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Ocean warming and acidification 

The oceans cover over two-thirds of the Earth’s surface. They play a vital role in global 

biogeochemical cycles, contribute enormously to the planet’s biodiversity and provide a 

livelihood for millions of people (Raven et al. 2005). In the marine realm, two of the 

main forces causing significant changes are ocean warming (OW) and ocean acidification 

(OA), both largely driven by the burning of fossil fuels, deforestation, industrialization, 

cement production, and other land-use changes (Wisshak et al. 2013). During the last 2-3 

decades, an increase of at least 0.3-0.4°C has been recorded in mean annual sea surface 

temperatures (SST) across much of the global tropics and subtropics (Kleypas et al. 

2008). Projections of future climatic change estimate a 0.3-4.8°C average increase in 

surface air temperature, and a 0.6-2.0°C average increase in surface ocean temperature by 

the end of 2100 (IPCC 2013). In temperate areas, the effect of temperature warming is 

expected to be even greater. For instance, the Mediterranean Sea, which can be regarded 

as a miniature ocean that is expected to react faster to global change compared to the 

open ocean (Bethoux et al. 1999), seems to be already showing warming rates three times 

higher than the global ocean (Solomon et al. 2007; Field et al. 2012). Over the last 

decades, there appears to have been a warming trend attributed to global warming in deep 

(Bethoux et al. 1990) and surface waters (Lelieveld et al. 2002; Nykjaer 2009). A 

warming of 0.02-0.03°C is reported for the period 1974-2005 in the NW Mediterranean 

shelf (Vargas-Yáñez et al. 2008).  

 Surface ocean CO2 partial pressure (pCO2) is also expected to rise in proportion 

with the atmospheric CO2 increase due oceanic uptake of anthropogenic CO2 (Sabine et 

al. 2004). When carbon dioxide is absorbed by seawater, chemical reactions occur that 
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lower seawater pH, carbonate ion (CO3
2-) concentration, and saturation states of the 

biologically important calcium carbonate (CaCO3) minerals calcite (Ωcalc) and aragonite 

(Ωarag), in a process commonly referred to as “ocean acidification” (Orr et al. 2005). 

During preindustrial times the global mean pH of sea surface was 8.2. Since then, this 

value has decreased already by 0.1 units, and according to the Intergovernmental Panel 

on Climate Change (IPCC), at the current rate of CO2 uptake, the average surface ocean 

pH will drop by further 0.06-0.32 units throughout this century (IPCC 2013). The current 

rate of CO2 release is capable of driving a combination and magnitude of ocean 

geochemical changes potentially unparalleled in at least the last 300 million years of 

Earth history, raising the possibility that we are entering an unknown territory of marine 

ecosystem change (Hönisch et al. 2012). 

Although OA acts at a global scale, its impact varies locally. In the case of the 

Mediterranean Sea, owing to its high alkalinity, more atmospheric CO2 is absorbed than 

in the open ocean (CIESM 2008). The fast turnover time of its waters (50-100 years; 

Bethoux et al. 2005) and the very high concentration and fast penetration of 

anthropogenic CO2 (Schneider et al. 2007; Schneider et al. 2010; Touratier and Goyet. 

2009) makes it one of the world’s most sensitive regions to increasing atmospheric CO2 

(Ylmaz et al 2008; Calvo et al. 2011; Ziveri 2008). A recent study estimated a pH 

decrease of up to 0.14 units since the pre-industrial era (Touratier and Goyet 2011), larger 

than the global averaged surface ocean pH decrease of 0.1 pH units (Orr et al. 2005). It is 

consequently important to understand how anthropogenic pCO2 has already affected and 

how it will affect Mediterranean Sea ecosystems and their key taxa.  
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Mediterranean corals and warming 

My research included a study performed along a temperature gradient in the Italian 

western coast (Caroselli et al. 2011: Chapter 2), where we saw that porosity of the 

skeleton increases with temperature in the zooxanthellate (i.e. symbiotic with unicellular 

algae named zooxanthellae) solitary scleractinian Balanophyllia europaea (Risso, 1826) 

while it does not vary with temperature in the solitary non-zooxanthellate Leptopsammia 

pruvoti Lacaze-Duthiers, 1897. These results were confirmed by another study 

(Fantazzini et al. 2013: Chapter 3) I was involved in, that indicated that the increase in 

porosity with increasing temperature was accompanied by an increase of the fraction of 

the largest pores in the pore-space. The increase in porosity with temperature in the 

zooxanthellate species was ascribed to an inhibition of the photosynthetic process at 

elevated temperatures (Al-Horani 2005), causing an attenuation of calcification  (Jokiel 

and Coles 1990). Furthermore, the calcification (Goffredo et al. 2009), abundance 

(Goffredo et al. 2007), and the stability of population structure (Goffredo et al. 2008) also 

decreased with increasing temperature. The negative correlations between temperature 

and various biological parameters generate concern for the future of B. europaea, 

endemic to the Mediterranean Sea, with respect to future climate change scenarios 

(Goffredo et al. 2008, 2009; Caroselli et al. 2011). 

 

CO2 vents as a model for ocean acidification studies 

Knowledge on the potential effects of increased ocean acidity on marine ecosystems is 

very limited since almost all studies have been in vitro, short-term experiments on 

isolated organisms (Raven et al. 2005; Riebesell et al. 2007). Although laboratory 
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experiments are indispensable, most are too brief for full organism acclimatization to 

occur, and co-limiting factors (nutrients, currents and irradiance) are difficult to simulate 

ex situ. Experiments also provide little information about processes leading to ecosystem 

adaptation, such as altered reproduction, competition, food webs and disease 

susceptibility, or genetic adaptation. There is therefore great need for empirical data 

documenting the long-term effects of ocean acidification on marine ecosystems 

acclimatized to high pCO2, as found around CO2 vents. Areas with naturally high CO2 

may serve as useful sites to predict the impacts of ocean acidification on coastal 

environments (Barry et al. 2010). Vent systems are not perfect predictors of future ocean 

ecology, owing to pH variability, spatial proximity of unaffected populations, and co-

varying environmental parameters (Hall-Spencer et al. 2008; Crook et al. 2013). 

However, vents acidify seawater on sufficiently large temporal and spatial scales to 

integrate ecosystem processes (Barry et al. 2010) and act as a “natural laboratory”. In 

Papua New Guinea, at three cool and shallow volcanic carbon dioxide seeps, reductions 

were found in coral diversity, recruitment and abundances of structurally complex 

framework builders, and shifts in competitive interactions between taxa (Fabricius et al. 

2011). Recently, changes in shallow-water marine rocky shore ecosystems have been 

investigated at volcanic CO2 seeps in the Mediterranean Sea. Studies at Ischia and 

Vulcano, in the south of Italy, have documented decreased diversity, biomass, and trophic 

complexity of benthic marine communities, major declines in many calcifying and non-

calcifying organisms and increases in macroalgae and seagrasses at reduced seawater pH 

(Cigliano et al. 2010; Hall-Spencer et al. 2008; Porzio et al. 2011).  
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The Island of Panarea belongs to the Aeolian Archipelago (Italy), located in the 

southern Tyrrhenian Sea in the Mediterranean. At 10 m depth a crater 20 x 14 m wide 

generates a stable and sustained column of bubbles (mainly CO2: Capaccioni et al. 2007), 

at ambient temperature, that naturally acidifies the surrounding seawater to levels 

matching different IPCC scenarios. In this unique site we performed a transplant 

experiment (Manuscript in preparation: Chapter 4) to study the effect of different pH 

conditions on the mortality rate and growth (extension rate and net calcification rate) of 

the solitary zooxanthellate Balanophyllia europaea, the solitary non-zooxanthellate 

Leptopsammia pruvoti and the colonial non-zooxanthellate Astroides calycularis. In all 

three species, high temperature exacerbated the negative effect of lowered pH on the 

mortality rate. The growth of the zooxanthellate species did not react to reduced pH, 

while the growth of the two non-zooxanthellate species was negatively affected, 

indicating that zooxanthellate species may be more resistant to ocean acidification than 

their non-zooxanthellate counterparts. These results indicate possible different levels of 

resilience/resistance to climate change among coral species, probably because of different 

modes of nutrition and/or biomineralization processes. 

We also conducted a parallel study (submitted to Nature Climate Change: Chapter 

5), where different species naturally occurring along the CO2 gradient were collected to 

relate the control over the biomineralization process with the population density. The data 

indicate a decrease in the percentage cover of a scleractinian coral (Balanophyllia 

europaea), a mollusc (Vermetus triqueter), a calcifying (Padina pavonica) and a non-

calcifying (Lobophora variegata) macroalgae while no variation in the abundance of a 

calcifying green alga (Acetabularia acetabulum) was observed. The mineralogy of the 



 8 

calcified regions showed different responses to OA. With decreasing pH, V. triqueter and 

B. europaea did not change the mineralogy of their tubes and skeletons, while P. 

pavonica and A. acetabulum decreased the content of aragonite in favor of the less 

soluble calcium sulphates and whewellite (calcium oxalate), respectively, possibly as a 

mechanism of phenotypic plasticity. 

In order to understand the effects of CO2-driven acidity on the population density 

decrease of B. europaea, we analyzed the structure of the pore-space of the skeleton by 

means of TD-NMR analysis on specimens collected along the pH gradient (Manuscript in 

preparation: Chapter 6). Not only porosity (pore-volume to sample-volume ratio) but 

also pore-size distribution of mineralized tissues strongly influence the skeletal resistance 

to natural and anthropogenic breakage. The NMR results indicate that the decrease of pH 

determines an increase in porosity mainly driven by an increase in macroporosity (the 

fraction of the largest pores in the pore-space). 

Natural CO2-leaking marine sites like the one used in these studies can provide 

essential information on the combined effects of ocean acidification and global warming 

on benthic organisms, which may help understand how Mediterranean Sea ecosystems 

and their key taxa will be affected in the current century.  
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a  b  s  t  r  a  c  t

The  correlations  between  skeletal  parameters  (bulk  density,  micro-density  and  porosity),  coral  age  and
sea surface  temperature  were  assessed  along  a latitudinal  gradient  in  the  zooxanthellate  coral  Balanophyl-
lia europaea  and  in the  azooxanthellate  coral  Leptopsammia  pruvoti.  In  both  coral  species,  the variation
of  bulk  density  was more  influenced  by the  variation  of  porosity  than  of micro-density.  With  increasing
polyp  age,  B.  europaea  formed  denser  and  less  porous  skeletons  while  L. pruvoti  showed  the  opposite
trend,  becoming  less  dense  and  more  porous.  B. europaea  skeletons  were  generally  less  porous  (more
dense)  than  those  of  L.  pruvoti,  probably  as  a consequence  of  the  different  habitats  colonized  by the
two  species.  Increasing  temperature  had  a negative  impact  on  the zooxanthellate  species,  leading  to
an increase  of  porosity.  In  contrast,  micro-density  increased  with  temperature  in the  azooxanthellate
species.  It is hypothesized  that  the  increase  in  porosity  with  increasing  temperatures  observed  in B.
europaea  could  depend  on  an  attenuation  of  calcification  due  to  an  inhibition  of the  photosynthetic  pro-
cess at elevated  temperatures,  while  the  azooxanthellate  species  appears  more  resistant  to  variations  of
temperature,  highlighting  possible  differences  in  the  sensitivity/tolerance  of these  two  coral  species  to
temperature  changes  in  face  of global  climate  change.

© 2011 Elsevier GmbH. All rights reserved.

1. Introduction

Studying how terrestrial and marine ecosystems respond to
present and future environmental shifts related to climate change
is a fundamental challenge for ecologists (Karl and Trenberth,
2003; Harley et al., 2006). The rate of climate change is acceler-
ating, and the average surface temperature of the Earth is likely
to increase by 1.1–6.4 ◦C until the end of the 21st century, with
a best estimate of 1.8–4.0 ◦C (Solomon et al., 2007). Growing evi-
dence suggests that climate change is having more substantial
and rapid effects on marine communities than on terrestrial ones
(Richardson and Poloczanska, 2008). Increased seawater temper-
ature, enhanced ultraviolet-B radiation, upper-ocean acidification,
and anthropogenic stress will affect all levels of ecological hierar-
chies and a broad array of marine ecosystems (Walther et al., 2002).

The magnitude of temperature change is expected to be greater
in temperate areas than in tropical ones (Solomon et al., 2007).

∗ Corresponding author. Tel.: +39 051 2094244; fax: +39 051 2094286.
E-mail address: stefano.goffredo@marinesciencegroup.org (S. Goffredo).

Climatic models further predict that the Mediterranean basin will
be one of the regions most affected by the ongoing warming trend
and by an increase in extreme events (Lejeusne et al., 2010). This
commends the Mediterranean Sea as a potential model of global
scenarios to occur in the world’s marine biota, and a natural focus of
interest for research. The Mediterranean is already one of the most
impacted seas in the world, since climate change interacts synergis-
tically with many other disturbances such as eutrophication caused
by increased use of agricultural phosphates and the damming of
rivers (Tsimplis et al., 2006). In recent years, the coralligenous
community of the Mediterranean Sea, one of the most diverse
communities there (∼1666 species; Ballesteros, 2006) where sus-
pension feeders are dominant, has been strongly affected by several
mass mortality events (Cerrano et al., 2000; Perez et al., 2000;
Rodolfo-Metalpa et al., 2000; Romano et al., 2000; Coma et al., 2009;
Garrabou et al., 2009). Ecosystem engineers, including gorgonians
and sponges, have been the most affected taxa down to depths of
45 m (Cerrano et al., 2000; Perez et al., 2000; Garrabou et al., 2009).

The present study focuses on two  scleractinian species com-
monly occurring in the Mediterranean Sea: Balanophyllia europaea
and Leptopsammia pruvoti.

0944-2006/$ – see front matter ©  2011 Elsevier GmbH. All rights reserved.
doi:10.1016/j.zool.2011.04.003
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B. europaea is a solitary, ahermatypic, zooxanthellate, and scle-
ractinian coral, which is endemic to the Mediterranean Sea and is
distributed at 0–50 m depth due to its symbiosis with zooxanthellae
(Zibrowius, 1980). Along the Italian coasts, its skeletal density and
population abundance are negatively correlated with sea surface
temperature (SST) (Goffredo et al., 2007). In addition, the popu-
lation structures of this species become less stable and deviate
from the steady state with increasing SST due to a progressive

deficiency of young individuals (Goffredo et al., 2008). Its calcifica-
tion is negatively correlated with SST (Goffredo et al., 2009). It has
been hypothesized that photosynthesis of the symbiotic algae of
B. europaea is inhibited at high temperatures, consequently caus-
ing an inhibition of calcification (Goffredo et al., 2009). There is
concern for the future of this species (Goffredo et al., 2008, 2009)
with regard to the current predictions of global warming by the
Intergovernmental Panel on Climate Change (IPCC).

Fig. 1. Living specimens (top), skeletons (middle) and corallites (bottom) of (a, c and e) Balanophyllia europaea and (b, d and f) Leptopsammia pruvoti. Dotted lines in (b) and
(d)  indicate polyp lengths (L = maximum axis of the oral disc). (e and f) Computerized tomography scans of two corallites. Age was determined by counting the high density
growth bands (hd). In these samples, the skeleton of B. europaea is 5 years old, while the skeleton of L. pruvoti is 4 years old.
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L. pruvoti is an ahermatypic, non-zooxanthellate, and solitary
scleractinian coral, which is distributed in the Mediterranean basin
and along the European Atlantic coast from Portugal to Southern
England and Ireland (Zibrowius, 1980). It is one of the most com-
mon  organisms in semi-enclosed rocky habitats, under overhangs,
in caverns, and small crevices at 0–70 m depth (Zibrowius, 1980).
Sea surface temperature and solar radiation have been reported
not to significantly influence its skeletal density, corallite length,
width, height or population abundance along an 850-km latitudinal
gradient on the west coast of Italy (Goffredo et al., 2007).

SST, whose variation is mainly influenced by latitude (Kain,
1989), is strongly linked to coral biometry, physiology, and demog-
raphy (Kleypas et al., 1999; Lough and Barnes, 2000; Harriott
and Banks, 2002; Al-Horani, 2005). Several studies have shown
that coral growth is strongly related to temperature (Goreau and
Goreau, 1959; Bak, 1974; Jokiel and Coles, 1978; Highsmith, 1979;
Crossland, 1984; Kleypas et al., 1999; Lough and Barnes, 2000;
Goffredo et al., 2007, 2008, 2009). Coral growth is defined by three
related characteristics: calcification, skeletal density, and linear
extension rate (calcification = skeletal density × linear extension;
Lough and Barnes, 2000; Carricart-Ganivet, 2004). Most studies on
coral skeletal density have focused on bulk density, which is the
mass divided by the total enclosed volume, including the volume
of the enclosed skeletal voids (porosity). Bulk density has been
found to vary with exposure, latitude, depth, temperature, loca-
tion within a colony, and also between different growth forms (see,
e.g., Dustan, 1975; Schneider and Smith, 1982; Oliver et al., 1983;
Hughes, 1987; Jiménez and Cortés, 1993; Harriott, 1997; Carricart-
Ganivet, 2004; Goffredo et al., 2007, 2009; Dar and Mohammed,
2009; Tanzil et al., 2009). Another measure of skeletal density
appearing in the literature is micro-density (mass per unit vol-
ume  of the material which composes the skeleton; Barnes and
Devereux, 1988). As porosity decreases, bulk density will approach
micro-density, and neither can exceed the density of pure arago-
nite (2.94 mg  mm−3; Marszalek, 1982; Bucher et al., 1998), due to
the presence of an intra-crystalline organic matrix which is absent
in abiotic carbonates (Cuif et al., 1999). Bulk density, porosity and
micro-density have rarely been investigated together (Barnes and
Devereux, 1988; Bucher et al., 1998), even though they are the fac-
tors influencing the ability of coral skeletons to resist natural and
anthropogenic breakage (Wainwright et al., 1976; Chamberlain,
1978; Tunnicliffe, 1979; Schumacher and Plewka, 1981; Vosburgh,
1982; Liddle and Kay, 1987; Jiménez and Cortés, 1993; Rodgers
et al., 2003). Variability in micro-density among colonies within and
among species, localities, and environmental conditions remains
largely unstudied (Bucher et al., 1998). This is the first study
exploring all of these three skeletal parameters (bulk density,
micro-density and porosity) in temperate corals, with the aim of
defining their relationships with coral age and SST and highlighting
possible differences in the sensitivity/tolerance of the two  investi-
gated coral species to temperature changes in face of global climate
change.

2. Materials and methods

2.1. Collection and treatment of specimens

Specimens of B. europaea (Risso, 1826) and L. pruvoti Lacaze-
Duthiers, 1897 (Fig. 1A and B) were collected between 9 November
2003 and 24 June 2008 from 6 sites along a latitudinal gradient,
from 44◦20′N to 36◦45′N (Fig. 2). Corals of B. europaea were
randomly collected along a reef with southerly exposure at a
depth of 5–7 m.  Corals of L. pruvoti were randomly collected on
the vault of crevices at a depth of 15–17 m.  The sampling was
performed at depths known to have high population densities
and where the reproductive biology of the two species had been

Fig. 2. Map  of the Italian coastline indicating the sites where the corals were col-
lected. Abbreviations and coordinates of the sites in decreasing order of latitude:
GN, Genova, 44◦20′N, 9◦08′E; CL, Calafuria, 43◦27′N, 10◦21′E; LB, Elba Isle, 42◦45′N,
10◦24′E; PL, Palinuro, 40◦02′N, 15◦16′E; SC, Scilla, 38◦01′N, 15◦38′E; PN, Pantelleria
Isle,  36◦45′N, 11◦57′E.

studied previously (Goffredo et al., 2002, 2004, 2006; Goffredo and
Zaccanti, 2004).

Coral tissue was  totally removed by immersing the samples
in a solution of 10% commercial bleach for 3 days. Corals were
dried for 4 days at a maximum temperature of 50 ◦C to avoid
phase transitions in the skeletal carbonate phases (Vongsavat et al.,
2006). Each sample was inspected under a binocular microscope
to remove fragments of substratum and calcareous deposits pro-
duced by other organisms. During this microscopic inspection, the
few specimens that showed evident signs of bioerosion were sepa-
rated and excluded from the analysis. Polyp length (L: longest axis
of the oral disc), width (W: shortest axis of the oral disc), and height
(h: oral–aboral axis) were measured using a pair of calipers (Fig. 1C
and D; cf. Goffredo et al., 2007).

2.2. Age determination

Coral age was obtained by growth band analysis of about
40 skeletons randomly selected from the samples collected for
each population, by means of computerized tomography (CT; von
Bertalanffy, 1938; Goffredo et al., 2008; Fig. 1E and F). This tech-
nique is commonly applied to scleractinian corals (Bosscher, 1993;
Helmle et al., 2000) and has also been successfully used in solitary
corals (Goffredo et al., 2004, 2008, 2010). The age of each skeleton
was determined by counting the growth bands, which are distin-
guished by a high-density band in winter and a low-density band in
summer (Peirano et al., 1999; Goffredo et al., 2004, 2008). For L. pru-
voti, a power function model was used to correlate the age/length
data obtained by the CT scans of each population, since it produced
the best fit. Using this model, the age of each coral sample was
determined from its length. For B. europaea, the age of each sam-
ple was  estimated using the von Bertalanffy’s growth function for
analyzing the data obtained by CT growth band analysis (cf.
Goffredo et al., 2008).
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2.3. Determination of skeletal parameters

To obtain the skeletal parameters, the buoyant weight of 250
specimens of B. europaea and 248 specimens of L. pruvoti was mea-
sured using the density determination kit of the Ohaus Explorer Pro
balance (±0.0001 g; Ohaus Corp., Pine Brook, NJ, USA). For buoyant
weight measurements, the standard pan was replaced by a sus-
pended weighing cradle attached to an underwater weighing pan
submerged in a glass beaker filled with distilled water. A cover iso-
lated the device from air flow within the laboratory. Measurements
required for calculating the skeletal parameters were:

! density of the fluid medium (in this case, distilled
water: 1 g cm−3 at 20 ◦C and 1 atm)

DW dry weight of the skeleton
BW buoyant weight of the skeleton = weight of the

skeleton minus weight of the water displaced by it.
To obtain this measurement, corals were placed in a
desiccator connected to a mechanical vacuum pump
for about 4 h in order to suck out all of the water and
air from the pores (Barnes and Devereux, 1988). Still
under vacuum conditions, the dry corals were soaked
by  gradually pouring distilled water inside the
desiccator. The coral was then slowly lowered onto
the underwater weighing pan, ensuring that no air
bubbles adhered to its surface. The buoyant weight
measurement was taken when the reading was
stable, to avoid errors caused by measurement
instability in the first few seconds due to water
movement. This simple and nondestructive method
has been widely used on various corals (Franzisket,
1964; Bak, 1973, 1976; Jokiel et al., 1978; Graus and
Macintyre, 1982; Hughes, 1987; Barnes and
Devereux, 1988; Davies, 1989; Mann, 1994; Marubini
et al., 2003; Ammar et al., 2005; Spiske et al., 2008;
Shi et al., 2009).

SW saturated weight of the coral = weight of the skeleton
plus weight of the water enclosed in its pores. The
coral was  taken out of the water, quickly blotted with
a  humid paper towel to remove surface water, and
weighed in air, making sure that no water droplets
were left on the weighing platform, which would
lead to an overestimation.

VMATRIX = DW−BW
! matrix volume = volume of the skeleton, excluding

the volume of its pores.
VPORES = SW−DW

! pore volume = volume of the pores in the skeleton.
VTOT = (VMATRIX + VPORES) total volume = volume of the skeleton including its

pores.
Additionally, the following skeletal parameters were calculated:

Micro-density (matrix density) = DW/VMATRIX
Porosity = (VPORES/VTOT) × 100
Bulk density = DW/VTOT.

