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“In conclusion, I would like to emphasize my belief that the era of computing chemists, 

when hundreds if not thousands of chemists will go to the computing machine instead of 

the laboratory, for increasingly many facets of chemical information, is already at hand.  

There is only one obstacle, namely, that someone must pay for the computing time.”  

 

Robert S. Mulliken, 1966. 
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1. INTRODUCTION  

 

1.1 BIOMOLECULAR RECOGNITION MECHANISMS 

Proteins are dynamic structures subject to fluctuations occurring on a wide range of 

time scales from femtoseconds for ultrafast bond vibrations, to milliseconds and 

even seconds for large motions, resulting in a broad spectrum of conformations. 

These motions are at the base of biomolecular recognition, where ligands and 

receptors move towards complementary conformations to improve the binding 

affinity and regulate vital biological processes, such as signal transduction, 

metabolism and catalysis. The mechanisms underlying biomolecular recognition 

have been investigated extensively, in order to understand these processes and 

define novel therapies in a drug discovery context. The first explanation for ligand 

recognition was introduced in 1894 when Emil Fischer proposed the lock-and-key 

model.
1
 According to this theory, ligands involved in biological reaction fit 

perfectly into proteins like a key into a lock, with almost no change in 

conformation. At that time, when molecular structures were poorly explored, this 

hypothesis gave an exhaustive and useful visual image of protein functions and was 

widely used as textbook explanation for biomolecular recognition events. However, 

the lock-and-key model based on a rigid body collision between ligands and 

proteins, neglected the emerging role of conformational plasticity supported by X-

ray crystallography, NMR spectroscopy and single molecule fluorescence 

detection.
2 On the other side, although underestimating the conformational 

flexibility, this theory introduced the concept of shape complementarity of the 

bound components in a macromolecular complex and lasted more than 50 years. 

Indeed, the lock-and-key model is not completely incompatible with the existence 

of a protein conformational ensemble. In particular, multiple conformations that 

interconvert on a time scale faster than binding and dissociation events are 

indistinguishable from a single structure.
3 From a kinetic standpoint, rapidly 

interconverting species result in the same properties, without changing the 

observed relaxation kinetics of the system. In this case, for multiple conformations, 

constants for ligand binding and dissociation (kon and koff, respectively) are defined 

as ensemble averages of rate constants over the entire population.
4
 Therefore, the 
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lock-and-key model may describe properties of single structures or structural 

ensemble, unless the conformational transitions occur over time scales which are 

relevant for binding/dissociation processes. The introduction of this model allowed 

to investigate mechanisms at the base of biomolecular recognition, so as to provide 

a number of insights to processes spanning from binging events to catalysis. It is 

clear that this theory did not cover all cases and then, further models were 

introduced to explain inconsistencies such as noncompetitive inhibition and other 

relevant discrepancies.
5
 In the last decades, the concepts of induced fit

6
 and 

conformational selection
7
 emerged to explain the intricate biomolecular recognition 

mechanisms. In details, the first theory, proposed by Koshland in 1958, was based 

on the following postulates: ―a) a precise orientation of catalytic groups is required 

for enzyme action; b) the substrate may cause an appreciable change in the three-

dimensional relationship of the amino acids at the active site; and c) the changes in 

protein structure caused by a substrate will bring the catalytic groups into the 

proper orientation for reaction, whereas a non-substrate will not‖.
6
 This theory, 

generalized to diverse biological mechanisms, pointed out that a fit between 

macromolecules and ligands occurs only after the changes induced by the substrate 

itself, likened to the fit of a hand in a glove. It incorporated Fisher‘s concepts of 

structural complementarity but, at the same time, took into account the enzyme 

flexibility. However, kinetic studies showed that the induced fit theory failed in 

describing all possible binding mechanisms.
8
 

In 1965, Monod, Wyman and Changeux proposed the allosteric model assuming 

that, when an allosteric binding event occurs, a shift of the equilibrium of two(or 

more) pre-existing conformational states is observed.
9 Conformational selection 

(also referred to as population selection, selected fit and fluctuation fit) is 

conceptually identical to the original Monod, Wyman and Changeaux model but 

has been extended to describe a large variety of monomeric non regulated 

metabolic
10-13

 or signaling enzymes,
14

 their intrinsic dynamics, binding 

mechanisms
15

 and folding of disordered structures.
16 Although this concept was 

used in the 1980s,
17-18

 only during last decade it has emerged by the insightful 

contribution of Nussinov and coworkers as one of the prevalent mechanisms 

related to biomolecular recognition.
16, 19-21

 In particular, the description of the 

energy landscape of proteins by Fraugenfelder, Sligar and Wolynes
22

 led, in 1999, 

to the generalized concept of ―conformational selection and population shift‖. The 
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energy landscape is a map of all possible conformations of a molecular entity and 

their corresponding energy levels on a multidimensional Cartesian coordinate 

system. Conformations in dynamic equilibrium in the energy landscape are called 

microstates or conformational substates. It is also referred to as ―folding funnel‖ 

with many highly unfavorable states that collapse via multiple routes into possibly 

several favorable folded states.
23-25

 The populations of these substates follow 

statistical thermodynamic distributions and the timescale of conformational 

transitions depends on the height of the energy barriers between substates. In case 

of low free energy barriers in terms of Boltzmann energy, more than one 

conformational state can exist in solution. Ligands can bind the most energetically 

favorable conformations or one of the high energy conformational substates 

existing in solution. In all cases, this ligand binding causes a population shift, that 

is a redistribution of the relative populations of conformational substates pre-

existing in solution. 

In summary, in both the induced fit and the conformational selection models, 

macromolecules assume multiple conformations and protein flexibility is 

considered in binding mechanisms. However, two different scenarios are depicted: 

one where the conformational ensemble is generated after ligand binding (induced 

fit) and the other where the conformational transitions pre-exist (conformational 

selection). In other words, in the former case, the free (unbound) macromolecule is 

trapped as a single conformation and undergoes conformational transitions when 

bound, while the opposite situation occurs in the case of conformational selection. 

Figure 1 shows the free energy landscape of macromolecular structures and binding 

according to the lock-and-key, induced fit and conformational selection theories. In 

the first process (Figure 1a), no conformational changes appear after ligand binding 

and protein exists as the same structure in both the unbound and bound state. In this 

context, the lock-and-key model can be considered a limiting case of 

conformational selection where ligand binds to the lowest energy and unique 

conformation. In Figure 1b, induced fit mechanism is reported: a single protein first 

binds the ligand and then undergoes conformational changes to optimize the 

complex, corresponding to multiple substates. In the last case, the free 

macromolecule pre-exists as conformational ensemble and the ligand binding 

stabilizes one of them, resulting in a single final substate.  
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Figure 1. The energy landscape view of protein structures and binding. a) Lock-and-key 

model. b) Induced fit model. c) Conformation selection model. Receptors and ligands are 

represented in blue and orange, respectively. 

 

Induced fit and conformational selection can be also described through a 

thermodynamic cycle (see Figure 2 for a simplified scheme). According to this 

cycle, when the concentration of the higher energy unbound conformation (P2) is 

larger than the concentration of P1L, that is the intermediate complex of the 

induced fit process, the prevalent biomolecular recognition pathway will be the 

conformational selection.
26 In this latter process, the rate of formation of the final 

complex P2L depends linearly on the concentration of P2 and nonlinearly on the 

total concentration of the protein ([P1 + P2]). On the other side, when the 

concentration of the higher energy conformation (P2) is lower than 5%, it is 

difficult to distinguish the main biomolecular recognition mechanism between the 

induced fit and conformational selection. 
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Figure 2. Induced fit and conformational selection in a thermodynamic cycle. P1 and P2 

are pre-existing unbound conformations, in agreement with the conformational selection 

theory. P1L is the intermediate protein-ligand structure which undergoes conformational 

changes resulting in the final complex P2L. The capital and lower-case letters for each 

equilibrium describe the thermodynamic and kinetic rate constants, respectively. Receptors 

and ligands are represented in blue and orange. 

 

The mentioned models seem to be antagonistic, as ―all or nothing‖ phenomena. In 

reality, in many instances, both mechanisms may cooperate in the same processes. 

For instance, various cases in which conformational selection event is followed by 

optimization of side chain and backbone interactions based on induced fit 

mechanisms have been reported.
27-28

 

In this scenario, the original conformational selection model has been extended 

embracing a repertoire of selection and refinement mechanisms. Induced fit can be 

thus perceived as a subset of this repertoire contributing to stabilize interactions 

between bound partners.
20 All mechanisms described so far consider a 

macromolecule as multiple conformations and the second binding partner as a 

single conformational state corresponding to small and/or rigid ligands, such as 

small molecules or DNA. On the contrary, in the extended conformational selection 

model, the ―native states‖ of both binding partners are accounted for as multiple 

conformations, located at the low-energy regions of the energy landscape. 

According to this process, binding partners undergo conformational selection and 
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preceding or subsequent adjustment steps, forming the binding trajectory. The 

mutual encounter modifies the populations of the partner conformations and, thus, 

the shape of their energy landscape. This mutual condition consisting of step-wise 

selection and encounter mechanism has been termed as ―interdependent protein 

dance‖,
29

 where the conformation of a partner represents the environment 

(preconditions) for the second molecule and vice versa. The lock-and-key, the 

induced fit, the original conformational selection and the conformational selection 

followed by the induced fit are special cases of this extended conformational 

selection model. It can describe biomolecular recognition processes involving 

proteins and also the binding mechanism of RNA molecules, as recently 

reported.
30-31

 

The biomolecular recognition mechanisms can be potentially distinguished by 

kinetic measurements, based on the dependence of the rate of relaxation to 

equilibrium, kobs, on the ligand concentration [L].
3
 For decades, a value of kobs 

increasing with [L] has been seen as diagnostic of induced fit, while a value of kobs 

decreasing hyperbolically with [L] indicated conformational selection. However, 

this simple conclusion is only valid under the unrealistic cases in which 

conformational transitions are rate-limiting in the kinetic mechanism compared to 

binding and dissociation events. In general, induced fit occurs when values of kobs 

increase with [L], but conformational selection is more versatile and is related with 

values of kobs that can increase, decrease or are independent of [L]. According to 

this more adaptable repertoire of kinetic properties, conformational selection is 

considered always sufficient and often necessary to explain all experimental 

systems reported in literature so far and then, is fundamental for binding 

mechanisms. On the other hand, induced fit is never necessary and only sufficient 

in some biological events. While these two mechanisms can be distinguished by 

kinetic measurements, direct characterization of sparsely-populated states of 

proteins in the free and bound forms are experimentally challenging. In fact, unless 

trapped, such short-lived states are invisible to conventional biophysical techniques 

like X-ray crystallography and NMR spectroscopy.
32-33

 Recently, developments in 

NMR field involving paramagnetic relaxation enhancement (PRE) have led to the 

detection and exhaustive visualization of these sparsely-populated states, applicable 

to a wide-range of proteins characterized by transient, short-lived conformational 

transitions. Moreover, single molecule measurements are emerging tools able to 
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characterize the conformational properties related to protein functions.
34

 These 

approaches used to study biomolecular recognition at the single molecule level 

include the single molecule fluorescence resonance energy transfer (smFRET) and 

single molecule functional studies. The former reveals the extent and lifetime of 

conformational motions in catalytic steps and ligand-mediated interconversions 

between conformations, typically averaged in non-synchronized ensemble 

measurements.
35-36

 On the other hand, single molecule functional studies are useful 

for the direct observation of activity heterogeneities for single and multiple 

enzymes.
37-38

 In general, these methods quantify the activity, abundance and 

lifetime of multiple conformations and transient intermediates in the energy 

landscape. 

 

The development of the mentioned theories revealed the critical role of protein 

flexibility for the recognition mechanisms in all biological systems. That being so, 

protein plasticity has important consequences on drug design and must be 

considered as fundamental requirement to study biological processes and identify 

and design small molecule inhibitors. 

 

1.2 PROTEIN FLEXIBILITY IN DRUG DISCOVERY 

Protein flexibility is required for biological effects, metabolism, transport and 

function. For example, residues involved in the catalytic mechanism of enzymes 

are often flexible, some receptors need to transmit the message of ligand binding 

from outside the membrane to the inside, channels can exist in an open or close 

form, etc.
39 Protein functions are poorly understood when a single protein structure 

is under investigation, since typical intrinsic dynamics and wide range of motions 

are neglected. In other words, using a single protein conformation in a drug design 

approach to accommodate all ligands corresponds to accept the outdated lock-and-

key model of binding.  

Conformational changes of side chains within binding sites are essential to identify 

novel inhibitory compounds. It is known that 8 out of the 20 amino acids can 

undergo structural rearrangements with a chance of 10-40%, making rigid 

structures unsuitable for structure-based drug discovery applications.
40
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In a more realistic scenario where multiple conformations pre-exist, design of 

molecules stabilizing specific structures within the ensemble may improve the 

probability to succeed in discovering novel active compounds and better 

understand biomolecular recognition processes. Therefore, proteins can adopt 

several conformations forming what is known as conformational ensemble. Protein 

motions are also important in terms of selectivity. Several therapeutic targets 

belong to families of highly related proteins and then, selectivity is required for 

pharmacological activity. In particular, binding sites consist of conserved residues 

located in almost the same positions, as a consequence of binding of the same 

natural ligands or because these macromolecules carry out reactions with the same 

chemistry. On the other side, the remaining residues are less homogeneous and 

promote different types of protein motions. This flexibility bestows a kind of 

diversity among proteins otherwise similar, to be exploited in the search for 

selective ligands.
39

 Also, the understanding of binding mode and affinity based on 

interaction among compounds, proteins and water molecules, is really important 

for rational drug design. Free energy that quantifies the preference of a state (free 

or bound) compared to the others, conveys the affinity of binding events. In the 

light of these considerations and of the influence of flexibility on drug design, 

several tools are now available to explore the conformational space and estimate of 

free energy of binding.  

The first attempt to take advantage of protein plasticity has been the use of multiple 

protein structures derived from NMR studies and X-ray crystallography, 

considered as the key methods to characterize molecular structures. In many cases, 

using conformational ensemble improves predictivity of Virtual Screening, but 

only a limited set of conformations for all existing proteins has been 

experimentally solved so far. Crystal structures are sometimes heterogeneous due 

to crystal packing effects, even errors or uncertainties introducing inaccuracies in 

structures, especially when they are solved at a resolution higher than 1.6Å.
41  

Another way to generate multiple conformations to be employed in structure-based 

drug design approaches is the use of computational tools including ligand 

docking,
40 low-frequency normal modes,

42
 and sampling approaches, such as 

Molecular Dynamics (MD),
43

 enhanced methods
44 and Monte Carlo simulations.

45 

They represent a valid alternative to experimental techniques, since they provide an 

atomistic-level detail to several processes such as protein folding
46

 or biomolecular 
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recognition,
47 and help to define biologically and pharmacologically significant 

conformations sometimes difficult to characterize with experimental methods. In 

addition, these techniques allow the identification of additional putative binding 

sites that may result hidden in the unbound protein structures, shedding light on 

potential allosteric sites. This scenario points out the importance of protein 

flexibility in discovering new drugs involved also in allosteric pathways. 

Ultimately, computational and experimental approaches together seem to be the 

best combination to study protein fluctuations and interactions.
48

 

Overall, these methods probe both local receptor flexibility in close proximity to 

the binding site and global flexibility of protein domains, corresponding to side-

chain and backbone fluctuations, respectively. In particular, backbone flexibility 

concerns large-scale domain fluctuations and disordered regions such as flexible 

loops.
49

 In the next paragraphs the available computational methods used to probe 

local and global flexibility are overviewed. 

 

1.3 PROTEIN FLEXIBILITY IN COMPUTER-AIDED DRUG DISCOVERY 

In consideration of the wide diversity of computational methods employed to study 

protein flexibility, some kind of classification can be useful. In particular, we can 

distinguish: i) approaches investigating local and/or global flexibility and ii) 

protocols that make use of unique or multiple structures. However, an absolute 

classification cannot be defined and, also, the selection of the most appropriate 

approach depends on the features of the biological system of interest.  

Procedures taking into account single protein structures subject to slight side chain 

movements are described. The first and easiest way to consider small 

conformational fluctuations within a protein binding site is the use of implicit 

methods.
50 Many force-field docking algorithms compute the van der Waals forces 

through the Lennard-Jones potential which increases rapidly to infinity when 

interatomic distance reduces to zero. It results in large energy penalties when minor 

steric clashes arise. In other words, potential good binders that do not fit exactly 

into the rigid binding site, may result in a low rank and bad score. With this 

method, known as ―soft docking‖, the Lennard-Jones potential is softened through 

the introduction of a more forgiving potential; thus, minor steric clashes are 

tolerated and pose orientations including slight overlaps between ligands and 
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proteins are retained, allowing an approximate consideration of protein plasticity. 

Soft docking is efficient in terms of computational costs, because no additional 

calculation time is required to evaluate the scoring function and is easily 

implemented in docking software. However, its main limitation is that it increases 

the number of false positives and the flexibility is only indirectly taken into 

account.  

Another simple way to include side chain torsions in ligand docking algorithms 

arises from the reorientation of hydrogen atoms. In particular, rotational sampling 

of hydrogens and lone pairs of hydrogen-bond donor and acceptor atoms have been 

included in genetic algorithms, allowing for the promotion of stronger hydrogen 

bonds.
51 Some computational methods accounting for full side chain flexibility are 

based on an extension of this simple approach, where torsional sampling around 

single and double bonds are evaluated while bond lengths and angles are kept 

fixed. These algorithms incorporating side chain mobility use rotamer libraries, 

introduced for the first time by Leach.
52 According to his method, no rotameric 

states have been assigned to alanine, glycine, and proline. Methionine, lysine, and 

arginine have been given 21, 51, and 55 rotameric states, while the remaining 

amino acids range from 3 to 10 rotameric states. Thus, the most energy favorable 

combination of side chain conformers and ligand orientations is defined. A further 

approach combines the use of rotamer libraries to generate multiple side chain 

conformations and an energetic optimization of the docked system, in particular of 

the side chains in close contact with ligands, so as to strengthen molecular 

interactions.
53

 Optimization techniques include simulated annealing, steepest-

descent minimization, Monte Carlo (MC) sampling, or other methods.
54

 

A different procedure, that still considers side chain rearrangements, is introduced 

with the ―InducedFit‖ docking developed by Sherman and coworkers and 

implemented as a tool of GLIDE docking software, in the Schrödinger suite.
55-56 In 

this case, it accounts for both ligand and protein flexibility and iteratively combine 

rigid receptor docking with protein structure prediction techniques (GLIDE and 

PRIME tools).
55 By paraphrasing the name, induced fit rearrangements and local 

movements within the active site upon ligand binding are included in docking 

protocol. The first step is the ligand docking with GLIDE. During this step, highly 

flexible side chains can be temporarily removed and converted with alanine 

residues, so as to reduce steric clashes. For each pose, PRIME tool is used for 
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structure prediction, in order to reorient side chains and accommodate the ligands. 

Then, ligands and binding site are energy minimized. Finally, a re-docking of each 

ligand in the low energy protein structure is performed, and small molecules are 

ranked according to the GLIDE score. A similar algorithm known as IFREDA 

(ICM-flexible receptor docking algorithm) has been developed by Cavasotto and 

Abagyan, to define multiple conformations when a single protein structure is 

available.
57

 IFREDA generates a set of protein conformations through a flexible 

ligand docking of known active compounds to a flexible receptor. The resulting 

conformational ensemble is used for flexible ligand–rigid receptor docking and 

scoring. Finally, a merging and shrinking procedure allows to condense results of 

the multiple Virtual Screenings, so as to improve the enrichment factor. With the 

exception of some few cases, the mentioned techniques probe mainly local receptor 

flexibility.  

An alternative method is RosettaLigand, implemented in the popular software 

Rosetta, which incorporates full protein backbone and side chain flexibility and 

considers both ligand ensemble generation and receptor movements during docking 

steps.
58-59

 The latest release includes new features, such as docking of multiple 

ligands simultaneously and redesign of the binding interface during docking.
60

 

However, treating backbone flexibility in docking protocols remains certainly 

challenging, because a large number of degrees of freedom needs to be considered. 

Several other methods have been published so far, which consider global 

flexibility, and also slight side chain movements. They are mainly based on the use 

of multiple protein structures and are known as ensemble-based methods. 

Conformations can derive from NMR or crystal structures or computational 

methods exhaustive in sampling large conformational space and derived from the 

protein flexibility analysis, as already introduced in the previous section. 

Among docking-based methods exploiting pre-existing protein ensembles to 

consider protein flexibility, the algorithm FlexE, an extension of the FlexX 

software, defines rigid and flexible regions based on superimposition of 

experimental structures.
61 Backbone and side chains in agreement are averaged, 

while disordered regions including diverse orientations of flexible side chains are 

collected as rotamer library. During docking, alternative flexible regions are 

explicitly taken into account, that can be combined to generate novel conformations 

not experimentally observed. The advantage of this method is the structural novelty 
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introduced with the recombination approach; however, this split and join procedure 

to combine protein fragments is fast and accurate mainly when side chains are 

involved, instead of wider conformational changes. The four-dimensional docking 

is another method applied to multiple protein structures.
62

 According to this 

approach, receptor flexibility is represented as the fourth discrete dimension of the 

small molecule conformational space, with multiple recomputed 3D grids from 

optimally superimposed conformers merged into a single 4D object. The four-

dimensional docking seems to be advantageous in terms of computational costs and 

accuracy compared to other developed methods. 

A further way to dock ligands in multiple structures has been developed by Knegtel 

and coworkers, consisting of docking ligands into an ensemble-average energy grid 

that is defined as the average of grids calculated for all the protein conformations. 

However, this approach gives a single docking score for each ligand that may result 

in inaccurate outcomes, due to weakness of some scoring functions compared to a 

consensus of multiple scores.
63

 Most recent studies, carried out by Craig et al.
64 and 

Rueda et al.
65 have demonstrated that the use of multiple conformations generated 

through known active compounds leads to a better enrichment compared to the 

initial protein structures. A similar conclusion has been observed by Novoa and 

coworkers by using homology models as starting multiple structures for docking 

and Virtual Screening.
66

 

Multistep approaches can also be used to take advantage of single methods, some 

of which already described. For instance, InducedFit docking and IFREDA are two 

algorithms in which ligand poses generated with a fast procedure are subject to 

refinements with longer and more accurate computational methods.  

Docking methods are useful in all the available versions to screen large number of 

ligands in a reasonable computational time and identify novel hit compounds. As 

reported above, several new improvements have been introduced to include 

receptor flexibility, referred as backbone and side chain fluctuations. However, 

when protein undergoes large-scale movements, docking approach is unsuitable 

because a large number of degrees of freedom is added to the space sampling. In 

this context, other computational tools are exploited in drug discovery.  

The Relaxed Complex Scheme (RCS) is a protocol, introduced by Lin et al. and 

inspired by the experimental ―SAR by NMR‖ and ―tether‖ methods to discover 

molecules with high binding affinity.
67 This approach arises from the idea that 
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ligands may interact with conformations that only rarely are explored and 

experimentally solved. In the first step, a long MD simulation of unbound proteins 

is performed, in order to sample extensively the conformational space. 

Subsequently, MD snapshots are selected to carry out docking of mini-libraries of 

potential active compounds. In this way, ligands are associated with a spectrum of 

binding scores and ranked according to various properties of this score distribution. 

In the extended version of this scheme, the MM/PBSA (Molecular 

Mechanics/Poisson Boltzmann Surface Area) approach is used to re-score the 

docking results, allowing to find the best ligand–receptor complexes concerning the 

correct binding modes.
68

 It is important to keep in mind that, when MD simulations 

are used to collect conformations for a Virtual Screening, reliability of resulting 

structures and enrichment introduced with sampling are unknown a priori.
69

 In 

general, ensemble consisting of crystal structures may lead to better estimate 

binding affinity, but, conversely, structures from MD simulations may improve 

predictivity. 

In a different perspective, multiple protein structures extracted by MD simulations, 

as reported in the RCS approach, can be used to define a dynamic pharmacophore 

model and predict ligand binding. Carlson and coworkers have developed this 

approach, where pharmacophoric description is extracted from each snapshot 

through ligand probes and then, collected pharmacophores are clustered and 

analyzed, in order to define the key elements preserved during the MD simulations 

and exploited to discover novel ligands with complementary chemical features.
40, 70

 

Molecular Dynamics is widely used as tool for several purposes, such us studying 

receptor flexibility before docking or including solvent effects. Also, MD 

simulations are used to stabilize ligand-receptor complexes resulted from docking 

studies, in order to enhance the strength of binding and rearrangements toward 

more favorable energy structures.
54, 71

 Therefore, this computational approach is 

applied not only to understand mechanisms playing a key role in the biomolecular 

recognition process, but also to improve predictivity and enrichment in Virtual 

Screening context, of which the Relaxed Complex Scheme represents a successful 

example. The timescales simulated with MD span between nanoseconds to 

microseconds, and recently even milliseconds, allowing generation of multiple 

low-energy protein conformations and also refinements of active site residues. 

