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Abstract

The aim of the thesis is to propose a Bayesian estimation through Markov chain

Monte Carlo of multidimensional item response theory models for graded re-

sponses with complex structures and correlated traits. In particular, this work

focuses on the multiunidimensional and the additive underlying latent structures,

considering that the �rst one is widely used and represents a classical approach

in multidimensional item response analysis, while the second one is able to re�ect

the complexity of real interactions between items and respondents.

A simulation study is conducted to evaluate the parameter recovery for the

proposed models under di�erent conditions (sample size, test and subtest length,

number of response categories, and correlation structure). The results show that

the parameter recovery is particularly sensitive to the sample size, due to the

model complexity and the high number of parameters to be estimated. For a suf-

�ciently large sample size the parameters of the multiunidimensional and additive

graded response models are well reproduced. The results are also a�ected by the

trade-o� between the number of items constituting the test and the number of

item categories.

An application of the proposed models on response data collected to investi-

gate Romagna and San Marino residents' perceptions and attitudes towards the

tourism industry is also presented.
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Preface

Item response theory (IRT) falls within the wide context of the measurement of

theoretical latent constructs, which are not observable by de�nition and can only

be determined indirectly, through the use of other manifest variables.

IRT is extensively used in educational and psychological �elds, where usu-

ally a test consisting of a set of items is submitted to a sample of examinees to

infer the individuals' unobservable characteristics (abilities). To this aim, IRT

(Hambleton and Swaminathan, 1985; van der Linden and Hambleton, 1997) rep-

resents the main methodological approach that allows to estimate both the item

psychometric properties and the subjects' scores. Moreover, IRT shows a great

potential in applications within behavioral sciences.

In the past, unidimensionality, i.e. the presence of a unique construct underly-

ing the response process, was one of the most common assumption. Nevertheless,

real data often suggest a multidimensional structure and, with the aim to infer

such distinct latent traits, tests should include di�erent subtests.

For this reason, models that allow the presence of more than one latent trait

have been recently developed. The so called multidimensional IRT (MIRT) mod-

els (see e.g., Reckase, 2009) are able to describe the complexity of the data, taking

into account correlated abilities and also a possible hierarchical structure of la-

tent traits. This is the reason why MIRT models perform better in �tting the

subtests if compared to separate unidimensional models.

Several approaches are possible within the multidimensional perspective: ex-

plorative models, where all latent traits are allowed to a�ect all the item re-

sponses, or con�rmatory models, where all the relations between observed and

latent variables need to be speci�ed in advance. By using a con�rmatory ap-

proach, it is also possible to assume the simultaneous presence of general and

speci�c latent traits underlying the response process (Sheng and Wikle, 2008).

A further distinction can be made between non compensatory and compensatory

models, where a lack in one trait naturally compensates for the other (Reckase,

2009).

In several applications, data are characterized by hierarchical structures and

the introduction of di�erent levels for latent dimensions permits to specify more



vi

general models. Speci�cally, a proper hierarchy can be assumed to underlie the

response process, where the highest level is associated with the overall trait,

while dimensions representing more speci�c traits are located on lower level of

the hierarchy.

High-order and additive models are two approaches that allow to include

a general trait in addition to multiple speci�c traits. Particularly, in additive

models, we can analyze the strength of the relationships between the speci�c

latent traits and the associated test items directly as well as the strength of the

relationships between the general latent trait and all the test items. This feature

is particularly appealing for complex applications.

A �nal distinction can be made according to the nature of the observable

variables. Usually, in an educational testing framework we deal with binary items

(i.e. correct/incorrect) while in psychological and behavioral researches items are

typically ordinal, representing judgments or agreements. Di�erent models for

ordinal data have been developed according to the number of item parameters

(e.g. partial credit models, graded response models) in a unidimensional context.

On the contrary, within a multidimensional context, models for binary data are

usually applied and, often, the available ordinal data are dichotomized, with a

consequent loss of information. Models for ordinal data remain uncommon and

were developed only for uncorrelated latent traits.

For these reasons, in this work we propose an extension of the unidimensional

graded response model (Samejima, 1969) for ordinal data to multidimensional

structures with correlated traits, namely the multiunidimensional and the ad-

ditive structures. A further innovative and important aspect of our proposal

deals with the estimation procedure, in fact, we propose a Markov chain Monte

Carlo (MCMC) procedure for parameter estimation which we implement using

the open-source software OpenBUGS.

Structure of the thesis

In the �rst chapter some fundamental notions about IRT are introduced. A �rst

section illustrates the basic concepts and de�nitions characterizing the IRT ap-

proach, with a brief description of unidimensional models for binary data. A
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second section focuses on unidimensional models for ordinal data and, in partic-

ular, on the Samejima's model for graded responses. A �nal section explains the

reasons that have driven several developments of IRT towards its multidimen-

sional generalization.

The second chapter introduces the MIRT approach. In the �rst section the

main features of these models are described, while in the second section a brief

review on MIRT models for both binary and ordinal response is reported, together

with a brief description of their most common estimation methods.

In the third chapter the main principles characterizing the Bayesian estimation

in MIRT context are introduced. The �rst section describes the general Bayesian

framework, while the second section presents the available Bayesian estimation

methods based on MCMC techniques. The third section brie�y introduces the

functioning of OpenBUGS, which permits to easily run the most common MCMC

algorithm, i.e. the Gibbs sampler.

In the fourth chapter two MIRT models for ordinal data with a complex

structure are introduced in terms of speci�cation, interpretation and estimation.

The focus is on two MIRT models for graded responses and correlated latent

traits: the multiunidimensional model, where items in each subtest characterize

a single ability, and the additive model, where each item measures a general and

a speci�c ability directly.

The �fth chapter describes a simulation study that has been conducted in or-

der to evaluate the parameter recovery of the estimation method for the proposed

models. The simulation study design is illustrated in the �rst section, while the

second and the third sections report the results of the simulations performed for

the multiunidimensional and the additive models for ordinal data, respectively.

In the sixth chapter an application of the proposed models to real data is

presented. The application focuses on the investigation of residents' perceptions

and attitudes towards the tourism industry.

In the seventh chapter conclusions and further research on applicative and

methodological aspects are discussed.
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Chapter 1

An introduction to item response

theory (IRT)

In this chapter we introduce the fundamental notions concerning item response

theory (IRT). A brief description of IRT models for binary and ordinal data is

carried out. Particular attention is given to the unidimensional Samejima's model

for graded responses, which represents the starting point towards a generalization

into a multidimensional context.

1.1 Basic concepts and de�nitions

IRT falls within the wide context of the measurement of theoretical latent con-

structs. A latent construct is not observable by de�nition and it can only be

determined indirectly, through the use of other manifest variables. Examples of

latent constructs are the mathematics achievements of students, the satisfaction

of a costumer about a product or service, the psychological status and all the

situations that may refer to the concept of perception, e.g. depression and happi-

ness. Another relevant �eld of application of IRT methods is represented by the

behavioral sciences, where the manifest variables, that are often ordinal, express

a judge or an agreement to the phenomenon of interest.

If we consider the educational and psychological �elds, where IRT is exten-

sively used, we can say that IRT has the �nal aim to measure abilities and atti-

tudes of individuals through the responses on a number of test items. In other

1



2 1. An introduction to item response theory (IRT)

words, by using IRT models, we wish to determine the position of the individual

along some latent dimensions, representing the unobservable characteristics of

the individuals.

In IRT literature the latent traits are commonly called abilities, for the in-

tensive use of IRT methods in the educational �eld, where the constructs are

represented by the students' latent abilities. The analysis of the relation between

latent continuous variables and observed categorical variables is known in the

statistical literature as latent trait analysis, that is the reason why in this thesis

the words �abilities�, �latent abilities� and �latent traits� are all referred to the

same concept.

The use of IRT as a measurement theory is fairly recent: in the pioneer work

of Lord and Novick (1968) a �rst formalization of the theory is expressed, on the

basis of ideas and principles that raised in the thirties and forties. Improvements

of IRT were due to the necessity to overtake the lacks of the classical test the-

ory (CTT), for instance the sensitivity to sample conditions and the fact that in

CTT individual abilities and test characteristics can be interpreted only in the

same context (Hambleton et al., 1991). Moreover, IRT focuses on item rather

than on individual score, while in the CTT the evaluation of test properties and

item characteristics are not included. On the other side, IRT permits to evaluate

individual ability and to describe the performances of the items on the test si-

multaneously. For these reasons, IRT seemed to be an alternative and promising

method to substitute CTT in theoretical and application �elds, showing a wide

and e�ective framework.

1.1.1 The concept of model in IRT

In IRT a model is de�ned by a mathematical function used to describe the con-

ditional probability of a response given the latent ability, for an item with cat-

egorical responses (Thissen and Steinberg, 1986). The mathematical function

expresses how an examinee with a high position on a latent trait is likely to pro-

vide a di�erent response to an examinee with a low position on the trait (Ostini

and Nering, 2006). The parametric model describes the relationship between the

"observable", i.e. the examinee's performance in the test, and the "unobserv-

able", the latent ability.
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In general, di�erent models can be speci�ed depending on:

• The structure of the data: binary or polytomous (nominal or ordinal) re-

sponses;

• The number of latent dimensions: unidimensional or multidimensional mod-

els;

• The distribution functions used to link responses and ability(ies);

• The number of item parameters introduced in the model.

Concerning the �rst point, IRT permits to specify di�erent models depending

on the kind of items we are dealing with, i.e. items with two response categories

or items with more than two response categories (that, in turn, can be odered or

not). The second point is a crucial choice in the model speci�cation procedure:

when only one ability a�ects the responses we are assuming unidimensionality,

while when we need two or more latent traits to describe the correlation among the

responses we are assuming multidimensionality. Moreover, the model depends on

the probability distribution used to describe the relationship between the response

and the examinee's ability(ies) and the number of parameters describing the item

characteristics introduced. The most common probability models used are the

normal distribution function (normal ogive models) and the logistic distribution

function (logit models). Finally, a distinction can be made with reference to the

number of item parameters, one, two or three, introduced in the model.

1.1.2 IRT unidimensional models for binary data

In order to illustrate the basic concepts and assumptions of IRT and to introduce

the notation, we start from the simplest models: the unidimensional models for

dichotomous responses (i.e. correct and incorrect). In this context there are three

fundamental assumptions.

The �rst assumption states that only one latent ability a�ects the item re-

sponses (unidimensionality assumption).

The second assumption states that a change in the probability of a correct

response, due to a change in the examinee latent ability, is completely described
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by the item characteristic curve (ICC). Thus, the ICC describes how the prob-

ability of a response to an item changes relative to a change in the latent trait.

As illustrated before, di�erent distribution functions used to link responses and

ability, i.e. di�erent mathematical forms of the ICC, lead to di�erent IRT mod-

els. In any case the probability of a correct response is expressed as a function

of person and item parameters.

The third assumption is the so called local independence assumption: re-

sponses to a pair of items are statistically independent given the underlying la-

tent ability. Local independence holds when the assumption of unidimensionality

is true. Let consider a random vector of p item responses for the i-th sub-

ject (i = 1, . . . , n), denoted by Yi, and the corresponding observed responses,

yi = (yi1, . . . , yip). θi is the ability of the examinee i. The assumption of local

independence can be stated as:

P (yi|θi) = P (yi1|θi)P (yi2|θi) . . . P (yip|θi) =

p∏
j=1

P (yij|θi) .

When local independence holds, there is one latent variable underlying the

responses and, conditionally to this latent variable, responses are assumed to be

independent.

The unidimensional IRT model for binary data expresses the probability πij

of a correct response by the subject i to the item j as a function of the predictor

ηij, which depends on θi and on ξj, the vector of parameters characterizing item

j, for j = 1, . . . , p:

ηij = f(θi, ξj) . (1.1)

The so called probit or normal ogive model is obtained when a normal distribution

is used (1.2), whereas when we use the logistic distribution we get the logit model

(1.3)1:

1Normal ogive models and logistic models have di�erent ICCs for equivalent set of item
parameters values. It can be proved (Haley, 1952; Birnbaum, 1968) that the two formulations
are equivalent in terms of predicted probability through the introduction of a scaling constant
1.702 into the logistic model, in order to balance for di�erences in ICCs. When this constant
is introduced in the model, the predicted probabilities di�er by less than 0.01 for each level of
ability (Haley, 1952): | Φ(ηij)− exp(1.702 ηij)/[1 + exp(1.702 ηij)] | < 0.01.



1.2 IRT unidimensional models for ordinal data 5

πij = Φ(ηij)⇒ Φ−1(πij) = ηj (1.2)

πij =
exp(ηij)

1 + exp(ηij)
⇒ logit(πij) = ηij , (1.3)

where Φ is the standard normal cumulative distribution function. Di�erent unidi-

mensional models can then be obtained by introducing a di�erent number of item

parameters ξj describing the item characteristics. The simplest case has only one

item parameter ξj = {βj}, and βj is called di�culty parameter. An example of

one-parameter logistic model is the Rasch model (Rasch, 1960) and if we con-

sider a logarithmic transformations of the scale of person and item parameters

(Fischer, 1995), the predictor becomes ηij = θi − βj.
If ξj = {αj, βj} a discrimination parameter αj is added to the model and

we are in the case of two-parameter models. The predictor (1.1) becomes ηij =

αjθi − βj: model (1.2) becomes the two-parameter normal ogive model (Lord,

1952) while model (1.3) becomes the two-parameter logistic model (Birnbaum,

1968).

A further extension can �nally be done by introducing a guessing parameter

γj for each item, leading to three-parameter models where ξj = {αj, βj γj} (Lord,
1980). See Reckase (2009) for an exhaustive description of such models.

With respect to the ICC, the parameters αj, βj and γj represent the slope,

the location and the lower asymptote, respectively.

1.2 IRT unidimensional models for ordinal data

Models brie�y presented above are all referred to dichotomous responses, never-

theless items with multiple response options exist and their use is quite common

in behavioral sciences. IRT models for polytomous items operate in a di�erent

way from binary models. In the latter case the knowledge of the characteristics

of a response determines also the characteristics of the other complementary re-

sponse, while for polytomous items this feature does not hold anymore and each

category function must be modeled separately (Samejima, 1996). In Figure 1.1

the ICC for a binary item is reported, while Figure 1.2 shows di�erent response
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functions for an item with �ve categories.

Figure 1.1. Item characteristic curve for a binary item

Figure 1.2. Item response functions for an item with �ve categories

From Figure 1.2 we can see how, for ordered items, the category response

functions are not all monotonic: only the curves related to the �rst and the

last categories are, respectively, monotonically decreasing and increasing. The

presence of non-monotonic functions raises some complications: these functions

cannot be described only in terms of discrimination and di�culty parameter, as in

the binary case. The choice of the proper mathematical form and the estimation
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of parameters for such unimodal functions is a relevant issue. For ordered polyto-

mous items this problem has been solved by treating polytomous items basically

as `concatenated dichotomous' items (Samejima, 1969, 1996): dichotomizations

of item response data are combined in order to get suitable response functions

for each item category.

As we will illustrate more in detail later, several models for ordinal data exist

as result of extensions of the models for binary data. The simplest model for

ordinal items is the partial credit model (Masters, 1982), which is an extension of

the Rash model for binary items, i.e. with one item parameter. Despite its wide

use, it focuses on the scoring of the individuals and its restrictive assumptions

make it inadequate for modeling purposes, especially in complex contests. In this

work we focus on the Samejima's graded response model, which is the general-

ization of the two-parameter IRT model for binary data. This choice has been

lead by the consideration that models that include also the guessing parameter,

even if they are appropriate educational �eld, do not suit well in the context of

behavioral science, where individuals typically express opinions.

1.2.1 Samejima's unidimensional graded response model

The graded response model for ordinal data was developed by Samejima in 1969.

Examples of graded responses are Lykert-type scales (�strongly-disagree�, �dis-

agree�, �neutral�, �agree�, and �strongly agree�) and responses ordered on the

basis of a range of scores.

Let consider a set of p ordinal items, Y1, . . . , Yj, . . . , Yp, where each item has

Kj categories, indexed by k. In the parametrization of the model we consider

that the lowest score on item j is 1, while the highest score is Kj and each item is

characterized byKj−1 thresholds or boundaries κj1, . . . , κj,Kj−1. The probability

of achieving k or higher categories is assumed to increase monotonically with

a growth in the latent ability (Samejima, 1996; Reckase, 2009), therefore the

thresholds must satisfy the so called order constraint: κj1 < · · · < κj,Kj−1.

Concerning the dichotomization procedure mentioned above, Samejima's (1969)

graded model is based on the probability that an item response will be observed

in category k or higher : the probability πijk that the i-th subject will select

the k-th category on item j is equal to the probability of answering above the
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lower boundary for the category (κk−1) minus the probability of answering above

the category's upper boundary (κk). Figure 1.32 describes the dichotomization

method used in Samejima's models, a dashed line is used to represent an hypo-

thetical response in category k = 4: the probability to have a response in such

category can be computed as P ∗i4−P ∗i5, where in general with P ∗ik = P (Yij ≥ k|θi)
we denote the probability of accomplishing step k at a given level of θ.

Figure 1.3. Dichotomization of polytomous item responses, the dashed line
indicates the observed category response.

The probability that the i-th examinee's response will fall in the k-th category

on item j can thus be written as:

πijk = P (Yij = k|θi) = P ∗ik − P ∗i,k+1 , (1.4)

where P ∗i1 and P
∗
i,Kj+1 are assumed to be respectively 1 and 0, in order to ensure

that the probability of each category can be determined from (1.4). The two-

parameter normal ogive and logistic formulations of the model can be obtained

from (1.4). The normal ogive form of the Samejima's model for graded responses

2Figure adapted from Ostini and Nering (2006).
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is given by:

πijk = P (Yij = k|θi, κjk, κj,k+1) =
1√
2π

αjθi−κjk∫
αjθi−κj,k+1

e−t
2/2 dt . (1.5)

From expression (1.5), we can observe that the discrimination parameter αj,

i.e. the slope of the response functions, is constant between all di�erent category

responses of a given item. This constraint ensure to avoid negative probabilities

(Steinberg and Thissen, 1995). The boundary parameters κjk vary within an

item, according to the order constraint κj,k−1 < κjk < κj,k+1, and at each level

of θ = κjk, the examinee has a probability of 0.5 of endorsing the category

(Reeve, 2002). P ∗ik is the trace line re�ecting the probability that an examinee's

response will fall in that scoring category or a higher, at any speci�c level of

latent ability θ. The graded model response function P (Yij = k|θi) re�ects the

rate of examinees responding to the k-th category through the di�erent levels of

θ, that is a non-monotonic curve, with the exception of the curves associated to

the extreme categories, as previously pointed out in Figure 1.2 (Thissen et al.,

2001).

