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General background 

1. Gatrointestinal stromal tumor 

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the 

gastrointestinal (GI) tract [1]. For decades, prior to the 1990s, these mesenchymal tumors arising in 

the GI tract were often classified as smooth muscle tumors or neural tumors [2]. In 1983, Mazur and 

Clark introduced the term “stromal tumor”, but it was not broadly accepted until the early 1990s, 

when CD34 was discovered as a marker for stromal tumors growing in the GI tract [3-4]. 

In the 1990s, investigators noted similarities between GIST cells and the interstitial cells of Cajal 

(ICC), a group of cells located in the musculature and around the myenteric plexus throughout the 

GI tract, working as pacemakers for peristaltic contraction. Further studies revealed that ICC 

express KIT and are developmentally dependent on stem cell factor (SCF) [5-7]. In 1998, a 

revolutionary publication by Hirota and colleagues, showed activating mutations in the KIT 

receptor tyrosine kinase (RTK) gene in GISTs as well as expression of KIT protein by 

immunohistochemistry [6]. In 2003, Heinrich and colleagues additionally identified platelet-derived 

growth factor receptor alpha (PDGFRA) gene mutations, as an alternative pathogenetic event in 

GISTs lacking KIT gene mutations [8]. To date, approximately 85% of GISTs are reported to 

harbor activating mutations in KIT or the homologous RTK gene, PDGFRA [8–11]. 

1.1 Oncogenic KIT and PDGFRA mutations and signaling pathways in GIST 

The KIT and PDGFRA genes map to chromosome 4q12. Both encode type III receptor tyrosine 

kinases with closely related structural features. These kinases are constituted by an extracellular 

(EC) ligand-binding domain containing five immunoglobulin-like repeats, a transmembrane 

sequence, a juxtamembrane domain (JM), and two cytoplasmic kinase domains (TK[I]: ATP-

binding pocket and TK[II]: kinase activation loop, Figure. 1) [11-12]. 

KIT and PDGFRA are activated by binding of their ligands, SCF and PDGFA respectively, to the 

EC domain. Ligand binding brings to the receptor homodimerization and subsequent cross-

phosphorylation of cytoplasmic tyrosines, which operate as binding sites for various signalling 

proteins: KIT and PDGFRA tyrosine kinase activity is regulated by phosphorylation cascades with 

activation of signaling substrates regulating cell proliferation, adhesion, motility, and survival [13]. 

On the whole, KIT and PDGFRA activation regulates important cell functions including 

proliferation, apoptosis, adhesion, and chemotaxis (Figure 1) [13-14]. In addition it is critical for the 

development and maintenance of several cell types, as well as hematopoietic cells, ICC, germ cells,  



General background 
�

2�

mast cells, and melanocytes [13-14]. Mutations in KIT or PDGFRA gene involve two main regions, 

the receptor regulatory domains (dimerization region in the EC and JM domains) and the enzymatic 

domains (TK[I] and TK[II]). In GISTs most KIT mutations ( 65%) involve the JM domain (exon 

11) followed by mutations involving the EC dimerization domain (exon 9) which are seen in about 

9% of cases. Primary KIT mutations can also occur in exon 13 (TK [I) and exon 17 (TK[II]), but 

these mutations are rare events ( 2%) and data are quite limited (Figure 2). 

Figure 1. Oncogenic signaling in KIT and PDGFRA 

GISTs dimerization of KIT and PDGFRA leads to 

phosphorylation of tyrosine residues and the activation of 

different pathways, including RAS/RAF/MEK and 

PI3K/AKT/mTOR. RAS (green cascade) activates the 

MAPK cascade (RAF, MEK and ERK), and stabilizes 

ETV1 expression, leading to changes in gene expression. 

In wild-type GIST, mutation in NF1 (light blue), RAS or 

BRAF can all activate the signaling through the MAPK 

cascade. PI3K (red cascade) activates the mTOR pathway 

that leads to alteration in protein translation and cell 

survival. In wild-type GISTs, mutation in RAS may 

activate the PI3K cascade, as well. Phosphorylation of JAK 

leads to STAT3 activation (orange cascade), which 

promotes JUN transcription, important for cell 

proliferation and survival. Wild-type GISTs show high 

expression of IGF1R (purple cascade), which signals 

through both the MAPK and the PI3K pathways. Recently, 

defects in SDH have been identified in wild-type GIST, 

(gray cascade). Loss-of-function mutation in any of the 

SDH subunits leads to cytoplasmic accumulation of 

succinate, which downregulates prolyl hydroxylase. In 

turn, prolyl hydroxylase promotes proteasomal degradation 

of HIF1�. Therefore, succinate cytoplasmatic accumulation 

leads to increased levels of HIF1�, which enters the 

nucleus and activates, among others, the transcription of 

the VEGF gene.

Figure 2. Kit mutations in untreated GISTs in exon 9, 11, 

13 and 17, encoding part of the EC and JM domains, 

respectively. PDGFRA mutations, found in <10% of 

GISTs, involve the same domains.
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1.2 Epidemiology, clinical features and prognosis of GISTs. 

The exact incidence of GIST in the USA and Europe is very difficult to estimate, since GISTs have 

only been properly recognized and uniformly diagnosed as an entity starting only in late 1990s. 

Recent population-based studies performed in Sweden [14], Holland [15] and Iceland [16] found 

incidences of approximately 14.5, 12.7, and 11 cases/million per year, respectively. These findings 

would translate into an annual incidence in Europe of 8,000-9,000 cases and in the USA of 

4,000-5,000 cases a year. 

GIST patients range in age from the teens to the 90s, but peak age is around 60 years. The tumors 

are generally between 2 and 30 cm in diameter at the time of diagnosis and may cause mass-related 

symptoms or anemia as a result of mucosal ulceration. Not infrequently, however, GISTs are 

discovered incidentally during radiologic imaging for unrelated conditions, or as a secondary 

finding in a surgical resection or autopsy specimen [18]. 

GISTs occur throughout the entire GI tract and are most commonly found in the stomach (60%), 

jejunum and ileum (30%), duodenum (5%), colorectum (4%), and rarely in the esophagus and 

appendix [1,4,17]. Clinical symptoms associated with GIST include abdominal pain, fatigue, 

dysphagia, obstruction and satiety. Patients may suffer of with chronic GI bleeding (causing 

anemia) or acute GI bleeding (caused by erosion through the gastric or bowel mucosa) or rupture 

into the abdominal cavity causing life-threatening intra-peritoneal hemorrhage. Previously, a 

population-based study revealed that about 70% of GISTs were associated with clinical symptoms, 

20% were not, and 10% were detected at autopsy [19]. 

1.3 Histopathology

Morphologically, GISTs can have three main histological subtypes: I) spindle cell type (accounting 

70% of the cases), II) epithelioid type (20-25%), and III) mixed spindle cell and epithelioid type 

(10%) (Figure 3). In general, GISTs have a wide variation ranging from hypocellular to highly 

cellular with higher mitotic rates.  

Spindle cell type of GIST is made up of cells in short fascicles. They have clear eosinophilic 

fibrillary cytoplasm, ovoid nuclei, and ill-defined cell borders. Gastric spindle cell GISTs often 

reveal extensive perinuclear vacuolization, a diagnostic feature formerly used for tumors of smooth 

muscle origin. Distinctive histological patterns among spindle cell GISTs including sclerosing type 

and vacuolated type [1].  

Epithelioid cell GISTs are characterized by round cells arranged in nests or sheets and with 

eosinophilic to clear cytoplasm. 

Finally, approximately 10% of GISTs show mixed morphology, being composed of both spindle 

and epithelioid cells [1]. 
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1.4 Wild-type GIST 

About 85% of paediatric GIST and about 10–15% of adult GISTs do not harbour any mutations in 

the KIT and PDGFRA genes and are defined as KIT/PDGFRA wild type (WT) [10]. 

WT GIST occur more often in women, often arise from the stomach, are multifocal, have a frequent 

epithelioid morphology and show an indolent course even if metastatic on diagnosis [20,21]. 

KIT/PDGFRA WT GISTs represent a highly heterogeneous group of patients, profoundly different 

from mutant tumors in their genomic background. About 50% of KIT/PDGFRA WT GISTs present 

an overexpression of insulin-like growth factor 1 receptor (IGF1R) at the mRNA and protein level 

[22,23]. Differences in the expression of genes that belong to neural tissue were also seen between 

tissue from mutated GIST and murine mature ICC, suggesting that KIT/PDGFRA WT GIST may 

have a different origin [24]. Furthermore, in KIT/PDGFRA WT GIST, several mutations have been 

described with uncertain pathogenic significance. In particular, BRAF exon 15 V600E substitution 

is present in up to 13% of GISTs [25]. In the past years interesting data on succinate dehydrogenase 

(SDH) complex deficiency in KIT/PDGFRA WT GIST, have also emerged, delineating a small 

group of GISTs with peculiar clinical and molecular features [26,27]. 

SDH complex, or mitochondrial complex type II, represents one of the five complexes belonging to 

the mitochondrial respiratory chain and is involved in the Krebs cycle and electron transport of 

oxidative phosphorylation. It shows a tetrameric structure composed of two hydrophilic subunits 

Figure 3. a GIST composed of spindle cells with 

uniform ovoid or a GIST composed of spindle 

cells with uniform ovoid or defined cell borders. 

b GIST composed of epithelioid cells 

witheosinophilic or clear cytoplasm. c GIST 

with mixed spindle cell and epithelioid 

cytomorphology. 
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with catalytic activity (SDHA and SDHB) and two hydrophobic subunits linked to the inner 

mitochondrial membrane (SDHC and SDHD). Germline or somatic inactivating SDH-inactivating 

mutations have been described in several tumours, such as paragangliomas / pheocromocitomas and 

renal-cell carcinoma [26-28]. 

The first evidence of germline SDHB- and SDHC-inactivating mutations in sporadic KIT/PDGFRA 

WT GISTs was reported in 2011 as ‘type 2 GIST’ [26]. Despite the low incidence of SDH-

inactivating mutations, it has been reported that about 5–7.5% of sporadic KIT/PDGFRA WT 

GISTs show negative immunohistochemistry staining of SDHB [28]. SDH-deficient GIST comprise 

the great majority of gastric GISTs in children and young adults and a small proportion of gastric 

GISTs in older adults displaying a distinct clinical and pathological phenotype with respect to 

KIT/PDGFRA mutant GISTs. 

1.5 Familial GIST 

Several progenies with heriTable mutations in the juxtamembrane domain (exon 11) of the KIT 

gene have been identified. The first to be reported was a Japanese family in which a deletion of one 

of two consecutive valine residues (codon 559 or 560, GTTGTT) was traced through three 

generations. Affected individuals had hyperpigmentation of perineal skin and suffered the 

development of multiple benign and malignant GISTs [29]. A germline V559A substitution has 

been described in an italian family and in another one from Japan [30,31]. Affected members in 

both progenies had pigmented macules involving the skin of the perineum, axilla, hands, and face 

(with the exception of lips and buccal mucosa), as well as evidence of skin mastocytosis (urticaria 

pigmentosa) on biopsy. In addition, patients in both families developed multiple GISTs in the 

stomach and small bowel as early as age 18 years. A germline mutation in the kinase I domain of 

KIT was reported in a 67-year-old mother and her 40-year-old son from France. Both patients had 

more than a dozen of duodenal and jejunal GISTs, and both were found to have a constitutional 

K642E substitution in exon 13 of the KIT gene [32]. A mutation in the activation loop of KIT has 

been recently described by Hirota et al in a kindred with multiple gastric and small bowel GISTs 

[33]. The D820Y mutation found in affected family members caused diffuse ICC hyperplasia and 

GIST formation but was not associated with skin hyperpigmentation or mast cell disease.  
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2. Treatment of GIST 

Important improvements have occurred in GISTs treatment in recent decades. Before 1990s, GISTs 

have been erroneously diagnosed as smooth-muscle tumors of the GI tract such as 

leiomyoblastomas and leiomyomas. Due to the wrong diagnosis GISTs erroneously were 

unsuccessfully treated with radiotherapy and conventional chemotherapy as mesenchymal 

neoplasms [34,35]. When it was clear that GISTs were a distinct tumor, the paradigm of GIST 

treatment has dramatically changed. Currently, GIST has been changed from an incurable disease to 

a manageable, chronic condition for a significant proportion of patients [36]. 

The two gold standards of GISTs treatment are surgery and imatinib. Complete surgical removal is 

the standard therapy for localized resecTable GIST; in locally advanced and metastatic GIST 

imatinib is the first choice drug 

2.1 Imatinib 

The initial pilot study of imatinib in advanced GIST occurred in the year 2000 with a Finnish 

patient with metastases to the peritoneum and liver which progressed despite multiple lines of 

chemotherapy [36]. With a 400 mg/daily dose, after 8 months of treatment, six of twenty-eight liver 

metastases were no longer detecTable. The successful treatment of the first patient with metastatic 

GIST set off a fast succession of pivotal trials. 

Imatinib mesylate (GLEEVEC
®

 formerly STI571, Novartis Pharma AG, Basel, Switzerland) is a 

tyrosine kinase inhibitor (TKI) with activity against ABL, BCR-ABL, KIT, PDGFRA, PDGFRB 

and CSF1R. Its structure mimics adenosine triphosphate (ATP) and it binds competitively to the 

ATP binding site of the target kinases. 

This prevents substrate phosphorylation 

and signaling, thereby inhibiting 

proliferation and survival [38, 39] 

(Figure 4). 

Two important observations made in 

1999 suggested that imatinib might be 

effective against GISTs. The first was 

that imatinib could block the in vitro

kinase activity of both wild-type KIT 

and a mutant KIT isoform commonly 

found in GISTs (point mutation in exon 11) [40]. The second observation was that imatinib 

Figure 4. Mechanism of imatinib action 
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inhibited the growth of a GIST cell line containing a KIT gene mutation [41]. In part, on the basis of 

these preclinical findings, a patient with GIST with metastasis to the liver was granted 

compassionate use of imatinib mesylate in March 2000 [37]. The success in treating the first GIST 

patient with imatinib quickly led to a multicenter trial (CSTIB2222) that involved the Dana-Farber 

Cancer Institute, Fox-Chase Cancer Center, Oregon Health & Science University Cancer Institute, 

and the University of Helsinki [42]. In this trial, 147 patients with advanced, unresecTable, KIT-

positive GIST were enrolled. Patients were randomly assigned to either 400 mg or 600 mg per day 

in a single oral dose. With a follow-up of at least 6 months, partial responses were observed in 54% 

of patients, and an additional 28% had sTable disease. Disease progression was seen in only 14% of 

patients during initial follow-up. Similar results were reported for the European Organization for 

Research and Treatment of Cancer Soft Tissue and Sarcoma Group phase I study of imatinib for 

patients with advanced soft tissue sarcomas, including GISTs [42]. On the basis of the results of the 

CSTIB2222 trial and the European Organization for Research and Treatment (EORTC) of Cancer 

trial, IM was approved by the US Food and Drug Administration, FDA, for the treatment of 

unresecTable and metastatic GIST on February 1
st
, 2002. 

2.1.1 Correlation between KIT and PDGRFA mutation status and imatinib response 

The presence and the type of KIT or PDGFRA mutation status are predictive of outcome to 

imatinib. Exon 11 mutations occur in the KIT juxtamembrane domain and are the most common 

mutations in GISTs. Tumors with exon 11 mutations have better response rates to imatinib, with a 

longer progression free survival (PFS) and overall survival (OS). Exon 9 mutations, specific for 

intestinal GIST, occur in the KIT extracellular domain. Exon 9 mutations are associated with a 

lower response to imatinib and a poorer PFS. These differences translate into significantly longer 

event-free and overall survival among the exon 11–mutant group versus the other two groups. Thus, 

even though wild-type and exon 9–mutant forms of KIT are equally sensitive to imatinib in vitro, 

tumors with these genotypes are less responsive to treatment than are exon 11–mutant tumors. 

[10,42]. Patients with a PDGFRA point mutations (in particular D842V) show a scarce response to 

imatinib therapy. This is consistent with in vitro data showing relative resistance of this variant to 

imatinib [9,44]. 
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2.1.2 Resistance to imatinib 

Non achievement of sTable disease or progression of disease within 6 months of an initial clinical 

response (KIT exon 9 mutation or no detecTable kinase mutation – wild-type tumors, PDGFRA 

exon 18) is termed as primary resistance, occurs in 10%-20% patients and relates to the mutational 

profile of the tumor. Most of wild-type GISTs display primary resistance [45,46]; progression after 

more than 6 months of clinical response is defined as secondary resistance. This has been attributed 

mainly to: 

• genomic amplification (Figure 5),  

• overexpression of KIT/PDGFRA without new point mutations,  

• loss of KIT expression, accompanied by activation of an alternative tyrosine kinase or other 

oncogenes.  

• acquisition of new kinase mutations. 

Although the 2 years survival of patients with metastatic GIST treated with imatinib, approximates 

70% of the patients develop disease progression by 2 year. 

The most common mechanism of secondary resistance appears to be the appearance of the KIT 

kinase domain mutations. Therapeutic options for patients whose GISTs progress on imatinib 

consider dose escalation or treatment with other TKI.  

�

�

� �

Figure 5. On the left: FISH 

analysis of a GIST patient with KIT 

amplification. Chromosome 4 

centromere probe is shown in 

orange and the KIT probe in green. 

On the right analysis of GIST 

patient without KIT amplification 

(ratio KIT:centromere is 1:1 
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2.2 Sunitinib 

For patients with GIST who develop disease progression during imatinib treatment or are intolerant 

to imatinib, sunitinib is the standard therapy, a second generation TKI. Sunitinib malate 

(SUTENT®, formerly SU11248; Pfizer, New York, USA) is an oral multitarget receptor tyrosine 

kinase inhibitor (KIT, PDGFR (�� and �), VEGFR 1,2,3, and FLT3, CSF-1R, and RET that has 

shown anti-angiogenic and antitumor activities in several in vitro and in vivo tumor models. 

Sunitinib has been approved by the FDA on January 26
th

, 2006 for the treatment of patients with 

imatinib refractory or intolerant GIST. Currently, sunitinib is the only second line, FDA approved 

drug treatment for GIST. 

Sunitinib, as well as imatinib, binds to the inactive conformation of the target tyrosine kinases and 

inhibits binding of ATP. Despite this similarity, sunitinib has the potential for activity in imatinib-

resistant GIST, presumably through unique binding characteristics and broader spectrum of kinase 

inhibition, including the tumor-associated angiogenic VEGFR family of tyrosine kinases (Figure 6) 

[48].  