With improvements of computer hardware and software in terms of efficiency and 
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speed (e.g. GPU and the construction of the special machine Anton),
72 longer and 

longer MD simulations are performed which are extending knowledge on 

biomolecular recognition at molecular level. Moreover, binding events to protein 

targets,
47

 full atomic resolution of protein folding and description of folding 

mechanisms are investigated by long MD simulations.
46

 However, some limitations 

prevent a more extended applicability of this method. For example, to recover a 

Boltzmann ensemble of structures and obtain converged statistics, the energy 

barriers between relevant states need to be crossed repeatedly and then, fast and 

accurate sampling is required. Very long MD simulations may reach this goal. 

However, in order to optimize computational costs and, at the same time, 

investigate interesting processes taking place on seconds or longer timescales, new 

methods have been developed. They explore exhaustively the conformational 

space, sometimes poorly sampled with conventional MD simulations, and also 

accelerate the crossing of high energy barriers. The enhanced sampling is possible 

through the introduction of artificial biases in the simulations. Umbrella 

sampling,
73 and metadynamics

74
 are some possible computational tools to speed up 

conformational exploration. In these cases, collective variables or a transition 

pathway between known initial and final state are defined a priori. Briefly, 

umbrella sampling uses a bias potential to ensure exhaustive sampling along the 

coordinate reaction. Separate simulations or windows are carried out that overlap to 

connect the initial and final states. Metadynamics employs collective variables to 

describe the system of interest. A history-dependent potential bias is introduced in 

the Hamiltonian of the system, by addition of Gaussians aimed at preventing the 

system to revisit configurations that have already been explored. 

Replica exchange
75 and accelerated Molecular Dynamics

76
 represent other 

computational methods, widely used to accelerate conformational space sampling. 

In details, replica exchange exploits high temperatures and multiple parallel MD 

simulations to overcome energy barriers on the potential energy surface and 

enhance sampling of new conformational space. Accelerated Molecular Dynamics 

does not require definition of a reaction coordinate or collective variables. It relies 

on modifying the potential energy surface based on the application of a boost 

potential at each point of the MD trajectory which depends on the difference 

between a user-defined reference energy and the real potential energy of the MD 

force field. Caflisch and co-workers have proposed an alternative method to guide 
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the exploration of conformational space, known as free-energy guided sampling 

(abbreviated as FEGS).
77

 Also, this method does not require the choice of 

collective variables or reaction coordinates, but uses the cut-based free energy 

profile (cFEP)
78

 and Markov state models (MSMs)
79

 to speed up sampling of 

relevant conformations. 

In alternative to these MD-based methods, normal mode analysis (NMA) has been 

widely exploited to define flexible protein domains with a lower computational 

cost.
80

 Normal modes are harmonic oscillations defining the intrinsic dynamics of 

the protein within an energy minimum.
81 Elastic Network (EN) analysis, that still 

relies on a NMA framework, is an alternative method based on a more simplified 

protein representation, consisting of a network of elastic connections between 

atoms.
82 Applications of these computational approaches in drug discovery 

contexts have been extensively reported. For example, Zacharias and co-workers 

modeled global backbone flexibility in a docking protocol, by relaxation in a few 

pre-calculated soft collective degrees of freedom of the receptor corresponding to 

eigenvectors of the protein.
83

 They were computed through a Normal Mode 

analysis related to Gaussian network models as described by Hinsen.
84

 Also, 

determination of the relevant normal modes representing binding pocket flexibility 

followed by perturbation of the protein along these modes was proposed by 

Cavasotto et al. to define novel conformational ensembles.
85

 More recently, 

Abagyan group derived multiple protein conformations through Monte Carlo 

sampling performed on the collective variable space defined by all heavy-atom EN-

NMA.
86 All these methods take advantages of Normal mode-based analysis to 

guide the sampling of conformational space resulting in the final generation of 

multiple conformations.  

 

In the light of the mentioned approaches, a parallelism between the biomolecular 

recognition theories and the strategies used to account for protein flexibility in 

computer-aided drug discovery can be advanced. Figure 3 shows the computational 

techniques aimed i) to generate multiple conformations (conformational selection 

box) and ii) properly accommodate molecules within the binding site (induced fit 

box). Normal Mode Analysis can be employed to define soft modes as additional 

variables for rapid relaxation of the receptor structure during docking (induced fit), 

as described by Zacharias et al., or as tool to guide the generation of multiple 
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conformations. In general, computational methods linked to induced fit theory treat 

side chain flexibility, whereas sampling methods and low-frequencies normal 

modes result in the definition of multiple geometries of the protein backbone, along 

with side chain reorientations. This separation is useful to understand the 

applicability of each method, but has not to be considered as a strict classification. 

In fact, ligand binding can also be seen as a combination of a conformational 

selection stage followed by slight structural rearrangements within the complex, 

according to the induced fit theory. In other words, upon ligand binding of one of 

the sampled conformations, the complex can be subjected to side chain 

rearrangements within binding pockets, through the diverse docking methods 

dealing with local flexibility. Finally, FlexE and four-dimensional docking can be 

simplistically mentioned among the methods related to conformational selection 

theory, since they start with multiple pre-existing structures. On the other side, the 

method developed by Knegtel and co-workers based on the ligand docking into an 

ensemble-average energy grid, is difficult to classify on the basis of the ligand 

recognition theories, since multiple conformations are condensed as a single entity 

in docking run. 

 

 

Figure 3. Induced fit and conformational selection, with the corresponding computational 

methods dealing with local and global flexibility. Receptors and ligands are represented in 

blue and orange, respectively. 
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All the mentioned computational approaches represent excellent tools to explore 

the conformational space and identify relevant conformations, sometimes not 

experimentally solved. More and more methods and applications have been 

developed, aimed at accounting for receptor flexibility and improving predictivity 

of drug discovery. They are described in details in several reviews.
87-90

 

 

1.4 ENSEMBLE-BASED VIRTUAL SCREENING 

Virtual Screening is a computational strategy based on ligand docking, aimed to 

reduce the large virtual space of chemical compounds to a more reasonable number 

for further synthesis and pharmacological tests against biological targets of interest, 

which could lead to potential drug candidates. The Ensemble-based Virtual 

Screening is based on using multiple protein conformations in a docking study. 

Receptor structures from X-ray, NMR studies or homology models can represent 

the starting geometries to be used as they are, or as input for computational 

methods to generate multiple conformations. An extensive overview of such in 

silico tools has been depicted in the previous section. Figure 4a below describes the 

main steps of this protocol. 

 

 

Figure 4. a) Schematic representation of the Ensemble-based Virtual Screening. b) and c) 

Combinations of multiple conformations in an Ensemble-based Virtual Screening.  
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Step 1. The pool of conformations is analyzed, in order to select the most 

biologically relevant structures. It is possible to extract conformations from MD or 

MD-based simulations at regular intervals, but this approach may introduce 

redundancy and low structural diversity. In alternative, clustering methods are 

widely used to select representative conformations for Virtual Screening.
65, 91

 

Several criteria can be used to cluster multiple structures, such as structural 

similarity in terms of RMSD values. To focus on the most significant geometries, 

this parameter may be calculated on regions of interest like the binding site, 

residues involved in binding mode or flexible protein domains linked with the 

active site. The selection of pairwise metric, clustering metrics and atoms used for 

the comparison can strongly affect the cluster analysis performance. Although 

cluster algorithms give generally satisfying results, they can exhibit limitations, 

such as the tendency to generate small, singleton or homogeneously sized clusters 

or the low stability to noise and changes in clustering parameters.
92

 Alternatively, 

reduced dimensionality of data can be exploited to manage reasonable numbers of 

conformations.
93 For example, after long MD simulations, the most relevant 

degrees of freedom can be obtained by the Principle Component Analysis.
94

 

Network analysis is another emerging tool to analyze protein dynamics allowing to 

extract information regarding not only the structural diversity but also connectivity 

of the collected conformations.
95

 

Step 2. Subsequently, the selected conformations are validated through ligand 

docking. In particular, a set of known active and inactive chemicals are docked in 

all the single structures of the ensemble. The goal of this retrospective study is to 

assess the predictive power of the conformations belonging to the final ensemble in 

perspective of the Virtual Screening. Several metrics can be used, including the 

Receiver Operating Characteristic and corresponding Area Under the Curve (ROC 

and AUC, respectively).
96

 These parameters describe the probability that actives 

will be ranked earlier than inactives in a rank-ordered list, as obtained after a 

docking run. This analysis can be useful to know if docking results bring added 

value compared to the random picking of compounds. In fact, this scenario should 

be translated in a real Virtual Screening, where a small proportion of the best 

ranked compounds is selected for biological tests. A good early recognition in a 

retrospective docking results in a high probability to find active compounds among 

the small proportion of ligands selected for experiments. 
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Sometimes, the validation study is used directly to select conformations, skipping 

step 1. In other words, the collected conformations are subject to a retrospective 

Virtual Screening and the best performing structures are selected based on their 

early recognition capability. However, the applicability of this procedure is 

restricted to a few ligands and a low number of protein conformations. In fact, a 

retrospective docking study of thousand ligands on large number of conformations 

collected by long Molecular Dynamics simulations as such, maybe computationally 

demanding. An example of this application is the ALiBERO protocol, recently 

developed by Rueda et al.
97 It is based on EN-NMA Monte Carlo simulations to 

collect multiple conformations, and selects the best pockets maximizing the 

recognition of ligand actives from decoys. 

Step 3. The validated conformations are then used for docking a ligand database. 

Several docking software and scoring functions are available and are used to rank 

large numbers of ligands and identify hit compounds. Multiple conformations can 

be combined in an Ensemble-based screening in two different ways: i) independent 

docking runs and selection of the best ranked pose for each ligand in one of the 

collected conformations, or ii) a single docking run with all the protein structures.
87

 

Figures 4b and 4c schematize these procedures. 

Compounds used for docking are selected from databases of commercially-

available compounds
98

 consisting of large number of molecules (≈ 10
6
, 10

7
), 

filtered out according to drug-likeness or lead-likeness criteria, which are based on 

the Lipinski‘s rule of five.
99

 These filters ensure that molecules will be chemically 

stable and reduce risk of toxicity. Substructure filters to remove Pan Assay 

Interference Compounds (PAINS), or promiscuous compounds are also used.
100-101

 

Step 4. A lead optimization phase can follow the hit identification, with the goal to 

improve binding affinity with more sophisticated and accurate methods. Molecular 

mechanics/generalized Born surface area (MM/GBSA)
102

 and the molecular 

mechanics/Poisson-Boltzmann surface area (MM/PBSA)
103

 are efficient techniques 

in calculating free energy of binding by means of molecular mechanics force fields 

and continuum solvent models. They can be used in conjunction with scoring 

functions or in a postprocessing step to enhance ranking and binding energy 

prediction of ligands.
104

 In the lead optimization step, the most popular 

computational technique is the Free Energy Perturbation (FEP), a very useful tool 

for guiding molecular design. This method consists of alchemic transformations 
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between two states, in conjunction with MD or Monte Carlo simulations in implicit 

or explicit solvent. Alchemic free energy methods are efficient and accurate but 

computational demanding. Moreover, an optimal accuracy is obtained only within 

a congeneric series of compounds. 

 

1.5 AIM OF THE WORK 

The dynamic character of proteins strongly influences biomolecular recognition 

mechanisms. With the development of the main models of ligand recognition 

(lock-and-key, induced fit, conformational selection theories), the role of protein 

plasticity has become increasingly relevant. In particular, major structural changes 

concerning large deviations of protein backbones, and slight movements such as 

side chain rotations are now carefully considered in drug discovery and 

development. In the light of what described so far, it is of great interest to identify 

multiple protein conformations as preliminary step in a screening campaign. 

Through the projects described in details in the Chapters 3 and 4, protein flexibility 

has been widely investigated, in terms of both local and global motions, in two 

diverse biological systems. On one side, Replica Exchange Molecular Dynamics 

has been exploited as enhanced sampling method to collect multiple conformations 

of Lactate Dehydrogenase A (LDHA), an emerging anticancer target. The aim of 

this project was the development of an Ensemble-based Virtual Screening protocol, 

in order to find novel potent inhibitors.
105

 On the other side, a preliminary study 

concerning the local flexibility of Opioid Receptors has been carried out through 

ALiBERO approach, an iterative method based on Elastic Network-Normal Mode 

Analysis and Monte Carlo sampling. Comparison of the Virtual Screening 

performances by using single or multiple conformations confirmed that the 

inclusion of protein flexibility in screening protocols has a positive effect on the 

probability to early recognize novel or known active compounds. 
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2. METHODS 
 

2.1 MOLECULAR MODELING 

Molecular modeling is the ensemble of all theoretical and computational methods 

required to describe and evaluate the properties of biological systems. These 

methods represent an important tool to investigate and better understand 

experimental data, gain knowledge on molecular structures and biological 

mechanisms, systematically explore structural/dynamical/thermodynamic patterns, 

etc. Experimental structures from X-ray or nuclear magnetic resonance provide the 

basic elements for molecular modeling. In fact, they are often used as starting point 

to study biological mechanisms, protein flexibility, energetic contributions to 

ligand-protein interactions, etc. In general, all methods of which molecular 

modeling takes advantages allow atomistic level description of the molecular 

systems, at different degrees of detail. Mainly, molecular modeling uses two 

different approaches: quantum mechanics and molecular mechanics. The former 

approach aims at solving the Schrödinger equation for each atom of the system, in 

order to explore the electronic structure of molecules. In other words, nuclei and 

electrons are explicitly treated. On the one hand, it results in a very accurate and 

robust method and produces a high level of detail of the phenomenon under 

investigation. However, it requires long calculation time with a considerable 

computational effort, especially for systems consisting of a large number of atoms, 

then limiting its applicability to specific cases, such as reaction mechanisms in 

which few atoms are involved. When biological systems consisting of hundreds to 

even thousands atoms are taken into account, the Molecular Mechanics (MM) turns 

out to be a more appropriate approach. It allows to evaluate the energy of a system 

as a function of the nuclear positions only, while electrons are implicitly considered 

through an adequate parameterization of the potential energy function. 

 

2.2 MOLECULAR MECHANICS AND FORCE FIELD (FF) 

Molecular Mechanics is regularly used when the biological system of interest 

contains a significant number of atoms, although some properties depending on 

electronic distribution are better treated with quantum mechanical approaches. The 

Born-Oppenheimer approximation is a fundamental principle that allows to 
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consider the energy as function of nuclear coordinates only.
106 Nuclei that are 

heavier in terms of mass compared to electrons, are characterized by negligible 

velocity. It means that they are considered stationary with electrons moving around 

them. In the light of this phenomenon, the Born-Oppenheimer approximation states 

that the Schrödinger equation can be split into a part describing the electronic 

motions and the other regarding the motions of the nuclei, resulting in two 

independent wave functions. Molecular mechanics treats a molecule as a collection 

of masses interacting each other through harmonic forces. In other words, atoms 

can be simplified as hard spheres with radii obtained from experimental or 

theoretical data and net charges, while bonds can be represented as springs. In this 

way, many of the laws of classical mechanics can be applied for studying 

biological systems of any size in reasonable computational time. The different 

types of forces holding together all the atoms within the molecule are described by 

different terms of potential functions which, summed together, define the molecular 

potential energy, referred to as Force Field (FF). These terms are connected to 

changes in internal coordinates, that is bond lengths, angles and rotational or 

dihedral angles. 

A relevant property of Force Fields is the transferability, that means the ability to 

use the same functional form and parameters to describe several systems, instead of 

defining specific functions for each single molecule. In this way, it is possible to 

use the Force Field to reproduce and predict structural properties of a wide range of 

molecules, although some specific systems require particular models. To this end, 

it is important to highlight that Force Fields are empirical, in other words a 

―perfect‖ form does not exist. Most of the available Force Fields are based on the 

same functional form, suggesting that a generic model is possible. Actually, this 

similarity is only due to evaluation of comparable interactions in a system. 

Especially when novel chemical classes are explored, the appropriate Force Field 

needs to be defined or, in alternative, chosen carefully. The choice of the most 

appropriate function depends also on the compromise between accuracy and 

computational efficiency. Force Fields express parameters in terms of atom types to 

define atoms of the system of interest. In particular, atom types describe 

hybridization states and neighboring environment, for example to distinguish atoms 

of histidine amino acid based on its protonation state or sp
3
- from sp

2
-hybridized 

carbon atoms.  



 

23 
 

Force Fields can be simplistically defined as the sum of four different terms 

including all the intra- and inter- molecular interactions within a system, as 

reported below: 

 

 (1) 

 

Vtot(r) is the potential energy of a system as function of the atom positions (r). The 

first three contributes are relative to deviations of the internal coordinates from 

reference values and, then, refer to atoms directly bound (for this reason defined 

bonded terms). In details, the first and second terms (stretching and bending) are 

modeled as harmonic potentials and describe the energy when bond lengths and 

angles deviate from the reference values, whereas the third term is referred to 

changes in energy when rotations around bonds occur. The fourth contribute is 

referred to as non-bonded term and treats the interactions of non-bonded parts of 

the system. It is calculated for atoms separated by at least 3 bonds and usually 

concerns electrostatic interactions modeled using Coulomb potential and van der 

Waals interactions by a Lennard-Jones potential. Additional terms are sometimes 

included in sophisticated Force Fields.    

In particular, the bond stretching and angle bending are calculated through Hooke‘s 

law as follows: 

 

 (2) 

 (3) 

 

where k is the force constant and r0 is the reference bond length for the first 

contribution, while k and θ0 in Eq. (3) are the force constant and the reference 

angle. In consideration of the strong forces interacting between atoms, energy 

necessary to deviate a bond from its equilibrium value is high, resulting in large 

force constants for this contribute. On the contrary, force constants for the angle 

bending are lower because less energy is required to distort angles from their 

equilibrium position. In general, bond lengths and angles are defined ―hard‖ 

degrees of freedom because high energy is required to deform them, compared to 

the remaining contributions. Structural modifications mainly regard torsional and 

non-bonded contributions.   
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The torsional potential expresses the rotational energy about a bond as reported 

below: 

 

 (4) 

 

with ω that is the torsional angle,  is the barrier of rotation (the barrier height), n 

is the multiplicity, that is the number of minima in the function when bond rotates 

through 360° and finally, γ is the phase factor that indicates where the angle passes 

through its minimum value. Improper dihedral angles are also considered to select 

the correct geometry of particular atoms and an out-of-plane bending term is 

included in the Force Field equation. 

As regards non-bonded terms, they are usually treated as function of the inverse 

power of the distance. The electrostatic contribution is defined through the 

Coulomb law: 

 

 (5) 

 

where NA and NB are the point charges in the molecules A and B, 1/4πε0 is the 

Coulomb‘s constant and rij is the distance between the two charges. These 

interactions involve pair atoms, resulting in what is known as pairs potentials that 

require long calculation time. Another limitation is related to the definition of 

partial charges to calculate the Coulomb energy that are not a directly observable 

property of an atom and not a property that can be measured directly by 

experiment. Then, it cannot be unambiguously defined and several methods are 

available to determine partial charges that reproduce desirable molecular 

properties. Finally, the van der Waals potential describes the dispersions and 

repulsions between atoms. One of the most used functions to describe van der 

Waals interactions is the Lennard-Jones 12-6 equation: 

 

 (6) 
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with ε and ζ corresponding to the collision diameter and the well depth, 

respectively. The term powered to 12 describes the repulsive forces between the 

electronic distributions of two atoms that are close each other. The second 

contribute is the attractive long-range term that derives from London dispersion 

forces between induced dipoles for atoms with electron dispersion. Similarly to the 

electrostatic term, pair potentials are used to study the van der Waals interactions, 

leading to the evaluation of a huge number of interacting elements.  

 

2.3 GENERATING CONFORMATIONAL ENSEMBLE 

2.3.1 MOLECULAR DYNAMICS 

Molecular Dynamics (MD) evaluates the ―real‖ dynamics of a system through the 

integration of the Newton equation of motion for an ensemble of particles and 

results in a trajectory over a given time. MD is a deterministic method, that is 

predictions of subsequent states can be defined from the current state. At defined 

steps, forces acting on the atoms are calculated and new positions and velocities are 

defined. Through MD simulations, microscopic properties are investigated, 

although macroscopic features are of major interest. The relation between 

microscopic and macroscopic features is at the basis of the statistical mechanics, 

composed of basic principles necessary to understand the theory of Molecular 

Dynamics. 

A microscopic state is identified through the positions and momenta of the N 

elements forming the system. These properties represent the coordinates in a 6N-

dimension space (each element is associated with 3 position variables and 3 

momentum variables), referred to as phase space. Therefore, the system is defined 

as a point in this multidimensional space evolving over time, resulting in a 

trajectory in the phase space. According to the principles of statistical mechanics, 

the instantaneous value of an observable A depends on the momenta (p
N
) and 

positions (r
N
) and can be reported as follows:    

 

 (7) 

 

Since this value fluctuates over time, due to the interactions between the particles, a 

time average (Aave) of A(t) is defined as the time increases to infinity: 
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 (8) 

 

From this equation, it is clear that to define average values of the observable A, it is 

necessary to describe dynamically the system in an infinite time. Obviously this is 

not feasible, especially if it is considered that macroscopic systems include a high 

number of atoms or molecules. To this end, the conventional approach of statistical 

mechanics considers a collection of systems (replicas) with the same macroscopic 

properties, instead of trajectories of a single system in the phase space. Each of 

these replicas is a point in the phase space and all together, they constitute what is 

known as statistical ensemble. Replicas progress in the phase space by keeping 

constant the thermodynamic properties which define the statistical ensemble. 

According to these constant properties, statistical ensembles can be classified in: 

canonical (NVT), microcanonical (NVE), isothermal-isobaric (NPT) and grand 

canonical (μVT). The thermodynamic properties of interest refer to number of 

particles (N), volume (V), energy (E), temperature (T), pressure (P) and chemical 

potential (μ).  

Replicas are distributed based on a probability density, that is the probability to 

find a configuration with momenta p
N 

and position r
N
. It is computed in different 

ways depending on the statistical ensemble under investigation. For example, in 

canonical ensembles in which energy fluctuations are observed, the density 

distribution is defined by the Boltzmann distribution: 

 

 (9) 

 

where E(p
N
,r

N
) is the energy, 1/kBT is Boltzmann‘s constant with T standing for 

temperature and Q is the partition function. The latter, as reported in Eq. (10), is the 

sum of the Boltzmann factors from all microstates and is used in the previous 

formula as normalization factor. 

 

 (10) 
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It can be treated with a classic or quantum mechanical approach. In other words, it 

can be expressed as sum of all the Boltzmann factors (as shown in the previous 

formula) or as integral in the 6N dimensional space. 

In the microcanonical ensemble, energy is constant and all microstates are 

equiprobable. All replicas explore each point in the phase space due to their 

constant energy and then, the time average coincides with an ensemble average. 

This equivalence, as reported in Eq. (11), is at the basis of the ergodic hypothesis 

which is a fundamental axiom of statistical mechanics.  

 

 (11) 

 

where 

 

 (12) 

 

with M corresponding to the number of time steps and angle brackets indicating an 

ensemble average. Molecular Dynamics takes advantage of this hypothesis through 

the integration of the ensemble average in order to obtain the thermodynamic 

averages. 

The Hamiltonian (H) controls the evolution of a system over time. It can be 

calculated for a system of N particles as the sum of kinetic energy K which only 

depends on p, and potential energy V only dependent on r. This second part is 

computed through the Force Field which has been discussed in the previous 

section. On the other hand, the kinetic energy has a simple quadratic form as 

reported below: 

 

 (13) 

 

with mi corresponding to the mass of particle i and pix, piy, and piz the x, y and z 

components of the momentum p, respectively. In an MD simulation, the evolution 

of the system over the time, controlled by the Hamiltonian H, is defined through 

the integration of the equation of motion. The forces acting on the atoms combined 

with positions and velocities at a given time step (t) allow to define new positions 



 

28 
 

and velocities at time interval t + Δt. Subsequently, atoms moves, forces are 

computed at the new positions and so on. 

The Molecular Dynamics protocol consists of three main steps: minimization, 

equilibration and production. The starting structure of the system of interest and 

then, the resulting minimized geometry are the underlying configurations about 

which fluctuations occur during the simulation. Therefore, it is important to define 

a stable energy structure, that is a minimum on the potential energy surface to start 

the dynamics. For complex molecules, multiple minima are possible, as well as a 

global minimum may be identified, but in this case a conformational search would 

be needed. In order to reach the convergence, macromolecules are subject to large 

numbers of minimization iterations. Two examples of widely used minimization 

algorithms are the Steepest Descent and Conjugate Gradient. In the subsequent 

equilibration step, initial velocities are assigned to the atoms. Typically, they are 

randomly generated through a Maxwell-Boltzmann distribution. Random velocities 

can lead to a nonzero net momentum, resulting in possible translations or rotations 

of the system. Thus, in order to limit this effect, velocities are zero mean. 