1.2.2 Other unidimensional IRT models for graded

responses

Several models for items with two or more ordered responses have been developed.

An assortment of these models, together with their features, has been introduced

by van der Linden and Hambleton (1997) and van der Ark (2001). In addition

to Samejima's graded response model (1969), other widely applied IRT models

for ordinal data are the partial credit model (Masters, 1982) and its extension,

the generalized partial credit model (Muraki, 1992). The partial credit model is

an extension to the case of ordinal items of the Rash model for binary items, i.e.

with one item parameter. On the other side, the Samejima's graded response

model is the generalization of the two-parameter IRT model for binary data.

In partial credit model and in its generalization, the category responses on

the item represent the �levels of performance� (Reckase, 2009). As well as in



10 1. An introduction to item response theory (IRT)

the graded response model, we have thresholds between adjacent scores: an ex-

aminee's performance is on the left or the right side of a threshold with a spe-

ci�c probability. Here the dichotomization procedure involves only two category

boundaries for a given item, see Ostini and Nering (2006) for a detailed discussion

about di�erences between Samejima and Rasch dichotomization approaches.

Mathematical expressions for the partial credit model and the generalized

partial credit model are presented in (1.6) and (1.7), where D = 1.702 is the

scaling constant:

πijk = P (Yij = k|θi) =
exp {

∑k
u=1(θi − κju)}∑Kj

v=1 exp {
∑k

u=1(θi − κju)}
(1.6)

πijk = P (Yij = k|θi) =
exp {

∑k
u=1Dαj(θi − βj + κju)}∑Kj

v=1 exp {
∑k

u=1Dαj(θi − βj + κju)}
. (1.7)

In the generalized partial credit model the assumption of constant discrimi-

nation parameter of test items is relaxed, in fact αj parameters may vary across

items. Reckase (2009) provides an exhaustive illustration of such models. Other

IRT models for polytomous items have been proposed by Bock (1972), Andrich

(1978, 1982), Thissen and Steinberg (1984), and Rost (1988). All these models

refer to an unidimensional underlying ability structure.

1.3 Towards multidimensional models

Unidimensional models are suitable when tests are made to measure only one

latent ability (Sheng and Wikle, 2009). There are some advantages in the use of

such unidimensional models: i) they have quite simple mathematical forms; ii)

they perform well in �tting the data in several empirical applications; and iii)

they are rather robust to violations of assumptions (Reckase, 2009).

Nevertheless, real interactions between examinees and test items are not sim-

ple as described in unidimensional models. A person is likely to use more than

a single ability in the response process, on one hand, and the problems posed in

a test can require several abilities in order to get the right solution, on the other



1.3 Towards multidimensional models 11

side.

Multidimensional IRT (MIRT) models were developed to have a more accurate

description of interactions between persons and test items. In particular, in MIRT

models a vector of latent abilities is introduced, instead of assuming a single

person parameter.

In other words, MIRT models deal with quite common circumstances where

an examinee requires multiple abilities in order to respond to an item. In this

case, more than one latent construct is measured by that item. One of the most

famous example in the educational �eld is a �mathematical test item presented as

story that requires both mathematical and verbal abilities to arrive at a correct

score� (Fox, 2010), where both mathematical and reading comprehension skills

are involved in the answering process.
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Chapter 2

Multidimensional IRT (MIRT)

models: a review

As previously pointed out, the latent space that has to be measured may be more

complex than the one underlying unidimensional IRT models. The so called

MIRT models are used when separate latent abilities are encompassed in the

observed responses for an item.

In this chapter we introduce the MIRT approach. In particular, we show

how di�erent models can be speci�ed depending on the latent ability structure

hypothesized to underlie the response process. A literature review on MIRT

models for both binary and ordinal data is reported. A �nal section describes

the most common estimation methods in IRT and MIRT frameworks.

2.1 Main features of MIRT models

The assessment of dimensionality is a key topic in IRT and in the latent variable

framework. A review of methods for an empirical detection of the structure of

tests with binary items was made by Tate (2003). In his work, a particular atten-

tion is given to the assessment of the test statistical structure as subtended from

the relations between examinees and items. This aspect should be an important

13
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part of the development, evaluation, and maintenance of large-scale test.

Several IRT models are based on a common postulate: the assumption of

unidimensionality. However, the local independence assumption holds only if the

latent space is entirely speci�ed. For this reason, many e�orts for the characteri-

zation of the concept of dimensionality and for its detection have been made. We

can say that an accurate and unequivocal de�nition of dimensionality does not

exist yet. This is due to the fact that the phenomenon is latent by nature, hence

a direct comparison with observed results is not possible.

Hambleton and Swaminathan (1985) justi�ed the unidimensionality assump-

tion with the presence of a dominant trait able to explain the examinees' re-

sponses. In this sense, we can imagine that a single trait always exists but

crucial points are if the dominant trait is su�ciently strong and in which way it

dominates the others. Conversely, Traub (1983) argued that unidimensionality

is probably more the exception than the rule, with respect to the skills necessary

to answer to the items on most cognitive tests.

Some weak features of the unidimensionality assumption have been reviewed

by Adams et al. (1997), with the aim to propose a MIRT model. The use of

unidimensional models might be improper for tests intentionally built from sub-

components that are assumed to measure di�erent abilities. IRT models seem

to be robust to these violations of unidimensionality, especially with highly cor-

related latent constructs. In fact, if we assume the existence of a single latent

ability, it can be seen as the dominant factor re�ecting the di�erent composition

of the items. On the other hand, when a test is made by mutually exclusive sub-

tests of items or when the underlying dimensions are not highly correlated, the

use of a unidimensional model can bias the parameter estimation, adaptive item

selection and trait estimation. The problem is highlighted especially in adaptive

testing, when the examinees are administrated di�erent combinations of items

and the traits underlying the performance may re�ect the di�erent composition

of the items (Matteucci, 2007).

Finally, as shortly described at the end of Chapter 1, the assessment of knowl-

edge, competencies and achievement is going more and more towards a multidi-

mensional evaluation. The reason of the widely use of MIRT models in recent

studied is that the actual interactions between examinees and test items are com-

plex and necessitate to be framed in a multidimensional background. A clarifying

example reported in Matteucci (2007) concerns the assessment of pro�ciency in
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the University context, where the student's evaluation is typically multidimen-

sional at each level: within a single course and during all the University career,

students are evaluated on the basis of multiple competencies.

2.1.1 Compensatory and noncompensatory approaches

MIRT models can be classi�ed in two main groups: compensatory and non-

compensatory models, depending on the way the vector of latent abilities, θ,

is combined with item parameters to obtain the probability of responses to the

item.

In compensatory models we use a linear combination of the values of θ in the

speci�cation of the response probabilities, by using a logistic or a normal ogive

form. This approach implies that di�erent combinations of elements in θ can

yield the same sum, and the direct consequence is a compensation e�ect: if a

θ-value is low, but another one is appropriately high, the sum can be the same.

In noncompensatory models, di�erent latent abilities used to solve an item

are separated and each part is used as an unidimensional model. Then the global

probability is obtained as the product of the probabilities of each unidimensional

part. Nonlinearity raises in relation to the use of the product of such probabilities,

and the compensation property does not hold (Reckase, 2009).

2.1.2 Con�rmatory and exploratory approaches

Another classi�cation of MIRT models can be done with reference to the available

information at the model speci�cation step. Mainly, the investigation of multidi-

mensionality can be conducted by using two di�erent approaches: the exploratory

and the con�rmatory approaches.

In the exploratory approach no prior knowledge is included in the model, in

terms of relationship between items and latent traits.

When the number of latent abilities is speci�ed in advance, the method is

not merely explorative and we are in a con�rmatory context. In line with the

con�rmatory approach, not only the number of latent variables is pre-speci�ed

but also their relationships with the items. In fact, the researcher can use prior

knowledge to de�ne which items load on which factors.
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2.1.3 Underlying latent structures

In this paragraph a brief review of di�erent multidimensional latent structures

is reported. For simplicity, �gures are referred to the simplest case of a test

consisting of two subtests. Circles represent latent traits and squares represent

observed item responses. Subtests are indicated with dashed lines.

Consecutive unidimensional model In Figure 2.1 is illustrated the so called

consecutive unidimensional approach, where simple unidimensional IRT models

are �tted to each subtest in a sequential way. Fitting this model, we obtain

person measures for every speci�c ability, but a direct estimation for the relation

between them is not feasible (Huang et al., 2013).

Figure 2.1. Consecutive unidimensional latent structure.

Multiunidimensional model Figure 2.2 reports the underlying structure for

the between-item MIRT model (Wang et al., 2004), also called multiunidimen-

sional approach (Sheng and Wikle, 2007), where abilities are allowed to correlate

and the intensity of such associations can be obtained directly.

Bi-factor model The well known bi-factor model, �rst introduced by Holzinger

and Swineford (1937), where a general (or common) ability, θ0, and a speci�c

ability are assumed to a�ect the response to each item, is illustrated in Figure

2.3. This is a case where there is within-item multidimensionality, i.e. single
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Figure 2.2. Multiunidimensional latent structure.

items measure more than one latent trait. This approach ignores the association

between latent abilities.

Figure 2.3. Bi-factor latent structure.

Hierarchical models Figure 2.4 shows the latent structure assumed for MIRT

hierarchical models, where the hierarchical structure in general and speci�c la-

tent constructs is modeled explicitly: items in the same subtest measure a speci�c

ability and, in turn, each speci�c ability is in�uenced by a general ability. Dif-

ferent hierarchical models can be speci�ed depending on the relation between

speci�c and overall abilities: if each speci�c ability is a linear function of the

overall ability we are in the case illustrated in (a), while if each speci�c ability
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linearly combines to form the overall ability we are in the case showed by (b)

(Schmid and Leiman, 1957; Sheng and Wikle, 2008).

Figure 2.4. Hierarchical latent structures.

Additive model In the additive model presented in Figure 2.5 the latent struc-

ture is such that the response to a test item is a�ected both by the general and

the speci�c latent traits, so that the latent abilities form an additive structure

(Sheng and Wikle, 2009). This model has a latent structure similar to the bi-

factor model, but here all the latent constructs are allowed to correlate.

Figure 2.5. Additive latent structure.
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2.2 MIRT models for binary data

MIRT is a methodology that has been developed with the principal aim of dealing

with the situation of complexity in psychological measurement when several latent

abilities in�uence the individual's performance on a given item (Reckase, 1997).

By introducing a person trait and item discrimination parameters for each ability

measured by a test item, MIRT models permit separate inferences with reference

to each distinct latent dimension of an examinee (Ackerman, 1993).

Two parameter normal ogive model for binary data

Let consider a test consists of p multiple choice items, each measuring m latent

abilities, θ1i, . . . , θmi. Let Y = [Yij]n×p represents the data matrix, i.e. a matrix

containing n examinees' responses to p binary items, so that, for i = 1, . . . , n and

j = 1, . . . , p, Yij is de�ned as:

Yij =

1, if examinee i answers item j correctly

0, if examinee i answers item j incorrectly.

Reckase (1985) derived a multidimensional extension of the compensatory unidi-

mensional two-parameter model, that in its normal ogive formulation becomes:

P (Yij = 1|θi,αj, βj) = Φ

(
m∑
ν=1

ανjθνi − βj

)
=

=
1√
2π

∑m
ν=1 ανjθνi−βj∫
−∞

e−t
2/2 dt . (2.1)

Each individual is characterized by a vector θi = (θ1i, . . . , θmi) of latent abili-

ties, where m is the number of latent dimensions measured by a generic item, in

contrast to the unidimensional case, where they are classi�ed by only one latent

ability θi.

Item discrimination parameters are also represented by a vector, re�ecting
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multiple dimensions: αj = (α1j, . . . , αmj) , where j represents the item number

and m shows the dimension to which the discrimination value is related. If the

discrimination parameter related to dimension ν, ανj , is high, it means that

such dimension has a great in�uence in determining an examinee's success on

item j. Finally, βj is a scalar parameter determining the location in the latent

space where the item provides maximum information.

Multiunidimensional model for binary data

As illustrated in the work of Sheng and Wikle (2007), the elements in the vector

of discrimination parameters αj = (α1j, . . . , αmj) can be considered as factor

loadings in factor analysis. If a rotation is performed so that each item loads on

one factor only, the vector of discrimination parameters can be simpli�ed to αj =

(0, . . . , 0, ανj, 0, . . . , 0), and we can get the expression for the multiunidimensional

model for binary data, where each latent trait is related to a single set of items,

from (2.1). The underlying latent structure of such model is illustrated in Figure

2.2. Let consider a test consisting of p items. The test is structured into m

subtests, each one composed by pν items that measure one latent trait. The

probability that the individual i will obtain a correct response to item j belonging

to the ν-th subtest is given by:

P (Yνij = 1|θνi, ανj, βj) = Φ (ανjθνi − βj) =
1√
2π

ανjθνi−βj∫
−∞

e−t
2/2 dt ,

where ανj is a scalar parameter re�ecting the item discrimination, θνi is a scalar

parameter re�ecting the individual's ν-th ability, and βj is a scalar parameter

representing the location in the latent space where the item provides maximum

information.

Additive model for binary data

The additive MIRT model for dichotomous data proposed by Sheng and Wikle

(2009) assumes an underlying latent structure such that both speci�c abilities and

an overall ability a�ect directly the individual response to a test item, resulting
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in an additive structure (see Figure 2.5).

If we consider again a test containing p items structured into m subtests

(each one composed by pν items), according to the additive MIRT model for

binary data, the probability that the individual i will obtain a correct response

to item j belonging to the ν-th subtest is given by:

P (Yνij = 1|θ0i, θνi, α0νj, ανj, βj) =

= Φ(α0νjθ0i + ανjθνi − βj) =

α0νjθ0i+ανjθνi−βj∫
−∞

1√
2π
e−t

2/2dt , (2.2)

where θνi is a scalar parameter representing the examinee's ability in the ν-th

dimension, θ0i is the i-th individual parameter related to the overall ability, α0νj

is the j-th item discrimination parameter with reference to the overall ability θ0i,

ανj is the item discrimination parameter with reference to the speci�c ability θνi,

and βj is a scalar parameter representing the location in the latent space where

the item provides maximum information.

The expression in (2.2) implies that the probability that an individual endorses

an item is directly in�uenced by two latent traits: a general ability and a speci�c

one (Sheng and Wikle, 2009).

A more detailed description of the models for binary data presented above

goes beyond the purpose of this study. Our decision to focus the analysis on

the additive structure has been driven by the fact that this latent structure,

according to which both the speci�c and general latent traits directly underlie

all the test items, represents a plausible and fairly detailed approximation of the

real interactions between individuals and item responses. On the other hand, the

multiunidimensional model is simpler than the additive, but it is regularly used

in MIRT applications.

The exposition of these two models has been done in order to furnish a more

complete background on the latent structures that we will discuss in detail for

the case of ordered responses.
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2.3 MIRT models for ordinal data

A multidimensional formalization of IRT models for graded responses has been

developed as an extension of the unidimensional version by several authors. In

this section we present some works that focus on multidimensional models for

ordered items. These works have not necessary developed in an IRT context, but

also in the framework of con�rmatory factor analysis. Basically, the interest in

adopting such models raised to face the widespread use of Likert items (Likert,

1932), and in general other ordered scales, on questionnaires in sociological and

psychological measurement. The extensive availability of such data has led, in

the last two decades, to the need of new progressions towards a multidimensional

version of IRT model for graded responses.

We begin by introducing some notation. As in the case for dichotomous

items, let consider a test made by p multiple choice items, each measuring m

latent traits, θ1, . . . , θm. Now the data are collected in a matrix, Y = [Yij]n×p,

containing n examinees' responses to p ordered items, thus, for i = 1, . . . , n and

j = 1, . . . , p, Yij is de�ned as:

Yij =



1, if the answer of examinee i to item j falls in category 1

2, if the answer of examinee i to item j falls in category 2
...

...

Kj, if the answer of examinee i to item j falls in category Kj

where 1 and Kj are the lowest and the highest score for item j, respectively.

Muraki and Carlson (1995) developed a MIRT model for polytomously scored

items on the basis of Samejima's graded response model in the full information

factor analysis context. In their work, they show how the factor analytic model

for categorical variables is based on the assumption that the response process,

say Zij, is an underlying not observable variable and, for each subject i, realized

into the vector of observed ordered item responses Yi = (Yi1, Yi2, . . . , Yip). They

also model the response process variable Zij as a linear combination of the m
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latent traits, θ1i, θ2i, . . . , θmi, and the factor loadings αj1, αj2 . . . , αjm. Thus:

Zij = αj1θ1i + αj2θ2i + · · ·+ αjmθmi + εij = α′
jθi + εij ,

where εij is an unobserved random variable that is assumed to be distributed

as N
(
0, σ2

j

)
. Muraki and Carlson (1995) introduced the threshold parameter

γjk associated with the k-th category of item j, and modeled the unobservable

response process according to the psychological mechanism, that is Yij = k if

γj,k−1 ≤ Zij < γjk, for k = 1, . . . , Kj, γj0 = −∞, and γjKj = +∞. The probabil-

ity to get the response category k of item j by examinee i, given the examinee's

m-dimensional latent trait and assuming a normal ogive model, is formalized as:

P (Yij = k|θi) =
1

(2π)
1
2σj

γjk∫
γj,k−1

exp

{
−1

2

(
Zij −α′

jθi

σj

)2
}
dZ . (2.3)

Model (2.3) can be rewritten in a more familiar way with item response models,

by applying some transformation of the variables (see Muraki and Carlson (1995)

for the detailed procedure). The authors focus on uncorrelated latent dimensions

(bi-factor latent structure) and furnish a detailed procedure of the Expectation

Maximization (EM) algorithm in a marginal maximum likelihood estimation con-

text (the matter of estimation methods will be covered in the next section). The

proposed algorithm has been implemented in the POLYFACT computer pro-

gram (Muraki, 1993), which calculates the factor loadings via the principal factor

method adopted to the product-moment correlation matrix. The program treats

the observed responses as continuous variables (Muraki and Carlson, 1995).

