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Abstract

This paper analyzes the effect that different designs in the access to financial trans-
mission rights has on spot electricity auctions. In particular, I characterize the
equilibrium in the spot electricity market when financial transmission rights are as-
signed to the grid operator and when financial transmission rights are assigned to
the firm that submits the lowest bid in the spot electricity auction. When financial
transmission rights are assigned to the grid operator, my model, in contrast with the
models available in the literature, works out the equilibrium for any transmission
capacity. Moreover, I have found that an increase in transmission capacity not only
increases competition between markets but also within a single market. When finan-
cial transmission rights are assigned to the firm that submits the lowest bid in the
spot electricity auction, firms compete not only for electricity demand, but also for
transmission rights and the arbitrage profits derived from its hold. I have found that
introduce competition for transmission rights reduces competition in spot electricity
auctions.

KEYWORDS: electricity auctions, transmission constraint, market design.

1 Introduction.

Electricity transmission facilities have long been recognized as central elements in the
efficient planning and operation of electricity systems. Traditionally, the role of large, in-
terutility transmission paths has been to permit transactions between utilities that exploit
regional differences in consumption seasonality and generation costs. As the electricity
generation industry is deregulated, however, transmission facilities will also provide impor-
tant competitive links between potentially isolated markets, thus mitigating the potential
for exercise of market power.

Pioneering research on electricity markets in which transmission lines are congested
was done by Schweppe et al. (1988). They concluded that the short-term price of
transmission services between any two locations is the difference of spot prices between
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those two points. Hogan (1992) introduces the concept of contract network which pro-
vides a mechanism for allocating long-term transmission capacity rights subject to main-
taining short-run price efficiency. Chao and Peck (1996) use the physical rights ap-
proach to incorporate network externality impacts into the competitive trading mech-
anism. When competition in the spot electricity market is perfect, the mechanisms pro-
posed by (Hogan, 1992) and (Chao and Peck, 1996) generates the efficient equilibrium
predicted by Schweppe et al. (1988). However, as Joskow and Tirole (2000) have shown,
when competition in the spot electricity market is imperfect, the way transmission rights
are assigned modifies the equilibrium outcome on the spot electricity market.

Joskow and Tirole (2000) assume in their analysis that the equilibrium price in one
of the markets is a parameter. Under this assumption, they work out the equilibrium in
the other market using two types of transmission rights, financial and physical. By con-
trast, my model works out the equilibrium simultaneously in both markets. My aim is to
characterize the equilibrium in the spot electricity market when competition is imperfect
and financial transmission rights are assigned to the grid operator or to the firm that sub-
mits the lowest bid in the spot electricity auction. Borenstein, Bushnell and Stoft (2000)
work out the equilibrium when the firms compete in quantities and financial transmission
rights are assigned to the grid operator. In contrast with their model, my model char-
acterizes the equilibrium for any transmission capacity. When the financial transmission
rights are assigned to the firm that submits the lowest bid in the spot electricity auc-
tion, the firms compete not only for electricity demand, but also for transmission rights
and the arbitrage profits derived from its hold. Therefore, under this set up, I analyze
whether the introduction of competition for the transmission rights exacerbates compe-
tition in the spot electricity market, or on the contrary, the firms behave less aggressively.1

My analysis proceeds by first considering a simple duopoly model similar to the one
in Fabra et al. (2006), which is then varied in several directions. In the basic set up, two
suppliers with symmetric capacities and (marginal) costs, are allocated in two different
markets (North and South) connected by a transmission line. The two firms face a de-
mand in each market that is assumed to be perfectly inelastic and known with certainty
when suppliers submit their offer prices. Each supplier must submit a single price offer
for its entire capacity. The assumption of price-inelastic demand can be justified by the
fact that the vast majority of consumers purchase electricity under regulated tariffs that
are independent of the prices negotiated in the wholesale market, at least in the short run.

The assumption that suppliers have perfect information concerning market demand is
reasonable when applied to markets in which offers are "short lived", such as in Spain,
where there are 24 hourly day-ahead markets each day. In such markets suppliers can be

1There are other important assignment rules of financial transmission rights that I do not analyze
in the paper. First, I do not characterize the equilibrium when transmission rights are assigned to one
firm arbitrarily. Second, I do not characterize the equilibrium when there exist two markets that run
sequentially: first, firms compete for transmission rights and later, firms compete in the spot electricity
market taking into account the transmission rights they hold. Mahenc and Salanie’s (Mahenc and Salanie,
2004) paper can provide interesting insights to work out the equilibrium when the markets run sequentially
and firms compete in prices. Third, Küpper and Willems (2007) characterize the equilibrium when there
exists a monopoly firm producing in both markets. They work out the equilibrium when the monopolist
remains the only user of the transmission line and when the monopolist has to share the transmission
line with arbitrageurs. However, my model differ from their model because I work out the equilibrium
when there are two firms competing in the market.
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assumed to know the total demand they face in any period with a high degree of certainty.
In markets in which offer prices remain fixed for longer periods, e.g., a whole day, like in
Australia and in the former markets in England and Wales, on the other hand, it is more
accurate to assume that suppliers face some degree of demand uncertainty, or volatility,
at the time they submit their offers.

When the transmission network is congested, market clearing prices will vary among
locations on the network. Prices are higher at locations that are import constrained and
lower at locations that are export constrained. Since demand and transmission capacity
availability both vary over time, the incidence of network congestion, the differences in
locational prices, and congestion charges can also vary widely over time. The associated
variations in prices create a demand by risk-averse buyers and sellers for instruments to
hedge price fluctuations. To satisfy this demand, several Independent System Operators
have created and assigned "financial-transmission-rights" to market participants. These
financial rights give the holders a claim on the congestion rents created when the network
is constrained and allow them effectively to hedge variations in differences in nodal prices
and associated congestion charges. As I have explained above, in the paper I characterize
the equilibrium in the spot electricity market when the financial transmission rights are
assigned to the grid operator and when the financial transmission rights are assigned to
the firm that submits the lowest bid in the spot electricity auction.

Under this set of assumptions, when the financial transmission rights are assigned to
the grid operator, if the realization of demand is low, the two producers have enough
capacity to satisfy the demand in both markets. Therefore, they compete fiercely to be
dispatched first in the auction. Hence, the equilibrium is the typical Bertrand equilibrium
in which firms submit bids equal to their marginal costs. If the realization of demand
is high, the equilibrium strategies pair is in mixed strategies. When the realization of
demand is such that the transmission constraint does not affect the payoff function of the
firms, the equilibrium is symmetric even when the realization of the demand is different in
both markets, and the expected price is equal in both markets even when the realization
of demand can be substantially different between markets. By contrast, when the realiza-
tion of demand is such that the transmission constraint modifies the payoff function of the
firms, the equilibrium is asymmetry. The firm located in the high demand market assigns
higher probability to high bids; and so, the expected value of bids in that market is higher.

My model, in contrast with Borenstein, Bushnell and Stoft (2000) characterizes the
equilibrium for any transmission capacity. Therefore, I can analyze the effect that any
increase in transmission capacity has on equilibrium. In particular, I find that increases
in transmission capacity not only increase competition between markets, but also induces
changes in the payoff functions that could facilitate the entry of new firms in the long
term and so increase competition within a market. Moreover, the results that I obtain
complements the literature that characterizes the equilibrium in a Bertrand model when
some type of asymmetry is introduced. In particular, increases of transmission capacity,
or equivalently, reductions in the asymmetry in the access to demand, as in (Deneckere
and Kovenock, 1986) and (Osborne and Pitchik, 1986), increases smoothly the competi-
tion between both markets. This result contrasts with Shitovitz (1973) that predicts a
sharp change through perfect competition when the asymmetry decreases.

4



When the financial transmission rights are assigned to the firm that submits the lowest
bid in the spot electricity auction, the firms compete not only for electricity demand, but
also for the transmission rights and the arbitrage profits derived from its hold. When
the realization of demand is low, the equilibrium is in pure strategies and coincide with
the equilibrium when the financial transmission rights are assigned to the grid operator.
When the demand is high, the unique symmetric mixed strategies equilibrium is when
the realization of the demand belongs to the 45 degree line. The possibility to obtain
arbitrage profits made vanish the symmetry mixed strategies equilibrium for any other
realization of demand. If the realization of demand is uniformly distributed, i.e., the
probability that the realization of the demand is above the 45 degree line is one-half, then
assigning the financial transmission rights to the firm that submits the lowest bid in the
energy auction reduces the welfare of consumers and increases the expected payoff of firms.

The article proceeds as follows, in section two, I describe the set up, the timing and
equilibrium in a two node electricity market where the financial transmission rights are
assigned to the grid operator. In section three, I describe the set up, the timing and
equilibrium in a two node electricity market where the financial transmission rights are
assigned to the firm that submits the lowest bid in the spot electricity auction. Section
four concludes. Proofs are in the Appendix.

2 Transmission rights assigned to the transmission grid operator

The aim of this section is to characterize the equilibrium in a spot electricity market when
the financial transmission rights are assigned to the grid operator. I also run different
comparative statics analysis, focusing mainly on the effect of a reduction in transmission
capacity on the equilibrium.

2.1 The model

Set up of the model. There exist two electricity markets, market North and market
South, that are connected by a transmission line with capacity T .

There exist two duopolists with capacities kn and ks, where subscript n means that the
firm is located in market North and subscript smeans that the duopolist is located in mar-
ket South. Suppliers’ marginal costs2 of production are cn and cs. The level of demand in
any period, θn in market North and θs in market South, is a random variable that is inde-
pendent of the market price, i.e., perfectly inelastic. In particular, θi ∈ [θi, θi] ⊆ [0, k+T ]
is distributed according to some known distribution function G(θi), i = n, s, i 6= j

The capacity of the transmission line is lower than the installed capacity in each mar-
ket T ≤ k, i.e. the transmission line could be congested for some realization of demands
(θs, θn). The term "congested" is used throughout this article in the electrical engineer-
ing sense: a line is congested when the flow of power is equal to the line’s capacity, as
determined by engineering standards.

2My aim in this paper is analyze the effect that asymmetries in the access to demand has on equilib-
rium. Therefore, in the rest of the paper, I will assume that firms are symmetric in capital kn = ks = k > 0
and symmetric in costs cn = cs = c = 0.
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Timing of the game. Having observed the realization of demands θ ≡ (θs, θn), each
supplier simultaneously and independently submits a bid specifying the minimum price
at which it is willing to supply up to its capacity, bi ≤ P , i = n, s, where P denotes
the "market reserve price", possibly determined by regulation.3 Let b ≡ (bs, bn) denote
a bid profile. On the basis of this profile the auctioneer calls suppliers into operation. If
suppliers submit different bids, the lower-bidding supplier’s capacity is dispatched first.
Without loss of generality, assume that bn < bs. If the capacity of supplier n is not
sufficient to satisfy the total demand (θs + θn) in the case of the transmission line not
congested, or (θn + T ) in the case of the transmission line congested,4 the higher-bidding
supplier’s capacity, firm s is then dispatched to serve residual demand, (θs + θn − k) if
(θs > k − θn and θn ∈ [k − T, k]), or (θs − T ) if (θs > T and θn ∈ [0, k − T ]). If the
two suppliers submit equal bids, then supplier i is ranked first with probability ρi, where

ρn + ρs = 1, ρi = 1 if θi > θj, and ρi =
1

2
if θi = θj, i = n, s, i 6= j. The tie breaking rule

implemented is such that if the bids of both firms are equal and the demand in market i is
greater than the demand in market j, the auctioneer dispatches first the supplier located
in market i. Since electricity transmission through the grid is costly and both firms are
equally efficient at generating electricity, if both firms submit equal bids, the auctioneer
gives priority in the dispatch to the firm located in each own market.

