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Abstract

Assessment of the integrity of structural components is of great importance for

aerospace vehicles and systems, land and marine transportation, civil infrastructures

and the oil industry, as well as other biological and mechanical applications. In such

a context, guided waves (GW)-based inspection is an attractive means for structural

health monitoring (SHM).

In this thesis, the study and development of techniques to process ultrasonic signals

and time-frequency analysis in the context of applications of non-destructive testing

of structures will be presented. In particular, the research topics will focus on the

implementation of an embedded system for the localization of impacts on aluminum

plates and of composite material together with the time-frequency analysis techniques

for compression and reconstruction of the ultrasonic signals and compressive sensing

techniques for the acquisition with a sampling frequency lower than the Nyquist one

and localization of defects.

In guided wave inspections, it is necessary to address the problem of the dispersion

compensation based on the unitary warping operator that maps the frequencies axis

through a function derived by the group velocity of the material. This operator is

used to remove from the acquired signals the dependence on the distance traveled.

It was subsequently developed an embedded system for structural monitoring based

on ultrasonic waves to detect impacts. The procedure developed is based on sam-

pling of signals acquired by 4 piezoelectric sensors placed in a sparse manner on the

structure of interest and a card with STM32F4 Microcontrollers ARM Cortex - M4,
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which is used to implement the signal processing algorithm. The problem of the de-

termination of the instant of impact has been solved through the cross-correlation

of the signals acquired in warped frequency domain that has been implemented by

applying the Fourier transform followed by the non-uniform cross-correlation classical

in the frequency domain and subsequently using the classical inverse Fourier trans-

form. Through the cross-correlation of signals related to the same event but acquired

in different positions, the difference of the distances traveled can be determined and

used to locate the impact through a hyperbolic positioning algorithm.

As regards the study of techniques for time-frequency analysis of ultrasonic signals,

a new procedure for compression and reconstruction of ultrasonic signals based on

Compressive Sensing (CS) has been developed and applied guided waves analysis. Be-

side the study of subsampling techniques for the acquisition of signals, an algorithm

for the dispersive localization of structural defects based on the concept of (CS) for

the reconstruction of the impulse response of the structure under examination will

be presented. To locate the defect, it is necessary to identify the impulse response of

the medium and the contribution due to the reflections caused by the defect. This

algorithm uses the convolutive “model” of the propagation of ultrasonic guided waves

with a sparse representation in the warped frequency domain. This system has been

applied both to decrease the sampling frequency to improve both the spatial localiza-

tion of defects in monitoring systems using Lamb waves. The stage of reconstruction

is based on an approach of alternating minimization and iterative estimation of the

support to improve the accuracy through the estimation of both the shape of the pulse

excitation of the impulse response. The proposed model has been tested via simula-

tion and finite element Comsol PZFlex and currently there is an ongoing activity of

validation of the results of composite plates in the laboratory.
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Sommario

In questa tesi viene presentato lo studio e lo sviluppo di tecniche di processamento

di segnali ultrasonici e analisi tempo-frequenza nell’ambito di applicazioni di test

non distruttivo di strutture. In particolare gli argomenti di ricerca si si concentrano

sull’implementazione su sistema embedded di algoritmi per la localizzazione di im-

patti in piastre di alluminio e di materiale composito insieme a tecniche di analisi

tempo-frequenza per la compressione e ricostruzione di segnali ultrasonici e tecniche

di compressive sensing per l’acquisizione con frequenze di campionamento inferiori a

quella di Nyquist e localizzazione di difetti.

Nelle applicazioni basate su guide d’onda è necessario affrontare preliminarmente il

problema della dispersione per questo motivo la fase di studio è iniziata dall’analisi di

algoritmi di compensazione della dispersione basati sull’operatore unitario di warping

che mappa l’asse del frequenze attraverso una funzione definita a partire dalla velocità

di gruppo del materiale in esame. Tale operatore viene utilizzato per rimuovere dai

segnali acquisiti la dipendenza dalla distanza percorsa.

Successivamente è stato sviluppato un sistema embedded per il monitoraggio strut-

turale basato su onde ultrasoniche per il rilevamento di impatti. La procedura svilup-

pata si basa sul campionamento dei segnali acquisiti da 4 sensori piezoelettrici posti in

maniera sparsa sulla struttura di interesse e una scheda STM32F4 con microcontroller

ARM Cortex-M4 che è utilizzato per implementare l’algoritmo di processamento dei

segnali.

Il problema della determinazione dell’istante di impatto è stato risolto attraverso
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la cross-correlazione dei segnali acquisiti nel dominio della frequenza warped che è

stato implementata applicando la Trasformata di Fourier non uniforme seguita dalla

cross-correlazione classica nel dominio della frequenza e successivamente utilizzando

la classica Trasformata di Fourier Inversa. Attraverso la cross-correlazione di segnali

relativi allo stesso evento ma acquisiti in diverse posizioni, la differenza delle dis-

tanze percorse può essere determinata e usata per localizzare l’impatto attraverso un

algoritmo di posizionamento iperbolico.

Per quanto riguarda lo studio di tecniche tempo-frequenza per l’analisi di segnali

ultrasonici, una nuova procedura per la compressione e ricostruzione di segnali ul-

trasonici basata sul Compressive Sensing è stata sviluppata ed applicata all’analisi

della propagazione di onde guidate dispersive; infine è stato effettuato un confronto

con uno schema di riferimento tradizionale rappresentato dall’algoritmo Embedded

Zerotree Wavelet e codifica Huffman.

Nell’ambito dello studio di tecniche di sottocampionamento per l’acquisizione di seg-

nali dispersivi al fine della localizzazione di difetti strutturali verrà presentato un al-

goritmo basato sul concetto di Compressed sensing per la ricostruzione della risposta

impulsiva della struttura in esame. Per localizzare il difetto è necessario individuare

nella risposta impulsiva del mezzo il contributo dovuto alle riflessioni indotte dal

difetto stesso. Tale algoritmo utilizza il modello “convoluzione” della propagazione

di onde guidate ultrasoniche con una rappresentazione sparsa nella base nel dominio

frequenza warped. Tale sistema è stato applicato sia per diminuire la frequenza di

campionamento sia per migliorare la localizzazione spaziale dei difetti in sistemi di

monitoraggio tramite onde Lamb. Lo stadio di ricostruzione è basato su un approccio

di minimizzazione alternata e stima iterativa del supporto per migliorare l’accuratezza

tramite la stima sia della forma dell’impulso eccitazione che della risposta impulsiva.

Il modello proposto è stato testato tramite simulatore agli elementi finiti Comsol e

PZFlex ed attualmente è in corso una attività di validazione dei risultati su piastre

di composito in laboratorio.

v



vi

Acknowledgements

This thesis is the culmination of three memorable years spent at the University of

Bologna and I would be remiss not to thank all the wonderful people that have

contributed, directly or otherwise, to its creation. First and foremost, I wish to

express my gratitude to my advisors Prof. Guido Masetti, Dr. Ing. Luca De Marchi

who always followed me with patience, Prof. Nicolò Speciale and Prof. Alessandro

Marzani for life in general an to be a constant source of research inspiration and for

the great opportunity to travel in amazing places for conferences and to know in deep

the research atmosphere. I thank each of them for helping me grow as a researcher.

I wish to thank Dr. Steven Freear for their great perspective and feedback and his

group of researcher, Sevan, Benjamin, Peter, David, James, Robert, Chau, Mohamed

for the friendly atmosphere and for the unforgettable moments spent at the University

of Leeds.

My academic experience in Bologna has been enriched by a motley crew of students,

post-docs, professors. I wish to express my thanks in particular to Francesca, Mahdi,

Roberto with whom I experienced the beauty of walk and bicycle on Bologna hills

also with Luca, Pasquale “the boss”, Gaetano, Martino, Simona, Giovanni, Federico,

Fabio, Giuliano, Ilaria, Nicola, Susanna.

I would like to thank my first student I helped as thesis co-supervisor, Tommaso for

the friendship, the beautiful conversations and research moments. I could not have

asked for a more interesting and fun group to work with.

Outside of work, I have been fortunate to live in Bologna, a stunning city, full of



vii

history, full of people, students (including the unknown curly girl...). Bologna is

definitely a place to live. I cannot forget to remember the memorable moment spent

every day on summer with my old bicycle on the fascinating Bologna hills always

discovering new and unexpected stunning landscapes.

Thanks to my roommate Francesco for their valiant efforts to teach me how to cook,

and for providing several memorable dialogues at night. Special thanks to have met

my Leeds flatmates and student now scattered across the globe for the unforgettable

fun-filled experience and friendship: Christelle, Waleed, Javier, Cayetano, Mark, Shi-

rakata, Raed, Huynh, Sam, the International Cafè group, for the great memories and
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actuated pulse ŝ0 = W†ĥw (where ĥw is the estimated impulse response
in the warped domain), and (b) estimated warped reflectivity function
x̂w. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11.4 Experimental set-up used to validate the proposed CS procedure: A
actuator, R receivers, m added mass. . . . . . . . . . . . . . . . . . . 157

11.5 Experimental results: (a) input chirp signal sent to the power amplifier
and then to the PZT actuator (A), (b) signal acquired by sensor R1

when the mass is placed at coordinates x = 0.85 m and y = 0.45 m. . 158



xvi

11.6 Experimental results achieved by processing the acquired signal in Fig-
ure 11.5(b) with the proposed CS approach: (a) estimated actuated
pulse, (b) reflectivity function reconstructed by the CS algorithm with
superimposed the real distances related to the direct, scattered by the
defect, and reflected paths. . . . . . . . . . . . . . . . . . . . . . . . . 159

11.7 Spectrogram of (a) the actuated chirp s0 and of (b) the recovered
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Introduction

The main objective of Nondestructive Evaluation (NDE) is the detection and char-

acterization of defects that may compromise the integrity and the operability of a

structure. Conventional inspection can be expensive and time consuming and, very

often, the normal service of complex structures may be significantly affected.

In the last few decades the possibility of assessing continuously the integrity of com-

plex structures has fostered intense research in the field of Structural Health Moni-

toring (SHM) and several SHM approaches based on different inspection techniques

have been proposed [1].

The basic concept of SHM consists in inspecting a structure using permanently at-

tached or embedded sensors. It is evident that a reliable SHM system can potentially

alter the way complex structures are operated and maintained, because an optimal

functionality can be guaranteed minimizing the time in which the structure is out of

service and reducing significantly plant outage, as well as the costs associated with

conventional inspection.

SHM can also be useful in estimating the remaining life of components and can be

used to assess whether their replacement is needed.

Hence SHM appears extremely attractive for a wide number of engineering applica-

tions ranging from the aerospace industry, i.e. health monitoring of the fuselage of

aircraft while in service, to the chemical and power generation industries, i.e. inspec-

tion of storage tanks, pressure vessels and pipelines.

Figure 0.1 shows some possible engineering applications for SHM.
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Figure 0.1: Aerospace, oil and gas industry, chemical and power generation plants
are potential fields of application for SHM.

The feasibility of an SHM methodology is strongly dependent on the possibility of

effectively inspecting the structure from only a few locations.

Furthermore, it is crucial that the data recorded can be reliably interpreted to make

damage detection possible. In addition, the development of a reliable SHM technology

poses new challenges in several different fields, such as development of smart materials,

integration of sensors with the structure to be inspected, acquisition and transmission

of large amounts of data [2].

Among the SHM technologies, those based on ultrasonic guided waves have actracted

a considerable attention in recent years. Ultrasonic guided waves offer the possibility

of inspecting large areas from a small number of sensor positions and guided wave

inspection is now an established approach in NDE. In addition, it has been demon-

strated that acoustic emission signals in typical aircraft structures are a combination

of the fundamental A0 and S0 modes and that long propagation distances can be

achieved [3], [4].

Guided wave inspection is therefore attractive for the development of an SHM system

for the inspection of complex structures. However, guided wave inspection of complex

structures is difficult as the reflections from different features overlap.

Hence the ultrasonic time traces become very complicated and damage detection is

2



Introduction

a difficult task, i.e. the reflection from the damage site can be masked by reflections

coming from benign features.

The structure of this thesis broadly follows the sequence in which research was con-

ducted during this work.

In Chapter 1 a brief review of Lamb waves based SHM propagation in described and

an inverse procedure based on ultrasonic guided wave propagation is proposed for the

bamboofibers reinforced composites characterization. The procedure consists of an

optimization problem in which the discrepancy between the experimental dispersion

curves and those predicted through a numerical formulation is minimized. This tool

can be also exploited to predict the dispersion curves for complex materials such as

Carbon fibers or generic composite materials. This work has been published in [5].

Chapter 2 provides background informations about guided waves for SHM. In par-

ticular, the concepts of single unit and sparsely distributed arrays are illustrated

and several applications of these two approaches found in literature are introduced.

Subsequently the desirable requirements for robust signal processing of complicated

ultrasonic time traces are described.

Chapter 3 describes the warping procedure in the frequency domain and how it can be

exploited to compensate the dispersion of the Lamb waves leading to a sparsification

fo the signals.

In Chapters 4, 6, 5 the proposed algorithms to deal with the problem of passive

monitoring, i.e. impact localization are addressed. At first a framework based on

the cross-correlation between the dispersion compensated signals is described with

the theoretical lower limit on the localization. The proposed algorithm has been

implemented in an embedded board able to achieve low power consumption and

experimentally verified on an aluminum and carbon fiber plate. Finally an improved

version of the previous algorithm is developed in order to reduce the interference

due to reflection; this can be obtained performing a wavelet analysis on the cross-

correlated signal or performing a multiresolution wavelet analysis using a suitable

family of frequency warping bases.

This developed works have been published in [6], [7], [8], [9].

3
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In Chapter 7 a non-linear Lamb wave signal processing strategy aimed at extending

the capability of active-passive networks of PZT transducers for defect detection is

proposed. In particular, the proposed signal processing allows to use chirp shaped

pulses in actuation, instead of classically applied spiky pulses. To this purpose, the

acquired Lamb waves are processed by means of a two step procedure: a Warped

Frequency Transform (WFT) to compensate the dispersive behavior of ultrasonic

guided waves, followed by a pulse compression procedure. This damage localization

procedure has been proposed in [10].

Chapter 8 presents a pulse-echo procedure suitable to locate defect-induced reflec-

tions in irregular waveguides. In particular, the procedure extracts the distance of

propagation of a guided wave scattered from a defect within the echo signal, revealing

thus the source-defect distance [11].

In Chapter 9 a non-linear signal processing is investigated to improve the defect

detectability of Lamb wave inspection systems. The approach is based on a Warped

Frequency Transform (WFT) to compensate the dispersive behavior of ultrasonic

guided waves, followed by a Wigner-Ville time-frequency analysis and the Hough

Transform to further improve localization accuracy. This work was presented in [12].

Chapters 10, 11, 12 present the new paradigm of Compressive Sensing (CS) in order to

deal with the concept of sparsity of the signals. A CS approach for ultrasonic signal

decomposition suitable to achieve high performance in Lamb waves based defects

detection procedures in isotropic and composite materials has been developed.

This developed work has been published in [13].

Finally in Chapter 13 a novel signal compression and reconstruction procedure suit-

able for guided wave based SHM applications is presented. The proposed approach

combines the wavelet packet transform and frequency warping to generate a sparse

decomposition of the acquired dispersive signal. The sparsity of the signal in the

considered representation is exploited to develop data compression strategy based on

the Compressive sensing (CS) theory. The work has been presented in [14].

4
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Chapter 1
Guided Waves based SHM

Anxiety’s like a rocking chair. It gives you

something to do, but it doesn’t get you very far.

Jodi Picoult

1.1 Introduction

Isotropic elastic bulk media support two types of wave motion, longitudinal and shear.

A longitudinal wave has its displacement in the direction of propagation, while a shear

wave has its displacement perpendicular to the direction of propagation. These waves

propagate with different velocities, where the velocity of the shear wave, cS, is lower

than the longitudinal wave’s velocity, cL.

Consider a harmonic plane wave, s(x, t), propagating along the x-axis in a medium.

Harmonic refers to a wave consisting of a single angular frequency, ω. Waves having

constant phase over a plane, in this case perpendicular to the x-axis, are referred to

as plane waves.

The wave at position x and time t, can be described in complex form as

s(x, t) = Aej(ωt−kx)

where k is the wavenumber and A is the amplitude of the wave.
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The wavenumber k is related to the phase velocity of the wave, cp, as

k =
ω

cp

Henceforth, the harmonic dependency ejωt will be assumed implicitly for notational

convenience. The longitudinal and shear waves mentioned above both have frequency

independent phase velocities, which results in linear frequency-wavenumber relation-

ships. This means that these waves are non-dispersive and the shape of the waves

will be preserved during propagation. When the dimensions of the media approach

the order of the wavelength, it starts behaving as a wave guide.

Waves propagating in a wave guide are called guided waves. Such waves in infinite

elastic plates were first described and analyzed by Horace Lamb in 1917, and they

are therefore called Lamb waves.

In application oriented publications, a commonly occurring name for guided waves in

plates are guided Lamb waves. In contrast to bulk waves, guided waves are dispersive,

i.e. they have frequency dependent dependent velocity. This means that the shape of

a wave packet changes during propagation. Another property Lamb waves shares with

other types of guided waves is the possible existence of multiple propagation modes.

These so called Lamb modes follow different dispersion relationships, i.e., the relation

between phase velocity and frequency depends on the mode. As a consequence, there

may be several propagation velocities even for a single frequency. Depending on the

thickness of the plate and the frequency of the wave, anywhere from two to infinitely

many Lamb modes can propagate in the plate.

Compared to Rayleigh waves, which propagate in a shallow zone below the surface

of a material, Lamb waves have through-thickness displacement permitting detection

of defects both within and close to the surface of the plate. This, along with their

ability to propagate over long distances, make them suitable for both inspection and

monitoring of plate structures. Beside Lamb waves, there is another type of guided

wave modes in plates called shear horizontal (SH) modes. These modes propagate

with displacements in-plane, i.e. parallel to the plate, compared to Lamb waves which

have only out-of-plane, i.e. perpendicular to the plate, components perpendicular

6
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to the direction of propagation. The SH-waves have not been given any special

consideration in this work since the setup used for the experiments cannot detect this

type of wave motion.

1.2 Basic Model of Propagating Lamb Waves

Consider an isotropic homogeneous plate of thickness d illustrated in Figure 1.1. In

this plate, harmonic waves of angular frequency ω can propagate in a number of Lamb

modes.

Figure 1.1: One dimensional plate model. A surface stress T(ω) normal to the plate
excites propagating modes in the plate.

Let cp,n(ω) denote the phase velocity of the n-th mode at ω, yielding the corresponding

wavenumber kn(ω) = ω/cp,n(ω).

Consider now a line source producing a harmonic surface stress perpendicular to the

plate at u3 = 0, with u3 indicated in the figure, and let T(ω) denote the amplitude

of the stress. The excitation of mode n from the surface stress is modeled by the

transfer function Hn(ω).

The normal displacement on the plate surface of the resulting wave propagating in

the u3 direction is then given by

Un(ω, u3) = Hn(ω)T(ω)e−jkn(ω)u3

The total displacement at u3 is given as a superposition of the modes

U(ω, u3) =
∑
n

Hn(ω)T(ω)e−jkn(ω)u3 (1.1)

7
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where the sum ranges over the possible modes at frequency ω. The above scenario

corresponds to a line source. A better representation of the small array elements

considered in this work is to consider them as pointlike sources. Such a source, pro-

ducing an out-of-plane harmonic stress with amplitude T(ω) at the origin, generates

a cylindrical wave that will diverge radially as it propagates. Its displacement field

can be approximated by

U(ω, r) =
∑
n

1√
r
Hn(ω)T(ω)e−jkn(ω)r

1.3 Rayleigh-Lamb equations

Consider again the plate introduced in the previous section with thickness d. Lamb

modes can be either symmetric, i.e. with symmetric wave shapes across the plate

thickness, or antisymmetric, i.e. with antisymmetric wave shapes. A wavenumber, k,

of a possible propagating Lamb mode for a given frequency, ω, is a real solution to

the Rayleigh-Lamb characteristic equations

tan(qd/2)

tan(pd/‘2)
= − 4k2pq

(q2 − k2)2
for symmetric modes (1.2)

tan(qd/2)

tan(pd/‘2)
= −(q2 − k2)2

4k2pq
for antisymmetric modes (1.3)

(1.4)

where

p2 = (ω/cL)2 − k2 and q2 = (ω/cS)2 − k2

cL is the longitudinal wave velocity and cS is the shear wave velocity.

As mentioned earlier, for a given frequency there are typically several wavenumbers

satisfying the Rayleigh-Lamb equations 1.2, each corresponding to a separate mode.

For the lowest frequencies there are two solutions, the fundamental (anti-)symmetric

(A0)S0 mode. The successive solutions for increasing frequencies, result in higher

order modes. These are numbered (A1)S1, (A2)S2, and so forth. The frequency

limit above which a particular mode can exist is called the mode’s cut-off frequency.

To allow a simple notation in equations a single index, n = 0, 1, 2, 3, . . . , is used to

8
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identify modes S0, A0, S1, A1,. . .. The group velocity is the velocity at which the

envelope of a narrowband wave packet propagates.

It is related to the wavenumber as

cg =
dω

dk

The group velocity provides insight into the amount of dispersion each mode is sub-

jected to in various frequency bands. At frequencies where the group velocity changes

sharply the wave is severely dispersed, while a frequency region with constant group

velocity indicates low dispersion. As mentioned earlier, for non-dispersive media there

is a linear relationship between the frequency and wavenumber, making the group ve-

locity equal to the phase velocity cp = cg.

Figure 1.2 shows the phase and group velocities of the solutions to 1.2 for a 3 mm

aluminium plate.

9
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Figure 1.2: Lamb waves dispersion curves for a 2.54-mm thick aluminum plate. (a)
Group velocity cg(f), (b) wavelength λ(f).

In the next Section a procedure to estimate the dispersion curves for bamboo fibers

which could be applied for generic composite materials is presented.

1.4 Guided Waves on Composites

In the present study, an inverse procedure based on ultrasonic guided wave propaga-

tion is proposed for the bamboo fibers reinforced composites characterization. The

procedure consists of an optimization problem in which the discrepancy between the

experimental dispersion curves and those predicted through a numerical formulation

is minimized.

Elastic stress waves analysis is an especially attractive method for identification of

elastic constants of either isotropic or orthotropic materials [15].

Numerous approaches based on bulk waves (BW) were proposed [16], and, more re-

10
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cently, researchers are exploiting the dispersive properties of guided waves (GW) to

characterize material properties in waveguides such as beam-like or plate-like struc-

tures. Compared to BW, the use of GW for material characterization provides a

set of information at several different frequencies that can proficiently used for the

identification procedure. In fact, for a given waveguide geometry, the wave dispersive

behavior is related to material properties.

As the wave dispersive features and the inverse methods are numerous, the literature

on inverse methods based on the propagation of GW is extensive [17].

In this Section we investigate the usage of group velocity dispersion curves and Genetic

Algorithms (GA) to determine the elastic constants of waveguides.

In particular, we investigate guided wave characterization of bamboo laminates. The

use of GA coupled with ultrasonic testing for material characterization is not new. For

instance, Balasubramaniam and Rao [18] reconstructed material stiffness properties

of unidirectional fiber-reinforced composites from obliquely incident ultrasonic BW

data by using GA. More recently, a GA procedure where the optimization function is

based on the Lamb waves velocities calculated for a single frequency-thickness value

at different angles of propagation (using a circular array of receivers) was proposed

to reconstruct all nine elastic moduli of orthotropic plates [19].

In this study, the novelty consists in extracting dispersive guided waves data, i.e.

not at a single frequency-thickness value but over a frequency range, for a reduced

number of directions of propagation (reduced number of sensors), to build the GA

objective function.

In particular, the objective function is built on the discrepancy between the group

velocity dispersion curves of few waves computed numerically, by Semi-Analytical

Finite Element (SAFE) formulations [20], and those obtained experimentally. Group

velocity curves can be extracted experimentally over a wide frequency range from a

single time-transient event via time-frequency transforms (TFRs). The GA driven

procedure iteratively updates the material properties in the SAFE formulation in

order to minimize the fitness function. The iteration is terminated when the set GA

decision making criteria are satisfied.

11
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1.5 Genetic Algorithm

The material parameters Cij are estimated by satisfying a fitness function based on

the discrepancy between the experimental and numerically predicted group veloc-

ity curves, cexpg and cnumg , respectively. Experimentally, group velocity curves can

be extracted from a single time-transient measurement by means of time-frequency

transform (TFR) [21], as schematically depicted in Figure 1.3.

Figure 1.3: Extraction of modal group-delays through the reassigned spectrogram.

A TFR yields a contour plot that retains the time-frequency energy content of the

propagative waves. For a known distance of propagation (distance source-receiver),

the cexpg for each wave can be obtained by taking the time of arrival of the correspond-

ing TFR peaks at the various frequency values. In our approach, the reassigned spec-

trum [22] is computed on the acquired waveforms related to different orientations.

The TFR ridges corresponding to the dispersion curves are deduced from the sta-

tionary points of the reassignment operators. Numerically, group velocity curves are

computed by using a SAFE formulation [20]. The plate, considered infinite in the

in-plane 1-2 directions, can be composed of several distinct lamina in the thickness

(direction 3) and is characterized by the elastic properties Cij. Given a frequency

wi = 2πfi, and the wave propagation direction θ, the group velocity cnumg (θ, fi) for

12
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the different modes can be obtained. The proposed fitness function reads as:

J(Cij) =

Nθ∑
θi=1

{
R∑
k=1

Φ(Cij, θj,PK, D)

}
(1.5)

where Φ(Cij, θi,PK, D) is the distance between a given extracted ridge point PK, and

the slowness curves D/cnumg calculated for material parameters Cij and direction θi

as shown in Figure 1.4).

Figure 1.4: Calculation of the distance between an extracted ridge point and the
slowness curve for a given mode.

The iterative GA procedure is initiated by assuming an initial guess of the plate elastic

properties C0
ij. These guesses are used to compute the initial group velocities values

cnumg . Based on these values the fitness function of Eq. 1.5 is evaluated the first time.

The GA procedure iteratively updates the values of the mechanical parameters Cij in

the procedure until the GA requirements are reached. The minimization process is

treated as a constrained optimization problem. Constraints are related to the lower

(LB) and upper (UP) values that the design variables, Cij, can take (LB ≤ Cij ≤

UP ).

13
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1.6 Numerical and Experimental Testing

A transversely isotropic plate 1 mm thick is simulated. The plate has an overall

material density ρ = 1560 kg/m3 and its elastic coefficients referred to the principal

axes 1-2-3, where 1 ≡ θ0 is the fiber direction and 3 is the trough-thickness direction,

are given in Table 1.1.

11 12 13 22 23 33 44 55 66

143.8 6.2 6.2 13.3 6.5 13.3 3.6 5.7 5.7

Table 1.1: Elastic properties Cexp
ij (θ0) in [Gpa].

In this study, guided waves are computed in the frequency range 0−500 kHz, for which

up to three guided modes exist (nm = 3), namely A0, S0 and SH0, 3 SAFE elements

were used to guarantee an accurate solution. The group velocities were computed

at 20 different frequency values (nf = 20) by using a frequency step of around 35

kHz ( fi = 1, 35, 95, 70, 90, 700 kHz). Four different wave propagation directions were

considered (θ1 = 35, θ2 = 55, θ3 = 70 and θ4 = 85). Different set of θi were tested.

The values in Table 1 were used to extract the dispersion curves cexpg and to simulate

wave modes propagation in the 4 directions. Next, an initial guess of the material

properties C0
ij was generated as:

C0
ij(θ

0) = Cexp
ij (θ0)×

[
1− rand ∆

100

]
, ∀ij

where rand, the random function of Matlab, generates a pseudorandom number be-

tween 0 and 1 and 0 ≤ ∆ ≤ 104 is used to scale the random number. These values

were passed to the GA scheme as a set of initial values.

The GA procedure, takes the initial values into account and computes C0
ij(θi), c

num
g ,

and evaluates the fitness evaluated for each of the 50 chromosomes of the initial

population. Next, the GA perform mutation, crossover and elitism until the imposed

decision criteria are satisfied.

Here, the tolerance for the fitness function was taken as toll = 1e−30 and the maximum

14
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number of generations was set equal to 500. The number of elite, the crossover fraction

and the migration fraction were taken as 2, 0.8 and 0.2, respectively.

The results of the identification procedure, obtained for ∆ = 10 are collected in Table

1.2.

Cij Cexp
ij C0

ij e% init CID
ij e% final

C11 143.8 125.00 13.077 142.7 0.76283

C12 6.2 5.9312 4.3359 6.0666 2.15156

C13 6.2 5.9312 4.3359 6.0666 2.1515

C22 13.3 13.756 3.4262 13.302 0.01287

C23 6.5 8.826 35.784 6.4856 0.22093

C33 13.3 13.756 3.4262 13.302 0.01287

C44 3.4 2.4649 27.504 3.408 0.23635

C55 5.7 7.2786 27.694 5.6804 0.34348

C66 5.7 7.2786 27.694 5.6804 0.34348

Table 1.2: Identification results for ∆ = 20. Elastic coefficients in [GPa].

As it can be seen for both cases, all the nine elastic coefficients are identified with

great accuracy.

Experimentally, the inverse procedure scheme is tested to characterize the elastic ma-

terial properties of a sandwich panel, which consists in [0°/90°/0°/90°] unidirectional

layers of bamboo fibres plus an intermediate isotropic core of balsa wood.

Each bamboo lamina has a thickness of 0.25 mm, the balsa core thickness is 5 mm,

for an overall laminate thickness of 7 mm.

Experimental data were obtained by adopting a PZT setup. The exciting signal is a

chirp pulse as shown Figure 1.5.
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Figure 1.5: Ridge extraction from experimental bamboo data.

A suitable charge amplifier was designed to increase the ultrasonic signal dynamic

range. The elastic parameters extracted with the proposed GA procedure are com-

pared to the ones extracted with destructive procedures showing a good agreement.
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Chapter 2
Structural Health Monitoring Applications

People could put up with being bitten by a wolf

but what properly riled them up was a bite from

a sheep.

James Joyce

In the last few decades Structural Health Monitoring (SHM) has attracted consider-

able attention with the increasing need for the development of systems able to monitor

continuously the structural integrity of complex structures.

Damage detection in the structure by visual inspection or by conventional nonde-

structive techniques can be prohibitive for many reasons, such as the inaccessibility

of some areas. In addition, conventional nondestructive techniques can be quite de-

manding in terms of the time required for the inspection which results in a prolonged

period in which the structure to be monitored is not available.

This problem is particularly important in the aerospace industry and chemical and

nuclear plants. To address these issues considerable effort is currently focused on the

development of convenient SHM equipment that can effectively detect the occurrence

of damage in the structure and can provide information regarding the location and

the severity of damage and possibly about the remaining life of the structure.

An SHM system, able to continuously assess the health of a structure, can potentially

change the way in which safety critical structures are monitored and maintained over
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their lifetimes, reducing significantly the duration of the period in which the structure

to be inspected is out of service. Therefore the development of an efficient SHM

system is crucial for the opportunity of maintaining a continuous assessment of the

integrity of the structure, in order to facilitate the detection of critical defects and the

observation of the growing of pre-existing cracks, originally below the critical size.

The purpose of this Chapter is to specify the main features of a guided wave SHM

system and the requirements to make this kind of equipment competitive with tradi-

tional inspection methods. The concept of SHM can be applied to several industrial

fields; without loss of generality we will be especially oriented to the description of a

monitoring system for structures of interest in aerospace industry. According to their

operational strategy SHM systems can be divided in two main groups that in the fol-

lowing will be termed passive SHM and active SHM systems. A passive SHM system

is based on detecting changes in a chosen property of the structure in a passive way.

Typical examples are given by the detection of strain fields induced by crack growth,

of changes in the vibration characteristics, or of cyclically-operating structures due

to growth of defects.

The main difference between a passive and an active SHM system is represented by

the fact that in the latter the sensors are directly excited and the excitation is there-

fore transmitted to the structure. The response of the structure to this excitation

represents the information to be measured and evaluated in order to obtain informa-

tion regarding the integrity of the structure. An example of this approach is provided

by the vibration based techniques in which the structure is excited with a pulse and

the vibration modes are evaluated by response measurements in the structure with

accelerometers placed at strategic positions. The two different approaches for the

design of a Structural Health Monitoring system will be further discussed in the fol-

lowing sections. In particular the next section will describe briefly the application of

passive systems for SHM and subsequently our attention will be concentrated on the

application of active systems for the monitoring of complex structures.
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2.1 Passive systems for SHM

Among the passive SHM systems, Acoustic Emission (AE) represents the most ex-

tensively used technique for defect detection on complex structures. The basic idea

is that crack propagation and the growth of a pre-existing defect, including corro-

sion, generates waves which can propagate in the structure and can be received by

sensors located several metres away from the source with sufficient amplitude. The

successful reception of these waves by sparsely distributed sensors shows the signals

are propagating across several features in the structure; hence a study of acoustic

emission is also a good starting point for better understanding of the issues related

to an active guided wave SHM system. Although potentially attractive and widely

used for investigation of complex structures, AE presents some relevant drawbacks

which restrain its application in SHM. In particular it is important to stress that

AE is highly sensitive to noise or background noise interference, which are especially

severe in aircraft applications. More importantly, many damage types, such as failure

in ductile materials, give very low sound emission, making impractical reliable ap-

plication of the AE technique. In addition commercial AE systems cannot estimate

quantitatively the severity of the damage in the structure; hence other NDE methods

are required for a complete examination of the structure under inspection in order to

provide quantitative results.