In the study by Ferrando (1999) a comparison between three di�erent item

response models for graded responses has been made, focusing on a continuous

response model based on linear factor analysis, a censored response model, where

the graded responses are considered to be censored continuous variables, and a

multidimensional graded response model in the formulation given by Muraki and

Carlson (1995). They observed that, even though there have been several appli-

cations of the unidimensional graded response model to attitude and personality

data, applications of the multidimensional version of the model are not common.
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Ferrando (1999) concludes showing that the solutions were similar for the three

models considered, but that the estimation method could a�ect the results.

A more recent work by Edwards (2010a) falls within the context of con�rma-

tory item factor analysis models. He developed a relatively user friendly package,

MultiNorm (Edwards, 2010b), where the user can �t multidimensional graded

(or dichotomous) response models characterized by a multiunidimensional or a

bi-factor underlying latent structure. The estimation technique used in this work

belong to the Markov chain Monte Carlo (MCMC) techinques. Again, for a

further discussion on estimation methods see the next section.

Other applications of MIRT models for graded responses, with empirical ex-

amples regarding mainly the �eld of educational assessment and the psychological

reactance, can be found in Yao and Schwarz (2006), Fu et al. (2010), Brown et al.

(2011) and van der Ark et al. (2011). It is worth to remark that the latent struc-

tures assumed in these studies were prevalently the multiunidimensional structure

(Figure 2.2) and the bi-factor structure (Figure 2.3).

Considering this scarcity of existing research about MIRT models for ordinal

outcomes, especially for complex cases, in this work we take into consideration

the one represented by an additive underlying latent structure (Figure 2.5), after

having introduced the multiunidimensional case (Figure 2.2).

2.4 Estimation methods

In IRT models, as well as in MIRT models, the characteristics of interest are the

person's abilities and the item parameters: di�erent values of these parameters

lead to di�erent response probability. Nevertheless, these two important char-

acteristics are both unknown and the available data are represented only by a

collection of responses given by a sample of examinees.

Concerning the estimation procedure, we need to consider two relevant fea-

tures: the �rst one is that the response model is not linear and the second one is

that is not possible to observe the latent trait θ. It implies that the estimation

is similar to perform a nonlinear regression with unknown predictor values.

Starting from the available data, the focal objective is in the determination of

the θ values for every individual and the item parameters from the item responses.

We can perform a simultaneous estimation of ability and item parameters in a
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context of the maximum likelihood (ML) or in a Bayesian framework.

The estimation procedure is in general a�ected by the way the probabilities

of the responses are theorized. There are two main interpretations of proba-

bility: one of them is the stochastic subject interpretation, where the observed

examinees are considered as �xed and probabilities re�ect the unpredictability of

speci�c events. Here the latent variables are constructed as unknown �xed pa-

rameters. The other interpretation of probability is the random sampling, where

the examinees are considered as a representative random sample from a popula-

tion, so that it raises the needing to specify a speci�c distribution of the latent

trait and the latent variables are constructed as random.

In the framework of ML estimation, three main methods can be identi�ed:

• The joint maximum likelihood (JML);

• The conditional maximum likelihood (CML);

• The marginal maximum likelihood (MML).

In the JML and CML methods we are in the context of the stochastic subjects

interpretation of probability, i.e. �xed latent variables, whereas in the MML

method we are in the random sampling interpretation framework and the latent

variables are treated as random.

The applicability of JML and CML is pretty limited. The JML method works

by simultaneously estimating item and person parameter through an iterative

procedure. This method is quite simple but the complexity of the algorithm

increases with the number of observations. The standard limit theorems do not

apply and the resulting parameter estimators are not consistent (Andersen, 1970).

The CML was a method suggested by Andersen (1970) and based on the avail-

ability of a su�cient statistic for the ability in order to simplify the maximum

likelihood conditioning on it. There is a relevant problem which limits the appli-

cability of such method: most models, including the quite simple unidimensional

two parameter model, do not have simple su�cient statistics (Johnson, 2007).

The MML estimation method is the most widely applied and, by considering

the joint probability of a certain response pattern given the latent trait and

integrating out of the individual likelihoods, it de�nes the marginal probability
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of observing the item response pattern. To obtain the parameters estimates, the

EM algorithm is used (Ayala, 2009).

A single estimated latent trait value can be associated to each individual

through maximum a posteriori or expected a posteriori techniques. In general,

all the ML estimation methods consider �xed item parameters. Conversely, in the

Bayesian context, both the latent abilities and the item parameters are regarded

as random variables.

As we will see later more in detail in the next chapter, the adoption of a fully

Bayesian approach implies several advantages. It allows a joint estimation of

item parameters and individual abilities and it permits to include uncertainties

about item parameters and abilities, and in general prior beliefs, in the prior

distributions. MCMC estimation of IRT and MIRT models can be then viewed as

an alternative to MML estimation, where the approximation of multiple integrals

involved in the likelihood function, especially for increasingly complex models,

may represent a serious problem.



Chapter 3

Bayesian estimation of MIRT

models

This chapter introduces the main ideas and functioning characterizing the Bayesian

approach for estimation purposes, with a particular focus on the simulation-based

methods for parameter estimation. Available Bayesian estimation methods based

on MCMC techniques for MIRT models are also presented.

3.1 Elements of Bayesian statistics in MIRT con-

text

According to the Bayesian approach, all the model parameters, i.e. person and

item parameters in our case, are random variables, each one with its prior distri-

bution re�ecting the prior information available and the uncertainty about their

real values before the observation of the data.

All the MIRT models so far illustrated (for both binary and ordinal items) are

speci�ed with the �nal aim to express the data-generating process as a function

of the unknown person and item parameters. These are likelihood models and

present the density of the data conditional on the model parameters. In order to

27
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formulate a Bayesian model, we need to specify:

• A prior distribution for each unknown model parameter;

• A likelihood model re�ecting the data-generating process.

Once the data are observed, the prior information is updated with the in-

formation contained in the observed data and a posterior distribution is made,

which permits to perform direct inference about parameters.

3.1.1 Prior distribution choice

A key point in Bayesian framework is the possibility to specify prior distributions

for the unknown model parameters with the aim to exploit background informa-

tion and beliefs available before the collection of the sample. All these context

information are expressed as probability distributions and, as a result, are re-

�ected in a prior distribution. On the other hand, the conditional probability

distribution is speci�ed to re�ect the observed data.

One of the main objection to the Bayesian framework regards the speci�ca-

tion of these prior distributions, that can be considered extensively subjective

and arbitrary (Gelman, 2008). It has to be noticed that the choice of the prior

distributions, made at the moment of model speci�cation, is subjective by de�-

nition.

Therefore, only prior distributions expressing prior ideas can be considered

correct in this setting and, even if the choice is subjective, it cannot be considered

arbitrary since it re�ects the researcher's thought (Fox, 2010). In addition, it is

possible to specify the so called vague priors, that are objective non informative

prior distributions indicating ignorance around the unknown parameter values.

The branch of objective Bayesian statistics rely on the speci�cation of objec-

tive prior distributions. Even though it does not need any subjective contribution,

we have to consider that a speci�c point of strength of Bayesian methodology is

the possibility of including beliefs and prior information in model speci�cation,

and objective Bayesian methods do not allow to do that.

The inclusion of prior beliefs can increase the reliability of the statistical

inference. In IRT and MIRT frameworks, item responses represent the observed

data and we can include other sources of information in the model through the
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a priori model. These are circumstances where data-based information is slight,

and where prior information can signi�cantly improve the statistical inference

(Fox, 2010).

3.1.2 Bayes' Theorem

Let consider a set of N observations, denoted by y = (y1, . . . , yN), that are the

numerical realization of the random vector Y = (Y1, . . . , YN), which follows some

probability distribution. Let denote with p(y) the probability density (mass)

function of the continuous (discrete) variable Y .

Now let assume that, starting from the observed responses, we are inter-

ested in measuring the unknown person (θ) and item (ξ) parameters, denoted

by λ = (θ, ξ). We denote with p(λ) the prior distribution re�ecting the beliefs

on unknown parameters. The term p(y|λ) re�ects the information about λ from

the vector of observed values y. In general, we can be interested in the sampling

distribution and the likelihood function if we consider it as a function of the data

or as a function of the parameters, respectively. Usually, the distribution of the

parameters given the data is of main interest. According to the Bayes' Theorem,

the conditional distribution of λ given the response data is

p(λ|y) =
p(y|λ) p(λ)

p(y)
∝ p(y|λ) p(λ) , (3.1)

where ∝ denotes proportionality. The term p(λ|y) is the posterior density of

the parameter λ given both prior and sample information and, for continuous

quantities, p(y) =
∫
λ∈Λ p(y|λ)p(λ) dλ (where Λ denotes the set of all the possible

values of λ).

Since we are interested in person and item parameters, we replace expression

(3.1) with

p(θ, ξ|y) =
p(y|θ, ξ) p(θ) p(ξ)

p(y)
∝ p(y|θ, ξ) p(θ) p(ξ) , (3.2)

where p(θ) is the prior for person parameters θ, p(ξ) is the prior for item param-

eters ξ and these prior densities are assumed to be independent from each other,
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thus p(θ, ξ) = p(θ) p(ξ).

The denominator of expression (3.2) is called the data marginal density,

marginal likelihood, or integrated likelihood. Its evaluation can be a time costly

process, so that, when the knowledge of the shape of the posterior p(θ, ξ|y) is

enough for the study purposes, we can focus on the unnormalized density func-

tion: p(y|θ, ξ)p(θ)p(ξ) (Fox, 2010).

The statement of the well-known Bayes' Theorem (Bayes and Price, 1763)

is represented by the expression reported in (3.2). In particular, the expression

p(θ, ξ|y) ∝ p(y|θ, ξ) p(θ) p(ξ) is a factorization representing the product of

the likelihood L(y;θ, ξ) and the prior density, as typically L(y;θ, ξ) = p(y|θ, ξ).

All the sample information regarding person and item parameters is contained in

this likelihood function.

A relevant distribution for the inference process is the so called joint posterior

density p(y,θ, ξ). This density can be factorized as follow:

p(y,θ, ξ) = p(θ, ξ|y) p(y) (3.3)

= p(y|θ, ξ) p(θ) p(ξ) . (3.4)

From the expressions above we can observe that the joint posterior distribution

can be factorized in two di�erent ways: (i) as the marginal density of the data and

the posterior of the unknown parameters (3.3), and (ii) as the prior distributions

of the parameters and the likelihood of (θ, ξ) given y (3.4).

3.1.3 Marginal posterior distributions for model parame-

ters

In order to make inference, the joint posterior distribution reported in (3.2) is

used. Since this high-dimensional distribution has a complex form, and conse-

quently it usually shows an analytically intractable expression, we need to focus

on one of the unknown parameters, and consider the other as a nuisance param-

eter.

More precisely, if we are interested in the distribution of θ, we assume ξ as a

nuisance parameter and, integrating out all the possible values of ξ, from (3.2)
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we obtain the marginal posterior density for person parameters:

p(θ|y) =

∫
ξ∈Ξ

p(θ, ξ|y) dξ =

∫
ξ∈Ξ

p(y|θ, ξ) p(θ) p(ξ)

p(y)
dξ

∝
∫
ξ∈Ξ

p(y|θ, ξ) p(θ) p(ξ) dξ . (3.5)

When we are interested in the distribution of ξ, we consider θ as a nuisance

parameter and thus we integrate out all the values of θ, getting the marginal

posterior density for item parameters:

p(ξ|y) =

∫
θ∈Θ

p(θ, ξ|y) dθ =

∫
θ∈Θ

p(y|θ, ξ) p(θ) p(ξ)

p(y)
dθ

∝
∫
θ∈Θ

p(y|θ, ξ) p(θ) p(ξ) dθ . (3.6)

In general, the information contained in the joint and/or marginal poste-

rior distributions are summarized by the posterior mean (median) and standard

deviation. Concerning the joint posterior distribution of person and item pa-

rameters, as previously pointed out, several di�culties arise as a result of its

high-dimensionality and analytical intractability. Nonetheless, with reference to

the marginal posterior densities of person (3.5) and item (3.6) parameters, the

same di�culties remain, as the mathematical expressions are not always known.

These computational problems can be solved by the use of simulation based

techniques. In particular, the MCMC method is a very useful technique that we

will be brie�y describe in the next section.

3.2 Markov chain Monte Carlo methods

The Bayesian approach based on MCMC techniques has increased its popularity

in the estimation of unidimensional and multidimensional item response models.

A twofold motivation can drive the use of such method. First of all, it can



32 3. Bayesian estimation of MIRT models

represent an e�ective substitute to the classical EM algorithm implemented in the

MML estimation. In fact, it works with simulation and introduces an informative

prior distribution in the estimation process and, unlike the MML method, the

Bayesian approach considers both the person parameters and item parameters as

random variables. Secondly, it can also be seen as a compensatory instrument

to the EM algorithm. The posterior distribution generated through the MCMC

techniques can be used to evaluate the suitability of the normal approximations

in the MML, so that we can compare the two approaches with reference to the

accuracy of parameter recovery.

As we will see in this section, MCMC is a very useful and relatively straight-

forward method to make inference when we have to face with a very complex

model, where it is actually di�cult to sample or directly simulate from the pos-

terior distribution. This represents a common situation in a MIRT context.

In particular, the Gibbs sampler is a widely used MCMC algorithm consisting

in a quite precise scheme to create suitable samples from the posterior density.

Moreover, this method is not very constraining and fairly simple to implement,

if compared with other methods. For the motivations mentioned above, MCMC

strategies have been implemented in IRT background by several researchers and

many studies have been made in order to investigate the properties of these

methods. Of particular interest is also the evaluation of model parameter recovery

in comparison with the classical methods.

If we perform a comparison between the MCMC technique and the classical

MML estimation, we can summarize the main advantages of the MCMC approach

in:

• the �exibility regarding the modeling of all the connections between latent

and observed variables;

• the appropriateness for more complex models;

• the non-sensitivity to the choice of starting values (unlike the EM algo-

rithm).

Two relevant works that perform Bayesian estimation using the Gibbs sampler

in an IRT context are the works of Albert (1992) and Béguin and Glas (2001).

In the �rst one, the Gibbs sampler for the unidimensional two parameter model

for binary data is implemented, and the MCMC algorithm is compared with the
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EM algorithm through an application in the educational assessment context. In

the second work, an extension to the multidimensional case has been done with

respect to the work of Albert. Other item response applications of MCMC can

be found in Fox and Glas (2001); Patz and Junker (1999a,b).

As previously highlighted, from a Bayesian point of view, the leading purpose

of the researcher is to analyze the properties of the posterior distribution p(λ|y)

which, as we can see from (3.1), is proportional to the product between the likeli-

hood function and the prior distribution (recall that λ is the vector representing

the unknown parameters of interest, and y represents the observed data).

For exposition purpose and without loss of generality, in this section we will

consider the simplest case where the vector of unknown parameters is unidimen-

sional, namely λ = λ. When the posterior distribution does not have a familiar

functional form and/or it is not possible to perform a direct simulation because of

the complexity of the model, simulation methods based on Markov chains seem

to be an easy way to get samples from the posterior density p(λ|y).

The MCMC is a class of techniques developed with the �nal aim of repro-

ducing a target distribution by simulating one or more sequences of correlated

random variables. In our context the target distribution is represented by the

posterior density p(λ|y). A random walk in the space of the parameter λ is sim-

ulated by the MCMC algorithm, where at each iteration t, for t = 1, . . . , T , the

value of λ[t] is drawn from a probability function which depends on the value of

λ at the previous step, λ[t−1]. The underlying idea is that the regions of the state

space are touched by the random walk in a proportional way with respect to their

posterior probabilities and, for a su�ciently large number of iterations, it might

approximate the target distribution. MCMC methods di�er from the Monte

Carlo methods because the simulated values are correlated, rather than being

statistically independent. The generated Markov chain converges to an unique

and stationary distribution that corresponds to the target distribution (Gelman

et al., 2003). Therefore, with reference to the reproduction of the marginal pos-

terior densities of IRT model parameters with a complex structure, this method

is able to furnish reliable results, and overtakes the problem of analytically in-

tractable distributions.

One of the key point concerning all the MCMC techniques is the creation of

a chain su�ciently long to approximate the target distribution. Considering that

we are in the context of iterative based methods, the time of convergence also
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represents a relevant topic. Usually, a so called �burn-in� period, containing a

�xed number of �rst iterations, is de�ned and excluded from the analysis.

The chain length is a�ected by the complexity of the posterior distribution,

the initial values and the speed of convergence. Gelman et al. (2003) recommend

to use half of the sample as burn-in period. On the contrary, other authors prefer

to directly choose the number of iterations as burn-in period, for example in one

of the analyses illustrated in Béguin and Glas (2001), the burn-in period is of

1000 iterations against a run length of 30000 iterations.

What we suggest from a practical point of view is to control the behavior of

the sampled parameters through a plot in the sequence of iterations, and then

decide subsequently.

Moreover, another signi�cant (but still not very clear, as illustrated in Gilks

et al. (1996)) topic concerns the number of distinct chains needed to implement

the MCMC algorithm. Mainly, there are three di�erent approaches. According

to the �rst one, only one long chain is created, considering that the longer the

chain is, the higher the possibility to �nd new modes is.

The second approach is based on the creation of several quite long chains.

The main advantage of this approach is that multiple chains allow the comparison

between the results, that can permit to detect some signi�cant di�erences and

symptom of non-stationarity.

The use of the third approach, consisting of the utilization of many short

chains, is driven by the aim of creating independent samples. Actually, this

approach is not advisable because chains can take a long time to reach the con-

vergence and independent samples are not required.

Several MCMC algorithm exist, depending on the features of the problem and

the speci�c attributes of the Markov chains. Each MCMC algorithm de�nes a

transition distribution p(λ[t]|λ[t−1]), representing the probability of a parameter,

say λ, to move from a state to the following, starting from a proper initial values

λ[0].

