Perelli, Alessandro
(2014)
Sparse Signal Representation of Ultrasonic Signals for Structural Health Monitoring Applications, [Dissertation thesis], Alma Mater Studiorum Università di Bologna.
Dottorato di ricerca in
Ingegneria elettronica, informatica e delle telecomunicazioni, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6321.
Documenti full-text disponibili:
Abstract
Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.
Abstract
Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.
Tipologia del documento
Tesi di dottorato
Autore
Perelli, Alessandro
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Compressive Sensing, Frequency Warping, Sparse Signal Representation, Structural Health Monitoring, Ultrasound Waves.
URN:NBN
DOI
10.6092/unibo/amsdottorato/6321
Data di discussione
9 Maggio 2014
URI
Altri metadati
Tipologia del documento
Tesi di dottorato
Autore
Perelli, Alessandro
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze e ingegneria dell'informazione
Ciclo
26
Coordinatore
Settore disciplinare
Settore concorsuale
Parole chiave
Compressive Sensing, Frequency Warping, Sparse Signal Representation, Structural Health Monitoring, Ultrasound Waves.
URN:NBN
DOI
10.6092/unibo/amsdottorato/6321
Data di discussione
9 Maggio 2014
URI
Statistica sui download
Gestione del documento: