awareness should be
developed at all the three abstract, development, and execution layers
of our model. QoS in the abstract model should permit to specify, with
different levels of granularity, the QoS properties required for graphs,
single sources, operators, or sinks, or groups of components directly
in the application models. At this layer, different DSPSs should de-
fine their own quality-related vocabulary and determine which are
the performance aspects controllable through their QoS properties, to

58 qos in data streams processing

which specific components they can apply, and how they interact with
each other. QoS in the development model should define the syntactic
constructs used to annotate application code with the quality require-
ments expressed at the model level. Finally, QoS in the execution model
should support the execution of applications specified according to
the other two layers. In this layer, DSPSs should map QoS properties
to proper mechanisms for runtime admission, monitoring, control, en-
forcement, and management, and should develop resource schedul-
ing algorithms that can be used to successfully satisfy the required
QoS specifications.

In the next subsection, we survey a selection of QoS properties for
DSPSs that have been successfully proposed and implemented in the
literature or that we believe could be successfully realized in future
stream processing framework.

3.3.3 Classification of QoS properties

In this section, we describe an original bi-dimensional classification
of QoS properties for DSPSs. Similarly to what we have done for the
classification of PUB/SUB QoS properties in Chapter 2, our classifica-
tion tries to make common features, quality trade-offs, and issues
related to the implementation of different properties emerge clearly
from their position in the taxonomy.

The classification axes we consider are:

• Enforcement mode. Considering the distributed deployment of a
DSPS in a cluster setting, can a QoS property be enforced au-
tonomously and locally by cluster nodes, or does it need dis-
tributed coordination?

• Quality Domain. What aspect of the DSPS functionality does the
property regulate?

The enforcement mode dimension captures the fact that some proper-
ties can be implemented and enforced without any distributed coor-
dination, while others might need more or less complex interactions
between cluster hosts. In the first case, think about a property that de-
fines the queuing behavior of processing components by setting queues
capacities and related blocking semantics; in the second, consider,
for example, a latency requirement on a sequence of operations per-
formed by components distributed on many computing nodes. Un-
derstanding the enforcement mode associated to QoS properties is very
important, especially when considering data center deployments of
DSPSs on a possibly very big number of computing nodes. It is triv-
ial to recognize, in fact, that QoS properties that only require a local
enforcement tend to scale better than those that need a distributed en-
forcement, since their complexity can grow rapidly with the number
of distributed participants.

3.3 model 59

Table 3.1: Bi-dimensional taxonomy of DSPS QoS properties.

Local enforcement Distributed enforcement
Processing semantics Parallelism Ordering

Queuing

Load management Prioritya Prioritya

Latency

Throughput

Fault tolerance — Availability

Consistency
a The enforcement mode is implementation-specific (see the property de-

scription for details).

The quality domain dimension groups different properties according
to the high-level goal that they aim at achieving. We identify three
main groups within the quality domain dimension:

• Processing Semantics.
• Load Management.
• Fault Tolerance.

As it was the case for our PUB/SUB QoS properties classification in
Chapter 2, to isolate one quality domain group from the other com-
pletely can be difficult because QoS properties from one group have
often special interactions with those of another group; for example,
they can alter each other’s semantics, have mutual requirements, or
thwart each other’s enforcement. In the following description of QoS
properties, we try to highlight every possible cross of concerns among
different QoS properties or quality domains.

Table 3.1 organizes the properties that we survey in the remainder
of this section according to their quality domain and enforcement
mode. For the sake of discussion clarity, in the following, we group
the analyzed properties by their quality domain.

Processing semantics

QoS properties in this group assist the stream processing platform in
configuring and managing operators or, more specifically, their cor-
responding runtime objects, according to application-driven require-
ments. Properties in this class must be used carefully because their
setting can also influence other performance parameters: to mention
just one example, queuing details are strongly correlated to perceived
latency.

parallelism We define two different type of parallelism specifica-
tions: instance parallelism and task parallelism. Both consist of an integer
value p > 1 attached to an operator o. The value of the task paral-
lelism property specifies how many tasks should be instantiated and

60 qos in data streams processing

deployed for the operator at runtime (e.g., how many processes in a
process-per-operator mapping, see Section 3.3.1). With an instance par-
allelism specification, instead, a user can configure how many threads
should execute corresponding operator tasks. When task parallelism
is used, it is possible to specify a data partitioning function. This func-
tion, defined over the domains of the operator input streams and pro-
ducing as output a discrete number of possible values, is used by the
platform to route data samples to different tasks of the same operator.
The platform guarantees that any two input data samples e1 and e2
for which the evaluation of the data partitioning function produces
the same value k are routed to the same operator task.

An instance parallelism p > 1 means that several execution threads
can process a task’s input samples concurrently: in that case, it is up
to the developer to make sure that the state of the operator is correctly
protected against concurrent accesses. If the right trade-off between
concurrency benefits and synchronization overhead is chosen, using
this property can provide important advantages especially in multi-
core architectures [29]. Task parallelism can bring the same type of
performance advantages, and also provides an additional opportu-
nity to distribute the operator load across multiple nodes [175]. In
this case, the states of different operator tasks are isolated and do not
influence each other: this fact, can be acceptable or not depending on
the specific semantics of the operator. In many data parallel problems,
for example, the processing state relative to different groups of input
data are inherently independent (e.g., a streaming word count prob-
lem [176]). Once an application is deployed on the cluster, paralleliza-
tion of operators does not require global coordination at runtime.

queuing In most DSPS implementations [29, 159, 164, 166, 167], op-
erators follow an asynchronous processing pattern, by executing their
data processing operations reactively in response to the arrival of data
samples at their input ports. In order to decouple processing compo-
nents from data distribution channels, most implementation use ad-
hoc input and output sample queues that are interposed between the
network and the operator tasks. At runtime, the DSPS extracts sam-
ples from output queues, routes them to local or remote destinations,
and puts them into destinations input queues. Asynchronously with
respect to this process, it also assigns execution threads to tasks with
non-empty input queues. The queuing QoS property lets users have a
more precise control on the configuration of tasks input and output
queues. For example, by setting a maximum queue size value, it is
possible to limit the maximum amount of memory that tasks will use
to hold unprocessed samples. Note, however, that bursty input can
cause queues to rapidly fill: in that case, unless techniques for queue
back pressure are implemented [154, 177], some samples will have to
be dropped in order to avoid blocking operations. When dropping

3.3 model 61

data is unavoidable, data dropping policies can be specified: trivial poli-
cies are to discard newly arriving samples or random ones, but other
more complex ones can be devised, for example, to drop data ac-
cording to application specific priorities [178]. Note also that longer
queues inevitably cause longer processing latencies [179]. Queuing
specifications act locally to operator tasks, so they do not require any
distributed enforcement protocol.

ordering The ordering QoS property configures the ordering guar-
antees provided to the operator or sink it is attached to. Guaranteeing
consistent data processing order can be useful, for example, in case
repeatability of results is a requirement or if the order of samples has
an application-relevant meaning that must be preserved. We consider
three possible values for this properties:

• No order.
• Producer order.
• Total order.

When no order is used, samples are processed as they arrive on any
operator input-port. Note that the arrival order does not necessarily
reflect the sample production order, for example, if an unordered pro-
tocol, such as UDP, is used to deliver samples. On the contrary, this
can be guaranteed by using producer order. From an implementa-
tion point of view, producer order can be realized by using an or-
dered transport protocol (e.g., TCP) for transferring samples from a
producer’s output queue to its consumers’ input queues. Note also
that producer order does not impose any relation between samples
received from different input ports. That guarantee can be achieved,
instead, by using a total order QoS property, which ensures that sam-
ples arriving to a task from all its input ports are ordered determin-
istically. A possible implementation approach for total order is, for
example, based on global time stamps that producers include in their
samples [180]. Neither producer nor total order can be implemented
locally if any of the operator sources is running on a remote host.

Load management

In batch-oriented DISC systems the characteristics of the input data
are usually known a-priory, but the same cannot be claimed for DSPSs.
The data rate of input streams can vary sensibly during the lifetime
of an application temporarily or permanently. Management of time
variable input load poses several hard challenges for the allocation
and scheduling of distributed resources. In fact, if, at some point, a
DSPS does not have enough resources to handle the input load and
to keep up with the data production rate, input queues start to grow
with two possible consequences: if they fill, some samples have to be
dropped at some point in the processing graph, leading to data loss; if,

62 qos in data streams processing

on the other hand, they are long enough to sustain the duration of the
load peak, the system will have to pay the price of increased latency.
In this section, we discuss QoS properties that can be used to regulate
how to handle load variation according to user-defined requirements.

priority In stream processing applications, it is not rare that dif-
ferent processing flows have different importance from the point of
view of applications. Consider, for example, the TMS scenario pre-
sented in Chapter 1: in that scenario it is clear that the management
of emergency situations should take absolute priority over other ser-
vices, such as car navigation. This must be true even and especially
when the system is under heavy load and when the available pro-
cessing resources are not enough to execute every application pro-
cessing functionality successfully. The priority QoS property can be
exploited to impose an application-aware partial ordering between
different processing tasks; the system will use these hints to allocate
resources to tasks accordingly, and to take appropriate actions in case
of resources shortage due to a sudden growth of input load. A pri-
ority QoS property consists of a value usually chosen from a short
set of possibilities (e.g., in the 0–9 range) and can be associated ei-
ther to single operators or to data sinks. Sink priorities are used to
influence the scheduling of resources for all the runtime objects that
produce data ultimately going to the prioritized sink [181]. On the
contrary, when associated to operators, priority properties influence
only the execution of that operator’s tasks. Although their usefulness
is not as easy to understand as sink priorities, operator priorities al-
low a very fine grained specification of task resource requirements
that can aid resource usage optimization. If not explicitly given by
users, priority values can also be inferred statically or dynamically
leveraging other orthogonal QoS properties such as latency [157] or
custom utility functions [182]. Priorities decide how tasks running on
the same server share its resources at runtime: their enforcement does
not require distributed coordination. However, global knowledge of
priorities can help task placement algorithms to decide the mapping
between tasks and available cluster servers.

latency Latency QoS specifications express timing bounds on DSPS
operations. A latency specification can be attached to an operator, a
graph edge, a connected sequence of operators [169] or, more simply,
to a data sink [157]. Operator latency specifies the maximum time
interval elapsing from the moment a sample is put in an task’s input
queue to the moment the sample is extracted from the corresponding
output queue. In this definition, both queuing and sample processing
times must be taken into account. Latency on an edge constraints the
time taken to transport a sample from a source task output queue
to the input queue of the target operator task: note that this process

3.3 model 63

could involve network-level buffering and routing that can add sig-
nificant time overhead. Latency can also be specified on connected
sequences of operators: in this case the upper bound refers to the
sum of latencies of operators and edges involved in the sequence; fi-
nally, a latency specification on a data sink refers to the sum of the
latencies of all the sequences that eventually lead to that sink node.

Latency is probably the performance DSPS metric most strongly
perceived by users because it is simple to understand and has a direct
and critical impact on almost every application scenario. However, to
implement guaranteed latency bounds in DSPS is probably one of the
toughest challenges to face when realizing QoS-based behavior. First,
there are many concurrent sources of delay that can influence sample
processing time at runtime, such as I/O operations, adverse network
conditions, data batching policies, synchronization points, or coordi-
nation protocols for fault-tolerance [136]. Second, DSPSs are normally
hosted by non-real-time OSs that do not provide mechanisms to con-
trol strict time-based operations, as real-time schedulers do [183], and
to coordinate the interactions between middleware-level and OS-level
scheduling is a non trivial task. Third, tracing the causality relation-
ships between source input samples and output samples is a rather
complex tasks, especially when UDFs are used to represent opera-
tor behavior [29]. Dynamic adaptation of priorities based on chang-
ing latency requirements [154, 177], static and dynamic task place-
ment algorithms [172, 184], or continuous resource re-scheduling for
load adaption [185] are common optimization-based solutions that
are used to enforce latency constraint. An alternative approach is
to claim the resources needed to guarantee low-latency processing
by voluntarily dropping some data, through load-shedding techniques
[186, 187]. Especially in the case of sequences of operators, all the
servers where involved operators are deployed must coordinate to
guarantee timely sample processing, and hence distributed enforce-
ment is required.

throughput In a DISC system, throughput defines the average num-
ber of samples processed per time unit. In batch-oriented systems,
where all the input data is available before processing starts, through-
put is the primary performance evaluation metric, and techniques
to improve it have been widely studied [188, 189]. When thinking
about DSPSs, the definition of what throughput means is less obvi-
ous because the maximum number of tuples processed per time unit
depends not only on the characteristics of applications and platforms
but also on the current input streams data rate. We define throughput
of a DSPS the maximum number of output tuples per time unit that
the system can produce as the input data rate grows indefinitely. A
throughput QoS property can be used, at deployment time, to guide
tasks instantiation processes and resource assignment or, at runtime,

64 qos in data streams processing

to initiate adaptation procedures [175, 190]. A general way to improve
throughput is by using batching techniques at both processing and
networking levels: at processing level, it consists in letting a task pro-
cess a group of samples rather than one sample at time before giv-
ing control back to the local thread scheduler; at networking level, it
consists in grouping several samples into single packets to avoid the
overhead due to network communication protocols. However, note
that batching techniques tend to deteriorate latency [169]. As latency,
implementing controlled throughput requires the proper orchestra-
tion of all system components, and hence distributed enforcement.

Fault tolerance

Fault-tolerance is the ability of a system to continue to offer its service
in spite of possible hardware, software, or network failures that might
occur [191]. Stream processing systems are designed to run for indef-
initely long amounts of time on a large number of distributed nodes
made of commodity hardware: in such a setting, the likelihood of fail-
ures are very high. For this reason, DSPSs should provide appropri-
ate fault-tolerance mechanisms, and, most-importantly, they should
clearly define the guaranteed service-level they provide when differ-
ent types of failures occur. From another perspective, users should be
given tools to express fault-tolerance requirements for their applica-
tions, and QoS-aware DSPSs should fulfill these requirements.

availability When distributed DSPS components fail, some of the
hosted applications will stop producing results or will produce par-
tial or incorrect output. The availability QoS property measures the
ability of a system to quickly restore faulty components and restart
steady-state operations. Note that, according to this definition, to be
available a system does not necessarily need to restore its internal
state as it was before the fault: the availability concept only captures
the ability to overcome failures and measures the speed of this re-
covery process. Many solutions have been proposed in the literature
to implement high availability in DSPSs [192]: in active and passive
replication the system deploys one primary replica and one (or pos-
sibly several) secondary replicas for each operator task proactively;
upon detection of primary failures, it replaces it with one of the sec-
ondary copies. An alternative and reactive approach is to instantiate
new tasks only after failures occur. In general terms, proactive ap-
proaches tend to provide shorter recovery times, and reactive ones,
while cheaper in terms of runtime overhead, are usually slower. Avail-
ability policies have a strong relationship with the consistency QoS-
level that the platform offers (see next paragraph): as a rule of the
thumb, the stronger the consistency guarantees, the more expensive
the availability guarantees are. Implementing available systems, re-

3.3 model 65

quires distributed monitoring and recovery, which rule out the possi-
bility of local QoS enforcement.

consistency Consistency deals with the ability of DSPS systems to
mask the effects that failures may have on application outputs. Fail-
ures of processing nodes or network might cause operator processing
state or stream data to be lost, an event that can easily alter applica-
tion results. Note that any system providing some form of guaranteed
consistency is necessarily available: in fact, a platform must recover
from failure situations first to possibly hide their effects. We identify
five main types of consistency guarantees:

• Best-effort consistency.
• At least once processing consistency.
• Exactly once processing consistency.
• Repeatable consistency.
• Weak consistency.

All the consistency guarantees are defined with respect to executions
of the DSPS on some finite portions of an application’s input streams,
i.e., a set of input traces (see Section 3.3.1). System providing best-
effort consistency are those systems that, while not giving any type of
strong guarantee about their behavior in presence of failures, still try,
in some way, to reduce their negative effects. With at least once pro-
cessing consistency, the DSPS guarantees that all the samples in the
input traces are processed at least once, and that their possible influ-
ence on the application state is not lost in case of failures. Similarly,
exactly once processing consistency ensures that all the traces sam-
ples are processed exactly once, and their effect on the application
state is preserved in case of failures. Repeatable consistency is even
stronger: it guarantees that any two executions on the same input
traces produce exactly the same output traces, also in case of failures.
Note that the realization of protocols for repeatable consistency is a
very hard task: in fact, it is not only sufficient that all the samples are
processed once, but their processing order must be completely deter-
ministic, even between samples arriving on different operator input
ports. For this reason, repeatable consistency requires totally ordered
processing semantics. With the weak consistency expression, finally,
we refer to a class of consistency guarantees, rather than a specific one.
Members of this class are characterized by their common attempt to
find a trade-off between strong consistency guarantees (such as at
least once, exactly once, or repeatable) and best-effort or no guaran-
tees at all, for example, by expressing fault-tolerance in probabilistic
terms, or by explicitly specifying the amount of information that is
guaranteed not to be lost in case of failures.

State checkpointing techniques are widely used to implement best-
effort consistency [193, 194]; fault-tolerance techniques like upstream
backup [195, 196] or active and passive replication [197, 198] can

66 qos in data streams processing

Table 3.2: List of surveyed DSPS systems.

System Subsection
Aurora/Borealis [27, 158] 3.4.1

STREAM [155, 156] 3.4.1

TelegraphCQ [154, 199] 3.4.1

IBM InfoSphere Streams [166] 3.4.2

Nephele Streaming [169, 200] 3.4.2

Storm [29] 3.4.2

realize, depending on implementation details, either at least once
or exactly once consistency. In Chapter 5, we introduce a particu-
lar instance of weak consistency systems that uses an ad-hoc inter-
nal completeness metric to define fault-tolerance related guarantees.
Implementation of consistency is a complex task and, as availabil-
ity, it requires the coordination of many system components, i.e., a
distributed enforcement.

3.4 systems survey

In this section, we provide a technical overview of a selection of ex-
isting DSPSs, and we discuss their design and architectural features
under the light of the three-layers modeling framework introduced
in Section 3.3.1. In our analysis, we focus in particular on system fea-
tures that realize quality-related behavior, and try to emphasize the
related design and implementation aspects. The selection of systems
that we include in this section is guided by reasons similar to those
that motivate the choice of PUB/SUB systems in Chapter 2. In particu-
lar, our goals are:

• Present systems that support a representative selection of rele-
vant, diffused, and original DSPS QoS properties.

• Analyze the benefits and drawbacks of different implementa-
tion architectures for what concerns the achievement of quality-
aware data processing.

• Cover both DSMSs and DSPEs and highlight their differences for
what concerns their QoS-aware services.

Table 3.2 summarizes the DSPSs that we discuss in the rest of this
section. We organize our analysis in two subsections: in the first we
discuss systems belonging to the DSMS group and in the second those
that can be classified as DSPEs (Table 3.3). Let us remark that it is not
our goal to provide an extensive survey of existing stream processing
solutions: for a comprehensive work, the reader is referred to [132].

3.4 systems survey 67

Table 3.3: Classification of surveyed DSPS systems.

Stream Management Systems Stream Processing Engines
Aurora/Borealis IBM InfoSphere Streams

FIT Nephele Streaming

STREAM STORM

3.4.1 Data stream management systems

The most important DSMS proposals emerged after novel stream pro-
cessing scenarios brought to light the limitations of traditional DBMSs
in handling continuous queries over streaming data. Mostly coming
from data bases communities, these systems usually focus on QoS
properties related to processing consistency and reliability which are
very important problems also in the case of traditional data bases. In
this section we analyze the three most influential DSMSs, i.e., Auro-
ra/Borealis [27, 158], STREAM [155, 156], and TelegraphCQ [199].

Aurora/Borealis

Aurora [157, 158] is a centralized stream management systems jointly
developed by Brandeis University, Brown University, and Massachusetts
Institute of Technology. Borealis [27, 159] brings together the stream
management functionalities of Aurora with a distributed architec-
ture inspired by Medusa [201]. In Aurora and Borealis, users build
stream processing applications according to a so called boxes and
arrows model, which corresponds to our processing graph abstract
model with operators chosen from those defined by an ad-hoc Stream
Query Algebra (SQuAl).

Quite interestingly for the goals of our work, Borealis has been
a common development platform for the experimentation of several
QoS properties in the context of DSMSs. The original Aurora model
permits to express QoS requirements on the output streams using a
three-dimensional quality model that measures output latency, per-
centage of samples drop, and the presence of desired values in the
output data. These QoS requirements are not expressed as strong con-
straints, but as functions that map the measured output performance
to a value from 0 (maximum QoS violation) to 1 (perfect QoS satis-
faction). Borealis extends this model by permitting to associate these
measures not only to output sinks, but also to inner operator boxes.
The QoS requirements are used to guide the initial placement of tasks
on cluster nodes, the scheduling of resources at runtime, and possi-
ble dynamic operator rescheduling. In [187], a load shedding algorithm
for Borealis is proposed that selectively drops samples to handle load
peaks and maximize the system throughput, weighted according to
user-defined priorities on output sinks. The Delay, Process, and Cor-
rect (DPC) protocol [196] has been more recently proposed to enable

68 qos in data streams processing

low latency and eventual repeatable consistency in spite of failures. To
avoid an excessive increase of processing latency in case of failures,
and while the system is not fully recovered yet, DPC produces ten-
tative samples, i.e., possibly partial or incorrect results. These tuples
are guaranteed to be eventually corrected once the system is restored.
The user can influence the trade-off between availability and consis-
tency by controlling two parameters: a latency requirement and the
maximum number of tolerable tentative tuples.

STREAM

The Stanford Data Stream Management System, or STREAM, [156] is
a general-purpose DSMS supporting continuous queries over continu-
ous data streams or static data sets. Its development model is based
on the CQL algebra and query language [150], designed to resemble
SQL for easier adoption.

Although STREAM is a centralized data streams manager with a
multi-threaded process doing all the work, we include it anyway
in this survey because it implements several interesting QoS-related
features that have been seminal to more recent DSPSs. After being
submitted, CQL queries are compiled into a corresponding processing
graph of operators, whose execution is managed by the local sched-
uler. STREAM adopts a chain scheduling algorithm [202] that aims at
minimizing memory usage by giving execution priority to chains of
operators that maximize the reduction in the length of internal sam-
ple queues. If, instead, achieving low latency is more important than
saving main memory, a very simple FIFO scheduler can be used in
alternative. STREAM also guarantees totally ordered processing of
tuples [203]. To do so, it puts reordering buffers in front of operators,
which store all the tuples older than τ until an heart beat message with
time stamp τ is received. At this point, they reorder their content and
feed it to the corresponding operators. After that heart beat, no tu-
ples older than τ will be passed to the processing stage. The timing
of heart beats can be customized according to user defined parame-
ters, for example, by setting a skew bound that defines the difference
in the time stamps from two different input streams that is expected
to be found. Additionally, STREAM supports a set of user indications,
called adherence parameters, that permit to define specific characteristic
of input data streams used to optimize resource usage. For example,
an adherence value of type “ordered-arrival k-constraint” attached to
an input data stream specifies that, considering a single sample at-
tribute other than the time stamp, for any sequence of k + 1 samples
e0 . . . ek, the value of that attribute in ek will be strictly greater than
the attribute value in e0 [204]. For what concerns load adaptation,
STREAM implements load shedding [205], i.e., it inserts automatic drop
operations inside the processing graph in order to retrieve sufficient

3.4 systems survey 69

resources to handle load spikes while minimizing the inaccuracy of
results due to data loss.

TelegraphCQ

TelegraphCQ [154, 199, 206], developed by UC Berkeley and the IBM
Almaden Research Center, exposes an ad-hoc query language which,
syntactically, is a subset of SQL; SQL operations are mapped at run-
time on a set of continuous and non-blocking operators (or modules
according to TelagraphCQ terminology). The runtime model follows
a process-per-server model, with local TelegraphCQ instances con-
nected by the so called Flux component [207] that implements data
routing functionalities and replication mechanisms.

The systems has a strong focus in realizing adaptive mechanisms
for query processing. For example, its Eddy components [177] can
dynamically reorder the sequence of operators samples go through
based on load variations detected at runtime. Instance parallelism is
supported via Flux: in particular, Flux partitions data across the clus-
tered Telegraph instances in order to balance servers’ load, and it
implements mechanisms to dynamically adjust these partitions to
keep the cluster balanced in presence of short or long-lasting load
variations. TelegraphCQ also supports content-based priority speci-
fications through its Juggle component [208] that reorders samples
produced by sources according to their content. Finally, for what con-
cerns fault-tolerance, TelegraphCQ supports availability through ac-
tive replication and exactly once processing consistency (both imple-
mented in Flux).

3.4.2 Distributed stream processing engines

Compared to DSMSs, DSPE implementations are more interested in
realizing highly parallel and scalable solutions rather then providing
a formal query model or strict processing guarantees. Nonetheless,
especially in the recent years, many solution have emerged offering
richer QoS-related features that respond to the growing need for qual-
ity coming from real-world processing scenarios. In this section we
discuss two widely used industrial DSPEs — IBM InfoSphere Streams
[28, 166] and BackType (now Twitter) Storm [29] — and a relevant
proposal coming from academia — Nephele Streaming [169, 200].

IBM InfoSphere Streams

IBM InfoSphere Streams [166] is a DSPE evolved from the SPC re-
search project [28]. In Streams, application processing graphs are de-
fined in an ad-hoc special-purpose Stream Processing Language (SPL)
that is used to describe operators and their stream connections. In
addition to SPL, the system offers two sets of general-purpose APIs

70 qos in data streams processing

that can be used to build UDF-based custom operators. The first is a
mixed C++ and Perl API that, via a two-steps code generation pro-
cess, gives them maximum customization flexibility and execution
efficiency [209]. The second is a simpler Java API, based on runtime re-
flection techniques rather than code generation. Due to the cost of re-
flection, however, this API is in general less efficient than its C++/Perl
counterpart. Operators built through either APIs can be used directly
from SPL source files. At compile time, an optional operator fusion
process can be manually or automatically performed in order to clus-
ter groups of correlated operators [171]. Each group is then trans-
formed into its corresponding runtime task, called Processing Ele-
ment (PE), whose execution is mapped onto an OS process. Hence,
InfoSphere Streams follows a cluster-of-operators approach if the fu-
sion step is enabled, or operator-per-process otherwise. Depending
on configuration parameters, operators inside the same process are
executed by dedicated threads — in this case they communicate to
other in-process operators through message passing — or by shared
threads — in this case they communicate via function calls.

InfoSphere Streams supports a fault-tolerance mechanisms based
on state checkpointing [193], which guarantees availability and best-
effort consistency: periodically or in response to the reception of par-
ticular samples, tasks can save their state on secondary memory; when-
ever a crash occurs, that state is restored but all the processing op-
erations performed between the checkpoint and the failure are lost.
To the best of our knowledge, the commercial version of the system
does not perform dynamic load management, but distributes tasks
on the available cluster resources based on an off-line only profil-
ing and placement algorithm [171]. At runtime, the system monitors
and detect possible load imbalances and suggests alternative tasks
placements [173]; dynamic PE migration operations, however, must
be manually triggered by system administrators. In the context of
the research precursor of InfoSphere Streams (SPC), Amini et al. [185]
have proposed a dynamic resources micro-scheduling algorithm that
dynamically changes local PE resource allocation based on the current
system load; we are not aware whether this algorithm is implemented
in the commercial system or not.

Nephele Streaming

Nephele is a DISC system developed mainly by TU Berlin in the con-
text of the larger Stratosphere project [210]. Originally, Nephele was
designed to support the needs of batch-oriented scenarios, offering a
generalized graph-based processing model [26] that flexibly extends
many core ideas previously proposed in the MapReduce framework
[24]. In this section we discuss its very recent extension, Nephele
streaming [169, 211], that modifies the platform by adding support
for continuous data stream processing. Nephele applications are de-

3.4 systems survey 71

veloped by using ad-hoc APIs (Java or Scala at the time of writing) to
create operators and connect them in processing graphs. Processing
graphs are then deployed on a cluster of servers and executed by a
set of task managers each corresponding to an OS process (process-per-
server model).

The main contribution of Nephele streaming for what concerns QoS
enforcement is the implementation of two complementary techniques
that dynamically optimize the system in order to satisfy user latency
requirements attached to sequences of operators. The first technique,
called adaptive output buffer sizing, trades high throughput off for im-
proved latency by adjusting the size of operator output buffers accord-
ing to runtime estimations of the maximum time tuples can sit into
output buffers and still avoid latency violations. The second mecha-
nism, called dynamic task chaining, works locally to single task man-
agers where different tasks normally run in separate threads. The
idea of dynamic task chaining is to remove the additional latency
due to input/output queuing and execute, when possible, sequences
of consecutive task within the same thread; also in this case, latency
gains are paid with possible throughput degradation since using task
chaining reduces the number of opportunities for pipelined parallel
task execution.

Storm

Storm [29] is a DSPE developed by BackType and recently released
under the Eclipse Public License by Twitter after its acquisition of
BackType. In Storm processing graphs, data sources are called spouts
and operators bolts; there is no explicit concept of sink, but destina-
tions can be realized through bolts themselves, since they can perform
arbitrary actions on received samples. According to the Storm devel-
opment model, the main method to define new spouts and bolts is
through a Java API: custom bolts and spouts are defined by writing
classes that extend specific base classes, which in turn provide core
stream processing functionalities to newly built components.

The Storm execution model is rather articulated and, originally, the
system allows to configure many parts of its execution engine. For in-
stance, the way a processing graph is instantiated on the cluster can
be influenced by three parameters, i.e., i) the number of worker pro-
cesses, ii) the number of tasks per operator (task parallelism), and iii)
the number of per-component threads (instance parallelism). The first
parameter determines the total number of processes that will be cre-
ated on the Storm cluster; the second, associated with every spout or
bolt, determines how many tasks of each component are instantiated;
the third determines the total number of threads that should serve a
component’s set of tasks. At runtime, every worker is instantiated in
a different JVM, which can host one or more tasks (and execute one
or more threads) from the same application. Very peculiarly, Storm

72 qos in data streams processing

Table 3.4: Summary of supported DSPS QoS properties.

Parallelism Queuing Ordering Priorities
DSMS TelegraphCQ — Borealis Borealis

STREAM TelegraphCQ

DSPE Nephele Streams Storm —

Storm

Latency Throughput Availability Consistency
DSMS Borealis Borealis Borealis Borealis

STREAMS TelegraphCQ TelegraphCQ

DSPE Nephele Nephele Nephele Storm

Storm

puts also a strong focus on fault-tolerance by optionally providing at-
least-once processing consistency. To do so, for each root sample (i.e.,
a sample generated by a spout), Storm keeps track of all the other
samples that are caused by processing operations that involve it di-
rectly or indirectly. The root sample is kept in stable storage until
all the samples caused by it are acknowledged by their final desti-
nations. Given the highly customizable nature of stream processing
functionalities, Storm cannot keep track automatically of caused by re-
lationships and requires explicit developer intervention: at code-level
developers have to explicitly mark every new sample as caused by
another sample if they will to avail of Storm fault tolerance facilities.
Building on top of this functionality, Storm implements what it calls
transactional topologies, i.e., processing graphs implementing exactly
once processing consistency.

3.5 discussion

In the previous section, we have surveyed six DSPS solutions selected
for the unique QoS-related features they implement. Table 3.4 shows
the main QoS properties supported by these systems and organizes
them based on their belonging to the DSMS or DSPE classes. In this
section, we summarize our analysis by focusing on the three QoS
quality domains identified in Section 2.2.3 and by discussing their
implementation in state-of-the-art DSPS systems.

3.5.1 Processing semantics

Task parallelism is a fundamental tool to enable scalability in very
large stream processing scenarios. The creation of several tasks per
operator permits to partition the analysis of large data streams across
multiple processing sites and helps avoiding computational bottle-

3.5 discussion 73

necks. Task parallelism is becoming a standard technique in DSPEs:
in our survey, both Nephele [26] and Storm [29] support it by also
letting users express custom data partitioning criteria. Besides these
two systems, many other modern DSPE solutions implement task par-
titioning, including, for example, Apache S4 [164], Apache Samza
[165], and Google MillWheel [180]. The finer grained instance par-
allelism property is less widely supported, probably because it in-
fluences directly low level implementation mechanisms that systems
usually prefer to hide from final users. Among the surveyed systems,
only InfoSphere Streams and Storm permit to use that property to
some extent, the first by allowing to choose whether a fused operator
should be executed by a dedicated thread or not, the second by let-
ting users choose how many threads to create per operator (while still
hiding the threads-to-tasks allocation policy). With the exception of
TelegraphCQ, which offers some basic horizontal partitioning meth-
ods with its Flux component [207], most DSMSs do not support nei-
ther task or instance parallelism. The reason for this must be probably
sought in the fact that these systems are often the evolution of simpler
centralized platforms that were designed to work in scenarios where
input load is successfully handled via basic pipelined-parallelism.