The above method was  slightly different from the one pro-
posed by Bucher et al. (1998),  since we decided not to use
acetone or wax in order to preserve the samples for further anal-
yses. However, the results of this buoyant weighing technique
were confirmed by the strong relationship between bulk den-
sity and porosity obtained for both species and all locations (see
Section 3).

As in other studies on the influence of environmental parame-
ters on coral growth (i.e., Harriott, 1999; Lough and Barnes, 2000;
Carricart-Ganivet, 2004; Peirano et al., 2005a,b), SST data were
obtained from data banks. During 2003–2005, SST data for each
site were obtained from the National Mareographic Network of
the Agency for the Protection of the Environment and Technical
Services (APAT, available at http://www.apat.gov.it). These data
were measured by mareographic stations (SM3810; SIAP, Bologna,
Italy), which were located close to the sampling sites (<1 km). Mean
annual SST was  obtained from hourly values measured from Jan-
uary 2001 to January 2005 (number of hourly values = 35,064 for
each site; Table 1).

2.4. Statistical analyses

Spearman’s rank correlation coefficient was used to calculate
the significance of the correlations between skeletal parameters
and sea surface temperature. Spearman’s rank correlation coeffi-
cient is an alternative to Pearson’s correlation coefficient (Altman,
1991). It is useful for data that are non-normally distributed and
do not meet the assumptions of Pearson’s correlation coefficient.
The Kruskal–Wallis test was  used to compare SST, age, and skeletal
parameter characteristics among study sites. The Kruskal–Wallis
test is a non-parametric alternative to the analysis of variance
(ANOVA) and is used to compare groups of means. The advantage
of this test is that it does not require normality of the data, as the
test is based on the ranks of data. This distribution-free test proved
to be more robust than its parametric counterpart in the case of
a non-normal distribution of sample data, and it is a viable alter-
native to parametric statistics (Potvin and Roff, 1993). All analyses
were computed using SPSS. 12.0.

3. Results

SST varied among the sites, with mean values spanning from
18.0 ◦C to 19.9 ◦C (Kruskal–Wallis test, df = 5, p < 0.001; Table 1). In
both coral species, the ages of the sampled individuals differed sig-
nificantly among the sites (Kruskal–Wallis test, df = 5; B. europaea:
p < 0.050; L. pruvoti: p < 0.001; Table 1).

Table 1
Balanophyllia europaea and Leptopsammia pruvoti. Values of sea surface temperature (SST), date of sample collection, number of collected samples and age of the samples at
each  site. The Genova site is characterized by particular local conditions (xerotherm site due to local currents and rock composition; see www.apat.gov.it) and typically has
higher  SST than expected for this latitude (annual SST of Ligurian Sea: 18 ◦C; Genova: 19.6 ◦C). In both coral species, the ages of sampled individuals differed significantly
among the sites (Kruskal–Wallis test, df = 5; B. europaea: p < 0.050; L. pruvoti: p < 0.001). The sites are arranged in order of increasing seawater temperature.

Population Code SST (◦C) Date of collection Species n Age (years)

Annual mean (SE) Range Mean (SE) Range (years)

Calafuria CL 18.02 (0.04) 12.6–29.4 31 January 2004/24 June 2008 B. europaea 38 7.05 (0.80) 1.5–17.1
L.  pruvoti 44 4.52 (0.19) 2.0–6.6

Elba  LB 18.74 (0.04) 12.5–26.7 10–11 November 2003 B. europaea 17 6.16 (0.21) 4.0–7.5
L. pruvoti 42 8.05 (0.40) 3.2–13.7

Palinuro PL 19.14 (0.03) 12.9–27.1 2–3 April 2004 B. europaea 49 7.77 (0.36) 1.6–16.2
L.  pruvoti 45 5.07 (0.31) 1.6–9.5

Scilla SC 19.54 (0.02) 15.3–25.3 6–7 January 2005 B. europaea 8 7.59 (0.49) 5.7–9.7
L.  pruvoti 29 8.69 (0.10) 1.4–19.7

Genova GN 19.56 (0.04) 13.1–34.7 24 October 2004 B. europaea 23 8.42 (0.63) 1.3–13.8
L.  pruvoti 43 8.29 (0.52) 1.6–13.8

Pantelleria PN 19.88 (0.04) 13.1–26.8 29–30 September 2005/1 August 2006 B. europaea 115 7.92 (0.23) 1.7–13.5
L.  pruvoti 45 7.74 (0.60) 1.7–14.8

n, number of individuals; SE, standard error.
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Table 2
Balanophyllia europaea. Correlation analysis between polyp age (independent variable) and skeletal parameters (dependent variable) at 6 sites along the west coast of Italy.
Relationships were fitted to a power function model y = axb . The exponent (b) and factor (a) values are indicated only where the relationship was significant. The sites are
arranged in order of increasing seawater temperature.

Population Code n Dependent variable Factor Exponent r2 r

Micro-density – – 0.051 0.226
Calafuria CL 38 Porosity 35.293 −0.117 0.109 −0.330*

Bulk density 1.740 0.052 0.123 0.350*

Micro-density – – 0.012 0.110
Elba  LB 17 Porosity – – 0.013 0.116

Bulk density – – 0.005 −0.068

Micro-density – – 0.026 −0.162
Palinuro PL 49 Porosity – – 0.058 −0.241

Bulk density – – 0.030 0.173

Micro-density 2.485 0.043 0.591 0.768*

Scilla SC 8 Porosity – – 0.377 0.614
Bulk density – – 0.194 −0.440

Micro-density 2.559 0.030 0.531 0.729*

Genova GN 23 Porosity – – 0.026 −0.162
Bulk density – – 0.084 0.290

Micro-density 2.528 0.032 0.494 0.703***

Pantelleria PN 115 Porosity 41.548 −0.084 0.056 −0.237*

Bulk density 1.461 0.086 0.156 0.394***

n, number of individuals; r2, Pearson’s coefficient of determination; r, Pearson’s correlation coefficient.
* p < 0.050.

*** p < 0.001.

In B. europaea, when bulk density correlated positively with age
(Calafuria and Pantelleria), porosity correlated negatively, regard-
less of the response of micro-density. When bulk density did not
vary with age (Genova, Elba, Palinuro and Scilla), neither did poros-
ity vary, regardless of micro-density patterns (Table 2). In two  cases
(Scilla and Genova), micro-density was positively correlated with
age (Table 2).

In L. pruvoti, when bulk density correlated negatively with age
(Genova, Calafuria, Elba and Scilla), porosity correlated positively,
regardless of the response of micro-density. When bulk density
remained constant (Palinuro and Pantelleria), porosity was also

unchanged, irrespective of micro-density (Table 3). In three cases
(Calafuria, Genova and Pantelleria), micro-density was  positively
correlated with age (Table 3).

Thus, in both species, the variation of bulk density with age was
determined by the variation of porosity rather than by the variation
of micro-density. Whenever the relationship between bulk density
and micro-density or age was significant, it showed a positive trend.

The mean porosity of B. europaea was significantly lower than
that of L. pruvoti in 4 out of 6 populations (Genova, Calafuria, Elba
and Pantelleria; Student’s t-test, p < 0.001). In the Palinuro popula-
tion, porosity was significantly lower in L. pruvoti (Student’s t-test,

Table 3
Leptopsammia pruvoti. Correlation analysis between polyp age (independent variable) and skeletal parameters (dependent variable) at 6 sites along the west coast of Italy.
Relationships were fitted to a power function model y = axb . The exponent (b) and factor (a) values are indicated only where the relationship was significant. The sites are
arranged in order of increasing seawater temperature.

Population Code n Dependent variable Factor Exponent r2 r

Micro-density 2.525 0.031 0.14 0.374*

Calafuria CL 44 Porosity 27.600 0.285 0.19 0.431**

Bulk density 1.943 −0.178 0.13 −0.361*

Micro-density – – 0.07 −0.273
Elba  LB 42 Porosity 23.156 0.250 0.12 0.349*

Bulk density 2.331 −0.188 0.13 −0.365*

Micro-density – – 0.01 0.071
Palinuro PL 45 Porosity – – 0.00 −0.049

Bulk density – – 0.01 0.069

Micro-density – – 0.09 −0.298
Scilla  SC 29 Porosity 26.852 0.128 0.17 0.417*

Bulk density 2.029 −0.074 0.19 −0.437*

Micro-density 2.634 0.012 0.20 0.445**

Genova GN 43 Porosity 27.799 0.205 0.24 0.491***

Bulk density 1.917 −0.112 0.15 −0.382*

Micro-density 2.532 0.036 0.39 0.621***

Pantelleria PN 45 Porosity – – 0.04 0.194
Bulk density – – 0.03 0.157

n, number of individuals; r2, Pearson’s coefficient of determination; r, Pearson’s correlation coefficient.
* p < 0.050.

** p < 0.010.
*** p < 0.001.
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Table  4
Balanophyllia europaea and Leptopsammia pruvoti. Mean porosity of the samples at each site and significance of Student’s t-test used to compare the values between the two
species. The sites are arranged in order of increasing seawater temperature.

Population Code Species n Mean porosity (%) SE Significance

Calafuria CL B. europaea 1814 29.58 0.04 p < 0.001
L.  pruvoti 210 37.35 0.48

Elba  LB B. europaea 38 30.00 0.25 p < 0.001
L.  pruvoti 76 36.05 0.78

Palinuro PL B. europaea 80 38.20 0.20 p < 0.001
L.  pruvoti 152 31.02 0.05

Scilla SC B.  europaea 48 30.78 0.94 ns
L.  pruvoti 115 30.99 0.44

Genova GN B. europaea 55 31.44 0.16 p < 0.001
L.  pruvoti 123 36.26 0.80

Pantelleria PN B. europaea 171 35.11 0.09 p < 0.001
L.  pruvoti 144 41.84 0.10

n, number of individuals; SE, standard error.

p < 0.001), while in the Scilla population both species exhibited the
same porosity (Table 4).

In both species and in all locations, a strong correlation was
observed between bulk density and porosity. In B. europaea, the
relationship between bulk density and porosity was  1.8–45.0 times
stronger than that with micro-density, as indicated by the ratio
of the r2 values of the regressions (Table 5). In L. pruvoti,  this
relationship was even more emphasized, the correlation with
porosity being 1.7–185.0 times stronger than that with micro-
density (Table 6).

Since the average age of the samples differed among the sites
(Table 1), analyses of correlations between SST and skeletal param-
eters were performed after applying to the data the method of the
adjusted values in relation to age (Steel, 1980; see Goffredo et al.,
2007 for an example of application on corals). In B. europaea, SST did
not correlate with micro-density, while it was positively correlated
with porosity, explaining 4.5% of its variation, and negatively corre-
lated with bulk density, explaining 4.2% of its variation (Fig. 3). In L.
pruvoti, SST was positively correlated with micro-density, explain-
ing 15.4% of its variation, but showed no correlation with porosity
and bulk density (Fig. 3).

4. Discussion

4.1. Relationships among skeletal parameters

In both species and in all locations, the strong relationship
between bulk density and porosity was expected and indicates
that the buoyant weighing technique we used gave reason-
able results (Tables 5 and 6; Bucher et al., 1998). Bulk density
trends were always diametrically opposed to porosity trends
(Tables 2, 3, 5 and 6; Fig. 3), regardless of the trend of micro-density,
thus indicating that the variations in micro-density, even when sig-
nificant, were not strong enough to cause significant variations in
bulk density.

4.2. Relationships between micro-density and age

Bulk density is determined by the pattern in which the mate-
rial is laid down (micro-density) and by the volume of skeletal
voids it encloses (porosity) (Bucher et al., 1998). Micro-density is
the specific gravity of the material of which the skeleton is made.
The scleractinian coral skeleton is a two-phase composite material

Table 5
Balanophyllia europaea. Correlation analysis between bulk density, micro-density and porosity at the 6 sites. The exponent and factor values are indicated only where the
relationship was  significant. The sites are arranged in order of increasing seawater temperature.

Population Code n Dependent variable Independent variable Factor Exponent r2 r

Bulk density Porosity 7.532 −0.409 0.963 0.981***

Calafuria CL 38 Bulk density Micro-density 0.160 2.462 0.241 0.491**

Micro-density Porosity 3.035 −0.032 0.143 0.378*

Bulk density Porosity 9.701 −0.490 0.956 0.978***

Elba LB 17 Bulk density Micro-density 0.003 6.515 0.532 0.729***

Micro-density Porosity 2.992 −0.036 0.417 0.646**

Bulk density Porosity 13.728 −0.581 0.931 0.965***

Palinuro PL 49 Bulk density Micro-density 0.377 1.510 0.125 0.353*

Micro-density Porosity – – 0.015 0.122

Bulk  density Porosity 8.436 −0.440 0.950 0.975***

Scilla SC 8 Bulk density Micro-density – – 0.021 0.145
Micro-density Porosity – – 0.003 0.055

Bulk  density Porosity 8.273 −0.435 0.920 0.959***

Genova GN 23 Bulk density Micro-density – – 0.037 0.192
Micro-density Porosity – – 0.0001 0.01

Bulk  density Porosity 14.315 −0.593 0.936 0.967***

Pantelleria PN 115 Bulk density Micro-density 0.157 2.427 0.253 0.503***

Micro-density Porosity 3.093 −0.039 0.093 0.305**

n, number of individuals; r2, Pearson’s coefficient of determination; r, Pearson’s correlation coefficient.
* p < 0.050.

** p < 0.010.
*** p < 0.001.
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Table 6
Leptopsammia pruvoti. Correlation analysis between bulk density, micro-density and porosity at the 6 sites. The exponent and factor values are indicated only where the
relationship was  significant. The sites are arranged in order of increasing seawater temperature.

Population Code n Dependent variable Independent variable Factor Exponent r2 r

Bulk density Porosity 21.824 −0.717 0.925 0.961***

Calafuria CL 44 Bulk density Micro-density 0.091 2.881 0.230 0.480**

Micro-density Porosity – – 0.092 0.303

Bulk  density Porosity 19.874 −0.692 0.924 0.961***

Elba LB 42 Bulk density Micro-density 0.003 6.398 0.547 0.740***

Micro-density Porosity 3.250 −0.054 0.417 0.646***

Bulk density Porosity 8.798 −0.458 0.900 0.949***

Palinuro PL 45 Bulk density Micro-density – – 0.011 0.105
Micro-density Porosity – – 0.016 0.126

Bulk  density Porosity 11.711 −0.536 0.950 0.975***

Scilla SC 29 Bulk density Micro-density – – 0.015 0.122
Micro-density Porosity – – 1.00E−06 0.001

Bulk  density Porosity 19.743 −0.685 0.943 0.971***

Genova GN 43 Bulk density Micro-density – – 0.019 0.138
Micro-density Porosity – – 0.0001 0.01

Bulk  density Porosity 13.069 −0.569 0.742 0.861***

Pantelleria PN 45 Bulk density Micro-density – – 0.004 0.063
Micro-density Porosity 1.581 0.144 0.195 0.442**

n, number of individuals; r2, Pearson’s coefficient of determination; r, Pearson’s correlation coefficient.
* p < 0.050.

** p < 0.010.
*** p < 0.001.

Fig. 3. Variation in the skeletal parameters of two  corals, Balanophyllia europaea and
Leptopsammia pruvoti, with sea surface temperature (SST). r2

s Spearman’s determi-
nation coefficient, rs Spearman’s correlation coefficient, n number of individuals.

consisting of fiber-like crystals of aragonitic calcium carbonate
phases (crystal fibers and micro-spherulites) intimately associated
with an intra-crystalline organic matrix (OM) (Cuif et al., 1999). OM
generally constitutes <0.1% of the total skeleton weight (Constantz
and Weiner, 1988) and is believed to initiate nucleation of calcium
carbonate and provide a framework for crystallographic orientation
and species-specific architecture (Towe, 1972; Addadi and Weiner,
1985; Lowenstam and Weiner, 1989).

For both species, in the populations where the relationship
between micro-density and age was significant (Scilla, Genova and
Pantelleria for B. europaea and Calafuria, Genova and Pantelle-
ria for L. pruvoti;  Tables 2 and 3), micro-density increased from
2.6 mg  mm−3 at minimum age (1.3–5.7 years) to 2.8 mg  mm−3 at
maximum age (9.7–17.1 years). This variation is quite relevant with
respect to the density of inorganic CaCO3 (2.94 mg  mm−3 for arag-
onite and 2.71 mg  mm−3 for calcite; Marszalek, 1982) and might be
determined by the influence of OM.  A decrease of intracrystalline
OM content with increasing age could explain the increase of micro-
density with age found in this study. As an alternative hypothesis,
which is currently being tested, the production of different kinds of
OM along the life cycle of the polyp could lead to the precipitation
of crystal phases with different densities, thus causing the observed
increase of micro-density with age. The different densities of crys-
tal phases could result from different processes, e.g., an increased
isomorphic substitution of strontium to calcium in the aragonite
structure, a different polymorphic selection between calcium car-
bonate polymorphs (aragonite is denser than calcite) or a decrease
of the relative number of low-density centers of calcification (pos-
sibly amorphous calcium carbonate; Cohen and McConnaughey,
2003) with respect to the aragonitic fibrous structure. Indeed, pre-
liminary data on B. europaea skeletons show a decreasing calcite
content (and increasing aragonite content) with age (S. Goffredo,
personal observation), thus supporting the latter hypothesis.

4.3. Relationships between porosity and age

In L. pruvoti, porosity increased with age in 4 out of 6 populations
(Genova, Calafuria, Elba and Scilla). Thus, younger individuals were
less porous and, as they got older, the skeleton’s porosity increased.
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In most populations of B. europaea, porosity did not vary with age,
while in 2 out of 6 populations (Calafuria and Pantelleria) porosity
decreased with age.

To compare the average porosity between the two  species, the
relationships between porosity and age obtained in the present
study (when significant) were used to estimate the porosity val-
ues of samples collected for previous analyses (Goffredo et al.,
2007). For this earlier study, a higher number of samples of the
two species had been collected within quadrats in the same sites
as used for the present study. The inverse of the age–porosity rela-
tionship obtained in the present work was applied to their age,
thus obtaining their porosity. For those populations with a non-
significant age–porosity relationship, the average porosity value
calculated in the present study was assigned to all the samples of
Goffredo et al. (2007).  The mean porosity of B. europaea was sig-
nificantly lower than that of L. pruvoti in 4 out of 6 populations
(Genova, Calafuria, Elba and Pantelleria; Student’s t-test, p < 0.001).
In the Palinuro population, porosity was significantly lower in L.
pruvoti (Student’s t-test, p < 0.001), while in the Scilla population
both species showed no differences in porosity (Table 4). A pos-
sible explanation for the generally lower porosity of B. europaea
compared to L. pruvoti might be the adaptation to two  very different
habitats. Several studies show that in protected habitats extension
is faster, but branches are more lightly calcified, so skeletal porosity
is higher than in non-protected habitats. Where water movement is
high, branches are thicker, shorter and more heavily calcified, mak-
ing them more resistant to wave action (Chamberlain, 1978; Oliver
et al., 1983; Harriott, 1997, 1998). Indeed, B. europaea is found in
open and light habitats often subject to currents and water motion
and may  need stronger skeletons, while L. pruvoti lives in much
more sheltered environments such as crevices and caves.

4.4. Relationships between skeletal parameters and sea surface
temperature

While in B. europaea there was an increase of porosity with
increasing temperature and no correlation with micro-density, in
L. pruvoti there was an increase of micro-density with increasing
temperature and no correlation with porosity.

The relationship between temperature and porosity in B.
europaea, which is a zooxanthellate coral, suggests a possible
effect of temperature on photosynthesis in the algal symbionts.
The same hypothesis was proposed in earlier studies (Goffredo
et al., 2007, 2008, 2009) investigating the relationship between
SST and biological parameters (population density, population sta-
bility, percentage of immature individuals, calcification) in this
species. In zooxanthellate corals, photosynthesis enhances calci-
fication (Gattuso et al., 1999; Al-Horani et al., 2005), and both
processes have temperature optima (Howe and Marshall, 2002; Al-
Horani, 2005). Thus, the increase of porosity with increasing SST in
B. europaea could result from an attenuation of calcification due to
an inhibition of the photosynthetic process at higher temperatures
(Goffredo et al., 2009).

Alternatively, suspension feeding could also explain the increase
of porosity with increasing SST observed in B. europaea. In the
Mediterranean Sea, nutrient levels and zooplankton availability
are typically lower in summer (i.e., at higher SST) than in win-
ter (i.e., at lower SST; Coma et al., 2000; Coma and Ribes, 2003).
Low nutrient and zooplankton availability causes stress and star-
vation in Cladocora caespitosa (Peirano et al., 2005a)  and a summer
dormancy in the metabolism of several benthic suspension feeders
(Coma et al., 2000; Coma and Ribes, 2003). In colonies of the tropical
corals Stylophora pistillata and Galaxea fascicularis,  calcification and
photosynthesis are significantly lower in starved corals than in fed
ones (Houlbrèque et al., 2004; Borell and Bischof, 2008; Borell et al.,
2008). The high skeletal porosity observed in B. europaea at high SST

might thus be explained as being a consequence of low energetic
resources. However, if this were the case, the inhibition would have
to be stronger in L. pruvoti, which is fully heterotrophic, than in B.
europaea, which can also rely on the symbiont. In the present study,
however, skeletal porosity of L. pruvoti did not vary with increasing
temperature. Thus, the hypothesis of photosynthetic inhibition at
high SST seems to be more appropriate for explaining the results
regarding porosity in B. europaea. Yet, the role of feeding in deter-
mining the increase of porosity cannot be completely excluded,
since the proportion of energy obtained by autotrophy versus het-
erotrophy has never been quantified for this species in the currently
available literature.

In L. pruvoti, the fact that temperature did not correlate with
porosity could be due to the absence of zooxanthellae, and thus
the lack of a physiological dependence of calcification on photo-
synthesis. However, the increase of micro-density with increasing
temperature observed in L. pruvoti is intriguing. A possible expla-
nation could be that aragonite, whose density is greater than that
of calcite (2.94 mg  mm−3 for aragonite vs. 2.71 mm−3 for calcite;
Marszalek, 1982), is more stable at high temperatures than is
calcite. In many carbonate-producing taxa, the precipitation of
biominerals depends on several aspects of the environment they
live in, such as temperature and chemistry, which strongly influ-
ence aragonite and magnesium calcite deposition (Morse et al.,
1997; Stanley and Hardie, 1998; Montañez, 2002; Skinner and
Jahren, 2003; Feely et al., 2004; Smith and Key, 2004). In partic-
ular, the abundance of various polymorphs of calcium carbonate
strongly depends on SST (Wray and Daniels, 1957; Ogino et al.,
1987). Calcite is the dominant polymorph at low temperatures.
With increasing temperature, calcite abundance decreases in favor
of aragonite (Sawada, 1997). High-Mg calcites and aragonite are
predominantly associated with warm tropical to subtropical waters
and low-Mg calcite levels are generally found at higher latitudes or
in cold, deep waters (Lopez et al., 2009). An increase of aragonite
with increasing temperature could cause the increase of micro-
density with temperature in L. pruvoti found in the present study
(Fig. 3).