�

�

The clinical benefit of sunitinib is genotype-dependent on both the primary and secondary KIT 

mutations. It has been described it gives at least short-term clinical benefits in about 65% of GIST 

patients who are refractory to imatinib. Particularly, it shows superior efficacy in GIST patients 

hosting KIT exon 9 mutations [49]. Unfortunately, only about one-quarter of patients who are 

switched to sunitinib will continue to have responsive disease a year later [48]. 

Sunitinib has been shown to be effective with certain mutations that are resistant to imatinib; 

however, genotype analysis showed that patients with secondary KIT mutation affecting the 

activation-loop domain have PFS and OS. Clinically, some patients with secondary KIT mutation 

involving activation-loop domain experienced rapid disease after switching their treatment from 

Figure 6. Kinase that 

bind imatinib and 

sunitinib are shown in 

red circles; larger circles 

indicate higher affinity 

binding. Interaction with 

Kd<10 are shown. 
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imatinib to sunitinib [50]. Profiling of sunitinib against imatinib-resistant kinases (i.e., KIT with 

primary plus secondary mutations) has shown that sunitinib potently inhibits imatinib-resistant KIT 

ATP/drug-binding pocket mutations, but has little activity against imatinib-resistant KIT activation 

loop mutations [49]. Thus, many imatinib-resistant mutations confer cross-resistance to sunitinib, 

thereby accounting for the relatively short PFS, approximately 6-9 months, with second-line 

sunitinib [51]. 

Despite these considerations, at the moment, sunitinib remains the standard of care for IM-

refractory GISTs regardless the status of their secondary KIT mutation. 

2.3 Regorafenib 

Regorafenib (STIVARGA, formerly BAY 73-4506, BAYER, Levurkusen, Germany) is an orally 

available multikinase inhibitor with activity against multiple targets, including KIT, PDGFR, 

VEGFR1, R2, R3, TIE2, RET, FGFR 1, RAF, and p38 mitogen-activated protein kinase (MAPK) 

[52,53]. On February 25
th

, 2013 the US FDA approved regorafenib to handle patients with 

advanced GIST that cannot be surgically removed and no longer respond to other FDA-approved 

treatments for this disease. Safety and effectiveness of regorafenib were assessed in a clinical study 

involving 199 patients with unresecTable GIST that progressed after treatment with imatinib or 

sunitinib. Patients were randomly assigned to receive either regorafenib or a placebo. All patients 

received optimal supportive care, which includes treatments for the management of side effects and 

symptoms related to the tumor. Patients enrolled in the study took regorafenib or placebo until 

either the cancer progressed or side effects became unaccepTable. Results showed that patients 

treated with regorafenib had a delay in tumor growth (PFS) that was, on average, 3.9 months later 

than patients who were given placebo. Patients who received the placebo were given the 

opportunity to switch to regorafenib when their cancer progressed [52,53]. 

2.4 Emerging treatment for GISTs 

The progress made in the management of GISTs has been possible because researchers around the 

world have worked together to study new drugs. Without clinical trials and the help of those 

patients who take part in them, we would not have the powerful, safe, and effective drugs imatinib 

and sunitinib. Researchers are now studying different compounds as possible new treatments for 

GIST:  

• Nilotinib (Tasigna®, Novartis Pharmaceuticals) is used as first line treatment in leukemia 

patients (CML, Chronic myeloid leukemia), resistant or itolerant to imatinib. Nilotinib acts 
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by blocking the same enzyme activity as imatinib, though in a somewhat different way. 

Although nilotinib has shown some benefit, there is not enough information to suggest that 

nilotinib is more effective than imatinib in GIST. However, nilotinib may be able to control 

GIST in patients resistant to both imatinib and sunitinib.

• Pazopanib (Votrient®, GlaxoSmithKline Pharnaceuticals) is approved for patients with 

kidney cancer. Some early reports suggest that pazopanib might also be useful in GIST. To 

date, phase II trial is completed and a phase III trial is ongoing.

• Sirolimus (Rapamune®, Pfizer Pharmaceutical), everolimus (Afinitor®, Novartis 

Pharmaceuticals), temsirolimus (Torisel®, Wyeth Pharmaceuticals), and ridaforolimus 

(AP23573, Merck and ARIAD Pharmaceuticals). Besides Tyrosin kinase inhibitor drugs, 

there are many other proteins involved in mTOR pathway that could be of interest as 

biological target. Many of these drugs have been tested in combination with either imatinib 

or sunitinib in GIST and other cancers to see whether their combined use is more effective 

than one drug alone. Presently these agents are in phase I or II clinical trials.

• HSP90 inhibitors, (as AT13387, Astex Pharmaceuticals) block a key protein inside 

cancer cells, HSP90. HSP90 is a chaperone for which KIT is a client protein, so it

contributes to GIST growth. AT13387 combined with imatinib is currently being studied in 

phase II clinical trials.

• PI3K inhibitors, (as BYL719, Novartis Pharmaceuticals) is the first oral PI3K inhibitor 

that strongly and selectively inhibits the PI3K alpha isoform of PI3K. Its biological activity 

correlates with inhibition of various downstream signaling components of the PI3K/Akt 

pathway and it inhibits the proliferation of breast cancer cell lines harboring PIK3CA 

mutations. A phase I clinical trial is ongoing. 
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Specific background 

Cancer treatment is complicated by the myriad of treatment options and the lack of patient-specific 

information that may help clinicians select the best option therapy. There are two genomes relevant 

in cancer handling: the patient (germline) and the tumor (somatic). Together, these two genomes 

bring to treatment outcome through four processes: the germline genome modulates treatment 

exposure and toxicity while the somatic genome primarily determines tumor prognosis and response 

[54]. 

3. Germline genome: 

pharmacogenetics and pharmacogenomics 

In a large patient population, a drug that is proven effective in many patients often fails to work in 

many others. Moreover, when it works, it could cause important serious side effects, even death, in 

a limited number of patients [55]. It is well documented that the large variability in efficacy and 

adverse reactions (ADR) occurring among different patients is the major determinant of use and 

limitation of drug in the clinical setting. Factors that can cause inter-variation among different 

patients treated with the same drug are various and complex, and include age, sex, lifestyle, 

environmental factors and especially genetic factors [56]. 

Pharmacogenetics focuses on the variants within one or more candidate genes while 

pharmacogenomics evaluates the entire genome for associations with pharmacological phenotypes 

[57]. This discipline has its origin in 1950s with the growth of human biochemical genetics. The 

role of genetics as a potential cause of ADR has been review for the first time by Motulsky in 1957 

in “Drug reaction, Enzymes and biochemical Genetics”. The term pharmacogenetics was created by 

Friedrich Vogel in 1959. In the late 1960s Vessel showed similarity of drugs disposal in identical 

twins, who shared 100% of their genes, unlike fraternal twins with only the 50% in common.  

In the last decades, pharmacogenetic research has been hit by an explosion of interest by physician, 

geneticist and the pharmaceutical industry, as reflected by the rapid increase in the number of 

papers in the medical literature [58]. The rapid accumulation of knowledge of genome desease and 

genome-drug interaction has also driven the transformation of pharmacogenetics into a new entity 

of human genetics – pharmacogenomics – and provided the rationale for the hope of an 

individualized medicine [57]. 
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The term pharmacogenomics was introduced in 1990s as a result of the knowledge gained from of 

the Human Genome project, and the development of genome sciences [58,59]. 

The main aim of pharmacogenetics and pharmacogenomics is to individualize medicine according 

to the specific genetic make-up of a given patient. Environment, diet, age, lifestyle and state of 

health can all influence the individual response to any pharmacological treatment, but 

understanding the influence of genetics could be the key to develop personalized medicine 

characterized by greater efficacy and safety. [59].

3.1. Single Nucleotide polymorphisms (SNPs) 

Polymorphisms are genetic variations that occur with different frequency in different populations. 

These variations could be represented by insertion or deletions, but the most common variations are 

SNPs. A SNP is a DNA sequence variation, with a frequence > 1%, occurring when a single 

nucleotide in the genome differs among members of species within an individual. In the human 

genome the number of SNPs is around 3.2 milions and they are responsible for the 90% of human 

genetic variability [60]. SNPs are classified in three groups depending on where they are located in 

the genome: (i) c-SNP, variations located in coding region, exons, whose presence could modify or 

not the aminoacid sequence of the protein (non sinonimus and sinonimus, respectively) (ii) p-SNP, 

located in perigenic region, and (iii) r-SNP, random SNPs located in the intragenic regions, do not 

influence transcript or protein, but they can modify the DNA third structure, interfering with 

chromatin or DNA replication (Figure 7). 

�

Figure 7. SNPs classification depending on their position. 

� �
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Polymorphisms in key genes encoding drug transporters and metabolizing enzymes influence 

intracellular drug delivery. Pharmacogenetics has indeed demonstrated to be a potential source of 

biomarkers able to predict drug response and adverse drug reactions. 

The rapid development of techniques in the area of genome analysis has eased the identification of 

new pharmacogenomics biomarkers. Such biomarkers mainly originated from genes encoding drug-

metabolizing enzymes, drug transporters and drug targets. Some of these are now integrated by the 

US FDA and the European Medicines Agency (EMA) into drug label inserts [61]. In Table 1 are 

reported some significant examples of pharmacogenomics biomarkers in the context of cancer, 

describing prevalence, authority guidelines and relative importance [61]. 

Table 1. Pharmacogenenomic biomarkers in the context of desease, prevalence, authority guidelines and relative 

importance. 

�
a The frequency varies across different populations. Carrier refers to the frequency of subjects with at least one  allele variant.  
b The number of asterisks denotes the authors opinion of the raltive importance with ***denoting the highest significance. 

PC Promising candidate. 

Various initiatives have been suggested such as a pharmacogenetic research network that includes a 

series of integrate groups with expertise in pharmacology, genomic science, bioinformatics and 

clinical science. The group located at Standford University is responsible for the development of a 

public database that focuses on genotype data relevant to pharmacogenomics. This is only an 

example of what it is going on this panorama, although clinical translation remains the first 
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necessary step. Pharmacogenomics studies require a large number of subjects and multi-disciplinary 

teams with complementary expertise, as well as the ability to genotype a very large number of 

polymorphism and haplotypes [62]. 

The main current problems related to pharmacogenomics are: poorly defined phenotypes; 

significance of non-functional mutations; ethical aspects such as the use of genomic information; 

unclear sources for covering diagnostic costs and lack of founding for large prospective randomized 

studies, besides retrospective studies. Currently the most important aspect is a careful cost-benefit 

analysis of genetic testing closely followed by the specific need of educating the industrial and 

chemical research to the use of genetic testing [61]. 

Pharmacoepigenetics offers another level of explanation for inter-individual variations in drug 

response that cannot be clarified on the basis of genetic polymorphism. Many genes encoding 

enzymes, drug transporters, transcription factors, drug targets and nuclear receptors are under 

epigenetic control. Epigenetics includes covalent modifications of DNA and histones, DNA packing 

around nucleosomes, chromatin folding and attachment to the nuclear matrix and regulatory non 

coding RNAs, like small interfering RNAs (siRNAs) and microRNA (miRNAs). This emerging 

area is far to be fully elucidated, and represents an attractive field of investigation connecting 

environment and the genome [63,64]. 
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4. Somatic genome: 

tumor prognosis and response

A healthy cell becomes cancerous by losing its ability to suitably regulate its replication. This initial 

genetic aberration can be a simple change in DNA sequence or a change that impacts an entire gene 

or chromosomal region. This malignant cell represents the seed from which a tumor arise, and the 

genome of this cell is the founder somatic genome. Through repeated cellular replication this 

somatic genome acquires additional abnormalities. Some of these acquired variants will further 

drive cancer progression, such as mutations in genes that 

are responsible for maintaining DNA replication accuracy 

or controlling metastatic spread. The initial and acquired 

aberrations determine the behavior of the primary tumor, in 

particular its ability to metastasize, and the treatment 

mechanisms that it will be sensitive to. Thus, prediction of 

tumor prognosis and response can be affectuated by 

understanding the somatic genetics [55]. 

About 90% GISTs are characterized by one primary 

somatic mutation, mainly in exon 9 or 11 (Figure 8). This 

gain of function mutation determines a constitutive, ligand 

indipendent activation (Figure 9). The responsiveness of GIST to imatinib varies by primary KIT 

genotypes, which is now 

considered the most 

important factor in predicting 

outcome. In particular, 

patients with exon 11 

mutations, despite a poor 

clinical prognosis prior to the 

imatinib era, are much less 

likely to experience treatment 

failure than patients with 

exon 9 mutations or without 

detectable mutation in KIT 

and PDGFRA [65]. 

Figure 8. KIT exon sequence: tumor samples 

with normal DNA (upper panel) and with a 

W557R primary mutation (lower panel). 

Figure 9. Two kit receptors normally dimerize in the presence of the phisiological ligand 

SCF to initiate downstream signaling (left). Mutations in the receptor cause abnormal 

constitutive signaling without  SCF stimulation (right).



Specific background 
�

17�

Mutational analysis of KIT and PDGFRA in GISTs has important implications in diagnosis and 

therapy decision and prediction of response to imatinib treatment. 

Approximately 10% of GIST patients show primary resistance and the vast majority eventually 

develop secondary resistance and disease progression. Considering the heterogeneity in the 

mutational spectrum of GIST patients, it is interesting to thoroughly compare the treatment 

response, according to the mutational types, in the imatinib era. To date, according to the literatures  

the responsiveness of GIST to imatinib varies by primary KIT genotype [9, 66-68]. A mistake in 

KIT and PDGFRA mutation analysis might have dramatic consequence for patients: some will be 

treated with the wrong dose of imatinib (KIT exon 9 false negative), others without benefit 

(PDGFRA exon 18 D842V false negative) Considering these studies, on average approximately 

71% of GIST exon 11 mutants reached an objective response (complete and/or partial� response) 

compared with approximately 36%� of exon 9 and 41% of WT-GISTs. Similarly, approximately 

26% of wt-GISTs and approximately 16% of patients with exon 9 mutation experienced progressive 

disease, compared with only 5% of GISTs with exon 11 mutations.� These findings are indeed 

corroborated by the�fact that exon 11 mutant patients have a significantly better PFS�and OS than 

patients with a tumor with exon 9 mutation or no detecTable KIT or PDGFRA mutations [65]. 
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5. Imatinib transporter genes 

It is well recognized that inter-patient variability in drug response reflects the systemic levels or 

intracellular concentrations of the drug, known to be associated with its pharmacokinetics 

(absorption, distribution, and metabolism) of the drug itself. Imatinib is metabolized by the 

cytochrome-P450 - mostly CYP3A4 and 3A5 isoforms. The active uptake of imatinib into cells is 

known to be mediated mainly by the hOCT1 transporter (encoded by the SLC22A1 gene), whereas 

its efflux is mediated by the ABC transporters, in particular ABCB1 (also known as MDR1) and, to 

a lesser extent, ABCG2 (Figure 10) [69-73]. Besides these, other transporters may be important in 

the absorption, distribution, and elimination of imatinib, including the families of organic cation 

transporters (OCT) and organic 

anion transporters (OAT). In 

particular, a recent study by Hu et 

al. identified imatinib as a substrate 

of OATP1A2 (encoded by 

SLCO1A2), [72] whereas the 

involvement of members of the 

OCTN family as imatinib 

transporters is still uncertain. 

Inter-patient variability in imatinib 

metabolism/transport is substantial 

and thus far unexplained. A 

possibility is that genetic 

polymorphisms in genes encoding 

imatinib-metabolizing enzymes and 

transporters may influence the 

imatinib uptake into target cells. Consequently, genetic polymorphisms on the candidate genes 

CYP3A4/3A5, MDR1, ABCG2, OATP1A2, OCTN1 (encoded bySLC22A4), OCTN2 (encoded 

bySLC22A5) and hOCT1 could affect expression of the corresponding proteins and thus may 

predict differences in responses to imatinib. 

�

Figure 10. Main players in imatinib transport.
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6. Folate metabolism pathway 

Folate metabolism supports numerous critical intracellular reactions, including DNA synthesis, 

repair, and methylation (Figure 11). DNA methylation status is essential for healthy development 

and maintenance of cellular homeostasis and functions in adult organisms, including silencing of 

repetitive DNA elements and proper expression of genetic information [74]. The accurate 

maintenance of DNA synthesis, repair, and methylation patterns is fundamental, and its balance in 

mature cells is maintained by the concerted action of more than thirty enzymes [75]. Figure 10 

represents a simplified diagram of the key enzymes that take part in the folate metabolic pathways. 

They include methylenetetrahydrofolate reductase (MTHFR), thymidylate synthase (TS), 

methionine synthase (MTR), methionine synthase reductase (MTRR), serine 

hydroxymethyltransferase (SHMT), dihydrofolate reductase (DHFR), reduced folate carrier (RFC), 

and folate receptor 1 (FOLR). These enzymes are highly polymorphic, and several functional 

genetic polymorphisms have been attracting research interest. In particular, several of these 

polymorphisms have been associated with decreased or increased enzymatic activities, with 

possible alteration in DNA synthesis, repair, and methylation processes. Aberrant methylation 

patterns, have been associated with various diseases including cancer and neurodegenerative 

disease. Additionally, polymorphisms in genes involved in the folate metabolisms have been 

associated with cancer risk, including colorectal and gastric cancer, vascular disease, depression and 

Down’s syndrome. Currently, there are evidences of an association between DNA methylation level 

and polymorphisms in 

folate metabolism genes. 

The alteration of one or all 

of these processes could 

explain the association that 

have been found between 

some of these 

polymorphisms and risk of 

various malignancies, 

including breast, colorectal, 

and prostate cancer, and 

acute lymphoblastic 

leukemia [76]. 

Figure 11. Key enzymes in the folate metabolic pathways. Image edited from Nat Rev 

Cancer. 2003 Dec;3(12):912-20. Cancer pharmacogenetics: polymorphisms, pathways and 

beyond. Ulrich CM, Robien K, McLeod HL. 
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Aim

Imatinib was the first inhibitor of c-KIT tirosin kinase to be licensed by health authorities and 

currently represents the first line treatment for GIST [37-39]. Despite the enormous success, 

resistance against imatinib emerges in a significant proportion of patients. In most GISTs initially 

responding to imatinib, development of resistance over time is common, and the occurrence of 

secondary resistance represents the main cause of disease progression. Different mechanisms 

leading to imatinib resistance have been identified and extensively investigated, and the most 

common is related to the alteration of the receptor signaling, in particular the acquisition of 

secondary mutations [69]. In addition, up-regulation of liver drug metabolizing enzymes [69], 

causing increased clearance of imatinib and up-regulation of drug transporters may be potential 

mechanisms [71].  

An attractive alternative is represented by inter-individual differences in imatinib pharmacokinetics. 

In this process, the genes that control drug absorption, distribution, metabolism and excretion play a 

key role. Indeed, all of the drug metabolizers and transporters contain many genetic polymorphism, 

which might cause large inter-individual variability in imatinib plasma concentration and 

disposition. 