Examples of detailed essays about MCMC are Gelman et al. (2003), Gamer-

man (1997) and Gilks et al. (1996).
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3.2.1 Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm (Hastings, 1970) is one of the most

popular MCMC mehtods and it can be directly implemented in a Bayesian frame-

work. Our aim is the generation of a sample of size T from the target distribution

represented, in our context, by the posterior distribution p(λ|y). We can sum-

marize the M-H algorithm functioning in the following way (Ntzoufras, 2011):

1. Set initial values λ[0];

2. Then reiterate the following steps for t = 1, . . . , T :

(i) Set λ = λ[t−1]

(ii) Generate a new candidate parameter value λ′ from a proposal (jump-

ing) distribution q(λ′|λ)

(iii) Calculate the ratio α = min
(

1, p(λ′|y)q(λ|λ′)
p(λ|y)q(λ′|λ)

)
(iv) Update λ[t] = λ′ with probability α; otherwise set λ[t] = λ.

Let focus on the case where λ is a vector of parameters that can assume only

continuous values.

According to step (i), suitable starting values have been provided. Let suppose

to be in the state λ[s−1] of the chain.

In the step (ii) of the algorithm, a new candidate λ′ is sampled by using

a �proposal distribution� q(λ′|λ[s−1]). The proposal distribution is also called

�jumping distribution�, in order to emphasize the concept of movement from

the current value to the next one of the chain. It is also possible to de�ne the

probability of �jumping� in the opposite direction, i.e. from λ′ to λ[s−1], that is

q(λ[s−1]|λ′) Even if in the original M-H algorithm (Metropolis et al., 1953) only

symmetric proposals were considered, this property is not compulsory in the more

recent versions of the algorithm (Ntzoufras, 2011).

Furthermore, the proposal q(·) should be de�ned in a proper way. In fact, the

resulted chain needs to satisfy some speci�c characteristics, namely: irreducibility,

aperiodicity and not transitoriness. A chain is irreducible if it is possible to

move from one state to any other state in a �nite number of steps with positive

probability, aperiodic if all the states are acyclic, and not transient if all the

states are recurrent (i.e. the probability to return to a state from the same state
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is equal to one). Moreover, the ratio r = q(λ′|λ[s−1])

q(λ[s−1]|λ′) must be strictly positive, for

every value of λ such that both the numerator and the denominator are nonzero.

In the step (iii) the �acceptance probability� α is computed. The higher the

α is, the more probable the acceptance of the candidate value λ′ will be. The

quantity r consists of two components: the ratio of the posterior probabilities,

which drives the algorithm towards the λ-value with higher posterior density, and

the ratio of the �proposal densities�, which also has an in�uence in determining

the direction to one or the other λ-value.

Step (iv) of the M-H algorithm is about the acceptance or the rejection of the

candidate value λ′. To make this choice, we draw a random number u from the

uniform distribution in the [0, 1] interval. Then we set:

λ[s] =

λ′ , if u < α

λ[s−1] , if u ≥ α .
(3.7)

Thus, the candidate value λ′ is accepted with probability α and rejected in case

of u ≥ α. In both cases (acceptance or rejection) the iterations progress and the

algorithm proceeds to generate the next value.

The M-H algorithm can be also applied in case of discrete-values parameters

where the q(·) proposal distribution becomes the probability mass function used

to generate candidate points.

3.2.2 Gibbs sampler

The Gibbs sampler was �rst introduced by Geman and Geman (1984) and then

formalized by Gelfand and Smith (1990). It can be obtained as a special case of

the M-H algorithm by using as a proposal distribution the so called �full condi-

tional posterior distribution�:

p(λj | λ1, . . . , λj−1, λj+1, . . . , λd, y) = p(λj | λ∗j, y). (3.8)

Such proposal distribution implies a probability of acceptance α equal to one, due

to the fact that the ratio r is 1 (see Gelman et al., 2003). With an acceptance
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probability equal to one, at each iteration the algorithm performs the jump pro-

vided by step (iv) in the M-H algorithm. The Gibbs sampler is based on iterative

sampling of the conditional distributions resulting from the decomposition of the

full posterior density.

A �rst advantage of the Gibbs sampler is that, for every iteration, the val-

ues are randomly generated from unidimensional distributions for which a wide

variety of computational tools exists (Gilks et al., 1996). Another important ad-

vantage is that it does not require the speci�cation of a proposal distribution.

This is a key point, because an inaccurate choice of the proposal q(·) in the M-H

algorithm may lead to a very slow algorithm.

Thus, if it is di�cult to sample from a complex and/or high-parameterized

posterior distribution and it is possible to decompose the vector of parameters,

we can proceed to generate the parameter values from the single conditional

distribution in a sequential way.

Let suppose that we are interested in producing a sample of size T from

the target distribution, represented here by the posterior distribution p(λ|y),

where λ = (λ1, . . . , λp). The functioning of the Gibbs sampler algorithm can be

described with the following steps (Ntzoufras, 2011):

1. Set initial values λ[0];

2. Then reiterate the following steps for t = 1, . . . , T :

(i) Set λ = λ[t−1]

(ii) For j = 1, . . . , p , update λj from λj ∼ p(λj | λ∗j,y)

(iii) Set λ[t] = λ and save it as the generated set of values at t+1 iteration

of the algorithm.

Hence, given a particular state of the chain λ[t], we generate the new parameter

values by:
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λ
[t]
1 from p(λ1 | λ[t−1]

2 , λ
[t−1]
3 , λ

[t−1]
4 , . . . , λ

[t−1]
p , y)

λ
[t]
2 from p(λ2 | λ[t]

1 , λ
[t−1]
3 , λ

[t−1]
4 , . . . , λ

[t−1]
p , y)

λ
[t]
3 from p(λ3 | λ[t]

1 , λ
[t]
2 , λ

[t−1]
4 , . . . , λ

[t−1]
p , y)

...
...

λ
[t]
p from p(λp | λ[t]

1 , λ
[t]
2 , λ

[t]
4 , . . . , λ

[t]
p−1, y) .

Generating values from the single conditional distributions is relatively easy,

since those are univariate distributions. Moreover, under appropriate conditions

of regularity, the λ[t]-distribution will converge to the target distribution. Usu-

ally, this convergence process is fast and the complete sequence
{
λ[t]
}
can be

considered as the simulated sample of the distribution of interest (Matteucci,

2007).

For a more detailed exposition of the Gibbs sampler, see Gamerman (1997)

and Gelman et al. (2003), or Gelfand and Smith (1990) for early presentations of

this widely used MCMC algorithm.

3.3 Bayesian computation using OpenBUGS

In the following, the simulation study and the application on real data will be per-

formed using OpenBUGS (http://www.openbugs.net), an open-source version

of the famous software package BUGS (Bayesian inference Using Gibbs Sampling)

that permits an user-friendly implementation of the Gibbs sampler.

The software package BUGS was developed in the context of the BUGS

project. The BUGS project started in 1989 in the MRC Biostatistic Unit in

Cambridge and the last version of the resulting software developed by Spiegel-

halter et al. (1996) became very popular in the 1990s. WinBUGS, an available

windows-based version of BUGS, has �nished to be further upgraded in 2012

hence OpenBUGS, which basically contains all the features of its ancestor Win-

BUGS, represents nowadays the future of the BUGS project.

A detailed description of the software goes beyond the scope of this work,

nevertheless, useful tools to understand the theoretical ideas that are the foun-

dations of BUGS and its functioning are the book of Ntzoufras (2011) and Lunn
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et al. (2013).

As we can �nd in Lunn et al. (2009), there are several reasons behind the suc-

cess of the BUGS software. These appealing features can be strictly summarized

in:

• Flexibility. Flexibility is quite probably the principal reason for BUGS's

popularity. BUGS runs the Gibbs sampling method to any directed acyclic

graph speci�ed in its language, moreover it allows the user to add new

distributions and functions.

• Easy implementation. The model implementation using BUGS is fairly

simple because the package itself run the MCMC algorithm. It is not neces-

sary for the user to write down all the full conditional distributions. More-

over, measures, plots and statistics to check the convergence and the �t of

the model are automatically computed.

These aspects notwithstanding, the user must always be careful because BUGS

does not perform any control about the model identi�cation, thus several mis-

takes can be made without any alert from the program. As the manual clearly

remark:

Gibbs sampling can be dangerous!
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Chapter 4

MIRT graded response models with

complex structures

In this chapter we specify two MIRT models for graded responses with a com-

plex structure. After having established a dichotomization method, we focus on

models with a multiunidimensional structure, where items in each subtest charac-

terize a single ability, and on models with an additive structure, where each item

measures a general and a speci�c ability directly. In the MIRT model presented,

all the latent traits are allowed to correlate. The main scienti�c contribution of

this work is the multidimensional additive model for graded responses with cor-

related traits, estimated with MCMC tecniques. Due to the adoption of Bayesian

estimation methods, particular attention is paid to the model building phases.

4.1 MIRT graded response models (GRMs)

A multidimensional generalization of IRT graded response model (GRM) can be

obtained from its unidimensional counterpart. Let consider: (i) n individuals;

(ii) a set of p ordinal items where the response Yij of the i-th subject to the j-th

item can take values in the set {1, . . . , Kj}. Each item thus has Kj−1 thresholds

κj1, . . . , κj,Kj−1 that have to satisfy the order constraint κj1 < · · · < κj,Kj−1;

41
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and (iii) the existence of multiple, say m, latent abilities θi = (θ1i, . . . , θmi)
′

underlying the responses to the items.

For simplicity, in this paragraph we do not consider the number of latent

dimensions, even if we have always to take in mind that θi is a vector, so we are

dealing with the presence of concomitant latent dimensions. The key point of the

choice of the underlying latent structure will be examined more closely later.

Assumptions are quite similar to the unidimensional version of the model: it

is assumed that an individual can reach a speci�c category level of an ordinal test

item only if he/she is also able to reach all the lower categories on the same item.

In other words, the item necessitates an amount of steps and the accomplishment

of a step requires the achievement of the previous one. This type of model is

then appropriate for rating scales where a rating category includes all previous

categories (Reckase, 2009).

The notation introduced above implies that the lowest score on item j is 1

and the highest score is Kj. The probability that the i-th examinee will select

the k-th category or higher on item j is assumed to increase monotonically with

an increase in any component of the θi vector, i.e. an increase in any of the latent

abilities underlying the test.

We have used a dichotomization procedure by adapting Samejima's approach

(see section 1.2.1): in order to make the implementation of the models more clear

and easy, our models are speci�ed on the basis of the probability that an item

response will fall in category k or lower, denoted by P (while in section 1.2.1 we

have used the probability that an item will fall in category k or higher, denoted

by P ∗). The probability πijk that the i-th subject will select the k-th category

on item j is equal to the probability of answering below the upper boundary for

the category (κk) minus the probability of answering below the category's lower

boundary (κk−1). Figure 4.1 illustrates the dichotomization method used. The

dashed line, that represents the hypothetical response, falls in category k = 4:

the probability to observe a response in that category can be easily calculated as

Pi4 − Pi3.

Generalizing the example presented in Figure 4.1, the probability that the i-th

examinee's response will fall in the k-th category on item j can be constructed

from the cumulative probabilities Pijk = P (Yij ≤ k|θi), for k = 2, . . . , Kj. We
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Figure 4.1. Dichotomization used for the MIRT graded response model speci�-
cation. The dashed line indicates the observed category response.

obtain that:

πijk = Pijk − Pi,j,k−1 = P (Yij ≤ k|θi)− P (Yij ≤ k − 1|θi) , (4.1)

and, with the aim to guarantee that the probability of each category can be

determined from (4.1), it is assumed that πij1 = Pij1 = P (Yij ≤ 1|θi) and

πijKj = 1− Pi,j,Kj−1 = 1− P (Yij ≤ Kj − 1|θi).
A normal ogive or a logistic formulation of the model can be obtained from

expressions (1.2) and (1.3), but a previous step is needed to get an expression

for the predictor ηij. In the multidimensional case the predictor becomes a func-

tion of the θi vector of person parameters and the ξj vector of item parameters,

ηij = f(θi, ξj). In particular, to have an explicit formulation for the predictor we

need to make some assumptions re�ecting the underlying latent structure hypoth-

esized. Among the di�erent underlying latent structures that can be assumed (see

Paragraph 2.1.3), in this thesis we focus on:

• models with a multiunidimensional structure, where items in each sub-

test characterize a single ability;

• models with an additive structure, where each item measures a general

and a speci�c ability directly.
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As previously mentioned, the choice of these two latent structures has been

driven by the fact that the �rst one is widely used and represents a classical

approach in MIRT analysis, while the second one is able to re�ect the complexity

of real interactions between items and individuals.

4.1.1 Speci�cation of the multiunidimensional GRM

As previously mentioned, according to the multiunidimensional structure, each

individual i is assumed to be characterized by a vector of latent traits θi =

(θ1i, . . . , θmi) where each latent dimension is measured by a speci�c set of test

items. Thus, considering a test consisting of p items, the test is structured into

m subtests indexed by ν, each one composed by pν items that measure one

latent trait. The cumulative probability that the individual i will select the k-th

category or lower on item j belonging to the ν-th subtest is given by:

Pνijk = P (Yνij ≤ k|θνi, ανj, κjk) =

= Φ(κjk − ανjθνi) =

κjk−ανjθνi∫
−∞

1√
2π
e−t

2/2dt , (4.2)

where ανj and κjk are item parameters representing the item discrimination and

the threshold between categories k and k + 1, respectively. The parameter θνi

represents the i-th examinee ability in the ν-th ability dimension. We can observe

that the predictor ηνij = f(θi, ξj) assumes the form: ηνij = κjk − ανjθνi.
The multiunidimensional model for graded response can be speci�ed in a

normal ogive formulation (i) by considering the cumulative probabilities obtained

from (4.2) and (ii) by applying the dichotomization procedure represented in

Figure 4.1, according to which the probability πνijk that the i-th examinee will

select the k-th category on item j in subtest ν is:

πνijk =


Pνij1 for k = 1

Pνijk − Pν,i,j,k−1 for k = 2, . . . , Kj − 1

1− Pν,i,j,Kj−1 for k = Kj .

(4.3)
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It has to be noticed how in (4.2) only one speci�c ability a�ects the response to

a speci�c item. This structure reminds the unidimensional version of the GRM:

we can imagine to �t a sequence of unidimensional models, each one for a speci�c

subtest. Nevertheless, a relevant di�erence consists in the fact that that distinct

latent traits are now allowed to correlate.

4.1.2 Speci�cation of the additive GRM

A relevant aim of this work is to propose a new additive model for ordinal data,

estimated by Bayesian MCMC techniques, where the general and speci�c latent

traits are allowed to correlate. In this section, we provide the simple, but very

e�ective, speci�cation for the additive GRM.

Let consider again a test consisting of p items and structured into m subtests,

each one composed by pν items (ν = 1, . . . ,m). The responses to items belonging

to a speci�c subtest are assumed to be in�uenced by a speci�c ability and a

general ability, according to the underlying latent structure illustrated in Figure

2.5. The cumulative probability that the individual i will select the k-th category

or lower on item j belonging to the ν-th subtest is given by:

Pνijk = P (Yνij ≤ k|θ0i, θνi, α0νj, ανj, κjk) =

= Φ(κjk − α0νjθ0i − ανjθνi) =

κjk−α0νjθ0i−ανjθνi∫
−∞

1√
2π
e−t

2/2dt . (4.4)

Here, θ0i represents the i-th overall ability and θνi represent the speci�c abil-

ities (with ν = 1, . . . ,m). For each item j of the subtest ν: α0νj re�ects the

item discrimination with reference to the overall ability, ανj re�ects the item dis-

crimination with reference to the speci�c ability and κjk is an item parameter

that re�ect the threshold between categories k and k+ 1. The predictor ηνij now

depends on both speci�c and general latent traits: ηνij = κjk − α0νjθ0i − ανjθνi.
The probability πνijk that the i-th examinee will select the k-th category on

item j in subtest ν is obtained recursively from (4.3), as in the multiunidimen-

sional GRM.

It has to be noticed that both general and speci�c abilities are involved in
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determining the response probability by following a compensatory approach. Fi-

nally, all the latent traits underlying the item responses are allowed to correlate.

4.2 Person and item parameters: interpretation

The aim of this section is to brie�y illustrate the meaning of the parameters

introduced in the MIRT models for graded responses described in paragraphs

4.1.1 and 4.1.2. Contents of this section are particularly helpful for practical

applications.

4.2.1 Ability parameters

The presence of more than one latent trait a�ecting the response process to a test

is on the basis of the use of multidimensional item response theory models. The

θi-vector of the latent space parameters for person i contains all the information

about the measurement of these latent abilities. Higher levels of abilities lead to

higher values in the elements of θi.

Of course, the composition, and consequently the dimension, of the θi-vector

depends on the underlying structure we are assuming. As often mentioned before,

when we are dealing with a multiunidimensional structure the vector of person

parameters has the form θi = (θ1i, . . . , θmi). While in an additive context, a pa-

rameter re�ecting the general ability is added, and we get: θi = (θ0i, θ1i, . . . , θmi),

where m still denotes the number of speci�c abilities. One lack in one speci�c

dimension is compensated by the general dimension and viceversa.

4.2.2 Multidimensional item discrimination

Moving towards the signi�cance of the discrimination item parameters, when con-

sidered individually, ανj re�ects the capability of a generic item j to discriminate

between individuals with di�erent levels of ability θν , both for multiunidimen-

sional and additive models. Analogously, α0νj reproduces the aptitude of the

item j to di�erentiate individuals with di�erent levels of general ability θ0.
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Muraki and Carlson (1995) and Yao and Schwarz (2006) de�ne the multidi-

mensional item discrimination (MDISC) as the maximum discrimination of a test

item in a particular direction of the latent space.