The output allocated to supplier i, i = n, s, denoted by qi(θ, b), is given by

qi(b; θ, T ) =


Li ≡ min {θi + θj, θi + T, ki} if bi < bj

Ti ≡ ρimin {θi + θj, θi + T, ki}+
[1− ρi]max {0, θi − T, θi + θj − kj} if bi = bj

Hi ≡ max {0, θi − T, θi + θj − kj} if bi > bj

(1)

The output function has an important role determining the equilibrium, therefore I
will explain it in greater detail. Below, I describe the construction of firm n’s output
function, the one for firm s is symmetric.

The total demand that can be satisfied by firm n when it submits the lower bid
(bn < bs) is defined by min {θn + θs, θn + T, k}. The realization of (θs, θn) determines
three different areas (left panel in figure 1).

min {θn + θs, θn + T, k} =


θs + θn if θn ≤ k − θs and θs < T

θn + T if θn < k − T and θs > T

k if θn > k − θs; θs ∈ [0, T ]

or if θn > k − T ; θs ∈ [T, k + T ]

When demand in both markets is low, firm n can satisfy the total demand (θs + θn).
If the demand in market South is greater than the transmission capacity θs > T , firm n
cannot satisfy the demand in market South even when it has enough generation capacity

3P can be interpreted as the price at which all consumers are indifferent between consuming and not
consuming, or a price cap imposed by the regulatory authorities. See von der Fehr and Harbord (1993,
1998).

4When the demand in market South is greater than the transmission line capacity θs > T , firm n can
only satisfy the demand in its own market and T units of demand in market South (θn + T ). Below in
this section, I will explain with detail the total demand that can be satisfied by each firm and the residual
demand that can be satisfied by each firm.
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Figure 1: Output function for firm n. (kn = ks = 60, T = 40)
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to do so, therefore the total demand that firm n can satisfy is (θn+T ). Finally, if the de-
mand is big enough the total demand that firm n can satisfy is its own generation capacity.

The residual demand that firm n satisfies when it submits the higher bid (bn > bs)
is defined by max {0, θn − T, θs + θn − k}. The realization of (θs, θn) determines three
different cases (right panel in figure 1).

max {0, θn − T, θs + θn − k} =


0 if θn < T ; θs ∈ [0, k − T ]

or θn < k − θs; θs ∈ [k − T, k]
θn − T if θn > T and θs ∈ [0, k − T ]
θs + θn − k if θn > k − θs; θs ∈ [k − T, T + k]

When demand in both markets is low, firm s satisfies the total demand, therefore the
residual demand that remains to firm n is zero. When the total demand is large enough,
firm s cannot satisfy the total demand and some residual demand (θs + θn − k) remains
to firm n. Due to the transmission constraint, the total demand that firm s can satisfy
diminishes. As soon as demand in market North is greater than the transmission capacity
(θn > T ), firm s cannot satisfy it, therefore some residual demand (θn − T ) remains to
firm n.

Finally, the payments are worked out by the auctioneer. I will assume that the auc-
tioneer runs a uniform price auction5, the price received by a supplier for any positive
quantity dispatched by the auctioneer is equal to the highest accepted bid in the auction

5Under the set up described in the model, the uniform and the discriminatory auction perform equally.
Without loss of generality, I assume that the equilibrium price in market i is lower than the equilibrium
price in market j. If the auction is run using a uniform price setting. The payoff for firm i is piθi + pjT ,
where piθi is the payoff obtained from the sales in its own market and pjT is the payoff obtained from
the sales in its rival’s market. However, the firm located in market i will not collect the congestion rents,
the grid operator will do. Therefore, the payoff for firm i will be pi(θi + T ) instead of piθi + pjT , but
pi(θi + T ) is precisely the payoff for firm i when the auction is run using the discriminatory setting.
Therefore, the uniform and the discriminatory auction performs equally under the set up of the model.
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in its own market. As in Borenstein et al. (2000), I assume that electricity flows from
the market with the lower price to the market with the higher price and that the grid
operator collects the congestion rents. Hence, for a given realization of θ ≡ (θs, θn) and a
bid profile b ≡ (bs, bn), supplier n’s profits, i = n, s, can be expressed as

πi(b; θ, T ) =


[bi − ci]qi(b; θ, T ) if bi < bj and (θi + θj ≤ ki) and (θj ≤ T )

[bi − ci]qi(b; θ, T ) if bi > bj and (θi + θj > kj) or (θi > T )

[bj − ci]qi(b; θ, T ) otherwise
(2)

As in the case of the production function, the payoff function has an important role
determining the equilibrium, therefore I will explain it in greater detail. Below, I describe
the construction of firm n’s payoff function, the one for firm s is symmetric.

If bn < bs and (θn + θs ≤ kn) and (θs ≤ T ). Firm n submits the lower bid, has enough
capacity to satisfy the total demand and the transmission line is not congested, therefore
it sets the price in the auction and its payoff is πn(b; θ, T ) = [bn − cn]qn(b; θ, T ). Instead,
if bn > bs and (θn + θs > ks) or (θn > T ). Firm n submits the higher bid, firm s has not
enough capacity to satisfy the total demand or the transmission line is congested, therefore
firm n sets the price in the auction and its payoff is πn(b; θ, T ) = [bn − cn]qn(b; θ, T ). In
the remaining cases, firm s instead of firm n sets the price in the auction, therefore
πn(b; θ, T ) = [bs − cn]qn(b; θ, T ).

2.2 Equilibrium analysis

In this section, I characterize the equilibrium in the spot electricity market when the
financial transmission rights are assigned to the grid operator. I start proving, that in
general, a pure strategy equilibrium does not exist.

Proposition 1. When the realization of demands (θs, θn) belongs to area A, the equi-
librium is in pure strategies. When the realization of demands (θs, θn) belongs to area
B,B1, B2, C1, C2 or C3, there no exist neither a symmetric nor an asymmetric pure
strategy equilibrium (figure 2).

Proof. When the realization of demands (θs, θn) belongs to area A the two producers have
enough capacity to satisfy the demand in both markets. Therefore, they compete fiercely
to be dispatched first in the auction. Hence, the equilibrium is the typical Bertrand equi-
librium in which both firms submit bids equal to their marginal cost.

When the realization of demand belong to areas B,B1, B2, C1, C2 or C3 and two
producers submit the same bid b such that c < b < P . According with the tie breaking
rule, the firm allocated in the market in which the demand is higher is dispatched first.
Therefore, the firm dispatched last has incentives to shading its bid an arbitrarily small
amount ε to be dispatched first. Therefore, a symmetric pure strategy equilibrium does
not exist.

When the realization of demand belong to areas B,B1, B2, C1, C2 or C3 and both
firms submit a different bid bi such that c < bi < P ∀i, j | i 6= j, there no exist an asym-
metric pure strategy equilibrium. Without loss of generality, I will assume that bi > bj.
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Figure 2: Equilibrium areas (kn = ks = 60, T = 40, cn = cs = 0, P = 7)
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If (bi, bj) satisfies bimax {0, θn − T, θs + θn − k} = bjmin {θi + θj, θi + T, k}, then firm i
has no incentives to deviate. By contrast, firm j has incentives to deviate shading bi an
arbitrarily small amount ε increases its payoff because (bj − ε)min {θi + θj, θi + T, k} ≥
bimin {θi + θj, θi + T, k}. Therefore, an asymmetric pure strategy equilibrium does not
exist

As I have proved in proposition one, a pure strategy equilibrium does not exist. How-
ever, the payoff functions satisfy the requirements that guarantee the existence of a mixed
strategy equilibrium. The discontinuities of πi,∀i, j are restricted to the strategies such
that bi = bj. Furthermore, it is simple to confirm that by lowering its price from a
position where bi = bj, a firm discontinuously increases its profit. Therefore, πi(bi, bj)
is everywhere left lower semi-continuous in bi, and hence weakly lower semi-continuous.
Obviously πi(bi, bj) is bounded. Finally, πi(bi, bj) + πj(bi, bj) is continuous, because dis-
continuous shifts in clientele from one firm to another occur only where both firms derive
the same profit per customer. Therefore, theorem five in Dasgupta and Maskin (1986)
applies, hence a mixed strategy equilibrium exists.6

Lemma 1. In a mixed strategy equilibrium none firm submits a bid lower than bid7 (bIi )
such that bIimin {θi + θj, θi + T, k} = Pmax {0, θi − T, θi + θj − k}. Moreover, the sup-

6The model presented before satisfies the properties that guarantee that a mixed strategy equilibrium
exists. However, Dasgupta and Maskin (1986) does not provide an algorithm to work out the equilibrium.
However, using the approach proposed by (Karlin, 1959; Beckmann, 1965; Shapley, 1957; Shilony, 1977;
Varian, 1980; Deneckere and Kovenock, 1986; Osborne and Pitchik, 1986; Fabra et al., 2006) the equilib-
rium characterization is guarantee by construction. In the annex, I have described the steps required to
work out the mixed strategies equilibrium.

7The superscript I denote support, profits, bids and strategies referred to model I, the one that
allocate the transmission rights to the grid operator.
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port for the mixed strategies equilibrium for both firms is SI =
[
max

{
bIi , b

I
j

}
, P
]
.

Proof. Each firm can guarantees to itself the payoff Pmax {0, θi − T, θi + θj − k}, because
each firm always can submit the highest bid and satisfies the residual demand. Therefore,
in a mixed strategies equilibrium, none firm submits a bid that generate a payoff equi-
librium lower than Pmax {0, θi − T, θi + θj − k}. Hence, none firm submits a bid lower
than bIi , where b

I
i solves bIimin {θi + θj, θi + T, k} = Pmax {0, θi − T, θi + θj − k}.

None firm can rationalize submit a bid lower than bIi , i = n, s. In the case that bIi = bIj ,
the mixed strategy equilibrium and the support is symmetric. In the case that bIi < bIj ,
firm i knows that firm j never submits a bid lower than bIj . Therefore, in a mixed strategy
equilibrium, firm i never submits a bid bIi such that bIi ∈

(
bIi , b

I
j

)
, because firm i can

increases its expected payoff choosing a bid bIi such that bIi ∈
[
bIj , P

]
. Hence, the equilib-

rium strategies support for both firms is SI =
[
max

{
bIi , b

I
j

}
, P
]

Using this ancillary result, I can present the main result of this section.