Subsequently, the system is initially simulated to reach the equilibrium of the initial 

conditions. If the simulation is run at constant temperature, the system should be 

brought to the temperature of interest. During this step, in the light of the relation 

between temperature and velocity, this latter is rescaled until the desired 

temperature is reached. Once the properties of interest (V, T, P, E) show stable 

behavior in the equilibration step, the production can finally begin.  

In an ideal system, we should consider lattice which is infinite in all dimensions. 

However, for computability and complexity reasons, some boundary conditions are 

necessary in order to simulate a part of an infinite system. As consequence, some 

molecules of the system are close to the edge of the sample and may be affected by 

surface effects which can be avoided by using Periodic Boundary Conditions. The 

box which includes the system of interest is replicated in different directions 

resulting in a periodic lattice of identical subunits. In this way, molecules located in 

proximity of the edge interact with the atoms of the neighboring box. In order to 

avoid that particles see their own periodic images, the minimum image convention 

is applied. According to this condition, each atom is surrounded by a box which is 

identical in size and shape to the periodic box and includes the remaining other 

atoms in the simulation. However, the calculation of the pairwise interactions of a 
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particle with all of the other particles in the system may be too expensive in terms 

of computational cost. In order to limit this problem, the potential truncation is 

used, that is the introduction of a cutoff within which the non-bounded interactions 

are calculated. For consistency with the minimum image convention, the cutoff 

distance should be lower than half length of the box. 

An important parameter in Molecular Dynamics is the time step, which defines 

how often the integration of the equations of motion is performed. Ideally, to 

reduce computational costs a large time step should be used. In practice, it is 

typically restricted to the femtosecond time scale. This value must be shorter than 

the period of the fastest motions in a system, like the oscillations of the hydrogen 

atoms. In order to reach a compromise between computational costs and accuracy, 

use of constraint methods, such as the SHAKE algorithm,
107

 allows to fix bond 

lengths and then, increase the time step. The Verlet algorithm
108

 is one of the most 

used finite difference methods, which approximate the positions and dynamics 

properties through Taylor series expansions. In particular, the Verlet algorithm 

determinates each position from the current position at time t and position at time t  

– Δt as follows:  

 

 (14) 

 

In the context described so far, where the total energy of a system is conserved, the 

MD simulations explore the microcanonical ensemble (NVE). To simulate also the 

other statistical ensembles, like the isothermal-isobaric (NPT) or the canonical 

(NVT) ones, the equation of motion should be modified. In these further 

ensembles, velocities can be rescaled at certain steps so as to reach the desired 

target temperature, as already introduced earlier. In the isothermal-isobaric 

ensemble, constant pressure involves volume fluctuations. In this case, a target 

pressure is maintained by rescaling the simulation volume, through the use of a 

barostat. The Berendsen thermostat/barostat is widely used to weakly couple the 

system to an external heat bath with coupling constant for temperature and 

pressure.
109

 The Langevin thermostat is another example that adds a friction term 

and a fluctuating force to Newton‘s second law which is then integrated 

numerically.
110

 Details of these algorithms can be found in the related reference 

papers.  
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Although Molecular Dynamics simulations are widely used and have been resulted 

in successful results to investigate biological systems, its utility is still limited 

because of two main reasons: i) the computational demand to adequately sample 

motions occurring in long timescales, and ii) refinements of Force Fields used to 

define the potential energy. To overcome the second limitation, methods 

combining molecular mechanics with quantum mechanics are used and successful 

results have been reported. Several solutions have also already been introduced to 

overcome the limits of the short time scales typically simulated. As of today, 

enhanced sampling methods, including umbrella sampling, methadynamics, 

accelerated dynamics, replica exchange molecular dynamics, etc. have allowed to 

observe protein shifts between conformations that would not be accessible given 

the time scales of conventional molecular dynamics. 

 

2.3.2 METROPOLIS-MONTE CARLO METHOD 

In contrast with Molecular Dynamics, Monte Carlo method is a stochastic sampling 

approach, where configurations are not connected in time and depend only on the 

previous sampled state.
111

 New configurations are randomly sampled and accepted 

based on set of criteria. In particular, the probability to obtain a configuration is 

based on Boltzmann factor, as previously described. However, contrary to 

Molecular Dynamics where total energy includes the kinetic energy contribution, 

the total energy in Monte Carlo simulations is defined only as the potential energy. 

Configurations with low energy show a higher probability of acceptance than 

higher energy states. The average of the properties calculated for all the 

configurations M is reported below: 

 

 (15) 

 

and clearly shows its dependence on r
N 

and not upon momentum contribution. 

Nicolas Metropolis made important contributions for the development of this 

method, which is known as Metropolis-Monte Carlo approach. After random 

moves of atoms or molecules of a system, the energy of the resulting configuration 

is higher of the previous state, a random number between 0 and 1 is generated and 

compared with the Boltzmann factor. If this number is higher than the Boltzmann 



 

31 
 

factor, the novel state is rejected and a new move is attempted, otherwise it is 

accepted. A Metropolis approach defines a Markov chain of states which is 

characterized by ―memoryless‖ properties, that is the outcome of each trial depends 

only on the preceding trial and not on the sequence of trials preceding it. This 

feature is known as Markovian property. Several Monte Carlo modifications have 

been introduced to focus on the exploration of the most important parts of phase 

space. For example, the preferential sampling favors random moves of molecules 

close to the solute than those far away. Cut off may be used to define regions 

subject to more frequent move attempts. As alternative, the probability to choose a 

molecule for random moves may be related to its distance from the solute. A 

further procedure, known as force bias Monte Carlo considers that each move is 

selected with higher probability in the direction of the instantaneous force on the 

particle than in other directions. Thus, these directed moves bring to a lowering of 

the overall potential energy and, consequently, to a higher acceptance probability 

than in the classic Metropolis protocol.
112 The traditional statistical ensemble of 

Monte Carlo method is the NVT ensemble, although sampling from the other 

ensembles is also possible.   

 

2.3.3 ENHANCED SAMPLING METHODS 

2.3.3.1 REPLICA EXCHANGE MOLECULAR DYNAMICS (REMD) 

Replica exchange (or parallel tempering) is a sampling method based on M parallel 

and non-interacting replicas of the system of interest which are subject to 

simulations at different temperatures, typically in the canonical ensemble. At 

regular intervals, exchanges or swaps of configurations at different temperatures 

are attempted. This method takes advantage of simulations at high temperatures 

which allow to sample large volumes of phase space. On the other side, low 

temperature systems may be trapped in non-representative local energy minima. 

Therefore, configuration exchanges between lower and higher temperature replicas 

favor to escape from regions of the phase space in which configurations may be 

stuck.
113

 The first replica exchange simulations trace back to Swedensen and Wang 

who introduced a replica Monte Carlo approach with a partial exchange of 

configurations at different temperatures.
114 Thereafter, a complete swap of replicas 

applied by Hansmann and co-workers to study biomolecules gave a large 
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contribution to the development of the replica exchange method in Monte Carlo 

simulations.
115

 Moreover, Sugita et al. introduced the Molecular Dynamics version 

of parallel tempering, also referred to as Replica Exchange Molecular Dynamics 

(REMD).
75

 

If we consider a replica exchange simulation with M replicas, each of them at 

temperature Ti with T1 < T2 < T3 <… and T1 as temperature of the system of interest, 

the partition function of this ensemble is defined as: 

 

 (16) 

 

where Ki is the kinetic energy of the system analytically calculated, βi = 1/(kBTi) and 

U is the potential energy. Usually swaps occur between configurations simulated at 

adjacent temperatures. The probability to accept the exchanges between replica i 

and j is given by: 

 

 (17) 

 

In order to satisfy the detailed balance conditions in statistical mechanics, the 

exchanges must be attempted with a defined probability. The main difference 

between the Monte Carlo parallel tempering and REMD approach is that in the first 

case only positions of the atoms are taken into account, while the momenta are also 

considered in REMD simulations. In this last case, to conserve the kinetic energy 

between the replicas at different temperatures, new momenta needs to be 

determined as: 

 

 (18) 

 

where p is the old momentum for replica i and Tnew and Told are the temperatures 

before and after the exchange. This rescaling approach guarantees that the average 

kinetic energy is equal to 3/2NkbT. It is worth pinpointing that replica exchange 

methods produce unphysical moves and not a real dynamics of a system. They are 

used with the aim of accelerate the sampling of the conformational space. Potential 

energy distribution is represented as Gaussian curve; therefore, the exchange 
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probability can be represented as the overlap between two adjacent curves. The 

choice of number of replicas and temperatures at which systems are simulated 

requires considerable attention to ensure good overlap of energy histograms. 

Temperatures should be defined by guaranteeing exhaustive sampling of the phase 

space, while a right number of replicas is important to ensure a high exchange 

probability for all adjacent replicas. Several methods have been proposed to define 

temperatures and number of replicas to optimize successful configuration swaps. 

For instance, Kofke et al. have introduced a geometrical distribution of replicas in a 

defined range of temperature, where the ratio Told/Tnew is kept constant.
116-117

 Other 

studies have shown that a good performance of replica exchange simulations 

should correspond to an acceptance probability of around 20%.
118-119

 As regards the 

number of replicas, it increases as , where N is the system size. To overcome 

this growth as function of the size of the system of interest, some methods attempt 

the exchanges by considering only part of the system. Many other variants of 

parallel tempering have been developed, such as methods that attempt swaps of 

alternative parameters. The Hamiltonian replica exchange is an example of this last 

category, where hydrophobic or van der Waals interactions between replicas are 

scaled and the acceptance probability takes into account the Hamiltonian of the 

swapped configurations, instead of potential energy as observed in the original 

version described before.  

The main limitations of the replica exchange approach concern the high 

computational cost, due to the necessity to run multiple simulations in parallel. In 

addition, the set up of basic parameters to perform these simulations requires 

preliminary simulations, resulting in additional computational demand. Moreover, 

explicit solvent treatment increases the degrees of freedom to consider and 

decreases the width of Gaussian curves, resulting in a large number of replicas to 

reach an acceptable probability of exchange. Alternatives to overcome this 

limitation consist of implicit treatment of solvation effects that, however, only 

produce an approximation of the ―real‖ behavior of a biological system. Another 

possibility is the explicit representation of water molecules in the first solvation 

shells, but, in this case, restraints on the solvent are necessary introducing artifacts 

because of the solvation surface.  
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2.3.3.2 hybrid REPLICA EXCHANGE MOLECULAR DYNAMICS (hREMD) 

In the last years, parallel tempering has been combined with other simulation 

methods and, more in general, variants of the original approach have been 

introduced to deal with the limitations of REMD.
120-121 Hybrid Replica Exchange 

Molecular Dynamics (hREMD) combines explicit solvent Molecular Dynamics 

using standard methods such as periodic boundary conditions and inclusion of 

long-range electrostatic interactions, with implicit solvent models during the 

exchange attempts.
122

 In particular, the swap probability is calculated by taking into 

account solvation shells defined on the fly during the fully solvated simulation and 

temporary replacing the remaining water with a continuum representation. After 

the exchange attempts, the original solvent coordinates are restored, and the 

simulation can proceed with explicit solvent treatment. In this way, the drastic 

decrease of degrees of freedom leads to a reasonable number of replicas to model 

large systems and accuracy of explicit solvent simulations. In fact, an advantage of 

this method is the full solvation during the entire Molecular Dynamics simulation; 

also, distribution functions and solvent properties are unaffected by the hybrid 

model during the exchange attempt. Moreover, in this approach, restraints of the 

water molecules are not necessary since the solvation shells are defined on the fly 

at every exchange calculation. 

For the continuum solvent treatment, the generalized-Born (GB) model which 

represents an approximation of the Poisson-Boltzmann (PB) continuum 

electrostatic model, is widely used in the context of hybrid REMD simulations. 

Comparative studies by using hybrid and explicit REMD simulations have shown 

that hREMD is a sophisticated method with a good compromise between accuracy 

and calculation costs. 

 

2.3.4 ELASTIC NETWORK-NORMAL MODE ANALYSIS 

Normal Mode Analysis is a harmonic analysis starting with a minimization of the 

conformational potential energy as a function of the atomic Cartesian coordinates, 

followed by the calculation of the ―Hessian‖ matrix, that is the second derivatives 

matrix of the potential energy with respect to the atomic coordinates. Finally the 

diagonalization of the Hessian matrix is computed and the eigenvectors (the 

―normal modes‖) and eigenvalues are defined.
93

 The first most relevant 
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eigenvectors are thought to describe the main protein motions in aqueous solution 

and are then used to collect significant protein conformations in perspective of a 

Virtual Screening.  

In details, given a system of N atoms, the potential energy of a biomolecules is 

described as a function of its 3N coordinates through bonded and non-bonded 

energy terms. At a minimum, the potential energy can be expanded in a Taylor 

series in terms of mass-weighted coordinates, truncated at the quadratic level, with 

the first term set to zero:  

 

 (19) 

 

The second derivatives of this equation is written in the Hessian Matrix F, of which 

the diagonalization determinates eigenvectors and eigenvalues: 

 

 (20) 

 

with wj and λj representing the j
th

 eigenvector and eigenvalue, respectively. The 3N 

- 6 resulting eigenvectors, ranked according to their corresponding eigenvalues, 

specify the normal modes coordinates through: 

 

 (21) 

 

while the eigenvalues describe the energy cost to deform the system along the 

pattern of atomic displacement defined by the eigenvectors. By considering that 

normal mode coordinates are subject to harmonic oscillations with angular 

frequency ωj, the previous equation can be written as: 

 

 (22) 

 

where Aj is the amplitude and εj is the phase. Displacement of Cartesian coordinates 

along the eigenvector wj is then defined: 
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 (23) 

 

Sometimes, Normal Mode Analysis may result to be computational demanding. In 

particular, the diagonalization of the 3N × 3N matrix may require long CPU time 

depending on the number of atoms N in the molecule.  

In 1996, Tirion et al. proposed a new model based on Normal Mode Analysis, 

called Elastic Network Model (EN-NMA).
82

 In this approach, interactions between 

two atoms are described through Hookean pairwise potentials and distances are 

considered at their minimum, so as to avoid the first step of Normal Mode 

Analysis, that is the energy minimization. In the case of Elastic Network, the 

potential energy function is computed as follows:  

 

 
(24) 

 

In this equation, rij corresponds to the distance between atoms i and j,  is the 

distance of the reference structure, RC is the distance cut-off and γ is the spring 

constant. Compared to Normal Mode Analysis, energy minimization is not required 

and the matrix diagonalization is faster, since it is commonly based on Cα atoms of 

the system. In fact, since Force Field is not used, Elastic Network model can be 

performed on a subset of atoms and not necessary on all elements of the system. 

This reduction results in a considerable gain in terms of computational cost spent to 

define the Hessian matrix. It has been widely demonstrated, through experimental 

and theoretical data, that low-frequency normal modes govern the large-scale 

conformational fluctuations.
123

 

The EN-NMA, which analyzes fluctuations of protein backbone and side chains, 

can guide the Metropolis-Monte Carlo algorithm for the generation of Cartesian 

displacements, then resulting in novel conformations. In each iteration, the defined 

modes are displaced randomly, the energy of the resulting system is computed as 

reported in Eq. (24), and the Metropolis criteria is used. This leads to accepted 

displacements (at a temperature of 300 K) on each of the modes, which can be 

projected onto the Cartesian space. It is possible to obtain bigger displacements by 

increasing the temperature of the Monte Carlo procedure.
86
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2.4 ANALYSIS OF MULTIPLE CONFORMATIONS 

2.4.1 CLUSTER ANALYSIS 

With the development of sophisticated sampling methods, increasingly long 

trajectories consisting of large amount of data are collected. In the context of drug 

discovery, the use of all these stored structures for a Virtual Screening approach 

would be costly in terms of calculation time and irrelevant in terms of novelty, 

since these structures (in good part) may be conformationally redundant. Data-

mining techniques represent powerful tools to group similar elements and gain 

useful information from the long trajectories. Among them, clustering is a general 

method, widely applied to any data collection, that allows to define set of points 

called clusters, joined according to a function measuring pairwise distance.
124

 Thus, 

the elements of a cluster are ideally more similar to each other than to external 

elements belonging to other clusters. Several clustering algorithms have been 

developed and applied in different studies, like the analysis of Molecular Dynamics 

trajectories or, more in general, to group similar conformations. When used as tool 

to study configurations collected from sampling methods, cluster analysis allows to 

extract information about the visited substates of the conformational space. Since 

sampling follows the Boltzmann distribution, low energy substates are more 

populated than high energy substates, resulting in differently populated clusters. 

The parameters that can critically affect the performance of the clustering 

algorithms are the selection of the atoms used to compare the initial data, the 

pairwise metrics for the comparison, and the cluster algorithm to group together 

similar elements. It is important to highlight that there are no perfect ―one size fits 

all‖ algorithms and that the performance strongly depends on the clustering 

criteria.
92 In fact, some algorithms tend towards singleton or small clusters and 

others to homogeneously sized clusters. Therefore, particular care is necessary 

when cluster analysis is carried out and a visual inspection of resulting clusters is 

always recommended. Clustering methods are used in a variety of areas and several 

algorithms have been developed. In this section, a brief description of the most 

common algorithms applied in medicinal chemistry and, in particular, to study 

structural diversity of protein conformations collected from sampling approaches, 

are reported. 
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First of all, cluster algorithms can be classified as hierarchical and non-hierarchical. 

In the first case, clusters and sub-clusters can be identified resulting in a tree 

structure or dendrogram, as shown in Figure 5. Each cluster in this scheme (except 

for the leaves of the tree) is obtained by merging its children (sub-clusters), 

whereas the root represents the large ensemble containing all the initial elements. 

On the other side, a non-hierarchical method defines a classification by partitioning 

a dataset, resulting in a set of non-overlapping groups without hierarchical 

relationships between them. In a simplistic perspective, non-hierarchical clusters 

can be obtained by cutting any level of the hierarchical dendrogram (red box in 

Figure 5).  

 

 
 

Figure 5. Hierarchical dendrogram. Clusters are represented as blue dots. Red box 

indicates unrelated clusters, as result of a non-hierarchical algorithm. The two rows on the 

left and right of the dendrogram schematize the bottom-up (agglomerative) and top-down 

(divisive) clustering approaches.   

 

Also, hierarchical methods can be separated in divisive and agglomerative 

clustering approaches. In the first case, an initial large cluster including all the 

points is iteratively split in sub-clusters.
125 In principle, at each step, the largest 

distance between any two points is computed and the two extrema become the 

initial centroids for two new clusters. All points closest to one of the two centroids 
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are assigned to this child cluster. This iterative procedure, also referred to as top-

down method, is repeated until the desired number of clusters is reached. The 

opposite workflow which comes up when all starting elements are treated as 

singletons and combined together to give larger clusters, is known as 

agglomerative or bottom-up approach. Below, the most used hierarchical 

algorithms belonging to the latter category are described:  

 single-linkage, the distance between clusters is defined as the shortest 

intercluster point-to-point distance;  

 average-linkage, cluster-to-cluster distance is calculated as the average of 

all distances between each point of the two clusters; 

 centroid-linkage, similar to single linkage but the intercluster distance is 

calculated between the cluster centroids; 

 complete-linkage, cluster-to-cluster distance is identified as the largest 

point-to-point intercluster distance between two clusters. 

Centripetal clustering and centripetal complete clustering are two further examples, 

based on a more sophisticated procedure, to make the algorithm less sensitive to 

outliers. K-means clustering is also widely used to group conformations from MD 

simulations and is an example of non-hierarchical algorithm.
126

 In particular, it is a 

relocation method starting with an initial guess as to where the centers of clusters 

are located. Then, compounds are shifted between clusters to iteratively refine the 

centers, until stability is achieved.
127

 In this case, k seed compounds are selected to 

act as initial cluster centers and each compound is linked to the closest seed. Then, 

centroids are recomputed and the procedure is repeated. Usually seeds are placed as 

much as far away from each other. Bayesian clustering and other algorithms are 

also relevant in computational chemistry and are described in details in several 

reviews.
92

 Although it is not possible to select a priori the best performing 

algorithm to use for the study of interest, general comments about the features of 

resulting clusters can be outlined. In general, divisive methods tend to generate 

uniformly sized clusters, whereas agglomerative algorithms mostly result in a 

single large cluster. To assess clustering quality, some metrics have been 

introduced, aimed at evaluating two main measurement criteria: compactness 

(cluster members should be as close to each other as possible) and separation 

(clusters should be adequately separated).
128

 The assessment clustering methods are 
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divided in external, internal and relative criteria. The first two approaches are 

computer demanding and are based on user evaluations and specific metrics 

focusing on the data set, respectively. On the other side, relative criteria are useful 

parameters to establish the best performance between two clustering algorithms. 

An example is the Davies-Bouldin index (DBI) that is based on Rij which is the 

similarity measure between clusters i and j.
129

 Briefly, it is calculated as follows: 

 

 (25) 

 

where 

 (26) 

 

This index measures the average of similarity between each cluster and its most 

similar one. Low DBI values correspond to a better clustering. 

A method used to select the optimal number of clusters for a good result is the 

elbow criterion which take into account the variance as a function of the number of 

clusters.
130

 According to this approach, one more cluster is added to the chosen 

number of clusters, and percentage of variance is evaluated. In general, a plot of 

percentage of variance versus the number of clusters shows that the first cluster 

adds the majority of variance, and after a certain number of clusters the marginal 

gain decreases, giving an angle in the plot. The number of clusters are usually 

chosen at this point.
131 Although cluster analysis has been reported as an accurate 

method to group and analyze conformations from sampling methods, it presents 

some weaknesses that limit their universal use. For example, application of several 

algorithms on the same data set has shown widely different results, highlighting the 

limitations of all single methods. In particular, hierarchical algorithms are highly 

sensitive to outliers, mean algorithms lead to homogeneous sized clusters and 

average and centroid linkage algorithms tend to generate singletons.
92

 

 

2.4.2 DIMENSIONALITY REDUCTION 

In the field of Molecular Dynamics or, in general, sampling methods, it is difficult 

to study large amount of data collected from long trajectories, through cluster 

analysis. As briefly commented in the previous section, clustering algorithms show 
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low stability issues. In addition, this method does not provide a clear interpretation 

of the phenomenon under investigation linked, for example, to global protein 

flexibility. A valid alternative is represented by methods aimed at reduce the 

dimensionality of a data set, that is the number of variables required to describe the 

system of interest. Principal Component Analysis (PCA)
94

 and Multidimensional 

Scaling (MDS)
132-133

 are two techniques, widely used for this purpose. PCA is a 

way to express a high dimensional data set through a set of dimensions (principal 

components) that are orthogonal to each other. When data are plotted in the x-

dimensional space, where x corresponds to the principal components (PCs), the 

first component maximizes the variance within the data set; in other words, the data 

show the greatest spread of values along this component. The subsequent principal 

components take into account the maximum variance not considered by the first 

variable. In general, a few principal components are sufficient to describe salient 

features of a system.  

In details, PCs are computed through two main steps: i) the calculation of the 

covariance matrix, C, of the positional deviations, and ii) the diagonalization of this 

matrix. For a covariance matrix computed on an ensemble of protein structures, the 

elements of C are defined as: 

 

 (27) 

 

where xi and xj represent the atomic coordinates and the brackets correspond to the 

ensemble average. The diagonalization of the symmetric matrix C results in: 

 

 (28) 

 

where A and  represent the eigenvectors and the associated eigenvalues, 

respectively. This procedure thus transforms the original matrix in a new 

orthornormal matrix composed of the eigenvectors. The first principal component 

shows the highest eigenvalue. MDS is another possible method to reduce 

dimensionality, based on dissimilarity/similarity data between pairs of elements. 

The main goal of MDS is to represent these dissimilarities/similarities as distances 

between points in a low dimensional space such that the distances represent as 

closely as possible the dissimilarities. With MDS, analysis of any kind of similarity 
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or dissimilarity matrix is possible, in addition to correlation matrices. In technical 

terms, MDS is based on a function minimization algorithm that evaluates different 

configurations with the aim to maximize the goodness-of-fit (or minimize "lack of 

fit"). 