2.2 Active systems for SHM

Among the active SHM systems used to evaluate complex structures the most studied

are those based on vibration mode analysis and on the use of sound waves (either

guided waves or bulk waves). Both use sensors to transmit an excitation to the

structure and to gather information on the integrity by analysing the response. Since

ultrasonic guided waves can propagate for long distances they offer the possibility of

inspecting large areas from a small number of sensor positions.

The main idea is to measure and evaluate the reflections of these waves from features
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or from defects through convenient signal processing techniques making possible the

location of defects and the assessment of the effective integrity of the structure. The

sensors employed in guided wave-based systems are generally used both as emitters

and receivers of sound waves. The inspection strategies for SHM are based on the

conventional NDT techniques of inspection in pitch-catch mode or pulse echo mode.

Different concepts of sensor arrays have been proposed and some examples will be

discussed in the following sections. There are several cases of successful guided wave

inspection systems developed for the inspection of structures that are characterized

by their relative simplicity and low feature density, such as pipes, rails, plates and

small structures, which will be discussed in the next sections. These systems allow the

operator to detect the location of damage in the structure. Although these structures

are fairly simple, they can be considered a good idealisation for the design of an SHM

system which could be also employed for the inspection of complex structures.

Single mode transduction for an active Guided wave SHM system

The choice of which guided wave mode to use in any inspection system and over

what frequency range is of crucial importance. In particular when the feature density

is quite high as in an airframe, the classical strategy is to increase the inspection

frequency so that the wavelength is reduced, in order to obtain discrete echoes from

successive features. It has been demonstrated that the modes propagating in typical

aircraft structures in the high frequency range are very complex and that it was not

possible to obtain reliable propagation across a succession of typical stiffeners and

joints.

However, it has been shown that acoustic emission signals propagate long distances

through aircraft structure and are usually a combination of A0 and S0 Lamb waves

in the relatively low acoustic emission frequency regime below the cut-off frequency

of the A1 mode. Therefore the low frequency region appears the more suitable for

the excitation of an SHM system. Hence the choice of the excitation is restricted

to three possible modes (S0, SH0 and A0). However, the S0 mode suffers from an

increasingly long wavelength at low frequencies, and hence lower defect resolution.
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The slower SH0 mode has a correspondingly shorter wavelength, but is difficult to

excite in a simple fashion for SHM applications. The A0 mode is commonly regarded

as being highly attenuated in structures in contact with liquid and therefore of limited

applicability for long range testing. However, there is a low frequency regime where it

is not attenuated by surrounding liquid because its phase velocity is too low to allow

energy leakage.

In addition, the wavelength for the A0 mode in the region of interest is always lower

than the wavelengths of the S0 and SH0 modes and therefore the A0 mode can still

offer reasonably high resolution in detection capability.

An SHM system operating at low frequencies will be excited by transducers by ap-

plying localized forces in the same direction as the characteristic displacement of the

mode to be excited. When an harmonic point force is applied to the surface of the

structure, guided waves will be produced and will propagate in circular wave-fronts

centred in the transducers.

Guided wave SHM arrays

SHM systems based on guided waves can be divided in two main groups with respect

to the concept of transducer arrays adopted. The two groups can be termed as

(i) single unit arrays, (ii) sparsely distributed arrays. Single unit arrays contain a

relatively large number of individual transducers in a single housing and typically

each element is used as a transmitter and receiver. If the response at each element is

measured when each element in turn is switched as a transmitter, focusing techniques

can be used to propagate a beam in each direction around the array.

Several projects have been conducted on the development of single unit arrays for

SHM and some of them will be discussed in the next section. The second conceptual

design for SHM arrays is represented by a distributed sparse array of simple elements.

According to this approach, point source transducers will be distributed throughout

the structure, in order to create a network of simple elements permanently attached

to the structure.

A sparsely distributed array is able in principle to detect the presence of a crack
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regardless of its geometry and relative position with respect to the elements of the

array. Damage location can be achieved through triangulation, since theoretically the

information from three independent sensors regarding the arrival time of the reflected

wave from the crack is required.

In contrast, a permanently attached single array would encounter detection problems

for defects lying along certain orientations (e.g. parallel to the direction of propagation

of the guided waves), or in the case of a deployable single array several different

inspection positions would be required in order to identify the presence of a defect;

a sparsely distributed array would allow several different sensors to receive signals

from a single transmitter, so there would be a combination of transmitter-receiver

for every crack orientation. However, since the amplitude of the reflections coming

from a defect is dependent on the angle of incidence of the guided waves, it is still

possible to have detection problems, especially in correspondence of those angles of

incidence for which the reflectivity is null. In addition, the performance of distributed

sparse arrays can be strongly dependent on the environmental conditions, such as

temperature variations and surface conditions of the structure under inspection.

There are other practical advantages in using a sparsely distributed array for SHM

instead of a single unit array. An element in a sparsely distributed array is a single

channel device which requires relatively straightforward electronics compared to the

electronics needed by a multi-element deployable array. In addition, for the coverage

of a given area the number of distributed sensor elements required is lower than the

number of elements required in a single array unit.

Damage localisation with a single array unit is necessarily based on beam steering,

which requires the array to be several wavelengths in diameter and to contain a mini-

mum number of elements per wavelength and consequently the exciting and receiving

routines and the correct phasing between the transducers can become extremely com-

plex.

Whereas activity in the development of single unit array is a well established research

field in SHM, the development of a sparse distributed array of simple elements for

SHM represents a relatively new area of investigation and poses new challenges in
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terms of miniaturization and integration of the sensor elements with the structure

and in terms of efficient signal processing techniques able to treat the amount of

data recorded by the sensors. A feasibility study [23] about the possibility of using

a distributed array of guided wave sensors to monitor an entire structure has been

conducted at the University of Bristol. Another study of spatially distributed array

for in-situ location of defects in large plate-like structures has been proposed by

Michaels [24]. The approach proposed is based on the use of broadband Lamb waves

and in the continuous monitoring of the received signals, in order to achieve damage

location. In particular several signals were recorded for different frequencies and for

all the possible transmitter-receiver pairs; the signal were conveniently combined for

generating several images for the same structural state. The combination of several

images result in an improved damage detection.

Another piece of work conducted by Michaels is based on the generation of two di-

mensional images of plate-like structures by means of tomographic and phased array

methods. The images are obtained combining the signals recorded by a sparse ar-

ray of distributed ultrasonic transducers. This approach has been used for damage

detection problems in aluminium plates by comparing the image obtained for the un-

damaged plate with the image obtained after small drilled holes have been introduced

as artificial defects. Significant effort has been also devoted to the integration of SHM

system with the structure to be inspected.

An interesting work, proposed by Giurgiutiu [25], is based on the use of piezoelectric

wafer active sensors (PWAS) that can be directly mounted on the surface of plate-like

structures or even embedded between layers of composite structures. These transduc-

ers were used in both pitch-catch and pulse-echo configurations to generate/receive

Lamb wave modes and were used successfully for crack detection also on a real aircraft

panel. An important step in the integration of SHM system with complex structure

is represented by the SMART layer developed by Acellent Technologies Inc. in col-

laboration with Stanford University. The layer can be mounted on existing structure

or integrated into composite structures providing built-in nondestructive assessment

of the internal and external integrity of the structure. The SMART layer consists of
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a network of piezoelectric elements supported on a flexible printed circuit substrate.

In this way a whole array of sensors can be embedded in the structure and issues

related to the integration of the monitoring system are significantly reduced. In ad-

dition, by exploiting the flexibility of the printed circuit technique, a large variety of

size, shapes and complexity are possible for the SMART layer. Basic shapes include

a circular and three-dimensional shell. Furthermore the printed circuits guarantee a

very good integration because they are able to deform with the structure. Following

the pioneering work on the SMART layer, an interesting project for the development

of a hybrid piezoelectric-fibre optical diagnostic system for aerospace structures has

been proposed by Qing et al.. A more complex SMART layer, containing a network

of piezoelectric elements and fibre gratings, is used in the same fashion to evaluate

the integrity of metallic and complex structures. Piezoelectric actuators input a con-

trolled excitation to the structure and fibre optical sensors are used for monitoring

the corresponding structural response. With this approach decoupling between input

and output signals can be achieved, since the piezoelectric transducers use electrical

channels and the fibre optical sensors use optical means. This equipment can be used

to perform in-situ detection of structural defects and damage including delaminations

and corrosion.

2.3 Signal processing for Structural Health Moni-

toring

From what has been previously reported we can deduce that SHM is an attractive

research field of continuously growing importance and it can potentially modify the

way in which complex structures are designed, operated and maintained during their

lifetimes. We observed that ultrasonic guided waves offer the possibility of inspecting

large areas from a small number of sensor positions, since they can propagate over

long distance. Therefore guided waves represent a promising means for the inspec-

tion of complex structures and their characteristics have been extensively studied in
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conventional nondestructive evaluation. However, inspection of complex structures is

difficult as the reflections from different features overlap. Estimating the number and

amplitude of the wave packets contained in ultrasonic time traces is therefore crucial

for the development of a successful guided wave inspection system, in order to enable

damage to be detected and located by identifying changes in the measured signal

over time. Therefore an appropriate and robust signal processing tool for Structural

Health Monitoring must be able to resolve closely spaced events and to distinguish

reflections due to the presence of a defect from reflections caused by structural fea-

tures. Other desired requirements for signal processing algorithms to be applied in

SHM, can be briefly listed as follows:

• Ability to reduce the noise on the damage estimate;

• Capability of enhancing the SNR in the data, for instance removing distortion

introduced by the measurement channel;

• Robustness to modelling error, since material properties, noise characteristics

and other variables may be only approximately known and therefore the algo-

rithms should be able to cope with the related uncertainties;

• High flexibility and easy implementation for handling the signal processing of

large amounts of data recorded at sensors embedded in the structure.

The main objective of this work is to devise suitable signal processing techniques that

can be effectively used to retrieve useful information about the integrity of a complex

structure monitored by a sparse distributed array of piezoelectric sensors.

Furthermore in the following a new framework is presented in order to exploit the

concept of sparsity of the ultrasonic signals within a proper basis to achieve high

resolution through the use of the Compressive sensing.
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Chapter 3
Frequency Warping Operator

The road of excess leads to the palace of wisdom.

William Blake

3.1 Introduction

Guided Waves (GWs) have characteristic dispersive time-frequency representations

(TFRs). Unfortunately, any TFR is subjected to the time-frequency uncertainty prin-

ciple. This, in general, limits the capability of TFRs to characterize multiple, closely

spaced guided modes from a time transient measurement, over a wide frequency range.

To overcome this limitation, a warped frequency transform (WFT) is presented that

in force of a more flexible tiling of the time frequency domain shows enhanced modes

extraction capabilities. Such tiling is chosen to match the dispersive spectro-temporal

structure of the waveguide by selecting an appropriate map of the time frequency

plane. The proposed transformation is fast, invertible, and covariant to group delay

axis. In particular, the design and calculation strategies for maps tailored to Lamb

waves propagating in an aluminium plate are described.

The results show that the proposed WFT limits interference patterns which appears

with others TFRs and produces a sparse representation of the Lamb waves pattern

that can be suitable for identification and characterization purposes.
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In this Chapter the warping operator is introduced. Furthermore a new tiling of the

TF plane is performed through an innovative reshape of the wavelet filters in the

frequency domain. This leads to a new nonstationary wavelet multiresolution scheme

able to improve the reconstruction of the ultrasonic signal.

3.2 Notation

Throughout this Chapter, lower case letters are used to represent signals in time

domain while upper case letters represent signals in frequency domain. The symbols

F and F are used to denote the Fourier operator respectively in continuous and

discrete domain. All signals are considered to be elements of the Hilbert space of

square-integrable functions L2(R), which has inner product

〈s, h〉 =

∫
R
s(τ)h∗(τ)dτ

for s, h ∈ L2(R) and norm ‖h‖2 = 〈h, h〉 where (·)∗ denotes the complex conjugate.

Operators on the Hilbert space are expressed using boldface capital letters.

The notation (Us)(x) is used to denote processing the signal s by the operator U and

evaluating the result at x. A unitary operator U is a linear transformation that maps

the Hilbert space into itself. Unitary operators preserve energy and inner products;

‖Us‖ = ‖s‖

〈Us,Uh〉 = 〈s, h〉

As a consequence, a unitary operator maps a set of orthonormal bases in L2(R) into

another set of orthonormal bases in L2(R). The symbols W andW are used to denote

the Warping operator respectively in continuous and discrete time warped domain.

3.3 Frequency Warping

The construction of warped wavelets is based on the design of discrete and continuous

time frequency warping operators in order to compensate the dispersion of a single
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dispersive propagation mode. Since that an infinite number of TFRs and processing

tools can be obtained by using unitary transformations, as reported in [26], we propose

a unitary operator based on frequency warping which can be used for the analysis of

dispersive guided waves. These operators deform the frequency axis with a proper

warping function w(f) [27]. To guarantee invertibility of this process, w(f) must be

chosen so that

dw(f)

df
=̇ ẇ(f) > 0 ⇒ ∃w−1, w−1(w(f)) = f,

where ẇ represents the first derivative of the map w with respect to frequency and

w−1 is the functional inverse of w. So a regular class of warping operators whose

warping characteristic is a smooth monotonically increasing function is considered.

Given a generic signal s(t), the continuous frequency warping operator F(W(s))(f)

is defined as follows:

Definition 3.3.1: Suppose that w is a strictly increasing and continuously differen-

tiable real function. Given any s ∈L2(R) the warping operator W is defined by its

action in the Fourier domain as

(FWs)(f) =

√
dw(f)

df
(Fs)(f)

The warping operator results in a unitary transformation which preserves orthogonal-

ity. For discrete-time signals of finite duration N , the warping operator is a matrix

whose entries are defined as follows

W(m,n) =
1

M

M−1∑
k=0

√
ẇ

(
k

M

)
ej2π(m k

M
−nw( k

M
)), m ∈ ZM , n ∈ ZN (3.1)

By considering the discrete Fourier transform of size M ×M ,

F(k, n) = e−j2πn
k
M , k, n ∈ ZM

and the nonuniform discrete Fourier transform of size M × N , scaled along rows

according to the orthogonalizing factor
√
ẇ
(
k
M

)
the discrete warping operator in Eq.

(3.1) can be expressed as

W(m,n) = F−1Fw (3.2)
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A fast computation of the discrete warping operator is achieved by means of this de-

composition. F−1 can be computed with the fast Fourier transform (FFT) algorithm

and Fw can be efficiently factorized with the nonuniform-FFT algorithm [28].

3.4 Dispersion Compensation Representation

The aim of the dispersion compensation procedure is to design a time-frequency (TF)

representation matching with the group delay curves, leading to a sparsification of

the acquired signal in the new domain.

The group delay is defined as the derivative of signal phase response, and it is a

measure of the time delay introduced in each sinusoidal component.

Figure 3.1(a) shows the tiling of the Short Time Fourier Transform (STFT), with

constant resolution atoms in the TF plane, while the tiling of the Wavelet Transform,

characterized by a multiscale resolution, is depicted in Figure 3.1(b).
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Figure 3.1: Tiling of the time-frequency plane (a) for the short-time Fourier transform
and (b) for the wavelet transform. Atoms are symbolically represented by rectangles.
The solid curves represent the dispersive group delay curves for the Lamb waves for
a traveled distance of 1 m.

From Figure 3.1 it is clear that neither the STFT with fixed TF resolution nor the

wavelet with multiscale TF resolution are suited to finely estimate the superimposed

curves. The procedure of warping a signal belongs to group delay shifts covariant

(GDSC) since that the TFR of the signal s which undergoes a change τ(f) in the

group delay (s→ sdisp) corresponds to the TFR of the original signal shifted by τ(f)

(Fsdisp)(f) = e−j2π
∫
τ(f)df (Fs)(f)

TFR[sdisp](t, f) = TFR[s](t− τ(f), f)

It was shown in [21] that a GDSC can be obtained by warping a signal and then

analysing it with a TFR of the Cohen class, such as the spectrogram, if

K
dw−1(f)

df
= τ(f) (3.3)

30



CHAPTER 3 3.4 Dispersion Compensation Representation

where K is an arbitrary constant. Therefore, it is possible to design an appropriate

GDSC TFR for a given dispersive system by properly setting the derivative of the

functional inverse warping map w−1(f).

To reproduce the warped tiling of the TF plane we suppose that the actuated signal

ŝ is a Dirac delta centered in t = τw. Its spectrum and group delay τg(f, ŝ) can be

computed as

(Fŝ)(f) = e−j2πfτu

τg(f, ŝ) = − 1

2π

d arg(Fs)(f)

df
= τu

By applying the warping operator, the following distortion is obtained:

(FWŝ)(f) =
√
ẇ(f)e−j2πw(f)τu

τg(f,Wŝ) = − 1

2π

d arg(FWs)(f)

df
= τu

Based on a priori knowledge of the group velocity cgM (f) for the propagating mode

M , the warping map is selected according to the rule

Kẇ(f) =
1

cgM (f)

which corresponds to the group delay

τg(f,Wŝ) = ẇ(f)τu =
τu

K · cgM (f)
(3.4)

The group delay associated with a guided wave ŝw at a distance D from the source

is given by

τg(f, ŝw) =
D

cgM (f)

The warping operator directly maps the dispersive time waveforms to an equivalent

non-dispersive domain where each instant τu can be directly converted to the propa-

gation distance D according to D = τu
K

where K is a normalization constant which is

selected so that the frequency axis is mapped onto itself

K =
2

fs

∫ fs
2

0

df

cgM (f)
;

fs is the maximum frequency for which the dispersion relation cgM (f) is considered

so the sampling frequency in a discrete case. 1
∆D

represents the Nyquist wavenumber

in the equivalent non-dispersive domain.
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Chapter 4
Impact Localization

There are two types of sillies: those who doubt of

nothing and those who doubt of everything.

J. Ligne

4.1 Motivation

A strategy for the localization of acoustic emissions (AE) in plates with dispersion

and reverberation is proposed. The procedure exploits signals received in passive

mode by sparse conventional piezoelectric transducers and a three-step processing

framework.

The first step consists in a signal dispersion compensation procedure, which is achieved

by means of the Warped Frequency Transform.

The second step concerns the estimation of the differences in arrival time (TDOA)

of the acoustic emission at the sensors. Complexities related to reflections and plate

resonances are here overcome via a wavelet decomposition of cross-correlating signals

where the mother function is designed by a synthetic warped cross signal. The mag-

nitude of the wavelet coefficients in the warped distance-frequency domain, in fact,

precisely reveals the TDOA of an acoustic emission at two sensors.

Finally, in the last step the TDOA data are exploited to locate the acoustic emission

source through hyperbolic positioning. The proposed procedure is tested with a
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passive network of three/four piezo-sensors located symmetrically and asymmetrically

with respect to the plate edges.

The experimentally estimated AE locations are close to those theoretically predicted

by Cramèr-Rao lower bound.

4.2 Introduction

Arrays of piezoelectric transducers have been used to locate acoustic emissions (AE)

in waveguides. Several array shapes have been investigated, including single-ring or

fully populated circular patterns [23], two-dimensional square arrays [25] or more

complicated configurations realized with piezoelectric paint [29].

In SHM applications, the minimization of the array elements is fundamental to reduce

not only the hardware complexity associated to transducers wiring and multiplexing

circuitry but also the intensive signal processing of the large amounts of recorded

data. For this reason, there is growing interest in minimizing the number of sensors by

optimizing their positioning, as well as by increasing the resolution of AE localization

procedures [30], [31], [32], [33].

In passive procedures, when the acoustic emission, generated for instance by an im-

pact, crosses a certain threshold in one of the sensors, the trigger information is sent to

all remaining devices [34]. At this point, part of the data are recorded and processed

to pin-point the source location.

The source point of an AE is typically located with a three-step procedure [35]

schematically depicted in figure 4.1 where:

Sensors

data
Preprocessing

TDOA

estimation

Hyperbolic

positioning

Acoustic

emission

localization

Figure 4.1: A typical three-step acoustic emission source location procedure.
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i) the first step consists in a signal processing filtering procedure. In guided waves

based applications this step is required to tackle dispersion, which is the most

relevant limiting factor against choosing high sensors inter-distances.

The solutions proposed in [36] and in [37] rely on the limitation of the dispersive

effect by using narrowband wavelet filters. Unfortunately, narrowband filtering,

while limiting the effects of dispersion, worsens the temporal resolution in time-

difference of arrival (TDOA) estimation, as a result of the acoustic corollary of

the uncertainty principle.

Many transformations have been introduced in order to accomplish this task,

including the short time Fourier transform, the wavelet transform, filter banks

and all their variations and mutual combination addressed to generalize their

intrinsic characteristics [38]. Nevertheless, such transformations have some re-

strictive properties which make them not suitable in some applications.

In particular, some requirements, like fast computation and orthogonality, limit

the degrees of freedom in choosing the proper time-frequency representation.

In order to approach the aim of an arbitrary time-frequency tiling, the appli-

cation of a preliminary invertible transformation to reshape the frequency axis

can be considered [39], [40].

In the present approach, the dispersion compensation procedure based on the

Warped Frequency Transform (WFT) [21] is used. The WFT has some note-

worthy properties which can be used for localization, as it can be exploited to

remove from the acquired waveforms the dependence on the travelled distance.

In addition, the low computational cost of WFT which is comparable with FFT

performance makes the new tool suitable for real time applications [41]. In

this work, the effect of this processing method in presence of strong plate edge

reflections and resonances is evaluated.

ii) The second step performs an estimation of the TDOA among the signals ac-

quired by the different sensors. Generally such differences are measured with

either threshold-based procedures [42], [43], or peak detection techniques [44],
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[45], or, more robustly, through cross-correlation [35], [46]. As mentioned in the

previous point, the higher the bandwidth of the received (dispersion compen-

sated) signal, the lower the uncertainty in time-difference estimation. Indeed,

various strategies have been proposed in order to whiten the received signals,

such as Generalized Cross-Correlation (GCC) algorithms [47], or Phase Trans-

forms (PHAT) [48]. However, the effectiveness of these strategies is limited in

case of non-perfect dispersion compensation or in reverberating structures.

To overcome this limit, a novel cross-correlation analysis method based on

Wavelet transform is presented in this Chapter. It will be shown through dedi-

cated experiments how this procedure produces reliable TDOA estimation.

iii) In the last step the acoustic location is computed from TDOA data by means of

a hyperbolic positioning [49], [50]. The performance of the procedure is evalu-

ated by comparing the estimated positions with the theoretical limit in localiza-

tion accuracy achieved by hyperbolic positioning computed via the Cramèr-Rao

bound (CRB).

As it will be shown in Section 4.7, the experimental results are in good agree-

ment with the predicted theoretical limit. Thus, it is proved that the CRB

can be adopted as a tool to design the optimal sensors positioning for a given

application.

The Chapter is organized as follows: point i), ii), and iii) are discussed in Section 4.3,

Section 4.4 and Section 4.5, respectively. Experimental validations of the proposed

work, consisting in impacts localization in an aluminum plate by using three or four

PZT sensors, with different spatial distribution over the plate surface, are shown in

Section 4.7. The conclusions end the Chapter.
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4.3 Dispersion Comprensation with the Warped

Transform

4.3.1 The warping frequency transform (WFT)

As described in Chapter 3, given a dispersive guided wave signal s(t) whose frequency

representation is

S(f) = F {s(t)} ,

being F the Fourier Transform operator, the Frequency Warping operator Ww re-

shapes the periodic frequency axis by means of a proper function w(f), that we will

call from now on warping map, such as:

sw(t) = Ww {s(t)}

F {sw(t)} =
√
ẇ(f) · S(w(f))

where sw(t) is the warped signal, and ẇ(f) represents the first derivative of w(f).

It has been shown in [51] that in order to compensate the signal with respect to a

particular guided mode, w(f) can be defined through its functional inverse, as:

K
dw−1(f)

df
=

1

cg(f)
(4.1)

where 1
cg(f)

is the nominal dispersive slowness relation of the wave we want to consider,

being cg(f) its group velocity curve and K is a normalization parameter selected so

that w−1(0.5) = w(0.5) = 0.5. Equivalently, the inverse warping map w−1 can be

defined with respect to the wave phase velocity cph(f) or wavenumber k(f).

A sample warping map is depicted in Figure 4.2 along with its functional inverse.

It was computed according to Equation 4.1 by considering the group velocity curve

of the Lamb A0 mode represented in Figure 4.3.

The curves were obtained by using the Semi-Analytical Finite Element (SAFE) formu-

lation proposed in [20] considering a 0.003 m thick aluminium plate with Young modu-

lus E = 69 GPa, Poisson’s coefficient ν = 0.33 and material density ρ = 2700 kg·m−3.
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Figure 4.2: Warping map w(f) for A0 wave dispersion compensation and its functional
inverse w−1(f) designed according to Equation 4.1.
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Figure 4.3: cg(f) dispersion curves for the Lamb waves propagating in an aluminium
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The NUFFT is based on an oversampled Discrete Fourier Transform (DFT) followed

by an interpolation method optimal in the min-max sense of minimizing the worst-

case approximation error over all signals of unit norm [28].

The basic idea is to first compute an oversampled FFT of the given signal and then

interpolate optimally onto the desired nonuniform frequency locations using small

local neighborhoods in the frequency domain.

To compute the DFT at a collection of (non uniformly spaced) frequency locations

ωm which represent the warping map w(f),

S(ωm) = Fw{sn} =
N−1∑
n=0

sne
−jωmn m = 1, . . . ,M

first a convenient K ≥ N must be assumed so that the K-point FFT of sn

S(ωk) = F{sn} =
N−1∑
n=0

sne
−j 2π

K
kn k = 1, . . . , K

where 2π
K

is the fundamental frequency of the K-point DFT. The nonzero xn are

algorithm design variables that have been called scaling factors.

The second step of most NUFFT methods is to approximate each S(ωm) by interpo-

lating S(ω) using some of the neighbors of ωm in the DFT frequency set.

Linear interpolators have the following general form:

Ŝ(ωm) =
K−1∑
k=0

u∗k(ωm)S(ωk) m = 1, . . . ,M

where the u∗k(ωm) denote the interpolation coefficients selected through a min-max

criterion. For each desired frequency location ωm the coefficient vector the worst-case

approximation error between S(w(f)) and Ŝ(ωm) is determined. As demonstrated

in [52], the interpolator coefficients u∗k(ωm) can be obtained by an analytic formula

derived from the following optimization criterion:

min
u(ωm)∈CJ

max
s∈RN

|Ŝ(ωm)− S(ωm)|

Both the scaling vector and the interpolators are design variables, so ideally, we would

optimize simultaneously over both sets using the previous criterion.
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4.3.2 Warping a wave detected passively

In passive monitoring techniques the time instant in which an acoustic emission starts

is unknown. Let us consider the effect of warping when an actuated wave is excited

at a generic instant td1 .

The Fourier Transform of the actuated wave is given by:

(Fsa)(f, 0) = (Fs0)(f, 0) · e−j2πtd1f (4.2)

being (Fs0)(f, t0) the Fourier Transform of the excited wave (incipient pulse centered

in t = 0). An undamped guided wave at a traveled distance D from the source

point, s(t,D), can be modeled in the frequency domain as a dispersive system whose

response is:

(Fs)(f,D) = (Fsa)(f, 0) · e−j2π
∫
τ(f,D)df (4.3)

= (Fs0)(f, 0) · e−j2πtd1f · e−j2π
∫
τ(f,D)df

In force of Eq. (4.1), Eq. (4.3) can be rewritten as:

(Fs)(f,D) = (Fs0)(f, 0) · e−j2πtd1f · e−j2πw−1(f)KD (4.4)

where the distortion results from the nonlinear phase term.

Consider now that the generated dispersive wave s(t) is acquired by two different

sensors (1 and 2) after having traveled two different distances of propagation, D1 and

D2. The warped Fourier transforms of the recorded signals s(t,D1) and s(t,D2) are

given by:

(FWs)(t,D1) =
√
ẇ(f) · (Fs0)(w(f), 0) · e−j2πw(f) td1 · e−j2πfKD1

(FWs)(t,D2) =
√
ẇ(f) · (Fs0)(w(f), 0) · e−j2πw(f) td1 · e−j2πfKD2 (4.5)

where the right hand terms can be distinguished only for the underlined distance-

dependent linear phase shifts, which causes simple translations of the warped signals

on the warped time axis. Therefore, the warped signals acquired by the different

transducers have a constant frequency modulation due to the term e−j2πw(f) td1 .
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This property can be fruitfully exploited by using signal correlation techniques and

Eq. (4.5), since in the frequency domain the cross-correlation of two warped signals

sw = swi ? swk is:

F {sw} = FWw {s(t,Di)} · (FWw)∗ {s(t,Dk)}

= Fw {s(t,Di)} · (Fw)∗ {s(t,Dk)}

= ẇ(f) · |S0(w(f), 0)|2 · e−j2πfK(Di−Dk)

Thus, the abscissa value at which the cross-correlation envelope of two signals peaks in

the warped domain can be directly related to the difference in distance of propagation

by the two dispersive signals [53]. The algorithm graph is shown in Figure 4.4.

Non Uniform FFT

s(t,D1)

s(t,D2)

Fw

Fw X F−1
FIND

MAX

Cross-Correlation

Figure 4.4: Graph of the proposed localization algorithm

4.3.3 Warping Reverberating Waves

It has been shown in [54] that if the edge of the plate is assumed to be cut perfectly

square and the A0 wave is assumed to be normally incident, for frequencies below

the A1 cutoff, such in this case, there is no mode conversion, therefore, an incident

A0 mode reflects simply delayed in phase as A0. To model the system a signal

with reverberations that has been warped Fourier transformed with the A0 map it is

necessary to add in Equation 4.5 an interference contribute to the term due to the

direct path:

FWw {s(t,Di)} =
√
ẇ(f) · S0(w(f), 0) · e−j2πw(f) tdi ·

·

[
e−j2πfKDi︸ ︷︷ ︸
direct path

+
N∑
k=1

Γke
−j2πfKDk

︸ ︷︷ ︸
reverberation

]
(4.6)
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where N is the number of the multiple reflections considered, Γk is the reflection

coefficient related to the k-th path which is close to 1 in the case of perfect edges and

Dk is the distance travelled by the k-th reflected path from the source position to the

sensor i-th.

The Equation 4.6 states that the reverberation of the plate edges is modelled in the

warped fourier domain as a sum of weighted exponential functions which depend on

the distances travelled by the reflected wave paths.

In this case, the Fourier transform of the cross-correlation of two warped signals

acquired by two sensors s(t,D1) e s(t,Di) becomes:

FWw {s(t,D1)} · (FWw)∗ {s(t,Di)} =

= ẇ(f) · |S0(w(f), 0)|2 ·

[
e−j2πfK(D1−Di)

︸ ︷︷ ︸
direct path

+
N∑
k=1

Γke
−j2πfK(D1−Dk)

︸ ︷︷ ︸
reverberation

]
(4.7)

Equation 4.7 shows that cross correlating two warped signals leads to the cancelation

of the frequency modulation effect but does not remove the term due to multiple

reflections; therefore, because of the constructive interference in the presence of re-

verberations, not even cross-correlation methods are effective for robust estimation

of travelled differences.

4.4 Warped Wavelet Transform using Cross-Correlating

Basis

To improve the estimation of the difference in travelled distance a warp-frequency

decomposition on the M−1 cross-correlated signals, being M the number of different

sensors used, is proposed.

The warped cross-correlated signal:

scrossw(t) = F−1 {FWw{s(t,D1)} · (FWw)∗{s(t,Di)}} (4.8)

is decomposed through a wavelet analysis.
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For our purpose, a mother wavelet ψ(t) was derived by optimizing the matching with

the cross-correlation of two warped triangular pulses with arbitrary duration [55].

Finally, the unitary operator Ww was used to define the proper basis in the warped

domain and compute the wavelet coefficients aj(n) of two cross correlated signals

obtained by Equation 4.8 as:

aj(n) = 2−j/2
∫ ∞
−∞

scrossw(t) · ψ
(
2−jt− n

)
dt

Once the values of aj(n) have been found, the estimated difference in distance D1−Di

is the translation j∗ which corresponds to the maximum of the norm of the vector

aj(n)|j=j∗

max
j
‖aj(n)‖ where ‖aj(n)‖ =

√√√√ Nj∑
m=1

a2
j(m) (4.9)

where Nj is the number of scales considered.

