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The Wolves - Franz Marc, 1913 

 

 

 

“ And when, on the still cold nights, he pointed his nose at a star and 

howled long and wolf-like, it was his ancestors, dead and dust, 

pointing nose at star and howling down through the centuries 

and through him.” 

 

The Call of the Wild - Jack London 
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INTRODUCTION 

 

Large carnivores are often used as focal species (indicator species, umbrella species) in 

conservation strategies, especially when related to the maintenance of biodiversity. In fact, the 

conservation of populations of large predators is achieved through the conservation of their habitat 

and populations of their wild prey, influencing positively on the overall biodiversity. In addition, 

predators require natural habitats, extensive and continuous or strongly connected to each other, 

thus focusing attention on the importance of ecological corridors which benefit many other species 

(Huber et al. 2002). Large carnivores have also a key role with regard to the regulation of the 

populations of their prey: the wolf (Canis lupus), the lynx (Lynx lynx) and the bear (Ursus arctos) 

preferentially prey animals young and inexperienced or old and sick, helping to control the growth 

rates of the species prey. The wolf and the bear also feed on carrion, carrying out an activity of 

'clean health', and this helps to prevent the onset of diseases, improving the health of the animals 

(Breitenmoser 1998). Finally, the persecution of man towards predators requires effective 

legislation and strict enforcement, especially because the long period of absence of large carnivores 

in several regions of Italy has created many problems in the management of conflicts between the 

presence of the species and the husbandry activities of the resident human population. For these 

reasons, wolf, bear and lynx are protected both at international and national level: included in 

Annex II of the Bern Convention ("strictly protected fauna species"), attachment II ("Animal and 

plant species of Community interest whose conservation requires the designation of special areas of 

conservation") and 4 ("Animal and plant species that require strict protection") of the Habitats 

Directive, Annexes A and B of the Washington Convention (CITES) and Art. 2 of the Regulations 

157/92 ("specially protected species"). The extraordinary ability to adapt to different ecological 

conditions made the wolf the terrestrial mammal predator with the largest distribution range during 

the Quaternary, covering, north of 20° N latitude, the entire North American continent, including 

Mexico, Europe, Asia and Japan (Mech 1970, 1974). However, in historical times, the massive 

eradication efforts carried out by humans since the 19th century, direct and indirect (reduction of 

natural habitat and wild prey by hunters), resulted in a drastic reduction in both distribution and 

abundance. During the 20th century the wolf also disappeared from almost all the territories of 

continental Europe, surviving in small and fragmented populations in the Iberian, Hellenic and 

Italian peninsula, in some territories of the former Yugoslavia and in the Scandinavian peninsula. 

Actually, the European wolf range interests the Iberian Peninsula, which has a population of 1,500-

2,000 wolves (Blanco et al. 1990; Salvatori et al. 2005), the Balkan countries and the Hellenic 
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peninsula. In France, signs of recovery are in the Mercantour Massif in the Southern French Alps: 

right through the Maritime Alps the wolf is gradually colonizing the South-western areas of the 

Swiss Alps. To date, it is believed there are about 80 wolves in the French Alps, all from the 

Apennines (Salvatori et al. 2005). Also in the rest of Europe wolf populations are growing or stable 

and the low degree of human settlement of large areas of European Russia allows the maintenance 

of high numerical amounts and it is also responsible for the slow processes of expansion of the 

species toward the central-eastern countries such as Romania and Poland, where about 4,000 and 

600-700 individuals are estimated respectively (Salvatori et al. 2005) confined to forest areas of 

mountain territories. In northern Europe wolf populations are divided between the Scandinavian 

peninsula, where it is estimated that about 200 people, and the Baltic States, whose wolves are from 

Russia (Salvatori et al. 2005). 
 

Figure  I.I Distribution of wolf in Europe (in orange; http://www.lcie.org/) 
 

 

 

In Italy, the wolf widespread over the entire peninsula until the mid-19th century, was exterminated 

in the Alps at the end of that century and in Sicily island in 1940. Just in the last century, the 

distribution of the species suffered a significant drop along the Apennine chain. At the end of the 

50s it became very rare throughout the Tuscan-Emilian Apennines and in the following decade the 

large number of species decreased dramatically to reach a historic bottleneck in the early '70s, when 

Zimen and Boitani (1975) estimated the presence of about 100 wolves in the Southern-Central 

http://www.lcie.org/
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Apennine. Since that time, there was a gradual and continuous expansion of the territories occupied 

by permanent wolf favoured by several factors: socio-historical, such as the abandonment of 

mountains and hills by the local human populations resulting in an increase of forested areas and 

uncultivated fields, the creation of protected areas and the implementation of conservationist 

policies (Bocedi and Brcchi 2004), the reintroduction of wild ungulates and the numerical reduction 

in the number of hunters and also biological characteristics of the species (dispersal ability and 

trophic opportunism). The re-colonization of the historical range is still on-going. The current 

distribution of the wolf in Italy includes the entire Apennine chain, from Liguria to Calabria, the 

hilly areas of Northern Lazio and central-Southern Tuscany and the and Maritime Alps, from which 

the predator is re-colonizing the Alpine chain. Wolf packs are stable in all the mountainous 

provinces of Piedmont and Valle d'Aosta, at the border with France and Switzerland, with an 

estimated population of more than 50 individuals in the two regions (Marucco 2010). Few 

individuals were recorded also in the central Alps (Lombardy, Trentino Alto Adige and Veneto) 

while individuals from Slovenian are re-colonizing the eastern alps (Friuli-Venezia-Giulia). 

 

Figure  I.2 Distribution of wolf in Italy (Meriggi et al. 2011) 
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This quick reverse trend of the wolf has determined the need for long-term conservation actions, in 

fact viable wolf populations entails solving both biological and human-dimension problems (Ciucci 

et al. 2007; Linnell and Boitani 2012), because in the minds of the public a strong aversion to the 

predator remains, created through a negative cultural transmission, no longer mitigated by direct 

experience, resulting from the coexistence between humans and wolves in the same environment. 

Moreover, the absence of the large carnivore in the Alps and the Apennines meant that they were no 

longer taken the usual and tested methods of preventing damage to the animal husbandry and 

evolve towards more and more forms of breeding in wild, with poor control of animals bred, more 

economical and profitable. The wolf, like other large carnivores, to feed optimize the energy 

balance of costs and benefits, so it attacks prey with equal amount of energy supplied to require the 

least amount of energy. Thus, the most common prey animals are debilitated, sick, young, or 

animals for their behavioral characteristics (also induced) can be easily preyed upon. It is the case 

of domestic animals (goats, sheep, cows and horses) which, living in contact with humans and not 

having long experienced the attacks of predators, have lost, in part, the behavioral mechanisms of 

defense. Finally, the increase in the population of wild ungulates, which occurred in the last ten 

years, created a marked interest for hunting these species, which easily come into conflict with the 

presence of the wolf, a typical predators of large herbivores and, “consequently”, human hunter 

competitors. Beyond their actual predatory ability, and their real economic impact, carnivores are 

related to myths and legends that definitely not conducive to their preservation. The images of 

wolves who eat children and attacking travelers along the mountain trails are a historical legacy 

handed down from generation to generation, which now needs to be removed with appropriate 

information actions, based on scientific knowledge of the real behavior of predators in respect of the 

real impact on human activities. Thus, the wolf should still be considered as a threatened species, 

because of the conflicts with human activities that are triggered by its predatory behaviour and that 

lead to illegal persecution. This in turn makes the colonization of new areas unstable, in particular 

those where livestock husbandry is an important economic activity (Genovesi 2002).  

In this Ph.D. thesis, to understand the real effect of wolf predations on prey species the diet of the 

large carnivore in Italy was analysed and then the changes of feeding habits of the species trough 

years, seasons and different areas were verified. Understanding the mechanisms that lead to changes 

of feeding habits and predatory impact of large carnivores is of great importance in outlining 

effective strategies for their conservation. One of the cruxes of the management of the conflicts 

between human activities and large predators lies in understanding if the extent predation is a 

regulatory or limiting factor acting on wild prey populations, and how it is possible to reduce the 

impact on domestic livestock. Regarding the relationships between wolves and wild ungulates, the 
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main question is whether predation can regulate the populations of these prey species. Usually in a 

prey-predator system regulation occurs when predation is density dependent and it stabilizes prey 

populations at an equilibrium density. However, if predation is independent on density there is a 

limiting effect and if it is inversely density dependent there is a dispensatory effect. In these cases 

predation rate increases as prey density declines, causing the population to decline even faster; this 

situation can occur when there is no switching by predators, there is no refuge for the prey, and 

predators have an alternative prey source (Messier 1991, 1995; Marshal and Boutin 1999; 

Jedrzejewski et al. 2002; Wittmer et al. 2005; Sinclair et al. 2006). In simple wolf-prey systems 

wolf diet shifts according to changes in the relative abundance of the main prey, and shift dynamics 

depend on the combined effects of preference, differential vulnerability and the relative abundance 

of prey (Peterson and Ciucci 2003; Garrot et al. 2007). In areas with rich and abundant wild 

ungulate guilds wolves prey upon the most abundant and profitable species, selecting gregarious 

ones, young, and those in poor physical condition, and changing their preferences in relation to 

species abundance (Okarma 1991; Huggard 1993a,b; Mattioli et al. 1995; Okarma 1995; Meriggi et 

al. 1996; Poulle et al. 1997;  Jedrzejewski et al. 2000; Mattioli et al. 2004; Gazzola et al. 2005, 

Ansorge et al. 2006; Gazzola et al. 2007; Barja 2009). In areas with low wild ungulate abundance 

livestock is the main prey and wild ungulates occur in wolf diet when livestock is not available or 

when young wild ungulates are present (Cuesta et al. 1991; Meriggi et al. 1991, 1996; Okarma 

1995; Meriggi and Lovari 1996; Vos 2000; Hovens and Tungalaktuja 2005). Moreover, predation 

by wolves on livestock is dependent on the species, age class, rearing methods, and on the 

availability of wild prey (Robel et al. 1981; Blanco et al. 1990; Meriggi et al. 1991; Boitani and 

Ciucci 1993; Meriggi and Lovari 1996; Kaczensky 1999; Mech et al. 2000; Bradley and Pletscher 

2005; Gazzola et al. 2008). In particular wolves select sheep and goats, and from cattle calves less 

than 15 day old (Meriggi et al. 1991, 1996; Gazzola et al. 2008). High occurrence of livestock in 

wolf diet was also recorded in areas of year-round grazing or where livestock is grazing unguarded 

(Meriggi et al. 1996, Merkle et al. 2009) and damage is concentrated to a few farms, suggesting that 

environment is also important in determining the probability of predation (Kaczensky 1999; 

Schenone et al. 2004; Bradley and Pletscher 2005; Gazzola et al. 2008). From an analysis of the diet 

of wolves in Mediterranean ranges, a close negative correlation was observed between the 

frequency of occurrence of livestock and that of wild ungulates; this may mean that wolves prefer 

wild prey, when available, to domestic ones (Meriggi and Lovari 1996). Where the availability of 

wild ungulates is low and livestock is absent or inaccessible wolves use secondary prey species that 

can be necessary dietary components in some seasons (Van Ballenberghe et al. 1975, Fritts and 

Mech 1981, Fuller 1989, Chavez and Gese 2005). Moreover, several studies have shown some 
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important differences between wolf feeding habits in different study areas and periods. Wolf 

feeding habits can also change over different periods within the same area, usually as a response to 

the increase of wild ungulate populations. In Mediterranean countries in particular, a positive trend 

of wild ungulate occurrence in wolf diet has been recorded in recent decades (Meriggi and Lovari 

1996), and this is true also for recently settled wolf populations in Central Europe, where it seems 

that the current diet is very different from that before wolf extinction (Ansorge et al. 2006). In fact, 

also in Italy the diet of wolves markedly changed from the first studies carried out in the seventies 

in the central Apennines to the recent ones performed in the Western Alps; in particular the diet of 

wolves evolved towards a greater occurrence of large wild herbivores, becoming more and more 

similar to that of North American and North-Eastern European areas (Meriggi and Lovari 1996). 

Changes in the diet of wolves in Italy were identified and related to the use of wild ungulate 

species, to the differences in large prey availability and to the richness and diversity of wild 

ungulate communities. Moreover, the patterns of prey selection and their seasonal changes were 

evaluated.  

In this Ph.D. thesis, secondly, the distribution and population dynamics of wolves in the northern 

Apennine was estimated using noninvasive genetic methods, because the expanding population also 

spread in human-dominated areas, where the chances of hybridization with domestic dogs may 

increase (Verardi et al. 2006; Godinho et al. 2011; Hindrikson et al. 2012; vonHoldt et al. 2013) and 

the attribution of species locations could lead to mistaken estimates. The development of 

noninvasive genetic methods has offered unique opportunities to implement long-term, wide-

ranging, and cost-effective research and monitoring programs (Schwartz et al. 2007; Brøseth et al. 

2010; Ruiz-Gonzalez et al. 2013). Molecular techniques can provide more-exhaustive demographic 

information than any other method (Lukacs et al. 2007). Reliable individual genotypes (DNA 

fingerprinting) are obtained by analyzing DNA extracted from biological samples such as hair, 

feces, urine, and blood traces that are noninvasively collected, without any direct human contact 

with the animals (Waits and Paetkau 2005). Genotypes are used to count and locate individuals in 

space and time and to reconstruct their genealogies and familial ranges (Creel et al. 2003; Schwartz 

et al. 2007). The capture–recapture records of individual genotypes can be used to count the 

minimum population size (Ernest et al. 2000; Lucchini et al. 2002; Gervasi et al. 2008) and to 

estimate total abundance (Kohn et al. 1999; Mills et al. 2000; Lukacs and Burnham 2005). Although 

low-quality DNA samples may generate genotyping errors (Broquet et al. 2007), these can be 

minimized by using well-tested laboratory protocols and quality controls (Beja-Pereira et al. 2009). 

Noninvasive genetics has been used to monitor the dynamics of endangered populations, obtaining 

estimates of temporal trends of demographic and genetic parameters that would have been 
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impossible with traditional field methods (e.g., De Barba et al. 2010). The reconstruction of 

pedigrees in natural populations (Pemberton 2008) is facilitated by genetic identifications, which 

substantially help to infer detailed population structuring, and to estimate dispersal rates, 

inbreeding, and heritability (vonHoldt et al. 2008), pushing the development of novel computational 

methods (Blouin 2003). For these reasons, noninvasive genetic sampling has been integrated into 

many monitoring projects, combining population genetics and demographic data in species of large 

carnivores (Waits and Paetkau 2005), including studies of wolves (Fabbri et al. 2007; vonHoldt et 

al. 2008; Marucco et al. 2009; Cubaynes et al. 2010; Stenglein et al. 2011). Most wolves are 

territorial, social carnivores that live in packs, the basal family units, which generally include a 

breeding pair, the offspring from several years, and sometimes unrelated wolves (Mech 1999). 

Packs scent mark and defend their territories, and territories often remain stable for several 

successive breeding pairs. Pack members cooperate in hunting and rearing pups (Mech and Boitani 

2003). Pack size and composition, prey abundance, and habitat availability determine the 

demographic trends of wolf populations (Fuller et al. 2003; Stahler et al. 2013). In turn, variable 

mating behaviors, turnover rates of pack breeders, dispersal patterns, and inter-pack gene flow 

affect population genetic structure and long-term evolutionary dynamics (Lehman et al. 1992; 

Lucchini et al. 2004; vonHoldt et al. 2008; Sastre et al. 2011; Czarnomska et al. 2013). In this way, 

pack dynamics, natural selection, adaptation, and inbreeding avoidance affect kin structure and 

inbreeding and determine the evolution of genetic variability (Keller and Waller 2002; Bensch et al. 

2006; Coulson et al. 2011; Geffen et al. 2011). Determining wolf population structure and 

dynamics, however, is not trivial (Duchamp et al. 2012). Wolves are distributed at low densities 

across large geographic areas, often in forested mountain regions, and their individual and familial 

home ranges are wide (Jedrzejewski et al. 2007). In these conditions, standard field methods based 

on direct observations, livetrapping and radiotelemetry, snow-tracking, and distance sampling 

(Wilson and Delahay 2001; Meijer et al. 2008; Blanco and Cortes 2012) are challenging or 

exceedingly expensive at a large scale (Boitani et al. 2012; Galaverni et al. 2012). Consequently, 

most of the published studies report details based on short-term, empirical studies (i.e., Scandura et 

al. 2011). The result is that values of crucial demographic parameters such as survival, abundance, 

turnover, dispersal, and reproduction rates remain poorly known (Mech and Boitani 2003). Here, 

the results of a 9-year noninvasive genetic monitoring in a wolf population that recently recolonized 

the Apennine Mountains of the Northern Italy were summarized (Caniglia et al. 2010, 2012). This 

research was designed also to determine the genetic variability and integrity of the population, 

which might have been threatened by reduced effective size and hybridization with domestic dogs 

(Randi 2011); the number of packs (Mech and Boitani 2003); the size of the packs, including the 
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number of unrelated (adoptee) wolves (Jedrzejewski et al. 2005); the relatedness of individuals in 

the packs and the frequency of inbred reproductive pairs (Lehman et al. 1992; vonHoldt et al. 

2008); and the frequency of pack splitting during the process of population expansion (Jedrzejewski 

et al. 2005). Based on the territorial and hierarchical organization of wolf populations (Mech 1999), 

locations and composition of the wolf packs predicting that dominant individuals would be sampled 

within defined geographic ranges were reconstructed (corresponding to their territories - Fuller et al. 

2003); distinct packs would have non-overlapping ranges, thus dominants from distinct packs 

would be sampled in non-overlapping areas (Apollonio et al. 2004; Kusak et al. 2005, vonHoldt et 

al. 2008); dominants would mark their territories with scats and urine (Zub et al. 2003; Barja et al. 

2005), so they would be sampled more frequently than young or transient individuals; breeding 

pairs should reproduce for at least 1 breeding season, and consequently would be sampled longer 

than young or transients (Mech and Boitani 2003); and pedigrees of familial groups could be 

reconstructed, given the power of the molecular markers used for genotyping (Pemberton 2008). 

The results clarify details of wolf social behavior and wolf population dynamics in an area with 

diverse habitats and prey availability, and provide the basis necessary to forecast future 

demographic trends and ecological roles of wolves in Northern Italy. 

Large carnivores represent also a special case in which the identification of species and individuals 

is fundamental for the attribution of depredation on livestock (Caniglia et al. 2013) and thus, the 

third aim of this thesis was to identify the main factors influencing the wolf distribution and provide 

depredation risk maps as a tool for managers and shepherds to prevent predator attacks. However, 

the identification of the predator and its presence in an area are not sufficient to predict where an 

attack could occur. Modeling habitat-species and predator-prey relationships in human-dominated 

landscapes could play an important role to design large carnivore conservation strategies, especially 

to reduce conflicts with human activities (Treves et al. 2004). The method consisted in the 

identification of the pastures with the highest risk of predation, based on a long-term molecular 

research on wolves. To identify the areas where the presence of the wolf could lead to predation on 

livestock, season-specific models were formulated, because wolf habitat selection changes from the 

grazing (GP; April-September) to the non-grazing (NGP; October-March) period as a consequence 

of variation in resource availability (Milanesi et al. 2012). Ecological niche modeling provide a 

suitable way to analyze presence-only data, as they compare the values of environmental variables 

in the entire study area (the availability distributions), to those in locations where the species has 

been sampled (the utilization distributions; Calenge and Basille 2008). Thus, the General Niche 

Environment System Factor Analysis (GNESFA; Calenge and Basille 2008) was computed with 

wolf genotypes identified during a 12-year monitoring project in a study area of 71,443 km
2
 in 



12 

 

North-Central Apennines and South-Western Alps (Italy) and then, the resulting GP habitat 

suitability maps was used to define depredation risks on livestock in pastures (Kaartinen et al. 2009; 

Marucco and McIntire 2010). Even if wolves are protected by law in Italy and in most of the other 

European countries, its predatory behavior could lead to heavy poaching, which is estimated to kill 

c. 20% of the population each year in Italy (Lovari et al. 2007, Caniglia et al. 2010) and then, 

conservation strategies, aimed at reducing conflicts with human presence and activities, should be 

designed based on accurate population monitoring and predation risk assessment (Treves et al. 

2004). The genetic analyses of all the collected presumed wolf scat samples, necessary for the 

analyses, were performed at the Genetic Laboratory of the Istituto Superiore per la Protezione e la 

Ricerca Ambientale (ISPRA). 

By combining landscape ecology and population genetics aspects, in this thesis, finally landscape 

genetics patterns of the wolf population in Italy were investigated. Landscape genetics assesses how 

the environment affects the movement, dispersal or gene flow of species (Segelbacher et al. 2010) 

and thus gives evidence of functional connectivity within landscapes (Holderegger et al. 2007; 

Holderegger and Wagner 2008). Landscape genetics often uses least cost path (LCP; Cushman 

2006) analysis from resistance surfaces to movement to measure ecological distances among 

populations or individuals. These ecological distances are then correlated to genetic distances. In 

LCP analysis, different levels of resistances to movement must be assigned to particular landscape 

elements. These resistance values are mostly based on expert opinion (Clark et al. 2008; Lee-Yaw 

et al. 2009; Murray et al. 2009) and have usually not been evaluated from empirical data such as 

direct observations, dispersal behavior or GPS and radio-tracking (Stevens et al. 2006; Epps et al. 

2007; Chietkiewicz and Boyce 2009). However, expert knowledge can lead to subjective 

uncertainty and strongly influence the results of landscape genetic analysis (Cushman et al. 2010; 

Cushman and Lewis 2010; Huck et al. 2010). Alternatively, habitat suitability models, based on 

distribution data of species, could be applied as a potentially more objective means to assign 

resistance values in LCP. Here, the reciprocal of the value of a habitat suitability model is directly 

used as a values for the resistance to movement of particular landscape elements (Wang et al. 2008). 