 

2.4.3 NETWORK ANALYSIS 

Further methods used to analyze and study the diversity within structural ensemble 

include network analysis. The advantage of this approach lies in the possibility to 

visualize topological correlations between the elements otherwise difficult to be 

seen by classical cluster analysis. The elements of a network are defined as nodes, 

which are bound together by links or edges representing interactions between 

element pairs.
134

 The network architecture based on the disposition of nodes and 

links defines a layout. According to the nature of interactions, networks are 

classified as directed or undirected. In the first case, nodes are linked with a well 

defined direction, whereas no directions are observed in undirected graphs. The 

degree or connectivity of a node (k) is a basic parameter identifying the number of 

links of each node with the others, while the degree distribution, P(k), defines the 

probability that a specific node has exactly k edges. This distribution is calculated 

by dividing the number of nodes with k links by the total number of nodes, as 

reported in the following formula: 

 

 (29) 

 

Other important metrics in network analysis include the shortest path and mean 

path lengths, measuring the path with the smallest number of edges between the 

selected nodes and the average over the shortest paths between all pairs of nodes, 

respectively. Finally, the clustering coefficient is computed as: 

 

 (30) 

 

where nI defines the number of edges between the neighbours of node I, and 

 is the total possible number of these links. In other words, CI refers to 

the ―triangles‖ that go through node I and can give insights of how densely 



 

43 
 

clustered the edges in a network are. C(k) is the average clustering coefficient of 

nodes of degree k in the network. Different forms of the parameters described 

above characterize three types of networks: i) random, ii) scale-free and iii) 

hierarchical networks (Figure 6).  

 

 

Figure 6. Layout of random (A), scale-free (B) and hierarchical network (C). Degree 

distribution and average clustering coefficient are reported in the b) and c) panels, 

respectively. 

 

Random networks (Figure 6A) are characterized by N nodes connected with 

probability p, resulting in graphs with approximately  links 

distributed in a random way.
135 Due to this random positioning of edges, most 

nodes show approximately the same degree, close to the average degree  of the 

network. Indeed, the node degree follows a Poisson distribution (Figure 6Ab) with 

a peak at . From this plot, it is clear that nodes which diverge from this average 

value are rare. The average clustering coefficient as function of k is a horizontal 



 

44 
 

line, that is, the clustering coefficient is independent of nodes connectivity. 

Moreover, random networks are characterized by small-word property: the average 

path lengths are small compared to network size n and, more specifically, are of the 

same order of magnitude as log(n). This means that only a small number of steps 

are necessary to reach most nodes from every other. Networks characterized by a 

power-law degree distribution, as reported in Eq. (31), are called scale-free (Figure 

6B): 

 

 (31) 

 

where γ is the degree exponent. According to the power-law distribution, this 

network includes a large number of nodes with only a few links and a few nodes, 

known as hubs, with numerous edges. Also in this case, average clustering 

coefficient is independent of k. For scale-free networks, the average path length is 

significantly smaller (ultra-small property) than in random networks, and scales as 

, due to the presence of hubs. The last category of networks, 

hierarchical networks, is characterized by modules that are replicated to form 

clusters connected to a central nodes (Figure 6 C). Therefore, a few central hubs are 

created, resulting in a network with a power-law degree distribution. In this case, 

the clustering coefficient of a node with k links follows the scaling law: 

 

 (32) 

 

that quantifies the coexistence of a hierarchy of nodes with different degrees of 

clustering. In order to test the robustness of networks, several tests are available, 

such as the accidental node failure. Removal of nodes from random networks 

results in a disintegrated layout, whereas scale-free networks are more robust to 

these changes, unless their hubs are attached.  

In the context of drug discovery, network analysis can be used to analyze 

conformations resulted from sampling methods, such as Molecular Dynamics. In 

this case, nodes are the explored conformations and links describe the similarity of 

nodes, for example in terms of RMSD. Nodes can be weighted or not, based on the 

importance of conformations and the type of information to extract from the 

simulations. For instance, the free energy surface can be mapped into a weighted 

network where nodes and links are configurations and direct transitions among 
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them, respectively.
136 However, when network analysis is used with the only 

purpose to analyze large amount of data collected from long simulations as 

alternative to cluster analysis, all nodes are similarly considered and unweighted 

networks are used. Several layout algorithms have been developed aimed at 

positioning the nodes and edges for the network. They include grid layout, circular 

layout, hierarchical layout, data-driven simple layouts that reflect some data 

property of the nodes themselves and force-directed layout algorithms. The latter is 

based on some kind of physical simulations and consider the nodes as physical 

objects and the links as springs connecting those objects together. It will be 

discussed in details in next chapter. 

 

2.5 LIGAND DOCKING AND SCORING FUNCTIONS 

Ligand docking is a key computational method in drug discovery aimed at 

predicting conformation and orientation of small molecules that interact with 

protein structures. It consists of two main steps:  

 Posing: configurational space sampling to accommodate ligands in the active 

site and find putative binding modes. 

 Scoring: evaluation of each pose based on the fit of ligands to the receptor. 

Small molecules can contain a high number of degrees of freedom, so as to 

increase the size of the configurational space to be sampled. Therefore, definition 

of binding poses is a challenging step requiring accuracy to define the best 

configurations and, at the same time, reasonable computational time to screen large 

databases in a docking run. As regards the second step, some docking software use 

multiple scoring stages: first, they rank binding modes according to approximate 

evaluations of shape and electrostatic complementarity and then, they re-score 

resulting binding modes and estimate the binding affinity by means of more 

sophisticated treatment of electrostatic, van der Waals, solvation or entropic 

effects.
137

 

Search algorithms for ligand flexibility and pose prediction fall into two major 

categories: systematic and stochastic methods. Systematic conformational search is 

deterministic and samples all the degrees of freedom in a molecule at regular 

intervals, resulting in the problem of combinatorial explosion.
138 Because of this 

limitation, systematic methods are mainly employed for rigid docking, or replaced, 
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for example, with the incremental construction approach consisting of a core 

fragment selection, core fragment placement and incremental ligand construction. 

In details, ligands are divided into a rigid core and flexible side chains which are, in 

turn, divided based on their rotatable bonds. Then, core fragments are docked 

followed by the side chains which have been sampled with the systematic search. 

On the other side, stochastic algorithms make random changes that are accepted or 

not based on a probability function. This category includes Monte Carlo
111

 and 

genetic algorithms.
139

 According to the former, random conformations, translations 

and rotations are sampled for each ligand, configurations within the binding site are 

generated and scored. If the new state shows a lower energy, this move is accepted, 

otherwise is retained based on Metropolis criterion. This procedure is repeated until 

the defined number of configurations is obtained. Genetic algorithms are based on 

the principles of biological competition and population dynamics. Individuals 

represent binding modes and are encoded in a chromosome composed of genes, 

that is the degrees of freedom. Individuals are subject to genetic operations, such as 

crossover between two parent chromosomes to generate two new offspring. The 

next generation can also be produced through mutations by which a gene is 

selected and randomly changed. Resulting chromosomes are evaluated by a fitness 

function. Stochastic search ends when a sufficient number of generations or 

convergence of the docking results on each binding mode are achieved.  

As regards the scoring functions, they are classified in four different categories: i) 

force-field-based, ii) empirical, iii) knowledge-based and iv) consensus scoring. 

The force-field scoring function is based on physical atomic interactions, such as 

van der Waals and electrostatic interactions.
140

 The van der Waals term is 

calculated by a Lennard-Jones potential function and can be more or less 

permissive to close contacts, depending on the selected parameters. Electrostatic 

interactions are computed by the Coulombic term which includes the distance-

dependent dielectric function; this factor understates the desolvation effect and 

consequently scoring functions may be biased on Columbic electrostatic 

interactions favoring charged ligands. A generic force-field scoring function 

typically shows a low ability to properly assess solvation and also entropic effects. 

Another limitation is the difficulty in combining individual energy terms that are 

calculated from diverse methods with diverse scales. Then, weighted coefficients 
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are necessary and are obtained by fitting experimental data. However, a complete 

set of these factors for all protein-ligand complexes is not available. 

Empirical scoring functions estimate experimental data, like binding affinity based 

on a set of weighted energy terms: 

 

 (33) 

 

where ΔGi corresponds to the energy terms and Wi represents the coefficient 

obtained from regression analysis with experimental data. Compared to the force-

field based scoring functions, they seem to be faster in computing scores thanks to 

their simple terms. However these methods depend on the molecular data sets for 

the regression analysis. As regards knowledge-based scoring functions, they aim at 

reproducing experimental structures instead of binding energies and employ atomic 

interaction-pair potentials. They are accurate, robust and fast scoring functions 

permitting efficient screening of large datasets. Finally, consensus scoring 

combines advantages of different scores to limit weakness of single scoring 

functions and improve performance in ligand docking.  

The main applications of molecular docking concern: i) the determination of the 

binding mode of ligands, ii) the prediction of binding affinity which is particularly 

relevant in lead optimization and iii) the identification of novel potential hit 

compounds, as successful results of a Virtual Screening approach. Different criteria 

are used to evaluate the performance of a scoring function. First of all, the ability to 

discriminate native binding modes from decoys is measured through distance 

metrics like RMSD between the best ranked conformations and native structures. A 

successful prediction results in an RMSD value less than or equal than 2.0 Å. 

However, this simplistic criteria to compare docking results may be misleading in 

some cases. To evaluate the performance of a docking study in terms of binding 

affinity of a complex, several metrics can be used, while figures of merit assess a 

scoring function for its ability to early select potential hits from a Virtual 

Screening. These parameters are extensively discussed in Section 2.6. 

 

A large number of docking software and scoring functions have been published so 

far. Among them, GLIDE (Grid based Ligand Docking with Energy)
141-142

 and 
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ICM (Internal Coordinate Mechanics)
143

 will be described in details in next 

paragraphs. 

 

2.5.1 GLIDE: DOCKING AND SCORING FUNCTION 

GLIDE is a widely used docking software based on an exhaustive systematic 

search of the positional, orientational and conformational space of docked ligands. 

Taking into account the main goals of a docking study, this method shows a 

satisfying performance in terms of computational cost, robustness of binding mode 

prediction, accuracy of binding affinity prediction and Virtual Screening results.
141-

142
 An ensemble of hierarchical filters are used to investigate the putative locations 

of ligands within the receptor active-site: i) ligand conformations are generated; ii) 

an initial screening of ligand poses is performed; iii) resulting poses are minimized 

using a molecular mechanics scoring function; iv) the best ones are subjected to a 

Monte Carlo procedure to explore torsional minima and then v) they are rescored 

using Glide SP (Standard-Precision) and/or Glide XP (Extra-Precision) empirical 

scoring functions. A set of fields on a grid describes shape and properties of the 

receptor and allows to define an accurate scoring of ligand poses. As first step of 

this docking protocol, ligand flexibility is treated through a systematic 

conformational search along with a heuristic screen allowing the elimination of 

unsuitable high-energy conformations. Each ligand includes a core region and 

rotamer groups. Multiple conformations are generated for each core, depending on 

the number of rotatable bonds, conformationally labile five- and six-membered 

rings, and asymmetric pyramidal trigonal nitrogen centers, while rotamer states are 

numerated for each rotamer group. Then, they are docked in a preliminary docking 

run. For each core conformation, all possible positions and orientations within the 

active site are explored. ―Site points‖ are defined and selected on an equally space 

2 Å grid over the active site. At the same time, ligand centers and diameters are 

identified. Subsequently, distances between the site points and receptor are 

compared with those between ligand centers and ligand surfaces, and in case of 

good match, ligands are positioned at those site points. These placements are 

examined and, if too many clashes are observed with the protein, they are skipped. 

Next step consists of rotation of ligands around its diameter and scoring of atoms 

which favorably interact with protein. If this score is good enough, all interactions 
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are scored. A discretized version of ChemScore
144

 is used to evaluate these 

favorable interactions, in particular hydrophobic, hydrogen-bonds, metal-ligation 

interactions and steric clashes. This step is known as ―greedy scoring‖, since the 

score for each atom is dependent not only on its position against the protein but 

also on the best possible score after movements of 1 Å in the Cartesian directions. 

The best poses are first minimized on OPLS-AA ―smoothed‖ van der Waals and 

electrostatic receptor grids and then, on the full-scale OPLS-AA nonbonded energy 

surface (annealing). In this way, other possible favorable core conformations and 

rotamer-group torsion angles are sampled, in order to improve the score. A final 

score of the docked poses is defined by using GlideScore, existing in two different 

forms: Glide SP and Glide XP. In principle, these two functions are based on 

similar terms, but Glide SP is a more forgiving function, allowing a reasonable 

score for imperfect ligand poses, aimed at reduce false negatives. In contrast, Glide 

XP is a harder function with strong penalties minimizing false positives. 

Glide SP scoring function is based on ChemScore function and described as 

follows: 

 

 

 

 

(34) 

 

The first term corresponds to the hydrophobic interactions and is the same as in 

ChemScore. The hydrogen bonding term is divided into three categories: neutral-

neutral, neutral-charged and charged-charged. The first contribute has the highest 

influence on the final score than the charged-charged term. Then, the metal-ligand 

interaction term is analogue to the ChemScore one, with some variations. The 

subsequent two terms concerns the rotatable bonds and energy contributes 

occurring when polar atoms different form hydrogen-bonding atoms are located in 

hydrophobic regions. The Coulomb and van der Waals interaction energies are 

included in Glide SP scoring function. Moreover, the last term takes into account 

solvation contribution to binding energy. To define this effect, Glide performs a 

docking of ligands with explicit water molecules and employs empirical scoring 

terms to measure the exposure of functional groups to the solvent. This water-

scoring approach has been made efficient by the use of grid-based algorithms.
141 In 



 

50 
 

order to dock a large database in a reasonable computational time with Glide SP, 

small coefficients with soft penalties are included. However, the docking 

performance is still satisfying in terms of enrichment factors for several virtual 

screening protocols. 

As regards Glide XP, the sampling method starts with the identification of some 

fragments of initial ligands (usually derived from Glide SP docking) as ―anchors‖, 

typically rings. Clustering of multiple anchors orientations and selection of the 

most representative members are followed by the growing step, that is the study of 

flexibility relating to side chains directly bound to the initial fragments. Bond by 

bond, molecules are grown, minimized and the best ligand poses are score with 

Glide XP scoring function, including some penalties. If side chains are wrongly 

oriented resulting in high penalties, growth strategy is repeated and further poses 

are defined. 

The novel features of Glide XP compared to Glide SP concern the use of large 

desolvation penalties to ligand and protein polar and charge groups and the 

identification of specific motifs important to recognize particular interactions 

enhancing binding affinity. The explicitly-water technology is analogue to the SP 

procedure, but higher penalties to violations of physical principles are used. For 

example, a desolvation penalty is assigned if polar or charged functional groups are 

improperly solvated or water molecules interacts with hydrophobic contacts higher 

than a defined cutoff. Contact penalty is also included in the Glide XP scoring 

function, considering high strain energy of docking poses. Moreover, this function 

includes some terms contributing to improve the binding affinity prediction, such 

as the hydrophobic enclosure model that favors the recognition of hydrophobic 

ligand atoms surrounded on both faces by lipophilic receptor atoms. Improvements 

include also the treatment of hydrogen bonds and identification of π-cation or π-π 

stacking interactions.     

 

2.5.2 ICM: DOCKING AND SCORING FUNCTION 

ICM flexible ligand docking is based on Monte Carlo simulations that relies on 

global optimization of the entire flexible ligand in the receptor field. In particular, 

proteins are considered rigid and represented as grid potential maps.  

The ICM docking algorithm consists of 4 different steps: 
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1. a random change of one or multiple variables of the ligand in the active site is 

introduced. Two different random moves are possible: a) a positional Pseudo-

Brownian or b) an internal torsional modification. In the first case, the whole 

ligand is moved or also rotated around its center of gravity, while internal 

torsional angles are randomly changed one a time; 

2. a local minimization of differential energy terms is performed. The 

conformations resulted from step 1 are optimized through conjugate gradient 

method, without including the surface-based solvation energy; 

3. desolvation energy is computed; 

4. Metropolis selection criterion is applied to accept or reject the new 

conformation. 

This procedure is repeated for a defined number of steps. Each molecule is first 

subject to a stochastic conformational search and then, the stack of low energy 

conformations are used for docking. Receptor grid maps are pre-calculated and 

represent hydrogen bonding, van der Waals, hydrophobic and electrostatic 

potentials. 

Ligand poses are scored with the ICM scoring function, defined as follows: 

 

 
(35) 

 

It is an empirical scoring function, based on physico-chemical properties calculated 

for receptor-ligand complex. The first term considers describes the internal force 

field energy of the ligand, including internal van der Waals interactions and torsion 

energy for the ligand. The basic energy function used in this program is 

ECEPP/3.
145

 A smoothed van der Waals potential is used to reduce noise in the 

energy function. The second term of the scoring function describes free energy 

variations related to conformational energy loss upon ligand binding. The 

remaining part of the function includes weighted terms related to the interaction 

energy with the five grid potential maps of the proteins subtracted with the energy 

for the free ligand in solution. Coefficients have been defined by fitting the 

resulting scoring functions to a training set of protein-ligand complexes. In details 

these terms describe hydrogen bonds, hydrogen bond donor-acceptor desolvation 

energy, solvation electrostatic energy upon ligand binding, hydrophobic free 
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energy and a size correction term depending on the number of ligand atoms.
146 The 

Potential of Mean Force (PMF) is a knowledge based scoring function also 

available in ICM software. It is based on experimental distance distributions of 

atom types belonging to protein-ligand complexes extracted from the Protein Data 

Bank. The score is defined through the atom pair distances of the docked ligands 

within receptors. 

 

2.6 VALIDATION OF DOCKING RESULTS 

Structure-based Virtual Screening consists of docking and scoring of ligands into 

single or multiple proteins and estimation of ligand binding affinity. The main goal 

of Virtual Screening is to extract a high number of potential actives from the first 

percentage of the rank-ordered set of compounds as obtained from ligand docking. 

In other words, a successful Virtual Screening should rank actives early in a 

database including also inactives/decoys, since only a minimal set of ligands will 

be selected for experimental assays. This ability is referred as ―early recognition‖ 

and will be often recalled in this section. In general, both good separation between 

actives and decoys and early recognition of actives in a rank-ordered list are 

important; in fact, a Virtual Screening algorithm turns out to be useless when it 

selects a large number of actives but ranks them at random positions.  

 

2.6.1 FIGURES OF MERIT 

Several metrics are used to evaluate the effectiveness of ranking methods in Virtual 

Screening and new descriptors aim at treat the early recognition problem. More in 

general, they can be useful in two contexts: i) to analyze the ability to select known 

active chemicals and discard inactive compounds, in an assessment study or 

retrospective Virtual Screening, and ii) to define a threshold between molecules 

which should be selected for biological tests and others that should be discarded as 

likely inactives, in a drug discovery campaign.
147 Most of these metrics are based 

on two parameters: Sensitivity and Specificity, also referred to as True Positive rate 

and False Positive rate, respectively. When, in a Virtual Screening, k molecules are 

selected from an initial database including N molecules, True Positive (TP) and 

False Positive (FP) compounds are the actives and the decoys belonging to the hit 

list of the selected entries, respectively. The remaining part of the database includes 
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False Negatives (FN) that are the actives not selected by Virtual Screening, and the 

unselected inactives representing the True Negatives (TN).
147

 Figure 7 below 

schematizes this classification.  

 

 
 

Figure 7. Schematic representation of TP, TN, FP, FN definition, according to a Virtual 

Screening selection of k molecules from a database consisting of N compounds. 

 

Sensitivity is then defined as the ratio of the selected actives and the total number 

of actives in the database, as follows: 

 

 (36) 

 
 

while Specificity describes the ratio of the discarded inactives to all inactives in the 

database: 

 

 (37) 

 

The Receiver Operating Characteristic (ROC) curve is a plot describing Sensitivity 

for any change of k as function of 1 – Specificity reported below: 

 

 (38) 

 

In order to use the ROC curve method to assess the performance of a retrospective 

Virtual Screening, three initial steps are required: i) definition of a pharmacological 

activity cutoff to select known active and inactive compounds, ii) definition of a 

small data set of these molecules and iii) Virtual Screening of the sample. 
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Subsequently, ROC curve is built by defining a first selection threshold (k) 

corresponding to the rank of the first selected molecules in the rank-ordered list. At 

this threshold, the number of actives and inactives is calculated and, accordingly, 

Sensitivity and Specificity are computed as well. This procedure is repeated until 

the selection threshold covers all active chemicals. The ideal condition in which all 

active compounds are early ranked in respect to inactives leads to an increase along 

the y-axis, from the origin to the upper-left corner of the ROC curve. After that, all 

the inactives are retrieved moving the ROC curve as straight line towards the 

upper-right corner identified by Sensitivity = 1 and 1 – Specificity = 1 (red plot in 

Figure 8a). On the other side, when actives are randomly distributed in the rank-

ordered list, the ROC curve is represented as bisecting line with Sensitivity = 1 – 

Specificity. Finally, in the most common scenario, ROC curve has an intermediate 

trend between the ideal and the random case, as shown with the blue plot in Figure 

8a. If actives and inactives in a rank-ordered list are represented as two different 

distributions, the ideal ROC curve is associated to a clear separation between these 

two distributions, whereas in the more realistic case, an overlap occurs which sheds 

light on False Positives and False Negatives (see Figure 8b). 

 

 

 

Figure 8. a) ROC curve for the ideal scenario (red), random distribution (bisecting line) 

and real situation (blue). b) Theoretical distributions for actives (yellow) and inactives 

(red) and identification of False Positives and False Negatives based on the selection 

threshold (dashed line). 

 

To better understand the ROC curve method, we describe a simple example in 

which 2 actives among 4 molecules (N) are found at rank 1 and 2. Figure 9 shows 
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how the ROC curve is built for any change of the selection threshold k, according 

to the number of True Positives, False Positives, True Negatives and False 

Negatives found.  

 

 

Figure 9. A and I in the table represent actives and inactives, respectively. After a Virtual 

Screening, the two actives are found at rank 1 and 2. Based on the selection threshold k, 

Sensitivity and 1 – Specificity can be defined, so as to build the ROC curve. When all 

actives are found among the selected compounds (k = 2), False Negatives are equal to 

zero. Then, all inactives are found moving the ROC curve towards the upper-left zone of 

the plot.     

 

ROC curves represent a very intuitive mean to predict Virtual Screening 

performance. Closely related, the area under the ROC curve (AUC) is a parameter 

widely used that describes the probability of actives to be early ranked compared to 

inactives.
148

 

In general, the cumulative distribution function F(x) is the probability that a 

random variable has a value between 0 and x and is simply the integral of the 

probability distribution function f(x). In the Virtual Screening context, x is the 

normalized rank in an ordered list resulting by division of the rank of a compound 

by the total number of compounds. The cumulative distribution function is referred 

as accumulation curve and indicates the number of actives found at a rank position.  
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The discrete formula of AUC is defined as follows: 

 

 (39) 

 

where Fa(k) and Fi(k) are respectively the accumulation curves for actives and 

inactives and correspond to Sensitivity and 1 – Specificity. In a simplistic way, 

AUC can be seen as the sum of all rectangles formed by Sensitivity and 1 – 

Specificity coordinates for the different thresholds.
149

 

The continuous definition of AUC is given through the following formula: 

 

 (40) 

 

with fi(x) that is the probability distribution function of the inactives. AUC value of 

1 and 0.5 correspond respectively to the ideal and random distribution of actives 

and inactives, while a scenario in which Virtual Screening performs better than 

random picking, entails AUC values between 0.5 and 1. Although AUC is widely 

used in several fields and very useful for preliminary evaluations of Virtual 

Screening performance, recent works have shown some limitations. In particular, 

the most relevant drawback is the low Sensitivity to the early recognition problem. 

Figure10 highlights the limited ability of AUC metric to define the best Virtual 

Screening protocol, in terms of early recognition. 

 

 
 

Figure 10. ROC curves of two different Virtual Screening results, with the same and 

different AUC value (a and b, respectively).  
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In Figure 10a, even if AUC values are identical, Virtual Screening 1earlier retrieves 

actives in the rank-ordered compared to Virtual Screening 2. In Figure 10b, the 

correlation of AUC metrics with the ―early recognition‖ is even more misleading, 

since the docking study with the highest AUC value extracts a lower number of 

actives at the beginning of the ordered list. An alternative version of the AUC 

metrics is the Normalized Square Root Area Under Curve, or NSQ_AUC, which 

emphasize the ―early‖ enrichment in screening results.
150

 In details, for each 

compound rank k, True Positives among k top-scoring compounds in the rank-

ordered list are plotted against the square root of False Positive rate, x = Sqrt(FP). 

Also in this case, a perfect separation of actives and inactives returns a value of 1, 

and 0 for a random selection.  