4.5 Hyperbolic positioning

To locate the impact position in a plate (i.e. in a bi-dimensional space), at least

M = 3 passive sensors are necessary. Given the coordinates of the sensors positions

(xi, yi) and having estimated the differences in travelled distance ∆d1i between the

waves acquired by the first sensor and the remaining, a hyperbolic positioning method

(also called multilateration) can be applied to locate the point source. Such a method

exploits the differences in distance to determine hyperbolas on which the impact point

x = (xp, yp) must lie:

∆d1i =
√

(x1 − xp)2 + (y1 − yp)2 −
√

(xi − xp)2 + (yi − yp)2 (4.10)

The intersection of the different hyperbolas, obtained by solving the system of M − 1

equations with the Levenberg-Marquardt algorithm [56], is taken to be the impact

position. It has been verified that the impact localization performances do not depend

on the choice of the reference sensor (sensor 1 in our case) that it can be chosen

arbitrary.
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4.6 Cramèr-Rao bound

The Cramèr-Rao bound [57] gives the lower bound on the covariance of the impact

positions estimated from the difference distance

∆d1i = d1p − dip

where dip is the distance between the i-th sensor and the point x = (xp, yp).

To calculate this bound the system of non-linear equations

∆d1i = ∆̃d1i(x) + ei i = 1, . . . ,M − 1 (4.11)

must be linearized near the impact positions x = (xp, yp) and the corresponding

difference distance travelled ∆d1i.

In the above equations and following the symbol ˜ indicates the estimation of the

relative physical quantity while ei represents the error related to sensor i.

Given M −1 difference distance of arrival measurements, the linearized system which

represents the relationship between the position and the travelled distance differences

is

∆̃d = S · t̃(x, t0) = S · t̃(x) + S · e = S · C · x+ S · e (4.12)

where ∆̃d is a vector containing the M − 1 difference distances, t̃(x) is a vector of

M elements formed by the estimated travelled time from the M sensors that it is

assumed to be independent on the initial impact instant t0, e is the vector containing

the errors from all the M sensors and with

S =


1 −1 0
...

. . .

1 0 −1

 (4.13)

representing a full-rank (M − 1) ×M matrix and C the (M × 2) matrix of partial

derivatives whose elements are

Ci1 =
1

vs
· xp − xi√

(xp − xi)2 + (yp − yi)2
(4.14)

Ci2 =
1

vs
· yp − yi√

(xp − xi)2 + (yp − yi)2
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In Equation 4.14 vs is an equivalent speed of sound in the material obtained through

the time-distance mapping described in the warping procedure and it can be computed

as vs = K · fs where K is the normalization parameter used in Equation 4.1 and fs

is the sampling frequency. Note that this condition implies that the measurement

vector ∆̃d is not affected by the presence of the nonzero clock offset t0.

The Cramèr-Rao bound for the position estimate is

CRB =
[
CTST ·R−1

h · SC
]−1

(4.15)

where Rh is the (M − 1) × (M − 1) covariance matrix of the noise vector ν = S · e

that can be obtained as

Rh = E
[
ν · νT

]
= S · E

[
e · eT

]
· ST = S ·R · ST (4.16)

where E is the expectation.

In practical cases measurement errors are indipendent identically distributed gaussian

random variables with zero mean and standard deviation σd.

The covariance matrix is diagonal and its elements are equal to the variance σ2
d so

R = σ2
d · I where I is the identity matrix.

The Cramèr-Rao bound can be written as:

CRB =
{
CTST ·

[
S ·
(
σ2
d · I
)
· ST

]−1 · SC
}−1

The minimum theoretical estimation error of the source positions, expressed in mm,

given by the Cramèr-Rao lower bound (CRLB) is shown in Figure 4.5 for the four

plate-PZTs configurations that will be tested in the experiments described in Section

4.7.

Results in Figure 4.5 show how the theoretical localization of an AE source is better

in the convex area bounded by the sensors while is greatly deteriorated outside this

area. Moreover, it is important to notice that the Cramèr-Rao lower bound does not

take into account the reflection due to the edges.
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Figure 4.5: Cramèr - Rao lower bound for the four sensors configurations tested
experimentally in Section 4.7. Isolines express CRLB in mm.
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4.7 Experimental verification

As a case study, we exploited the proposed tool to locate impacts in an aluminium

1050A square plate 1 m × 1 m and 0.003 m thick. Four different experiments were car-

ried out using four and three sensors distribuited in a symmetrical and asymmetrical

configuration with respect to the edges of the plate.

The positions of the sensors are collected in Table 4.1.

Topology Coordinates Sensor 1 Sensor 2 Sensor 3 Sensor 4

asymmetrical
x (m) 0.10 0.20 0.90 0.90

y (m) 0.90 0.10 0.10 0.90

symmetrical
x (m) 0.25 0.25 0.75 0.75

y (m) 0.75 0.25 0.25 0.75

Table 4.1: Sensors positions for the considered symmetrical and asymmetrical
topologies.

Guided waves were excited by hitting the plate with a pencil orthogonally to the

surface. The generated signals were recorded using the LC534 series LeCroy oscil-

loscope at a sampling frequency of 300 kHz. Acquisitions were triggered when the

signal received from one of the PZT discs (PIC181, diameter 0.01 m, thickness 0.001

m) reached a threshold level of 140 mV; pre-trigger recordings were enabled to obtain

the previous history of each signal. The sampling frequency was sufficiently high to

avoid aliasing effects, as the frequency content of the acquired signals vanishes above

60 kHz.

In Test 1 three PZT discs were placed asymmetrically with respect to the edges,

as schematically depicted in Figure ??(b). Figure 4.6(a) shows the experimental

waveforms detected by the three sensors after having excited the plate at the following

coordinates: x = 0.15 m, y = 0.15 m.

As can be seen by observing Figure 4.6(a), it would be extremely difficult to estimate

the difference in time of arrival by using classical thresholding or peak detection

procedures. In fact, such estimation is complicated by the effect of dispersion which

introduces a distance-dependent group delay shift.
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In order to compensate for dispersion, first the WFT operator must be defined. For

such a scope, the Lamb waves group velocity dispersion curves for the 0.003 m thick

aluminium plate were obtained considering the following nominal properties for the

aluminium: E = 69 GPa, ν = 0.33 and ρ = 2700 kg · m−3. The curves are those

represented in Figure 4.3.

In the [0−300] kHz frequency range, only the two fundamental A0 and S0 Lamb waves

can propagate through this plate. Since for out-of-plane excitation the energy in the

A0 mode is considerably greater than that retained by the S0 mode, the group velocity

curve of the A0 mode was used to shape the warping operator according to Equation

4.1. Next, by processing the acquired signals with the WFT, the waveforms depicted

in Figure 4.6(b) are obtained. In the new waveforms, the group delay dependence on

distance is removed. However, spurious components arise due to the edges’ reflections

and a frequency modulation remains because of the actuating time is unknown.

At this point, the wavelet transform is applied to the two cross-correlated warped

signals. The warp-frequency representation and the trend of the wavelet coefficients

norm ‖aj(n)‖ are shown in Figure 4.7.

Figure 4.7: Wavelet transform of the two warped cross-correlating signals obtained
for impact loacated in x = 0.15 m y = 0.15 and the related ‖aj(n)‖ curves.
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It can be seen from this figure how the proposed wavelet warped basis is suitable for

analysing the cross-correlated signal as the abscissa of the maximum value of ‖aj(n)‖

is very closed to the true difference in distance travelled (D12 = 0.618 m and D13 = 0

m) that has been depicted in figure with a black dash line.

It is also important to underline the localization improvement obtained through this

method with respect to the analysis of the simple peaks of the cross-correlating sig-

nals proposed in [53]. Figure 4.8 shows the comparison between the warped cross-

correlated signals and the curves ‖aj(n)‖ for two different impacts (x = 0.65 m,

y = 0.15 m) and (x = 0.75 m, y = 0.25 m). As it can be seen the peaks of the

cross-correlating signals are spread and the related abscissa are not very close to the

true difference of travelled distance and this is due to the non negligible interference

term. So in presence of reverberations the cross-correlation of warped signals can

lead to large errors, as shown in Figure 4.8(b), while the new localization procedure

closely estimates the true difference in travelled distances.

The source location is detected through multilateration as described in Section 4.5,

solving the system of equations with the Levenberg-Marquardt algorithm.
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Figure 4.8: Comparison in function of the difference in distance between the warped
cross-correlated signal and the curve ‖aj(n)‖.

The results of the proposed procedure for impacts localization can be seen in Figure

4.9 where the target and estimated impact points denoted by circles ◦ and crosses ×,

respectively, are shown.
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Figure 4.9: Source localization results.

Such estimations are performed in a purely passive manner, i.e. ignoring the time

instant at which the acoustic emission starts.

The comparison between the proposed procedure and the algorithm described in [53]

is given through the analysis of the cumulative distribution of the localization error for

the four considered configurations of the PZT transducers which is shown in Figure

4.10.

Figure 4.10(a) shows that, in case of sensors placed at small distances and regular

positions, TDOA algorithms based on the pure cross-correlation analysis (such as the

one proposed in [53]) produce reliable and precise localization results. The accuracy

is compromised when the sensors position is irregular, close to the edges and, conse-

quently, prone to reverberations. In such cases the warped wavelet analysis offers an

improved localization accuracy as shown in Figure 4.10(b).

Finally a comparison between the experimental results and the Cramèr-Rao lower

bound is presented.
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In the lower bound estimation, the measurement errors are considered as independent

identically distributed gaussian random variables with zero mean.

Their standard deviation σd can be estimated as:

σd = 2 · vs
fs

= 2 · 1570

106
= 3 mm

being fs = 1 MHz the sampling frequency and vs = 1570 m · s−1 the equivalent speed

of sound in the warped domain.

As can be seen in Figure 4.11, the impact position errors are very close to the theo-

retical limit given by the Cramèr-Rao lower bound in the convex area bounded by the

sensors. Conversely, when the source is placed in the external area between sensors

and the plate edges, the localization errors increase roughly respect to the Cramèr-

Rao bound because of the dominant phenomenon of reflection that totally corrupts

the cross-correlated signal.

(a) 3 sensors asymmetric respect to the edges
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(a) 4 sensors asymmetric respect to the edges

Figure 4.11: Comparison between the Cramèr-Rao lower bound and the experimen-
tally estimated positions.

4.8 Discussion

In this Chapter a method to extract the difference in distance travelled by stress

guided waves is proposed. The method applies a dispersion compensation procedure

on the signals acquired by passive sensors, thus overcoming the difficulties associated

with arrival time detection based on classical thresholding procedures.

Then a suitable wavelet decomposition is applied to the cross-correlating signals to

reduce the effect of multiple edge reflections. The analysis of the wavelet transform

magnitude reveals the difference in distance travelled by the wave to reach the different

sensors. Finally, multilateration is applied.

Excellent performance in terms of point of impact localization is shown through ex-

periments since the estimated impact positions are very close to the Cramèr-Rao

lower bound.

Further, the reliability of the proposed approach in presence of reverberation make
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the new tool suitable for automatic acoustic emission localization procedures.

Future developments include the generalization of the proposed approach to applica-

tions in which higher order modes contaminate the acquired data, and to applications

characterized by anisotropic propagation, such as detection of impacts in composite

plates.
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Chapter 5
Frequency Warped Wavelet

Don’t part with your illusions. When they are

gone you may still exist, but you have ceased to

live.

Mark Twain

5.1 Introduction

This Chapter presents an improved impact localization algorithm based on the appli-

cation of the frequency warping operator for E-spline wavelet multiresolution analysis.

A novel impact localization algorithm based on the frequency warping unitary oper-

ator applied to E-spline wavelet multiresolution analysis is presented.

Unitary frequency warped representation is important to analyse class of signal covari-

ant to group delay shift as those propagating through frequency-dependent channels.

The innovative key points behind the developed framework are:

• to perform a nonstationary wavelet multiresolution analysis on the acquired

signals;

• to design a proper scaling wavelet through the frequency warping operator;

• application of the frequency warped wavelet muliresolution on the cross-correlated

signal to achieve an accurate time difference of arrival (TDOA) estimation.
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Finally, the TDOA data are exploited to locate the acoustic emission source through

hyperbolic positioning.

In this work the impact localization is performed with a three-step procedure schemat-

ically depicted in Figure 5.1; in particular the first block represents an extension of

the algorithm proposed in [6], [7].

Figure 5.1: A typical three-step acoustic emission source location procedure.

In this Chapter we propose to design a novel wavelet decomposition of the dispersive

acquired signal based on the following concepts: perform a frequency warped wavelet

decomposition in which the scaling function is obtained applying a unitary frequency

warping operator on the classical E-spline orthogonal scaling wavelet family.

The warping map is designed properly in order to compensate the dispersion due to

the wave propagation and to achieve sparse signal representation in the new frequency

warped domain.

In order to deal with multi modal dispersive compensation a multiresolution wavelet

analysis on the cross-correlated warped signal is proposed instead of a continuous

wavelet analysis as presented in [6].

In particular a modification of the classic construction of warped E-spline is devel-

oped in order compensate both the S0 and A0 mode of Lamb waves using a single

multiresolution analysis with S0/A0 warped filter bank design for different wavelet
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level.

The main difference with the classical construction of E-spline multiresolution anal-

ysis is that the multiresolution spaces are derived from scale-dependent generating

functions [58], so the scaling functions at different scales are not dilates of one another.

From an algorithmic standpoint, Mallat Fast Wavelet Transform algorithm can still

be applied; the only adaptation consists in using scale-dependent filter banks.

The main idea is to design a proper tilling of the time-frequency plane where for each

scale a scale dependent frequency warped scaling function is constructed according

to the dominant dispersive mode in the actual frequency band.

The Chapter is organized as follows: a brief review of the frequency warped wavelet

theory with definitions is presented in Section 5.2.

In Section 5.3 the properties concerning nonstationary multiresolutions and the appli-

cation of the frequency warped operator on the wavelet time-frequency decomposition

are described.

In Section 5.4 the proposed cross wavelet algorithm based on the nonstationary mul-

tiresolution wavelet frequency warped decomposition is detailed.

In order to demonstrate the effectiveness of the proposed framework, we have inves-

tigated lamb wave transmission over aluminum plate that suffers from severe multi

modal frequency dispersions and multipath reflections.

Experimental validations of the proposed work, consisting in impacts localization by

using three PZT sensors, with different spatial distribution over the plate surface, are

shown in Section 5.6.

The aim of this work is to achieve an higher resolution in impact localization starting

from algorithm described in [7], in order to improve the analysis of the warped cross-

correlation signal with a new nonstationary warped wavelet decomposition.
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CHAPTER 5 5.2 Frequency Warped Wavelet Analysis

5.2 Frequency Warped Wavelet Analysis

A novel wavelet decomposition design scheme of the dispersive acquired signal is

proposed, based on the following concepts: perform a frequency warped wavelet de-

composition in which the scaling function is obtained applying a unitary frequency

warping operator on the classical E-spline orthogonal scaling wavelet family.

In order to deal with multi modal dispersive compensation a multiresolution wavelet

analysis on the cross-correlated warped signal is proposed instead of a continuous

wavelet analysis as presented in [6]. In particular a modification of the classic con-

struction of warped E-spline is developed in order compensate both the S0 and A0

mode of Lamb waves using a single multiresolution analysis with S0/A0 warped filter

bank design for different wavelet level; the main difference with the classical construc-

tion of E-spline multiresolution analysis is that the multiresolution spaces are derived

from scale-dependent generating functions [58], so the scaling functions at different

scales are not dilates of one another.

From an algorithmic standpoint, Mallat Fast Wavelet Transform algorithm can still

be applied; the only adaptation consists in using scale-dependent filter banks.

The main idea is to design a proper tilling of the time-frequency plane where for each

scale a scale dependent frequency warped scaling function is constructed according

to the dominant dispersive mode in the actual frequency band.

We start to review the theory which deal with the frequency warped wavelet analysis.

In particular it will be described how the mother wavelet and scaling functions can be

derived starting from the classic wavelet theory with the application of the frequency

warped operator.

It is important to notice that respect to the classic wavelet analysis the main difference

is that the shift in time is not invariant; the first step is to define an operator unitary

equivalent to the ordinary shift operator (Ss)(t) = s(t− 1) via the warping operator

built on the phase function w(f). We define the time warped-invariant generalized

shift operator T defined in the Fourier domain by the product

(FTs)(f) = (Fs)(f)e−j2πw(f) (5.1)

61



CHAPTER 5 5.2 Frequency Warped Wavelet Analysis

By Eq. (5.1), for any m ∈ Z, the action of Tm is equivalent to multiplication by

e−j2πmw(f). The warping operator W establishes a unitary equivalence of the gener-

ator T and the shift-by-one operator S where T = WSW†.

(FW†Ts)(f) =

√
dw−1(f)

df
(Fs)(w−1(f))e−j2πw(w−1(f))

=

√
dw−1(f)

df
(Fs)(w−1(f))e−j2πf = (FSW†s)(f) (5.2)

It immediately follows that

∀m ∈ Z, Tm = WSmW†.

Therefore the group of generalized shift operators is unitarily equivalent to the group

of ordinary shift operator. An other unitary operator is the dyadic dilatation operator

defined as

(D 1
2
s)(t) =

√
1

2
s

(
t

2

)
with the following properties: inverse D−1

1
2

= D2 and n-th power Dn
1
2

= D 1
2n

.

The action of the dilatation operator in the Fourier domain is

(FD 1
2
s)(f) =

√
2(Fs)(2f).

The property (5.2) is preserved through scale since the scaled warping operator Dn
1
2

W

because

∀(n,m) ∈ Z2, Dn
1
2
TmD−n1

2

= Dn
1
2
WSmW†D−n1

2

.

The next proposition shows that this Riesz basis is unitarily equivalent to an auxiliary

Riesz basis obtained by repeated applications of the ordinary shift operator. This

basis spans a shift-invariant subspace of L2(R) unitarily equivalent to the space V0

spanned by the warped Riesz basis.

The next proposition provides equivalent Fourier domain conditions for a function to

generate an orthogonal warped Riesz basis.

Proposition 5.2.1: Let T be the generalized shift generator with warping character-

istic w(f) and scale factor 1
2
. A function ξ(t) generates a Riesz basis {Tmξ(t)}m∈Z
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for the space V0 = span {Tmξ |m ∈ Z} if and only if there exist two constants A > 0

and B > 0 such that for almost all ω = 2πf ∈ [−π, π],

1

B
≤

+∞∑
k=−∞

|Z(ω + k)|2 ≤ 1

A
,

where Z = F(W†Tmξ).

Furthermore, let {Tmξ(t)}m∈Z be a Riesz basis for V0 and let

Φ(f) = F[ϕ](f) =
Z(ω)√∑+∞

k=−∞ |Z(ω + k)|2
.

Then
{

Dn
1
2

Tmϕ
}
m∈Z

, where ϕ = Wϕ, is an orthonormal basis for Vn for any n ∈ Z.

Like ordinary scaling functions, warped scaling functions are strategical for the con-

struction of warped wavelet bases.

Based on our results for warped Riesz bases, the following definition of warped scaling

function can be provided:

Definition 5.2.1: A scaling function is a function ϕ ∈L2(R) such that the families{
Dn

1
2

Tmϕ
}
m∈Z

are orthonormal for any n ∈ Z.

From 5.2.1 it follows that ϕ ∈L2(R) is a scaling function if and only if

+∞∑
m=−∞

dw−1(ω)

dω
|Φ(w−1(ω +m))|2 = 1

In the Fourier domain the warped wavelets are related to the dyadic wavelets as

follow:

Ψn,m(ω) = (FWψn,m)(ω)

=

√
dw(ω)

dω
Ψn,m(w(ω))

=

√
2n
dw(ω)

dω
Ψ(2nw(ω))e−j2

nmw(f)

The warped wavelets are not simply generated by dilating and translating a mother

wavelet. Rather, the translated wavelets are generated by all-pass filtering e−j2
nmw(ω).

Scaling also depends on the warping map w(ω).

63



CHAPTER 5 5.2 Frequency Warped Wavelet Analysis

Figs. 5.2(a) and (b) show how the GDSC Wavelet tiling TF plane

TFRW [sdisp](t, f) = WT[Ws](tKcg(f), w−1(f))

leads to match with a single dispersive mode but the resolution on the frequency axis

is not variable.

Similarly, the tiling of the STFT plane shaped according to the warping map for a

single mode is described in [21].

Atoms change their shape versus time with the dispersive properties of the single

mode. But using the single mode combined effect of frequency warping and STFT it

is impossible to match the group delay characteristics of multiple modes, for example

S0/A0, for different frequency band.
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Figure 5.2: Tiling of the time-frequency plane for the frequency warped wavelet
transform (a) for the A0 and (b) S0 mode (c) A0 and S0. The solid curves represent
the dispersive group delay curves for the Lamb waves for a traveled distance of 1 m.
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In the following section the proposed frequency warped wavelet multiresolution anal-

ysis with scale dependent scaling functions is described; the presented algorithm is

able to tackle S0 and A0 propagation in order to obtain a tiling of the TF plane like

those represented in Figure 5.2(c).

5.3 Frequency Warped Wavelet Multiresolution

The important difference between the Warped Nonstationary Wavelet Multiresolution

(WNWM) and stationary multiresolutions encountered in classical wavelet theory

is that each space can be generated using a different function, depending on the

scale parameter n. In addition, we impose that these so-called scaling functions are

orthonormal to their integer translates. The fundamental structure we are interested

in is derived from the work [58].

In Section 5.2 we have described how frequency warping scaling can be designed

starting from the scaling function in time domain through the unitary operator.

The problem is that the warped scaling function changes for each time warped trans-

lation so from an algorithmic point of view a time variant filter is needed to implement

the procedure and this solution is cumbersome to compute. In order to overcome this

problem the following relation can be used. Given an orthogonal and complete set of

dyadic wavelets {ψn,m}n,m∈Z where

ψn,m(t) = 2−
n
2ψ(2−nt−m) = Dn

1
2
Smψ(t)

one defines the warped wavelets as ψn,m = Wψn,m.

The set
{
ψn,m

}
n,m∈Z is orthogonal since

〈Wψn′,m′ ,Wψn,m〉 = 〈ψn′,m′ ,W †Wψn,m〉 = 〈ψn′,m′ , ψn,m〉 = δn′,nδm′,m

and complete since, by unitary equivalence, given x ∈L2(R) it is always possible to

find y ∈L2(R) such that s = Wy. Hence, by expanding y over the dyadic wavelet set

and exploiting the continuity of the warping operator, we have

s(t) = Wy(t) = W
∑
n,m∈Z

yn,mψn,m =
∑
n,m∈Z

yn,mψn,m(t),
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where

yn,m = 〈y, ψn,m〉 = 〈x,Wψn,m〉 = 〈x, ψn,m〉 = 〈W †x, ψn,m〉.

Therefore the signal is unwarped by means of the inverse warping operator W †, then

the expansion coefficients on a nonstationary wavelet basis in the classical sense are

computed. The following Proposition introduce the Nonstationary multiresolution

Spaces using the unwarped signal y; as stated before this is equivalent to the space

generated by the generalized shift operator T introduced in Eq. (5.1)

Definition 5.3.1: (Warped Nonstationary Multiresolution Spaces): Given an integer

n0 and a sequence of functions (ϕn(t))n≤n0in L2(R) , the spaces

Vn =

{
(W†s)(t) =

∑
m∈Z

c[m]ϕn

(
t− 2nm

2n

) ∣∣∣∣∣ c ∈ l2(Z)

}
for n ≤ n0, define a nonstationary multiresolution if and only if

• for all n ≤ n0 − 1, Vn+1 ⊂ Vn;

•
⋃
n≤n0

Vn is dense in L2(R) :
⋂
n∈Z Vn = {0},

⋃
n∈Z Vn = L2(R) ;

• V0 is closed under T; that is s ∈ V0 ⇔ (Tmf) ∈ V0 ∀m ∈ Z

• for the scale factor a = 1
2
∀n ∈ Z, s ∈ Vn ⇔ (D 1

2
s) ∈ Vn+1

In a classical (stationary) multiresolution [59], the functions (ϕn(t))n≤n0 are equal to

a single function ϕ(t), the scaling function. Therefore, we shall call the functions

(ϕn(t))n≤n0 scaling functions.

The Definition 5.3.1 implies the existence of scaling filters hn ∈ l2(Z) such that

ϕn+1

(
t

2n+1

)
=
∑
m∈Z

hn[m]ϕn

(
t− 2nm

2n

)
(5.3)

As the notation suggests, the scaling filters are scale-dependent in general. One can

also consider the frequency-domain version of the scaling relation Eq. (5.3) which is

2ϕ̂n+1(2ω) = Hn(ejω)ϕ̂n(ω).

The following standard result gives a consequence of the biorthogonality for the scaling

filters.
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Proposition 5.3.1: Assume that the scaling functions (ϕ̃n)n≤n0 and (ϕn)n≤n0 gener-

ate multiresolutions as in Definition 5.3.1. Also assume that they are real-valued, com-

pactly supported, and mutually biorthogonal for all n ≤ n0. Then, for all n ≤ n0 − 1,

the scaling filters h̃n[m] and hn[m] have finite length and their z-transforms satisfying

Hn(z)H̃n(z−1) +Hn(−z)H̃n(−z−1) = 4.

From the scaling filters, one can construct the wavelet filters

Gn(z) = z2kn+1H̃n(−z−1)

G̃n(z) = z2kn+1Hn(−z−1)

where the integers kn is chosen arbitrarily. Then the wavelets are given by

ψn+1(t) =
∑
m∈Z

gn[m]ϕn(2t−m)

ϕ̃n+1(t) =
∑
m∈Z

g̃n[m]ϕ̃n(2t−m)

At each scale n, the dilated and shifted functions ψn,m(t) = 2−n/2ψn(t/2n −m) and

ψ̃n,m(t) = 2−n/2ψ̃n(t/2n −m) generate spaces Wn and W̃n, respectively; the previous

definitions and the biorthogonality constraint imply that

 Vn = Vn+1 ⊕Wn+1 and Wn+1 ⊥ Ṽn+1

Ṽn = Ṽn+1 ⊕ W̃n+1 and W̃n+1 ⊥ Vn+1

A n0-scale wavelet decomposition of a function f ∈L2(R) is given by

f =
∑
m∈Z

xn0 [m]ϕn0,m +
∑
n≤n0

∑
m∈Z

yn[m]ψn,m

where xn[m] =< f, ϕ̃n,m > and yn[m] =< f, ψ̃n,m >.

Respect to the stationary theory, the wavelets ψ̃n,m are no more dilates and translates

of a single mother wavelet.

The decomposition in terms of the discrete sequences xn[m] and yn[m] at the different

scales n is implemented with a filter bank according to Mallat’s fast wavelet algorithm

[59] but in this case the filters depend on the scale parameter n.
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CHAPTER 5 5.3 Frequency Warped Wavelet Multiresolution

5.3.1 Exponential B-Spline Multiresolution

The nonstationary multiresolution spaces (Vn)n≤n0 used at starting point to analyse

the dispersive signals is constructed from exponential B-splines.

An exponential reproducing kernel φ(t) is a function that together with its shifted

version is able to reproduce exponentials. That is, for any given set of M + 1 values

(γ0, . . . , γM) it is possible to have∑
m∈Z

cn,mφ

(
t

T
−m

)
= eγn

t
T , n = 0, 1, . . . ,M

given the right choice of weights cn,m. Note that γn may be complex.

One important family of such kernels are the exponential splines (E-splines) [60].

These functions are extensions of the classical B-splines described above in that they

are built with exponential segments instead of polynomial ones.

The first order E-spline is a function βγn(t) with Fourier transform

β̂γn(ω) =
1− eγn−j2ω

jω − γn
.

The E-splines of degree N are constructed by N successive convolutions of first-order

ones

β̂−→γ (ω) =
N∏
n=1

1− eγn−jω

jω − γn

where

−→γ = (γ1, . . . , γN) and ω = 2πf.

It is shown in [60] that an E-spline has compact support and it can reproduce any

exponential in the subspace spanned by {eγ1t, . . . , eγN t}. It is important to notice that

exponential B-splines tend to classical Mth-order B-splines as the parameter-vector

−→γ tends to 0 ∈ CM .

One can check that exponential B-splines satisfy the scaling relation

2β̂2n+1−→γ (2ω) = 21−MR2n−→γ (ejω)β̂2n−→γ (ω)

where R−→γ (z) =
∏M

m=1(1 + eγmz
−1

).
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CHAPTER 5 5.3 Frequency Warped Wavelet Multiresolution

In the proposed construction, this corresponds to

ϕn(t) = β2n−→γ (t)

Hn(z) = 21−MR2n−→γ (z).

We can consider the embedded shift-invariant spaces defined by

Vn =

{
(W†s)(t) =

∑
m∈Z

c[m]β2n−→γ

(
t− 2nm

2n

)
| c ∈ l2(Z)

}

At a fixed scale n, the function β2n−→γ (t) generates a Riesz basis if and only if −→γ has

no distinct purely imaginary components γ and γ′ such that

2n(γ − γ′) = j2πk

for some k ∈ Z.

In Figure 5.3 are depicted the A0 frequency warped E-spline wavelet function at n = 6

and n = 7
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Figure 5.3: A0 frequency warped E-spline wavelet function at n = 6 and n = 7

5.4 Frequency Warped Cross Wavelet Analysis

Signals are acquired by each sensor are warped both by the inverse frequency warping

operator for A0 and S0 mode; for each couple of warped A0/S0 signals the cross-

correlated signal is calculated.

Given the two cross-correlated signals related to A0 and S0 warping we perform the

described non stationary frequency warped wavelet multiresolution analysis using for

different dyadic frequency bands: in frequency bands between[
2 · fsampling,

fsampling
2

]
the wavelet filters are selected according to the S0 warping map while in the interval
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CHAPTER 5 5.4 Frequency Warped Cross Wavelet Analysis

[
0,

fsampling
2

]
filters are designed according to the A0 mode.

Once the values of xn[m] have been found, the estimated difference in distance D1−Di

is the translation n∗ which corresponds to the maximum of the norm of the vector

xn[m]|n=n∗ : max
n
‖xn[m]‖ where ‖xn[m]‖ =

√√√√ Nn∑
m=1

x2
n[m],

where Nn is the number of scales considered.

The proposed algorithm can be summarized in the graph shown in Figure 5.4.

Figure 5.4: Graph of the proposed DDOA algorithm.
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5.5 Cramèr - Rao lower bound

Given the cross-correlated signal in time domain

sik(t,∆Dik) = s(t,Di) ∗ s(t,Dk),

the cross-correlation of two warped signals in frequency is

(FWsik)(f,∆Dik) = (FWs)(f,Di) · ((FW)∗s)(f,Dk) =

=
dw(f)

df
|(Fs0)(w(f), 0)|2e−j2πfK(Di−Dk)

In the following, estimation of ∆Dik is addressed given the noisy cross correlated signal

zik(t,∆Dik) = sik(t,∆Dik) + η(t) where η(t) is the uncorrelated white Gaussian noise

which is independent by sik(t,∆Dik). Applying the Frequency Warping Operator of

zik(t,∆Dik) yields

(FWzik)(f,∆Dik) = (FWs)(f,Di) · ((FW)∗s)(f,Dk) + (FWη)(f)

=
dw(f)

df
|(Fs0)(w(f), 0)|2e−j2πfK(Di−Dk) +N(w(f))

We propose the following estimator for ∆Dik = Di − Dk in the frequency discrete

domain

ˆ∆Dik = arg max
∆̂Dik

|(FWs)(f,Di) · ((FW)∗s)(f,Dk) + (FWη)(f)|2

= arg max
∆̂Dik

∣∣∣∣∣
N
2
−1∑

n=0

{
w(fn+1)− w(fn)

fn+1 − fn
|(Fs0)(w(fn), 0)|2e−j2πfnK(∆̂Dik) +N(w(fn))

} ∣∣∣∣∣
2

where N is the number of samples. The computation of the variance of ∆̂Dik is

performed utilizing the following formula

var(∆̂Dik) = E

{
d(|(FWzik)(f, ∆̂Dik −∆Dik)|2)

d(∆̂Dik −∆Dik)

}
=

= E

{
d(|(FWs)(f,Di) · ((FW)∗s)(f,Dk) + (FWη)(f)|2)

d(∆̂Dik −∆Dik)

}
∆̂Dik=∆Dik

where E represents the expectation operator. We derive the following expressions

supposing that the bandwidth of (Fs0)(f) is limited between [fL, fH ] ∈ [0, 1
2
] with
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CHAPTER 5 5.5 Cramèr - Rao lower bound

with a constant power spectral density (PSD), variance σs0 , the variance of the noise

(Fη)(f) is ση

E

{
d(|(FWs)(f,Di) · ((FW)∗s)(f,Dk) + (FWη)(f)|2)

d(∆̂Dik −∆Dik)

}
=

= E

 ∂

∂(∆̂Dik −∆Dik)

∣∣∣∣∣
 fH∑
fp=fL

dw(fp)

dfp
|(Fs0)(w(fp), 0)|2e−j2πfpK(∆̂Dik−∆Dik)

+N(w(fp))

)∣∣∣∣∣
∣∣∣∣∣
(

fH∑
fl=fL

dw(fl)

dfl
|(Fs0)(w(fl), 0)|2e−j2πflK(∆̂Dik−∆Dik) +N(w(fl))

)∣∣∣∣∣
}

=

= 4πK ·
fH∑

fp=fL

fH∑
fl=fL

dw(fp)

dfp

dw(fl)

dfl
fpflE

{
|(Fs0)(w(fp), 0)|2|(Fs0)(w(fl), 0)|2

}
e−j2π(fp+fl)K(∆̂Dik−∆Dik) +

+2πK

fH∑
fp=fL

dw(fp)

dfp
fp|(Fs0)(w(fp), 0)|2e−j2πfpK(∆̂Dik−∆Dik) ·N(w(fp)) +

+2πK ·
fH∑

fl=fL

dw(fl)

dfl
fl|(Fs0)(w(fl), 0)|2e−j2πflK(∆̂Dik−∆Dik) ·N(w(fl))

Since that

E{|(Fs0)(w(fp), 0)|2} = E

{
N−1∑
n=0

s0(n)e−j2πw(fn)k/N

N−1∑
m=0

s0(m)e−j2πw(fm)k/N

}
=

=

 1
2(fH−fL)

Nσ2
s0

fp ∈ [fL, fH ]

0 otherwise

E{N(w(fp))} =


√

N
2(fH−fL)

ση fp ∈ [fL, fH ]

0 otherwise

Imposing the constraint ∆̂dik = ∆ik yields

E

{
d(|(FWs)(f,Di) · ((FW)∗s)(f,Dk) + (FWη)(f)|2)

d(∆̂Dik −∆Dik)

}
∆̂Dik=∆Dik

=

4πK
1

4(fH − fL)2
N2σ4

s0

fH∑
fp=fL

(
dw(fp)

dfp

)2

f 2
k +

+4πK

(
N

2(fH − fL)

)3/2

σ2
s0
ση

fH∑
fp=fL

dw(fp)

dfp
fp

74



CHAPTER 5 5.6 Experimental verification

and in the continuous frequency domain

πK

2

(
N

(fH − fL)2

)3/2

σ2
s0

(
σ2
s0

∫ fH

fL

(
dw(ξ)

dξ

)2

ξ2dξ + ση

∫ fH

fL

dw(ξ)

dξ
ξdξ

)

5.6 Experimental verification

As a case study, we exploited the proposed tool to locate impacts in an aluminum

1050A square plate 1 m × 1 m and 0.003 m thick.