Expert knowledge is therefore not involved in the assignment of resistance values. The use of 

habitat suitability models in landscape genetics is, however, not without caveats. First, there is often 

bias in the locations of samples or observations, used for modeling habitat suitability, and species 

might also have different detectability in different landscape elements (O’Brien et al. 2006). 

Second, Spear et al. (2010) highlighted that suitability models mainly reflect the reproductive 

habitat or the home range of species but not necessarily movement through the landscape during 

dispersal. Habitat suitability models might therefore ignore critical features of inter-population 
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movement and dispersal. Nevertheless, Laiola and Tella (2006) and Wang et al. (2008) presented 

two empirical applications of habitat suitability models in landscape genetics, which showed 

significant correlations between genetic distances and resistance surfaces based on habitat 

suitability. Similarly, Brown and Knowles (2012), Duckett et al. (2013) and Wang et al. (2013) 

successfully used different types of habitat suitability models in landscape genetics. A large variety 

of habitat suitability models have been developed during the recent years, and comparisons of 

different methods were carried out to find the best model to define species distributions or to 

forecast population expansions (Jones-Farrand et al. 2011). However, most of the landscape genetic 

studies that applied habitat suitability modeling used only one particular habitat suitability model in 

their analyses. Hitherto, no thorough comparison and evaluation of different habitat suitability 

models, to assign resistance values in LCP modeling and landscape genetics, has been carried out. 

The aim was to find habitat suitability models that provided highest efficiency in LCP prediction 

and landscape genetic analysis. For this purpose, ten widely used habitat suitability models were 

applied to identify suitable habitat and validated their efficiency. According to Wang et al. (2008) 

and Pullinger and Johnson (2010), resistance values were calculated from the resulting habitat 

suitability maps as 1 – habitat suitability. Ecological distances were determined as the length along 

LCPs as well as straight-line Euclidean (geographical) distances (Etherington and Holland 2013; 

Van Strien et al. 2012). Then, the power of the ecological distances obtained from the ten different 

habitat suitability models was evaluated to explain genetic distances while also considering the 

effects of Euclidean distance in a landscape genetic framework. Thus, partial Mantel tests, which 

are traditionally used in landscape genetics, multiple regression on distance matrices, which is the 

state of the art method of statistical analysis in landscape genetics, and fore-front mixed effect 

models were applied (Van Strien et al. 2012). The data set consisted of about 1,000 wolves 

originating from a long-term genetic monitoring program (12 years) across a large study area of 

about 100,000 km
2
 in Italy. The landscape genetics analyses were performed at the Research Units 

of Biodiversity and Conservation Biology if the WSL Swiss Federal Research Institute. 
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MATERIALS AND METHODS 

 

M.1. Changes of wolf diet in Italy in relation to the increase of wild ungulate abundance 

 

An analysis of the scientific papers about the feeding habits of wolves in Italy was carried out 

taking into consideration the studies on the analysis of scats because they were more numerous than 

those that used predation data. Studies published in scientific journals, degree, masters and PhD 

theses, and unpublished reports were considered. If a study summarized results from more than one 

study site, these were analyzed separately, i.e. per site.  

For each study, the absolute percentage of occurrence (ratio between the number of times that a 

prey occurs in the sample and the sample size) of seven food categories (Wild ungulates, Livestock, 

Small mammals, Other vertebrates, Fruits, Other vegetables, Garbage) was considered and then the 

percentage of occurrence calculated for each wild ungulate species. Moreover, the diet breadth was 

calculated by the normalized Levins’ B index on food categories (Feisinger et al. 1981).  

At a local level, the data on wolf diet from the Genova province (northern Apennines) from 1987 to 

2005 was considered, computing for each year the frequency of occurrence of pooled wild 

ungulates, and of each species that occurred in scats. 

Population estimates of the different species of wild ungulates in Italy was extrapolated from Pavan 

and Berretta Boera (1981), Pedrotti et al. (2001), and Apollonio (2004); the trend at national level 

was obtained by extrapolation, assuming a constant numeric increase between time intervals 

(years), thus obtaining a rate of increase that linearly decreases with the increase in population. 

The diet composition of wolves among geographic areas was compared by nonparametric 

multivariate analysis of variance (NPMANOVA; Anderson, 2001; Hammer, 2010) with 

permutation (10,000 replicates) and pairwise comparisons with Bonferroni’s correction; 

furthermore, each variable was tested with the Kruskall–Wallis test. For this aim the examined 

studies were assigned to the following geographic areas: southern-central Apennines (Region 

administrations: Umbria, Abruzzo, Calabria), northern Apennines (Region administrations: 

Piedmont, Lombardy, Liguria, Emilia-Romagna, Tuscany), and western Alps (Region 

administration: Piedmont) (Fig. M.1.1).  

To show significant trends of wild ungulate and livestock use and of diet breadth, curve-fit analyses 

were used with the time as independent variable. The same type of analysis was used to show the 

type of relationships between wild prey usage and their abundance. 
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Figure  M.1.1 Distribution of the analyzed studies on wolf diet in Italy carried out from 1976 

to 2004 (circles: south-central Apennines; triangles: northern Apennines; diamonds: western 

Alps; shaded area: wolf range). 
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M.2. Selection of wild ungulates by wolves in an area of the Northern Apennines (North 

Italy) 

 

Study area 

in the study area covered an 860 km
2
 mountain area located in the western part of the Northern 

Apennines (North Italy: 44°46’17.40’’N, 9°23’11.04’’E) with elevations of 500-1700 m a.s.l.. The 

community of wild ungulates included, in order of abundance: wild boar (Sus scrofa), roe deer 

(Capreolus capreolus, fallow deer (Dama dama), and red deer (Cervus elaphus). The last two 

species were localized in two distinct parts of the study area, and the former two were widespread 

over the whole territory. Wild boars shot by hunters increased from 600 individuals in the nineties 

to 2650 in 2008, roe deer densities, estimated by drive and vantage point counts, increased from 5.9 

per km
2
 in 2005 (the first year of census) to 8.6 per km

2
 in 2008, fallow deer density averaged 1.9 

per km
2
 from 2006 to 2008 (drive and vantage point counts), and red deer roaring males increased 

from 22 in 2002 to 33 in 2008 (data from the Wildlife Services of the provinces of Piacenza and 

Pavia). Livestock was present on pastures located on the ridges of mountain chains from April to 

October; mainly cattle but also goats, sheep, and horses were free ranging during the grazing period. 

Their numbers were constant over the last twenty years: cattle amounted to 1996 heads, goats and 

sheep to 757, and horses to 157 (data from veterinary services of the provinces of Piacenza and 

Pavia).  

By snow-tracking, wolf-howling and camera-trapping, a presence of four main packs of wolves was 

estimated in the study area, respectively of 7, 5, 4, and 2 individuals, and a small number of lone 

wolves. The presence of free ranging or feral dogs has never been recorded in the study area and the 

wolf was the only species of large carnivore present in this region. 

 

Data collection 

Itineraries traced on footpaths and randomly chosen (N=25) were selected among those existing in 

the study area (total length = 168 km, average ± SD = 7.0 ± 2.3 km, min. = 2.8 km, max. = 11.3 

km). From June 2007 to May 2008 all transects were covered once a season (winter: December to 

February; spring: March to May; summer: June to August; autumn: September to November) 

searching for wolf scats and signs of wild ungulate presence. On itineraries, all fresh wolf scats 

were collected and wild ungulate signs were recorded (tracks, rooting, resting sites, wallowing, and 

rubbing), in order to estimate the proportions of use and availability of the different species. 

 



17 

 

Diet analysis 

Wolf diet was studied by scat analysis. Scats were preserved in PVC bags at -20°C for one month, 

and then they were washed in water over 3 sieves with decreasing meshes (0.5-0.1 mm). Prey 

species were identified from undigested remains: hairs, bones, hoofs, and nails (medium and large 

sized mammals), hairs and mandibles (small mammals) seeds and leaves (fruits and plants). 

Moreover, hairs were washed in alcohol and identified by microscopical observation of cortical 

scales and medulla (Brunner and Coman 1974; Debrot et al. 1982; Teerink 1991; De Marinis and 

Asprea 2006). 

The proportion of prey was assessed for each scat as they were eaten (Kruuk and Parish 1981; 

Meriggi et al. 1991, 1996; Meriggi and Lovari 1996) and each prey was assigned to one of the 

following percent volumetric classes: <1%; 1-5%; 6-25%; 26-50%; 51-75%; 76-95%; >95%. All 

the identified preys were grouped into 5 food categories (Wild ungulates, Livestock, Medium sized 

mammals, Small mammals, and Vegetables). For each food category and species of wild and 

domestic ungulates was calculated: i) percent frequency of occurrence (FO%), and ii) mean percent 

volume considering all the examined scats (MV%). Moreover, for wild ungulate species, the 

relative consumed biomass (%) was calculated following the method proposed by Floyd et al. 

(1978) and using the regression equation formulated by Ciucci et al. (2001) on European prey 

species of wolves: 

y = 0.274 + 0.011x 

where y is the biomass (kg) of prey for each collectable scat and x is the live weight of prey. The 

average weight of wild boar and fallow deer was calculated from local data of shot individuals (59.4 

kg and 56.5 kg respectively), while the average weight of roe deer and red deer were calculated 

from literature data (roe deer: 20.7 kg, Soffiantini et al. 2006; red deer: 98.5 kg, Mattioli and 

Nicoloso 2010).   

 

Statistical analysis 

The adequacy of sample size was assessed using the method proposed by Hass (2009). Brillouin 

index (1956) was calculated: 

 

where Hb is the diversity of prey in the sample, N is the total number of individual prey taxa in all 

samples and ni is the number of individual prey taxa in the i
th

 category. A diversity curve was then 

calculated by increments of two samples randomly taken. For each sample, a value of Hb was 

calculated and then re-sampled 1,000 times by the bootstrap method to obtain a mean and 95% 

Confidence Interval. Adequacy of sample size was determined by whether an asymptote was 
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reached in the diversity curve and in another curve calculated from the incremental change in each 

Hb with the addition of two more samples. Both curves were plotted against the number of analyzed 

scats. 

Seasonal variations of the frequency of occurrence of food categories and ungulate species were 

analysed by the Likelihood ratio test (exact test with permutation, 10,000 replicates). Seasonal 

differences of the mean percent volume of food categories and ungulate species were tested by 

Nonparametric Multivariate Analysis of Variance (NPMANOVA) with permutation (10,000 

replicates) and pairwise comparisons using Bonferroni correction. Furthermore, each variable was 

tested by the Kruskall-Wallis test with permutation (10,000 replicates) and pairwise comparisons 

with adjusted P-values (Dunn 1964). 

Wolf diet breadth was estimated in each season by the B Index (Feisinger et al. 1981): 

 

Where pi is the proportion of usage of the i
th

 prey item and R is the number of prey items found in 

the diet. The index ranges from 1/R (usage of one item only) to 1 (when all items are equally used). 

To test for significant differences of the B index among seasons wolf scats were re-sampled 1,000 

times by the bootstrap method and calculated the B index for each bootstrap sample, in order to 

estimate the average and the confidence interval at 95% of the index distribution (Dixon 1993; 

Hesterberg et al. 2005). Then, the superposition of confidence intervals between each pair of 

seasons was verified. Wolf selection of wild ungulate species was evaluated by the Manly 

preference index α (Manly et al. 2002): 

 

Where OUPi is the observed usage proportion for the i
th

 species calculated from the estimated 

biomass, and EUPi is that expected on the basis of the species availability (i.e. the proportion of 

presence signs detected on itineraries for each species). When preference does not occur, αi= 1/n, 

for each i= 1,...,n. If αi is greater than 1/n, then the species i is selected. Conversely, if αi is less than 

1/n, species i is avoided. To test the reliability of the Manly index, wolf scats were re-sampled 

1,000 times by the bootstrap method. Then, the average values and the 95% confidence intervals of 

the Manly index was calculated in order to verify significant differences of the index values among 

wild ungulate species and among seasons, and from the value 1/n. Finally, the wolf diet resulting 

from the study with the wolf diet in the same area between 1988 and 1990 was compared. The 

comparison was carried out through the Likelihood ratio test with permutation (10,000 replicates) 

on frequency of occurrence of the food categories. 
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M.3. Noninvasive sampling and genetic variability, pack structure, and dynamics in an  

expanding wolf population 

 

Sample collection 

Noninvasive samples (mainly scats) were collected from March 2000 to June 2009 by more than 

150 trained collaborators, including staff of the Italian State Forestry Corps, park rangers, wildlife 

managers, researchers, students, and volunteers. Although the external appearance of scats might 

not reflect their age (Santini et al. 2007), collectors were trained to collect samples as fresh looking 

as possible, excluding the most degraded ones. Feces were collected along a total of approximately 

160 trails or country roads averaging about 6.1 km in length. Roads and trails were chosen 

opportunistically based on known or predicted wolf presence, as assessed by field surveys of wolf 

trails and snow tracks, documented kills, wolf-howling, or occasional direct observations, 

approximately covering the entire range of stable wolf distribution in the study area. Roads and 

trails were surveyed at least once per month, on average, either on foot or by car. Samples of 

muscle tissue were obtained from wolves killed accidentally or illegally. Blood samples were 

occasionally obtained during rescuing operations on wolves wounded or in poor health condition. 

Fecal sample collection did not require any direct interaction with the animals. The tissue samples 

were obtained from found-dead wolves legally collected by officers on behalf of the Italian Institute 

for Environmental Protection and Research (Istituto Superiore per la Protezione e la Ricerca 

Ambientale). No animal was sacrificed for the purposes of this study. Blood samples were obtained 

from rescued animals by appropriately trained veterinary personnel. Anesthesia was used whenever 

necessary to minimize any stress on the animals during handling procedures. All the procedures 

followed guidelines approved by the American Society of Mammalogists (Sikes et al. 2011). The 

coordinates of every sample (Fig. M.3.1) were recorded either on a 1:25,000 topographic map or by 

global positioning system devices, then digitalized on ARCGIS 10.0 (ESRI, Redlands, California).  

The large study area and long-term program did not allow us to standardize or randomize sampling 

in space and time. Nevertheless, as highlighted in Jedrzejewski et al. (2008), heterogeneity should 

not bias the results in any systematic way. Small external portions of scats and clean tissue 

fragments were individually stored at -20°C in 10 vials of 95% ethanol. Blood samples were stored 

at -20°C in 2 vials of a Trissodium dodecyl sulfate buffer. A total of 5,065 samples were collected 

including 4,998 scats, 4 hair tufts, 2 urine stains found during snow-tracking, 57 samples of muscle 

tissue obtained from wolves killed accidentally or illegally, and 4 blood samples obtained from live 

trapped wolves. More feces were collected in autumn and winter (72.3%) than in spring and 

summer. The average number of samples per year was 562.8 ± 334.7 for the entire study area, and 
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234.9 ± 174.2, 146.6 ± 101.4, and 160.9 ± 53.2 in the eastern, central, and western sectors, 

respectively. DNA was automatically extracted using a MULTIPROBE IIEX Robotic Liquid 

Handling System (Perkin Elmer, Weiterstadt, Germany) and QIAGEN QIAmp DNA stool or 

DNeasy tissue extraction kits (Qiagen Inc., Hilden, Germany). All the individual genotypes were 

assigned to their population of origin using 168 reference wolf genotypes (76 females and 92 males, 

randomly selected from wolves found dead in the last 20 years across the entire wolf distribution in 

Italy). All these animals showed the typical Italian wolf coat color pattern and neither 

morphologically nor genetically detectable signs of hybridization (Randi 2008). A panel of 

reference dog genotypes from 115 blood samples randomly selected from wolf-sized dogs (50 

females and 65 males) living in rural areas in Italy was also used. 

 

Figure M.3.1. The study area in the Emilia Romagna and Tuscany Apennines in Italy, with 

locations of the noninvasive wolf samples (filled circles) and wolves found dead (stars). The 

protected areas are in gray. Rectangles indicate the 3 main sectors of the study area. The 

eastern sector includes: FI = Florence Province, FO = Forlì-Cesena Province, and FCNP = 

Foreste Casentinesi National Park. The central sector includes: RA = Ravenna Province, and 

BO = Bologna Provinces. The western sector includes: MO = Modena Province, RE = Reggio 

Emilia Province, PR = Parma Province, and PC = Piacenza Province. Longitude and latitude 

are indicated on the x- and y-axes in decimal degrees (datum WGS84). 

 

 

Laboratory methods 
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Individual genotypes for samples were identified at 12 unlinked autosomal canine microsatellites 

(short tandem repeats [STR]): 7 dinucleotides (CPH2, CPH4, CPH5, CPH8, CPH12, C09.250, and 

C20.253) and 5 tetranucleotides (FH2004, FH2079, FH2088, FH2096, and FH2137), selected for 

their high polymorphism and reliable scorability for wolves and dogs. Sex of samples was 

determined using a polymerase chain reaction (PCR)–restriction fragment length polymorphism 

assay of diagnostic ZFX/ZFY gene sequences (Caniglia et al. 2012, 2013, and references therein). 

A panel of 6 STR (FH2004, FH2088, FH2096, and FH2137, CPH2, and CPH8) was used to identify 

the genotypes with Hardy–Weinberg probability-of-identity (PID) among unrelated individuals, 

PID = 8.2 x 10
-6

, and expected fullsiblings, PIDsibs = 7.3 x 10
-3

 (Mills et al. 2000; Waits et al. 2001) 

in the reference Italian wolves.  

Another panel of 6 STR (FH2079, CPH4, CPH5, CPH12, C09.250, and C20.253), also selected for 

their polymorphism and reliable scorability was used to increase the power of admixture and 

kinship analyses, decreasing the PID values to PID = 7.7 x 10
-9

 and PIDsibs = 3.1 x 10
-4

. Maternal 

haplotypes were identified by sequencing 350 base pairs of the mitochondrial DNA (mtDNA) 

control region, diagnostic for the haplotype W14, which is unique to the Italian wolf population, 

using primers L-pro and H350 (Randi et al. 2000). Paternal haplotypes were identified by typing 4 

Y-linked microsatellites (Y-STR): MS34A, MS34B, MSY41A, and MS41B (Sundqvist et al. 2001), 

characterized by distinct allele frequencies in dogs and wolves (Iacolina et al. 2010). 

Autosomal and Y-linked STR loci were amplified in 7 multiplexed primer mixes using the 

QIAGEN Multiplex PCR Kit (Qiagen Inc.), a GeneAmp PCR System 9700 Thermal Cycler 

(Applied Biosystems, Foster City, California), and the following thermal profile: 94°C for 15 min, 

94°C for 30 s, 57°C for 90 s, 72°C for 60 s (40 cycles for scat, urine, and hair samples, and 35 

cycles for muscle and blood samples), followed by a final extension step of 72°C for 10 min. 

Amplifications were carried out in 10-μl volumes including 2 μl of DNA extraction solutions from 

scat, urine, and hair samples, 1 μl from muscle or blood samples (corresponding to approximately 

20–40 ng of DNA), 5 μl of QIAGEN Multiplex PCR Kit, 1 μl of QIAGEN Q solution (Qiagen 

Inc.), 0.4 μM deoxynucleotide triphosphates, from 0.1 to 0.4 μl of 10 μM primer mix (forward and 

reverse), and RNase-free water up to the final volume. The mtDNA control region was amplified in 

a 10-μl PCR, including 1 or 2 ll of DNA solution, 0.3 pmol of the primers L-Pro and H350, using 

the following thermal profile: 94°C for 2 min, 94°C for 15 s, 55°C for 15 s, 72°C for 30 s (40 

cycles), followed by a final extension of 72°C for 5 min. PCR products were purified using 

exonuclease/shrimp alkaline phosphatase (Exo-Sap; Amersham, Freiburg, Germany) and sequenced 

in both directions using the ABI Big Dye Terminator kit (ABI Biosystems, Foster City, California) 

with the following steps: 96°C for 10 s, 55°C for 5 s, and 60°C for 4 min of final extension (25 



22 

 

cycles). DNA from scat, urine, and hair samples was extracted, amplified, and genotyped in 

separate rooms reserved only to low-template DNA samples, under sterile ultraviolet laminar flood 

hoods, following a multiple- tube protocol (Caniglia et al. 2012), including both negative and 

positive controls. Genotypes were obtained from blood and muscle DNA, replicating the analyses 

twice. DNA sequences and microsatellites were analyzed in a 3130XL ABI automated sequencer 

(Applied Biosystems), using the ABI software SEQSCAPE 2.5 for sequences, and GENEMAPPER 

4.0 for microsatellites (Applied Biosystems).  

 

Population structure, assignment, and identification of wolf x dog admixed genotypes 

Individual genotypes were assigned to their population of origin (wolves or dogs) using 

STRUCTURE 2.3.3 (Falush et al. 2003). STRUCTURE was ran with 5 replicates of 10
4
 burn-in 

followed by 10
5
 iterations of the Monte Carlo Markov chains, selecting the ‘‘admixture’’ model 

(each individual may have ancestry in more than 1 parental population), either assuming 

independent or correlated allele frequencies. The optimal number of populations K was identified 

using the ΔK procedure (Evanno et al. 2005). At the optimal K the average proportion of 

membership (Qi) of the sampled populations (wolves or dogs) was assessed to the inferred clusters. 

Genotypes were assigned to the Italian wolf or dog clusters at threshold qi = 95 (individual 

proportion of Membership; Randi 2008), or identified them as admixed if their qi values were 

intermediate. Putative wolf x dog hybrids were checked further using additional admixture analyses 

on observed and simulated genotypes obtained by HYBRIDLAB (Nielsen et al. 2006) and using 

diagnostic mtDNA and Y-STR haplotypes. 

 

Genetic variability 

Based on the assignment tests, all genotypes were grouped as those of wolves, dogs, or hybrids. 