The Accumulation curve (or enrichment curve) is also used to study ranking 

performance and is defined by the rank of compounds on abscissa vs. the 

cumulative count of actives in the rank-ordered list along the y-axis. The Area 

Under the Accumulation Curve is a related metric, computed through the discrete 

formula: 

 

 (41) 

 

or the continuous formula: 

 

 (42) 

 

where Fa(x) is the normalized cumulative distribution function. It describes the 

probability to early retrieve actives in respect to a randomly selected compounds 

and spans between the minimum value of n/(2N) and the maximum value of 1- 

n/(2N). Similarly to the AUC trend, it ranges between 1 (best performance) and 0 

(worst performance) and 0.5 for a uniform distribution of actives in the ordered list. 

The use of this metric to evaluate Virtual Screening performance is limited because 

of the strong dependence of the number of actives in the dataset. 

AUC and AUAC metrics are related as reported below: 
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 (43) 

 

where Ra and Ri are the ratio of actives and inactives in the dataset. If n « N, then Ri 

tends to 1 and Ra towards 0 and consequently AUC ≈ AUAC. In contrast to AUAC, 

AUC metrics has been extensively considered independent of the proportion of 

actives vs. inactives. However, the formula described above is a strong evidence 

supporting the contrary. 

Another commonly used descriptor is the Enrichment Factor EF, that measures 

how many more actives are found within a defined ‗‗early recognition‘‘ fraction χ 

of the ordered list relative to a random distribution.
96 The Equations (44) and (45) 

describe the discrete and the continuous formulas, respectively. 

 

 (44) 

 

and 

 (45) 

 

δ is a function with a value of 1 if an active i is found before the threshold position 

defined by χN, otherwise it takes a value of 0. χ spans from 0 to 1, while EF ranges 

between 0 and the maximum value of 1/χ if χ ≥ nN and N/n if χ < n/N, and an 

average value of in case of a uniform distribution of the actives, where 

the lower brackets stand for ―the largest integer smaller than‖. The main limitations 

of this metric concern the dependency on the ratio of actives of the database and 

the low discrimination ability after the χ threshold. Moreover, all actives have the 

same weight within the cutoff which means that with this descriptor, it is not 

possible to discriminate a Virtual Screening result that early recognizes actives 

from another protocol where all the actives are ranked at the end of the list. 

Sheridan et al. have developed a further descriptor, the Robust Initial Enhancement 

(RIE)
151

 that addresses the ―early recognition‖ problem, as opposite to the other 

metrics described before and is less sensitive to low number of actives within the 

screened database. It relies on decreasing exponential weight as a function of rank. 

Below, the continuous and discrete formulas are reported: 
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 (46) 

 

 (47) 

 

where the parameter α is the corresponding 1/χ as reported for the EF metric. 

Similarly to this latter, the RIE metric describes how many times the average of the 

distribution of the ranks for actives is better than random distribution. The RIE 

value is higher than 1 when a large number of actives is better ranked than a 

random distribution, while a value of 1 corresponds to a random distribution. This 

metric addresses the ―early recognition‖ problem and then, is more advantageous 

than previous metrics. However, a significant disadvantage is the dependency on n, 

N and α.  

The Boltzmann-enhanced discrimination of ROC (BEDROC) is closely related to 

the RIE. It possesses the same ability to take into account the ―early recognition‖ 

and, as added value, is a standardization of the RIE ranging between 0 and 1. The 

BEDROC metric is a generalized AUC parameter including a decreasing 

exponential weight. 

Simplistically, it can be described as follows: 

 

 (48) 

 

if αRa « 1 and α ≠ 0. In this case, the BEDROC is independent from the ratio of 

actives and corresponds to the probability to retrieve an active before a random 

compound from a hypothetical exponential probability distribution function with 

the early recognition parameter α. The BEDROC parameter is very useful to 

compare the performance of different Virtual Screening and combines the 

advantages of RIE and AUC. RIE and BEDROC needs the setting of the α 

parameter. Truchon et al. have shown that a high value allows to count more the 

early part of the accumulation curve. In particular they recommend an α value of 20 

corresponding to say that the first 8% of the list contributes to 80% of the 

BEDROC value. 
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3. LDHA - CASE STUDY 1 
 

3.1 WARBURG EFFECT 

In order to maintain homeostasis, cells need energy, mostly in the form of 

adenosine triphosphate (ATP). The main mechanism for energy production is the 

oxidative phosphorylation (OXPHOS), an oxygen-dependent process which takes 

place in mitochondria. According to this pathway, oxidation of NADH and FADH2 

is coupled with the phosphorylation of ADP resulting in ATP. As second option, 

cells can produce energy through glycolysis, that is an anaerobic mechanism 

occurring in the cytosol. In this case, glucose is converted through several steps in 

piruvate; NAD
+
 is consumed and ATP is produced. Contrary to the oxidative 

phosphorilation, glycolysis is less productive in terms of energy, resulting in 2 ATP 

molecules versus 38 in the aerobic process, when a molecule of glucose is 

processed. In summary, glucose represents an important source that cells use to 

provide energy and, in aerobic conditions, the preferred metabolism for normoxic 

cells is the oxidative phosphorylation which supplies the 70% of the total energy. 

In spite of the low efficiency in providing ATP, it has been found that glycolysis is 

the selected mechanism during the proliferation process of many fast-growing 

unicellular organisms, regardless of oxygen availability.
152-153

 Similarly, enhanced 

glycolysis during fast growth has been observed in multicellular organisms.  

In 1924, Otto Warburg discovered that cancer cells produce energy predominantly 

by glycolysis despite oxygen availability, a phenomenon called Warburg effect or 

aerobic glycolysis. For several decades, this phenomenon has been discredited 

since Warburg hypothesized that the cause of the aerobic glycolysis was the 

mitochondrial injury.
154 Unfortunately, experimental evidences showed that cancer 

cells infrequently present respiratory injury and, for years, the cancer research was 

mainly focused on the role of genetic mutations, by overlooking the importance of 

respiratory effect on tumour process. With the introduction of the positron emission 

tomography (PET), the Warburg effect was verified and emerged as acquired 

ability which cancer cells use for energy production. In details, glycolysis in cancer 

cells contributes to ATP production at a rate of 1-64%, depending on cell and tissue 

types.
155
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Tumours are heterogeneous diseases and the metabolic phenotype can vary even in 

the same process from one cell to another.
156-157

 Recent studies have proven that 

mitochondrial oxidative phosphorylation is intact in some cancers or, alternatively, 

can be compromised or insufficient to support the energy requests of cancer cells, 

resulting in the Warburg effect. Therefore, high levels of glycolysis does not 

necessarily lead to this process as unique energetic pathway in cancer mechanisms.  

In tumour context, aerobic glycolysis is more suitable than OXPHOS for rapidly 

growing cancer cells, since it provides both ATP and glycolytic intermediates 

which are used to generate macromolecules essential for proliferation. In particular, 

glycolysis is a source of carbons and nitrogens for the biosynthesis of nucleotides, 

phospholipids, fatty acids, cholesterol and proteins, so as to provide biomass 

production required for cancer growth and proliferation. Precursors for lipids can 

also be provided by glutamine, representing an alternate pathway for energy 

production.
158

 Another advantage of aerobic glycolysis consists of the faster rate of 

ATP production, compared to OXPHOS, that meets the high energy demand of 

rapidly growing and dividing cells, when combined with an increase of glucose 

uptake.
159

 The continuous request of energy for cancer cell proliferation indirectly 

regulates the consumption of ATP, of which high concentrations can inhibit 

glycolytic enzymes, such as phosphofructokinase 1 and pyruvate kinase 1.
160 

Moreover, when aerobic glycolysis is activated, resulting lactate is transported 

outside the cells, leading to environmental acidosis. This microenvironment 

favours cancer cell growth over normal cells, promoting the invasion of 

neighbouring tissues and metastatic process.
161

 

In many cancer lines, the Warburg effect is the result of different factors, including 

i) mutations and deletions of mitochondrial DNA, ii) mutations or abnormal gene 

expression of nuclear DNA, iii) oncogenic transformations and iv) influence of 

tumour microenvironment.
162 First of all, mitochondria have an important role in 

producing ATP, regulating apoptosis, and generation of reactive oxygen species 

(ROS). Thereby, mutations of mitochondrial DNA lead to increased ROS and 

mitochondria mass.
163-164 Experimental evidences show that accumulation of 

glucose metabolites derived from glycolysis activates the hypoxia-inducible factor 

1 (HIF-1) which, in turn, increases the transcription of genes encoding for proteins 

involved in cancer development, glucose metabolism, apoptosis resistance, 

invasion, metastasis and angiogenesis.
165 Mitochondria dysfunction has been also 
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correlated with aerobic glycolysis through HIF-1 protein expression. It is important 

to highlight that some cancer cells retain mitochondrial oxidative phosphorylation, 

and use this energetic pathway as principal route to produce ATP. Therefore, 

mitochondrial mutations lead to partial defects in oxidative phosphorylation. Other 

mechanisms favouring mitochondrial dysfunction are the mutations of nuclear 

genes encoding for mitochondrial protein components, such as succinate 

dehydrogenase (SDH) and fumarate hydratase (FH), important for the tricarboxylic 

acid cycle (TCA cycle). Moreover, overexpression of some glycolytic enzymes 

coded by nuclear DNA, like hexokinase II, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), lactate dehydrogenase (LDH), can contribute to the 

Warburg effect. Decreased mitochondrial respiration is also linked to a loss of the 

tumour suppressor p53 which regulates the balance between oxidative 

phosphorylation and glycolysis, resulting in the promotion of the latter to generate 

ATP. Oncogenic transformations involving, for example, Ras, Src, PI3K/Akt, and 

Bcr-Abl, represent another mechanism promoting the Warburg effect. In particular, 

glucose uptake favouring the initial steps of glycolysis is stimulated by Ras or Src 

transfection and activation of PI3K/Akt/mTOR pathway, and also Bcr-Abl 

inhibitor Gleevec has supported the evidence that this oncogene is involved in the 

Warburg effect.
162 A further condition connected with the switch to glycolysis for 

ATP production is the hypoxia, which is frequently observed when the tumour 

mass enlarges exceeding the capacity of blood supply. For example, the high 

contribution of oxidative phosphorylation to energy production in cervical and 

breast carcinomas are severely reduced in hypoxic conditions, suggesting that 

glycolytic phenotype in cancer cells is strongly connected to hypoxia.
166 HIF-1α is 

involved in this process by mediating the cellular response to hypoxia. For 

example, it induces expression of glucose transporters and inhibits the conversion 

of pyruvate to acetyl-CoA by activating pyruvate dehydrogenase kinase 1, resulting 

in the reduction of oxidative phosphorylation. Finally, the acidification of 

microenvironment due to high lactate production not only favour tumour 

progression and metastasis, but also induces multiple glycolytic enzymes that 

promote the Warburg effect.
167 
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3.2 LDHA AS ANTICANCER TARGET 

In the light of the essential role of aerobic glycolysis in energy production, cell 

proliferation, tumour invasion and metastasis, the dependence of cancer cells on 

this energetic metabolism for ATP generation has been exploited for anticancer 

therapy. In consideration of the glycolytic mechanism, antitumor strategies are 

based on inhibition of glycolytic enzymes and reduction of glucose uptake by 

inhibition of the synthesis of glucose transporters, so as to decrease glucose entry 

into cells. Figure 11 shows the glycolytic enzymes subject to inhibition in 

anticancer therapies. 

 

 
 

Figure 11. Scheme of glycolytic pathway. Asterisks remark the possible glycolytic enzymes 

which can be inhibited for anticancer therapies. GLUT1: glucose transporter 1, HK: 
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Hexokinase, PGI: phosphoglucoseisomerise, PFK: phosphofructokinase, GAPDH: 

glyceraldehyde-3-phosphate dehydrogenase, G6PD: glucose-6-phosphate dehydrogenase, 

PK: pyruvate kinase, PDH: pyruvate dehydrogenase, LDHA: lactate dehydrogenase A, 

TCA: tricarboxylic acid cycle. 

 

Among the glycolytic checkpoints, LDHA represents one of the most attractive 

anticancer target. In fact, it catalyzes reduction of pyruvate to lactate, with 

simultaneous oxidation of NADH to NAD
+
, which is essential to continue 

glycolysis, in the step catalyzed by GAPDH (see Figure 11). NAD
+
 can also be 

regenerated through the electron transport chain, but the transport of electrons into 

mitochondrial matrix via cytoplasmic shuttle systems, such as the malate-aspartate 

shuttle, requires diverse reactions and is a slower process compared to the pyruvate 

reduction. Therefore, LDHA represents a fundamental means to regenerate the 

oxidized cofactor and proceed glycolysis. Moreover, since NAD
+
 is required for 

nucleotide and amino acid biosynthesis, lactate production by LDHA may promote 

incorporation of glucose metabolites into biomass, so as to sustain rapid cell 

growth.
168 As consequence, LDHA inhibition leads to reduced glycolytic 

metabolism of cancer cells and suppression of cell proliferation. 

It is important to highlight that LDHA inhibition can be a selective strategy against 

cancer and is less toxic than blocking the other glycolytic enzymes. In fact, when 

LDHA is inhibited, pyruvate can be transported into mitochondria and used for 

energy production through the oxidative phosphorylation. On the other side, the 

block of other glycolytic enzymes would decrease the total pyruvate generation, 

resulting in a more severe impact concerning ATP production in both normal and 

aberrant cells. It has been also observed that deficiency of LDHA is asymptomatic, 

confirming that its inhibition may be a nontoxic approach to contrast tumor 

growth.
169 However, since some cancer cells maintain a basal level of oxidative 

phosphorylation, LDHA inhibition alone could be inadequate to completely abolish 

ATP production in cancer cells. 

To date, only a few LDHA inhibitors have been discovered, most of them with 

poor inhibitory activity in the low μM in terms of IC50 and are reported in Table 1. 
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Table 1. Chemical structures of representative LDHA inhibitors. 

 

They include oxamate that is a mimic of pyruvate displaying weak toxicity and 

good selectivity for LDH. However, it shows poor cellular penetration causing a 

good inhibition activity in vitro only at high concentrations.
170 Gossypol is 

considered a non-selective competitive inhibitor of LDH since it shows inhibition 

activity on different isoforms. Use of this molecule as therapeutic agent has been 

restricted due to the presence of aldehyde functional groups which leads cardiac 

arrhythmias, hypokalemia, muscle weakness and other severe side effects. 

Subsequently, gossypol derivatives in which aldehyde groups were converted with 

other functional groups were developed, retaining biological activity. For example, 

FX-11 is a gossypol derivative which strongly inhibits LDHA by competing with 
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the cofactor NADH.
171

 A series of heterocyclic, azole-based compounds (e.g. 

compound 3 in Table 1) have been described as inhibitors of Plasmodium 

falciparum LDH which is involved in malaria. They were also tested on human 

LDH showing micromolar activity.
172 Moreover, N-hydroxyindole-based LDHA 

inhibitors (compound 4)
173

 and other small molecules, such as Galloflavin,
174

 have 

been discovered. Recent more potent inhibitors have been reported in literature, 

with LDHA inhibition activity in the nanomolar scale, such as quinoline 3-

sulfonamides and malonate derivatives (compounds 6-8 in Table 1).
175-178

 

Compared to the previous molecules, they are bulky ligands able to bind 

simultaneously substrate and cofactor pockets.  

Interestingly, it has been discovered that short hairpin RNAs (shRNAs) cause 

knockdown of LDHA in cancer cells, resulting in stimulation of mitochondrial 

respiration, decrease of cell proliferation under hypoxia and suppression of 

tumorigenicity.
169

 

 

3.3 LDHA: STRUCTURAL FEATURES 

Lactate dehydrogenases are 2-hydroxy acid oxidoreductases which exist as 

tetrameric isoenzymes, coded by different genes but with a high sequence 

similarity. The combination of two different types of monomers, that is the M- and 

A- subunit, coded respectively by ldh-a and ldh-b, give rise to five possible 

isoforms: LDH1 (H4 or LDHB), LDH2 (M1H3), LDH3 (M2H2), LDH4 (M3H1) and 

LDH5 (M4 or LDHA). Moreover, a sixth isoform, LDHC (C4 or LDHX), belongs 

to this enzyme family and is coded by ldh-c gene. Subunits M and H are differently 

located in the tissues. In particular, isoforms mainly formed by M-monomers 

(LDHA and LDH4) are found in anaerobic tissues, like skeletal muscles, liver and 

neoplastic tissues, whereas H-subtypes (LDHB and LDH2) are situated in tissues 

with predominant aerobic metabolism, such as cardiac muscle, kidney, brain and 

erythrocytes. LDH3 is placed in lymphatic tissues and platelets, and finally LDHC 

is found in testes and sperm.
173

 

From a structural standpoint, LDH tetramers exhibit a D2 symmetry, with three 

orthogonal rotational axes (Figure 12a). Each monomer consists of 330 residues 

forming a bilobal structure of two main domains: i) the cofactor binding site and ii) 

the substrate binding domain (Figure 12b). In details, the former includes residues 
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20-162 and 248-266 adopting a ―Rossmann‖ fold, that is a structural motif 

consisting of six parallel β-strands linked to two pairs of α-helices.
179

 On the other 

side, the substrate binding domain consists of residues 163-247 and 267-331 which 

form four β-strands and three α-helices. Among these domains, α-1G2G helix is 

located in proximity of the active site and includes some amino acids directly 

involved in substrate binding (Figure 12c). The binding site domain defines the 

active site which is arranged in a 10 Å depth cavity, reducing solvent accessibility 

during catalysis. Another characteristic domain is the ―active site‖ loop formed by 

residues 98-110 which is highly conserved among the LDH isoforms (Figure 12c). 

This flexible portion can exist in different conformations that can promote the 

substrate binding and the catalytic reaction. In particular, the mobile loop includes 

the catalytic residue Arg105 which has a key role for the initial step of the 

catalysis. 

 

 

Figure 12. a) Representation of LDH tetramer. Monomer A-D are shown in white, pink, 

violet and green. b) The cofactor binding site and the substrate binding domains are shown 

as light blue and white cartoon representations, respectively. c) The active site loop and 

the α-1G2G helix are highlighted in the LDH monomer. For the sake of clarity, some 

helices have been removed. 
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An important structural feature of LDH is the interface between the monomers, in 

proximity of which the active site is located. Computational studies have been 

carried out, aimed at investigating the role of the second monomer on the stability 

of the first subunit.
180 Molecular dynamics simulations have confirmed that the 

tetrameric isoform environment plays a significant role in maintaining the active-

site geometry, whereas simulations of the monomeric form resulted in low 

structural stability of the active site. As a consequence, at least part of the 

neighboring monomer is necessary to prevent the unfolding of the α-1G2G helix 

immediately adjacent to the active site. In particular, the α-C helix of the second 

monomer is in close contact with α-1G2G helix, so as to preserve the structural 

stability of the first subunit. These computational results were consistent with 

biochemical studies led by Wang and co-workers, proving that the dimer in the 

tetrameric enzyme is the minimal functional unit.
181

 Figure 13 highlights some 

domains located at the interface of two monomers. For the sake of clarity, 

nomenclature of the α-helices characterizing the secondary structure is reported.
182

 

 

 

Figure 13. Secondary structure of the minimal functional unit. Some α-helices of the 

second monomer (pink) in close contact with the first subunit (white) are highlighted. 

 

The most expressed LDH isoforms in Homo sapiens are LDHA and LDHB, which 

are mainly located in anaerobic and aerobic tissues, respectively. They have a high 

sequence identity (~75%) with 81 different amino acids out of the 330 forming the 



 

69 
 

monomer, mainly located in peripheral regions distant from the cofactor and 

substrate binding sites. In spite of their high sequence similarity, LDHA and LDHB 

show a different degree of affinity for the endogenous substrates. In particular, 

LDHB generally favours the reaction of lactate to pyruvate, whereas the muscle 

isoform LDHA promotes lactate formation. By calculating electrostatic potential of 

both isoforms, Read et al. have shown that surface electrostatic effects underlie the 

different activity response and different kinetic properties between LDHA and 

LDHB.
183

 In fact, the different charged surfaces can influence the pKa value of the 

His192 which, in the protonated form, has an important role in both the binding of 

substrate and the chemical reaction. 

As regards the catalytic mechanism, it consists of an ordered sequence of events, 

initially requiring the cofactor binding. Subsequently, the substrate binds the binary 

complex and, once the endogenous ligand is close enough to the active site, the 

mobile loop closes over the ligand to bring the bound substrate and NADH together 

in a proper geometry for reaction. This loop motion prevents solvent to access to 

the active site and promotes the hydride transfer. It has been demonstrated that the 

mobile loop enclosure represents the rate limiting step of the catalytic mechanism 

occurring in the millisecond timescale.
184

 In details, it enhances kcat in LDH by over 

a factor 1200.
185 Moreover, loop enclosure is associated with slight movements of 

α-D helix at its base, and a concerted movement of the α-H helix.  

The loop enclosure favours the proper rearrangement of Arg105 which is involved 

in the polarization of the carbonyl group of the substrate, so as to trigger the 

reaction. Substitution of this residue with a glutamine resulted in a slower hydride 

transfer than in the wild type enzyme and proved that Arg105 reduces the 

activation energy barrier for the chemical mechanism by more than 4.2 kcal.
185

 

Experimental studies based on the laser-induced temperature-jump relaxation 

spectroscopic techniques have allowed to examine the kinetics of cofactor and 

substrate binding to LDH.
186

 The formation of the secondary complex LDH-NADH 

is a multistep process and multiple interconverting conformations have been 

observed. Some of these structures are defined competent and others noncompetent 

to form the catalytically productive complex.
187-188

 Therefore, the formation of the 

tertiary complex can be attributed to a conformational selection mechanism. 

Callender and co-workers have demonstrated that the competent complex is a 

minor population of conformations characterized by an open mobile loop, whereas 
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noncompetent structures show a closed loop geometry. In particular, different 

networks of hydrogen bonds and solvent exposure of the binding pocket describe 

the two species. On one side, the binding competent species can bind ligands at 

diffusion-limited speeds, indicating that their binding site are highly solvated, 

whereas in the closed loop structures, the binding domain lies deep within the 

protein. According to the experimental results, the substrate binds the competent 

system forming the encounter complex, which is subject, in turn, to structural 

rearrangements leading to the catalytically competent ternary complex. The 

mechanism at the basis of this process is in agreement with the induced fit theory. 

Therefore, the catalytic mechanism can be connected to both the biomolecular 

recognition models. The collapse of the encounter complex to form the catalytic 

competent Michaelis complex has been also investigated. Callender et al. have 

developed some hypotheses in presence of the substrate mimic oxamate and found 

two possible pathways: i), a major populated structure in which all key H-bonds 

involving His192, Arg105 and Arg168 within the active site are formed and ii), a 

minor structure with unfavorable interactions to promote the chemical reaction.
189

 

Figure 14 schematizes this kinetic model.   

 

 

Figure 14. Kinetic scheme describing the formation of the enzymatically productive 

ligand-protein LDH complex. NC, C and ENC correspond to noncompetent, competent 

and encounter complex, respectively.  

 

Once the Michaelis complex is formed, lactate dehydrogenase catalyzes the 

reversible reduction of pyruvate to lactate with simultaneous oxidation of NADH to 

NAD
+
 (Figure 15), accelerating the solution chemical reaction by some fourteen 

orders of magnitude:
190
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Figure 15. Schematic representation of the chemical reaction catalyzed by LDH. 

 

In details, the enzyme catalyzes the transfer of a hydride ion from the pro-R face of 

the nicotinamide group of NADH to the C2 carbon of pyruvate. In the major form 

of the Michaelis complex, the pro-R and pro-S hydrogens of the cofactor have been 

found in the pseudoaxial and pseudoequatorial geometry, respectively.
189 The 

proton transfer to the carbonyl moiety of the pyruvate to favour the formation of 

the alcohol lactate is promoted by the catalytic diad His192-Asp165. This acid 

residue stabilizes His192 through an H-bond with the imidazole group. The 

positively charged His192 has the function of proton donor through a charge 

reinforced hydrogen bond with the oxygen atom bound to the C2 carbon of 

pyruvate. The opposite reaction also occurs with this residue acting as proton 

acceptor. Arg105 has the key role to polarize the ketone functionality of the 

pyruvate, so as to promote the hydride transfer from NADH, and interacts also with 

the carboxylic group of the substrate. Finally, two important residues anchor the 

substrate within the binding pocket: Arg168 which binds the carboxylate group of 

the substrate through a two-point electrostatic interaction involving its guanidine 

group, and Thr247 which forms an hydrogen bond. Figure 16 below schematizes 

this network of binding interactions. 

 

 

Figure 16. Schematic representation of the binding mode of oxamate within the binding 

site. 
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3.4 AIM OF THE PROJECT 

In the light of the relevant therapeutic role of LDHA in cancer process and the 

importance of protein flexibility in drug discovery, this project aimed at developing 

a computational protocol to include the active site loop flexibility in a Virtual 

Screening campaign. 