Hence, considering the multiunidimensional and additive latent structures

assumed for the MIRT models presented in this work, we can de�ne two MDISC

measures. The �rst one (MDISC) is de�ned with reference to each one of the

latent dimensions ν = 1, . . . ,m. For j = 1, . . . , p it is expressed as:

MDISCj =

(
m∑
ν=1

α2
νj

)1/2

. (4.5)

The second one (MDISC∗) include a further dimension, represented by the general

ability. For j = 1, . . . , p, MDISC∗ is expressed by:

MDISC∗j =

(
m∑
ν=1

α2
νj + α2

0νj

)1/2

. (4.6)

With reference to a given item, the higher a value of MDISC (MDISC∗) is, the

grater is the discrimination power of that item, independently from the assumed

underlying latent structure.

4.3 Multiunidimensional GRM implementation

In order to implement the multiunidimensional model for graded responses by

using OpenBUGS, the �rst step that we have to face is the so called model

building phase (Ntzoufras, 2011). We can summarize the functioning of this

phase through several sub-steps, namely:

1. identify the main variable of interest and the corresponding (observed) data;

2. build a structure for the parameters of the distribution;

3. specify the prior distributions;
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4. �nd a distribution that adequately describes the observed data and formu-

late the likelihood of the model.

Considering that our observed variables of interest (point 1) are the responses,

given from a group of examinees, to a test consisting of graded response items, in

this section we will de�ne all the elements listed above, according to the model

characterized by a multiunidimensional latent ability structure, i.e. according to

the probability function de�ned in (4.2).

4.3.1 Model speci�cation

The probability model is speci�ed according to the multiunidimensional structure

(point 2). Recalling the expression in (4.2), a generic cumulative probability Pνijk

is a function of the item discrimination parameter (ανj), the threshold parameter

between categories k and k + 1 (κjk), and the speci�c ability measured by the

j-th item (θνi). Thus, for ν = 1, . . . ,m, j = 1, . . . , p and k = 1, . . . , Kj − 1, it

holds that Pνijk = Φ(κjk − ανjθνi).
As previously described, we set PνijKj = 1, and we obtain by di�erence the

probability that the response of individual i to item j will fall in category k:

πνij1 = Pνij1 and πνijk = Pνijk − Pν,i,j,k−1, for ν = 1, . . . ,m, j = 1, . . . , p and

k = 2, . . . , Kj.

The model parameters, treated in a Bayesian context as proper random vari-

ables, for which we need to specify prior distributions are the person parameters

θi = (θ1i, . . . , θmi) and the item parameters ανj and κj1, . . . , κj,Kj−1.

4.3.2 Prior distributions

Getting on to point 3 of the model building phase, in the multiunidimensional

GRMwe assume that the latent traits θ1, . . . ,θn are independent and multivariate

normally distributed:

θi ∼ Nm(µ,Σ) ,

where θi = (θ1i, . . . , θmi) is the vector of latent traits for examinee i, µ is the

m-dimensional mean vector and Σ is the m×m constrained variance-covariance
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matrix with diagonal elements being 1 and o�-diagonal elements being the ability

correlations.

Thus, for i = 1, . . . , n, the prior distribution for θi is de�ned as:

p(θi) =
1√

(2π)m|Σ|
exp

(
−1

2
(θi − µ)′ Σ−1 (θi − µ)

)
, (4.7)

where m is the number of speci�c latent traits (subtests).

Moreover, normal distributions are assumed for item discrimination param-

eters, that is ανj ∼ N(µα, σ
2
α), for ν = 1, . . . ,m and j = 1, . . . , p. In addition,

considering that the parameter which re�ects the power of the item to discrim-

inate between examinees is signi�cantly positive, the truncated version of the

normal distribution is taken into account:

ανj ∼ N(µα, σ
2
α) I(ανj > 0) ,

where I indicates the indicator function.

The priors for the threshold parameters must account for the order constraint

κj1 < · · · < κj,Kj−1, hence we proceed �rst introducing unconstrained auxiliary

parameters κ∗j1, . . . , κ
∗
j,Kj−1 such that κ∗jk ∼ N(µκ, σ

2
κ) for j = 1, . . . , p and k =

1, . . . , Kj − 1 (Curtis, 2010). Then, prior distributions on the thresholds for

the j-th item can be obtained considering the order statistics for the auxiliary

variables:

κj1 = κ∗j,[1]

κj2 = κ∗j,[2]
...

κj,Kj−1 = κ∗j,[Kj−1] ,

where with κ∗j,[s] is denoted the s-th order statistic of κ
∗
j1, . . . , κ

∗
j,Kj−1. As reported

in Curtis (2010), this approach is also recommended by Plummer (2010).

Identi�cation issues

Particular attention should be paid to the restrictions that have to be imposed on

hyperparameters in order to ensure the model identi�cation. In general, Bayesian
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item response models can be identi�ed (Fox, 2010) by imposing restrictions on

the hyperparameters or via a (standard) scale transformation in estimation pro-

cedure.

According to the �rst approach, for identi�cation purposes we set µ = 0, µα =

0, µκ = 0, σ2
α = 1 and σ2

κ = 1. Moreover, a multivariate normal prior distribution

with a �xed correlation structure is assumed for abilities: θi ∼ Nm(0,Σ), for

i = 1, . . . , n, where Σ is the variance-covariance matrix de�ned before.

Even if this choice can be viewed as very restrictive, it re�ects the common

beliefs and usual assumption we �nd in literature. In fact, a point of strength of

the Bayesian approach is the possibility to formulate particular prior distributions

depending on the information available a priori.

4.3.3 Likelihood function for responses

A categorical or generalized Bernoulli distribution of parameters πνij1, . . . , πνijKj
is assumed for responses (point 4 of the model building phase), thus for ν =

1, . . . ,m, j = 1, . . . , p and i = 1, . . . , n, it holds that:

Yij|• ∼ Cat(πνij1, . . . , πνijKj) , (4.8)

therefore:

P (Yij = k|•) = π
[k=1]
νij1 · π[k=2]

νij2 · . . . · π[k=Kj ]
νijKj

. (4.9)

Once the likelihood function for observed data is de�ned, the model is speci�ed

and we can perform the Bayesian estimation of the parameters of interest through

an easy implementation in OpenBUGS, which run the Gibbs sampler algorithm.

In particular the main advantage is due to fact that the joint posterior distribution

has an untractable form, while the full conditional distributions are well de�ned.

In fact:

P (θ,α,κ,Σ|Y ) ∝ L(Y |θ,α,κ,Σ) P (θ|Σ) P (α) P (κ) . (4.10)

Expression (4.10) represents the joint posterior distribution of interest, where L
is the likelihood function and θ, α and κ are assumed to be independent.
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Details about the code used to implement the model in OpenBUGS are re-

ported in Appendix A.

4.4 Additive GRM implementation

As mentioned before for the multiunidimensional model, the implementation in

OpenBUGS of the additive GRM needs the speci�cation of the model according to

the probability function de�ned in (4.4), the de�nition of the prior distributions,

and the formulation of the likelihood function for the observed responses.

4.4.1 Model speci�cation

The existence of a general ability in addition to the speci�c abilities implies the

introduction of the further component θ0i in the vector of person parameters for

individual i: θi = (θ0i, θ1i, . . . , θmi), therefore the dimension of this vector is now

m+ 1.

According to the additive structure presented in Figure 2.5, where each item

measures an overall and a speci�c ability directly, and translated in expression

(4.4), a generic cumulative probability Pνijk is a function of the item discrimi-

nation parameter related to the general ability (α0νj), the item discrimination

parameter related to the speci�c ability (ανj), the threshold parameter between

categories k and k + 1 (κjk), the general ability of the individual (θ0νi), and

the speci�c ability (θνi) measured by the j-th item. We remind that each item

belonging to a given subtest measures the general ability and only one speci�c

ability. Hence, for ν = 1, . . . ,m, j = 1, . . . , p and k = 1, . . . , Kj − 1, it holds that

Pνijk = Φ(κjk − α0νjθ0i − ανjθνi).

Again, we set PνijKj = 1, and the probability that the response of individual

i to item j will fall in category k can be obtained by di�erence, as in the multiu-

nidimensional case: πνij1 = Pνij1 and πνijk = Pνijk − Pν,i,j,k−1, for ν = 1, . . . ,m,

j = 1, . . . , p and k = 2, . . . , Kj.
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4.4.2 Prior distributions

Also in the additive GRM we assume that the latent traits θ1, . . . ,θn are inde-

pendent and multivariate normally distribuited:

θi ∼ Nm+1(µ,Σ) ,

where µ is the (m+ 1)-dimensional mean vector and Σ is the (m+ 1)× (m+ 1)

constrained variance-covariance matrix with diagonal elements being 1 and o�-

diagonal elements being the ability correlations.

As explained above, θ0i represents the unobservable general ability for exam-

inee i which a�ects all the responses given from this examinee to the test items,

while the speci�c abilities for the individual i, θ1i, . . . , θmi, a�ect every item con-

tained in the corresponding subtest ν, for ν = 1, . . . ,m. The prior distribution

for θi is then de�ned by expression (4.7), for i = 1, . . . , n, where m is the number

of both subtests and speci�c latent traits. For identi�cation purposes, we set

µ = 0 and Σ �xed variance-covariance matrix.

Normal distributions are assumed for item discrimination parameters α0νj and

ανj, for ν = 1, . . . ,m and j = 1, . . . , p:

α0νj ∼ N(µα0 , σ
2
α0

) ανj ∼ N(µα, σ
2
α) ,

and after having limited these parameters to be positive and having considered the

restraints due to the identi�cation issues (i.e. µα0 = µα = 0 and σ2
α0

= σ2
α = 1),

we obtain truncated normal prior distributions for α0νj and ανj:

α0νj ∼ N(0, 1) I(α0νj > 0) ανj ∼ N(0, 1) I(ανj > 0) .

Finally, concerning the threshold parameters, again we obtain an ordered

series κjk, . . . , κj,Kj−1 starting from the unconstrained variables κ∗jk (with iden-

ti�cation constraints on hyperparmeters µκ = 0 and σ2
κ = 1) distributed as

κ∗jk ∼ N(0, 1), and applying the transformation:

{κjk, . . . κj,Kj−1} = ranked{κ∗j1, . . . , κ∗j,Kj−1} .
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4.4.3 Likelihood function for responses

Likewise the multiunidimensional GRM, a categorical distribution of parameters

πνij1, . . . , πνijKj is assumed for responses, therefore, for ν = 1, . . . ,m, j = 1, . . . , p

and i = 1, . . . , n, expressions (4.8) and (4.9) hold also for the additive GRM.

See Appendix A for details about the code used to implement the additive

GRM in OpenBUGS.

Summarizing, Table 4.1 reports the main characteristics of the multiunidi-

mensional and the additive model considered in this work.
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Multiunidimensional Model Additive Model
for Graded Responses for Graded Responses

Underlying latent structure

Model speci�cation

Pνijk = Φ(κjk − ανjθνi) Pνijk = Φ(κjk − α0νjθ0i − ανjθνi)

PνijKj
= 1 PνijKj

= 1

πνij1 = Pνij1 πνij1 = Pνij1

πνijk = Pνijk − Pν,i,j,k−1 πνijk = Pνijk − Pν,i,j,k−1

Prior distributions on person parameters

θi-vector θi = (θ1i, . . . , θmi) θi = (θ0i, θ1i, . . . , θmi)

Prior on θi θi ∼ Nm(0,Σ) θi ∼ Nm+1(0,Σ)

Prior distributions on item parameters

Item discrimination ανj ∼ N(0, 1) I(ανj > 0) ανj ∼ N(0, 1) I(ανj > 0)

(for a speci�c ability)

Item discrimination none α0νj ∼ N(0, 1) I(α0νj > 0)

(for the general ability)

Threshold parameters κ∗jk ∼ N(0, 1) κ∗jk ∼ N(0, 1)

{κjk, . . . κj,Kj−1} = ranked{κ∗j1, . . . , κ∗j,Kj−1} = ranked{κ∗j1, . . . , κ∗j,Kj−1}

Response likelihood

Yij |• ∼ Cat(πνij1, . . . , πνijKj )

P (Yij = k|•) = π
[k=1]
νij1 · π[k=2]

νij2 · . . . · π[k=Kj ]
νijKj

Table 4.1. Main features of the proposed multiunidimensional and additive
models for graded responses.



Chapter 5

Simulation Study

In this chapter we present the simulation study performed to assess the item

parameter recovery for both multiunidimensional and additive GRMs. The sim-

ulation study is conducted on a bidimensional case by varying the number of

response categories, the sample size, the test and subtest lengths and the ability

correlation structure. Two distinct simulation analyses have been designed in

order to evaluate the parameter recovery of he multiunidimensional and the ad-

ditive GRMs, respectively. A �rst series of simulations was carried out with the

same simulation conditions for both models (Block 1). Then further conditions

were analyzed in order to better understand the behavior of the additive model

(Block 2). Several works on MIRT models focus on the accuracy of parameter

estimation, and, through the manipulation of simulation conditions, it is possible

to assess parameter recovery (Sheng, 2008; Sheng, 2010; Edwards, 2010a).

The �rst section of the chapter describes the simulation study design, while in

the second and third sections are illustrated the simulation conditions and results

for the multiunidimensional and additive models, respectively.

55
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5.1 Simulation study design

The aim is the evaluation of the item parameter recovery of the multiunidimen-

sional and the additive GRMs under several conditions. We consider the bidi-

mensional case, m = 2, which, in particular, implies the presence of two speci�c

abilities θ1 and θ2 for the multiunidimensional model, and the presence of two spe-

ci�c abilities θ1 and θ2 and an overall ability θ0 for the additive model (recalling

the graphical notation introduced before, the latent structures are summarized

in Figure 5.1).

Figure 5.1. Bidimensional case for multiunidimensional and additive structures.

The model parameters and the ability correlations are estimated through

OpenBUGS version 3.2.2. The fundamental scheme for each simulation is the

following (for more details about the procedure and the codes used for the im-

plementation, see Appendix B):

• Simulate the vectors of `real' parameters, taking into account the conditions

we are testing. We perform this step using an R GUI procedure.

• Perform Q = 10 replications of the computation procedure for each simu-

lation. In each replication we sample the data matrix using the parameters

obtained at the previous step, and we run OpenBUGS through the R GUI

package BRugs (Thomas et al., 2006), which basically permits to recall

OpenBUGS automatically from R.

• Proceed to the evaluation of parameter recovery and the computation of the

reproduced correlations between the latent traits by using the Q estimates

gained at the previous step.
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5.1.1 Parameter recovery

In order to evaluate the recovery of the generated item parameters (which in

our simulation context correspond to the �real� population values), we compute

the absolute bias and the root mean square error (RMSE) for each estimated

parameter, taking account the Q replications for each simulation. If we denote

with ω̂ a generic parameter estimate, i.e. the mean of the posterior distribution

gained in each replication, and with ω∗ the real generated value, biases and RMSE

are computed as follow:

Bias(ω) =
1

Q

Q∑
q=1

(ω̂q − ω∗) (5.1)

RMSE(ω) =
1

Q

√√√√ Q∑
q=1

(ω̂q − ω∗)2 , (5.2)

where lower levels of bias and RMSE indicate better precision in parameter re-

covery.

5.1.2 Estimated ability correlations

Considering that the two models have been speci�ed allowing the latent traits to

correlate, and that the correlation structure is re�ected in the variance-covariance

matrix of the latent abilities Σ, we are not interested only in item parameters

recovery, but also in the way the models are able to reproduce such ability cor-

relations.

For this reason, for each simulation, we report also the estimated ability Pear-

son correlations: r̂12 for the multiunidimensional model, and r̂01, r̂02 and r̂12 for

the additive model (remind that with 0 we refer to the overall ability).

5.1.3 Convergence detection

In Lunn et al. (2013) is clearly described how important is the detection of the

chain convergence. An easy, but e�ective, strategy is the detection of convergence
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informally by eye. Anyway, the model could include many parameters and,

consequently, it can be quite hard to check all of them by eye. Figure 5.21

shows two examples of chains that have reached the convergence. The initial

part of the chain, i.e. the non-stationary part, is called burn-in and the iterations

belonging to it must be discharged to be sure that the successive realisations can

be considered as a sample from the stationary distribution. The burn-in period

is easily recognizable in the �rst chain reported in Figure 5.2.

Figure 5.2. Examples of stationary chains.

The so called R statistic of Gelman and Rubin, proposed by Gelman and

Rubin (1992) and further developed by Brooks and Gelman (1998), represents

an useful instrument adopted to check the convergence of the Markov chains,

and hence the reliability of the estimates. This convergence diagnostic can be

constructed only when more than one chain are run simultaneously. This aspect

lead to our decision of running two distinct chains for each simulation (see the

next section).

Basically, the convergence is reached when the chains follow an indistinguish-

able, not recognizable, trajectory from the initial values. The method is based on

the between and within sample variabilities (Ntzoufras, 2011) and the diagnostic

statistic is given by:

R̂ =
V̂

W
=
T ′ − 1

T ′
+
B/T ′

W

M + 1

M
,

1Source: Lunn et al., 2013.
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where T ′ represents the number of iterations in each chain, M is the number of

chains, B/T ′ is the between-sample variance, that is the variance of the posterior

mean values taking into account all the chains, W is the within-sample variance,

that is the mean of variances within each chain, and the pooled posterior variance

is given by (Ntzoufras, 2011):

V̂ =
T ′ − 1

T ′
W +

B

T ′
M + 1

M
.

Once the chains are stationary and the convergence is reached, R̂ → 1. A cor-

rected version of the R statistic also exists, see Brooks and Gelman (1998).

5.1.4 Bayesian �t

Additionally to the calculation and examination of R̂, other well known indicators

for the �t evaluation are the Bayesian deviance and the deviance information

criterion (DIC) (Lunn et al., 2013). Their use is appropriate to obtain some

measures of �t and complexity of the model considered.

The Bayesian deviance is de�ned as:

D(θ) = −2 log p(y|θ) ,

where θ denotes the model parameters and with p(y|θ) is denoted the full sampling

distribution. OpenBUGS considers it as a node (created automatically), so that

it has its own posterior distribution and can be considered like the other model

parameters. Combining the mean posterior deviance, D(θ), and the number of

model parameters, pD, we can compute the DIC through the expression

DIC = D(θ) + pD .