Proposition 2. The characterization of the equilibrium strategies fall into one of the next
two categories (figure 2).

i Area A (low demand). The equilibrium strategies pair is pure and equal to bn =
bs = c = 0. The equilibrium payoff is zero for both firms. No electricity flows
through the grid.

ii Area B,B1, B2, C1, C2, C3 (high demand). The equilibrium strategies pair is in
mixed strategies.
The mixed strategy equilibrium support is defined by lemma 1

SI =
[
max

{
bIi , b

I
j

}
, P
]

(3)

The cumulative distribution function is defined by

F I
i (b) =

LI
j (b)− LI

j (b)

LI
j (b)−HI

j (b)
∀i, j (4)

The payoff function is

πI
i = bImin {θi + θj, θi + T, k} ∀i, j (5)

The expected bid is defined by

E(bIi ) =

∫ P

bI
b
∂F I

i (b)

∂b
∂b∀i, j (6)

The mixed strategies equilibrium characterized by proposition two have been repre-
sented graphically in figure 3. In order to explain the main insights derived from propo-
sition two, I discuss in detail the mixed strategies equilibrium in areas B1 and C1. In
area C1 (the same logic applies in area C2), the transmission constraint does not affect
the payoff functions of the firms, therefore the equilibrium will be symmetric even when
the realization of the demand is different in both markets, therefore, the expected price is
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Figure 3: Equilibrium Strategies (kn = ks = 60, T = 40, cn = cs = 0, P = 7)
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equal in both markets, even when the realization of demand can be substantially different
between markets. By contrast, in area B1 (the same logic applies in area B2), the trans-
mission constraint modifies the payoff functions of the firms, therefore the equilibrium
will be asymmetric. In particular, the cumulative distribution function of firm s is more
concave, therefore it submits lower bids with higher probability. Moreover, the cumulative
distribution function of firm s, F I

s (b), is continuous in the support, by the contrary, the
cumulative distribution function of firm n, F I

n(b), is discontinuous at the upper bound of
the support, P , therefore it assigns a positive probability to the maximum price allowed
by the auctioneer. Moreover, F I

n(b) ≤ F I
s (b)∀b ∈ SI . Hence, F I

s (b) stochastic dominate
F I
n(b) and so the expected value of bids in market North, E(bIn), is greater than the ex-

pected value of bids in market South, E(bIs).

Proposition two characterizes the mixed strategies equilibrium. However, many inter-
esting insights can be obtained from the comparative static analysis of the main variables
of the model. In corollaries one, two and three, I analyze the effect that a reduction in
demand in market South, a reduction in demand in market North and a reduction in
transmission capacity have on the mixed strategies equilibrium.
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Corollary 1. When the realization of the demand belongs to areas8 B1 or B2. A reduction
in the demand in market South has no effect on the lower bound of the strategies support;
increases the probability that firm n assigns to high bids; increases the expected value
of bids in market North, does not modify the expected value of bids in market South;
has no effect on the expected payoff of firm n and reduces the expected payoff of firm s.
Finally, when the realization of the demand belongs to areas C1 or C2. A reduction in
the demand in the South reduces the lower bound of the strategies support; has no effect
on the probability that the firm n assigns to high bids; reduces the expected value of bids
in both markets and reduces the expected payoff of both firms.

In order to facilitate the comprehension of the main insights derived from Corollary
one, I focus on the equilibrium in areas B1 and C1. In area B1 (the same logic applies
in area B2), a reduction of demand in market South does not modify neither the lower
bound of the support nor the cumulative distribution function of firm s, therefore the
expected value of bids in market South does not change; however, due to the reduction in
demand in market South, the expected payoff of firm s decreases. A reduction of demand
in market South increases the probability that firm n assigns to the highest bid allowed
by the auctioneer. The probability that firm n assigns to the maximum bid allowed by
the auctioneer represents the opportunity cost of submit high bids for firm s. A reduction
of demand in market South increases the opportunity cost of submit high bids for firm
s because in case of be dispatched last, the residual demand that it faces is very low,
then firm n must increase the probability that assigns to high bids to made firm s stay in
equilibrium. Hence, the expected value of bids in market North increases. However, the
expected payoff of firm n does not change because its residual demand does not change
with a reduction of the demand in market South. In area C1 (the same logic applies in
area C2), a reduction in demand in market South reduces the lower bound of the support.
A reduction in demand in market South reduces the residual demand; then, by lemma
one, the bid that made any firm be indifferent between submit a high bid and satisfy the
residual demand and submit a low bid and satisfy the total demand decreases. Therefore,
the expected bid and the expected payoff decrease for both firms.

Table 1 and figure 3 provides numerical and graphical examples that summarizes the
results enumerated in corollary one.
Corollary 2. When the realization of the demand belongs to areas B1 or B2. A reduction
in the demand in market North reduces the lower bound of the strategies support; has
no effect on the probability that firm n assigns to high bids; reduces the expected value
of bid in both markets and reduces the expected payoff of both firms. Finally, when the
realization of the demand belongs to areas C1 or C2. A reduction in the demand in the
North reduces the lower bound of the strategies support; has no effect on the probability
that firm n assigns to high bids; reduces the expected value of bids in both markets and
reduces the expected payoff of both firms.

To made the discussion simple, I focus in the equilibrium in areas B1 and C1. In area
B1 (the same logic applies in area B2), a reduction of demand in market North reduces the
lower bound of the support. The lower bound of the support represents the opportunity
cost of submit high bids for firm n. A reduction of the demand in market North reduces

8I will focus on the equilibrium in areas B1, B2, C1 and C2. The equilibrium in area B presents
minor and irrelevant differences with respect the equilibria in areas B1 and B2.
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Table 1: (5θn,5θs), (kn = ks = 60, T = 40, cn = cs = 0, P = 7)

Area bI F I
n(P ) E(bn) E(bs) πn πs

Area B1
(θn = 50, θs = 10) 1.17 0.83 3.25 2.51 70 58.33
(θn = 50, θs = 15) 1.17 0.91 2.88 2.51 70 64.17

Area B2
(θn = 70, θs = 10) 3.5 0.83 5.21 4.85 210 175
(θn = 70, θs = 15) 3.5 0.91 5.03 4.85 210 192.5

Area C1
(θn = 50, θs = 25) 1.75 1 3.23 3.23 105 105
(θn = 50, θs = 30) 2.33 1 3.84 3.84 140 140

Area C2
(θn = 70, θs = 25) 4.08 1 5.28 5.28 245 245
(θn = 70, θs = 30) 4.67 1 5.67 5.67 280 280

the residual demand that firm n faces in case of submit the highest bid in the auction.
Therefore, submit high bids is less attractive to firm n. To be more precise, by lemma
one, the bid that made firm n be indifferent between submit a low bid and satisfy the
total demand and submit a high bid a satisfy the residual demand decreases. Moreover,
the probability that firm n assign to the maximum bid allowed by the auctioneer does
not change. Both effects induce a reduction of the expected value of bids in market North
and South and a reduction of the expected payoff of firm n and firm s. In area C1 (the
same logic applies in area C2), a reduction of demand in market North reduces the lower
bound of the support and, as I have explained above, reduces the expected value of bids
in both markets and reduces the expected payoff of both firms.

Table 1 and figure 3 provides numerical and graphical examples that summarizes the
results enumerated in corollary two.

Corollary 3. When the realization of the demand belongs to areas B1 or B2. A reduction
of transmission capacity increases the lower bound of the strategies support; increases the
probability that firm n assigns to high bids; increases the expected value of bids in both
markets; increases the expected payoff of firm n and increases the expected payoff of firm
s when the transmission capacity is below the threshold (θn > 2T + θs) and decreases the
expected payoff when the transmission capacity is above the threshold. When the trans-
mission capacity reduces to zero, the asymmetry in the access to the demand becomes
extreme, two monopolies emerge, one in each market.

A reduction of transmission capacity increases the residual demand of firm n and, by
lemma one, increases the lower bound of the support. Moreover, a reduction of transmis-
sion capacity made submit high bids more attractive to firm n, therefore the probability
that firm n assigns to high bids increases. Both effects induce an increase of the expected
value of bids in both markets and induce an increase on the expected payoff of firm n.
However, the effect on the expected payoff of firm s is ambiguous. When the transmission
capacity is high enough, T ≥ k, both markets are integrated, therefore, the competition
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Table 2: (5T ), (θn = 55, θs = 5), (kn = ks = 60, cn = cs = 0, P = 7)

bI F I
n(P ) E(bn) E(bs) πn πs

T = 60 0 1 0 0 0 0
T = 50 0.58 0.92 2.03 1.58 35 32.08
T = 40 1.75 0.75 4.17 3.23 105 78.75
T = 30 2.92 0.58 5.47 4.37 175 102.08
T = 20 4.08 0.42 6.28 5.28 245 102.08
T = 10 5.25 0.25 6.76 6.04 315 78.75
T = 0 7 0 7 7 385 35

between firms is fierce and the equilibrium price and payoff are zero for both firms. When
the transmission capacity decreases the equilibrium prices increase in both markets and
firm s can sell part of its capacity in market North, therefore the payoff of firm s increases.

However, when the transmission capacity satisfies T ≥ θn + θs
2

, with the parameters of
the example, T ≥ 25, a reduction in transmission capacity induces an increase in prices,
but, the total demand that firm s faces decreases and so its expected payoff. Therefore,
a reduction of transmission capacity has an ambiguous effect on the expected payoff of
firm s. Table 2 summarizes these results.

As in (Deneckere and Kovenock, 1986) and (Osborne and Pitchik, 1986) a reduction of
transmission capacity, or equivalently, an increase in the asymmetry in the access to the
demand, reduces smoothly the competition between both markets. This result contrasts
with Shitovitz, (1973) that predicts a sharp change trough monopoly when the asymme-
try increases. Moreover, as can be observed in table 2 increases in transmission capacity
always generates an increase in competition between markets. My model, in contrast with
the model developed by Borenstein, Bushnell and Stoft (2000), gives us the opportunity
to evaluate the effect that an increase in transmission capacity has on equilibrium when
the transmission line is congested.9

To conclude, I would like to emphasized that an increase in transmission capacity
not only increases the competition between both markets, but also induces changes on
the payoff functions that could facilitate the entry of new firms in the long term and
so increase competition. To motivate the argument, I introduce the next example. As
can be observed in the last raw in table 2, when the transmission capacity is zero, the
expected payoff of firm s is the monopoly profit, 35. Imagine that in market South exists
a potential entrant with the same capacity k = 60 and the same marginal cost c = 0
that firm s, but it faces an entry cost of 35. If the two markets are isolated, due to
the fix cost, the potential competitor can not enter in market South. However, if the
transmission capacity increases to T = 20, the expected payoff in market South increases
to 102, 08. Therefore, the potential competitor could enter in market South.10 This

9Borenstein, Bushnell and Stoft (2000) are unable to characterize the equilibrium when the transmis-
sion line is congested. Therefore, they can not provide any results to evaluate increases in transmission
capacity when the transmission line is congested. By contrast, my model fully characterizes the equilib-
rium for any transmission capacity.