The crystal structure of human LDHA (PDB ID:1i10) consists of two tetramers (A-

D and E-F) cocrystalized with NADH and the LDHA inhibitor oxamate.
183

 Chain 

D presents a different mobile loop conformation compared with the A, B, and C 

monomers crystalyzed with a closed active site loop state. In theory, different 

conformations offer a great opportunity to enrich Virtual Screening procedures for 

novel inhibitors taking into accout protein flexiblity. However, comparison of 

stability parameters for the chrystallographic A and D chains shows a substantial 

level of uncertainty about the coordinates of the openmobile loop atoms. In details, 

the high β-factor valuesindicate a large displacement from their main 

positionrelated to the closed loop conformation and consequently denotes a 

highdegree of flexibility. Some portions including residues 100-104 and Arg105 

side chain even show zero occupancy. Based on these prerequisites, this study 

arises from the need to consider large conformational changes LDHA undergoes 

during ligand recognition that are not sufficiently and accuratly described from the 

human crystal structure, through enhanced sampling methods.  

 

3.5 RESULTS AND DISCUSSION 

Preliminary Molecular Dynamics simulations were performed to identify a minimal 

model of LDHA structure. The purpose of this step was the definition of a system 

which preserved the main features of the LDHA functional unit, that is the dimeric 

form, but with a smaller size, so as to optimize the computational demand and the 

performance of hREMD simulations. In particular, conventional MD simulations of 

monomeric and dimeric systems were carried out. Details of the MD setup are 

reported in the next section. Analysis of the resulting trajectories showed that the 

monomeric form displayed low structural stability and lost its initial folding 

structure, especially regarding the α-1G2G helix in close proximity of the flexible 

mobile loop. Also α-C helix was subject to wide fluctuations; however, the latter 

was disregarded in this analysis, due to its low influence on the binding site 
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stability. The calculation of the Root Mean Square Deviation (RMSD) and Root 

Mean Square Fluctuation (RMSF) highlighted the structural stability and the most 

flexible domains, as reported in Figure 17a and 17b, respectively.    

 

 

Figure 17. a) RMSD plot and b) RMSF plot of the chain A. Red squares show the protein 

domains subject to the highest fluctuations during the 100 ns MD simulation.  

 

On the other side, the MD studies of the dimeric form displayed a higher stability 

of the unfolded portions reported in the previous simulations. This result confirmed 

that the presence of the chain B was necessary to stabilize some domains of 

monomer A directly involved in the substrate binding mode. Starting from this 

evidence, the minimal system (Figure 18a) was defined by including a small 

portion of chain B (α-C helix) aimed to stabilize the flexible α-1G2G helix of chain 

A and to preserve the folding of the binding site. Most importantly, the presence of 

the α-C helix was also necessary to shield the active site from an unrealistic 

ingress/egress of water molecules from the interfacial side of the dimer. A 100 ns 

MD simulation and the resulting analysis (RMSF calculation) confirmed this 

hypothesis, as shown in Figure 18b.   
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Figure 18. a) Minimal LDHA system. α-1G2G helix of chain A and α-C helix of chain B 

are labeled and showed in yellow and pink cartoon representations, respectively. b) RMSF 

plot of the minimal LDHA system. The red box highlights the structural stability of the α-

1G2G helix of chain A, compared to the monomer showed in Figure 17. 

 

In retrospect, the comparison of RMSD calculated for the α-1G2G helix over time 

for chain A, chain AB and the minimal system, demonstrated that the monomer 

presented a low structural stability, whereas the minimal system exhibited a similar 

stability compared with the chain AB (Figure 19). 

 

 

Figure 19. RMSD calculated for the α-1G2G helix alpha-carbon atoms over time for chain 

A (red), chain AB (green), and minimal model system (yellow). 

 

This minimal system was used for the hREMD simulations which led to collect a 

large amount of configurations, different in terms of the active site loop 

geometries. The almost 700 ns simulation resulted in 13000 structures. These 
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configurations were analyzed firstly through cluster analysis, which is extensively 

used to classify configurations sampled by MD methods. In this study, we tested 

different atom selections as clustering criteria. In details, we computed the RMSD 

based on all atom backbone and, subsequently, on the mobile loop backbone alone. 

However, a careful visual inspection showed that the resulting clusters were highly 

heterogeneous. In other words, conformations with a high diversity in terms of 

mobile loop rearrangements were assigned to the same clusters. In this scenario, 

the simplistic selection of the most representative structures from each cluster 

could negatively affect the subsequent screening campaign. In fact, a careful 

definition of the initial protein structures is necessary for a successful ensemble 

docking and the conformations extracted from this cluster analysis were unrelated 

with the most populated structures sampled with the hREMD simulations. In 

addition, since the fluctuations of some side chains belonging to the mobile loop 

were supposed to affect its geometry, the information of these amino acids was 

overlooked in the similarity measures based on the overall protein backbone. 

Although a further analysis was performed by including specific side chains as 

clustering criteria, results were unsatisfying. 

Then, network analysis was selected to study the structural diversity of the 

conformations.In order to optimize the huge memory requirements to allocate all 

the configurations explored by hREMD simulations, 6500 out of the 13000 

sampled structures were selected to build the network layout. In this study, nodes 

consisted of the collected configurations described as the 12 amino acid loop 

backbone and Glu101:CD, Glu103:CD, andArg105:CZ, while links described 

similarity between conformations below a cutoff RMSD value of 1.00 Å. 

Therefore, nodes having a RMSD below this threshold were connected by links. 

The resulting network layout is reported in Figure 20. 
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Figure 20. Network representation of the sampled configurations. Nodes are represented 

as yellow dots, while links are shown as blue lines. Closed, open loop states and 

conformation 13 are highlighted. Light yellow dots correspond to the most representative 

conformations from the first 30 best-ranked clusters. 

 

To compare these conformations, reference structures were necessary. For this 

reason, closed and open loop conformations from crystal structures were included 

in the network analysis. The resulting network included a dense region with 

sparsely branched islands. Most of the sampled configurations corresponded to 

intermediate loop structures, between open and closed loop state, although they 

were structurally more related to the closed than to the opposite state. In fact, the 

open loop conformation was found in an isolated region and was linked to a few 

more nodes, by reflecting its low structural stability. The latter region also included 

some configurations with an even wider loop opening compared to the 

crystallographic open loop conformation. Moreover, nodes without connections 

due to unfavorable loop rearrangements were located in further sparse regions. 

Specific conformations were promoted through interactions involving mobile loop 

amino acids, such as electrostatic interactions of Arg105 with Asp194 and/or 

Glu101, interactions of Glu103 with Arg111 and Asn107 or mobile loop backbone 

atoms. 
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Subsequently, cluster analysis was performed directly on the network analysis 

outcome, in order to identify a manageable number of conformations for a 

subsequent Virtual Screening campaign. Similarity and connectivity of the nodes 

were used as clustering criteria. Details of the algorithm are discussed in the next 

section. Visual inspection of these clusters demonstrated that the combination of 

network and cluster analyses was accurate in discriminating loop conformations 

and side chain orientations. Figures 21a and 21b show the structural distribution of 

conformations within the most populated clusters from the initial cluster analysis 

and the network analysis, respectively, highlighting the structural homogeneity for 

the latter. 

 

 

Figure 21. Distribution of side chains and mobile loop in the largest cluster from cluster 

analysis (a) and network analysis (b). 

 

This analysis resulted in 238 clusters which were scored and ranked. Among them, 

117 clusters consisted of less than 20 nodes and were not considered as 

representatives of the structural ensemble. Light yellow circles in Figure 20 

correspond to the most representative conformations (referred to as seeds) from the 

first 30 top-scored clusters. They were mainly located in the central core of the 

network layout and then were structurally linked to the closed state. The 30 protein 

structures were employed for the subsequent retrospective Virtual Screening. 

Besides these seeds, the closed conformation coming from the crystal structure was 

included in the screening because of its unquestionable experimental significance. 

Moreover, a representative conformation of the open state was also considered. In 

particular, the most similar representative to the open loop conformation was 
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selected among the entire ensemble of configurations sampled with the hREMD 

simulations.  

Two ligand datasets were used to validate the conformational ensemble, including: 

i) known active and inactive compounds coming from the BindingDB
191

 

(active/inactive ratio: 21/17), and ii) known active compounds and decoys 

generated by the DUD-E database (active/decoy ratio: 21/1950).
192

 A cutoff of 30 

μM was selected to classify active/inactive chemicals and both IC50 and Ki activity 

data were considered. The choice of this threshold and the unbalanced number of 

actives/inactives were imposed by the low availability of high-affinity actives and, 

in general, experimental LDHA inhibition data collected in BindingDB. 

Furthermore, known BindingDB LDHA ligands were properly filtered out in order 

to limit chemical redundancy within the datasets. Docking calculations were 

carried out into the LDHA binding pocket using all the 32 conformations. Figures 

of merit were computed for all docking results, including AUC, AUAC, RIE, 

BEDROC metrics.
96 Analysis of DUD-E screening results showed that all the 

LDHA conformations had comparable recognition capability. In fact, AUC values 

spanned between 0.75 and 0.99. On the other side, BindingDB dockings resulted in 

good recognition performance with AUC value above 0.8 only for the 

conformation 13 (0.81), while crystal structures of open and closed conformations 

showed lower AUC values (0.56 and 0.77, respectively). Figure 22a and 22b 

displayed the AUC values computed for the 32 ensemble structures and the related 

mobile loop conformations.  

 

 

Figure 22. a) Area Under the ROC curve calculated for the BindingDB data set using 30 

seeds plus the C and O conformations. b) Active site loop conformations adopted by the 30 
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collected seeds (yellow tubes)together with conformation C and O (blue tubes on the left 

and on the right, respectively). 

 

This result could be related to the different binding site volume displayed by these 

three conformations. Conformation 13, indeed, showed an intermediate loop 

geometry located between the open and the closed state, likely resulting in a more 

permissive structure, able to accommodate ligands of different size (see Figure 23). 

On the contrary, too small or widely open pockets could limit a good compound 

screening. The calculation of protein site volumes were performed for the 32 

conformations by means of SiteMap, so as to correlate the docking results with 

binding site accessibility.
193

 Different loop geometries and side chain orientations 

led to distinct binding site volumes, mainly spanning between the closed and open 

state (355.00 to 841.07 Å
3
). In details, some seeds showed lower or higher binding 

site volume compared to the closed and open conformation respectively, due either 

to a different position of side chains mobile loop and NADH binding site, or a 

different backbone rearrangement of the same regions. Conformations with a small 

binding site volume, such as seed 20 or 24, displayed an unsatisfying docking 

performance, because of a narrow cavity reflecting a limited capability to properly 

accommodate and recognize molecules of diverse size. For instance, small inactive 

ligands were well ranked within conformation 24 probably due to favorable 

interactions in a well enclosed pocket. On the other hand, seed 13 exhibited a well 

defined binding site volume (734.02 Å
3
), so as to promote binding of both small 

and large ligands. 

It is worth underlying that the AUC values as obtained using BindingDB and 

DUD-E decoys were well correlated (r
2 

= 0.65), highlighting that some 

conformations resulted in good docking performances regardless of the ligand 

dataset. However, while open loop state and seed 13 showed a high AUC value in 

both data sets, a dissimilar performance wasobtained for the closed loop 

conformation. Indeed, the latter early recognized largemolecules along with small 

actives, compared to decoys. Nevertheless, some BindingDB inactives resulted 

well ranked probably because of overestimated favorable interactions promoted by 

a well-defined enclosed cavity. 

The results of individual runs were combined through ensemble-averaged scores, 

ensemble-averaged ranks and Boltzmann-weighted average, in order to evaluate the 
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enrichment improvement by using a multiple receptor approach. The average of the 

ensemble scores showed the best results. In particular, we evaluated the enrichment 

by combining docking scores for the ensemble consisting of crystal closed and 

open loop structures, with each of the 30 sampled conformations. Figure 23 shows 

the ROC curves of docking results from closed and open states, seed 13 and the 

combination of these three structure that was one of the best combinations to 

increase enrichment. 

 

Figure 23. ROC curves calculated for the BindingDB data set using conformations C, O, 

seed 13, and their combination. The ROC space is defined as true positive rate (TPR, y 

axis) versus false positive rate (FPR, x axis). Corresponding active site loop conformations 

are also shown in blue and yellow tubes. 

 

To validate the best performing conformations in view of prospect Virtual 

Screening campaigns, the most recent published datasets were used for further 

docking studies. They are referred to as Kohlmann, Dragovich, and Fauber 

datasets, consisting of 6/7, 5/11, and 18/15 actives/inactives, respectively.
176-177, 194

 

Docking results from the Kohlmann database showed AUC values between 0.64 

and 1.00. In details, closed and open loop states had a perfect recognition 

capability, whereas conformation 13 exhibited an AUC value of 0.67. Analysis of 

binding poses highlighted that the lower docking performance of conformation 13 

was due to the incorrect binding mode of two active compounds that were wrongly 
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docked into the binding site. Even though this result was not in line with 

BindingDB dockings, binding mode analysis and comparison with crystallized 

ligand−protein complexes highlighted that seed 13 reproduced well accommodated 

small molecules, such as the cognate ligand from PDB ID 4I8X. Moreover, bulky 

molecules (for example, PDB ID:4I9H) were properly located within the binding 

pocket, for C, O and seed 13, with the exception of the two molecules above-

mentioned for this latter conformation. Dragovich dataset included molecules 

cocrystallized with the LDHA active site loop in a relatively open state and Arg105 

displaced from the binding pocket. The recognition performances of conformation 

13 and close and open loop states were in line with the experimental results. In 

other words, the open state conformation resulted in the highest AUC value, 

followed by seed 13 among the best ranked conformations. Conversely, the poor 

recognition performance showed by closed loop state was probably due to the 

orientation of the Arg105 side chain. Therefore, large binding pockets, as found in 

the conformation with the open mobile loop, promoted a good docking 

performance. Finally, docking run with the Fauber dataset confirmed seed 13 as 

one of the best conformations in recognizing active compounds, in agreement with 

BindingDB results. The docking results also highlighted the good capability to 

reproduce binding mode of cocrystallized ligands.  

According to validation results, conformation 13, along with crystallographic 

closed and open loop states were selected for consecutive Ensemble-based Virtual 

Screening. Three parallel screenings were performed, following the workflow 

illustrated in Figure 24. Glide SP and XP were used to dock Asinex database, 

opportunely filtered as described in the next section. In details, the first 10% of the 

docking poses scored according to Glide SP were selected for a more accurate 

docking study with Glide XP. Then, 1000 best-ranked compounds per 

conformation were clustered and visually inspected, in order to carefully 

investigate the resulting binding poses. In particular, the most representative 

ligands for each cluster, along with other compounds from the most populated 

clusters were taken into account.  
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Figure 24. Ensemble-based Virtual Screening workflow. 

 

In principle, large molecules tended to bind within both substrate and NADH 

pockets making contacts with protein residues generally involved in binding with 

the endogenous molecules, whereas small molecules showed variable poses, 

depending on whether the mobile loop was in the open, intermediate or closed 

state. For example, some ligands were located within binding pockets defined 

through alternative side chain rearrangements or around the open active site loop. 

Other ligands bound pockets normally filled by the adenine moiety of NADH. 

Figure 25 shows some binding poses as obtained from Glide XP docking. 

 

 

Figure 25. Binding poses extracted from ligand docking on the closed loop (left), seed 13 

(middle) and open loop state (right). The small molecules are located within the binding 
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site (blue grid) but in different regions based on the accessible pockets defined by the 

mobile loop.  

 

The conserved interactions with the catalytic residues along with the binding 

pockets (substrate and/or cofactor binding sites) in which ligands were located 

were the main criteria to select the most promising hit compounds.  

In total, 70 promising molecules were chosen for biological tests: 39 and 12 

compounds from closed and open loop states respectively, and 19 ligands from the 

seed 13. Some of these molecules were simultaneously extracted from multiple 

structures. As regards the ligands selected from the closed loop state, most of them 

bound within the substrate binding site and reached the distant cofactor pocket. In 

particular, large molecules extended in the direction of the cavities in which sugar 

moiety and nicotinamide of NADH are usually located. The 12 ligands extracted 

from the docking with the open state conformation showed non-conventional 

binding modes, since a larger substrate pocket gave access to additional cavities. 

However, most of them preserved the electrostatic interactions with the catalytic 

amino acids. Due to a more accessible binding pocket, a few molecules from this 

docking run bound the nicotinamide pocket. Finally, the intermediate loop 

geometry of seed 13 allowed the accommodation of ligands within the binding sites 

in diverse modes. In particular, some molecules presented alternative binding 

modes within additional small cavities around the mobile loop, whereas others 

preserved the simultaneous binding within the substrate and cofactor pockets. 

The most frequent moiety of the 70 molecules was a carboxylic acid, mimicking 

the same functional group of the endogenous substrate. In details, it interacted with 

the catalytic amino acids of the substrate binding site, such as the Arg168, 

protonated His192 and Arg105. Moreover, this ligand subset also included some 

molecules with tetrazoles, in order to investigate the biological activity of 

bioisosters of the carboxylic acids.  

Finally, they were purchased and tested for their LDHA inhibitory activity. The 

enzymatic activity was measured by monitoring NADH oxidation over time, by 

recording the decrease in NADH fluorescence after addition of the inhibitors. 

Moreover, biological evaluations in terms of cellular assays were carried out. In 

particular, inhibition of lactic acid production and effects on cell proliferation were 

monitored. Through these experimental measurements, four molecules were found 
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with an inhibition activity (IC50) lower than 100 μM: 3 of them related to the close 

active site loop and the other from the open loop state. Interestingly, one of them 

showed a promising activity from both enzymatic and cellular assays. A few other 

molecules exhibited inhibitory activity in the high micromolar scale, including 

molecules extracted from the Virtual Screening carried out on seed 13. 

In order to investigate the novelty of the discovered inhibitors, we evaluated the 

chemical diversity between nine μM hit compounds found through the screening 

and known LDHA inhibitors from BindingDB. In details, we generated 

MOLPRINT 2D fingerprints with Canvas tool, describing the structure of the 

molecules based on atom environments.
195-196

 In general, the most common type of 

fingerprints consists of a series of binary digits (bits) that represent the presence or 

absence of particular substructures in the molecule. Comparison of these 

descriptors allows to define the similarity between two molecules, to find matches 

to a query substructure, in perspective of clustering and screening. In this project, a 

distance matrix was computed based on MOLPRINT 2D fingerprints. In particular, 

the Tanimoto similarity was calculated between the hit compounds and BindingDB 

data set. In general, high Tanimoto values correspond to high similarity between 

two molecules. The BindingDB ligands selected for this analysis consisted of 13 

compounds from Deck publication and 25 compounds extracted from Ward 

project.
171, 178

 The resulting distance matrix is reported in Figure 26. According to 

the color scale, the novel LDHA inhibitors showed a low Tanimoto similarity, that 

is they were chemically diverse compared to the BindingDB data set. Therefore, we 

speculated that new regions of the chemical space were explored through the 

LDHA hit compounds.  
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Figure 26. Distance matrix based on Tanimoto similarity. Blue indicates low chemical 

similarity (Tanimoto < 0.1). White line separates Deck and Ward subsets within 

BindingDB database (compounds 1-13 and 14-38, respectively). Red line separates the 

novel LDHA inhibitors according to the related protein structures of Virtual Screening.  

 

It is evident that the distance matrix was divided in two blocks, based on the two 

ligand sources within the BindingDB database, as described before. Also, the hit 

compounds were ordered according to the LDHA conformations from which they 

were selected. In particular, ligands 1-4, 5-6 and 7-9 were extracted from Virtual 

Screening on the closed loop state, open loop state and seed 13, respectively (red 

line in Figure 26). Analysis of the distance matrix according to these separations 

highlighted that compound 8 selected from seed 13 was chemically different from 

both Deck and Ward subsets. This interesting result confirmed the enrichment of 

multiple conformation approaches compared to Virtual Screening campaigns 

carried out with single crystal structures. It offers the possibility to design, 

synthesize and test more potent inhibitors in a poorly explored chemical space. 

Then, this protocol can enhance the probability to discover novel and also 

chemically diverse LDHA hit compounds.  
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3.6 SIMULATIONS SETUP AND ANALYSIS PROCEDURES 

 

3.6.1 THE MINIMAL LDHA MODEL 

Explicit solvent MD simulations of chain A, chains AB, and the minimal model 

were performed with NAMD2.8
197

 using the parm99SB-ILDN force field.
198

 All 

the systems were prepared with the LEaP module of AMBER11. The N-terminal 

residues (1-19) were removed from each monomer. TIP3P water model was used 

and all hydrogen atoms were added. All ionizable amino acids were charged based 

on their standard protonation state, whereas the catalytic His192 was protonated 

according to the proposed catalytic mechanism. Counter-ions were employed to 

neutralize all the systems and the simulations were performed including the NADH 

cofactor in the binding site. Four cycles of 1000 steps of conjugate gradient were 

performed to energy minimize the systems, followed by three steps of 100 ps to 

thermalize the system to 300 K in the NVT ensemble. The restraints initially added 

on alpha-carbons were gradually released during the heating procedure. At the 

temperature of 300 K, an adjustment of the volume of the cell was reached through 

an additional step of 100 ps in the NPT ensemble. Long-range electrostatics was 

treated with Particle Mesh Ewald, Periodic Boundary Conditions were applied, and 

the SHAKE algorithm was used to allow an integration time-step of 2 fs. 

Simulations of 100 ns in the NPT ensemble were carried out for each system, by 

using a Langevin thermostat with a collision frequency of 5 ps-1, and a 

combination of Nosé-Hoover and Langevin barostat implemented in NAMD 2.8 at 

the pressure of 1 atm. Resulting trajectories were analyzed with the Plumed 

software.
199

 

 

3.6.2 hREMD SIMULATION SETUP 

The closed and open loop of the minimal LDHA model were studied through two 

different hREMD simulations with the AMBER11 package using the parm99SB-

ILDN force field. First of all, 500 steps of steepest descent followed by 500 steps 

of conjugate gradient were used to minimize the initial structure. Equilibration was 

performed in explicit solvent in the NVT ensemble, with Periodic Boundary 

Conditions and Particle Mesh Ewald, followed by additional 500 ps in the NPT 

ensemble. Finally, a further equilibration in the NVT ensemble was performed for 
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200 ps. This procedure guaranteed to maintain a correct average pressure in the 

physical replica when performing simulations in the canonical ensemble, as it is 

required for most REMD implementations. Twenty four replicas were simulated in 

parallel in a temperature range between 300 K and 500 K. A geometric progression 

was used for the distribution of temperatures within this range. In details, the ratio 

between consecutive elements is constant over the temperatures. On the other side, 

in case of constant intervals between temperatures, variations of the overlaps 

between consecutive Gaussian curves resulted in variable probability to accept the 

exchanges.  

First of all, q parameter was computed as follows: 

 

 

 

(49) 

where q is the incremental factor, n is the number of replicas and Tmax and Tmin are 

500 K and 300 K, respectively. Then, Ti was assigned to each i
th 

replica, based on 

the following formula: 

 

 

 

(50) 

To limit the protein unfolding due to high temperatures, restraints were applied to 

all alpha-carbons, except for the active site loop and a portion of 7 residues in the 

α-1G2G helix, so as to allow a mutual conformational adaption. A force constant of 

0.50 kcal/Å
2 

was used. It was defined through classic Molecular Dynamics 

simulations performed at 500 K. In order to neutralize the system showing a low 

net charge (+1/331 residues), the charge excess was uniformly spread over the 

protein atoms as an alternative to use counter-ions. As regards the solvent 

treatment, 700 water molecules were preserved in the hybrid representation. This 

solvent shell was defined by considering water molecules within a radius of 3 Å 

over the protein during 200 ps of conventional MD at 300 K. The total aggregate 

time from the two simulations was almost 700 ns. 
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3.6.3 CLUSTER ANALYSIS 

The average linkage algorithm, as implemented in Amber tool was selected to 

perform a cluster analysis. In order to optimize cluster analysis, different 

parameters were tested. First, the 13000 configurations were aligned with the 

exclusion of the active site loop, RMSD was computed by considering only the 

LDHA mobile loop backbone and, finally, configurations were clustered according 

to an RMSD threshold of 1.00 Å. However, visual inspection of the results 

highlighted poor homogeneity within each cluster, due to the loss of the alignment 

of the initial elements during cluster analysis. Subsequently, a second trial was 

carried out using the same RMSD cutoff computed on the overall backbone instead 

of the mobile loop. However, an all atom RMSD calculation reduced the 

differences of the mobile loop orientations, resulting in unsatisfying results.  