Direct control of input and output queues is not allowed in most
DSPSs: we are not aware of any system that permits to specify the
length or type of input and output sample queues except InfoSphere
Streams that provides SPL syntactic elements to accomplish this task.
In other solutions, the behavior of input queues is only indirectly
and automatically controllable by setting other QoS properties, such
as latency: for example, in Nephele Streaming, the length of output
buffers is adjusted according to user latency requirements; similarly,
the load shedding features in Aurora/Borealis or STREAM involve in-
put queues by dropping their part of their content in case of overload,
but their final goal is to achieve better latency performance.

Most systems, finally, support producer order: this is normally im-
plemented by mapping processing graph edges on network channels
based on ordered transport-level protocols. However, just a few sys-
tems offer totally ordered processing: in our survey, only the DPC
extension of Borealis, STREAM, and Storm transactional topologies
guarantee total order. Forcing a total order between samples coming
from many sources is, in fact, a non-trivial task. On the one hand,
it is not always obvious how to choose a meaningful attribute that
determines the order of samples from different sources: a commonly
adopted mechanism is to leverage producer-side time stamps, but
this might not always be a good choice since time stamps by differ-
ent producers might be largely de-synchronized. On the other hand,
to implement cross-stream ordering always involves a pre-buffering
stage where out-of-order samples are kept and re-ordered before be-
ing pushed to downstream operators: this operation introduces ad-

74 qos in data streams processing

ditional delays on the stream processing operations, which is a nor-
mally undesirable effect. For these reasons, total ordering is normally
available only if strictly required to guarantee other properties, such
as repeatable consistency [29, 165, 196].

3.5.2 Load management

Properly handling load variation is fundamental in any DSPS, and
it is one of the main reason why the first DSMSs were developed,
overcoming the limitations of DBMSs. However, the way this is done
can vary a lot from system to system.

Priorities are an easy to understand and easy to use method to
express preferences among different processing operations or differ-
ent application outputs. Surprisingly, they are not widely supported
in the literature we have surveyed. TelegraphCQ supports a form of
content-based priorities through its Juggle [208] component, while
in Aurora/Borealis, although supported, priorities are only used in
relation to another load-management technique, i.e., load-shedding.

Load shedding is supported by Aurora/Borealis, Stream, and Tele-
graphCQ [212], and has been widely studied also outside these sys-
tems [213–215] because it provides a simple mechanism to deal with
increasing input loads using a limited amount of resources. While
very successful in DSMSs, we are not aware of DSPEs offering load-
shedding features out-of-the-box. However, given the simplicity of
the mechanism, we believe that load shedding can be feasibly imple-
mented in ad-hoc operator components for any DSPS and used in any
scenario where deterministic dropping of samples is acceptable.

Although latency and throughput are two of the declared objec-
tives of DSPSs, only Aurora/Borealis and Nephele Streaming sup-
port the specification of explicit latency requirements and none of
the systems in our survey supports direct throughput specifications.
Instead, latency and throughput are often considered optimization
goals rather than hard constraints. This derives from the fact that
implementing strong latency bounds on non-real-time operating sys-
tems, where DSPSs usually run, can be a very hard, if not impossible,
task: platform-level schedulers need to cope with the presence of OS-
level schedulers and have to share CPU and memory resources with
other services that run concurrently to the DSPS in ways that are usu-
ally not directly controllable.

3.5.3 Fault tolerance

Given the importance of fault tolerance in distributed systems that
are supposed to run for indefinitely long amount of times, techniques
for availability and consistency are common in DSPSs: the only sys-
tem presented in this chapter that does not discuss about its fault-

3.6 directions for future work 75

tolerance mechanisms is STREAM. The guarantees provided by dif-
ferent systems and fault-tolerance protocols are very different among
each other: each tries to balance the trade-off between recovery time,
processing guarantees, and runtime cost. For example, active opera-
tor replication [195], which can provide exactly once processing se-
mantics and almost instantaneous recovery, comes also at the price
of a very high runtime cost. On the opposite end, solutions based
on state checkpointing [164, 193] are very cheap to maintain, but
they cannot give any guarantee other than best-effort consistency
and are associated with slower recovery times. The strongest form
of consistency, i.e., repeatable consistency, stands at the extreme end
of this consistency–cost trade-off and is offered only by a few systems
[29, 165, 196]. In fact, the strong synchronization constraints between
incoming input streams that are required to implement the necessary
totally ordered processing semantics can have a severe impact on the
achievable system performance in terms of throughput and latency.

3.6 directions for future work

Our survey has shown that, over the years, DSPS solutions have intro-
duced several quality-related features in distributed stream process-
ing, covering almost completely the space of possible QoS properties
classified in Section 3.3.3. Among the surveyed systems, Aurora/Bo-
realis is the one realizing the largest number of QoS-related features;
most of the other systems, instead, focus on just a few QoS properties
each and do not offer comprehensive QoS configuration possibilities.
Most importantly, none of the systems we are aware of elevates QoS
to a first-class stream processing concept: even when they are present,
QoS features are very often hidden or not directly controllable by the
final user. However, limiting QoS visibility also limits the possibility
for users to customize DSPS services for their very own stream pro-
cessing requirements, which, in turn, reduces the opportunities for
platforms to optimize resource usage accordingly and to achieve bet-
ter scalability in large scale processing scenarios.

We believe, instead, that novel DSPSs should be designed and im-
plemented around the concept of QoS-based configurability, and that
QoS should be considered as a central entity at all the abstract, de-
velopment, and execution model levels. Moreover, platforms should
expose complete visibility of their QoS features and clearly explain the
associated scalability–costs trade-offs so that users can always choose
the one that best adapts to the requirements of different stream pro-
cessing applications. Experienced users should be allowed to make
this choice by directly configuring the platform QoS, or else smart mid-
dleware layers built on top of the stream processing system should
be allowed to make their adaptive configuration choices. As antic-

76 qos in data streams processing

ipated in our QoS-aware model presented previously in this chapter
(Section 3.3.2), the abstract model should let developers associate QoS-
specifications to every abstract-level entity, such as sources, opera-
tors, sinks, edges, or entire graphs. Similarly, the development model
should define ad-hoc syntactical constructs or APIs for the description
of QoS specifications at application development time and, most im-
portantly, the execution model should define how different properties
map to runtime mechanisms that take care of their enforcement.

The new class of QoS-centric DSPSs should struggle to support the
widest possible range of QoS properties, from high level indications
such as priorities or latency requirements, which are normally eas-
ier to understand and use by novice users, to very low level config-
uration details, such as parallelism, queuing, or networking specifi-
cations, which can help more experienced users to customize plat-
form services to their own needs. In addition, we believe that there
are still many open research directions to explore in the area scal-
able QoS-centric DSPSs, in particular for what concerns the defini-
tion, implementation, and validation of novel weak QoS properties.
This important class of properties should propose new and flexible
trade-offs between cheap and highly scalable best-effort QoS proper-
ties and more expensive strong QoS properties that, while guarantee-
ing always deterministic and consistent behavior, may hinder system
scalability. Differently from best-effort QoS, weak QoS should still offer
well-defined behavior guarantees but it should be possible to enforce
these guarantees more flexibly when compared to those provided by
strong QoS properties. Probabilistic QoS is probably the best example
of weak QoS properties: to express guarantees in probabilistic rather
than deterministic terms provides the platform with additional de-
grees of freedom for what concerns how and when to use possibly
expensive QoS enforcement mechanisms.

3.7 summary and conclusions

In this chapter, we analyze the possibility to use Data-Intensive Scal-
able Computing (DISC) systems to face the scalability challenges posed
by the novel Big Data analysis scenarios emerging from SPEs. In par-
ticular, given the streaming nature of SPE data flows and the near-
real-time processing requirements of SPE applications, we focus on
stream-oriented DISC systems, i.e., Distributed Stream Processing Sys-
tem (DSPS), and we analyze the current state-of-the art with particu-
lar attention on system features related to QoS-based configurability.
After proposing an original model for DSPSs based on a layered three-
levels architecture, we classify commonly supported and envisioned
QoS properties for these systems. We then survey six important state-
of-the-art DSPSs, noteworthy for their unique support to QoS-related

3.7 summary and conclusions 77

features, and emphasize design and technical aspects related to the
implementation of scalable mechanisms for the runtime enforcement
of different QoS properties.

Through our analysis we identify two main directions of future
work for building novel and QoS-centric DSPSs. First, although many
works have faced the problem of QoS-based behavior in DSPSs, there
are still no solutions offering a comprehensive QoS framework that
lets users understand and choose the most suitable quality–cost con-
figuration for their peculiar stream processing requirements. Second,
only a few systems have explored QoS properties providing weak or
probabilistic QoS guarantees: we believe that, by using this kind of
properties, new flexible and adaptive QoS enforcement mechanisms
can be realized, with the potential of greatly improving systems scal-
ability. In the next two chapters we present our efforts in the two di-
rections above: in Chapter 4 we present Quasit, an original QoS-centric
model and framework for distributed stream processing, while in
Chapter 5 we introduce LAAR, a novel technique for partial fault toler-
ance that lets user trade platform runtime costs off for consistency.

4 A F R A M E W O R K F O R Q U A L I T Y
O F S E R V I C E A W A R E S T R E A M
P R O C E S S I N G

In the previous chapter, we have defined our model for DSPSs and
we have introduced and motivated a set of requirements for stream
processing in SPEs. All of them orbit around the concept of QoS-
centric DSPSs, i.e., scalable processing frameworks that put QoS-based
configurability at the core of their functionalities. In this chapter, we
present our contribution toward the development of this novel class
of systems by presenting Quasit, an original stream processing model
that is able to express and support application-driven quality require-
ments in order to achieve the most suitable trade-off between effi-
ciency, scalability, and differentiated QoS. We present the main prin-
ciples behind the Quasit stream processing model and we report our
design and implementation experience in building the prototype of a
distributed and scalable platform supporting the execution of Quasit
stream processing applications on clusters of off-the-shelf multi-core
computers. We discuss the Quasit modular architecture and present
its prototype implementation that integrates several state-of-the-art
technologies (e.g., actor-based threading and DDS-based inter-process
communication) and combines their strengths in order to offer a scal-
able, lightweight, easy to use, and easy to extend system. The source code
of our Quasit prototype is freely available for download from the
Quasit project Web site [216].

The rest of the chapter is organized as follows. After comparing
Quasit with other related systems in the literature, in Section 4.2, we
explain the main design principles that guided our design and imple-
mentation work. Then, in Section 4.3, we present the Quasit stream
processing model using the three-layer description framework intro-
duced in Chapter 3. In Section 4.4, we outline the architecture of our
DSPS, and we discuss the most relevant aspects of its implementa-
tion in Section 4.5. After presenting an experimental analysis of our
framework in Section 4.6, we report the main lessons learned from
the design and development of the Quasit platform. Guidelines for
future Quasit extensions and final considerations conclude the chap-
ter.

79

80 a framework for qos aware stream processing

4.1 related work

Google MapReduce [24] and Microsoft Dryad [25] are very popular
solutions supporting scalable data processing within large data cen-
ters. Albeit their relevant differences, both systems offer a simplified
computational model that permits to define custom and application-
specific data analysis algorithms, and both implement a runtime plat-
form that executes these user-defined tasks on data center infrastruc-
tures simplifying the management of complex details such as concur-
rency, networking, or fault tolerance. Both MapReduce and Dryad are
batch-oriented DISC systems (see Section 3.2), hence designed for data
crunching scenarios where the whole input data is statically known.

Nonetheless, given the remarkable industrial success of MapRe-
duce, and also thanks to the availability of the open source Apache
Hadoop [30] implementation, many authors have extended the frame-
work trying to adapt its model to continuous processing problems
[161–163, 217, 218]: all these approaches represent operations on data
streams as continuous sequences of batch jobs on windows of the in-
put. Being based on an inherently static data model, however, these
solutions struggle to describe highly dynamic stream scenarios, and
their implementations do not always offer adequate performance for
applications that call for low processing latency.

Being designed to work with streaming data, Quasit shares several
aspects with traditional DSPSs. More specifically, our system falls in
the category of Distributed Stream Processing Engines (DSPEs) (Sec-
tion 3.2) because i) it focuses on scalability rather then strict data
consistency, and ii) it does not define a formal query model but lets
developers build their own general-purpose stream processing opera-
tors. Quasit extends the set of common DSPE features by putting QoS
at the center of its processing model in order to let users have a very
fine grained control over the runtime behavior of their applications.

The DSPEs sharing the largest number of characteristics with Qu-
asit are Apache S4 [219], Storm [29], and IBM InfoSphere Streams
[166]. Like all of them (and as the vast majority of DSPSs presented in
Chapter 3), Quasit stream processing problems are modeled through
processing graphs, and custom operators, sources, or sinks are de-
fined using a general purpose API. Unlike Apache S4 or Storm, which
adopt task parallelism greater than one by default (see Section 3.3.3
of Chapter 3), and similarly to Streams, Quasit uses a simpler base ap-
proach, by instantiating only one task per operator by default. While
different DSMSs and DSPEs implement, with different success, various
QoS-based mechanisms, they do not provide a consistent and compre-
hensive framework that allows the definition and enforcement of rich
QoS specifications: Quasit is the only DSPS we are aware of whose pro-
cessing model is specifically designed to allow extensive user-driven
customization of processing behavior by means of QoS specifications.

4.2 design principles 81

4.2 design principles

Before presenting the details of the Quasit processing model and dis-
tributed architecture, in this section, we illustrate the principles that
stand as the foundation of our design and development work. We
summarize these principles as a list of five attributes for our Quasit
DSPS solution, which are:

1. QoS-centric.
2. Scalable.
3. Modular.
4. Reusable.
5. Intuitive.

We have already discussed about the importance of QoS awareness
in stream processing and, in the previous chapter, we have also shown
how previous state-of-the-art system have contributed, often only par-
tially, toward this objective. Quasit has the ambitious goal of realizing
a QoS-centric stream processing solution that, at the same time, sum-
marizes in a single and consistent model previous QoS-related contri-
butions and offers a platform that can be used to develop, experiment,
and compose novel stream processing QoS mechanisms.

Scalability is obviously a highly desirable property in any distributed
system. With Quasit, we aim at being scalable on three different
and complementary levels, with a scalable model, a scalable architec-
ture, and a scalable implementation. Model scalability refers to the avail-
ability of a set of abstractions that is simple enough to describe and
solve small problems without excessive developer effort, but also suf-
ficiently expressive so that the same set of abstractions can be used
to deal with more complex and large scale problems. Architectural
scalability means that Quasit design should be easily extensible with
new functional and non functional features. On the third level, the
Quasit platform implementation should allow the scalable execution
of both small and extremely large stream processing applications
and, whichever the scale, use the computational resources available
in data center environment transparently and effectively. Implemen-
tation scalability should be both vertical and horizontal: Quasit im-
plementations should scale up seamlessly when using increasingly
powerful processing nodes (e.g., with faster or additional CPUs or
CPU cores) — vertical scalability — and scale out when adding more
servers to the data center deployment — horizontal scalability.

Modularity should drive both the design of the stream processing
model abstractions and the implementation of the runtime platform
that executes that model. Modular abstractions enable model scala-
bility by means of composition mechanisms, and a modular design
and implementation promote the construction of platform extensions
by helping potential platform developers to understand the system
architecture and its implementation details.

82 a framework for qos aware stream processing

A modular and component-based design has the additional advan-
tage of fostering component reusability. We aim at offering a collection
of features that let application developers define, share, and reuse
self-contained stream processing components. This should make the
platform adoption curve more gentle and accelerate the application
development life cycle.

Finally, all the parts of the framework directly exposed to develop-
ers, i.e., its abstract and development models, should be intuitive to
use. The offered abstractions should aim at simplicity, which should
be reflected with an execution model and programming APIs easy to
manage and understand. Complexity should be hidden to develop-
ers whenever possible, but, at the same time, it should be possible to
have full QoS-based visibility when necessary.

With these high-level principles in mind, in the next sections of this
chapter, we present our Quasit architecture and implementation: the
reader will realize that most of our design and development choices
are motivated by one or several of these guidelines, and we try to un-
derline with the most adequate emphasis where and how particular
aspects of our platform were motivated by these general principles.

4.3 the quasit model

In this section, we present our original Quasit model for QoS-centric
distributed stream processing. The presentation is organized by fol-
lowing the layered DSPS description framework presented in Chap-
ter 3. In particular, in Section 4.3.1, we introduce the main Quasit
stream processing concepts and analyze their relationships. The tools
that developers can use to build instances of the abstract model are
presented in Section 4.3.2, while, in Section 4.3.3, we discuss the ex-
ecution model of a Quasit deployment on a set of distributed data
center servers.

4.3.1 Abstract model

Quasit is used to process one or more input data streams, perform
arbitrary transformations on their content, and produce as output
other data streams, which can be fed to other systems for storage
or further processing. A data stream is a temporal sequence of data
samples, all of the same type, whose content is a set of key–value
attributes; the data type of a stream is the type of all its samples.

The basic modeling unit in Quasit is the Streaming Information
Graph (SIG), a weakly connected Directed and Acyclic Graph (DAG)
that represents the information flow and the transformations that, ap-
plied to one or more input streams, produce one data stream, the
output of the SIG. The nodes of a SIG represent data transformation

4.3 the quasit model 83

O0: C

O1: D

O2: E

O3: F

S0: A

S1: B

K0: F

component nodes

data source data sink operator

Figure 4.1: Structure of a Quasit SIG with two data sources, one sink,
and four operator nodes. Sources S0 and S1 produce two data
streams of typeA and typeB respectively; Operator O0 processes
them and generates a typeC data stream, which is, in turn, re-
ceived by O1 and O2 that output typeD and typeE data streams.
Finally, the typeF data stream generated by O3 goes into data
sink K0 of the same type.

stages, while its edges represent communication dependencies. Fig-
ure 4.1 shows an example SIG; note that, at this level of abstraction,
a SIG corresponds exactly to the concept of processing graph intro-
duced in Section 3.3, with the only notable addition of having typed
nodes and edges and only one data sink. A SIG node can be of three
different kinds, i.e., operator, data source or data sink.

• A data source node has no ingoing edges and at least one outgo-
ing edge; a SIG contains at least one data source node.

• A data sink node has exactly one ingoing edge and no outgoing
edges; any SIG contains exactly one data sink node.

• An operator node has one or more ingoing edge and at least one
outgoing edge, and defines a data transformation; a SIG usually
contains at least one operator node.

A data source node identifies an external data stream and its role
is to abstract from the actual nature of the stream producer (for ex-
ample, it can represent an external stream source or the output of
another Quasit SIG). We say that the data source generates that data
stream. A data sink node, conversely, represents the destination of the
SIG output data stream; data sinks can be used either to redirect out-
put streams to other systems for further processing or storage, or to
connect the output of a SIG with the input of another one. An operator
node is associated to one or more input data streams and it generates
exactly one output stream. SIG edges represent communication de-
pendencies between components; every edge is associated to the data
stream generated by its source node, and all the edges going out from
the same node are associated to the same data stream. Nodes, edges
and the SIG as a whole are conventionally given a type as well: the

84 a framework for qos aware stream processing

type of a source or operator node is the type of the data stream it gen-
erates, the type of a data sink is the type of the data stream it receives,
an edge has the same type of its source node, and the type of a SIG is
the type of its only data sink. Every element of a SIG (nodes, edges, or
the graph as a whole) can be labeled with an optional QoS specifica-
tion. QoS specifications allow users to enrich their processing graphs
with additional information about non-functional requirements.

The Quasit abstract model is based on very simple concepts, but
their unique property of being extensively composable makes the
model description quite articulated. In the next paragraphs, we pro-
vide additional details on the SIG-based processing model and focus
on the main processing component, i.e., the Quasit operator, and on
the mechanisms and semantics of SIG-level QoS specification.

Extended abstract model

The goal of our abstract model is to provide a simple and small set
of abstractions that permit to describe from small to large scale prob-
lems flexibly and uniformly. Figures 4.2–4.5 schematically show the
elements of our abstract model.

There are two possible kinds of SIG, called attached SIG and opera-
tor definition SIG (OD-SIG), respectively (Figure 4.2). As shown in Fig-
ure 4.3, an attached SIG is defined as a SIG whose source nodes are all
attached sources, that is, source nodes that are connected to actual data
streams (as opposed to virtual sources, see the following). An OD-SIG,
instead, is a special type of graph that, as the acronym suggests, is
used to define new complex operators starting from simpler ones,
i.e., composite operators; in an OD-SIG all the sources and sinks must
be virtual, meaning that they are not attached to actual data streams
but only represent abstract endpoints. The presence of virtual data
sources and sinks permits to define the input expectations and to
declare the output type of an OD-SIG.

Figures 4.4 and 4.5 show the hierarchy of possible nodes that can
appear in a SIG. As anticipated, sources and sinks can be virtual or
attached; virtual sources and sinks appear in Operator Definition
SIGs (OD-SIGs) and act as place holders for real data streams producers
and destinations. An attached source defines an actual stream producer,
which, in the simplest cases, corresponds to a native source, i.e., a data
producer external from the Quasit DSPE. Attached sources are at the
base of the first of the two SIG reusability mechanisms that we de-
signed in Quasit, i.e., graph concatenation. To support this mechanism,
we model any attached SIG to be also an attached source; this permits
to use the output of any stream processing graph as the input of an-
other one. There is only one type of attached sink, that is, native ones,
corresponding to external stream destinations (e.g., a file system, a
DBMS, or a PUB/SUB endpoint). Finally, operators can be either sim-
ple or composite. Simple operators are atomic stream processing units

4.3 the quasit model 85

directly defined by users through an ad-hoc operator API; composite
operators, instead, can be used to implement more complex process-
ing behavior by assembling OD-SIGs using other existing simple or
composite operators. Operator composition is the second SIG reusabil-
ity mechanism built in Quasit, and it permits to reuse existing stream
processing components and build new and more complex ones in the
form of composite operators.

Graph concatenation and operator composition are at the founda-
tion of the scalability of our abstract processing model: by exploiting
these features, the same small set of concepts can easily model from
very small processing graphs made of a few simple operators to very
large scale SIGs. In the next paragraph we concentrate on the Quasit
operator, the core of Quasit stream processing functionalities.

Operators

Quasit operators can be simple or composite, and both types can be
either stateful, if their behavior depends on their processing history,
or stateless, otherwise. A simple operator logically consists of several
sub-components, shown in Figure 4.6.

• Ports. An operator defines at least two typed ports: one or more
input ports and exactly one output port. Input ports model the
operator input requirements, while output ports represents its
output contract.

• State. An operator can be either stateless or stateful. When state-
ful, its output depends also on its state, i.e., an object that sum-
marizes previous processing history.

• Processing Function. The processing function is the reactive core
of the operator. It is a user-defined function asynchronously in-
voked by the Quasit framework as samples arrive at its input
ports. If the operator is stateless, the outcome of the function
only depends on the data sample being processed; if stateful,
it also depends on the most recent value of the operator state.
The output of the processing function is a tuple of two elements.
The first is a sequence of samples to generate in the operator’s
output stream, while the second describes the updated opera-
tor state. In other words, by defining the processing function,
developers specify the set of transformations that, applied to
the input, produce its output and state transitions.

This operator processing model is purely event-based: an operator
produces output and/or changes its state only in response to incom-
ing data; this model encourages simpler operator design, and also fos-
ters scalability by permitting a large number of operators to share pro-
cessing resources very efficiently. Furthermore, the sharp separation
between the behavior of the operator, expressed through its (stateless)
processing function, and its state gives Quasit great flexibility in taking

86 a framework for qos aware stream processing

SIG
sigQos: QosSpec
edgeQos: QosSpec[][]
nodes: SigNode[]

AttachedSig OD-Sig

Figure 4.2: Quasit abstract data model: SIG

AttachedSig

AttachedSource Sink Operator

1

1

1..* 1..*

OD-Sig

VirtualSource VirtualSink Operator

1

1

1..* 1..*

Figure 4.3: Quasit abstract data model: Attached vs. OD-SIG

SigNode
nodeQos: QosSpec

Source Operator Sink

VirtualSourceAttachedSource

NativeSource AttachedSig VirtualSink

NativeSink

...

Figure 4.4: Quasit abstract data model: Sources and Sinks

Operator

SimpleOperator CompositeOperator

StatelessOperator StatefulOperator OD-Sig

1

1structure

Figure 4.5: Quasit abstract data model: Operator

4.3 the quasit model 87

Q
ua

si
t O

pe
ra

to
r

STATE

Processing Function

Input
Stream

Input
Stream

Input
Stream

Output
Stream

Q
oS

 S
pe

c.

Edge
QoS Spec.

PORT 1 PORT 2 PORT N

OUT

Figure 4.6: Structure of a Quasit simple operator.

transparent management decisions at runtime, in order to effectively
support the execution of operator components. For instance, complex
and differentiated state persistence policies can be implemented more
easily by keeping state and processing logic completely separate.

As introduced previously in this section, operator composition is the
mechanism that enables to reuse existing components as building
blocks for creating, through OD-SIGs, more complex and powerful
ones, i.e., composite operators. An OD-SIG completely defines the exe-
cution characteristics of the composite operator. Virtual source (sink)
nodes are used to describe the input (output) ports of the composite
operator, and the remaining nodes in the graph and their connections
define how the composite operator behaves in response to new sam-
ples arriving at its input ports: when a data sample comes in one of
the composite operator input ports, the framework will handle it as
if that sample is processed by the OD-SIG operator graph.

Let us remark that, since composite operators can be used as nodes
in an OD-SIG, operator definitions can be nested at will (infinite loops
are avoided by not allowing recursive operator definitions). Operator
composition permits to encapsulate complex behavior into modular
units, with obvious reusability advantages.

QoS support

The most ambitious goal of Quasit is to provide extensive support for
QoS-based configuration. For this reason any element of the abstract
model can be enriched with an optional QoS specification, defining a
set of non-functional configuration parameters or constraints. A QoS
specification is a set of QoS policies, each policy influencing a different

88 a framework for qos aware stream processing

Table 4.1: Quasit QoS policies.

Element QoS Policy Possible values

Data Sink Priority Priority value

Operator Processing Cap Time threshold

Operator State Fault Tolerance Replication factor

Operator State Consistency Lazy, Snapshot, Strong

Operator Queuing Spec. Input queues size,

Scheduling policies

Channel Delivery Semantics Best Effort, At most once,

At least once, Exactly once,

Probabilistic

Channel Deadline Time threshold

quality aspect. The set of values specified for different QoS policies
on different SIG elements guide the platform for the allocation of re-
sources at runtime according to the required quality levels.

The set of possible policies that can be used in QoS specifications for
the various elements is open and extensible: platform developers can
easily add their own at the abstract model level and implement the
related enforcement mechanisms on the underlying runtime. Table 4.1
reports a short list of Quasit QoS policies, by concisely showing their
applicability scope and their possible values.

In order to provide readers with an overview of the practical as-
pects that can be regulated through QoS-based augmentation of SIGs,
in the following we give a short description of these policies, and put
them into their practical applicability context by presenting examples
of their possible use within a simple SPE scenario. The considered
scenario is that of a smart-city application that combines car-sharing
services with urban pollution monitoring. A fleet of cars is equipped
with air-pollution meters and are made available to citizens, who can
request, use, or share them through a smartphone application. While
moving through the city, cars report their position and real-time pol-
lution data (through their 3G radio) to a data back-end application
running on a Quasit deployment, which processes and matches citi-
zen requests for car trips with car availability.

• Priority. By using this QoS policy, it is possible to differenti-
ate the way Quasit assigns resources to parts of SIGs that con-
tribute to produce different outputs. Starting from a data sink
to which this policy is attached and moving backwards through
the graph, every operator is assigned a priority value, which is
used by the local resource scheduler to assign computational re-
sources. In our reference scenario, users may be provided with
gold, silver, or bronze services according to their service mem-
bership level: these levels can be mapped on different priorities

4.3 the quasit model 89

for the operators responsible for matching their requests with
available cars.

• Processing Cap. This QoS policy sets a hard constraint on the time
available to an operator to process a data sample. When this
constraint is violated, the computation is interrupted and a de-
fault action executed. The default action could be, for instance,
to produce a predefined output, or to discard any partial result.
The policy is mostly useful when, for some computation, con-
trolled timing is more important than result completeness. For
instance, the operator that classifies incoming car requests and
routes them within the appropriate branches of the Quasit SIG
needs to complete this process fast or else assign requests to a
default class; in this case default assignment is considered better
than too late but more precise assignment.

• State Fault Tolerance and Consistency. Both policies determine how
the state of an operator is handled. According to the values pro-
vided for these properties, Quasit can provide no consistency
guarantee, best-effort consistency, or at least once processing
consistency (see Section 3.3.3). For instance, when an operator
is configured with strong state consistency and a replication fac-
tor of 2 and whenever its processing function updates its state,
the operator blocks until the update is persisted and replicated
at least on two different nodes, thus providing at least once
guarantees. A weaker state consistency strategy/replication fac-
tor can save resources when partial state loss can be tolerated.
For instance, the loss of partial updates on some tiles of the ur-
ban pollution map is acceptable in many related applications,
especially given the supposed high-update frequency.

• Queuing. This low-level policy controls the way Quasit manages
the operators input queues. This policy allows to configure i)
the size of input queues, by practically influencing the trade-off
between processing latency and sample drops, ii) the queue be-
havior when it becomes full, and iii) an ordering function that
determines how samples are dequeued before being processed
by the corresponding operator. In our scenario, this policy could
be used to set blocking behavior for the input queue of an oper-
ator that dispatches matched user-car requests and, at the same
time, to define an ordering function that prioritizes samples re-
lated to requests from gold members.

• Delivery Semantics. This QoS policy, associated to SIG edges, con-
figures the communication protocol used by the Quasit plat-
form to enable data exchange between operators connected by
that edge. For example, if at-most-once delivery semantic is set,
the destination operator will keep a list of already-received data
samples and discard possible duplicates. For instance, pollution-

90 a framework for qos aware stream processing

map updates can be transferred using a best-effort communica-
tion protocol because of information redundancy.

• Deadline. This policy controls how the samples in an operator
output queue are handled. In particular, by setting a time-based
deadline on a channel, the Quasit network management layer is
instructed to adopt a network-scheduling policy that tries to en-
sure that every tuple is transferred from source to destination
within a required time threshold after its generation. To handle
cases when the deadline cannot be satisfied, a fall-back policy
can be selected (e.g., discarding late tuples). In our example sce-
nario, a deadline could be set on the graph path that manages
application critical operations, such as the management of pay-
ments for the car-sharing service via users’ credit cards.

A final but important aspect to emphasize is that Quasit QoS poli-
cies regulate heterogeneous aspects of the underlying platform, and
are often defined at different abstraction layers: while some policies,
such as priorities, model more closely application-level expectations,
some others, like queuing specifications, are more related to system
level optimization parameters. We believe that the organization of
QoS policies in an hierarchy of increasingly platform-specific config-
uration opportunities, on the one hand, lets experienced users per-
form a very fine tuning of the system behavior, while, on the other
hand, offers, to less experienced ones, the possibility to use simpler
and coarser grained indications that the system can use to configure
lower level parameters accordingly.

4.3.2 Development model

According to the classification in Section 3.2, Quasit is positioned in
the group of DSPEs. Developers of stream processing applications can
freely define their own data samples types and can build arbitrary
processing graphs made of operators performing arbitrary work on
the typed samples.

Quasit exposes three related sets of APIs:

• The type definition API.
• The operator API.
• The graph API.

The type definition API allows to build custom stream processing
types that model application-specific data samples. It is based on the
OMG Interface Definition Language (IDL) [220], which, with a simple
and C-like syntax, permits to define rather articulated type systems
in a way that is fully decoupled from the specific implementation lan-
guage. The operator API is an object-oriented API that exposes classes
and methods used by developers to build their own stream process-

4.3 the quasit model 91

ing components, i.e., custom native sources or sinks, and simple op-
erators. All the functionalities implemented in this API turn around
the concept of descriptor: users write source, sink, or operator descrip-
tor classes, whose instances contain all the information that Quasit
requires to instantiate the actual components at runtime. Finally, the
graph API publishes a set of functionalities that permits to assemble
Quasit component descriptors in directed graphs corresponding to
attached SIGs or OD-SIGs: bundled into an execution archive, the first
type of SIGs represent stream processing applications ready to be de-
ployed on a Quasit cluster; as described before, OD-SIGs can be used,
instead, to define new and arbitrarily complex composite operators.
QoS-based augmentation of components is supported by both the op-
erator and graph APIs. In the second, it is possible to associate in-
stances of ad-hoc QoS specification classes to every component to de-
fine the quality-levels required by the application being built. Comple-
mentarily, in the first, it is possible to set the most appropriate default
QoS values for the operators being designed, or to disable unwanted
QoS policies values.