5. Conclusion

In conclusion, it is hypothesized that high SST has a negative
impact on the zooxanthellate B. europaea, since it compromises
the photosynthetic efficiency of its symbionts, lowering its skele-
tal resistance due to increasing porosity. In contrast, the porosity
of the azooxanthellate L. pruvoti is unaffected by temperature, and
the skeletal resistance of this species may  even benefit from the
increased micro-density achieved in warmer waters. These results
have to be considered in the context of global climate change,
since they highlight possible differences of these two coral species
in their sensitivity/tolerance to temperature change. Interestingly,
B. europaea, which can count on both heterotrophy and symbi-
otic algae for its nourishment, seems to be negatively affected
by increasing temperatures, while L. pruvoti, which is fully het-
erotrophic, seems to be tolerant to higher temperatures. It seems
likely that photosynthesis plays a role in determining the different
sensibilities of these two species, and experimental measurements
of photosynthesis at different temperatures may clarify its role in
determining the observed patterns of skeletal parameters.
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ABSTRACT: Mediterranean corals are a natural model for
studying global warming, as the Mediterranean basin is
expected to be one of the most affected regions and the
increase in temperature is one of the greatest threats for coral
survival. We have analyzed for the first time with time-domain
nuclear magnetic resonance (TD-NMR) the porosity and
pore-space structure, important aspects of coral skeletons, of
two scleractinian corals, Balanophyllia europaea (zooxanthel-
late) and Leptopsammia pruvoti (nonzooxanthellate), taken
from three different sites on the western Italian coast along a
temperature gradient. Comparisons have been made with
mercury intrusion porosimetry and scanning electron micros-
copy images. TD-NMR parameters are sensitive to changes in
the pore structure of the two coral species. A parameter, related to the porosity, is larger for L. pruvoti than for B. europaea,
confirming previous non-NMR results. Another parameter representing the fraction of the pore volume with pore sizes of less
than 10−20 μm is inversely related, with a high degree of statistical significance, to the mass of the specimen and, for B. europaea,
to the temperature of the growing site. This effect in the zooxanthellate species, which could reduce its resistance to mechanical
stresses, may depend on an inhibition of the photosynthetic process at elevated temperatures and could have particular
consequences in determining the effects of global warming on these species.

■ INTRODUCTION

Corals and Global Warming. Global climate change is the
defining environmental issue of our times and is expected to
profoundly affect all levels of ecological hierarchies and a broad
array of terrestrial and marine ecosystems.1−5 Marine
communities are expected to be affected more than terrestrial
ones by the effects of climate change,6 especially in temperate
areas.7 Thus, the Mediterranean basin8 represents a natural
focus of interest for researchers and at the same time a natural
laboratory for modeling and predicting climate change and its
ecological effects. In particular, the increase in temperature is
one of the greatest threats for corals, which can be considered
as a probe of global warming effects, as it triggers bleaching
events and widespread mortality.9−11 Several recent mass

mortality events of Mediterranean corals have been reported as
being related to high temperatures.12−16

This study focuses on two scleractinian species of the
Mediterranean Sea, already studied as a model for climate
change: Balanophyllia europaea (Risso, 1826) and Leptopsam-
mia pruvoti (Lacaze-Duthiers, 1897)17 (Figure 1). B. europaea is
a solitary, zooxanthellate (i.e., symbiotic with unicellular algae
named zooxanthellae) coral, endemic to the Mediterranean Sea.
Its distribution is limited to depths of 0−50 m because of its
symbiosis with zooxanthellae, which require light.17−19 L.
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pruvoti is a nonzooxanthellate and solitary scleractinian coral,
distributed in the Mediterranean basin and along the European
Atlantic coast from Portugal to Southern England and Ireland.
Its distribution is limited to semienclosed rocky habitats, under
overhangs, in caverns, and in small crevices, at depths of 0−70
m.17,18 Corals were collected at three different Italian sites (see
Figure 2), where the porosity of the two species has been

studied previously,17along a latitude and sea surface temper-
ature (SST) gradient. Temperature, the variation of which is
mainly influenced by latitude,20 is linked to coral biometry,
physiology, and demography.21−23

Coral Porosity and Pore-Size Distribution. The porosity
(ratio of pore volume to sample volume) and pore-space
structure of mineralized tissues are crucially important in
determining overall properties and biological functions, such as
the coral skeleton resistance to natural and anthropogenic
breakage. They are important parameters for studying the
growth of scleractinian corals and the effects of abiotic and

anthropogenic influences on coral reefs.24 Of additional interest
is a good knowledge of the role of porosity in diagenesis.
The measured values of these parameters depend on the

measurement methods24,25 and can present spatial variations.26

This could be the reason why their dependence on environ-
mental conditions remains largely unstudied, notwithstanding
their importance and their variation with factors such as
exposure, temperature, latitude, depth, and species.
Recent investigations17,19,27 have shown that along the Italian

coast the porosity of B. europaea is positively correlated with
SST. There is concern for the future of this species17,27,28 in
relation to the current predictions of global warming by the
Intergovernmental Panel on Climate Change.7 On the other
hand, for L. pruvoti, both SST and solar radiation do not seem
to influence significantly the porosity or space colonization
potential.17,19,29 An important aspect is the possible hierarchical
structure of the porosity. Recently,30 the flaw tolerance in nacre
has been ascribed to the nanoparticle architecture of the
aragonite platelet, which makes a crack propagate in an
intergranular manner. The structure of porous media at
different length scales is of great importance also in the use
of corals as potential bone graft substitute material.31

Porosity and pore-size distributions can be investigated by
many methods.32−36 The results strongly depend on the
physical principles adopted and on the assumptions of pore
shape and connectivity (see the Supporting Information).
Porosity and pore-size distributions determined by mercury
intrusion porosimetry (MIP) for eight different coral species36

showed large differences, with diameters ranging from 0.2 to
100 μm. However, it has been emphasized that particle
compression and rupture can result from the high Hg pressure
used. Time-domain nuclear magnetic resonance (TD-NMR)37

has the advantage of being nondestructive and noninvasive.
TD-NMR and in particular magnetic resonance relaxometry of
1H nuclei of water saturating the pore space are efficient tools
for investigating pore-space structure. Known since the
1950s,38,39 and validated over time by comparison with MIP
and, for specific surface, the Brunauer, Emmett, Teller (BET)
method, it is now widely applied.40−52 It is particularly useful
for porous media with wide pore-sizes distributions, like those
of corals. In this paper, the distributions of the local transverse
relaxation time (T2) of

1H of water saturating the pore space of
the cleaned coral skeletons, corresponding to distributions of
“NMR pore sizes”, are used (more details on NMR and surface
effects in the Supporting Information). To the best of our

Figure 1. (a) Living polyp of B. europaea and (b) several living polyps of L. pruvoti.

Figure 2. Map of the sites in Italy where corals were collected.
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knowledge, this is the first time that this technique has been
applied in this kind of investigation of corals.

■ MATERIALS AND METHODS
Corals. Specimens of B. europaea and L. pruvoti (54

specimens in all) were randomly collected from three sites:
Calafuria (CL), Palinuro (PL), and Pantelleria Isle (PN) (see
Figure 2). Coral tissue was totally removed, and corals were
cleaned as described in ref 17. The skeletons were weighed to
determine the mass (m). The total volume (VT) was
determined,19 including the volume of the oral cavity. Then
the specimens were saturated with water for NMR measure-
ments. Further details are reported in the Supporting
Information.
Total NMR Signal, Microporosity, and Cutoff Defi-

nitions. The total NMR signal (SNMR), represented by the area
below each T2 distribution, is proportional to the volume of
water saturating the pore-space volume (VP). This signal
divided by the total sample volume gives a value proportional
to the total porosity of the specimen (see the Supporting
Information). The fraction of water with relaxation times over a
given interval of the distribution corresponds to the pore
volume fraction over a corresponding pore-size range. “NMR
microporosity”, “microporosity” for short, will indicate the
fraction of VP where the smaller pores are weakly coupled by
water diffusion to the large ones on the local relaxation time
scale. This can be accomplished if the slope of the distribution
shows a strong increase at a certain T2 value, to be chosen as
the point of separation between “smaller” and “larger” pores.
This relaxation time will be called the “cutoff”. The micro-
porosity is then defined as the fraction of 1H signal with a T2
smaller than the cutoff, divided by the total 1H signal.
Operatively, it is the ratio of the area under the distribution

for T2 smaller than the cutoff to the total area under the
distribution.

Statistical Analysis. Statistical analysis was performed
using Statistical Package STATA 9.0 (StataCorp LP). To test
the significance of the differences among species and growth
sites, parametric and nonparametric tests were performed.
Multivariate analyses were conducted using both ordinary least
squares (OLS) robust to outliers and a nonparametric
bootstrapping regression procedure following Efron,53 applied
to check the robustness of the results, that could be affected by
small sample bias. The models are described by the function

ε= + + +y a b m b SSTi i i i1 2 (1)

where index i refers to the n observations, yi is the value of the
dependent variable, and εi is the corresponding error.
Parameters a and bj (j = 1 or 2) are the best fit parameters,
to be determined by OLS referring to the independent variables
m and SST. More details can be found in the Supporting
Information.

■ RESULTS AND DISCUSSION
Figure 3 shows the T2 distributions of all B. europaea and L.
pruvoti specimens. All the distributions show a main peak at
long relaxation times and a long tail, with a smaller amplitude,
∼3 orders of magnitudes wide. The major shape difference
between the two species is the length of the tail. For B. europaea
(panels a, c, and e), the tails go down to T2 values of 0.1−0.2
ms, values shorter than those for L. pruvoti (panels b, d, and f).
The principal differences among each group are given by the
total areas and are due to the wide range of masses and volumes
of the specimens. In principle, the 1H signal can be produced by
sources other than water, namely, the intraskeletal organic
matrix, consisting of proteins, polysaccharides, and lipids. To
check this possibility, T2 distributions for a dry coral and the

Figure 3. T2 relaxation time distributions of the 1H NMR signal from samples of cleaned skeletons of B. europaea (left) and L. pruvoti (right), after
water saturation of the connected pore space. The samples were from three different sites. Distributions from all corals are represented (nine corals
for each site). The sites were Calafuria (a and b), Palinuro (c and d), and Pantelleria (e and f). The total NMR signal (SNMR) is represented by the
area below each T2 distribution and is proportional to the amount of water saturating the pore space and, therefore, to the volume of the connected
pore space itself.
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same after complete water saturation were obtained and are
shown in Figure 4. The discussion reported in the Supporting

Information (referring to refs 54−61) leads us to conclude that
in the distribution for the fully water saturated sample there is
no contribution to the signal from macromolecular nuclei and
only a maximum on the order of 2% could be attributed to
lipids.
To discuss the distributions in Figure 3 in terms of pore sizes,

one should get an approximate value for the radius of the pores
inside the coral. The inset in Figure 4 reports the MIP
distribution for the same specimen. The major fraction of the
pore volume is given by pores whose entrance radii are on the

order of tens of micrometers, while a minor fraction
corresponds to a 3 order of magnitude long tail of very small
pores, down to tens of nanometers. NMR and MIP results are
exceptionally similar and consistent. The two classes of pores
are easily distinguished also in the distributions in Figure 3, so
that the two parameters microporosity and cutoff were
determined for each distribution. The sharp boundary between
the two classes, with a cutoff in the T2 range of 200−400 ms,
suggests that the two classes of pores are not well connected by
water diffusion during a local relaxation time. Also, the long tail
indicates that these pores are poorly connected both to the
other small pores and to the large ones in the major class. On
the basis of the comparison with MIP, microporosity should
correspond to pore sizes in the range from ∼10 nm to ∼10−20
μm. The existence of a wide class of pores with sizes of less
than 10−20 μm is described well in the SEM images of both
species reported in Figure 5.
Table 1 lists means, standard errors, and statistical

significances of the differences between the two species by
both parametric and nonparametric tests for all the variables
considered: microporosity, cutoff, mass, total volume, SNMR,
and SNMR/VT. The two species behave differently with a high
degree of statistical significance (p < 0.01 for all variables,
including NMR parameters). In particular, the mass and total
volume for B. europaea are much larger than for L. pruvoti, and
vice versa, the total porosity estimated by the ratio SNMR/VT is
larger for L. pruvoti than for B. europaea. This result is
consistent with the higher porosity obtained for L. pruvoti by
previous non-NMR analysis,17 where the difference was
considered to be likely a consequence of the different habitats
of the two species.

Figure 4. T2 distribution of a dry coral (---) after 1 month in a
desiccator and that of the same coral after full water saturation (). In
the inset, the MIP results for the same coral are shown. On the x-axis
of the inset is given the pore throat radius distribution.

Figure 5. Scanning electron microscope pictures of a cross section of the tip region of a septum, the primary macroscopic structure of the coral
skeleton, from B. europaea (A−C) and L. pruvoti (D−F). The building blocks of the skeleton are formed of thin aragonite crystals or fibers (0.04−
0.05 μm in diameter), which form a three-dimensional structure. Their growth occurs in periodic layers and starts from the centers of calcification
(see the arrows). The texture of the fibers of aragonite and the distribution of centers of calcification depend on the species of coral and are
genetically controlled.

Environmental Science & Technology Article

dx.doi.org/10.1021/es402521b | Environ. Sci. Technol. 2013, 47, 12679−1268612682



Table 2 lists the differences in the means of the same species
among growing sites. For B. europaea, the differences have a
high degree of statistical significance for almost all variables.
Microporosity has the highest degree of significance (micro-
porosity, p < 0.01; cutoff, p < 0.05; mass and total volume, p <
0.1; SNMR, p < 0.05). For L. pruvoti, only NMR parameters
cutoff and microporosity show significant differences among
sites (p < 0.05−0.1).
Table S1 of the Supporting Information lists the results of

the correlation among variables performed separately for B.
europaea (part A) and L. pruvoti (part B). For both species,
pairs of variables, mass and total volume, mass and SNMR, and
total volume and SNMR, are significantly correlated (p < 0.01).
The correlations between microporosity and cutoff and
between microporosity and mass are statistically significant
for both species (p < 0.01 for B. europaea, and p < 0.05 for L.
pruvoti).
Figure 6 reveals a counterintuitive behavior: the longer the

cutoffs, the smaller the microporosities; at the first glance, one
would expect the contrary. The pore-space architecture differs
between samples with higher or lower cutoffs (between lower
or higher microporosities). The scatter plots in Figure S2 of the
Supporting Information and in Figure 7, showing cutoff versus
mass and microporosity versus mass, respectively, suggest that
the observed correlations between the cutoff and mass are
governed by the mass: the smaller the mass, the higher the
microporosity and the shorter the cutoff. As the mass of the

corals increases, both the cutoff (which separates the two main
pore classes) and the ratio between the fraction of the two pore
classes change, with larger pores becoming more abundant.
This effect is shown also by L. pruvoti, but it is not as marked as
in B. europaea because of the smaller range of masses of corals.
This is consistent with the gradual “filling up” of the smaller
pores with the growth of the coral. A secondary infilling of
skeletal pores in the older portion of the skeleton is a consistent
characteristic of the skeletal density of branches of tall

Table 1. Descriptive and Test Statistics Split by Speciesa

B. europaea L. pruvoti

n mean standard error n mean standard error t Z

microporosity (%) 27 31.3 1.6 26 38.6 2.1 2.79 6.66
cutoff (ms) 27 337 15 26 249 20 3.59 12.92
m (g) 27 0.88 0.15 26 0.25 0.04 3.92 11.19
VT (cm3) 27 0.92 0.17 27 0.20 0.03 4.13 17.46
SNMR (arbitrary units) 27 4060 820 27 1233 165 3.38 11.21
SNMR/VT (arbitrary units) 27 4800 275 27 6993 349 4.94 17.60

aNumber of observations (n), means, standard errors, and statistical significances of differences in microporosity, cutoff, mass (m), total volume (VT,
including the oral cavity), NMR signal (SNMR), and SNMR/VT for B. europaea and L. pruvoti. The values of the t test and Z test suggest a high degree
of statistical significance (p < 0.01) between the two species for all the variables considered.

Table 2. Descriptive and Test Statistics of the Same Data in Table 1 Split by Sitea

CL PL PN

n mean standard error n mean standard error n mean standard error F χ2

(A) B. europaea
microporosity 9 38.6 1.6 9 26.1 2.1 9 29.0 2.7 8.89b 11.83b

cutoff 9 283 18 9 361 23 9 367 28 3.98c 6.10c

m 9 0.42 0.11 9 1.3 0.3 9 0.9 0.3 3.35d 4.72d

VT 9 0.4 0.1 9 1.5 0.4 9 0.9 0.2 3.39d 4.70d

SNMR 9 1806 426 9 6990 1996 9 3382 792 4.42c 7.01c

SNMR/VT 9 4447 436 9 4860 301 9 5092 655 0.45 1.95
(B) L. pruvoti

microporosity 8 40.5 2.3 9 42.8 4.3 9 32.8 3.3 2.26 4.71d

cutoff 8 294 49 9 186 21 9 272 19 3.40d 6.88c

m 8 0.17 0.04 9 0.25 0.07 9 0.33 0.08 1.34 2.03
VT 9 0.15 0.03 9 0.17 0.05 9 0.28 0.06 2.19 3.27
SNMR 9 989 202 9 1090 246 9 1621 369 1.45 1.95
SNMR/VT 9 7700 729 9 7311 582 9 5967 334 2.53 4.17

aThe sites are Calafuria (CL), Palinuro (PL), and Pantelleria (PN). The variables and units are the same as in Table 1. The values of the F test and
χ2 test suggest statistical significance of differences among the three sites for B. europaea. For L. pruvoti, only NMR parameters microporosity and
cutoff show statistical significance, even if at a lower level. bp < 0.01. cp < 0.05. dp < 0.1.

Figure 6. Scatter plot of the cutoff vs microporosity for all the samples.
Filled symbols depict data for B. europaea, and empty symbols depict
data for L. pruvoti. The symbols for the three sites are triangles
(Calafuria), squares (Palinuro), and circles (Pantelleria).
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branching corals, in which growing tips are very porous while
basal regions are extremely dense.62

To study how microporosity, considered a dependent
variable, is affected by mass and SST, multiple-regression
analysis was performed (eq 1) both for all the specimens and
for the two species separately. Part A of Table 3 summarizes the
results. First, it is important to observe that from a statistical
point of view a potential correlation between m and SST does
not invalidate the results, as all the values of the variance
inflation factor (VIF) are ≪10. By considering all the
specimens, the variable mass (p < 0.01) and SST (p < 0.05)
significantly and negatively affect microporosity. In other
words, the larger the mass and the higher the temperature,
the smaller the microporosity. These relationships are mainly in
place in the B. europaea species. For L. pruvoti, only the mass
appears to be significantly related to the microporosity with a
high degree of significance (p < 0.05). That means that SST
appears to be a significant parameter in determining micro-
porosity for B. europaea even if it is not as important as mass.
The bootstrapping procedure (Table 3, part B) gives
robustness to the evidence showing that those are not driven
by small sample bias.
To better visualize and further discuss these relationships, the

linear dependencies among microporosity, mass, and SST, for
L. pruvoti and B. europaea separately, have been studied. Figure
S3 of the Supporting Information lists the scatter plots and

statistical significances. The results confirm the multivariate
analysis. For both L. pruvoti and B. europaea, SST does not
significantly affect mass, as the probability values of the slope of
the linear best fit are not statistically significant (p > 0.1).
Overall, the fact that the mass significantly affects microporosity
at least at the 5% level emerges (p < 0.05 for L. pruvoti, and p <
0.01 for B. europaea). Results for microporosity versus SST
show that a significant relationship exists for B. europaea (p <
0.05) but not for L. pruvoti (p > 0.1).
In a previous study,17 it has been shown that porosity

depends on temperature for B. europaea, but not for L. pruvoti.
It has been hypothesized that the increase in porosity with
temperature in the zooxanthellate species could depend on an
inhibition of the photosynthetic process at elevated temper-
atures,23,63 causing an attenuation of calcification64 with
possible negative consequences also for space colonization
and population density.19,27 The NMR results point in the same
direction and seem to indicate also that this effect could be
accompanied by a decrease in microporosity, meaning an
increase in the fraction of the largest pores in the pore space.
TD-NMR is a quick, noninvasive, nondestructive method

that does not use ionizing radiation, which can be applied to
gain insight into the pore-space architecture of scleractinian
corals, showing differences between species and growing sites,
and sensitivity to environmental changes. Of course, this
method, as well as MIP, BET, and the hydrostatic balance
method, provides information about the connected porosity
only and, as such, can be applied to systems with low fractions
of isolated pores. This method can provide information that
cannot be attained in other ways, like changes in the internal
architecture of corals described by microporosity and cutoff
with increasing mass and growing temperature. Even if this
method cannot spatially locate the heterogeneity of the pore
space, the existence of a clear cutoff in almost all the
distributions (a very high slope at a certain point of the
distribution) means that the smallest pores are not well
connected by diffusion on the NMR time scale (corresponding
to the local value of T2) to the largest ones. Moreover, the
NMR-defined parameter microporosity can quantify the ratio
between the volume of the smallest pores (sizes of less than
10−20 μm) and the total pore volume.
The increased fraction of larger pores in the zooxanthellate

corals with increasing SST values, which could reduce their

Figure 7. Scatter plot of microporosity vs mass for all the samples.
Filled symbols depict data for B. europaea, and empty symbols depict
data for L. pruvoti. The symbols of the three sites are triangles
(Calafuria), squares (Palinuro), and circles (Pantelleria).

Table 3. Regression Analysis for Microporositya

(A) OLS (B) bootstrap (5000 replications)

1 2 3 1 2 3

all B. europaea L. pruvoti all B. europaea L. pruvoti

m (g) −7.19b (−5.86) −4.69b (−3.28) −21.04c (−2.32) −6.88b (−4.69) −5.57b (−3.72) −22.47d (−1.79)
SST (°C) −3.53c (−2.41) −4.06c (−2.11) −2.53 (−0.96) −3.53c (−2.38) −3.34d (−1.76) −2.76 (−0.99)
constant 108.6b (3.85) 115.5b (3.12) 94.0d (1.85) 107.2b (3.70) 108.3b (2.95) 101.4d (1.77)
mean VIF
(maximum)

1.22 (1.33) 1.20 (1.24) 1.34 (1.43)

no. of observations 53 27 26 53 27 26
R2 adjusted 0.32 0.41 0.24 0.32 0.38 0.24
F test 30.7b 15.8b 4.7c

Wald χ2 43.2b 37.0b 6.2

aOLS robust to outliers (robust t statistics in parentheses) and bootstrap (values of bootstrapped Z test in parentheses). (1) All specimens, (2) B.
europaea, and (3) L. pruvoti. The coefficients in the columns are the parameters bj (j = 1 or 2) and the parameter a (constant) of eq 1, where yi is the
value of the microporosity for each observation considered. Values of VIF of ≪10 indicate that a possible correlation between m and SST does not
invalidate the results. bp < 0.01. cp < 0.05. dp < 0.1.
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resistance to mechanical stresses, could have particular
consequences in determining the effects of global warming on
these species.65 The described method will be applied in future
work to the effects of ocean acidification on the skeletal
properties of corals66 and other calcifying organisms.
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Abstract 

Global climate change is a threat to marine biota because increased atmospheric CO2 is causing 

ocean warming, acidification, hypercapnia, decreased carbonate saturation and hypoxia. Ocean 

acidification (OA) has raised particular concerns about its effects on marine organisms and 

ecosystems reliant on the generation and accumulation of calcium carbonate (CaCO3) shells, 

skeletons, and/or structures. Here we assessed the effects of in situ exposure to different pH 

conditions on the mortality and growth (extension and net calcification rates) of three 

Mediterranean scleractinian corals; the solitary zooxanthellate Balanophyllia europaea, the 

solitary non-zooxanthellate Leptopsammia pruvoti and the colonial non-zooxanthellate Astroides 

calycularis. The corals were transplanted in proximity of a volcanic vent where water is naturally 

acidified to levels matching different IPCC scenarios. In all three species, high temperature 

exacerbated the negative effect of lowered pH on mortality. The growth of the zooxanthellate 

species did not react to reduced pH, while in the two non-zooxanthellate species it was 

negatively affected, indicating that zooxanthellate species may be more resistant in a high CO2 

world than their non-zooxanthellate counterparts. These results suggest different levels of 

resilience/resistance to climate change among coral species, probably related to different modes 

of nutrition and/or biomineralization processes. Natural CO2-leaking marine sites like the one 

used in this study can provide essential information on the combined effects of ocean 

acidification and global warming on Mediterranean scleractinian corals, which may help 

understand to which extent corals inhabiting shallower ranges will be threatened in the next 

century.  