It can be proved that the DIC is an approximation of the Akaike's information

criterion, AIC = D(θ) + 2pD. Also in this case, OpenBUGS permits to easily

compute the DIC for each model implemented.
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5.1.5 General simulation conditions

For all the simulations conducted in this work, Q = 10 replications have been

performed. For each one, we have considered a chain length of 30,000 iterations,

with a burn-in phase of 15,000 iterations. Moreover, two chains have been gen-

erated, in order to be able to set in OpenBUGS the computation of the R and

the DIC statistics.

These choices may be penalizing with reference to the computational time

needed to run the Gibbs sampling algorithm for each simulation (a single replica-

tion needs about 13 hours to be completed), nevertheless, after an examination of

the R diagnostic illustrated above, they ensure the reaching of the convergence.

For each distinct case, we perform di�erent simulations according to a sample

size of n = 500, and a larger sample size of n = 1000.

5.2 Multiunidimensional GRM: simulations and

results

In this section we report the conditions and the results about the simulations

made to assess the parameter recovery of MCMC estimation for the multiunidi-

mensional model for graded responses. All the simulations conducted are char-

acterized by the general conditions reported in section 5.1.5 and other speci�c

conditions, with the aim to evaluate the sensitivity of the model.

5.2.1 Simulation conditions

We consider n individuals and a set of p ordinal items, divided into 2 subtests,

each one consisting of p1 and p2 items. The response Yij of the i-th individual to

the j-th item can take values in the set 1, . . . , Kj, hence each item is characterized

by Kj − 1 thresholds satisfying the order constraint κj1 < . . . κj,Kj−1. Moreover,

we assume that all the test items have the same number of categories, i.e. K1 =

... = Kp = K. Additionally, we assume the existence of m = 2 latent abilities, θ1

and θ2, underlying the responses to the items, which follow a multiunidimensional

latent structure (see Figure 5.1, left part). Thus, the test consists of two subtests
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Simulation p p1 p2 Kj n Σ

] 1 15 5 10 3 500 ΣA

] 2 15 5 10 3 500 ΣB

] 3 15 5 10 4 500 ΣA

] 4 15 5 10 4 500 ΣB

] 5 15 5 10 3 1000 ΣA

] 6 15 5 10 3 1000 ΣB

] 7 15 5 10 4 1000 ΣA

] 8 15 5 10 4 1000 ΣB

Table 5.1. Simulation conditions for the multiunidimensional model for graded
responses.

and the items in each subtest characterize a single speci�c ability. Moreover, the

speci�c abilities are allowed to correlate and the model follows a compensatory

approach.

We perform a block of simulations (Block 1) referred to the case where a test

length of p = 15 is divided into a �rst subtest made of p1 = 5 items and a second

subtest made of p2 = 10 items. A further distinction has been made about the

number of item categories, varying from K = 3 to K = 4. Furthermore, each case

was analyzed by using two di�erent correlation matrices among the abilities: ΣA

and ΣB. ΣA is a 2× 2 identity matrix, where the correlation among the speci�c

abilities is set to zero (r12 = 0). The second correlation matrix ΣB introduces a

moderate correlation between the latent abilities (r12 = 0.4).

By combining all the conditions, we obtain 8 di�erent scenarios, listed in Table

5.1, to investigate the parameter recovery for the multiunidimensional GRM.

5.2.2 Results

In this section we report the results we obtained for each of the 8 simulations

conducted for the multiunidimensional model for graded responses. In the fol-

lowing, for each item parameter type within a subtest, median absolute bias and

median root mean square error are reported for each scenario, as well as the
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Simulations Block 1 - Subtest 1 (5 items)
α1 κ1 κ2 κ3

n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias

500
(5,10) 3

ΣA 0.11 0.09 0.08 0.05 0.08 0.04
ΣB 0.11 0.07 0.10 0.02 0.07 0.03

(5,10) 4
ΣA 0.11 0.09 0.12 0.06 0.07 0.03 0.09 0.04
ΣB 0.09 0.05 0.10 0.10 0.08 0.02 0.09 0.05

1000
(5,10) 3

ΣA 0.06 0.02 0.05 0.03 0.08 0.05
ΣB 0.06 0.04 0.05 0.04 0.05 0.02

(5,10) 4
ΣA 0.05 0.02 0.06 0.04 0.05 0.01 0.04 0.01
ΣB 0.05 0.01 0.04 0.01 0.03 0.01 0.05 0.02

Table 5.2. Multiunidimensional model: block 1 simulation results for subtest 1
(median RMSEs and median absolute biases).

Simulations Block 1 - Subtest 2 (10 items)
α1 κ1 κ2 κ3

n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias

500
(5,10) 3

ΣA 0.09 0.02 0.07 0.02 0.07 0.02
ΣB 0.08 0.01 0.07 0.03 0.08 0.02

(5,10) 4
ΣA 0.07 0.03 0.08 0.06 0.09 0.05 0.12 0.07
ΣB 0.09 0.02 0.08 0.08 0.08 0.01 0.11 0.02

1000
(5,10) 3

ΣA 0.07 0.02 0.06 0.02 0.05 0.03
ΣB 0.08 0.03 0.06 0.03 0.06 0.03

(5,10) 4
ΣA 0.07 0.02 0.05 0.02 0.05 0.02 0.06 0.01
ΣB 0.06 0.02 0.05 0.01 0.05 0.00 0.08 0.03

Table 5.3. Multiunidimensional model: block 1 simulation results for subtest 2
(median RMSEs and median absolute biases).

ability correlation estimates.

In Tables 5.2 and 5.3 we present RMSE and absolute bias for the item param-

eters (discrimination and thresholds parameters) characterizing, respectively, the
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items belonging to the �rst subtest and the items belonging to second subtest.

Values of the RMSE greater than 0.10 and values of the absolute bias greater

than 0.05 are highlighted in bold, identifying cases where the parameter recovery

could be improved.

With reference to the �rst subtest, Table 5.2 shows how the worst perfor-

mances are related to the smaller sample sizes (n = 500). In fact, when we in-

creased the sample size to n = 1000, the RMSEs and biases noticeably decreased,

other things being equal. The presence of an underlying correlation between the

two latent traits does not seem to a�ect the item parameters recovery.

Results are similar for items belonging to the second subtest (Table 5.3).

Higher biases are noticed when sample sizes are smaller, even though the overall

parameter reproduction is better if compared to the �rst subtest. This aspect

should be due to the greater number of items included in the second subtest

(p2 = 10 versus p1 = 5). For n = 1000 item parameters are recovered very

precisely.

Multiunidimensional model:
Real and estimated ability correlations

r12 r̂12

500
(5,10) 3

ΣA 0.00 0.02
ΣB 0.40 0.46

(5,10) 4
ΣA 0.00 0.03
ΣB 0.40 0.45

1000
(5,10) 3

ΣA 0.00 -0.01
ΣB 0.40 0.49

(5,10) 4
ΣA 0.00 -0.01
ΣB 0.40 0.48

Table 5.4. Multiunidimensional model: real (r) and estimated (r̂) ability corre-
lations.

Table 5.4 illustrates the estimated ability correlations for each scenario. It

can be noticed that the di�erences between the generated real values r12 and the

estimated values r̂12 are quite low, indicating good performances of the model.
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Here, unlike what we observe for item parameters, the underlying ability correla-

tion structure seems to in�uence the correlation reproduction. In fact we observe

a worst reproduction in correspondence to the model characterized by the more

complex latent correlation structure ΣB. The sample size seems to in�uence the

latent traits correlation reproduction: the reproduction accuracy increases with

the increase of sample size for the simple case (ΣA), while it decreases with the

increase of sample size for the complex case (ΣB).

As a conclusive remark, what emerges from the simulation study conducted to

assess the multiunidimensional model for graded responses with correlated latent

traits is that item parameters and ability correlations are well reproduced.

5.3 Additive GRM: simulations and results

In this section we report the conditions and the results related to the simulation

study conducted to evaluate the multidimensional additive GRM with correlated

abilities, estimated within a Bayesian context. In addition to the �rst block of

simulations designed also for the multiunidimensional model, a further block of

simulations has been performed, in order to better understand the behavior of

our proposed model.

5.3.1 Simulation conditions

The general simulation conditions for the additive model for graded responses

are the same as the multiunidimensional model. We still assume the existence

of of m = 2 speci�c latent abilities, θ1 and θ2 , but now we consider also an

overall latent ability θ0. Accordingly, we are focusing on the bidimensional case,

for which the latent structure is represented in Figure 5.1, right part.

We indicate with p the total number of ordinal test items, with p1 and p2 the

number of items belonging to the �rst and the second subtest, respectively. Kj
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indicates the greater category for the j-th item and we consider that all the items

have the same number of categories Kj = K, ∀j.

We start from a �rst block of simulations (Block 1) referred to the case where

a test length of p = 15 is divided into a �rst subtest made of p1 = 5 items and a

second subtest made of p2 = 10 items. A further distinction has been made about

the number of item categories, varying in the �rst block from K = 3 to K = 4.

Furthermore, each case was analyzed by using two di�erent correlation matrices

among the abilities: ΣA and ΣB. ΣA is a 3 × 3 identity matrix, where all the

correlations among the abilities are set to zero (r01 = r02 = r12 = 0). In this case,

the additive model with orthogonal traits has the same latent structure of the

well known bi-factor model and the three latent traits (the general and speci�c

abilities) are separate and well distinguished from each other. The second corre-

lation matrix ΣB introduce moderate correlations between all the latent abilities

(r01 = 0.4, r02 = 0.3, r12 = 0.2). The choice to consider not particularly high

levels of correlation has been driven by the consideration that high correlations

among the latent abilities may lead to the existence of a dominant latent trait,

redirecting to a unidimensional model.

In order to investigate further conditions, we designed a second block of sim-

ulations (Block 2), where we increase both the length of the test and the number

of item categories. We consider a case characterized by a test length of p = 50

(divided into p1 = 20 and p2 = 30 items for subtest 1 and 2, respectively) and

K = 4 categories for each test item; and a last case where the test length is

p = 30 (p1 = 10 and p2 = 20) and items have K = 5 categories. Again, with

respect to the correlation matrix, the two cases of ΣA and ΣB are distinguished

as above.

By combining all the simulation conditions, we obtain 16 di�erent scenarios,

illustrated in Table 5.5, to investigate the parameter recovery for the proposed

model.
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Simulation p p1 p2 Kj n Σ

] 1 15 5 10 3 500 ΣA

] 2 15 5 10 3 500 ΣB

] 3 15 5 10 4 500 ΣA

] 4 15 5 10 4 500 ΣB

] 5 15 5 10 3 1000 ΣA

] 6 15 5 10 3 1000 ΣB

] 7 15 5 10 4 1000 ΣA

] 8 15 5 10 4 1000 ΣB

] 9 50 20 30 4 500 ΣA

] 10 50 20 30 4 500 ΣB

] 11 30 10 20 5 500 ΣA

] 12 30 10 20 5 500 ΣB

] 13 50 20 30 4 1000 ΣA

] 14 50 20 30 4 1000 ΣB

] 15 30 10 20 5 1000 ΣA

] 16 30 10 20 5 1000 ΣB

Table 5.5. Simulation conditions for the additive model for graded responses.

5.3.2 Results

Tables 5.6 and 5.7 show the item parameter recovery for the �rst block of simu-

lations where p = 15 (p1 = 5 and p2 = 10), respectively for subset 1 and subtest

2. It emerges that all parameters are quite well recovered when the number of

categories for each item is K = 3 and a sample size of n = 500 is enough to

get accurate estimates. Results are slightly better for the ΣA correlation matrix,

rather than ΣB.

On the other hand, when the number of item categories isK = 4 we obtain less

accurate estimates, for both ΣA and ΣB ability correlation structures. Estimates

get better after increasing the sample size, but median RMSEs and biases remain

rather high, especially for α0 and αv discrimination parameters. Considering

that this result is more evident for the �rst subtest where p1 = 5, rather than the

second one where p2 = 10, this may be due to the small number of item compared
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to the increased number of categories.

Results about the second block of simulations are reported in Tables 5.8 and

5.9. Focusing on the case where p = 50 (p1 = 20 and p2 = 30) and K = 4,

we observe that in both subtests the item parameters are not well recovered,

particularly the discrimination parameters.

Nevertheless, these shortcomings are overtaken by increasing the sample size.

In fact, when n = 1000 all the parameters are recovered rather precisely. Di�erent

correlation structures seem not to a�ect parameter recovery, with an exception

of the discrimination parameters for the second subtest, where we register higher

median RMSEs in association to the more complex correlation structure.

Analogously, the cases where p = 30 (p1 = 10 and p2 = 20) and K = 5 bene�t

from the enlarged sample size. For n = 1000, item parameters are recovered with

care, with slightly better accuracy with respect to ΣA correlation matrix.
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Simulations Block 1 - Subtest 1 (5 items)
α0 α1 κ1 κ2 κ3 κ4

n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

500
(5,10) 3

ΣA 0.08 0.05 0.08 0.03 0.08 0.01 0.07 0.04
ΣB 0.09 0.02 0.15 0.13 0.09 0.03 0.09 0.02

(5,10) 4
ΣA 0.13 0.07 0.12 0.09 0.15 0.12 0.15 0.10 0.13 0.04
ΣB 0.17 0.05 0.23 0.10 0.16 0.16 0.09 0.02 0.15 0.03

1000
(5,10) 3

ΣA 0.07 0.03 0.09 0.03 0.08 0.06 0.07 0.03
ΣB 0.09 0.03 0.14 0.07 0.08 0.03 0.06 0.03

(5,10) 4
ΣA 0.09 0.02 0.16 0.12 0.15 0.05 0.06 0.03 0.16 0.10
ΣB 0.14 0.08 0.16 0.12 0.08 0.05 0.08 0.04 0.15 0.10

Table 5.6. Additive model: block 1 simulation results for subtest 1 (median RMSEs and median absolute biases).
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Simulations Block 1 - Subtest 2 (10 items)
α0 α2 κ1 κ2 κ3 κ4

n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

500
(5,10) 3

ΣA 0.09 0.05 0.10 0.02 0.08 0.02 0.08 0.03
ΣB 0.11 0.04 0.00 0.05 0.09 0.04 0.10 0.00

(5,10) 4
ΣA 0.12 0.02 0.14 0.05 0.10 0.03 0.10 0.04 0.13 0.06
ΣB 0.14 0.04 0.14 0.04 0.10 0.10 0.09 0.02 0.11 0.03

1000
(5,10) 3

ΣA 0.09 0.04 0.09 0.05 0.06 0.02 0.06 0.02
ΣB 0.15 0.05 0.18 0.03 0.05 0.02 0.05 0.01

(5,10) 4
ΣA 0.16 0.12 0.16 0.09 0.07 0.03 0.07 0.03 0.08 0.03
ΣB 0.23 0.13 0.19 0.11 0.07 0.04 0.06 0.03 0.09 0.04

Table 5.7. Additive model: block 1 simulation results for subtest 2 (median RMSEs and median absolute biases).
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Simulations Block 2 - Subtest 1 (20 and 10 items)
α0 α1 κ1 κ2 κ3 κ4

n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

500
(20,30) 4

ΣA 0.14 0.07 0.14 0.08 0.10 0.06 0.10 0.05 0.10 0.04
ΣB 0.15 0.07 0.18 0.10 0.09 0.03 0.08 0.03 0.09 0.03

(10,20) 5
ΣA 0.20 0.05 0.21 0.06 0.09 0.01 0.09 0.03 0.08 0.04 0.09 0.04
ΣB 0.17 0.07 0.22 0.07 0.10 0.02 0.09 0.02 0.08 0.02 0.08 0.02

1000
(20,30) 4

ΣA 0.07 0.05 0.08 0.04 0.06 0.01 0.06 0.01 0.05 0.01
ΣB 0.06 0.02 0.08 0.04 0.06 0.04 0.06 0.04 0.06 0.03

(10,20) 5
ΣA 0.07 0.04 0.07 0.04 0.08 0.02 0.06 0.02 0.05 0.02 0.05 0.01
ΣB 0.19 0.04 0.27 0.05 0.07 0.03 0.06 0.03 0.05 0.03 0.07 0.02

Table 5.8. Additive model: block 2 simulation results for subtest 1 (median RMSEs and median absolute biases).
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Simulations Block 2 - Subtest 2 (30 and 20 items)
α0 α2 κ1 κ2 κ3 κ4

n (p1, p2) K RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

500
(20,30) 4

ΣA 0.16 0.07 0.20 0.08 0.10 0.03 0.09 0.03 0.10 0.03
ΣB 0.07 0.02 0.10 0.05 0.10 0.06 0.10 0.06 0.10 0.05

(10,20) 5
ΣA 0.23 0.08 0.18 0.05 0.09 0.03 0.07 0.03 0.07 0.02 0.09 0.03
ΣB 0.20 0.09 0.19 0.08 0.08 0.03 0.07 0.03 0.08 0.02 0.08 0.02

1000
(20,30) 4

ΣA 0.06 0.05 0.06 0.02 0.06 0.02 0.06 0.02 0.06 0.01
ΣB 0.14 0.06 0.17 0.03 0.07 0.02 0.05 0.02 0.07 0.02

(10,20) 5
ΣA 0.07 0.05 0.07 0.03 0.05 0.01 0.05 0.01 0.05 0.01 0.06 0.02
ΣB 0.06 0.01 0.08 0.03 0.06 0.02 0.05 0.02 0.05 0.01 0.06 0.02

Table 5.9. Additive model: block 2 simulation results for subtest 2 (median RMSEs and median absolute biases).
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Additive model: Real and estimated ability correlations
r01 r̂01 r02 r̂02 r12 r̂12

500
(5,10) 3

ΣA 0.00 0.07 0.00 0.16 0.00 -0.07
ΣB 0.40 0.62 0.30 0.49 0.20 0.24

(5,10) 4
ΣA 0.00 0.09 0.00 0.29 0.00 -0.07
ΣB 0.40 0.60 0.30 0.56 0.20 0.27

1000
(5,10) 3

ΣA 0.00 0.11 0.00 0.16 0.00 -0.05
ΣB 0.40 0.60 0.30 0.54 0.20 0.27

(5,10) 4
ΣA 0.00 0.13 0.00 0.36 0.00 -0.05
ΣB 0.40 0.58 0.30 0.65 0.20 0.30

500
(20,30) 4

ΣA 0.00 0.00 0.00 0.29 0.00 -0.05
ΣB 0.40 0.50 0.30 0.36 0.20 0.21

(10,20) 5
ΣA 0.00 0.02 0.00 0.15 0.00 -0.03
ΣB 0.40 0.51 0.30 0.48 0.20 0.24

1000
(20,30) 4

ΣA 0.00 0.03 0.00 0.07 0.00 -0.02
ΣB 0.40 0.45 0.30 0.37 0.20 0.20

(10,20) 5
ΣA 0.00 0.06 0.00 0.11 0.00 -0.05
ΣB 0.40 0.52 0.30 0.41 0.20 0.24

Table 5.10. Additive model: real (r) and estimated (r̂) ability correlations.