GENALEX 6.1 (Peakall and Smouse 2006) was used to estimate allele frequency by locus and 

group, observed (HO) and expected unbiased (HE) heterozygosity, mean (NA) and expected (NE) 

number of alleles per locus, number of private alleles, and PID and PIDsibs. The polymorphic 

information content (PIC) was calculated using CERVUS 3.0.3 (Kalinowski et al. 2007). Wright’s 

inbreeding estimator (FIS; Weir and Cockerham 1984) and departures from Hardy–Weinberg 

equilibrium were computed using GENETIX 4.05 (Belkhir et al. 1996; 2004). FIS significance was 

assessed using 10,000 random permutations of alleles in each population. The occurrence of null 

alleles was tested in MICROCHECKER (Van Oosterhout et al. 2004). Inbreeding coefficient F of 

Lynch and Ritland (1999) was estimated using COANCESTRY 1.0 (Wang 2011), with allele 

frequencies and PCR error rates assessed from the sampled population and 95% confidence 
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intervals (CIs) generated through 1,000 bootstrapped simulations. The sequential Bonferroni 

correction test for multiple comparisons was used to adjust significance levels for every analysis 

(Rice 1989). Estimates of variability were express as the mean ± SD. 

 

Identification of packs, pedigrees, and dispersal 

All the genotypes that were sampled in restricted ranges (< 100 km
2
) at least 4 times and for periods 

longer than 24 months were selected. Their spatial distributions was determined by 95% kernel 

analysis, choosing band width using the least-squares cross-validation method (Seaman et al. 1999; 

Kernohan et al. 2001), using the ADEHABITATHR package for R (Calenge 2006) and mapped 

them using ARCGIS 10.0. According to spatial overlaps, individuals were split into distinct groups 

that might correspond to packs, for which parentage analyses were performed. The complete 

genealogy of each group were reconstructed using a maximum-likelihood approach implemented in 

COLONY 2.0 (Wang and Santure 2009). For each area, as candidate parents all the individuals 

sampled in the 1st year of sampling and more than 4 times in the same area were considered and as 

candidate offspring all the individuals collected within the 95% kernel spatial distribution of each 

pack and in a surrounding buffer area of approximately 17-km radius from the kernel (see 

‘‘Results’’). COLONY was ran with allele frequencies and PCR error rates as estimated from all the 

genotypes, assuming a 0.5 probability of including fathers and mothers in the candidate parental 

pairs. To be sure that all the possible parentages were detected, the best maximum-likelihood 

genealogies was compared to those obtained by an ‘‘open parentage analysis’’ in COLONY, using 

all the males and females as candidate parents, and all the wolves sampled in the study area as 

candidate offspring. The best maximum-likelihood genealogies reconstructed by COLONY were 

compared with those obtained by a likelihood approach in CERVUS, based on the Mendelian 

inheritance of the alleles, accepting only parent–offspring combinations with at most one-

twentyfourth allele incompatibilities, and father–son combinations with no incongruities at Y-STR 

haplotypes. Parentage assignments were determined in CERVUS using natural log of likelihood 

ratio scores for candidate parents, given the set of candidate offspring genotypes and the allele 

frequencies in the whole population (when a natural log of likelihood ratio score was positive, the 

candidate parent is the most likely true parent (Kalinowski et al. 2007). Simulations to determine 

the likelihood of randomly selected parents was also performed. Natural log of likelihood ratio 

values that were significant at 95% and 80% thresholds were considered. Natural log of likelihood 

ratio scores were generated by simulating 10,000 offspring and 50 candidate males, allowing for 

20% of the population to be unsampled, 20% incomplete multilocus genotypes, and the genotyping 

error rate as empirically estimated from the data set (vonHoldt et al. 2008). Values of relatedness (r; 
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Queller and Goodnight 1989) were estimated within and among packs using KINGROUP 2.0 

(Konovalov et al. 2004) and compared those with values of 1
st
 order (parent–offspring plus full 

siblings) and unrelated dyads estimated from 1,000 simulated pairs. A likelihood ratio test was used 

with a primary hypothesis of r = 0.25 (half siblings or cousins) and r=0.50 (full-siblings or parent–

offspring) versus a null hypothesis of r = 0.00 (unrelated) to test for inbreeding within and among 

packs, at the α = 0.05 level. Locations of individuals in the packs were used in ARCGIS 10.0 to 

reconstruct the areas and centroids of the 95% kernel spatial distribution for each pack, and the 

distances between centroids; reconstruct the minimum, median, and maximum distance of 

genotypes to the pack centroids; and identify dispersing wolves. Individuals sequentially sampled in 

different territories (> 17 km apart), or that reproduced in a pack different from their natal one were 

identified as putative dispersers. Individuals that were not assigned to a pack and the dispersers that 

did not establish in any pack were considered as potential floaters. 

 

Spatial analyses 

Fine-scale spatial genetic structure were assessed by multivariate spatial autocorrelation analyses of 

geographical and genetic distances in SPAGEDI 1.2 (Hardy and Vekemans 2002) and estimated 

through the autocorrelation kinship coefficient Fij (Loiselle et al. 1995), which is similar to Moran’s 

I (Smouse and Peakall 1999) but is relatively unbiased even with low sampling variance. Fij was 

calculated for distance classes that had been determined based on wolves’ home ranges and 

following recommendations of Hardy and Vekemans (2002). Thus, the equal frequency method was 

used, which assumes that more than 50% of all individuals were represented at least once in each 

spatial interval. The 95% Fij CIs and the nonrandom spatial genetic structure were tested via 10,000 

permutations and the effects of behavioral biases (sex-biased dispersal and pack relatedness) were 

investigated by computing autocorrelations separately in males, females, and breeding pairs. 

Correlations between geographic and genetic distance of individuals and packs were computed after 

permuting the locations, similarly to a Mantel test (Mantel 1967). Whenever possible, additional 

field information such as snow-tracking, wolf-howling, camera trapping, and occasional direct 

observations were used to evaluate the reliability of the inferred pack structure and locations. 
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M.4. Non-invasive genetic sampling to predict species ecological niche and depredation risk 

 

Study area 

The study area (71,443 km
2
) includes the entire wolf range in Italy and is located from the Central 

Apennines to the Southwestern Alps (7°49’–13°91’ E; 45°–42°39’ N; Fig.1). It shows high habitat 

diversity as the result of wide altitudinal (from 0 to 2,476 m a.s.l.) and climate (from temperate to 

continental, to alpine) gradients, landscape morphology, human population density and occurrence 

of human activities. The upper part of the area is characterized by mountains covered by meadows, 

pastures and rocky habitats. On the lower mountains and hills, rural ecosystems (mostly abandoned) 

are turning back into natural shrub lands and deciduous, mixed or evergreen forests. Cultivated 

fields and artificial surfaces (urban areas, villages, roads, railways) are located in more accessible 

hills, main valleys, plains and coasts. The environmental heterogeneity, the expansion of natural 

habitats and re-introduction projects, explain the high diversity of the community of wild ungulates: 

wild boar, roe deer, follow deer, red deer, and mouflon (Ovis musimon). Domestic ungulates, 

mostly cows (Bos taurus), sheep (Ovis aries) and goats (Capra hircus), are free ranging in high-

altitude pastures from April to October. 

 

Experimental design and wolf presence data 

The experiment was carried out using putative wolf samples (saliva, urines, feces, hairs, blood, and 

muscular tissues from carcasses) collected, from January 2000 to December 2011, along a total of c. 

400 trails or country roads averaging about 5.1 km (SD = 2.2) in length and dead wolf sites by more 

than 150 researchers, students, volunteers and employees of Parks, Forestry Corps and local or 

national administrations. Scat and tissue samples were individually stored at -20° C in 10 volumes 

of 95% ethanol; blood sample were stored in a Tris/SDS buffer (see above; Caniglia et al. 2012). 

Sampling locations were georeferenced in the Universal Transverse of Mercator World Geodetic 

System (UTM WGS84 32N) coordinate system and then separated in locations collected during the 

GP and the NGP. The study area was divided into adjacent isometric cells of 5 x 5 km, 

approximately the resolution chosen in previous studies about habitat suitability modeling for 

wolves in Italy (Massolo and Meriggi 1998; Marucco and McIntire 2010). In long-term researches, 

spatial and temporal variations in sampling efforts would inevitably occur. However, the large scale 

and long duration of a study should overcome this bias and avoid affecting the results in any 

systematic way (Jedrzejewski et al. 2008). To avoid that GNESFA results could be influenced by 

differences in seasonal collections sampling effort was estimated in the two periods by Gaussian 
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kernels (Elith et al. 2010). Then, differences in the resulting kernel maps were tested with a 

Wilcoxon-signed rank test (Phillips et al. 2006; Rebelo and Jones 2010). 

 

Predictor Variables 

For the entire study area, data on ecological, topographic, trophic and anthropogenic features were 

collected (Table M.4.1). Habitat diversity (Shannon Diversity Index) and land cover types were 

obtained from the Coordination of Information on the Environment (CORINE Land Cover 2006, IV 

Level; http://www.sinanet.isprambiente.it), the European land cover database. Topographic 

variables were obtained from a Digital Elevation Model of Italy with a spatial resolution of 20 m 

(http://www.sinanet.isprambiente.it). From this, aspect, slope and roughness were derived (rugged 

terrain, topographically uneven, broken, or rocky and steep). Prey species availability and 

abundance are the main food resources and affect the distribution of wolves. In the analysis the 

abundance of wild ungulate prey over the study area was included (Carnevali et al. 2009) and the 

Shannon diversity index for wild prey was calculated, since the occurrence of more than one species 

influences the wolf habitat suitability (Massolo and Meriggi 1998, Ciucci et al. 2003). The 

abundance and Shannon diversity Index of domestic prey was derived from the Agricultural Italian 

Census (http://censimentoagricoltura.istat.it). As human factors, the presence and distance form 

artificial surfaces, as well as the human and hunter densities were considered (http://dati.istat.it). All 

variables were re-sampled to a resolution (5,000 m cell size) using ArcGIS 10 (ESRI, Redlands, 

California). 

 

http://www.sinanet.isprambiente.it/
http://www.sinanet.isprambiente.it/
http://censimentoagricoltura.istat.it/
http://dati.istat.it/
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Table M.4.1. Variables used in the General Niche Environment System Factor Analysis. 

 

Features Variables Units 

Land cover Coniferous forests Percentage (%) 

Mixed woods Percentage (%) 

Shrub-lands Percentage (%) 

Cultivated fields Percentage (%) 

Beech woods Percentage (%) 

Water courses  Percentage (%) 

Rocky areas Percentage (%) 

Meadows Percentage (%) 

Habitat Shannon Diversity Index Sum of the natural logarithm of the 

proportion of each category in the 

sample square multiplied by -1 

Topography Altitude Meter a.s.l. (m) 

Flat terrains  Percentage (%) 

North aspect Percentage (%) 

North – East aspect Percentage (%) 

East aspect Percentage (%) 

South – East aspect Percentage (%) 

South aspect Percentage (%) 

South – West aspect Percentage (%) 

West aspect Percentage (%) 

North – West aspect Percentage (%) 

Slope Degree (°) 

Roughness Ratio of the average length of 

isoipses in the sample square over 

sample square side 

Trophic 

resources:  

wild prey 

Wild boar (Sus scrofa) density Number per km
2
 

Roe deer (Capreolus capreolus) density Number per km
2
 

Fallow deer (Dama dama) density Number per km
2
 

Red deer (Cervus elaphus) density Number per km
2
 

Mouflon (Ovis musimon) density Number per km
2
 

Wild prey Shannon Diversity Index Sum of the natural logarithm of the 

proportion of each species in the 

sample square multiplied by -1 

Trophic 

resources:  

domestic prey 

Bovid (Bos taurus) density Number per km
2
 

Sheep (Ovis aries) density Number per km
2
 

Goat (Capra hircus) density Number per km
2
 

Domestic prey Shannon Diversity Index Sum of the natural logarithm of the 

proportion of each species in the 

sample square multiplied by -1 

Anthropogenic  

factors 

Artificial surfaces Percentage (%) 

Distance to artificial surfaces Meters (m) 

Human population density Number per km
2
 

Hunter density Number per km
2
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Modeling methods 

Wolf samples were genotyped following the methods showed in M.3 (Caniglia et al. 2014). The 

locations of genotyped wolf samples were used to rank each cell as ‘used’ if at least one wolf 

genotype was sampled within its boundary. Used and available sites were compared (all the cells of 

the study area) through a niche-based approach, GNESFA. It identified the relations between the 

availability and utilization distributions with several advantages: it doesn’t rely on any population 

structure hypotheses (autocorrelation), it extracts non-correlated components, it is especially suited 

to analyse presence-only data and compute habitat suitability maps (Basille 2008). Two measures of 

the species ecological niche are provided: the marginality (the direction in which the species differs 

from the average conditions of the whole area) and the specialization (the ratio between the 

variance of available conditions and the variance of conditions used by the species; Hirzel et al. 

2001; Basille 2008). GNESFA encompasses three complementary analyses: the Factor Analysis of 

the Niche Taking the Environmental as the Reference (FANTER; Calenge and Basille 2008); the 

Mahalanobis Distance Factor Analysis (MADIFA; Calenge et al. 2008); the Ecological Niche 

Factor Analysis (ENFA; Hirzel et al. 2001). The FANTER is centered on the availability 

distribution and identifies the variables affecting the shape, the central tendency and the spread of 

the niche relative to the environment considered, showing how the niche in the ecological space 

differs from the study area; both the first and the last components in the analysis were considered 

because the formers explained the marginality, whereas the latters the specialization (Calenge and 

Basille 2008). The MADIFA is centered on the utilization distributions and determines whether the 

environment is similar to that occupied by the species; the more similar the conditions in a location 

are to the centroid of the ecological niche (the optimum of the species), the smaller is the 

Mahalanobis distance (D
2
) and the more suitable the habitat is at that location (Calenge et al. 2008; 

Knegt et al. 2011). The mean D
2
 over the available area was used as a measure of habitat selectivity 

regarding independent variables and the relationship between D
2
 and the range considered was 

analyzed. MADIFA combines marginality and specialization into a single measure of habitat 

selection (Calenge and Basille 2008). Finally, the ENFA is centered both on the utilization and the 

availability distribution (Calenge and Basille 2008); marginality is fully explained by the first 

factor, while specialization by the others. For further details, see Calenge and Basille (2008). 

 

Wolf potential distribution, model validation and predation risk 

Wolf locations were bootstrapped with replacement 1,000 times a season to obtain potential 

distribution maps estimated by MADIFA, the best method in the GNESFA framework to compute 

appropriate suitability maps (Calenge et al. 2008). To provide an assessment of MADIFA’s power, 
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the predicted values were compared with the real ones through the use of (i) Receiver Operator 

Characteristics (ROC) curves (Fawcett 2004; Ko et al. 2011), (ii) correct classification rate (CCR; 

Ahmadi et al. 2013), (iii) Cohen’s kappa (k) (Manel et al. 2001) and (iv) the Boyce’ Index (B) 

(Boyce et al. 2002; Jones-Farrand et al. 2011). Combining MADIFA’s predictions, the wolf average 

(± SD) potential distributions was calculated. Assuming that an increase in wolf suitability 

corresponds to an increase in depredation risk (Kaartinen et al. 2009; Marucco and McIntire 2010), 

the risk probability of pastures was estimated by calculating the probability of wolf presence during 

the GP in all meadows available for livestock breeding.  

The statistical analyses presented here were computed in the open-source software R 

(http://www.R-project.org/). 

http://www.r-project.org/
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M.5. Landscape-genetics and habitat suitability models: general implications of a specific 

application 

 

Data set on Italian wolves 

The data set originated from an area of 97,044 km
2 

from the Central Apennines to the Western-

Central Alps in Italy (6°62’–13°91’ E; 46°46’–42°39’ N; Fig. M.5.1).  

 

Figure M.5.1. Study area in Italy (black lines indicate regional borders, grey line indicates the 

border of the province of Pavia, in the Lombardy region). 
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The data set included 9,317 putative wolf samples (saliva, urine, feces, hairs, blood, muscular 

tissues from carcasses etc.) along randomly chosen trails and country roads collected from 2000 to 

2011, by more than 400 trained people (researchers, students, volunteers, park employers, foresters 

and local or national officers). All samples were geo-referenced in the UTM WGS84 32N-

coordinate system and stored at -20° C in 10 volumes of 95% ethanol or Tris/SDS buffer (Caniglia 

et al. 2012). DNA was extracted using the MULTIPROBE II
EX

 Robotic Liquid Handling System 

(Perkin Elmer) and the QIAGEN stool and tissue extraction kits (Qiagen). Individual multi-locus 

genotypes, gender and taxon (i.e. wolf, dog or hybrid) of each sample were PCR-determined using 

twelve unlinked microsatellites, a sex specific restriction site and taxon-specific markers following 

the procedures reported in Caniglia et al. (2013). Each sample was PCR-amplified four to eight 

times following a multitube approach to diminish artifacts during PCR-amplification. A total of 

4,373 wolf samples belonged to 1,014 individual wolf genotypes, while 350 samples belonged to 93 

dogs and 42 hybrids.  

Hardy-Weinberg equilibrium and linkage disequilibrium tests were carried out between pairs of loci 

across all individual wolf samples using GENEPOP 4.2.1, with Bonferroni correction. Both tests 

were not significant, and all samples and loci were used in further analysis.  

Genetic distances between all pairs of pure wolf individuals (considering the location where a 

particular wolf was first sampled) were determined as the number of shared alleles (dps; Hazlitt et 

al. 2004) using GENALEX 6.41 (Peakall and Smouse 2006). Genetic distances range between 0 

and 1, and small distances indicate that individuals share similar alleles, while large distances show 

that fewer alleles are shared between individuals.  

Due to a wide altitudinal range (from 0 to 4,634 m a.s.l.), distinct climatic gradients (from 

temperate to alpine) and diverse human land uses, the study area shows a high diversity of different 

habitat types. Meadows, pastures, rocky surfaces and glaciers characterize the mountainous part of 

the study area, while, in the lower mountains and hills, traditional rural ecosystems are mostly 

abandoned now and develop into semi-natural shrub-lands and deciduous, mixed or evergreen 

forests. Cultivated fields and urban areas are located in the main valleys, on plains and close to the 

coast. Wild boar, roe deer, follow deer, red deer, mouflon, chamois and ibex are in expansion in the 

study area as a result of the growth of semi-natural habitats and re-introduction projects.  
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Predictor variables, habitat suitability models and validation 

Although the large scale and long time period of the study should overcome problems due to spatial 

and temporal variation in the number of wolf records (Jedrzejewski et al. 2008), It is not possible a 

priori distinguish between areas unsuitable for the species and those under-sampled. As suggested 

by Elith et al. (2010), a measure of sampling effort was calculated (Fig. M.5.2) through Gaussian 

kernel density analysis based on all sampling locations (i.e. wolves, dogs and hybrids). The results 

for each cell of the resulting sampling effort map was used to weight habitat suitability models (see 

below).  

 

Figure M.5.2. (A) Wolf locations (green dots) and (B) sampling effort map (more and less 

intensively sampled areas are given in red and blue, respectively) based on all sample 

locations (including wolves, dogs and hybrids). 
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Data on ecological, topographic, prey and anthropogenic features of the study area were collected. 

CORINE Land cover level IV (European Environment Agency 2006) provided information on 

habitat diversity and land cover types in the study area (Table M.4.1). Topographic variables, 

namely altitude, aspect, slope and landscape roughness were obtained from a digital elevation 

model of Italy with a spatial resolution of 20 m (Table M.4.1). As prey resources play an important 

role in predator distribution (Jedrzejewski et al. 2008; Milanesi et al. submitted), also the abundance 

of wild ungulates obtained from the Italian wild ungulates’ database was included (Carnevali et al. 

2009). The Shannon diversity index of wild prey was calculated, since more than one prey species 

influences habitat suitability for wolves (Ciucci et al. 2003). Moreover, the presence and distance 

from artificial elements (i.e. urban areas, villages, roads, railways) as well as human and hunter 

densities was considered (Table M.4.1). 

Marucco and McIntire (2010) defined the average distance a wolf moves per dispersal time step of 

1,000 m. This value was used as grid cell size for the analysis but, since spatial scale can affect 

landscape analysis (Cushman 2006; Wasserman et al. 2010; Keller et al. 2013; Mateo Sanchez et al. 

2013), additionally grid sizes of 500 m and 2,000 m were considered to investigate the effects of 

grid cell size on habitat suitability and landscape genetic analysis. All variables were re-sampled to 

focus resolution in ARCGIS 10 (ESRI). All wolf sampling locations (including relocations) were 

employed to classify each cell as either "used", if at least one wolf genotype was sampled within its 

boundaries or "available" otherwise. The ten currently most widely used habitat suitability methods 

were chosen. Five different machine learning methods, namely classification tree analysis (CTA; 

Breiman et al. 1984), boosted regression trees (BRT; Friedman et al. 2001), random forest (RF; 

Breiman 2001), maximum entropy (MAXENT; Phillips et al. 2006) and artificial neural network 

(ANN; Ripley 2007), three regression models, i.e. generalized linear models (GLM; McCullagh and 

Nelder 1989), generalized additive models (GAM; Hastie and Tibshirani 1990) and multiple 

adaptive regression splines (MARS; Friedman 1991), a factor analysis, i.e, factorial decomposition 

of Mahalanobis distances (MADIFA; Calenge et al. 2008), and flexible discriminant analysis 

(FDA; Hastie et al. 1994) were applied. 

Sampling effort map values per cell (see above) were used as weights in MADIFA, as a bias grid in 

MAXENT and as case weights in all the other methods. Habitat suitability values range between 0 

and 1, and a threshold value of 0.5 (Bailey et al. 2002) was considered to discriminate between 

areas suitable and unsuitable for wolves. 

With the fractal dimension index (McGarigal et al. 2002), it was verified whether resolution (i.e. 

500 m, 1,000 m and 2,000 m; see above) affected habitat suitability models. To provide an 

assessment of model efficiency, the probability values of wolf occurrence predicted by habitat 
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suitability models with the original ones were compared by the use of (i) receiver operator 

characteristics curves (ROC; Fawcett 2004; Ko et al. 2011), (ii) Cohen’s kappa (k; Manel et al. 

2001) and (iii) Boyce’ index (Boyce et al. 2002; Jones-Farrand et al. 2011). ROC varies from 0 

(worse than a random model, 0.5) to 1 (perfect model), K and Boyce’ index vary from −1 to 1 

(positive values indicate predictions consistent with the evaluation dataset, zero indicates that the 

model is similar to a random model and negative values indicate incorrect models; Hirzel et al. 

2006). A random subsample of 50% of all wolf locations was used to calibrate models and the 

remnant 50% to validate them. 

 

Resistance surfaces and least coast paths 

Habitat suitability values generated by each of the ten above methods were converted into resistance 

to movement values. Resistances were calculated as 1 – habitat suitability per cell (Wang et al. 

2008; Pullinger and Johnson, 2010; Spear et al. 2010). Higher resistance values indicate higher 

costs to animal movement, while lower values represent lower cost levels. LCP analysis was carried 

out based on resistance surfaces on the location where wolves had been firstly sampled. The length 

of each LCP was calculated between all pairs of wolves and used it as a measure of ecological 

distance. In addition, a buffer of 5,000 m around each path was considered (because 10,000 m is 

approximately the square root of the average home range size of a wolf pack; Caniglia et al. in 

press) to evaluate the efficiency of LCPs as ecological corridors. For this aim, wolf relocations (N = 

3,359) was used and the validation methods described further above. Finally, straight-line Euclidean 

distances were generated among each pair of wolves. 

 

Landscape genetic analysis 

The effect of isolation by resistance was investigated by assessing the relationship between genetic 

and ecological distances using three statistical procedures currently used in landscape genetics: (i) 

partial Mantel tests (Legendre 2000); (ii) multiple regression on distance matrices (MRDM; 

Legendre and Fortin 2010; Keller et al. 2013) and (iii) linear mixed effect models (Selkoe et al. 

2010). 10,000 permutations were used to assess significance. Euclidean distances were included as 

an independent matrix in MRDM and linear effect models while, in partial Mantel tests, they were 

used as a second explanatory matrix. In linear mixed effect models, also a Toeplitz covariance 

matrix was considered (Selkoe et al. 2010). The efficiency of the ten different habitat suitability 

models to explain genetic distances was evaluated based on R
2
-values and partial regression 

coefficients β in MRDM and linear mixed effect models and as r-values in partial Mantel tests. R
2
 

values from MRDM, linear effect models and partial Mantel tests cannot be directly compared to 
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each other because of differences in their calculation (Balkenhol et al. 2009). All statistical analyses 

were carried out in R (R Core Team 2013). A summary of this step-by-step procedure is given 

Figure M.5.3.  

 

Figure M.5.3. Step-by-step procedure of the analysis. HSM is the abbreviation of habitat 

suitability maps. Isolation by resistance summarized the three landscape genetics statistical 

analyses: partial mantel tests, multiple regression on distance matrices and mixed effect 

models. 
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RESULTS 

 

R.1. Changes of wolf diet in Italy in relation to the increase of wild ungulate abundance 

 

Differences among geographic areas 

Twenty studies on the wolf diet in Italy were analysed for a total of 28 different study areas, 4 of 

them carried out in the western Alps, 9 in northern Apennines, and 7 in South-central Apennines 

(Table R.1.1).  

Wolf diet was significantly different among geographic areas both considering food categories (F = 

7.16, P = 0.0002), and the species of wild ungulate prey (F = 7.08, P < 0.0001). Considering food 

categories, pairwise comparisons showed significant differences between South-central and 

northern Apennines (P = 0.001) and between South-central Apennines and western Alps (P = 

0.003), instead considering wild ungulate species significant differences resulted for all 

comparisons (P ≤ 0.0005 in all cases). Conversely, diet breadth was not significantly different 

among geographic areas (H = 0.77, df = 2, P = 0.679). 
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Table R.1.1. Frequency of occurrence (%) of wild and livestock ungulates and B index of diet 

breadth in the studies on wolf diet in Italy. 

 

Geographic area N 
Wild 

Ungulates 
Livestock 

Levins’ 

B 
Source 

Western Alps 290 93.1 4.1 0.15 Avanzinelli et al. 2003 a 

 118 87.3 9.3 0.19 Avanzinelli et al. 2003 b 

 494 89.7 11.7 0.21 Ricci 2003  

 568 66.9 28.3 0.30 Marucco 2003  

 848 87.2 9.7 0.20 Gazzola et al. 2005 

Northern 

Apennines 

38 62.5 0.0 0.27 Matteucci 1992 

100 20.0 34.0 0.70 Meriggi et al. 1991 

229 92.0 7.1 0.18 Mattioli et al. 1995 

292 16.1 23.0 0.72 Meriggi et al. 1996 a 

71 35.2 56.0 0.61 Meriggi et al. 1996 b 

156 94.2 4.0 0.20 Meriggi et al. 1996 c 

263 60.8 14.8 0.34 Ciucci et al. 1996 

537 73.4 9.0 0.37 Gilio 2001 

1862 90.2 4.9 0.17 Mattioli et al. 2004 a 

? 94.1 1.2 0.15 Mattioli et al. 2004 b 

? 88.8 7.4 0.17 Mattioli et al. 2004 c 

? 91.3 1.2 0.17 Mattioli et al. 2004 d 

? 85.4 7.8 0.19 Mattioli et al. 2004 e 

868 74.4 14.6 0.14 Reggioni 2004 

190 23.7 59.5 0.43 Schenone et al. 2004 

South-central 

Apennines 

220 0.0 49.0 0.42 Macdonald et al. 1980 

? 0.0 84.0 0.26 Ragni et al. 1996 a 

94 2.0 64.0 0.15 Gambaro 1984 

131 0.0 71.0 0.14 Ragni et al. 1985 

294 26.0 51.0 0.26 Ragni et al. 1996 b 

165 39.4 13.0 0.51 Patalano and Lovari 1993 

116 16.0 74.5 0.37 Borelli 1999 

1162 60.4 13.7 0.22 Ciucci et al. 2004 
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Regarding food categories, the frequency of occurrence of wild and livestock ungulates differed 

significantly among geographic areas (Table R.1.2).  

 

Table R.1.2. Average frequency of occurrence (SD) of food categories and of wild ungulate 

species found in the three geographic areas, and significance of the differences (Kruskall-

Wallis test). 

 

Categories and 

species 

South-central 

Apennines 

Northern 

Apennines 

Western 

Alps 
H P 

Wild ungulates 18.0 (22.52) 67.2 (29.50) 84.9 (10.34) 12.83 0.002 

Livestock 52.5 (26.81) 15.5 (19.46) 12.8 (9.08) 10.76 0.005 

Small mammals 2.2 (2.68) 6.2 (8.27) 1.2 (1.24) 0.31 0.859 

Other vertebrates 16.6 (22.91) 13.2 (21.34) 4.4 (4.09) 0.77 0.680 

Fruits 1.0 (2.67) 9.2 (17.71) 0.0 (0.00) 5.23 0.073 

Other vegetables 13.5 (27.26) 7.2 (10.67) 0.9 (0.88) 0.21 0.901 

Garbage 3.5 (6.40) 1.2 (2.20) 0.0 (0.00) 2.45 0.293 

Wild boar 12.4 (20.20) 39.2 (21.15) 1.6 (2.02) 14.08 0.001 

Roe deer 2.0 (3.27) 18.8 (16.53) 32.3 (10.43) 12.28 0.002 

Fallow deer 0.0 (0.00) 5.4 (11.75) 0.0 (0.00) 7.59 0.022 

Red deer 2.6 (7.28) 2.0 (4.17) 22.6 (19.58) 11.35 0.003 

Mufflon 0.0 (0.00) 2.1 (4.29) 0.3 (0.61) 2.96 0.228 

Chamois* 0.2 (0.43) 0.0 (0.00) 25.3 (24.67) 26.67 <0.0001 

 

* Alpine and Apennine chamois pooled 
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In particular, the frequency of occurrence of wild ungulates was significantly lower in the south-

central Apennines than in the northern Apennines and western Alps (P = 0.005 and P = 0.007 

respectively), whereas the frequency of occurrence of livestock was significantly greater in the 

South-central Apennines in respect to the northern Apennines (P = 0.004). Significant differences 

among geographic areas resulted for wild boar, roe deer, fallow deer, red deer, and chamois (Table 

R.1.2). Wild boar was more used in the northern Apennines than in the south-central range 

(P=0.016) and the western Alps (P=0.004). The frequency of occurrence of roe deer was lower in 

the South-central Apennines in respect to the northern Apennines (P=0.017) and the western Alps 

(P=0.004). For Fallow deer a borderline significance resulted between South-central and northern 

Apennines (P=0.051). Red deer showed greater frequency of occurrence in western Alps than in 

south-central and northern Apennines (P=0.004 and P=0.009, respectively). Finally chamois 

occurred in wolf diet only in Alpine study areas with exception of one study in the Abruzzo 

National Park (central Italy, Patalano and Lovari 1993) (P<0.0001 for all pairwise comparisons). 
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Changes of wolf diet in time 

The occurrence of wild ungulates in wolf diet showed a significantly increasing trend following a 

logarithmic model (R
2
=0.439, SE=26.41, F=22.93, P < 0.0001) (Fig. R.1.1).  

 

Figure R.1.1. Trend of frequency of occurrence of wild ungulates in wolf diet in Italy from 

1976 to 2004 (circles: South-central Apennines; triangles: northern Apennines; rhombs: 

western Alps; y = - 11.9 + 28.2 ln(t)). 
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Significant trends of the frequency of occurrence of wild boars, roe deer, red deer, and chamois 

were recorded during the period covered by the analyzed studies (Fig. R.1.2).  

The frequency of occurrence of wild boars increased until the middle of the study period and then it 

decreased, following a 2
nd

 order polynomial model (R
2
=0.441, SE=18.64, F=10.27, P=0.001). The 

frequency of occurrence of roe deer clearly increased in accordance with a linear model (R
2 

= 0.303, 

SE = 14.02, F = 11.29, P = 0.002). Red deer and chamois occurred in the wolf diet in Italy only 

after the middle of the study period, reaching high frequencies of occurrence; for both species the 

best model was a 2
nd

-order polynomial one (Red deer: y = 7.7 – 1.4 t + 0.1 t
2
; R

2 
= 0.246, SE = 

10.79, F = 4.07, P = 0.030; Chamois: y = 1.6 – 0.7 t + 0.1 t
2
; R

2 
= 0.230, SE = 12.48, F = 3.74, P = 

0.038). 

 

Figure R.1.2. Trend of frequency of occurrence of wild boar and roe deer  in the wolf diet in 

Italy from 1976 to 2004 (circles: South-central Apennines; triangles: northern Apennines; 

rhombs: western Alps; wild boar: y = - 18.2 + 7.7 t -0.3 t
2
; roe deer: y = 0.5 + 1.1 t). 

 

  Wild boar                                                              Roe deer 
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Both for the frequency of occurrence of livestock and for diet breadth negative and significant 

relationships with the frequency of occurrence of wild ungulates were found; in particular for 

livestock the best model was a linear one (R
2 

= 0.756, SE = 12.88, F = 87.93, P < 0.0001), whereas 

for diet breadth a 2
nd

-order polynomial model was selected (R
2 

= 0.421, SE = 0.13, F = 10.83, P < 

0.0001). In accordance with this model the B index increased until intermediate values of the 

frequency of occurrence of wild ungulates and then decreased (Figg. R.1.3 and R.1.4). 

 

Figure R.1.3. Relationship between frequency of occurrence of livestock and wild ungulates in 

wolf diet in Italy (y = 62.2 – 0.7 x). 
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Figure R.1.4. Relationship between wolf diet breadth (Levins’ B index) and frequency of 

occurrence of wild ungulates (y = 0.3 + 0.1 x – 0.0001 x
2
). 
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In the province of Genova, the frequency of occurrence of wild ungulates in the wolf diet increased 

linearly and significantly from 1987 until 2005 (R
2 

= 0.444, SE = 12.65, F = 11.40, P = 0.006) (Fig. 

R.1.5). Significant trends resulted for roe deer (y = -0.5 + 0.3 t, R
2 

= 0.281, SE =3 .17, F = 6.07, P = 

0.030) and for fallow deer (y = -3.0 + 1.0 t, R
2
=0.254, SE=9.75, F=5.43, P=0.038), whereas for wild 

boar no trend resulted. 

 

Figure R.1.5. Trend of frequency of occurrence of wild ungulates in wolf diet in the Genoa 

province from 1987 to 2005 (y = 6.9 + 1.8 t). 
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Abundance of wild ungulates in Italy and their use by wolves 

The overall abundance of wild ungulates in Italy increased from about 188,000 heads in 1977 to 

1,383,000 in 2004; the increase was mainly because of a dramatic recovery of wild boar (1900-

667,000 individuals) and roe deer populations (102,000-464,000 individuals), while the other 

species, even if with marked increases, scarcely contributed to the overall trend, because of their 

low numbers and narrow distributions (Fig. R.1.6). 

A positive and significant relationship resulted between the frequency of occurrence of wild 

ungulate in the wolf diet and their overall abundance in Italy, in accordance with a logarithmic 

model (y = -446.6 + 38.0 ln (x), R
2 

= 0.470, SE = 25.73, F = 24.96, P < 0.0001). Considering the 

different species of wild ungulates, significant and positive relationships resulted only for wild 

boars (y = -6.7 + 2.6 x – 2.4 x
2
, R

2 
= 0.247, SE = 21.42, F = 5.42, P = 0.011) and for roe deer (y = -

10.2 + 0.0001 x, R
2 

= 0.371, SE = 13.07, F = 16.91, P < 0.0001). 

 

Figure R.1.6. Population trend of wild ungulates in Italy from 1977 to 2004. 
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R.2. Selection of wild ungulates by wolves in an area of the Northern Apennines (North 

Italy) 

 

Diet 

From June 2007 to May 2008, 103 wolf scats were collected: 24 in summer, 20 in autumn, 18 in 

winter, and 41 in spring. Scat analyses detected a total of 16 kinds of prey, pooled into 5 categories 

(Livestock: cows, sheep, goats and horses; Wild ungulates: wild boar, reo deer, fallow deer red 

deer; Medium sized mammals: Lepus europaeus, Vulpes vulpes, Meles meles; Small mammals: 

Muscardinus avellanarius, Eliomys quercinus; Vegetables: Rosaceae fruits, Graminaceae).  

Considering the total sample size, the diversity curve reached an asymptote and the incremental 

change declined to < 1% with a sample ≥ 32 scats, consequently the sample size was considered 

adequate (Fig. R.2.1). The same trend was for seasonal sample sizes (summer n ≥ 22 scats, autumn 

n ≥ 20, spring n ≥ 32) with the exception of winter in which the sample size gave an incremental 

change of 3.5%. 

 

Figure R.2.1. Diversity and incremental change curves for the annual wolf diet (N = 103). 

Mean and 95% CI obtained by bootstrap resampling are showed. 
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The most important category included wild ungulates both in terms of frequency of occurrence and 

mean percent volume, accounting for about 70% of the total diet, whereas the least important was 

represented by small mammals (<10%; Table R.2.1). Other important categories were vegetables 

and medium sized mammals (mainly hares Lepus europaeus) by frequency of occurrence, and 

medium sized mammals and livestock by mean percent volume.  

Among wild ungulates, wild boars were the most used both by frequency of occurrence and mean 

percent volume, accounting for more than 45% of the total diet (Table R.2.1). Roe deer was the 

second species but with only 10% of frequency of occurrence and mean percent volume. The other 

species accounted for less than 5% of the total diet. 

Significant variations of the frequency of occurrence among seasons resulted for livestock 

(Likelihood ratio = 9.63; df = 3; P = 0.033) and for small mammals (Likelihood ratio = 13.27; df = 

3; P = 0.004); in particular livestock was used mainly in summer and autumn, and small mammals 

in summer (Table R.2.1). No significant differences among seasons resulted for the frequency of 

occurrence of each species of wild ungulates and livestock (P > 0.05 in all cases) (Table R.2.1). 

NPMANOVA on mean percent volume of food categories did not show overall significant 

differences among seasons (F = 1.74; P = 0.085), but pairwise comparisons showed significant 

differences between summer and winter (P=0.021) and between autumn and winter (P=0.052). 

Univariate tests showed seasonal significant variations only for small mammals (H = 13.04; df = 3; 

P = 0.005), in particular the mean percent volume of small mammals was greater in summer with 

respect to spring (P = 0.028), autumn (P = 0.015), and winter (P = 0.020) (Table R.2.1). As for the 

species of wild ungulates, the overall differences between seasons were not significant (F = 1.90; P 

= 0.073), but univariate tests showed significant variations for wild boars (H = 11.94; df = 3; P = 

0.008); in particular the mean percent volume of wild boars was lower in summer and in autumn 

than in winter (summer-winter P = 0.014, autumn-winter P = 0.040) (Table R.2.1). Also for the 

species of livestock seasonal differences were not overall significant (F = 2.04; P = 0.059) but 

pairwise comparisons showed a significant difference between summer and winter (P = 0.041); 

considering each species of livestock, no significant differences resulted between seasons (P > 0.05 

for all the species) (Table R.2.1).  
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Table R.2.1. Seasonal variation of percent frequency of occurrence (FO%) and mean percent 

volume (MV%) of food categories and ungulate species in wolf diet (North-western 

Apennines, 2007-08). 

 

Categories  

and species 

Spring  

N=41 

Summer 

N=24 

Autumn 

N=20 

Winter 

N=18 

Year 

N=103 

FO

% 

MV

% 

FO% MV% FO% MV% FO% MV% FO% MV% 

Wild ungulates 75.6 67.8 62.5 51.2 55.0 48.5 83.0 80.5 69.9 62.2 

Sus scrofa 58.5 52.9 45.8 31.0 40.0 29.5 77.8 74.9 55.3 47.2 

Capreolus 

capreolus 
12.2 10.0 16.7 16.0 15.0 15.0 0.0 0.0 11.7 10.4 

Dama dama 2.4 2.4 4.2 4.2 5.0 5.0 5.6 5.5 3.9 3.8 

Cervus elaphus 2.4 2.4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 

Livestock 7.3 7.3 25.0 19.1 20.0 19.0 0.0 0.0 12.6 10.8 

Bos  taurus 2.4 2.4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 

Capra hyrcus 4.9 4.9 16.7 12.1 10.0 10.0 0.0 0.0 7.8 6.7 

Ovis aries 0.0 0.0 4.2 4.2 10.0 9.0 0.0 0.0 2.9 2.7 

Equus caballus 0.0 0.0 4.2 2.9 0.0 0.0 0.0 0.0 1.0 0.7 

Medium sized 

mammals 
14.6 14.4 8.3 7.1 20.0 18.5 22.2 19.4 15.5 14.1 

Small 

mammals 
4.9 4.6 25.0 11.5 0.0 0.0 0.0 0.0 7.8 4.4 

Fruits 0.0 0.0 8.3 3.5 10.0 4.5 5.6 0.1 4.9 1.7 

Grasses 24.4 5.8 0.0 3.5 25.0 8.5 11.1 0.1 23.3 5.6 
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Diet breadth was generally narrow on the whole year and in each season; it reached a maximum in 

summer and a minimum in winter but seasonal variation of B index was not significant (Fig. R.2.2). 

 

Figure R.2.2. Seasonal values (± 95% CI) of B index of diet breadth of wolves (N = 103, North-

Western Apennines, 2007-08). 
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Wild ungulate selection 

Considering all transects pooled, the proportion of availability for wild boar was higher in all 

seasons and all year round with respect to other wild ungulates, the second species in order of 

availability was the roe deer followed by fallow and red deer (Table R.2.2).  

 

Table R.2.2. Seasonal variation of the availability proportions of the different species of wild 

ungulates (North-western Apennines, 2007-2008). 

 

Wild ungulate species Spring Summer Autumn Winter Year 

Wild boar 0.650 0.559 0.683 0.800 0.664 

Roe deer 0.266 0.261 0.287 0.144 0.237 

Fallow deer 0.057 0.118 0.007 0.042 0.070 

Red deer 0.027 0.062 0.023 0.013 0.029 

 

 

The estimated relative biomass ranked the use of wild ungulate species in the same order as 

availability; wild boar reached the highest percent biomass in spring and winter, roe and fallow deer 

in summer and autumn, and red deer in spring (Table R.2.3). 

 

Table R.2.3. Seasonal variation of estimated relative biomass (%) of wild ungulate species in 

wolf diet (North-western Apennines, 2007-08). 

 

Wild ungulate species 
Spring 

N=31 

Summer 

N=15 

Autumn 

N=11 

Winter 

N=15 

Year 

N=72 

Wild boar 81.6 65.6 67.5 93.3 80.0 

Roe deer 9.6 24.5 21.5 0.0 11.3 

Fallow deer 3.7 9.8 11.2 6.7 6.4 

Red deer 5.2 0.0 0.0 0.0 2.3 
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Wild boars were selected all year round and in spring, summer, and winter, whereas in autumn they 

were used as available; seasonal variations of the α index were significant only between winter and 

autumn (P < 0.05, Fig. R.2.3). Roe deers were avoided all year round, in spring and in winter (P < 

0.05), while they were used as available in summer and autumn. No significant variations of α index 

resulted between seasons (Fig. R.2.3). Fallow deers and red deers were avoided throughout the year, 

and in each season (P < 0.05), but the former species was used as available in summer and autumn. 

No significant variations resulted between seasons for these species either (Fig. R.2.3). Significant 

differences were found (P < 0.05) of the α index values in spring between wild boar and the other 

species, in summer between wild boar and fallow deer and between red deer and the other species, 

in autumn between wild boar, fallow deer, and red deer, and in winter between wild boar and the 

other species (Fig. R.2.3). 