 
Keywords: zooxanthellate corals, non-zooxanthellate corals, ocean warming, ocean 

acidification, CO2 vents, mortality, growth 



!

! 42!

Introduction 

Anthropogenic CO2 emissions have severe environmental impacts, often summarized under the 

term “global climate change”. In the marine realm, two of the main forces causing significant 

changes are ocean warming (OW) and ocean acidification (OA), both largely driven by the 

burning of fossil fuels that has led to the current dramatic rise in sea surface temperature (SST) 

and carbon dioxide partial pressure (pCO2), respectively. During the last 2-3 decades, an increase 

of at least 0.3-0.4°C has been recorded in mean annual SST across much of the global tropics 

and subtropics (1). Projections of future climatic change estimate a 0.3-4.8°C average increase in 

surface air temperature, and a 0.6-2.0°C average increase in surface ocean temperature by the 

end of 2100 (2), posing a great threat for marine organisms who are likely to be more sensitive to 

climate change than their terrestrial counterparts (3). In temperate areas, the effect of temperature 

warming is expected to be even greater. For instance, the Mediterranean Sea, which can be 

regarded as a miniature ocean that is expected to react faster to global change compared to the 

open ocean (4), is already showing warming rates three times higher than the global ocean (5). 

Investigations conducted along an 850-km latitudinal gradient on Western Italian coasts on the 

zooxanthellate dendrophylliid Balanophyllia europaea, which is endemic to the Mediterranean 

sea (6), have shown that with increasing temperature there is a decrease of the skeletal density 

(7), determined by an increase of porosity (8), in particular, an increase of the larger pores in the 

pore-space (9). Temperature negatively affects also population abundance (7), structure stability 

(10) and calcification (11). On the other hand, the non-zooxanthellate Mediterranean 

scleractinian coral Leptopsammia pruvoti seems to be tolerant to the same temperature range 

experienced by B. europaea (7,12,13). 
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In response to the increasing amount of anthropogenic CO2 dissolved in the oceans, the 

concentration of protons (H+) has increased as well, leading to a decline in seawater pH (14,15). 

During preindustrial times the global mean pH at sea surface was 8.2. Since then, this value has 

decreased by 0.1 units, and at the current rate of CO2 uptake, the average surface ocean pH will 

drop by further 0.06-0.32 units by the end of 2100 (2). OA is a global phenomenon, but its 

impact varies locally. For instance, the Mediterranean Sea has experienced a pH decrease of up 

to 0.14 units since the pre-industrial era (16), larger than the global average surface ocean pH 

decrease of 0.1 pH units (15). Understanding how enhanced acidity has already affected and how 

it will affect Mediterranean Sea ecosystems and their key taxa is then urgent and crucial. 

OW and OA are expected to cause a significant decrease in coral growth rates and, 

consequently, affect the stability of reef ecosystems (17). However, the sensitivity of marine 

calcifiers to acidification varies among taxa and some species may increase calcification rates 

with increasing CO2 levels (18,19). Yet, studies on the response of calcification to OA have been 

conducted on a limited number of organisms (19-22). In addition, the interactive effects of 

elevated pCO2 and temperature have been poorly investigated (23,24). Therefore, multifactor 

long-term experiments are essential to investigate the synergistic or antagonistic responses of 

corals to elevated pCO2 and temperature, and to provide a more accurate projection of their 

future impacts. 

In this study, we investigated the effects of in situ exposure to different pH conditions on 

the mortality and growth (extension and net calcification rates) of Mediterranean scleractinian 

corals transplanted to a volcanic CO2 vent area with seawater pH values matching different IPCC 

scenarios for the current century (2). We compared (i) the solitary zooxanthellate B. europaea 
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(Risso, 1826) (Fig. 1a), (ii) the solitary non-zooxanthellate L. pruvoti Lacaze-Duthiers, 1897 

(Fig. 1b) and (iii) the colonial non-zooxanthellate Astroides calycularis (Pallas, 1766) (Fig. 1c). 

The following hypothesis were tested:  

- solitary/zooxanthellate, solitary/non-zooxanthellate and colonial/non-zooxanthellate 

corals may respond differently, indicating different sensitivities between species.  

- seasonal temperature may affect the degree to which acidification alters the response of 

these organisms. 

 

Materials and Methods 

Study site.  

The Island of Panarea belongs to the Aeolian Archipelago (Italy), located in the southern 

Tyrrhenian Sea in the Mediterranean (Fig. 2). At 10 m depth a crater 20 x 14 m wide generates a 

stable and sustained column of bubbles (mainly CO2: 25), at ambient temperature, which 

generates a natural CO2 gradient that extends for ~34 m, where normal pH conditions are 

restored. 

 

Carbonate chemistry. 

Four sampling Sites were selected along the CO2 gradient (Fig. 3): a control site (Site 1), 

intermediate CO2 (Site 2 and Site 3), and high CO2 (Site 4). Temperature, salinity and pH (NBS 

scale) were measured at each Site during several surveys between July 2010 and May 2013 with 

a multi-parametric probe (600R, YSI Incorporated, USA) powered from a small boat and 

operated by SCUBA divers. Bottom water samples for determination of total alkalinity (TA) 

were collected at each Site using sterile 120 ml syringes (two replicates for each Site). After each 
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dive, the syringe samples were immediately transferred in labelled 100 ml amber glass bottles, 

saturated with mercuric chloride (HgCl2) to avoid biological alteration, and stored in darkness at 

4°C. TA was measured by Gran titration, using a 702 SM Titrino (Metrohm AG). Certified 

reference materials (Batch 121 and 132) from the Andrew Dickson Laboratory at UC San Diego 

were used to ascertain the quality of results obtained. Additional temperature data were recorded 

every three hours by sensors (Thermochron iButton, DS1921G, Maxim Integrated Products, 

USA) attached in each Site from July 2010 to May 2013. Measured pH was converted to the total 

scale using CO2SYS software (28). Mean pH (back-transformed hydrogen ion concentrations) 

was calculated for each Site. The pH, TA, salinity and temperature were used to calculate 

carbonate system parameters using the software CO2SYS with referenced dissociation constants 

(29-31). 

 

Vent gas.  

Gas was sampled during five surveys (June 2011, August 2011, December 2011, April 2012, 

May 2013) using vial glass samplers with a screw cap. The vials were carried capped underwater 

and were previously filled with deionized water to prevent implosion. At the sampling point, 

they were placed upside-down on the vents to be purged. Gas samples were collected using 50-

mL thorion-tapped glass tubes, partially filled with 20-mL of a 0.15M Cd(OH)2 and 4N NaOH 

suspension, connected to a plastic funnel positioned over the rising bubbles. To avoid 

contamination by seawater, the silicon connection between the funnel and the collecting glass 

tube was filled with Milli-Q water and isolated from seawater by a plastic plug. The plug was 

removed only after the complete evacuation of seawater by the gases contained in the funnel. 

Uncondensable gases were collected in the headspace. Inorganic residual gas compounds were 
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analysed using a thermal conductivity chromatograph at the Laboratory of Fluid and Rock 

Geochemistry of the University of Florence. Methane content was analysed with a flame 

ionization detector and ion chromatography was used to analyse inert gases (32). Water samples 

were also collected and tested for dissolved H2S with Cd-precipitation and ion chromatography 

(33). 

 

Field transplantation and biotic measurements. 

During several expeditions (July 2010, September 2010, November 2010, March 2011, June 

2011, August 2011, December 2011 and April 2012), specimens of B. europaea, L. pruvoti and 

A. calycularis were sampled at ~2 km away from the vent area and transplanted in the four Sites 

(Fig. 3). The same number of corals was randomly assigned to each of the four Sites. Colonies of 

A. calycularis were fixed with cable ties onto plastic grids, while B. europaea and L. pruvoti 

polyps were glued with a bicomponent epoxy coral glue (Milliput, Wales, UK) onto ceramic 

tiles. Polyps of L. pruvoti were placed upside-down under plastic cages to mimic their natural 

orientation in overhangs and caves. Mortality rate (% month-1: polyp mortality rate for the three 

species, and tissue mortality rate only for the colonial species) and extension rate (% month-1: 

linear extension for B. europaea and L. pruvoti and tissue area extension for A. calycularis) were 

assed by means of digital photographs and image analyses software (NIKON NIS-Elements D 

3.1). Coral net calcification rate (mg CaCO3 g-1 month-1) was measured using the buoyant weight 

technique (34). Buoyant weight was converted into dry weight according to the equation: 

 

Dry weight = Buoyant weight/(1 - Dwater/Dskeleton) 
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where Dwater is the density of the water in which the sample was weighed (calculated from the 

water temperature and salinity) and Dskeleton the density of aragonite (2.93 g cm-3). Net 

calcification was calculated as the change in dry weight before and after each experimental 

period, normalized to the initial weight and expressed as monthly variation. 

 

Statistical analyses.  

One-way analysis of variance (ANOVA) was used to compare environmental and biological data 

among Sites. Levene’s test was used for testing homogeneity, and Shapiro–Wilk’s test for testing 

normality of variance. When data failed the tests for homogeneity and normality, the non-

parametric Kruskal-Wallis rank test was used. For each experimental period, Spearman’s rank 

correlation coefficient was used to calculate the significance of the correlations between 

biological parameters and pH. Linear regressions of mortality rates, linear extension rates and net 

calcification rates of all species with pH were also calculated to examine the effects of increased 

CO2 on biological parameters. The slopes of all linear regressions were compared with an F- test 

in order to look for differences between periods. All analyses were performed using SPSS v.20. 

 

Results 

Seawater CO2 system.  

The study site was characterized by cool gaseous emissions comprising 98-99% CO2, 0.2-0.3% 

N2, 0.01-0.02% O2, 0.003-0.005% Ar, 0.001-0.002% CH4, 0.3-0.6% H2S. Water dissolved H2S 

was below detection limit (0.1 mg/l). Over the study period (July 2010-May 2013), water 

temperature, salinity and total alkalinity were homogeneous among Sites (Kruskal-Wallis test, p 

> 0.05), whereas pH, pCO2, HCO3
-, CO3

2-, DIC and Ωarag were significantly different (Kruskal-
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Wallis test, p < 0.001). Each Site was characterized by a distinct carbonate chemistry (Table 1). 

Mean seawater pH decreased along the CO2 gradient from an average value of 8.1 in Site 1 to 7.4 

in Site 4 (Table 1; Fig. 3).  

 

Biotic response.  

In the period December 2011-April 2012 the experimental setup was almost entirely lost due to 

violent storms and strong waves, thus only B. europaea transplants were found and measured. 

In periods December 2011-April 2012, November 2010-March 2011 and March-June 

2011, when average seawater temperature was between 15.1°C and 16.3°C, polyp mortality rate 

was homogeneous among Sites in all species (Table 2-4; Kruskal-Wallis test, p > 0.05). In 

periods June-August 2011 and August-December 2011, when average seawater temperature was 

between 23.9°C and 24.2°C, polyp mortality rate was still homogeneous among Sites in B. 

europaea (Table 2; Kruskal-Wallis test/ANOVA, p > 0.05), while it was significantly different 

in L. pruvoti (Table 3; Kruskal-Wallis test/ANOVA, p < 0.05 and p < 0.01) and in A. calycularis 

(Table 4; Kruskal-Wallis test/ANOVA, p < 0.001). The increase of polyp mortality rate with 

decreasing pH was significant in both periods, with pH explaining 59-76% of it’s variance in L. 

pruvoti and 24-34% in A. calycularis. Linear regression showed a slope of -17 in June-August 

2011 and -22 in August-December 2011 in L. pruvoti, and of -37 and -130 respectively, in A. 

calycularis, suggesting a 17% to 22% increase for L. pruvoti and a 37% to 130% increase for A. 

calycularis in polyp mortality rate for each 1-unit decrease in pH. In July-September 2010, when 

average seawater temperature was 26.2°C, polyp mortality rate was significantly different among 

Sites in all species (Table 2-4; Kruskal-Wallis test/ANOVA, p < 0.001 in B. europaea and A. 

calycularis and p < 0.05 in L. pruvoti). pH showed significant correlations, explaining 85% of 
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polyp mortality rate variance in B. europaea, 81% in L. pruvoti and 13% in A. calycularis (Table 

2-4; Fig. S1). Linear regression showed a slope of -108 in B. europaea, -58 in L. pruvoti and -8 

in A. calycularis suggesting for every 1-unit decrease in pH an increase of 108% in B. europaea, 

58% in L. pruvoti and 8% in A. calycularis in polyp mortality. Tissue mortality rate in the 

colonial A. calycularis was significantly different among Sites in all periods (Table 4; Kruskal-

Wallis test/ANOVA, p < 0.01 and p < 0.001). In November 2010-March 2011 and March-June 

2011, when average seawater temperature was between 15.9°C and 16.3°C, tissue mortality 

increased significantly with decreasing pH, explaining 15-18% of its variance (Table 4; Fig. S1). 

In June-August 2011, August-December 2011 and July-September 2010, when average 

temperature was between 23.9°C and 26.3°C, tissue mortality rate increased significantly with 

decreasing pH, 23-71% of its variance being explained by the variation of pH (Table 4; Fig. S1). 

Slopes among all periods were significantly different (F-test, P<0.001). Linear regression 

between tissue mortality and pH showed a slope of approximately -18 in November 2010-March 

2011 and March-June 2011, indicating an 18% increase in tissue mortality every 1-unit decrease 

in pH, and a slope from -41 to -127 between June-August 2011 and July-September 2010, which 

correspond to a 41% to 127% increase in tissue mortality every 1-unit decrease in pH.  

Linear extension rate was either not significantly different among Sites or showed no 

relationship with pH in B. europaea, in any of the periods (Table 2; Fig. S2). Linear extension 

rate in L. pruvoti and area extension rate in A. calycularis was significantly different among Sites 

in all periods. In L. pruvoti linear extension rate decreased significantly with decreasing pH in 

November 2010-March 2011, with pH explaining 11% of its variance, in June-August 2011, with 

pH explaining 20% of its variance and in July-September 2010 when pH explained 42% of its 

variance. Slopes among periods were significantly different (F-test, P<0.001). In November 
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2010-March 2011 the slope was 4, in June-August 2011 the slope was 8 and in July-September 

2010 the slope was 13, suggesting a decrease of extension rate of 4%, 8% and 13%, respectively, 

per 1-unit decrease of pH (Table 3; Fig. S2). In A. calycularis, area extension rate was 

significantly different among Sites in all periods analyzed (Table 4; Kruskal-Wallis 

test/ANOVA, p < 0.001). In all periods, pH correlated positively with area extension rate, 

explaining 10% of its variance in November 2010-March 2011, 18% in March June, 21% in 

June-August, 23% in August-December 2011 and 69% in July-September 2010 (Table 4; Fig. 

S2). Slopes between periods were significantly different (F-test, P<0.001). Linear regression in 

November 2010-March 2011 showed a slope of 17, in March-June 2011 a slope of 19, in June-

August 2011 a slope of 42, in August-December 2011 a slope of 139 and in July-September 

2010 a slope of 95, indicating a decrease of area extension rate of 17%, 19%, 42%, 139% and 

95%, respectively, per 1-unit decrease of pH (Table 4; Fig. S2). 

Net calcification rate was either not significantly different among Sites (Table 2; Kruskal-

Wallis test/ANOVA, p > 0.05), or did not correlate with pH in B. europaea, in all periods 

analyzed. In L. pruvoti, net calcification rate was significantly different among Sites in March-

June 2011 (Table 3; Kruskal-Wallis test/ANOVA, p < 0.01) and June-August 2011 (Table 3; 

Kruskal-Wallis test/ANOVA, p < 0.05) and correlated positively with pH only in June-August 

2011, with pH explaining 33% of its variance. Linear regression showed a slope of 171, 

indicating that each 1-unit decrease in pH was associated with a 171 (mg CaCO3 g-1 month-1) 

decrease in net calcification rate (Table 3). In A. calycularis, net calcification rate was 

significantly different among Sites in all periods analyzed (Table 4; Kruskal-Wallis 

test/ANOVA, p < 0.05 and p < 0.001). Net calcification rate correlated positively with pH in all 

periods, with pH explaining 43% of its variance in November 2010-March 2011, 29% in March-
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June 2011, and 57% in June-August 2011 (Table 4; Fig. S3). Slopes between periods were not 

significantly different (F-test, P>0.05). Linear regression shows in November 2010-March 2011 

a slope of 190, in March-June 2011 a slope of 88 and in June-August a slope of 134, suggesting a 

decrease of net calcification rate of 190 (mg CaCO3 g-1 month-1), 88 (mg CaCO3 g-1 month-1) 

and 134 (mg CaCO3 g-1 month-1), respectively, per 1-unit decrease of pH (Table 4; Fig. S3). 

 

Discussion 

Seawater temperature, salinity and irradiance did not differ among Sites. There is no evidence to 

suspect a difference in the corals’ food availability among Sites because Site 1 was only 34 m 

away from Site 4 and at approximately the same depth (Fig. 3). Therefore, differences in 

seawater carbonate chemistry provide the most likely explanation for the differences we 

observed in mortality and growth of the corals. 

In the colder periods, when average temperature ranged from 15 to 16 °C, no significant 

changes were observed in polyp mortality with pH, for any of the species, while tissue mortality 

in the colonial A. calycularis increased with decreasing pH in both periods analyzed. In the 

warmer periods, when average temperature was approximately 24°C, polyp mortality increased 

with decreasing pH in L. pruvoti and A. calycularis and then, when average temperature reached 

26°C, also in B. europaea. When temperature ranged from 24°C to 26°C, tissue mortality in A. 

calycularis increased with decreasing pH, and this increase was much more pronounced than in 

the colder months. When temperature ranged from 15°C to 16°C, the slopes indicated an 18% 

increase every 1-unit decrease in pH, while between 24°C and 26 °C the slopes indicated a 41% 

to 127% increase in tissue mortality per 1-unit decrease in pH in the warmer periods. From these 

results, there seems to be a synergistic interaction between high temperature and low pH in 
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determining the mortality of these organisms. While increased atmospheric pCO2 is responsible 

for OA, it is also causing an increase in global seawater temperature. In the Mediterranean Sea, 

increased seawater temperature has determined longer stratification periods associated with mass 

mortality events (36, 37). The first well-documented Mediterranean multispecies mass mortality 

events were during the summers 1999 and 2003. They affected at least 30-40 hard-substrate 

invertebrate species over several hundred kilometers of coastline between the Tyrrhenian Sea in 

Italy and the Gulf of Lions in France with some places in Spain also affected (37-40). In both 

years, a positive correlation was observed between mortality rates and exposure to heat stress 

(38), indicating that shallow water corals are living, at least in the North Mediterranean, near 

their upper thermal limits during summer (41, 42). Since the frequency of abnormally warm 

summers is expected to increase in the next century, as a result of climate change, such mortality 

events in summer may also become more frequent as a direct response to elevated temperatures. 

Given the projected decrease of seawater pH, these mass mortality events could be exacerbated 

by the combination of high temperatures and low pH. Studies like this one, assessing the 

synergistic interaction between low pH and elevated temperatures, are essential to detect possible 

interactions between multiple stressors and establish to which extent corals inhabiting shallower 

ranges will be threatened by climate change. 

Growth was investigated both as linear extension/area extension rate and net calcification 

rate. Linear extension rate was not affected by pH in B. europaea, in any of the periods. In L. 

pruvoti, in the colder periods, linear extension rate was either lightly affected or not affected by 

pH. Except for the period August-December 2011, when linear extension rate in L. pruvoti was 

homogeneous among Sites, the negative effect of pH on linear extension rate was more marked 

in the warmer periods, when the slopes indicated a decrease of extension rate from 8% to 13% in 



!

! 53!

against a 4% decrease per 1-unit decrease of pH in the colder period. In A. calycularis, area 

extension decreased with decreasing pH in all periods, and this decrease was greater in the 

warmer periods, when average temperature ranged from 24 to 26 °C, compared to colder ones, 

when average temperature ranged from 15 to 16 °C. In the warmer periods, the slopes suggested 

a decrease of area extension from 42% to 139%, and in the colder periods a decrease of 17% to 

19% per 1-unit decrease of pH. 

In B. europaea calcification was not affected by pH in any period. In L. pruvoti 

calcification was not affected by pH in the colder periods, while in A. calycularis it decreased 

with decreasing pH. In the warmer period, calcification decreased with decreasing pH in L. 

pruvoti and A. calycularis. In A. calycularis the negative effect of pH on calcification wasn’t 

actually more pronounced in the warmer period compared to the colder ones but the average pH 

at which negative calcification (dissolution) occurred shifted towards higher values as 

temperature increased, indicating an increased vulnerability to low pH at higher temperatures. In 

fact, in November 2010-March 2011 (average temperature 15.9 °C), dissolution began at pH 7.8, 

in March-June 2011 (average temperature 16.3 °C) dissolution began at pH 8.0 and in June-

August 2011 (average temperature 23.9 °C) dissolution began at pH 8.1 (Fig. S3). The different 

response to temperature stress among B. europaea, L. pruvoti and A. calycularis may suggest a 

different susceptibility to temperature, perhaps due to different protective mechanisms (e.g. 

stress proteins, antioxidant enzymes: 43). A previous study reported that live samples of 

Cladocora caespitosa transplanted at CO2 vents underwent evident marks of dissolution with 

increased CO2 whereas transplanted B. europaea samples were apparently unaffected, perhaps 

because C. caespitosa has large parts of its skeleton exposed, while B. europaea has a skeleton 

that is completely covered in tissue (44). However, this is unlikely the only explanation since in 
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our study we observed that L. pruvoti was clearly more sensitive than B. europaea, showing a 

significant decrease in calcification with increasing acidity between June and August, and both 

species have skeletons totally covered with tissue. A possible explanation could be that the 

symbiosis with the zooxanthellae in B. europaea could make it more tolerant than the non-

zooxanthellate L. pruvoti, in a hypercapnic (elevated CO2) environment. In zooxanthellate corals, 

calcification is tightly linked to photosynthesis by the symbiotic zooxanthellae (45-47). The 

glycerol and oxygen produced by the symbionts facilitate calcification through mitochondrial 

respiration and ATP production, which could be used for ion transport (45,48). CO2 uptake by 

photosynthesis is also thought to stimulate calcification by changing the equilibrium of dissolved 

inorganic carbon (DIC) in coral tissue, although the mechanisms are unresolved (45). Thus, high 

CO2 levels could enhance coral calcification (49), which may help compensate for the negative 

effect of low pH seawater, maintaining same levels of net calcification along the pH gradient. 

However, this does not explain the sensitivity observed in C. caespitosa (44). The method used 

in this study measured net calcification (gross calcification minus dissolution) and did not allow 

the discrimination between gross calcification and dissolution. More experiments are necessary 

in order to discriminate between the two processes by using methods such as the 45Ca uptake 

(50). Another possible explanation could depend on differences in the porosity of the skeletons 

of these two species. L. pruvoti skeleton is more porous than the one of B. europaea (8,9). In 

shallow water sediments, the magnitude of dissolution is controlled by a number of parameters 

that are highly variable, such as organic matter content, mineral composition, grain size 

distribution, permeability, and porosity (51). Porosity-permeability relationships show the 

general trend of increasing permeability with increasing porosity (52,53). This means that a 

greater amount of skeleton would be exposed to low pH water making it more susceptible to the 
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corrosiveness of acidic seawater. However, the dynamics of water diffusion inside the skeleton 

of living corals should be studied to verify this hypothesis. 