Two different experiments were carried out using three sensors distributed in a sym-

metrical and asymmetrical configuration with respect to the edges of the plate.

The positions of the sensors are collected in Table 5.1.

Topology Coordinates Sensor 1 Sensor 2 Sensor 3

asymmetrical
x (m) 0.10 0.20 0.90

y (m) 0.90 0.10 0.10

symmetrical
x (m) 0.25 0.25 0.75

y (m) 0.75 0.25 0.25

Table 5.1: Sensors positions for the considered symmetrical and asymmetrical
topologies.

Guided waves were excited by hitting the plate with a pencil orthogonally to the

surface.

The generated signals were recorded using the LC534 series LeCroy oscilloscope at a

sampling frequency of 512 kHz.

Acquisitions were triggered when the signal received from one of the PZT discs

(PIC181, diameter 0.01 m, thickness 0.001 m) reached a threshold level of 140 mV;

pre-trigger recordings were enabled to obtain the previous history of each signal.

Figure 5.5 shows the experimental setup.
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Figure 5.5: Experimental setup.

The sampling frequency was sufficiently high to avoid aliasing effects, as the frequency

content of the acquired signals vanishes above 60 kHz. Two configurations have been

tested: three PZT discs were placed symmetrically and asymmetrically with respect

to the edges, as schematically depicted in Figure 5.8(a), (b).

Figure 5.6(a) shows the experimental waveforms detected by the three sensors after

having excited the plate at the following coordinates: x = 0.45 m, y = 0.35 m.
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Figure 5.6: Sample acquired signals by the passive monitoring system: (a) signals in
time domain, (b) Warped time domain version.

As can be seen by observing Figure 5.6(a), it is extremely difficult to estimate the dif-

ference in time of arrival by using classical thresholding or peak detection procedures.

In fact, such estimation is complicated by the effect of dispersion which introduces a

distance-dependent group delay shift.

The Lamb waves group velocity dispersion curves for the 0.003 m thick aluminum

plate were obtained considering the following nominal properties for the aluminum:

E = 69 GPa, ν = 0.33 and ρ = 2700 kg ·m−3 in order to compensate for dispersion,

first the WFT operator must be defined [20]. In the [0 − 300] kHz frequency range,

only the two fundamental A0 and S0 Lamb waves can propagate through this plate.

Since for out-of-plane excitation the energy in the A0 and S0 mode is considerably

greater than the other modes; the group velocity curves of the A0 and S0 modes are

used to shape the two warping operator.

Next, by processing the acquired signals with the WFT, the waveforms depicted in

Figure 5.6(b) are obtained from the A0 mapping. In the new waveforms, the group

delay dependence on distance is removed. However, spurious components arise due

to the edges’ reflections and also components due to the non compensated S0 mode.
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At this point, the wavelet multiresolution analysis is applied to the two cross-correlated

warped signals.
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Figure 5.7: Comparison in function of the difference in distance between the warped
cross-correlated signal and the curve ‖xn[m]‖: (a) impact in x = 0.45 m y = 0.35 m,
(b) impact in x = 0.85 m y = 0.15 m.
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Figures 5.7(a) and (b) show the comparison between the warped cross-correlated

signals and the curves ‖xn[m]‖ for two different impacts (x = 0.45 m, y = 0.35 m)

and (x = 0.85 m, y = 0.15 m).

It is important to underline the localization improvement obtained through this

method with respect to the analysis of the simple peaks of the cross-correlating sig-

nals which are spread and the related abscissa are not very close to the true difference

of traveled distance and this is due to the non negligible interference term. Without

multimode compensation the cross-correlation of warped A0 signals can lead to large

errors, as shown in Figure 5.7(b), while the proposed algorithm closely estimates the

true difference in traveled distances. The source location is detected through multi-

lateration, solving the system of equations with the Levenberg-Marquardt algorithm.

The results of the proposed procedure for impacts localization can be seen in Figure

5.8 where the target and estimated impact points, denoted respectively by circles ◦

and crosses ×, are shown.
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Figure 5.8: Source localization results.

Such estimations are performed in a purely passive manner, ignoring the time instant

at which the acoustic emission starts.

Experimental results reported in Figure 5.8 and [7] are slightly different. The small

deviation is due to the fact that with the proposed multiresolution analysis, based

on scale-dependent generating functions, a compensation of the S0 mode is also per-

formed in some frequency bands. Since that for the propagation on the aluminum

plate the energy retained by the S0 mode is considerably less respect to the energy

retained by the A0 mode this contribute in the localization error on the aluminum

plate is not so huge.

The comparison of the experimental results between the the proposed procedure and

the algorithm described in [7] is given through the analysis of the cumulative dis-

tribution of the localization error for the two considered configurations of the PZT

transducers which is shown in Figure 5.9.
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(b) Sensors asymmetric respect to the edges

Figure 5.9: Cumulative distribution of the localization errors.
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Figure 5.9(a), (b) show the improvement in performances on the localization error

of the developed algorithm. The accuracy is compromised when the sensors position

is irregular, close to the edges and, consequently, prone to reverberations. In such

cases the warped wavelet analysis offers an improved localization accuracy as shown

in Figure 5.9(b).

Finally a comparison between the experimental results and the Cramèr-Rao lower

bound is shown in Figure 5.10.

Figure 5.10: Comparison between the Cramèr-Rao lower bound and the experimen-
tally estimated positions: 3 sensors asymmetric respect to the edges.

In the lower bound estimation, the measurement errors are considered as independent

identically distributed gaussian random variables with zero mean. Their standard

deviation σd can be estimated as σd = 2 · vs
fs

= 3 mm, being fs = 1 MHz the sampling

frequency and vs = 1570 m · s−1 the equivalent speed of sound in the warped domain.

As can be seen in Figure 5.10, the impact position errors are very close to the the-

oretical limit given by the Cramèr-Rao lower bound of the hyperbolic positioning

algorithm in the convex area bounded by the sensors. Conversely, when the source
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is placed in the external area between sensors and the plate edges, the localization

errors increase roughly respect to the Cramèr-Rao bound because of the dominant

phenomenon of reflection that totally corrupts the cross-correlated signal.

5.7 Discussion

In this Chapter a method to extract the difference in distance traveled by stress

guided waves is proposed. The method applies a dispersion compensation procedure

on the signals acquired by passive sensors, thus overcoming the difficulties associated

with arrival time detection based on classical thresholding procedures. A frequency

warped wavelet multiresolution analysis is applied to the cross-correlating signals to

compensate multimodal dispersion. The analysis of the wavelet transform magnitude

reveals the difference in distance traveled by the wave to reach the different sensors.

Finally, multilateration is applied. Excellent performance in terms of point of impact

localization is shown through experiments since the estimated impact positions are

very close to the Cramèr-Rao lower bound. Further, the reliability of the proposed ap-

proach in presence of reverberation make the new tool suitable for automatic acoustic

emission localization procedures.

Future developments include the implementation of the algorithm on embedded board

for Structural Health Monitoring and the applications of the proposed framework to

anisotropic propagation, such as detection of impacts in composite plates.
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Chapter 6
Embedded Ultra-Low Power Device for

Impact Localization

To be ignorant of one’s ignorance is the malady

of the ignorant.

Amos Bronson Alcott

6.1 Introduction

This Chapter describes the development of a miniaturized, self-contained and low

power device for automated impact detection that can be used in a distributed fashion

without central coordination.

One of the popular structural health monitoring (SHM) applications of both automo-

tive and aeronautic fields is devoted to the non-destructive localization of impacts in

plate-like structures. The aim of this work is to develop a miniaturized, self-contained

and low power device for automated impact detection that can be used in a distributed

fashion without central coordination.

The proposed device uses an array of four piezoelectric transducers, bonded to the

plate, capable to detect the guided waves generated by an impact, to a STM32F4

board equipped with an ARM Cortex-M4 microcontroller and a IEEE802.15.4 wireless
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transceiver. The waves processing and the localization algorithm are implemented on-

board and optimized for speed and power consumption. In particular, the localization

of the impact point is obtained by cross-correlating the signals related to the same

event acquired by the different sensors in the warped frequency domain.

Finally the performance of the whole system is analysed in terms of localization

accuracy and power consumption, showing the effectiveness of the proposed imple-

mentation.

6.2 Motivation

A current trend in the SHM field is to create wireless sensor networks with low power

consumption or even energetically autonomous [61, 62]. One promising solution would

be a SHM system that could be embedded into the structure, inspect the structural

hot spots and download data or diagnostic results wirelessly to a remote station [63,

64, 65]. A lot of literature has been produced on the use of sensor-array-based methods

for high-speed acquisition and data processing. However, generally such approaches

use a large number of individual sensors that usually are bulky, heavy and require

wiring back to a central location. Moreover when large-scale deployment are implied,

the power consumption of the system is hardly sustainable by the ordinary generation

system present on board. In contrast to these traditional transducers, wireless sensors

technology integrating small sensors and wireless communication are becoming vital

in SHM, guaranteeing at the same time: (1) less wiring among sensors and between

sensors and the central unit; (2) lower weight; (3) reduced power consumption and

(4) real-time monitoring even in harsh environmental conditions.

In this Chapter a new PZT-based wireless embedded ultrasonic structural monitoring

system for impact localization is proposed with advantages over traditional systems of

compactness, light weight, low-power consumption and high efficiency and precision.

The passive approach based on ultrasonic Lamb waves and conventional piezoelectric

transducers (PZT discs) is capable of achieving high localization performance using

a dispersion compensation algorithm with low computational cost.
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The structure of the SHM system is illustrated in Fig. 6.1.

Figure 6.1: Structure of the embedded SHM system for impact detection

In the new SHM system, the signal conditioning, amplification and A/D converting

circuits are replaced by a simple comparator circuit, in which the response signal

from a piezoelectric transducer PZT sensor is directly changed into a digital queue

by comparing it with a preset trigger value.

The device samples the signals in passive mode using 4 different piezoelectric trans-

ducers and the signals are elaborated on a Cortex-M4 based microcontroller.

By cross-correlating the dispersion-compensated signals, the impact point can be

determined via hyperbolic positioning. Thus, when an impact occurs, only the data

of its position is recorded and sent to the central system through wireless transmission.

The structure of this Chapter is as follows: the design and realization of the new

PZT-based wireless digital impact monitoring system is described in detail in Section

6.3.

Section 6.4 shows the feasibility and stability of the embedded ultrasonic structural

monitoring system and an experimental validation is presented.
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6.3 Hardware Design

The system is composed by 4 different elements: (A) piezoelectric sensors, (B) acqui-

sition chain, (C) processing electronic unit and (D) wireless transmission module.

(A) Piezoelectric sensors: when an impact occurs on an elastic structure, a stress

wave is created and it propagates across the structure, radially from the point

of impact. The stress wave can be caught by PZT sensors in a passive way.

The proposed system exploits at least 4 conventional piezoelectric transducers

arranged in a geometrical fashion. The sensor array of piezoelectric elements

needs to contain at least four sensor elements in order to provide reliable trian-

gularization capabilities.

(B) Acquisition chain: The strong attenuation typical of composite materials usu-

ally requires sophisticated signal amplification and conditioning electronics in

order to cope with the high gains and low noise typical of GW based diagnostic.

In this work we propose a signal elaboration technique based on innovative time-

frequency analysis techniques. PZT transducers are connected directly with the

ADC ports of the STM32F4 board and each ADC channel is configurated in dual

mode with 250 kHz maximum sampling frequency since generally the spectral

components of the Lamb waves lower rapidly above 60-100 kHz. The acquired

values are stored in a DMA circular buffer; when the maximum value of the

buffer exceeds the threshold value the trigger is sent and the Micro Controller

Unit (MCU) performs the localization algorithm.

The acquisition settings are shown in Table 6.1:

Table 6.1: Acquisition and ADC settings

Inputs 4 sensors Sampling frequency fs 250 kHz

Input Range ±2 V Samples 2048

Acquisition period 8 ms Sample resolution 12 bit
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(C) Processing electronic unit: the center of the system is the processing core

which contains function modules for data collection, processing and commu-

nication control. A Cortex-M4 based board is selected as main chip in the

processing core. The MCU is specifically a STM32F4 evaluation board featur-

ing a STM32F407VGT6 microcontroller with 1 MB Flash and 192 KB RAM.

The strength point of the core is the CPU with FPU, adaptive real-time accel-

erator allowing 0-wait state execution from Flash memory and frequency up to

168 MHz.

The computational cost of the proposed algorithm is shown in Table 6.2.

Table 6.2: Algorithm computational cost

Non Uniform FFT

1) FFT N = J ×M = 212 points: complexity O(N logN)

2) MIN-MAX memory w(f): J ×M = 212; complexity O(JM)

samples 12 bit: memory: 212 × 12 ≈ 49 KByte

Cross-Correlation: 3 products with signals of length 211

Inverse FFT : M = 211 points complexity O(M logM)

(D) Wireless transmission module: when the device is used to monitor the

structural health of large structures, each node in the network monitors a spe-

cific portion of the structure surface, eventually reporting to a central location

in case of detected damage. The wireless communication technology allows long

distance data transmission without wiring, simplifying the difficulties in multi-

device network monitoring. To be compliant with the low-power requirements

the device presents a RF wireless module ZigBee/IEEE802.15.4 compliant, con-

nected to the main board using an Serial Peripheral Interface (SPI).

The network topology suitable for this kind of applications is mesh or star

network, where each node in the network is able to communicate with the

central gateway.
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6.4 Experimental Verification

We exploited the proposed SHM system to locate impacts in an aluminum 1050A

square plate 1 m × 1 m and 3 mm thick. Four PZT discs (PIC181, diameter 10 mm,

thickness 1 mm) were placed asymmetrically at the corners of a square as depicted

in the experimental setup in Fig. 6.2.

Figure 6.2: Experimental setup

Guided waves were excited by pencil-lead breaks. The ADC channels of the STM32F4

discovery board were set in dual mode to continuously acquire signals with a max-

imum sampling frequency of 250 kHz. The board was supplied with 3.3 V. Data

were recorded in a circular DMA buffer and acquisitions triggered when the signal

received from one of the PZT discs reached a threshold level of 50 mV. The sampling

frequency was sufficiently high to avoid aliasing effects, as the frequency content of

the acquired signal vanishes above 60 kHz. In order to analyse the dependency of the

power consumption and the localization performances with the sampling frequency,
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experiments were carried changing the frequency in the range [150− 250] kHz.

Results in Table 6.3 show how lowering the sampling frequency, the current consump-

tion decreases but not in a linear manner; furthermore the MCU elaboration step is

very sensible to the sampling frequency since the algorithm complexity is proportional

to the sample buffer length which is reduced if the sampling frequency is lower.

Table 6.3: Mean Current Consumption

ADC sampling Signal Processing

fs = 250 kHz 32 mA 63 mA

fs = 200 kHz 27 mA 53 mA

fs = 150 kHz 24 mA 50 mA

Fig. 6.3 shows the current consumption values measured for different sampling fre-

quencies.

Figure 6.3: Current consumption for different sampling frequencies
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Since the ADC sampling state is performed always in time the current reduction

achieved with low frequency is noticeable. However, such reduction must be analysed

with respect to the resolution achieved in the impact localization.

In Fig. 6.4 is reported the mean error of the difference distance of arrival measured

on a set of K = 10 of experimental impacts on the aluminum plate.

The error is calculated as follow:

e =
1

3 ∗K

K∑
k=1

3∑
i=1

(∆d1i −∆d̂1i) k = 1, . . . , 10 i = 1, . . . , 3

Figure 6.4: Localization error for different sampling frequencies

As it can be seen from Fig. 6.4, lowering the sampling frequency the positioning

error rises; in contexts such as wing monitoring, the high localization resolution is

an important constrain because facilitates the decision to be taken in critical phases

such as aircraft takeoff and optimizes the number of sensors to be used to monitor

large areas.

A good parameter able to take into account both the current consumption and the

spatial resolution is Id (mA)
e (mm)

. Fig. 6.5 shows that Id (mA)
e (mm)

is not constant, denoting that

the impact localization error and the current consumption tends to be quadratic.

Fig. 6.6 shows the dependency of Id (mA)
e (mm)

with the sampling frequency.
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Figure 6.5: Dependency of the localization error with the current

Figure 6.6: Dependency of Id (mA)
e (mm)

with the sampling frequency
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Finally the frequency sampling choice depends on the localization and current con-

strains, knowing that if the location is inaccurate it is necessary to scan in a larger

area since that the defect induced from the impact can be below the surface and

therefore not immediately visible and then the control times get longer.

6.5 Composite Z-stiffened Plate

As a case study, we exploited the proposed compressive sensing tool to locate impacts

in a composite Z-stiffened plate Figure 6.7.

Figure 6.7: Composite Z-stiffened plate provided by Critical Materials with four PZT
transducers installed.

The composite plate is 1000× 1000 mm large and has two Z stringers on its bottom.

The plate was produced in Carbon Fibre Reinforced Polymer (CRFP) laminated

composite by Critical Materials Ltd.

The amount of carbon fibre in the CRFP is of 50 wt%. The Carbon Fabric is a 195

gr/m2 plain weave. The resin is an epoxy Epikote Resin 04908, with an Epikure

Curing Agent 04908 (hardner). The Resin/harder mixing ratio was of 100/30 parts
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by weight, being used 4630 gr of resin and 1389 gr of harder.

Table 6.4 shows the properties of individual constituents.

Table 6.4: Properties of individual constituents of the CRFP laminated

Fiber Resin

Young modulus: 200 GPa Young modulus: 2.90 GPa

Shear modulus: 50 GPa Shear Modulus: 1.20 GPa

Density: 1700 kg/m3 Density: 1200 kg/m3

The Z-panel was manufactured by vacuum infusion technique. The flat rectangular

plate has 13 lamina with plies with fibres oriented at 0/90°. The Z-stiffener has also

13 lamina but with plies of fibres oriented at +45/-45°. The total thickness of the

Z-plate is 3 mm.

The mechanical properties of CRFP were assessed by tensile and flexural testing from

samples cut from rectangular plates of 50 × 25 × 0.25 cm, with 11 plies with fibres

oriented at 0/90°.

The final thickness of the plate is of 2.52 mm. The results are listed in Table 2.

The measure density is of 1.38 ± 0.04 kg/m3. The data of Table 6.5 were properly

used (scaled to consider the 13 plies of the Z stiffened plate) to feed a Semi-Analytical

Finite Element based tool aimed at predicting the dispersion curves at different angles

of propagation.

Table 6.5: Mechanical characterization of the CFRP (S.D. - Standard Deviation)

Horizontal Vertical Diagonal (45°)

Tensile σmax (MPa) E0.2% (GPa) σmax (MPa) E0.2% (MPa) σmax (MPa) E0.2% (MPa)

Average 574± 40 61.6± 3.7 457± 36 48.4± 7.7 193± 4 124.1± 0.3

Flexural σmax (MPa) E0.2% (GPa) σmax (MPa) E0.2% (MPa) σmax (MPa) E0.2% (MPa)

Average 786± 46 45.5± 3.0 778± 46 47.1± 3.1 322± 34 138.5± 0.9

For instance in Figure 6.8 the dispersion curves at 0° are represented in terms of

wavelength (lambda) and group velocity.
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Figure 6.8: Predicted wavelength and group velocity dispersion curves (left column).
Predicted dispersion curves over imposed the signals acquired from a frequency sweep
(right plot).

As it can be seen from this plot, below 300 kHz only the A0, S0 and SH0 modes exist.

Next, the curves were experimentally validated. In particular, a frequency sweep was

run by exciting one PZT (PIC181, diameter 0.01 m, thickness 0.001 m) with a single

cycle of sinusoid at central frequency varying from 0 to 100 kHz. Time waveforms

were acquired at the other sensors placed at the corners of a square with 290 mm

side length. In particular, in Figure 6.8 the responses acquired at the sensor oriented

at 0° are represented as the absolute value of their Hilbert transform. As it can be

seen from the image, the actuator-sensor coupling, and two guided modes are clearly

visible. Over imposing the predicted dispersion curves to the image it can be seen

that the other two modes match quite well with the predicted S0 (fastest) and A0

(slower) guided modes. The predicted dispersion curves for A0 were thus used to

design the frequency warping operator necessary to compensate the acquired signals

from dispersion.
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6.6 SHM System: Node Sensor and PZT Trans-

ducers

The embedded electronic system is composed by 4 conventional piezoelectric PZT

transducers, a STM32F4 board equipped with an ARM Cortex-M4 microcontroller

and a IEEE802.15.4 wireless transceiver.

To be compliant with the low-power requirements the device presents a RF wireless

ZigBee module, connected to the main board using an SPI interface. Guided waves

were excited by hitting the plate with a pencil orthogonally to the surface.

The generated signals were recorded by connecting the PZT transducers directly to

the ADC ports of the STM32F4 board. The sampling frequency was set at 150 kHz

since the spectral components of the Lamb waves vanish rapidly above 60-100 kHz.

In the frequency range 0-50 kHz, thanks to the wavelength tuning effect, all wave

modes but A0 are filtered out in the acquisition process. Acquisitions were triggered

when the signal received from one of the PZT discs reached a threshold level of 140

mV; pre-trigger recordings were enabled to obtain the previous history of each signal,

although it was experimentally verified that pre-trigger recordings can be discarded in

the time of flight estimation with a negligible degradation of the impact localization

accuracy.

Given the coordinates of the sensor positions xi and yi and having estimated the

differences in travelled distance between the waves acquired by the first sensor and the

remaining, a hyperbolic positioning method is applied to locate the point source. Such

a method exploits the differences in propagating distances to determine hyperbolae

on which the impact point must lie. The intersection of the different hyperbolae,

obtained by solving the system of M − 1 equations with the Levenberg-Marquardt

algorithm, is taken to be the impact position.

The Levenberg-Marquardt algorithm is iterative and can be computationally onerous,

for this reason such computation is performed by a central processing unit and not

by the embedded microcontrollers.
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The results of the proposed procedure for impact localization can be seen in Figure

6.9 where the target and estimated impact points denoted by circles and crosses,

respectively, are shown.

Figure 6.9: Comparison between the estimated (crosses ×) and actual (circles ◦)
impact locations. A mean error smaller than 10 mm was achieved in coordinate
estimation.

The power consumption of the STM32F4 board is around 80mW in the acquisition

phase and 170mW during the time difference of arrival computation.

6.7 Discussion

In this Chapter an efficient wireless embedded structural monitoring system for im-

pact localization based on Lamb waves is proposed. The method applies a dispersion
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compensation procedure on the signals acquired by passive sensors, thus overcoming

the difficulties associated with arrival time detection based on classical thresholding

procedures.

The processing framework and the algorithm are implemented on a STM32F4 discov-

ery board with advantages of compactness, low-power consumption, high efficiency

and precision. The system was validated experimentally to locate impacts in a alu-

minum plate with four sparse PZT sensors.

Results shows the effectiveness of the proposed implementation with high localization

accuracy and low current consumption.
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Chapter 7
Damage Localization

Nobody knows his own possibilities since that are

tested.

Publio Siro

7.1 Introduction

Among the various applications based on GWs, numerous approaches have been pro-

posed to detect defects in plates-like structures by means of Lamb waves [66] and [67].

Generally, active-passive networks of transducers are considered, where one or more

actuators are used to generate GWs and the sensors work as wave detectors. The

time-waveforms acquired by the receivers, triggered on the actuator, are subsequently

analyzed to locate and characterize the defect.

Unfortunately, several dispersive modes appear simultaneously in the received signals,

thus limiting the potential of such approaches. The modes, in fact, overlap in both

time and frequency domains and simple Fourier analysis techniques are not able to

separate them. Recent works in the area of time-frequency representations (TFRs)

[68] [69] show great promise for applications in nondestructive evaluation and material

characterization, as a mean to interpret ultrasonic propagation in various structures.

In fact, since the propagation characteristics are directly related to both the intimate

structure and mechanical properties of the medium, the dispersive properties of GWs
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can reveal important informations for structural health monitoring purposes.

Nevertheless, fast identification and separation of Lamb modes is a challenging step

in the process of damage detection, even in the time-frequency domain. Such task

is complicated by the fact that high energy pulses have to be excited in order to get

readable echoes from weak reflectors.

To excite such high energy pulses, two alternatives can be considered:

• short spiky pulses;

• chirped pulses.

Short pulses (usually few cycles sinusoids with Gaussian envelopes) are commonly

adopted and somehow simpler to be interpreted, as many of the recently proposed

dispersion compensation algorithms (see [70] and [51]) or time-frequency tools (e.g.

[71], [72] and [73]) are perfectly suited to process them. However, the pulser circuit

must handle very high voltages (up to 1 kV) and requires mains power supply. This

can be unpractical in many situations, e.g. whenever a portable device has to be built,

or when the available power supply is limited. In such cases, actuation by means of

chirped pulses is the most effective solution.

Chirped pulse transmissions found its first wide-spread applications in radar systems.

Essentially, such technique consists in transmitting long linear or non-linear frequency

modulated signals, so that the pulse energy is stretched in time, but the resolution is

not compromised thanks to the broad frequency spectrum of the signal itself. Broad-

band chirped techniques have been previously applied to ultrasonic nondestructive

testing (see [74] or [75]), but are unusual in GWs-based applications because of their

dispersive detrimental effect.

In this Chapter, we discuss a novel methodology to tackle dispersion in case of chirped

excitations. The proposed procedure is based on a two-step pulse compression strat-

egy. In the first step, the Warped Frequency Transform (WFT) is exploited to com-

pensate the group delay of the acquired signals from the dependency on the distance

traveled by the waves [21]. The second step is aimed at the compressing the chirped

frequency modulation. Next the compensated and compressed signals are used to feed
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an imaging algorithm that revels the position of the defect on the plate. The main

benefit of the proposed strategy for active-passive networks of sensors is the possibil-

ity of using lower input power with respect to procedures based on spiky pulses. In

addition, being fast as a standard Discrete Fourier Transform, the procedure is well

suited for real-time SHM applications of plate-like structures.

The Chapter is organized as follows: the proposed group delay compensation pro-

cedure will be presented in section 7.2 together with some results on numerically

simulated waveforms; an experimental validation is presented in section 7.3.

The conclusions end the Chapter.

7.2 Group delay compensation

7.2.1 Step 1: dispersion compensation

As shown in [76], the WFT can be exploited to compensate a signal from a Lamb

wave dispersion induced by the traveled distance. To this aim, the warping map w(f)

has to be defined through its functional inverse, such as:

K
dw−1(f)

df
=

1

cMg (f)
(7.1)

where 1/cMg (f) is the nominal dispersive slowness relation of the M -th Lamb wave

whose dispersive effect has to be compensated. K is a normalization parameter

selected so that w−1(0.5) = w(0.5) = 0.5.

A sample warping map is depicted in Fig. 7.1(b) along with its functional inverse. It

was computed according to Eq. (7.1) by considering the group velocity curve of the

A0 mode represented in Fig. 7.1(a).

The Lamb waves group velocity curves of Fig. 7.1(a) were obtained by using the

semi-analytical finite element (SAFE) formulation proposed in [20] considering a 3

mm thick aluminum plate with Young modulus E = 69 GPa, Poisson’s coefficient

ν = 0.33 and density ρ = 2700 kg/m3.
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(a) (b)

Figure 7.1: (a) group velocity dispersion curves cg(f) for the Lamb waves propagating
in an aluminum 3 mm thick-plate (Young modulus E = 69 GPa, Poisson’s coefficient
ν = 0.33, density ρ = 2700 kg/m3). (b) Warping map w(f) for A0 wave dispersion
compensation and its functional inverse w−1(f) designed according to Eq. 7.1.

Let us indicate with s(t,D) a time waveform of an undamped Lamb wave, for which

the time of actuation is known and it is taken as the origin of the time axis (t = 0),

at a traveled distance D from the actuator. s(t,D) can be modeled in the frequency

domain as a dispersive system whose response is:

S(f,D) = S(f, 0) · e−j2π
∫ f
0 τMD (α)dα (7.2)

where S(f, 0) is the Fourier transform of the exciting pulse in the point of actuation,

and τMD (f) = D/cMg (f) the dispersive group delay of the wave component of frequency

f (it is assumed that the transducer is ideal and excites only the M -th Lamb wave

mode of interest). Therefore, in force of Eq. (7.1) the right hand term of Eq. (7.2)

can be rewritten as:

S(f,D) = S(f, 0) · e
−j2πD

∫ f
0

1

cMg (α)
dα

= S(f, 0) · e−j2πw−1(f)KD (7.3)

in which a dispersive distortion results from the nonlinear phase term. Now, by

applying the warping operator to s(t,D) we obtain a new signal whose frequency
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transform is

FWw{s(t,D)} = [
√
ẇ(f)S(w(f), 0)] · e−j2πfKD (7.4)

By looking at this equation, it can be clearly seen how the dispersive effect of the

distance is converted into a simple time delay proportional to the distance itself

τ̂MD = KD, as the phase term presents a linear dependence on warped frequencies

(i.e. frequencies of the warped signal).

To show the effect of the WFT in active-passive techniques, in the following the

warping operator is tested on some time-waveforms generated synthetically for a

given distance D by forcing the guided modes time delay to an applied exciting pulse

by using Eq. 7.2. For a selected propagation distance D, and for each guided mode

of interest, the time delay is computed as D/cMg (f).

For example, considering a triangular pulse with total duration equal to 10−5 s and

unitary amplitude (see Fig. 7.2(a)) the signal in Fig. 7.2(b) was generated via the

above mentioned procedure by considering only the A0 mode group velocity curve

in the [0− 300] kHz frequency range (represented in Fig. 7.1(a)) and a propagation

distance of D = 300 mm.

Figure 7.2: Dispersion compensation of a dispersive signal s(t,D). (a) exciting spiky
pulse s(t, 0) starting at t = 0 s. (b) dispersive signal s(t,D) at a traveling distance
D = 300 mm. (c) warped signal Ww{s(t,D)}.
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The compensated signal obtained by processing the dispersive signal of Fig. 7.2(b)

by designing the warping map according to the A0 mode group velocity (as in Eq.

(7.1)) is shown in Fig. 7.2(c).

The WFT dispersion compensation procedure cannot produce a perfect replica of the

exciting function for two main reasons:

• the compensated pulse, whose Fourier transform is
√
ẇ(f)·S(w(f), 0), is defined

in a new spatial domain different from the time domain of the actuating pulse

whose Fourier transform is S0(f, 0);

• for the A0 mode cg(0) = 0, therefore it would be necessary to have an infinitely

long acquired signal to perform a total compensation.

The unavoidable truncation of the dispersed signal results in an attenuation of the

DC component after the processing and, consequently, an oscillating function in Fig.

7.2(c). Despite these limits, the x-axis of the warped signal can be directly related to

the distance traveled by the wave thanks to Eq. (7.2).