10In the third chapter of my thesis, I would like to analyze the effect that an increase in transmission
capacity could have not in the competition between markets but in the competition within a single
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simple example11 shows that even a small increase in transmission capacity could have a
big impact on equilibrium prices not only increasing competition between both markets,
but within a single market.12

3 Transmission rights assigned to the firm that submits the lowest
bid in the spot electricity auction

When the financial transmission rights are assigned to the firm that submits the lowest bid
in the spot electricity auction, the firms compete not only for the electricity demand, but
also for the financial transmission rights and the arbitrage profits derived from its hold.
The strategies of the firms will be affected not only by the transmission line constraint,
but also for the possibility to obtain arbitrage profits. The aim of this section is char-
acterize the equilibrium when the financial transmission rights are assigned to the firm
that submits the lowest bid in the spot electricity auction and analyze if the introduction
of competition for the transmission rights exacerbate competition in the spot electricity
market, or by the contrary, the firms behave less aggressively.

3.1 The model

Set up of the model. The same set up that in section two.

Timing of the game. The same timing that in section two. However, the payoff func-
tion is different. I will explain it in detail.

Finally, the payments are worked out by the auctioneer. I am going to assume that
the auctioneer runs a uniform price auction13, the price received by a supplier for any
positive quantity dispatched by the auctioneer is equal to the highest accepted bid in the

market.
11The same logic applies to explain the impact of an increase in trade between countries. In the example

described above, market North could be Europe, high demand market, and market South could be Africa,
low demand market. As I have explained in the example, even a small increase in trade between both
markets, increase of quotas allowances, could facilitate the entry of new firms in the market with the
lowest demand and induce a reduction on the prices that consumers face on equilibrium. Moreover, the
model that I have developed can be useful to complement trade models that analyze the effect that quotas
has on equilibrium (Bhagwati, 1968; Itoh and Ono, 1982; Shibata, 1968; Yadav, 1968). My model, in
contrast with the models enumerated, works out the equilibrium simultaneously in both markets.

12Borenstein, Bushnell and Stoft (2000) can not analyze the effect that an increase in transmission
capacity has on the equilibrium when the transmission line is congested. Therefore, using their model,
we can not address the effect that an increase in transmission capacity could have on the competition
within a single market. By contrast, the model that I present in this paper gives us the opportunity
to evaluate the effect that an increase in transmission capacity could have on generation investment
decisions. Moreover, the model that I present in the paper gives us the opportunity to use the industrial
organization tools to analyze competition in electricity markets.

13Under the set up described in the model described in this section, the uniform and the discriminatory
auction performs differently. Without loss of generality, I will assume that the equilibrium price in market
i is lower than the equilibrium price in market j. If the auction is run using a uniform price setting.
The payoff for firm i will be piθi + pjT , where piθi is the payoff obtained from the sells in its own
market and pjT is the payoff obtained from the sells in its rival market. If the auction is run using a
discriminatory price setting. The payoff for firm i will be pi(θi + T ) instead of piθi + pjT , . Therefore,
when the firms compete simultaneously for the demand and for the transmission right, the uniform and
the discriminatory auction does not performs equally.
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auction in its own market. As in the model described in the previous section, I am going
to assume that electricity flows from the market with the lower price to the market with
the higher price. Hence, for a given realization of θ ≡ (θs, θn) and a bid profile b ≡ (bs, bn),
supplier n’s profits, i = n, s, can be expressed as

πi(b; θ, T ) =
[bi − ci](θi + θj) if bi < bj and (θi + θj ≤ ki) and (θj ≤ T )

[bi − ci]min {θi, ki}+
[bj − ci]max {0,min {T, ki − θi}} if bi < bj and (θi + θj > ki) or (θj > T )

[bi − ci]max {0, θi − T, θi + θj − kj} if bi > bj and (θi + θj > kj) or (θi > T )

(7)

The payoff function will have an important role determining the equilibrium, therefore
I am going to describe it in greater detail. Equation 7 can be written in a less compact
way in order to facilitate its interpretation.

πi(b; θ, T ) =

[bi − ci](θi + θj) if bi < bj and (θi + θj ≤ ki) and (θj ≤ T )

[bi − ci]θi+
[bj − ci]min {T, ki − θi}+ if bi < bj and ((θi + θj > ki) or (θj > T )) and (θi ≤ ki)

[bi − ci]ki if bi < bj and ((θi + θj > ki) or (θj > T )) and (θi > ki)

[bi − ci]
max {0, θi − T, θi + θj − kj} if bi > bj and (θi + θj > kj) or (θi > T )

Below, I describe the construction of firm n’s payoff function, the one for firm s is
symmetric.

If bn < bs and (θn + θs ≤ kn) and (θs ≤ T ), firm n submits the lowest bid, it has
enough capacity to satisfy the total demand and the transmission line is not congested,
therefore it sets the price in the auction and its payoff is πn(b; θ, T ) = [bn − cn](θn + θs).
If bn < bs and ((θn + θs > kn) or (θs > T )) and (θn < kn), firm n submits the lowest
bid, but it has not enough capacity to satisfy the total demand or the demand in the
South is higher than the transmission capacity, therefore, firm s sets the price in the
auction, firm n satisfies the demand in the North, θn, at price bn and sells the rest of
its capacity, kn − θn, up to the transmission line capacity, T , into market South at price
bs, its payoff is πn(b; θ, T ) = [bn − cn](θn) + [bs − cn]min {T, kn − θn}. If bn < bs and
((θn + θs > kn) or (θs > T )) and (θn > kn), firm n submits the lowest bid, but it has
not enough capacity to satisfy the total demand, therefore, firm s sets the price in the
auction, firm n satisfies the demand in the North up to its capacity, therefore, its payoff
is πn(b; θ, T ) = [bn − cn]kn. Finally, when firm n submits the highest bid in the auction,
firm s has not enough capacity to satisfy the total demand or the transmission line is
congested, firm n sets the price in the auction and satisfies the residual demand, its
payoff is πn(b; θ, T ) = [bn − cn]max {0, θn − T, θn + θs − ks}.
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3.2 Equilibrium analysis

I this section, I will characterize the equilibrium when the financial transmission rights
are assigned to the firm that submits the lowest bid in the spot electricity auction. As
in the previous section, I will start proving, that in general, a pure strategy equilibrium
does not exist.

Proposition 3. When the realization of demands (θs, θn) belongs to area A, the equilib-
rium will be in pure strategies. When the realization of demands (θs, θn) belongs to area
B,B1, B2, C1 or C2, there no exist neither a symmetric nor an asymmetric pure strategy
equilibrium (figure 4).

The proof use the same logic that the one used in proposition one

As I have explained in the previous section, the payoff functions satisfy the properties
that guarantee the existence of a mixed strategy equilibrium.

Lemma 2. In a mixed strategy equilibrium none firm submits a bid lower than bid14 (bIIi )
such that

bIIi min {θi, ki}+ E(bj | bj ≥ bII)max {0,min {T, ki − θi}} =
Pmax {0, θi − T, θi + θj − k} .

Moreover, the support for the mixed strategy equilibrium for both firms is SII =[
max

{
bIIi , b

II
j

}
, P
]
. Furthermore, bIIi ≤ bIi , ∀i = n, s.

The proof of the two first statements of the lemma use same logic that the one used in
lemma one.

The proof for the latest statement is as follows. When θi > k, the lower bound of the
support is defined by bik = Pmax {0, θi − T, θi + θj − k}, both for the model that assigns
the transmission rights to the grid operator and for the model that assigns the transmis-
sion rights to the firm that submits the lowest bid in the spot electricity auction. Hence, if
θi < k, bIIi = bIi , ∀i = n, s. Instead, when θi < k, the lower bound of the support is defined
by bIi k = Pmax {0, θi − T, θi + θj − k} for the model that assigns the transmission rights
to the grid operator and by bIIi θi+E(bj | bj ≥ bII)(ki−θi) = Pmax {0, θi − T, θi + θj − k}
for the model that assigns the transmission rights to the firm that submits the lowest bid
in the spot electricity auction. The right hand side of the equations is equal in both
models. However, in the latest model, the firm that submits the lowest bid in the auction
sells part of its capacity in the other market at a higher price. Therefore, it can lower its
bid, bIIi , because it compensate a reduction in profit in its own market with an increase
in profit in the other market. Hence, if θi < k, bIIi < bIi ,∀i = n, s

Using this ancillary result, I can present the main result of this section.

Proposition 4. The characterization of the equilibrium strategies fall into one of the next
two categories (figure 4).

14The superscript II denote support, profits, prices and strategies referred to model II, the one that
assigns the transmission rights to the firm that submits the lowest bid in the spot electricity auction.
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Figure 4: Equilibrium areas (kn = ks = 60, T = 40, cn = cs = 0, P = 7)
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i Area A (low demand). The equilibrium strategies pair is pure and equal to bn =
bs = c = 0. The equilibrium payoff is zero for both firms. No electricity flows
through the grid.

ii Area B,B1, B2, C1, C2 (high demand). The equilibrium strategies pair is in mixed
strategies15.
The mixed strategy equilibrium support is defined by lemma 1

SII =
[
max

{
bIIi , b

II
j

}
, P
]

The cumulative distribution function is defined by

F II
i (b) =

LII
j (b)− LII

j (b)

LII
j (b)−HII

j (b)
∀i, j

The payoff function is

πII
i = bIImin {θi + k}+ E(bj | bj ≥ b)max {0,min {T, k − θi}} ∀i, j

The expected bid, E(bIIi ), can only be calculated using an approximation.

The mixed strategies equilibrium characterized in proposition four have been repre-
sented graphically in figure 5. As can be observed, the cumulative distribution function
of firm s is more concave for any realization of demand over the 45 degree line, therefore

15It is important to remark that, even when the equilibrium is guaranteed because the payoff func-
tion satisfies the properties that guarantee the existence of the equilibrium, the cumulative distribution
function and so the support, the payoff function and the expected bid have not a close form solution.
However, I have proposed and algorithm that gives me the opportunity to work out an approximation of
the cumulative distribution function. In the annex, I present evidence of the algorithm convergence.
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Figure 5: Equilibrium Strategies (kn = ks = 60, T = 40, cn = cs = 0, P = 7)
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it submits lower bids with higher probability than firm n. Moreover, the cumulative dis-
tribution function of firm s, F II

s (b), is continuous at the upper bound of the support; by
the contrary, the cumulative distribution function of firm n, F II

n (b), is discontinuous at
the upper bound of the support, P , therefore it assigns a positive probability to the max-
imum price allowed by the auctioneer. Moreover, F II

n (b) ≤ F II
s (b)∀b ∈ SII . Hence F II

s (b)
stochastic dominate F II

n (b) and so the expected value of bids in market North, E(bIIn ),
is greater than the expected value of bids in market South, E(bIIs ), for any realization of
demand over the 45 degree line.

As can be observed in figure 5, when the transmission rights are assigned to the firm
that submits the lowest bid in the spot electricity auction, the strategies change com-
pletely with respect to the model in which the transmission rights are assigned to the grid
operator. Therefore, a deeper analysis is required to stablish comparisons between both
models. Proposition five do it so.