Currently, there is only one implementation for the operator and
graph APIs, built for Scala [221]. We choose this general-purpose pro-
gramming language as the first developer interface to Quasit for three
reasons: i) its elegant syntax permits to map Quasit abstract concepts
on programming constructs very concisely and effectively; ii) it en-
courages a functional-like programming style with strong separation
between state and behavior — the same separation we foster in the
operator model (recall Figure 4.6); iii) it integrates seamlessly with
the rest of the platform that, as we explain later in this chapter, is
developed using the same technology. However, given the strict re-
lationship between Scala and the Java programming language, it is
possible to invoke the Scala APIs from Java programs as well with
only a few special restrictions. An example of how to use the Quasit
operator and graph APIs is reported later in this chapter (Section 4.6).

4.3.3 Execution model

Like other systems for data-intensive scalable computing in data cen-
ters [24, 25, 29, 164, 166, 222], the Quasit distributed architecture fol-
lows a master-workers model, where a logically centralized node (the
master) implements management and coordination tasks, while a pos-
sibly large number of worker nodes perform data processing tasks. In
particular, Quasit user-defined SIGs are deployed and executed by a
set of Quasit Runtime Nodes (QRNs), which are monitored and man-
aged by one Quasit Domain Manager (QDM), as shown in Figure 4.7.
The set of QRN and the QDM that manages them are collectively called
domain. A domain runs one or more SIGs, providing advanced run-
time services, such as tolerance to operator and QRN failures, and

92 a framework for qos aware stream processing

Quasit Domain
Manager

Q0 Q1 Q3

Q4 Q... Qn

Quasit Runtime Nodes

Quasit
Client Library

<deploy>

Operator
Repository

Figure 4.7: Distributed architecture of a Quasit domain.

QoS-based management of SIG execution. New SIGs can be added to
the domain dynamically at runtime. We assume that QRNs are con-
nected through a high-speed LAN, as typically occurs in data center
scenarios [223].

In order to distribute the workload and leverage all the dynami-
cally available resources, Quasit decomposes arbitrarily complex user
SIGs in smaller units, which are then assigned to individual workers
and executed in parallel. The granularity of work decomposition and
distribution is determined by the defined simple operators.

Clients submit SIGs to the QDM, which is responsible of planning
and continuously monitoring their distributed execution. As soon as
a new SIG is received, the QDM decides an initial graph partitioning
by running an operator placement algorithm that determines how the
graph components are executed by the available QRNs. Different oper-
ator placement algorithms can have different optimization goals, in-
cluding, for example, execution cost, processing latency, or resiliency
to failures. Custom placement algorithms can be easily plugged in
Quasit by defining the implementation of ad-hoc object oriented in-
terfaces. At the time of writing we support two simple placement
algorithms: a uniform algorithm, which distributes operators fairly
among the QRNs according to the graph topology, and a random algo-
rithm, used mainly as reference for comparison.

A QRN implements a QoS-aware execution container for Quasit op-
erators providing scheduling and communication support. Reflecting
the operator model, the QRN execution model is asynchronous and
event-based. Every operator is associated with an input queue that
contains samples received from any of its ports, and the container
assigns the available execution threads to operators having at least
one message queued, executes their processing function and possi-

4.4 architecture 93

bly updates their state, and produces new samples on their output
stream. At OS-level, every QRN corresponds to a distinct process (a
JVM process), and there normally is only one QRN per cluster server.
Simple operators are instantiated as JVM objects and their processing
functions are executed by a shared pool of threads whose size is con-
figurable through a platform-level threading QoS policy (if not over-
ridden, the platform creates two threads per available CPU core by
default). The choice of a process-per-server model (see Section 3.3.1) is
motivated by two main reasons: first, hosting all local components in
a single OS process makes it possible to implement flexible resource
allocation and meta-scheduling policies, for example by handling in
a very fine-grained way the management of the available execution
threads, and second, this model permits to minimize the communica-
tion overhead for co-located operators, enabling very efficient sample
exchange through JVM-local shared memory.

Finally, in order to foster component reuse, Quasit permits develop-
ers to publish custom simple or composite operators to a special com-
ponent, the Quasit Operator Repository (QOR). The QOR is optional
and conceptually separated from the rest of the Quasit deployment,
and actually not strictly needed for a Quasit domain to work. As the
name suggests, its role is to offer a directory service that developers
can use to look up for existing operators.

4.4 architecture

In this Section, we dig into the architecture of the main Quasit run-
time components, i.e., the QDM and QRN runtime services, and the
optional QOR. We describe the modular internal organization of the
Quasit platform and explain the main high-level choices that charac-
terize its design. The presented architecture is designed to be as much
general as possible, independent from specific implementation tech-
nologies. For this reason, here we concentrate only on the discussion
of the responsibilities and interactions of the main modules, and we
delay the description of their actual realization to the next section.

4.4.1 Quasit domain manager

The QDM service has management and control responsibilities over a
Quasit domain, but it does not take any direct role in stream process-
ing tasks. For this reason, although there is only one QDM per Quasit
domain, its centralization does not represent a relevant bottleneck
to the overall system scalability. The QDM functionalities are imple-
mented through the interactions of the modules shown in Figure 4.8.

94 a framework for qos aware stream processing

Client Interface

Group
Management QRN Messaging

SIG ManagerDeployer

Domain Manager

Domain QoS
Manager

Figure 4.8: QDM Architecture.

The client interface implements and exposes the protocol that is used
(through the Quasit client library) to administer and interact with
the domain. While the client interface exposes the QDM services to
final users, the QRN messaging regulates the data exchange between
between the QDM and the QRNs in its domain. Via this interface, the
QDM sends, for example, operator deploy messages, subscribes to QRN
monitoring information, issues QoS adaptation commands. The group
management module keeps a consistent and always up-to-date view
of the domain members and provides hooks to register for notifica-
tions in case of membership changes. The SIG Manager module main-
tains information about the SIGs currently running in the domain and
about the status of their associated operators. To do so, it interacts
with the QRN messaging module and subscribes to periodic status
information sent by QRNs. The deployer module is only used at SIG
deployment type and it is responsible of running the chosen operator
placement algorithm that determines the allocation of sources, sinks
and operators to available QRNs. Finally, the domain QoS manager has
central QoS coordination responsibilities. Like the SIG manager, it sub-
scribes to monitoring data from the domain QRNs, and, according to
their values, it orchestrate QRN adaptation actions.

4.4.2 Quasit runtime node

The QRN provides Quasit operators with a rich execution environ-
ment, by implementing threading, networking, and fault-tolerance func-
tionalities. By design, many model-level concepts like SIGs or compos-
ite operators are completely transparent to QRNs, which are, instead,
only aware of simple operators. The QDM, which, on the contrary, has
a full view of all the Quasit abstract model elements, hides these de-
tails from the QRNs: every management action, including requests to
deploy new components, is expressed in terms of simple operators by
resolving, when necessary, composite operators to their atomic units
through OD-SIG rewriting. The reduction of the abstractions available
at QRN-level to just the essential ones has helped tremendously in
keeping the implementation of the service simple and flexible.

4.4 architecture 95

Runtime Node

Control Interface Group

Operator
Container

PUB/SUB Communication
Provider

Persistence

M
onitor.

Node QoS
Manager

Figure 4.9: QRN Architecture.

Like the QDM, the QRN has a modular architecture that defines a
set of interacting components, as shown in Figure 4.9. The remote
interactions between the QRN and the QDM are coordinated by a con-
trol interface module, which listens for commands from the QDM and
dispatches them to the internal modules. While the control interface
takes care of managing one-to-one interactions with the domain man-
ager, the group membership module is responsible of group communi-
cation services. When started, it announces the presence of the QRN to
the domain and keeps a local membership view up to date. The opera-
tor container is the core component of the QRN. It controls all the mech-
anisms behind the execution of operators: for example, it creates local
operator instances in response to QDM commands and executes them
according to the Quasit execution model. To handle updates in the op-
erators processing state, the operator container leverages the services
of the persistence module. This latter module implements the persis-
tence mechanisms that are used according to the state consistency
policies required by different operators in order to make their state
persistent and available also in spite of failures. Inter-QRN communica-
tion services are implemented by the PUB/SUB Communication Provider,
which offers a QoS-aware PUB/SUB abstraction through which opera-
tors exchange their streams. The choice of a PUB/SUB communication
model provides several advantages, the most important ones being i)
complete transparency with respect to physical operator placement,
which enables easy implementation of operator relocation policies, ii)
clean modeling of one to many stream channels, by having all the
recipients of one stream subscribe to it, and iii) a convenient way to
enable SIG composition, by publishing a SIG’s output on a PUB/SUB
endpoint and allowing subscriptions from other SIGs. The monitoring
module continuously collects the status of local operators together
with up to date information about physical server resources availabil-
ity, and it forwards these data to monitoring subscribers, which in-
clude the domain manger (through the control interface) and the node
QoS manager. This last component controls that the required quality-
level is met for what concerns locally running components: in case
violations are detected, it tries to solve the problem autonomously

96 a framework for qos aware stream processing

Client Interface

Storage

Operator Repository

SearchOperator Directory

Figure 4.10: QOR Architecture.

before escalating it to the attention of the QDM global QoS manager,
which has a broader view of the whole cluster.

4.4.3 Quasit operator repository

The QOR is an optional component, whose goal is to implement a
repository of user-defined simple and composite operators, and a di-
rectory service where user can publish, search, and retrieve existing
stream processing components. Interactions with the QOR take place
at application development time, and, hence, its services do not have
any influence on the actual stream processing operations. Figure 4.10

shows the high-level design of this component.
The client interface module implements the protocol(s) that expose

the repository functionality to both users, for interactive usage, and
client libraries, for programmable access. At the lower level, a storage
module has the task of making the archives containing operator def-
initions always persistent and available, for example by saving them
on a local or distributed file system structure or DBMS. In the mid-
dle, the operator directory manages and organizes the meta-data of the
operator archives stored in the lower-level layer. Interacting with the
directory, the search module provides directory search services, thus
letting users search for existing operators by name, functionalities,
supported QoS levels, or via custom and user-defined attributes.

4.4.4 QoS management

QoS policies defined on Quasit SIGs are enforced at runtime thanks
to a two levels QoS-management architecture, sketched in Figure 4.11,
and realized through the interaction of a domain QoS manager, run-
ning within the QDM, and several node QoS managers, one for each
QRN. The domain QoS manager performs global admission control
and QoS-based system configuration, while node QoS managers im-
plement and enforce the requested policies locally.

In order to provide a better insight about this management scheme,
let us briefly examine its role in the process of deployment and ex-

4.5 implementation 97

DQMMon.

NQM NQM NQM

NQMNQMNQM

Monitoring
Data

Adaptation
Commands

Figure 4.11: Two levels QoS management architecture.

ecution of a SIG. At deployment time, the domain QoS manager, after
having verified the self-consistency of the SIG QoS policies, performs
a translation phase, during which user-level policies are transformed
to platform configuration parameters that are sent to QRNs inside op-
erator deployment commands. For example, QoS policies on channels,
such as the delivery semantics policy, are translated into configuration
parameters for the PUB/SUB protocol and for the associated network
queues. Node QoS managers use these data to set up the initial config-
uration for the operator instances they are responsible of. At execution
time, QoS monitoring tasks are cooperatively performed by domain
and node QoS managers: node managers continuously collect data
about local operators, and try to autonomously adjust their configu-
ration to avoid possible violations of the required quality levels; for
example, they can reallocate their local resources by giving a greater
share to operators with higher priority (thus, penalizing the less im-
portant ones). At the same time, they also forward monitoring data
to the domain QoS manager, which uses them to take authoritative
decisions in case adaption actions of single local managers are not
sufficient to avoid QoS violations; for example, it can decide to move
an operator from a QRN to another when the latter has more resources
to allocate to its execution.

4.5 implementation

We have implemented the model and architecture presented in the
previous sections into a first system prototype. Its goal is to provide
the basic system functionalities that can be used as a starting point
for the implementation, validation, and evaluation of techniques for

98 a framework for qos aware stream processing

1 ..

2 val op = new StatefulOperator(name, outEP,

3 initialState, pf)

4 with ProcessingTimeQos[O]

5 with SnapshotStateQos[O,S]

6 with AsyncStateQos[O,S]

7 ...

Listing 4.1: Scala trait mix-ins are used to instantiate an operator based
on its QoS configuration.

the enforcement of quality-based behavior in Quasit. The prototype
is released under a permissive BSD license [224], and its codebase can
be freely downloaded from the project Web site [216].

The core of the Quasit framework is implemented in Scala [221], a
relatively young programming language developed at École Polytech-
nique Fédérale de Lausanne, which unifies principles coming from
the functional and object-oriented programming paradigms under an
elegant and concise syntax. Our decisions to use Scala rather than any
other general purpose language is motivated by four considerations.

First, Scala is natively designed to support concurrent applications:
for example, the language and its standard library promote the us-
age of immutable data structures, that, being thread-safe by defini-
tion, simplify the design of concurrent code and make it less error
prone. Our Quasit framework prototype makes heavy use of multi-
threading, and we were able to profitably leverage the functional pro-
gramming paradigm and immutable data structures to keep our im-
plementation simple, robust, and highly efficient. Second, some ad-
vanced object-oriented mechanism available in Scala, such as traits
and mix-in composition, were particularly useful to implement stack-
able QoS-based behavior: in fact, operators are instances of types that
are defined at runtime by mixing-in a set of traits that depends on
their associated QoS policies; as shown in the small code snippet in
Listing 4.1 (directly extracted from the Quasit codebase), we encap-
sulate inside traits — composable units that define reusable behavior
— the code implementing operator specific QoS enforcement mecha-
nisms; when needed, the runtime invokes this code transparently by
leveraging principles borrowed from aspect oriented programming
[225]. Third, the elegant and concise syntax of the language allowed
us to create, with relatively few effort, fluent and intuitive APIs that
lets developers model and manage their stream processing applica-
tions in a very natural way. An example showing the usage of the
operator API is presented in Section 4.6. Finally, another important
motivation for our choice stands in the strong integration of Scala
and the Java ecosystem: Scala code runs on the solid and widely sup-
ported JVM and is completely compatible with Java at the bytecode
level; this means that it is possible to exploit all the large corpus of

4.5 implementation 99

existing Java libraries seamlessly from Scala code and that, conversely,
Java code can use Scala APIs with little or no effort.

Despite these many positive aspects of the language that drove our
choice on Scala, we also want to highlight an important limitation
that emerged from our experience, and that is likely related to the
young age of the technology: although the language itself is quite sta-
ble and mature, it still lacks the great volume of documentation and
resources that is, for example, available in the Java or .NET world.
For what concerns performance, we did not observe any macroscopic
issue, but we have not concentrated our research efforts on accurate
Scala performance profiling yet. However, we expect the possible per-
formance overhead to be very limited compared to a pure Java imple-
mentation, as also confirmed by the benchmarks in [226].

In the rest of this section, we delve into some in-depth technical de-
tails about the current prototype implementation. In our discussion,
we report our experiences and highlight the lessons learned from our
work, with a strong focus on the issues related to the integration of
different state-of-the-art technologies in a complex system as Quasit.

4.5.1 Quasit domain manager

The QDM is the central management component of a Quasit domain.
Notwithstanding is central role in a Quasit deployment, our current
QDM implementation is relatively simple, especially if compared to
the QRN (see the next subsection). In fact, our QDM implementation
exposes a limited set of functionalities to external users, which are:

• Submit, start and stop new stream processing applications.
• Monitor the status of currently deployed applications.
• Shut down the Quasit domain.

These simple functionalities are realized by the QDM client interface
through a very minimal and ad-hoc request-response protocol that
the QDM implements on top of TCP.

Group management is implemented by using a DDS-based mem-
bership management system: the QDM is the only subscriber of a spe-
cial membership topic, where QRN reliably submit their presence; a
heart-beats based mechanism (built in DDS) ensures that membership
status is properly updated when QRNs appear or disappear from the
domain. Membership information contain up-to-date names and ad-
dresses of available QRNs, which are used by the manager to con-
tact them at runtime through the QRN messaging module. Like the
client interface, this latter is based on a minimal ad-hoc point-to-point
request–response protocol, again built on top of standard TCP connec-
tions. Information about the running SIGs and operators are kept in
an in-memory cache and are currently not saved on permanent stor-
age. The QDM also subscribes to monitoring information from its QRNs.

100 a framework for qos aware stream processing

As it will be explained in more details in the next subsection, QRNs
publish these data using standard Java Management Extensions (JMX)
interfaces [227], which are accessed by the QDM through remote RMI
based connectors [228]. As anticipated in the previous section, we cur-
rently implement only two placement strategies in the deployer mod-
ule: the first uniform deployment strategy is based on the topological
ordering of the processing graph decomposed into its simple opera-
tor components, and tries to distribute operators uniformly among
the available QRNs while minimizing inter-QRN communication in a
best-effort manner. The second one, called random, trivially computes
random placements of operators: it is usually used only for compari-
son purposes. In the current prototype, the QoS management module
is extremely simple: it just records the monitoring data from the QRNs,
but it does not implement any global QoS control mechanism yet.

To deal with possible QDM failures, Quasit adopts a traditional
primary-backup replication scheme [229]: given the relatively limited
number of requests per second that can change the QDM state, this
simple solution does not cause important performance penalties.

4.5.2 Quasit runtime node

The QRN is the most complex and advanced service of the current
Quasit prototype. Since all the stream processing operations are exe-
cuted within its boundaries, we implemented the component by try-
ing to optimize its runtime performance as much as possible, while
still avoiding, when possible, to sacrifice design cleanliness. Given the
complexity of the QRN implementation, we decompose its description
in four parts, each covering a different aspect.

Communication and networking

There are three main communication concerns for a QRN, the first
being the support to point-to-point QDM–QRN interactions, the sec-
ond the realization of inter-QRN communication for streaming data
exchange, and the third the implementation of a group membership
service. This list does not include the publication of monitoring data,
which will be discussed separately later.

As already discussed while describing the QDM implementation,
the first problem is solved by implementing a simple and TCP based
communication protocol in the QRN control interface module.

The PUB/SUB communication module takes care of the second con-
cern. Since most of the network traffic in a domain is originated by
the channels between operators placed on different QRNs, it is of crit-
ical importance to develop a communication solution that reduces
at minimum the data exchange space and time overhead. A concur-
rent requirement is to avoid strong endpoint coupling, in order to
support operator mobility and location transparency. As anticipated,

4.5 implementation 101

our solution to solve the trade-off between these partly contrasting
requirements has been to model inter-component communications
with a PUB/SUB abstraction, which perfectly answers our decoupling
requirements, and to implement it by using the OMG DDS standard
for high-performance PUB/SUB data exchange [55, 63]. Concretely, the
PUB/SUB communication provider module maps the output port of ev-
ery stream source to a unique topic and, symmetrically, every input
port (of either an operator or a data sink) to a topic subscription.

By implementing the operator channels via DDS, we had the op-
portunity to exploit a second but not less important benefit: in fact,
the DDS standard allows a very fine-grained control of its low-level
behavior by giving the possibility to associate topics, readers, and
writers with a number of options in a rich set of differentiated QoS
policies. Based on these basic DDS mechanisms, we have built the Qu-
asit QoS policies associated to stream channels. On the other hand,
the choice of DDS also comes with one major drawback, related to
system usability: in order to provide type safety and low spatial over-
head, DDS needs IDL descriptions of the used data types, which must
be coded at application development time and preprocessed by an
IDL compiler. This can be sometime a cumbersome process, so we are
currently exploring the forthcoming dynamic topic types DDS extension
[230], which should allow to bypass the IDL compilation step.

The group module is also implemented through a DDS-based solu-
tion. At startup, QRNs write their membership information to a dedi-
cated topic, and DDS takes care of keeping this information globally
consistent and up to date through a protocol based on periodic ex-
change of heart beat messages.

Operator management

The core task of QRNs is to provide an execution environment for
instances of Quasit simple operators. Figure 4.12 shows a view of
the QRN component that highlights the threading architecture used to
process the flow of samples coming from the PUB/SUB module. One de-
multiplexer thread waits for data samples by using the DDS wait set com-
ponent, which offers synchronous I/O multiplexing services similar to
the standard POSIX select() system call [231]. As samples arrive, the
thread dispatches them to interested operators by moving them to
their message queues. The actual processing tasks are performed by
a pool of threads that share the responsibilities of de-queuing sam-
ples according to a pluggable scheduling policy and running operator
processing functions. Note that this asynchronous execution service
suits perfectly the event-based abstract operator model presented in
Section 4.3.1. The size of the thread pool is a configurable parameter
and should be set according to the number of available CPU cores.

In the current version of the Quasit prototype, operator instances
are implemented as concurrent actors [232, 233] managed by the

102 a framework for qos aware stream processing

Dispatcher

TopicWriter ReaderDemux

DDS GDS

...Operator OperatorOperator

TypedWriterAdapters TypedReaderAdapters

Operators Thread Pool

D
em

uxThread

Figure 4.12: Data flow and threading model in a QRN instance.

Akka [234] actor framework. Actors are parallel and lightweight ex-
ecution units that interact according to a message-oriented commu-
nication pattern. Every actor works in an environment that is ideally
isolated from every other system actor: they share no state and no
synchronization point, and act only in reaction to received messages.
Akka implements these ideas on the JVM by providing development
APIs and runtime services to build large scale actor systems. This actor
model fits particularly well our processing scenario, where a graph of
lightweight components (the operators) execute their processing func-
tion in response to the arrival of stream data samples. We associate an
Akka actor to every Quasit simple operator; incoming data samples
are dispatched to these actors’ mailboxes and, by leveraging the Akka
actor scheduler, they are processed by the operators’ processing func-
tions. On top of Akka, Quasit builds automatic message routing (i.e.,
developers do not have to specify the destinations of an operator’s
output in its processing function, which, instead, is automatically in-
ferred from the SIG topology), advanced state management policies
(handled by the QRN persistence module), and custom scheduling
policies (by default, the standard Akka fair scheduler based on the
fork-join framework [235] is used). Although Akka offers a network
service based on JBoss Netty [236] that enables remote interactions
between actors deployed on different servers, we do not use it for
inter-QRN data exchange, as explained previously. Our DDS-based im-
plementation, in fact, grants several advantages, including the fine-
grained QoS configuration capabilities and the possibility to leverage
IP-multicast for common one-to-many stream dissemination patterns.

4.5 implementation 103

Monitoring and QoS

In our prototype, the monitoring module is implemented through
the coordinated use of standard JMX monitoring tools [227] and of
the cross-platform monitoring and reporting SIGAR [237] library. The
first permits to access JVM-level information (including detailed infor-
mation about threading and heap memory allocation), while the sec-
ond offers a very fine grained access to low level system information,
such as global server CPU and memory usage, and OS-level status data.
The collected information is published through a Quasit-specific JMX
management interface and made available both to local and remote
subscribers [228].

The node QoS manager is responsible of implementing local QoS en-
forcement mechanisms. At the time of writing, there is no global QoS
coordination implemented in Quasit, and all the available polices are
implemented with local scope only. In practice, in the current proto-
type, the role of the QoS manager translates in the definition of proper
QoS traits that are applied to operator instances and that wrap ad-hoc
the QoS mechanisms needed to enforce the associated QoS polices at
runtime (recall Listing 4.1) and in the configuration of communica-
tion channels through the choice of proper QoS polices for the cor-
responding DDS endpoints. For example, priority based scheduling
of locally running operators is managed by decorating operator in-
stances with a PriorityQoS trait that specifies their priority levels (in
a 0 to 9 range — 0 being maximum priority), and the priority scheme
to use (currently absolute and fair-share priorities are implemented).

Fault tolerance

The QRN does not keep any global state by itself, but manages the
state of locally running operators. Thus, guaranteeing fault tolerance
despite its failures is the same as providing fault tolerance for the
state of the operators that it runs. Differently from QDM, operator state
dynamics can be extremely fast causing the realization of exactly-once
or repeatable consistency guarantees (see Section 3.3.3) to be very
expensive. This had to be taken into account carefully by our fault-
tolerance solution in order to avoid severe negative effects on the
overall framework performance. For this reason, and in accordance
with the Quasit general approach, the strategies used to replicate or
make operator state persistent are configured through ad-hoc QoS
specifications. By default, the state is neither saved on disk nor repli-
cated, but through appropriate combinations of QoS policies it is pos-
sible to specify the fault tolerance back-end (i.e., distributed in-memory
replication or disk-based persistence) used, the replication factor, or
the checkpointing policy (i.e., persist every state update or just take
periodic snapshots), and whether the persistence mechanism should
be synchronous or not with respect to the execution of operator pro-

104 a framework for qos aware stream processing

cessing tasks. The persistence module offers specific hooks to request
these fault-tolerance services and hides their actual implementation
mechanism from the rest of the platform. At the time of writing, the
implementation of the persistence module is still undergoing: we are
testing the Hadoop Distributed File System (HDFS) [238] as a way to
persist, with configurable replication guarantees, the operator data on
the cluster disks, and the Redis key-value store for in-memory data
replication [239].

4.5.3 Quasit operator repository

At the time of writing, there is no working implementation of the QOR
service yet. Although the QOR has an important role in the overall
Quasit architecture because it enables easy component sharing and
promotes their reuse, its implementation has been delayed in favor of
the more important QDM and QRN services.

Nonetheless, we have begun to explore possible technological so-
lutions that would help to realize the operator repository service
quickly and reliably. The main idea is to use Maven repositories [240]
as the main building block for the QOR service. Maven is a compre-
hensive tool for the management of the entire development life cycle
of software projects that, among a long list of other features, permits
to publish so called artifacts (i.e., software archives) to remote repos-
itories. Repositories can be accessed by other developers, which can
use them to retrieve published software components through an HTTP
interface. Common implementations of Maven repositories [241] im-
plement artifact versioning systems, simple Web-based browsing, and
minimal search functionalities (e.g., search-by-name). Our idea is to
re-use these existing repository services by mapping operator compo-
nents to publishable Maven artifacts, and to build the extended QOR
features on top of these basic functionalities. For example, the client
interface module should allow both interactive and code-based explo-
ration of the repository, also by leveraging an extended search module
that permits to search for operator components not only by name, but
also by other attributes such as its description or the type of its input
and output ports.

4.6 experimental evaluation

In this section, we present some first experimental results that we
obtained while testing our prototype in a relatively small-scale de-
ployment environment. Although the deployment does not reflect the
characteristic of our target scenarios completely, its simplicity permits
to easily measure and evaluate basic system characteristics, such as
the effectiveness of the platform communication and threading mech-

4.6 experimental evaluation 105

CV0 CV1 CVn SinkSource

Figure 4.13: The simple and pipeline-shaped SIG used in this experimental
evaluation.

anisms. We believe that the reported results demonstrate the feasibil-
ity and the effectiveness of our approach and represent an important
starting point for a future large scale evaluation campaign on real-
world use cases. The goals of our evaluation are the following:

• Present a possible use-case scenario for our system, by showing
an example of the Quasit operator API (Section 4.6.1).

• Measure the management overhead of our distributed process-
ing solution compared to to an ideal parallel processing sce-
nario (Section 4.6.2).

• Demonstrate Quasit ability to scale up just by adding additional
computing resources to a domain (Section 4.6.3).

• Compare the performance of the Quasit prototype with S4, a
state-of-the-art stream processing platform developed by the
Apache Software Foundation (Section 4.6.4).

4.6.1 Scenario description

The considered application scenario relates to the processing of a
video stream, whose key frames need to be continuously analyzed
through a series of image manipulation steps modeled as a pipeline
of OpenCV [242] transformations, as shown in Figure 4.13. We chose
this scenario because it is simple enough to illustrate the operator
API concisely and, at the same time, it is representative of many com-
mon practical stream processing applications having the goal of ex-
tracting data from image streams or, more generally, of identifying
specific patterns or sequences within incoming data streams. In order
to avoid any bias in the measurement of the processing performance
due to differences in the content of the video key frames, we artifi-
cially build the stream as the endless repetition of the same 192x128

24 bits per pixel lossless PNG image, chosen from a public image data
set by Kodak [243].

Using our model, we represent the OpenCV transformation stages
as stateless Quasit operators. Simple operators (either stateless or
stateful) are described by instances of the OpDescriptor class, which
encapsulates the information necessary for the runtime platform to
instantiate and run the actual operator components. OpDescriptor

106 a framework for qos aware stream processing

8 abstract class OpenCVOpDescriptor (

9 // Specific instances of the operator

10 // will initialize its name and QoS Spec

11 override val name: String)

12 extends StatelessOpDescriptor[ImageData](

13 name = name,

14 // Default QoS specification

15 qos = OperatorQoSSpec().withPolicy(

16 QueuingPolicy(QueuingPolicy.Unbounded,

17 QueuingPolicyKind.Fifo)),

18 // Declaration of the input ports

19 ports = Map("data" -> classOf[ImageData])

20){

21

22 override def init() {

23 OCVUtils.loadNativeLibs()

24 }

25

26 // abstract: implemented by subclasses

27 def processImage(in: IplImage): IplImage

28

29 override def processingFunction = {

30 case ("data", f: ImageData) =>

31 try {

32 val ipl = OCVUtils.imgToIpl(f)

33 val tranformed = processImage(ipl)

34 val img = OCVUtils.iplToImg(transformed)

35 Some(img)

36 } catch {

37 case e: Exception =>

38 warn("Error processing sample", e)

39 None

40 }

41 }

42 }

Listing 4.2: Base descriptor class for OpenCV-based operators.

instances are created by extending the appropriate base classes and
then creating actual instances, as usual, with the new keyword. To
maximize code reuse, we concentrate operations common to different
OpenCV operators in the abstract OpenCVOpDescriptor class, from
which all the concrete OpenCV operator descriptor classes inherit.
The code of this base class is shown in Listing 4.2. Let us briefly an-
alyze it, in order to show, with a concrete example, how our stream
processing model maps on the operator API. Line 11 defines a class
parameter which gives operator instances their names; line 15, as-
sociates a default QoS specification to all the OpenCV-based opera-
tors (in the example, it specifies that these operators should use un-
bounded FIFO message queues), while line 19 declares the only input
port of our OpenCV operators, named data, and accepting streams
of ImageData samples. The most important part of the class is the

4.6 experimental evaluation 107

definition of its processing function (lines 29–41). The body of a pro-
cessing function is an instance of a Scala partial function built through
a sequence of case statements [244]: whenever an input sample is
ready to be processed, the block corresponding to the case alterna-
tive matching both the port name and the sample type is executed. In
the example, if its operations are successful, the processing function
returns the resulting sample wrapped inside an Option[ImageData]

instance1 (line 35); in case of errors, the function logs them and re-
turns the None object (line 39) to indicate that no output should be
produced. Recall that our OpenCV operators are stateless: this is the
reason why no state value is involved in the processing function; dif-
ferently, there would have been an additional element in the case
pattern tuple (corresponding to the current state of the operator) and
the returned object would have included a value representing the new
operator state.

As one can easily see from the code, the defined processing func-
tion converts the image data from the external format (ImageData) to
the corresponding OpenCV internal representation (IplImage) and
vice-versa, and demands the actual image manipulation work to the
processImage abstract function, which is defined by concrete sub-
classes. The init method, called as soon as an operator instance is
created and before it receives any data sample, is used, in the exam-
ple, to ensure that the OpenCV native libraries are correctly loaded.

We created four concrete subclasses of OpenCVOpDescriptor, respec-
tively implementing open, close, smooth, and dilate functionalities, and
we arranged their instances in a pipeline of forty operators. Although
this very particular arrangement of image elaboration steps has no
practical meaning from a computer vision perspective, it must be
clear that our primary goal was to test our Quasit prototype in an
artificial but yet realistic scenario.

The testbed consists of one machine running the QDM component
plus from one up to four different physical servers having the role
of QRNs. The QRNs are interconnected through one Ethernet segment,
while the QDM, although in the same IP subnet, is separated from the
QRNs by two switches. The machine hosting the QDM is also used as
the external source and sink of the image frames. The hardware and
software configuration of the machines is shown in Table 4.2.

In each experiment run, we feed the deployed SIG with 500 image
samples, not counting “warm-up” and “cool-down” sets of samples
processed when the SIG pipeline is not full. For each configuration,
we have collected the results of 15 to 50 runs of the same experiment
(depending on the variability of results).