Therefore, the warped signal turn to be perfectly suited for wave traveling distance

estimation procedures. This is due to the adopted sharp impulsive pulse that makes

the warped waveform in Fig. 7.2(c) rapidly evanescent out of the neighborhood of

the actual traveled distance. However, similar conclusions do not hold for chirped

excitation.

For instance, let us consider the chirped actuation in Fig. 7.3(a). The resulting

dispersive signal considering the A0 wave propagating for a distance D = 300 mm

is depicted in Fig. 7.3(b), and the signal warped by using the warping map shaped

according to the A0 mode is shown in Fig. 7.3(c). As it can be seen, the spreading

of the warped waveform on the distance axis is clearly visible. Such effect is due to

the warping of the group delay of the incipient pulse.

Therefore, for the purpose of distance estimation in case of chirped exciting pulses a

further signal processing step is required.
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Figure 7.3: (a) actuated chirped pulse s(t, 0). (b) simulated dispersive wave s(t,D)
acquired at a traveling distance D = 300 mm. (c) warped signal Ww{s(t,D)}.
Subplots (d), (e) and (f) represent the spectrograms of the signals in (a), (b) and (c),
respectively. In the same plots, the dashed lines represent group delays estimated
according to Eq. (7.6), Eq. (7.8) and Eq. (7.9), respectively.
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7.2.2 Step 2: warped signal compression

Let us consider a chirped excitation s(t, 0) with Fourier transform S(f, 0). S(f, 0)

can be rewritten in terms of amplitude A(f) and phase components, highlighting the

group delay of the chirp pulse due to its frequency modulation τC0 (f) as:

S(f, 0) = A(f) · e−j2π
∫
τC0 (f) df (7.5)

τC0 (f) ≡ − 1

2π

d arg[Fs(t, 0)](f)

df
(7.6)

Now applying the warping operator to s(t, 0) leads to the following distortion of the

chirped pulse group delay that does not dependent on the distance of propagation:

τ̂C0 (f) =
d
∫
τC0 (w(f)) dw(f)

df

= τC0 (w−1(f)) · cMg (w−1(f)) (7.7)

Since the group delay of s(t,D) can be estimated as:

τCMD (f) = τC0 (f) + τMD (f) = τC0 (f) +D/cMg (f) (7.8)

the group delay of warped signal Wws(t,D) in force of Eq. (7.7) and Eq. (7.1) is

simply:

τ̂CMD (f) = τ̂C0 (f) + τ̂MD (f) = τ̂C0 (f) +KD (7.9)

from which it can be noticed that τ̂C0 (f) is an adjunctive group delay which is present

in all the warped signals actuated by the same chirp pulse independently from their

traveled distances Di.

It follows that the group delay due to the chirp modulation can be easily removed

from the warped signals by forcing an opposite term −τ̂C0 (f) in their phase spectrum

as:

Scomp
i (f,Di) = FWw{s(t,Di)} · ej2π

∫
τ̂C0 (f) df (7.10)

By doing so, an effective compression of the chirped pulse is obtained in F−1Scomp
i ,

suitable for defect localization procedures, as can be seen in Fig. 7.4.
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Figure 7.4: Subplots (a), (b), and (c) represent the time-waveform s(t,D), the warped
waveform Ww{s(t,D)}, and the chirp compressed warped signal F−1Scomp

i , at a trav-
eling distance D = 300 mm, respectively. In subplots (d), (e) and (f) the same
information for a traveling distance D = 500 mm.

In particular for the chirped pulse in Fig.7.3(a), in Fig. 7.4 are represented the dis-

persive signals at traveling distances of D = 300 mm and D = 500 mm, their warped

signals and finally the compressed warped signals. In this figure, it is possible to

evaluate the combined effect of the WFT and of the chirped frequency modulation

compression procedure. The WFT produces very similar waveforms a part from a

rigid translation on the warped x-axis (see Fig. 7.4(b) and Fig. 7.4(e)), thus compen-

sating the A0 Lamb wave dispersion. The subsequent application of Eq. 7.10 produces

waveforms evanescent out of the neighborhood of the actual traveled distances (see

Fig. 7.4(c) and Fig. 7.4(f)).

In certain applications, e.g. in case of multimodal propagation, it could be useful

to process the acquired signal with pass-band filters. In such cases, it is of the

utmost importance to take into account in the group delay compensation procedure

the additional time delay introduced by the filter itself, i.e. τF (f). Similarly, the

procedure can also be extended in cases where a further group delay term τG(f) is

due to the irregular geometry of the waveguide [77].

107



CHAPTER 7 7.3 Experimental verification

7.3 Experimental verification

7.3.1 Data acquisition

As a case study, we exploited the proposed tool to locate defects in an aluminum

1050A square plate 1000 × 1000 mm and 3 mm thick. Four PZT discs (PIC181,

diameter 10 mm, thickness 1 mm) were bonded to the plate using a high-strength

Loctite glue.

In order to test the procedure in difficult conditions, the sensor topology is deliberately

non-optimized, in fact, it is constituted by a very sparse array of sensors, placed

asymmetrically with respect to the plate center, and close to edges of the plate in

order to be prone to undesired reflections.

The experimental set-up is shown in Fig. 7.5.

Figure 7.5: Experimental set up used to validate the defect location procedure: A
actuator, R receivers, M added mass.

Guided waves were excited by actuating the central PZT transducer A with chirped

signals with a maximum voltage of 12V thus compatible with battery power supply,

as well as with aircraft electrical systems.
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Defects have been emulated by a small steel cylindrical mass M, 20 mm of diameter

and 500 gr of weight, posed in different positions on the plate and acoustically coupled

simply with water, so that it generates quite weak reflections. The acquired waveforms

at the three receivers R1, R2 and R3, were recorded using the LC534 series LeCroy

oscilloscope at a sampling frequency of 1 MHz.

The position of the transducers is defined in Table 7.1.

coordinates actuator A receiver R1 receiver R2 receiver R3

x (m) 0.50 0.10 0.90 0.90

y (m) 0.50 0.90 0.10 0.90

Table 7.1: Actuator and receivers topology.

Acquisitions were triggered when the actuated signal reached a threshold level of 140

mV. The sampling frequency was sufficiently high to avoid aliasing effects, as the

frequency content of the acquired signal vanishes above 400 kHz.

As input signal a gaussian modulated chirp has been used in order to maximise the

energy sent to the medium in a small time slot and it is shown in Fig. 7.6

Figure 7.6: Gaussian modulated chirp used as input signal sent from the central PZT
transducer A.
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For example, the experimental waveforms detected by the 3 receivers, after having

placed the mass at the coordinates x = 0.35 m and y = 0.35 m, are shown in Fig.

7.7.

Figure 7.7: Signals acquired by the PZT sensors. The mass is in x = 0.35 m, y = 0.35
m, and a chirped signal was actuated.

As can be seen from the time waveforms, it is extremely difficult estimating the time

of arrival of echoes due to the mass (emulated defect) among the other interfering

waves due to edge reflections and multimodal propagation.

Such effects can be clearly observed in the spectrogram of the signal received by R1

depicted in Fig. 7.8, in which because of multimodal propagation and edge reflections,

many propagating waves are visible.

Moreover, such estimation is complicated by the effect of dispersion which introduces

a distance dependent group delay shift.
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Figure 7.8: Spectrogram of the signal acquired by Receiver 1 in Fig. 7.7. The
superimposed dots ◦ represent the dispersive group delay for the A0 mode scattered
by the defect.

7.3.2 Two-step signal processing

In order to apply the proposed procedure to compensate and compress chirped ac-

tuated Lamb waves, first the WFT operator must be defined. For such a scope, the

Lamb waves group velocity dispersion curves for the 3-mm thick aluminum plate were

calculated, as detailed in Sec. 7.2. In the [0 − 300] kHz frequency range, only the

two fundamental A0 and S0 waves can propagate through this plate. Since in guided

wave reflections due to surface defects (as the one emulated here) the energy in the

A0 mode is greater than the one retained by the S0 mode, the group velocity curve
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of the A0 mode was used to shape the warping map w(f) according to Eq. (7.1).

To lower the contribution of S0 waves in the acquired waveforms, a Butterworth low

pass filter was applied, and the relative τF (f) properly tabulated for the successive

group delay compensation step.

The cut-off frequency of the filter was selected to be 130 kHz, such choice was per-

formed by looking at the estimated frequency response of the PZT discs to the dif-

ferent propagating modes, as schematically depicted in Fig. 7.9.

The estimation was made by using the method detailed in [20].

Figure 7.9: Estimated Lamb waves frequency response of the PZT transducers
adopted in this study. The dashed line represents the cut off frequency selected
for filter design.

Next, by processing the acquired signals with the WFT, new waveforms are obtained.

In the new waveforms, the A0 wave group delay dependency on distance τ̂MD (f) is

removed, but a further processing step is needed in order to compress the remaining

frequency modulation, due to the combined effect of the chirped actuation and of the

low-pass filtering. Such modulation can be removed with the procedure described in

Sec. 7.2.2.
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The envelopes of the compensated and compressed signals ER(x) = env(F−1ScompR ),

R ∈ {1, 2, 3} are shown in Fig. 7.10. It is worth noticing how the abscissa value

corresponding to envelope maxima are directly related to the distances traveled by

the waves scattered by the emulated defect. Envelopes are computed as the absolute

values of the Hilbert Transform of the warped compressed signals.

Figure 7.10: Envelopes of the warped compressed signals ER(x) = env(F−1ScompR ),
R ∈ {1, 2, 3}.

7.3.3 Defect imaging

Finally, the defect can be imaged by applying to envelopes ER(x) this formula:

Im(Pi) =
3∑

R=1

ER(|
−−−→
PAPi|+ |

−−−→
PRPi|) (7.11)

where Pi is the generic point of coordinates x − y over the plate surface, while PA

and PR denote the actuator and the receiver positions, respectively. For instance,

Eq. (7.11) applied to the signals of Fig. 7.10 produces the scatterer map in Fig. 7.11.
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Figure 7.11: Defect imaging with the processed signals of Fig. 7.10

As can be seen, the ellipses determined by Eq. (7.11) intercept each other in a point

which is very close to the actual position of the mass.

At this point, localization procedures based on the extraction of the peaks of Im can

be easily implemented.

The high performances of the proposed procedure can be seen in Fig. 7.12, where

36 emulated defects and their estimated location positions, denoted by circles ◦ and

crosses ×, respectively, are shown. The maximum error s, denoted by circles ◦ and

crosses ×, respectively, are shown.

The maximum error in the estimation of the 36 impact point coordinates is smaller

than 15 mm, a dimension compatible with the mass base radius, as it can be seen

from the cumulative curve of Fig. 7.13.
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Figure 7.12: Comparison between the estimated (crosses ×) and actual (circles ◦)
defect positions. A mean error smaller than 5 mm was achieved in coordinates
estimation.

Figure 7.13: Proposed procedure cumulative error in the location of the 36 emulated
defects.
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7.4 Discussion

In this Chapter, a signal processing strategy aimed at locating defects in plates by

means of analyzing actuated and received Lamb waves by PZT sensors is proposed.

The method is suitable for chirped pulse actuations, and it is based on a two-step

procedure applied to the acquired signals, thus overcoming the difficulties associated

to arrival time detection of dispersive waves. By exploiting the dispersion compen-

sation properties of the WFT, waveforms characterized by a unique time-frequency

pattern are obtained. The actuated chirp frequency modulation is compressed in a

subsequent processing step. Excellent performances in terms of defects localization

are shown through experiments. It is worth noticing that the robustness of the wave

traveled distance estimation allows to achieve such performances with sparse arrays

of conventional transducers. Thanks to its unique potential the developed tool could

pave a new class of procedures to locate defects in waveguides. Optimized and adap-

tive selection of the array shape and size is under investigation to further improve

accuracy of the proposed approach.
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Chapter 8
Localization of Defects in Irregular

Waveguides by Dispersion Compensation

and Pulse Compression

You have never made a mistake if you have not

tried something new.

Albert Einstein

8.1 Introduction

In this Chapter a pulse-echo procedure suitable to locate defect-induced reflections in

irregular waveguides is described. In particular, the procedure extracts the distance of

propagation of a guided wave scattered from a defect within the echo signal, revealing

thus the source-defect distance.

In NDT/SHM applications, several numerical procedures have been proposed to tackle

the effect of dispersion in regular waveguides [70], [51], [24], [78]. However, to date,

irregular waveguides have been scarcely considered. An irregular waveguide is com-

posed by a sequence of segments with different dispersion properties (straight and

curved geometry, different cross-sections, tapered portions, different materials, etc.).
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A guided wave propagating along an irregular waveguide is affected by the different

dispersive maps, one for each portion composing the irregular waveguide. As ex-

pected, the effect of multiple dispersive maps complicates further the received signal,

and those approaches suitable to compensate for dispersion in regular waveguides fail.

To overcome such problem, recently a processing procedure capable to compensate

a guided waves signal from the dispersion due to a distance traveled in irregular

waveguides has been proposed [79]. In particular, the procedure exploits the Warped

Frequency Transform (WFT) to remove from the acquired echo signal the dispersion

due to traveled distance in portions of waveguides characterized by different dispersive

properties.

Here, an application on a plate-like structure made up by three plates with two

different thicknesses connected by two tapered portions as the one shown in Figure

8.1, is proposed to prove the capabilities of the aforementioned approach to extend

pulse-echo defect detection procedures to irregular waveguides.

Figure 8.1: (a) Irregular waveguide composed by two aluminum plates 8 mm thick
and a plate 4 mm thick; the three portions are connected with 45° short tapered
portions. (b) Schematic cross-section of the irregular waveguide. Note the different
scale in the x and y directions

The proposed approach can extend the range of application of guided waves based

non-destructive testing (NDT) and Structural health monitoring (SHM) strategies to

irregular waveguides.
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8.2 Defect Locating Procedure

Schematically, the proposed procedure can be synthesized in the following steps:

1. computation of the M-th guided wave group delay for each segment of the

irregular waveguide (a segment is a part of the irregular waveguide with unique

dispersive properties);

2. definition of the reference portion (RP) and irregular portion (IP) of the irreg-

ular waveguide;

3. compensation of the dispersion due to traveled distance within the reference

portion (RP) of the waveguide;

4. compression of the dispersion due to the traveled distance in the irregular por-

tion (IP) of the waveguide.

8.2.1 Group delay computation

In a dispersive signal, the group delay is a measure of the time delay of each frequency

component due to the distance of propagation. For a given distance and a given

guided wave (GW), such time delay depends on the mode group velocity curve. If

the waveguide is composed by segments with different dispersive properties, i.e. if

the waveguide is irregular, the group delay of such wave will depend on the different

group velocity curves, one for each segment.

The group delay in an irregular waveguide can be numerically calculated as a sum-

mation of group delays that the wave ideally experiences propagating in a sequence

of waveguides with progressively changing cross-sections. The group delay of the M -

th guided wave propagating for a distance D =
∑N

i=1 ∆xi in an irregular waveguide

composed by N segments, can be computed as [80]:

τMD (f) =
N∑
i=1

τM∆xi(f) (8.1)
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where τM∆xi is the group delay that the wave experiences in the i-th segment of length

∆xi. For instance, referring to the case of Figure 8.1, the group delay for the M -th

wave traveling from point A to point D, neglecting the short tapered portions, reads:

τMDAD(f) = τMDAB(f) + τMDBC (f) + τMDCD(f)

For a waveguide segment with uniform cross-section , the group delay can be com-

puted as:

τMD (f) =
D

cMg (f,Ω)
(8.2)

where cMg (f,Ω) is the M -th wave group velocity and f denotes the frequency. Eq.

8.2 holds also for curved segments with uniform cross-section and constant radius of

curvature. In such a case, the distance of propagation can be computed as D = R∆φ,

where R is the mean radius and ∆φ is the angle subtended by the first and last cross-

section of the curved waveguide [79].

In the case of a tapered segment, with moderately and continuously varying cross-

section, the group delay can be computed as [77]:

τMD (f) =

∫ D

0

dx

cMg (f,Ω(x))

where Ω(x) denotes the cross-section at a coordinate x along the tapered portion axis.

It must be remarked that, as well known, a guided wave crossing two segments with

different cross-section and/or traveling along tapered waveguides may experience wave

reflection and mode conversion. However, as long as the attention is not on the wave

energy that is reflected or converted in different guided modes but on the behavior

that a specific GW undergoes while traveling along an irregular waveguide, Eq. 8.1

is acceptable for the computation of its group delay [81], [82], [83].

Obviously, this requires that the GW considered in each segment for the computation

of the group delay is generated by the incoming wave that has been considered in the

previous segment of waveguide.
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8.3 Reference and irregular portions of the wave-

guide

The proposed processing requires the subdivision of the irregular waveguide into two

portions: the reference portion (RP), within which the defect is sought, and the

irregular portion (IP) composed by the remaining segments of the waveguide. Seg-

ments belonging to the irregular portion (IP) are characterized by different dispersive

characteristics with respect to the ones of the regular portion (RP).

The group delay for the whole irregular waveguide can thus be written as:

τMD (f) = τMDR(f) + τMDI (f)

where τMDR(f) is the group delay that the wave experiences while traveling in the

reference portion (RP) of the waveguide, and τMDI (f) takes into account the group

delay of the GW gained while traveling along all the remaining waveguide segments

characterized by different dispersive properties with respect to that of the reference

portion (RP).

8.4 Compensation of the reference portion (RP)

In this step, the received signal is compensated from the dispersion of the M -th GW

gained traveling along the reference portion (RP) of the irregular waveguide. The

reference portion is characterized by a uniform cross-section ΩR.

Let’s suppose that a pulse s(t, x), starting at the origin of the coordinate system

x = 0, as shown in Figure 8.3(a), is used to excite the dispersive M -th guided wave

in the waveguide. The response at a distance x = DR, indicated as s(t,DR), can be

modeled in the frequency domain as:

S(f,DR) = S(f, 0)e
−j2π

∫ f
0 τMDR

(α)dα

= S(f, 0)e
−j2πDR

∫ f
0

1

cMg (α,Ω)
dα

where S(f, 0) = Fs(t, 0) is the Fourier Transform of the exciting pulse in the point

of actuation, being F the Fourier Transform operator, and τMDR(f) is the group delay
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of the M -th wave component of frequency f . As shown in previous works [21] the

Warped Frequency Transform (WFT) can be used to fully compensate the signal

s(t,DR) from the dispersion due to the traveled distance. To such aim, the Frequency

Warping operator Ww must be designed using a so-called warping map w(f) defined,

through its functional inverse, as:

k
dw−1(f)

df
=

1

cMg (f,Ω)

where K is a normalization parameter selected so that w−1(0.5) = w(0.5) = 0.5 and

cMg (f,Ω) is the group velocity of the GW which dispersive effect has to be compen-

sated. Such operator, if applied to s(t,DR), yield to a warped signal sw(t,DR) =

Ww {s(t,DR)}, whose frequency transform Sw(f,DR) read as:

Sw(f,DR) = FWw {s(t,DR)} =
[√

ẇ(f)S(w(f), 0)
]
· e−j2πfKDR (8.3)

It’s worth noting that since the phase term in Eq. 8.3 presents a linear dependence on

frequencies, the inverse Fourier Transform of Eq. 8.3, i.e. F−1(Sw(f,DR)), peaks in

correspondence of KDR and so directly related to the distance traveled by the wave

DR.

8.5 Compensation of the irregular portion (IP)

When the M -th guided wave propagates along an irregular waveguide, the above

procedure is not suitable to fully compensate its dispersion. In fact, when the distance

traveled by the guided wave D = DR+DI includes both reference (DR) and irregular

(DI) portions of the waveguide, the response s(t, x) in x = D in the frequency domain

reads:

S(f,D) = S(f, 0)e
−j2π

∫ f
0 τMDR

(α)dα · e−j2π
∫ f
0 τMDI

(α)dα

It follows that, by applying the warping operator and Fourier transforming the warped

signal, as done in the previous subsection, the following distortion in the phase term

is obtained:

Sw(f,D) = FWw {s(t,D)} =
[√

ẇ(f)S(w(f), 0)
]
· e−j2πfKDR · e−j2π

∫ f
0 τ̂MDI

(α)dα
(8.4)
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where:

τ̂MDI (f) =
d
∫ f

0
τMDI (w(f))w(f)

df
= KτMDI (w

−1(f)) · cMg (w−1(f),ΩR)

is the group delay for the M -th wave induced by the irregular portion (IP) of the

waveguide. Such group delay can be easily removed from the warped signal in Eq.

8.4 by forcing an opposite term −τ̂MDI (f) in its phase spectrum:

Scompw (f,D) = Sw(f,D)e
j2π

∫ f
0 τ̂MDI

(α)dα

= FWw {s(t,D)} =
[√

ẇ(f)S(w(f), 0)
]
· e−j2πfKDR

By doing so, a dispersion compensation of the actuated pulse suitable to extract the

distance traveled by the M -th GW in the regular portion (RP) of the irregular wa-

veguide, i.e. DR, is obtained. In fact, the signal F−1(Scompw ) peaks in correspondence

of KDR. It follows that defects located at unknown positions in the regular portion

(RP) of an irregular waveguide, as long as they reflect part of the M -th wave, can be

located by the proposed approach.

8.6 Numerical Application

In the following, Finite Element (FEM) analyses are used to simulate guided waves

propagating in irregular waveguides. In particular, considering the irregular wave-

guide shown in Figure 8.1, three different cases were generated by placing a notch, or

some purposely designed boundary conditions, at different positions along the system.

Next, the recorded time-transient response for each case, is exploited to validate the

proposed processing.

FEM simulations have been used to predict how guided waves propagate in the ir-

regular aluminum waveguide shown in Figure 8.1. Aluminum was modeled as a

homogeneous linear elastic material with the following nominal properties: Young’s

modulus E = 69 GPa, Poisson’s coefficient ν = 0.33 and density ρ = 2700 kg/m3.

The analyses were performed using the finite element based code Abaqus/Explicit.

Three models were considered, one with a notch placed at x = 300 mm (#1), the

second with a notch placed at x = 250 mm (#2), and one model in which the
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wave reflector was simulated by imposing boundary condition (BC) preventing the

displacement along the y-direction (#3) at some points of the waveguide. The notch

was simulated as a cross-section reduction to the half of the pristine thickness and a

width of 2 mm.

Guided waves were generated by imposing a displacement shaped in time as a sharp

triangular pulse with total duration of 1× 10−5 sec (see Figure 8.2) in order to excite

waves up to 100 kHz.

Figure 8.2: Time and frequency representation of the imposed displacement used to
mainly excite the S0 mode in the irregular waveguides.

The displacement was applied to the left edge of the plate in the x-direction, as

indicated in Figure 8.3(b) by the red arrows, to mainly excite the S0 mode. To

ensure accuracy to the time-transient finite element simulations the plate domain

was discretized with elements of maximum side length Lmax = 0.125 mm and the

time integration step was kept ∆t < 1e−8 s.

A plane strain condition on the propagation plane has been assumed by using linear

four-node plate elements (CPE4R) and three-node plate elements (CPE3). The tri-
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angular elements were used to properly mesh the short tapered portions. Under such

assumption, the acquired signals (see Figure 8.3) are not affected by possible wave

reflections generated by plate edges in z-direction and geometrical attenuation due

to wave radiation in the z-direction is not considered.

Even if different from real applications, the assumed plane strain condition allows

to the applied pulse to fully develop signal dispersion in the different considered

segments, and thus is sufficient for the purposes of this work.

Figure 8.3: (a) Plane strain (#1 - #3) models used to compute the time-transient
responses. (b) Time-transient responses vA(t) acquired at x = 201 mm for the three
cases (#1 - #3).

In order to avoid unwanted wave reflections from the right edge of the waveguide,

absorbing layers with increasing damping (ALID) were used. The ALID had the

same material properties of the aluminum plate and only varied the mass proportional

Rayleigh damping.

In particular, five plate regions with thickness of 8 mm, and exponentially decreasing

lengths (42 mm, 33 mm, 27 mm, 21 mm and 18 mm, for a total length of 141 mm,

i.e. the 23.5% of the total plate length) were added in sequence to the right edge of

125



CHAPTER 8 8.6 Numerical Application

the plate.

Damping was exponentially intensified along the five ALIDs increasing the Rayleigh

mass proportional damping (C = βK + αM, where C, K and M are the global

damping, stiffness and mass matrices, respectively) assuming a parameter α equal to

[0.3866, 0.8587, 1.4354, 2.1397, 3.0000]× 105[t−1].

In the end, each finite element model counted 390368 CPE4R elements and 64 CPE3

elements.

At first an analysis was conducted on a pristine model in order to analyse the be-

haviour of guided waves at the abrupt thickness change. Snapshots of guided waves

propagation are shown in Figure 8.4 in terms of Von Mises stress.

Figure 8.4: Guided wave propagation in the pristine irregular plate. Snapshots of
the Von Mises stress at 20µs, 40µs, 60µs and 70µs. Deformation scale factor was
assumed equal to 1e7.

The figure shows clearly the S0 mode within the first 40µs propagating forward in

the waveguide (S0-p).

At the thickness change, a significant part of the energy is converted into an A0 mode,

part of which is reflected backward in the thick portion of the waveguide (A0-rf) and

part refracted forward in the thin portion of the waveguide (A0-rr). Therefore, even

if S0 mode was mainly excited, a significant A0 mode is expected in the thin portion

of the irregular waveguide.

A similar mode conversion can be observed in a damaged waveguide at the notch

location, as depicted in Figure 8.5 for the case #2, for instance.
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Figure 8.5: Snapshots of the Von Mises stress in proximity of the defect taken at
54.4µs, 63µs, 72µs for the model #2. Deformation scale factor was assumed equal
to 2e7.

Models #1 - #3 were analysed. For each case the out-of-plane displacement on the

top of the plate vA(t) was recorded at position x = 201 mm (point A in Figure 8.3).

The acquired time transient responses vA(t) for the three models are presented in

Figure 8.3(b). As can be noted, the presence and position of the notch, as well as

of the imposed boundary conditions (BC in model #3) cannot be inferred from the

time-waveforms.

In order to apply the proposed processing on the recorded time-waveforms, first the

WFT operator must be defined. In particular, suitable guide modes propagating in

the reference (RP) and irregular (IP) portions of the waveguide must be selected in

order to define proper warping maps w(f), and thus the proper warping operators

Ww to compensate the signal.

To such aim, understanding the guided wave propagation phenomenon, and in par-

ticular those modes capable to propagate in irregular waveguides, is fundamental to

the success of the proposed strategy.

• case #1: the thin plate (4 mm-thick) was assumed as reference portion (RP) of

the irregular waveguide because the notch was placed in it; the WFT operator

to compensate for the dispersion due to the RP was designed on the group
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velocity curve of a hybrid A0 - S0 mode, computed as:

cA0−S−0
g (t) = 2

cA0
g (f) · cS0

g (f)

cA0
g (f) + cS0

g (f)

while the remainig dispersion due to the traveled distance on the IP, i.e. the 8

mm plate, was compensated by warping the signal using a WFT operator built

on the S0 group velocity for the 8 mm plate.

• case #2: as for case #1.

• case #3: the thin plate (4 mm-thick) was assumed as reference portion (RP)

since the wave reflector, i.e., the imposed BC, was placed in it; signal dispersion

related to the reference portion was compensated by using a warped operator

built on group velocity of the A0 mode in the thin plate, while the remaining

dispersion due to IP, i.e. the 8 mm plate, was compensated using the group

velocity information of the S0.

Next, the two processing phases are applied: first the designed warped operators are

applied to remove from the signals the group delay dependency on distance in τMDR(f),

i.e., compensating the dispersion due to traveled distance in the regular portions of

the waveguides DR; next the additional group delay introduced by the irregular part

of the waveguide τMDI (f) is removed by forcing a proper −τMDI (f).

In this last step, the group velocity dispersion information of the S0 mode propagating

in the 8 mm thick plate has been used to build the warping operators, as detailed

above. The effect of such processing leads to the new signals Scompw (f,D).

8.7 Results

The spectra of the time-transient waveforms represented in Figure 8.3(b) for the cases

#1, #2 and #3 are shown in Figure 8.6 at position (a), (c) and (e), respectively.
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Figure 8.6: (a-c-e) Spectra of vA(t) for the three examined cases. S0 group delay
curves for the incipient W1 and the notch/BC reflection W2n paths have been super-
imposed. (b-d-f) Normalized Henv of the compensated signals. The vertical red lines
mark the actual defect position.
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On the spectra, the group delay curves computed by using the proposed procedure

for the first arrival of S0 (W1) as well as for the scattered S0 wave from the notch/BC

(W2n), have been over imposed. As it can be seen, the predicted group delay curves

for the W2n wave match quite well with the lobes of energy within the spectra. This

confirm the reliability of the group delay computation in irregular waveguides. On the

right side of the spectra, Figure 8.6(b-d-f), the envelops Henv of the inverse Fourier

Transforms F−1(Scompw (f,D)) after normalization are represented.

Envelopes are computed as the absolute value of the Hilbert Transform, i.e.

Henv = ‖H(F−1(Scompw (f,D)))‖

where H denotes the Hilbert operator. It is worth noticing that the energy of the

processed signals is now concentrated near the actual distance traveled by the waves

in the reference portion of the waveguide. In particular, the signals peak at 150 mm

for cases #1 and #3, as the notch/BC location is the same, and at 50 mm for the

case #2, i.e. at exactly twice the distances from the end of the tapered portion.

8.8 Discussion

In this Chapter, a signal processing strategy aimed at locating defects in irregular

waveguides is proposed. The method is based on a two-step procedure applied to the

acquired echo signals. The implemented signal processing directly reveals the distance

traveled by the waves, thus overcoming the difficulties associated with wave arrival

time detection in dispersive media. In particular, by exploiting the dispersion compen-

sation properties of the WFT, waveforms characterized by a unique time-frequency

pattern are obtained. The remaining time-frequency modulation is compressed in a

subsequent processing step. This step is based on the estimation of the group delay

in tapered, curved or irregular portions of the waveguide. The reported spectrograms

showed that the adopted method has an excellent accuracy in group delay calculation.

Such accuracy can be conveniently exploited for wave distance of propagation esti-

mation, as shown by several numerical examples. Thanks to its unique potential the

developed tool could lead to a new class of procedures to locate defects in waveguides.
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Chapter 9
Warped-Wigner-Hough Transformation

of Lamb Waves for Automatic Defect

Detection

There is only one good, the knowledge, only one

evil, the ignorance.

Socrate

9.1 Introduction

To improve the defect detectability of Lamb wave inspection systems, application of

non-linear signal processing was investigated. The approach is based on a Warped Fre-

quency Transform (WFT) to compensate the dispersive behavior of ultrasonic guided

waves, followed by a Wigner-Ville time-frequency analysis and the Hough Transform

to further improve localization accuracy. As a result, an automatic detection pro-

cedure to locate defect-induced reflections was demonstrated and successfully tested

by analyzing numerically simulated Lamb waves propagating in an aluminum plate.

The proposed method is suitable for defect detection and can be easily implemented

for real application to structural health monitoring.
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9.2 The Warped Frequency Transform (WFT)

We recall that warping can be used to compensate dispersion in GWs by dening the

warping map through the following relationship (see Chapter 3):

Figure 9.1: Computational flow of the Frequency Warping operator Ww. F and F−1

are the direct and inverse Fourier Transform operators, respectively, while w(f) and
ẇ(f) are the warping map and its first derivative.

9.3 The Wigner-Hough Transform (WHT)

After applying the WFT to properly excited GWs, defect detection can be performed

automatically by considering a TFR of the warped signal. In fact, defect-induced

reflections appear in the compensated waveform as well-localized spikes, thus pro-

ducing vertical maxima lines in the TF plane, whose (warped) time location can be

directly converted to the defect position. A simple TFR of sw(t) is provided by the

Short Time Fourier Transform (STFT); however, energy distributions such as the

Wigner-Ville Distribution (WVD) defined as

Wsw(t, f) =

∫ +∞

−∞
sw(t+

τ

2
)s∗w(t− τ

2
) · e−j2πfτdτ

can be used to further improve localization accuracy since there are no predetermined

window functions and loss of resolution. Automatic detection of the desired lines of

energy maxima can be performed by applying the Hough Transform (HT) [84] to the

WVD, resulting in the so-called Wigner-Hough Transform (WHT) [85].

Generally speaking, the HT is an image processing tool that performs an integration

on all the possible lines of a given image I and maps the value of each integral to a

plane (ρ, θ) corresponding to the polar parametrization of lines. High-intensity pixels

concentrated on straight lines on I will therefore produce peaks in the (ρ, θ) domain.
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In the Wigner-Hough Transform, the input image corresponds to the WVD of the

considered signal and the presence of interference terms between different spectral

components of the analyzed waveform induced by the WVD is largely compensated

through the integration performed by the Hough operator, as these undesired com-

ponents appear as alternating positive peaks and negative valleys in the TF plane.

9.4 Warping Map Design and Wave Simulation

As a case study, we exploit the described tools to locate defects in an aluminum plate

where Lamb waves are excited. The plate thickness is h = 2.54 mm.

The group slowness 1
cg(f)

used to design the warping map is first computed by per-

forming a Semi-Analytical Finite Element (SAFE) simulation [86], whose results are

shown in Figure 9.2.