In conclusion, the present study indicated that in all three species, high temperature 

exacerbates the negative relationship between mortality and pH, with the highest mortalities in 

the warmest periods. While the growth of the zooxanthellate B. europaea did not react to pH, the 

growth of the two non-zooxanthellate species L. pruvoti and A. calycularis was negatively 

affected by low pH, showing an increased sensitivity to acidic condition with increasing 

temperature. The fact that B. europaea specimens naturally occurring around the vent area were 

not found below mean pHTS 7.7 could depend on the increased metabolic costs related to high 

CO2 levels in the oligotrophic, food-limited conditions of the Tyrrhenian Sea, combined with the 

elevated competition with non-calcifying seaweeds (54-59), which were abundant close to the 

crater. The sensitivity to enhanced acidity of corals that were transplanted along the natural CO2 

gradient increased when the water was warmest, indicating that OA will probably exacerbate the 

temperature driven mass benthic mortality events that have hit the Mediterranean Sea during 

summer periods in the last 30 years (38,60). Moreover, the envisaged increase in seawater 

temperature may aggravate the negative effects of lowered pH on calcification of asymbiotic 

corals, while symbiotic species may be relatively less sensitive due to the increased 

photosynthesis at high CO2.   
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Tables 

Table 1. Seawater carbonate chemistry for each transplantation Site. The pH, temperature (T), 
total alkalinity (TA) and salinity (Sal) were used to calculate all the other parameters using 
CO2SYS software with referenced dissociation constants (29-31). Mean pH values were 
calculated after conversion of data to hydrogen ion concentrations. Values are means with 95% 
CIs in brackets. 
!

Measured Parameters   

 pH        
(total scale) 

T TA                
(µmol kg-1) 

Sal                              
(‰) 

  
(°C)   

Site 1 8.1 (8.0-8.1) 19.2 (19.0-19.3) 2438 (2405-2572) 37 (36-37)   
            
Site 2 7.9 (7.8-7.9) 19.5 (19.3-19.7) 2429 (2384-2474) 37 (36-37)   
            
Site 3 7.7 (7.7-7.8) 19.5 (19.3-19.7) 2426 (2386-2466) 37 (36-37)   
            
Site 4 7.4 (7.3-7.5) 19.3 (19.2-19.5) 2395 (2366-2423) 37 (36-37)   
            

Calculated Parameters 

 pCO2                     
(µatm) 

HCO3
-               

(µmol kg-1) 
CO3

2-                   

(µmol kg-1) 
DIC                        

(µmol kg-1) Ωarag 

            
Site 1 391 (358-424) 1869 (1836-1903) 232 (218-246) 2114 (2093-2135) 3.6 (3.4-3.8) 
            
Site 2 672 (614-730) 2030 (2000-2059) 163 (151-175) 2214 (2195-2234) 2.5 (2.3-2.7) 
            
Site 3 907 (751-1063) 2073 (2045-2101) 144 (132-156) 2246 (2225-2267) 2.2 (2.0-2.4) 
            
Site 4 1944 (1580-2309) 2159 (2132-2185) 96 (85-107) 2317 (2291-2343) 1.4 (1.3-1.6) 
            

Temperature (n = 2580 per Site) was recorded from May to September 2012 and from November 2012 to April 
2013. pH (n = 103-110 per Site) and salinity (n = 107-110 per Site) were measured in July 2010, September 2010, 
November 2010, March 2011, June 2011, July-August 2011, November-December 2011, April-May 2012, June 
2012 and May 2013. TA (n = 14 per Site) was measured in September 2010, November 2010, March 2011, June 
2011, July-August 2011, November-December 2011, April-May 2012, June 2012 and May 2013. DIC: dissolved 
inorganic carbon.
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Table 2.  Balanophyllia europaea. Kruskal-Wallis rank test/ANOVA, linear regression and correlation analyses  
between pH and polyp mortality rate, linear extension rate and net calcification rate in the four transplantation  
Sites. Polyp mortality rate and linear extension rate were measured in 6 experimental periods and calcification rate  
in 4 experimental periods, from July 2010 and April 2012. Experimental periods are arranged in order of  
increasing temperature. Temperature (T: n = 2580 per Site), shown as mean and 95% CIs in brackets, was recorded  
from May to September 2012 and from November 2012 to April 2013.  Regression parameters are shown only  
where the relationship is significant. 
 

Experimental 
Period  T (°C) Biological Parameter N K-W/ 

ANOVA Slope (SE) Intercept (SE) rs
2 rs 

December 
2011-April 

2012 

15.1  
(15.1-15.2) 

Polyp mortality rate (% month-1) 9 NS - - - - 

Linear extension rate  (% month-1) 44 NS - - - - 

Net calcification rate (mg CaCO3 g-1 month-1) 18 * - - 0.028 0.168 

November 
2010-March 

2011 

15.9  
(15.8-15.9) 

Polyp mortality rate (% month-1) 12 NS - -   - 

Linear extension rate  (% month-1) 78 *** - - 0.001 0.029 

Net calcification rate (mg CaCO3 g-1 month-1) 24 NS - -   - 

March-June 
2011 

16.3  
(16.3-16.4) 

Polyp mortality rate (% month-1) 12 NS - -   - 

Linear extension rate  (% month-1) 71 *** - - 0.045 0.211 

Net calcification rate (mg CaCO3 g-1 month-1) 20 NS - -   - 

June-August 
2011 

23.9  
(23.8-24.0) 

Polyp mortality rate (% month-1) 12 NS - - - - 

Linear extension rate  (% month-1) 66 NS - - - - 

Net calcification rate (mg CaCO3 g-1 month-1) 21 NS - - - - 

August-
December 2011 

24.2  
(20.7-27.8) 

Polyp mortality rate (% month-1) 12 NS - - - - 

Linear extension rate  (% month-1) 49 NS - - - - 

July-September 
2010 

26.2  
(26.1-26.3) 

Polyp mortality rate (% month-1) 9 *** -108.084 (16.900) 882.498 (133.388) 0.848 -0.921*** 

Linear extension rate  (% month-1) 35 *** - - 0.052 0.227 

 
N, number of polyps for linear extension rate and net calcification rate and number of tiles for polyp mortality rate; K-W/ANOVA,  
significance of the Kruskal-Wallis test/ANOVA;  rs

2, Spearman’s determination coefficient; rs, Spearman’s correlation coefficient;  
* p < 0.05; ** p < 0.010; *** p < 0.001; NS, not significant. 
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Table 3.  Leptopsammia pruvoti. Kruskal-Wallis rank test/ANOVA, linear regression and correlation analyses 
between pH and polyp mortality rate, linear extension rate and net calcification rate in the four transplantation 
Sites. Polyp mortality rate and linear extension rate were measured in 5 experimental periods and net 
calcification rate in 3 experimental periods from July 2010 to December 2011. Experimental periods are 
arranged in order of increasing temperature. Temperature (T: n = 2580 per Site), shown as mean and 95% CIs in 
brackets, was recorded from May to September 2012 and from November 2012 to April 2013. Regression 
parameters are shown only where the relationship is significant. 
 

Experimental 
Period  T (°C) Biological Parameter N K-W/ANOVA Slope (SE) Intercept (SE) rs

2 rs 

November 
2010-March 

2011 

15.9  
(15.8-15.9) 

Polyp mortality rate (% month-1) 12 NS - - - - 

Linear extension rate  (% month-1) 58 ** 3.534 (1.537) -27.569 (11.943) 0.112 0.335* 

Net calcification rate (mg CaCO3 g-1 month-1) 21 NS - - - - 

March-June 
2011 

16.3  
(16.3-16.4) 

Polyp mortality rate (% month-1) 12 NS - - - - 

Linear extension rate  (% month-1) 70 *** - - 0.017 0.132 

Net calcification rate (mg CaCO3 g-1 month-1) 21 ** - - 0.047 -0.216 

June-August 
2011 

23.9  
(23.8-24.0) 

Polyp mortality rate (% month-1) 12 * -16.839 (4.509) 133.539 (35.054) 0.585 -0.765** 

Linear extension rate  (% month-1) 74 *** 7.716 (1.851) -61.837 (14.443) 0.199 0.446*** 

Net calcification rate (mg CaCO3 g-1 month-1) 22 * 171.436 (63.386) -1404.377 (494.799) 0.325 0.570** 

August-
December 2011 

24.2  
(20.7-27.8) 

Polyp mortality rate (% month-1) 9 ** -21.658 (3.781) 178.369 (29.274) 0.762 -0.873** 

Linear extension rate  (% month-1) 34 NS - - - - 

July-September 
2010 

26.2  
(26.1-26.3) 

Polyp mortality (% month-1) 9 * -58.296 (15.922) 475.172 (125.696) 0.810 -0.900*** 

Linear extension rate  (% month-1) 54 *** 12.883 (2.114) -106.955 (16.750) 0.417 0.646*** 

N, number of polyps for extension rate and net calcification rate and number of tiles for polyp mortality rate; K-W/ANOVA, 
significance of the Kruskal-Wallis test/ANOVA;  rs

2, Spearman’s determination coefficient; rs, Spearman’s correlation coefficient; * p 
< 0.05; ** p < 0.010; *** p < 0.001; NS, not significant. 
 
 

 

 

 

 

 

 

 

 

 



!

! 66!

Table 4.  Astroides calycularis. Kruskal-Wallis rank test/ANOVA, linear regression and correlation analyses 
between pH and polyp mortality rate, tissue mortality rate, area extension rate and net calcification rate in the 
four transplantation Sites. Polyp mortality rate, tissue mortality rate and area extension rate were measured in 5 
experimental periods and net calcification rate in 3 experimental periods from July 2010 to December 2011.  
Experimental periods are arranged in order of increasing temperature. Temperature (T: n = 2580 per Site), 
shown as mean and 95% CIs in brackets, was recorded from May to September 2012 and from November 2012 
to April 2013.  
  

Experimental 
Period  T (°C) Biological Parameter N K-W/ANOVA Slope (SE) Intercept (SE) rs

2 rs 

November 
2010-March 

2011 

15.9  
(15.8-15.9) 

Polyp mortality rate (% month-1) 45 NS - - - - 

Tissue mortality rate (% month-1) 45 *** -18.382 (3.014) 148.232 (23.492) 0.154 -0.393** 

Area extension rate  (% month-1) 45 *** 17.341 (5.071) -137.812 (39.523) 0.101 0.318* 

Net calcification rate (mg CaCO3 g-1 month-1) 20 * 190.189 (53.034) -1479.633 (414.015) 0.429 0.655** 

March-June 
2011 

16.3  
(16.3-16.4) 

Polyp mortality rate (% month-1) 46 NS - - - - 

Tissue mortality rate (% month-1) 46 ** -18.192 (4.754) 153.065 (36.984) 0.177 -0.421** 

Area extension rate  (% month-1) 46 *** 19.213 (5.295) -160.321 (41.191) 0.179 0.423** 

Net calcification rate (mg CaCO3 g-1 month-1) 15 *** 88.539 (17.704) -709.439 (138.043) 0.278 0.527* 

June-August 
2011 

23.9  
(23.8-24.0) 

Polyp mortality rate (% month-1) 44 *** -37.233 (6.891) 301.003 (53.889) 0.339 -0.582*** 

Tissue mortality rate (% month-1) 44 *** -41.138 (8.965) 344.767 (70.109) 0.334 -0.578*** 

Area extension rate  (% month-1) 44 *** 41.984 (9.051) -351.404 (70.783) 0.206 0.454** 

Net calcification rate (mg CaCO3 g-1 month-1) 12 *** 133.840 (22.819) -1078.656 (178.855) 0.572 0.756** 

August-
December 

2011 

24.2  
(20.7-27.8) 

Polyp mortality rate (% month-1) 52 *** -130.138 (12.497) 1045.149 (97.186) 0.242 -0.492*** 

Tissue mortality rate (% month-1) 52 *** -126.994 (13.604) 1020.471 (105.794) 0.225 -0.474*** 

Area extension rate  (% month-1) 52 *** 139.136 (16.351) -1110.483 (127.154) 0.229 0.479*** 

July-
September 

2010 

26.2  
(26.1-26.3) 

Polyp mortality rate (% month-1) 39 *** -8.416 (3.503) 69.296 (27.635) 0.125 -0.353* 

Tissue mortality rate (% month-1) 39 *** -59.889 (7.173) 483.653 (56.589) 0.706 -0.840*** 

Area extension rate  (% month-1) 39 *** 95.451 (11.251) -760.374 (88.763) 0.691 0.831*** 

 N, number of colonies; K-W/ANOVA, significance of the Kruskal-Wallis test/ANOVA;  rs
2, Spearman’s determination coefficient; 

rs, Spearman’s correlation coefficient; * p < 0.05; ** p < 0.010; *** p < 0.001; NS, not significant. 
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Figure legends 

Figure 1. Living specimens of a) Balanophyllia europaea, b) Leptopsammia pruvoti, c) Astroides 

calycularis. 

Figure 2. Map of the study site off Panarea Island (Aeolian Archipelago) with a close-up on the 

location of the vent area, SE of Bottaro, where corals were transplanted. 

Figure 3. Bathymetric profile of the four Sites, shown in the pictures, with the associated mean 

pHTS and Ωarag. 
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Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Supplem
entary Figures 

 Fig. S1. V
ariation in polyp m

ortality rate for B. europaea, L. pruvoti and A. calycularis and tissue m
ortality rate for the latter w

ith 
average pH

 of each site (N
 = 103-110 per site; m

easured betw
een July 2010 and M

ay 2013), in 6 experim
ental periods from

 July 2010 
to A

pril 2012. Experim
ental periods are arranged in order of increasing tem

perature. Tem
perature data (n = 2580 per site), show

n as 
m

ean and 95%
 C

Is in brackets, w
as recorded every three hours by data loggers placed in each site from

 M
ay to Septem

ber 2012 and 
from

 N
ovem

ber 2012 to A
pril 2013. 

!

!
N

, num
ber of tiles for B. europaea and L. pruvoti, and num

ber of colonies for A. calycularis; rs , Spearm
an’s correlation coefficient. 



!!
72!

Fig. S2. V
ariation in linear extension rate for B. europaea, L. pruvoti and area extension rate for A. calycularis w

ith average pH
 of 

each site (N
 = 103-110 per site; m

easured betw
een July 2010 and M

ay 2013), in 6 experim
ental periods from

 July 2010 to A
pril 2012. 

Experim
ental periods are arranged in order of increasing tem

perature. Tem
perature data (n = 2580 per site), show

n as m
ean and 95%

 
C

Is in brackets, w
as recorded every three hours by data loggers placed in each site from

 M
ay to Septem

ber 2012 and from
 N

ovem
ber 

2012 to A
pril 2013. 

!

!
N

, num
ber of polyps for B. europaea and L. pruvoti, and num

ber of colonies for A. calycularis; rs , Spearm
an’s correlation coefficient!
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!!
73!

Fig. S3. V
ariation in net calcification rate for B. europaea, L. pruvoti and A. calycularis w

ith average pH
 of each site (N

 = 103-110 per 
site; m

easured betw
een July 2010 and M

ay 2013), in 4 experim
ental periods from

 N
ovem

ber 2010 to A
pril 2012. Experim

ental 
periods are arranged in order of increasing tem

perature. Tem
perature data (n = 2580 per site), show

n as m
ean and 95%

 C
Is in 

brackets, w
as recorded every three hours by data loggers placed in each site from

 M
ay to Septem

ber 2012 and from
 N

ovem
ber 2012 

to A
pril 2013. 

 

!
N

, num
ber of polyps for B. europaea and L. pruvoti, and num

ber of colonies for A. calycularis; rs , Spearm
an’s correlation coefficient!
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Anthropogenic CO2 is a major driver of current environmental change in most 

ecosystems1, and the related ocean acidification (OA) is threatening marine biota2. With 

increasing pCO2, calcification rates of several species decrease3, although cases of up-

regulation are observed4. Here, we show that biological control over mineralization 

relates to species abundance along a natural pH gradient. As pCO2 increased, the 

mineralogy of a scleractinian coral (Balanophyllia europaea) and a mollusc (Vermetus 

triqueter) did not change. In contrast, two calcifying algae (Padina pavonica and 

Acetabularia acetabulum) reduced and changed mineralization with increasing pCO2, 

from aragonite to the less soluble calcium sulphates and whewellite, respectively. As 

pCO2 increased, the coral and mollusc abundance was severely reduced, with both 

species disappearing at pH < 7.8. Conversely, the two calcifying and a non-calcifying 

algae (Lobophora variegata) showed less severe or no reductions with increasing pCO2, 

and were all found at the lowest pH site. The mineralization response to decreasing pH 

suggests a link with the degree of control over the biomineralization process by the 

organism, as only species with lower control managed to thrive in the lowest pH. 

Several studies on the influence of pH on crystallography and texture of calcified 

regions are ex situ, short-term experiments on isolated organisms5, providing important 

information, but unrepresentative of natural ecosystems and failing to assess long-term 

effects6. There is a great need of long-term analyses on OA effects on marine ecosystems 

acclimated to high pCO2, as found around CO2 vents. Vents are not ideal predictors of future 

oceans, owing to pH variability, proximity of unaffected populations, and co-varying 

environmental parameters7. However, vents acidify seawater on sufficiently large temporal 

and spatial scales to integrate ecosystem processes6, acting as “natural laboratories”. In Papua 

New Guinea vents, reductions in coral diversity, recruitment, abundance, and shifts in 

competitive interactions are found8. In Mediterranean vents, decreased diversity, biomass, 
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trophic complexity, and abundance in many calcifying and non-calcifying organisms, and 

increases in macroalgae and seagrasses are observed7,9,10.  

We assessed, along a natural pH gradient, the effect of pCO2 on the mineralization and 

abundances of the aragonitic scleractinian B. europaea, the aragonitic tube-forming gastropod 

V. triqueter, the brown alga P. pavonica, which deposits aragonite on the surface of thalli, the 

green alga A. acetabulum, whose cups’ outer surfaces are calcified with aragonite and a small 

amount of whewellite, and the non-mineralized brown alga L. variegata. The mineralization is 

biologically controlled in V. triqueter (i.e., mineral is deposited in confined nucleation sites 

under complete biological control with minimal environmental effects), biologically induced 

in P. pavonica and A. acetabulum (i.e., it is strongly affected by the environment with 

minimal biological control), while B. europaea may represent an intermediate and still 

controversial situation11. We aimed to assess, for the first time, changes in the mineralization 

and abundance of species along a pCO2 gradient in relation to their control over 

biomineralization. 

 

Seawater chemistry 

Mean pH, CO2, saturation of calcite (Ωcalc), and of aragonite (Ωarag) differed among Sites 

(Kruskal-Wallis test/ANOVA, p < 0.001). The median pH values were 8.1 (Site 1), 7.9 (Site 

2), 7.8 (Site 3) and 7.7 (Site 4), with increasing variability towards Site 4 (Fig. 1; Fig. S1; 

Table S1). 

 

Mineralogy  

Aragonite was the only mineral phase in B. europaea skeletons (Fig. S2). Organic 

matrix (OM) content was homogeneous among Sites (Kruskal-Wallis test, p > 0.05; Fig. S3; 

Table 1). Skeletal texture displayed fibers evolving from a center of calcification (Fig. S4), 
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but the morphology of these centers, and fiber thickness (600 ± 200 nm) were not related to 

pCO2 (Fig. S5). Hardness was homogeneous among sample regions and study Sites (5100 ± 

600 MPa). The elastic Young’s modulus decreased (i.e., the skeleton became less stiff) along 

the aboral to oral direction and was lower at Sites 2 and 3 than at Site 1 (Table S2). Crystal 

quality and fiber thickness usually increases when crystallization occurs under lower 

supersaturation12. While a reduction of precipitation rate with pCO2 could increase crystal 

quality, other mechanisms could involve OM molecules. Corals appear to maintain a high pH 

at the nucleation sites within the calicoblastic layer, possibly expending significant amount of 

energy13. This is supported by the lack of increase in aragonite fiber thickness with decreasing 

seawater Ωarag, which would be expected if Ωarag of the calcification site decreased12. The 

reduction of skeletal stiffness with declining pH is likely associated with an increase in 

porosity, as confirmed by preliminary Nuclear Magnetic Resonance analyses. B. europaea 

skeletons have already been found to increase their porosity in stress conditions, such as 

increasing temperature14. 

The apical regions of V. triqueter shell-tubes of similar diameter (~5 mm) were 

analysed. Aragonite was the only mineral phase (Fig. S2). Shell-tubes from Site 1 had four 

layers with different crystal texture and variable relative thickness among samples (Fig. 2). 

The first two layers were prismatic, with the second one made of regular prisms with square 

section (500 nm side). The third was cross-lamellar with regular fibers 500 nm thick. The 

fourth external layer was spherulitic, with several bores and channels (Fig. 2). In one of six 

samples from Site 2, and in four of six from Site 3, the two internal layers were not present. 

Different hardness and elastic Young’s modulus were associated with different textures, 

without significant variations among Sites (Table S2). OM content was homogeneous among 

Sites (Kruskal-Wallis test, p > 0.05; Table 1; Fig. S3). The unaffected mineralogy of V. 

triqueter shell-tubes is possibly due to the exquisite control of biological macromolecules on 
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mollusc mineralization, which occurs in confined sites resulting in complex crystalline 

textures (Fig. 2). During shell-tube growth, the external layers are the first to be deposited, 

followed by the internal ones11. A pH reduction can reduce the growth rates (calcification) of 

mollusc shells15, which likely explains the absence of the internal layers in shell-tubes from 

the most acidic Sites. 

Padina pavonica thallus tips from Site 1 were mainly aragonitic with traces of hydrate 

calcium sulphate salts (CSh). Aragonite concentration decreased with increasing pCO2, and 

almost only CSh was observed at Site 4 (Fig. S2). The presence of CSh was investigated in 

detail by further tests and considerations (see Supplementary Information). The overall 

mineral content differed among Sites (Kruskal-Wallis test, p < 0.05; Table 1, Fig. S3), and 

declined with increasing pCO2 (Spearman’s rho of the correlation with pH = 0.592,  p < 0.01). 

In all samples, many aragonite needle-like crystals were aggregated or merged forming 

bundles. CSh crystals appeared as prisms or tablets (Fig. 3, Fig. S6). The decalcification left 

the thalli free of mineral deposits (Fig. S6). In P. pavonica, CSh increased with increasing 

pCO2. Some stabilization of CSh minerals by algal molecules16,17, probably polysaccharides, 

is expected, as CSh is soluble in seawater converting to gypsum. 

Acetabularia acetabulum was mainly aragonitic, with minor presence of whewellite 

(calcium oxalate; Fig. S2). All samples contained about 10% (w/w) of water. The content of 

mineral phases, estimated after pyrolysis and release of water, differed among Sites (Kruskal-

Wallis test, p < 0.01; Table 1 and Fig. S3) and declined with increasing pCO2 (Spearman’s 

rho of the correlation with pH = 0.555,  p < 0.01). The aragonite/whewellite ratio decreased 

with increasing pCO2. Globular granules of amorphous material rich in Ca and S were 

observed on the surface of needle-like aragonite aggregates at Sites 1-4 (Fig. 3 and Fig. S6). 

Whewellite was the only phase detected at Site 4 (Fig. S2; Fig. 3), where it appeared as 

prisms. After decalcification, the cup surface was free of mineral deposits (Fig. S6). In line 
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with a mainly chemical mineralization control17, increasing pCO2 did not affect deposition of 

whewellite in A. acetabulum. The persistence of amorphous globular particles rich of calcium 

and sulphur was unexpectedly observed when aragonite disappeared. This phase, soluble in 

acetic acid solution, may be the result of interactions between Ca ions and the sulphonated 

groups of polysaccharides, overexpressed by the algae as a response to acidification17. 