 

Figure R.2.3.  Seasonal values (± 95% CI) of Manly index of preference for wild ungulate 

species by wolves (N = 72, North-Western Apennines, 2007-08; line in bold represents the 

critical value of α = 0.25 for an use proportional to the availability). 
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Comparison with previous results 

Comparing the present diet of wolves in the study area with previous results on wolf feeding habits 

obtained in the same area in the period 1988-90, significant differences for all food categories were 

found with the exception of medium sized mammals and other vertebrates. In particular, the present 

wolf diet was characterized by a higher occurrence of wild ungulates and a lower presence of 

livestock, small mammals, invertebrates, vegetables, and garbage (Table R.2.4). With regards to 

wild ungulate species, significant differences resulted for wild boar and roe deer, both species being 

more used at present (Table R.2.4). 

 

Table R.2.4. Frequency of occurrence of categories in the wolf diet in the two periods and 

significance of the differences (df = 1). 

 

Categories 

Periods 
Likelihood 

ratio 
P 1988-90 

N=96 

2007-08 

N=103 

Livestock 25.6 12.6 6.27 0.020 

Wild ungulates 19.4 69.9 62.51 <0.0001 

Sus scrofa 17.1 55.3 38.15 <0.0001 

Capreolus capreolus 0.8 11.7 14.33 0.001 

Dama dama 1.6 2.9 0.50 0.658 

Cervus elaphus 0.0 1.0 1.63 0.444 

Medium sized 

mammals 
10.1 15.5 1.55 0.235 

Small mammals 26.4 7.8 14.40 <0.0001 

Other vertebrates 2.3 0.0 3.55 0.256 

Invertebrates 23.3 0.0 38.75 <0.0001 

Vegetables 59.7 25.2 28.36 <0.0001 

Garbage 7.0 0.0 10.85 0.005 
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R.3. Noninvasive sampling and genetic variability, pack structure, and dynamics in an  

expanding wolf population 

 

Identification and assignment of the individual multilocus genotypes 

The multi-tube PCR and mismatch analyses, and post-PCR controls identified 480 distinct reliable 

genotypes (software RELIOTYPE: R ≥ 0.95; Miller et al. 2002) corresponding to 2,202 (44%) of the 

total 5004 non-invasive DNA samples collected in the study area. The 61 muscle and blood samples 

yielded 56 (92%) reliable and distinct genotypes. Eighteen of them matched with genotypes 

obtained from non-invasive samples, and 38 were never sampled before. All the 518 distinct 

genotypes were assigned to their population of origin at K = 2, which showed the maximum ΔK 

value (ΔK 2 = 2,230.59; ΔK 3 = 36.01; ΔK > 3 ≤ 22.93). All reference wolves were assigned to 1 

cluster (w) with Qw = 1.00 (individual qw ranging from 0.99 to 1.00) and all reference dogs were 

assigned to the other cluster (d) with Qd = 0.99 (individual qd ranging from 0.95 to 1.00). At 

threshold qw = 0.95 (which was supported also by the assignments of HYBRIDLAB-simulated 

genotypes; data not shown), the genotypes with 0.05 ≤ qw ≤ 0.95 were considered as admixed 

(Table R.3.1). Thus, 414 of the 518 new genotypes (80%) were assigned to the wolf cluster (qw > 

0.95), 88 (16%) were assigned to the dog cluster (qd > 0.95), and 16 (4%) were partially assigned to 

both clusters with 0.73 < qw < 0.94 (wolf x dog admixed genotypes; Table R.3.1).  
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Table R.3.1. Sample size and summary of genetic identifications obtained by genotyping 12 

autosomal microsatellites (STR), 4 Y-linked STR, and the mtDNA control-region. N = number 

of distinct genotypes (number of males); Qw and Qd = proportions of membership of each 

group to the wolf or dog cluster in an admixture analysis with K = 2 (STRUCTURE; Falush et al. 

2003); W14 = frequency of the diagnostic Italian wolf W14 mtDNA control-region haplotype; 

Y-STR = number and frequency of the Y-STR haplotypes as named by Caniglia et al. (C; 

2010), Sundqvist et al. (S; 2001) and Iacolina et al. (I; 2010).  

 

Group N total (males) Qw Qd W14 Y-STRC Y-STRS Y-STRI 

Reference 

wolves 

168 (92) 1.00 0.00 100% U  (72; 79%) _ H1 

I   (17; 18%) Q H2 

D  (3; 3%) _ _ 

Wolves in 

the study 

area 

414 (236) 1.00 0.00 100% U (195; 82%) _ _ 

I   (28; 12%) Q _ 

L  (13; 6%) L _ 

Reference 

dogs 

115 (65) 0.01 0.99 0% L (23; 35%) L H3 

D (17; 26%) _ _ 

O (5; 8%) _ _ 

C (3; 5%) _ _ 

Q (3; 5%) _ _ 

V (3; 5%) _ _ 

S  (2; 3%) _ _ 

T  (2; 3%) G _ 

Y (2; 3%) _ _ 

E  (1; 2%) _ _ 

K (1; 2%) _ _ 

N (1; 2%) _ _ 

P  (1; 2%) C _ 

R  (1; 2%) _ _ 

Dogs in the 

study area 

88 (42) 0.01 0.99 0% L (16; 38%) L H3 

D (13; 31%) _ _ 

P  (3; 7%) C _ 

4 (2; 5%) _ _ 

M (2; 5%) _ _ 

J  (2; 5%) _ _ 

F (1; 4%) _ _ 

O (1; 2%) _ _ 

Z (1; 2%) _ _ 

Hybrids 16 (11) 0.83 0.17 100% U (6; 55%) _ H1 

P (2; 18%) C _ 

O (1;  9%) _ _ 

1 (2; 18%) J H4 
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Genetic variability in the wolf population 

All microsatellites were polymorphic in the 414 wolves sampled in the study area. The 16 hybrids 

were excluded from these analyses to avoid the risk that alleles from dogs inflate the genetic 

variability of the wolf population. Wolves showed from 2 to 11 alleles (average NA = 5.25 ± 2.29 in 

wolves in the study area, and NA = 4.50 ± 2.08 in reference wolves; significantly different, t = 3.00, 

df = 11, P = 0.01; t-test), and intermediate values of heterozygosity (HO = 0.56, H
E
 = 0.58, PIC = 

0.52 in wolves in the study area; HO = 0.55, H
E
 = 0.58, PIC = 0.53 in reference wolves; not 

significantly different, t = 1.18, df = 11, P = 0.26 for HO; t = 0.78, df = 11, P = 0.45 for H
E
; t = 0.88, 

df = 11, P = 0.39 for PIC; t-tests). Microsatellite loci were not significantly out of Hardy-Weinberg 

equilibrium in wolves in the study area, showing a slightly positive, but non-significant FIS value 

(0.037 ± 0.090; P = 0.35; Table R.3.2). In contrast, reference dogs and wolves were not in Hardy-

Weinberg equilibrium due to fewer observed than expected heterozygotes (significantly positive 

FIS; Table R.3.2). 

 

Table R.3.2. Genetic variability at 12 autosomal short tandem repeat (STR) loci in reference 

wolves (Canis lupus), wolves in the study area, reference dogs, and dogs sampled in the study 

area. HO = observed heterozygosity; HE = expected heterozygosity; PIC = polymorphic 

information content; FIS = inbreeding coefficient; P = probability to obtain FIS-values higher 

than observed after 10,000 random permutations of alleles in each population computed by 

GENETIX; NA = average observed number of alleles per locus; NE = expected number of 

alleles per locus (SD in  parentheses). 

 

Group HO HE PIC FIS P NA NE 

Reference wolves 0.55 

(0.21) 

0.58 

(0.22) 

0.53 

(0.20) 

0.052
 

(0.057) 

< 0.001 4.50 

(2.78) 

2.80 

(1.06) 

Wolves in the study area 0.56 

(0.21) 

0.57 

(0.21) 

0.52 

(0.20) 

0.037 

(0.090) 

0.350 

 

5.25 

(2.30) 

2.69 

(1.03) 

Reference dogs 0.59 

(0.12) 

0.70 

(0.13) 

0.67 

(0.13) 

0.168
 

(0.081) 

< 0.001 9.17 

(3.49) 

3.93 

(1.80) 

Dogs in the study area 0.58 

(0.17) 

0.68 

(0.15) 

0.64 

(0.16) 

0.152 

(0.162) 

< 0.001 8.17 

(3.90) 

3.98 

(2.37) 



56 

 

In the study area, 236 wolves were males and 178 females (sex ratio M/F = 1.3, significantly 

different from 1; χ
2
 = 8.12, df = 1, P < 0.001; χ

2
 test). All wolves showed the diagnostic W14 

mtDNA CR haplotype (Randi et al. 2000), which was absent in dogs. Overall, 22 Y-STR 

haplotypes were identified (Table 1), which were differently distributed in wolves (4 haplotypes, of 

which 2 were unique) and dogs (19 haplotypes, 15 unique). The most frequent wolf haplotypes U 

and I occurred in 223 (94%) males in the study area and in 89 (97%) reference wolves, and were 

absent in dogs. The most frequent dog haplotypes L and D showed similar frequencies in reference 

(L = 35%; D = 26%) and non-invasively sampled dogs (L = 38%; D = 31%), but occurred at low 

frequency in the study area (L = 6%; D = absent) and in reference (L = absent; D = 3%; Table 1) 

wolves. All the 16 admixed genotypes (5 females and 11 males) showed the Italian wolf W14 

mtDNA CR haplotype. Six males shared the most frequent Italian wolf haplotype U, but the other 5 

showed haplotypes 1, P and O, which were found either in dogs or in non-Italian wolf populations 

(Caniglia et al. 2014; Iacolina et al. 2010; Sundqvist et al. 2001). 

 

Identification and composition of the wolf packs 

Wolves and hybrids were sampled from 1 to 56 times (Figure R.3.1.A). Each genotype was sampled 

4.7 times, on average, but 40% of the genotypes only once. The average sampling period per 

genotype was 12.6 months, and 21% of them were sampled for more than 24 months, up to more 

than 7 years (Figure R.3.1.B).  

 

Figure R.3.1. A) Number of samples per genotype. Individual resampling ranges from 1 to 56 

(average = 4.7 ± 6.6 SD); B) Genotype sampling time (in months) from the 1st to the last 

sampling event (average = 12.6 ± 18.5 SD). 
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Ninety wolves were identified (46 males, 44 females) that were sampled at least 4 times and for 

more than 24 months in areas smaller than 100 km
2
. Their 95% kernel spatial distributions were 

partially overlapping and led to delimit 42 distinct areas, each of them including at least 1 

frequently-sampled male and 1 frequently-sampled female (Table R.3.3; Figure R.3.2).  

 

Table R.3.3. Wolf packs areas identified by 95% fixed-kernel analysis using the least-square 

cross-validation method to choose band width (Seaman et al. 1999). Numbers indicate packs 

with reconstructed genealogies; letters indicate packs in which genealogies were not 

identified. ID = identification. 

 

Packs with reconstructed genealogies Packs without genealogies 

Pack name ID Area (km2) Pack name ID Area (km2) 

La Verna 1 52.78 Montironi A 42.42 

Badia Prataglia 2 20.37 Valpiana B 57.74 

Sasso Fratino 3 52.2 Sintria C 50.05 

Camaldoli 4 50.92 Sillaro D 45.13 

San Paolo 5 45.57 Casoni E 243.63 

Falterona 6 99.26 Vaglia F 50.27 

Castel dell’Alpe 7 79.96 Loiano G 46.27 

San Benedetto 8 56.37 Casio H 39.38 

Marradi 9 218.78 Pavullo I 137.10 

Castel del Rio 10 36.42 San Lorenzo J 74.33 

Savena 11 67.33 Fiumalbo K 45.78 

Gessi 12 36.70 Busana L 107.55 

Paderno 13 39.23 Carrega M 86.45 

Monte Sole 14 56.67 Corniglio N 145.92 

Monte Vigese 15 29.88 Borgotaro O 66.65 

Brasimone 16 54.29 Trebbia P 211.96 

Gaggio 17 59.45    

Corno alle Scale 18 40.60    

Sestola 19 64.37    

Pievepelago 20 102.8    

Frassinoro 21 32.00    

Orecchiella 22 53.96    

Ligonchio 23 48.94    

Cerreto 24 89.77    

Ramiseto 25 144.43    

Berceto 26 38.63    

 

 



58 

 

Figure R.3.2. Fixed-kernel distribution (95% least-square cross-validation; Seaman et al. 

1999) of the sampled wolf (Canis lupus) genotypes, with the approximate distribution of the 

42 packs detected in the study area. White polygons (and numbers) indicate wolf packs with 

genealogies; black polygons (and letters) indicate wolf packs without genealogies. Longitude 

and latitude are indicated on the x- and y-axes in decimal degrees (datum WGS84).  

 

 

 

Two-hundred-eighty other individuals were sampled within these areas and their surroundings of c. 

17 km (see Results: Spatial analyses and dispersal) and, thus, 370 individuals were used to 

reconstruct the family groups in COLONY. Pairs of genotypes were identified in 26 of these areas, 

having probability P > 0.90 to be parents of 1 or more offspring, and reconstructed their familial 

pedigrees (Figure R.3.3). The pack pedigrees and locations suggested that the territories of the 

familial groups were roughly stable in time, but their compositions varied. In fact, 34 putative 

breeding pairs were identified in the 26 areas, corresponding to 63 reproductive wolves (32 males 

and 31 females). Parent-offspring genealogies were reconstructed for a total of 76 pack-years, 

including 4 cases where a single parent was identified (Figure R.3.3).  
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Figure R.3.3. Genealogy of the 26 wolf packs identified in the study area. Squares = males; 

circles = females. Thick continuous lines connect reproductive pair members; thin continuous 

line connect offspring groups. Vertical dashed arrows indicate the sampling period of each 

genotype. Slashes indicate found-dead wolves. 
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The “open parentage analysis” in COLONY found 6 additional complete and 21 partial genealogies 

(9 father-offspring and 12 mother-offspring groups). These received much lower parent 

probabilities (P < 0.50), however, showed allelic incompatibilities and included individuals that 

were never contemporary sampled in the same area but that were identified in other areas associated 

to unrelated wolves. CERVUS identified 198 clusters (1 parent pair plus several offspring) and 342 

trios (parent pair plus only 1 offspring): 29 clusters(15%) and 114 trios (33%) corresponded to the 

26 genealogies identified by COLONY. None of the alternative genealogies was supported by 

sampling dates, frequency or location. Moreover, there were from 2 to 5 of 24 allele 

incompatibilities, and incongruities at Y-haplotypes in 93 (95%) of 98 father-son combinations in 

the trios with significant LOD scores. 

Packs included their breeding pairs and up to 11 related members, including the offspring of the 

year and the yearlings (offspring of previous reproductions, see pack 14 in 2005), plus up to 3 

unrelated individuals (in pack 16 in 2004). The average annual pack size including adoptees was 5.6 

± 2.4 individuals. The mean number of pups per pack (estimated by the number of pups sampled in 

late autumn) was 2.4 ± 2.0; the average number of yearlings per pack was 0.8 ± 1.0. Ten yearlings 

remained in their natal packs for more than 2 consecutive years (in packs 5, 6, 7, 14, 16 and 20). 

The mean number of unrelated individuals, sampled for at least 6 months in the packs’ range, was 

0.4 ± 0.7, and 4 of them remained in the same pack for 3 consecutive years (in packs 6, 16 and 25). 

The remaining 60 individuals (14% of the population) were never detected within or nearby the 42 

pack areas. These represented potential floaters, which were sampled for an average of 5 ± 11 
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months, up to 6 years. Those included 15 of the 16 hybrids, since only 1 (HY1F) was identified as a 

member of a known pack. 

 

Relatedness and inbreeding 

A matrix of pairwise relatedness among all the individuals included in the packs showed that 33 

(94%) of the 34 breeding pairs were significantly unrelated (P < 0.05; likelihood ratio test). Parents 

RE17M and RE18F in pack 21 showed a significant first-order relationship (brother and sister; P = 

0.011), also confirming the genealogy of their natal pack, 23 (Figure R.3.3). The mean inbreeding 

coefficient of the breeding pairs was F = -0.02 (-0.25 – 0.30, 95% CI) ranging from -0.15 (-0.40 – 

0.25) in pack 4 to 0.35 (0.09 – 0.73) in pack 7 (Table R.3.4). The observed heterozygosity did not 

differ significantly between breeding pairs (HO = 0.57 ± 0.15, n = 34) and their offspring (HO = 0.54 

± 0.22, n = 179; t = 1.52, df = 33, P = 0.67; t-test), or between breeders (HO = 0.57 ± 0.48, n = 63) 

and non-breeders (HO = 0.56 ± 1.15, n = 367; t = 2.35, df = 62, P = 0.93; t-test; Table R.3.4). 
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Table R.3.4. Pack number, name, and composition of wolves; identification of the breeding 

males (BM) and females (BF); total number of offspring per pair (NO); estimates of 

relatedness ± SD (r; Queller and Goodnight 1989) and inbreeding coefficient (F; 95% 

confidence intervals in parentheses; Lynch and Ritland 1999) between parents; and estimates 

of observed heterozygosity (HO ± SD) in parents and offspring. 

 

Pack Name BM
a
 BF

a
 No r parents F parents Ho parents Ho offspring 

1 La Verna FO29M FO54F 6 -0.03±0.03 -0.03 (0.24 – 0.22) 0.58±0.11 0.60±0.24 

  FO97M FO82F 3 -0.29±0.03 0.09 (-0.12 – 0.49) 0.50±0.13 0.67±0.16 

2 Badia Prataglia FO105M FO126F 1 0.04±0.10 0.10 (-0.22 – 0.65) 0.46±0.14 0.33±0.14 

3  Sasso Fratino  FO2M  FO9F  5  -0.06±0.08 -0.09 (-0.31 – 0.65) 0.67±0.13 0.55±0.20 

4  Camaldoli  FO19M  FO24F  2  0.01±0.04 -0.09 (-0.33 – 0.22) 0.67±0.13 0.42±0.17 

  FO34M  FO24F  9  -0.18±0.03 -0.15 (-0.40 – 0.25) 0.63±0.13 0.62±0.24 

5  San Paolo  FO27M  FO8F  14  0.07±0.03 -0.11 (-0.37 – 0.20) 0.54±0.18 0.52±0.41 

6  Falterona  FO3M  FO5F  6  -0.04±0.02 -0.08 (-0.25 – 0.23) 0.58±0.17 0.49±0.27 

  FO86M  FO5F  7  0.45±0.02 -0.11 (-0.34 – 0.03) 0.71±0.16 0.48±0.21 

7  Castel dell'Alpe  FO18M  FO16F  5  -0.05±0.07 0.10 (-0.08 – 0.54) 0.46±0.16 0.63±0.25 

  FO69M  FO39F  8  -0.14±0.01 0.35 (-0.09 – 0.73) 0.38±0.13 0.58±0.28 

8  San Benedetto  FI6M  FO6F  3  0.15±0.04 0.13 (-0.17 – 0.44) 0.58±0.11 0.69±0.13 

9  Marradi  FI5M  HYB1F  4  -0.29±0.01 -0.09 (-0.24 – 0.29) 0.58±0.17 0.73±0.22 

10  Castel del Rio RA6M  RA2F  1  -0.03±0.05 0.06 (-0.23 – 0.40) 0.54±0.16 0.50±0.15 

11  Savena  BO7M  BO8F  2  0.43±0.05 0.09 (-0.25 – 0.57) 0.46±0.16 0.42±0.20 

12  Gessi  BO51M  BO54F  2  -0.25±0.05 -0.03 (-0.28 – 0.22) 0.58±0.14 0.58±0.11 

13  Paderno  RA5M  BO64F  3  -0.16±0.02 -0.05 (-0.18 – 0.11) 0.63±0.16 0.44±0.16 

14  Monte Sole  BO3M  BO6F  20  -0.33±0.03 -0.09 (-0.27 – 0.05) 0.67±0.13 0.64±0.40 

  BO69M  BO80F  8  0.24±0.02 -0.04 (-0.25 – 0.25) 0.58±0.20 0.47±0.34 

15  Monte Vigese  BO30M  BO32F  14  -0.22±0.04 -0.10(-0.33 – -0.03) 0.75±0.17 0.62±0.37 

16  Brasimone  BO1M  BO11F  1  0.69±0.02 0.00 (-0.23 – 0.50) 0.46±0.18 0.17±0.11 

  BO30M  BO11F  3  -0.13±0.04 -0.08 (-0.35 – 0.25) 0.63±0.16 0.56±0.24 

  BO41M  BO11F  2  -0.20±0.03 -0.11 (-0.36 – 0.26) 0.63±0.13 0.58±0.14 

17  Gaggio  MO51M  MO40F  3  0.20±0.03 -0.06 (-0.24 – 0.28) 0.50±0.16 0.39±0.16 

18  Corno Scale  MO6M  MO19F  5  -0.07±0.10 0.07 (-0.26 – 0.41) 0.58±0.11 0.63±0.22 

  FO77M  BO79F  4  -0.16±0.03 -0.02 (-0.28 – 0.22) 0.63±0.18 0.67±0.20 

19  Sestola  MO23M  MO24F  5  0.04±0.02 -0.13 (-0.29 – 0.14) 0.71±0.14 0.58±0.20 

20  Pievepelago  MO48M  MO2F  4  -0.08±0.03 -0.11 (-0.24 – 0.14) 0.58±0.20 0.58±0.24 

21  Frassinoro  RE17M  RE18F  1  0.45±0.02 -0.04 (-0.34 – 0.42) 0.58±0.17 0.50±0.15 

22  Orecchiella  MO33M  RE3F  2  0.37±0.03 0.02 (-0.18 – 0.47) 0.42±0.17 0.54±0.20 

23  Ligonchio  RE11M  RE7F  14  -0.05±0.02 -0.01 (-0.28 – 0.39) 0.54±0.10 0.55±0.30 

24  Cerreto  RE48M  RE37F  1  0.06±0.09 0.12 (-0.31 – 0.39) 0.54±0.14 0.58±0.15 

25  Ramiseto  RE35M  RE24F  3  -0.24±0.06 -0.12 (-0.23 – 0.12) 0.63±0.16 0.61±0.19 

26  Berceto  PR5M  PR6F  3  -0.07±0.08 -0.06 (-0.28 – 0.13) 0.54±0.14 0.54±0.21 

Avg.    5.1    ±4.5  0.004±0.040  -0.02 (-0.25 – 0.30)  0.57±0.15  0.54±0.22  
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a
 In the individual identifications, the first 2 letters indicate the province where the individual was 

1st sampled (see Figure M.3.1), the number is a unique identifier within each province, and the last 

letter indicates the sex (M = male; F = female). 