For the reason mentioned above, the general aim of my three-years research period was to 

investigate the relationship between biomarkers and drug response – and resistance of course – on 

the basis of both an in vivo and in vitro approach. 

Following the hypothesis that polymorphisms in genes encoding for imatinib transporters and 

metabolism enzymes may influence imatinib concentration delivered to target cells [70-73], the 

first objective was to conduct a retrospective study in a subset of 60 patients enrolled in a 

multicentric randomized phase III study, and to investigate a panel of SNPs in genes involved in 

imatinib transporters (I) and in the folate metabolism pathway (II) [74-76]. 

Based on the recognition that clinical progression of GIST during TKI therapy is often multifocal, 

TKI resistance mutations have been assessed in only single, or few, progressing metastases per 

patient and the heterogeneity of these mutations, in a given patient, remains unclear [77,78], the 
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second objective was to characterize in-depth the heterogeneity of KIT mutations and the drug-

resistance mechanisms using a sensitive next generation sequencing approach. �

� �



First objective: SNP genotyping in GIST patients treated with imatinib 
�

22�

First objective 

The first objective is made up by two parts: 

I. Association between imatinib transporters genotype and response in 

GIST patients receiving imatinib therapy.  

II. Folate-related polymorphisms in GIST: susceptibility and correlation 

with tumor characteristic and clinical outcome.  
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I.  Association between imatinib transporters genotype and 

response in GIST patients receiving imatinib therapy 

  

Materials and methods 

 Study population – A total of 54 unresecTable/metastatic GIST patients receiving standard first-

line imatinib 400 mg daily were retrospectively enrolled in this pharmacogenetic study. Twenty-

nine patients were enrolled at Sant’Orsola-Malpighi Hospital, Bologna, and 25 at Istituto Nazionale 

dei Tumori, Milan, Italy. A written informed consent was required and the study was approved by 

the Ethics Committees of the two institutions. Patients with available peripheral blood were eligible. 

Patients characteristics and clinical features of their tumors are summarized in Table 2.�

Evaluation of imatinib response - Time to progression (TTP) was calculated from the start of 

imatinib therapy to the date of disease progression documented by the CT scan performed 

approximately every 3-4 months. In one case, the disease re-evaluation by CT scan was done earlier 

due to clinical progression. 

Genotyping analysis - DNA was isolated from fresh or frozen whole blood using a DNA isolation 

kit from QIagen (QIAamp
®

 DNA Mini Kit, Qiagen, Hilden, Germany). Characteristics of the 

studied polymorphisms - three insertion/deletion and 28 single nucleotide polymorphisms, from 

now on all referred as SNPs in the text - are reported in Table 3a. Genotypes were determined by 

polymerase chain reaction (PCR) - based assays [restriction fragment length polymorphism (RFLP) 

and/or real-time] according to published methods [79] or by Taqman
® 

assay PCR. Positive and 

negative controls were included in each reaction as quality control. In addition, accuracy of 

genotyping was confirmed by repetition of 100% of the samples.  

Table 2. Patient and disease characteristics of 

the study population (n = 54). 

Gender, n (%) 

    Female 19 (35.2) 

    Male 35 (64.8) 

Age at diagnosis, years 

    median (range) 58 (18-83) 

a
 None of the analysed subjects had tumour size < 2 

cm; 
b
 50 x High power filed. 

Tumour site, n (%) 

    Stomach 30 (55.6) 

    Small Intestine 21 (38.9) 

    Other 3 (5.5) 

Tumour size a, n (%) 

    2 - 5 cm 5 (9.2) 

    5 - 10 cm 17 (31.5) 

    � 10 cm 19 (35.2) 

    missing 13 (24.1) 

Mitotic index b
, n (%)  

    < 5  11 (20.4) 

    6-10 4 (7.4) 

    � 10 15 (27.8) 

    missing 24 (44.4) 

Mutational status, n (%) 

    KIT exon 11 31 (57.4) 

    Other than PDGFR� D842V  

and PDGFR�/KIT WT 

4 (7.4) 

   missing 19 (35.2) 
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PCR RFLP – the main components to perform a PCR are primers, nucleotide sequences 

complementary to the target region, DNA polymerase, necessary to enzymatically assemble a new 

strand of DNA, deoxynucleotide triphosphates (dNTPs), the building blocks from which the DNA 

polymerase synthesize a new DNA strand, buffer solution and usually divalent cations that help the 

reaction (i.e. MgCl2) 10ng DNA was added at this mixture and the thermal cycling program were 

performed (Table 3). The DNA is replicated in every cycle and the amount increased exponentially. 

The amplification of the sequence of interest is followed by the incubation with an appropriate 

restriction enzyme that recognize, if present, the restriction site, creating DNA fragments. The 

fragments obtained were separated through electrophoresis at 200 V for 30 minutes, on pre-cast 

polyacrylamide gels 10% TBE (Bio-rad, Hercules, CA, USA). The DNA was then analyzed using 

Ethidium Bromide, an intercalating agent commonly used as a fluorescent tag. When exposed to 

UV ray its fluorescence is 20-fold higher after binding DNA. The image of the gel was acquired 

using a digital photo camera connected to VERADOC-4000 (Bio-rad) and visualized with 

QUANTITY ONE software. Three were the possible situations that can emerge from the analysis: 

homozygosis for the wild-type (wt) allele, homozygosis for the SNP or heterozygosis, in which one 

allele is wt and the other one is SNP. 

Real Time PCR – Real-time PCR (RT-PCR or qRT-PCR) is a variation of the standard PCR 

technique used to quantify DNA o mRNA in a sample. Using sequence specific primers, the relative 

numbers of copies of a particular DNA or RNA sequence can be determined. Quantification of 

amplified product is obtained using fluorescent probes and specialized machines that measure 

fluorescence while performing temperature changes needed for the PCR cycles (Figure 12). More 

specifically for our use, an allelic discrimination assay was used to detect variants of a single 

nucleic acid sequence. One fluorescent dye detector is a perfect match to the wt (allele 1) and the 

other one is a perfect match with the SNP allele (allele 2). The allelic discrimination assay classifies 

unknow samples as i) homozygotes (samples having only allele 1 or 2) and ii) heterozygotes 

(samples having both allele 1 and 2). In particular, the allelic discrimination assay measures the 

change in fluorescence of the dyes associated with the Taqman probes VIC
®

 and FAM
®

 (Applied 

Biosystems, Foster City, CA), that selectively bind wt or SNP allele (Figure 12). The reaction was 

prepared using 10ng DNA, Taqman genotyping assay(20X or 40X), Taqman Universal Master Mix 

(2X) and water RNAse free, for a total volume of 25ul. The analysis was performed using 7900 HT 

Fast Real Time PCR system (Applied Biosystem).  
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Figure 12. Each TaqMan® MGB probe anneals specifically to its complementary sequence between the 

forward and reverse primer sites. When the oligonucleotide probe is intact, the proximity of the quencher 

dye to the reporter dye quenches the reporter signal. AmpliTaq Gold® DNA polymerase extends the 

primers bound to the genomic DNA template. AmpliTaq Gold® DNA polymerase (with its 5´ nuclease 

activity) cleaves probes that are hybridized to the target sequence. Cleavage of the probes hybridized to 

the target sequence separates the quencher dye from the reporter dye, resulting in increased fluorescence 

by the reporter. The fluorescence generated by PCR amplification indicates which alleles are present in 

the sample. 

Table 3. SNPs description. 
[A] RT = Real-Time PCR with TaqMan allelic discrimination assay [Applera, Foster City, USA]; 

    RFLP = PCR-RFLP and M = Multiplex PCR, analysis carried out according to published methods [reference 

parenthetically] or as standardized in our laboratory (primer set, T (°C) of annealing and restriction enzymes (Fermentas, 

Vilnius Lithuania) described].�
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Table 3. SNPs description. 

Gene [full name; Protein name]   SNP ID METHOD [A]  

SLC22A1 [Solute carrier family 22 (organic cation transporter - OCT1) family 22, member 1] 

rs12208357 [R61C] RT TaqMan assay C_30634096_10 

rs683369 [L160P] RT TaqMan assay C_928536_30 

rs4646277 [P283L] RT TaqMan assay C_30634088_10 

rs4646278 [R287G] RFLP  f_GCGATGGCTCCCTTTTG 

r_TTAGACCCCGACCCAAGACCAC 

rs2282143 [P341L] RT TaqMan assay C_15877554_40 

rs72552763 [MI420I] RT TaqMan assay C_34211613_10 

SLC22A4 [solute carrier family 22 (organic cation transporter - OCTN1), member 4] 

rs1050152 [L503F] RT TaqMan assay C_3170459_30 

SLC22A5 [Solute carrier family 22 (organic cation transporter - OCTN2), member 5] 

rs2631367 [5’ UTR] RFLP [Török et al., 2005] 79

rs2631370 [5’- near gene] RT TaqMan assay C_2843383_10 

rs2631372 [5’- near gene] RT TaqMan assay C_26479165_10 

SLCO1A2 [Solute carrier organic anion transporter family (OATP) member 1A2] 

rs11568563 [E172D] RT TaqMan assay C_25605897_10 

SLCO1B3 [Solute carrier carrier organic anion transporter family (OATP) member 1B3] 

rs4149157 [5’ UTR] RFLP [Tsujimoto et al., 2008] 80

rs4149158 [5’ UTR] RFLP [Tsujimoto et al., 2008] 80

rs4149117 [S112A] RT TaqMan assay C_25639181_40 

rs7311358 [M233I] RT TaqMan assay C_25765587_40 

ABCA3 [ATP-binding cassette sub-family A, (ABC1) member 3]

rs323040 [Intronic] RT TaqMan assay C_11292220_10

rs4146825 [5’ UTR] RT TaqMan assay C_32374235_10 

ABCB1 [ATP-binding cassette sub-family B, (MDR/TAP) member 1; P-gp (P-glycoprotein)] 

rs10245483 [Promoter region] RT TaqMan assay C_2573447_20

rs3213619 [Promoter region] RT TaqMan assay C_27487486_10

rs1128501 [G185V] RT TaqMan assay C_7586664_10 

rs1128503 [G412G also C1236T] RT TaqMan assay C_7586662_10 

RFLP [Goreva et al., 2004]81

rs60023214 [I1145I also C3435T] RFLP [Jamroziak et al., 2004] 82

rs2032582 [A893S/T also G2677T/A] M [Kurzawski et al., 2006] 83

ABCC4 [ATP-binding cassette sub-family C, (CFTR/MRP) member 4] 

rs3765534 [E757K] RT TaqMan assay C_27478235_20

rs9561765 [Intronic] RT TaqMan assay C_31356298_10 

ABCG2 [ATP-binding cassette sub-family G, (WHITE) member 2] 

rs2231137 [M12V] RFLP [Hu et al, 2007] 84

rs2231142 [Q141K] RT TaqMan assay C_15854163_70 

CYP3A4 [cytochrome P450, family3, subfamily A, polypeptide 4; CYP3] 

rs2740574 [5’ Near Gene] RFLP [Radriguez-Antona et al., 2005] 85

rs28371759 [L293P] RT TaqMan assay C_27859823_20 

CYP3A5 [cytochrome P450, family3, subfamily A, polypeptide 5; CYP3] 

rs776746 [Splicing site] RFLP [Hu et al., 2005] 86

rs28365083 [T398N] RFLP [van Schaik et al., 2002] 87
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Statistical analysis - The distribution of genotypes was tested for Hardy-Weinberg (HW) 

equilibrium using the online HW test tool offered by the Institute for Human Genetics, Technical 

University Munich (http://ihg2.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl). Survival analysis 

methods were used to examine the relationship between genotypes [homozygous wild-type, 

heterozygous and homozygous for the variant allele (SNP)] and GIST time to progression. In 

univariate analysis, the survival curves were estimated and plotted with the Kaplan-Meier method. 

The curves were compared with log-rank test of equality of survivor functions (statistical 

significance defined as p < 0.05). In multivariate analysis, hazard ratios (HR) and 95% confidence 

interval (95% CI) were estimated with Cox proportional hazards models, using gender, age, tumour 

site and size, mutational status and status at diagnosis, as covariates in addition to the genotype. The 

proportional hazards assumption was tested (p > 0.05) using Schoenfeld residuals. Multiple logistic 

regression was used to assess the relation between individual SNPs and primary resistance. 

Statistical analysis was conducted using Stata Intercooled version 11.0. 
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Results 

Characteristics of the study population - The cohort of 54 Caucasian GIST patients was made up of 

65% men and 35% women (median age at diagnosis 58 years). The most common primary sites 

were the stomach (55.6%) and the small intestine (38.9%). Nearly three-quarters of patients had 

metastatic disease, with liver and peritoneum as the most common sites of metastases. Thirty-one 

patients (57.4%) harboured KIT exon 11 mutations, while only one patient had a KIT exon 9 

mutation. Three patients (5.6%) had a PDGFR� mutation, excluding the D842V, since GISTs 

harbouring this mutation, as well the PDGFR�/KIT WT GISTs, were not included in the study 

being assumed to be resistant to imatinib. In nineteen GISTs, mutational status was unknown, due 

to insufficient or unavailable biological material for the analysis. 

Genotype distribution. Genotype distribution of the 31 candidate SNPs are summarised in Table 4.  

 Table 4. Genotype frequency of the 31 candidate SNPs. 

Gene

     SNP ID

Major/Minor  

allele 
MAF HWE        P value

SLC22A1 – OCT1 

rs12208357 C/T 0.09 0.37 

rs683369 C/G 0.17 0.62 

rs4646277 C/T 0.00 --- 

rs4646278 C/G 0.00 --- 

rs2282143 C/T 0.00 --- 

rs72552763 GAT/- 0.18 0.34 

SLC22A4 – OCTN1

rs1050152 C/T 0.43 0.78 

SLC22A5 – OCTN2

rs2631367 C/G 0.51 1.00 

rs2631370 A/G 0.32 0.37 

rs2631372 C/G 0.40 0.25 

SLCO1A2 – OATP1A2 

rs11568563 A/C 0.04 1.00 

SLCO1B3

rs4149157 
ATATTCACTTGGT

ATCTG/- 
0.31 0.75 

rs4149158 TTTA/- 0.31 0.75 

rs4149117 G/T 0.10 1.00 

rs7311358 A/G 0.10 1.00 

ABCA3  

rs323040 G/A 0.17 1.00 

rs4146825 C/T 0.00 --- 

ABCB1

rs10245483 G/T 0.48 0.79 
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rs3213619 A/G 0.00 --- 

rs1128501 C/A 0.00 --- 

rs1128503 C/T 0.47 0.01 

rs60023214 C/T 0.54 0.58 

rs2032582 G/T or A 0.46 0.10 

ABCC4

rs3765534 C/T 0.00 --- 

rs9561765 G/A 0.06 1.00 

ABCG2

rs2231137 G/A 0.08 1.00 

rs2231142 G/T 0.08 0.30 

CYP3A4

rs2740574 A/G 0.02 1.00 

rs28371759 A/G 0.00 --- 

CYP3A5

rs776746 G/A 0.04 1.00 

rs28365083 C/A 0.00 --- 

Nine SNPs (SLC22A1 rs4646277, rs4646278, rs2282143, ABCA3 rs4146825, ABCB1 rs3213619, 

rs1128501, ABCC4 rs3765534, CYP3A4 rs28371759, and CYP3A5 rs28365083) were homozygous 

for the major allele in all patients and were excluded from further analyses. As expected from the 

literature, in the SLCO1B3 gene we found the rs4149157 in complete linkage disequilibrium with 

the rs4149158, and the rs4149117 completely consistent with the rs7311358. Deviation from the 

HW equilibrium was observed for a single SNP (ABCB1 rs1128503); departure from HW 

equilibrium was not observed for any other SNPs. The distribution of genotypes was similar to 

those previously reported by us in CML Caucasian patients [79] or in the publicly available 

database NCBI (dbSNP) for Caucasians. 

Treatment outcome of imatinib therapy and genotypes. With a median duration of imatinib 

administration of 36,9 months, the best results during therapy were partial response and sTable 

disease in 90.7% of patients. With a median follow-up of 36.9 months, progressiove disease was 

observed in 26 cases (48.1%), with a median TTP of 21.8 months (range 1.6-58.2). 

Presence of the C allele in SLC22A4 (OCTN1 rs1050152) had a significantly favourable impact on 

TTP [HR 2.94, 95% CI 1.20-7.17, P = 0.018; (Table 5)]. The two minor alleles (G) in SLC22A5

(OCTN2 rs2631367 and rs2631372) were also significantly associated with a prolonged TTP (P = 

0.049 and P = 0.050 respectively; Table 5). None of the other analysed SNPs correlated with the 

TTP. 
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Alleles were correlated with TTP based on the Kaplan-Meier method. Presence of the minor allele 

in SLC22A4 (TT rs1050152), was associated with reduced TTP (P = 0.013; Figure 13). 

Similarly, presence of the SLC22A5 CC (rs2631367) and CC (rs2631372) genotype was associated 

with reduced TTP in both cases (P = 0.042 and P = 0.045 respectively; Figure 14).  

Table 5. Most relevant association between TTP and candidate genotypes. 

Gene

SNP ID

Referent/adverse 

Genotype Hazard ratio [95% CI] P value

 SLC22A4 – OCTN1

rs1050152 CC or CT/TT 2.94 [1.20-7.17] 0.018 

 SLC22A5 – OCTN2

rs2631367 CG or GG/CC 0.43 [0.18-1.00] 0.049 

rs2631372 CG or GG/CC 0.46 [0.21-1.00] 0.050 

Figure 13. . Kaplan–Meier TTP estimates for SLC22A4 (OCTN1) genotypes – rs1050152.

A 
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Figure 14. A. Kaplan–Meier TTP estimates for SLC22A5 (OCTN2) genotypes – rs1050152. B. Kaplan–Meier 

TTP estimates for SLC22A5 (OCTN2) genotypes – rs261372.

In addition ABCC4 – GA genotype (rs9561765) showed a trend for a possible association with 

prolonged TTP (P = 0.084). Considering the low statistical power because of the sample size, and 

the low frequency (q = 0.06), this SNP may be worthy of further consideration. Based on the 

findings of the present study we stratified the population according to the number of favourable 

genotypes. In particular, we assigned a score of 3 in the presence of all three favourable genotypes –

SLC22A4 – CC+CT (rs1050152), SLC22A5 – CG+GG (rs2631367) and CG+GG (rs2631372) – and 

a score of 0 to 2 according to the presence of zero to two favourable genotypes. A score of three 

was significantly associated with improved TTP (P = 0.040; Figure 15). 