Within each sample, P. pavonica and A. acetabulum showed a marked reduction of 

mineralized areas with increasing pCO2 (Fig. 4). Their aragonite content decreased with 

decreasing Ωarag. At a Ωarag of 1.5, aragonite was not observed, probably because this 

saturation level is too low to sustain its nucleation process. The observed changes in 

morphology of aragonite crystals (Fig. 3) are associated with seawater chemistry18. 

 

Abundance  

Percent cover of all species, except A. acetabulum, differed among Sites (Kruskal-

Wallis test, p < 0.001), and decreased with increasing pCO2 (Table S3). B. europaea and V. 

triqueter were not found at Site 4 (pH = 7.7, Ωarag = 1.5; Fig. 1). Densities of A. acetabulum 

were homogeneous among Sites (Kruskal-Wallis test, p > 0.05). This suggests that P. 

pavonica and A. acetabulum are not obligate calcifiers, persisting in high pCO2 where also the 

non-calcifying species L. variegata survives (Fig. 1). 

A changing benthic community was associated with the pCO2 gradient (Supplementary 

Video). The coverage of a coral, a mollusc, and two macroalgae, one of which is a calcifier, 

declined with increasing pCO2 (Fig. 1). This is in agreement with previous investigations at 

CO2 vents, documenting dramatic reductions in calcifying macroalgal abundance7,8. 

Calcifying organisms seem the most sensitive to elevated pCO2
19, even if their response is not 

consistent8,15,20. A. acetabulum, B. europaea and V. triqueter were previously found only 

outside vent areas, at a pHTS of 8.147. Instead, in our survey, B. europaea and V. triqueter 
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survived up to pHTS 7.8 and algal species up to pHTS 7.7 (Fig. 1). The response of macroalgae 

to pCO2 is expected to vary among species. As an example, increased cover with decreasing 

pH was observed for Padina spp at CO2 seeps in Vulcano and Papua New Guinea21, and for L. 

variegata at CO2 seeps in Ischia10, which contrasts with our data. The responses of non-

calcifying macroalgae to elevated pCO2 is variable22, depending on energy availability23. The 

nature of CO2-induced shifts in macroalgal community structure is likely to vary depending 

on other environmental factors, such as nutrient availability, temperature and solar radiation24. 

For instance, L. variegata were sampled in Ischia at 1 m depth and in our study at 8-12 m. 

Growth of the brown alga Dictyota ciliolata decreases with decreasing light intensity25. In the 

brown alga Fucus vesiculosus, photosynthesis and growth decrease with increasing depth26 

from 1 to 6 m. At the high light of the shallow Ischia site, L. variegata may compensate for 

the negative effect of lowered pH through enhanced growth. 

 

Relationships with the control over the biomineralization process 

We related, for the first time, the biological control over biomineralization with 

changes in the abundance of organisms along natural pCO2 gradients. The content of 

biomineralized products decreased with increasing pCO2 only in the two calcifying algal 

species (with a weak control over their biomineralization), but the two species with stronger 

biomineralization control (B. europaea and V. triqueter) tolerated less severe pCO2 increases 

(pH 7.8) than the algae (pH ≤7.7). Moreover, the more tolerant algae continued to grow 

despite their biomineralization products being profoundly altered by pCO2. Even if 

biomineralization in algae is only induced17, we can’t exclude that the switch from aragonite 

to other biominerals may represent a phenomenon of phenotypic plasticity27, which is 

increasingly being found to strongly contribute to persistence in the face of climate change28. 

The control over biomineralization may not be the only cause of the observed differences, 
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since while the coral and the mollusc have a biology completely dependent on calcification, 

the algae don’t. Moreover, the algae may benefit from pCO2 increase in terms of 

photosynthesis, while the coral may be less dependent on the photosynthetic process and the 

mollusc does not photosynthesize. This study adds new evidence to field studies on OA 

effects4,9,29,30, all indicating major ecological shifts as CO2 rises. It documented that (i) the 

mineralization response to OA seems connected with the organisms’ control of 

biomineralization, (ii) increasing pCO2 profoundly affects the abundance of many benthic 

organisms, and (iii) only the species with weaker control were observed at the lowest pH. 

 

Methods 

Study site. Fieldwork was conducted at Panarea, Italy (Supplementary Video; Fig. S1), where 

hydrothermally stable CO2 emissions acidify seawater, generating a pH gradient (see 

Supplementary Information for details). 

 

Carbonate chemistry. Four sampling Sites were selected (Figs. 1 and S1): a control site (Site 

1), two intermediate pCO2 (Site 2 and Site 3), and high pCO2 (Site 4). pH (NBS scale), 

temperature, and salinity were measured at each Site during several surveys between July 

2010 and May 2013 with a multi-parametric probe (600R, YSI Incorporated, USA) powered 

from a small boat and operated by SCUBA divers. Bottom water samples for determination of 

total alkalinity (TA) were collected and analysed using standard methods (see Supplementary 

Information for details). Additional temperature data were recorded every three hours by 

sensors (Thermochron iButton, DS1921G, Maxim Integrated Products, USA) attached in each 

Site from July 2010 to May 2013. Measured pH was converted to the total scale using 

CO2SYS software. Median pH (back-transformed hydrogen ion concentrations) were 
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calculated for each Site. The pH, TA, salinity and temperature were used to calculate other 

carbonate system parameters using the software CO2SYS (Supplementary Information). 

 

Benthic survey. Photographs of benthos (5 to 10 per site, 50 x 50 cm for the animals, 21.0 x 

29.7 cm for the algae) were used to measure the percent cover of B. europaea, V. triqueter, P. 

pavonica, A. acetabulum and L. variegata at each Site. See Supplementary Information for 

details. 

 

Vent gas. Gas was sampled during five surveys (June 2011-May 2013) and analysed at the 

Laboratory of Fluid and Rock Geochemistry of the University of Florence using standard 

methods (Supplementary Information). Water samples were collected and tested for dissolved 

H2S (Supplementary Information). 

 

Statistical analyses. Analysis of variance (ANOVA) and the post-hoc Fisher LSD test were 

used to test for differences among Sites using arcsine and log-transformation for percent cover 

and environmental data, respectively, when necessary. Else, the non-parametric Kruskal-

Wallis and Spearman’s rank correlation coefficients were used. All analyses were performed 

using SPSS v.20. 

Biomineralization. Samples were randomly collected by SCUBA divers at all Sites and were 

prepared for analyses with standard methods (Supplementary Information). Microscopic 

observations, mechanical, and spectroscopic measurements required the preparation of cross 

sections of the samples (Supplementary Information). X-ray powder diffraction (XRD) and 

Fourier transform infrared spectroscopy (FTIR) patterns on small amounts of powdered 

samples were collected using standard methods (Supplementary Information). Attenuated 

Total Reflection FTIR (FTIR ATR) spectra of sample cross sections were acquired with 
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standard methods (Supplementary Information). The organic matter content in the sample was 

determined by thermo-gravimetric analysis (TGA; Supplementary Information). 

Microstructures were observed using optical and scanning electronic microscopes (SEM; 

Supplementary Information). The mechanical properties of shell-tubes and skeletons were 

measured with standard nanoindentation techniques (Supplementary Information). 

 

Correspondence and requests for materials should be addressed to Stefano Goffredo and 

Giuseppe Falini. 
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Fig. 1. Range in pHTS and mean percentage cover of Balanophyllia europaea, Vermetus 

triqueter, Padina pavonica, Acetabularia acetabulum and Lobophora variegata along the 

pCO2 gradient. pH measures were 103-110 per site. Horizontal bars indicate the median pH. 

Error bars are 95% confidence intervals. 

Fig. 2. a) SEM image of the upper rim of Vermetus triqueter shell-tubes highlighting a 

transect from the inside (P1) to outside (S) the shell-tube (dotted line). b) Shell-tubes in Site 1 

consisted of four layers (P1, P2, Cl, S): c) first prismatic layer (P1); d) second prismatic layer 

(P2), with square cross-sections; e) cross-lamellar layer (Cl); f) spherulitic layer (S) 

containing bores and channels. The first two layers were not present in one sample from Site 2 

and in most of the samples from Site 3. 

Fig. 3. SEM images of Padina pavonica thalli and Acetabularia acetabulum cups. Left 

column: low magnification, right column: high magnification images. P. pavonica became 

less mineralized with increasing pCO2. The aggregation and shape of aragonite crystals was 

lightly affected by pCO2. In A. acetabulum, needle-like crystals of aragonite (An) were above 

and among the globular aggregates (Ga). The amount of biomineralized material was reduced 

with increasing pCO2, while the center of the cup became more populated by spherical 

aggregates. Aragonite needles are shown in the inset for Site 2 and 3, while whewellite is 

shown in the inset for Site 4. 

Fig. 4. In situ pictures of Padina pavonica and Acetabularia acetabulum at Sites 1 and 4, 

showing the reduction of calcified material (white areas) with increasing pCO2. 
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Supplementary Information 
 
Supplementary results 
Seawater chemistry of the Sites.  
Vent gaseous emissions (flux = 1-30 L min-1) contained 98-99% CO2, 0.2-0.3% N2, 0.01-0.02% O2, 
0.003-0.005% Ar, 0.001-0.002% CH4, 0.3-0.6% H2S by volume (detection limits: CO2, N2, O2, and 
Ar: 0.1 ppm; CH4: 1 ppb; H2S: 1 ppm). Other contaminants (e.g. metals) can be excluded since the 
emission is exclusively gaseous at ambient temperature. Water dissolved H2S was below detection 
limit (0.1 mg L-1). The possible conversion of H2S to sulphate ions would need catalytic activity of 
bacteria, whose presence in the bacterial mud on the bottom has irrelevant effects, since the 
sulphate content along the transect does not show significant variations with respect to normal 
seawater values (2777.5 mg L-1). Moreover, the vent site is subject to strong currents S1 (mainly 
directed from North/West to South/East at speeds of 0.15-0.6 m sec-1; all dives confirmed the trends 
highlighted in the reference, except one in which there was no current) which ensure a regular rapid 
water exchange and inhibit the establishment of a significant community of active bacteria. Finally, 
CO2 dissolution and the effect of acidic dissociation is almost instantaneous and determines a 
significant lowering of pH (which has characteristic values of acidification by CO2 and not by H2S) 
and the establishment of the pH gradient. 
 
Supplementary methods 
Study site.  

The Island of Panarea belongs to the Aeolian Archipelago (Italy), located in the southern 
Tyrrhenian Sea in the Mediterranean (Fig. S1), and is part of an active volcanic systemS2. In the 
main vent, a crater 20 x 14 m wide and 10 m deep generates a sustained column of bubbles from the 
seabed to the sea surface. The hydrothermal system of Panarea is characterized by very active 
discharges of hydrothermal water and gas from the seafloor at a shallow depth (up to 150 m)S3. On 
the seafloor, at depths ranging from 8 to 40 m, in an area delimited by the islets of Dattilo, Bottaro, 
Lisca Nera and Lisca Bianca, there is a widespread presence of gas vents and hot water springsS4. 
As reported, the hydrothermal activity at Panarea was limited to only light gas bubbling in the years 
of first investigations (mid-80‘s) and the system was considered almost static and interpreted as the 
declining activity of a cooling and extinct volcanoS5. During the night of the 3rd of November 2002, 
a sudden and huge outgassing phenomenon was observed on the sea surface near the islets of 
Bottaro and Lisca Bianca, off the eastern coast of PanareaS6. Several active spots were identified by 
direct observations and bathymetric investigationsS7. After the crisis, investigations on the Panarea 
hydrothermal system have intensified and were performed by co-authors of this studyS3,S5,S8-S10. 
Between November 2002 and March 2003 the monitored submarine gas exhalations displayed a 
complex combination of temporal and spatial changes of their chemical compositions. The pre-2002 
conditions were restored relatively rapidly, reaching a stationary hydrothermal condition starting 
from March 2003S11,S12. 
 



Carbonate chemistry. 

Bottom water samples for determination of total alkalinity (TA) were collected at each site using 
sterile 120 ml syringes (two replicates for each site). After each dive upon return to the boat, the 
syringe samples were immediately transferred in labelled 100 ml amber glass bottles and 
immediately fixed with saturated mercuric chloride (HgCl2) to avoid biological alteration, and 
stored in darkness at 4°C prior to measurement. TA was measured by Gran titration, using a 702 
SM Titrino (Metrohm AG). Certified reference materials (Batch 121) from the Andrew Dickson 
Laboratory at UC San Diego were used to ascertain the quality of results obtained. The pH, TA, 
salinity and temperature were used to calculate other carbonate system parameters using the 
software CO2SYS with referenced dissociation constantsS13-S15. 
 
Benthic surveys.  

The percentage cover of all species was quantified at each site from 5-10 randomly placed quadrats, 
2 m away from each other at a depth of 10-12 m. We used 50 * 50 cm quadrats for Balanophyllia 
europaea and Vermetus triqueter and 21.0 * 29.7 cm quadrats for Padina pavonica, Acetabularia 
acetabulum and Lobophora variegata. During each survey, photographs of each quadrat were taken 
using a Canon G11 camera with underwater housing. The photos were taken to fit the whole 
quadrat into one picture. The area of each organism within the quadrat was extracted by tracing its 
outline with a hand-controlled mouse on the digital image, with a digitizing software (NIS-Elements 
Microscope Imaging Software). The software can be used to calculate precise percentage cover in 
an area. 
 

Vent gas. 

Gas was sampled during five surveys (June 2011, August 2011, December 2011, April 2012, May 
2013) by using a pre-weighted and pre-evacuated 50-ml thorion-tapped glass tubes, partially filled 
with 20 ml of a solution 0.15 M Cd(OH)2 and 4 M NaOH, connected to a plastic funnel positioned 
over the rising bubbles. To avoid contamination by seawater, the silicon connection between the 
funnel and the collecting glass tube was filled with Milli-Q water and isolated from seawater by a 
plastic plug. The plug was removed only after the complete evacuation of seawater by the gases 
contained in the funnel. Uncondensable gases were collected in the headspace. At the Laboratory of 
Fluid and Rock Geochemistry of the University of Florence, uncondensable gases were analysed 
with a gas-cromatograph (Shimadzu 15a), equipped with a Thermal Conductivity Detector. 
Methane was analyzed with a Flame Ionization DetectorS11. CO2 and H2S were trapped in the 
alkaline solution, the former dissolved as CO3

2- and the latter precipitated as CdS. CO2 was 
analysed by acidimetric titration with 0.5 N HCl solution while H2S as SO4

2- by ion 
chromatography after oxidation of CdS with H2O2. Water samples were also collected and tested for 
dissolved H2S by using Cd(OH)2 and ion chromatographyS16. 
 

Biomineralization. 

Sampling. After collection, all organism samples were rinsed with deionized water, cleaned from 
ground contaminations and stored in ethanol at 4°C. The skeletons of B. europaea and the shell-
tubes of V. triqueter were cleaned from the live tissues by treatment with a 0.5% (v/v) sodium 
hypochlorite for 10 minutesS17. The remaining skeletons and shell-tubes were then washed with 
deionized water and dried at room temperature. Each skeleton and shell-tube was inspected under a 
binocular microscope to remove fragments of rock and calcareous deposits produced by other 
organisms, such as serpulid tubes and bryozoan colonies. For some characterizations, the samples, 
or regions of them, were dusted using an agate mortar. Attention was paid to avoid high local 
increase of temperature. For microscopic observation and mechanical measurements, the samples 



were embedded in resin (Technovit 5071, Buehler), and were then lightly polished using colloid 
alumina (average size of 1 µm, PACE Technologies). For spectroscopic measurements, the samples 
were sandwiched in a KBr disk and then polished normally to the disk surface. The 
demineralization process of the algae was carried out treating the samples with a 0.3% (v/v) acetic 
acid solution overnight. 
 A series of considerations and tests were applied to get confidence on the presence of hydrated 
calcium sulphate salts in the tip of the thallus of P. pavonica. 
i. A. acetabulum and P. pavonica were subject to the same procedure of sampling, cleaning and 
washing. Calcium sulphate salts were observed only on the surface of P. pavonica.  
ii. A set of samples after collection were stored in sea water instead that in ethanol. Also in these 
sample was observed the presence of calcium sulphates salts. 
iii. A third set of samples was stored in a saturated solution of calcium carbonate, but unfortunately 
the algae decomposed. 
iv. Upon drying of ethanol solution used to keep the algae, no detectable amounts of calcium 
sulphate were observed. 
Despite all of the above facts we cannot completely exclude the possibility that the presence of 
calcium sulphate salts can be an unavoidable effect associated to the drying process, specific for P. 
pavonica. 
X-ray powder diffraction. X-ray powder diffraction patterns of the samples were collected using a 
PanAnalytical X’Pert Pro equipped with X’Celerator detector powder diffractometer using Cu Kα 
radiation generated at 40 kV and 40 mA. The diffraction patterns were collected within the 2Θ 
range from 10° to 60° or from 20° to 60° with a step size (Δ2Θ) of 0.02 ° and a counting time of 
1200 s. The X-ray powder diffraction patterns were analyzed using the X’Pert HighScore Plus 
software (PANalytical).  
Fourier transform infrared spectroscopy. Low amount powder samples were analyzed by means of 
Fourier transform infrared (FTIR) spectroscopy analyses conducted by using a FTIR Nicolet 380 
Thermo Electron Corporation, working in the range of wavenumbers 4000–400 cm-1 at a resolution 
of 2 cm-1. Disk was obtained mixing a small amount (<1 mg) of sample with 100 mg of KBr and 
applying a pressure of 48.6 tsi (670.2 MPa) to the mixture using a hydraulic press. 

Attenuated Total Reflection Fourier transform Infrared (FTIR ATR) spectra of sample cross 
sections were acquired in the range 4000–650 cm−1 with a Thermo-Nicolet Nexus 5700 
spectrometer connected to a Thermo Continuum IR microscope, fitted with an MCT type A detector 
cooled by liquid nitrogen. Measurements were made with the microscope in reflection mode, using 
a 15× Thermo-Electron Infinity Reflachromat objective and a tube factor of 10×. A micro slide-on 
ATR with a silicon crystal (contact area diameter 120 µm) was connected to the 15× objective. 
Thermal analyses. An estimation of the organic matter content in the sample was determined by 
thermo-gravimetric analysis (TGA) on a SDT Q600 simultaneous thermal analysis instrument (TA 
instrument). The analysis was performed under nitrogen flow from 30 to 120°C with a heating rate 
of 10°C min-1, an isothermal at 120°C for 5 min, and another cycle from 120 to 600°C with the 
same heating rate. The reported values are the average of at least three independent measurements. 
Microscopy. Several fractured and polished sections of samples were cut perpendicular to the 
surface. Polished sections and some fractures were etched with various acids and enzymes to reveal 
microstructural features. The optical microscope observations of samples were made with a Leica 
microscope equipped with a digital camera. The scanning electron microscopy (SEM) observations 
were conducted in a Phenom™ microscope (FEI) for uncoated samples and a Hitachi FEG 6400 
microscope for samples after coating with gold. Presented images are representative of the entire 
population of each sample. 

The aragonitic fiber diameter in the coral skeleton was measured from high magnification 
SEM images (see Fig. S5). About 20 fibers were measured from three different skeleton fragments 
for each site. 



Mechanical analyses. The mechanical properties of coral skeletons and mollusc shell-tubes were 
measured using a Nanoindentation Tester, model NHT-TTX by CSM Instruments, equipped with a 
Berkovich diamond tip. The maximum applied load in the test was always 50 mN, corresponding to 
a penetration depth in the range from 700 to 900 nm. The instrumented (IT) values of the elastic 
Young’s modulus (EIT) and hardness (HIT ) were determined by Oliver-Pharr analysis of the load-
depth curvesS18. The reported values are the average of at least 10 measurements. 
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Fig. S1. Map of vent site off Panarea Island (Aeolian Archipelago) and bathymetric profile of the 

experimental area. Underwater volcanic crater with localized CO2 emissions a few tens of meters 

SE of Bottaro, one of the islets surrounding Panarea. Depth along the pCO2 gradient goes from 11.6 

m in the center of the crater to 9.2 m in the control site, at a distance of 34 m from the crater. pH 

values in brackets are expressed as medians at the total scale. 

 

Fig. S2. Fourier transform infrared spectra (a, c, e, g) and X-ray powder diffraction patterns (b, d, f, 

h) from ground skeletons of Balanophyllia europaea (a, b) and ground shell-tubes of Vermetus 

triqueter (c, d) collected at Sites 1 to 3 along the pCO2 gradient, and from ground samples of 

Padina pavonica (e, f) and Acetabularia acetabulum (g, h) collected at Sites 1 to 4. In (a-d) only 

absorption bands and diffraction peaks due to aragonite are observable. In P. pavonica (g, h) 

absorption bands and diffraction peaks due to aragonite (A) and mono hydrate calcium sulphate 

minerals (CSh) are marked. In A. acetabulum (e, f) only absorption bands and diffraction peaks due 

to aragonite (A) and whewellite (Wh) are observable. The diffraction peaks are indicated according 

to the Miller indices. Spectra are vertically offset to increase their readability. 

 

Fig. S3. Percentage weight loss of the samples with increasing temperature (thermo gravimetric 

profiles, green curves) and their first derivate curves (blue curves). (a-c) skeletons of Balanophyllia 

europaea and (d-f) shell-tubes of Vermetus triqueter from Sites 1 to 3 along the pCO2 gradient. (g-j) 

thalli of Padina pavonica and (k-n) cups of Acetabularia acetabulum from Sites 1-4. Each TGA 

profile shows two weight loss events: the first one, which occurs at lower temperature, can be associated to 

the release of bounded water molecules, while the second one is due to the pyrolysis of the organic matrix. 
 

Fig. S4. SEM images of Balanophyllia europaea skeletons. Centers of calcification (indicated by 

arrows) and fibers were observed. Their size and shape were not related to pCO2. 

 

Fig. S5. SEM images of the cross sections of the tip regions of septa of Balanophyllia europaea 

skeletons collected at Sites 1 to 3 along the pCO2 gradient. The two structural entities constituting 

the coral skeleton, centers of calcification and fibers, are illustrated in the left and right columns, 

respectively. The observed differences were not statistically significant. 

 

Fig. S6. First row Dry thalli of Padina pavonica (a) and dry cups of Acetabularia acetabulum (b) 

collected at Sites 1 to 4 along the pCO2 gradient. The calcified regions appeared white, with the 

upward facing surfaces being more heavily calcified than the downward facing surfaces. SEM 



images (first column) of the cross sections of the thalli (a) and the cups (b) and corresponding ATR 

FTIR spectra (second column) at three points, the two surfaces (1, upward; 3, downward) and inside 

the algae (2), for each sample at each site. The dotted line in the ATR FTIR spectra indicate the 

band associated to aragonite. The image shows that the upward pointing face is more calcified than 

the downward facing surface and that mineral phases were not detected inside the algae thalli or 

cups. SEM images (third column) of the surface of the thalli (a) and cups (b) after overnight 

treatment with a 0.3% acetic acid solution and corresponding FTIR spectra (fourth column). The 

surfaces are completely free of mineral phases and FTIR spectra do not show any absorption band 

clearly associable to mineral phases. 

 

Supplementary video legend 

Underwater video showing CO2 degassing from the crater. 

 



Panarelli

Dattilo

Lisca
Bianca

Bottaro

Lisca
Nera

1 k m

-10
-40

-20
-30

CO2 DEGASSING

Site 3 Site 2 Site 1
Site 4

Calcara

Panarea
Island

Le Formiche

Basiluzzo
Island

Shelf break

N

0 2 km
-100

Vulcano

Lipari

Panarea
Stromboli

SalinaFilicudi

Alicudi

Aeolian
Archipelago

މ����� މ����� މ����� މ����� މ�����

މ�����

މ�����

�����މ

މ�����

މ�����

Distance from the center of the crater (m)

D
ep

th
 (m

)

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
0 5 10 15 20 25 30 35

Site 4
(pHTS 7.7) 

Site 3
(pHTS 7.8) 

Site 2
(pHTS 7.9) 

Site 1
(CONTROL: 

pHTS 8.1) 



20 25 30 35 40 45 50 2Theta (°)

In
te

ns
ity

 (
a.

 u
.)