Proposition 5. If the financial transmission rights are assigned to the firm that submits
the lowest bid in the auction, set up II, instead of been assigned to the transmission grid
operator, set up I.

i In Areas B2, C2 (figure 4). The lower bound of the strategies support does not
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Table 3: (kn = ks = 60, T = 40, cn = cs = 0, P = 7)

Model Area b Fn(P ) E(bn) E(bs) πn πs

Area B1
I (θn = 50, θs = 15) 1.17 0.91 2.88 2.51 70 64.17
II (θn = 50, θs = 15) 0.93 0.50 4.89 2.32 70 230.4

Area B2
I (θn = 70, θs = 10) 3.5 0.83 5.03 4.85 210 175
II (θn = 70, θs = 15) 3.5 0.91 5.21 4.85 210 192.5

Area C1
I (θn = 50, θs = 30) 2.33 1 3.84 3.84 140 140
II (θn = 50, θs = 30) 2.06 0.79 4.56 3.68 140 247.2

Area C2
I (θn = 70, θs = 30) 4.67 1 5.67 5.67 280 280
II (θn = 70, θs = 30) 4.67 0.67 6.17 5.67 280 355.2

The values of the variables for model II are worked out using the algorithm that I have described in the annex.

change (figure 5). The cumulative distribution function of firm s does not change
and the cumulative distribution function of firm n is lower for all the bids in the
support, i.e., F I

n(b) stochastic dominates F II
n (b). Moreover, the expected value of

the bids in market North increases, the expected value of the bids in market South
decreases, the expected payoff of firm n does not change and the expected payoff of
firm s increases.

ii In Areas B1, C1 (figure 4). The lower bound of the strategies support decreases (fig-
ure 5). The cumulative distribution function of firm s is higher for all the bids in the
support, i.e., F II

s (b) stochastic dominates F I
s (b). The cumulative distribution func-

tion of firm n F II
n (b) is higher than F I

n(b) for low bids, but no rank between F II
n (b)

and F I
n(b) can be established for high bids, therefore none stochastic dominance

rank of the cumulative distribution function can be made for firm n. Moreover, the
expected value of the bids in market South decreases, the expected payoff of firm
n does not change and no rank can be established neither on the expected value of
the bids in market North, nor on the expected payoff of firm s.

I will start comparing the equilibrium when the transmission rights are assigned to
the grid operator and when the transmission rights are assigned to the firm that submits
the lowest bid in the spot electricity auction in area C2 (the same logic applies in area
B2, but in area B2, the asymmetry in the access to the demand induced by the trans-
mission constraint reinforces the results). When the realization of demand is such that
θn > k, as I have explained in lemma two, firm n can not sell any electricity in market
South in case of submit the lowest bid in the auction, then its payoff function is identical
in both models, and so the lower bound of the support, bII = bI , the expected payoff
of firm n, πII

n = πI
n, and the expected value of bids in market South, E(bIIs ) = E(bIs).

The probability that firm n assigns to the highest bid allowed by the auctioneer increases
when the transmission rights are assigned to the firm that submits the lowest bid in the
auction, F II

n (P ) ≤ F I
n(P ). As I have explained in corollary one, the probability that firm

n assigns to the maximum bid allowed by the auctioneer represents the opportunity cost
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of submit high bids for firm s. When the transmission rights are assigned to the firm that
submits the lowest bid in the auction, the opportunity cost of submit high bids for firm s
increases because in case of be dispatched last, the residual demand that it faces is very
low, but also because it losses the transmission rights and the arbitrage profits derived
from its hold; therefore firm n must increases the probability that assigns to high bids
to made firm s stay in equilibrium. Hence, the expected value of bids in market North
increases and so the expected payoff of firm s. As can be observed in table 3 when the
transmission rights are assigned to the firm that submits the lowest bid in the auction,
the change induced on the expected value of bids and on the expected payoff of the firms
can be quite big, and so welfare. In particular, consumers in market North are worse,
firm n and consumers in market South are equal and firm s is better.

I will continue comparing the equilibrium when the transmission rights are assigned to
the grid operator and when the transmission rights are assigned to the firm that submits
the lowest bid in the spot electricity auction in area C1 (the same logic applies in area
B1, but in area B1, the asymmetry in the access to the demand induced by the trans-
mission constraint reinforces the results). The residual demand that firm n faces does
not change, and so its expected profit, πII

n = πI
n. However, as I have shown in lemma

two, the lower bound of the support decreases. Moreover, F II
s (b) ≥ F I

s (b)∀b ∈ SII , then
F II
s (b) stochastic dominates F I

s (b), hence E(bIIs ) ≤ E(bIs). By the contrary, it can not be
established any rank between F II

n (b) and F I
n(b), and so between the expected bid value of

firm n. However, using the algorithm that I have described in the annex, I can conclude
that when the transmission rights are assigned to the firm that submits the lowest bid
in the auction, the expected bid value in market North increases. As can be observed
in table 3, when the transmission rights are assigned to the firm that submits the lowest
bid in the auction, the change induced on the expected value of bids and on the expected
payoff of the firms can be quite big, and so welfare. In particular, consumers in market
North are worse, firm n is equal and firm s and consumers in market South are better.

When the transmission rights are assigned to the firm that submits the lowest bid in the
auction, the unique symmetric equilibrium will be when the realization of the demand
belongs to the 45 degree line. The possibility to obtain arbitrage profits made vanish
the symmetry mixed strategies equilibrium for any other realization of the demand. In
particular, in areas C1 and C2, the asymmetry in the equilibrium is due to the arbitrage
profits and in areas B1 and B2, the asymmetry in equilibrium is due to the arbitrage
profits and to the asymmetry in the access to the demand induced by the transmission
constraint. Therefore, I can disentangle the effect that the arbitrage profits and the
transmission constraint have on equilibrium for any realization of the demand. Moreover,
the change on equilibrium induced by a change in the assignment of the transmission rights
have a huge impact on welfare. In particular, when the realization of demand is over the
45 degree line, the payoff of firm n does not change, the payoff of firm s increases, the
welfare of consumers in market South improves slightly and the welfare of consumers in
market North worsens substantially. If the realization of demand is uniformly distributed,
i.e., the probability that the realization of the demand is above the 45 degree line is one-
half, then assign the transmission rights to the firm that submits the lowest bid in the
auction reduces the welfare of consumers and increases the expected payoff of firms.
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4 Conclusions

In this paper I have analyzed the effect that different designs in the access to financial
transmission rights has on spot electricity auctions. In particular, I have characterized
the equilibrium in the spot electricity market when transmission rights are assigned to the
grid operator and when the transmission rights are assigned to the firm that submits the
lowest bid in the spot electricity auction. The model that I have presented in this paper,
in contrast with Borenstein, Bushnell and Stoft, (2000) characterizes the equilibrium for
any transmission capacity. I have found that an increase of transmission capacity not
only increases the competition between markets, but also induces changes on the payoff
functions that could facilitate the entry of new firms in the long term and so increase
competition within a market. Moreover, the results that I have obtained complements
the literature that characterize the equilibrium in a Bertrand model when some type of
asymmetry is introduced. When the transmission rights are assigned to the firm that sub-
mits the lowest bid in the spot electricity auction; if the realization of demand is uniformly
distributed, i.e., the probability that the realization of the demand is above the 45 degree
line is one-half, then assign the transmission rights to the firms that submits the lowest bid
in the auction reduces the welfare of consumers and increases the expected payoff of firms.

My analysis, however, does not take into consideration other possible assignments of
transmission rights. In particular, further analysis is necessary to characterize the equi-
librium when the transmission and the spot electricity markets run sequentially; first the
firms acquire transmission rights in the transmission rights market and later they compete
in the spot electricity market.

Finally, the model that I have developed gives us the opportunity to use the Industrial
Organization tools to analyze competition in electricity markets. In the third chapter of
my thesis, I will analyze the effect that an increase in transmission capacity has not in
the competition between markets, but within a single market.
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Annex

Proposition 2.

Proof:

The model presented in section two satisfies the properties established by Dasgupta and
Maskin (1986), that guarantee that a mixed strategy equilibrium exists. However, Das-
gupta and Maskin (1986) did not provide an algorithm to work out the equilibrium.
Nevertheless, using the approach proposed by (Karlin, 1959; Beckmann, 1965; Shapley,
1957; Shilony, 1977; Varian, 1980; Deneckere and Kovenock, 1986; Osborne and Pitchik,
1986; Fabra et al., 2006), the equilibrium characterization is guaranteed by construction.
I will use the approach proposed by this branch of the literature to work out the mixed
strategy equilibrium.

First step, the payoff function for any firm is:

πI
i (b) = b

[
F I
j (b)max {0, θi − T, θi + θj − k}+ (1− F I

j (b))min {θi + θj, θi + T, k}
]
=

= −bF I
j (b) [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}] + (8)

bmin {θi + θj, θi + T, k}

Second step, πI
i (b) = πI

i∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategies. Then,

πI
i = −bF I

j (b) [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}] +
bmin {θi + θj, θi + T, k} ⇒

F I
j (b) =

bmin {θi + θj, θi + T, k} − πI
i

b [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}]
(9)

Third step, at bI , F I
i (b

I) = 0∀i = n, s. Then,

πI
i = bImin {θi + θj, θi + T, k} (10)

Fourth step, Plug in 10 into 9, I obtain the mixed strategies for both firms.

F I
j (b) =

bmin {θi + θj, θi + T, k} − bImin {θi + θj, θi + T, k}
b [min {θi + θj, θi + T, k} −max {0, θi − T, θi + θj − k}]

=

=
LI
i (b)− LI

i (b)

LI
i (b)−HI

i (b)
∀i = n, s (11)

It is easy to verify that equation F I
j (b)∀i, j is indeed a cumulative distribution function.

First, in the third step, I have established that F I
j (b) = 0. Second, F I

j (b) is an increasing

function in b. At b, LI
i (b) = HI

i (b), for any b > b, LI
i (b) < HI

i (b); moreover,
∂LI

i (b)

∂b
> 0,

∂LI
i (b)

∂b
= 0 and

∂HI
i (b)

∂b
> 0 , therefore,

∂
(
LI
i (b)− LI

i (b)
)

∂b
>
∂
(
LI
i (b)−HI

i (b)
)

∂b
. Third,
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F I
j (b) ≤ 1∀b ∈ Si. Finally, F I

j (b) is continuous in the support because LI
i (b)− LI

i (b) and
LI
i (b)−HI

i (b) are continuous functions in the support.

To conclude the proof, I will work out the support, the cumulative distribution func-
tion, the expected bid and the expected payoff for any realization of the demand in figure 2.

First, I work out the support of the cumulative distribution function in each area.

In the border between areas B1 − C1 and B2 − C2, θs = k − T . In these bor-
ders, bIn solves bInmin {θn + θs, θn + T, k} = Pmax {0, θn − T, θs + θn − k}, therefore bIn =
P (θn − T )

k
and bIs solves b

I
smin {θn + θs, θs + T, k} = Pmax {0, θs − T, θs + θn − k}, there-

fore bIs =
P (θn + θs − k)

θs + T
. Plug in the value of θs in the border between these areas into

bIs formula, I obtain bIs =
P (θn + k − T − k)

k − T + T
=
P (θn − T )

k
= bIn. Therefore, in the border

between these areas, bIs = bIn =
P (θn − T )

k
.

In areas B, B1 and B2, bIn > bIs. Taking partial derivatives
∂bIn
∂θs

= 0 and
∂bIs
∂θs

=

P (k + T − θn)
(θs + T )2

> 0. Therefore, in areas B, B1 and B2, bIn > bIs. Hence, in areas B, B1

and B2, SI =
[
max

{
bIn, b

I
s

}
, P
]
=
[
bIn, P

]
=

[
P (θn − T )

k
, P

]
.