�

Figure 15. Kaplan–Meier TTP estimates for SLC22A4 (rs1050152) and SLC22A5 rs2631367 and 

rs2631372) genotypes combination. The numbers of 0–3 indicate the number of favourable genotype 

associates with improved TTP. (— 0 to 2 favourable genotypes; ---- 3 favourable genotypes). 

B 

3 

0-2 
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 Cox proportional hazards models examining the association between genotypes and TTP, were 

adjusted for known prognostic factors, including age, sex, site of localization, tumour size, and 

mutational status (Table 6). As expected, size �10 cm was always significantly associated with a 

reduced TTP (P � 0.05). In these models SLC22A4 (rs1050152) and SLC22A5 (rs2631367 and 

rs2631372) genotypes, as well as the combination of favourable - SLC22A4 (rs1050152) and 

SLC22A5 (rs2631367 and rs2631372) - genotypes maintained independent predictive value (Table 

6). In addition to these, the ABCC4 AA genotype (rs9561765) was also associated with reduced 

TTP (P = 0.032; Table 6). 

Logistic analyses were performed for association with primary resistance to imatinib. However, the 

primary resistance rate was very low (only 5 patients, the 9.3%, had a primary resistance), and no 

correlation could be detected. 

Table 6. Multivariate Cox regression models for TTP. 

SNP HR (95% CI) P value* SNP HR (95% CI) 
P value*

SLC22A4 - rs1050152 SLC22A5 rs2631367 

  

 TT vs TC+CC 
5.74 (2.01-16.40) 0.001   CG + GG vs CC 0.15 (0.05-0.44) < 0.001 

Tumour size   Tumour size   

  �10 cm vs < 10 cm 3.01 (1.13-8.06) 0.028   �10 cm vs < 10 cm 3.11 (1.20-8.11) 0.020 

    

SLC22A5 rs2631372 ABCC4 rs9561765 

   

CG + GG vs CC 
0.46 (0.22-0.97) 0.043 GA vs  AA 0.12 (0.02-0.83) 0.032 

Tumour size   Tumour size   

  �10 cm vs < 10 cm 2.87 (1.07-7.70) 0.036   �10 cm vs < 10 cm 2.71 (0.96-7.64) 0.060 

     

SLC22_A4-A5 Haplotype**   

   

3 vs 1+0 
0.15 (0.05-0.44) < 0.001    

Tumour size     

  �10 cm vs < 10 cm 3.11 (0.02-0.44) 0.002    

* Gender, age, and mutational status adjusted. 

** A score of 3 corresponds to the presence of the three favourable genotypes – SLC22A4 – CC+CT (rs1050152), SLC22A5 – 

CG+GG (rs2631367) and CG+GG (rs2631372) – and a score of 0 to 2 to the presence of zero to two favourable genotypes. 
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Discussion 

To the best of our knowledge, this is the first pharmacogenetic study in GIST patients undergoing 

imatinib therapy. Since the introduction of imatinib as standard treatment in GIST patients with 

metastatic and/or unresecTable disease, significant efforts have been made to elucidate the 

mechanisms that could affect its efficacy. As is well known, KIT and PDGFR� mutational status 

has a significant impact on response to imatinib treatment. In particular Heinrich et al. reported that 

83.5% of patients with exon 11 KIT mutations achieved an objective response after imatinib 

therapy, compared to 48% of patients with exon 9 mutations [9]. Patients harbouring the PDGFR�

exon 18 - D842V - mutation are usually non responsive to imatinib [8,64]. Finally, KIT and 

PDGFR� GISTs are also poorly responsive to imatinib, though the percentage of patients achieving 

an objective response or sTable disease is variable, according to different studies [8,9,64]. 

Conversely, patients with KIT exon 9 mutations show better outcomes in response to higher dose of 

imatinib (600/800 mg daily vs 400 mg day) as well as to sunitinib [49]. Certainly, KIT and 

PDGFR� mutational analysis represents a good predictive marker of responsiveness to tyrosine 

kinase inhibitors. However, GISTs characterized by the same mutational spectrum often show 

different responses in the clinical practice. In addition, the inability to find secondary mutations in 

some progressive GISTs has suggested the possibility that, besides KIT and PDGFR� secondary 

mutations, additional mechanisms may be involved in imatinib resistance [88]. The theory that the 

mutational status cannot explain all the cases of primary/secondary resistance observed, is 

corroborated by the finding that GISTs with secondary KIT activation-loop mutations, expected to 

be insensitive to both imatinib and sunitinib, may still be susceptible to sunitinib [49]. It thus 

appears indispensable to better elucidate the different mechanisms of resistance, which will help to 

define subpopulation of GIST patients who will truly benefit from second-generation tyrosine 

kinase inhibitors, or maybe from imatinib dose escalation or discontinuation. 

Retrospective data  suggested that imatinib plasma levels are associated with progression-free 

survival in advanced GISTs [90-93]. On the contrary, finding have been reported in a recently 

published prospective pharmacokinetic study, the first in GIST patients [94]. The putative role of 

pharmacokinetic in imatinib resistance is still largely unexplored, and today imatinib plasma level 

assessment do not represent a standard procedure in the clinic. However, we cannot exclude that 

imatinib pharmacokinetic properties may impact efficacy of treatment, e.g. time to progression. In 

this perspective, considering the possible influence of polymorphisms in key genes encoding drug 

transporters and metabolizing enzymes on intracellular drug delivery, pharmacogenetics might 

represent a potential source of biomarkers of imatinib effectiveness as highlighted in 

pharmacogenetic studies in CML [79]. However, to our knowledge, the identification of different 
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polymorphisms in imatinib transporters and metabolizing genes has led to the conduction of several 

pharmacogenetic studies in CML patients but not in GISTs [79,95]. 

In this retrospective study, using a multiple candidate gene approach, we found that polymorphisms 

in imatinib transporters genes are associated with TTP. In particular we found that the SLC22A4

variant allele (rs1050152) was significantly associated with a reduced TTP. To us, this finding is 

intriguing, as we found the same polymorphism correlating with the major molecular response rate 

in our set of CML patients [79]. None of the other pharmacogenetic studies has investigated this 

gene, as SLCO1A2, SLC22A5, and ABCC4 genes only have been assumed to be good candidates for 

imatinib absorption [96]. We also analysed polymorphisms in these three genes with interesting 

results. In particular, the minor alleles in SLC22A5 rs2631367 and rs2631372 were associated with 

prolonged TTP. As far as we know, none of these two polymorphisms has ever been investigated in 

any pharmacogenetic study related to imatinib, making it mandatory to validate this observation in 

independent data sets (GIST as CML as well). With regard to the ABCC4 gene - also not 

investigated in previous pharmacogenetics studies – of the two investigated polymorphisms, the 

rs9561765 variant resulted marginally associated with a prolonged TTP. Unfortunately, due to the 

sample size, we had limited power to detect modest effects, as well as concrete possibility of 

detecting apparent correlations by chance. However, given the function assigned to the SLC22A5 

and ABCC4 genes in imatinib absorption, this finding is biologically plausible, and further in vitro

studies assessing the functional significance of this polymorphisms are warranted. 

Interestingly, none of the ABCB1 investigated polymorphisms have been associated to TTP. Three 

variants have been extensively studied in the literature - rs2032582, rs60023214 and rs1128503 - 

both individually and as a haplotype in CML patients and the results have been inconsistent. Kim 

and colleagues [94] found no association between ABCB1 genotypes/haplotypes and imatinib 

efficacy. On the other hand we found a weak association between ABCB1 CC carriers (rs60023214) 

only in a subset of Caucasian CML patients, which is consistent with the finding of Angelini and 

colleagues [79]. These results, although controversial, suggest a role of the ABCB1 gene in 

determining response to imatinib in CML patients. It remains to elucidate which is the causal 

variant, and the importance in GIST patients. 

The correlation between polymorphisms in members of the OCTN family transporters and imatinib 

efficacy might be very important in relation to the use of imatinib in the adjuvant setting. Currently, 

the optimal adjuvant treatment duration and the optimal patients’ selection remain the subjects of 

extensive researches 
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 [97]. Recently, Joensuu reported that three years of adjuvant imatinib substantially improves the 

disease-free survival and overall survival of patients with a high risk of recurrence, compared with 

one year [98]. However, among these patients the observed rate of recurrence is quite low (20-

30%), which makes the identification of pharmacokinetic markers useful for a further sub-

classification of the patients. This may be very important to identify patients that might benefit from 

intervals longer than three years. 

Conclusion (I) 

Imatinib has offered unprecedented improvements in GIST treatments. KIT/PDGFRα mutational 

status or acquisition of secondary mutation is a common mechanism, however not the unique, of 

imatinib resistance. The heterogeneity in mechanisms of secondary resistance unquestionably 

highlights  the need of biomarkers of efficacy. Thus, collecting data on the role of polymorphisms 

in imatinib response, at the moment scarce in CML patients and unavailable in GIST, represents a 

clinical priority. Our study identified polymorphisms in imatinib transporters genes SLC22A4 and 

SLC22A5 that improved time to progression, suggesting that genotyping should be taken into 

account in an attempt to individualize GISTs treatment, representing an attractive opportunity for 

new clinical trials. 
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II. Folate-related polymorphisms in GIST: susceptibility and 

correlation with tumor characteristic and clinical 

outcome 

A recent finding suggests that the DNA methylation profile may be associated with aggressive 

clinical behavior and unfavorable prognosis in gastrointestinal stromal tumor (GIST) [99]. 

However, as far as we are aware, there have been no investigations exploring the influence of 

genetic polymorphisms in enzymes that take part in the folate metabolic pathways GIST. 

Materials and methods 

Study population - A total of 60 unresecTable/metastatic GIST patients were retrospectively 

enrolled in this study. Thirty-two patients were enrolled at Sant’Orsola-Malpighi Hospital, Bologna, 

and 28 at Istituto Nazionale dei Tumori, Milan, Italy. Clinical information was collected 

retrospectively from the patients’ medical records. Overall survival (OS) was defined as the time 

from the first day of treatment to death from disease. Dates of death were obtained and cross-

checked using the inpatient medical records. If a patient was alive, OS were censored at the time of 

the last follow-up. For the 54 patients on standard first-line imatinib therapy time to progression 

(TTP) was calculated from the start of imatinib therapy to the date of disease progression 

documented by the CT scan performed approximately every 3-4 months. Data for patients who did 

not progressed at the last follow-up TTP evaluation were censored at that time. In order to exclude 

disease susceptibility we also genotyped 153 controls, anonymous blood donors from the Centro 

Trasfusionale, Sant’Orsola-Malpighi Hospital, Bologna. The study was approved by the Ethics 

Committees of the two institutions. The analysis was done after written informed consent for study 

participation and anonymous data publication in accordance with national legislation. Any subjects 

could cancel participation at any time during the study, according to Helsinki Declaration and later 

Amendments. 

Genotyping analysis - We selected thirteen common [minor allele frequency (MAF) > 0.05 in 

Caucasian], well-studied functional variants - located in regulatory region, cause non-synonymous 

amino acid changes and/or have been repeatedly associated with cancer risk, survival or treatment 

response. Patients with available peripheral blood were eligible for this retrospective study. DNA 

was isolated as previously described. Characteristics of the studied polymorphisms - two 

insertion/deletion, one tandem repeat and ten single nucleotide polymorphisms - are reported in 

Table 7. Genotypes were determined by PCR RFLP and RT-PCR as previously described. Positive 

and negative controls were included in each reaction as quality control. In addition, for internal 
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quality control (accuracy of genotyping) 90% of samples were repeated. The concordance between 

the original and the duplicate samples for all the analysed polymorphisms was 100%. 

Statistical analysis - The distribution of genotypes was tested for departures from the Hardy-

Weinberg equilibrium using the χ
2
 test. Survival analysis methods were used to examine the 

relationship between genotypes [homozygous wild-type, heterozygous and homozygous for the 

variant allele] and GIST time to progression. In univariate analysis, the survival curves were 

estimated and plotted with the Kaplan-Meier method. The curves were compared with log-rank test 

of equality of survivor functions (statistical significance defined as p < 0.05). In multivariate 

analysis, hazard ratios (HR) and 95% confidence interval (95% CI) were estimated with Cox 

proportional hazards models, using gender, age, and status (localised/metastatic) at diagnosis, as 

covariates in addition to the genotype. The proportional hazards assumption was tested (P > 0.05) 

using Schoenfeld residuals. Multiple logistic regression was used to assess the relation between 

individual polymorphisms and primary resistance. Statistical analysis was conducted using Stata 

Intercooled version 12.0. 

Table 7. SNPs description 

Gene [full name; Protein name]   SNP ID METHOD [A]  

RFC [Reduced folate carrier 1] 

rs1051266 [Arg27His] RFLP[Shimasaki et al.,2006]98

FOLR [Folate receptor 1] 

rs2071010 [5’ UTR] 
RT TaqMan assay C_15861044_10 

DHFR [Dihydrofolate reductase ] 

rs70991108 [19bp ins/del;Intronic] RFLP [Johnson et al., 2004] 99

MTHFR [Methylenetetrahydrofolate reductase] 

rs1801133 [Ala222Val]] 
RFLP [Sanyal et al., 2004] 100

rs1801131 [Glu429Ala]
RFLP [Sanyal et al., 2004] 100

MTR [Methionine synthase] 

rs1805087 [Asp919Gly] 
RT TaqMan assay C_12005959_10

MTRR [Methionine synthase reductase]

rs1801394 [Ile49Met] 
RT TaqMan assay C_3068176_10 

rs1532268 [Ser175Leu] 
RT TaqMan assay C_3068164_10 

rs162036 [Lys350Arg] RT TaqMan assay C_3068152_10 

rs10380 [His595Tyr] 
RT TaqMan assay C_7580070_1 
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SHMT [Serine hydroxymethyltransferase ] 

rs1979277 [Leu474Phe] 
RT TaqMan assay C_3063127_10 

TYMS [Thymidylate synthase] 

rs45445694 [6bp ins/del; enhancer region] RFLP [Skibola et al, 2002] 101

rs34489327 [28bp tandem repetition; 

3’- near gene] 
RFLP [Skibola et al, 2002] 101

[A] RT = Real-Time PCR with TaqMan allelic discrimination assay [Applera, Foster City, USA]; 

    RFLP = PCR-RFLP and M = Multiplex PCR, analysis carried out according to published 

methods [reference parenthetically] or as standardized in our laboratory (primer set, T (°C) of 

annealing and restriction enzymes (Fermentas, Vilnius Lithuania) described]. 

Results 

Characteristics of the study population. The cohort of 60 Caucasian GIST patients (Table 8) was 

made up of 65% men and 35% women (median age at diagnosis 58.0 years; range 18-83 years). The 

most common primary sites were the stomach (55.0%) and the small intestine (40.0%); the 

remaining 5%, the sites of onset were oesophagus (1 case) and rectum (2 cases).  

Table 8. Patient and disease characteristics of the studied populations. 

Cases (n = 60) Controls (n = 153) 

Gender, n (%) 

    Female 21 (35.0%) 61 (39.9%) 

    Male 39 (65.0%) 92 (60.1%) 

Age at diagnosis or selection, years

    median (range) 58.0 (18-83) 47 (21-79) 

Tumour site, n (%) 

    Stomach 33 (55.0%)  

    Small Intestine 24 (40.0%)  

    Other 3 (5.0%)  

Tumour size, n (%) 

    ≤ 2 cm 1 (1.6%) 

    2 - 5 cm 6 (10.0%) 

    5 - 10 cm 18 (30.0%) 

    � 10 cm 22 (36.7%) 

    Missing 13 (21.7%) 

Mitotic index �, n (%)  

    < 5  13 (21.7%) 

    6-10 5 (8.3%) 

    � 10 17 (28.3%) 

    Missing 25 (41.7%) 

Mutational status, n (%) 

    KIT exon 11 35 (58.3%) 

    PDGFR�/KIT WT 9 (15.0%) 

    Other than PDGFR� D842V and 

PDGFR�/KIT WT 
4 (6.7%) 

   Missing 
12 (20.0) 

� 50 x High power filed. 
§ Numbers for certain variables may not add up to the total number because of missing information. 
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Twenty-three patients (38.3%) had metastatic disease, with liver and peritoneum as the most 

common sites of metastases. Thirty-five patients (58.3%) harboured KIT exon 11 mutations, while 

only one patient had a KIT exon 9 mutation. Three patients (5.6%) had a PDGFR� mutation, 

excluding the D842V, and nine (15.0%) were KIT/PDGFR� WT GISTs. In twelve GISTs, 

mutational status was unknown, due to insufficient or unavailable biological material for the 

analysis. Control group (n = 153) was made up of 60% men and 40% women (median age 47 years, 

range 21-79 years).

Genotypes distribution in the two studied populations. Genotype frequencies of the thirteen 

polymorphisms were found to be in Hardy-Weinberg equilibrium (P > 0.05) in both patients and 

controls, with the exception of rs1801133 in the MTHFR genes in controls only (P = 0.016). MAF 

and Hardy-Weinberg equilibrium P value are presented in Table 9. 
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Table 9. Allele frequency 

 Genotypes distribution n   

 wt HE SNP Frequency 

variant allele

P HWE

RFC – rs1051266

Cases 21 31 7 q = 0.381 0.383 

Controls 59 64 29 q = 0.401 0.127 

FOLR – rs2071010

Cases 51 6 0 q = 0.053 0.675 

Controls 131 20 1 q = 0.072 0.805 

DHFR – rs70991108

Cases 22 31 6 q = 0.364 0.302 

Controls 60 69 24 q = 0.382 0.576 

TS – rs45445694

Cases 11 33 16 q = 0.542 0.404 

Controls 38 66 49 q = 0.536 0.100 

TS – rs34489327

Cases 25 24 4 q = 0.301 0.588 

Controls 54 65 34 q = 0.435 0.094 

SHMT – rs1979277

Cases 27 30 3 q = 0.300 0.140 

Controls 85 55 10 q = 0.250 0.785 

MTHFR - rs1801133

Cases 22 28 10 q = 0.400 0.830 

Controls 36 91 26 q = 0.467 0.016 

MTHFR - rs1801131

Cases 24 28 8 q = 0.367 0.976 

Controls 84 57 12 q = 0.264 0.595 

MTR - rs1805087

Cases 40 18 2 q = 0.183 0.988 

Controls 101 48 4 q = 0.183 0.543 

MTRR - rs10380

Cases 51 9 0 q = 0.075 0.530 

Controls 121 30 1 q = 0.105 0.556 

MTRR – rs162036 

Cases 47 11 1 q = 0.110 0.706 

Controls 112 38 2 q = 0.138 0.539 

MTRR – rs1801394 

Cases 21 30 9 q = 0.400 0.747 

Controls 56 64 33 q = 0.423 0.075 

MTRR - rs1532268 

Cases 26 25 9 q = 0.358 0.467 

Controls 66 66 21 q = 0.353 0.492 

Details of the results of association tests for each genetic polymorphism chosen for analysis in our 

case-control study population are presented in Table 9 and 10. The most significant result was 

found for the 6bp ins/del in TS gene (rs34489327). In particular the allele with the 6bp deletion was 

significantly less common in cases compared to controls (30.2% vs 43.5%; OR 1.84, 95% CI 1.29-

3.01; P = 0.014 Tab 9). Genotype analysis also showed a similar significant association (P = 0.019) 



First objective: SNP genotyping in GIST patients treated with imatinib 
�

41�

with the 6bp del/del genotype less frequent in cases compared to controls (7.5% vs 22.2%). There 

was no significant difference in genotype distribution or allele frequencies between cases and 

controls for any of the other polymorphisms tested across the key enzymes that take part in the 

folate metabolic pathways. 