The simulated distributions of pairwise relatedness values between unrelated (mean r = -0.006 ± 

0.214) and first-order wolves (mean r = 0.487 ± 0.164) were partially overlapping (Figure R.3.4.A). 

 

Figure R.3.4. A) Distributions of relatedness (r) of Queller and Goodnight (1989) for 1st-order 

(parents–offspring plus full siblings) relatives and unrelated individuals obtained from 1,000 

dyads simulated in KINGROUP (Konovalov et al. 2004) using allele frequencies from the wolf 

population. The arrow indicates the midvalue between the 2 distributions. B) 

Autocorrelogram of relatedness (r) of Queller and Goodnight (1989) against distance class 

sizes of 5 km in wolves (95% confidence interval values for r were calculated for each distance 

class by bootstrap). 

 

 

 

Following Lucchini et al. (2002), the limit for the individual classification was fixed at r = 0.240 

(the midpoint between the averages of the 2 distributions), finding that 14% unrelated, 11% full-

siblings, but only 4% parent-offspring pairs would be misclassified. The average relatedness 

estimated in the 26 wolf packs with pedigrees (r = 0.390 ± 0.106) was significantly higher than in 

the whole population (r = -0.014 ± 0.289; t = 63.33, df = 25, P < 0.0001; t-test) and also higher than 
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the fixed midpoint (r = 0.240; t = 21.48, df = 25, P < 0.0001; t-test). Values of relatedness within 

wolf packs were variable, ranging from r = 0.240 ± 0.181 (in pack 1) to r = 0.682 ± 0.271 (in pack 

11). 

 

Spatial analyses and dispersal 

The 95% kernel analysis showed that the packs were settled in a minimum total area of 3122 km
2
 

(1/6 of the sampling area of 19,171 km
2
; Figure R.3.2). The average 95% kernel area of individuals 

belonging to packs was 35.72 ± 20.20 km
2
 (ranging from 4.51 to 170.64 km

2
); the average pack 

area was 74.34 ± 51.69 km
2
 (ranging from 20.37 to 243.63 km

2
; 42 packs) or 60.02 ± 41.39 km

2
 

(ranging from 20.37 to 218.62 km
2
) when computed for the 26 areas with reconstructed genealogies 

(Table R.3.3). The autocorrelation of kinship vs. the logarithmic inter-individual distance was 

significantly negative (b = -0.013 ± 0.010; P < 0.001). Positive values of the Fij kinship coefficient 

at short distances indicated that geographically closer wolves had higher-than-expected kinship, 

while negative values at long distances highlighted isolation-by-distance (IBD, Figure R.3.4.B). The 

x-intercept on the autocorrelogram suggested that within 17 km wolves are more closely related to 

one another than on average across the population. Thus, 27 wolves that were successively sampled 

in different locations farther than 17 km and 10 wolves that stably settled in a pack different from 

their original one, but at shorter distances were considered as potential dispersers (Table R.3.5).  

Twenty wolves (54%) dispersed south-east to north-west, towards the Alps. The average dispersal 

distance was 52.97 ± 40.17 km. Dispersal was significantly male-biased (26 individuals, χ
2
 = 6.06, 

df =1, P < 0.01; χ
2
 test), as suggested also by autocorrelation analyses in male and female distance 

classes, which showed higher relatedness among females (r = 0.090; 11 km) than males (r = 0.070; 

20 km). There were 22 (59%) of the 37 dispersers that apparently settled in a new pack, and 14 of 

them (38%) also became breeders: 2 males established and reproduced in already existing packs, 

and 12 (5 males and 7 females) founded their own new packs. In comparison, only 5 (26%) of 19 

known non-dispersing individuals (wolves born and sampled in the same pack for at least 3 years) 

became breeders in their natal pack (4 females and 1 male). Other 15 dispersers (13 males and 2 

females) were never detected in association with a known pack (2), or were born in a known pack 

(13) but dispersed to unoccupied areas, thus representing other potential cases of floaters. 

Wolves dispersing short distances (19.2 km, on average) apparently had higher likelihood (F = 

27.71, df = 1, P < 0.0001; one way ANOVA test) to reproduce in new packs than wolves moving 

longer distance (73.5 km, on average). The founders were born in areas close to the centroids of the 

new packs, mapping at an average distance of 17.5 ± 12.2 km, thus explaining why the observed 

IBD and autocorrelations dropped at a short geographical distance. 
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Table R.3.5. Identification of wolves that likely dispersed from their natal packs. Genotype 

identification (ID), sex, dispersal direction, distance from the putative natal area (km), and 

minimum permanence (in years) in the new areas are shown (whenever known, pack ID 

numbers are indicated; evidence of reproduction (R) in the destination pack and of being the 

founder of a new pack (F) are indicated. 

 

Genotype ID Sex Direction Km Permanence (years) Pack of destination 

BO88M M SE-NW 150 < 1  

FO15M M SE-NW 142 4  

FO46F F SE-NW 124 2  

BO10M M SE-NW 114 < 1  

BO44M M SE-NW 105 2  

BO87M M SE-NW 105 < 1  

FI12M M SE-NW 85 < 1  

RE23M M NW-SE 80 5  

RE39F F NW-SE 77 < 1  

RE6M M NW-SE 76 4  

FO77M M SE-NW 67 3 17 (R) 

BO16M M SE-NW 66 3  

FO61M M SE-NW 66 3  

RE51F F SE-NW 65 < 1  

PR15M M SE-NW 65 < 1  

MO46M M SE-NW 64 2  

PR3M M SE-NW 53 1  

FO25M M SE-NW 52 5  

RA5M M SE-NW 50 1 12 (R,F) 

PR4F F SW-NE 49 < 1  

FO92M M NE-SW 43 < 1  

BO38M M SE-NW 34 3  

RE4M M NW-SE 27 1  

BO54F F SW-NE 27 1 11 (R,F) 

FO47M M SE-NW 25 2  

FO130M M NE-SW 24 < 1  

BO6F F SW-NE 21 3 13 (R,F) 

BO64F F SW-NE 17 1 12 (R,F) 

FI6M M SE-NW 15 3 8 (R,F) 

MO24F F NW-SE 13 < 1 18 (R,F) 

RE17M M NW-SE 12 4 20 (R,F) 

RE18F F NW-SE 12 2 20 (R,F) 

FO105M M NE-SW 10 2 2 (R,F) 

BO30M M SW-NE 8 3 14 (R,F) 

BO32F F NE-SW 7 6 14 (R,F) 

FO69M M SW-NE 5 4 7 (R,F) 

FO6F F SE-NW 5 < 1 8 (R,F) 
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Pack member dynamics 

Pack composition and dynamics are summarized in Table R.3.6.  

 

Table R.3.6. Wolf pack number, composition, and dynamics in the study area. The table 

indicates number of packs that set up and stably use their own territorial areas; number of 

packs with reconstructed genealogies; average pack size (including unrelated individuals 

sampled in the pack range); average pack size including only related individuals as inferred 

from the genealogies; and sex ratio computed only among related wolves. Pack dynamics 

indicates changes due to complete or partial replacements of breeders by unrelated or 

immigrant wolves, or by offspring of the previous breeding pairs. The number of new packs, 

founded by unrelated or related wolves, also is indicated (U = documented usurpation: an 

immigrant usurps an active breeder that was still sampled in the pack area; KP = an 

immigrant from a known pack replaces the breeder; UP = an unrelated or immigrant wolf 

from an unknown pack or area replaces the breeder).  

 

 N Males Females 

PACK NUMBER AND COMPOSITION    

  - Packs in the study-area 42 187 144 

  - Packs with genealogy 26 138 108 

       Average pack size 5.55   

       Average pack size/year (only related wolves) 5.13 2.55 2.59 

       Sex ratio/year (only related wolves) 1.25   

PACK DYNAMICS    

 - Complete replacements within packs 5   

     By 2 new immigrant / unrelated wolves 1 (1U male) 1 (1UP) 1 (1UP) 

     By 1 immigrant / unrelated male 

and 1 female offspring of the previous pair   

4 (3U females, 1U 

both male and female) 4 (3UP, 1KP) 4 (KP) 

    By 2 offspring of the previous pair 0   

 - Partial replacements within packs 3   

     By 1 offspring of the previous pair 0   

     By 1 immigrant / unrelated wolf 3 (3U male) 3 (3UP)  

 - New packs founded by 2 dispersing individuals 7   

     By 2 unrelated individuals 6 6 (4KP, 2UP) 6 (5KP, 1UP) 

     By 2 related individuals (brother and sister) 1 1 (1KP) 1 (1KP) 
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In the eastern sector of the study area (lower-right side of Figure R.3.2) The complete genealogies 

were reconstructed in 9 of the 12 documented packs (Figure R.3.3.A). The breeding pairs in 6 packs 

were stable throughout the study (packs 2, 3, 4, 5, 8 and 9, detected from 1 to 6 years; average 3.5 

years). In pack 1 (La Verna), both parents detected since 2001 were completely substituted in 2006 

by a new breeding pair of unknown familial origin that reproduced in 2007. Other packs showed 

more complex dynamics. Offspring from packs 9 (Marradi) and 7 (Castel dell’Alpe) joined in a 

breeding pair that in 2002 founded a new pack in-between (8; San Benedetto). Pack 7 showed a 

turnover of the reproductive pair identified in 2001, which apparently disappeared in 2003, when it 

was replaced by a female offspring born in 2002 and by an unrelated immigrant male born in 2002 

in pack 6 (Falterona). The reproductive male in pack 6 was replaced in 2004 by an immigrant male 

of unknown familial origin. A male offspring of the new Falterona pack established a new pack in 

2007 in an adjacent area (2; Badia Prataglia), mating with an unrelated female of unknown familial 

origin. The number of detected packs increased from 7 (in 2001-2002) to 9 (in 2008-2009). Both the 

new packs filled new areas. Three of the original 7 packs (43%) were genetically connected through 

replacements (1) or new pack foundations (2). The presence of 6 of the 7 packs identified in 2001 in 

this sector was confirmed by wolf-howling sessions (Caniglia et al. 2010), which also confirmed the 

presence of 8 packs in 2006. 

In the central part of the study area (Figure R.3.2), complete genealogies were reconstructed in 9 

(packs 10 – 18) of the 15 mapped packs (Figure R.3.3.B). In 6 packs (10, 11, 12, 13, 15 and 17) the 

breeding pair did not change during the study. In other 2 packs (14; Monte Sole; 18; Corno alle 

Scale), on the contrary, the breeding pairs were completely substituted by females offspring and 

immigrant males of unknown familial origin. In pack 16 (Brasimone) the female BO11F reproduced 

from 2001 to 2008, but the breeding males changed 3 times (in 2003, 2004 and 2006). One of them, 

BO30M, later colonized an adjacent territory and established a new pack (15; Monte Vigese) with a 

female born in 2002 in pack 14 (Monte Sole). Two females from pack 14 originated 2 new groups, 

pack 12 (Gessi) in 2007, and 13 (Paderno) in 2008, with 2 males of unknown familial origin. 1 of 

them, male RA5M, was sampled 2 years before about 50 km apart in a straight line, similar to male 

FO77M, which replaced the previous breeder in pack 18 (Corno alle Scale). Thus, in this central 

region of the study area, pack interchanges involved 3 (33%) of 9 genealogies. Replacements 

involved each time the immigration of unrelated males that mated with resident females. Three new 

packs (12, 13 and 15) originated from unrelated individuals migrating from neighbouring zones and 

filling new areas. Packs increased from 6 (in 2001-2004) to 8 (in 2008), although it was not possible 

to reconstruct all their genealogies. Whenever carried out, field surveys confirmed the results from 

genetic data: the minimum number of wolves was confirmed by snow-tracking in packs 10, 11, 14, 
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16 and 18 (Caniglia et al. 2010); wolf-howling detected reproductions in packs 10, 11, 12, 14, 15, 

16 and 18 (Caniglia et al. 2010); camera trapping confirmed two reproductions and the minimum 

number of wolves in pack 18 (Galaverni et al. 2012). 

Eight pedigrees (Figure R.3.3.C) were reconstructed in the 15 packs identified in the western sector 

of the study area (upper-left part of Figure R.3.2). In pack 20 (Pievepelago), a female offspring  

colonized an adjacent territory and founded a new pack (19, Sestola) with a male of unknown 

genealogy, whereas her sister substituted their mother as a breeder in 2004. A case of incestuous 

mating was detected in 2003: a brother and a sister from pack 23 (Ligonchio) mated and originated 

the new pack 21 (Frassinoro). Other 4 packs were apparently not interconnected by any exchange of 

immigrant or dispersal individuals. The number of packs increased from 6 (in 2001-2003) to 8 (in 

2008), although it was not possible to reconstruct all their genealogies, and the 2 new packs filled 

vacant areas. Four packs were confirmed by wolf-howling in 2002 (packs 19, 20, 22, 24), and 6 (19, 

20, 22, 23, 24 and 25) by snow-tracking between 2002 and 2004 (Life project LIFE00NAT/IT/7214 

final report). 
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R.4. Non-invasive genetic sampling to predict species ecological niche and depredation risk 

 

From January 2000 to December 2011, 8,565 biological samples were collected. Non-invasive 

samples (scats, hairs, urine and saliva) represented 98.6% of the sample collections. All samples 

collected during the GP (N=3,194) and NGP (N=5,371) were used to estimate and map the 

sampling effort weights (Fig. R.4.1 A and B). The Wilcoxon-signed rank test did not detect 

significant differences in Gaussian kernels (P=0.81). DNA analysis led us to identify 3,622 samples 

as wolf (35.7% in the GP and 64.3% in the NGP), matching the genotypes of 845 different 

individuals. 

 

Figure R.4.1. Sampling effort estimation maps in the grazing (A) and in the non-grazing (B) 

period. 
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Wolf samples collected during the GP (N=1,292) and NGP (N= 2,330) were used in the GNESFA. 

During both the GP and the NGP, the eigenvalue diagrams of FANTER indicated a break after the 

first and before the last eigenvalue (Fig. R.4.2). In the GP, the first component (F1=5.72) was 

mainly correlated to meadows (R=0.65), altitude (R=0.53), mixed woods (R=0.32), roughness 

(R=0.32) slope (R=0.32), sheep density (R=0.16), and cultivated fields (R=-0.33) while the last one 

(L1=0.02) was mainly related to water courses (R=-0.73), artificial surfaces (R=0.67), human 

density (R=-0.38) and wild boar density (R=0.22). In the NGP, the variables manly related to the 

first component (F1=5.51) were beech wood cover (R=0.88), altitude (R=0.47) and hunter density 

(R=-0.14), whereas the last component (L1=0.01) was mainly related to distance and presence of 

artificial surfaces (R=-0.37 and R=0.82, respectively), flat terrains (R=0.60), human density 

(R=0.46) and North exposition (R=-0.37). In the GP, the eigenvalue of the MADIFA indicated a 

break after the second eigenvalue (Fig. R.4.2) and therefore the first two components were 

considered (F1= 34.38; F2=24.78). Also in this case a similar configuration of the eigenvalues was 

recorded during the NGP (F1= 30.67; F2=22.97; Fig. 3). MADIFA results highlighted correlations 

between the first axes and slope (R=0.46), roughness (R=0.44), North-Western exposure (0.37), 

altitude (R=0.37), meadows (R=0.33), distance and presence of artificial surfaces (R=0.48 and R=-

0.92, respectively), habitat diversity (R=0.25), sheep density (R=0.22) flat terrains (R=-0.54), and 

human density (R=-0.52). The second component was mainly related to water course (R=0.99), flat 

terrains (R=0.34) and wild boar density (R=0.19). During the NGP similar relations between 

variables and components were found except for the beech woods (R=0.36) and the meadows 

(R=0.16). ENFA showed breaks after the first specialization eigenvalue both in the GP and in the 

NGP (Fig. R.4.2). Thus, only marginality and the first specialization components were considered. 

In the GP marginality (M=8.47) was mainly related to meadows (R=0.45), altitude (R=0.41), terrain 

roughness (R=0.31) habitat diversity (R=0.21), red deer density (R=0.18) and cultivated fields (R=-

0.31), while the specialization factor (S=29.37) was related to artificial surfaces (R=0.61), terrain 

roughness (R=0.37), wild boar density (R=0.18), wild prey diversity (R=0.17) and water courses 

(R=-0.59). A similar pattern was observed in the NGP (M=8.46; S1=26.46; Fig. R.4.2), with a 

higher relation between marginality and beech woods (R=0.44) than with meadows (R=0.35). 
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Figure R.4.2. Barplots of the General Niche Environment System Factor Analysis. In grey the 

eigenvectors of the grazing and in black those of the non-grazing period. Factor Analysis of 

the Niche taking the Environmental as the Reference (A), of the Mahalanobis Distance Factor 

Analysis (B) and of the Ecological Niche Factor Analysis (C). 
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Wolf potential distribution, model validation and depredation risk 

The 1,000 MADIFA replicates highlighted eigenvalue structures similar to those observed in the 

original data sample, both in the GP and NGP (Table R.4.1).  

 

Table R.4.1. Original eigenvalues of the Mahalanobis Distance Factor Analysis on wolf 

locations and mean (SD) of the 1,000 bootstrapped samples in grazing and non-grazing 

periods. 

 

Components 
Original Eigenvalues Bootstrap Mean (SD) 

GP NGP GP NGP 

1 34.38 30.67 35.32 (0.17) 39.53 (0.31) 

2 20.78 12.97 20.60 (0.07) 16.24 (0.18) 

3 15.10 11.89 14.67 (0.02) 8.49 (0.03) 

4 5.21 6.93 5.22 (0.01) 5.48 (0.01) 

5 3.52 4.37 3.51 (0.01) 3.65 (0.01) 

6 2.10 3.49 2.14 (0.00 3.01 (0.01) 

7 1.68 3.11 1.74 (0.00) 2.56 (0.00) 

8 1.61 3.00 1.59 (0.00) 2.31 (0.00) 

9 1.40 2.57 1.43 (0.00) 2.03 (0.00) 

10 1.30 2.20 1.32 (0.00) 1.77 (0.00) 

11 1.24 1.85 1.21 (0.00) 1.52 (0.00) 

12 1.18 1.71 1.12 (0.00) 1.39 (0.00) 

13 0.92 1.61 0.97 (0.00) 1.27 (0.00) 

14 0.90 1.47 0.88 (0.00) 1.17 (0.00) 

15 0.82 1.41 0.81 (0.00) 1.09 (0.00) 

16 0.78 1.17 0.74 (0.00) 0.95 (0.00) 

17 0.69 1.13 0.68 (0.00) 0.89 (0.00) 

18 0.63 1.01 0.62 (0.00) 0.81 (0.00) 

19 0.58 0.93 0.57 (0.00) 0.74 (0.00) 

20 0.55 0.88 0.53 (0.00) 0.69 (0.00) 

21 0.51 0.83 0.49 (0.00) 0.65 (0.00) 

22 0.50 0.80 0.46 (0.00) 0.62 (0.00) 

23 0.44 0.71 0.42 (0.00) 0.56 (0.00) 

24 0.41 0.62 0.39 (0.00) 0.49 (0.00) 

25 0.39 0.57 0.37 (0.00) 0.45 (0.00) 

26 0.37 0.49 0.34 (0.00) 0.39 (0.00) 

27 0.32 0.41 0.31 (0.00) 0.33 (0.00) 

28 0.29 0.38 0.28 (0.00) 0.29 (0.00) 

29 0.28 0.34 0.26 (0.00) 0.26 (0.00) 

30 0.27 0.26 0.24 (0.00) 0.21 (0.00) 

31 0.24 0.22 0.22 (0.00) 0.17 (0.00) 

32 0.19 0.00 0.18 (0.00) 0.00 (0.00) 

33 0.15 0.00 0.14 (0.00) 0.00 (0.00) 

34 0.12 0.00 0.11 (0.00) 0.00 (0.00) 

35 0.11 0.00 0.10 (0.00) 0.00 (0.00) 
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The coordinates of every cell on the principal components of the 1,000 MADIFA replicates were 

combined to compute habitat suitability maps with high predictive power for both periods (Table 

R.4.2). All the evaluation methods provided high values of all statistics, as a result of MADIFA 

good classification accuracy: ROC curves, CCR and Cohen’s K had higher values in the NGP, 

while Boyce’ Index in the GP (Table R.4.2).  

 

Table R.4.2. Validation results of 1,000 Mahalanobis Distance Factor Analysis replicates in 

the grazing and in the non-grazing period. 

 

Validation  

Methods  

GP 

mean ± s.d. 

NGP 

mean ± s.d. 

CCR 0.712 ± 0.021 0.741 ± 0.043 

K 0.709 ± 0.067 0.715 ± 0.104 

ROC 0.801 ± 0.032 (P<0.0001) 0.855 ± 0.074 (P<0.0001) 

Boyce’ Index 0.919 ± 0.001 (P<0.0001) 0.902 ± 0.001 (P<0.0001) 
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The wolf average potential distribution corresponded to 60.0% (SD = 0.95) of the whole study area, 

for a total of 36,421.64 ± 678.71 km
2
 during the GP and to 59.9% (SD = 1.89) of the study area, for 

a total of 42,808.64 ± 1,348.92 km
2 

in the NGP (Fig. R.4.3). The average suitability maps showed 

that wolf suitable areas were located at lower altitudes during the NGP than in the GP (Fig. R.4.3).  

 

Figure R.4.3. Average suitability maps of the wolf with 1,000 Mahalanobis Distance Factor 

Analysis replicates, in the grazing (A) and in the non-grazing (B) period. 