 

3.6.4 NETWORK ANALYSIS 

Cytoscape software
200

 was used to build network graph. In details, the sampled 

configurations were aligned based on the backbone atoms with the exclusion of the 

mobile loop, RMSD pairwise matrix was computed, without realignment and nodes 

with a pairwise RMSD below a threshold of 1.00 Å were used to define the 

network by means of the Force-directed layout algorithm.
201

 Different trials were 

performed in order to define the best RMSD cutoff able to well connect the most 

similar configurations. This algorithm considers the graph as a virtual physical 

system of interacting forces; nodes interact through electrical repulsion that 

separates each other, whereas edges act as springs and represent attractive forces. 

During the optimization step, the forces are computed and new equilibrium states 

are defined, until a local minimum energy layout is achieved. Default parameters 

were used and 10000 steps were set for the iterative optimization process. The 

resulting network was clustered according to the connectivity and similarity of 

nodes. Highly interconnected subgraphs were found through the MCODE 

algorithm
202

 available as a plug-in for the Cytoscape software. It consists of three 

main steps: i) node scoring, ii) cluster finding and iii) post-processing. In details, 

higher scores are assigned to nodes whose direct neighbors are more interconnected 

and subgraphs composed by the top scoring nodes are identified. This second stage 
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recursively moves outward from the seed (defined as the highest scored node), by 

including nodes whose score is above a given threshold, defined as follows: 

 

Threshold = (1.0-Node Score Cutoff) x (Score of Seed Node) (51) 

 

A low threshold results in large clusters. After different trials, a low node score 

cutoff value of 0.1 was set, in order to obtain accurate and appropriate subgraph 

sizes. The cluster score is defined as follows: 

 

Cluster Score = Number of Nodes × Density (52) 

= Number of Nodes × (Number of Edges / Number of Possible Edges) 

 

Therefore, the best-scored clusters correspond to highly interconnected subgraphs. 

 

3.6.5 RETROSPECTIVE VIRTUAL SCREENING PROTOCOL 

3D geometry, tautomers, stereoisomers, and protonation states of all ligands were 

defined with LigPreptool. 1950 3D decoys were then generated by the DUD-E 

database. All the docking calculations and analysis were performed with the 

Schrödinger suite. As regards the protein structures, they were prepared by the 

Protein Preparation Wizard workflow. Water molecules coming from hREMD 

trajectories as well as the NADH cofactor were deleted, and the resulting structures 

were energy-minimized using the OPLS2005 force field.
203

 The binding site was 

defined by a box of 12 Å that included both the substrate and the cofactor pockets, 

centered in proximity of the bound oxamate inhibitor. Glide XP protocol and 

GlideScore were used respectively to dock and rank actives, inactives, and 

decoys.
141-142 The performance of each structure was evaluated by means of the 

scripts from Schrödinger suite. 

 

3.5.6 ENSEMBLE-BASED VIRTUAL SCREENING PROTOCOL 

Proteins were prepared as reported in the previous section. As regards ligand 

dataset, structure-based Virtual Screening approach was employed to obtain new 

hits from a commercial library of Asinex database containing around 500000 

unique structures.
204

 Ligands were filtered according to physical and chemical 

descriptors based on a slightly modified Lipinski‘s rule of five (see Table 2).  
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Physical-chemical filters 

 

Threshold value 
 

Hydrogen bond acceptors 
 

 

≤5 
 

 

Hydrogen bond donors 
 

 

≤10 
 

 

Molecular weight 
 

 

≤600 
 

Number of chiral centers 
 

≤2 
 

Number of rotatable bonds 
 

≤10 
 

 

Table 2. Physical-chemical filters applied to Asinex database. 

 

These filters were selected to optimize pharmacokinetic properties, preventing poor 

absorption and permeation. Additional filters were applied at this step to discard 

ligands with specific chemical substructures associated with poor chemical stability 

or toxicity. In fact, the rule of five takes into account physiochemical properties 

that impact the earliest stages of drug discovery, but overlooks the chemical 

reactivity that might lead to in vitro false positives in biochemical screening.
205

 

Specific functional groups have been identified as reactive false positives or 

promiscuous inhibitors. In particular, molecules containing Michaelis acceptors 

and aldehydes were filtered out, since these groups are responsible of electrophilic 

protein-reactive false positives in biochemical assays. In other words, they are 

prone to decompositions by solvolysis or hydrolysis and are characteristically 

reactive towards biological nucleophiles including target protein, serum protein and 

glutatione.
205

 Moreover 1,2-dicarbonyl moieties were discarded from Asinex 

database, since they are responsible for artifact data in biochemical screens. 

Finally, only one nitro group per molecule was allowed to limit the toxicity. Glide 

standard precision mode was used for the current docking study, with default 

parameters. 52000 poses were retained and re-docked through Glide extra 

precision, so as to obtain more accurate scores and docking poses. This workflow 

was applied for each conformation. Finally, the first 10% of docked compounds 
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(1000 per protein conformation) were group together through a cluster analysis 

with Canvas and visual inspected. 

 

3.5.7 MOLECULAR SIMILARITY SEARCHING 

MOLPRINT 2D fingerprints were computed for the most potent LDHA hit 

compounds from the Ensemble-based Virtual Screening and 38 known inhibitors 

from BindingDB database. MOLPRINT 2D fingerprints are descriptors based on 

atom environments to define chemical structures.
206 They are computed through 

two steps: i) Sybyl atom types are assigned to every heavy atom of the molecule 

and ii) an individual atom fingerprint is calculated for every heavy atom in the 

molecule. A count vector is constructed with the vector elements being counts of 

atom types at a given distance from the central atom. Atom environments are stored 

as binary presence/absence features for each molecule. Subsequently, a distance 

matrix based on Tanimoto similarity was computed by taking into account the 

MOLPRINT 2D fingerprints.   

 

3.7 CONCLUSIONS 

A combination of an enhanced sampling method with network and cluster analysis 

led to a collection of multiple LDHA binding pocket conformations which were 

validated in order to assess their ability to discriminate active from inactive 

inhibitors. In particular hREMD simulations were carried out to collect multiple 

conformations of the active site loop.
122

 The choice of this technique derived from 

the necessity to investigate fluctuations occurring in a long time scale, difficult to 

sample through standard Molecular Dynamics simulations. Then, the resultling 

structures were analyzed through the network analysis, providing a visual and 

intuitive classification of conformations, difficult to be observed by classical 

cluster analysis. The 30 most representative conformations, were validated in a 

retrospective Virtual Screening simulations for their ability to discriminate active 

from inactive compounds and the most promising structures were selected for a 

structure-based drug discovery campaign.  

This protocol led to the discovery of novel LDHA inhibitors with a micromolar 

inhibition activity, confirming that taking into account protein flexibility can 

improve Virtual Screening predictivity in the search for novel active compounds. 
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Through this protocol, the main atomistic features of the binding pockets and active 

site loop were explored and a relevant conformation, seed 13, was discovered 

showing a satisfying recognition capability. However, the validation study with 

different datasets confirmed that individual conformations were unable to optimally 

perform with all available ligands and that a multiple receptor approach was 

effective in discriminating all compounds regardless their chemical features. Based 

on this retrospective study, three conformations were selected and employed for an 

Ensemble-based Virtual Screening aimed at discovering novel LDHA inhibitors. 

The preliminary experimental results led to the discovery of novel LDHA 

inhibitors in the micromolar range, confirming the success of the described 

computational protocol in the context of drug discovery. The heterogeneity of the 

three protein conformations in terms of local rearrangements within the binding 

site, allowed to explore different pathways aimed to discover novel inhibitors. Even 

if the most potent hit compounds were related to the crystallographic closed mobile 

loop state, the other conformations improved the quality of docking results. In fact, 

analysis of the structural diversity of the hit compounds compared to the known 

LDHA inhibitors highlighted a good novelty of the Ensemble-based Virtual 

Screening. Surprisingly, some of the most diverse hit compounds were discovered 

through the seed 13. In spite of the low LDHA inhibitory activity, these molecules 

represent the starting point for Structure-Activity Relationship studies, in order to 

design chemically diverse inhibitors and optimize their pharmacological profile. 

In summary, this study highlighted the importance to include flexibility in drug 

discovery process and how a multiple receptor conformation approach can improve 

probability to succeed in discovering novel active compounds. 
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4. OPIOID RECEPTORS - CASE STUDY 2 
 

4.1 OPIOID RECEPTORS 

Opium has been used for centuries for pain, diarrhea, cough and other pathologies. 

It is a mix of substances, including several alkaloids, such as morphine, codeine, 

papaverine, thebaine and noscapine which control therapeutic effects. Principally, 

opium owes its analgesic properties to morphine. However, clinical use of the latter 

has been restricted, due to a wide range of undesirable side effects. Consequently, 

many efforts have been directed towards the development of novel ligands with a 

better pharmacologic profile, leading to the discovery of heroine, methadone, 

meperidine, and several other opiates.
207

 Among them, nalorphine was also 

discovered, able to counter the side effects of the morphine and, at the same time, 

to act as analgesic agent. It was the starting point for the development of pure 

antagonists, such as naloxone. The evidence that rigid and non-rigid molecules 

bound differently to the active site led to suppose the possible existence of multiple 

opioid receptors.
208

 In the mid-1970s, Martin and co-workers confirmed that 

several opiate compounds showed different pharmacologic profiles in the chronic 

spinal dog and, consequently, postulated the existence of receptors named after the 

drugs used in the studies: μ (morphine), κ (ketocyclazocine), and σ (SKF 10,047 or 

N-allylnormetazocine).
209-211

 The latter is no longer classified as opioid receptor. 

Moreover, the presence of opioid receptors in brain membranes was the 

prerequisite for the discovery of endogenous ligands, the enkephalins, with 

morphine-like activity. An observation that the mouse vas deferens had greater 

affinity for enkephalins than morphine led to the introduction of the δ opioid 

receptor.
212 Hereafter, the three subtypes are referred to as μ-OR, δ-OR and κ-OR. 

More recently, a further opioid receptor, the nociceptin/orphanin FQ (N/OFQ) 

peptide receptor (NOP or ORL-1), was discovered by molecular cloning and 

characterization of an orphan GPCR.
213

 However, it is a non-classical opioid 

receptor showing a high sequence similarity with classical subtypes (∼ 60%), but a 

very low affinity for classical opioid peptides and most morphine-like small 

molecules.
214

 

Pharmacological data have also revealed different receptor subtypes, namely μ1-3, 

δ1,2 and κ1-3-receptors.
215-217 However, since only three opioid receptor genes have 
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been identified so far, the existence of these subtypes is explained by two 

hypotheses: receptor splice variants and receptor heterodimers.
218

 

The classical opioid receptors and NOP belong to the G-protein coupled receptors, 

characterized by the presence of seven transmembrane domains (TM) linked 

through 3 extracellular and 3 intracellular loops (ECL and ICL, respectively), an 

extracellular N-terminus and an intracellular C-terminal tail. The sequence identity 

within the transmembrane helices is about 75%among μ-OR, δ-OR and κ-OR,
213

 

whereas no homology is found in the extracellular loops and the N-terminal tail. 

Moreover, two cysteine residues are conserved in all opioid receptors forming a 

disulphide bond between ECL2 and TM3.  

As regards the signal transduction, opioid receptors are coupled to G proteins at the 

intracellular domain, consisting of three distinct subunits: α, β and γ. Upon agonist 

binding, opioid receptors undergo conformational changes which promote the 

exchange of guanosine dihosphate (GDP) bound to the α subunit with guanidine 

triphosphate (GTP). It results in dissociation of the G protein from the opioid 

receptor and dissociation of α-GTP from the βγ complex. Then, both subunits can 

activate/deactivate intracellular effectors by acting on enzymes and ion channels. 

Conversion of GTP into GDP leads to the reassocciation of the trimeric complex 

Gαβγ and cessation of signaling.
219 In details, intracellular pathways linked to G 

subunits concern i) the closure of N/P-type voltage-sensitive calcium channels, ii) 

the opening of potassium channels and iii) the enzymatic inhibition of the adenylyl 

cyclase causing block of cyclic adenosine monophosphate (cAMP) production. 

Opioid receptors cause a negative regulation of calcium channels located at 

synaptic terminals, so as to prevent neurotransmitter release. In particular, a 

positive shift in the voltage dependence of the channel coupled to a slowing of 

activation reduces synaptic transmission. On the other side, Gβγ activates G-protein 

inwardly rectifying potassium channels and favors membrane hyperpolarization, 

resulting in decreased neuronal excitability and nociceptive transmission. In 

addition, inhibition of cAMP production leads to a shift of the threshold of voltage 

dependent ion channels towards more negative potentials, causing reduction of 

excitability. This inhibition also reduces neurotransmitter release by acting on 

cAMP-dependent protein kinase. Figure 27 displays a schematic diagram of the 

mechanisms described above. 

 



 

95 
 

 

Figure 27. Opioid receptors and signaling transduction. 1) Opioid receptor is bound to the 

trimeric form of the protein G, with α subunit linked to GDP. 2) Upon ligand binding, 

GDP is exchanged for GTP causing dissociation of α subunit from βγ dimer. 3) The two 

dissociated subunits interact with adenylate cyclase (negative effect), Ca
2+ 

channels 

(negative effect on ion influx) and K
+ 

channels (positive effect on ion efflux), affecting the 

neurotransmitter release. 4) When GTP is converted to GDP by intrinsic GTPase activity, 

the system is turned off.  

 

The main regions containing opioid receptors include the supraspinal and spinal 

sites, such as the periaqueductal gray, the locus coeruleus and the dorsal horn of the 

spinal cord which is an important area for opioid-induced analgesia.
219

 Moreover, 

they are located in the peripheral nervous system, for instance primary afferent 

neurons and dorsal root ganglia. In terms of clinical applications, opioids are used 

in both acute and chronic pain as effective analgesics. In this scenario, they are 

administered preemptively or after occurrence of noxious stimulation. The main 

side effects limiting their use concern the cardiovascular, respiratory and 

gastrointestinal systems and include also sedation, nausea and vomiting, cough 

suppression, pupil constriction and skeletal muscle rigidity. The mechanisms 

behind these effects are multiple. For instance, the inhibitory action of opioids on 
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peristalsis depends on the enteric nerve pathway and the blockade of presynaptic 

release of acetylcholine. 

As regards the chronic application, the most common limitation in the usage of 

morphine-like ligands is the development of tolerance and dependence and, 

therefore, loss of opioid receptor-activated function, due to G-protein uncoupling or 

internalization of the opioid receptors.
220

 Tolerance establishes when repeated 

administration of opioids causes decrease of pharmacological effects. In details, 

opioid receptor phosphorylation by kinases promotes the binding with arrestin 

molecules. The steric bulk of the resulting complex prevents the coupling with G 

proteins and supports the internalization process reducing the number of opioid 

receptors on the cell surface. However, recent findings suggest that opioid receptor 

internalization might be a protective mechanism leading to less tolerance, since 

receptors would be resensitized through the recycling process to the plasma 

membrane.
221

 In general, the development of opioid tolerance is variable depending 

on the pathological situations.
219 On the other hand, dependence consists of 

physical and/or psychological symptoms arisen from abrupt interruption of opioid 

administration, such as mydriasis, diarrhea, restlessness, drug seeking, etc. 

Administration of opioid antagonists can also cause an immediate precipitated 

withdrawal. However, the mechanisms underlying these phenomena are not totally 

understood and are still under investigation. 

 

4.2 STRUCTURAL FEATURES 

Recently, high resolution crystal structures of opioid receptors have been 

published, providing the first evidence for the binding mode of opioids to their 

counterparts.
214, 222-224

 In order to facilitate receptor crystallization, some domains 

of the opioid receptors have been replaced with another protein, like T4 lysozyme. 

All the resolved structures bind antagonists; thereby, they are represented as 

inactive states. The DRY sequence located at the end of the helix 3 is highly 

conserved in GPCRs and is involved in a ionic-lock, that is a salt bridge between 

the arginine of this motif and Asp/Glu belonging to the cytoplasmic end of helix 

VI, which is thought to stabilize the inactive conformation. Although opioid 

receptors lack of this acidic residue, arginine of DRY motif forms a hydrogen bond 

with a threonine of helix VI, stabilizing, in any case, the inactive state.
223-224 In 
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general, opioid pharmacology is explained through the message-address theory. 

The message sequence is aimed to produce the biological response, whereas the 

address domain is related to binding selectivity. Differences in opioid receptor 

structures can describe this phenomenon. In particular, the lower binding pocket is 

highly conserved within this class and recognizes the message of the ligands. 

Conversely, the upper binding sites show structural diversity and represent the 

address regions responsible for opioid selectivity. The transmembrane domains of 

the four opioid receptors are very similar each other, along with the β-hairpin in the 

ECL2 which is conserved, despite its low sequence identity. Different associations 

of opioid receptors with each other or other GPCRs to form dimers and oligomers 

have been observed and can explain changes in signaling properties. The μ-OR 

crystallizes as a parallel dimer, of which subtypes mainly interact throughTM5 and 

TM6, whereas the δ-OR forms an anti-parallel arrangement. By contrast, the 

dimeric form of the κ-OR involves interactions of TM1, TM2 and helix 8. It is 

important to highlight that the variance of dimeric interfaces should be related to 

different crystallographic conditions, different T4L arrangements or other reasons. 

Therefore, conclusions about the physiological relevance of oligomer may be 

extracted by the analysis of crystal structures with caution.  

The recent published μ-OR has been crystallized in complex with the irreversible 

morphinan antagonist β-FNA involving Lys233
5.39 

(superscripts indicate 

Ballesteros-Weinstein numbers) for the covalent attachment (PDB ID:4DKL). This 

ligand is accommodated in a binding pocket exposed to the solvent, probably 

reflecting the general rapid dissociation half-lives of potent opioids. Figure 28 

describes the binding mode of β-FNA to the μ-OR. First of all, the positively 

charged amine engages a ionic interaction with Asp147
3.32 

and two water molecules 

generate a hydrogen-bonding network between the phenolic hydroxyl of the 

morphine group and His297
6.52

. Moreover, Tyr148
3.33

 establishes an hydrogen bond 

with the furanic oxygen, whereas the cyclopropane reaches the hydrophobic pocket 

consisting of Tyr326
7.43 

and Trp293
6.48

. In addition, Val300
6.55 

and Ile296
6.51

 are 

involved in hydrophobic contacts with the morphine scaffold. 
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Figure 28. Schematic representation of interactions between a) β-FNA and the μ-OR, b) 

Naltrindole and the δ-OR, c) JDTic and the κ-OR and d) C-24 and the χ-OR. 

 

The crystal structure of δ-OR includes the selective antagonist Naltrindole which is 

located in an exposed binding pocket (PDB ID:4EJ4). Similarly to the μ-OR, 

hydrogen bond contacts are conserved, involving His278
6.52 

and Tyr129
3.33

, along 

with the charge-charge interaction between the positive nitrogen and Asp128
3.32

. 

Moreover, Naltrindole establishes hydrophobic contacts through Tyr308
7.43

, 

Trp274
6.48

, Ile277
6.51

, Val281
6.55

, Leu300
7.35

 and Trp284
6.58

. A comparison between 

μ-OR and δ-OR highlights that the residues within the binding pockets are highly 

conserved, with the exception of three amino acids. In details, Glu229, Lys303
6.58 

and Trp318
7.35 

correspond to aspartate, tryptophan and leucine in the δ-OR, 

respectively. In particular, Leu318
7.35 

is in contact with the indole group of 

Naltrindole and is responsible for the binding selectivity of this opioid antagonist 

for the δ-OR. In fact, the corresponding amino acids at the same position in the μ-

OR and κ-OR are incompatible with Naltrindole binding mode. In other words, the 

indole group corresponds to the address of this ligand, whereas the morphine 
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scaffold represents the message. Details of the Naltrindole binding mode are shown 

in Figure 28b.  

As regards the κ-OR, JDTic has been used as selective antagonist for the crystal 

structure (PDB ID:4DJH). Compared to the other subtypes, it shows a displacement 

of the extracellular half of TM1 which may be related to crystallization conditions. 

JDTic is accommodated within the binding pocket, where the positively charged 

nitrogen atoms of piperidine and isoquinoline reach the negative carboxylate group 

of Asp138
3.32

. The distal hydroxyl groups play an important role for κ-OR affinity. 

In fact, SAR studies suggest water-mediated hydrogen-bonding networks between 

these two functional groups and the protein (see Figure 28c for detailed description 

of contacts). The interactions that are thought to contribute to κ-OR selectivity 

involve Val108
2.53

, Val118
2.63

, Ile294
6.55

 and Tyr312
7.35

. Moreover, the isopropyl 

group of JDTic interacts with Trp287
6.48 

through hydrophobic contacts.  

Finally, ORL-1 has been cocrystallized with the peptide mimetic antagonist C-24 

which mimics the first four amino-terminal residues of the selective peptide 

antagonist UFP-101
225

 and, more in general, represents the message domain of 

endogenous peptides (PDB ID:4EA3). C-24 interacts through several hydrophobic 

and electrostatic interactions, as shown in Figure 28d. The protonated nitrogen 

atom of the ligand interacts with Asp130
3.32

 through the conserved ionic contact. 

Moreover residues between helices III, V and VI define a hydrophobic pocket in 

which C-24 is buried through its benzofuran/piperidine rings. Tyr131
3.33 

included 

in this hydrophobic pocket is involved in a π-stacking interaction with the 

phenylalanine of the ligand. The reduced affinity of ORL-1 for morphine-based 

ligands is linked to different residue positions in the binding pocket, such as 

Ala216
5.39

, Gly280
6.52 

and Thr305
7.39

.  

 

4.3 OPIOID LIGANDS 

According to the chemical structures, ligands that bind opioid receptors are 

differentiated in two classes: peptides and alkaloids. 

Met-enkephalin and Leu-enkephalin were the first endogeneous peptides, 

discovered by Hughes and co-workers in mammalian brain.
226

 Thereafter, β-

endorphins and dynorphins were isolated from brain, spinal cord and other 

tissues.
227 In addition, other opioid peptides were discovered and termed 
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endomorphins.
228 The common feature of these ligands is the presence of the 

tetrapeptide sequence Tyr-Gly-Gly-Phe at their N-terminus, with the exception of 

endormophins (Tyr-Pro-Trp/Phe-Phe). The structure of peptides includes two 

components: the message and the address sequences, that is the N-terminal tri- or 

tetrapeptide and the remaining C-terminal fragment, respectively.
229

 In this case, 

the C-terminal address sequence stabilizes a specific conformation accessible to the 

N-terminal message sequence. The latter is represented by tyrosine and 

phenyalanine residues. In details, the amino and phenolic groups of tyrosine and 

the aromatic ring of phenylalanine are necessary and are optimally separated 

through glycine residues. Opioid peptides are cleaved from three distinct opioid 

precursors: proopiomelanocortin for β-endorphins, proenkephalins for Met- and 

Leu-enkephalins, and prodynorphin for dynorphins. The precursors for 

endomorphins are yet to be identified. These peptides bind to any of the known 

opioid receptors with different affinity. Also, they have negligible affinity for 

ORL-1 receptor. The latter interacts with nociceptin/orphanin FQ that is derived 

from pro-nociceptin. Compared to the typical opioids described above, nociceptin 

N-terminal amino acid sequence varies only at position 1, with a phenylalanine 

instead of the tyrosine.
230

 

The second class of opioid ligands include alkaloids, that are mainly classified in 

agonists and antagonists. The main difference is that agonists bind the receptor 

conformation in active form, whereas antagonists stabilize the inactive form and 

interfere with the binding of agonists. The most known opiate alkaloid is the 

morphine, which is a 7,8-didehydro-4,5-epoxy-17-methyl-(5α,6α)-morphinan-3,6-

diol. In the last century, a high number of analogues has been synthesized and 

proposed as analgesic agents. However the morphine is still used in clinical 

practice. As regards the antagonists, the most frequently used alkaloids are 

Naloxone and Naltrexone. In order to introduce novel opioid ligands, two 

approaches have been proposed including the modification of known morphine 

analogues and endogenous ligands. Hence, simplification or changes of morphine 

skeleton has led to the development of new classes of opioid ligands, as reported in 

Figure 29. In particular, morphinans, benzomorphans, 4-phenylpiperidines, 4-

anilinopiperidines, N-benzylpiperazines and methadone-like compounds have been 

designed and synthesized. Moreover, oripavine compounds include a further ring to 

the morphine scaffold. 
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Figure 29. Opioid derivatives obtained through the modification/simplification of the 

morphine scaffold. 

 

Some examples of the well known compounds from each categories are listed as 

follows: Buprenorphine as oripavine derivative, Codeine as representative of 

morphine molecules, Levorphanol, Pentazocine, Meperidine and Phentanyl as 

morphinan, benzomorphan, phenylpiperidine and anilinopiperazine derivative, 

respectively and Methadone and Propoxyphene belonging to methadone class. The 

common feature of these ligands is a positively charged nitrogen that interacts with 

a negatively charged counterpart of the binding site (the highly conserved aspartate 

residue), as described in the previous section. Moreover, many opioid ligands 

present a phenolic hydroxyl group separated from the positive charge through six 

carbon atoms, mimicking the amino-terminal tyrosine of endogenous peptides. 