Association between genetic polymorphisms and clinical features at diagnosis. Results of the 

associations of each genotype and clinical variables are presented in Tables 11 (RFC, FOLR, 

DHFR, TS, SHMT and MTHFR). Univariate analysis showed an excess of wild-type MTR - 

rs185087 - genotype in patients aged less than 60 years when compared with those over 60 (84.6% 

vs 51.5; P = 0.008), and in patients with mitotic index greater than 10, compared to patients with 

lower mitotic index (88.2 vs 55.6; P = 0.032). In addition an excess of wild-type RFC, FOLR and 

MTHFR (rs1801130) genotypes was observed in patients with tumor size greater than 10 cm, 

compared to patients with smaller tumor. 

With regard to mutational status, we divided the patients in three groups – KIT or PDGFRA 

mutated and wt GIST. Results of the associations of each genotype and mutational status are 

included in Tables 11 (RFC, FOLR, DHFR, TS, SHMT and MTHFR). According to this 

stratification, we observed an excess of wild-type RFC genotype in patients with PDGFRA 

mutations compared to KIT mutated and wild-type GIST (100% vs 37.1% and 11.1% respectively; 

P 0.021). We also observed that the TS 2R2R genotype (rs45445694) was more represented in 

PDGFRA mutated patients compared to KIT mutated and wild-type GIST (66.7% vs 16.7% and 0% 

respectively; P = 0.027). Another finding was an excess of the presence of at least a variant MTRR 

rs10380 allele in wild-type GIST compared to KIT/PDGFRA mutated patients (33.3% vs 2.8% and 

0% respectively; P = 0.011). The same finding was seen for MTRR rs162036 (44% vs 8.6% and 0% 

respectively; P 0.020). A borderline association was also seen for MTHFR (rs1801133) genotype. 

In particular we observed an excess of the wild-type genotype in PDGFRA-mutated and wild-type 

GIST compared to KIT-mutated patients (66.7% both vs 27.8%; P = 0.055). 

Association between time to progression and genetic polymorphisms. Fifty-four patients received 

standard first-line imatinib 400 mg daily, with a median duration of imatinib administration of 36,9 

months. Demographic and disease characteristic of the subgroup of GIST has been extensively 

previously described. Regarding imatinib response, the best results during therapy were partial 

response and sTable disease in 90.7%. With a median follow-up of 36.9 months, progression of 

disease was observed in 26 cases (48.1%), with a median TTP of 21.8 (range: 1.6-58.2). 
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In the univariate analysis, we observed that the presence of the variant allele RFC rs1051266 - in 

homozigosity is associated, at the limit of statistical significance, with a reduced risk of disease 

progression (HR 0.144, 95% CI 0.019 – 1.07; P = 0.059). The relationship resulted significant after  

type allele in RFC (AA/AG), was associated with reduced TTP (P = 0.028; Figure 16). None of the 

other analysed SNPs correlated with the progression. Noteworthy, none of the five patients with  

correction for gender, age, and status at diagnosis (HR 0.107, 95% CI 0.014-0.82; P = 0.032). 

Alleles were correlated with TTP based on the Kaplan-Meier method. Presence of at least one wild- 

heterozygote FOLR genotype showed progression. 

.   Figure 16. Kaplan-Meier estimated. Presence of at least one wild-type allele in RFC (AA/AG), was 

associated with reduced TTP. 
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Table 10. RFC, FOLR, DHFR, TS, SHMT and MTHFR genotype frequencies according to clinical features. 

FOLR rs2071010 DHFR rs70991108 

19bp Ins/del

TS rs45445694  

28bp repeat

TS rs34489327 

6bp Ins/del

SHMT rs1979277 MTHFR rs1801130 MTHFR rs1801133

AA AG/GG +/+  +/-_-/- 2R2R 2R3R/3R3R 6 +/+ 6 +/-_-/- CC CT/TT

22 (68.8) 28 

(90.3) 

3 

(9.7) 

10 

(31.3) 

22 

(68.7) 

6 

(18.2) 

27 

(81.8) 

15 (48.4) 16 (51.6) 16 (48.5) 17 (51.5) 13 (39.4) 20 (60.6) 15 (45.5) 18 (54.5) 

15 (57,7) 23 

(88.5) 

3 

(11.5 

11 

(42.3) 

15  

57.7) 

5 

(19.2) 

21 

(80.8) 

10 (45.5) 12 (54.5) 11 (40.7) 16 (59.3) 8 

(30.8) 

18 (69.2)   9 (34.6) 17 (65.4) 

0.082 0.384 0.918 0.695 0.441 0.492 0.400 

        

13 (65.0) 20 

(95.2) 

1 

(4.8) 

  7 

(33.3) 

14 

(66.7) 

3 

(14.3) 

18 

(85.7) 

  9 (47.4) 10 (52.6) 11 (52.4) 10 (47.6) 5 (23.8) 17 (43.6)   8 (38.1) 13 (61.9) 

25 (64.1) 31 

(86.1) 

5 

(13.9) 

15 

(39.5) 

23 

(60.5) 

8 

(20.5) 

31 

(79.5) 

16 (47.1) 18 (52.9) 16 (41.0) 23 (59.0) 16 (76.2) 22 (56.4) 16 (41.0) 23 (59.0) 

0.279 0.641 0.552 0.983 0.399 0.129 0.825 

        

18 (54.5) 27 

(84.4) 

5 

(15.6) 

15 

(45.4) 

18 

(54.5) 

6 

(18.2) 

27 

(81.8) 

13 (46.4) 15 (53.6) 18 (54.5) 15 (45.4) 12 (36.4) 21 (63.6) 12 (36.4) 21 (63.6) 

18 (75.0) 22 

(100) 

0   5 

(21.7) 

18 

(78.3) 

5 

(20.8) 

19 

(79.2) 

11 (50.0) 11 (50.0)   8 (33.3) 16 (66.7)   9 (37.5) 15 (62.5)   9 (37.5) 15 (62.5) 

  2 

(66.7) 

1 

(33.3) 

  2 

(66.6) 

1 

(33.3) 

0   3 

(100) 

  1 (33.3)   2 (66.7)   1 (33.3)   2 (66.7)   1 (33.3)   2 (66.7)   3 

(100) 

  0 

0.077 0.109 0.679 0.858 0.259 0.989 0.093 

        

19 (76.0) 18 

(78.3) 

5 

(21.7) 

  7 

(29.2) 

17 

(78.8) 

3 

(12.0) 

22 

(88.0) 

  9 (39.1) 14 (60.9) 14 (56.0) 11 (44.0)   5 (20.0) 20 (80.0) 13 (52.0) 12 (48.0) 

  9 (42.9) 21 

(100) 

0   9 

(40.9) 

13 

(59.1) 

5 

(22.7) 

17 

(77.3) 

10 (58.8)   7 (41.2)   9 (40.9) 13 (59.1) 12 (54.5) 10 (45.5)   6 (27.3) 16 (72.7) 

0.023 0.404 0.329 0.218 0.302 0.014 0.085 

                

12 (66.7) 13 

(76.5) 

4 

(23.5) 

  5 

(29.4) 

12 

(70.6) 

2 

(11.1) 

16 

(88.9) 

  5 (31.2) 11 (68.8) 11 (61.1)   7 (38.9)   4 (22.2) 14 (77.8)   6 (33.3) 12 (66.7) 

10 (58.8) 16 

(94.1) 

1 

(5.9) 

  8 

(47.1) 

  9 

(52.9) 

3 

(17.6) 

14 (82.3) 7 (50.0)   7 (50.0)   9 (52.9)   8 (47.1)   8 (47.1)   9 (52.9)   6 (35.3) 11 (64.7) 

0.146 0.290 0.581 0.296 0.625 0.122 0.903 
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22 (62.9) 30 

(90.9) 

3 (9.1) 17 

(48.6) 

18 (51.4) 6 

(16.7) 

30 (83.3) 14 (46.7) 16 (53.3) 16 (44.4) 20 (55.6) 16 (44.4) 20 (55.6) 10 (27.8) 26 (72.2) 

  0   3 

(100) 

0   1 

(33.3) 

  2 (66.7) 2 

(66.7) 

  1 (33.3)   2 

(100) 

  0   2 (66.7)   1 (33.3)   1 (33.3)   2 (66.7)   2 (66.7)   1 (33.3) 

  8 (88.9)   9 

(100) 

0   1 

(11.1) 

  8 (88.9) 0   9 (100)   4 (44.4)   5 (55.6)   3 (33.3)   6 (66.7)   1 (11.1)   8 (88.9)   6 (66.7)   3 (33.3) 

0.557 0.120 0.027 0.320 0.593 0.179 0.055 
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Association between overall survival and genetic polymorphisms. The genotype distribution of the 

thirteen polymorphisms in genes coding for the key enzymes of the folate metabolic pathways and 

the association with OS are summarized in Table 12. Compared with the homozygote SHMT1 CC 

genotype, the TT genotype was significantly associated with a hazard of early death in the 

univariate analysis (HR = 6.53, 95% CI 1.17 – 36.36; P = 0.032). After a multivariate adjustment 

for gender, age, and status at diagnosis only a tendency for statistical significance of early death was 

obtained (HR = 4.53, 95% CI 0.77 – 26.58; P = 0.095). Interestingly, of the five patients with 

heterozygote FOLR genotype none experienced mortality. None of the other analyzed 

polymorphisms showed an association with the OS. 

Table 12. Univariate and multivariate analyses of the different genotypes and OS in GIST patients. 

Genotypes Patient

N 

Event 

n 

Crude  

HR (95% CI) P § 

Adjusted 

HR (95% CI) P #§

RFC rs1051266

AA 21 7 1.  1.  

AG 28 6 0.52 (0.17 – 1.55) 0.239 0.70 (0.22 – 2.22) 0.548 

GG 7 1 0.22 (0.03 – 1.78) 0.155 0.35 (0.04 – 3.24) 0.353 

FOLR rs2071010

AA 48 12 - - - - 

AG/GG 5 0 - - - - 

DHFR rs70991108 

19 +/+ 21 5 1.  1.  

19 +/- 30 6  0.99 (0.30 – 3.26) 0.983 0.94 (0.30 – 3.19) 0.925 

19 -/- 5 2 2.01 (0.40 – 10.83) 0.389 1.40 (0.26 – 8.74) 0.718 

TS – rs45445694

2R2R 11 1 1.  1.  

2R3R 30 6 1.48 (0.18 – 12.36) 0.717 1.57 (0.19 – 13.23) 0.677 

3R3R 16 7 3.93 (0.48 – 32.01) 0.201 3.63 (0.44 – 30.09) 0.232 

TS rs34489327

6 +/+ 24 5 1.  1.  

6 +/- 22 3 0.39 (0.091 – 1.67) 0.205 0.30 (0.065 – 1.40) 

6 -/- 4 2 1.94 (0.94 – 10.25) 0.436 1.38 (0.24 – 8.04)  

SHMT rs1979277

Table 11. Most relevant results correlation between mutational status and candidate genotypes. 

n (%) 

RFC rs1051266 TS rs45445694  

28bp repeat

MTHFR rs1801133 MTRR rs10380 MTRR rs162036

           

Mutational 

status

          

KIT 13 (37.1) 22 (62.9) 6 (16.7) 30 (83.3) 10 (27.8) 26

(72.2) 

35 (97.2) 1 

(2.8) 

32 (91.4)   3 

(8.6) 

PDGFRA   3 (100)   0 2 (66.7)   1 (33.3)   2 (66.7)   1 (33.3)   3 (100) 0 3 

(100) 

0 

wt   1 (11.1)   8 (88.9) 0   9 (100)   6 (66.7)   3 (33.3)   6 (66.7) 3 

(33.3) 

5 (55.6) 4 

(44.4) 

P- value 0.021 0.027 0.055 0.011 0.020 
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CC 25 4 1.  1.  

CT 29 8 1.73 (0.52 – 5.75) 0.374 2.01 (0.59 – 6.83) 0.266 

TT 3 2 6.53 (1.17 – 36.36) 0.032 4.53 (0.77 – 26.58) 0.095 

MTHFR rs1801133

CC 20 5 1.  1.  

CT 28 8 1.00 (0.33 – 3.08) 0.995 0.99 (0.31 – 3.18) 0.988 

TT 9 1 0.41 (0.048 – 3.50) 0.414 0.46 (0.053 – 3.99) 0.479 

MTHFR rs1801131

AA 22 6 1.  1.  

AC 28 7 0.97 (0.33 – 2.90) 0.957 0.93 (0.27 – 3.22) 0.911 

CC 7 1 0.56 (0.066 – 4.57) 0.579 0.40 (0.048 – 3.35) 0.398 

MTR rs1805087

AA 37 11 1  1.  

AG 18 3 0.55 (0.15 – 1.97) 0.356 0.55 (0.15 – 2.01) 0.363 

AG/GG 20 3 0.53 (0.15 – 1.90) 0.331 0.54 (0.15 – 1.99) 0.355 

MTRR rs10380

CC 49 13 1.  1.  

CT/TT 8 1 0.36 (0.047 – 2.77) 0.328 0.43 (0.056 – 3.34) 0.421 

MTRR rs162036

AA 44 10 1.  1.  

AG/GG 12 3 0.89(0.24 – 3.24) 0.856 1.04 (0.29 – 3.80) 0.953 

MTRR rs1801394

AA 20 6 1.  1.  

AG 29 7 0.83 (0.28 – 2.47) 0.737 0.88 (0.29 – 2.65) 0.814 

GG 8 1 0.29 (0.035 – 2.42) 0.252 0.33 (0.037 – 2.90) 0.315 

MTRR rs1532268 

AA 20 6 1.  1.  

AG 28 7 0.83 (0.28 – 2.47) 0.737 0.49 (0.13 – 1.86) 0.291 

GG 8 1 0.29 (0.035 – 2.42) 0.252 1.45 (0.36 – 5.79)  0.600 

Discussion

To the best of our knowledge this is the first study to investigate the association between tumors 

characteristics and clinical outcomes and potentially functional polymorphisms in genes of the 

folate pathway in GIST patients. Genetic approaches to define mechanisms of GIST development, 

with the recognition of KIT/PDGFRA mutation as key player, have delivered meaningful insights 

in the development of treatment strategies. Nevertheless, imatinib remains the only first-line 

treatment approved, even in patients for whom we might anticipate a lack or a subsequent failure of 

efficacy [64]. In addition, the mechanisms of refractoriness or resistance, in addition to the 

acquisition of secondary mutations in known KIT and PDGFRA exons, remains still unknown in 

most patients [68]. We now recognize the enormous scope of genetic variation among humans, 

which can be used to probe the genetics of treatment response and disease susceptibility. Basically 

all genes are subject to genetic variability, which can be associated with the altered efficiency of a 

biological pathway. These genetic variations can be associated with a person's risk for developing 

cancer as a result of environmental exposures, as well as variability in drug response. Genetic 

polymorphisms in xenobiotic/drug metabolizer, transporters and targets loci were a natural starting 

point to study their relevance in susceptibility and treatment efficacy. Besides these, the biological 

components that may also influence susceptibility and therapies outcome include enzymes that 

repair DNA damage, factors that regulate cell cycle control, cell division and cell death, and 
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enzyme involved in the immune response [104]. Many findings support the idea that different 

mechanisms may be involved in the GIST tumorigenesis processes, as emphasized by the widely 

different clinical behavior of each GIST patient, regardless of the KIT/PDGFRA mutational status. 

In this regard we thought that polymorphisms in candidate genes related to the folate metabolism 

may be a good choice for investigating association with clinic-pathological features, response to 

treatment and survival. Due to the role of these genes in DNA synthesis, DNA repair and DNA 

methylation, it is plausible that genetic variants of these genes may influence their function, 

resulting in aberrant methylation or DNA synthesis inhibition. These modifications may be thus 

involved in the tumor progression and consequently may play a relevant role in the long term 

outcome of patients. In the present study we investigated the frequencies of selected polymorphisms 

in patients stratified by age, gender and other main molecular and clinical characteristics, and found 

that few genotypes may show a likely correlation. However, the most remarkable results are the 

association with disease risk, TTP and OS. In particular, we found evidence for an association 

between a polymorphism in the TS gene (rs34489327) and GIST susceptibility. The TS gene 

product, a folate dependent enzyme, works converting dUMP to dTMP, which is responsible for 

thymine incorporation during DNA-synthesis [105]. The rs34489327 is a 6bp ins/del in the 3’- UTR 

region, and together with rs34743033, located in the 5’-UTR region, is the most extensively 

reported TS variant. These two variants are associated with the occurrence of various tumors, such 

as colorectal cancer, lymphoma, and acute lymphocytic leukemia [105-107]. The 6bp deletion 

polymorphism has been associated with a decreased protein expression due to an effect on 

secondary mRNA structure or mRNA stability [108,109]. Since the polymorphism has been linked 

to a reduced enzymatic activity, and considering its critical function we would hypothesized that the 

TS 6bp del may be associated with a higher cancer risk. TS inhibition results in depletion of 

deoxythymidine triphosphate (dTTP) pools followed by thymine-less death or, in some instances, 

high levels of uracil mis-incorporation in DNA followed by extensive repair and subsequent 

double-strand breaks in DNA, that promote chromosomal instability, translocations, and aberrations 

[110]. Interestingly, the TS 6bp deletion was found more frequently in the healthy controls, 

indicating a lower risk associated with the variant allele. Given the small population size, yet 

similar to other studies reported in the literature, due to the rarity of the tumor, we cannot exclude 

that the association we found is chance. Nevertheless, we should consider that the findings of other 

studies on cancer risk are controversial, with both positive, negative or null results [110-114]. 