Site 3

Site 2

Site 1

(11
1)

(0
42

)(2
11

)

(1
30

)(0
21

)

(0
23

)
(2

22
)

(0
41

)

(1
22

)

(2
21

)

(1
32

)

(0
02

)
(0

12
)

(2
00

)
(0

31
)

(11
3)(11

2)

(3
10

)

(3
11

)

(d)

 800    1000   1200   1400   1600   1800   2000  cm-1

Site 3

Site 2

Site 1

14
80

10
88

86
2

71
2

69
9

(c)

A
bs

 (a
. u

.)
A

bs
 (a

. u
.)

 800    1000   1200   1400   1600   1800   2000  

Site 3

Site 2

Site 1

14
75

10
82

85
6

71
2

69
9

cm-1

(a)

20 25 30 35 40 45 50 2Theta (°)

In
te

ns
ity

 (
a.

 u
.)

Site 3

Site 2

Site 1

(11
1)

(0
42

)(2
11

)(1
30

)

(0
21

)

(0
23

)
(2

22
)

(0
41

)

(1
22

)

(2
21

)

(1
32

)

(0
02

)

(0
12

)

(2
00

)
(0

31
) (11

3)(11
2)

(3
10

)
(3

11
)

*

*

(b)
A

bs
 (a

. u
.)

 800    1000   1200   1400   1600   1800   2000  

Site 3

Site 2

Site 1

cm-1

A 
14

78

A 
85

8

A 
71

2

Site 4

W
h 1

32
0

W
h 7

80

W
h 5

17

16
45

10
30

93
4

81
5

11
60

W
h 6

68
61

0

(g)

In
te

ns
ity

 (
a.

 u
.)

10 15 20 25 30 35 40 45 50 2Theta (°)

A 
(11

1)

A 
(2

11
)

A 
(1

30
)

A 
(0

21
)

A 
(0

23
)

A 
(0

41
)

A 
(1

22
)

A 
(2

21
)

A 
(1

32
)A 

(0
12

) A 
(2

00
)

A 
(0

31
)

A 
(11

3)

A 
(11

2)

A 
(3

11
)

Site 3

Site 2

Site 1

Site 4

W
h

(h)

A
bs

 (a
. u

.)

 1500   2000   2500   3000   3500   4000  

Site 1

Site 2

Site 3

Site 4

16
37

A 
14

90
CS

h 1
42

5

CS
h 1

10
0

A 
85

8
CS

h 6
47

CS
h 6

12

33
80

29
25

A 
71

3

cm-1

CS
h 1

13
0

(e)

A 
(1

30
)

15 20 25 30 35 40 45 50 2Theta (°)

In
te

ns
ity

 (
a.

 u
.)

Site 1

Site 2

Site 3

Site 4

A 
(11

1)

CS
h

CS
h CS

hA 
(0

21
)

A 
(0

21
)

A 
(2

00
)

A 
(0

31
)

A 
(11

2)

A 
(2

11
)

A 
(2

21
)

A 
(1

22
)

A 
(0

41
)

A 
(1

32
) A 

(11
3)

A 
(0

23
)

A 
(3

11
)

CS
h

S 
(0

12
)

CS
h

CS
h CS

h

CS
h

(f)



0.3%

1.5%

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

95 96 97 98 99

100

1.6%

0.4%

-0.01

0.00

0.01

0.02

0.03

0.04

97 98 99

100

101

Weight (%)

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

94 96 98

100

102

0.3%
1.5%

0.8%

2.6%

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

96 97 98 99

100
Site 1

0.6%

2.2%

-0.01

0.00

0.01

0.02

0.03

0.04

0.05

96 97 98 99

100

101
Site 2

0.7%

2.1%

-0.02

0.00

0.02

0.04

0.06

96 97 98 99

100

101
Site 3

10.6%

33.3%

-0.2

0.0

0.2

0.4

0.6

40 60 80

100

0.0

0.2

0.4

0.6

0.8
12.4%

48.2%

20 40 60 80

100

44.4%

12.4%

-0.2

0.0

0.2

0.4

0.6

20 40 60 80

100

45.1%

-0.2

0.0

0.2

0.4

0.6

0.8

20 40 60 80

100

Tem
perature (°C

)

11.4%

29.1%

0.0

0.1

0.2

0.3

0.4

40 60 80

100

120

14.2%

16.7%

0.00

0.05

0.10

0.15

0.20

60 70 80 90

100
9.3%

-0.1

0.0

0.1

0.2

0.3

50 60 70 80 90

100

20.4%

12.5%

-0.1

0.0

0.1

0.2

0.3

0.4

40 60 80

100
Site 4

27.4%

14.9%

(d)
(f)

(e)

(a)
(c)

(b)

(k)
(m

)
(l)

(n)

(g)
(i)

(h)
(j)

Deriv. Weight (% °C-1)

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600
0

100
300

500
200

400
600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

0
100

300
500

200
400

600

P. pavonicaA. acetabulum V. triqueter B. europaea



2 m
m

50 m
m

10 m
m

2 m
m

50 m
m

10 m
m

Site 1

Site 2

2 m
m

50 m
m

10 m
m

Site 3



2 mm2 mm

Site 2

2 mm2 mm

Site 1

2 mm2 mm

Site 3



0.5 mm

0.5 mm

0.5 mm

0.5 mm

Site 1

Site 2

Site 3

Site 4

Ab
s (

a. 
u.)

 1000   2000   3000   4000  

29
25

28
55

17
36

11
52

14
27

16
40

92
0

10
27

62
1

34
40

81
6

 1000   2000   3000   4000  

Ab
s (

a. 
u.)

29
58

29
22

28
52

17
18 12

60
14

3816
20

80
3

10
2610

92

61
8

34
40

 1000   2000   3000   4000  

Ab
s (

a. 
u.)

29
58

29
22

28
53

17
30

12
60

14
28

16
34

80
3

10
30

11
00

61
5

34
40

13
85

Ab
s (

a. 
u.)

 1000   2000   3000   4000  

29
25

28
55

17
36 11

52
14

2716
38 10

27

62
1

80
8

34
40

50 mm

50 mm

50 mm

50 mm

Site 1

Site 2

Site 3

Site 4

3
2

1

3
2

1

321

3

2

1

3
2
1

 800     1200   1600   2000  

 A
 14

70
  

 A
 85

6   10
56

  
 10

80
  

 10
25

  
 81

0  

3
2

1

 800     1200   1600   2000  

 A
 85

6   10
56

  
 10

80
  

 10
25

  

 81
0  

3
2
1

 800     1200   1600   2000  

 A
 85

6   10
56

  
 10

80
  

 10
25

  

 81
0  

3
2
1

 800     1200   1600   2000  

 A
 14

60  A
 85

6   10
56

  
 10

80
  

 10
25

  

 81
0  

Ab
s (

a. 
u.)

Ab
s (

a. 
u.)

Ab
s (

a. 
u.)

Ab
s (

a. 
u.)

side downside up

Site 1 Site 2 Site 3 Site 4 Site 1 Site 2 Site 3 Site 4

50 mm

50 mm

50 mm

50 mm

Site 1

Site 2

Site 3

Site 4

321

321

32
1

3

2

1

 1000   2000   3000   4000  

3
2
1

 1000   2000   3000   4000  

3
2
1

 16
10

   14
17

  

 85
3   10

32
  

 11
00

  
 11

00
  

 35
30

 34
00

  

 85
3  

 1
48

0 
 

Ab
s (

a. 
u.)

Ab
s (

a. 
u.)

 1000   2000   3000   4000  

3

2
1

 10
32

  

 14
17

   11
00

  

 16
10

  

Ab
s (

a. 
u.)

 1000   2000   3000   4000  
cm-1

3

2
1

 10
32

  

 14
17

  
 11

00
  

 16
10

  

Ab
s (

a. 
u.)

0.5 mm

0.5 mm

0.5 mm

0.5 mm

Site 1

Site 3

Site 2

Site 4

 1000   2000   3000   4000  

Ab
s (

a. 
u.)

 1000   2000   3000   4000  

 1000   2000   3000   4000  

 1000   2000   3000   4000  

Ab
s (

a. 
u.)

Ab
s (

a. 
u.)

Ab
s (

a. 
u.)

29
58

29
22

28
52

17
28 12

60
14

2616
30

80
3

10
32

11
00

61
8

34
40

29
58

29
22

28
52

17
28 12

6014
26

16
30

80
3

10
3211

00

61
8

34
40

29
58

29
22

28
52

17
28 12

60
14

2616
30

80
310
32

11
00

61
8

34
40

29
58

29
22

28
52

17
28 12
6014

26
16

30

80
3

10
3211

00

61
8

34
40

13
85

side downside up

Site 1 Site 2
Site 3

Site 4

Site 1

Site 2 Site 3 Site 4

Acetabularia acetabulum

Padina pavonica

(b)

(a)

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1

cm-1



Table S1 Seaw
ater carbonate chem

istry m
easurem

ents for each study Site off the Island of Panarea. Site 1 is the control and sites 2-4 are the 
elevated pCO

2  Sites. Tem
perature (n = 2580 per site) data w

ere recorded every three hours by data loggers placed in each Site from
 M

ay to 
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ber 2012 and from
 N
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ber 2012 to A

pril 2013. pH
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, n = 107-110 per Site) w
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calculate carbonate system
 param
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IC: dissolved inorganic carbon. 
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27.5 
2573 

2143 
2457 

237 
2332 

5.6 
3.7 

M
edian 

7.8 
18.5 

2450 
715 

2284 
141 

2119 
3.3 

2.2 
5%

ile 
7.3 

14.0 
2390 

403 
2133 

54 
1890 

1.3 
0.8 

  
  

  
  

  
  

  
  

  
  

  

Site 4 
95%

ile 
8.0 

27.0 
2551 

6532 
2613 

199 
2384 

4.2 
2.8 

M
edian 

7.7 
18.5 

2415 
1110 

2326 
96 

2195 
2.2 

1.5 
5%

ile 
6.9 

14.0 
2357 

445 
2150 

20 
1938 

0.5 
0.3 

!



T
able S2. H

ardness (H
IT) and elastic Y

oung’s m
odulus (EIT) values calculated at an indentation depth of 200 nm

, averaged over three different sam
ples of the 

sam
e type. A

t least 20 nanoindentation m
easurem

ents w
ere carried in each sam

ple for each region. In Balanophyllia europaea, the m
easurem

ents w
ere carried 

out at three points along the aboral – oral direction (aboral, m
iddle, oral). In Verm

etus triqueter, the m
easurem

ents w
ere carried out w

ithin each region defining 
its diverse texture: prism

atic, cross lam
ellar, and spherulitic. The ranges show

n are one standard deviation. 

  
 B. europaea 

 V. triqueter 

 
aboral 

m
iddle 

oral 
prism

atic 
cross lam

ellar 
spherulitic 

Site 1 
H

IT
 (M

Pa) 
5100 ± 500 

5100 ± 500 
5100 ± 500 

4600 ± 400  
4600 ± 400  

4000 ± 350  
 

E
IT

 (G
Pa) 

80 ± 3 
71 ± 3 

60 ± 5 
91 ± 3  

81 ± 2  
74 ± 4  

Site 2 
H

IT
 (M

Pa) 
5200 ± 600 

5200 ± 600 
5200 ± 600 

4700 ± 400 
4700 ± 400 

4000 ± 350 
 

E
IT

 (G
Pa) 

71 ± 3 
61 ± 4 

44 ± 6 
89 ± 3 

80 ± 3 
73 ± 4 

Site 3 
H

IT
 (M

Pa) 
5000 ± 500 

5000 ± 500 
5000 ± 500 

- 
4300 ± 400 

4000 ± 350 
  

E
IT

 (G
Pa) 

70 ± 3 
63 ± 3 

49 ± 5 
- 

80 ± 2 
73 ± 4 

!



Table S3 Correlation analysis between % cover of Balanophyllia europaea, Vermetus triqueter, 
Padina pavonica and Lobophora variegata and pH at four Sites along a natural pCO2 gradient. 
Percentage cover of Acetabularia acetabulum was homogeneous among Sites. 
 

Species n rho rs
2 

B. europaea 110 0.588*** 0.346 
V. triqueter 139 0.626*** 0.392 
P. pavonica 105 0.434*** 0.188 
L. variegata 53 0.858*** 0.736 

n, number of quadrats; rho, Spearman’s correlation coefficient, rs
2, Spearman’s determination 

coefficient; *** p < 0.001. 
!
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Abstract 

Global environmental changes, including ocean acidification, have been identified as a major 

threat to scleractinian corals. In particular, the potential effects of a lowering pH on tropical 

coral reefs have received special attention. Only a few studies have focused on testing the 

effects of ocean acidification in corals from the Mediterranean Sea, despite the fact that this 

basin is especially sensitive to increasing atmospheric CO2. In this context, we investigated 

the response to ocean acidification of Balanophyllia europaea, a scleractinian zooxanthellate 

coral endemic to the Mediterranean Sea. We analyzed for the first time with time-domain 

nuclear magnetic resonance (TD-NMR) the porosity and pore-space structure of B. europaea 

specimens collected along a natural CO2 gradient. Off the Island of Panarea (Southern Italy), 

an underwater extinct volcanic crater generates the gradient through emissions of carbon 

dioxide from the sea floor, at ambient seawater temperatures, which naturally lowers the pH 

of the surrounding seawater. These areas of acidified seawater provide natural laboratories in 

which to study the long-term biological response to rising CO2 levels. The NMR results 

indicate that the increase of CO2 has effects on the coral skeleton. The major effect is the 

increase in porosity with increasing CO2 accompanied by an increase in macroporosity, 

meaning an increase of the fraction of the largest pores in the pore-space. In our natural 

model of OA, the increased values of porosity, and macroporosity with CO2 observed in B. 

europaea predict that lowered pH could significantly reduce the resistance of this 

zooxanthellate species to mechanical stresses, which might have serious consequences for its 

survivorship in the envisaged acidified seawater of the next decades. 
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Introduction 

Surface ocean CO2 partial pressure (pCO2) is expected to rise in proportion with the 

atmospheric CO2 increase due to the oceanic uptake of anthropogenic CO2 (Sabine et al. 

2004). When CO2 is absorbed by seawater, chemical reactions occur that lower seawater pH, 

carbonate ion (CO3
2-) concentration, and saturation states of the biologically important 

calcium carbonate (CaCO3) minerals calcite (Ωcalc) and aragonite (Ωarag), in the process 

commonly referred to as Ocean Acidification (OA; Orr et al. 2005). 

       There is a great concern and debate about coral reefs survival under the envisaged 

scenarios of global climate change (Dove et al. 2013; J.M. Pandolfi et al. 2011; Hoegh-

Guldberg et al. 2007). Coral reefs are not only one of the most biodiverse ecosystems, but 

they are also important for human society and economy (Hoegh-Guldberg et al. 2007), and 

marine organisms are likely to be more sensitive to climate change than their terrestrial 

counterparts (Richardson and Poloczanska 2008). In the marine realm, two of the main forces 

causing significant changes are global warming and OA, both largely driven by the burning 

of fossil fuels since the second industrial revolution that has caused the current dramatic rise 

in atmospheric CO2 partial pressure (Solomon et al. 2007).  

       The importance of understanding effects of OA has recently increased, since global 

warming and OA are coupled, and it has been hypothesized that OA has the potential to 

exacerbate the effects of anthropogenic warming (Six et al. 2013).  

       During preindustrial times the global mean pH at sea surface was 8.2. Since then, this 

value has decreased already by 0.1 units, and at the current rate of CO2 uptake, the average 

surface ocean pH will likely drop to 7.8 by the end of 2100 (Solomon et al. 2007). Although 

OA acts at a global scale, its impact varies locally. In the case of the Mediterranean Sea, a 

recent study estimated a pH decrease of up to 0.14 units since the pre-industrial era (Touratier 

and Goyet 2011), larger than the global averaged surface ocean pH decrease of 0.1 pH units 

(Orr et al. 2005), making it one of the world’s hotspots for OA (Yilmaz et al. 2008; Calvo et 

al. 2011; Ziveri 2012). It is consequently important to understand how anthropogenic CO2 has 

already affected and how it will affect Mediterranean Sea ecosystems and their key species.  

       A study performed along a temperature gradient in the western Italian coast (Caroselli et 

al. 2011) has shown that porosity increases with temperature for the zooxanthellate (i.e. 

symbiotic with unicellular algae named zooxanthellae) coral Balanophyllia europaea (Risso, 

1826), but not for the azooxanthellate coral Leptopsammia pruvoti Lacaze-Duthiers, 1897. 

The increase in porosity for the zooxanthellate coral has been ascribed to the inhibition of the 

photosynthesis at elevated temperatures (Al-Horani 2005; Jokiel and Coles 1990), causing the 
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attenuation of calcification  (Jokiel and Coles 1990), with possible negative consequences 

also on space colonization (Goffredo et al. 2007, 2009). These results have been confirmed 

by a study where the pore-space structure of the coral skeleton was studied by Time-Domain 

Nuclear Magnetic Resonance (TD-NMR) (Fantazzini et al. 2013). It has been shown that the 

increase in porosity with temperature was largely due to an increase of the larger pores in the 

pore-space. The negative correlations between temperature and various biological parameters 

generate concern for the future of the Mediterranean endemic B. europaea, with respect to 

future global warming scenarios (Goffredo et al. 2007, 2008, 2009; Caroselli et al. 2011). 

       In a study (Goffredo et al. submitted), different species were collected in an area close to 

Panarea Island, where hydrothermally stable CO2 emissions generate a pH gradient that can 

be considered as a natural model for the study of ocean acidification effects on benthic biota 

and ecosystems in their natural setting (Fig.1). The study was conducted to relate the control 

over the biomineralization process with the population density. The data indicate a decrease 

in the abundance of B. europaea (Fig.2), without any change of skeletal CaCO3 phase 

composition, atomic order, organic matrix content, aragonite fiber thickness, and hardness. 

Corals were not found at the highest CO2 levels (pH 7.4).  

       In order to understand the effects of CO2-driven acidity on the population density 

decrease of B. europaea, this study is focused on the analysis of the structure of the pore-

space of the skeleton by means of TD-NMR analysis on specimens collected along the pH 

gradient. Not only porosity (pore-volume to sample-volume ratio) but also pore-size 

distribution of mineralized tissues strongly influence the skeletal resistance to natural and 

anthropogenic breakage. TD-NMR and in particular Magnetic Resonance Relaxometry of 1H 

nuclei of water saturating the pore-space, has the advantage, compared to other methods, to 

give information on porosity and pore-size distribution in a non-sample destructive and non-

sample invasive procedure, thus allowing coral skeletons to be further analyzed with other 

techniques and/or for other scopes. Moreover, the method is particularly useful in the 

presence of very wide pore-size distributions, as in the case of coral skeletons, where ranges 

from 10 nanometers to tens of micrometers are expected (Laine et al. 2008; Fantazzini et al. 

2013).   

     The method consists in the acquisition of the transverse relaxation curve of the 1H nuclei 

of water molecules saturating the cleaned skeletons of the corals. These curves are multi-

exponential so that the inversion from experimental relaxation curves gives the T2 distribution 

of relaxation times (see Fig. 3). If the diffusion is fast enough t maintain the magnetization 

uniform inside the pore, condition usually satisfied, these distributions correspond to pore-
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size distributions. The area below each distribution is proportional to the total NMR signals 

and therefore is proportional to the volume of water saturating the pore-space volume (VP). If 

the slope of the distribution shows a strong increase at a certain T2 value, this can be chosen 

as the point (called “cut-off”) of separation between smaller (shorter T2)  and larger (longer 

T2) pores. “NMR microporosity", for short “microporosity" will indicate the fraction in 

percent of VP where the smaller pores are weakly coupled by water diffusion to the large ones 

at the local relaxation time scale. Microporosity is then defined as the fraction of 1H signal 

with T2 smaller than the cut-off, divided by the total 1H signal and is computed as the ratio of 

the area under the distribution for T2 smaller than the cut-off, to the total area under the 

distribution. For clarity, in this paper the complement to 100% of the microporosity will be 

considered and called “macroporosity”. In a recent paper (Fantazzini et al. 2013) it has been 

shown that  in coral skeletons saturated with water a sharp boundary between two classes of 

pores does exist. On the basis of the comparison with mercury intrusion porosimetry, 

microporosity should correspond to pore sizes in the range from ∼10 nm to ∼10-20 µm. 

Macroporosity should correspond to a major fraction of pores, with sizes in the range 20-100 

µm. 

 
Results and Discussion 

Seawater carbonate chemistry at the collection sites. Table 1 shows the values measured for 

pH, temperature (T), and total alkalinity (TA). From these data, along with the salinity 

(37‰), the chemical sea water data for the four sites (Fig.1) were computed. Only pH and the 

carbonate chemistry parameters show significant differences among sites (p<0.001). It is 

worth to note the decrease of the aragonite saturation from site 1 to site 4 (Table 1, Fig. 1), 

and to note the absence of B. europaea specimens are in the latter (Goffredo et al. submitted).  

NMR Relaxation time T2 distributions. Figure 3 shows the T2 distributions for three specimens 

with comparable mass of B. europaea, one for each site. All the distributions show a main 

peak at long relaxation times and a long tail, of smaller amplitude, about three orders of 

magnitude wide. At T2 ≅ 600 ms there is the cut-off that divides microporosity from 

macroporosity. The microporosity is about three orders of magnitude wide, and corresponds 

to about three orders of magnitude of pore-sizes from less than 10 nm to 10 µm (Fantazzini et 

al. 2013). The sharp boundary between the two classes suggests that they are not well 

connected by water diffusion during a local relaxation time. Moreover, the long tail indicates 

that the small pores are poorly connected with the other small pores and with the larger ones 
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in the major class. The two classes of pores are easily distinguished in the distributions for all 

the specimens, so that macroporosity and cut-off were determined for each distribution 

(Table 2).  

Skeleton structure parameters in the three sites. Table 2 shows the means and standard errors 

in the three sites at different pCO2 for the mass, pore-volume, total volume, porosity, bulk-

density, micro-density, cut-off and macroporosity. The micro-density does not show 

significant differences among the three sites, and the observed values are consistent with the 

known value (Caroselli et al. 2011). Only porosity (p < 0.001), bulk density and 

macroporosity (p < 0.01) show significant differences among sites.  

       Table 3 shows the correlation matrix among the variables of interest. The measured 

values of pH correlate with the distances from the vent at high significant level (p < 0.001), 

showing the correctness of the choice of this place as a good natural laboratory to mimic the 

ocean acidification conditions. The mass is not-surprisingly highly correlated with volume 

and pore-volume. The larger the mass, the larger the volume and pore-volume. As expected, 

mass, pore-volume and total volume are correlated, as each one of the parameters is 

mathematically bound to the others. Likewise, it is expected that mass does not correlates 

with porosity: as the mass increases, also pore-volume and total volume increase in such a 

way that porosity may be unaffected. It is worth noticing that mass does not correlate with 

micro-density. Surprisingly, mass does not correlate significantly with macroporosity, in 

contrast with a previous result (Fantazzini et al. 2013), where a significant increase of 

macroporosity (decrease of microporosity) was observed with increasing mass. The 

explanation could be the different behavior of macroporosity in the three sites, and/or, as 

Table 2 shows, the narrower range of masses used in this recearch. Porosity and 

macroporosity are positively correlated with each other (p < 0.001), and both negatively 

correlated with pH (p < 0.01; Fig. 4). 