 

4.4 AIM OF THE PROJECT 

Opioid receptors represent the main target for the treatment of pain, cough, 

diarrhea, and several other diseases. Specifically, each subtypes mediates the action 

of endogenous and exogenous ligands on specific physiological processes. 

Therefore, for centuries, they have represented a hot topic of physiological and 

pharmacological studies. The main limitation in using opiates is that most of the 

known opiates display side effects which limit their therapeutic use.  

The recent publication of the crystal structures for all four opioid receptors has 

provided a number of insights concerning the binding mode of opioids, so as to 
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well understand the key interactions affecting the action of these drugs. In the 

context of drug discovery, it represents an incomparable opportunity to explore the 

structural features to be exploited to develop less toxic therapeutics. 

In consideration of the importance of protein flexibility in drug design, the opioid 

receptor crystal structures offer also the possibility to investigate local and/or 

global fluctuations that can affect a proper accommodation of ligands within the 

binding site, as well as conformational variants can couple to different functional 

pathways. Moreover, protein ensembles can improve the Virtual Screening 

predictivity in the search for novel compounds. 

Exploring the receptor conformations which opioid ligands bind and stabilize is 

fundamental to design novel active compounds and is at the basis of this work. In 

particular we used computational tools to define multiple opioid receptor 

conformations, aimed at exploiting protein flexibility in perspective of a Virtual 

Screening campaign. 

The starting point of this project was a validation study of the opioid crystal 

structures per se, in order to assess their ability to discriminate known active from 

inactive compounds. Subsequently, opioid receptor homology models were 

developed, in order to introduce slightly diverse backbone and side chain 

orientations. For each opioid receptor, three models were defined by using the 

remaining isoforms as templates, so resulting in a conformational ensemble 

consisting of four protein structures (a crystal structure plus three models). Due to 

the low or even missing affinity of most opioid ligands for NOP receptor, we 

limited the use of this subtype to the homology modeling and focused our research 

efforts concerning the validation of resulting models on the μ-OR, δ-OR and κ-OR. 

For docking study, three different ligand data sets were defined by selecting 

compounds with experimentally tested antagonist activity against their 

corresponding opioid receptor subtypes, from the ChEMBL database.
231 In spite of 

the structural diversity of the three protein ensembles compared to the initial 

corresponding crystal structures, retrospective Virtual Screening results showed a 

low recognition performance. Then, we used ALiBERO approach (Automated 

Ligand-guided Backbone Ensemble Receptor Optimization) to refine the homology 

models. Through an iterative procedure, ALiBERO led to the definition of three 

different conformational ensembles, one per opioid subtype, showing improved 

recognition capability. Optimization of the ALiBERO procedure and the validation 
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of the resulting models are now in progress and are not included in this chapter. 

However, the preliminary results reported below are a strong evidence of the 

success of ALiBERO protocol in dealing with local and global flexibility in a drug 

discovery context. 

 

4.5 RESULTS AND DISCUSSION 

The three opioid receptor crystal structures (μ-OR, δ-OR and κ-OR) were used to 

perform a ligand docking, with ligands data sets from the ChEMBL database. In 

particular, these collections consisted of active/inactive ratio of 117/350 (μ-OR), 

107/228 (δ-OR) and 149/355 (κ-OR). The activity cutoff was chosen based on the 

availability of experimentally tested compounds: a pKi and pIC50 of 8 was used to 

select active compounds, whereas activity values less than 6 identified the inactive 

chemicals. In line with the pharmacological class of the cocrystallized ligands, only 

antagonist compounds were taken into account. Moreover, we mainly focused our 

research on alkaloids and derivatives (Figure 29), and discarded large peptides due 

to their high number of rotatable bonds. Ligand preparation, along with docking 

studies were carried out with ICM software
143

 and details of these procedures are 

described in the following section. Docking results were analyzed through visual 

inspection and figures of merit were computed, in order to evaluate the recognition 

capability of each crystal structure. Figure 30 shows the resulting ROC curves.  

 

 

Figure 30. ROC curves of μ, δ and κ opioid receptor crystal structures.  

 

A poor performance was observed for the three docking runs, with an Area Under 

the ROC curve (AUC) above 0.60 for μ and δ opioid receptors and a lower AUC 

value for the κ-OR (< 0.50). The latter showed a ROC curve approximating the 
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random picking of compounds. Moreover, the slope of the leftmost part of the ROC 

curve highlighted a negligible initial enrichment. 

A visual inspection of docking results highlighted that most of the morphine-like 

active compounds showed consistent binding modes with conserved interactions, 

such as the ionic contact between the positively charge nitrogen atom of ligands 

and the highly conserved aspartate of the opioid receptors. It can be explained by 

considering that protein structures can have ―memory‖ of their related 

cocrystallized ligands, resulting in a better score for similar chemicals and a lower 

score for compounds with different scaffolds. However, ligands interacted with the 

receptor in a deep but open binding site which allowed both opioid receptor active 

and inactive compounds to reach a proper geometry and form favorable 

interactions. Moreover, some inactive compounds are structurally similar to the 

actives, resulting in a more challenging early recognition.  

A limited resolution of protein structures represented another possible cause of low 

recognition capability. The opioid receptor crystal structures show a low resolution 

resulting in disordered protein domains and approximate placements of heavy-

atoms. High β-factor values of some residues in proximity of the binding site 

confirm uncertainty about their atom positions. They include the highly conserved 

residues Asp128
3.32 

and Tyr129
3.33 

belonging to δ-OR, involved in the binding 

mode of Naltrindole and more in general in opioid ligand binding, or some 

hydrophobic side chains of the κ-OR binding site (β-factor values higher than 70 in 

both systems). The low recognition capability of each crystal structure confirmed 

that, generally, single conformations lack in protein plasticity required to well 

accommodate and discriminate chemically diverse ligands. Moreover, it is clear 

that availability of a good conformational ensemble is essential in compound 

screening, especially for targets characterized by flexible binding pockets and 

recognizing many different endogenous and exogenous compound chemotypes. 

In the light of these preliminary results, we built homology models based on the 

available crystal structures, aimed to introduce structural diversity in terms of 

backbone and side chain orientations in the recognition study. In particular, three 

models were defined for each subtype. Details of this procedure are reported in the 

next section. A relevant difference between μ-OR and δ-OR compared to κ subtype 

is the orientation of Tyr
7.43 

and Asp
3.32

 as highlighted in Figure 31. In details, a 

slight displacement of this tyrosine in the κ-OR leads to a larger binding pocket in 
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respect to the other subtypes. The different volume could be related to the features 

of the cocrystallized JDTic which is a larger compound compared to the morphine-

like cognate ligands of the μ and δ crystal structures. The ORL-1 crystal structure 

represents an exception; in fact, tyrosine and aspartate side chains define a binding 

pocket similar to the μ and δ receptors in terms of volume, although the cognate 

ligand is a large peptide-like compound. This apparent inconsistency is explained 

by considering that the peptide-like ligand is accommodated in a less deep cavity 

respect to JDTic. In other words, we can speculate that the side chain 

displacements of Tyr
7.43 

and Asp
3.32 

allow favorable binding of bulky ligands within 

an internal cavity of the active site. 

The analysis of ligand binding pockets by the ICM PocketFinder algorithm 

confirmed that κ opioid receptor crystal structure displayed a larger cavity (510.80 

Å
3
 vs. 288.10 and 321 Å

3 
for μ-OR and δ-OR, respectively). This structural 

variability has been exploited in the homology modeling in the perspective of an 

improved recognition capability of known active from inactive chemicals. 

 

 

Figure 31. Different orientation of Asp
3.32 

and Tyr
7.43 

in the opioid receptor crystal 

structures. Side chains are colored differently based on the protein subtypes: white, yellow, 

pink and green correspond to μ-OR, δ-OR, κ-OR and ORL-1, respectively. White surface 

describes the cavity that ligands occupy within the binding site. 

 

The resulting conformational ensembles included three homology models plus the 

target crystal structure for each opioid receptor subtype. Hereafter, we refer to the 

μ-OR, δ-OR, and κ-OR ensembles as HM1, HM2 and HM3, respectively (from 

Homology Modeling).  
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Figure 32. a) μ-OR ensemble (HM1), b) δ-OR ensemble (HM2) and c) κ-OR ensemble 

(HM2) include crystal structure and three homology models. Labels indicate the protein 

domains (left) and residues (right) with the most relevant differences in terms of backbone 

and side chain orientations, respectively. White, yellow, pink and green representations 

correspond to crystal structures and homology models of μ-OR, δ-OR, κ-OR and ORL-1, 

respectively. 
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Comparison of the models with the target protein showed that the main structural 

diversity concerned the second and third extracellular loops which are not directly 

involved in ligand binding. Moreover, displacement of the first transmembrane 

domain was observed in protein structures obtained from the κ-OR template. A 

common difference within HM1, HM2 and HM3 concerned the orientations of 

Asp
3.32 

and Tyr
7.43

. Also, aromatic side chains of tryptophan residues within the 

active sites were differently oriented and affected the binding mode of opioid 

ligands. In addition, lysine side chain which is involved in the covalent binding 

with β-FNA in the μ-OR protein complex, and methionine residues showed diverse 

geometries within each ensembles. Figure 32a, 32b and 32c summarize the 

differences of backbone and side chain geometries for each ensemble.  

A standard screening run with the ChEMBL data sets described before was 

performed independently on each ensemble structure. In order to obtain a 

consistent definition of the binding pocket, residues in the range of 4 Å from all the 

ligands of the ensemble were taken into account. In this way, common binding 

pockets were defined within each ensemble, independently from the protein 

conformation. We evaluated the recognition capability of single ensemble 

structures and also combined docking results according to a multiple receptor 

conformation approach. Among the different procedures to combine docking 

results we used the ―best score‖ approach: we selected the best score for each 

ligand from the five independent docking runs, resulting in a unique list of docked 

compounds with relative best score which was used to define the ROC curves. This 

post-processing step was carried out with ICM tables allowing to store, sort, 

remove duplicates and, in this specific case, handle large databases. The results of 

this retrospective Virtual Screening are reported in Table 3.  
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Ensemble Subtype Docking performance (AUC) 

HM1 

μ-OR
* 

63.25 

δ-OR 62.27 

κ-OR 44.99 

χ-OR 48.41 

Combination 58.05 
 

HM2 

μ-OR 55.68 

δ-OR
* 

63.39 

κ-OR 49.94 

χ-OR 51.72 

Combination 58.51 
 

HM3 

μ-OR 50.89 

δ-OR 61.42 

κ-OR
* 

49.42 

χ-OR 49.78 

Combination 56.74 
 

Table 3. Docking performance for HM1, HM2 and HM3 ensembles. Asterisk indicates the 

crystal structure.   

 

These results showed that the μ-OR and δ-OR crystal structures better recognized 

known active compounds compared to the related homology models (HM1 and 

HM2), whereas κ-OR crystal structure in HM3 and κ-based models in HM1 and 

HM2 exhibited unsatisfying performance. Although the κ-OR side chain 

rearrangements, as introduced before, define a larger binding pocket able to 

accommodate ligands of different size, this large cavity allowed to both active and 

inactive chemicals to reach favorable binding poses, resulting in poor early 

recognition ability. Analysis of docking results concerning the κ-based homology 

model in HM1, confirmed that most of the best ranked compounds were flexible 

bulky ligands, similar to JDTic and most of them were inactive ligands. In spite of 

the poor performance, most of morphine-like compounds were properly located 

within the binding pockets with a consistent binding mode compared to the 

cocrystallized ligands. It is important to underline that even in presence of an 

optimal conformational ensemble, docking simulations can fail because of well 

known limitations and approximations of sampling and scoring steps, as 

extensively reported in literature.
232-234
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Although protein plasticity was taken into account in ligand docking, this outcome 

highlighted that the homology models were ill-suited to discriminate compounds 

and, hence, more permissive fluctuations had to be considered in the definition of 

protein conformations. Then, the HM1, HM2 and HM3were refined and evaluated 

by using ALiBERO approach which samples conformational space of side chains 

and protein backbone within the binding site by means of Elastic Network-Normal 

Mode Analysis (EN-NMA) and Monte Carlo sampling. 
97

 Details of this procedure 

are reported in the next section. ALiBERO approach iteratively defines 

conformational ensemble with an improved recognition capability against known 

active and inactive compounds. Starting with HM1, HM2 and HM3, multiple 

conformations were generated, ligand docking with the selected ChEMBL data sets 

described before was carried out, and the best performing conformations were 

combined to define novel protein ensembles. For each protein structure and 

conformational combination, ROC curves were built and the NSQ_AUC fitness 

function was also computed. The latter emphasizes the early hit enrichment of 

screening results and, at the same time, retains contribution for overall selectivity 

and sensitivity of the model.
150

 The protein ensemble consisting of five 

conformations with the highest NSQ_AUC were used as starting point to sample 

novel conformations with the EN-NMA method and this procedure was repeated 

five times to optimize the initial homology models. For the sake of simplicity, we 

refer to the ALiBERO ensembles defined from HM1 (μ-OR), HM2 (δ-OR) and 

HM3 (κ-OR), as AL1, AL2 and AL3, respectively. The final AL1, AL2 and AL3 

consisted of five conformations, reported in Figure 33 along with the resulting 

ROC curves.  

ALiBERO results showed an improved recognition capability compared to the 

original homology models and initial crystal structures. In particular, AL1 

exhibited AUC and NSQ_AUC values above 0.80 and 0.60 respectively. Also, 

good results were obtained for AL2 and AL3, with AUC > 0.70 and NSQ_AUC > 

0.50. 
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Figure 33. a) ROC curves of AL1, AL2 and AL3 are represented in red, whereas black and 

blue ROC curves correspond to the docking results obtained from the crystal structure and 

the homology models, respectively. b) Different side chain orientations within the binding 

pocket of AL1, AL2 and AL3. 

 

The final conformations within AL1, AL2 and AL3 were visual inspected. In 

details, AL1 consisted of μ-OR conformations with different rearrangements of 

tryptophan, methionine, tyrosine side chains within the binding pockets. Similar 

differences were observed for AL2 and AL3. We also found that AL2 

conformations were characterized by a significant difference of lysine side chain 

orientation compared to the other ensembles, resulting in a larger cavity to 

accommodate bulky ligands. The docked binding modes were analyzed, in order to 

evaluate if the highly conserved interactions of the most common opioid 

chemotypes were kept. For example, morphine-like scaffolds were carefully visual 

inspected and compared to the native poses of the cocrystallized ligands. In 

general, the majority of docked ligands in AL1, AL2 and AL3 systems were 

accommodated in the same binding pocket of β-FNA, Naltrindole and JDTic. On 

the other side, some binding poses were also found in more external cavities, 

especially when molecules were characterized by large size. For instance, some 

compounds with bulky functional groups bound to the morphine moiety were not 

properly accommodate and lost some conserved interactions with the receptor. 



 

111 
 

Overall, these preliminary results indicated that the binding pockets defined by 

using ALiBERO protocol displayed good screening capabilities with satisfying 

performance in the binding mode prediction.  

Eventually, the final ensembles will be assessed for their ability to discriminate 

active from inactive compounds belonging to external unrelated data sets compared 

to the training set used for the ALiBERO protocol. 

 

4.6 METHODS 

4.6.1 LIGAND DOCKING SETUP 

In the light of the high chemical diversity of opioid ligands, an homogenous 

selection of antagonist compounds from the ChEMBL database was carried out. In 

particular, actives and inactives were clustered based on their chemical structures. 

First of all, molecules with morphine-like moieties were separated from the 

remaining ChEMBL antagonists and classified, according to their scaffold, in: 

oripavines, morphine, morphinane and benzomorphane derivatives, that is 6, 5, 4 

and 3 fused ring systems, respectively. The rest of ChEMBL antagonists were 

classified based on other scaffolds characterizing further opioid ligands, such as 

phenylpiperidines, 4-anilinopiperidines, etc., as reported in Figure 29. Taking in 

consideration this classification, μ-OR, δ-OR and κ-OR datasets were defined. 

Moreover, molecules with a number of rotatable bonds larger than 12 were 

discarded, in order to consider a reasonable number of degrees of freedom during 

ligand docking. ICM software was used to define the three dimensional structures. 

In details, the MMFF types and charges, hydrogen atoms, tautomeric forms were 

assigned, whereas stereochemistry was retained from the 2D structures. In order to 

obtain the proper geometry of morphine-like molecules which generally exhibit a 

three dimensional T-shaped configuration, we improved the ICM tool used for 3D 

conversions. 

Opioid receptors were taken from the Pocketome database, which is a large 

encyclopedia of experimentally solved conformational ensembles of druggable 

binding sites in proteins, grouped by location and consistent chain/cofactor 

composition.
235

 When this study was performed, the Pocketome entry for each 

opioid receptor subtype included one crystal structure. As regards the binding 

pocket definition, residues within 4.0 Å from the ligands were selected in order to 
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define the boundaries of docking search and the size of the grids. Ligand binding 

site at the receptor was represented as 0.5 Å spacing potential grid maps describing 

van der Waals potentials for hydrogens and heavy-atoms, electrostatics, 

hydrophobicity and hydrogen bonding, as implemented in ICM docking 

software.
236

 The binding energy was defined through the standard empirical scoring 

function as described in Chapter 2 and docking results were analyzed with ICM 

tools.  

 

4.6.2 HOMOLOGY MODELING 

Ensembles of 3D models of each of μ-OR, δ-OR and κ-OR were built by homology 

using a hand-curated sequence alignment and the ICM homology modeling 

routine.
237-238

 All opioid receptor structures available when we started this study 

were used (PDB ID: 4DKL, 4EJ4, 4DJH and 4EA3 corresponding to μ-OR, δ-OR, 

κ-OR and χ-OR, respectively). Briefly, each model was initially built as a straight 

ideal geometry amino acid chain. Known disulfide bonds were assigned. For 

backbone regions conserved between the template and the target sequence, the 

coordinates of the template were assigned to the model atoms. Short residue 

insertions and deletions were refined by exhaustive conformational sampling. For 

longer insertions and poorly conserved loops that are less than 12 residues long, 

conformational lists were built by searching through a comprehensive library of 

PDB fragments of similar length and termini topology. Then, energy-based 

conformational sampling was performed to ensure steric compatibility and 

favorable packing of each loop with its environment. Each of the resulting models 

was energy minimized first by thorough conformational sampling of the residue 

side-chains in internal coordinates with fixed backbone, and then by gradient 

minimization of all atoms in the presence of distance restraints maintaining the 

conformational integrity of the model and conserved residue contacts. 

 

4.6.3 ALiBERO SETUP 

ALiBERO was used to refine the homology models, in order to obtain novel 

conformational ensembles in perspective of more accurate docking results. This 

method is based on the LiBERO framework
239

 and is an iterative algorithm 

consisting of two main steps: i) generation of multiple protein conformations and 
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ii) flexible-ligand static-receptor small-scale docking on each of the conformers. 

Then, the best performing children pockets are selected for next generation. This 

procedure is repeated until a termination condition has been reached, such as the 

number of iterations or a threshold for a fitness function. In this study, we started 

with four protein structures for the HM1, HM2 and HM3. In particular, an 

ALiBERO run consisting of 5 generations was carried out. For each iteration, 100 

conformers were generated by using EN-NMA at 300 K and Monte Carlo 

refinement, in order to promote slight side chain and backbone movements in the 

range of 1 Å. On every generation, a maximum number of five complementary 

pocket conformations was retained. The first ten complexes with the best scored 

active compounds were also subject to Monte Carlo refinement, in order to 

simulate the induced-by-ligand changes in the side chains. Then, the refined 

complexes were recombined resulting in optimized pocket ensembles. ALiBERO 

uses different metrics to evaluate the ability of the pockets to recognize active from 

inactive compounds. In this case, we used the Normalized SQuare root AUC 

(NSQ_AUC) which is an innovative fitness function, as described in the Chapter 2. 

In case the optimized pockets displayed better NSQ_AUC values compared to the 

previous generation, they were considered successful and represented the ―parents‖ 

of the next generation.  

 

4.7 CONCLUSIONS  

In this study, we performed ligand docking on the opioid receptor crystal 

structures, in order to investigate the recognition capability of these recent 

structures. The resulting poor docking performance offered the opportunity to 

investigate opioid receptor flexibility aimed to properly accommodate ligands 

within the binding pockets and, then, improve the recognition capability of known 

active compounds. However, the homology models generated for each subtype still 

displayed a low discrimination ability. Several computational methods are 

available to study protein plasticity in ligand docking and, more in general, in drug 

discovery context. Among them, we selected the EN-NMA and Monte Carlo 

algorithm to exhaustively sample the protein conformational space and define 

novel opioid receptor conformations with an improved recognition capability. In 

details, we used ALiBERO protocol based on these computational approaches to 
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combine the protein conformations, so as to define protein ensembles which 

maximized the discrimination of known actives from decoys. An interesting 

improvement of docking performance was obtained by using the ALiBERO protein 

ensembles. Moreover, these opioid receptor models well predicted atomic contacts 

with the small molecules. This result confirmed that multiple receptor 

conformations, defined through a carefully selected computational approach, can 

introduce a structural variability suitable to discriminate between actives and 

inactives belonging to diverse chemical classes. More in general, this study 

highlighted that ALiBERO protocol is a successful tool to introduce protein 

flexibility in a screening campaign.  

It is important to emphasize that ALiBERO results depend on the quality of the 

initial structures, ligands and parameters used for modeling the system. Therefore, 

a bad combination of these conditions may result in overfitting producing models 

with a poor predictivity outside the context of the training set. In order to confirm 

the quality of the collected conformational ensembles, different ALiBERO runs 

and comparison of the resulting docking performance will be evaluated. The final 

ensembles will be assessed for their ability to discriminate active from inactive 

compounds belonging to external unrelated data sets compared to the training set 

used for the ALiBERO protocol.  

Eventually, the validated ensembles may be used for a selectivity study, in order to 

investigate the role of protein flexibility to discriminate known chemicals not only 

within each conformational ensemble, but also among the three opioid receptor 

subtypes μ, δ and κ. This aspect is very important since it is related to side effects 

and limited use of the most common opioid therapeutics.   
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5. CONCLUSIONS AND PERSPECTIVES 
 

Protein receptor flexibility plays a key role in ligand binding. The lock-and-key 

model introduced by Fischer is based on the assertion that a protein receptor exists 

as a single conformation. However, with the advent of X-ray crystallography along 

with sophisticated experimental methods, it has been demonstrated that proteins are 

flexible entities undergoing local and global fluctuations upon ligand binding. As a 

consequence, the lock-and-key model was supplanted by the induced fit and 

conformational selection theories which better describe protein plasticity. 

According to these theories, the role of protein flexibility has become increasingly 

relevant in drug discovery and several computational approaches have been 

developed for this purpose.  

The projects presented in this thesis are two example of computational applications 

taking into account protein flexibility in Virtual Screening. Side chain fluctuations 

and wide motions of protein domains have been included in screening campaign, in 

line with the induced fit and conformational selection theories. In particular, we 

carried out conformational sampling through two different computational tools: 

MD-based methods and Elastic Network-Normal Mode Analysis with Monte Carlo 

sampling. Both methods led to exhaustive exploration of conformational space, 

resulting in the generation of diverse conformations. In both projects, we 

demonstrated that using single protein structures results in a low performance 

compared to a multiple conformational approach. To the best of our knowledge, 

they represent the first applications of multiple receptor conformational approaches 

in screening campaign concerning LDHA and opioid receptors. 

The analysis of the hit compounds from the LDHA Virtual Screening highlighted 

also an interesting chemical novelty compared to the known inhibitors. The present 

strategy was used to study a specific biological system characterized by a flexible 

loop affecting the active site rearrangement. However, it might be applied as 

general approach to include protein flexibility in Ensemble-based Virtual 

Screening. The hit compounds obtained from this screening campaign will be 

optimized, in order to identify novel lead compounds with an improved LDHA 

inhibitory activity.  

As regards the opioid receptor project, ALiBERO approach turned out to be an 

accurate protocol to refine homology models. This project highlighted that the a 
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careful selection of computational tools is required to define multiple 

conformations and that local rearrangements introduced through homology 

modeling might be not sufficient to promote the right accommodations of ligands 

within the binding site and the early recognition of known active compounds. The 

promising results suggest that ALiBERO protocol might represent a general tool to 

assess homology models and crystal structures.  

As next step, the opioid receptor conformational ensembles will be optimized and 

validated, in perspective of a screening campaign. The protein flexibility 

introduced in this study will be also exploited to study the selectivity of opioid 

ligands for specific opioid receptor subtypes, which is an important aspect of this 

class of chemicals to reduce their side effects. 
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