Different hypothesis has been proposed to explain the observed discrepancies. It might reflect 

differences in the gene-disease association (i.e. different types of cancer, different association) or 

may reflect different intakes of micronutrients, folate and B vitamins in particular, in the different 
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populations [115-117]. Another alternative explanation is that TS requires 5,10-

methylenetetrahydrofolate (5,10-MTHF) as a cofactor, and competes with MTHFR for available 

5,10-MTHF. The TS-mediated reaction is closely linked to the reaction catalyzed by MTHFR, this 

implies a narrow interplay between these two enzymes. Therefore, addressing only polymorphisms 

in one gene may be an oversimplification of the reality and this prompted us to also include genetic 

polymorphisms in the key enzymes that take part in the folate metabolic pathways. However, none 

of the other investigated variants were associated with a higher risk of GIST. It should be noted that 

a better and meaningful approach would have been the gene–gene interactions analysis. Though, 

this approach is not practicable in our study, as it will necessarily suffer of insufficient statistical 

power due to the small sample size. 

Through our multiple candidate gene approach, we found that polymorphisms in RFC and FOLR 

genes may be associated with TTP, although only RFC reached statistical significance. To us this 

finding is intriguing, as both the gene products are involved in the folic acid and reduced folates, as 

the 5’-Methyltetrahydrofolate (5’-MTHF) cellular uptake and distribution. In particular, RFC has a 

higher affinity for reduced folates, vice versa FOLR has higher affinity for folic acid [118,119]. 

With regard to RFC, previous studies have shown that individuals with the A allele, which is found 

significantly associated with reduced TTP in our study, had reduced plasma levels of folates and 

homocysteinemia than individuals carrying the G allele [120,121]. Dietary intake of folate has been 

associated with reduced risk for a number of cancers [122-124]. The proposed mechanisms are 

suboptimal DNA methylation and DNA repair capacity. Among them, altered cytosine methylation 

in DNA, referable to folate deficiency, may lead to inappropriate activation of proto-oncogenes and 

induction of malignant transformation [125]. Therefore, it is plausible that the RFC genotype may 

be involved in GIST tumorigenesis, by affecting plasma folate and homocysteine levels. 

Advances in molecular biology have highlighted that epigenetic modifications may play important 

roles in tumorigenesis and tumor progression. The different methylation status of several genes has 

been associated with different tumor phenothypes and clinical behaviors in quite a few cancer 

[126]. Recently few studies have reported aberrant methylation status in GIST patients, particularly 

those KIT/PDGFRA wild-type [127,128]. Since methylation status of various genes greatly 

influences the diagnosis and prognosis of several tumors, it is reasonable to think that genetic 

polymorphisms in key enzymes of the folate metabolism, may perturb this pathway and have the 

potential of becoming biomarkers of prognosis. To explore this hypothesis, we investigated the 

association of the selected genetic polymorphism with OS. Among all, only the SHMT variant 

resulted associated with OS. SHMT is a vitamin B6-dependent SHMT1 enzyme that catalyzes the 

reversible conversion of serine and tetrahydrofolate to glycine and 5,10-MTHF in the cytoplasm for 
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the synthesis of methionine, thymidylate, and purines. The C variant, associated to reduced OS in 

our population, has been associated to reduced folate levels [129,130], thus the polymorphism could 

mimic a situation of folate deficiency by limiting the availability of one-carbon units for both 

remethylation of homocysteine, important for DNA methylation, and DNA synthesis. The 

importance of folate status is supported by the evidence that none of the patients with heterozygous 

FOLR genotypes showed progression or experienced mortality. However, it must be stressed that 

overall survival may be affected by multiple variables, and the potential prognostic role of the 

folate-genotype should be verified in a larger sample size stratified according to the molecular and 

clinical features and the medical treatment received. 

Conclusion (II)

To conclude, we report significant association between genetic polymorphisms in key enzymes of 

the folate metabolic pathways and GIST tumorigenesis, clinical features and outcome. Our finding 

should be considered in the context of both the strengths – the investigation of a large number of 

polymorphisms across genes with well-defined roles in the folate pathway and the robust 

genotyping protocols - and limitations – the small sample size - and should be viewed as 

exploratory. On the other hand, the rarity of GIST requires that promising genetic polymorphisms, 

such as those reported in the present study are subjected to further investigation. In particular, these 

results need to be further confirmed in larger independent studies, which will allow genome-wide 

association studies - only feasible when large cohort of patients is available – opening up the 

opportunity to identify new loci associated with GIST susceptibility and/or clinical outcome, or to 

definitively confirm the role of candidate genetic variations. Furthermore, the enrichment of the 

study by having available serum folate levels or dietary intake, associated with the opportunity of 

gene-gene and gene-environment interaction analysis, may lead to a better understanding of GIST 

pathogenesis, clinical manifestation and disease course. 
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Second Objective 

Tyrosin-kinase Inhibitor resistance mechanisms in 

GISTs 

�

Figure 17. Main key players in KIT downstream signaling pathway.

Figure 17 highlights the main players in the KIT downstream players that will be widely discuss 

below. 

Clinical progression of GIST, during TKI therapy, is often multifocal. However, TKI resistance 

mutations have been assessed in only single, or few, progressing metastases per patient, so that the 

heterogeneity of these mutations, in a given patient, remains unclear [131]. 
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We screened up to 46 progressing GIST metastases per patient to evaluate TKI resistance 

mechanisms, part of a more extensive project aimed to characterize the secondary resistance by 

means of high-throughput screens. 

Materials and methods 

Patients - We analyzed a total of 14 GISTs patients (9 males, 5 females, age range 32-73, median 

age 55). All patients progressed clinically on imatinib or sunitinib, according to the conventional 

Southwest Oncology Group/Response Evaluation Criteria in Solid Tumours. All the patients 

underwent resection during 2002–20012 at the Brigham and Women's Hospital, Boston, MA, USA. 

Imatinib or sunitinib was discontinued within 1 week prior to debulking surgeries. This study was 

approved by the Institutional Review Board of Brigham and Women's Hospital.  

Haematoxylin and eosin-stained sections from paraffin blocks were reviewed by pathologists to 

confirm the diagnoses prior to inclusion in the study. Tumour regions from different metastases or 

different areas within metastases were selected from each patient, with an emphasis on variation in 

tumour cytology, KIT expression (KIT-positive or KIT-negative) and mitotic activity. all frozen 

tumor specimens were analyzed histologically, and shown to be composed of > 90% neoplastic 

cells. 

The morphological appearance (spindle cell, epithelioid cell, mixed cell type, unusual morphology), 

tumour size, location, treatment effects (necrosis, hyalinosis, pseudo-chondroid changes, 

haemorrhage) were evaluated, as well as mitotic rate [expressed as the number of mitotic Figures 

per 50 high power fields (HPFs) in the most mitotic area, using a × 40 objective and a × 10 ocular, 

field size 0.25 mm
2
]. 

For every patient we had from a minimum of 3 different metastases samples to up to 52 (Table 14). 

DNA samples. Genomic DNA was isolated, from frozen specimens, using QIAmp kit from QIagen 

(TurnberryLane Valencia CA, USA). All known precautions were observed during the DNA 

isolations to prevent cross-contamination between different samples. The extracted DNA was 

quantified using NanoDrop spectrophotometer (Thermo Scientific, Fisher Scientific, Pittsburgh, 

PA, USA). mutational analysis was performed on the extracted genomic DNA, using polymerase 

chain reaction with specific primer sets for KIT exons 9, 11, 13, 14, 15, 16, 17, 18 (Table 13). DNA 

were amplified in 20-�l PCR reactions for 2 minutes at 94°C, followed by 30 seconds at 94°C, 30 

seconds minute at 60°C, and 1 minute at 72°C for 35 cycles, with a final step of 7 minutes at 72°C. 

PCR products were evaluated by ethidium bromide staining on a 1% agarose gel alongside 1 Kb 

Plus DNA Ladder (Invitrogen, Grand Island, NY, USA). The PCR products were purified using 

QIAquick PCR Purification Kit (QIagen), and Sanger sequenced. 
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Table 13. Primer sequences used for KIT mutational analysis. 

Exon Forward Reverse 

9 ATTTATTTTCCTAGAGTAAGCCAGGG ATCATGACTGATATGGTAGACAGAGC

11 CCAGAGTGCTCTAATGACTG CACAGAAAACTCATTGTTTCAGGTGG

13 ATTTTGAAACTGCACAAATGGTCCTT GCAAGAGAGAACAACAGTCTGGGTAA

14 GTAGCTCAGCTGGACTGATA AATCCTCACTCCAGGTCAGT 

16 GATCTGCCTGCAAGTTCACA GGCTCTAAAATGCTCTGTTCTCA 

17 GCGTACTTTTGATTTTTATTTTTGGTG AAATGTGTGATATCCCTAGACAGGATTT

18 CATTTCAGCAACAGCAGCAT CAAGGAAGCAGGACACCAAT 

Novel KIT mutations constructs. To evaluate if the secondary mutations were involved in the 

resistance we made KIT mutation 

constructs. Oligonucleotides 

representing various mutations were 

designed by the Stratagene online 

program and synthesized by 

Invitrogen. Wild type KIT or exon 9 

mutant KIT (A502_Y503dup) or 

exon 11 mutant KIT (V560D) was 

used as the template DNA for site-

directed mutagenesis reactions 

utilizing the mutant 

oligonucleotides and the 

QuikChange mutagenesis kit (Stratagene, Agilent Technology, 

Santa Clara, CA, USA, Figure 18). Successful mutagenesis was 

confirmed by sequence analysis of the whole coding sequence of 

KIT. 

The plamid chosen for the experiments was pCDNA 3.1 (Figure 

19) 

  

Figure 18. Overview of the site-directed mutagenesis method.

Figure 19. pcDNA plasmid.
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Functional experiments. Novel KIT mutations identified by sequencing were biochemically profiled 

using constructs prepared by site-directed mutagenesis. KIT autophosphorylation status was 

assessed by Western immunoblotting as described below. GIST48B cells, a cell line that has KIT 

gene but does not express KIT protein, were transiently transfected with mutated KIT constructs 

using the Lipofectamine Plus kit from Invitrogen. 24 hours after transfection, cells were exposed to 

different concentrations of imatinib, sunitinib (0.1, 0.5, 1 and 5 µmol\L). Whole-cell lysates were 

immunostained for p-KIT(Y721) and total KIT; p-KIT expression is inversely proportion to the 

drug cells response: the cells are responding to the treatment, have a lower expression of p-KIT.

Western blotting. Frozen tumor samples were diced in ice-cold lysis buffer containing protease 

inhibitors (10 mg/ml aprotinin, 10 mg/ml leupeptin, and 1mM phenylmethylsulfonyl fluoride), 

homogenized using a Tissue Tearor (Biospec Products, USA), and immunoblotted. Uniform protein 

transfer was demonstrated by Ponceau S staining (Sigma Chemical), and immunostains were 

performed for total KIT (Dako, #A4502, 1:500, rabbit) and phospoKIT (Cell Signaling, # 3391, 

1:500, rabbit); in the second part of the study, immunostains were performed, besides for KIT and 

phospo KIT, also for total MAPK (Cell Signaling, # 9102 1:1000, rabbit) for phospo-MAPK (Cell 

Signaling, # 9101, 1:1000, rabbit) for AKT (Cell Signaling, # 9272, 1:500, rabbit,) for phospo-AKT 

(Cell Signaling, # 9271, 1:500, rabbit); beta-actin (Sigma, #A4700, 1:500, mouse) was used as 

positive control. Detection was by chemiluminescence (ECL, Amersham Pharmacia 

Biotechnology), captured using a FUJI LAS1000-plus chemiluminescence imaging system. 

Clinically progressing KIT-mutant GISTs were from pts formerly responding to imatinib and/or 

sunitinib. KIT exons 8 through 18 were sequenced at 2000-fold coverage (454 pyrosequencing). As 

a part of this more extensive study, my work was focused on the confirmation and extension of 

these analyses, through Sanger sequencing, to additional metastases from the same patient. Drug-

response studies were performed by expressing mutant constructs in a KIT-negative GIST. 
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Age/Sex Metastases 

# 

Location Morphology Mitoses 

/10HPF 

Primary mutation Secondary 

mutation 

1 

2a 

2b 

3a 

3b 

4 

5 

6a 

6b 

7a 

7b 

7c 

7d 

7e 

7f 

7g 

7h 

8 

9a 

9b 

9c 

9d 

9e 

9f 

9g 

9h 

9i 

9l 

9m 

9n 

10 

11a 

11b 

11c 

abd wall 

periumbilicus 

periumbilicus 

periabd wall 

periabd wall 

periabd wall 

small bowel 

omentum 

omentum 

omentum 

omentum 

omentum 

omentum 

omentum 

omentum 

omentum 

omentum 

abd wall 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

colon, spleen, upper quadrant 

LUQ 

colon 

colon 

colon 

Spindle  

Spindle  

Spindle  

Spindle  

Spindle  

Spindle  

Mixed 

Spindle cells 

Spindle cells 

Spindle cells 

Spindle  

Epithelioid  

Epithelioid  

Short spindle 

Mixed 

Spindle  

Mixed 

Spindle  

Spindle  

Spindle  

Spindle  

Mixed 

Spindle  

Spindle  

Spindle  

Spindle  

Mixed 

Spindle  

Spindle  

Spindle  

N/A 

Mixed 

Spindle  

Mixed 

11:10 

9:10 

12:10 

7:10 

12:10 

12:10 

4:10 

8:10 

6:10 

12:10 

4:10 

14:10 

31:10 

16:10 

17:10 

19:10 

28:10 

15:10 

10:10 

20:10 

4:10 

25:10 

10:10 

28:10 

8:10 

14:10 

25:10 

16:10 

18:10 

18:10 

N/A 

10:10 

10:10 

20:10 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

Q575_P577delinsH 

S840N 

S840N 

None 

None 

S840N 

I571_D572delinsT 

S840N 

S840N 

S840N 

S840N 

I571_D572delinsT 

N822K 

S840N 

N822K 

S840N 

N822K 

N822K 

N822K 

N822K 

S840N 

N822K 

S840N 

N822K 

S840N 

S840N 

N822K 

N822K 

S840N 

N822K 

N822K 

N655S 

N822K 

N822K 
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12 

12 

14 

15a 

15b 

15c 

16a 

16b 

16c 

17 

18 

19 

20 

21a 

21b 

21c 

21d 

21e 

22(NL) 

lateral segment liver 

peritoneum 

small bowel 

Bladder 

Bladder 

Bladder 

Bladder 

Bladder 

Bladder 

pelvic 

pelvic 

pelvic 

small bowel 

Abd wall 

Abd wall 

Abd wall 

Abd wall 

Abd wall 

Spleen 

Spindle  

Spindle  

Short spindle 

Spindle  

Mixed 

Spindle  

Spindle  

Spindle  

Spindle  

Spindle  

Short spindle 

Short spindle 

Spindle  

Epithelioid  

N/A 

Epithelioid  

N/A 

N/A 

2:10 

10:10 

54:10 

1:10 

8:10 

14:10 

5:10 

8:10 

22:10 

16:10 

1:10 

5:10 

11:10 

1:10 

N/A 

14:10 

N/A 

N/A 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

wt 

N822K 

F681L 

None 

None 

None 

None 

N680K 

N680K 

None 

None 

None 

None 

S840N 

I571_D572delinsT 

N822K 

N822K 

N822K 

N822K 

1a 

1b 

2 

3a 

3b 

4a 

4b 

4c 

4d 

4e 

4f 

4g 

4h 

4i 

5a 

5b 

6a 

lower quad  

lower quad  

left lower quad preperitoneal fat 

left lower quad preperitoneal fat  

left lower quad preperitoneal far  

omentum  

omentum  

omentum  

omentum  

omentum  

omentum  

Omentum 

omentum  

omentum  

omentum  

omentum  

transverse colon nodule 

Mixed 

Mixed 

Mixed 

Mixed 

N/A 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

Spindle  

Mixed 

N/A 

Mixed 

Mixed 

Mixed 

Mixed 

13:10 

15:10 

20:10 

05:10 

N/A 

00:05 

16:10 

14:10 

00:02 

03:05 

01:10 

17:10 

N/A 

00:03 

03:05 

07:10 

16:10 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

D816H 

None 

None 

None 

None 

None 

N680K  

None 

None 

None 

None 

Y646S  

None 
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6b 

7a 

7b 

8 

9 

10 

11a 

11b 

12a 

12b 

12c 

13 

14 

15 

16a 

16b 

17 

18 (NL) 

transverse colon nodule 

proximal small bowel mesnetery  

proximal small bowel mesnetery 

small bowel mesentery 

small bowel mesentery  

right colic gutter  

right colic gutter  

right colic gutter  

ileum 

ileum 

ileum 

small bowel mesntery nodule #4 

right colon mesenteric nodule 

left colic gutter 

pelvic deposits 

pelvic deposits 

rectosigmoid nodule 

ileum 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

N/A 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

Mixed 

15:10 

26:10 

10:10 

16:10 

07:10 

26:10 

N/A 

05:10 

03:10 

09:10 

10:10 

10:10 

02:04 

11:10 

08:10 

09:10 

09:10 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

None 

None 

D820E 

None 

None 

N655S 

N822H  

D820G 

None 

N822H  

D820A 

D820H  

N822K 

1 

2 

3a 

3b 

4a 

4b 

4c 

4d 

5a 

5b 

6a 

6b 

6c 

6d 

6e 

7a 

7b 

7c 

8 

left pelvis sigmoid epiploca 

right pelvic sidewall lesion 

right pelvic side wall peritoneum 

right pelvic side wall peritoneum 

right pelvic side wall nodules 

right pelvic side wall nodules 

right pelvic side wall nodules 

right pelvic side wall nodules 

colon serosal nodules 

colon serosal nodules 

left pelvic side wall nodules 

left pelvic side wall nodules 

left pelvic side wall nodules 

left pelvic side wall nodules 

left pelvic side wall nodules 

small bowel mesenteric nodule 

small bowel mesenteric nodule 

small bowel mesenteric nodule 

appendix 

Spindle  

mixed 

mixed 

Spindle  

Spindle  

Spindle  

mixed 

mixed 

Spindle  

mixed 

Spindle  

mixed 

mixed 

Spindle  

mixed 

Spindle  

mixed 

N/A 

mixed  

01:10 

17:10 

01:10 

02:10 

00:10 

00:10 

00:10 

00:10 

01:10 

05:10 

00:10 

00:10 

00:10 

00:10 

00:10 

00:10 

00:10 

00:10 

N/A 

Y553_Q556del 

Y553_Q556del 

Y553_Q556del 

Y553_Q556del 

Y553_Q556del 

Y553_Q556del 

V654A 

L783V 

V654A 

none 

None 

None 
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9 

10 

11 

12a  

12b 

12c 

12d 

13 (NL) 

cecal nodule 

mesial colon nodules 

peritoneal nodules 

perihepatic nodules 

perihepatic nodules 

perihepatic nodules 

perihepatic nodules 

small bowel 

mixed 

Spindle  

mixed 

Spindle  

mixed 

Spindle  

N/A 

02:10 

02:10 

00:10 

00:10 

00:10 

00:10 

00:10 

Y553_Q556del 

Y553_Q556del 

wt 

V654A 

None 

1a 

1b 

1c 

1d 

1e 

1f 

1g 

1h 

1i 

2 

3° 

3b 

4 

5 

6 

7 

8 

9a 

9b 

9c 

9d 

9e 

9f 

9g 

9h 

9i 

9l 

9m 

9n 

Omentum 

Omentum 

Omentum 

Omentum 

Omentum 

Omentum 

Omentum 

Omentum 

Omentum 

perivesicle fat 

sigmoid mass 

sigmoid mass 

Omentum 

Omentum 

transverse colon 

prox small bowel mesentery 

prox small bowel serosa 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mid small bowel mesenter 

mixed 

mixed 

mixed 

mixed 

mixed 

mixed 

N/A 

mixed 

mixed 

N/A 

mixed 

mixed 

N/A 

N/A 

mixed 

Epithelioid  

mixed 

mixed 

N/A 

mixed 

N/A 

N/A 

mixed 

mixed 

N/A 

mixed 

N/A 

mixed 

N/A 

09:10 

16:10 

09:10 

21:10 

35:10 

7:10 

0:10 

14:10 

8:10 

0:10 

21:10 

17:10 

N/A 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

4:10 

0:10 

V559_E561del 

V559_E561del 

V559_E561del 

V559_E561del 

wt 

D820Y 

D820Y 

D820Y 

D820Y 

N822Y 

A829P 

A829P 

None 

D820Y 
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9o 

10 

11 

12 

13 

14 

15a 

15b 

15c 

15d 

15e 

15f 

15g 

16(NL) 

mid small bowel mesenter 

distal small bowel 

upper rectal mass 

lower rectal mass 

addition/al sigmoid nodule 

left colic gutter nodule 

sigmoid mesentery 

sigmoid mesentery 

sigmoid mesentery 

sigmoid mesentery 

sigmoid mesentery 

sigmoid mesentery 

spleen 

N/A 

mixed 

mixed 

mixed 

N/A 

N/A 

N/A 

N/A 

N/A 

mixed 

mixed 

mixed 

N/A 

0:10 

0:10 

5:10 

6:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

0:10 

V559_E561del 

V559_E561del 

wt 

None 

D820G 

N822K 

1 

2 

3 

4 

5 

6a 

6b 

7 

8 

9 

10 

11 

12(NL) 