Table 5.10 illustrates the estimated ability correlations for each scenario.

Their correspondent true values are also reported and we can observe how the

correlations are reproduced. In particular, the results are coherent with the ones

observed in relation to the item parameters: the best performance is associated

to the cases of the highest sample size, a reasonable number of items (totally 50)

and a number of categories equal to 4, even in case of slightly high correlations.

To conclude, the main results showed that the algorithm is particularly sen-

sitive to the sample size due to the model complexity and the high number of

parameters to be estimated. In fact, when the sample size is su�ciently large

(n = 1000), all the parameters are well reproduced. The results are also af-

fected by the trade-o� between the test length and the number of categories: the
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worst results are associated to a high number of categories and a low test length.

Analogous evidences apply for the correlation estimates.
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Chapter 6

Application to real data: residents'

attitudes towards tourism

In this chapter we illustrate an implementation of the proposed models on data

collected with the aim to investigate Romagna and San Marino residents' percep-

tions and attitudes towards the tourism industry. After having introduced the

interpretation of model parameters in this new context, we illustrate the research

design. Results about the multiunidimensional and additive GRMs estimations

are reported in the �nal two sections.

6.1 Interpretation of model parameters

In the present application, the opinions of a sample of respondents on a set of

aspects referred to the tourism industry represent our observed variables. There-

fore, latent traits can be de�ned as `perceptions'. The investigation involves

two distinct aspects of the phenomenon, namely perceived bene�ts and costs of

tourism. Therefore, it is possible to identify two speci�c perceptions and the

overall attitude of respondents as latent variables.

Within this framework, discrimination parameters represent the capability of

the items to di�erentiate between respondents with di�erent levels of agreement,

75
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whereas the threshold parameters can be interpreted as `criticity levels' of the

corresponding item. For a given item, high values for the criticity parameters

correspond to lower probabilities to observe responses in positive categories.

6.2 Research design

Data analyzed are the result of a research conducted by the University of Bologna

with the aim to study the subjective well-being (Bernini et al., 2013). Data were

collected in the end of 2010 from residents in the Romagna area and in the State of

San Marino (Italy). The Romagna area consists of the provinces of Forlì-Cesena,

Rimini, and Ravenna, and is located in the southeast of the Emilia-Romagna

region. The independent republic of San Marino borders the Rimini Province.

The tourism industry has a relevant weight in this area: it contains the 7% of

Italian accommodation structures and the 5% of Italian entertainment activities.

Moreover, it is one of the main Italian tourism destinations, hosting in 2010

almost 27.5 million overnight stays (7.3% of the total national overnights) and

5.3 million arrivals (5.3% of the total national arrivals).

The sampling design was carried out taking into account a strati�cation of the

provinces and the demographic characteristics of the tourists (age and gender).

The �nal sample is representative of the population at the provincial level, with a

margin of error of ±5% at a 95% level of con�dence. A total of 794 questionnaires

were obtained through a telephone survey.

The questionnaire was created with the aim to collect residents' evaluations

about costs and bene�ts of the tourism industry, a personal bene�t from tourism,

the quality of life in the area, the degree of involvement in the tourism industry,

the residents' satisfaction with either their leisure or non-leisure domains, their

quality of life, and the degree of support for future development of the tourism

industry. Furthermore, personal information (age, gender, nationality, residence

and occupation) were also collected (see Appendix C for the submitted question-

naire). Some characteristics of the sample are summarised in Table 6.1.

In particular, among all the aspects investigated through the survey, the object

of our analysis is the perception of bene�ts and costs associated to the tourism

industry.

The perceived bene�ts of tourism were assessed by �ve items: the support in
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Number %

Provinces
Forlì-Cesena 246 31.0
Ravenna 245 30.9
Rimini 243 30.6
San Marino 60 7.6

Gender
Female 413 52.0
Male 381 48.0

Age
< 25 65 8.2
25 - 35 115 14.5
35 - 45 171 21.5
45 - 55 127 16.0
55 - 65 95 12.0
≥ 65 221 27.8

Education
Primary 105 13.2
Lower secondary 196 24.7
Upper secondary 192 24.2
University 301 37.9

Table 6.1. Pro�le of respondents.

local economic development [B1], quality of life [B2], public services improvement

[B3], employment prospects [B4], and opportunities for cultural activities [B5].

Respondents were asked to indicate whether those items would improve for their

community as a result of increasing tourism activity on a 7-point anchor scale,

from �strongly disagree� to �strongly agree�.

On the other hand, the perceived costs of tourism were assessed by other

�ve items: the cost of living [C1], crime [C2], environment damage [C3], tra�c

congestion [C4], and pollution [C5]. In this case residents were asked to express if

those aspects would worsen for their community as a result of increasing tourism

activity on the 7-point scale mentioned above. Scales of the items with respect
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to costs were inverted in order to eliminate reverse scoring and make the low and

high scores be associated with high and low perceptions of costs, respectively.

In Table 6.2, the response frequencies are reported for each item. Items B1-B5

refer to the bene�ts, while items C1-C5 refer to the costs that were perceived by

residents about the tourism industry.

Responses

Low bene�ts ←− −→ High bene�ts
Item Item description 1 2 3 4 5 6 7

B1 Econ. support 12 51 58 157 149 235 132
B2 Quality of life 24 49 78 184 227 155 77
B3 Public services 16 45 97 186 190 171 89
B4 Job opportunities 16 36 69 157 187 198 131
B5 Cultural act. 30 54 76 186 188 157 103

Responses

High costs ←− −→ Low costs
Item Item description 1 2 3 4 5 6 7

C1 Cost of life 64 151 182 139 119 100 39
C2 Crime rate 145 169 157 155 69 71 28
C3 Env. damage 117 151 166 187 96 59 18
C4 Tra�c 193 152 158 130 89 45 27
C5 Pollution 158 173 164 136 63 81 19

Table 6.2. Response frequencies for items about tourism bene�ts (B1-B5) and
items about tourism costs (C1-C5).

6.3 Results for the multiunidimensional GRM

The parameters of the bidimensional version of the multiunidimensional GRM

have been estimated on the basis of the residents' responses to the 5 items on

bene�ts (B1-B5) and the 5 items on costs (C1-C5).
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By following a con�rmatory approach, we assume that the item responses on

bene�ts are related to the �rst latent variable θ1, while the item responses on

costs are related to the second latent variable θ2. The two traits are allowed to

correlate.

Concerning the de�nition of the latent traits, θ1 can be expressed as the

�perception of tourism bene�ts�, while θ2 can be de�ned as the �perception of the

tourism costs�. These interpretations strictly derives from the meaning of the

items included in the questionnaire. A positive perception of the e�ect of the

tourism industry is re�ected by high resident scores on θ1 and θ2. In particular,

the higher the positive perception of the e�ect of tourism on the local environment

is, the higher the score is on θ1. Conversely, the higher the score is on θ2, the

lower the perception of a negative impact of tourism on the environment is.

The model parameters were estimated by using the proposed OpenBUGS

procedure for the multiunidimensional GRM, with two chains and 30,000 total

iterations (15,000 as burn-in) for each one. Table 6.3 illustrates the item param-

eter estimates for the test items.

The strength of the relationship among the observed responses and the related

latent trait is expressed by the discrimination parameters α. From Table 6.3 we

can see that these parameters are all largely positive, suggesting that there is a

coherent choice for the chosen latent structure.

Particularly, the capability of an item to di�erentiate individuals with di�erent

perceptions of the impact of tourism increases as the discrimination parameters

increases. This relationship means that public services, job opportunities and

cultural activities (items B3, B4 and B5, respectively) are the most informative on

the perception of the tourism advantage, whereas tra�c and pollution (items C4

and C5) can better discriminate between residents who have di�erent perceptions

of the environmental impact of tourism. Among all the items, the cost of life (C1)

presents the lower discrimination capability.
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Item Item description  ̂  SD( ̂ ) MCSE( ̂ ) 
 

 ̂  SD( ̂ ) MCSE( ̂ )  ̂  SD( ̂ ) MCSE( ̂ )  ̂  SD( ̂ ) MCSE( ̂ ) 

B1 Econ. support 1.103 0.074 0.001  -2.904 0.155 0.001 -1.920 0.095 0.001 -1.400 0.080 0.001 

B2 Quality of life 1.204 0.078 0.001  -2.632 0.134 0.001 -1.856 0.096 0.001 -1.225 0.078 0.001 

B3 Public services 1.485 0.096 0.001  -3.240 0.184 0.002 -2.178 0.116 0.001 -1.301 0.088 0.002 

B4 Job. opp. 1.423 0.094 0.002  -3.231 0.183 0.002 -2.315 0.123 0.001 -1.549 0.095 0.002 

B5 Cultural act. 1.339 0.087 0.001  -2.629 0.134 0.001 -1.844 0.099 0.001 -1.221 0.082 0.001 

C1 Cost of life 0.286 0.105 0.004  -1.468 0.115 0.001 -0.633 0.065 0.001 0.003 0.046 0.001 

C2 Crime rate 1.563 0.109 0.002  -1.603 0.106 0.001 -0.432 0.080 0.001 0.450 0.080 0.001 

C3 Env. damage 1.440 0.100 0.003  -1.744 0.105 0.001 -0.658 0.078 0.001 0.222 0.074 0.001 

C4 Traffic 1.638 0.117 0.003  -1.268 0.097 0.001 -0.322 0.082 0.001 0.618 0.085 0.001 

C5 Pollution 1.793 0.131 0.003  -1.580 0.114 0.001 -0.413 0.087 0.001 0.566 0.088 0.001 

               

Item Item description     
 ̂  SD( ̂ ) MCSE( ̂ )  ̂  SD( ̂ ) MCSE( ̂ )  ̂  SD( ̂ ) MCSE( ̂ ) 

B1 Econ. support     -0.496 0.065 0.001 0.171 0.063 0.001 1.348 0.077 0.001 

B2 Quality of life     -0.274 0.066 0.001 0.807 0.072 0.001 1.906 0.099 0.001 

B3 Public services     -0.284 0.075 0.002 0.723 0.080 0.002 2.010 0.113 0.001 

B4 Job. opp.     -0.560 0.076 0.002 0.366 0.074 0.001 1.543 0.094 0.002 

B5 Cultural act.     -0.235 0.070 0.001 0.679 0.074 0.001 1.749 0.098 0.001 

C1 Cost of life     0.471 0.052 0.001 0.962 0.071 0.001 1.670 0.107 0.001 

C2 Crime rate     1.345 0.096 0.001 1.867 0.109 0.001 2.775 0.146 0.001 

C3 Env. damage     1.235 0.088 0.001 1.982 0.108 0.001 2.893 0.151 0.001 

C4 Traffic     1.449 0.102 0.001 2.234 0.126 0.001 2.946 0.158 0.001 

C5 Pollution     1.512 0.111 0.001 2.082 0.130 0.001 3.367 0.191 0.001 

NOTE:   = 1 for the items on benefits and   = 2 for the items on costs, SD = standard deviation, MCSE = Monte Carlo standard error. 

Table 6.3. Item parameter estimates for the multiunidimensional GRM.
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The thresholds' parameters κ for each are able to re�ect the criticity level of

the speci�c aspect considered. In fact, high values for the criticity parameters

correspond to lower probabilities to observe responses in higher categories, which

means that the items characterized by higher criticity parameters are answered

in lower categories more frequently.

For this model, it is not possible to unambiguously order the items by the

response probability on the basis of the criticity parameters. But, by �xing

θ̂1 and θ̂2 at the mean value 0, we can use these parameters to compare the

probabilities of category responses for each item, and to compare probabilities

to observe a response in a particular category or higher (lower) for each item.

The �rst comparison can be carried out by calculating di�erences in parameters

associated to adjacent thresholds, while the second comparison, which is mainly

meaningful in a context of interpretation, can be carried out directly through the

thresholds' parameters.

Figure 6.11 graphically illustrates the estimated probabilities to observe each

category for each test item for a resident with an average perception of tourism

bene�ts and costs, i.e. θ̂1 = 0 and θ̂2 = 0.

As an example, an individual with an average perception of tourism bene�ts

will have a higher probability of responding higher categories to item B1 than

to item B3, in fact thresholds' parameters associated to higher categories, κ3,

κ4, κ5 and κ6, are regularly lower for item B1 (κ̂B1,3 = −1.40, κ̂B1,4 = −0.50,

κ̂B1,5 = 0.17, κ̂B1,6 = 1.35) than to item B3 (κ̂B3,3 = −1.30, κ̂B3,4 = −0.28,

κ̂B3,5 = 0.72, κ̂B3,6 = 2.01). This means that, between the advantages of economic

support and public services, the �rst aspect is considered mainly relevant by an

individual with an average perception of bene�ts. From Table 6.3 emerges that

thresholds' parameters for item B1 related to the highest categories κ5 and κ6

are the lowest in the group of items on bene�ts. This means that the main and

immediate advantages of tourism are identi�ed by the residents in the economic

support.

Analogously, a resident with an average perception of the environmental im-

pact of tourism will have a higher probability of answering higher categories to

item C1 than to the other items (κ̂C1,3 = 0.003, κ̂C1,4 = 0.471, κ̂C1,5 = 0.962,

1NOTE: in order to represent the probabilities associated to categories 1 and 7 for each
item, a lower bound of -4 and an upper bound of 4 have been �xed.
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Figure 6.1. Representation of the thresholds' parameter estimates for the mul-
tiunidimensional model.

κ̂C1,6 = 1.670). Hence, the cost of life can be regarded as a marginal negative

aspect of tourism in comparison with the other issues.

The estimated correlation between the two latent traits is r̂12 = −0.37. The

correlation is negative and relatively high, indicating that the perception of a

high economic advantage of tourism is associated with a strongly negative envi-

ronmental impact. As a conclusive remark, we can observe that the individuals

show a di�erent evaluation of the bene�ts vs. costs, revealing a critical view of

the tourism industry, and the multiunidimensional GRM is able to capture this

peculiarity.

6.4 Results for the additive GRM

In order to extend the structure of the multiunidimensional model with the in-

clusion of a general trait that directly a�ects all the item responses, we estimated
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the parameters of the additive GRM. A general latent trait θ0 is added to the

speci�c traits θ1 and θ2. The two speci�c traits have the same interpretation as in

the multiunidimensional model, namely perceptions of bene�ts and costs, while

the general trait can be de�ned as the overall attitude towards tourism.

The foundation is that the general trait is estimated on the basis of the per-

ception of either bene�ts and costs but conditionally on the speci�c e�ects of the

two traits, and allowing other residual factors (age, gender, place of residence,

occupation,...) to in�uence the measure of the overall attitude. Concerning the

score interpretation, higher scores in the attitude are related to residents who

perceive higher advantages and a lower negative impact of tourism.

The model parameters were estimated by using the proposed OpenBUGS

procedure for the additive GRM, with two chains and 30,000 iterations (15,000

burn-in) for each one. The item parameter estimates for the additive model are il-

lustrated in Table 6.4. The additive model requires, for each item, the estimation

of the general discrimination parameter (α0ν), the speci�c discrimination param-

eter (αν) and the criticity parameters (κ). Again, items cannot be unambiguously

ordered on the basis of the response probabilities.

Figure 6.2 graphically illustrates the estimated probabilities to observe each

category for each test item for a resident with an average perception of tourism

bene�ts and costs, i.e. a resident characterized by θ̂0 = 0 and θ̂1 = 0 for items on

bene�ts and a resident characterized by θ̂0 = 0 and θ̂2 = 0 for items on costs.

Concerning the group of items on bene�ts, the economic support (B1) and job

opportunities (B4) are associated with higher probabilities of responses in higher

categories, because the corresponding estimates for the thresholds' parameters

are generally lower than for the remaining items (κ̂B1,3 = −1.47, κ̂B1,4 = −0.51,

κ̂B1,5 = 0.20, κ̂B1,6 = 1.46 and κ̂B4,3 = −1.60, κ̂B4,4 = −0.56, κ̂B4,5 = 0.41,

κ̂B4,6 = 1.64)). This arrangement means that residents who have an average

general perception of advantages and an average speci�c perception of advan-

tages consider the economic development and the job opportunities as the main

advantages of tourism.