In areas C1, C2 and C3 it is straight forward to check that bIs = bIn =
P (θs + θn − k)

k
.

Therefore, in areas C1 and C2, SI =
[
max

{
bIn, b

I
s

}
, P
]
=
[
bIn, P

]
=

[
P (θs + θn − k)

k
, P

]
.

Second, I work out the mixed strategies for both firms.

Using equation 11. The mixed strategies in area B is defined by:

F I
s (b) =


0 if b < b

θn + θs
θs + T

b− bI
b

if b ∈ (b, P )

1 if b = P

F I
n(b) =


0 if b < b

θs + T

θs + T

b− bI
b

if b ∈ (b, P )

1 if b = P

(12)

Other useful results in area B.
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F I
s (P ) =

θn + θs
θs + T

P − P (θn − T )
θn + θs
P

= 1

F I
n(P ) =

P − P (θn − T )
θn + θs
P

=
θs + T

θn + θs
< 1

Using equation 11. The mixed strategies in areas B1 and B2 is defined by:

F I
s (b) =


0 if b < b

k

T + k − θn
b− bI
b

if b ∈ (b, P )

1 if b = P

F I
n(b) =


0 if b < b

θs + T

T + k − θn
b− bI
b

if b ∈ (b, P )

1 if b = P

(13)

Other useful results in areas B1 and B2.

F I
s (P ) =

k

T + k − θn
P − P (θn − T )

k
P

= 1

F I
n(P ) =

θs + T

T + k − θn
P − P (θn − T )

k
P

=
θs + T

k
< 1

Prob(bs < bn) is determined by the integral of the joint distribution in the grey area
in figure 6.
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Figure 6: (bs, bn) | bs < bn

bs b = bn Pbib north

bi
d 

so
ut

h

bs

b = bn

P

(b s, bn) | (b s ≤bn)

prob(bs < bn) =

(∫ P

bI
f I
n(bn)

(∫ bn

0

f I
s (bs)∂bs

)
∂bn

)
+ F I

s (P )− F I
n(P ) =

=

∫ P

bI
f I
n(bn)F

I
s (bn)∂bn + F I

s (P )− F I
n(P ) =

=

∫ P

bI

θs + T

k + T − θn
bI

b2
k

k + T − θn
b− bI
b

∂b+ 1− θs + T

k

=
(θs + T )bIk

(k + T − θn)2
[∫ P

bI

∂b

b2
−
∫ P

bI

bI

b3
∂b

]
+ 1− θs + T

k
=

=
(θs + T )bIk

(k + T − θn)2
[
bI

4b4
− 1

3b3

]P
bI
+ 1− θs + T

k
=

=
(θs + T )bIk

(k + T − θn)2
[
3bI − 4b

12b4

]P
bI
+ 1− θs + T

k
=

=
(θs + T )bIk

(k + T − θn)2
[
3bI − 4P

12P 4
+

1

12b3

]P
bI
+ 1− θs + T

k
=

=
(θs + T )bIk

(k + T − θn)2
(3bI − 4P )b3 + P 4

12P 4b3
+ 1− θs + T

k

Using equation 11. The mixed strategies in areas C1, C2 and C3 is defined by:

F I
s (b) = F I

n(b) =


0 if b < b

k

2k − θn − θs
b− bI
b

if b ∈ (b, P )

1 if b = P

(14)

Other useful results in areas C1, C2 and C3.
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F I
s (P ) =

k

2k − θn − θs
P − P (θn + θs − k)

k
P

= 1

Prob(bs < bn) =
1

2
.

Third, I work out the expected bid for both firms.

Using equation 12. The expected bid in Area B is:

f I
s (b) =

∂F I
s (b)

∂b
=
θn + θs
θs + T

bI

b2

f I
n(b) =

∂F I
n(b)

∂b
=
bI

b2

E(bIs) =

∫ P

bI
bf I

s (bs)∂b =

∫ P

bI

θn + θs
θs + T

bI

b
∂b =

θn + θs
θs + T

bI [ln(b)]PbI

E(bIn) =

∫ P

bI
bf I

n(bn)∂b =

∫ P

bI

bI

b2
∂b = bI [ln(b)]PbI +

(
1− F I

n(P )
)
P (15)

Using equation 13. The expected bid for both firms in areas B1 and B2 is:

f I
s (b) =

∂F I
s (b)

∂b
=

k

T + k − θn
bI

b2

f I
n(b) =

∂F I
n(b)

∂b
=

θs + T

T + k − θn
bI

b2

E(bIs) =

∫ P

bI
bf I

s (bs)∂b =

∫ P

bI

k

T + k − θn
bI

b
∂b =

k

T + k − θn
bI [ln(b)]PbI

E(bIn) =

∫ P

bI
bf I

n(bn)∂b =

∫ P

bI

θs + T

T + k − θn
bI

b
∂b =

θs + T

T + k − θn
bI [ln(b)]PbI +

(
1− F I

n(P )
)
P (16)

Using equation 14. The expected bid for both firms in areas C1 and C2 is:

f I
s (b) = f I

s (b) =
∂F I

s (b)

∂b
=

k

2k − θn − θs
bI

b2

E(bIs) = E(bIn) =

∫ P

bI
bf I

s (bs)∂b =

∫ P

bI

k

2k − θn − θs
bI

b
∂b =

k

2k − θn − θs
bI [ln(b)]PbI (17)
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Fourth, I work out the expected payoff for both firms.

Using equation 10. The payoff function in areas B is:

πI
n = bI(θn + θs)

πI
s = bI(θs + T ) (18)

Using equation 10. The payoff function in areas B1 and B2 is:

πI
n = bIk

πI
s = bI(θs + T ) (19)

Using equation 10. The payoff function in areas C1, C2 and C3 is:

πI
n = πI

s = bIk (20)

Corollary 1.

Proof:

Areas B1 and B2.

∂bI

∂θs
= 0

∂F I
n(P )

∂θs
=

1

k
> 0

∂E(bIn)

∂θs
=

1

k + T − θn
P (θn − T )

k
ln

(
P

bI

)
P (k − θs − T )

k
+

θs + T

k + T − θn
P (θn − T )

k
ln

(
P

bI

) −P
k

=

=
P 2(θn − T )

k2(k + T − θn)
ln

(
P

bI

)
(k − 2(θs − T )) < 0⇔ k < 2(θs − T )

∂E(bIs)

∂θs
= 0

∂πI
n

∂θs
= 0

∂πI
s

∂θs
= bI > 0
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Areas C1 and C2.

∂bI

∂θs
=

P

k
> 0

∂F I
n(P )

∂θs
= 0

∂E(bIn)

∂θs
=
∂E(bIs)

∂θs
=

k

(2k − θn − θs)2
P (θn + θs − k)

k
ln

(
P

bI

)
+

k

(2k − θn − θs)
P

k
ln

(
P

bI

)
+

k

(2k − θn − θs)
P (θn + θs − k)

k

bI

P

P

k
> 0

∂πI
n

∂θs
=
∂πI

s

∂θs
= P > 0

Corollary 2.

Proof:

Areas B1 and B2.

∂bI

∂θn
=

P

k
> 0

∂F I
n(P )

∂θn
= 0

∂E(bIn)

∂θn
=

θs + T

(k + T − θn)2
P (θn − T )

k

P (k − θs − T )
k

ln

(
P

bI

)
+

θs + T

k + T − θn
P

k

P (k − θs − T )
k

ln

(
P

bI

)
+

θs + T

k + T − θn
P (θn − T )

k

P (k − θs − T )
k

bI

P

P

k
> 0

∂E(bIs)

∂θn
=

k

(T + k − θn)2
P (θn − T )

k
ln

(
P

bI

)
+

k

T + k − θn
P

k
ln

(
P

bI

)
+

k

T + k − θn
P (θn − T )

k

bI

P

P

k
> 0
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∂πI
n

∂θn
= P > 0

∂πI
s

∂θn
=

P

k
(θs + T ) > 0

Areas C1 and C2.

∂bI

∂θn
=

P

k
> 0

∂F I
n(P )

∂θn
= 0

∂E(bIn)

∂θn
=
∂E(bIs)

∂θs
=

k

(2k − θn − θs)2
P (θn + θs − k)

k
ln

(
P

bI

)
+

k

2k − θn − θs
P

k
ln

(
P

bI

)
+

k

2k − θn − θs
P (θn + θs − k)

k

bI

P

P

k
> 0

∂πI
n

∂θs
=
∂πI

s

∂θs
= P > 0

Corollary 3.

Proof:

Areas B1 and B2.

∂bI

∂T
=
−P
k

< 0

∂F I
n(P )

∂T
=

1

k
> 0

∂E(bIn)

∂T
=

(k + T − θn)− (θs + T )

(k + T − θn)2
P (θn − T )

k
ln

(
P

bI

)
P (k − θs − T )

k
+

(θs + T )

k + T − θn
−P
k
ln

(
P

bI

)
P (k − θs − T )

k
+

(θs + T )

k + T − θn
P (θn − T )

k

bI

P

−P
k

P (k − θs − T )
k

+

(θs + T )

k + T − θn
P (θn − T )

k
ln

(
P

bI

) −P
k

< 0
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∂E(bIs)

∂T
=

−k
(T + k − θn)2

P (θn − T )
k

ln

(
P

bI

)
+

k

T + k − θn
−P
k
ln

(
P

bI

)
+

k

T + k − θn
P (θn − T

k

bI

P

−P
k

< 0

∂πI
n

∂T
= −P < 0

∂πI
s

∂T
=
−P
k

(θs + T ) +
P (θn − T )

k
=
P (θn − 2T − θs)

k
> 0⇔ θn > 2T + θs

Finally, I will work out the equilibrium when the transmission capacity is very low (the
asymmetry in the access to the demand is high).

As can be observed in figure 7, when the transmission capacity decreases a new area
emerge (area N). In the limit (when the transmission capacity collapses to zero), the
areas A, B, B1, B2, C1, C2 and C3 disappear and N will be the unique area. Below, I
will work out the equilibrium in this area.

First, the support of the cumulative distribution function. bIn =
P (θn − T )
θn + T

and bIs =

P (θs − T )
θs + T

. When the realization of the demand is over the diagonal (θn, θs) = (θ + ε, θ).

Therefore, bIn =
P (θ + ε− T )
θ + ε+ T

and bIs =
P (θ − T )
θ + T

. Hence, bIn > bIs ⇐⇒ (θ+ε−T )(θ+T ) >
(θ + ε + T )(θ − T ) ⇐⇒ 2Tε > 0. Therefore, when the realization of the demand is over

the diagonal, bIn > bIs. Hence,SI =
[
max

{
bIn, b

I
s

}
, P
]
=
[
bIn, P

]
=

[
P (θn − T )
θn + T

, P

]
.

Second, I work out the mixed strategies equilibrium. I proceed in four different steps.