Adjacent to gallbladder 

Deep pelvis, near bladder 

Small bowel serosa 

Small bowel mesentery 

Small bowel mesentery 

Small bowel mesentery 

Small bowel mesentery 

Small bowel mesentery 

Small bowel mesentery 

Small bowel mesentery 

Small bowel mesentery 

Omentum 

Appendix 

mixed 

mixed 

mixed 

mixed 

mixed 

mixed 

mixed 

mixed 

mixed 

Epithelioid  

Epithelioid  

Epithelioid  

05:10

01:10

00:10

00:10

00:10

03:10

00:10

00:10

00:10

00:10

00:10

00:10

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

wt 

D820H 

1 

2a 

2b 

3 

Anterior peritoneal 

Left diaphragmatic mass 

Left diaphragmatic mass 

LUQ post (splenic flexure) 

Spindle  

mixed 

Spindle  

Spindle  

03:10

06:10

04:10

01:10

Delition in exon 11 

Delition in exon 11 

Delition in exon 11 

Delition in exon 11 

None  

Y823D  

Y823D 

V654A 

1 

2a 

2b 

3a 

3b 

left lower quadrant, abd wall 

small bowel 

small bowel 

midline abdomin/al wound 

midline abdomin/al wound 

Epithelioid  

mixed 

mixed 

N/A 

N/A 

03:10 

07:10 

05:10 

N/A 

N/A 

K642E 

K642E 

K642E 

V654A 

V654A 

V654A 
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4 

5 (NL) 

left upper quadrant 

small bowel 

N/A N/A 

1 

2a 

2b 

3a 

3b 

3c 

4 

5 

6 

6b 

6c 

7 

8 

9NL 

right lower quadrant 

right tumor nodule 

right tumor nodule 

mesentery 

mesentery 

mesentery 

mesenteric nodule 

mesenteric nodule 

sigmoid nodules 

sigmoid nodules 

sigmoid nodules 

right uterine nodule 

left pelvic side wall 

omentum 

Epithelioid  

Spindled  

Spindled  

mixed 

mixed 

mixed 

Spindled  

Spindled  

Spindled  

Spindled  

Spindled  

leiomyoma 

Spindled  

00:10 

00:10 

00:10 

05:10 

06:10 

05:10 

00:10 

00:10 

00:10 

00:10 

00:10 

n/a 

00:10 

Delition in exon 11 V654A 

1a 

1b 

1c 

1d 

2 

3a 

3b 

3c 

3d 

4 

5a 

5b 

6 

7 

8a 

8b 

9a (NL) 

9b(NL) 

9c(NL) 

mesentery  

mesentery  

mesentery  

mesentery  

mesentery  

omentum  

omentum  

omentum  

omentum  

mesentery 

Serosa 

Serosa 

mesentery  

uterus 

Mesentery 

Mesentery 

skeletal muscle 

omentum  

small bowel 

spindled 

N/A 

N/A 

N/A 

spindled 

spindled 

spindled 

spindled 

spindled 

adipe 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

N/A 

N/A 

N/A 

11:10 

N/A 

N/A 

N/A 

00:10 

00:10 

00:10 

00:10 

00:10 

n/a 

04:10 

00:10 

00:10 

00:10 

00:10 

00:10 

N/A 

N/A 

N/A 

W557R 

W557R 

W557R 

wt 

None 

None 

None 

None 

None 

None 

None 

1 

2 

Pelvic side wall 

Liver 

spindled 

N/A 

00:10 

N/A 

V559_Q575del 

V559_Q575del 

None 

V654A 
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3 

4(NL) 

Liver dome 

Liver 

spindled 00:10 V559_Q575del 

None 

1 

2 

3 (NL) 

Retroperitoneal 

spleen hilum 

spleen 

spindled 

spindled 

20:10 

00:10 

W557R 

W557R 

wt 

V654A 

1a 

1b 

1c 

1d 

2a 

2b 

3 

4a 

4b 

5a 

5b 

6a 

6b 

7a 

7b 

8a 

8b 

9 

10 

11a 

11b 

12a 

12b 

13 

14a 

14b 

15a 

15b 

16 

17 

18 

stomach/LUQ 

stomach/LUQ 

stomach/LUQ 

stomach/LUQ 

Ligament of trietz 

Ligament of trietz 

left mesocolon 

right lower quadrant 

right lower quadrant 

left rectus pelvis 

left rectus pelvis 

perivesical mass #1 

perivesical mass #1 

mesorectal mass #1 

mesorectal mass #1 

pelvic mass 

pelvic mass 

sigmoid nodule 

sigmoid mesentery nodule 

right perirectal tumor 

right perirectal tumor 

left pelvic sidewall nodule 

left pelvic sidewall nodule 

rectosigmoid serosal nodule 

right external iliac nodule 

right external iliac nodule 

deep rectal nodule 

deep rectal nodule 

right perivesical fat mass  

right perivesical fat mass  

left perivesical mass  

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

spindled 

30:10 

48:10 

30:10 

26:10 

<1:10 

<1:10 

00:10 

50:10 

40:10 

42:10 

40:10 

32:10 

57:10 

30:10 

27:10 

40:10 

13:10 

0:10 

14:10 

0:10 

40:10 

0:10 

12:10 

56:10 

14:10 

2:10 

20:10 

0:10 

0:10 

20:10 

12:10 

V559_E561del 

V559_E561del 

V559_E561del 

V559_E561del 

A829P 

None 

A829P 

A829P 

A829P 

A829P 

A829P 

A829P 

None 

None 

A829P 

V654A 

V654 

A829P 
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19 

20 (NL) 

ileocecal nodule 

gastric mucosa 

spindled 0:10 

wt 

1a 

1b 

1c 

1d 

2 (NL) 

mesentery 

mesentery 

mesentery 

mesentery 

small intestine 

spindled 

spindled 

spindled 

spindled 

57:10 

68:10 

65:10 

50:10 

N564_Y578del 

wt 

None 

1a 1a 

1b 1b 

1c 1c 

2 2 

3 (NL) 3 (NL) 

midline pelvic 

midline pelvic 

midline pelvic 

small bowel mesenteric 

Gallbladder 

spindled 

spindled 

spindled 

spindled 

0:10 

4:10 

0:10 

1:10 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

A502_Y503dup 

��

None 

None 

None 

None 
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Heterogeneity of kinase inhibitor resistance mechanisms within and between different GIST 

metastases in a given patient 

Primary KIT mutations were found in all the samples analyzed but not in the normal tissues from 

the same patients. In all the tumor samples corresponding to single patient, the same primary 

mutation was detected. 

These secondary mutations were clustered mainly in three regions of the KIT oncoprotein: the 

juxtamembrane domain (encoded by exon 11), the TKD 1 (tyrosin kinase domain 1, encoded by 

exons 13 and 14) and the TKD 2 (tyrosin kinase domain 2, encoded by exons 17 and 18). 

Nucleotide changes impacted three residues, D816, D820 and N822, and led to 2-4 alternative 

amino acid substitutions each - D816H/G, D820E/G/Y/A and N822K/Y/H. 2 small del/ins outside 

the kinase domain were detected: a 6-nucleotide deletion in exon 11 resulting in Q575_P57delinsH, 

and a 3-nucleotide deletion combined with a nucleotide substitution resulting in I571_D572delinsT. 

In total, 6 of the secondary KIT mutations detected were novel mutations (I571_D572delinsT, 

Q575_P577delinsH, N655S, N680K, F681L and S840N).  

Up to 7 TKI resistance mutations in different progressing metastases from a typical multifocal 

progressing patient  

In patient # 1, 46 metastases (52 samples) had an insertion of 6-bp in KIT exon 9 that resulted in a 

tandem repeat of AY502_503 in the extracellular juxtamembrane region, the most common exon 9 

mutation described in GIST. 7 different predominant secondary KIT mutations - I571_D572delinsT, 

Q575_P577delinsH, N655S, N680K, F681L, N822K and S840N - were identified at the genomic 

level. In GIST  exon 11 and an exon 9 mutations appear to be mutually exclusive.  

Among the 52 GISTs from this patient, the cellular morphology ranged from typical spindle cell to 

epithelioid; spindle cell were characterized by eosinophilic fibrillary cytoplasm. GISTs with 

epithelioid morphology were composed of round cells with eosinophilic to clear cytoplasm, 

arranged in sheets and nests. Express and activation of KIT was evaluated in frozen metastatic 

GIST lesions from the same patient, showing consistent expression level of KIT. These results 

illustrate the remarkable heterogeneity of progressing GISTs lesion from a single, multifocal 

progressing patient. 

Functional studies 

To better understand whether these novel mutations could be involved in the mechanism of 

acquired resistance, secondary mutations of interest were engineered into KIT constructs, on their 
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own and in combination with the primary mutation. Transient transfection experiments in 

HEK293T cells and in GIST48B (that usually do not express KIT , except with a construct) with the  

variant KIT constructs were performed. The inhibition of KIT phosphorylation was examined using  

different concentrations of imatinib or sunitinib. Phosphorylated KIT corresponds to activated KIT  

tyrosine kinase. In our experimental system, a representative KIT exon 11 mutation (V560D) 

construct, sensitive to both imatinib and 

sunitinib, served as negative control (Figure 

20) while the N822K mutation, known to 

confer resistance to imatinib and sunitinib, 

was used as a positive control.  

The primary KIT A502_Y503dup mutation 

alone was resistant to imatinib and sensitive 

to sunitinib (Figure 20). I571_D572delinsT, 

Q575_P577delinsH, N655S, N680K, F681L 

and S840N resulted in sunitinib resistance, 

either in isolation or when co-expressed with 

KIT A502_Y503dup (Figure 21). The 

secondary KIT mutants tested showed 

resistance to sunitinib in vitro, providing 

strong evidence that each of these mutations plays a causal role in the clinical resistance to 

sunitinib. 

  

Figure 20. Immunoblot analysis of HEK293 cells transfected with mutant KIT constructs with primary mutation 

(A502_Y503duplication or V560D) and exposed to various doses of imatinib and  sunitinib.

Figure 21. I571_D572delinsT and Q575_P577delinsH 
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�

Figure 23 Immunoblot analysis of HEK293 cells transfected with mutant KIT constructs with S840N and exposed to various doses 

of imatinib, sunitinib. 

�

The isolated KIT A502_Y503dup mutation was resistant to imatinib and sensitive to sunitinib 

(Figure 20), in keeping with the role of KIT exon 9 mutations in imatinib resistance. Interestingly, 

secondary sunitinib-resistant KIT mutations - I571_D572delinsT and Q575_P577delinsH - result in 

imatinib response when co-expressed with KIT A502_Y503dup (Figure 21). 

These studies provide a rigorous evaluation of known and novel TKI genomic resistance 

mechanisms in GIST. We show that the molecular drug-resistance mechanisms can be defined in 

94% of progressing GISTs after imatinib and/or sunitinib therapies. Novel TKI resistance mutations 

in the juxtamembrane region, TKD 1, and TKD 2 of KIT have been identified. We demonstrates the 

heterogeneity of molecular drug-resistant mechanisms, between different clinically-progressing 

metastases, in each patient with clinically progressing GIST after initial response to imatinib and/or

sunitinib. 

Figure 22. Immunoblot analysis of HEK293 cells transfected with mutant KIT constructs and exposed to various doses of 

imatinib and  sunitinib.
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The juxtamembrane region KIT mutation (exon 11) is the most common mutation type in GIST, and 

mutation of codon 559 and/or codon 560 is often observed. These types of mutations are sensitive 

to both imatinib and sunitinib. The two juxtamembrane region KIT mutations (I571_D572delinsT, 

Q575_P577delinsH) reported here are unique. A502_Y503dup mutation was partially resistant to 

imatinib and sensitive to sunitinib. I571_D572delinsT and Q575_P577delinsH resulted in strong 

sunitinib resistance. These results show that different mutations, even within the same 

juxtamembrane domain of KIT show different inhibitory effects on TKIs.  

S840N has been previously published as a presumptive non-oncogenic mutation, in a single case 

report (132). This S840N mutation was reported as a germline finding in a 2-year-old child with 

cutaneous mastocytosis. The child’s father carried the same germline S840N, therefore the authors 

concluded the S840N was irrelevant. Interestingly, somatic S840N substitution was found in 29% 

of GIST metastases from patient 1. The S840N causes definite shift in sunitinib-sensitivity in our 

functional assay.  

Discussion 

The aim of this study was to understand better the TKI genomic resistance mechanisms in GIST and 

the relationship between kind of mutation and drug resistance. 

We showed that the molecular drug-resistance mechanisms can be identified in more than 90% of 

GISTs progressing under imatinib and/or sunitinib irrespective of whether the primary mutation was 

in exon 9 or 11; the most common primary mutation in GIST is located in the justmembrane region 

codified by exon 11 and mutation at the codon 559 and 560 and the duplication A502_Y503 is often 

observed. the mutation at codons 559 and 560 are sensitive to both imatinib and sunitinib; 

A502_Y503dup is partially resistant to imatinib and sensitive to sunitinib. 

The secondary mutations were clustered in ATP binding pocket and in the activation loop of the 

kinase domain. 

The results showed that two or more (to up to 7) TKI-resistance mutation can be present in the same 

patient; in particular, patient 1 had up to seven different mutations. 

We identified 6 novel mutations (2 deletion/insertions, I571_D572delinsT and Q575_P577delinsH, 

and 4 substitutions, N655S, N680K, F681L and S840N). To evaluate if these mutation were 

involved in secondary resistance acquisition, we used we engineered these into KIT construct, alone  

and in combination with a primary mutation. N822K, known to confer resistance to imatinib and 

sunitinib, was used as positive control. 
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I571_D572delinsT and Q575_P577delinsH are unique; these two mutations resulted in strong 

sunitinib resistance but resulted in imatinib response when co-expressed with A502_Y503dup. 

These results show that different mutations, even within the same juxtmemembrane domain of KIT 

display different effect of TKIs. 

N655S, N680K, F681L and S840N were tested. All the mutations resulted involved in resistance 

acquisition. 

KRAS and KIT gatekeeper mutations and primary imatinib resistance in GIST: relevance of 

concomitant PI3K/AKT dysregulation 

Approximately 10% of GIST patients have primary imatinib resistance, defined by clinical 

progression within three to six months after initiating therapy. Such GISTs typically lack KIT and 

PDGFRA mutations, or contain particular mutations, e.g. PDGFRA D842V, that are intrinsically 

imatinib resistant. Our study found for the first time polyclonal heterogeneity as a mechanism of 

primary imatinib resistance in a GIST patient. 

A 61-year-old man presented to an outpatient clinic in October 2003 with an 8-week-history of 

progressive left shoulder pain, nausea and fatigue. Abdominal CT-scan revealed a 19.7 x 13.1 cm 

mass arising from the anterior wall of the stomach, accompanied by five liver metastases, all less 

than 1 cm in maximal diameter. Endoscopic biopsy demonstrated a spindle cell GIST with 20 

mitoses per 50 hpf. 

The patient received imatinib 400 mg per day and got improvement within one month (resolution of 

shoulder pain, softening of the palpable mass and normalization of the blood counts). CT-scan after 

six weeks of imatinib showed that the gastric mass had typical post-therapy changes, hypodensity as 

well as decrease in wall thickness. The liver metastases were not changed. CT-scan after 16 weeks 

from imatinib treatment beginning displayed reduction of the hypodense gastric residual mass 

however, a new hyperdense 2.7 x 2.0 cm nodule appeared at the caudal aspect of the mass. The 

patient remained under imatinib, and a follow-up CT-scan two months later showed progression of 

the hyperdense nodule to 4.9 x 5.6 cm, now accompanied by new progressing nodules. An upper 

gastrointestinal bleed caused the resection of the gastric mass, performed 24 hours after the last 

imatinib dose. Histologically, the gastric mass was spindle cell-type GIST. Genomic analyses by 

Sanger sequencing, Ion Torrent and Sequenom. were performed in clinically responding (region 1) 

vs clinically progressing (regions 2 and 3) aspects of the mass: region 1 was non-mitotic, and 

consistent with sTable/responding disease, whereas regions 2 and 3 had 60 and 55 mitoses per 50 

hpf, respectively, and were therefore consistent with progressing, imatinib-resistant, disease. Each 

of these three regions expressed KIT strongly, with a homozygous KIT exon 11 E554_V559del 
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mutation (Figure 27A) and a homozygous PTEN missense mutation, C124S (Figure 27B). The 

imatinib-responsive region 1 had no additional mutations, whereas imatinib resistant region 2 had a 

KRAS G12R 

�

Figure 27.  The three regions showed a KIT E554_V559del (27A), a PTEN missense mutation(27B). The region 2 (imatinib-

resistant) had a KRAS G12R mutation (27C) and the region 3 (imatinib-resistant) had a 

KIT T670I mutation (27D).

mutation by Sequenom analysis, which was subsequently 

confirmed through genomic sequencing (Figure 27C). Imatinib-

resistant region 3 had a KIT “gatekeeper” T670I mutation (Figure 

27D), which is known to confer imatinib resistance. �

Western-blotting experiments confirmed strong KIT expression in 

both imatinib-responsive and resistant regions (Figure 28); 

however, KIT was activated, as disclosed by phosphoKIT Y721 

expression, only in region 3 with the KIT T670I mutation, MAPK 

was hyperactivated only in the region 2 with KRAS G12R, 

whereas AKT and S6 were hyperactivated in both of regions 

(Figure 28). 