1 In the Scala standard library, the Option[T] class is used to model objects that can
either have a value of type T, or no value at all.

108 a framework for qos aware stream processing

Table 4.2: Hardware and software configuration of QRN nodes.

Configuration Details
Host: Intel Pentium Dual-Core E2160 @ 1.80GHz

Main Memory: 2 GB

Network Interface: Gigabit Ethernet

OS: Ubuntu 11.04 (Linux kernel 3.0.0)

DDS: OpenSplice DDS 5.4.1 Community Edition

Scala: 2.9.1-final

JVM: OpenJDK 64-bit Server VM (IcedTea7-2.0 build 147)

JVM Flags: -Xms128M -Xmx512M -Xss4M

4.6.2 Ideal parallel processing

In this section, we quantitatively evaluate the overhead imposed by
the Quasit middleware for the distributed execution of stream pro-
cessing applications compared to the maximum speed-up achievable
thanks to an ideal parallel graph execution. To this purpose, we have
designed a very simple simulator that models our pipelined process-
ing scenario but omits the overhead associated with middleware-level
operations (including operator scheduling) and inter-QRN network
communication. The simulator models a group of parallel workers ar-
ranged in a pipeline, whose number reflects the number of available
CPU cores across all the QRNs. The OpenCV transformations of our sce-
nario are distributed to workers evenly, reflecting the original process-
ing pipeline. In the simulations, we measure the average time needed
to process an image sample completely as the input rate grows, and
we compare the results with the performance data obtained on a real
deployment environment with 4 QRNs (operators deployed according
to the uniform placement strategy). In the real deployment environ-
ment, image processing time is measured as the sample Round Trip
Time (RTT), i.e., the time interval between the generation of a new
frame and the reception of the processed result (recall that, in our
deployment, the server hosting the external data stream is the same
receiving the SIG output stream). Figure 4.14 shows the distribution
of the measured RTTs in the four QRNs deployment and the average
processing time in the “ideal” simulated scenario for growing data
generation rates..

In both cases, the processing time increases abruptly as soon as the
available processing resources are no longer able to keep up with im-
age production rate and the input queue of the first operator (worker)
starts filling up. For low sample rates, Quasit performance is very
close to the ideal one, thus demonstrating the very limited platform
overhead in unloaded conditions; the difference tends to grow as the
input rate increases; we experienced that this is mainly due to the
overhead introduced by operator scheduling, which is completely ab-
sent in the simplified simulated scenario.

4.6 experimental evaluation 109

0

10

20

30

40

0 25 50 75 100

samples/s

R
T

T
 (

s)

System

Ideal

Quasit

Figure 4.14: Distribution of sample processing time with 4 QRNs and uni-
form operator placement. The dashed line represents the per-
formance upper bound in ideal conditions.

Table 4.3: Critical input rates and speed-up with different numbers of QRNs

of QRNs critical input rate speed-up
1 5 samples/s 1

2 9.10 samples/s 1.82

3 12.5 samples/s 2.5

4 16.7 samples/s 3.34

4.6.3 Horizontal scalability

About our second evaluation goal of verifying the ability of Quasit to
scale when additional QRNs are added to a domain, we have deployed
the same test pipeline-shaped SIG on four different execution environ-
ments, with respectively one, two, three, and four QRNs. In all cases
we have deployed the graph using the uniform placement strategy.

Figure 4.15 shows the results. The trend of the curves is the same in
all the examined domains: as long as the production rate does not ex-
ceed the maximum processing rate in unloaded conditions, the aver-
age sample RTT is constant and low (around 450 milliseconds); as soon
as Quasit is no longer able to keep up with the sample arrival rate,
the average processing time starts to grow. However, the results show
that, by adding processing resources to one Quasit domain, it is seam-
lessly possible to increase the Quasit ability to serve more aggressive
input rates with reasonably limited overhead. Table 4.3 shows how
the critical sample-rate (i.e., the data rate at which the system starts
to be overloaded and accumulate samples at operator queues) varies
by adding additional QRNs. Clearly, the speed-up values do not grow
with a perfect linear trend with the number of available processing
servers because of management overheads and network communica-

110 a framework for qos aware stream processing

0

25

50

75

5 10 15 20

samples/s

R
T

T
 (

s)

Cluster size

1 QRN

2 QRNs

3 QRNs

4 QRNs

Figure 4.15: Comparison of average processing times using 1, 2, 3, or 4 QRNs
and uniform placement.

tion, but still the performance degradation is very limited. Let us also
note that the system ability to scale horizontally also depends on the
characteristics of the application graphs: for this reason, Quasit fos-
ters a SIG design made of many fine grained components, giving the
framework many parallelization opportunities to be exploited accord-
ing to the required QoS level and resource availability.

In order to estimate the cost of the management overhead when
a Quasit deployment is scaled horizontally, we focused on the ex-
periment with the lowest input rate (i.e., 2 samples/s). Note that, in
that set-up, just one QRN is enough to keep up with the data pro-
duction pace: by measuring the amount of extra resources needed to
process the same data stream in deployments with 2, 3 and 4 QRNs
we can effectively estimate the management overhead cause by the
additional processing servers. Figure 4.16 shows the percentage of
extra CPU time and memory needed to process the same stream of
500 image samples, when the Quasit deployment is over-provisioned
with additional QRNs. The amount of CPU Time required, which in
the 1 QRN case amounts in average to 201.81 seconds, increases up
to 239.40 seconds in the case of 4 QRNs (less than 20% more). The
increase in the amount of memory consumed, instead, is remarkably
more significant: if 105.86 MB are consumed on average on a 1 QRN
deployment, the 4 QRNs one consumes on average about 223 MB, i.e.
more than double the resources. This is not really surprising, since the
extra servers need to instantiate their own JVMs, which in turn load all
the classes and instantiate all the objects needed for the management
of the QRN itself.

4.6 experimental evaluation 111

0

30

60

90

2 3 4

Cluster size

E
x

tr
a

re
so

u
rc

es
 (

%
)

Resource type

CPU Time

Memory

Figure 4.16: Overhead (in terms of extra resources needed) when adding
additional QRNs

4.6.4 Apache S4

Finally, we report here a set of results that compare the performance
of our system with Apache S4. The Apache S4 project [219], initially
developed and maintained by Yahoo! [164], is probably the research
effort closest to our Quasit proposal. As Quasit, S4 lets users freely
define stream analysis graphs made of processing nodes called PEs in
S4 terminology (see Section 3.4); in addition, inspired by MapReduce,
S4 permits to partition streams according to user defined keys (task
parallelism). The platform instantiates PEs based on the graph layout
and on the keys dynamically found in the data and guarantees that,
within a stream, samples with the same key are always processed by
the same PE instance. According to the project Web site, S4 has been
used in several production systems at Yahoo! before being released to
the public under an open-source license in October 2010; by the end of
2011 it was accepted under the Apache Incubator project umbrella. In
the experiments presented here, we used the 0.6 release, code-named
piper, which we pulled from the project’s git repository.

Through the S4 API, we have modeled the same pipelined OpenCV
image processing scenario implemented in Quasit, and we have ex-
ecuted it on our testbed. Unfortunately, we were not able to control
the S4 PE placement algorithm, so we used the default algorithm,
which assigns PE instances to servers according to a hash function ap-
plied to stream keys. Note that the placement obtained through this
algorithm will be, in general, totally unaware of the graph communi-
cation characteristics. For this reason, to avoid an unfair comparison,
we configured Quasit to use the random placement algorithm, which
is equivalently unaware of graph characteristic. Once again we feed
the pipeline application deployed on S4 with 500 samples per experi-

112 a framework for qos aware stream processing

0

20

40

60

5 10 15 20

samples/s

R
T

T
 (

s)

System

Quasit

S4

Figure 4.17: Quasit vs. S4: average sample processing time for increasing
data rates with 4 processing servers and random placement
(Quasit) or hash-based placement (S4).

ment run, and we measure the sample processing time. Again, before
starting the measurements, we perform an initial warm-up by gener-
ating a preliminary low-rate input sequence. All the reported results
are average values over 10 runs for each configuration.

In Figure 4.17, we show the results for the cluster configuration
with four QRNs/S4 servers, and, in Figure 4.18, we summarize the
variation in the average sample RTT for all the tested deployment con-
figurations. It can be observed that Quasit outperforms S4 for what
concerns the average sample processing time, thus showing that our
prototype exhibits a very limited overhead. Moreover, the difference
between the two system is largely more marked in the deployment
with just one processing node. We believe that this is the consequence
of the different threading architecture of the two systems: while Qua-
sit leverages a pool of threads whose size is proportional to the avail-
able CPU cores (two on the machines in our testbed) and indepen-
dent from the number of locally deployed operators, S4 creates a new
thread for each data stream in the application graph (in our scenario
this corresponds to one thread per local PE instance). This causes
higher contention for the available processing resources and greater
thread scheduling overhead, in the common cases where the number
of “active” components on a single host (operators for Quasit, streams
for S4) is significantly bigger than the number of available processing
units. Our DDS-based networking solution should also give us some
advantage, in terms of serialization space efficiency (DDS serialization
format is based on the OMG Common Data Representation (CDR) stan-
dard [245], while S4 uses a custom solution based on the Kryo serial-
ization framework [246]), but also, and most importantly, in scenarios
presenting several one-to-many communication patterns: in these situ-

4.7 lessons learned 113

0

100

200

300

1 2 3 4

Cluster size

R
T

T
 (

s)

System

Quasit

S4

Figure 4.18: Quasit vs. S4: average sample processing time with 1, 2, 3, or
4 processing servers and random placement (Quasit) or hash-
based placement (S4). The input sample rate is 20 samples/s.

ations, the implementation of operator channels over IP multicast can
significantly reduce network overhead if compared to the TCP based
solution used by S4 (internally based on the JBoss Netty framework
[236]). We are planning an extended comparative analysis focusing on
network utilization in different scenarios to validate the above claims.

As a final remark, it is important to consider that, while in this
scenario we used very simple placement strategies (uniform and ran-
dom) due to the simplicity of the pipelined processing scenario, in
a more general scenario Quasit could effectively exploit additional
application-level knowledge, provided in the form of QoS specifica-
tion attached to part of user graphs, to perform smarter operator
placement, or to modify its thread scheduling mechanisms dynam-
ically (e.g., enlarging the thread pool size if operators perform many
I/O operations).

4.7 lessons learned

The design of the Quasit architecture and the realization of its pro-
totype required an important engineering effort in order to satisfy
all the requirements deriving, either explicitly or implicitly, from the
design principles discussed in Section 4.2. In this section, we summa-
rize our experience by reporting in three points the most important
lessons learned during our work on Quasit.

• Clearly separate state and behavior to foster reusability. In Quasit, op-
erators are implemented as purely functional and reactive com-
ponents whose behavior is defined by a processing function that
is stateless even when the operator as a whole has stateful be-

114 a framework for qos aware stream processing

havior. We applied this decoupling principle whenever possible
in our prototype: not only purely functional behavior is easier
to understand and debug, but, most importantly, it can be eas-
ily composed. Complex functionalities can be defined by “mix-
ing and matching” smaller pieces of well-tested code expressed
in terms of pure functions. Moreover, this type of design en-
courages a clear and compact definition of the state of different
components, which permits to have a better understanding of
their possible state transitions and to implement advanced state
management functionalities more easily.

• Adopt a reactive threading model. As confirmed by our experimen-
tal evaluation, the choice of multiplexing the execution of oper-
ators on a pool of threads with limited size is one of the main
advantages of the Quasit architecture with respect to other sim-
ilar systems. In fact, with this approach, the number of context
switches is minimized and the parallelism of multi-core proces-
sors is exploited at the best. Our conclusion is that this execu-
tion schema should be always preferred when the number of
active components is sensibly greater than the number of avail-
able execution cores.

• Use immutable data structures. Our Quasit prototype implemen-
tation confines state mutations in a few selected places, and
uses immutable data structures whenever possible. In highly
concurrent environments, immutable data structures provide
easy and fast thread-safety being lock-free by definition. Ad-
ditionally, limiting the places where mutations can occur also
limits the number of possible race conditions and helps to write
correct thread synchronization mechanisms and to detect con-
currency problems early.

4.8 future work

The Quasit prototype is under development and its current imple-
mentation is still not ready for everyday use in production environ-
ments. However, our initial experimental results encourage us to per-
sist in our efforts to build a stable and usable platform within a short
time frame. Our work will go in two main directions:

• Extend the Quasit processing model, and complete and enrich
its implementation platform.

• Use the platform as a ground layer for the implementation, val-
idation, and comparison of new stream processing QoS policies
and enforcement algorithms.

For what concerns the extension of the platform, one of our short-
term goal is to adapt and include common stream processing QoS

4.9 summary and conclusions 115

policies from state-of-the-art systems (see Section 3.4) in the Quasit
processing model, and to provide the possibility to easily configure
them through our API. Once we reach stable prototype and APIs, we
plan to continue our experimental evaluation on an extensive set of
large scale real world applications, by trying to single out possible
performance bottlenecks in very large deployment environments.

However, the most ambitious goal of the Quasit platform remains
to provide middleware researchers and developers with a common
infrastructure and playground for the development and experimen-
tation of novel models and implementation techniques for QoS-based
behavior in DSMSs. We will work toward this goal by trying to im-
prove our modular system architecture further, in order to make the
development of new modules and their integration in our platform
easy and intuitive. As a first step in this direction, we plan to freeze
and standardize the interfaces and semantics of our current architec-
ture and make the results publicly available.

4.9 summary and conclusions

In this chapter, we have introduced a novel model for QoS-centric data
streams processing and presented our experiences in the design and
implementation of Quasit, the platform providing a distributed, scal-
able, and highly configurable execution environment for data stream
processing applications written according to the proposed model.

Similarly to many other existing DSPSs, the Quasit processing model
is based on the processing graph abstraction introduced in Chapter 3:
Quasit processing graphs are called SIGs, and they model the compo-
sition of simpler data processing steps, represented by the reusable op-
erator component. Uniquely, every element of Quasit SIGs can be dec-
orated with QoS specifications, i.e., collections of policies regulating
the expected runtime behavior of the component. QoS specifications
can be used by the platform to optimize its resource allocation poli-
cies and to provide applications with the required quality-level. The
Quasit architecture is highly modular and is based on the principle of
strong separation of responsibilities between its different modules. Its
prototype implementation exploits several state-of-the-art technolo-
gies in order to implement a simple, efficient, and low-overhead plat-
form. We have reported an initial set of experiments that evaluate
our system in a controlled but realistic video processing scenario and
that compare its performance with the Apache S4 stream processing
framework. The results show that Quasit can offer horizontally scal-
able performance with limited management overhead, also if com-
pared to a widely used state-of-the-art DSPE such as S4.

We are continuing our work on the Quasit prototype, enriching it
with new QoS policies and with mechanisms for their enforcement.

116 a framework for qos aware stream processing

We are also planning a more extensive evaluation campaign to verify
the performance of our system in much larger deployment scenar-
ios, also testing its ability to serve the processing needs of real-world
workloads. In the long run, we hope that Quasit could become an use-
ful research platform for the experimentation of new mechanisms for
the enforcement of QoS in DSPSs, and be stable and efficient enough
to support the execution of real world and large scale workloads.

5 A DA P T I V E FA U LT-TO L E R A N C E
I N D I S T R I B U T E D S T R E A M
P R O C E S S I N G S Y S T E M S

In this thesis, we have encountered more than one example of the
growing number of applications that require continuous processing
of high-throughput data streams, and we have seen that these appli-
cations often require specific quality-of-service levels to achieve their
goals; yet, due to the high time-variability of stream characteristics, it
is often inefficient to statically allocate the resources needed to guar-
antee application SLAs.

Experience with Cloud services [247] has shown that the possibil-
ity to offload the management of computing infrastructures to third
parties represents an attractive opportunity for both developers and
cloud providers. However, in a cloud environment, the nature of
stream processing applications poses several hard challenges, includ-
ing the ability to offer, at the same time, performance elasticity in
spite of load variations and resiliency to failures while keeping costs
limited. From a provider perspective, one major problem lies in the
necessity to handle load fluctuations due to sudden and possibly tem-
porary variations in the rates of data streams feeding the hosted ap-
plications. If not handled properly, in fact, load peaks can lead to
increased processing latency due to data queuing and to data loss
due to queue overflows. To avoid these effects, it is necessary to al-
locate the proper amount of additional resources for the overloaded
applications, either statically or dynamically when load variations are
detected [182, 185, 190].

Another typical requirement for stream processing applications is
the implementation of fault-tolerance techniques. In fact, since they
usually run for (indefinitely) long time intervals, failures are unavoid-
able. Many proposals in the literature have investigated possible fault-
tolerance approaches — including active replication [197, 198], check-
pointing [193, 248], replay logs [195, 196], or hybrid solutions [249]
— each providing different trade-offs between runtime cost in ab-
sence of failures (best-case) and recovery cost. Whichever the adopted
technique, maintaining some form of replication at some level (soft-
ware/hardware components, state, or messages) is a significant over-
head in terms of computing resources.

In a large class of applications, however, perfect fault tolerance is
not always required, while it is very important to effectively man-
age temporary load variations. This is very common, for example,

117

118 adaptive fault-tolerance in dspss

when dealing with SPE-generated big data streams. In this context, in
fact, large data streams are produced by many distributed sources —
e.g., mobile phones, ad-hoc sensing devices, or vehicles — that con-
tinuously capture and transmit sensed environmental features. These
data need to be analyzed in real-time, and results must be promptly
delivered to let appropriate control actions be performed. In this kind
of scenarios, controlled information loss is usually tolerable, given the
common partial information redundancy or overlap of input streams.
Consider, for instance, an application used to control traffic light sig-
nals based on periodic reports of vehicles’ positions, among other
factors. During high traffic conditions (i.e., high system load), it is
clearly preferable to compute on incomplete information than delay
control decisions, given the high redundancy in reported positions.
At the same time, during low traffic conditions, processing events
with accuracy is still important.

In this chapter, we investigate the possibility to trade-off reliabil-
ity guarantees and execution cost, and use the conserved resources
to handle load variations. We propose a novel method, called Load-
Adaptive Active Replication (LAAR), that dynamically deactivates and
activates redundant replicas of application operators in order to claim
or release resources and accommodate temporary load variations.
Our technique provides a-priori guarantees about the achievable fault-
tolerance levels, expressed in terms of an internal completeness metric
that captures the maximum amount of information that can be lost
in case of failures. This is possible thanks to an off-line optimization
phase that determines the most appropriate runtime replica activation
strategy. In the remainder of this chapter we propose a detailed study
of the problem and present our solution approach. We show that LAAR
can be suitably implemented as a middleware-level layer on top of
existing stream processing platforms, and we present general archi-
tectural and design guidelines about how to do it efficiently. As a
working proof-of-concept, we describe an implementation of LAAR on
top of IBM InfoSphere Streams [166] and we discuss experimental
results about the performance of LAAR on a 60-core IBM BladeCenter
cluster deployment.

The rest of the chapter is organized as follows: after reviewing the
related literature in Section 5.1, we present the considered stream pro-
cessing service model in Section 5.2. In Section 5.3, we model the op-
timization problem at the core of our technique, and we describe the
off-line and Constraint Programming (CP) -based solution strategies
the we use to solve it in Section 5.4. The runtime architecture enforc-
ing our LAAR technique is presented in Section 5.5, followed by an
extensive experimental evaluation in Section 5.6. Some final remarks
and ideas for future extension of this work conclude the chapter.

5.1 related work 119

5.1 related work

The analysis in Chapter 3 has already highlighted that an effective
management of load variations is very important in DSPSs, a fact that
is also demonstrated by the existence of relevant solution strategies
presented in the previous literature. In fact, unless DSPS deployments
are over-provisioned with resources (an usually undesired solution
because highly cost ineffective), even short variations in sources input
rate can cause increased processing latency due to operator queues
getting longer, or random tuples drops when queues fill up.

A common and very simple solution is to allocate enough resources
to sustain the load for most of the time and then to avoid (or limit) the
growth in latency or random data drops by introducing load shedding
mechanisms [155], which selectively drop tuples at strategic points
in the processing flow to maximize some quality measure [187] or to
minimize the amount of data lost [250].

More sophisticated solutions try to dynamically adapt to load vari-
ations while avoiding to drop any data. A first common approach is
to move operators between processing hosts to re-balance the system
and accommodate new load conditions [172, 182, 251]. In [185], the
authors develop a dynamic resource allocation algorithm that auto-
matically re-distributes resources among operators to maximize the
expected throughput. More recently, a similar approach has been pro-
posed by [190]. All these solutions effectively manage to handle load
variations when the available resources are still sufficient to handle
the total load or, from another perspective, when there is no hard
limit on the runtime cost of the solution.

In [252], the authors propose a dynamic priorities mechanism for
the Stream MapReduce system [253] that automatically reduces the
execution priority of tasks replicas during load spikes. Similarly to
our proposal, this mechanisms permits to gather the resources nec-
essary to handle the extra load; differently from LAAR, the proposed
solution does not provide hard guarantees about the possible infor-
mation loss in worst-case failure scenarios and does not adapt the
applications runtime cost to their required fault-tolerance guarantees.

In our work, we deal with this problem from a different and orig-
inal perspective. Instead of handling load variation by sacrificing la-
tency (queuing), completeness (load shedding), or increasing cost (re-
source over-provisioning), we collect the resources needed to cope
with changing load conditions by leveraging the flexibility of weaker
reliability requirements. LAAR guarantees that these requirement are
enforced and minimizes the application execution cost accordingly.

The use of constraint programming to manage replicas in distributed
systems has been previously explored by Michel et al. [254], who pro-
pose a CP model that solves the problem of deploying replicas on dis-
tributed nodes to minimize the communication cost in Eventually Se-

120 adaptive fault-tolerance in dspss

rializable Data Service (ESDS) systems. Our optimization problem is
sensibly different, as we do not deal with the assignment of replicas to
computing resources, but we decide their dynamic activation strategy.
In [255], the authors solve a combined assignment and scheduling
problem for Conditional Task Graphs (CTGs). Similarly to this work,
the CP model includes stochastic elements, but they are used to de-
scribe the probability that branches in the task graphs are actually
used at runtime.

5.2 service model

In this section, we introduce a PaaS-based [247] service model, for the
commercial-relevant scenario where service providers host customers
stream processing applications according to a set of SLA parameters
that define the expected runtime behavior of hosted applications and
the associated costs and pricing plans. By presenting this model, we
set up the basic terminology that we use throughout the remainder of
this chapter, and we state the fundamental assumptions of our LAAR
dynamic fault-tolerance approach.

In our model, stream processing services are regulated by customer–
provider contracts composed of (i) the stream processing application to
be executed on the platform, (ii) an application descriptor that charac-
terizes the application components and the application input (e.g., its
statistical properties, see the following), (iii) an SLA determining the
targeted runtime quality requirements, and (iv) a pricing plan that de-
fines the economical conditions under which the provider runs the
customer application with the requested quality of service.

The stream processing application (or, hereinafter, simply application)
is described through the processing graph abstraction presented in
Section 3.3.1, i.e., consists of a set of software components organized
in a DAG. The software components are one or more operators, at least
one data source, and at least one data sink. An operator transforms one
or more input data streams — theoretically unbounded sequences
of structured tuples — into another stream (its output); data sources
and data sinks retrieve input from external sources and write tuples
to external destinations, respectively. The processing graph arranges
operators, data sources, and data sinks as vertices of a DAG, connected
by edges representing communication channels. Recall that this data-
flow based processing model is very general and can be mapped on
the majority of state-of-the-art DSPSs from academia [27, 156, 158, 167]
and industries [25, 164, 166, 256].

The application descriptor is a document summarizing, with a set
of concise attributes, the computational behavior of operators and
the expected characteristics of application input streams. Similarly to
what has been done in the literature (e.g., [171, 174, 187, 195, 250,

5.2 service model 121

251]), application descriptors summarize operator behavior by using
the metrics of port selectivity and per-tuple CPU cost. To be more specific,
we associate every graph edge going into an operator to a selectivity
value and a per-tuple CPU cost value: selectivity represents the weight
of the contribution of an input data stream on the data rate of the op-
erator output stream; per-tuple CPU cost is the number of CPU cycles
(on a given processing architecture) required on average to process a
tuple from the stream associated to the edge. For simplicity of math-
ematical derivation, we adopt a linear load model, i.e., we assume
that the output rate and the total CPU load of any operator can be
expressed as a linear combination of the streams data rates and the
operator selectivities and per-tuple CPU costs respectively. With con-
siderations similar to those in [174], our solution can be extended to
nonlinear models as well. In the following discussion, we assume that
operator selectivities and per-tuple CPU costs are either provided by
the customer or extracted through a preliminary profiling step [209].
The application descriptor also includes the expected characteristics
of the external data sources: for each data source, the descriptor con-
tains the probability distribution function describing the probability
of the source to produce data at different tuple rates. We assume that
the continuous space of possible tuple rates for each data source has
been properly transformed in advance into a finite number of dis-
crete data rates through, e.g., binning techniques [257]. Again, this
information is specified by the customer or else inferred from a set of
example input traces that she provides.

A Service Level Agreement (SLA) is a set of clauses specifying the
desired runtime quality characteristics of the application. Two possi-
ble examples of SLA clauses are maximum latency, putting an upper
bound on the time taken to produce an output after all the input data
generating it has been received, or fault-tolerance, defining a guaran-
teed application behavior in case of failures.

Finally, the pricing plan determines the provider monetary revenue
for running the customer application instance. We assume continu-
ous processing applications, i.e., applications that run for an indefinite
amount of time. As a result, we consider a time-based, fixed billing
plan, according to which the customer pays a flat fare per billing pe-
riod T . This fare depends on the characteristics of the application, of
its input streams, and on the agreed SLA.

The service provider is expected to deploy and allocate computing
resources so that the constraints imposed by SLA clauses are satisfied
at runtime as long as, within each billing period T , the characteristics
of the external data streams reflect those specified in the contract; if they
do, the provider has to pay a penalty in case of SLA violations. The
provider is interested in satisfying the quality requirements imposed
by the SLA, while minimizing resource utilization. We assume that the
service provider does always her best to avoid SLA violations.

122 adaptive fault-tolerance in dspss

5.3 load-adaptive active replication

LAAR is a novel and adaptive active replication method for data streams
processing platforms that lets applications adapt to changing load
conditions by temporarily trading perfect reliability for computational
resources. It can provide guaranteed fault-tolerance levels, measured
in terms of an upper bound on the information loss in case of failures,
called internal completeness and defined in Section 5.3.3.

Similarly to traditional active replication techniques [195], LAAR de-
ploys k replicas of every operator in the application processing graph:
at any moment, one of the k replicas has the role of primary, the oth-
ers are called secondary. Primary and secondary replicas all receive
tuples from the primaries of their predecessor operators, and all pro-
cess them advancing through the same sequence of states. However,
only the primary outputs tuples to the replicas of its successors. When
a primary fails, one of the secondaries is elected as the new primary;
once the failed replica is recovered, its state is synchronized with the
non-failed ones before it becomes active again as secondary.

Originally, LAAR monitors the input rate of its application sources,
and it dynamically and automatically activates and deactivates repli-
cas in order to satisfy two goals:

1. The application deployment is never overloaded.
2. A required internal completeness constraint is satisfied.

An application deployment is said to be overloaded when, for any
host, the total CPU cycles per second that would be needed to execute
the operators assigned to it is bigger than the available CPU cycles
per second. Note that, in an overloaded system, tuples accumulate
at input queues of operators (increasing latency) and are eventually
dropped when the corresponding queues fill.

5.3.1 LAAR in a simple application

Before presenting an in-depth analysis of the LAAR model and its fault-
tolerance guarantees, we illustrate the basic intuition behind our ap-
proach in a minimal application scenario. Consider the application
in Figure 5.1: it consists of two operators connected in a very simple
pipeline; O1 processes data from a single data source (not reported
in the figure for the sake of simplicity) and forwards its output to O2,
which, in turn, sends the results of its computations to an external
data sink (also not depicted in the figure). The selectivity of both op-
erators is 1, meaning that for every received input tuple they produce
one output tuple; moreover, considering the CPU architecture of the
deployment hosts, both operators require 100 milliseconds to process
an incoming tuple. The single data source can produce tuples at two
different rates: “Low” and “High”. The “Low” rate is 4 tuples per

5.3 load-adaptive active replication 123

O1 O2

O1 O2
Selectivity 1 1

CPU Cost 0.1 s/tup 0.1 s/tup

Low Rate High Rate
Source 4 tup/s 8 tup/s

O1 4 tup/s 8 tup/s

Prob. 0.8 0.2

Figure 5.1: A simple processing scenario: application processing graph
(left), concise characteristics of the application operators (top-
right) and of its data source (bottom-right). For simplicity, data
source and data sink are not shown.

O1
R1

O2
R1

O1
R2

O2
R2

(a)

O1
R1

O2
R1

O1
R2

O2
R2

(b)

Figure 5.2: (a) Replicated deployment of the application of Figure 5.1 on
two hosts. (b) Dynamic deactivation of replicas by LAAR during
a “High” input configuration.

second and is active on average for 80% of the time (0.8 probability),
while the “High” rate is 8 tuples per second and is active in the re-
maining time intervals (0.2 probability). The application is replicated
and deployed on two hosts, each hosting a copy of each operator, as
shown in Figure 5.2a. It is straightforward to see that, when the input
configuration is “Low”, 80% of the CPU time available at both hosts
will be occupied for processing tuples. More importantly, when the
input configuration is “High”, the application would need 160% of
the total CPU time available, which — of course — is available only by
adding extra resources to the deployment (with an increased cost).

The basic idea behind LAAR is to monitor the data sources and, ac-
cording to the current data rates, to dynamically deactivate replicas
in order to release the resources necessary to face load variations. For
example, Figure 5.2b shows how LAAR could deactivate two replicas
of O1 and O2 during a load peak so that the total CPU available will
become enough to handle the new load.

Figure 5.3 shows this behavior in a real deployment. We imple-
mented, deployed, and executed the replicated pipeline application
in Figure 5.2a on an IBM InfoSphere Streams deployment consisting
of two hosts equipped with a single core CPU. Figure 5.3a reports the

124 adaptive fault-tolerance in dspss

0.00

0.25

0.50

0.75

0 50 100 150 200

C
PU

 T
im

e
(%

)

4.00

6.00

8.00

0 50 100 150 200
Time (seconds)

Tu
pl

es
 p

er
 s

ec
on

d

(a)

0.00

0.25

0.50

0.75

0 50 100 150 200

4.00

6.00

8.00

0 50 100 150 200
Time (seconds)

(b)

Figure 5.3: (a) CPU Time used by the replicated operators — top —and cor-
responding input and output rate — bottom. (b) CPU time and
input/output data rate when O1 replica 2 and O2 replica 1 are
deactivated by LAAR. In the top graphs, different line styles cor-
respond to different operator replicas; in the bottom graphs, the
solid line corresponds to the input rate, the dashed one to the
output rate.

CPU usage and input/output rates of the application in time when
static active replication is used: when the input passes to the “High”
configuration (around 50 seconds from the beginning of the experi-
ment), the CPUs of the two hosts saturate, and the application is not
able to keep up with the input rate; on the contrary, by temporarily
deactivating replicas during the “High” input configuration, it is pos-
sible to save enough resources to allow the output stream to follow
the input (Figure 5.3b).

Obviously, if a failure of one of the active operators occurs during a
“High” period, part of the input would not be processed as expected.
As we will clarify in the remainder of this section, the unique and
strong aspect of LAAR is its ability to quantify a-priori these effects on
the overall application reliability.

5.3.2 Model and definitions

An application A consists of a set of components: a set I of data
sources, a set P of operators, and a set O of data sinks, which col-
lectively define the set X = I∪ P ∪O = {xi}. The components in X are

5.3 load-adaptive active replication 125

arranged in a directed acyclic application graph G = (X,E). The set
of edges E is described by the function:

pred : X 7→ P (X) (5.1)

which, for each component xi , identifies the set of predecessor com-
ponents {xj } so that xj ∈ pred (xi) ⇔

(
xj , xi

)
∈ E.

The characteristics of operators are summarized by the selectivity
function δ and the per-tuple CPU cost function γ: for each couple(
xi , xj

)
so that xi ∈ I ∪ P and xj ∈ P and that

(
xi , xj

)
∈ E,

δ
(
xi , xj

)
is the selectivity of operator xj with respect to the tuples it

receives from xi , and γ
(
xi , xj

)
is the per-tuple CPU cost for operator

xj to process tuples from xi .
Every data source xi ∈ I can produce output at one rate among a

finite set of input rates Ri . The Cartesian product C = R1 × . . . × Rt,
where t is the number of sources, is the set of all the possible in-
put configurations. As anticipated in Section 5.2, we assume to know
PC : C 7→ [0 , 1], the probability mass function associated to the
probability distribution of different input configurations in time. The
output rate of data source xi ∈ I in a particular input configuration
c is indicated as ∆ (xi , c). In absence of failures, it is straightforward
to derive the expected output rate of each operator in any input con-
figuration c; for uniformity of notation, we also indicate this value as
∆ (xi , c) , xi ∈ P.