First step, the profits for both firms are:

πI
n(b) = b

[
F I
s (b)max {0, θn − T, θs + θn − k}+ (1− F I

s (b))min {θn + θs, θn + T, k}
]
=

= b
[
F I
s (b)(θn − T ) + (1− F I

s (b))(θn + T )
]

πI
s(b) = b

[
F I
n(b)max {0, θs − T, θs + θn − k}+ (1− F I

n(b))min {θn + θs, θs + T, k}
]
=

= b
[
F I
n(b)(θs − T ) + (1− F I

n(b))(θs + T )
]

(21)

Second step, πI
i (b) = πI

i∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategies. Then,

πI
n = −F I

s (b)b(2T ) + b(θn + T )⇒ F I
s (b) =

b(θn + T )− πI
n

b2T

πI
s = −F I

n(b)b2T + b(θs + T )⇒ F I
n(b) =

b(θs + T )− πI
n

b2T
(22)
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Figure 7: Equilibrium areas when transmission capacity is low (kn = ks = 60, T = 10)
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s
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N

Third step, at bI , F I
n(b

I) = F I
s (b

I) = 0. Then,

πI
n = bI(θn + T )

πI
s = bI(θs + T ) (23)

Fourth step, plug in 23 into 22, we obtain the mixed strategies for both firms.

F I
s (b) =

θn + T

2T

b− bI
b

F I
n(b) =

θs + T

2T

b− bI
b

(24)

Third, I work out the expected bid for both firms. Using 24. The expected bid in area N
is:

f I
s (b) =

∂F I
s (b)

∂b
=
θn + T

2T

bI

b2

f I
n(b) =

∂F I
n(b)

∂b
=
θs + T

2T

bI

b2

E(bIs) =

∫ P

bI
bf I

s (bs)∂b =

∫ P

bI

θn + T

2T

bI

b
∂b =

θn + T

2T
bI [ln(b)]PbI

E(bIn) =

∫ P

bI
bf I

n(bn)∂b =

∫ P

bI

θs + T

2T

bI

b
∂b =

θs + T

2T
bI [ln(b)]PbI +

(
1− F I

n(P )
)
P (25)
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Fourth, the equilibrium pay off for both firms is determined by 23.

Proposition 4.

Proof:

Using the same steps that I have used in Proposition two, I will work out the equilibrium
strategies.

First step, the payoff function for any firm is:

πII
i (b) = b

[
F II
j (b)max {0, θi − T, θi + θj − k}

]
+(1− F II

j (b)) [bmin {θi, k}+ E(bj | bj ≥ b)max {0,min {T, k − θi}}] =
= −F II

j (b) [bmin {θi, k}+ E(bj | bj ≥ b)max {0,min {T, k − θi}}]
−F II

j (b) [−bmax {0, θi − T, θi + θj − k}] + (26)
bmin {θi, k}+ E(bj | bj ≥ b)max {0,min {T, k − θi}}

Second step, πII
i (b) = πII

i ∀b ∈ Si, i = n, s, where Si is the support of the mixed
strategies. Then,

πII
i = −F II

j (b) [bmin {θi, k}+ E(bj | bj ≥ b)max {0,min {T, k − θi}}]
−F II

j (b) [−bmax {0, θi − T, θi + θj − k}] +
bmin {θi, k}+ E(bj | bj ≥ b)max {0,min {T, k − θi}} ⇒

F II
j (b) =

bmin {θi, k}+ E(bj | bj ≥ b)max {0,min {T, k − θi}} − πII
i

Li(b)−Hi(b)
(27)

Third step, at bII , F II
i (bII) = 0∀i = n, s. Then,

πII
i = bIImin {θi, k}+ E(bj | bj ≥ bII)max {0,min {T, k − θi}} (28)

Fourth step, Plug in 28 into 27, we obtain the mixed strategies for both firms.

F II
j (b) =

LII
i (b)− LII

i (bII)

LII
i (b)−HII

i (b)
∀i = n, s (29)

It is easy to verify that equation F II
j (b)∀i, j is indeed a cumulative distribution func-

tion. First, in the third step, I have established that F II
j (bII) = 0. Second, F II

j (b) is an in-
creasing function in b. At bII , LII

i (bII) = HII
i (b), for any b > bII , LII

i (bII) < HII
i (b); more-

over,
∂LII

i (b)

∂b
> 0,

∂LII
i (bII)

∂b
= 0 and

∂HII
i (b)

∂b
> 0 , therefore,

∂
(
LII
i (b)− LII

i (bII)
)

∂b
>

∂
(
LII
i (b)−HII

i (b)
)

∂b
. Third, F II

j (b) ≤ 1∀b ∈ Si. Finally, F II
j (b) is continuous in the sup-

port because LII
i (b)−LII

i (bII) and LII
i (b)−HII

i (b) are continuous functions in the support.
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To conclude the proof, I will work out the support, the cumulative distribution func-
tion, the expected bid and the expected payoff for any realization of the demand in figure 4.

First, I work out the support of the cumulative distribution function in each area.

In the diagonal, the payoff function for both firms is equal, therefore bIIn = bIIs .

In area B, bIIn ≥ bIIs . The residual demand in Area B for the firm allocated in

the South is zero, therefore bIIs = 0, moreover bIIn =
P (θn − T )

k
. Therefore SII =[

max
{
bIIn , b

II
s

}
, P
]
=
[
bIIn , P

]
=

[
P (θn − T )

k
, P

]
.

In areas B2 and C2, bIIn = bIIs . In areas B2 and C2, θn > k > θs. Therefore, using
lemma two, bIIn = bIn and bIIs ≤ bIs. Using proposition two, I know that in areas B2 and
C2 bIn > bIs. Hence bIIs < bIs < bIn < bIIn . Then, in area B2, SII =

[
max

{
bIIn , b

II
s

}
, P
]
=[

bIIn , P
]
=

[
P (θn − T )

k
, P

]
and in area C2, SII =

[
max

{
bIIn , b

II
s

}
, P
]
=
[
bIIn , P

]
=[

P (θs + θn − k)
k

, P

]
.

In area C1, bIIn ≥ bIIs . According with lemma two, in area C1, bIIn solves bIIn θn +
E
(
bs | bs ≥ bIIn

)
(k − θn) = P (θn + θs − k) and bIIs solves bIIs θs + E

(
bn | bn ≥ bIIs

)
(k −

θs) = P (θn + θs − k). The right hand side of both expressions is equal. Therefore
bIIn θn + E

(
bs | bs ≥ bIIn

)
(k − θn) = bIIs θs + E

(
bn | bn ≥ bIIs

)
(k − θs). When the re-

alization of the demand is an ε over the diagonal (θn, θs) = (θn, θn − ε). Therefore,
bIIn θn + E

(
bs | bs ≥ bIIn

)
(k − θn) = bIIs (θn − ε) + E

(
bn | bn ≥ bIIs

)
(k − θn + ε). My claim

is that in area C1, bIIn > bIIs . In order to prove it, I will start assuming that when
we move an ε to the left of the diagonal E

(
bs | bs ≥ bIIn

)
= E

(
bn | bn ≥ bIIs

)
.16 Under

this assumption, bIIn θn + E
(
bs | bs ≥ bIIs

)
(k − θn) = bIIs (θn − ε) + E

(
bs | bs ≥ bIIs

)
(k −

θn + ε). After simple algebra, I obtain bIIn θn = bIIs θn + ε
[
E
(
bs | bs ≥ bIIs

)
− bIIs

]
, where

ε
[
E
(
bs | bs ≥ bIIs

)
− bIIs

]
> 0. Therefore bIIn > bIIs . Therefore, using lemma 2,

SII =
[
max

{
bIIn , b

II
s

}
, P
]
=

[
P (θn + θs − k)− E

(
bs | bs ≥ bIIn

)
(k − θn)

θn
, P

]

Finally, in area B1, bIIn ≥ bIIs . In areas B, B1 and C1 (all the areas that border B1),
bIIn ≥ bIIs and bIIi ∀i = n, s is a continuous and monotone function. Therefore, bIIn ≥ bIIs .
Hence, using lemma 2,

16First, in the diagonal θn = θs, moreover the firms are symmetric in capacity and costs, therefore in
the diagonal the mixed strategies and the support are symmetric. Hence, assume E

(
bs | bs ≥ bIIn

)
=

E
(
bn | bn ≥ bIIs

)
when the realization of demand is an ε over the diagonal is reasonable. Second, if under

the assumption E
(
bs | bs ≥ bIIn

)
= E

(
bn | bn ≥ bIIs

)
, I obtain that bIIn > bIIs , then Fs(b)

II stochas-

tic dominate Fn(b)
II and E

(
bs | bs ≥ bIIn

)
≤ E

(
bn | bn ≥ bIIs

)
, but if I assume E

(
bs | bs ≥ bIIn

)
≤

E
(
bn | bn ≥ bIIs

)
, the proof shows even stronger evidence in favour of bIIn > bIIs .
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SII =
[
max

{
bIIn , b

II
s

}
, P
]
=

[
P (θn − T )− E

(
bs | bs ≥ bIIn

)
(k − θn)

θn
, P

]
Second, I work out the mixed strategies for both firms.

Using equation 29. The mixed strategies in area B is defined by:

F II
s (b) =


0 if b < bII

θn + θs
θs + T

b− bII
b

if bII ≤ b < P

1 if P ≤ b

F II
n (b) =


0 if b < bII

θs
(
b− bII

)
+ T

(
E(bn | bn ≥ b)− E

(
bn | bn ≥ bII

))
bθs + E (bn | bn ≥ b)T

if bII ≤ b < P

1 if P ≤ b

(30)

Other useful results in area B.

F II
s (P ) =

θn + θs
θs + T

P − P (θn − T )
θn + θs
P

= 1

F II
n (P ) =

θs
(
P − bII

)
+ T

(
P − E

(
bn | bn ≥ bII

))
P (θs + T )

< 1

Using equation 29. The mixed strategies in area B1 is defined by:

F II
s (b) =


0 if b < bII

θn
(
b− bII

)
+ (k − θn)

(
E(bs | bs ≥ b)− E

(
bs | bs ≥ bII

))
bT + E (bs | bs ≥ b) (k − θn)

if bII ≤ b < P

1 if P ≤ b

F II
n (b) =


0 if b < bII

θs
(
b− bII

)
+ T

(
E(bn | bn ≥ b)− E

(
bn | bn ≥ bII

))
b(k − θn) + E (bn | bn ≥ b)T

if bII ≤ b < P

1 if P ≤ b

(31)

Other useful results in area B1.

F II
s (P ) = 1

F II
n (P ) =

θs
(
P − bII

)
+ T

(
P − E

(
bn | bn ≥ bII

))
P (T + k − θn)

< 1

Using equation 29. The mixed strategies in area B2 is defined by:
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F II
s (b) =


0 if b < bII

k

T + k − θn
b− bII
b

if bII ≤ b < P

1 if P ≤ b

F II
n (b) =


0 if b < bII

θs
(
b− bII

)
+ T

(
E(bn | bn ≥ b)− E

(
bn | bn ≥ bII

))
b(k − θn) + E (bn | bn ≥ b)T

if bII ≤ b < P

1 if P ≤ b

(32)

Other useful results in area B2.