 

 



75 

 

The GP suitability maps were used to calculate the average depredation risk in the 1,935 pastures 

available to livestock grazing in the study area. A total of 761 pastures (39.3%) had a depredation 

risk higher than 75%, while 880 (45.5%) ranged between 50 and 75% and the remaining 294 

pastures (15.2%) didn’t reach 50% of depredation risk (Fig. R.4.4). 

 

Figure R.4.4. Map of depredation risk on livestock in the pastures during the grazing season.  
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R.5. Landscape-genetics and habitat suitability models: general implications of a specific 

application 

 

For each of the ten tested habitat suitability models, similar fractal dimension at the three grid sizes 

considered were found (i.e. 500 m, 1,000 m and 2,000 m; Table R.5.1), indicating that the results 

were robust irrespective of resolution. Thus, the analyses were continued with a resolution of 1,000 

m only.  

 

Table R.5.1. Fractal dimension indices of ten habitat suitability models at three different 

levels of resolution (grid cell size).  

 

Model 500 x 500 m 1,000 x 1,000 m 2,000 x 2,000 m 

MADIFA 1.427 1.442 1.507 

MAXENT 1.455 1.456 1.437 

GLM 1.432 1.446 1.416 

BRT 1.478 1.404 1.356 

GAM 1.431 1.449 1.424 

CTA 1.352 1.340 1.355 

ANN 1.440 1.435 1.460 

FDA 1.426 1.434 1.382 

MARS 1.426 1.439 1.399 

RF 1.462 1.475 1.464 
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Both the size and the number of wolf suitable areas were different in the ten habitat suitability 

models (Fig. R.5.1). The minimum surface suitable for wolves was predicted by BRT (44.7% of the 

study area = 43,378 km
2
), while the maximum (50.1% = 48,936 km

2
) was given by MADIFA, 

MAXENT and GAM. CTA classified the minimum number of continuous areas suitable for wolves 

as 109, while RF showed a maximum of 1,150 suitable continuous areas.  

 

Figure R.5.1. Habitat suitability maps of wolves (greyscale) obtained by ten different habitat 

suitability models (darker colors indicate higher while lighter colors indicate lower habitat 

suitability, respectively) and corresponding least cost paths (red lines) among 1,014 individual 

wolf locations.  
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Despite differing patterns in different habitat suitability models, statistic validation showed 

significant values for all evaluation methods and all models. MAXENT and MARS showed 

especially highly significant values (Table R.5.2). 

 

Table R.5.2. Model validation of ten habitat suitability models at 1,000 x 1,000m grid size 

using ROC-curves, Cohen’ kappa(K) and Boyce’ index.  

 

Model ROC K Boyce’ index 

MAXENT 0.931*** 0.856*** 0.979*** 

MARS 0.919*** 0.869*** 0.974*** 

GLM 0.891*** 0.863*** 0.987*** 

FDA 0.908*** 0.843*** 0.983*** 

RF 0.979*** 0.899*** 0.854*** 

CTA 0.899*** 0.868*** 0.958*** 

BRT 0.907*** 0.805*** 0.981*** 

GAM 0.874*** 0.821*** 0.988*** 

ANN 0.886*** 0.807*** 0.976*** 

MADIFA 0.746* 0.714* 0.931*** 

 

***: P <0.0001; *: P < 0.05. 



79 

 

Dissimilarities in the ecological distances were detected from LCP analysis among the ten habitat 

suitability models considered. The largest ecological distances were derived by MADIFA (average 

= 265,900m), while BRT provided the lowest ecological distances (average = 225,100m). In the 

10,000 m buffer around the LCPs, i.e., the surface of ecological corridors (Fig. R.5.2), RF showed 

the maximum (85.2%) while CTA showed the minimum (75.4%) percentage of suitable wolf area. 

Similar patterns of corridors were recorded in most habitat suitability models: a South-North 

corridor of primary importance (from the Central to the Northern Apennines along the Western 

Alps) and additional peripheral corridors on both the sides of the main corridor were detected. The 

primary corridor mainly occupied the ridges of the mountains that separate the south-eastern 

regions of the study area (Umbria and Marche regions), reached into the Northern Apennines at the 

border between the regions Emilia-Romagna and Tuscany and continued between the Liguria and 

Piedmont regions, where the Alpine chain starts (Fig. R.5.2). From the South-Western Alps, the 

main corridor then reached the border with France and, following the boundary between France and 

Italy, continued to the Swiss Alps (Fig. R.5.2). Two secondary corridors, originated in the south-

eastern part of the above main corridor (between the Umbria and Marche regions), linked the 

lowlands near the Adriatic Sea with the ridge of the Apennines, while an additional five secondary 

corridors linked the border between the Emilia-Romagna and Tuscany regions to the lowlands 

closed to the Tyrrhenian Sea in the southern part of Tuscany (Fig. R.5.2). MADIFA, MARS and RF 

highlighted some slightly deviating patterns and also identified corridors across the Po river plain 

(Fig. R.5.2). 

 

Figure R.5.2. Habitats suitability of ecological corridors in a buffer of 5 km along least cost 

paths. Yellow areas have higher and red lower habitat suitability, respectively.  
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Regarding the efficiency of ecological corridor surfaces, RF and BRT showed the highest values of 

validation statistics (Table R.5.3).  

 

Table R.5.3. Corridor validation with ROC curves, Cohen’ kappa (K) and Boyce’ index.  

 

Models ROC K Boyce’ Index 

RF 0.978*** 0.999*** 0.989*** 

BRT 0.820*** 0.998*** 0.991*** 

MAXENT 0.859*** 0.935*** 0.989*** 

MARS 0.849*** 0.921*** 0.991*** 

FDA 0.826*** 0.909*** 0.988*** 

CTA 0.813*** 0.882*** 0.990*** 

GLM 0.793* 0.892*** 0.988*** 

ANN 0.787* 0.882*** 0.989*** 

GAM 0.768* 0.878*** 0.988*** 

MADIFA 0.679* 0.695* 0.987*** 

 

***: P <0.0001; *: P < 0.05. 
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Genetic distances were significantly explained by the ecological distances of all the ten habitat 

suitability models considered in MRDMs (P < 0.0001 in all cases; Table R.5.4). All habitat 

suitability models had high R
2
-values with a small range from 0.633 to 0.652 in BRT and 

MADIFA, respectively (Table R.5.4). However, the β-values of the ecological distances were quite 

different among the ten models, ranging from 0.211, for ANN, to 1.955, for GAM (Table R.5.4). 

Moreover, all β-values of the ecological distances from all habitat suitability models were higher 

than the Euclidean distances, especially for MADIFA, MARS and GLM, where they were more 

than three times higher, and CTA and RF (more than two times higher; Table R.5.4). Linear mixed 

effect models also showed significant values (P<0.0001) for all habitat suitability models, with a 

maximum R
2
-value derived from CTA and FDA (R

2
 = 0.042) and the smallest value found for 

GAM (R
2 

= 0.035; Table R.5.4). Again R
2
-values were rather similar for all habitat suitability 

models. As in the MRDMs, β-values of ecological distances were always higher than those of 

Euclidean distances, but with an only small variation among habitat suitability models except for 

CTA (Table R.5.4). The partial Mantel tests between genetic and ecological distances, conditioned 

by Euclidean distances, always showed r-values higher than Mantel tests between genetic and 

Euclidean distances conditioned by ecological distances; a result in agreement with the results of 

the MRDMs and linear effects mixed models mentioned above (Table R.5.4). Partial Mantel tests 

from the ten habitat suitability models were all significant and had similar performances based on r-

values. Only RF showed an r-value of ecological distances that was twice as high when conditioned 

by Euclidean distances than that of Euclidean distances conditioned by ecological distances (Table 

R.5.4). Conditioned by Euclidean distances, FDA showed the highest (r = 0.081) and MADIFA the 

lowest (r = 0.048) r-value in the partial Mantel test of genetic and ecological distances. 
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Table R.5.4. Landscape genetic analysis with multiple regression on distance matrices 

(MRDM), linear mixed effects models (LMEM) and partial Mantel tests (PMT). R
2
values for 

full models and β-values for ecological and Euclidean distances (EcDs and EuDs, respectively) 

in MRDM and LMEM have been shown. R-values for PMT  of ecological and Euclidean 

models are also given.  

 

 MRDM LMEM PMT 

Model R
2
 

EcDs 

β 

EuDs 

Β 
R

2
 

EcDs 

β 

EuDs 

β 

EcDs| EuDs 

r 

EuDs| EcDs 

r 

MADIFA 0.652* 0.797* 0.201* 0.037 1.053* 1.049* 0.048* 0.025* 

MARS 0.643* 0.491* 0.146* 0.039 0.932* 0.761* 0.062* 0.032* 

GLM 0.640* 0.404* 0.132* 0.039 0.945* 0.763* 0.068* 0.037* 

CTA 0.637* 0.317* 0.119* 0.042 1.417* 0.554* 0.078* 0.049* 

RF 0.635* 0.245* 0.106* 0.038 1.033* 0.841* 0.058* 0.028* 

GAM 0.634* 1.955* 0.993* 0.035 1.141* 1.029* 0.075* 0.046* 

ANN 0.634* 0.211* 0.102* 0.041 1.478* 1.401* 0.078* 0.049* 

FDA 0.634* 1.564* 0.935* 0.042 1.311* 1.104* 0.081* 0.048* 

MAXENT 0.633* 1.796* 0.961* 0.038 1.278* 1.183* 0.078* 0.049* 

BRT 0.633* 0.815* 0.748* 0.041 1.418* 1.212* 0.077* 0.045* 

 

***: P <0.0001. 
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DISCUSSION 

 

Wolf diet was markedly different between geographic areas, in particular for wild ungulates and 

livestock. The studies carried out in the south-central Apennines showed an important use of 

livestock, whereas in the northern Apennines wild ungulate occurrence increases while in the 

western Alps the use of livestock was negligible and the diet was characterized by large wild 

herbivores. These differences agree with changes of abundance and density of wild ungulate 

populations in the Italian peninsula. Several researchers have found a nearly complete dependence 

of wolves on wild ungulate populations in several European study areas, distributed from North-

East to South-West (Okarma 1995). In Finland elk (Alces alces) is the primary prey of wolves; 

reindeer is, however, an important part of wolf diet in summer, autumn and early winter, when their 

remains comprise roughly 20–50% of all food items identified in wolf scats (Kojola et al. 2004). 

Also in Sweden, elk is the dominant prey species reaching 95.6% of biomass ingested (Sand et al. 

2008). In Poland red deer is the main prey of wolves, followed by wild boar and roe deer (Smietana 

and Klimek 1993; Jedrzejewski et al. 2002). In Germany a study carried out in an area recently 

colonized by wolves showed that wild ungulates were 99% of wolf diet in biomass (Ansorge et al. 

2006). In the Mercantour National Park (French Western Alps) wild ungulates amounted up to 97 % 

of the wolf diet (Poulle et al. 1997). In some areas of the Iberian Peninsula wolves feed mainly on 

wild ungulates (Cuesta et al. 1991; Nores et al. 2008; Barja 2009). In Italy, wild herbivores 

represent the bulk of wolf diet in the Northern Apennines and in the Western Alps, reaching up to 

90% of frequency of occurrence and mean percent volume (Matteucci 1992; Mattioli et al. 1995, 

2004; Meriggi et al. 1996; Capitani et al. 2004; Gazzola et al. 2005; Meriggi et al. 2011). However, 

in several areas of the Mediterranean range of wolves in recent times a high occurrence of livestock 

has also been recorded (Ragni et al. 1996; Schenone et al. 2004; Migli et al. 2005; Meriggi et al. 

2011). 

Richness and abundance of wild ungulate communities in Italy follow a north-south gradient, from 

the Alps to the southern Apennines where some species (i. e. red and roe deer) are localized and at 

low densities (Pedrotti et al. 2001, Apollonio 2004). Moreover livestock abundance and husbandry 

method, as well as the proportions of different species, show great differences from the Alps to the 

Apennines and in the different parts of the Apennine chain, with consequences on domestic prey 

availability and, in turn on wolf feeding habits (ISTAT 2003).  

Wolf diet in the three geographic areas (Western Alps, Northern and South-Central Apennines) 

differed also in the specific composition of the wild ungulate component; in particular differences 
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were recorded for wild boar, roe deer, red deer, and chamois. The use of wild boars increased from 

the south-central to the northern Apennines and decreased markedly in the western Alps; the 

occurrence of roe and red deer in wolf diet increased in a regular fashion from south to north, 

reaching the maximum in the western Alps study areas. Finally chamois occurred in the wolf diet 

only in the Alps if, excluding a limited occurrence of Apennine chamois (Rupicapra pyrenaica 

ornata) in a study carried out in the Abruzzo National Park (Patalano and Lovari 1993); this was 

because of the lack of chamois population in the Apennines, apart a few areas in which there have 

been no studies carried out. The use of wild ungulate species by wolves seems related to their 

availability at range level, but locally there can be exceptions because of behavioral characteristics 

and accessibility of the different species (Huggard 1993, Meriggi and Lovari 1996, Meriggi et al. 

1996). In particular, in some areas wolves select species that live in large groups, are easy to detect 

and on which predator can carry out targeted hunting, as opposed to other solitary species for which 

predation rates mainly depend on encounter rate (Huggard 1993, Meriggi et al. 1996, Jedrzejewski 

et al. 2002). In Italy wild boar is the most important prey species unlike other Palearctic areas where 

red deer is the key species for wolves and wild boar is usually the second species (Reig and 

Jedrzejewski 1988, Jedrzejewski et al. 1992, Śmietana and Klimek 1993, Jedrzejewska et al. 1994, 

Okarma 1995, Meriggi and Lovari 1996, Gula 2004). The high use of wild boar in Italy can be 

explained as follow: i) the species lives in large groups easily detectable by a predator, ii) births 

occur all year round, particularly in spring-summer (Meriggi et al. 1988), iii) sub-adults leave 

matriarchal groups in coincidence with the new births, so becoming easier to prey upon (Heck and 

Raschke 1980, Mauget et al. 1984).  

The second species in importance in wolf diets in Italy was the roe deer, widespread and abundant 

particularly in the northern Apennines and in the Alps; roe deer, when present at high density, can 

be a profitable prey for wolves because of the high encounter rate and low handling time (Curio 

1976, Huggard 1993, Meriggi et al. 1996, Meriggi and Lovari 1996, Jedrzejewski et al. 2002). 

Moreover, from north American and European studies it has been noted that the size of wolf prey is 

related to the pack size (Thurber and Peterson 1993, Schmidt and Mech 1997, Hayes et al. 2000, 

Jedrzejewski et al. 2002); in Europe and particularly in the Mediterranean region, wolf packs are 

family groups of few individuals, usually from 2 to 4 and they rarely exceed 6 members (Boitani 

1992, Boitani and Ciucci 1993, Meriggi et al. 1996, Schenone et al. 2004). As a consequence, 

predation upon roe deer can satisfy food requirements of small packs, also allowing complete 

consumption of prey in a short time (Jedrzejewski et al. 2002).  

Red deer was the third species in order of importance in the wolf diet and the fourth after the Fallow 

deer in the northern Apennines. Also in the western Alps, where 37.4% of the Italian population of 
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red deer is present and where wild boar is limited to small and fragmented populations, red deer is 

the third most used species after roe deer and chamois. In western Alps, the chamois is the most 

abundant ungulate, nevertheless, it represents the second species in the wolf diet. This can be due to 

a better adaptation to snow conditions and steeper topography of Alpine valley leading to a low 

profitability of this prey species. Moreover the presence of pastures interspersed with conifer forests 

at low altitude in western Alps, could contribute to an easy approach by wolves to their main prey 

(roe deer and red deer) during winter season (Gazzola et al. 2007). 

In Italy wild ungulate communities have more species with higher population densities than other 

North European and North American situations; this leads to a greater flexibility in prey choice by 

wolves to satisfy food requirements of pack members in different seasons (Okarma 1985, 

Jedrzejewski et al. 2002, Peterson and Ciucci 2003, Melis et al. 2006, 2009). 

The analysis evidenced an increasing trend of wild ungulate use by wolves not only at a national, 

but also at regional and local scales. If the trend had been detected only at national level it could 

have been the case that it was influenced by the increase in information on wolf feeding ecology in 

the areas recently re-colonized by the species (i.e. the northern Apennines and the western Alps), 

where wild ungulate populations are more abundant and communities have a greater richness 

(Apollonio 2004, Gazzola et al. 2007). Moreover the use of wild ungulates could be influenced by 

the difference in livestock availability and husbandry methods among geographic areas. However, 

the increased occurrence of wild ungulate in wolf diet in the same region or study areas in 

subsequent times is possibly dependent on the increase of prey populations (Ragni et al. 1985, 

1996, Meriggi et al. 1991, 1996, Gilio 2001, Schenone et al. 2004, Meriggi and Schenone 2007). In 

particular in the study area in the province of Genova the occurrence of wild ungulates in the wolf 

diet ranged from 0% in 1987 to 70% in 2004; in the same period the hunting bags of wild boars in 

the area occupied by wolves increased from 606 to 2067 heads and roe and fallow deer counts 

showed marked increases of population densities (roe deer: from 21 per km
2
 in 1997 to 53.4 per 

km
2
 in 2005; Fallow deer: from 0.7 per km

2
 in 1994 to 20.2 per km

2
 in 2005. Genoa Province 

Wildlife Service unpublished data). Likewise, in the Pollino National Park (southern Italy) an initial 

study on wolf diet found an occurrence of wild ungulates of 16% (Borelli 1999), whereas 

afterwards wild ungulates increased up to 60.4% (Ciucci et al. 2004). Also in the Umbria region 

(central Italy) the frequency of occurrence of wild ungulates increased in a ten year period from 0% 

to 26% (Ragni et al. 1985, Ragni et al. 1996). 

The species of wild ungulates for which significant trends were found included wild boar, roe deer, 

red deer, and chamois. The use of wild boar by wolves increased until the mid-nineties whereupon 

it decreased; this trend could be due on one hand to the shift of diet studies in the recently colonized 
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areas of the western Alps where population densities of wild boars are lower than in the Apennines 

(Pedrotti et al. 2001, Apollonio 2004), and on the other hand to the increase of the use of other wild 

ungulate species such as the roe deer. Roe deer occurrence increased linearly in the diet of wolves, 

showing that this specie could be a highly profitable prey for wolves. As for red deer and chamois, 

the marked increase in the wolf diet in recent years is mostly due to the contribution of the studies 

carried out in Alpine areas. 

Together with the increase of wild ungulates, a significant reduction of livestock in the wolf diet 

resulted; the negative and highly significant relationship between the two frequencies of occurrence 

suggests that when wolves can choose between the two prey categories, they may prefer wild prey. 

This result agrees with the findings of Meriggi and Lovari (1996) for the Mediterranean area, and it 

seems a constant of the predatory behavior of wolves in Europe, even if shifts from this model can 

be evidenced at a local scale (Okarma 1995, Cozza et al. 1996, Poulle et al. 1997). According to the 

Optimal Foraging theory (Stephen and Krebs 1986, Huges 1993), wolves would prefer domestic 

herbivores instead of wild ones because of: i) their highly clumped distribution in few and known 

pastures (reduction of search time and greater opportunity of prey choice), ii) their low capability of 

detecting and avoiding predators due to domestication (greater probability of successfully attacking 

the prey), iii) their low efficiency of escape behavior (reduction of attack failures). However, 

disturbance by man can make domestic prey less profitable than wild ones; in particular wolves risk 

being killed and they have a high probability of not exploiting carcasses to the full (Meriggi et al. 

1996). As with the frequency of occurrence of livestock, also diet breadth was negatively and 

significantly related to the occurrence of wild ungulates; however this relationship shows an 

increase of diet breadth up to medium values of wild ungulate occurrence (40-50%), after which it 

then drops. This result suggests that when wild herbivores are scarce, wolves are forced to use 

alternative food sources (e.g. small mammals, lagomorphs, fruits, and garbage). In southern Europe 

wolves tend to prey upon wild ungulates, but locally they can adopt a less specialized diet, in order 

to survive in areas with low availability of both wild and domestic large herbivores (Okarma 1995, 

Meriggi and Lovari 1996, Meriggi et al. 1996, Peterson and Ciucci 2003). 

By considering the seasonal effects on the trophic ecology of the carnivore significant seasonal 

changes only for livestock and small mammals were recorded; in particular livestock was more used 

in summer and early autumn, when it reaches its maximum abundance after the births on pastures, 

and small mammals were preyed upon mainly in summer when their abundance increases because 

of reproduction (Kikkawa 1964; Bergstedt 1965; Montgomery 1989; Giordano and Meriggi 2009). 

A low occurrence of livestock in wolf diet, mainly in the grazing season, is usually linked to the 

presence of a rich and diverse wild ungulate community that lives in the Northern Apennines. 
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Reduced availability of large wild prey can cause an increase of livestock depredation (Fritts and 

Mech, 1981; Meriggi and Lovari 1996; Gazzola et al. 2008, Meriggi et al. 2011). In the Northern 

Apennines wolves select wild boars particularly in spring, summer, and winter, whereas roe deer 

and fallow deer are used as available in summer and autumn, and avoided in spring and winter. Red 

deer are always avoided. These findings are in agreement with the results of other researches carried 

out on wolf feeding ecology in the Northern Apennines (Meriggi et al. 1996; Capitani et al. 2004; 

Mattioli et al. 2004), but not with other studies in Europe and in the Western Alps (Jedrzejewski et 

al. 2002; Kojola et al. 2004; Gazzola et al. 2005, 2007; Ansorge 2006; Sand et al. 2008). The higher 

selection of wild boar was found in spring and summer can be due to the peak of births in these 

seasons, and to the fact that sub-adults leave matriarchal groups in coincidence with the new births, 

so becoming easier to prey upon (Heck and Raschke 1980, Mauget et al. 1984; Meriggi et al. 1996; 

Capitani et al. 2004). Moreover, it seems that wild boars are particularly preyed upon in areas with 

severe winters and deep snow cover, which could be an explanation for the increase of the use of 

this species in winter (Okarma et al. 1995; Capitani et al. 2004). In a period of 20 years the diet of 

wolves in in the Northern Apennines changed markedly, with an increase of wild ungulate use and a 

decrease of livestock and other food categories that can be considered alternative nourishment by 

wolves in areas where large herbivores are lacking, or in periods of scarcity of preferred prey. These 

differences between the two study periods agree with changes of abundance and density of wild 

ungulate populations in the Northern Apennines, and mirror large scale changes in wolf diet 

recorded in Southern Europe in the period corresponding to wolf population recovery and wolf 

range enlargement (Meriggi and Lovari 1996; Meriggi et al. 2011). Wild boars and roe deer were 

present in the study area also in 1988-90, the former species already being widespread at that time 

and the latter being rare; their abundance dramatically increased over twenty years as demonstrated 

by the number of hunted wild boars and by the results from roe deer monitoring. Fallow deer 

abundance has probably slightly increased since the late eighties but this species is still at low 

density, occupying 48.8% of the study area. Red deer were absent from the study area at the 

beginning of the nineties, and the present population originated from a few individuals that escaped 

from an enclosure; now red deer range represents 17.4% of the study area. The patterns of 

distribution and the trend of density of the wild ungulate community recorded in the study area can 

explain the marked increase of occurrences of wild boar and roe deer in wolf diet and of the slight 

increase of fallow and red deer.   