We assume that an operator placement algorithm among the many
described in the literature (e.g., in [171] or [174]), computes a replicated
assignment of k replicas of each of the operators in P to a set of hosts
H = {hi }. We indicate the replicated set of operators as:

P̃ = { x̃li } (5.2)

For simplicity of notation, we will use the symbol x̃li to indicate the
l-th replica of operator xi . The assignment is represented by the func-
tion:

ϑ : P̃ 7→ H (5.3)

which maps every operator replica to the host where it is deployed.
For convenience, we also define ϑ−1 : H 7→ P(P̃) such that:

ϑ−1 (h) = { x̃li ∈ P̃ : ϑ
(
x̃li
)
= h} (5.4)

A replica activation strategy is a function:

s : P̃ × C 7→ {0 , 1} (5.5)

that associates every operator replica – input configuration pair to
one of the two possible active/inactive states.

126 adaptive fault-tolerance in dspss

5.3.3 Internal completeness metric

By activating and deactivating operator replicas according to the cur-
rent input configuration, LAAR dynamically modifies the resilience of
applications to failures. In order to measure the effect of LAAR on fault-
tolerance guarantees, we define the Internal Completeness (IC) metric.
Intuitively, given a failure model that describes how hosts and oper-
ators are expected to fail and a replica activation strategy s, internal
completeness measures the fraction of total tuples that is expected to
be processed during the billing period T in case of failures, compared
to those that would be processed in absence of failures.

Let us examine the no-failure scenario (best-case) first: the total
number of tuples that is statistically expected to be processed by the
application operators during T is:

BIC = T ·
∑
c∈C ,
xi∈P ,

xj∈pred(xi)

PC(c) · ∆(xj , c) (5.6)

Best-Case Internal Completeness (BIC) is the summation of the con-
tributions of all the application operators in all the possible input
configurations, weighted by their probability to occur in T .

Failure Internal Completeness (FIC) measures the expected number
of tuples processed given a failure model φ and a replica activation
strategy s. It is defined as:

FIC(s) = T ·
∑
c∈C ,
xi∈P ,

xj∈pred(xi)

PC(c) · φ(xi , c , s) · ∆̂(xj , c , s) (5.7)

∆̂(xi , c , s) =

∆(xi , c) if xi ∈ I

φ(xi , c , s) ·
∑

xj∈pred(xi)

δ(xj , xi)∆̂(xj , c , s) if xi ∈ P

(5.8)

The function φ(xi , c , s) depends on the chosen failure model and
describes the probability that at least one replica of operator xi is
alive and active when the input configuration is c and the replica
activation strategy is s. ∆̂(xi , c , s), instead, represents the expected
output of PE xi under failure model φ, when the input configuration
is c and the replica activation strategy is s; note that the definition
of ∆̂ is recursive, as the number of tuples produced by a PE depends
not only on its possible failure status (described by φ) but also on the
number of tuples produced by its predecessor (Equation 5.8).

Internal Completeness (IC) is the ratio between FIC and BIC:

IC(s) =
FIC(s)

BIC
(5.9)

5.4 replica activation problem 127

We choose the IC metric over other possible metrics (e.g., output com-
pleteness or average replication factor) for two main reasons. First,
IC is easy to understand and measure. Second, and most relevant, IC
captures not only the completeness of the application output (at the
data sinks) but also the divergence, in a scenario with failures, of the
state of operators compared to a failure-free scenario, under the as-
sumption that this divergence is proportional to the amount of tuples
that are not processed.

5.4 replica activation problem

In LAAR, the information in the application descriptor is used to com-
pute — off-line and before application deployment — a replica acti-
vation strategy that fits the application fault tolerance requirements.

The cost minimization problem that is solved to determine the ap-
propriate replica application strategy, given an application descriptor,
is called replica activation problem and is defined as follows:

minimize
s

cost (s) (5.10)

subject to:

IC(s) > G (5.11)∑
x̃l
i
∈ϑ−1 (h) ,

xj∈pred(xi)

γ
(
xj , xi

)
∆(xj , c)s(x̃li , c) < K

∀h∈H ,
∀c∈C (5.12)

k∑
l=1

s
(
x̃li , c

)
> 1 ∀xi∈P ,

∀c∈C (5.13)

The cost function in the minimization term represents the cost, in
terms of resources, for a service provider to run the application using
replica activation strategy s and the replicated assignment defined by
ϑ. In this work, we model the bandwidth available for cluster-local
communication as an abundant resource (a common assumption in
data center contexts), and our cost function as the total CPU time used
by an application in a billing period T . It is defined as follows:

cost (s) = T
∑
c∈C ,
x̃l
i
∈P̃ ,

xj∈pred(xi)

PC (c) γ
(
xj , xi

)
∆(xj , c)s(x̃li , c) (5.14)

and is the summation over all operator replicas x̃i ,h of their con-
sumed CPU time.

Equation 5.11 constraints IC to satisfy the requested SLA value G,
while Equation 5.12 states that each host in the deployment should
never be overloaded; K is a constant expressing the number of CPU cy-
cles per second available at the deployment hosts. The last constraint,

128 adaptive fault-tolerance in dspss

expressed in Equation 5.13, requires that there is at least one active
replica of every operator in every input configuration, and it ensures
that the measured IC value is 1 in absence of failures.

5.4.1 Failure model

In order to solve the replica activation problem, LAAR considers a sim-
plified failure model φ, based on the following assumptions:

1. In any failure scenario, all PE replicas fail except one.
2. Unless all the replicas are active at some point in time, the non-

failed replica is chosen among the inactive ones.
3. Once failed, replicas never recover.

or, more formally:

φ(xi , c , s) =

0 if

k∑
l=1

s(x̃li , c) < k , x̃li ∈ P̃

1 otherwise
(5.15)

The so defined model will in general overestimate possible failure
conditions (it is highly unlikely that all PE replicas fail at the same
time) and their consequences (normally failures would be recovered):
for these reasons, we also refer to it as pessimistic failure model. How-
ever, this choice of φ provides two fundamental benefits:

• Since it overestimates the likelihood and effects of failures, the
IC value computed using this model is a lower bound to the real
IC that will be observed on the actual application deployment
(see Section 5.6).

• Its mathematical formulation simplifies the computation of IC
values for different possible replica activation strategies and,
hence, the optimization complexity.

Note that the solution space of this problem is still very large, as
for every application there are 2 |P |·|C|·k possible replica application
strategies. Note also that, in cost function (Equation 5.14), the IC con-
straint (Equation 5.11), and the hosts CPU constraints (Equation 5.12)
depend on ∆̂ (xi , c , s) (Equation 5.8), which is a recursively defined
exponential term. Hence, to find algorithms that can find optimal or
good enough solutions to this problem is a major technical challenge.
In the next section, we present a detailed study of the properties of
the replica activation problem, and we present and compare three
original CP algorithms for its solution.

Let us remark again that the optimization phase is performed off-
line with respect to application execution, so its complexity does not
cause any direct overhead on the application runtime cost, which is,

5.4 replica activation problem 129

instead, minimal. In Section 5.5, we describe how LAAR on-line coun-
terpart can be implemented as a thin middleware layer requiring lit-
tle modifications to existing data streams processing architectures al-
ready supporting (static) active replication.

5.4.2 Constraint programming solutions

We have developed three different CP-based algorithms to solve in-
stances of the LAAR replica activation problem. For implementation
simplicity, all the three solution variants limit the search space by
considering only two-fold replication (k = 2), practically restricting
the problem solution space size to 3 |P |·|C|. We believe that this is not
a strong restriction, since, in our experience, stream processing ap-
plications are very rarely deployed using a replication factor greater
than 2. The three algorithms we have studied are:

• A trivial CP solver, called basic.
• A search algorithm based on Large Neighborhood Search (LNS)

techniques [258].
• A scalable decomposition-based algorithm.

Before presenting them in more detail, let us first describe the char-
acteristics of the solution space of our replica activation problem that
guided our algorithm design. To perform this analysis, we developed
a straightforward implementation of the model of Equation 5.10 on
the commercial IBM ILOG CP Optimizer solver [259], and we used it
to get a better understanding of the problem structure.

Looking at the problem from a user perspective, cost (Equation 5.14)
and IC (Equation 5.9) are the most important parameters because, to-
gether, they determine the cost-quality trade-off for running stream
processing applications with LAAR. Intuitively, since the basic mech-
anism to mask the effects of failures is to activate more replicas, re-
quiring higher IC will correspond in general to higher runtime costs.
Figure 5.4a gives some insight about the shape of the problem solu-
tion space when considering together cost and IC: it shows the space
of possible feasible solutions of a problem instance consisting of 24

operator replicas distributed on 6 computing hosts and IC constraint
set to 10%. The continuous black line is a loess regression [260] of the
solution points and confirms that, as a general trend, the cost of solu-
tions is proportional to their IC value. However, the graph also shows
that there is a very large number of sub-optimal solutions (empty cir-
cles) and that higher costs do not necessarily imply higher IC. Recall
that the IC value does not only depend on the number of active repli-
cas, but also on the particular choice of active operators and on the
topology of the application processing graph. As a consequence, a
wrong choice of replica activation strategy can easily lead to a useless
waste of resources.

130 adaptive fault-tolerance in dspss

0.2

0.4

0.6

1.2 1.4 1.6 1.8
Cost

IC
 V

al
ue

(a)

0.2

0.4

0.6

1.2 1.4 1.6 1.8
Cost

IC
 V

al
ue

(b)

Figure 5.4: Cost–IC relationship in the solution space of a problem instance
consisting of 12 operators (2 replicas each) deployed on 6 hosts.
Empty circle represent sub-optimal solutions, while the contin-
uous line is a regression of the solution points. Without (a) and
with partial filtering of sub-optimal solutions (b).

However, an important fraction of sub-optimal solutions can be dis-
carded quickly with simple considerations. For example, think about
of a pipeline of operators where a first operator (O1) feeds a sec-
ond one (O2). Given the pessimistic failure model described by Equa-
tion 5.15, having, in any input configuration, two active replicas of
O2 and, at the same time, only one active replica of O1 does not
contribute to the overall IC value because, in case of failures of the
O1 replica, O2 would not receive any sample to process; however the
solution cost would still be higher than that of a non-replicated de-
ployment. This is not only valid for pipelines but can be generalized
for any graph shape: in particular, any feasible replica activation strat-
egy sα that, in some input configuration c, has two active replicas for
some operator xi whose predecessors all have only one active replica
is sub-optimal with respect to a corresponding feasible replica activa-
tion strategy sβ that differs from sα only for the fact that xi has just
one active replica. This relation can be used to add a new constraint
that performs a partial sub-optimal solution filtering and removes ob-
viously sub-optimal solutions to the replica activation problem. We
formulate this constraint as follows:

∃ xi ∈ P , c ∈ C s.t.
∑
l=0 ,1

s
(
x̃lj , c

)
= 1 ∀xj ∈ pred (x)

=⇒
∑
l=0 ,1

s
(
x̃li , c

)
= 1 (5.16)

Figure 5.4b shows the solution space of the same problem instance
of Figure 5.4a after the filtering based on Equation 5.16. Obviously,
this important reduction in size has a significant impact on the time
needed to solve the problem. Figure 5.5 summarizes the average search

5.4 replica activation problem 131

0

10

20

3 6 9
No. of operators per host

Ti
m

e
fo

r
th

e
op

ti
m

um
 (s

)

Search Variant

No−PSF

PSF

Figure 5.5: Comparison of average time to find the optimum with (PSF) and
without (No-PSF) partial sub-optimal solution filtering.

time needed to find the optimum solutions for a batch of small prob-
lem instances, in which graphs of 2 to 11 operators are deployed
on 4 hosts with two replicas per operator. As the graph complexity
increases, the benefit of the additional constraint in Equation 5.16 be-
comes more and more evident.

The first basic solution strategy is nothing but the trivial implemen-
tation of the model in Equation 5.10 with the additional constraint in
Equation 5.16 on the ILOG CP Optimizer solver. Since its realization
is a straightforward transcription of the above model and constraints
on the solver, we do not detail it further here. On the contrary, in the
following two paragraphs, we introduce the second and third search
strategies, i.e., the LNS-based strategy and the decomposition-based one.
In Section 5.6.1, we report an evaluation of the three strategies that
analyzes their trade-offs between solution time and quality.

LNS-based strategy

The basic idea behind Large Neighborhood Search (LNS) strategies
[258] is to start from an initial solution and then proceed through in-
cremental improvement steps that focus on large neighborhoods of the
current best solution. We developed a strategy to solve our replica ac-
tivation problem that is based on these concepts. The algorithm starts
from a solution found either by using the basic solver just presented,
or by leveraging a simple greedy algorithm that starts by activating
two replicas of every operator for every input configuration and then
deactivates the most resource hungry operator iteratively, until all the
non-overloading condition constraints (Equation 5.12) are met. The
advantage of the greedy approach is its ability to find a solution very
quickly. This solution will not necessarily be feasible because it could

132 adaptive fault-tolerance in dspss

violate the constraint in Equation 5.11; however, this infeasibility can
be often rapidly corrected through local moves.

Similarly, we have developed two alternative methods to choose the
variables to relax during every iterative improvement round. In the
first (simple random), they are chosen completely random; in the sec-
ond (weighted random), every search variable is assigned a weight that
depends on its corresponding input configuration, so that variables
associated to resource-hungry input configurations (typically corre-
sponding to load peaks) have more chances to be relaxed. The idea is
that, since highly demanding configurations usually require the high-
est number of operator replicas deactivated in order to satisfy the con-
straint in Equation 5.12, the corresponding search variables have, in
general, stronger influence on the satisfiability of the IC requirement.

Note that, differently from the basic search strategy, the LNS-based
one does not detect optima, and, when the greedy approach is used to
look for an initial solution and none is found, it cannot even conclude
whether the problem has any solution or not.

Decomposition-based strategy

The third solution strategy we present in this chapter decomposes
the problem in a number of orthogonal sub-problems along its |C |

different input configurations. The goal of this decomposition-based
approach is to improve solution scalability, especially for problem
instances with a large number of input configurations.

Let us consider once again the formulation of the replica activa-
tion problem in Equation 5.10. Separating the CPU constraints (Equa-
tion 5.12) and the minimum replicas constraints (Equation 5.13) is
trivial, because each of them involves only terms relative to a single
input configuration c. The search variables s can be equally easily
separated by considering |C | different replica activation strategies sc
such that:

s(x̃li , c) = sc(x̃
l
i) , sc : P̃ 7→ {0 , 1} (5.17)

The IC constraint (Equation 5.11) can be, instead, rewritten as follows:

FIC(s)
T

>
BIC
T

(G)︸ ︷︷ ︸
G ′

⇔
∑
c∈C

∑
xi∈P,

xj∈pred(xi)

PC(c) ·φ(xi, c, s) · ∆̂(xj, c, s)

︸ ︷︷ ︸
µc (sc)

> G ′

⇔
∑
c∈C

µc (sc) > G
′ (5.18)

5.4 replica activation problem 133

Similarly, considering Equation 5.14, the minimization term (Equa-
tion 5.10) can be written as:

min
∑
c∈C

∑
x̃l
i
∈P̃,

xj∈pred(xi)

PC (c)γ
(
xj, xi

)
∆(xj, c)s(x̃li, c)

︸ ︷︷ ︸
λc (sc)

⇔ min
∑
c∈C

λc (sc) (5.19)

Note that, while the CPU and minimum replicas constraints can be
evaluated and satisfied considering each input configuration c sepa-
rately, the IC constraint and the cost minimization expression cannot;
nonetheless, they both can be expressed as a sum of |C | non negative
terms, and each of this terms can be evaluated separately for different
values of c.

Our decomposition approach consists in defining |C | sub-problems
probc, one per input configuration; the solution of each problem is
a partial replica activation strategy sc that satisfies at least the cor-
responding CPU and minimum replication constrains (Equations 5.12

and 5.13). The sub-problems’ optimization goal and possible addi-
tional constraints, instead, depend on the particular phase the de-
composition algorithm is in. Algorithm 1 sketches, in pseudo-code,
the main steps of the decomposition-based solver.

The algorithm starts by maximizing the µc(sc) values of each sub-
problem (Phase 1, lines 1–9). Note that, after this phase is complete,
and if a solution is found for every sub-problem, an upper bound
on the possible IC for the original problem can be obtained using
Equation 5.18: through it, it is possible to test immediately whether
the original problem admits solutions (line 7) and output an initial
sub-optimal solution when it does. During Phase 2 (lines 10–22), this
initial solution is improved by working separately and iteratively on
each sub-problem. At every iteration, the problem providing the mini-
mum contribution to the overall IC, weighted by its contribution to the
cost (line 12), is chosen as a candidate for improvement, and the algo-
rithm tries to decrease its cost while ensuring that the obtained µc(sc)
value still allows to satisfies the overall IC requirement (line 13). This
iteration is repeated until no improvement can be obtained from any
sub-problem. In Phase 3, finally, the partial replica activation strate-
gies are combined and the result returned as output.

Like the LNS-based strategy, this algorithm can decide whether the
problem is feasible, but does not recognize optimal solutions. For
particularly complex problem instances, it might be necessary to set
a time limit for Phase 1 to avoid to block the solver for too long; in
such cases, the solution obtained after this initial phase is no longer
guaranteed to be an upper bound on the obtainable IC, and so the
lack of an initial feasible solution can no longer be used to prove the

134 adaptive fault-tolerance in dspss

Algorithm 1: Decomposition-based Search Strategy
input : {probc}: the |C| decomposed subproblems.
output : A replica activation strategy s, or None if no solution found

1 Phase 1: /* µc maximization */

2 foreach probc do
3 smax

c ← maximize µc in probc
4 if smax

c is None then return None µmax
c ← maximum µc for probc

5 λmax
c ← cost value corresponding to smax

c

6 end
7 if

∑
c∈C µ

max
c < G ′ then /* Feasibility test */

8 return None
9 end

10 Phase 2: /* optimization */

11 foreach probc do µcur
c ← µmax

c ; λcur
c ← λmax

c while no probc can be further
improved do

12 c ′ ← maxc (λcur
c /µcur

c) /* Choose prob. to improve */

13 µlimit
c′ ← G ′ −

∑
c∈C
c6=c′

µcur
c

14 Post µc′ > µlimit
c′ as constraint on probc′

15 Post λc′ < λcur
c′ as constraint on probc′

16 scur
c′ ← findFirst(probc′)

17 if sc′ is None then
18 probc′ cannot be improved further
19 else
20 Update µcur

c′ and λcur
c′ according to scur

c′

21 end
22 end
23 Phase 3: /* End */

24 s← Combine all the scur
c

25 return s

unfeasibility of the entire problem. Let us note, finally, that all the
sub-problem optimization steps can be performed with any of the
presented optimization techniques. Section 5.6.1 shows that using the
LNS-based strategies can significantly improve solution performance.

5.5 runtime architecture

LAAR has been designed to be integrated with little effort with existing
platforms that already offer static active replication and that support
the model described in Section 5.2. The work flow used to deploy a
LAAR-enabled application is schematically shown in Figure 5.6. The
application descriptor, the IC SLA requirement, and the application it-
self (see again Section 5.2) are fed to two different components. The
first implements one of the optimization algorithms described in the
previous section and produces a replica activation strategy. The sec-
ond component, i.e., the Application Preprocessor, modifies the original
application to produce the extended application, which enhances the
original user application with LAAR functionalities. In particular, as

5.5 runtime architecture 135

RAS

Optimization App
Preprocessor

App
Descriptor

Ext.
App

DSPS

SLA App

Figure 5.6: Deployment of a LAAR application.

Src0

HA
Controller

SrcN

...

Rate
Monitor

Oh

Oj...

...

Oi

RAS
Rep. Activ. Str.
PE
Replicated PE

Ok

Ok
R0

Ok
R1

enable

enable

Figure 5.7: Structure of extended processing graphs.

shown in Figure 5.7, two special operators are added to the original
processing graph — the Rate Monitor and the HAController —, and
the behavior of application operators is extended in order for them
to understand and accept activation and deactivation commands. The
extended application is finally deployed on the actual system.

At runtime, the Rate Monitor operator periodically measures the
data rates from sources and outputs this measurement result. The
High Availability Controller (HAController), initialized at startup with
the chosen replica activation strategy, receives the sources data rates
from the Rate Monitor and, according to their values, it chooses the
appropriate replica activation state based on the current input config-
uration. To achieve that quickly and effectively, it uses an R-Tree [261]
-like data structure that selects the input configuration that is spatially
closer to the current data rates and whose components are all greater
than the corresponding actual rates. This choice guarantees that the
chosen replica configuration will never underestimate the actual sys-
tem load. Whenever a change in the replica configuration occurs, the
HAController reliably sends activations or deactivation commands to
operator replicas.

136 adaptive fault-tolerance in dspss

Application operators behavior is also slightly modified to make
them accept commands from the HAController. When deactivated,
they immediately stop processing their input and transit into an idle,
resource-saving state. On the contrary, when activated again, they
re-synchronize their state with one of the active replicas and restart
processing their input. Since this process is almost identical to the
recovery of crashed operators in traditional static replication systems
[195], we will not detail it further.

Let us emphasize again that, since they do not require any par-
ticular platform-dependent functionality, both the Rate Meter and
HAController can be implemented transparently on top of existing
stream processing platforms as standard operators. For what concern
the enhancements needed on application operators, they are minimal
and can be implemented, for example, by dynamically proxying user
provided components. In Section 5.6.2, we describe how we imple-
mented this architecture on IBM InfoSphere Streams.

5.6 experimental evaluation

In this section, we present the results of the experimental evaluation
we performed to assess the goodness of our LAAR solution. The section
is organized in two parts. In the first, we concentrate on the off-line
part of the problem, i.e., the static optimization process that, starting
from stochastic knowledge of application characteristics, finds solu-
tions to the associated replica activation problem; we compare the
three CP algorithms presented in Section 5.4.2, and highlight their dif-
ferent properties. In the second part, instead, we move our attention
to the dynamic part of LAAR, i.e., on the on-line mechanisms that reg-
ulate the activation and deactivation of application operator replicas
to guarantee the required IC level. We introduce a prototype imple-
mentation of these mechanisms on top of IBM InfoSphere streams
(developed during the research collaboration with IBM Research in
Dublin that resulted in the design of LAAR), and we present an exten-
sive experimental evaluation on a 60-cores cluster that demonstrate
how our system is actually able to regulate the trade-off between con-
sistency levels and execution cost, while always satisfying the given
SLA constraints.

5.6.1 Off-line optimization

Our evaluation and comparison of the optimization algorithms pre-
sented in Section 5.4.2 has two main objectives:

• Compare the speed of the three strategies and the quality of the
solutions they can find within fixed time limits.

5.6 experimental evaluation 137

• Evaluate the scalability of the solutions (in particular of the
decomposition-based strategy) as the problem size grows.

For the first part of this evaluation, we consider a batch of 20 differ-
ent stream processing applications with processing graphs of 96 oper-
ators each. Every application has three data sources, each producing
output at two possible data rates (for a total of 8 input configurations),
and is associated with a replicated deployment (two replicas per oper-
ator, 192 replicas in total) on 24 computing hosts. The IC constraint in
the related replica activation problem is set to 0.50. We choose these
applications as we believe their complexity to be well representative
of real world stream processing application deployments.

We compare the optimization algorithms in the following variants:

1. Basic solver with partial sub-optimal-filtering (BASIC).
2. LNS-based strategy using BASIC for the initial solution and sim-

ple weighted random relaxation method (L_SRW).
3. LNS-based strategy using a greedy initial solution and weighted

random relaxation method (L_GRW).
4. LNS-based strategy using a greedy initial solution and simple

random relaxation method (L_GRS).
5. Decomposition strategy using BASIC for Phase 1 (DEC_S).
6. Decomposition strategy using LNS_GRW for Phase 1 (DEC_L).

All the experiments are executed on a machine with an AMD Phenom
II X6 1055T @2.8 GHz processor and 8 GB of main memory. The ILOG
CP Optimizer is configured to use only one worker (single threaded
solution), and its search time limit is set to 300 seconds wall time.

Due to the complexity of the problems, for no instance it was possi-
ble to demonstrate the optimality of the solutions that we found; how-
ever, we were able to find feasible solutions for all instances except
four. Here, we report only the most interesting results: the interested
reader will find more detailed results, together with the download-
able replica activation problem instances used in this evaluation, in
our on-line repository [262].

The bar plot in Figure 5.8 compares the various search algorithm
variants to BASIC, which we choose as the base line solution method;
the plot analyzes two parameters, i.e., the time to find the first fea-
sible solution (FTIME) and its cost (FCOST), and it is obtained by
normalizing, separately for each variant and problem instance, the
values of FTIME and FCOST with respect to the results obtained in
BASIC. The figure shows the average of these values along with the
associated standard error. The plot shows that the best results are
provided on average by the LNS-based search variants using a greedy
initial solution: in all but two cases they are able to find a first feasible
solution much more quickly than BASIC. In general, the weighted ran-
dom relaxation method seems to provide some advantage with respect
to simple random relaxations, with times up to 66% shorter. However,

138 adaptive fault-tolerance in dspss

0

1

2

3

4

5

BASIC L_SRW L_GRW L_GRS DEC_S DEC_L
Search variant

M
ea

n
ra

ti
o Variable

FCOST

FTIME

Figure 5.8: Mean time to find an initial feasible solution and associated solu-
tion cost. All the results are normalized w.r.t. the BASIC variant.

if the time needed to find a first feasible solution is normally very
small, the quality of that solution is better than BASIC in only two
cases and more expensive in all the others (20% and 24% on average
for the simple random and the weighted random, respectively). The
decomposition-based solutions perform remarkably worst than the
other ones: this is due to the fact that this approach needs to find an
initial solution for as many problems as the number of configurations
(eight in this case) before being able to produce a first complete solu-
tion; moreover, this starting solution tries to maximize the obtained
IC value, and thus is generally associated with an high cost (recall
Figure 5.4b).

Similarly, in Figure 5.9, we compare the quality of the best solu-
tions that our algorithms can find within the 5 minutes time limit. It
is immediately clear that the two decomposition-based variants are
able to find solutions that are at least as good or slightly better than
those found by the BASIC variant. In more detail, in the only six in-
stances where the decomposition variants finds solutions worst than
BASIC, that solution is at most 23% more expensive; at the same time,
they can save considerable amounts of time (43% on average). The re-
sults show also that, on the one hand, DEC_L can find good solutions
much faster than DEC_S (4% to 70% faster), probably due to the ini-
tial speed-up given by the LNS greedy strategy used to find the start-
ing solutions for Phase 1; on the other hand, the solutions found by
DEC_L tend to be a little more expensive than those found by DEC_S
(from 1% to 24%): that is explained by considering that the use of
the BASIC solver in Phase 1 usually gives tighter IC upper bounds,
which , in turn, permit to use looser constraints on the µlimit

c values
in Phase 2. The solutions found by the LNS-based variants, finally, are
in all but one case worst than those found by BASIC, with a cost in-

5.6 experimental evaluation 139

0.00

0.25

0.50

0.75

1.00

1.25

BASIC L_SRW L_GRW L_GRS DEC_S DEC_L
Search variant

M
ea

n
ra

ti
o Variable

BCOST

BTIME

Figure 5.9: Comparison of the time needed to find the best solution within
the time limit and associated solution cost (average value and
standard error). All the results are normalized w.r.t. the BASIC
variant.

crease that goes up to 57%. Among the three LNS-based variants, the
one that provides the best results is L_SRW, thanks to its better (al-
though slower) initial solutions, with costs that are between 1% and
13% more expensive, and solution times that are 75% faster to 26%
slower than BASIC.

Finally, we have evaluated the scalability of the decomposition-
based strategy when the number of input configurations grows. In
order to do so, we started from an application graph with 32 opera-
tors and one data source, with a replicated deployment (64 operators)
on 8 hosts, and we randomly generated 40 different applications, for
each, customizing the number of possible data source rates. The re-
sult is a set of 40 different instances of the replica activation problem
sharing the same processing graph and deployment, but with a pro-
gressively growing number of input configurations (from 2 to 80 by
steps of 2). We tried to solve these instances by using the BASIC and
the DEC_S search variants. Figure 5.10 shows the time taken by the
two strategies to find their best solution as the number of input config-
urations grows. The results for the BASIC variants grow very quickly,
and, for instances with more than 18 configurations, it not possible
to find any solution within the time limit. On the contrary, by using
DEC_S, the solution time grows much more slowly, and it is possible
to solve all the problems up to 80 input configurations.

The presented results show that all the three LAAR optimization al-
gorithms have their own strengths and limitations, and choosing one
rather than the other depends on specific problem characteristics and
on the desired properties of the solution process and of the solution it-
self. In fact, the LNS-based variants represent an appropriate approach

140 adaptive fault-tolerance in dspss

0

100

200

300

20 40 60 80
Num. of input configurations

Ti
m

e
(s

) Search Variant

BASIC

DEC_S

Figure 5.10: Comparison of BASIC and DEC_S average solution time when
the number of input configuration grows.

when finding quickly a “good-enough” feasible solution is the main
concern. On the other hand, when more time budget is available, or
when the scale of the problem makes the other approaches not viable,
the decomposition-based algorithm can find good solutions and scale
particularly well for instances where data sources produce input at
many possible rates. Finally, the straightforward implementation on
the ILOG Optimizer provides the most consistent behavior across all
the possible scenarios when used in combination with the partial sub-
optimal solution filtering constraint.

5.6.2 On-line execution

We have implemented LAAR on top of an enterprise deployment of an
industrial-strength stream processing system, IBM InfoSphere Streams,
and we tested it on a set of artificially generated stream processing
applications. In this section, after describing the main aspects of the
implementation on Streams and the rationale behind our synthetic
application generation process, we present the performance results
obtained by running these applications on a 60-core cluster.

LAAR on IBM InfoSphere Streams

Already introduced in Section 3.4.2, IBM InfoSphere Streams [166] is
a DSPE evolved from the SPC research project [28]. In Streams, appli-
cations are written in an ad-hoc SPL language that is used to describe
operators and their stream connections. At compilation time, opera-
tors are transformed into their runtime counterparts, i.e., Process-
ing Elements (PEs), each executed, after application deployment, in
its own process on the host system. The mapping from operators to

5.6 experimental evaluation 141

PEs is usually many-to-one, as the Streams compiler can fuse [171]
several operators into single PEs to minimize context-switching and
communication overheads. At the time of writing, the only form of
fault-tolerance supported natively by Streams is checkpointing [193].

In order to use LAAR, which leverages active replication support
from existing platforms, we implemented a minimal active replica-
tion system on top of Streams, based on operator proxying. The same
proxying technique is also leveraged to implement the replica acti-
vation and deactivation mechanism needed by LAAR at runtime. In
more detail, in the application preprocessing step, the application SPL
sources are modified by creating two replicas of every operator and
by introducing, for each replica, a special HAProxy operator. This op-
erator intercepts the input and output streams of the proxied replica
and has the following functions:

• Accept activate and deactivate commands from the LAAR HACon-
troller. When active, HAProxy forwards all the input to the prox-
ied operator replica and all its output to all the replicas of its
successors; when inactive, all the input is ignored and no output
tuple is forwarded.

• Send periodic heartbeat messages to the proxies of the replica’s
successors to indicate that the replica is alive.

• Receive heartbeats and input tuples from all the replicas of the
proxied operator predecessors and forward only data from the
current primary to the proxied operator.

Each proxy and its corresponding operator replica are fused into a
single PE using the partition co-location setting.

Rate Meter and HAController PEs are also inserted in the operator
graph, the latter customized with the path to a JSON file describing
the replica activation strategy to use at runtime.

Experimental setup

We generated a corpus of different stream processing applications on
which to test and validate our LAAR approach. To this purpose, we
developed and used a generator that builds synthetic stream process-
ing applications from a set of descriptive parameters. The output of
the generation is an application descriptor, which is then transformed
into a corresponding InfoSphere Streams application. Every PE in the
generated application is mapped onto a deterministic Streams oper-
ator that behaves according to its concise attributes. More precisely,
tuple processing is simulated through busy wait cycles of configured
length, and selectivity is implemented by producing an output tu-
ple after receiving, from an input port, a number of tuples equal or
greater than an integer multiple of its selectivity. These operators are
stateless, with no particular semantics associated with their output.