F II
s (P ) = 1

F II
n (P ) =

θs
(
P − bII

)
+ T

(
P − E

(
bn | bn ≥ bII

))
P (T + k − θn)

< 1

Using equation 29. The mixed strategies in area C1 is defined by:

F II
s (b) =


0 if b < bII

θn
(
b− bII

)
+ (k − θn)

(
E(bs | bs ≥ b)− E

(
bs | bs ≥ bII

))
b(k − θs) + E (bs | bs ≥ b) (k − θn)

if bII ≤ b < P

1 if P ≤ b

F II
n (b) =


0 if b < bII

θs
(
b− bII

)
+ (k − θs)

(
E(bn | bn ≥ b)− E

(
bn | bn ≥ bII

))
b(k − θn) + E (bn | bn ≥ b) (k − θs)

if bII ≤ b < P

1 if P ≤ b

Other useful results in area C1.

F II
s (P ) = 1

F II
n (P ) =

θs
(
P − bII

)
+ (k − θs)

(
P − E

(
bn | bn ≥ bII

))
P (2k − θn − θs)

< 1

Using equation 29. The mixed strategies in area C2 is defined by:

F II
s (b) =


0 if b < bII

k

2k − θn − θs
b− bII
b

if bII ≤ b < P

1 if P ≤ b

F II
n (b) =


0 if b < bII

θs
(
b− bII

)
+ (k − θs)

(
E(bn | bn ≥ b)− E

(
bn | bn ≥ bII

))
b(k − θn) + E (bn | bn ≥ b) (k − θs)

if bII ≤ b < P

1 if P ≤ b
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Other useful results in area C2.

F II
s (P ) = 1

F II
n (P ) =

θs
(
P − bII

)
+ (k − θs)

(
P − E

(
bn | bn ≥ bII

))
P (2k − θn − θs)

< 1

Third, the expected bid can not be worked out using the derivative of the cumulative
distribution function, because the cumulative distribution function has not a close form
solution. However, the algorithm that I will introduce below in the annex gives me the
opportunity to work out the expected bid for both firms.

Fourth, I work out the payoff function.

Using equation 28. The payoff function in area B is:

πII
n = bII(θn + θs)

πII
s = bIIθs + E

(
bn | bn ≥ bII

)
T (33)

Using equation 28. The payoff function in area B1 is:

πII
n = bIIθn + E

(
bs | bs ≥ bII

)
(k − θn)

πII
s = bIIθs + E

(
bn | bn ≥ bII

)
T (34)

Using equation 28. The payoff function in area B2 is:

πII
n = bIIk

πII
s = bIIθs + E

(
bn | bn ≥ bII

)
T (35)

Using equation 28. The payoff function in area C1 is:

πII
n = bIIθn + E

(
bs | bs ≥ bII

)
(k − θn)

πII
s = bIIθs + E

(
bn | bn ≥ bII

)
(k − θs) (36)

Using equation 28. The payoff function in area C2 is:

πII
n = bIIk

πII
s = bIIθs + E

(
bn | bn ≥ bII

)
(k − θs) (37)

Algorithm to work out the cumulative distribution function.

The payoff function of the model in which the transmission rights are assigned to
the firm that submits the lowest bid in the spot electricity auction satisfies the proper-
ties that guarantee that a mixed equilibrium exists, however the cumulative distribution
function defined by equation 29 is a function of its own expected value, therefore it does
not exist a close form solution for it. In the next lines, I present an algorithm that gives

37



Figure 8: Existence and Uniqueness of the CDF

bI Pbid

θs( b−b)

b( k−θn) + E( bn | bn >b) ( k−θs)

bI Pbid

( k−θs) ( E( bn | bn >b) −E( bn | bn >b) )

b( k−θn) + E( bn | bn >b) ( k−θs)

bI Pbid

θs( b−b)
b( k−θn) +E( bn|bn>b) ( k−θs)

( k−θs) ( E( bn|bn>b) −E( bn|bn>b) )
b( k−θn) +E( bn|bn>b) ( k−θs)

bI Pbid

C
D

F
FII
n

FI
n

me the opportunity to work out an approximation of the cumulative distribution function.

To made the exposition easier, I will focus only in the equilibrium in Area C2 in figure
4. The support and mixed strategies equilibrium in area C2 are defined by the next
equations:

SII =
[
max

{
bIIn , b

II
s

}
, P
]
=
[
bIIn , P

]
=

[
P (θs + θn − k)

k
, P

]
(38)

F II
s (b) =

k(b− bII)
(2k − θn − θs)b

(39)

F II
n (b) =

θs(b− bII) + (k − θs)
[
E (bn | bn ≥ b)− E

(
bn | bn ≥ bII

)]
b(k − θn) + E (bn | bn ≥ b) (k − θs)

(40)

Equations 38 and 39 do not depend of any expectation. Therefore, they can be easily
computed. Nevertheless, equation 40, depends on its own expectation. Therefore, it does
not exist a close form solution for it. To work out the cumulative distribution function
defined by 40 I have developed the algorithm that I describe below. The key point in the
algorithm is guarantee that the prior expected value that I use to work out 40 and the
posterior expected value calculated using 40 coincide, i.e., a fix point exist.

The algorithm to work out the cumulative distribution function defined in 40 consists
in the next sequence of iterations. In the first iteration, I have taken the cumulative
distribution function for area C2 when the transmission rights are assigned to the grid
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Figure 9: Existence of a fix point

0

1 2 3 4 5 6 7 8 9

E(b n)i+1 −E(b n)i

iteration

operator defined by equation 14 . In the rest of iterations, I use the cumulative distribu-
tion function generated in the previous iteration to work out the cumulative distribution
function defined in 40. In each iteration, I work out the difference in the expected value
between two consecutive iterations, (figure 9 summarizes this information). The iteration
process concludes when the difference in means between two consecutive iterations is zero.

In the next lines, I provide evidence that the algorithm that I have described above
converge to a fix point.

Equation 40 can be split in two equations:

E1(b) =
θs(b− bII)

b(k − θn) + E (bn | bn ≥ b) (k − θs)
(41)

E2(b) =
(k − θs)

[
E (bn | bn ≥ b)− E

(
bn | bn ≥ bII

)]
b(k − θn) + E (bn | bn ≥ b) (k − θs)

(42)

In figure 8, I have plotted the first six iterations of the algorithm that I have described
above. In the first panel (starting from the top left), I have plotted in blue the iterations
for the numerator and the denominator of equation 41. As can be observed the numera-
tor does not change and the denominator converges quickly. In the second panel, I have
plotted in red the six first iterations for the numerator and denominator of equation 42.
As can be observed, both converge quickly. In the third panel, I have plotted in blue the
six first iterations for equation 41 and in red the six first iteration for equation 42. As can
be observed both equations converges quickly. Finally, in the last panel, I have plotted
in black the six first iterations for equation 40, as can be observed the iteration process
converges quickly.

In figure 9 I have plotted the difference in means between two consecutive iterations.
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Table 4: (5T ), (θn = 55, θs = 5), (kn = ks = 60, cn = cs = 0, P = 7)

bII E(bs) πn = bIIθn + E(bs)(k − θn) πn = P (θn − T )
T = 60 0 0 0 0
T = 50 0.50 1.49 (0.5 · 55) + (1.49 · 5) = 34.95 35
T = 40 1.62 3.14 (1.62 · 55) + (3.14 · 5) = 104.8 105
T = 30 2.79 4.31 (2.79 · 55) + (4.31 · 5) = 175 175
T = 20 3.97 5.23 (3.97 · 55) + (5.23 · 5) = 244.5 245
T = 10 5.18 6.02 (5.18 · 55) + (6.02 · 5) = 315 315
T = 0 7 7 (7 · 55) + (7 · 5) = 385 385

As can be observed, in the second iteration the difference in means is big and in latter it-
erations the difference decreases smoothly. The difference in mean becomes zero between
iteration six and iteration seven. This means that there exists a cumulative distribution
function between the one obtained in iteration six and the one obtained in iteration seven
for which the prior mean used to work out the cumulative distribution function and the
posterior mean derived from the cumulative distribution function coincide, i.e., a fix point
exists.

Above, I have described the algorithm to work out the equilibrium and I have shown
that the algorithm converges. In the next lines, I provide evidence that the algorithm do
not have internal mistakes, i.e., generates the results predicted by the model. Lemma
two stablish bIIθi + E(bj | bj ≥ bII)(ki − θi) = P (θi − T ). Column four in table
4 presents the expected profit for firm n using the values generated by the algorithm
(bIIθi + E(bj | bj ≥ bII)(ki − θi)). Column five presents the expected profit predicted by
the theory (P (θi − T ) ). As can be observed both values coincide.

Proposition 5.

Areas B2 and C2. Using proposition two and four it is straight forward to check that
the lower bound of the support, the expected value of the bids of the firm located in the
South and the expected payoff of the firm located in the North are equal in both models.

In area B2, F I
n(b

I) = F II
n (bII) = 0. F I

n(P ) =
(θs + T )(P − bI)
P (T + k − θn)

and F II
n (P ) =

θs(P − bII) + T (P − E(bn | bn ≥ bII)

P (T + k − θn)
. As I have shown before, bI = bII , moreover E(bn |

bn ≥ bII) ≥ bI), therefore, F II
n (P ) ≤ F I

n(P ). Furthermore, F II
n (b) and F I

n(b) are mono-
tone increasing and continue in the support. Therefore, F I

n(b) ≥ F II
n (b)∀b ∈ [b, P ]. Hence,

F I
n(b) stochastic dominate F II

n (b). Then, E(bIIn ) ≥ E(bIn). Moreover, the expected payoff
of the firm located in the South πII

s ≥ πI
s. The same logic applies in area C2.

Areas B1 and C1. Using proposition two and four it is straight forward to check that the
lower bound of the support when the transmission rights are assigned to the firm that
submits the lowest bid in the spot electricity auction is lower than the lower bound of the
support when the transmission rights are assigned to the grid operator. Moreover, the
expected payoff of the firm located in the North is equal in both models, πI

n = πII
n .
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In area B1, F I
n(b

I) = 0 ≤ F II
n (bI) = 0. F I

n(P ) =
(θs + T )(P − bI)
P (T + k − θn)

and F II
n (P ) =

θs(P − bII) + T (P − E(bn | bn ≥ bII)

P (T + k − θn)
. As I have shown before, bII ≤ bI , E(bn | bn ≥

bII) ≥ bII). However, with this information, F II
n (P ) and F I

n(P ) can not be ranked.
Therefore, it can not be determined the stochastic dominate relation between F II

n (b) and
F I
n(b). And so, the expected value of bids for the firm located in the North. The same

logic applies in area C1.

In area B1, F I
s (b

I) = 0 ≤ F II
s (bI). F I

s (P ) = F II
s (P ) = 1. Moreover, F II

s (b) and F I
s (b)

are monotone increasing and continue in the support. Therefore, F I
s ≤ F II

s ∀b ∈ [bII , P ].
Hence, F II

s (b) stochastic dominate F I
s (b). Then, E(bIs) ≥ E(bIIs ). The same logic applies

in area C1.

Finally, in areas B1 and C1, E(bIs) ≥ E(bIIs ), but the relation between E(bIn) and
E(bIIs ) can not be determined. Hence, the relation between the expected payoff of the
firm located in the South can not be ranked in both models.
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