Imatinib was resumed, but the patient experienced progression of 

intra-abdominal disease, and died five months later, while 

receiving high-dose imatinib (800 mg/day). He did not receive 

sunitinib, as it was not yet approved by FDA for imatinib resistant 

Figure 28. Results for western blotting 

showed KIT was activated only in 

region 3 with the KIT T670I mutation, 

MAPK was hyperactivated only in the 

region 2 with KRAS G12R, and AKT 

and S6 were hyperactivated in both of 

these regions.
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GIST.  ISTs lacking KIT and PDGFRA mutations frequently have primary imatinib-resistance, and 

often they do not have known mutations. To test the hypothesis that such GISTs might contain RAS 

mutations or other KIT-downstream mutations, we used a Sequenom panel to screen for RAS, BRAF 

and PI3KCA mutations in KIT/PDGFRA-wildtype GISTs from 27 patients. Only one of 27 GISTs 

contained demonstrable mutations: this was a high-risk GIST (62 mitoses per 50 hpf) that contained 

both HRAS G12V and PIK3CA H1047R mutations. PIK3CA H1047R is a gain-of-function 

mutation that accounts for ~20% of PIK3CA mutations in advanced human cancers and is 

associated with response to PI3K/AKT/mTOR pathway inhibitors [133]. 

Discussion 

This brief report represents the first evidence of primary imatinib resistance resulting from 

intratumoral genomic heterogeneity. This resistance, already at 16 weeks of treatment, was related 

(in separate lesions) to KRAS mutation and the KIT gatekeeper mutation T670I. Recently, in vitro 

evidence that KRAS mutations might confer imatinib resistance in GIST has been reported [134] 

and this case seems to confirm that KRAS gain-of-function mutation contributes to clinical imatinib 

resistance, in spite of therapeutic KIT oncoprotein inhibition. It is thinkable that KRAS mutations 

are present as minor subclones in more untreated GISTs than previously appreciated, and are then 

enriched for by KIT/PDGFRA-inhibitor therapies. 

Conclusion

In conclusion, these novel findings demonstrate KRAS mutation and polyclonal heterogeneity as 

mechanisms of primary imatinib resistance in GIST, show that both KRAS and HRAS isoforms can 

contribute to GIST oncogenesis, and highlight the conjoined nature of the PI3K/AKT and 

RAS/RAF signaling pathways in GIST tumorigenesis. These findings validate the 

PI3K/AKT/mTOR and RAS/RAF/MEK pathways as concurrently relevant in GIST oncogenic  

signaling. 
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Discussion and Conclusions 

Clinical diseases represent complex biological phenotypes reflecting the interaction of a myriad of 

genetic and environmental contributions. 

To the best of our knowledge, this is the first work that consider the pharmacological response in 

GIST patients treated with imatinib by two different angles: the genetic and somatic point of view. 

We first analyzed the influence of polymorphisms on treatment outcome, keeping in consideration 

SNPs in genes involved in the drug transport, metabolism and folate pathway. 

Using a multiple candidate gene approach, we found that SLC22A4 rs1050152 was significantly 

associated with a reduced TTP. To us this finding seems very promising, as we found the same 

polymorphism correlating with the major molecular response rate in a set of CML patients [79], 

indicating that imatinib delivery could be really affected by this allelic variant. We also analyzed 

polymorphisms in three genes – SLCO1A2, SLC22A5 and ABCC4 for the first time and we 

identified the minor allele for SLC22A5 rs2631367 and rs2631372 associated with a prolonged 

TTP. The correlation between SNPs in members of OCTN family transporters and imatinib efficacy 

could be very important in relation to the use of imatinib in the adjuvant setting. 

On the other hand, we found that polymorphism in RFC and FOLR genes may be associated with 

TTP; to us this finding is intriguing, as both the genes products are involved in the folic acid and 

reduced folates uptake.  

Naturally, all these intriguing results cannot be considered as the only main mechanism in imatinib 

response. GIST mainly depends by oncogenic gain of function mutations in tyrosin kinase receptor 

genes, KIT or PDGFRA, and the mutational status of these two genes or acquisition of secondary 

mutation is considered the main player in GIST development and progression. To this purpose we 

analyzed the secondary mutations to better understand how these are involved in imatinib 

resistance. In our analysis we considered both imatinib and the second line treatment, sunitinib, in a 

subset of progressive patients. 

We identified in particular 6 novel mutations and on the basis of functional studies we certainly 

concluded that all these variations were involved in resistance acquisition. 

In general, in GIST there is a main primary mutation in exon 9 or 11, mutually exclusive; the 

secondary mutation does not depend by the first one and it is possible that more than 2 secondary 

mutations (from 2 to 7) occur in the same patient. 
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For the first time we demonstrated that primary imatinib resistance could result from genomic 

heterogeneity. In the case here described the resistance was related to KIT and KRAS mutations, 

validating the hypothesis that PI3K/AKT/mTOR and RAS/RAF/MEK pathways are concurrently 

relevant in GIST oncogenic signaling and responsible for GIST progression. 

KIT/PDGFRA mutation analysis is an important tool for physicians, as specific mutations may 

guide therapeutic choices. Currently, the only adaptations in treatment strategy include imatinib 

starting dose of 800 mg/daily in KIT exon-9-mutated GISTs. In addition, the primary resistance of 

PDGFRA D842V GISTs which leads to the lack of rationale for the use of imatinib in these 

patients. 

In the attempt to individualize treatment, genetic polymorphisms represent a novelty in the 

definition of biomarkers of imatinib response in addition to the use of tumor genotype. 

Accumulating data indicate a contributing role of pharmacokinetics in imatinib efficacy, as well as 

initial response, time to progression and acquired resistance.  At the same time it is becoming  

evident that genetic host factors may contribute to the observed pharmacokinetic inter-patient 

variability. Genetic polymorphisms in transporters – some of which are already known as causes of 

drug resistance in cancer chemotherapy – and in metabolizing genes may affect the activity or 

stability of the encoded enzymes. Thus, integrating pharmacogenetic data of imatinib transporters 

and metabolizing genes, whose interplay has yet to be fully unraveled, has the potential to provide 

further insight into imatinib response/resistance mechanisms. In view of these considerations, 

collecting data on the role of polymorphisms in imatinib� response in GISTs represents a clinical 

priority. 
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Future perspectives: ongoing studies 

I. DNA repair polymorphisms in GIST: susceptibility and correlation 

with tumor characteristic and clinical outcome.

II. VEGF pathway genes polymorphisms in GIST patients in treatment 

with sunitinib after imatinib failure.
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I. DNA repair polymorphisms in GIST: susceptibility and correlation with 

tumor characteristic and clinical outcome. 

DNA repair pathway - During life, DNA accumulates changes that activate proto-oncogenes and 

inactivate tumor soppresor genes. The genetic instability drives the tumorigenesis and is fuelled by 

DNA damage and errors made by DNA repair machinery. Figure 29 summarizes some of the most 

common types of DNA damages and their causes [135].

�

Figure 29. DNA damage, repair mechanisms (A) and consequences (B).

The main DNA repair pathways in humans are direct reversal, base and nucleotide excision, 

mismatch, homologous recombination repair, and non-homologous end joining [136]. When 

proteins/enzymes products of these pathways fail to repair damage because of a functional 

deficiency, the cell accumulates DNA damage and induces apoptosis. Alternatively, unrepaired 

damage may enhance mutation, including chromosomal aberrations that can in turn alter apoptotic 

signals, dysregulate cell growth, and induce carcinogenesis. Therefore, it has been hypothesized that 

germline or somatic variations, such as polymorphisms of DNA repair-related genes play an 

important role in the risk of cancer development [137,138]. 

On the basis of these evidences, we decided to analyze a panel of SNPs in the main genes involved 

in the different DNA repair pathways.  
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Study population - A total of 60 unresectable/metastatic GIST patients were retrospectively enrolled 

in this study. These patients are the same described in the “folate” study. 

Genotyping analysis - We selected twenty common [minor allele frequency (MAF) > 0.05 in 

Caucasian], well-studied functional variants - located in regulatory region, cause non-synonymous 

amino acid changes and/or have been repeatedly associated with cancer risk, survival or treatment 

response. Characteristics of the studied polymorphisms - all single nucleotide polymorphisms - are 

reported in Table 15. Genotypes were determined by PCR based assays (i.e. RFLP and RT). 

Positive and negative controls were included in each reaction as quality control. In addition, for 

internal quality control (accuracy of genotyping) 90% of samples were repeated. The concordance 

between the original and the duplicate samples for all the analysed polymorphisms was 100%. 
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Statistical analysis - The distribution of genotypes was tested for departures from the Hardy-

Weinberg equilibrium using the χ
2
 test. Survival analysis methods were used to examine the 

relationship between genotypes [homozygous wild-type, heterozygous and homozygous for the 

variant allele] and GIST time to progression. In univariate analysis, the survival curves were 

estimated and plotted with the Kaplan-Meier method. The curves were compared with log-rank test 

Table 15. SNPs description 

Gene [full name; Protein name]   SNP ID METHOD [A]  

APEX [apurinic/apyrimidinic endonuclease 1 ] 

rs1130409 [Asp148Glu] RT TaqMan assay 

XPD [Xeroderma pigmentosus gruup D] / ERCC2[Excision repair cross-complementation group 2] 

rs1799793 [Asp312Asn] 

rs13181[Lys751Gln] 

RT TaqMan assay  

RFLP [ 

hOGG1[ Human 8-oxoguanine DNA glycosylase 1] 

rs1052133 [Ser326Cys] RT TaqMan assay  

XRCC1 [X-ray repair cross-complementing group 1] 

rs1799782 [Arg194Trp]] RT TaqMan assay c__11463404_10 

rs25487 [Arg399Gln] RFLP [] 100

XRCC3 [ X-ray repair cross-complementing group 3] 

rs861539 [Thr241Met] RT TaqMan assay C_12005959_10

NBS1 [Nijmegen breakage syndrome]

rs1801394 [Ile49Met] RT TaqMan assay C_3068176_10 

XPA [Xeroderma pigmentosus gruup A] 

rs1800975 [ 4G>A ] 

rs2808668 [Intronic] 

RT TaqMan assay C___482935_1_ 

RT TaqMan assay C__9312100_10 

XPC [Xeroderma pigmentosus gruup C] 

rs2228000 [Ala499Val] RT TaqMan assay C__16018061_10

rs2228001 [Gln939Val] RT TaqMan assay C___234281_1_ 

XPF [Xeroderma pigmentosus gruup F ] 

rs18000267 [Gln415Arg] 

rs3136155 [Intronic] 

RT TaqMan assay C___3285104_10 

RT TaqMan assay C__26942939_10 

XPG [Xeroderma pigmentosus gruup G] 

rs17655 [Asp1104His] 

rs2094258 [5’UTR] 

RT TaqMan assay C__1891743_10 

RT TaqMan assay C___1891783_10 

[A] RT = Real-Time PCR with TaqMan allelic discrimination assay [Applera, Foster City, USA]; 

    RFLP = PCR-RFLP, analysis carried out according to published methods [reference 

parenthetically]. 
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of equality of survivor functions (statistical significance defined as P < 0.05). In multivariate 

analysis, hazard ratios (HR) and 95% confidence interval (95% CI) were estimated with Cox 

proportional hazards models, using gender, age, and status (localised/metastatic) at diagnosis, as 

covariates in addition to the genotype. The proportional hazards assumption was tested (P > 0.05) 

using Schoenfeld residuals. Multiple logistic regression was used to assess the relation between 

individual polymorphisms and primary resistance. Statistical analysis was conducted using Stata 

Intercooled version 12.0. 

The analysis is ongoing, partially completed. 

II. VEGF pathway genes polymorphisms in GIST patients in treatment with 

sunitinib after imatinib failure.

VEGF pathway - The VEGF pathway play a central role in angiogenesis throughout the tumor 

development. The production of VEGF is stimulated by upstream activators, including 

environmental cues, growth factors, oncogenes, cytokines, and hormones. The binding of VEGF to 

its receptors on the surface of endothelial cells activates intracellular tyrosine kinase, triggering 

multiple downstream signal that promote angiogenesis. Although there are multiple variants of 

VEGF and its receptors, the angiogenic effects of this pathway are primarily mediated through the 

VEGFA (the most common variant) with VEGFR-2 (Figure 30) [139-141]. 

As previously described, currently, the only approved second-line drug is sunitinib malate - a 

multitargeted agent, an inhibitor of tyrosine kinase, of KIT and PDGFRA/B and of the VEGFRs -1, 

-2 and 3, FMS-like tyrosine kinase-3, colony stimulating factor 1 receptor, and glial cell-line 

derived neurotrophic factor receptor (REarranged during Transfection; RET) [48]. 
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Figure 30. Main players in VEGF pathway: 1) Upstream activators stimulate the production of VEGF; 2) VEGF bind to receptors of 

endothelial cells; 3) angiogenesis is mediated primarily through the interaction of VEGF and VEGFR-2; 3) other variants of VEGF 

and its receptors play a secondary role in this process.

The aim of this analysis is to evaluate factors predicting results of sunitinib second-line therapy in 

inoperable/metastatic GISTs. We want to investigate the impact of the selected SNPs in VEGFA

and VEGFR-1, 2, 3 genes on sunitinib-response in a group of GIST patients. 

Study population - A total of 43 unresectable/metastatic GIST patients were retrospectively enrolled 

in this study in 2013 and 2014 at the Sant’Orsola-Malpighi Hospital, Bologna. All patients were 

under sunitinib as second line treatment, after imatinib failure. Overall survival (OS) was defined as 

the time from the first day of treatment to death from disease. Dates of death were obtained and 

cross-checked using the inpatient medical records. If a patient was alive, OS were censored at the 

time of the last follow-up. Data for patients who did not progressed at the last follow-up TTP 

evaluation were censored at that time.  

In order to exclude disease susceptibility we also genotyped 184 controls, anonymous blood donors 

from the Centro Trasfusionale, Sant’Orsola-Malpighi Hospital, Bologna. The study was approved 

by the Ethics Committees of the institution. The analysis was done after written informed consent 

for study participation and anonymous data publication in accordance with national legislation. Any 

subjects could cancel participation at any time during the study, according to Helsinki Declaration 

and later Amendments. 

Genotyping analysis - We selected nineteen common [minor allele frequency (MAF) > 0.05 in 

Caucasian] well-studied functional variants - located in regulatory region of four genes involved in 

VEGF pathway. Patients with available peripheral blood were eligible for this retrospective study. 

DNA was isolated as previously described. Characteristics of the studied polymorphisms - all single 
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nucleotide polymorphisms - are reported in Table 16. Genotypes were determined by RT-PCR as 

previously described. Positive and negative controls were included in each reaction as quality 

control. In addition, for internal quality control (accuracy of genotyping) 90% of samples were 

repeated. The concordance between the original and the duplicate samples for all the analysed 

polymorphisms was 100%.

Statistical analysis – as previously described, the distribution of genotypes was tested for departures 

from the Hardy-Weinberg equilibrium using the χ
2
 test. Survival analysis methods were used to 

examine the relationship between genotypes [homozygous wild-type, heterozygous and 

homozygous for the variant allele] and GIST time to progression. In univariate analysis, the survival 

Table 16. SNPs description 

Gene [full name; Protein name]   SNP ID METHOD [A]  

VEGFA [Vascular endothelial growth factor A] 

rs699947 [Intronic] 

rs833061 [Intronic] 

rs2010963 [5’UTR] 

rs3025039 [3’UTR] 

RT TaqMan assay C___8311602_10 

RT TaqMan assay C___1647381_10 

RT TaqMan assay C___8311614_10 

RT TaqMan assay C___16198794_10 

VGFR1[Vascular Endothelial Growth Factor Receptor 1] 

rs9513070 [Intronic] 

rs9554320 [Intronic] 

rs9554319 [Intronic] 

rs9554316 [Intronic] 

rs9582036 [Intronic] 

RT TaqMan assay C__30362252_10 

RT TaqMan assay C__32231227_10 

RT TaqMan assay C__1910659_10 

RT TaqMan assay C__32231224_10 

RT TaqMan assay C__1910658_10 

VGFR2[Vascular Endothelial Growth Factor Receptor 2] 

rs1531289 [Intronic] 

rs1870377 [Gln472His] 

RT TaqMan assay C__7439188_20 

RT TaqMan assay C__11895315_20 

rs2305948 [Ile297Val] 

rs11133360 [Intronic] 

rs6828477 [Intronic] 

RT TaqMan assay C__22271999_20 

RT TaqMan assay C__26111278_10 

RT TaqMan assay C__1673866_10 

rs6837735 [Intronic] RT TaqMan assay C__30784758_10 

VGFR3[Vascular Endothelial Growth Factor Receptor 3] 

rs307805 [[Intronic] 

rs307822 [3’UTR] 

RT TaqMan assay C__918880_10 

RT TaqMan assay C___988831_1 

rs6877011 [3’UTR] 

rs7709359 [Intronic] 

RT TaqMan assay C__29057584_10 

RT TaqMan assay C__30240676_10 

[A] RT = Real-Time PCR with TaqMan allelic discrimination assay [Applera, Foster City, USA]; 

    RFLP = PCR-RFLP, analysis carried out according to published methods [reference 

parenthetically]  
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curves were estimated and plotted with the Kaplan-Meier method. The curves were compared with 

log-rank test of equality of survivor functions (statistical significance defined as p < 0.05). In 

multivariate analysis, hazard ratios (HR) and 95% confidence interval (95% CI) were estimated 

with Cox proportional hazards models, using gender, age, and status (localised/metastatic) at 

diagnosis, as covariates in addition to the genotype. The proportional hazards assumption was tested 

(P > 0.05) using Schoenfeld residuals. Multiple logistic regression was used to assess the relation 

between individual polymorphisms and primary resistance. Statistical analysis was conducted using 

Stata Intercooled version 12.0. 
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