142 adaptive fault-tolerance in dspss

Our deployment environment consists of a 60-core IBM BladeCen-
ter cluster. Each node is equipped with one Intel Xeon X5690 pro-
cessor and 96 gigabytes of primary memory. The cluster runs an in-
stance of InfoSphere Streams v.2.0.0.4, with one of the servers hosting
Streams management services only, and the remaining dedicated to
the execution of PEs. In all the experiments, we used applications com-
posed of 24 PEs — 48, considering the twofold replication (1 PEs per
CPU core) — deployed on the available servers to minimize inter-host
communication. During the execution of the experiments, we period-
ically query Streams about the current status of all the PEs and log
this information.

We present the results of a set of experiments on 100 generated
applications. The application graphs have an average outgoing node
degree between 1.5 and 3, and the operators are generated with port
selectivity values uniformly distributed between 0.5 and 1.5. An exter-
nal source produces tuples at two possible input rates (labeled “Low”
and “High”), both chosen from a uniform distribution between 1 and
20 tuples per second. The PEs per-tuple CPU cost parameters are ran-
domly generated ensuring that i) the deployment is not overloaded
when all replicas are active and the input configuration is “Low” and
that ii) it would instead be overloaded when all replicas are active
and the input configuration is “High”. Every experiment runs on a
5 minute long input trace, with the High input configuration being
active for one third of the trace. All the PEs are configured with one
queue for each input port, long enough to hold 2 seconds of tuples in
the “High” input configuration; once a queue is filled up, new tuples
are dropped.

For every application, we run experiments using six different repli-
cation approaches, henceforth referred to as variants. The first three
variants use our LAAR approach: we used the decomposition-based
search algorithm to obtain replica activation strategies for three dif-
ferent IC requirements of 0.5, 0.6, and 0.7, labeled in the following as
L.5, L.6, and L.7, respectively. In order to compare LAAR with other
possible static an dynamic replication techniques, we also run experi-
ments using the following other three variants:

• Non Replicated (NR). The application is deployed on the avail-
able resources with no PE replication. A NR variant is obtained
starting from the PE activations for the “High” input rate from
the D.5 variant, and modifying them to make sure that only
a replica of each PE is ever active. The obtained activations are
used for both the possible input configurations. This simple pro-
cedure permits to quickly obtain a non replicated deployment
over all the cluster resources that guarantees that the system is
never overloaded.

• Static Replication (SR). For every PE, both replicas are active all
the time independently of the current input configuration.

5.6 experimental evaluation 143

• Greedy (GRD). A dynamic replica activation strategy is derived
using the following greedy algorithm: starting from a static ac-
tive replication setting, for every input configuration, redundant
PE replicas are iteratively disabled until every host is non over-
loaded; at each algorithm iteration, an overloaded host is cho-
sen, and the replica that consumes the most CPU is chosen for
deactivation. A simple heuristic is used to prefer the deactiva-
tion of upstream PE first.

Evaluation on BladeCenter cluster

We present an evaluation of the LAAR approach compared to the dif-
ferent replication variants considering the following two edge failure
models: i) No failure ever occurs (referred to as best-case scenario); ii) a
replica of each PE is permanently crashed throughout the experiment
according to the pessimistic failure model presented in Section 5.4.1
(referred to as worst-case scenario); iii) during the experiment, a ran-
dom server crashes and is recovered after some time. Many of the re-
sults in this section are presented through box plots, which show how
metrics of interest are distributed across executions of different appli-
cations when different dynamic replication variants are used. Specifi-
cally, each box in a box plot shows the 25

th, 50
th and 75

th percentiles
of the population of measured values. The ends of the whiskers rep-
resent the smallest (biggest) sample within 1.5 times the inter-quartile
range, and circles represent outliers. We do not differentiate by other
graph parameters (e.g., average node degree) since our experiments
have shown that they do not affect the performance results relevantly.

Figure 5.11 (top) shows the distribution of the total CPU time used
to process all the input traces when using the considered variants in a
best-case scenario. To compare measurements from different applica-
tions, the results are normalized with respect to the value measured
when a non-replicated deployment is used (NR). As expected, static
active replication (SR) is the variant using the highest amount of CPU
time to process the same trace, with the overhead due to active repli-
cation being between 61% and 90% (note that this is not 100% since
the deployment cluster does not have, by design, enough resources
to handle the load peak). As expected, the greedy (GRD) variant is
the second most expensive one because it deactivates “just enough”
replicas for the system not to be overloaded. The three LAAR variants
result to be the cheapest solutions in terms of resource use and, most
interestingly, the cost of each of them is proportional to the IC value
requested. This is a very important feature of our solution because
it gives a direct way to correlate the desired reliability level to its
runtime cost.

Figure 5.11 (bottom) analyzes, in the same best-case scenario, the
ability of the studied variants to efficiently use the available resources
by adapting to changing input configurations. In particular, we mea-

144 adaptive fault-tolerance in dspss

1.000 1.774 1.491 1.579 1.658 1.682

1.00

1.25

1.50

1.75

2.00

NR SR L.5 L.6 L.7 GRD
Variant and goal

C
PU

 ti
m

e
(n

or
m

)

1.000 12.560 2.483 2.340 2.221 1.981

0

10

20

30

NR SR L.5 L.6 L.7 GRD
Variant and goal

Tu
pl

es
 d

ro
pp

ed
 (n

or
m

)

Figure 5.11: Distributions of the total CPU time used — top – and total num-
ber of tuples dropped — bottom — in a best-case experiment
scenario, normalized w.r.t. the NR variant. Labels correspond
to mean values.

sured the number of tuples dropped due to queues filling up during
the experiment. Note that static replication, not having any form of
dynamic adaptation to the input rate, can drop up to 33.6 times more
tuples compared to the non-replicated deployment, with a very high
variance due to the different characteristics of different applications.
In all the dynamic variants, instead, the amount of tuples dropped is
much smaller, even if it is not zero mainly because of the effects of
glitches on the input rate (a phenomenon that could be smoothed by
carefully tuning PE queue lengths).

Another important element we looked at for the evaluation of our
approach is the applications output tuple rate during load peaks. In
fact, this value directly depends on resource availability and on the
ability of the platform to effectively use these resources. For each dif-
ferent application, we measured the average output data rate in the

5.6 experimental evaluation 145

1.000 0.668 0.950 0.953 0.936 0.891

0.25

0.50

0.75

1.00

NR SR L.5 L.6 L.7 GRD
Variant and goal

Pe
ak

 o
ut

. r
at

e
(n

or
m

)

Figure 5.12: Output data rate during load peak, normalized w.r.t. the NR
variant. Labels correspond to mean values.

over-provisioned and non-replicated configuration (NR) and used it
as reference to evaluate the other variants. Figure 5.12 shows the dis-
tribution of the output data rate ratios measured for all the appli-
cations and variants. When static active replication (SR) is used, the
applications output rate is on average 33% slower than the NR variant
(up to 63%), while, when LAAR is used, the rate is at most 9% slower.
The greedy variant (GRD) is in general better than the static one, but,
differently from LAAR, it is not able to provide a consistent behavior
across different applications, with an output rate ratio that is from 2%
to 38% slower than NR.

We ran the same applications also assuming the pessimistic failure
model defined in Section 5.4.1, in order to verify whether our sys-
tem was actually able to satisfy the promised IC requirements in real
stream processing deployments. The graph at the top of Figure 5.13

shows the distribution of the normalized total number of samples
produced by PEs in the worst-case scenario for all the replication vari-
ants. While the NR variant fails to produce any output (recall that in
this failure model one active replica of each PE is permanently failed),
the three LAAR variants are able to produce a fraction of output tuples
that satisfies their respective IC requirement, except in a very limited
number of cases, in which the violation is still never bigger than 4.7%.
On the contrary, the GRD variant, while performing well in many
cases, is not able to provide a consistent behavior across different ap-
plication, with measured IC values that can be as big as 0.95 but also
as low as 0.35.

Figure 5.14 summarizes the presented results showing the average
numbers of tuples dropped, the average IC value, and the average
cost of different replication strategies compared to the static active
replication variant. It is immediate to see that LAAR permits to con-

146 adaptive fault-tolerance in dspss

0.000 0.566 0.656 0.749 0.674

1.0000.00

0.25

0.50

0.75

1.00

NR SR L.5 L.6 L.7 GRD
Variant and goal

IC
 v

al
ue

0.838 0.853 0.874 0.939 0.886

1.000
0.7

0.8

0.9

1.0

NR SR L.5 L.6 L.7 GRD
Variant and goal

Tu
pl

es
 p

ro
du

ce
d

(n
or

m
)

Figure 5.13: Total number of samples processed simulating the pessimistic
(worst-case) failure model — top — and a single server crash
model — bottom — normalized w.r.t. the failure-free NR vari-
ant (SR is introduced for ease of comparison). Labels corre-
spond to mean values.

trol application execution costs by tuning the desired IC guarantees, a
crucial property in our business application scenario.

Finally, in order to evaluate the system behavior when more re-
alistic failure scenarios are considered, we re-executed a randomly
sampled subset of 40 applications, using a single host crash-failures
with recovery failure model. In practice, during each experiment run,
we randomly crash one of the PE hosting servers. The failure lasts
for 16 seconds, i.e., the time needed, according to the experiences in
[263], for Streams to detect it and migrate failed PEs to another host.
We force these failures to occur only during “High” input configu-
rations, because it is the case when LAAR provides the weaker fault-
tolerance guarantees (thus disfavoring our solution). Figure 5.13 (bot-
tom) shows the IC values measured for the different variants in this

5.7 future work 147

0.00

0.25

0.50

0.75

NR L.5 L.6 L.7 GRD
Variant and goal

R
at

io
 w

.r
.t.

 S
R Variable

Tuples dropped

IC

Cost

Figure 5.14: Summary: comparison of the different variants (mean values
normalized w.r.t. SR)

scenario. As expected, the IC measured for the LAAR variants is much
higher than their guaranteed values, given the less pessimistic failure
model. Note that the results for L.5 are similar to those measured
for the no-replication variant: recall, in fact, that the NR deployment
is derived from L.5 by deactivating the replicas which have still two
active replicas in the “High” configuration (which are usually just a
few). Once again, the GRD variant confirms its unpredictable behav-
ior in the way it responds to failures.

5.7 future work

The good feedback received from our LAAR experimental evaluation
encourage us to continue our exploration of the possibilities given by
weaker fault-tolerance techniques. In particular, we will continue our
work on LAAR and try to improve both the off-line optimization phase
and its on-line enforcement mechanism.

On the one hand, for what concerns the LAAR optimization problem,
we plan to:

• Investigate the use of alternative and more realistic failure mod-
els with the goal of providing tighter lower bounds on the guar-
anteed IC values.

• Extend the replica activation problem formulation by develop-
ing a penalty model associated to IC violations considered as
minimization terms rather than strict constraints.

• Conduct a deeper examination of the replica activation prob-
lem and try to correlate specific problem characteristics (e.g.,
patterns in the graph shape, deployment properties) to the per-
formance of different search strategies.

148 adaptive fault-tolerance in dspss

On the other hand, we want to improve and validate our runtime
LAAR implementation further. Specifically, we consider the following
opportunities particularly worth of being explored:

• Extend the platform experimental evaluation to complex real-
world applications, evaluating its impact on the semantics of
applications output in different scenarios.

• Integrate LAAR with other DSPSs, including Quasit, and verify its
actual portability.

• Study the effects that unexpected input configurations have on
the LAAR quality guarantees, and consider to develop on-line al-
gorithms that adapt statically computed replica activation strate-
gies to new runtime conditions.

Let us finally note that, although we have designed and developed
LAAR with the stream processing context in mind, the presented prin-
ciples are applicable to the much larger domain of distributed data
flow systems that can tolerate weaker fault-tolerance levels through
dynamic active replication. An important research direction will be
the validation of this claim by applying and evaluating our technique
on a broader set of data management scenarios.

5.8 summary and conclusions

Stream processing service providers may need to temporarily provi-
sion additional resources to hosted applications during load spikes, if
avoiding to drop or delay application tuples is a requirement. In this
chapter, we have presented LAAR, a novel technique for dynamic active
replication that can reduce the costs of provisioning these resources
by enforcing weaker fault tolerance guarantees for applications that
can tolerate them. In particular, LAAR is able to temporarily gather
CPU resources by dynamically activating and deactivating operator
replicas according to the current system load. The runtime replica
deactivation decisions are guided by a so called replica activation strat-
egy which is built by solving an off-line optimization problem that
uses limited stochastic knowledge of application characteristics. We
have presented three different algorithms that solve this problem us-
ing several constraint programming techniques, and we have shown
that each of them has its own advantages and limitations. Finally,
to evaluate the effectiveness of our technique, we have implemented
LAAR on top of IBM InfoSphere Streams and deployed it on a 60-cores
cluster. Our evaluation shows that LAAR can effectively trade runtime
costs off for perfect consistency while still enforcing completely pre-
dictable and guaranteed fault-tolerance levels.

We are continuing our work on LAAR in two main directions. First,
we are trying to improve the underlying optimization model making

5.8 summary and conclusions 149

less restrictive assumptions about IC satisfaction constraints, and in-
cluding the possibility of IC violations in a penalty-based cost model.
Second, we are studying the still unexplored problem of dealing with
incomplete or partially wrong statistical descriptions of applications,
by trying to develop smart on-line algorithms that compensate to off-
line optimization imprecision. Let us finally note that, although we
have presented LAAR in the context of stream processing, we deem it
applicable to the much larger domain of distributed data flow sys-
tems that can tolerate incompleteness.

6 C O N C L U S I O N S

In this dissertation, we have presented our work about Quality of
Service (QoS) provisioning in large scale middleware infrastructures
supporting the vision of Smart Pervasive Environments (SPEs). In this
chapter we summarize our contributions by reporting our most im-
portant findings, and point out open research directions for future
extensions of our work.

6.1 major contributions

In Chapter 2, we have identified the quality requirements of middle-
ware services supporting the distribution of pervasive sensing data,
and we have proposed an original QoS-based model for PUB/SUB sys-
tems that satisfy these requirements. Based on this model, we have
presented a detailed technical survey of many state-of-the-art PUB/SUB
solutions analyzing their specific offers of QoS enforcement mecha-
nisms. Starting from the comparison of their characteristics, we have
highlighted the general model, design, and technical aspects that reg-
ulate the relationships between quality guarantees, system scalability,
and runtime data distribution costs in PUB/SUB data exchange. From a
proper understanding of these trade-offs, we have derived promising
guidelines for future research in the field of QoS-based large scale data
distribution, and we have provided practical and general principles
useful for the development of future PUB/SUB systems extensions that
effectively address the technical challenges of scalability and quality.

Chapter 3 has expanded this modeling and surveying work to the
area of scalable data center stream processing. We have proposed a
simple yet powerful description framework for DSPSs based on the or-
thogonal analysis of their abstract, development, and execution mod-
els, and, through it, we have discussed the semantics and technical
implementation details of the most relevant QoS provisioning features
currently available in DSPS solutions. Once again, the goal of our
analysis has been to put forth the prominent design and technical
challenges, together with existing and envisioned solutions, for the
runtime enforcement of different QoS properties.

This study has led to the definition of the requirements for a QoS-
centric DSPS supporting the needs of pervasive environments. We
have presented an original stream processing model and architecture
answering these requirements in Chapter 4 by introducing Quasit,

151

152 conclusions

a novel distributed platform providing a scalable and highly con-
figurable execution environment for stream processing applications.
Uniquely, Quasit permits to decorate from coarse to fine grained ele-
ments of stream processing applications with QoS specifications, i.e.,
collections of quality requirements regulating their expected runtime
behaviour, and uses them to optimize its resource allocation policies.
The reported experimental evaluation of the Quasit prototype has
shown that Quasit offers scalable performance and limited manage-
ment overhead, also if compared to the widely used industrial-level
Apache S4 DSPS.

Our last contribution, presented in Chapter 5, is an on-the-field in-
vestigation on the promising opportunities offered by flexible QoS en-
forcement mechanisms that trade perfect guarantees off for reduced
costs. We have experimented with this particular class of QoS prop-
erties by proposing a novel technique for dynamic active replication,
called LAAR, that allows applications to request custom fault-tolerance
levels, measured through an ad-hoc consistency metric. Through a
wide set of experiments on real-world sized data center deployments,
we have shown that LAAR is able to temporarily gather CPU resources
by dynamically activating and deactivating operator replicas accord-
ing to the current system load and, by doing so, it can effectively
trade-off runtime costs with perfect consistency while still enforcing
completely predictable fault-tolerance levels.

On the whole, our all out surveying, modeling, implementation,
and experimental work demonstrates that, by providing data distri-
bution and processing middleware with application-level knowledge
of the quality requirements associated to different data processing
and distribution flows, it is possible to optimize significantly the uti-
lization of computational and network resources. The principles at
the core of this improvement are i) always to avoid over-provisioning
resources when and where they are non-strictly necessary, and ii) to
adapt their allocation dynamically also in response to changing sys-
tem conditions. By rigorously applying these two simple but funda-
mental principles in every architectural and implementation aspect
of the streams management infrastructure, it is possible to improve
systems scalability by making a smarter use of the available resources,
and, at the same time, to keep the growth of execution costs always
limited and proportional to the overall quality of service supplied.

6.2 future research directions

In this thesis we have done a thorough cross-layer analysis of the
many problems related directly or indirectly to the design and imple-
mentation of scalable and QoS-aware middleware supports for SPE.
We have explored several very important research aspects of the prob-

6.2 future research directions 153

lem, but we have also identified many still open research questions
worth pursuing. In this section, we concentrate the primary directions
that, in our opinion, should drive future research efforts in four sim-
ple principles:

• Offer domain-specific QoS policies. In this thesis, we have identified,
modelled, and classified several QoS policies for the data dis-
tribution and processing layers of emerging SPE architectures.
In choosing which policies to consider, we were guided by the
goal of representing general policies that could be useful in the
largest possible variety of SPE applications, while we purpose-
fully did not consider domain-specific policies, i.e., policies only
meaningful in specific application domains. One well represen-
tative example is the set of QoS parameters that regulate mid-
dleware behavior according to energy-related considerations,
very relevant, for example, in Wireless Sensor Networks (WSNs)
[264] data streaming scenarios. We believe that future research
should narrow the investigation scope also to specific applica-
tion areas and identify and study their most relevant QoS pa-
rameters. This work could lead to further optimizations in SPE
infrastructures and improve their adaptability and scalability.

• Stratified QoS modeling. We have remarked many times the role of
QoS-awareness as a mean to enable better infrastructure scalabil-
ity through intelligent resource management. The more details
users can provide about their applications quality requirements
— or, in other words, the finer the grain of QoS-based configura-
tion possibilities —, the more the opportunities to exploit this
external knowledge for runtime optimization purposes. How-
ever, as more and more customization knobs are provided, there
is an increasing risk of a quickly exploding complexity in the
system interfaces offered to infrastructure users. Future research
efforts should study extensively how this complexity can be
managed. Providing sensible default values for QoS specifica-
tions is an obvious solution that can work in simple scenar-
ios, but less simplistic solutions must be sought for the more
general case. A possible viable approach is, in our opinion, the
definition of stratified QoS models, where a large and very fine
grained set of QoS policies defined at the lowest stratum is grad-
ually abstracted by increasingly less, simpler, and more abstract
policies at higher levels. A major challenge, here, will be to de-
fine meaningful mappings from higher to lower strata, and to
consider the possibility to dynamically modify these mappings
through adaptive runtime mechanisms.

• Partial and probabilistic QoS. Our experience with LAAR (Chat-
per 5) has only begun to scratch the surface of the many op-
portunities that, in our opinion, lay in weak, approximated, par-
tial, and stochastic models for QoS enforcement. As new large

154 conclusions

scale pervasive services are being proposed, it is becoming ev-
ident that not every application needs traditional perfect and
strict quality guarantees all the time. There are many possible
application-specific reasons that justify partial quality guaran-
tees, including low task criticality, information redundancy, or
domain-specific tolerance to approximated processing results.
The challenge is to identify all these opportunities and to define
algorithms that can intelligently exploit the additional degrees
of freedom offered by imperfect service level requests. If prop-
erly leveraged, as we have shown in our LAAR use case, this new
kind of QoS specifications have the potential to greatly improve
system scalability by providing even greater resource manage-
ment flexibility.

• Hierarchical QoS enforcement. While we have shown that the ex-
ploitation of the differentiated quality characteristics of differ-
ent application can improve scalability through better resource
allocation, we recognize, on the other hand, that the global en-
forcement of strong quality guarantees, such as perfect fault-
tolerance or strict processing latency bounds, can become harder
and harder as scale grows. This is especially true when a large
number of possibly geographically dispersed distributed partic-
ipants are all involved in the enforcement of quality-based be-
havior: in these cases, to run distributed algorithms for global
and strict QoS admission control, monitoring, and enforcement
can be severely expensive. We are convinced that a possible solu-
tion approach to successfully face this kind of challenges stands
in the development of new QoS management architectures based
on hierarchical models that make extensive use of locality prin-
ciples. For examples, algorithms based on this idea could use
traditional and strict QoS enforcement techniques within local
clusters of components of controlled size, and then scale up by
treating local clusters as hierarchical units where QoS is handled
through looser and more scalable methods.

6.3 final remarks

The actual realization of the vision of smart pervasive environments
is an exciting perspective with the potential of bringing tremendous
improvements to our society with the promise of novel pervasive ser-
vices assisting us in every aspect of our lives. While the increasingly
deep integration of ICT services in the physical world has been the
main enabling factor motivating this vision, we believe that the in-
telligent and efficient exploitation of the resulting information flows
will be the key to its success. This is confirmed by the growing inter-
est in “Big Data”-related initiatives from both academia and industry

6.3 final remarks 155

and by the important financial investments in that area for the years
to come. Within the “Big Data” movement — an umbrella expression
often used to refer to the wide set of cross-concerning technological
areas of data storage, distribution, analysis, and visualization — the
management of moving data still presents many important open chal-
lenges. Our contribution has proposed an original solution approach
for dealing with big data streams distribution and analysis issues,
which identifies the intelligent exploitation of differentiated quality
of service as the key factor for achieving scalability and cost effec-
tiveness. We hope that our work was successful in proposing general
and simple solution principles that can be used fruitfully as starting
points for new research efforts toward the realization of future large
scale smart pervasive environments. Finally, let us note that, while
the scope of our research was focused on the specific application sce-
nario of smart pervasive environments, we believe that most of the
presented results can be easily and successfully used in other sce-
narios with similar requirements of efficient and scalable distribution
and analysis of real time data streams, such as the management of
large scale telecommunication infrastructures or smart grids deploy-
ments.

A C R O N Y M S

ACID Atomicity, Consistency, Isolation, and Durability 49

ACK Acknowledgement 34

AET Ack Expected Threshold 34

API Application Programming Interface 31

ARQ Automatic Repeat-reQuest 26

BIC Best-Case Internal Completeness 126

BSD Berkeley Software Distribution

CDF Cumulative Distribution Function 28

CDR Common Data Representation 112

CEP Complex Event Processing 47

CP Constraint Programming 118

CPU Central Processing Unit

CTG Conditional Task Graph 120

CQL Continuous Query Language 54

DAG Directed and Acyclic Graph 82

DBMS Data Base Management System 49

DISC Data-Intensive Scalable Computing 45

DCRD Delay-Cognizant Reliable Delivery 32

DCPS Data-Centric Publish Subscribe 35

DDPE Distributed Data Processing Engine 49

DDS Data Distribution Service (OMG Standard) 35

DHT Distributed Hash Table 33

DPC Delay, Process, and Correct 67

DSMS Data Stream Management System 47

DSPE Distributed Stream Processing Engine 50

DSPS Distributed Stream Processing System 6

ESDS Eventually Serializable Data Service 119

FIC Failure Internal Completeness 126

FIFO First In, First Out 24

GCT Gap Curiosity Threshold 34

GD Guaranteed Delivery (PUB/SUB routing protocol) 34

GPS Global Positioning System

157

158 acronyms

HDFS Hadoop Distributed File System 104

HTTP Hypertext Transfer Protocol

IC Internal Completeness 126

ICT Information and Communications Technology 56

IDL Interface Definition Language 90

IFP Information Flow Processing 47

IntServ Integrated Services 33

I/O Input/Output

IP Internet Protocol

JMS Java Message Service 31

JMX Java Management Extensions 100

JSON Javascript Object Notation

JSR Java Specification Request 31

JVM Java Virtual Machine 55

LAN Local Area Network 6

LNS Large Neighborhood Search 129

LAAR Load-Adaptive Active Replication 118

MANET Mobile Ad-hoc Network 39

MTC Many-Tasks Computing 45

NACK Negative Acknowledgement 34

OD-SIG Operator Definition SIG 84

O-R Offer – Request (QoS Agreement Model) 20

O-R-C Offer – Request – Confirm (QoS Agreement Model) 20

OMG Object Management Group 35

OS Operating System 52

P2P Peer to Peer 18

PaaS Platform as a Service

PE Processing Element 70

PDBMS Parallel Data Base Management System 49

PNG Portable Network Graphics

POSIX Portable Operating System Interface

PUB/SUB Publish/Subscribe 10

QDM Quasit Domain Manager 91

QOR Quasit Operator Repository 93

QoS Quality of Service 2

QRN Quasit Runtime Node 91

acronyms 159

RBNB Ring Buffer Network Bus 31

RBO Ring Buffer Object 31

RFID Radio-frequency Identification

RMI Remote Method Invocation 12

RPC Remote Procedure Call 23

RSVP Resource Reservation Protocol 33

RTT Round Trip Time 108

SIG Streaming Information Graph 82

SLA Service Level Agreement 56

SPC Stream Processing Core 55

SPE Smart Pervasive Environment 2

SPL Stream Processing Language 69

SQL Structured Query Language 49

SQuAl Stream Query Algebra 67

TCB Timely Computing Base 37

TCP Transmission Control Protocol

TMS Traffic Management System 7

TTL Time To Live 25

UDF User Defined Function 53

UDP User Datagram Protocol

WFQ Weighted Fair Queueing 28

WSN Wireless Sensor Network 153

L I S T O F F I G U R E S

Figure 1.1 An architecture for smart pervasive environ-
ments. 4

Figure 1.2 Traffic management system data flow. 7

Figure 2.1 PUB/SUB sample matching. 16

Figure 2.2 PUB/SUB notification space. 16

Figure 2.3 PUB/SUB taxonomies. 17

Figure 2.4 QoS abstraction in PUB/SUB. 19

Figure 2.5 IndiQoS reservation process. 33

Figure 2.6 STEAM proximities. 36

Figure 3.1 A two levels classification of DISC systems. 49

Figure 3.2 A three-layers model of Distributed Stream Pro-
cessing Systems. 51

Figure 3.3 A DSPS processing graph. 52

Figure 4.1 Structure of a Quasit SIG. 83

Figure 4.2 Quasit abstract data model: SIG 86

Figure 4.3 Quasit abstract data model: Attached vs. OD-
SIG 86

Figure 4.4 Quasit abstract data model: Sources and Sinks 86

Figure 4.5 Quasit abstract data model: Operator 86

Figure 4.6 Structure of a Quasit simple operator. 87

Figure 4.7 Distributed architecture of a Quasit domain. 92

Figure 4.8 QDM Architecture. 94

Figure 4.9 QRN Architecture. 95

Figure 4.10 QOR Architecture. 96

Figure 4.11 Two levels QoS management architecture. 97

Figure 4.12 Data flow and threading model in a QRN in-
stance. 102

Figure 4.13 OpenCV Quasit pipeline 105

Figure 4.14 Quasit management overhead. 109

Figure 4.15 Quasit horizontal scalability. 110

Figure 4.16 QRNs resource overhead in Quasit. 111

Figure 4.17 Comparison of Quasit and S4 performance. 112

Figure 4.18 Comparison of Quasit and S4 scalability. 113

Figure 5.1 LAAR example pipeline. 123

Figure 5.2 LAAR replica deactivation in a simple scenario. 123

Figure 5.3 LAAR replica deactivation in a simple scenario:
measurements. 124

161

Figure 5.4 Shape of the solutions space for a replica acti-
vation problem. 130

Figure 5.5 Benefits of PSF in replica activation problems. 131

Figure 5.6 Deployment of a LAAR application. 135

Figure 5.7 Structure of extended processing graphs. 135

Figure 5.8 Comparison of optimization algorithms: first
solution. 138

Figure 5.9 Comparison of optimization algorithms: best
solution. 139

Figure 5.10 Comparison of BASIC and DEC_S average so-
lution time. 140

Figure 5.11 LAAR: CPU time and tuple drops. 144

Figure 5.12 LAAR: output data rate. 145

Figure 5.13 LAAR: tuples produced in failure scenarios. 146

Figure 5.14 LAAR: comparison of the different variants. 147

L I S T O F TA B L E S

Table 2.1 Three-dimensional taxonomy of PUB/SUB QoS
properties. 22

Table 2.2 List of surveyed PUB/SUB systems. 30

Table 2.3 Classification of surveyed PUB/SUB systems. 30

Table 2.4 Summary of supported PUB/SUB QoS proper-
ties w.r.t. subscription model. 37

Table 2.5 Summary of supported PUB/SUB QoS proper-
ties w.r.t. routing topology. 37

Table 3.1 Bi-dimensional taxonomy of DSPS QoS proper-
ties. 59

Table 3.2 List of surveyed DSPS systems. 66

Table 3.3 Classification of surveyed DSPS systems. 67

Table 3.4 Summary of supported DSPS QoS properties. 72

Table 4.1 Quasit QoS policies. 88

Table 4.2 Hardware and software configuration of QRN
nodes. 108

162

acronyms 163

Table 4.3 Critical input rates and speed-up with differ-
ent numbers of QRNs 109

L I S T O F L I S T I N G S

Listing 4.1 Use of Scala trait mix-ins. 98

Listing 4.2 Base descriptor class for OpenCV-based opera-
tors. 106

B I B L I O G R A P H Y

[1] M. Weiser, “The computer for the 21st century,” Scientific Ameri-
can, vol. 265, no. 3, pp. 94–104, 1991.

[2] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and
A. Campbell, “A survey of mobile phone sensing,” Communi-
cations Magazine, IEEE, vol. 48, no. 9, pp. 140–150, 2010.

[3] U. Lee, B. Zhou, M. Gerla, E. Magistretti, P. Bellavista, and
A. Corradi, “Mobeyes: smart mobs for urban monitoring with
a vehicular sensor network,” Wireless Communications, IEEE,
vol. 13, no. 5, pp. 52–57, 2006.

[4] F. Martinez, C.-K. Toh, J.-c. Cano, C. Calafate, and P. Manzoni,
“Emergency services in future intelligent transportation systems
based on vehicular communication networks,” Intelligent Trans-
portation Systems Magazine, IEEE, vol. 2, no. 2, pp. 6–20, 2010.

[5] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna, “Adap-
tive rate stream processing for smart grid applications on
clouds,” in Proc. of the 2nd international workshop on Scientific cloud
computing, (San Jose, CA, USA), p. 33, ACM Press, 2011.

[6] S. Aman, Y. Simmhan, and V. K. Prasanna, “Improving Energy
Use Forecast for Campus Micro-grids Using Indirect Indicators,”
in Proc. of the IEEE 11th International Conference on Data Mining
Workshops, (Vancouver, Canada), pp. 389–397, IEEE, 2011.

[7] N. Wickramasinghe, “Pervasive computing and healthcare,” in
Pervasive Health Knowledge Management (R. Bali, I. Troshani,
S. Goldberg, and N. Wickramasinghe, eds.), ch. 2, pp. 7–13, New
York, NY: Springer New York, 2013.

[8] J. Norman, “Impact of pervasive computing in education,” Iter-
national Journal of Education and Learning, vol. 2, no. 2, pp. 39–48,
2013.

[9] K. Martinez, J. Hart, and R. Ong, “Environmental sensor net-
works,” Computer, IEEE, vol. 37, no. 8, pp. 50–56, 2004.

[10] G. Ritzer and N. Jurgenson, “Production, consumption, pro-
sumption: The nature of capitalism in the age of the digital ’pro-
sumer’,” Journal of Consumer Culture, vol. 10, no. 1, pp. 13–36,
2010.

[11] A. Stuart and E. Thorsen, eds., Citizen Journalism: global perspec-
tives. Peter Lang Publishing, 2009.

165

166 bibliography

[12] T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shakes twit-
ter users: Real-time event detection by social sensors,” in Proc. of
the 19th International Conference on World Wide Web, (Raleigh, NC,
USA), pp. 851–860, ACM, 2010.