Figure 9.2: Slowness dispersion curves foe the Lamb waves propagating in a 2.54
mm-thick aluminum plate
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For acoustic emission below 500 kHz, only the two fundamental waves A0 and S0 can

propagate through the plate. Therefore, the slowness curves of these two modes have

been used to build w(f).

As a second step, time waveforms related to Lamb waves propagating in the aluminum

plate were obtained numerically by means of dedicated Finite Element (FEM) sim-

ulations. Thanks to the Lamb problem symmetry, a x-y plane strain condition was

assumed, as shown in Figure 9.3.

Figure 9.3: Schematic representation of the damaged aluminum plate used in the
time-transient FEM simulations (plate dimensions are in mm)

A notch of width b = 0.25 mm and depth a, such that a = h = 0.3, placed on the

top side at the center of the plate (x = 500 mm), was considered. Lamb waves were

excited by applying an impulsive force p(t) to the left edge of the plate towards the

x-direction: this mainly stimulates the symmetric S0 mode.

The force was shaped in time as a triangular window with a total duration of 2 µs

(see the top-left of Figure 9.3) in order to excite consistent Lamb waves up to 500

kHz. Time-dependent out-of-plane displacements v(t) were recorded at three points

on the top side of the plate (y = h = 2), namely A, B and C, respectively located at

xA = 100 mm, xB = 200 mm and xC = 300 mm.

134
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The recorded waveforms are shown in Figure 9.4.

Figure 9.4: Time-dependent out-of-plane displacements recorded at three different
positions on the plate

The leftmost peak in each signal corresponds to the passage of the excited S0 mode

through the recording position, while oscillations in the central part of the waveforms

are due to defect-induced reflections, which also excite the slower A0 mode. Spreading

of these oscillations clearly reveals the effect of dispersion.

Finally, further reflections from the plate edges are responsible for the complicated

behavior observed in the rightmost part of the signals.

9.5 Defect Detection

The warping map was designed to achieve compensation for the S0 mode as this was

the originally excited component. Results of this procedure are plotted in Figure 9.5

directly as a function of the traveled distance.

The path followed by the compensated mode S0 can be easily tracked by observing

local peaks in these signals, as illustrated in 9.5(c), and location of the defect can be

inferred by the position of reflected peaks.
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However, this information can be hardly retrieved from the warped waveforms them-

selves in general, due to interference from the A0 mode and possible acquisition noise

in real-world applications.

As shown in Section 9.3, a more robust and automated approach involves detection

of vertical maxima lines in a space-frequency representation of the warped signals.

Before performing such transformation, a pre-processing step is often required to

emphasize the amplitude of reflection-induced peaks.

As a test case, an equalization algorithm consisting in dividing the signal by local

averages of its samples was applied to waveform vwC in Figure 9.5(c).

Figure 9.5: Results of the warping procedure applied to waveforms in Figure 9.4.

The equalized signal and its Wigner-Ville distribution are displayed in Figure 9.6(a)

and (b), respectively.

The adopted equalization approach effectively enhances the amplitude of relevant

peaks, while attenuating the A0 mode. Well-localized vertical maxima lines corre-

sponding to “S0 path 1” and “S0 path 2” are clearly visible in Figure 9.6(b), while

the non-compensated A0 mode results in curved features.
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Figure 9.6: (a) Result of the equalization procedure applied to signal vwC in Figure
9.5(c). (b) Wigner-Ville distribution.

Figure 9.7: Wigner-Hough Transform of the equalized warped signal in Figure 9.6(a).
Peaks at θ =

{
π
2
, 3π

2

}
correspond to vertical lines in Figure 9.6(b); ρ coordinates

provide the distance in pixels from the center of the analyzed image.
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This procedure may encounter limitations in the presence of noisy signals, as spu-

rious components might be erroneously amplified. However, several alternatives are

possible, including more sophisticated preprocessing algorithms under investigation

and the use of acquisition systems able to attenuate the A0 component.

Thus, the HT appears as a suitable tool to isolate S0 components and locate defect-

induced reflections, as can be seen from Figure 9.7, where the WHT of the equalized

warped signal is displayed.

Local maxima at θ = π
2

and θ = 3π
2

can be easily detected and the corresponding ρ

coordinates provide the distance traveled by the incident and reflected S0 waveform

components, respectively. By applying this procedure, the defect responsible for

reflections was located at x = 502 mm. The detection algorithm was also tested

on signals recorded at x = 100 mm and x = 200 mm (see Figure 9.4) and errors

w.r.t the actual defect position (x = 500 mm) were found to be below 6 mm, which

roughly corresponds to the minimum wavelength associated to the excited Lamb

waves. Similar good results were found by considering different defect depths.

9.6 Discussion

This Chapter described the application of a Warped Wigner-Ville analysis to improve

defect detectability of conventional Lamb wave inspection system. The adopted equal-

ization approach effectively enhances the amplitude of relevant peaks in the warped

WVD, so local maxima can be detected and the information about the distance trav-

eled by the incident and reflected investigated mode can be easily recognized.

The presence of interference terms is largely compensated through the integration

performed by the Hough operator, making the proposed method a suitable tool to

separate overlapping Lamb waves and locate defect-induced reflections.
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Chapter 10
Compressive Sensing

The willingness to take risks is our grasp of faith.

George Edward Woodberry

Compressive Sensing (CS) has emerged as a potentially viable technique for the effi-

cient compression and analysis of high-resolution signals that have a sparse represen-

tation in a fixed basis.

In this Chapter we have developed a CS approach for ultrasonic signal decompo-

sition suitable to achieve high performance in Lamb waves based defects detection

procedures. The concept of sparse representations is also at the basis of the so called

Compressive Sensing (CS) theory [87] which offers an intriguing alternative with re-

spect to the classical process of acquiring signals according to the Shannon-Nyquist

paradigm. CS theory proves that a signal which is sparse in a given representation can

be compressed directly at the sampling stage. Then, the signal can be reconstructed

by exploiting convex programming or greedy methods [88].

CS methods are becoming popular for ultrasonic data reduction [89], [90], [91] and

their usage can be extremely useful even in signal decomposition and analysis [92].

In this Chapter a CS based approach is used to precisely extract the distances traveled

by Lamb waves from the acquired signals while reducing consistently the dimension

of the analysed data. To achieve this goal, the proposed CS strategy exploits the

Warped Frequency Transform (WFT) as a mean to project the acquired data in a
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sparsifying representation basis [73]. A signal processed by the WFT, i.e. a warped

signal, is dispersion-compensated, and can be modeled as a pulse stream, that is

the signal originated by the convolution of the system Impulse Response and the

Reflectivity Function [93]. In this context, the impulse response models the actuating

and sensing apparatus whereas the reflectivity function conveys the information about

the distances of the actuator and the scatterers (damages or system edge reflections)

from the sensor.

It has been shown in [94] and [95] how signals which can be represented by convo-

lutional models can be efficiently deconvolved by employing CS algorithms. In this

Thesis it will be shown how the combined effect of the WFT and a model-based CS

algorithm allows to achieve a high-precision in the estimation of the distances traveled

by Lamb waves.

The Chapter is organized as follows: a brief review of the mathematical theory of

compressive sensing and the model-based framework for CS recovery is described

in Section 10.3. Section 10.4 introduces the Warped Frequency Transform and the

proposed algorithm to recover the reflectivity function from the acquired signal.

10.1 Review of Compressive Sensing

Compressive sensing theory states that with high probability we can reconstruct a

signal from a relatively small number of measurements when the signal is sparse in

a known basis. We say that a signal x is (K, δ)-sparse if at most K entries of x are

greater than a small positive value δ. We say x is K-sparse if δ is zero.

An M ×N measurement matrix Φ compresses a length-N input signal x to y, the M

measurements from x. In other words, y = Φx.

We decode x by solving l1-minimization problem using linear programming:

min ‖x‖l1 subject to y = Φx (10.1)

The restricted isometry property (RIP) of Φ ensures the existence of an unique l1-min

solution for the reconstructed signal and allows a corresponding error bound.
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A matrix W satisfies the RIP with parameters (ε,K) if for all x such that x 6= 0 and

‖x‖l1 ≤ K we have ∣∣∣∣‖Wx‖2
l2

‖x‖2
l2

− 1

∣∣∣∣ ≤ ε

It has been shown that with high probability an M ×N measurement matrix Φ with

randomly chosen entries satisfies the (ε, 2K)-RIP with a small ε if M ≥ cK log(N/K).

Suppose that we are given compressed measurements y = Φx, where Φ is an M ×N

measurement matrix that satisfies (ε, 2K)-RIP. Let xK be the vector that equals x on

theK largest elements of x and equals 0 otherwise. Candes et al. and Shalev-Schwartz

have shown that the reconstructed signal x∗ based on l1-minimization satisfies

‖x ∗ −x‖l2 < 2(1−
√

2ε)−1K−1/2‖xK − x‖l1

This implies that x∗ is a good approximation of x when x is (K, δ)-sparse for some

small δ. For an orthonormal basis Ψ, the matrix product (ΦΨ) can also be shown to

satisfy (ε, 2K)-RIP with high probability. If we know x = Ψs for some Ψ where s is

sparse, we will be able to decode s by l1-minimization:

min ‖s‖l1 subject to y = (ΦΨ)s

After we obtain s, we can recover x from x = Ψs. Joint decoding is an extension

to the standard decoding described above. It resembles the use of overcomplete

representations in signal processing.

10.2 Analog Compressive Sampling Acquisition

Suppose our analog signal has finite information rate K i.e., the signal can be repre-

sented using K parameters per unit time in some continuous basis. More concretely,

let the analog signal x(t) be composed of a discrete, finite number of weighted con-

tinuous basis or dictionary components

x[i] =
N∑
n=1

αnψn[i] (10.2)
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with t, αn ∈ R. In cases where there are a small number of nonzero entries in α, we

may again say that the signal x is sparse. Although each of the dictionary elements

ψn may have high bandwidth, the signal itself has few degrees of freedom. Our signal

acquisition system consists of three main components; demodulation, filtering, and

uniform sampling.

The CS acquisition scheme is shown in Figure 10.1

Figure 10.1: Compressed Sensing acquisition scheme: random modulation pre-
integration

As seen in Figure 10.1, the signal is modulated by a psuedo-random maximal-length

PN sequence of ±1. This chipping sequence pc(t) must alternate between values

at or faster than the Nyquist frequency of the input signal. The purpose of the

demodulation is to spread the frequency content of the signal so that it is not destroyed

by the second stage of the system, a low-pass filter with impulse response h(t). Finally,

the signal is sampled at rate M using a traditional ADC. Although our system involves

the sampling of continuous-time signals, the discrete measurement vector y can be

characterized as a linear transformation of the discrete coefficient vector α. As in

the discrete CS framework, we can express this transformation as an M ×N matrix

Θ = ΦΨ that combines two operators: Ψ, which maps the discrete coefficient vector

α to an analog signal x, and Φ, which maps the analog signal x to the discrete set of

measurements y. To find the matrix Θ we start by looking at the output y[m], which

142



CHAPTER 10 10.3 Model-based Compressive Sensing

is a result of convolution and demodulation followed by sampling at rate M . Since

our analog input signal in Eq. 10.2 is composed of a finite and discrete number of

components of Ψ, we can write

y[m] =
N∑
n=1

αn

∫ +∞

−∞
ψn(τ)pc(τ)h(mM − τ)dτ

It is now clear that an expression for each element θm,n ∈ Θ can be separated out for

row m and column n

θm,n

∫ +∞

−∞
ψn(τ)pc(τ)h(mM − τ)dτ

10.3 Model-based Compressive Sensing

The information content of an ultrasonic signal s(t) can be represented by a N -

dimensional vector of real numbers s, sampled according to the Shannon-Nyquist

theory. In the CS approach, s is compressed in a vector y of M � N linear measure-

ments, i.e. vector components, by using an M ×N sensing matrix Φ, such that

y = Φs

The fact thatM � N produces a considerable data reduction but also implies that the

sensing matrix Φ is rank-deficient, i.e. for a particular signal s, an infinite number of

signals sx can yield the same measurements y = Φs = Φsx. It follows that in general

s cannot be uniquely reconstructed from the M linear measurements of y. However,

if the signal s is K-sparse in a given representation, the matrix Φ can be designed to

achieve the full recovery of s from the measurement vector y [87] with a considerable

reduction in the number of measurements

M = O

(
K log

(
N

K

))
To clarify the notion of K-sparsity, let us consider a given representation basis {ψi}Ni=1

for RN . Arranging the ψi as columns into the N×N matrix Ψ, we can write succinctly

that s = Ψα, with α ∈ RN being the representation coefficients. We say that a signal

143



CHAPTER 10 10.3 Model-based Compressive Sensing

s is K-sparse in Ψ if there exists a vector αK ∈ RN with only K � N nonzero entries

such that

s = ΨαK

The indices corresponding to the K nonzero elements of the signal αK define a vector

σ called support of αK and the set of all K-sparse signals in RN is denoted by
∑

K . By

a geometrical point of view, the set
∑

K can be modeled as an union of
(
N
K

)
subspaces

of RN , where
(
N
K

)
denotes the binomial coefficient indexed by N and K.

The approximation procedure to recover the K-sparse signal αK from the measure-

ment vector may not be computationally feasible if all the
(
N
K

)
possible supports are

admissible. However, in many practical cases, just a small number of support con-

figurations are physically meaningful. In these cases a structured sparse model MK

can be defined as the union of mK canonical K-dimensional subspaces of RN with

mK <
(
N
K

)
. If Ω = {Ω1, · · · ,ΩmK} denote the set of admissible supports, the model

MK is defined as:

MK = {αK : supp(αK) ∈ Ω} (10.3)

10.3.1 Convolutional Models for Pulse Streams

Among the structured sparse models presented in literature, the convolutional model

detailed in [95] is suited to represent pulse stream signals, as those acquired in ultra-

sonic applications.

Let MS ⊂ RN be a union of S-dimensional canonical subspaces. Similarly, let

MF ⊂ RN be a union of F -dimensional canonical subspaces. A convolutional model

is formally defined as the set

Ms
S,F =̇{s ∈ RN : s = (x ∗ h) |x ∈MS, h ∈MF} (10.4)

where ∗ denotes the circular convolution operator, h is the impulse response of the

ultrasonic apparatus, and x is the reflectivity function of the inspected component.

If S · F = K, then the set Mz
S,F is a small subset of

∑
K . Such dimensionality

reduction is very beneficial, as the number of measurements M necessary to recover
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the signal s is logarithmic in the number of subspaces in the model (see [94]). A

further reduction in the number of measurements can be achieved in the special

case of streams of disjoint pulses, that is situations in which the ultrasonic impulse

response h is concentrated in F contiguously located coefficients, while x is constituted

by S sparse spikes separated at least by ∆ locations, with ∆ > F . If M∆
S is the

structured sparse model for the spike streams x, and MC
F is the subspace of MF of

the concentrated impulse responses, the disjoint convolutional model is defined as:

Ms
S,F,∆=̇{s ∈ RN : s = (x ∗ h) |x ∈M∆

S , h ∈MC
F} (10.5)

The disjoint convolutional model could represent many practical situations related to

inspections with bulk ultrasonic waves, but it cannot capture a relevant phenomenon

which affects guided wave (GW) propagation: the effect of dispersion (i.e. frequency-

dependent propagation speed). In fact, dispersion causes the impulse response h to

be shift-variant.

However, if the dependency of h on the wave propagation distance is predictable,

it is possible to project the acquired signals in a representation basis in which the

dispersion effect is compensated, allowing thus the use of disjoint convolutional mod-

els. In this work, such task is achieved by computing the dispersion curves for the

plate-like structure of interest first, and then by exploiting such curves to design a

WFT capable to project the acquired signals in the new basis, as will be shown in

the next section.

In the novel representation domain, suitable model-based CS recovering algorithms

can be adopted to recover the original signal from the measurement vector and to

extract the relevant information about reflectors.

10.4 Recovery of dispersive pulse streams

10.4.1 Frequency Warped Convolutional Models

A sparse representation for guided wave signals can be obtained by using Warping

Frequency Transforms (WFTs). These operators deform the frequency axis with a
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proper warping map w(f) [27]. In particular, given a generic signal s whose continuous

Fourier transform is Fs, the continuous warping operator W is defined as

(FWs)(f) =
√
ẇ(f)(Fs)(w(f)) (10.6)

where sw = Ws is the so-called warped signal. W is a unitary operator and the

inverse transformation can be computed through its adjoint operator W†.

A fast computation of the discrete warping operator and its inverse is achieved by

means of FFT-based algorithms [96].

In order to use the WFT for compensating Lamb waves signals from the dispersion

of a particular guided mode, w(f) can be defined through its functional inverse, as:

K
dw−1(f)

df
=

1

cg(f)
(10.7)

where cg(f) is the nominal group velocity curve of the considered mode, and K is a

normalization parameter selected so that w−1(0.5) = w(0.5) = 0.5. More details on

warping map design can be found in [10].

Let’s indicate with s(t,D) an undamped guided wave signal generated by an ideal

actuator, scattered by a defect and received by an ideal sensor, being D the sum of

traveled distances from the actuator to the scatterer, and from the scatterer to the

receiver. Then, the Fourier transform of s(t,D) is given by:

(Fs)(f,D) = (Fs0)(f, 0) · e−j2π
∫

D
cg(f)

df
(10.8)

where (Fs0)(f, 0) is the frequency transform of the applied input. In force of Eq.

(10.7), Eq. (10.8) can be rewritten as:

(Fs)(f,D) = (Fs0)(f, 0) · e−j2πw−1(f)KD (10.9)

where the dispersive effect results from the nonlinear phase term. The Fourier trans-

forms of the warped signal Ws(t,D) is given by:

(FWs(t,D))(f) =
√
ẇ(f) · (Fs0)(w(f), 0) · e−j2πfKD (10.10)
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As can be seen from this equation, the result of the warping procedure is a linear

phase shift in the right hand term, which implies the desired shift invariance of the

warped signal sw = Ws on the warped time axis.

It follows that the Lamb wave signal s can be modeled as the antitransform of the

convolution xw ∗ hw, where hw = Ws0 ∈ RN is the F -sparse vector of the impulse

response in the warped domain, and the sparse vector xw ∈ RN indicates the warped

reflectivity function, which represents the scatterers position.

With the notation introduced in Section 10.3, the warped disjoint convolutional model

is defined as:

Ms,W
S,F,∆=̇{s ∈ RN : s = W†(xw ∗ hw) |xw ∈M∆

S , hw ∈MC
F} (10.11)

In force to the commutative property of the convolution operator, a signal s inMs,W
S,F,∆

can be represented as:

s = W†(xw ∗ hw) = W†Hxw = W†Xhw (10.12)

where H = C(hw) (respectively, X = C(xw)) is a square circulant matrix with its

columns containing circularly shifted versions of the vector hw (respectively, xw).

10.4.2 Pulse Stream Recovery in the Frequency Warped do-

main

The reduced dimensionality of the union of subspaces captured by the model in Eq.

(10.11) allows for an efficient and stable estimation of both the system impulse re-

sponse ĥw and the reflectivity function x̂w from the compressed measurement vector

y = Φs+ n = ΦW†Hxw + n (10.13)

being n the acquisition noise and where ĥw and x̂w denote an estimation of hw and

xw, respectively. This problem is similar to performing sparse approximation with

incomplete knowledge of the dictionary in which the target vector (either x̂w or ĥw)

is sparse. The common approach has been to first assume that a training set of

vectors x̂wi exists for a fixed impulse response ĥw and then to infer the coefficients
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of ĥw using a sparse learning algorithm (such as basis pursuit) and finally to solve

for the coefficients x̂wi . In the absence of training data, we must infer both the spike

locations and the impulse response coefficients. Therefore, this task is also similar

to blind deconvolution; the main differences are that we are only given access to the

random linear measurements y as opposed to the Nyquist rate samples z and that

our primary aim is to reconstruct z as faithfully as possible as opposed to merely

reconstructing x.

The general approach is to obtain the “best possible estimate” of xw given a tenta-

tive estimate of hw, then update the estimate of hw accordingly, and iterate. The

target signal s is assumed to belong to the warped disjoint convolutional model of

pulse streamsMs,W
S,F,∆. This strategy is commonly known as Alternating Minimization

(AM).

10.4.3 Alternating Minimization With Exhaustive Search

Consider z ∈ M(S, F,∆), so that zw = (x ∗ h)w. This implies that the spikes in x

are separated by a minimum separation distance ∆ and that the impulse response h

is concentrated. Suppose first that we are given noiseless CS measurements y = Φz.

We fix a candidate support configuration σ for the spike stream (so that σ contains

S nonzeros.) Then, we form the circulant matrix Ĥ from all possible shifts of the

current estimate of the impulse response ĥ (denote this operation as Ĥ = C(ĥ)).

Further, we calculate the dictionary ΦW †Ĥ for the spike stream x and select the

submatrix formed by the columns indexed by the assumed spike locations σ (denote

this submatrix as (ΦW †Ĥ)σ. This transforms our problem into an overdetermined

system, which can be solved using least-squares. In summary, we use a simple matrix

pseudoinverse to obtain the estimate:

x̂ =
(

ΦW †Ĥ
)†
σ
y

This provides an estimate of the spike coefficients x̂ for the assumed support con-

figuration σ. We now exploit the commutativity of the convolution operator ∗. We

form the circulant matrix X̂, form the dictionary ΦW †X̂ for the impulse response
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and select the submatrix (ΦW †X̂)f formed by its first F columns. Then, we solve a

least-squares problem to obtain an estimate ĥ for the impulse response coefficients:

ĥ =
(

ΦW †X̂
)†
f
y

Finally, we form our signal estimate ẑ = x̂∗ ĥ. The above two-step process is iterated

until a suitable halting criterion (e.g., convergence in norm for the estimated signal

ẑ). The overall reconstruction problem can be solved by repeating this process for

every support configuration σ belonging to the structured sparsity model M∆
S and

picking the solution with the smallest norm of the residual r = y − Φẑ. This algo-

rithm performs alternating minimization for a given estimate for the support of the

underlying spike stream x and exhaustively searches for the best possible support.

10.4.4 Iterative Support Estimation

The runtime of Algorithm 1 is exponential in N . Fortunately there is a simpler means

to the same end. Instead of cycling through every possible support configuration σi for

the spike stream x, we instead retain an estimate of the support configuration, based

on the current estimates of the spike stream x̂ and impulse response ĥ and update this

estimate with each iteration. In order to ensure that the support estimate belongs to

M∆
S , we leverage a special CS recovery algorithm for signals belonging toM∆

S that is

based on CoSaMP. At each iteration, given an estimate of the spike coefficients x, we

need to solve for the bestM∆
S -approximation to x. Let x = (x1, x2, . . . , xN)T . Given

any binary vector s = (s1, s2, . . . , sN)T of length N , let

x|s=̇(s1x1, s2x2, . . . , sNxN)

so that x|s is the portion of the signal x lying within the support s. Our goal is to solve

for the choice of support s so that x|s belongs to M∆
S and ‖x − x|s‖2 is minimized.

The following constraints on the support vector s follow from the definition of M∆
S :

s1 + s2 + . . .+ sN ≤ S (10.14)

sj + sj+1 + . . .+ sj+∆−1 ≤ 1, for j = 1, . . . , N
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where the subscripts are computed modulo N . The first inequality in 10.14 specifies

that the solution contains at most S nonzeros; the other N inequalities 10.14 specify

that there is at most one spike within any block of ∆ consecutive coefficients in the

solution. It can be shown that minimizing ‖x−x|s‖2 is equivalent to maximizing cT s

where c = (x2
1, x

2
2, . . . , x

2
N), i.e., maximizing the portion of the energy of x that lies

within s. Define W ∈ R(N+1)×N as a binary indicator matrix that captures the left-

hand side of the inequality constraints 10.14. Next, define u ∈ RN+1 = (S, 1, 1, . . . , 1);

this represents the right-hand side of the constraints (19) and (20). Equations 10.14

can be performed by the following binary integer program:

s∗ = arg min
s∈{0,1}

cT s, subject to Ws ≤ u

Next, we relax the integer constraints on s to obtain a computationally tractable linear

program. Denote this linear program by D(·). Once an updated support estimate

has been obtained, we repeat Steps 2, 3 and 4 in Algorithm 1 to solve for the spike

stream x and impulse h. This process is iterated until a suitable halting criterion

(e.g., convergence in norm for the estimated pulse stream x̂). The overall algorithm

can be viewed as an iterative sparse approximation procedure for theM∆
S model that

continually updates its estimate of the sparsifying dictionary.

In the initialization phase, the algorithm set a tentative value for x̂w and ĥw and then

update their value starting from the estimation of the support σ of x̂w. The support

estimation (steps 1 → 5 in the Algorithm 1) is performed by running D, that is a

linear program which returns the best K-term approximation v∗K of a given vector v

under the model M∆
S so that the norm ‖v − v∗K‖2 is minimized. Further details on

the computation of D are given in [88].

The support σ is a binary vector which highlights the scatterers locations. The

columns of Φwh = ΦW†Ĥ which corresponds to these locations are used to form the

submatrix (Φwh)σ = (ΦW†Ĥ)σ whose pseudoinverse is used to obtain an updated

estimation of x̂w (steps 6 → 7).

Finally, by exploiting the commutativity of the convolution operator ∗, the estimation

of the impulse response is performed (steps 8→ 9). The illustrated steps are iterated
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until a halting criterion is fulfilled. In particular, in the proposed approach the halting

criterion is selected so that the discrepancy between the measurement vector and the

product Φ · ŝ is minimized.

The implemented algorithm, summarized in Table 1, is a modified version of the one

firstly presented in [95] which has been adapted to perform in the warped domain.

Algorithm 1: Model-based Compressive Sensing for pulse stream reconstruc-

tion

Input : Warping Operator W, Sensing Matrix Φ,

measurement vector y, model parameters S, F

Output : x̂w, ĥw, ŝ

i = 0 : Initialization, x̂w = 0, ĥw = (1F , 0, . . . , 0)

for σ ∈M∆
S do

while ‖y −ΦW†Hx̂w‖ < ε do

1. i← i+ 1

2. Ĥ = C(ĥw), {form dictionary for spike stream}

Φwh = ΦW†Ĥ

3. e← ΦT
wh(y −Φwhx̂w) {residual}

4. σe ← supp(D(e)) {residual support estimate}

5. σ ← σe ∪ supp(x̂(i−1)
w ) {merge supports}

6. x|σ ← (Φwh)
†
σy, {update reflectivity estimate}

7. x̂w ← D(x) {prune reflectivity estimate}

8. X̂ = C(x̂w), {dictionary for impulse response}

Φwx = (ΦW†X̂)f

9. ĥw ← Φ†wxy {update impulse response estimate}

end while

return x̂w, ĥw, ŝ←W†Ĥxw,
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Chapter 11
Model-Based Compressive Sensing for

Damage Localization

To be ignorant of one’s ignorance is the malady

of the ignorant.

Amos Bronson Alcott

11.1 Introduction

To illustrate the effect of the CS procedure described in Chapter 10, the proposed

algorithm is tested on a Lamb wave time-waveform s(t) generated synthetically as

the superposition of three undamped waveforms due to:

i) the pulse generated by the actuator (A) which travels along the direct path

(P1) to the receiver (R);

ii) the pulse scattered by the defect (D) which travels along the second path (P2);

iii) the pulse reflected by the edge (E) of the plate system which travels along the

third path (P3), as schematically depicted in Figure 11.1.

Suppose also that the group velocity of the propagating waves is cg(f).
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Edge

P1

P2

P3

A

D

R

E

Figure 11.1: Sketch of the considered example: the signal is actuated in A, scattered
by the defect D, reflected by the edge E, and sensed in R. Consequently, three waves
are captured in the acquired waveform: those traveling along paths P1, P2 and P3,
respectively.

Then, s can be generated as:

s = F†[Fs0 · (e
−j2π

∫ D1
cg(f)

df
+ e

−j2π
∫ D2
cg(f)

df
+ e

−j2π
∫ D3
cg(f)

df
)], (11.1)

where s0 is the actuated pulse, and D1, D2, D3 are the lengths of paths P1, P2 and

P3, respectively. The actuating pulse s0 is a chirp with a linear frequency modulation

ranging from 10 kHz to 500 kHz (see Figure 11.2(a)). The synthetic signal s generated

by forcing the chirp to the A0 mode of a 3 mm-thick aluminum plate (Young’s modulus

E = 69 GPa, Poisson’s coefficient ν = 0.3 and material density ρ = 2700 kg/m3) is

shown in Figure 11.2(b) for D1 = 0.3 m, D2 = 0.35 m and D3 = 0.5 m.

In the CS framework, the N -dimensional signal s is compressed in the M -dimensional

vector y = Φs shown in Figure 11.2(c). In the considered example N and M are equal

to 900 and 300, respectively, and the entries of the M × N measurement matrix Φ

are chosen randomly from independent and identically distributed (i.i.d.) Gaussian

distributions [94].
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Figure 11.2: (a) Actuated pulse s0, (b) N-dimensional synthetic signal s, (c) M-
dimensional measurements vector y. In this example N=900 and M=300.
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The application of the proposed CS scheme, considering a warping operator W de-

signed according to Eq. (10.7) by using the cg(f) of the A0 mode, S = 6 and F = 100,

leads to results shown in Figure 11.3.
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Figure 11.3: Results of the CS decomposition procedure in terms of (a) estimated
actuated pulse ŝ0 = W†ĥw (where ĥw is the estimated impulse response in the warped
domain), and (b) estimated warped reflectivity function x̂w.

In particular, it can be observed both the good reconstruction of the estimated ac-

tuated pulse which can be computed as the antitransform of the estimated warped

impulse response ŝ0 = W†ĥw as well as the accurate paths length detection within

the estimated warped reflectivity function x̂w.

It must be remarked that the synthetic signal in Eq. (11.1) does not include models

of the actuator and the sensor (and so does not account for actuator-plate and plate-
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sensor interaction), it considers the ideal generation of a single guided wave, and

an undamped wave propagation. The computation of the synthetic signal s can be

extended to the case of multi-modal and damped guided wave propagation.

The effect of more modes can be easily obtained by adding the related synthetic

responses, keeping in mind that without a wavelength tuning model the considered

modes are equally actuated and received by the ideal actuator and sensor, respec-

tively. The effect of mechanical and geometrical guided waves attenuation could be

included in the generation of the synthetic signal by multiplying the dispersive fre-

quency response Eq. (11.1) for each mode by its frequency dependent attenuation

information (e.g. the dispersive mechanical guided wave attenuation can be computed

by SAFE formulations as the one coded in the tool [97]).

Notwithstanding the assumed simplifications, it will be shown in the next section how

the developed CS scheme can be successfully applied in real applications.

11.2 Experimental verification

In active techniques a known waveform is sent to a piezoelectric (PZT) actuator and

a network of piezoelectric (PZT) sensors acquire data. The aim of the CS signal

processing is the detection of waves scattered by defects.

The recovered warped reflectivity function x̂w is constituted by a stream of spikes

whose position is related to the distance traveled by the different waves. Since the

geometry of the plate and the positions of the PZT sensors (actuator and sensors) are

known, from an acquired and processed signal it is easy to distinguish spikes due to

the direct path (actuator-receiver) and caused by edge reflections, from spikes related

to defects. This latter information (distance sensor-defect) recovered from at least

three sensors, allows to fruitfully feed positioning procedures aimed at recovering the

position of the defect.

As a case study, we exploited the proposed compressive sensing tool to compute the

sensor-defect distances in an aluminum 1050A square plate 1000 × 1000 mm and 3

mm thick.
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The experimental set-up is shown in Figure 11.4.

 

y 

x 

R1 

R3 

R2 

A 
m 

Figure 11.4: Experimental set-up used to validate the proposed CS procedure: A
actuator, R receivers, m added mass.

Four PZT discs (PIC181, diameter 10 mm, thickness 1 mm) were bonded to the plate

using a high-strength Loctite glue.

The position of the transducers is defined in Table 11.1.

Coordinates Actuator Receivers

A R1 R2 R3

x (m) 0.50 0.10 0.90 0.90

y (m) 0.50 0.90 0.10 0.90

Table 11.1: Actuator and receivers topology.

Defects have been emulated by a small steel cylindrical mass (indicated with m in

Figure 11.4), 20 mm of diameter and 500 gr of weight, posed in different positions on

the plate and acoustically coupled simply with water, so that it generates quite weak

reflections.
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Guided waves were excited by actuating the central PZT transducer (A) with the

linear chirp signal shown in Figure 11.5(a) amplified by 50 times.
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Figure 11.5: Experimental results: (a) input chirp signal sent to the power amplifier
and then to the PZT actuator (A), (b) signal acquired by sensor R1 when the mass
is placed at coordinates x = 0.85 m and y = 0.45 m.

The acquired waveforms at the three receivers R1, R2 and R3, were recorded using

the LC534 series LeCroy oscilloscope at a sampling frequency of 1 MHz, since the

frequency content of the acquired signal vanishes above 400 kHz. Acquisitions were

triggered when the actuated signal reached a threshold level of 140 mV. It was verified

that for the considered plate only the A0 and S0 Lamb waves exist within the excited

frequency range (0− 400 kHz) [97]. The waveform detected by the receiver R1, when

the mass is placed at coordinates x = 0.85 m, y = 0.45 m, is shown in Figure 11.5(b).