 In order to better analyze these correlations, Principal Component analysis was 

performed on porosity and macroporosity. Only two orthogonal factors, PC1 and PC2, were 

found. PC1 explains 75% of the overall variance and PC2 the remaining part (25%). In order 

to understand the influence of pH on porosity and macroporosity, the multivariate analysis 

(Eq.1) was performed assuming as independent variables xj, time by time the variables pH, 

mass and the variable obtained as the residuals of the regression between macroporosity and 

pH (to take into account the dependence of porosity on the variance of macroporosity not 

explained by pH), to predict the dependent variables, yj, porosity, macroporosity, PC1 and 

PC2 (Table 4). Models (1), (2) and (3) show that the mass does not affect the porosity, while 
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the pH has effectively a strong effect on the porosity. The same is obtained for macroporosity 

(models 4, 5, 6), for which the most important parameter is pH. Model (7) shows that the part 

of macroporosity non related to pH, is related to porosity. Model (8) shows that PC1 is 

dominated by pH (p<0.01), while PC2 (model 9) is not related to pH. 

      In synthesis, most of the variance of porosity and macroporosity (driven by PC1) is 

related to pH. 

       Figure 4 shows the porosity and macroporosity of the specimens against the pH. The 

smaller the pH, the higher the porosity and the macroporosity. Quantile regression analyses 

were performed by assuming pH as independent variable and porosity or macroporosity as 

dependent variables. The straight lines in Fig. 4 are the best fit linear regressions for the total 

samples (OLS blue line) and for the 25%, 50% and 75% quantiles.porosity (75th quantile). All 

the regressions (except for the 75% line for macroporosity) show a significance of p<0.05 or 

p<0.01 level. The higher the porosity, the stronger the effect of the pH. The same is obtained 

for macroporosity: the higher the macroporosity, the higher is the effect of pH. Porosity and 

macroporosity increase more with pH for specimens with higher porosity and macroporosity.  

 
Conclusion 

TD-NMR of the water saturating the cleaned coral skeletons is a quick, non-sample invasive, 

non-sample destructive method that does not use ionizing radiation, that has been applied for 

the first time in this research to study the changes of the pore-space architecture of 

scleractinian corals along a natural CO2-driven pH gradient. Even if this method cannot 

spatially locate the heterogeneity of the pore space, the existence of a clear cut-off in all the 

distributions (a very high slope at a certain point of the distribution) means that the smallest 

pores are not well connected by diffusion at the NMR time scale (corresponding to the local 

value of T2) to the largest ones. In previous studies (Caroselli et al. 2011; Fantazzini et al. 

2013) it has been shown that porosity depends on temperature for the zooxanthellate B. 

europaea, but not for the azooxanthellate L. pruvoti. It has been hypothesized that the 

increase in porosity with temperature in the zooxanthellate species could depend on an 

inhibition of the photosynthesis at elevated temperatures (Al-Horani 2005; Jokiel 1990) 

causing an attenuation of calcification (Al-Horani 2005) leading to possible negative 

consequences also on growth, population dynamics, and space colonization (Goffredo et al. 

2007, 2008, 2009; Caroselli et al. 2011). Increased CO2 could have effects on the skeleton 

and its pore-space structure. The NMR results indicate that the decrease of pH has effects on 
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the coral skeleton. The major effect is the increase in porosity with increasing CO2 

accompanied by an increase in macroporosity, meaning an increase of the fraction of the 

largest pores in the pore-space. Moreover, the larger the porosity (and the larger the 

macroporosity), the stronger are the dependences on the pH and on the distance from the 

vent. Our data show that pH, related with high statistical significance to the Principal 

component PC1 (p<0.01), that in turn explain 75% of the variance between porosity and 

macroporosity, is the most important parameter leading to the increased porosity and 

macroporosity, but pH is not sufficient to account for the variance in the data. That means 

that our model is a good model of OA, because the biological and environmental variability 

determines only the 25% of the total variance. In our natural model of OA, the increased 

values of porosity and macroporosity with pCO2 observed in B. europaea predict that 

increasing acidity could significantly reduce the resistance of this zooxanthellate species to 

mechanical stresses, which might have serious consequences for its survivorship in the 

envisaged acidified seawater of the next decades (Madin et al. 2012). 

 
Materials and Methods 
The corals. Balanophyllia europaea (Fig.2) is a solitary zooxanthellate scleractinian coral 

which is endemic to the Mediterranean. Its distribution is limited to depths of 0-50 m because 

of its symbiosis with zooxanthellae, which require light (Zibrowius 1980). Specimens of B. 

europaea (44 corallites) were randomly collected at three sites along the pH gradient (Fig. 

1a,b,c,d) between November 2010 and May 2013. No polyps of B. europaea were present at 

the highest CO2 levels (site 4). Coral tissue was totally removed and corals cleaned as 

described in (Caroselli et al. 2011). The skeletons were weighed to determine the mass (m). 

The pore volume (VP) and the sample volume (VT) were determined by hydrostatic 

measurements, from which porosity (p) and micro-density (dr; sensu Bucher et al. 1998) were 

computed. The specimens were then saturated with water for NMR measurements.  

Study site. The area is close to Panarea (Italy), an island belonging to the Aeolian 

Archipelago in the southern Tyrrhenian Sea in the Mediterranean (Fig. 1a), part of an active 

volcanic system. Close to Panarea Island there is an area delimited by the islets of Dattilo, 

Bottaro, Lisca Nera and Lisca Bianca, characterized by a widespread presence of gas vents 

(Fig. 1b). In the main vent, a crater 20 m x 14 m wide and ~10 m deep generates a sustained 

column of bubbles from the seabed to the sea surface. In this crater the hydrothermally stable 

CO2 emissions generates a pH gradient (Fig. 1c) which extends for ~34 m from the center of 
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the crater to its periphery. Depth along the CO2 gradient goes from 11.6 m at the crater to 9.2 

m at the control site ~34 m distant (Fig. 1d). Measured pH was converted to the total scale 

(pHTS) using CO2SYS software. The distances (d) and the corresponding mean pH values 

are: site 1 (S1) control, d = 34 m, pHTS = 8.07; site 2 (S2), d = 13 m, pHTS= 7.87; site 3 (S3), 

d = 9 m, pHTS = 7.74 and site 4 (S4), d =3 m, pHTS = 7.40 (Fig. 1c). Temperature (T), salinity, 

total alkalinity (TA) and pH (NBS) were measured on different occasions from July 2010 to 

May 2013, with a multi-parametric probe (600R, YSI Incorporated, USA) powered from a 

small boat and operated by SCUBA divers. Additional temperature data was recorded every 

three hours by sensors (Thermochron iButton, DS1921G, Maxim Integrated Products, USA) 

placed in each site. Bottom water samples for determination of TA were collected at each site 

using sterile 120 ml syringes (two replicates for each site). After each dive upon return to the 

boat, the syringe samples were immediately transferred in labelled 100 ml amber glass bottles 

and immediately fixed with saturated mercuric chloride (HgCl2) to avoid biological 

alteration, and stored in darkness at 4°C prior to measurement. TA was measured by Gran 

titration, using a 702 SM Titrino (Metrohm AG). Certified reference materials (Batch 121) 

from the Andrew Dickson Laboratory at UC San Diego were used to ascertain the quality of 

results obtained. Mean pH (back-transformed hydrogen ion concentrations) was calculated 

for each site; pH, T , salinity and TA were used to calculate carbonate system parameters 

(Table 1) using CO2SYS software with dissociation constants from Mehrbach et al. (1973) 

refit by Dickson and Millero (1987) and [KSO4] using Dickson (1990). Temperature data (n 

= 2580 per site) was recorded every three hours by data loggers placed in each site from May 

to September 2012 and from November 2012 to April 2013. pH (n = 103-110 per site) and 

salinity (= 37‰, n = 107-110 per site) were measured in July 2010, September 2010, 

November 2010, March 2011, June 2011, July-August 2011, November-December 2011, 

April-May 2012, June 2012 and May 2013. TA (total alkalinity, n = 8 per site) was measured 

in September 2010, November 2010, March 2011, June 2011, July-August 2011, November-

December 2011, April-May 2012 and June 2012. 

TD-NMR measurements. A home-built relaxometer based on a 0.2 T permanent magnet 

operating at 8 MHz was used to detect the signal of 1H nuclei of water saturating the pore-

space of the coral skeletons. The relaxometer is equipped with a coil ≈ 2 cm in diameter in 

order to analyze the entire coral, without the need to break it into small pieces, and a 

Spinmaster console (Stelar, Mede, Pavia, Italy) for automatic pulse sequences transmission 

and data acquisition. The transverse relaxation data were acquired by using the Carr-Purcell-
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Meiboom-Gill (CPMG) sequence (Cowan, 1997) with 200 µs echo time. Relaxation data 

were inverted to T2 distributions by the algorithm UPEN (Uniform-Penalty inversion 

algorithm), implemented in UpenWin software (Borgia et al. 2001; Fantazzini and Brown 

2005; Bortolotti et al, www.unibo.it/Portale/Ricerca/Servisi+Imprese/UpenWin.htm.). 

Statistical Analysis. Statistical analyses (ANOVA, Correlation matrix, Principal 

Components, Multivariate analysis) were performed using Statistical Package STATA 9.0 

(StataCorp LP). To test the significance of the differences among sites parametric and non-

parametric tests were performed. Multivariate analyses were made using Ordinary Least 

Squares (OLS) robust to outliers. The model is described by the function: 

)1(
1
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M

j
ji xbay ε+⋅+= ∑

=  

the index i refers to the n-observations, yi is the value of the dependent variable and εi the 

corresponding error. The dependent variables jy  are porosity and macroporosity. The 

constants a, bj (j=1,M) are the best fit parameters, to be determined by OLS referring to the 

independent variables xj. A quantile analysis 

(https://sites.google.com/site/econometricsacademy/econometrics-models/quantile-

regression) was performed to study the previous relationships for omogeneous groups of the 

dependent variable in the different sites. This analysis allows one to get a more 

comprehensive picture of the effect of the independent variable on the dependent variable as 

it can show different effects of the independent variable in different ranges of the dependent 

variable. 
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Figure captions 

Fig. 1.  Location of the sites in Panarea where corals were collected. (a) The Aeolian 

Archipelago; (b) map showing where the crater is located; (c) the range in pHTS (�� n = 103-

110 per site) and Ωarag (x�n = 96-104 per site) along the  pH gradient; (d) the bathymetric 

profile of the four sites with the the associated mean pHTS and Ωarag  in brackets. 

Fig. 2. A living polyp of B. europaea. 

Fig. 3. T2 relaxation time distributions of 1H NMR signal from cleaned skeletons of three 

specimens of B. europaea, after water saturation of the connected pore-space. The samples 

have about the same mass, but come from the three different sites. The ordinate, labeled 

signal density, is an approximation to (dS)/(d lnT1), where S is the extrapolated signal per 

Neper (factor of e) of relaxation time. Therefore the total NMR signal (SNMR) is represented 

by the area below each T2 distribution. It is proportional to the amount of water saturating the 

pore-space, and therefore to the volume of the connected pore-space itself. The distributions 

were obtained by Inverse Laplace Transform (algorithm UPEN) of the experimental 

relaxation curves displayed in the inset. 

Fig. 4. Scatterplots of the porosity (a) and “macroporosity”  versus the pH values, for all the 

samples. The straight lines are the best fit linear regression from OLS (continue), 25% 

quantile (dashed), 50% (dashed blu) and 75% quantile (lower dashed). 
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Table 1.  Seawater carbonate chemistry measurements for each study site off the Island 
of Panarea  

 
 

 
pH range   
(total scale) 
 

T 
(°C) 

TA 
(µmol kg-1) 

(1)pCO2 
(µatm) 

(1)HCO3
- 

(µmol kg-1) 
(1)CO3

2-  

(µmol kg-1) 
(1)DIC 
(µmol kg-1) 

(1)Ωarag 

Site 1 
S1: d=34 m 
 

8.07 
(8.04-8.10) 

19.2 
(19.0-19.3) 

2482 
(2435-2529) 

423 
(387-460) 

1923 
(1888-1958) 

229 
(215-243) 

2165 
(2144-2187) 

3.4 
(3.2-3.7) 

Site 2 
S2: d=13 m  
 

7.87 
(7.83-7.90) 

19.5 
(19.3-19.7) 

2478 
(2424-2533) 

698 
(638-759) 

2109 
(2079-2140) 

169 
(157-182) 

2301 
(2281-2321) 

2.5 
(2.4-2.7) 

Site 3 
S3: d=9 m 
 

7.74 
(7.68-7.81) 

19.5 
(19.3-19.7) 

2465 
(2416-2513) 

922 
(764-1080) 

2107 
(2078-2136) 

146 
(135-158) 

2283 
(2262-2304) 

2.3 
(2.1-2.4) 

Site 4 
S4: d=7m 

7.40 
(7.33-7.49) 

19.3 
(19.2-19.5) 

2432 
(2377-2486) 

1974  
1604-2344) 

2192 
(2165-2219) 

98 
(87-109) 

2353 
(2327-2380) 

1.4 
(1.3-1.6) 

χ2  183.3*** 0.37 4.00 12.00*** 83.19*** 135.8*** 77.25*** 135.0*** 

 
Site 1 is the control and sites 2- 4 are the elevated CO2 sites. Temperature (T, n = 2580 per 
site), pH    (n = 103-110 per site), total alkalinity (TA, n = 8 per site). Mean pH values were 
calculated after conversion of data to hydrogen ion concentrations. DIC is the dissolved 
inorganic carbon. The symbol d represents the distance from the vent. Values in brackets are 
95% CIs.  The values of pH, T, TA and the value of salinity (37%0, n=107-110 per site) were 
used to calculate the carbonate system parameters ((1), n=96-107 for each site).  
*** p < 0.001 Kruskal-Wallis equality-of-populations rank test. 
 
 
 
Table 2.  Descriptive and test statistics split by site 

 S1: d=34 m 
 pCO2=423 µatm  

 S2: d=13 m  
pCO2=698 µatm 

 S3: d=9 m 
pCO2=922 µatm 

   

 n mean se  n mean se  n mean se  F χ 2 

m (mg) 16 1023 237  16 1227 209  12 1229 250  0.27 1.32 

pore-volume (mm3) 16 171 48  16 260 50  12 245 46  1.02 4.42 

total volume (mm3) 16 546 132  16 708 124  12 689 133  0.49 1.81 

porosity(%) 16 30.0 0.9  16 35.3 1.2  12 36.2 1.7  7.30*** 13.77*** 

micro-density (mg/mm3) 16 2.70 0.02  16 2.73 0.02  12 2.76 0.02  1.86 4.87 

cut-off (ms) 16 558 41  16 645 36  12 613 67  0.96 2.12 

macroporosity (%) 16 73.2 1.7  16 79.3 1.1  12 78.3 2.0  4.46** 6.87** 

               
 
Number of observations (n), means, standard errors and statistical significances of differences 
of the variables mass (m), pore-volume,  total volume (VT), porosity, bulk-density, micro-
density, cut-off,  macroporosity for B. europaea.  The values of F-test and χ2-test suggest 
statistical significance of differences among the three sites only for porosity (p < 0.001), bulk 
density (p < 0.01) and macroporosity (p< 0.01). 
*** p < 0.001,  **p < 0.01 Kruskal-Wallis equality-of-populations rank test. 
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Table 3.  Correlation matrix among the variables of Table 2 
 

d (m) pH m (mg) 
pore-
volume 
(mm3) 

volume 
(mm3) 

Porosity 
% 

 
bulk-
density 
(mg/mm3) 

micro-
density 
(mg/mm3) 

cut-
off 
(ms) 

macro-
porosity 
(%) 

d (m) 1.00          
pH 0.97*** 1.00         
m (mg) -0.11 -0.11 1.00        
pore-volume 
(mm3) -0.21 -0.19 0.94*** 1.00       

total volume 
(mm3) -0.15 -0.13 0.99*** 0.97*** 1.00      

porosity (%) -0.51** -0.5** 0.17 0.44*** 0.27 1.00     
micro-density 
(mg/mm3) -0.26 -0.28 0.28 0.30* 0.28 0.34* 0.03 1.00   

cut-off (ms) -0.19 -0.16 -0.22 -0.19 -0.21 0.06 -0.12 -0.15 1.00  
macroporosity 
(%) -0.41** -0.36** 0.23 0.36* 0.28 0.5*** -0.54*** 0.00 0.07 1.00 

           
 
***p < 0.001, **p < 0.01, *p< 0.05 
 
 
Table 4  Multivariate analysis. OLS robust to outliers (Robust t-statistics in 
parentheses)  

VARIABLES 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 
Porosity 
(%) 

Porosity 
(%) 

Porosity 
(%) 

Macroporosity 
(%) 

Macroporosity 
(%) 

Macroporosity 
(%) 

Porosity 
(%) PC1 PC2 

          
pH -20.04***  -19.54** -17.71*  -16.73* -19.83*** -4.50** -0.69 
 (-3.747)  (-3.535) (-2.305)  (-2.197) (-3.992) (-3.481) (-0.857) 
m (mg)  0.001 0.001  0.002 0.001 0.000   
  (1.266) (0.801)  (1.795) (1.680) (0.374)   
macro-no-pH 
(%)       0.299*   

       (2.427)   
          
Constant 192.05*** 32.38*** 187.2*** 216.8*** 74.83*** 207.47** 190.04*** 35.59** 5.48 
 (4.513) (25.929) (4.236) (3.570) (46.872) (3.444) (4.814) (3.462) (0.861) 
          
Observations 44 44 44 44 44 44 44 44 44 

R2-adj 0.227 0.00511 0.223 0.111 0.0281 0.126 0.319 0.227 -
0.00588 

F-test 14.04*** 1.604 7.345*** 5.311** 3.221 3.779* 5.851*** 12.12*** 0.734 
 
The coefficients in the columns are the parameters a (Constant) and bj of Eq. (1). The 
parameter macro-no-pH, used in the model (7) represents the residuals of the regression 
between macroporosity and pH (to take into account the dependence of porosity on the 
variance of macroporosity not explained by pH). Robust t-statistics in parentheses.  
***p < 0.001, **p<0.01, *p<0.05. 
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Figure 1  
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Figure 2 
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Figure 4 
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Global environmental change, led by the current dramatic rise in sea surface temperature 

(SST) and carbon dioxide partial pressure (pCO2), is expected to have a great impact on 

marine ecosystems. Balanophyllia europaea, which can count on both heterotrophy and 

symbiotic algae for its nourishment, seems to be negatively affected by increasing 

temperatures, while Leptopsammia pruvoti, which is fully heterotrophic, seems to be 

tolerant to higher temperatures. It seems likely that the symbiosis with zooxanthellae 

plays a role in determining the different sensitivities of these two species, as it is 

hypothesized that photosynthesis may be inhibited at high temperatures. Different modes 

of nutrition (mixotrophic/zooxanthellate versus heterotrophic/non-zooxanthellate) and/or 

biomineralization processes may also explain their potentially different responses to 

ocean acidification (OA). Growth of the zooxanthellate B. europaea transplanted along a 

natural CO2 gradient was not affected by pH, perhaps because of increased 

photosynthesis of its symbionts at high CO2, whereas it decreased with decreasing pH in 

the two non-zooxanthellate species L. pruvoti and Astroides calycularis, showing an 

increased sensitivity to enriched CO2 with increasing temperature. Temperature seemed 

to influence also the relationship between mortality rate and pH of these corals, with the 

highest mortalities measured in the warmest periods, in all three species. 

Enhanced CO2 had a negative impact on the abundance of several benthic 

organisms naturally occurring along the CO2 gradient. The coverage of a coral (B. 

europaea), a mollusk (Vermetus triqueter), and two macroalgae (Padina pavonica, 

Lobophora variegate), one of which is a calcifier, significantly declined with increasing 

CO2. The only species that did not decline was the calcifying macroalgae Acetabularia 

acetabulum. The mineralization response to OA seems connected with the organism level 
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of control on biomineralization. Only the species with the weaker control on 

biomineralization were still observed under conditions of lower pH. In this natural model 

of OA, although growth of the transplanted B. europaea specimens was not influenced by 

lowered pH, perhaps because of increased photosynthesis of its symbionts at high CO2, 

increased values of porosity and macroporosity with CO2 were observed in the naturally 

occurring specimens. Increasing acidity could therefore significantly reduce the 

resistance of this zooxanthellate species to mechanical stresses. These findings, added to 

the negative effect of temperature on various biological parameters, generate concern on 

the sensitivity of this zooxanthellate species to the envisaged global climate change 

scenarios. 

 

Research abroad and future perspectives 
 
During the period of research and training that I conducted in Israel at the Mina and 

Everard Goodman Faculty of Life Sciences of the Bar-Ilan University (Ramat Gan), I 

worked under the supervision of Prof. Zvy Dubinsky and Dr Oren Levy on a project in 

collaboration with Prof. Aldo Shemesh at the Weizmann Institute of Science (Rehovot, 

Israel), which aims to determine the relation between coral isotopic composition and 

environmental parameters along the Italian coast. Measurements of δ13C and δ18O were 

performed on skeletons of Mediterranean scleractinian corals and on seawater samples 

collected along a latitudinal gradient from 44°20'N to 36°45'N, in seven different sites 

(Genova, Calafuria, Elba Island, Palinuro, Scilla, Panarea Island and Pantelleria Island). 

The species analyzed were: Balanophyllia europaea (solitary, zooxanthellate), 

Leptopsammia pruvoti (solitary, non-zooxanthellate), Caryophyllia inornata (solitary, 
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non-zooxanthellate), Astroides calycularis (colonial, non-zooxanthellate), and Cladocora 

caespitosa (colonial, zooxanthellate). The isotopic analysis of the corals and the 

surrounding waters was performed to understand the relation between the carbon isotopes 

of the corals and the isotopic composition of the dissolved inorganic carbon in seawater, 

to better comprehend the different mechanisms affecting the coral’s organic carbon 

uptake. The two metabolic processes that can alter the isotopic composition of the carbon 

pool available for skeletogenesis in corals are photosynthesis and heterotrophy. Thus, the 

next step will be to verify the isotopic signature of plankton in the 7 study sites, to shed 

light on the observed skeletal isotopic composition of the 5 species. Data analysis is 

currently underway and effort will be made to publish the results in the coming months.  

 

 

 

!



!

! 138!

Acknowledgements..
!
The research leading to these results was funded by the European Research Council 

under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC 

grant agreement n° 249930 – CoralWarm: Corals and global warming: the Mediterranean 

versus the Red Sea. I wish to thank the Marine Science Group and Scientific Diving 

School, that supplied scientific, technical, and logistical support. A special thanks goes to 

all my team, for the valuable insights gained through discussion and advice, and to 

everyone that was involved in the strenuous fieldwork. Thank you Vale, because if you 

hadn’t been there in more than one occasion, I’m not so sure I would have made it 

through this incredible but tough journey. Thank you to my supervisor Dr Stefano 

Goffredo, for his guidance and support, for pushing me to always do better with his 

“Coraggio!” and to always ask myself “why” of things. I also acknowledge Prof. Zvy 

Dubinsky and Dr Oren Levy from Bar-Ilan University for watching over and supervising 

me during my one-year stay in Israel. Thank you also to all the lab members of the “Oren 

lab” and “Zvy lab” whose help was fundamental inside and outside the lab. 

Last but definitely not least… 

Thank you to my family and friends, for bearing with me during tough times and for 

encouraging me to see the light at the end of the tunnel when everything seemed dark. 

Thank you to my mother, for her patience, for accepting my frequent mood shifts and for 

being one of my biggest supporters. Thank you to my father, for his wisdom and 

knowledge, for always supporting me, no matter what, for being as happy or even more 

than me when I succeeded, and for encouraging me not to give up when I didn’t. I 

dedicate this thesis to you.  