[13] F. Wang, S. Liu, P. Liu, and Y. Bai, “Bridging physical and virtual
worlds: Complex event processing for rfid data streams,” in Proc.
of the of 10th International Conference on Extending Database Technol-
ogy, pp. 588–607, Munich, Germany: Springer Berlin Heidelberg,
2006.

[14] J. Candia, M. C. González, P. Wang, T. Schoenharl, G. Madey,
and A.-L. Barabási, “Uncovering individual and collective hu-
man dynamics from mobile phone records,” Journal of Physics A:
Mathematical and Theoretical, vol. 41, no. 22, p. 224015, 2008.

[15] G. Cardone, L. Foschini, P. Bellavista, A. Corradi, C. Borcea,
M. Talasila, and R. Curtmola, “Fostering participaction in smart
cities: a geo-social crowdsensing platform,” Communications Mag-
azine, IEEE, vol. 51, no. 6, pp. 112–119, 2013.

[16] A. Grilo, A. Casaca, P. Pereira, L. Buttyan, J. Goncalves, and
C. Fortunato, “A wireless sensor and actuator network for im-
proving the electrical power grid dependability,” in Proc. of the
8th IEEE Conference on Next Generation Internet (NGI), pp. 71–78,
IEEE, 2012.

[17] S. Djahel, M. Salehie, I. Tal, and P. Jamshidi, “Adaptive traf-
fic management for secure and efficient emergency services in
smart cities,” in Proc. of the IEEE International Conference on Perva-
sive Computing and Communication – WIP Session, (San Diego, CA,
USA), pp. 340–343, IEEE, 2013.

[18] J. W. Yoon, F. Pinelli, and F. Calabrese, “Cityride: A predictive
bike sharing journey advisor,” in Proc. of the 13th IEEE Inter-
national Conference on Mobile Data Management, (Luleå, Sweden),
pp. 306–311, 2012.

[19] Y. Bengio, Learning Deep Architectures for AI, vol. 2 of Foundations
and Trends in Machine Learning. Now Publishing, 2009.

[20] M. Li, F. Ye, M. Kim, H. Chen, and H. Lei, “A scalable and elas-
tic publish/subscribe service,” in Proc. of the 25th IEEE Interna-
tional Parallel and Distributed Processing Symposium, (Anchorage,
AK, USA), pp. 1254–1265, IEEE, 2011.

[21] L. Barroso, J. Dean, and U. Holzle, “Web search for a planet: the
google cluster architecture,” Micro, IEEE, vol. 23, no. 2, pp. 22–28,
2003.

bibliography 167

[22] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proc. of the 19th ACM Symposium on Operat-
ing Systems Principles, (Bolton Landing, NY, USA), pp. 164–177,
ACM, 2003.

[23] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolida-
tion for cloud computing,” in Proc. of the 2008 Conference on Power
Aware Computing and Systems, (San Diego, CA, USA), pp. 10–14,
USENIX Association, 2008.

[24] J. Dean and S. Ghemawat, “Mapreduce: Simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[25] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building
blocks,” in Proc. of the 2nd ACM SIGOPS/EuroSys European Confer-
ence on COmputer Systems, vol. 41, (Lisbon, Portugal), pp. 59–72,
ACM, 2007.

[26] A. Alexandrov, M. Heimel, V. Markl, F. Hueske, E. Nijkamp,
S. Ewen, O. Kao, and D. Warneke, “Massively parallel data analy-
sis with pacts on nephele,” in Proc. of the 36th International Confer-
ence on Very Large Data Bases, (Singapore), pp. 1625–1628, VLDB
Endowment, 2010.

[27] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherni-
ack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik, “The design of the borealis
stream processing engine,” in Proc. of the 2nd Biennial Conference
on Innovative Data Systems Research (CIDR), (Asilomar, CA, USA),
CIDR Conference, 2005.

[28] L. Amini, H. Andrade, R. Bhagwan, and Frank Eskesen and
Richard King and Yoonho Park and Chitra Venkatramani, “Spc:
A distributed, scalable platform for data mining,” in Proc. of
the 4th Workshop on Data Mining Standards, Services and Platforms,
(Philadelphia, PA, USA), pp. 27–37, ACM Press, 2006.

[29] N. Marz, “Storm project.” http://storm-project.net/. Web
Page, last visited in Dec. 2013.

[30] A. S. Foundation, “Hadoop mapreduce.” http://hadoop.

apache.org/. Web Page, last visited in Dec. 2013.

[31] M. Stonebraker, U. Çetintemel, and S. Zdonik, “The 8 require-
ments of real-time stream processing,” ACM SIGMOD Record,
vol. 34, no. 4, pp. 42–47, 2005.

http://storm-project.net/
http://hadoop.apache.org/
http://hadoop.apache.org/

168 bibliography

[32] P. Tang and T. Venables, “Smart homes and telecare for indepen-
dent living,” J. Telemed. Telecare, vol. 6, no. 1, pp. 8–14, 2000.

[33] C. Xiang, P. Yang, C. Tian, Y. Yan, X. Wu, and Y. Liu, “Passfit:
Participatory sensing and filtering for identifying truthful urban
pollution sources,” Sensors Journal, IEEE, vol. 13, no. 10, pp. 3721–
3732, 2013.

[34] P. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” Computing Surveys, ACM,
vol. 35, no. 2, pp. 114–131, 2003.

[35] Z. Wan and P. Hudak, “Functional reactive programming from
first principles,” SIGPLAN Not., vol. 35, no. 5, pp. 242–252, 2000.

[36] J.-L. Maréchaux, “Combining service-oriented architecture and
event-driven architecture using an enterprise service bus,” IBM
Developer Works, pp. 1269–1275, 2006.

[37] P. Pietzuch, D. Eyers, S. Kounev, and B. Shand, “Towards a com-
mon api for publish/subscribe,” in Proc. of the 2007 Inaugural In-
ternational Conference on Distributed event-based systems, (Toronto,
Canada), pp. 152–157, ACM, 2007.

[38] I. Delamer and J. Lastra, “Loosely-coupled automation systems
using device-level soa,” in Proc. of the 5th IEEE International Con-
ference on Industrial Informatics, vol. 2, (Vienna, Austria), pp. 743–
748, 2007.

[39] C. Esposito, M. Ficco, F. Palmieri, and A. Castiglione, “Inter-
connecting federated clouds by using publish-subscribe service,”
Cluster Computing, pp. 1–17, 2013.

[40] C. Aurrecoechea, A. T. Campbell, and L. Hauw, “A survey of
qos architectures,” Multimedia Systems, vol. 6, no. 3, pp. 138–151,
1998.

[41] J. A. Zinky, D. E. Bakken, and R. E. Schantz, “Architectural sup-
port for quality of service for corba objects,” Theory and Practice
of Object Systems, vol. 3, no. 1, pp. 55–73, 1997.

[42] D. Menasce, “Qos issues in web services,” Internet Computing,
IEEE, vol. 6, no. 6, pp. 72–75, 2002.

[43] L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “Qos-aware middleware for web services compo-
sition,” Transactions on Software Engineering, IEEE, vol. 30, no. 5,
pp. 311–327, 2004.

bibliography 169

[44] F. Araújo and L. Rodrigues, “On QoS-aware publish-subscribe,”
in Proc. of the 22nd International Conference on Distributed Com-
puting Systems Workshops, (Vienna, Austria), pp. 511–515, IEEE,
2002.

[45] R. Baldoni, L. Querzoni, S. Tarkoma, and A. Virgillito, “Dis-
tributed event routing in publish/subscribe systems,” in Middle-
ware for Network Eccentric and Mobile Applications, ch. 10, pp. 219–
244, Göteborg, Sweden: Springer, 2009.

[46] J. Martins and S. Duarte, “Routing algorithms for content-based
publish/subscribe systems,” Communications Surveys & Tutorials,
IEEE, vol. 12, no. 1, pp. 39–58, 2010.

[47] R. Meier, “Taxonomy of distributed event-based programming
systems,” The Computer Journal, vol. 48, no. 5, pp. 602–626, 2005.

[48] J.-L. Poza-Luján, J.-L. Posadas-Yagüe, and J.-E. Simó-Ten, “A
survey on quality of service support on middleware-based dis-
tributed messaging systems used in multi agent systems,” in
Proc. of the International Symposium on Distributed Computing
and Artificial Intelligence, vol. 91, (Salamanca, Spain), pp. 77–84,
Springer Berlin / Heidelberg, 2011.

[49] S. P. Mahambre, M. Kumar, and U. Bellur, “A taxonomy of qos-
aware, adaptive event-dissemination middleware,” Internet Com-
puting, IEEE, vol. 11, no. 4, pp. 35–44, 2007.

[50] G. Mühl, L. Fiege, F. Gartner, and A. Buchmann, “Evaluating ad-
vanced routing algorithms for content-based publish/subscribe
systems,” in Proc. of the 10th International Symposium on Model-
ing, Analysis and Simulation of Computer and Telecommunications
Systems, (Forth Worth, TX, USA), pp. 167–176, IEEE, 2002.

[51] A. Corsaro, L. Querzoni, S. Scipioni, S. Piergiovanni, and A. Vir-
gillito, “Quality of service in publish/subscribe middleware,” in
Global Data Management, ch. 5, pp. 78–96, IOS Press, 2006.

[52] S. Behnel, L. Fiege, and G. Muhl, “On quality-of-service and
publish-subscribe,” in Proc. of the 26th International Conference
on Distributed Computing Systems Workshops, (Lisboa, Portugal),
pp. 20–20, IEEE, 2006.

[53] P. Eugster and R. Guerraoui, “Distributed programming with
typed events,” Software, IEEE, vol. 21, no. 2, pp. 56–64, 2004.

[54] P. Eugster, B. Garbinato, and A. Holzer, “Pervaho: A specialized
middleware for mobile context-aware applications,” Electronic
Commerce Research, vol. 9, no. 4, pp. 245–268, 2009.

170 bibliography

[55] OMG, “Data distribution service for real-time systems, version
1.2,” specification, Object Management Group, 2007.

[56] P. R. Pietzuch and J. Bacon, “Hermes: a distributed event-based
middleware architecture,” in Proc. of the 22nd International Con-
ference on Distributed Computing Systems Workshops, (Vienna, Aus-
tria), pp. 611–618, IEEE, 2002.

[57] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and
evaluation of a wide-area event notification service,” ACM Trans-
actions on Computer Systems, vol. 19, no. 3, pp. 332–383, 2001.

[58] G. Cugola, E. Di Nitto, and A. Fuggetta, “The jedi event-based
infrastructure and its application to the development of the opss
wfms,” Transactions on Software Engineering, IEEE, vol. 27, no. 9,
pp. 827–850, 2001.

[59] G. Cugola, A. Margara, and M. Migliavacca, “Context-aware
publish-subscribe: Model, implementation, and evaluation,” in
Proc. of the IEEE Symposium on Computers and Communications,
(Sousse, Tunisia), pp. 875–881, IEEE, 2009.

[60] G. Mühl, “Generic constraints for content-based publish/sub-
scribe,” in Cooperative Information Systems, vol. 2172 of Lec-
ture Notes in Computer Science, pp. 211–225, Berlin, Heidelberg:
Springer Berlin / Heidelberg, 2001.

[61] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. V. Steen, “Sub-
2-sub: Self-organizing content-based publish subscribe for dy-
namic large scale collaborative networks,” in Proc. of the 5th In-
ternational Workshop On Peer-to-Peer Systems, (Santa Barbara, CA,
USA), 2006.

[62] OMG, “Corba notification service, version 1.1,” specification, Ob-
ject Management Group, 2004.

[63] G. Pardo-Castellote, “Omg data-distribution service: architec-
tural overview,” in Proc. of the 23rd International Conference on
Distributed Computing Systems Workshops, (Providence, RI, USA),
pp. 200–206, IEEE, 2003.

[64] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Stout, “Java
message service,” specification, Sun Microsystems Inc., Santa
Clara, CA, 2002.

[65] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, “Spider-
cast: a scalable interest-aware overlay for topic-based pub/sub
communication,” in Proc. of the Inaugural International Conference
on Distributed Event-Based Systems, (Toronto, Canada), pp. 14–25,
ACM, 2007.

bibliography 171

[66] A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel, “Scribe:
The design of a large-scale event notification infrastructure,” in
Networked Group Communication, vol. 2233 of Lecture Notes in Com-
puter Science, pp. 30–43, Berlin / Heidelberg, Germany: Springer
Berlin / Heidelberg, 2001.

[67] S. Tilak, P. Hubbard, M. Miller, and T. Fountain, “The ring buffer
network bus (rbnb) dataturbine streaming data middleware for
environmental observing systems,” in Proc. of the 3rd International
Conference on e-Science and Grid Computing, (Bangalore, India),
pp. 125–133, IEEE, 2007.

[68] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubi-
atowicz, “Bayeux: an architecture for scalable and fault-tolerant
wide-area data dissemination,” in Proc. of the 11th International
Workshop on Network and Operating Systems Support for Digital Au-
dio and Video, (Port Jefferson, NY, USA), pp. 11–20, ACM, 2001.

[69] B. Wang and J. Hou, “Multicast routing and its qos extension:
problems, algorithms, and protocols,” Network, IEEE, vol. 14,
no. 1, pp. 22–36, 2000.

[70] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski, “The padres
distributed publish/subscribe system,” in Proc. of the 8th Interna-
tional Conference on Feature Interactions in Telecommuncations and
Software Systems, (Leicester, UK), pp. 12–30, IOS Press, 2005.

[71] P. Eugster, P. Felber, R. Guerraoui, and S. Handurukande, “Event
systems. how to have your cake and eat it too,” in Proc. of the 22nd
International Conference on Distributed Computing Systems Work-
shops, (Vienna, Austria), pp. 625–630, IEEE, 2002.

[72] R. Henjes, D. Schlosser, M. Menth, V. Himmler, and A. Hubland,
“Throughput performance of the activemq jms server,” in Kom-
munikation in Verteilten Systemen (KiVS) 2007, Informatik aktuell,
ch. 10, pp. 113–124, Springer Berlin Heidelberg, 2007.

[73] S. Pallickara and G. Fox, “Naradabrokering: a distributed mid-
dleware framework and architecture for enabling durable peer-
to-peer grids,” in Proc. of the ACM/IFIP/USENIX International Con-
ference on Middleware, (Rio de Janeiro, Brazil), pp. 41–61, Springer-
Verlag New York, Inc., 2003.

[74] P. R. Pietzuch and J. Bacon, “Peer-to-peer overlay broker net-
works in an event-based middleware,” in Proc. of the 2nd Inter-
national Workshop on Distributed Event-Based Systems, (San Diego,
CA, USA), pp. 1–8, ACM, 2003.

[75] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A sur-
vey and comparison of peer-to-peer overlay network schemes,”

172 bibliography

Communications Surveys & Tutorials, IEEE, vol. 7, no. 2, pp. 72–93,
2005.

[76] R. Meier and V. Cahill, “On event-based middleware for location-
aware mobile applications,” Transactions on Software Engineering,
IEEE, vol. 36, no. 3, pp. 409–430, 2010.

[77] TIBCO Software Inc., “Tibco rendezvous data sheet,” tech.
rep., 2008. http://www.tibco.com/multimedia/ds-rendezvous_

tcm8-826.pdf. Online resource, last retrieved in Dec. 2013.

[78] A. Tanenbaum, Computer Networks, ch. 5, pp. 397–417. Prentice
Hall, 4th ed., 2003.

[79] R. Baldoni, R. Beraldi, S. Piergiovanni, and A. Virgillito, “Mea-
suring notification loss in publish/subscribe communication sys-
tems,” in Proc. of the 10th Pacific Rim International Symposium on
Dependable Computing, (Papeete, Tahiti), pp. 84–93, IEEE, 2004.

[80] S. Bhola, R. Strom, S. Bagchi, and J. Auerbach, “Exactly-once de-
livery in a content-based publish-subscribe system,” in Proc. of
the 2002 International Conference on Dependable Systems and Net-
works, (Washington, DC, USA), pp. 7–16, IEEE, 2002.

[81] H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei, “Message-
oriented middleware with qos awareness,” in Service-Oriented
Computing, vol. 5900 of Lecture Notes in Computer Science, pp. 331–
345, Berlin / Heidelberg, Germany: Springer Berlin / Heidel-
berg, 2009.

[82] M. Kim, K. Karenos, F. Ye, J. Reason, H. Lei, and K. Shagin, “Effi-
cacy of techniques for responsiveness in a wide-area publish/-
subscribe system,” in Proc. of the 11th International Middleware
Conference Industrial track, (Bangalore, India), pp. 40–45, ACM,
2010.

[83] S. Guo, K. Karenos, M. Kim, H. Lei, and J. Reason, “Delay-
cognizant reliable delivery for publish/subscribe overlay net-
works,” in Proc. of the 31st International Conference on Distributed
Computing Systems, (Minneapolis, MN, USA), pp. 403–412, IEEE,
2011.

[84] P. Costa, M. Migliavacca, G. P. Picco, and G. Cugola, “Introduc-
ing reliability in content-based publish-subscribe through epi-
demic algorithms,” in Proc. of the 2nd international workshop on
Distributed event-based systems, (San Diego, CA, USA), pp. 1–8,
ACM, 2003.

[85] P. Costa, M. Migliavacca, G. Picco, and G. Cugola, “Epidemic
algorithms for reliable content-based publish-subscribe: an eval-

http://www.tibco.com/multimedia/ds-rendezvous_tcm8-826.pdf
http://www.tibco.com/multimedia/ds-rendezvous_tcm8-826.pdf

bibliography 173

uation,” in Proc. of the 24th International Conference on Distributed
Computing Systems, (Tokyo, Japan), pp. 552–561, IEEE, 2004.

[86] T. Fountain, S. Tilak, P. Hubbard, P. Shin, and L. Freudinger, “The
open source dataturbine initiative: Streaming data middleware
for environmental observing systems,” in Proceedings of the 33rd
International Symposium on Remote Sensing of Environment, (Tuc-
son, AZ, USA), pp. 1–6, ISRSE, 2009.

[87] R. Chand and P. Felber, “Xnet: a reliable content-based pub-
lish/subscribe system,” in Proc. of the 23rd IEEE International
Symposium on Reliable Distributed Systems, (Florianpolis, Brazil),
pp. 264–273, IEEE, 2004.

[88] R. Kazemzadeh and H.-A. Jacobsen, “Reliable and highly avail-
able distributed publish/subscribe service,” in Proc. of the 28th
IEEE International Symposium on Reliable Distributed Systems, (Ni-
agara Falls, NY, USA), pp. 41–50, IEEE, 2009.

[89] R. Kazemzadeh and H.-A. Jacobsen, “Partition-tolerant dis-
tributed publish/subscribe systems,” in Proc. of the 30th IEEE
International Symposium on Reliable Distributed Systems, (Madrid,
Spain), pp. 101–110, IEEE, 2011.

[90] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” Computing Surveys,
ACM, vol. 36, no. 4, pp. 372–421, 2004.

[91] L. Lamport, “Time, clocks, and the ordering of events in a dis-
tributed system,” Communications of the ACM, vol. 21, no. 7,
pp. 558–565, 1978.

[92] N. Carvalho, F. Araujo, and L. Rodrigues, “Scalable qos-based
event routing in publish-subscribe systems,” in Proc. of the 4th
IEEE International Symposium on Network Computing and Applica-
tions, (Cambridge, MA, USA), pp. 101–108, IEEE, 2005.

[93] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. Strom,
and D. Sturman, “An efficient multicast protocol for content-
based publish-subscribe systems,” in Proc. of the 19th International
Conference on Distributed Computing Systems, (Montreal, Canada),
pp. 262–272, IEEE, 1999.

[94] Microsoft Corp., “Microsoft message queuing (msmq).” http:

//msdn.microsoft.com/en-us/library/ms711472.aspx. Web
Page, last visited in Dec. 2013.

[95] R. Rajamani and N. Bhatt, “Oracle Database 11g: Ad-
vanced Queuing,” tech. rep., Oracle Corporation, 2010.
http://www.oracle.com/technetwork/database/features/

http://msdn.microsoft.com/en-us/library/ms711472.aspx
http://msdn.microsoft.com/en-us/library/ms711472.aspx
http://www.oracle.com/technetwork/database/features/data-integration/oracle-aq-tech-wp11-2-191324.pdf
http://www.oracle.com/technetwork/database/features/data-integration/oracle-aq-tech-wp11-2-191324.pdf

174 bibliography

data-integration/oracle-aq-tech-wp11-2-191324.pdf. On-
line resource, last retrieved in Dec. 2013.

[96] N. Leavitt, “Will nosql databases live up to their promise?,” Com-
puter, IEEE, vol. 43, no. 2, pp. 12–14, 2010.

[97] A. Malekpour, A. Carzaniga, F. Pedone, and G. Toffetti Carughi,
“End-to-end reliability for best-effort content-based publish/sub-
scribe networks,” in Proc. of the 5th ACM international conference
on Distributed Event-Based System, (New York, NY, USA), pp. 207–
218, ACM, 2011.

[98] PrismTech, “OpenSplice DDS.” http://www.prismtech.com/

opensplice/. Web Page, last visited in Dec. 2013.

[99] M. Ion, G. Russello, and B. Crispo, “Providing confidentiality in
content-based publish/subscribe systems,” in Proc. of the Interna-
tional Conference on Security and Cryptography, (Athens, Greece),
pp. 1–6, Springer-Verlang, 2010.

[100] Java Community Process, “JSR 914: Java (TM) Message Service,
Version 1.1,” specification, 2002.

[101] F. Araújo and L. Rodrigues, “The IndiQoS Message Broker: an
Instantiation Using RSVP,” tech. rep., Department of Informat-
ics, University of Lisbon, Lisbon, Portugal, 2002.

[102] R. Strom, G. Banavar, T. Chandra, and M. Kaplan, “Gryphon:
An information flow based approach to message brokering,” in
Proc. of the 9th International Symposium on Software Reliability En-
gineering, (Paderborn, Germany), IEEE, 1998.

[103] R. Meier and V. Cahill, “Steam: event-based middleware for
wireless ad hoc networks,” in Proc. of the 22nd International Con-
ference on Distributed Computing Systems Workshops, (Vienna, Aus-
tria), pp. 639–644, IEEE, 2002.

[104] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-
to-peer content distribution technologies,” ACM Comput. Surv.,
vol. 36, no. 4, pp. 335–371, 2004.

[105] D. Clark, R. Braden, and S. Shenker, “Integrated services in
the internet architecture: an overview,” RFC 1663, IETF, Network
Working Group, 1994.

[106] J. Wroclawski, “The use of rsvp with ietf integrated services,”
RFC 2210, IETF, Network Working Group, 1997.

[107] K. An, T. Kuroda, A. Gokhale, S. Tambe, and A. Sorbini,
“Model-driven generative framework for automated omg dds

http://www.oracle.com/technetwork/database/features/data-integration/oracle-aq-tech-wp11-2-191324.pdf
http://www.oracle.com/technetwork/database/features/data-integration/oracle-aq-tech-wp11-2-191324.pdf
http://www.prismtech.com/opensplice/
http://www.prismtech.com/opensplice/

bibliography 175

performance testing in the cloud,” in Proc. of the 12th interna-
tional conference on generative programming: concepts & experiences,
(Indianapolis, IN, USA), pp. 179–182, ACM Press, 2013.

[108] Real Time Innovations, “Connext DDS.” http://www.rti.com/

products/dds/. Web Page, last visited in Dec. 2013.

[109] M. Killijian, R. Cunningham, R. Meier, L. Mazare, and V. Cahill,
“Towards group communication for mobile participants,” in Proc.
of the ACM Workshop on Principles of Mobile Computing, (Newport,
RI, USA), pp. 75–82, ACM, 2001.

[110] R. Cunningham and V. Cahill, “Time bounded medium access
control for ad hoc networks,” in Proc. of the 2nd International work-
shop on Principles of mobile computing, (Tolouse, France), pp. 1–8,
ACM, 2002.

[111] C.-F. Sørensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda,
A. Friday, and H. Duran-Limon, “A context-aware middleware
for applications in mobile ad hoc environments,” in Proc. of the
2nd workshop on Middleware for pervasive and ad-hoc computing,
(Toronto, Canada), pp. 107–110, ACM, 2004.

[112] P. Verissimo and A. Casimiro, “The timely computing base
model and architecture,” Transactions on Computers, IEEE, vol. 51,
no. 8, pp. 916–930, 2002.

[113] A. Casimiro and P. Verissimo, “Using the timely computing
base for dependable qos adaptation,” in Proc. of the 20th Sym-
posium on Reliable Distributed Systems, (New Orleans, LA, USA),
pp. 208–217, IEEE, 2001.

[114] Y. Yoon, V. Muthusamy, and H.-A. Jacobsen, “Foundations for
highly available content-based publish/subscribe overlays,” in
Proc. of the 31st International Conference on Distributed Computing
Systems, (Minneapolis, MN, USA), pp. 800–811, IEEE, 2011.

[115] S. P. Mahambre and U. Bellur, “Reliable routing of event noti-
fications over p2p overlay routing substrate in event based mid-
dleware,” in Proc. of the 21st IEEE International Parallel and Dis-
tributed Processing Symposium, (Long Beach, CA, USA), pp. 1–8,
IEEE, 2007.

[116] A. Broder and M. Mitzenmacher, “Network applications of
bloom filters: A survey,” Internet Mathematics, vol. 1, no. 4,
pp. 485–509, 2004.

[117] J. Luo, P. Eugster, and J.-P. Hubaux, “Route driven gossip: prob-
abilistic reliable multicast in ad hoc networks,” in Proc. of the

http://www.rti.com/products/dds/
http://www.rti.com/products/dds/

176 bibliography

22nd Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, vol. 3, (San Francisco, CA, USA), pp. 2229–2239,
IEEE, 2003.

[118] E. Pagani, “Providing reliable and fault tolerant broadcast deliv-
ery in mobile ad-hoc networks,” Mobile Networks and Applications,
vol. 4, no. 3, pp. 175–192, 1999.

[119] T. Pongthawornkamol, K. Nahrstedt, and G. Wang, “Prob-
abilistic qos modeling for reliability/timeliness prediction in
distributed content-based publish/subscribe systems over best-
effort networks,” in Proc. of the 7th international conference on Au-
tonomic computing, (Washington, DC, USA), pp. 185–194, ACM,
2010.

[120] D. Laney, “3-d data management: Controlling data volume, ve-
locity and variety,” META Group Inc. (now Gartner): Application
Delivery Strategies, 2001.

[121] S. Kaisler, F. Armour, J. A. Espinosa, and W. Money, “Big
data: Issues and challenges moving forward,” in Proc. of the 46th
Hawaii International Conference on System Sciences, (Wailea, HI,
USA), pp. 995–1004, IEEE, 2013.

[122] A. Katal, M. Wazid, and R. H. Goudar, “Big data: Issues, chal-
lenges, tools and good practices,” in Proc. of the 6th IEEE Interna-
tional Conference on Contemporary Computing (IC3), (Noida, India),
pp. 404–409, IEEE, 2013.

[123] A. Osman, M. El-Refaey, and A. Elnaggar, “Towards real-time
analytics in the cloud,” in Proc. of the 9th IEEE World Congress
on Services, (Santa Clara Marriot, CA, USA), pp. 428–435, IEEE,
2013.

[124] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. H. J. Epema, “Performance analysis of cloud comput-
ing services for many-tasks scientific computing,” Transactions
on Parallel and Distributed Systems, IEEE, vol. 22, no. 6, pp. 931–
945, 2011.

[125] I. Raicu and I. T. Foster, “Many-task computing for grids and
supercomputers,” in Proc. of the 1st Workshop on Many-Task Com-
puting on Grids and Supercomputers, (Austin, TX, USA), pp. 1–11,
IEEE, 2008.

[126] B. Fan, W. Tantisiriroj, L. Xiao, and G. Gibson, “Diskreduce:
Raid for data-intensive scalable computing,” in Proc. of the 4th
Workshop on Petascale Data Storage, (Portland, OR, USA), pp. 6–
10, ACM Press, 2009.

bibliography 177

[127] R. E. Bryant, “Data intensive scalable computing: Finding the
right programming models,” in Proc. of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing —
Keynote Presentation, (Chicago, IL, USA), ACM Press, 2010.

[128] D. Warneke, Massively Parallel Data Processing on Infrastructure
as a Service Platforms. Ph.D. Thesis, Technishen Universität Berlin,
2011.

[129] M. Stonebraker, “The case for shared nothing,” Database Engi-
neering Bulletin, vol. 9, no. 1, pp. 4–9, 1986.

[130] H. Farhangi, “The path of the smart grid,” Power and Energy
Magazine, IEEE, vol. 8, no. 1, pp. 18–28, 2010.

[131] S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey
of large scale data management approaches in cloud environ-
ments,” Communications Surveys & Tutorials, IEEE, vol. 13, no. 3,
pp. 311–336, 2011.

[132] G. Cugola and A. Margara, “Processing flows of information:
From data stream to complex event processing,” ACM Comput.
Surv., vol. 44, no. 3, pp. 15:1–15:62, 2012.

[133] D. McCarthy and U. Dayal, “The architecture of an active
database management system,” ACM Sigmod Record, vol. 18,
no. 2, pp. 215–224, 1989.

[134] D. C. Luckham, The power of events: an introduction to complex
event processing in distributed enterprise systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., 2001.

[135] S. Geisler, “Data stream management systems,” in Data Ex-
change, Integration, and Streams (P. G. Kolaitis, M. Lenzerini,
and N. Schweikardt, eds.), vol. 5, ch. 5, pp. 275–304, Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013.

[136] D. Turaga, H. Andrade, B. Gedik, C. Venkatramani, O. Ver-
scheure, J. D. Harris, J. Cox, W. Szewczyk, and P. Jones, “Design
principles for developing stream processing applications,” Softw.
Pract. Exper., vol. 40, no. 12, pp. 1073–1104, 2010.

[137] E. F. Codd, “A relational model of data for large shared data
banks,” Communications of the ACM, vol. 13, no. 6, pp. 377–387,
1970.

[138] E. Wong and R. H. Katz, “Distributing a database for paral-
lelism,” ACM SIGMOD Rec., vol. 13, no. 4, p. 23, 1983.

[139] D. DeWitt and J. Gray, “Parallel database systems: the future
of high performance database systems,” Communications of the
ACM, vol. 35, no. 6, pp. 85–98, 1992.

178 bibliography

[140] D. DeWitt, S. Ghandeharizadeh, D. Schneider, a. Bricker, H.-
I. Hsiao, and R. Rasmussen, “The gamma database machine
project,” Transactions on Knowledge and Data Engineering, vol. 2,
no. 1, pp. 44–62, 1990.

[141] C. Ballinger and R. Fryer, “Born to be parallel: Why parallel
origins give teradata an enduring performance edge,” Data Engi-
neering Bullettin, IEEE, vol. 20, no. 2, pp. 3–12, 1997.

[142] Microsoft Corp., “Sql server parallel data ware-
house.” http://www.microsoft.com/en-us/sqlserver/

solutions-technologies/data-warehousing/pdw.aspx. Web
Page, last visited in Dec. 2013.

[143] IBM Corp., “Ibm db2 enterprise server edi-
tion.” http://www-03.ibm.com/software/products/en/

db2enterprise-server-edition/. Web Page, last visited
in Dec. 2013.

[144] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss: friends
or foes,” Communications of the ACM, vol. 53, no. 1, p. 64, 2010.

[145] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke,
“Nephele/pacts: a programming model and execution frame-
work for web-scale analytical processing,” in Proc. of the 1st ACM
symposium on Cloud computing, (Indianapolis, IN, USA), p. 119,
ACM Press, 2010.

[146] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica,
“Hyracks: A flexible and extensible foundation for data-intensive
computing,” in Proc. of the 27th International Conference on Data
Engineering, (Hannover, Germany), pp. 1151–1162, IEEE, 2011.

[147] S. Babu and J. Widom, “Continuous queries over data streams,”
ACM SIGMOD Record, vol. 30, no. 3, p. 109, 2001.

[148] D. Terry, D. Goldberg, D. Nichols, and B. Oki, “Continuous
queries over append-only databases,” in Proc. of the 1992 ACM
SIGMOD International Conference on Management of Data, (San
Diego, CA, USA), pp. 321–330, ACM Press, 1992.

[149] M. Sullivan, “Tribeca: A stream database manager for network
traffic analysis,” in Proc. of the 22th International COnference on
Very Large Data Bases, (Bombay, India), p. 594, VLDB Endowment,
1996.