158



CHAPTER 11 11.2 Experimental verification

As can be seen from the acquired time waveform, it is extremely difficult (if not

impossible) estimating the time of arrival of waves echoes due to the mass among the

other direct and edges reflected A0 and S0 Lamb waves. Moreover, such estimation is

complicated by the effect of dispersion which introduces a mode distance dependent

group delay shift. On the contrary, designing the warping operator W on the A0 mode

of the plate and processing the acquired signal in Figure 11.5(b) with the proposed

CS approach yields to quite impressive results, both in terms of estimated actuated

pulse and estimated reflectivity function, as can be noted from Figure 11.6.
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Figure 11.6: Experimental results achieved by processing the acquired signal in Figure
11.5(b) with the proposed CS approach: (a) estimated actuated pulse, (b) reflectivity
function reconstructed by the CS algorithm with superimposed the real distances
related to the direct, scattered by the defect, and reflected paths.
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Figure 11.7: Spectrogram of (a) the actuated chirp s0 and of (b) the recovered esti-
mated chirp ŝ0.
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In particular, the estimated actuated pulse ŝ0 = W†ĥw is very similar to the actuated

pulse s0; the slight discrepancies in the time domain can be due to the filtering effect

imposed by the piezoelectric transducers in actuation and sensing. However, the

comparison of the spectrograms of s0 and ŝ0 in Figure 11.7(a) and (b), respectively,

shows how the linear-chirp frequency modulation is properly recovered.

Regarding the reflectivity function, the spikes in x̂w are almost perfectly overlapped

to the actual distances traveled by the waves:

• DA,R1 = 0.5657 m, the length of the direct path between the actuator A and

the receiver R1,

• DA,E,R1 = 0.7211 m, the length of the path from the actuator A to the edge of

the plate E and to the receiver R1,

• DA,m,R1 = 1.2282 m, that is path length of the defect-scattered waves from the

actuator A to the mass m and to the receiver R1.

The peaks in the reflectivity function are affected by the guide waves attenuation

(mode attenuation and spreading) as it can be noted by comparing Figure 11.3(b)

(synthetic reflectivity) with Figure 11.6(b) (experimental reflectivity).

The synthetic reflectivity peaks are almost constant in amplitude regardless the trav-

eled distances (so not influenced by mode dispersion), whereas the experimental re-

flectivity function shows peaks of different amplitudes. The link between mode at-

tenuation and reflectivity function peak amplitude can be seen by looking at the

difference between the two peaks DA,R1 and DA,E,R1 that are both related to the

same A0 mode only.

The overall performance of the proposed algorithm can be evaluated by looking at

the cumulative distribution function of the error eDA,m,X in the estimation of the

distance traveled from the actuator A to the receiver X (with X ∈ {R1, R2, R3}) by

the wave scattered by the mass (m), shown in Figure 11.8.

To generate this plot, 63 signals (related to 21 positions of the mass) acquired by R1,

R2 and R3 were considered.
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Figure 11.8: Cumulative error distribution in the estimation of DA,m,X .

As can be seen, the error of the proposed CS scheme for the 77% of the 63 measures

is less than 1 mm (see the bulleted (•) data in Figure 11.8). Averaging these results,

we obtained a mean error of 0.97 mm in the estimation of distance DA,m,X . This

result compares favourably with the mean error achieved by extracting the peaks of

the signals processed through a dispersion compensation procedure (1.76 mm - N

in Figure 11.8), since classical dispersion compensation algorithms [51] [70] are not

suited to process chirp signals. More interestingly, the proposed CS tools outperforms

also procedures specifically dedicated to chirped actuations (1.18 mm - � in Figure

11.8) as the one proposed in [10].

To achieve these results, a very important step is the selection of the model parameters

S and F . In the described experiments, F and S were set to 100 and 6, respectively.

This choice allows for a compression ratio of M
N

= 0.37. In particular, the model

parameter F was set at a value equal to the length of the warped actuating chirp,

while S selection was performed by taking into consideration two opposite effects:
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(i) lowering S reduces the computational effort and minimizes the compression ratio,

thanks to the dimensionality reduction of the union of subspacesMs,W
S,F,∆, whereas (ii)

increasing S allows to better modelling multiple wave reflections.

11.3 Discussion

In this Chapter the development of a Compressive Sensing (CS) acquisition and re-

flectivity function estimation was presented. The proposed CS scheme improving the

detection of the distance traveled by guided waves can be proficiently used in con-

ventional Lamb wave inspection systems. The tool exploits the Warping Frequency

Transform to project the acquired signals in a dispersion compensated basis. In the

reconstruction stage an Alternating Minimization (AM) procedure is performed to

recover both the excitation shape and the reflectivity function. Experimental valida-

tions shows the effectiveness of the proposed algorithm as a suitable tool to locate

defect-induced reflections with compressed acquisitions.

Future developments include the generalization to applications characterized by anisotropic

and multi-modal propagation, such as the detection of defects in composite plates. In

such cases, it is foreseen that instead of projecting the signal in a given warped do-

main, novel decomposition strategies will be implemented, based on the construction

of a redundant representation basis which can capture multiple dispersive behaviors

(see Ref. [73]). If so, all the considered modes would contribute to estimate the

sought sensors-defect distances.

It is worth noticing that the implemented algorithm operates as a blind deconvolution

tool, without exploiting the information about the actuating waveform, therefore the

proposed tool has the potential to be applied also in contexts where no prior knowledge

about the incipient pulse is given, such as in acoustic emissions monitoring, or in

impact localization tasks.
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Chapter 12
Multi-Channel Distributed Compressed

Sensing for Impact Localization in

Composite Plates

It is impossible to enjoy idling thoroughly unless

one has plenty of work to do.

Jerome Klapka

12.1 Introduction

Aerospace structures comprising of metals and composites are exposed to extreme

loading and environmental conditions which necessitates regular inspection and main-

tenance to verify and monitor overall structural integrity; the accurate detection of

structural cracking, delamination are of major concern in the operational environ-

ment. There is increasing emphasis on using composites in structural components

due to the reduction in weight and increased strength. but in general this materials

are usually neither isotropic nor homogeneous.

In this Chapter a new framework for joint compressed sensing of anisotropic ultra-

sonic propagating waves that exploits intra-signal correlation structures has been
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developed. The proposed algorithm has been applied on impact localization for com-

posite plate inspection.

The development of an in situ health monitoring system that can inspect large areas

and communicate remotely to the inspector is highly computational demanding due to

both the huge number of piezoelectric sensors needed and the high sampling frequency,

so the main aim of the proposed framework is to lower the data dimension and to

enhance impact localization performances.

In the proposed approach, a CS algorithm based on a Alternating Minimization (AM)

procedure is adopted to extract the information about both the system Impulse Re-

sponse and the Reflectivity Function.

The implemented tool exploits the dispersion compensation properties of a multiple

Warped Frequency dictionary for each direction of propagation as a mean to generate

the a family of sparsifying basis for the anisotropic signal representation.

As a result, an automatic procedure to locate impact has been demonstrated and

successfully tested on Lamb waves propagating in a carbon fiber reinforced polymer

(CFRP) plate. The proposed algorithm is suitable for impact detection and can be

implemented in future for real application to structural health monitoring.

The Chapter is organized as follows: Section 12.2 introduces the Warped Frequency

Transform and the proposed algorithm to recover the reflectivity function from the

acquired signal from anisotropic and dispersive medium. Finally, in Section 12.3, the

validating experiments are presented.

12.2 Recovery of Anisotropic Dispersive Pulse Streams

In this work we deal with signals which can be considered as a sum of components

sparse in the frequency warped domain with different maps; in particular in the

anisotropic propagation the wave signal can be represented as a sum of path-terms

with different wave velocity according to the angle of propagation. In detail an impact

generates an ultrasonic wave which propagates through different directions related to

the direct path, reflections, ecc; since that in anisotropic waveguides the propagation
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velocity depends on the angle, in order to isolate this contributions it is necessary

to represent the signal by a family of frequency warped basis designed using the

simulated dispersion velocity curves for a set of angles.

It is worth noticing to detail the logical steps which compose the propose CS frame-

work for impact acoustic emission localization in anisotropic media.

1. Family dictionary design to match the anisotropic dispersive propa-

gation: the proposed dictionary design steps is described in the following:

• a priori simulation of a set of dispersion curves for several angles of prop-

agation with Semi-Analytical Finite Element method (SAFE);

• design a dictionary of frequency warped basis with the previous simulated

maps;

• using the family of basis computed in the CS recovery algorithm as the

sparsifying dictionary.

2. Model for jointly sparse anisotropic propagating signals: the inter-

dependencies between signals acquired by the sensors network can be exploited

through the use of a Joint Sparsity Model (JSM) of the 3th type, as detailed in [];

in particular the signal propagating in an anisotropic medium can be expressed

as sum of sparse component in the proper family of basis.

3. Model-based CS and Alternating minimization Recovery: finally in

order to reduce the computational cost of the impulse recovery for each com-

ponent of the signal, the convolutional model of the system has been exploited

as presented in []; in detail in the recovery stage the search is made only on a

subset of all possible supports and this subset is chosen according to a specific

model related to the physic model of the system, i.e. in a mathematical point

of view the convolutional relation between the input signal and the impulse

response.

In the following Sections a detailed description of each step is presented.
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12.2.1 Frequency Warped Dictionary Design

A sparse representation for guided wave signals can be obtained by using Warping

Frequency Transforms (WFTs). These operators deform the frequency axis with a

proper warping map w(f) [27]. In particular, given a generic signal s whose continuous

Fourier transform is Fs, the continuous warping operator W is defined as

(FWs)(f) =
√
ẇ(f)(Fs)(w(f)) (12.1)

where sw = Ws is the so-called warped signal. W is a unitary operator and the

inverse transformation can be computed through its adjoint operator W†. A fast

computation of the discrete warping operator and its inverse is achieved by means of

FFT-based algorithms [96]. In order to use the WFT for compensating Lamb waves

signals from the dispersion of a particular guided mode, w(f) can be defined through

its functional inverse, as:

K
dw−1(f, θi)

df
=

1

cg(f, θi)
(12.2)

where cg(f, θi) is the nominal group velocity curve of the considered mode for a

specific angle of propagation θi and K is a normalization parameter selected so that

w−1(0.5) = w(0.5) = 0.5. It is important to point out that in anisotropic propagation

the nominal velocity curve cg(f, θi) can be slightly different according to the direction

of the propagation of the wave so respect to the procedure described in 11 in this

Chapter is presented an extention.

More details on warping map design can be found in [10]. Let’s indicate with s(t,D, θi)

an undamped guided wave signal generated by an ideal actuator and received by an

ideal sensor, being D the traveled distances from the actuator to the receiver. Then,

the Fourier transform of s(t,D, θi) is given by:

(Fs)(f,D, θi) = (Fs0)(f, 0) · e−j2π
∫

D
cg(f,θi)

df
(12.3)

where (Fs0)(f, 0) is the frequency transform of the applied input. In force of Eq.

(12.2), Eq. (12.3) can be rewritten as:

(Fs)(f,D, θi) = (Fs0)(f, 0) · e−j2πw−1(f,θi)KD (12.4)
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where the dispersive effect results from the nonlinear phase term. The Fourier trans-

forms of the warped signal Ws(t,D, θi) is given by:

(FWs(t,D, θi))(f) =
√
ẇ(f, θi) · (Fs0)(w(f, θi), 0) · e−j2πfKD (12.5)

12.2.2 Warped Convolutional Anisotropic Models

Among the structured sparse models presented in literature, the convolutional model

detailed in [95] is suited to represent pulse stream signals, as those acquired in ultra-

sonic applications. Let MS ⊂ RN be a union of S-dimensional canonical subspaces.

Similarly, let MF ⊂ RN be a union of F -dimensional canonical subspaces. A convo-

lutional model is formally defined as the set

Ms
S,F =̇{s ∈ RN : s = (x ∗ h) |x ∈MS, h ∈MF} (12.6)

where ∗ denotes the circular convolution operator, h is the impulse response of the

ultrasonic apparatus, and x is the reflectivity function of the inspected component. If

S·F = K, then the setMz
S,F is a small subset of

∑
K . Such dimensionality reduction is

very beneficial, as the number of measurements M necessary to recover the signal s is

logarithmic in the number of subspaces in the model (see [94]). A further reduction in

the number of measurements can be achieved in the special case of streams of disjoint

pulses, that is situations in which the ultrasonic impulse response h is concentrated in

F contiguously located coefficients, while x is constituted by S sparse spikes separated

at least by ∆ locations, with ∆ > F . If M∆
S is the structured sparse model for

the spike streams x, and MC
F is the subspace of MF of the concentrated impulse

responses, the disjoint convolutional model is defined as:

Ms
S,F,∆=̇{s ∈ RN : s = (x ∗ h) |x ∈M∆

S , h ∈MC
F} (12.7)

The disjoint convolutional model could represent many practical situations related to

inspections with bulk ultrasonic waves, but it cannot capture a relevant phenomenon

which affects guided wave (GW) propagation: the effect of dispersion (i.e. frequency-

dependent propagation speed). In fact, dispersion causes the impulse response h to
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be shift-variant. However, if the dependency of h on the wave propagation distance

is predictable, it is possible to project the acquired signals in a representation basis

in which the dispersion effect is compensated, allowing thus the use of disjoint con-

volutional models. In this work, such task is achieved by computing the dispersion

curves for the plate-like structure of interest first, and then by exploiting such curves

to design a WFT capable to project the acquired signals in the new basis, as will

be shown in the next section. In the novel representation domain, suitable model-

based CS recovering algorithms can be adopted to recover the original signal from

the measurement vector and to extract the relevant information about reflectors.

As can be seen from Eq. 12.5, the result of the warping procedure is a linear phase

shift in the right hand term, which implies the desired shift invariance of the warped

signal sw = Wθis on the warped time axis. It follows that the Lamb wave signal s

can be modeled as the antitransform of the convolution xw ∗hw, where hw = Wθis0 ∈

RN is the F -sparse vector of the impulse response in the warped domain, and the

sparse vector xw ∈ RN indicates the warped reflectivity function, which represents

the scatterers position.

With the notation introduced in Chapter 10, the warped disjoint convolutional model

is defined as:

Ms,Wθi
S,F,∆=̇{s ∈ RN : s = W†

θi
(xw ∗ hw) |xw ∈M∆

S , hw ∈MC
F} (12.8)

In force to the commutative property of the convolution operator, a signal s inMs,Wθi
S,F,∆

can be represented as:

s = W†
θi

(xw ∗ hw) = W†
θi

Hxw = W†
θi

Xhw (12.9)

where H = C(hw) (respectively, X = C(xw)) is a square circulant matrix with its

columns containing circularly shifted versions of the vector hw (respectively, xw).
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12.2.3 Separation-Based Joint Decoding

According to the superposition principle valid in such a system the acquired propa-

gating wave can be represented as:

sa = sθ1 + . . .+ sθi + . . .+ sθK

where the signal components sθi are sparse in Ψθi , i.e. sθi = Ψθixθi .

The previous relation leads to the following representation of the acquired signal in

the new frequency warped domain:

sa = Ψθ1xθ1 + . . .+ ΨθKxθK

Let Ψ = [Ψθ1 . . . ΨθK ]; that is, Ψ is an N ×N ×K matrix, then

sa = sθ1 + . . .+ sθK = Ψθ1xθ1 + . . .+ ΨθKxθK =

= [Ψθ1 . . . ΨθK ] ·


xθ1

. . .

xθK

 = Ψx

Thus, we can decode x using y = (ΦΨ)x, and recover s using s = Ψx.

This process finds xθi simultaneously in the domains associated with Ψθi , thus we

call it joint decoding. Joint decoding uses the same minimization process as that in

standard compressive sensing, but it involves an increased number of variables (that

is, N ×K variables rather than original N variables) in the minimization due to the

use of the N × (N ·K) overcomplete basis Ψ. We refer this method the conventional

joint decoding. Note that for the same number of measurements M , the measurement

matrix satisfies (ε, 2K)-RIP with a larger K if a smaller N is used in decoding. This

implies that ‖xK − x‖l1 is smaller, and consequently the error bound given earlier

on ‖x ∗ −x‖l2 is also smaller. This provides a motivation of our goal - to reduce

the number of variables in joint decoding by variables separation. Joint decoding

uses an overcomplete basis to simultaneously exploit sparsity in multiple domains.

As discussed in Section III, the number of variables in decoding is the number of

components in all domains. Having more variables leads to increased decoding time

and reduced compression rate (M/K) for achieving the same decoding quality.
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We now explain our separation-based method that reduces the number of variables

in joint decoding. For the clarity of presentation, we consider a case with only two

domains. We consider a composite input signal of length N , sa = sθ1 + . . .+sθi + . . .+

sθK with sθi = Ψθixθi where xθi is Kθi-sparse. The separation-based joint decoding

departs from the conventional joint decoding by employing the following two steps:

1. Separation step: we perform decoding for a selected subset of domains or

separation domains, which are the ones that we anticipate to have stronger

components. Then, we identify the leading variables in these domains based on

the reconstruction. Suppose the domain associated with Ψθi is selected. Then,

we reconstruct an approximate solution to xθi by decoding x′θi using

y = (ΦΨθi)x
′
θi

Note that

y = Φ(sθ1 + . . .+ sθi + . . .+ sθK ) =

= Φ(Ψθ1xθ1 + . . .+ Ψθi + . . .+ ΨθKxθK ) =

= ΦΨθi(Ψ
−1
θi

Ψθ1xθ1 + . . . xθi + . . .+ Ψ−1
θi

ΨθKxθK ) =

= ΦΨθix
′
θi

where x′θi = xθi + Ψ−1
θi

Ψθ1xθ1 + . . .+ Ψ−1
θi

ΨθKxθK . Thus x′θi is an approximate of

xθi with an error term Ψ−1
θi

Ψθ1xθ1 + . . .+ Ψ−1
θi

ΨθKxθK . We sort the elements in

the reconstructed x′θi according to their magnitudes, and keep only the largest

L elements. We call them the distinguished variables for the domain associated

with Ψθi , and use x̂θi to denote the set of these variables. The parameter L is

so chosen that x̂θi includes the Kθi largest nonzero variables in xθi with a good

chance.

2. Joint decoding step: to compute xθj and rectify the possible errors in xθi

computed from the previous step, we perform joint decoding for all domains with

a reduced overcomplete basis. For the separation domain, the basis contains
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only those basis vectors that correspond to the distinguished variables. We

decode xθj and x̂θi with the reduced overcomplete basis:

y =
(

Φ
[
. . . Ψθj . . . Ψ̂θi . . .

])
·



. . .

xθj

. . .

x̂θi

. . .


where Ψ̂θi consists of a subset of columns of Ψθi that correspond to the dis-

tinguished variables in x̂θi . Our separation-based decoding method has general

applicability.

12.2.4 Pulse Stream Recovery in the Frequency Warped do-

main

The reduced dimensionality of the union of subspaces captured by the model in Eq.

(12.8) allows for an efficient and stable estimation of both the system impulse response

ĥw and the reflectivity function x̂w from the compressed measurement vector

y = Φs+ n = ΦW†
θi

Hxw + n (12.10)

being n the acquisition noise and where ĥw and x̂w denote an estimation of hw and

xw, respectively. The general approach is to obtain the “best possible estimate” of

xw given a tentative estimate of hw, then update the estimate of hw accordingly, and

iterate. The target signal s is assumed to belong to the warped disjoint convolutional

model of pulse streams Ms,W
S,F,∆. This strategy is commonly known as Alternating

Minimization (AM). The implemented algorithm is a modified version of the one

firstly presented in [95] and in Chapter 10 which has been adapted to perform in the

warped domain.
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12.3 Verification

Finite element analysis of an aircraft wing was performed by PZFlex (Weidlinger

Assoc. Inc. CA) and, as a case study, the proposed framework was exploited to

locate defects in an aluminum 1050A wing 1000 × 1000 mm and 3 mm thick. Four

piezoelectric discs (PIC181, diameter 10 mm, thickness 1 mm) were bonded to the

wing. The simulated setup designed with Solidworks (Dassault Systèmes ,USA) is

shown in Figure 12.1 and the position of the transducers is defined in Table 12.1.

Figure 12.1: Simplified aircraft wing model used in the simulations. Simulated set
up used to validate the defect location procedure with PZFlex and Solidworks CAD
importing

Table 12.1: Actuator and receivers topology.

Coordinates Actuator Receivers

x (m) 0.10 0.10 0.90 0.90

y (m) 0.10 0.70 0.10 0.70

The sampling frequency chose for the simulations was fs = 500 kHz, sufficiently high

to avoid aliasing effects, as the frequency content of the acquired signals vanishes
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above 60 kHz. The active monitoring was performed by simulating a chirp as voltage

input in (0.1, 0.1) m on the top of the surface (active piezoelectric discs) and recording

the wave propagation by two sensors on the top surface.

In PZFlex simulation the structural damage was emulated as a cubic mass of 10

mm on the top of the wing surface. For example, the waveforms detected by the 3

receivers, after having placed the mass at the coordinates x = 0.20 m and y = 0.55

m, are shown in Figure 12.2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

−0.5

0

0.5

Signal at sensor 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

−0.5

0

0.5

Signal at sensor 2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1

−0.5

0

0.5

Signal at sensor 3

Time (ms)

Figure 12.2: Simulated signals acquired by the 3 sensors whose coordinates are re-
ported in Table 12.1.

As can be seen from the time waveforms, it is difficult estimating the time of arrival

of echoes due to the mass (emulated defect) among the other interfering waves caused

by edge reflections and multimodal propagation.

The acquired signals were processed through the random modulator pre-integrator

implemented in Matlab (Mathworks Inc., MA) with the frequency specifications are

the following: chipping frequency equal to 500 kHz and the information frequency

finf = 50 kHz. In order to compensate for dispersion, first the WFT operator must

be defined. In the [0 − 300] kHz frequency range, only the two fundamental A0 and
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S0 Lamb waves can propagate through this plate. The group velocity curve of the

A0 mode was used to shape the warping operator according to Eq. 12.2 because the

energy in the A0 mode is considerably greater than that retained by the S0 mode for

out-of-plane excitation.

In the recovery stage the orthogonal matching pursuit algorithm was applied to re-

cover the sparse signal in the warped domain.

Figure 12.3 shows the sparse estimated signal related to the defect located in x = 0.20

m and y = 0.55 m and the passive sensor 2 at 0.6 m from the active sensor.

Figure 12.3: Sparse signal after the CS recovery

The local maxima of the reconstructed sparse signal are close to the real distance of

the incident wave (blue) and the distance due to the reflection of the defect (green).

The warped distance can be detected and the corresponding coordinates provide the

distance traveled by the incident wave and the total distance of the wave reflected by

the defect.

12.3.1 Results

To asses the feasibility of the proposed technique, a study on the dependence of the

localization error with the number of bit used in the quantization stage was performed.

In Table 12.2 the localization error and the mean absolute error (%) which is defined

as the between the localization error and the actual defect position are shown.
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Table 12.2: Localization error dependency on the quantization.

Number of Bits Localization Error (mm) Mean absolute error

8 19.3 2.9%

16 8.7 1.3%

24 3.1 0.5%

It is possible to see how using few bits, for example 8 bits, the error tends to rise

reaching 2 cm. The choice of the number of bits depends on the specific control and

application; a good compromise can be between 16-24 bits.

It is important to notice how the obtained results with the CS framework are very close

to the localization error achieved applying only the compensation operator without

lowering the sampling frequency using the random modulator as acquisition module.

In Figure 12.4 the localization error comparison between compensation with and

without Compressed Sensing acquisition is presented.
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Figure 12.4: Localization error comparison between compensation with and without
Compressed Sensing acquisition

It is possible to underline that the performance of the CS proposed algorithm was

very close with the simple dispersion compensation warping procedure.
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Chapter 13
Compressive Sensing for Wireless

Transmission

Defeat is not the worst of failures.

Not to have tried is the true failure.

George Edward Woodberry

13.1 Introduction

A novel signal compression and reconstruction procedure suitable for guided wave

based structural health monitoring (SHM) applications is presented in this Chapter.

The integration of wireless communication technologies into SHM methods has to be

investigated since they eliminate the cost of cable deployment and reliability issues

due to aging and de-bonding of cables of traditional SHM systems, and have distinct

advantages such as simple, cost-effective, flexible, and reconfigurable, thus allowing

scalable installation.

A major limitation of wireless GW monitoring technology is the incompatibility be-

tween the high frequency content of ultrasonic signals and the limited data throughput

of existing wireless transponders. However, in embedded sensing devices, the wireless

connectivity may consume a large fraction of the available energy. Therefore, in or-

der to achieve long battery lifetime, performing data reduction locally, i.e. within the
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wireless smart sensor, is of primary importance. By doing so communication traffic

can be greatly reduced, minimizing the need of storing or transmitting large amount

of multichannel data.

Data reduction could consist either in the extraction of relevant information (such

as time of flight or energy [98], [99], [100]) from the acquired waveform, or in sig-

nal compression. When the information extraction task is too much computationally

onerous to be performed on an local embedded processor, the best option is to effi-

ciently compress the acquired signal, and then to transmit it to a central unit where

the signal is recovered and the processing is performed.

In this work, a signal compression strategy specifically dedicated to Lamb wave signals

for SHM, and aimed at achieving high compression ratio with low distortion in signal

recovery is proposed.

For signal compression, a novel approach is proposed whose starting point is the

design of a suitable signal representation basis.

The framework rely on the assumption that Lamb wave signals can be sparsified in

a frequency warped domain [21]. The warping procedure allows to design a time-

frequency decomposition matched to the dispersive beahaviour of Lamb waves a

Wavelet Packet (WP) decomposition warped basis has been developed and applied.

In the proposed approach, maximally sparse representations were achieved by imple-

menting a basis optimization routine, namely the Best Basis algorithm, to design the

wavelet filter banks which compute the transformation.

The proposed decomposition basis was exploited in the implementation of two well-

known data compression schemes: the first one is based on an Embedded Zerotree

(EZT) coding [101] the second one on Compressive sensing (CS) [102]. Both the

approaches rely on the assumption that Lamb wave signals can be represented as

sparse linear combinations of basis functions. It will be shown that this assumption is

true when Wavelet Packet (WP) decomposition bases are considered. In the proposed

approach, maximally sparse representations were achieved by implementing a basis

optimization routine, namely the Best Basis algorithm, to design the wavelet filter

banks which compute the transformation.
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Transform

In particular, a transformation based on the Wavelet Packet (WP) transform and Em-

bedded Zerotree Wavelet (EZW) coding in which the mother wavelet is parametrized

and optimized with respect to the signal is proposed for signal decomposition.

The structure of this Chapter is as follows: in Section 13.2 the Wavelet Packet trans-

form and the Best Basis parametrical optimization is presented, while Section 13.3 is

devoted to the data compression procedures: the Embedded Zerotree WP encoding

is presented in Section 13.3.1, and the Compressive Sensing procedure with the Best

Basis WP as sparsifying basis is presented in Section 13.3.2.

The proposed Frequency Warped CS framework is described in Section 13.4.

The conclusions end the work.

13.2 Parametrized Discrete Wavelet Packet

Transform

Multiscale transformations such as the wavelet transform (WT) analyse and represent

efficiently ultrasonic [103], [104], [21], [100] or Electrocardiogram (ECG) signals [105].

Let us call x ∈ RN the real-valued vector which may represent the discretized guided

Lamb wave signal, in the considered application domain. The WT operator

Ψ = [ψ1|ψ2| . . . |ψN ]

where each column-vector ψi is a wavelet atom, can be used to decompose the signal

x such that x = Ψα, where α is the N -dimensional WT coefficients vector.

The signal is said to be sparse in the new representation basis, if the vast majority of

the entries of α = [α1, α2, . . . , αN ], are zero-valued or negligible. Sparse signals can

be approximated using just the K largest entries of α and setting all other terms to

zero:

x ≈
K∑
k=1

α(k)ψ(k), with K � N. (13.1)

where the functions ψ(k) are elements of the wavelet basis.

As for the WT, the inner products between the signal and the elements of the adjoint

operator Ψ† which produce the wavelet coefficients can be computed efficiently by
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applying nested low-pass h and high-pass g filters to the original signal x as suggested

by the Multiresolution Analysis theory developed by Mallat [59]. Depending on the

sequence (tree) of the low and high pass filters, different wavelet transforms take

place.

For instance, Figure 13.1 depicts the tree which implements the so called Discrete

Wavelet Transform (DWT). This structure of computation is equivalent to an octave-

band finite impulse response (FIR) filter bank.

g[n]

h[n] g[n]

h[n] g[n]

h[n]

WT

coeff.

Input

signal

Figure 13.1: Computational tree of the Discrete Wavelet Transform.

As known, the frequency resolution which can be achieved by using an octave-band

filter is limited, especially at high frequencies. This limits the use of the DWT in

guided waves based applications.

The Wavelet Packet (WP) transform is a generalization of the DWT decomposition.

In the DWT only the outputs of the filters h, the signal approximations, are filtered

further, as can be seen from Figure 13.1.

In the corresponding WP situation also the outputs of the filters g, the details, are

filtered while stepping in the next decomposition level.

This offers a richer analysis and the complete decomposition tree shown in Figure

13.2 is produced.
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Figure 13.2: Computational tree of the Wavelet Packet decomposition.

Figure 13.3: Pruned (Best Basis) Wavelet Packet decomposition.
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Alternatively, instead of choosing a priori the basis functions as for the DWT or

the full WP decomposition tree, the number of filtering stages of the full WP tree

can be limited (pruning) by selecting the decomposition depending on the signal

characteristics, as schematically represented in the example in Figure 13.3.

As for guided Lamb wave signals, a suitable pruning allows to obtain a discrete

representation of the signal better matched to its inherent multi-scale structure.

To such aim, in this work a procedure that couples the pruning (Best-Basis) technique

[106] with the lattice parametrization of the wavelet basis [107] is proposed. More

specifically, the wavelet basis is defined by a proper parametrization of the coefficients

of the scaling filter h. For a finite impulse response filter of length L, there are L/2+1

conditions to ensure that the wavelets define an orthogonal Discrete Wavelet Packet

Transform (DWPT) and thus there are L/2 − 1 degrees-of-freedom to design the

scaling filter h. The lattice parametrization presented in [107] offers the opportunity

to design orthogonal wavelet filters via unconstrained parameters.

In particular, for L = 6 the design parameters α and β gives

i = 0, 1 : h[i] =
1

4
√

2
× [(1 + (−1)i cosα + sinα)(1− (−1)i cos β − sin β) +

+(−1)i 2 sin β cosα]

i = 2, 3 : h[i] =
1

2
√

2
× [(1 + cos(α− β) + sinα + (−1)i sin(α− β))]

i = 4, 5 : h[i] =
1√
2
− h(i− 4)− h(i− 2)

The optimal parameters are chosen to minimize the distortion of the signal after

decoding for a given compression rate, in the case of signal compression. The metric

used to quantify the difference between the original signal x[k] and the reconstructed

signal x̂[k] after decoding is the percent residual difference (PRD)(%)

PRD =

√∑
k(x[k]− x̂[k])2∑

k x[k]2
× 100

In other words, the selected decomposition is optimal in the sense that corresponds

to a time frequency tiling that best concentrates the Lamb wave signal energy in few

WP coefficients.
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13.3 Data compression procedures

13.3.1 Embedded Zerotree wavelet coding

The Embedded Zerotree (EZT) wavelet technique [108] is a transform-encoder which

operates on signals which have been acquired, digitized, and wavelet-transformed.

EZT exploits the efficiency of the representation offered by the WP transform to

effectively compress the signal. In particular, the EZT algorithm uses interrelations

and self-similarities among WP coefficients in different sub-bands.

Thanks to these relations it is possible to organize the wavelet coefficients in sub-

trees. If the lowest frequency wavelet coefficient in a subtree is zero or nearly zero

(that is if its absolute value is below a given threshold) it is highly probable that all

the other coefficients in the same subtree are also zero valued (i.e. the considered

coefficient tree is a zerotree). If this is the case, the whole subtree can be encoded

with a very limited number of bits. Threshold has to be accurately selected to achieve

a predefined target compression ratio (CR%). Over-threshold coefficients are usually

a very small subset of the total, and can be encoded with the Huffman algorithm

[109] which produces a lossless data compression.

It is worth noting that the subtrees structure for a given wavelet transformed signal

can be defined dynamically for an arbitrary WP decomposition [110], so that the EZT

algorithm can be easily extended to the Best Basis WP decomposition.

The computational scheme based on EZT compression of the Best Basis WP co-

efficients and Huffman coding is reported in Figure 13.4. The basis optimization

procedure is halted when the wavelet representation is maximally sparse.