Moreover, among the items on costs, again the cost of life (C1) is characterised

by generally lower thresholds' parameters in comparison to the estimated criticity

levels of other items, especially with reference to higher categories (κ̂C1,3 = 0.00,

κ̂C1,4 = 0.47, κ̂C1,5 = 0.96 and κ̂C1,6 = 1.68). So that, the cost of life seems to be

the least important impact of the tourism industry for a typical respondent.
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Item 
Item 

description  ̂  SD( ̂ ) MCSE( ̂ ) 
 

 ̂  SD( ̂ ) MCSE( ̂ )  ̂  SD( ̂ ) MCSE( ̂ )  ̂  SD( ̂ ) MCSE( ̂ ) 

B1 Econ. support 1.047 0.074 0.001  - 3.049 0.169 0.002 - 2.014 0.105 0.001 - 1.469 0.087 0.001 

B2 Quality of life 0.946 0.063 0.001  - 2.539 0.125 0.001 - 1.789 0.090 0.001 - 1.176 0.073 0.001 

B3 Public services 1.247 0.082 0.001  - 3.278 0.188 0.002 - 2.200 0.119 0.001 - 1.306 0.088 0.001 

B4 Job. opp. 1.290 0.082 0.001  - 3.342 0.187 0.002 - 2.390 0.125 0.001 - 1.595 0.094 0.001 

B5 Cultural act. 1.194 0.077 0.001  - 2.713 0.141 0.001 - 1.901 0.103 0.001 - 1.256 0.084 0.001 

C1 Cost of life 0.284 0.042 0.000  - 1.491 0.069 0.000 - 0.644 0.049 0.000 - 0.002 0.046 0.000 

C2 Crime rate 1.534 0.109 0.002  - 1.824 0.123 0.002 - 0.534 0.085 0.002 0.461 0.083 0.001 

C3 Env. damage 1.343 0.090 0.001  - 1.901 0.114 0.002 - 0.745 0.080 0.001 0.205 0.073 0.001 

C4 Traffic 1.487 0.126 0.004  - 1.509 0.134 0.005 - 0.397 0.092 0.003 0.700 0.098 0.002 

C5 Pollution 1.425 0.103 0.002  - 1.646 0.114 0.003 - 0.452 0.083 0.002 0.548 0.085 0.002 

               

Item 
Item 

description  ̂   SD( ̂  ) MCSE( ̂  ) 
 

 ̂  SD( ̂ ) MCSE( ̂ )  ̂  SD( ̂ ) MCSE( ̂ )  ̂  SD( ̂ ) MCSE( ̂ ) 

B1 Econ. support 0.013 0.012 0.000  - 0.507 0.066 0.001 0.204 0.064 0.001 1.458 0.086 0.001 

B2 Quality of life 0.250 0.073 0.001  - 0.250 0.061 0.001 0.802 0.067 0.001 1.871 0.094 0.001 

B3 Public services 0.446 0.095 0.002  - 0.264 0.071 0.001 0.760 0.078 0.001 2.066 0.116 0.002 

B4 Job. opp. 0.144 0.083 0.002  - 0.560 0.073 0.001 0.405 0.071 0.001 1.644 0.097 0.002 

B5 Cultural act. 0.343 0.094 0.002  - 0.228 0.069 0.001 0.732 0.074 0.001 1.856 0.103 0.001 

C1 Cost of life 0.017 0.016 0.000  0.470 0.048 0.000 0.964 0.054 0.000 1.676 0.075 0.000 

C2 Crime rate 0.074 0.060 0.001  1.470 0.106 0.002 2.068 0.128 0.002 3.083 0.179 0.003 

C3 Env. damage 0.051 0.049 0.001  1.299 0.091 0.001 2.093 0.116 0.002 3.089 0.167 0.002 

C4 Traffic 0.906 0.144 0.005  1.660 0.137 0.004 2.566 0.186 0.006 3.381 0.240 0.007 

C5 Pollution 0.668 0.113 0.003  1.520 0.110 0.002 2.102 0.133 0.003 3.413 0.200 0.004 

NOTE:   = 1 for the items on benefits and   = 2 for the items on costs, SD = standard deviation, MCSE = Monte Carlo standard error. 

Table 6.4. Item parameter estimates for the additive GRM.
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Figure 6.2. Representation of the thresholds' parameter estimates for the addi-
tive model.

Focusing on the discrimination parameters, concerning the estimated speci�c

discrimination parameters, results are similar to the multiunidimensional case:

the most informative items on the speci�c perception of tourism bene�ts are

public services, job opportunities and cultural activities (items B3, B4 and B5,

respectively), while crime rate, tra�c and pollution (items C2, C4 and C5, re-

spectively) are the items that better discriminate respondents with di�erent levels

of speci�c perception of tourism costs.

Higher values of estimated general discrimination parameters are associated to

public services (item B3) and cultural activities (item B5) regarding the bene�ts,

and to tra�c (item C4) and pollution (item C5) among the items on costs of

tourism industry. Consequently, these aspects principally in�uence the general

residents' attitude towards tourism.

Usually, the additive model �ts the data better than the multiunidimensional

model because the presence of an overall latent trait is generally supported by

data. In fact, also for our data a lower DIC is associated with the additive model

(DIC= 8945) in comparison to the multiunidimensional model (DIC=10950).
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Analogously to the previous model, we estimated the correlations between the

latent variables (θ1, θ2, and θ0) of the additive model. The results are r̂01 = 0.03,

r̂02 = 0.18 and r̂12 = −0.62. The correlation between the bene�t and cost latent

traits is negative as in the multiunidimensional model.

The correlation between the bene�t latent trait and the attitude is very low,

and slightly higher is the estimated correlation between the cost latent trait and

the general attitude.

6.5 Heterogeneity in resident perceptions

The multiunidimensional and additive models presented in this work are speci�ed

without considering the presence of covariates. Of course, once the measurement

process is carried out, latent constructs may result in di�erent scores according

to the characteristics of the examinees. In order to face this issue, we perform an

analysis of the scores for the general and speci�c latent traits obtained from the

additive model.

Therefore, to investigate the importance of the individuals' heterogeneity in

the evaluation of tourism attitudes, the score distributions2 of the general and

speci�c latent traits are calculated and compared on the basis of some socio-

demographic characteristics (Table 6.5).

Residents show, on average, a positive attitude towards tourism (0.62) and a

higher perception of bene�ts (0.57) compared with the costs (0.48).

From Table 6.5 we can observe how the youngest people have both a signi�cant

personal attitude tward tourism and a critical perception of the tourism industry:

a high score in the perception of bene�ts is associated to a low score on the

perception of costs. This means that the youngest are conscious of the advantages

related to tourism, but at the same time, they strongly evaluate the negative

e�ects of the industry on the community. On the contrary, respondents with a

low level of education and elderly people show a high attitude towards tourism

and a small gap between the bene�t and cost scores.

The area of residence also a�ects the evaluation of the tourism industry.

In fact, residents in the tourism municipalities and provinces (Rimini and San

2As the scores have a di�erent range, they have been normalized to the range of 0 to 1.
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θ̂0 θ̂1 θ̂2

Age
< 25 0.57 0.61 0.45
25 - 35 0.61 0.56 0.53
35 - 45 0.61 0.55 0.46
45 - 55 0.63 0.57 0.50
55 - 65 0.64 0.58 0.50
≥ 65 0.62 0.57 0.48

Gender
Female 0.62 0.58 0.47
Male 0.61 0.55 0.50

Education
Primary 0.62 0.57 0.48
Lower secondary 0.65 0.57 0.52
Upper secondary 0.60 0.56 0.45
University 0.60 0.57 0.48

Provinces
Forlì-Cesena 0.65 0.54 0.52
Ravenna 0.65 0.53 0.53
Rimini 0.58 0.62 0.41
San Marino 0.50 0.62 0.40

Typological locality
Main town 0.60 0.57 0.49
Tourism municipality 0.63 0.59 0.47
Other urban city 0.64 0.55 0.49

Total 0.62 0.57 0.48

Table 6.5. Normalized mean perception and attitude scores by age, gender,
education, province and typological area.

Marino), where the seaside tourism is relevant, present a high gap between the

bene�t and cost scores.

This �rst research, that has been repeated in 2013, furnishes interesting sug-

gestions for the development of incentive tourism policies, which are also related

to the well-being.
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Chapter 7

Conclusions

This work falls within the context of item response theory (IRT). In particular,

it focuses on models for ordinal data. The importance of developing models for

ordinal data is relevant not only from a theoretical perspective. Actually, several

�elds of application are characterized by ordinal manifest variables and the use

of proper models for ordinal data allows to avoid the loss of information due

to the dichotomization process. IRT is widely used in psychological and educa-

tional �elds, but it also shows a great potential in applications within behavioral

sciences, where data are often ordinal.

In the past, a common assumption was the presence of a single latent con-

struct underlying the response process. However, real data typically suggest a

multidimensional structure. So that, multidimensional IRT (MIRT) models have

been recently developed, taking into account the complexity of real data and

allowing for the presence of more than one latent trait.

In this work we focus on MIRT models for ordinal data with complex latent

structures. Indeed, numerous MIRT models can be speci�ed according to several

conditions, and one of them is the hypothesized underlying latent structure. The

models proposed in this work are extensions of the unidimensional graded resop-

nse model (GRM) (Samejima, 1969) and are characterized by multidimensional

latent structures with correlated traits. In particular, we consider the multiuni-

dimensional structure, where the item responses are a�ected by speci�c traits,

and the additive structure, where the item responses are simultaneously a�ected

89
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by a general and speci�c traits.

Then, we considered two model: the multiunidimensional and the additive

GRMs with correlated traits. This choice has been driven by the fact that the

�rst one is widely used and represents a classical approach in MIRT analysis,

while the second one is able to re�ect the complexity of real interactions between

items and respondents.

Due to the complexity of the models proposed, another important aspect of

this work concerns the estimation procedure. Within a Bayesian approach, we

propose a Markov chain Monte Carlo (MCMC) procedure for parameter estima-

tion, which permits to overtake the problem of analytically intractable expres-

sions. Models are implemented using the open-source software OpenBUGS. This

software, allowing for a �exible and rather easy implementation, represents a

good solution for estimation issues.

In order to assess the item parameter recovery for both multiunidimensional

and additive GRMs we perform a simulation study. The simulation study is

conducted on a bidimensional case by varying the simulation conditions, that are:

the number of response categories, the sample size, the test and subtest lengths

and the latent trait correlation structure. Concisely, the main simulation results

showed that the parameter recovery is particularly sensitive to the sample size,

due to the model complexity and the high number of parameters to be estimated.

For a su�ciently large sample size the parameters of the multiunidimensional and

additive GRMs are well reproduced. The results are also a�ected by the trade-

o� between the number of items constituting the test and the number of item

categories: the worst results are associated to a high number of categories and

a low test length. Analogous evidences apply for the latent trait correlation

estimates.

In order to verify the actual applicability of the proposed models in real sit-

uations, we estimated them on empirical data. Data were collected with the

aim to investigate Romagna and San Marino residents' perceptions and attitudes

towards the tourism industry. A relevant advantage of the proposed models

concerns the possibility to use the data collected without any preliminary trans-

formation, hence without any loss of information.

Some limitations of the research regarding the application study exist, in

particular the choice of the prior distributions, the sample size, the number of

item categories, the test and subtests lengths, are important issues that have to
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be always considered and checked.

Lastly, concerning the future works to be done on the MIRT models for or-

dinal data and correlated traits, �rst of all it could be interesting to perform

further simulations with an increased number of latent dimensions. Secondly,

this work focuses on two speci�c underlying latent structures, hence an extension

to di�erent (i.e. hierarchical or high-orders) structures represent a stimulating

issue. A �nal extension could consider the introduction of covariates in the model

speci�cation, independently from the underlying structure considered.
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Appendix A

OpenBUGS code for implemented

models

A.1 OpenBUGS code: multiunidimensional and

additive models for graded responses

In this section we report the codes used to implement the multiunidimensional

model and the additive model for graded responses.

Initial values for the following quantities have to be set and loaded from the

user before to run the models: m.theta, Sigma.theta, m.alpha, s.alpha, m.alpha0,

s.alpha0, m.kappa and s.kappa (of course, m.alpha0 and s.alpha0 are referred

only to the additive model).
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Appendix B

R procedures for the simulation

study

The following sections report the codes used to perform the simulation study

for both the multiunidimensional and the additive GRMs. For each model, the

procedure about a single scenario (i.e. with particular simulation conditions that

can be set at the beginning of the procedure) is described.

The simulation study has been conducted by using an R procedure to generate

the objects of interest, and by recalling OpenBUGS trough the R package BRugs.

The main advantage of the combined use of R and OpenBUGS consists in the

possibility to create an automatic routine to complete all replications within a

distinct scenario.

For further details about all the available functions and features of the package

BRugs, see Thomas et al. (2006).

105



B.1 Multiunidimensional GRM: R code







B.2 Additive GRM: R code









Appendix C

Survey questionnaire

In this section we report the questionnaire submitted to residents in the Romagna

area and in the State of San Marino (Italy). The questionnaire has been created to

investigate residents' evaluations about costs and bene�ts of the tourism industry,

a personal bene�t from tourism, the quality of life in the area, the degree of

involvement in the tourism industry, the residents' satisfaction with either their

leisure or non-leisure domains, their quality of life, and the degree of support for

future development of the tourism industry.
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QUESTIONARIO RIMINESI 

 

Intervistatrice num.___  Intervistato num.____  

 

Buongiorno, questa è un'indagine coordinata da docenti dell’Università di Rimini per 

conoscere le opinioni dei cittadini sulla qualità della vita. Possiamo avere anche il suo 

parere? La disturberemo solo pochi minuti e le sue risposte rimarranno 

completamente anonime ... (passare subito alla domanda successiva). 

 

 

1. Giudichi la Romagna rispetto a: / Con un voto da 1 a 7, come giudica 

questi aspetti della Romagna (1 min sodd, 7 max sodd):  

 

1. tenore di vita  ____ 

2. dotazione di servizi pubblici ____ 

2. traffico ____ 

3. pulizia della città e verde ____ 

4. ospitalità e accoglienza ____ 

5. possibilità di lavoro/carriera ____ 

6. attività ricreative e culturali ____ 

7. sicurezza ____ 

 

2. Dia un voto da 1 a 7 ai seguenti vantaggi  che il turismo porta nella 

Romagna (1 min vantaggio, 7 max vantaggio) : 

 

1. sviluppa l’economia della città ____ 

2. migliora lo standard/qualità di vita ____ 

3. sviluppa i servizi pubblici ____ 

4. aumenta le opportunità lavorative ____ 

5. migliora le attività culturali ____ 

 

3. Dia un voto da 1 a 7 ai seguenti problemi che il turismo porta nella 

Romagna (1 min problema, 7 max problema):  

 

1. Aumenta il costo della vita e delle case ____ 

2. Aumenta il disordine e la criminalità ____ 

3. Danneggia l’ambiente e il paesaggio ____ 

4. Aumenta il traffico ____ 

5. Aumenta l’inquinamento ____ 

 

4. Con un voto da 1 a 7, quanto si ritiene soddisfatto dei seguenti 

aspetti della sua vita (ultimo anno):  

 

1. Situazione economica ____ 

2. Salute ____ 

3. Relazioni famigliari ____ 

4. Relazioni con amici ____ 

5. Lavoro ____ 

6. spiritualità/religione ____ 

 

5. Con un voto da 1 a 7, quanto si ritiene soddisfatto dalle attività che 

svolge nel tempo libero (ultimo anno):  

 

1. relazioni sociali ____ 

2. attività sportive/fitness ____ 

3. hobby personali ____ 

4. attività culturali (cinema, teatro, ecc.) ____ 

5. attività ricreative (ristoranti, discoteche, ecc.) ____ 

6. fare shopping ____ 

7. andare in spiaggia/mare ____ 

 

6. Con un voto da 1 a 7 (1 min sodd, 7 max sodd), quanto (ultimo anno): 

 

1. è soddisfatto di come sono andate le cose nella sua vita  ____ 

2. è soddisfatto della maggior parte degli aspetti della sua vita  ____ 

3. trova soddisfazione nel pensare a quello che è riuscito a fare nella vita ____ 

4. è soddisfatto per quello che è quando si confronta con amici e familiari  ____ 

 

7. Con un voto da 1 a 7 (1 min accordo, 7 max accordo), quanto è 

d’accordo con le seguenti affermazioni: l’industria turistica: 

 

1. ha migliorato la qualità della mia vita   ____ 

2. ha reso Rimini il posto migliore dove trascorrere il mio tempo libero ____ 

3. ha reso Rimini una città che mi consente di realizzarmi    ____ 

8. Con un voto da 1 a 7 (1 min accordo, 7 max accordo), quanto è in accordo 

con le seguenti affermazioni: 

 

1. sono a favore dello sviluppo del turismo balneare   ____ 

2. sono a favore dello sviluppo delle attività culturali e ricreative della mia città ____ 

3. sono a favore dello sviluppo delle manifestazioni fieristiche e sportive ____ 

 

9. Complessivamente è a favore dello sviluppo dell’industria turistica nella 

Romagna:    si no  

 

10. Per migliorare la qualità della vita in Romagna cosa suggerisce di fare 

(1 sola proposta)  …………………….……………………………………………………. 

 

11.  La sua professione è in qualche modo legata al mercato turistico: 

 

Sì, svolgo un’attività legata al settore turistico ……………………………………………… sino 

Saltuariamente o in passato ho svolto attività legate al settore turistico …………  si no 

L’attività dei miei familiari è legata al settore turistico   …………………………………  si no 

 

12. Lei…: 

1. legge abitualmente quotidiani    ...................... si no 

3. fa sport regolarmente .................................... si no 

4. va spesso a mostre d'arte, musei o teatro ........ si no 

5. viaggia spesso per vacanza ............................ si no 

6. naviga spesso su Internet da casa .................. si no 

7. acquista su internet ....................................... si no 

8. fa volontariato e/o politica .............................. si no 

9. va in Chiesa o altro luogo di culto religioso....... si no 

 

La ringrazio per la sua cortese collaborazione, per concludere posso ancora chiederle: 

 

13. La sua età:   _______ 

 

14. Genere 

 

Maschio ........................................................... 1 

Femmina .......................................................... 2 

 

15. In quale città risiede? _____________________ 

 

 

16. Da quanti anni vive in Romagna?   _______ 

 

 

17. Il suo stato civile    

 

nubile/ celibe…………………………………………………………………………… 1 

coniugato/a …………………………………………………………………………… 2 

separato/divorziato  ………………………………………………………………… 3 

vedovo/…………………………………………………………………………………… 4 

 

18.  Qual è il suo titolo di Studio: 

 

Licenza Elementare…………………………………………………………………… 1 

Licenza Media…………………………………………………………………………… 2 

Diploma…………………………………………………………………………………… 3 

Laurea……………………………………………………………………………………… 4 

 

19. E la sua professione? (1 sola risposta): 

 

Dirigente  / Funzionario / Professionista d'albo……………………………… 1 

Imprenditore/ Lavoratore in proprio/Artigiano……………………………… 2 

Impiegato/a o quadro………………………………………………………………… 3 

Insegnante (professore, maestro, ecc.) ……………………………………… 4 

Operaio/a………………………………………………………………………………… 5 

Casalinga………………………………………………………………………………… 6 

Studente/ssa…………………………………………………………………………… 7 

Pensionato/a…………………………………………………………………………… 8 

In cerca di lavoro……………………………………………………………………… 9 

Altro………………………………………………………………………………………… 10 

Specificare______________________________________ 

 

 