[150] A. Arasu, S. Babu, and J. Widom, “The cql continuous query
language: semantic foundations and query execution,” The
VLDB Journal, vol. 15, no. 2, pp. 121–142, 2005.

http://www.microsoft.com/en-us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/en-us/sqlserver/solutions-technologies/data-warehousing/pdw.aspx
http://www-03.ibm.com/software/products/en/db2enterprise-server-edition/
http://www-03.ibm.com/software/products/en/db2enterprise-server-edition/

bibliography 179

[151] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,
“Models and issues in data stream systems,” in Proc. of the
21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, (Madison, WI, USA), pp. 1–16, ACM Press,
2002.

[152] L. Golab and M. T. Özsu, “Issues in data stream management,”
ACM SIGMOD Record, vol. 32, no. 2, pp. 5–14, 2003.

[153] J. M. Hellerstein, M. J. Franklin, S. Chandrasekaran, A. Desh-
pande, K. Hildrum, S. Madden, V. Raman, and M. A. Shah,
“Adaptive query processing: Technology in evolution,” Data En-
gineering Bullettin, IEEE, vol. 23, no. 2, pp. 7–18, 2000.

[154] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman, “Con-
tinuously adaptive continuous queries over streams,” in Proc. of
the 21st ACM SIGMOD International Conference on Management of
Data, (Madison, WI, USA), p. 49, ACM Press, 2002.

[155] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar,
G. Manku, C. Olston, J. Rosenstein, and R. Varma, “Query pro-
cessing, resource management, and approximation in a data
stream management system,” in Proc. of thr 1st Biennial Confer-
ence on Innovative Data Systems Research, (Asilomar, CA, USA),
CIDR Conference, 2003.

[156] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, “Stream: The stan-
ford data stream management system,” Technical Report 2004-
20, Stanford InfoLab, 2004.

[157] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
G. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik, “Moni-
toring streams: a new class of data management applications,”
in Proc. of the 28th international conference on Very Large Data Bases,
(Hong Kong, China), VLDB Endowment, 2002.

[158] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik, “Aurora: a new
model and architecture for data stream management,” The Inter-
national Journal on Very Large Data Bases, vol. 12, no. 2, pp. 120–
139, 2003.

[159] Y. Ahmad, N. Tatbul, W. Xing, Y. Xing, S. Zdonik, B. Berg,
U. Çetintemel, M. Humphrey, J.-H. Hwang, A. Jhingran,
A. Maskey, O. Papaemmanouil, and A. Rasin, “Distributed op-
eration in the borealis stream processing engine,” in Proc. of
the 2005 ACM SIGMOD International Conference on Management
of Data, (Baltimore, MD, USA), pp. 882–884, ACM Press, 2005.

180 bibliography

[160] H.-c. Yang, A. Dasdan, R. Hsiao, and D. Parker, “Map-reduce-
merge: simplified relational data processing on large clusters,”
in Proc. of the 2007 ACM SIGMOD International Conference on
Management of Data, (Beijing, China), pp. 1029–1040, ACM Press,
2007.

[161] D. Alves, P. Bizarro, and P. Marques, “Flood: Elastic streaming
mapreduce,” in Proc. of the 4th ACM International Conference on
Distributed Event-Based Systems, (Cambridge, UK), pp. 113–114,
ACM Press, 2010.

[162] J. Horey, “A programming framework for integrating web-
based spatiotemporal sensor data with mapreduce capabilities,”
in Proc. of the 1st ACM SIGSPATIAL International Workshop on
GeoStreaming, (San Jose, CA, USA), pp. 51–58, ACM Press, 2010.

[163] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu, “Deduce: At
the intersection of mapreduce and stream processing,” in Proc. of
the 13th International Conference on Extending Database Technology,
(Lausanne, Switzerland), pp. 657–662, ACM Press, 2010.

[164] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Dis-
tributed stream computing platform,” in Proc. of the 10th IEEE
International Conference on Data Mining Workshops, (Sydney, Aus-
tralia), pp. 170–177, IEEE, 2010.

[165] Apache Sofware Foundation, “Apache Samza.” http://samaza.

incubator.apache.org. Web Page, last visited in Dec. 2013.

[166] B. Gedik and H. Andrade, “A model-based framework for
building extensible, high performance stream processing middle-
ware and programming language for ibm infosphere streams,”
Soft. Pract. Exper., vol. 42, no. 11, pp. 1363–1391, 2012.

[167] P. Bellavista, A. Corradi, and A. Reale, “The quasit model and
framework for scalable data stream processing with quality of
service,” in In Proc. of the 5th International Conference on Mobile
Wireless Middleware, Operating Systems, and Applications, vol. 65 of
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pp. 92–107, Berlin, Germany:
Springer Berlin Heidelberg, 2012.

[168] B. Gedik, H. Andrade, K.-l. Wu, P. S. Yu, and M. Doo, “Spade:
the system s declarative stream processing engine,” in Proc. of
the 2008 ACM SIGMOD International Conference on Management of
Data, (Vancouver, Canada), pp. 1123–1134, ACM Press, 2008.

[169] B. Lohrmann, D. Warneke, and O. Kao, “Nephele streaming:
stream processing under qos constraints at scale,” Cluster Com-
puting, pp. 1–18, July 2013.

http://samaza.incubator.apache.org
http://samaza.incubator.apache.org

bibliography 181

[170] T. Lindholm and F. Yellin, The Java virtual machine specification,
vol. 297. Addison-Wesley Reading, 1997.

[171] R. Khandekar, K. Hildrum, S. Parekh, D. Rajan, and J. Wolf,
“Cola : Optimizing stream processing applications via graph par-
titioning,” in Proc. of the 10th ACM/IFIP/USENIX International
Middleware Conference, (Urbana Chamapign, IL, USA), pp. 308–
327, 2009.

[172] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic load distribu-
tion in the borealis stream processor,” in Proc. of the 21st Interna-
tional Conference on Data Engineering, (Tokyo, Japan), pp. 791–802,
IEEE, 2005.

[173] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, and D. Rajan,
“Soda : An optimizing scheduler for large-scale stream-based
distributed computer systems,” in Proc. of the 9th ACM/I-
FIP/USENIX International Middleware Conference, (Leuven, Bel-
gium), pp. 306–325, Springer Berlin Heidelberg, 2008.

[174] Y. Xing, J.-h. Hwang, and S. Zdonik, “Providing resiliency to
load variations in distributed stream processing,” in Proc. of the
32nd International Conference on Very Large Data Bases, (Seoul, Ko-
rea), pp. 775–786, 2006.

[175] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu,
“Elastic scaling of data parallel operators in stream processing,”
in Proc. of the 23rd IEEE International Parallel & Distributed Process-
ing Symposium, (Roma, Italy), pp. 1–12, IEEE, 2009.

[176] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Mad-
den, and M. Stonebraker, “A comparison of approaches to large-
scale data analysis,” in Proc. of the 35th SIGMOD international
Conference on Management of Data, (Providence, RI, USA), pp. 165–
179, ACM Press, 2009.

[177] R. Avnur and J. M. Hellerstein, “Eddies: continuosly adaptive
query processing,” in Proc. of the 2000 ACM SIGMOD interna-
tional conference on Management of data, vol. 29, (Dallas, Texas,
USA), pp. 261–272, ACM Press, 2000.

[178] G. Chen, M. Li, and D. Kotz, “Data-centric middleware for
context-aware pervasive computing,” Pervasive and Mob. Comput.,
vol. 4, no. 2, pp. 216–253, 2008.

[179] L. Kleinrock, Theory, volume 1, Queueing systems. Wiley-
interscience, 1975.

[180] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman,
R. Lax, S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Mill-
wheel: Fault-tolerant stream processing at internet scale,” in Proc.

182 bibliography

of the 39th International Conference on Very Large Data Bases, no. 11,
(Riva del Garda, Trento, Italy), pp. 1–12, VLDB Endowment,
2013.

[181] J. Wolf, N. Bansal, K. Hildrum, S. Parekh, D. Rajan, R. Wagle,
and K.-L. Wu, “Job admission and resource allocation in dis-
tributed streaming systems,” in Proc. of the 14th Workshop on Job
Scheduling Strategies for Parallel Processing (E. Frachtenberg and
U. Schwiegelshohn, eds.), (Rome, Italy), pp. 169–189, Springer
Berlin / Heidelberg, 2009.

[182] V. Kumar, B. Cooper, and K. Schwan, “Distributed stream man-
agement using utility-driven self-adaptive middleware,” in Proc.
of the 2nd International Conference on Autonomic Computing, (Seat-
tle, WA, USA), pp. 3–14, IEEE, 2005.

[183] M. Barabanov and V. Yodaiken, “Real-time linux,” Linux journal,
vol. 23, 1996.

[184] L. Aniello, R. Baldoni, and L. Querzoni, “Adaptive online
scheduling in storm,” in Proc. of the 7h ACM International Con-
ference on Distributed Event-Based Systems, (Arlington, TX, USA),
pp. 1–12, ACM, 2013.

[185] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adap-
tive control of extreme-scale stream processing systems,” in Proc.
of the 26th IEEE International Conference on Distributed Computing
Systems, (Lisbon, Portugal), pp. 71–71, Ieee, 2006.

[186] N. Tatbul and S. Zdonik, “Dealing with overload in distributed
stream processing systems,” in Proc. of the 22nd International
Conference on Data Engineering Workshops, (Atlanta, GA, USA),
pp. 24–24, IEEE, 2006.

[187] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying fit: Efficient
load shedding techniques for distributed stream processing,” in
Proc. of the 33rd international conference on Very large data bases,
(Vienna, Austria), pp. 159–170, VLDB Endowment, 2007.

[188] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Sto-
ica, “Improving mapreduce performance in heterogeneous envi-
ronments,” in Proc. of the 8th USENIX Symposium on Operating
Systems Design and Implementation, (San Diego, CA, USA), 2008.

[189] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the mapreduce-based data
analysis,” in Proc. of the 26th International Conference on Data En-
gineering Workshops, (Long Beach, CA, USA), pp. 41–51, IEEE,
2010.

bibliography 183

[190] I. Boutsis and V. Kalogeraki, “Radar: Adaptive rate allocation in
distributed stream processing systems under bursty workloads,”
in Proc. of the 31st IEEE Symposium on Reliable Distributed Systems,
(Irvine, CA, USA), pp. 285–290, Ieee, 2012.

[191] A. Avizienis, “Fault-tolerant systems: Concepts and terminol-
ogy,” Transactions on Computers, IEEE, vol. C-25, no. 12, pp. 1304–
1312, 1976.

[192] J.-h. Hwang, M. Balazinska, A. Rasin, M. Stonebraker, and
S. Zdonik, “A comparison of stream-oriented high-availability al-
gorithms,” Tech. Rep. 1, Brown University, Department of Com-
puter Science, 2003.

[193] G. Jacques-Silva, B. Gedik, H. Andrade, and K.-L. Wu, “Lan-
guage level checkpointing support for stream processing appli-
cations,” in Proc. of the 39th IEEE/IFIP International Conference on
Dependable Systems & Networks, (Lisbon, Portugal), pp. 145–154,
IEEE, 2009.

[194] A. Brito, C. Fetzer, and P. Felber, “Minimizing latency in fault-
tolerant distributed stream processing systems,” in Proc. of the
29th IEEE International Conference on Distributed Computing Sys-
tems, (Montreal, Canada), pp. 173–182, IEEE, 2009.

[195] J.-H. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stone-
braker, and S. Zdonik, “High-availability algorithms for dis-
tributed stream processing,” in Proc. of the 21st International Con-
ference on Data Engineering, (Tokyo, Japan), pp. 779–790, IEEE,
2005.

[196] M. Balazinska, H. Balakrishnan, S. R. Madden, and M. Stone-
braker, “Fault-tolerance in the borealis distributed stream pro-
cessing system,” ACM Trans. Database Syst., vol. 33, no. 1, pp. 1–
44, 2008.

[197] A. Brito, C. Fetzer, and P. Felber, “Multithreading-enabled ac-
tive replication for event stream processing operators,” in Proc.
of the 28th IEEE International Symposium on Reliable Distributed Sys-
tems, (Niagara Falls, NY, USA), pp. 22–31, IEEE, 2009.

[198] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly avail-
able, fault-tolerant, parallel dataflows,” in Proc. of the 2004 ACM
SIGMOD international conference on Management of data, (Paris,
France), p. 827, ACM Press, 2004.

[199] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, V. Ra-
man, F. Reiss, and M. Shah, “Telegraphcq: Continuous dataflow

184 bibliography

processing for an uncertain world,” in 1st Conference on Innava-
tive Data Systems Research, (Asilomar, CA, USA), pp. 1–12, CIDR
Conference, 2003.

[200] B. Lohrmann and O. Kao, “The nephele livescale toolkit : Real-
time video stream processing at scale,” in Proc. of the 20th Interna-
tional Packet Video Workshop - Posters Track, (San Jose, CA, USA),
IEEE, 2013.

[201] S. Zdonik, M. Stonebraker, M. Cherniack, U. Çetintemel, M. Bal-
azinska, and H. Balakrishnan, “The aurora and medusa projects,”
Data Engineering Bullettin, IEEE, vol. 26, no. 1, 2003.

[202] B. Babcock, S. Babu, R. Motwani, and M. Datar, “Chain: Op-
erator scheduling for memory minimization in data stream sys-
tems,” in Proc. of the 2003 ACM SIGMOD international conference
on on Management of data, (San Diego, CA, USA), pp. 253–264,
ACM Press, 2003.

[203] U. Srivastava and J. Widom, “Flexible time management in data
stream systems,” in Proc. of of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems,
(Paris, France), p. 263, ACM Press, 2004.

[204] P. Tucker, D. Maier, T. Sheard, and L. Fegaras, “Exploiting punc-
tuation semantics in continuous data streams,” Transations on
Knowledge and Data Engineering, IEEE, vol. 15, no. 3, pp. 555–568,
2003.

[205] B. Babcock, M. Datar, and R. Motwani, “Load shedding for
aggregation queries over data streams,” in Proc. of the 20th In-
ternational Conference on Data Engineering, (Boston, MA, USA),
pp. 350–361, IEEE Comput. Soc, 2004.

[206] S. Chandrasekaran, M. A. Shah, O. Cooper, A. Deshpande, M. J.
Franklin, J. M. Hellerstein, W. Hong, S. Krishnamurthy, S. R.
Madden, and F. Reiss, “Telegraphcq: Continuous dataflow pro-
cessing,” in Proc. of the 22nd ACM international conference on on
Management of data, vol. 1, (San Diego, CA, USA), p. 668, ACM
Press, 2003.

[207] M. Shah, J. Hellerstein, and M. Franklin, “Flux: an adaptive
partitioning operator for continuous query systems,” in Proc. of
the 19th International Conference on Data Engineering, (Bangalore,
India), pp. 25–36, IEEE, 2003.

[208] V. Raman, B. Raman, and J. Hellerstein, “Online dynamic re-
ordering,” The VLDB Journal, vol. 3, no. 9, pp. 247–260, 2000.

[209] B. Gedik, H. Andrade, and K.-L. Wu, “A code generation ap-
proach to optimizing high-performance distributed data stream

bibliography 185

processing,” in Proc. of the 18th ACM conference on Information and
knowledge management, (Hong Kong, China), p. 847, ACM Press,
2009.

[210] E. I. Labs, “Stratosphere project.” http://stratosphere.eu/.
Web Page, last visited in Dec. 2013.

[211] B. Lohrmann, D. Warneke, and O. Kao, “Massively-parallel
stream processing under qos constraints with nephele,” in Proc.
of the 21st international symposium on High-Performance Parallel
and Distributed Computing, (Delft, The Netherlands), pp. 271–283,
ACM Press, 2012.

[212] F. Reiss and J. Hellerstein, “Data triage: An adaptive architec-
ture for load shedding in telegraphcq,” in Proc. of the 21st Interna-
tional Conference on Data Engineering, (Tokyo, Japan), pp. 155–156,
IEEE, 2005.

[213] A. Das, J. Gehrke, and M. Riedewald, “Semantic approximation
of data stream joins,” Transactions on Knowledge and Data Engineer-
ing, IEEE, vol. 17, no. 1, pp. 44–59, 2005.

[214] H. Feng, Z. Liu, C. H. Xia, and L. Zhang, “Load shedding and
distributed resource control of stream processing networks,” Per-
formance Evaluation, vol. 64, no. 9-12, pp. 1102–1120, 2007.

[215] B. Gedik, K.-l. Wu, P. S. Yu, and L. Liu, “Grubjoin: An adaptive,
multi-way, windowed stream join with time correlation-aware
cpu load shedding,” Transactions on Knowledge and Data Engineer-
ing, vol. 19, no. 10, pp. 1363–1380, 2007.

[216] A. Reale, “Quasit project.” http://lia.deis.unibo.it/

research/quasit. Web Page, last visited in Dec. 2013.

[217] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy,
and R. Sears, “Mapreduce online,” in Proc. of the 7h USENIX con-
ference on Networked systems design and implementation, (San Jose,
CA, USA), pp. 1–15, USENIX Association, 2010.

[218] D. Logothetis and K. Yocum, “Ad-hoc data processing in the
cloud,” in Proc. of the 34th International Conference on Very Large
Data Bases, vol. 1, (Auckland, New Zealand), pp. 1472–1475,
VLDB Endowment, 2008.

[219] Apache Software Foundation, “Apache s4.” http://incubator.

apache.org/s4/. Web Page, last visited in Dec. 2013.

[220] OMG, “Interface definition language, version 3.5 beta 1,” speci-
fication, Object Management Group, 2013.

http://stratosphere.eu/
http://lia.deis.unibo.it/research/quasit
http://lia.deis.unibo.it/research/quasit
http://incubator.apache.org/s4/
http://incubator.apache.org/s4/

186 bibliography

[221] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Mich-
eloud, N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger,
“An overview of the scala programming language,” tech. rep.,
École Polytechnique Fédérale de Lausanne, Lausanne, Switzer-
land, 2004.

[222] S. Ghemawat, H. Gobioff, and S.-t. Leung, “The google file sys-
tem,” ACM SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43,
2003.

[223] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, com-
modity data center network architecture,” in Proc. of the ACM
SIGCOMM 2008 conference on Data Communication, (Seattle, WA,
USA), pp. 63–74, ACM Press, 2008.

[224] The Open Source Initiative, “The bsd 3-clause license.” http:

//opensource.org/licenses/BSD-3-Clause. Web Page, last vis-
ited in Dec. 2013.

[225] G. Kiczales and E. Hilsdale, “Aspect-oriented programming,”
in Proc. of the 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, (Vienna, Austria), p. 313, ACM,
2001.

[226] R. Hundt, “Loop recognition in c ++ / java / go / scala,” in Proc.
of the 2011 Scala Days, (Stanford, CA, USA), pp. 1–10, Typesafe
Inc., 2011.

[227] Java Community Process, “JSR 255: Java (TM) Management Ex-
tensions (JMX), Version 2.0,” specification, 2008.

[228] Java Community Process, “JSR 160: Java (TM) Management Ex-
tensions (JMX) Remote API, Version 1.4,” specification, 2006.

[229] R. Guerraoui and A. Schiper, “Software-based replication for
fault tolerance,” Computer, vol. 30, no. 4, pp. 68–74, 1997.

[230] OMG, “Extensible and dynamic topic types for dds (dds-
xtypes), version 1.0 beta 2,” specification draft, Object Manage-
ment Group, 2011.

[231] IEEE Austin Group, Standard for Information Technology —
Portable Operating System Interface (POSIX.1-2008, IEEE 1003.1-
2008). Base Specification, Issue 7, pp. 1523–1527. IEEE, 2008.

[232] G. A. Agha, Actors: a model of concurrent computation in dis-
tributed systems. Ph.D. Thesis, Massachusetts Institute of Tech-
nology – Department of Artificial Intelligence, 1985.

[233] P. Haller and M. Odersky, “Scala Actors: Unifying thread-
based and event-based programming,” Theoretical Computer Sci-
ence, vol. 410, no. 2-3, pp. 202–220, 2009.

http://opensource.org/licenses/BSD-3-Clause
http://opensource.org/licenses/BSD-3-Clause

bibliography 187

[234] Typesafe Inc., “Akka actor framework.” http://akka.io/. Web
Page, last visited in Dec. 2013.

[235] D. Lea, “A Java fork/join framework,” in Proc. of the ACM Java
Grande 2000 Conference, (San Francisco, CA, USA), pp. 36–43,
ACM Press, 2000.

[236] Netty Project Community, “Netty.” http://netty.io/. Web
Page, last visited in Dec. 2013.

[237] VMware Hyperic, “System information gatherer and reporter
api.” http://www.hyperic.com/products/sigar. Web Page, last
visited in Dec. 2013.

[238] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. Gruber, “Bigtable: A dis-
tributed storage system for structured data,” ACM Transactions
on Computer Systems, vol. 26, no. 2, pp. 1–26, 2008.

[239] S. Sanfilippo, “Redis.” http://redis.io/. Web Page, last vis-
ited in Dec. 2013.

[240] Apache Software Foundation, “Apache Maven Project.” http:

//maven.apache.org/. Web Page, last visited in Dec. 2013.

[241] Apache Software Foundation, “Archiva: the build artifact repos-
itory manager..” http://archiva.apache.org/. Web Page, last
visited in Dec. 2013.

[242] Intel Corporation, Itseez, Willow Garage , “Open source com-
puter vision library.” http://opencv.org. Web Page, last visited
in Dec. 2013.

[243] Eastman Kodak, “True color kodak images (mirror).” http://

r0k.us/graphics/kodak/. Web Page, last visited in Dec. 2013.

[244] B. Emir, M. Odersky, and J. Williams, “Matching objects with
patterns,” in Proc. of the 21st European Conference on Object-
Oriented Programming (E. Ernst, ed.), (Berlin, Germany), pp. 273–
298, Springer Berlin / Heidelberg, 2007.

[245] OMG, Common Object Request Broker Architecture (CORBA), Ver-
sion 3.2, pp. 71–93. OMG, 2011.

[246] N. Sweet, M. Grotzke, R. Levenstein, and S. Ritchie, “Kryo —
java serialization and cloning: fast, efficient, automatic.” http:

//github.com/EsotericSoftware/kryo/. Web Page, last visited
in Dec. 2013.

[247] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner,
“A break in the clouds: towards a cloud definition,” ACM SIG-
COMM Computer Communication Review, vol. 39, no. 1, pp. 50–55,
2009.

http://akka.io/
http://netty.io/
http://www.hyperic.com/products/sigar
http://redis.io/
http://maven.apache.org/
http://maven.apache.org/
http://archiva.apache.org/
http://opencv.org
http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/
http://github.com/EsotericSoftware/kryo/
http://github.com/EsotericSoftware/kryo/

188 bibliography

[248] Z. Cai, V. Kumar, B. Cooper, G. Eisenhauer, K. Schwan, and
R. Strom, “Utility-driven proactive management of availability
in enterprise-scale information flows,” in Proc. of the ACM/I-
FIP/USENIX 7h International Middleware Conference, (Melbourne,
Australia), Springer, 2006.

[249] Z. Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu, “A
hybrid approach to high availability in stream processing sys-
tems,” in Proc. of the 30th IEEE International Conference on Dis-
tributed Computing Systems, (Genoa, Italy), pp. 138–148, IEEE,
2010.

[250] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniacak, and
M. Stonebraker, “Load shedding in a data stream manager,” in
Proc. of the 29th International Conference on Very Large Data Bases,
(Berlin, Germany), pp. 309–320, The VLDB Endowment, 2003.

[251] Y. Zhou, B. Ooi, T. Kian-Lee, and W. Ji, “Efficient dynamic op-
erator placement in a locally distributed continuous query sys-
tem,” in Proc. of the 2006 Confederated international conference On
the Move to Meaningful Internet Systems: CoopIS, DOA, GADA, and
ODBASE, (Montpellier, France), Springer, 2006.

[252] A. Martin, C. Fetzer, and A. Brito, “Active replication at (al-
most) no cost,” in Proc. of the 2011 IEEE International Symposium
on Reliable Distributed Systems, (Madrid, Spain), pp. 21–30, IEEE,
2011.

[253] A. Brito, A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert,
and C. Fetzer, “Scalable and low-latency data processing with
stream mapreduce,” in Proc. of the 3rd International Conference on
Cloud Computing Technology and Science, (Athens, Greece), pp. 48–
58, IEEE, 2011.

[254] L. Michel, A. Shvartsman, E. Sonderegger, and P. Hentenryck,
“Optimal deployment of eventually-serializable data services,”
in Proc. of the 5th International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Opti-
mization Problems, (Paris, France), pp. 188–202, Springer Berlin
Heidelberg, 2008.

[255] M. Lombardi and M. Milano, “Allocation and scheduling of
conditional task graphs,” Artificial Intelligence, vol. 174, no. 7–8,
pp. 500 – 529, 2010.

[256] Z. Qian, Y. He, C. Su, Z. Wu, H. Zhu, T. Zhang, L. Zhou, Y. Yu,
and Z. Zhang, “Timestream: reliable stream computation in the
cloud,” in Proc. of the ACM SIGOPS European Conference on Com-
puter Systems, (Prague, Czech Republic), ACM, 2013.

bibliography 189

[257] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and un-
supervised discretization of continuous features,” in Proc. of
the 12th International Conference on Machine Learning, ICML ’95,
(Tahoe City, CA, USA), pp. 194–202, Morgan Kaufmann, 1995.

[258] P. Shaw, “Using constraint programming and local search meth-
ods to solve vehicle routing problems,” in Proc. of the 4th Interna-
tional Conference on Principles and Practice of Constraint Program-
ming, pp. 417–431, Pisa, Italy: Springer, 1998.

[259] P. Laborie, “Ibm ilog cp optimizer for detailed scheduling illus-
trated on three problems,” in Proc. of the 6th International Con-
ference on Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, (Pittsburgh, PA,
USA), pp. 148–162, Springer Berlin Heidelberg, 2009.

[260] W. Cleveland and S. Devlin, “Locally weighted regression: an
approach to regression analysis by local fitting,” Journal of the
American Statistical Association, vol. 83, no. 403, pp. 596–610,
1988.

[261] A. Guttman, “R-trees: a dynamic index structure for spatial
searching,” in Proc. of the 1984 ACM SIGMOD international con-
ference on Management of data, (Boston, Massachusetts), pp. 47–57,
ACM, 1984.

[262] A. Reale, P. Bellavista, A. Corradi, and M. Milano, “Evaluat-
ing cp techniques to plan dynamic resource provisioning in
distributed stream processing — on-line appendix.” http://

middleware.unibo.it/people/ar/laar-rap/. Web Page, last vis-
ited in Dec. 2013.

[263] G. Jacques-Silva, B. Gedik, H. Andreade, K.-L. Wu, and R. Iyer,
“Fault injection-based assessment of partial fault tolerance in
stream processing applications,” in Proc. of the 5th International
Conference on Distributed Event-based Systems, (New York, NY,
USA), pp. 231–242, ACM, 2011.

[264] E. Duarte-Melo and M. Liu, “Analysis of energy consumption
and lifetime of heterogeneous wireless sensor networks,” in Proc.
of the IEEE Global Telecommunications Conference, (Taipei, Taiwan),
pp. 21–25, IEEE, 2002.

http://middleware.unibo.it/people/ar/laar-rap/
http://middleware.unibo.it/people/ar/laar-rap/

A C K N O W L E D G E M E N T S

I would like to thank Prof. Paolo Bellavista and Prof. Antonio Cor-
radi for their precious advices and support during my Ph.D. studies.
They helped me during every step of my work with unmatched com-
petence and patience. A sincere thanks goes to Dr. Pól Mac Aonghusa
and Dr. Spyros Kotoulas for giving me the chance to work with them
at the IBM Dublin Research Lab: my stay in Ireland has been a unique
experience for me, both professionally and personally. I also want to
thank the reviewers of this thesis, Prof. Sumi Helal and Dr. Spyros
Kotoulas, for their many suggestions that helped to greatly improve
the quality of this work.

Thanks to all the people I met around the world: my dear friends
Giuseppe and Andreas, and all the guys that made my stay in Dublin
unforgettable: Piér, Simone, Stefania, Zubair, Marco, Spyros, Vanessa,
Giusy, and Ernesto. Thanks to all the LIA — Carlo, Giuseppe, Fed-
erico, Daniela, and Stefano — and to all the other friends I met dur-
ing my Ph.D. studies at the University of Bologna — Mario, Primi-
ano, Ghedo, and Alessio — for all the memorable launch, afternoon,
and (sometimes) dinner breaks. An important mention goes to the
nameless woman that “cleans” our lab: thanks to you, nothing can
kill me now. A special acknowledgment goes also to all my friends
that shared with me many important moments during my time in
Bologna; thanks to Mauro, Marco, Bif, Cristian, Fabio, Antonio, Demo,
Andrea, Savio, Daniele, Salvo, Nicola, il Sardo, Françoise, Vale, Giu-
seppe, Gigi, Claudia, Daniele, Antonella, and Alessandra. I cannot
forget to be grateful to all my closest friends from Campobasso —
Valerio, Ianna, Jack and, of course, the girls, Rossana, Antonella, Va-
leria, and Nidia: I am sad that we keep spending less and less time
together, but I sincerely hope that we will improve on that very soon.
And thanks to Bologna, which I now consider my second home, for
nourishing me and for providing the perfect background for many
life-changing experiences.

Finally, the most important acknowledgements are for Minola and
for my family. Minola for being always by my side with her sweet
and endless support, encouragement, and love, even in the many oc-
casions when any other mentally-sane person would have run away;
my parents, Anna and Francesco, and my brothers, Antonello and Gi-
anni, for being always present whenever I needed them and because
they will always represent for me a safe and solid shelter.

191

fin.

	Titlepage
	Abstract
	Publications and awards
	Contents
	1 Introduction
	1.1 Architecture
	1.1.1 Sensing and actuation
	1.1.2 Data distribution
	1.1.3 Data analysis

	1.2 Example scenario
	1.3 Research questions and methodology
	1.4 Thesis contributions and outline

	2 Quality of Service in PUB/SUB Data Distribution
	2.1 Positioning our contribution
	2.2 Model
	2.2.1 Basic model
	2.2.2 QoS-aware model
	2.2.3 Classification of QoS properties

	2.3 Systems survey
	2.3.1 Centralized and topic based
	2.3.2 Overlay and topic based
	2.3.3 Overlay and content based
	2.3.4 Peer-to-peer and topic based

	2.4 Discussion
	2.4.1 Delivery semantics
	2.4.2 Persistence
	2.4.3 Latency
	2.4.4 Priorities and weak timing indications
	2.4.5 Ordering

	2.5 Directions for future research work
	2.6 Summary and conclusions

	3 Quality of Service in Data Streams Processing
	3.1 Positioning our contribution
	3.2 Data-intensive scalable computing
	3.3 Model
	3.3.1 Basic model
	3.3.2 QoS-aware model
	3.3.3 Classification of QoS properties

	3.4 Systems survey
	3.4.1 Data stream management systems
	3.4.2 Distributed stream processing engines

	3.5 Discussion
	3.5.1 Processing semantics
	3.5.2 Load management
	3.5.3 Fault tolerance

	3.6 Directions for future work
	3.7 Summary and conclusions

	4 A Framework for Quality of Service Aware Stream Processing
	4.1 Related work
	4.2 Design principles
	4.3 The Quasit model
	4.3.1 Abstract model
	4.3.2 Development model
	4.3.3 Execution model

	4.4 Architecture
	4.4.1 Quasit domain manager
	4.4.2 Quasit runtime node
	4.4.3 Quasit operator repository
	4.4.4 QoS management

	4.5 Implementation
	4.5.1 Quasit domain manager
	4.5.2 Quasit runtime node
	4.5.3 Quasit operator repository

	4.6 Experimental evaluation
	4.6.1 Scenario description
	4.6.2 Ideal parallel processing
	4.6.3 Horizontal scalability
	4.6.4 Apache S4

	4.7 Lessons learned
	4.8 Future work
	4.9 Summary and conclusions

	5 Adaptive Fault-Tolerance in Distributed Stream Processing Systems
	5.1 Related work
	5.2 Service model
	5.3 Load-adaptive active replication
	5.3.1 LAAR in a simple application
	5.3.2 Model and definitions
	5.3.3 Internal completeness metric

	5.4 Replica activation problem
	5.4.1 Failure model
	5.4.2 Constraint programming solutions

	5.5 Runtime architecture
	5.6 Experimental evaluation
	5.6.1 Off-line optimization
	5.6.2 On-line execution

	5.7 Future work
	5.8 Summary and conclusions

	6 Conclusions
	6.1 Major contributions
	6.2 Future research directions
	6.3 Final remarks

	Acronyms
	List of Figures
	List of Figures

	List of Tables
	List of Tables

	List of Listings
	List of Listings

	Bibliography
	Acknowledgements