Then the EZT procedure and the Huffman coding are launched. After transmission,

the acquired waveforms can be recovered by performing sequentially:

i) Huffman decoding

ii) the inverse zerotree encoding (IEZT)

iii) the inverse WP transformation (IWP)
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Figure 13.4: Wavelet Packet with Embedded Zerotree-Huffman coding System

13.3.2 Compressed Sensing Best-Basis Wavelet Packet

The Compressed Sensing (CS) approach differs considerably from that of the trans-

form encoders, such as the EZT, but it also relies on the fact that the signal to

be compressed is sparse in the WP Best Basis representation described in Section

13.2. Indeed, the CS theory states that if x is sparse, one can recover its K-term

approximation by only collecting M = O(K logN/K) measurements, thus sensing

and compressing at the same time.

The so called M -dimensional measurement vector y is acquired by computing this

product:

yi = Φx (13.2)

To guarantee a robust and efficient signal recovery, the sensing matrix Φ must be

properly designed. In particular, it must be verified that Φ and the WT operator Ψ

are incoherent, that is the parameter µ:

µ(Φ,Ψ) =
√
N · max

1≤k,j≤N
|〈φk, ψj〉| (13.3)

must be small enough. This property is usually fulfilled when the sensing matrix Φ

is a random matrix with Gaussian distributed entries.
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Several different hardware architectures have been proposed to perform the multipli-

cation in Eq. 13.2, some solutions are based on analog circuits [111], some others, as

the one used in this work, on the multiplication of digital signals [112].

Finally, an accurate reconstruction of the signal x from the linear measurement vector

y can be accomplished by solving the following convex optimization problem

min
α̃∈RN

‖α̃‖1 subject by ‖ΦΨα̃− y‖2 ≤ σ (13.4)

where σ bounds the amount of noise unavoidably corrupting the data, and α̃ is the

N -dimensional sparse approximation of the coefficient vector.

The full compression and reconstruction scheme is shown in Figure 13.5.

Figure 13.5: Best Basis WP Compressed Sensing scheme

Such method performs an iterative joint estimation of the signal x (CoSamp block)

and of the Best Basis WP operator Ψ. The optimization of WP tree pruning is

performed by selecting the wavelet filters h and g a priori with the procedure described

in [107], as in the EZT case.

In the acquisition stage a multiplication between the signal and a random matrix

M×N is performed; in the reconstruction stage from the measurement y the algorithm

described in Table 13.1 is applied to recover the signal x.

The Best Basis Compressive Sensing algorithm perform an iterative estimation of the

signal x, updating at each iteration the best wavelet packet tree. The main difference

between the algorithm [113] is related to the wavelet filter that in this work is optimize

a priori as described in Section 13.2.
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Initialization : k = 0, x0 = 0

repeat

Update the Estimate : x̃k = xk + 1/(µΦT (y −Φxk))

Update the Best Basis : λk+1 = arg minC(x̃k,Bλbest basis)

using algorithm in [113] with mother wavelet φ

obtained using the optimal parametrization

Denoise the estimate : xk+1 =
(∑

m max
(

0, 1− 1
|<s,ψm>|

)
| < s, ψm > |

)
ψm

until ‖xk+1 − xk‖ ≤ η

Table 13.1: Best-Basis Compressed Sensing Algorithm

13.4 Compressed Sensing in Group-Delay Covari-

ant Basis

In this section, the procedure to extend the applicability of CS framework to dispersive

signals is described: it is based on the use of the frequency warped operator to further

enhance the sparsification of the signal s(t).

Like ordinary scaling functions, warped scaling functions are strategical for the con-

struction of warped wavelet bases. In the Fourier domain the warped wavelets are

related to the dyadic wavelets as follow:

Ψn,m(f) = (Wψn,m)(f) =

√
dw(f)

df
Ψn,m(w(f)) =

√
2n
dw(f)

df
Ψ(2nw(f))e−j2

nmw(f)

The warped wavelets are not simply generated by dilating and translating a mother

wavelet. Rather, the translated wavelets are generated by all-pass filtering e−j2
nmw(f).

Scaling also depends on the warping map w(f).

Figure 13.6 shows how the Wavelet tiling of the TF plane leads to match with a single

propagating mode as reported in Figure 13.7, but the resolution on the frequency axis

is not variable. Atoms change their shape versus time with the dispersive properties

of the single mode.

186



CHAPTER 13 13.4 Compressed Sensing in Group-Delay Covariant Basis

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ms)

F
re

q
u
e
n
c
y
 (

M
H

z
)

Figure 13.6: Tiling of the time-frequency plane for the frequency warped wavelet
transform for the A0. The solid curves represent the dispersive group delay curves
for the Lamb waves for a traveled distance of 1 m.
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Figure 13.7: Group velocity curve for the propagating A0 mode for an aluminum
plate of 3 mm of thickness
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Given an orthogonal and complete set of dyadic wavelets {ψn,m}n,m∈Z where

ψn,m(t) = 2−
n
2ψ(2−nt−m) = Dn

1
2
Smψ(t)

where Sm represents the shift-by-m operator, one defines the warped wavelets as

ψn,m = Wψn,m. The set
{
ψn,m

}
n,m∈Z is orthogonal since W is a unitary operator,

such that:

〈Wψn′,m′ ,Wψn,m〉 = 〈ψn′,m′ ,W†Wψn,m〉 = 〈ψn′,m′ , ψn,m〉 = δn′,nδm′,m

and complete since, by unitary equivalence, given x ∈L2(R) it is always possible to

find y ∈L2(R) such that s = Wy. Hence, by expanding y over the dyadic wavelet set

and exploiting the continuity of the warping operator, we have

s(t) = Wy(t) = W ·
∑
n,m∈Z

yn,mψn,m =
∑
n,m∈Z

yn,mψn,m(t)

where yn,m = 〈y, ψn,m〉 = 〈x,Wψn,m〉 = 〈x, ψn,m〉 = 〈W†x, ψn,m〉.

Therefore the signal is sparsified by means of the inverse warping operator W†, then

the expansion coefficients on a nonstationary wavelet basis in the classical sense are

computed within the Compressed sensing framework.

The resulting block scheme is reported in Figure 13.8.

Figure 13.8: Best Basis Frequency Warped Wavelet Packet Compressed Sensing
scheme
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13.5 Experimental Verification

The compression algorithms detailed in the previous sections have been applied to

the passive monitoring setup schematically depicted in Figure 13.9.

Figure 13.9: Sketch of the experimental setup adopted to acquire the lamb wave
signals generated by impacts

An aluminium 1050A plate 1 m × 1 m wide and 0.003 m thick was sensorized with

piezoelectric transducers (PZT discs, diameter 0.01 m, thickness 0.001 m).

Guided waves were excited by hitting the plate with an impact hammer.

The generated signals were recorded using a LC534 series LeCroy oscilloscope at a

sampling frequency of 300 kHz.

A first set of acquisitions was used as a reference to select the wavelet filter coefficients

with the procedure detailed in [107].

The coefficients are reported in the following table:

189



CHAPTER 13 13.5 Experimental Verification

n 1 2 3 4 5 6

hn -0.2 0.5 0.3 -0.1 0.5 0.2

gn -0.2 0.5 0.3 -0.1 0.5 0.2

Table 13.2: WP Filter coefficients.

Then, the Best Basis WP filter bank was selected according to the pruning proce-

dure described in Section 13.2. The proposed WP analysis provides a very efficient

representation of the acquired signals.
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Figure 13.10: Error ε in the nonlinear approximation of the acquired signals through
the largest M coefficients for the parameterized Best Basis WP representation.

This is illustrated in Fig 13.10, where K is the sparsity of the signal and the error

ε(K) =
‖x− xM‖2

‖x‖2

associated with the non-linear approximation xM (see Eq.13.1) of the acquired wave x

is plotted versus the number of coefficients, M , used in the selected linear expansion.
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The error is calculated for a database of 84 signals. Figure 13.10 shows that the

use of the Best Basis WP filters in Table 13.2 (green line) instead of the well known

Daubechies filter (red line), in the analysis, yields to a more sparse codification of the

informative content associated with the acquired signals.

13.5.1 Best Basis Wavelet Packet with Embedded Zerotree

Coding

The performance of the EZT coding has been studied by considering the trade off

between the Compression Ratio (CR) and the distortion of the reconstructed signal.

The distortion metric used to quantify the difference between the original signal x

and the reconstructed signal x̂ is the Percent Residual Difference (PRD)(%)

PRD =

√∑
n(x[n]− x̂[n])2∑

n x[n]2
× 100

The Compression Ratio is varied by changing the value of the EZT threshold.

In Table 13.3, the values of the CR and PRD obtained on a experimental signal

resulting from an impact in (0.45, 0.30) cm are reported.

Threshold EZW CR PRD (%)

0.001 26.97 0.84

0.003 43.22 2.25

0.007 56.29 6.18

0.013 73.12 7.71

0.035 87.53 33.55

0.100 94.55 43.24

Table 13.3: Performances of the wavelet parametrized filter according to the EZW
threshold.

It is worth noting that an optimal PRD is achieved with low EZT threshold but this

leads to a low CR; on the contrary an high threshold produces a good compression

but an high PRD. A good compromise between CR and PRD can be obtained when
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the EZW threshold is equal to 0.013. In Figure 13.11 is shown the acquired guided

wave and the recovered signals for different EZT threshold values.

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2

Signal at (45,30), sens. 1

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2

Threshold = 1.000000e−03

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2

Threshold = 2.782559e−03

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2

Threshold = 1.291550e−02

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.2

0

0.2

Threshold = 3.593814e−02

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.4

−0.2

0

0.2

Threshold = 1.000000e−01

Time (ms)

Figure 13.11: Reconstructed signals results in dependence of the EZT threshold
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In the Best-Basis CS approach, the performance in terms of CR is determined by the

ratio m
n

, where m and n are the dimensions of the sensing matrix Φm×n.

The wavelet filter used in the procedure is again the one detailed in Table 13.2.

In Table 13.4 is reported the PRD obtained for different CR values in two cases:

1. pure wavelet packet basis as sparsified dictionary (“without W”);

2. by using the warped wavelet packet basis (“with W”).

CR (%)
PRD

without FW with FW

50 3.17 2.52

62,5 5.18 4,21

70 6.71 5.37

75 7.32 6.08

Table 13.4: Performance comparison of the Compressed Sensing framework with and
without frequency warping (impact in (0.30, 0.30) m)
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13.5.2 Performance comparison

In Figure 13.12, the performance comparison between the EZT algorithm and the CS

framework is reported. The results are related to 84 acquisitions. Such dataset was

generated by recording the acoustic emissions produced by 21 different impacts with

the described 4 PZT sensors.
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Figure 13.12: Performance comparison between EZT algorithm and Wavelet Com-
pressed Sensing related to the PRD at different SNRs with CR = 70%.

The compression and recovery algorithms were applied both on the acquired signals

and on corrupted versions of the same signals, obtained by adding white gaussian

noise (AWGN) to the transmitted waveforms. The EZT threshold was set equal to

0.013. The PRD has been calculated between the original signal without noise and

the reconstructed signal.

It can be seen how the PRD achieved by the proposed Frequency Warped CS approach

is lower than the one achieved by EZT for all the considered SNR levels.
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In Figure 13.13, the comparison between the EZT algorithm and the proposed CS

framework related to the PRD at different compression ratios CR(%) when the signal

to noise ratio is kept constant (SNR= 30) is reported.
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Figure 13.13: Performance comparison related to the PRD at different compression
ratios with SNR= 30dB.

It can be noticed that for high CR with the traditional CS approach it is possible to

achieve lower reconstruction error, while for low CRs the EZT approach gives slightly

better results.

Finally, it worth noticing that the CS performed in the warped decomposition basis

produces slightly better results w.r.t. the one performed in the Best-Basis wavelet

packet domain in all the considered scenarios.
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13.5.3 Impact Localization Performances with and without

signal compression

In SHM applications the data compression is necessary to send the acquired signals to

a central base station which perform a proper algorithm in order to find for example

a possible failure or impact from the ultrasound propagating wave. It is important

to compare the localization performances of a reference algorithm using compressed

or not compressed signals.

In order to estimate the of the localization error the compressed signals and the

original ones have been applied to the algorithm described in [53].

Figure 13.14 shows the localization cumulative error rate with an without signal

compression
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Figure 13.14: Comparison of the localization cumulative error with and without signal
compression.
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The blue line represents the results obtained and reported in [100] without data

compression; the red line represents the cumulative error with Best-Basis wavelet

compression with threshold 0.013. The green line represents the localization error

cumulative rate (%) for hte novel CS procedure which incorporates the BB frequency

warping wavelet. It is worth noticing that despite to the obvious performance degra-

dation with the compressed signal, the error is less than 5 mm in more than the 60%

of the cases.

The difference of the mean localization error with/without compression is reported

in Table 13.5; this parameter has been calculated with the formula

ēcomp − ēacq
ēacq

(%),

where ēcomp is the mean error value obtained with compressed signals and ēacq is the

mean error value obtained without compression, for the whole set of impact depending

on the EZW threshold:

Threshold EZW CR
ēcomp−ēacq

ēacq
(%)

0.001 26.97 6.2

0.003 43.22 6.2

0.007 56.29 6.8

0.013 73.12 7.3

0.035 87.53 15.7

0.100 94.55 21.5

Table 13.5: Localization error performances without and with compression according
to the EZW threshold.

13.6 Discussion

In this work, Lamb wave signal compression and reconstruction procedures were pre-

sented. In particular, the Compressive Sensing approach is compared with the Em-

bedded Zerotree algorithm with Huffman coding. Both the considered approaches
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are based on wavelet filters optimization procedures to generate a sparse but accu-

rate multiscale representation of the acquired dispersive signal. The wavelet filter

bank is optimized to match the signal characteristics using lattice parametrization

which offers the opportunity to design orthogonal wavelet filters via unconstrained

parameters. Experimental results show how the compression strategies are suitable

for data transmission reaching a percent residual difference of 8 − 10% and a Com-

pression Ratio of 75%. In conclusion, CS applied to Best Basis wavelet coefficients

and optimization of the mother wavelet through parametrization is particularly suited

to provide an adaptive approach for optimal signal representation with low Signal-

to-Noise Ratios and high compression ratios.
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Conclusions

In this thesis, the study and development of techniques for processing of ultrasonic

signals and time-frequency analysis in the context of applications of non-destructive

testing of structures were presented. In particular, the activity was focused on the

implementation of embedded system for the localization of impacts on aluminum

plates and of composite material using a proper time-frequency analysis techniques

for compression and reconstruction of the ultrasonic signals and compressive sensing

techniques for the acquisition with a sampling frequency lower than the Nyquist one.

A method to extract the difference in distance travelled by stress guided waves was

proposed. The method applies a dispersion compensation procedure on the signals ac-

quired by passive sensors, thus overcoming the difficulties associated with arrival time

detection based on classical thresholding procedures. Then, a suitable wavelet decom-

position is applied to the cross-correlating signals to reduce the effect of multiple edge

reflections. The analysis of the wavelet transform magnitude reveals the difference

in distance travelled by the wave to reach the different sensors. Finally, multilater-

ation is applied. Excellent performance in terms of the point of impact localization

is shown through experiments since the estimated impact positions are very close

to the Cramèr-Rao lower bound. Further, the reliability of the proposed approach

in the presence of reverberation makes the new tool suitable for automatic acoustic

emission localization procedures. Future developments include the generalization of

the proposed approach to applications in which higher-order modes contaminate the

acquired data, and to applications characterized by anisotropic propagation, such as
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detection of impacts in composite plates. Furthermore an efficient wireless embedded

structural monitoring system for impact localization based on Lamb waves dispersion

compensation tool described before was proposed. The processing framework and

the algorithm are implemented on a STM32F4 discovery board with advantages of

compactness, low-power consumption, high efficiency and precision. The system was

validated experimentally to locate impacts in a aluminum plate with four sparse PZT

sensors.

For the active monitoring application, a signal processing strategy aimed at locating

defects in plates by analyzing actuated and received Lamb waves by PZT sensors was

proposed. The method is suitable for chirped pulse actuations, and it is based on

a two-step procedure applied to the acquired signals. The signal processing reveals

directly the distance traveled by the dispersive waves thus overcoming the difficulties

associated to arrival time detection. In particular,by exploiting the dispersion com-

pensation properties of the WFT, waveforms characterized by a unique time-frequency

pattern are obtained. The actuated chirp frequency modulation is compressed in a

subsequent processing step. Excellent performances in terms of defects localization

are shown through experiments. It is worth noticing that the robustness of the wave

traveled distance estimation allows to achieve such performances with sparse arrays

of conventional transducers. Thanks to its unique potential the developed tool could

pave a new class of procedures to locate defects in waveguides. Optimized and adap-

tive selection of the array shape and size are under investigation to further improve

accuracy of the proposed approach.

Furthermore a procedure to transmit ultrasonic data with high compression is pre-

sented based on a novel Compressed Sensing procedure. The proposed approach

combines the Wavelet Packet multiresolution analysis, best basis selection and coef-

ficients thresholding to generate a sparse but accurate time-frequency representation

of the acquired dispersive signal. The mother wavelet choice is optimized to match

the signal characteristics using lattice parameterization. In the reconstruction stage

a modified CS Matching Pursuit algorithm was implemented based on best basis se-

lection. Experimental validation shows how the proposed model is suitable for data
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transmission reaching a percent residual difference of 8-10% and a compression ratio of

75. Furthermore the CS procedure performance are comparable with the traditional

EZW modified algorithm for wavelet packet but the proposed algorithm is immune

to transmission noise. In conclusion, CS applied to best basis wavelet coefficients and

optimization of the mother wavelet through parameterization provides an adaptive

approach for optimal signal representation for compression with low Signal-to-Noise

Ratio.

Finally the development of a compressive sensing (CS) acquisition and reflectivity

function estimation was presented. The proposed CS scheme improving the detec-

tion of the distance traveled by guided waves can be effectively used in conventional

Lamb wave inspection systems. The tool exploits the warping frequency transform

to project the acquired signals in a dispersion-compensated basis. In the reconstruc-

tion stage, an alternating minimization (AM) procedure is performed to recover both

the excitation shape and the reflectivity function. Experimental validation shows

the effectiveness of the proposed algorithm as a suitable tool to locate defect-induced

reflections with compressed acquisitions. Future developments include the generaliza-

tion to applications characterized by anisotropic and multi-modal propagation, such

as the detection of defects in composite plates. In such cases, it is foreseen that instead

of projecting the signal in a given warped domain, novel decomposition strategies will

be implemented, based on the construction of a redundant representation basis which

can capture multiple dispersive behaviors. If so, all the considered modes would con-

tribute to estimate the desired sensor-defect distances. Note that the implemented

algorithm operates as a blind deconvolution tool, without exploiting the information

about the actuating waveform; therefore, the proposed tool has the potential to be

applied also in contexts where no prior knowledge about the incipient pulse is given,

such as in acoustic emissions monitoring, or in impact localization tasks.

201



202

Publications

Journals

• A. Perelli, L. De Marchi, L. Flamigni, A. Marzani, G. Masetti

Compressed Sensing of Lamb Wave Signals in Wireless Structural

Health Monitoring Applications, submitted to Digital Signal Processing,

December 2013

• A. Perelli, T. Di Ianni, A. Marzani, L. De Marchi, G. Masetti, Model-Based

Compressive Sensing for Damage Localization in Lamb Wave Inspec-

tion, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,

vol. 60, n. 10, pp. 2089-2097, October 2013, doi.org/10.1109/TUFFC.2013.

2799

• A. Perelli, L. De Marchi, A. Marzani, N. Speciale

Frequency warped cross-wavelet multiresolution analysis of guided

waves for impact localization, Signal Processing, vol. 96, Part A, pp. 51-

62, March 2014, dx.doi.org/10.1016/j.sigpro.2013.05.008

• L. De Marchi, A. Perelli, A. Marzani

A signal processing approach to exploit chirp excitation in Lamb wave

defect detection and localization procedures, Mechanical Systems and

Signal Processing, vol. 39, pp. 20-31, 2013, doi.org/10.1016/j.ymssp.2012.

10.018

doi.org/10.1109/TUFFC.2013.2799
doi.org/10.1109/TUFFC.2013.2799
dx.doi.org/10.1016/j.sigpro.2013.05.008
doi.org/10.1016/j.ymssp.2012.10.018
doi.org/10.1016/j.ymssp.2012.10.018


Conclusions

• A. Perelli, L. De Marchi, A. Marzani, N. Speciale

Acoustic emission localization in plates with dispersion and rever-

berations using sparse PZT sensors in passive mode, Journal of Smart

Materials and Structures, vol. 21 n. 2, February 2012, doi.org/10.1088/

0964-1726/21/2/025010

Book Chapter

• R. Rotili, C. De Simone, A. Perelli, S. Cifani, S. Squartini

Joint Multichannel Blind Speech Separation and Dereverberation: a

real-time algorithmic implementation, Advanced Intelligent Computing

Theories and Applications, 2012, vol. 93, p. 85-93, Springer

Conferences

• A. Perelli, L. De Marchi, A. Marzani, S. Freear

Compressive Sensing for Damage Detection in Composite Aircraft

Wings, IWSHM 2013: 9th International Workshop on Structural Health Mon-

itoring

• L. De Marchi, A. Perelli, N. Testoni, A. Marzani, D. Brunelli, L. Benini

A small, light and low-power passive node sensor for SHM of compo-

site panels, IWSHM 2013: 9th International Workshop on Structural Health

Monitoring

• A. Perelli, S. Harput, L. De Marchi, S. Freear

Compressive Sensing with Frequency Warped Compensation for Dam-

age Detection in Composite Plate, IEEE International Ultrasonics Sym-

posium IUS 2013

• A. Perelli, S. Harput, L. De Marchi, S. Freear

Frequency Warping Compressive Sensing for Structural Monitoring

203

doi.org/10.1088/0964-1726/21/2/025010
doi.org/10.1088/0964-1726/21/2/025010


Conclusions

of Aircraft Wing, DSP 2013: 18th International Conference on Digital Signal

Processing

• L. De Marchi, N. Testoni, A. Perelli, A. Marzani

Extension of Lamb Waves Defect Location Techniques to the case of

Low Power Excitation by Compressing Chirped Interrogating Pulses,

Key Engineering Materials vol. 570 pp. 940-947 2013

• A. Perelli, L. De Marchi, L. Flamigni, A. Marzani, N. Speciale

Wavelet Best Basis Compressed Sensing of Ultrasonic Guided Waves,

Proceedings of SPIE 2013

• L. De Marchi, A. Marzani, M. Miniaci, A. Perelli, N. Testoni

Localization of defects in irregular waveguides by dispersion compen-

sation and pulse compression, Proceedings of SPIE 2013

• A. Perelli, C. Caione, L. De Marchi, D. Brunelli, A. Marzani, L. Benini

Design of a Low-Power Structural Monitoring System to Locate Im-

pacts based on Dispersion Compensation, Proceedings of SPIE 2013

• A. Perelli, C. Caione, L. De Marchi, D. Brunelli, A. Marzani, L. Benini

Design of an ultra-low power device for aircraft structural health

monitoring, Design, Automation and Test in Europe DATE 2013

• A. Perelli, T. Di Ianni, L. De Marchi, N. Testoni, N. Speciale

Compressive Sensing with Warped Frequency Models in Lamb Waves

Damage Detection Procedures, IEEE International Ultrasonic Symposium,

October 2012

• A. Perelli, L. De Marchi, E. Baravelli, A. Marzani, N. Speciale

Warped-Wigner-Hough Transformation of Lamb Waves for Auto-

matic Defect Detection, IEEE International Ultrasonic Symposium, October

2011

204



Conclusions

• A. Perelli, L. De Marchi, A. Marzani, N. Speciale

Passive Impacts Localization based on Dispersion Compensation and

Cross-Correlated Signals Wavelet Analysis, International Congress on

Ultrasonics, September 2011

• L. De Marchi, A. Marzani, A. Perelli, N. Testoni, N. Speciale

Guided Waves Characterization of Bamboo Fibers Reinforced Com-

posites, International Congress on Ultrasonics, September 2011

205



206

Bibliography

[1] D. Balageas, C. P. Fritzen, and A. Guemes, Structural Health Monitoring. ISTE

Ltd, London, UK, 2006.

[2] C. Boller, “Next generation structural health monitoring and its integration

into aircraft design,” International Journal of Systems Science, vol. 31, no. 11,

pp. 1333–1349, 2000.

[3] R. P. Dalton, P. Cawley, and M. Lowe, “Propagation of acoustic emission signals

in metallic fuselage structure,” IEE Proc.-Sci. Meas. Technol., vol. 148, no. 4,

pp. 169–177, 2001.

[4] ——, “The potential of guided waves for monitoring large areas of metallic

aircraft fuselage structure,” Journal of Nondestructive Evaluation, vol. 20, no. 1,

pp. 29–46, 2001.

[5] L. De Marchi, A. Marzani, A. Perelli, N. Testoni, and N. Speciale, “Guided

waves characterization of bamboo fibers reinforced composites,” in AIP Con-

ference Proceedings, vol. 1433, no. 1. American Institute of Physics, 2012, pp.

447–450.

[6] A. Perelli, L. De Marchi, A. Marzani, and N. Speciale, “Passive impacts local-

ization based on dispersion compensation and cross-correlated signals wavelet

analysis,” in AIP Conf. Proc., vol. 1433, no. 1, May 2012, pp. 431–434.



Conclusions

[7] ——, “Acoustic emission localization in plates with dispersion and reverbera-

tions using sparse PZT sensors in passive mode,” Smart Materials and Struc-

tures, vol. 21, no. 2, 2012.

[8] A. Perelli, C. Caione, L. De Marchi, D. Brunelli, A. Marzani, and L. Benini,

“Design of an Ultra-low Power Device for Aircraft Structural Health Moni-

toring,” in Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2013. IEEE, 2013, pp. 1127–1130.

[9] A. Perelli, L. De Marchi, A. Marzani, and N. Speciale, “Frequency Warped

Cross-Wavelet Multiresolution Analysis of Guided Waves for Impact Localiza-

tion,” Signal Processing, vol. 96, pp. 51–62, March 2014.

[10] L. De Marchi, A. Perelli, and A. Marzani, “A signal processing approach to

exploit chirp excitation in Lamb wave defect detection and localization proce-

dures,” Mechanical Systems and Signal Processing, pp. 1–12, 2012.

[11] L. De Marchi, A. Marzani, M. Miniaci, A. Perelli, and N. Testoni, “Localiza-

tion of defects in irregular waveguides by dispersion compensation and pulse

compression,” in Proceedings of SPIE - Health Monitoring of Structural and

Biological Systems 2013, vol. 8695. SPIE-International Society for Optical

Engineering, 2013, pp. 1–10.

[12] A. Perelli, L. D. Marchi, E. Baravelli, and A. Marzani, “Warped-Wigner-Hough

Transformation of Lamb Waves for Automatic Defect Detection,” in IEEE In-

ternational Ultrasonics Symposium (IUS), 2012, pp. 1084–1087.

[13] A. Perelli, T. Di Ianni, A. Marzani, L. De Marchi, and G. Masetti, “Model-

Based Compressive Sensing for Damage Localization in Lamb Wave Inspec-

tion,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency control,

vol. 60, no. 10, pp. 2089–2097, 2013.

[14] A. Perelli, L. De Marchi, L. Flamigni, and A. Marzani, “Wavelet Best Basis

Compressed Sensing of Ultrasonic Guided Waves,” in Proceedings of SPIE -

207



Conclusions

Health Monitoring of Structural and Biological Systems 2013, vol. 8695. SPIE-

International Society for Optical Engineering, 2013, pp. 1–8.

[15] A. Vary, Nondestructive testing handbook, McGraw-Hill, Ed. McGraw-Hill,

2007, vol. 7.

[16] B. Castagnede, Y. Kwang, W. Sachse, and M. Thompson, Journal of Applied

Physics, vol. 70, pp. 150–157, 1990.

[17] G. Liu, X. Han, and K. Lam, Journal of Composite Material, vol. 35, pp. 954–

971, 2001.

[18] K. Balasubramaniam and N. Rao, “Inversion of composite material elastic con-

stants from ultrasonic bulk wave phase velocity data using genetic algorithms,”

Composites Part B: Engineering, vol. 295, pp. 171–180, 1998.

[19] J. Vishnuvardhan, C. Kishnamurthy, and K. Balasubramaniam, “Genetic algo-

rithm based reconstruction of the elastic moduli of orthotropic plates using an

ultrasonic guided wave single transmitter-multiple-receiver SHM array,” Smart

Materials and Structures, vol. 16, pp. 1639–1650, 2007.

[20] I. Bartoli, A. Marzani, F. Lanza di Scalea, and E. Viola, “Modeling wave propa-

gation in damped waveguides of arbitrary cross-section,” Journal of Sound and

Vibration, vol. 295, pp. 685–707, 2006.

[21] L. De Marchi, A. Marzani, S. Caporale, and N. Speciale, “Ultrasonic guided

waves characterization with warped frequency transforms,” IEEE Trans. on

Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 10, pp. 2232–

2240, 2009.

[22] P. Flandrin, F. Auger, and E. . Chassande-Mottin, “Time- frequency reassign-

ment: From principles to algorithms.” pp. 179–203,, 2003.

[23] P. Wilcox, “Omni-directional guided wave transducer arrays for the rapid in-

spection of large areas of plate structures,” IEEE Trans. on Ultrasonics, Fer-

roelectrics and Frequency Control, vol. 50, no. 6, pp. 699–709, 2003.

208



Conclusions

[24] J. S. Hall and J. E. Michaels, “Adaptive dispersion compensation for guided

wave imaging,” in AIP Conference Proceedings, vol. 1430, 2012, pp. 623–630.

[25] L. Yu and V. Giurgiutiu, “In situ 2-D piezoelectric wafer active sensors arrays

for guided wave damage detection,” Ultrasonics, vol. 48, no. 2, pp. 117–134,

2008.

[26] R. Baraniuk and D. Jones, “Unitary equivalence: a new twist on signal pro-

cessing,” IEEE Trans. on Signal Proc., vol. 43, no. 10, pp. 2269–2282, october

1995.

[27] A. Oppenheim and D. Johnson, “Discrete representation of signals,” Proceedings

IEEE, vol. 60, no. 6, pp. 681–691, 1972.

[28] J. Fessler and B. Sutton, “Nonuniform fast Fourier transforms using min-max

interpolation,” IEEE Trans. on Signal Proc., vol. 51, no. 2, pp. 560–574, 2003.

[29] B. Yoo, A. Purekar, Y. Zhang, and D. Pines, “Piezoelectric-paint-based two-

dimensional phased sensor arrays for structural health monitoring of thin pan-

els,” Smart Mater, and Struct., vol. 19, p. 075017, 2010.

[30] W. J. Staszewski, K. Worden, R. Wardle, and G. R. Tomlinson, “Fail-safe sensor

distribution for impact detection in composite materials,” Smart Mater. Struct.,

vol. 9, pp. 298–303, 2000.

[31] D. Akopian, A. Melkonyan, and C. Chen, “Validation of HDOP Measure for

Impact Detection in Sensor Network-Based Structural Health Monitoring,” Sen-

sors Journal, IEEE, vol. 9, no. 9, pp. 1098–1102, 2009.

[32] J. Markmiller and F. Chang, “Sensor Network Optimization for a Passive Sens-

ing Impact Detection Technique,” Structural Health Monitoring, vol. 9, no. 1,

p. 25, 2010.

[33] E. B. Flynn and M. Todd, “A Bayesian approach to optimal sensor placement

for structural health monitoring with application to active sensing,” Mech. Sys.

and Signal Proc., vol. 24, pp. 891–903, 2010.

209



Conclusions

[34] W. J. Staszewski, C. Boller, and G. R. Tomlinson, Health Monitoring of

Aerospace Structures. John Wiley & Sons, Ltf, 2004.

[35] T. Kosel, I. Grabec, and P. Muzic, “Location of acoustic emission sources gen-

erated by air flow,” Ultrasonics, vol. 38, no. 1-8, pp. 824–826, 2000.

[36] B. Wang, J. Takatsubo, Y. Akimune, and H. Tsuda, “Development of a remote

impact damage identification system,” Structural Control and Health Monitor-

ing, vol. 12, no. 3-4, pp. 301–314, 2005.

[37] F. Ciampa and M. Meo, “Acoustic emission source localization and velocity

determination of the fundamental mode A0 using wavelet analysis and Newton-

based optimization technique,” Smart Mat. and Struc., vol. 19, 2010.

[38] M. Vetterli and J. Kovacevic, Wavelets and Subband Coding. Prentice, 1995.

[39] A. Papandreou-Suppappola, R. Murray, B.-G. Iem, and G. Boudreaux-Bartels,

“Group delay shift covariant quadratic time-frequency representations,” IEEE

Trans. on Signal Proc., vol. 49, no. 11, pp. 2549–2564, 2001.

[40] S. Franz, S. Mitra, and G. Doblinger, “Frequency estimation using warped

discrete Fourier transform,” Signal Proc., vol. 83, no. 8, pp. 1661–1671, 2003.

[41] S. Caporale, L. De Marchi, and N. Speciale, “Fast Computation of Frequency

Warping Transforms,” IEEE Trans. on Signal Processing, vol. 58, no. 3, pp.

1110–1121, 2010.
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