Once analysed the impacts on the wild and domestic preys, the population structure of wolf was 

investigated. Molecular identifications of DNA samples noninvasively collected over 9 years led us 

to obtain the most complete description to date of the distribution range and demographic structure 
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of a wolf population living in a wide area of the Apennine Mountains. 414 distinct wolf genotypes 

were detected (plus 88 dogs and 16 wolf3dog hybrids) in a population that is estimated to average 

187 ± 78 wolves (data extrapolated from results described by Caniglia et al. 2012). 42 packs were 

located and fully reconstructed the genealogies for 26 of them. Through the identification of 

resident wolves in packs the number and destiny of dispersers was inferred and a rough estimate of 

floaters was obtained. The wealth of information gathered by noninvasive genetic sampling projects 

of this kind could have not been obtained with any other monitoring tool at a comparable cost 

(Galaverni et al. 2012). This study relied on molecular identifications of samples that were collected 

year-round by trained collaborators. Although accurate selection of fresh scat samples was not 

guaranteed, genotyping success was comparable to values reported in other noninvasive genetic 

studies of carnivores (e.g., 14–63% in otters, 54% in wolverines, 48–61% in wolves, and 45% in 

pine martens as reported by Ruiz-Gonzalez et al. 2013). Moreover, the absence of seasonal effects 

(Santini et al. 2007) indicates that large-scale surveys could focus either on winter (e.g., sampling 

on snow tracks; Lucchini et al. 2002) or summer sampling (e.g., at rendezvous sites; Stenglein et al. 

2011). Nonsystematic sampling procedures may miss portions of the target population, particularly 

in areas difficult to access or that were recently colonized. However, fully randomized sampling 

schemes will probably remain too expensive for monitoring elusive, low-density, and widespread 

large carnivores (Duchamp et al. 2012). Through nonsystematic, but protracted, noninvasive genetic 

sampling it is possible to reconstruct detailed wolf pack territory maps, which facilitate the 

identification of distribution gaps and the design of optimally allocated transects in predefined 

sampling grid cells. This approach is useful in monitoring demographic and genetic trends in 

wolves and other species of canids and elusive carnivores, also found in regions where dense forest 

cover or absence of snow periods prevent the use of field-monitoring methods (Blanco and Cortes 

2012). 

A main benefit of this noninvasive genetic approach was the inference of wild pedigrees, reliability 

of which depends upon the proportion of sampled parents (which, in theory, should almost all be 

sampled), and the power of the genetic markers to exclude or assign each individual to a single 

parental class with high probability (Kalinowski et al. 2007; Pemberton 2008). In this study 

independent estimates of the proportion of sampled parents were not obtained, because no field 

method was practicable at such a large scale. However, simulations showed that the risk to 

misidentify parent–offspring dyads was small (4%), and kinship analyses consistently partitioned 

the samples into a set of well-supported trios or dyads (parent–offspring and full-siblings) versus a 

set of unsupported kinships. Pack identifications and their genealogies can be used as working 

hypotheses to provide real-time descriptions of wolf colonization patterns, eventually indicating 
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obstacles to dispersal and local patches of inbreeding or hybridization, which should be quickly 

managed by appropriate conservation actions. The continuing wolf expansion in human dominated 

landscapes, where free-ranging dogs are frequent and disturbance is heavy, increases hybridization 

risks. The 16 hybrids found in the study area correspond to approximately 4% of the sampled 

individuals. Similar frequencies were reported in Iberia (Godinho et al. 2011), the Baltic countries 

(Hindrikson et al. 2012), and wolves randomly collected from the entire distribution range in Italy 

(Verardi et al. 2006). Despite hybridization, all the studied wolf populations in Europe remain 

genetically distinct from dogs (Verardi et al. 2006; Godinho et al. 2011; Hindrikson et al. 2012), 

suggesting that backcrossing in wolves is not frequent or it is constrained by natural selection 

(Randi 2011). However, most published wolf studies used fewer than 40–50 microsatellites and 

have limited power to identify hybrids beyond the first 2 or 3 generations of backcrossing in 

populations diverging at FST , 0.10–0.15 (Vaha and Primmer 2006). Improved identifications of 

admixed genotypes will be obtained not simply by expanding the number of markers, which will be 

unsustainable in conservation projects, but by genotyping limited numbers of very informative 

mutations (Axelsson et al. 2013; vonHoldt et al. 2013). Forthcoming conservation genomic 

approaches (Steiner et al. 2013) will provide more efficient tools for deeper assessments of 

hybridization (Rutledge et al. 2012). Improved molecular identification methods and more 

comprehensive data sets, however, should be analyzed in proper logical frameworks. In this 

perspective straight assessments of hybrid frequency should be integrated with genealogical 

reconstructions to identify the number and locations of the original hybrid packs that contribute to 

the diffusion of hybrid individuals. Because of Allee effects and their genetic consequences 

(Roques et al. 2012), wolf x dog hybridization could be more frequent at the edges of expanding 

populations (see also Godinho et al. 2011). Large-scale, noninvasive genetic monitoring of 

expanding populations will help to test this prediction, and will contribute to designing efficient 

plans to contrast hybridization. Spatial and temporal dynamics of hybridization and backcrossing in 

wolves and other canids are conditioned by landscape features and anthropogenic factors (Benson 

and Patterson 2013). Georeferenced genotype data and habitat variables could be modeled, 

reconstructing maps of hybridization risk, thus providing important resources for the monitoring 

and management of hybridizing canid populations. 

Wolf pack territories are regionally variable and reflect latitudinal clines or variation in prey density 

and composition (Fuller et al. 2003; Ciucci et al. 2009). The ranges of the 42 pack territories in the 

study area (74 ± 52 km
2
) as estimated by noninvasive genetics was smaller than in other wolf 

populations in Europe (80–300km
2
; Kusak et al. 2005; Jedrzejewski et al. 2007) and North America 

(100–800 km
2
; Mech 1999; Fuller et al. 2003), but similar to estimates from previous studies in 
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comparable ecological contexts in Italy (approximately 50–200 km
2
; Apollonio et al. 2004; 

Scandura et al. 2011). As hypothesized, neighboring packs in the Apennine Mountains have mostly 

non-overlapping territories. The observed inter-pack distance (8–16 km) compares well to the limit 

of nonrandom genetic structure estimated by autocorrelation analyses (17 km) as well as with 

results from other studies (Apollonio et al. 2004; Scandura et al. 2011). The spatial distributions of 

noninvasive samples are conditioned by sample collection and certainly biased the estimate of pack 

territories, which are probably closer to pack core areas than to their wider home ranges. Large-

scale noninvasive genetic monitoring offers preliminary, perhaps coarse, estimates of pack territory 

sizes and shapes that could be determined with more details by global positioning system or radio-

tracking studies, which, however, remain difficult and expensive in widespread populations of 

wolves and other canids. The reconstruction of wolf core ranges through noninvasive genetic 

sampling indicated that pack locations are stable in time, although pack composition is variable 

because of high turnover rates of the parental pairs. Pack locations indicate territories that are highly 

suitable to sustain wolf presence and reproduction, and are useful to field biologists and managers 

to plan more efficient field monitoring (e.g., wolf-howling) and conservation activities (e.g., 

prevention of livestock depredations). Estimating pack size is conditioned by methodological 

constraints and published data are extremely variable (Blanco and Cortes 2012). Pack size could 

evolve, at least in part, to maximize group hunting success, thus it should vary according to the 

composition of the main prey communities (MacNulty et al. 2009). The average pack size in this 

study (5.5 6 2.4) falls within the range of wolves in Europe (Fuller et al. 2003; Mech and Boitani 

2003; Nowak et al. 2008; Marucco et al. 2009), suggesting that genetic and field methods produce 

comparable results. Assuming that 70% of packs reproduce each year, on average (Hayes and 

Harestad 2000), the mean annual population in the study area would be approximately 162 wolves, 

plus approximately 14–17% of floaters (which represent a temporary status of individuals that may 

later immigrate and eventually mate into existing packs; e.g., wolf 302M; vonHoldt et al. 2008). 

These estimate of floaters is slightly higher than those reported in other studies (10–15%; Fuller et 

al. 2003), but can be biased because some packs and genealogies may have been missed because of 

insufficient sampling. Genetic estimates of pack size can be compared to independent estimates 

obtained through implemented bioacoustic methods (Root-Gutteridge et al. 2013), and applied to 

presence–absence and capture–recapture surveys of wolf and other carnivore populations. 

Inbreeding may reduce adaptability and increase demographic stochasticity in cooperative-breeding 

species and in small isolated populations. A number of inbreeding-avoidance behaviors, including 

juvenile dispersal, hierarchical control of reproductions, extra-pair reproduction, and pack turnover 

have evolved in carnivores (vonHoldt et al. 2008). In this case study, the reconstruction of multi-
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generation pedigrees indicated that inbreeding was a rare exception: all mating events involved 

unrelated individuals, with the exception of 1 brother–sister pair that founded a new pack after a 

probable splitting. Pack turnover was high (27%), and new packs were founded by unrelated 

wolves. Replacers were mainly unrelated males (67%) that apparently replaced dead or not 

resampled wolves, mating with offspring females that replaced their mothers within the natal pack 

(50% of the cases). This mechanism guarantees the production of offspring unrelated to the 

previous males (Jedrzejewski et al. 2005) and at the same time maintains pack stability. Ialso 

observed cases of complete replacements of the breeding pairs by 2 unrelated immigrant wolves, 

and partial replacement of the male breeder by an immigrant, unrelated wolf. Inever observed 

replacer immigrant females mating with the pack males, nor complete replacements of both 

breeders by 2 of their offspring (vonHoldt et al. 2008). Multiple litters per year in a pack or extra-

pair reproductions, which may constitute exceptional events favored by extreme conditions of food 

availability or in highly exploited packs (vonHoldt et al. 2008; Stenglein et al. 2011), which is not 

the case in the target population, were never detected. The frequency of these behavioral 

mechanisms is variable in the studied wolf populations (vonHoldt et al. 2008; Stenglein et al. 2011), 

but all concur to minimize inbreeding and its negative consequences on fitness. All studies 

published so far (Sillero-Zubiri et al. 1996; Randall et al. 2007; vonHoldt et al. 2008) indicate that 

juvenile dispersal, pairing, and pack turnover concur to favor gene flow among packs in canids. 

Furthermore, Geffen et al. (2011) and Sparkman et al. (2012) suggested that selection for 

inbreeding avoidance may be weak in canids, because the low probability of kin encounters is 

enough to prevent inbreeding. Wild genealogies, validated by genetic identifications at 

nonfunctional and putatively neutral markers (such as microsatellites), can be used to test for 

hypothetical inbreeding-avoidance mechanisms, for instance by typing functional genes involved in 

kin recognition, such as genes in the major histocompatibility complex (Aguilar et al. 2004) and the 

olfactory receptors (Quignon et al. 2012), thus opening new ways to behavioral genetic studies in 

wild populations.  

Individual replacements and new pack foundations detected in the study area were due to short-

distance migrants. About 37% of dispersers became breeders in new or in already existing packs, 

ensuring inter-pack connection and gene flow. This mechanism helps in maintaining high genetic 

connections among adjacent packs, reduces within-pack relatedness and indicates that short-term 

effective gene flow is limited to a few kilometers around the pack territory (Scandura et al. 2011). 

On the other hand, long-distance dispersal provides a faster way to colonize new suitable areas 

during the early phase of population expansion (Fabbri et al. 2007). In both cases, dispersal is 

mostly male-biased. The average observed heterozygosity was not significantly different between 
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breeding pairs and their offspring, and between breeding and non-breeding individuals, further 

excluding major intergeneration shifts toward more inbred or more heterozygous offspring cohorts 

(Bensch et al. 2006; vonHoldt et al. 2008). This diversity of mating schemes reflects the dynamic 

condition of the expanding wolf population in Italy. However, poaching and incidental killings, the 

major causes of wolf mortality in Italy (Ciucci et al. 2007), are among the main determinants of 

pack instability. Fourteen wolves found dead were assigned to known packs; 10 of them were found 

within 1 year from the presumed pack foundation and 4 were killed by poaching and car accidents. 

Although expanding wolf populations can sustain high levels of human-caused mortality (Stenglein 

et al. 2011), its reduction would help to maintain the social structure of the packs and ensure the 

long-term conservation of the population. Moreover, high mortality and pack disruption may 

increase the risk of hybridization with dogs in expanding canid populations, particularly at the edge 

of the expansion waves. 

Accurate seasonal suitability maps were provided and the pastures with the highest predation risk 

were identified, starting from previous suitability models about wolf distribution (Massolo and 

Meriggi 1998; Corsi et al. 1999; Marucco and McIntire 2010). To do it, for the first time the 

ecological niche of the wolf in Italy was described based on long-term genetic sampling. The main 

habitat factors affecting the ecological niche of the wolf were represented by geo-morphological 

conditions (altitude, slope and roughness), the availability of food resource and refuges sites, and 

human disturbance. Topographic variables were important to define suitable wolf habitats in 

mountain areas, as they represent important refuges for the species (Jedrzejewski et al. 2005; 

Hebblewhite and Merrill 2008; Ahmadi et al. 2013). In the study area, and throughout Italy, wolves 

mostly occupy intermediate elevations (Falcucci et al. 2013). Higher altitudes were used during the 

GP, due to a higher abundance of domestic and wild prey and avoidance of high human activities on 

valleys (Eggermann et al. 2011). Lower areas were used in the NGP, also as a response of adverse 

climate (Massolo and Meriggi 1998; Glenz et al. 2001). Wolf presence was related also to 

intermediate slopes and terrains with high roughness, which represent ideal shelter for den sites 

(Person and Russell 2009; Ahmadi et al. 2013). These characteristics can provide the maximum 

concealment for wolves, abundance of prey, and high efficiency in hunting, combined with the least 

human activity due to limited accessibility (Carroll et al. 2003, Laporte et al. 2010, Ahmadi et al. 

2013). Significant correlations between wolf presence and the amount of mixed and beech woods 

were found. These provided food resources for wolves, such as wild boar and deer populations 

(Meriggi et al. 2011; Milanesi et al. 2012) and safe den sites (Jedrzejewski et al. 2004; 2005). Open 

areas affected positively the wolf presence as they represent pastures for livestock during the GP 

(Eggermann et al. 2011) and foraging sites for deer (Abbas et al. 2013). To fully interpret habitat 
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use and selection by wolves, human disturbance, particularly by hunters, was considered as it 

affects the individual behavior and performance of wolves (Gaillard et al. 2010) and the density and 

amount of food resources. In the study area, wolf habitats were characterized by low human and 

hunter density, as in other parts of Europe (Nilsson 2003; Jedrzejewski et al. 2005; Anwar et al. 

2009). Although several studies suggested that wolves can survive in human-altered landscapes 

(Bateman and Fleming 2012; Llaneza et al. 2012; Dellinger et al. 2013), an avoidance of 

settlements and infrastructures was recorded, which can determine behavioral modifications in 

terms of movement rate, dispersal, habitat selection and increased mortality rate (Houle et al. 2010; 

Lesmerises et al. 2012). Both in North America and Europe, the most suitable habitats for wolves 

show a low human impact and high abundance and diversity of prey (Gehring and Potter 2005; 

Potvin et al. 2005; Jedrzejewski et al. 2008; Falcucci et al. 2013; Ahmadi et al. 2013). According to 

previous researches in Italy (Massolo and Meriggi 1998, Meriggi et al. 2011; Milanesi et al. 2012) 

and in Europe (Barja 2009; Nowak et al. 2011; Wagner et al. 2012), the presence of the wolf is 

significantly affected by food resources. In fact, wild ungulate (wild boar, roe deer, and red deer) 

diversity and abundance affected positively the presence of the carnivore, whereas the density of 

fallow deer and mouflon did not affect the wolf presence, probably because these species are used 

as supplementary prey (Nowak et al. 2011; Lanszki et al. 2012; Wagner et al. 2012). On the other 

side, during the GP, livestock was an important factor to define the wolf ecological niche in the 

study area. In particular, a strong relationship between wolf presence and the density of sheep was 

found, in agreement with Suryawanshi et al. (2013). Thus, this results turned out to be consistent 

with other published studies (Massolo and Meriggi 1998; Jedrzejewski et al. 2005; Eggermann et al. 

2011; Ahmadi et al. 2013) and, as shown by the evaluation methods, the models were well 

parameterized and calibrated, underlining the effectiveness of the methods. For these reasons the 

resulting suitability maps were used to classify the depredation risk on pastures identifying the 

pastures with the highest risk of large carnivore attack (39.3% of the total) where preventing tools 

may be primarily posed.  

Another way to use habitat suitability models was explored in combination with population genetics 

information, in a landscape genetics framework. The use of habitat suitability models in landscape 

genetics has recently increased to provide resistance surfaces used in LCP calculation (Laiola and 

Tella 2006; Wang et al. 2008; 2013; Brown and Knowles 2012; Duckett et al. 2013). However, a 

comparison of different habitat suitability methods had not been carried out so far. In this context, 

the study provides for the first time information about the effectiveness of ten widely used habitat 

suitability models in landscape genetic analyses. All the habitat suitability models used in the 

present study showed significant validation statistics for predicting wolf occurrence, especially for 
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MAXENT and MARS, as a result of their efficiency in forecasting species occurrence (Leathwick 

et al. 2006; Hastie et al. 1994; Elith et al. 2008, 2010). Qualitatively, similar results were found 

comparing ecological and Euclidean distances, irrespective of the habitat suitability model or 

landscape genetic statistical analysis used. Ecological distances always better explained genetic 

distances (and thus gene flow) than Euclidean distances. However, while ecological distances did 

only change within relatively narrow limits among different habitat suitability models, their β-

values or r-values considerably changed among different landscape genetic statistical methods (i.e. 

MRDMs, linear mixed effects models and partial Mantel tests). Thus, different statistical 

procedures come up with similar qualitative but not with the same quantitative results. Linear mixed 

effect models and partial Mantel tests showed β- and r-values of a similar order, while those of 

MRDMs differed substantially. For MRDMs, the highest spread in the correlation of ecological and 

genetic distances was recorded, while in linear mixed effect models and partial Mantel tests the 

spread was lower. It is hardly possible to directly compare the performance of different landscape 

genetic statistical approaches based on  R
2
-values, because of different computation and therefore 

different meanings (Balkenhol et al. 2009). However, the R
2 

values of MRDMs in the study were 

similar to those found in other landscape genetic studies using LCPs based on expert knowledge 

(e.g. Clark et al. 2008), and the same held true for linear mixed effect models (e.g. Goldizen et al. 

2009; Selkoe et al. 2010). The r-values of partial Mantel tests were similar to those found by 

Braunisch et al. (2010), which were also based on habitat suitability, and to those of other authors 

who used LCPs based on expert knowledge (e.g. Cushman and Lewis 2010; Shirk et al. 2010). 

However, they were substantially lower than the values found in other studies (e.g. Lee-Yaw et al. 

2009; Andrew et al. 2012). The R
2
-values were in agreement with other studies that used MRDMs 

(Balkenhol et al. 2009; Legendre and Fortin 2010; Storfer et al. 2010; Keller et al. 2013). Even if 

MADIFA, GAM, MAXENT and FDA in concert with an MRDM framework seemed to better 

perform than other habitat models or landscape genetic statistical analyses, it is strongly encouraged 

that researchers test several habitat suitability models and landscape genetics methods to avoid 

single model uncertainties. The effect of spatial scale on the ten different habitat suitability models 

showed similar patterns at the three considered spatial scales. Thus, wolves react similarly to 

landscape at a resolution of 500 – 2,000 m. Thus, as the spatial scale between 500 – 2,000 m did not 

affect wolf distribution in any significant way, a resolution of 1,000 m seems appropriate for 

conservation planning. This results were in contrast with those found for another species of large 

carnivore, the brown bear, in North-Western Spain, which showed significant differences in the 

distribution models at different spatial-scales (Sánchez et al. 2013), probably because of different 

species living in different habitat and areas. The validation statistics of all the ecological corridors 
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were highly significant (P < 0.0001). RF showed the highest values of validation of the ROC curve 

statistic, followed by MAXENT, MARS, FDA and BRT. Similar patterns of evaluation were found 

in the K statistic: RF had the highest value, followed by BRT, MAXENT, MARS and FDA. The 

Boyce’ index generally showed values higher than the other two validation methods, as a result of 

significant accuracy of particular habitat suitability models in corridors classification (Wang et al. 

2008; Squires et al. 2013). Thus, some methods clearly performed better than others in the present 

study. However because all the habitat suitability models and ecological corridors worked 

reasonably well, the use of all of them is suggested to increase inference power and to validate 

landscape genetic results (Balkenhol et al. 2009). Thorough knowledge of the utilization, predictive 

power and limitations of habitat suitability models is fundamental for their application in landscape 

genetics (Thomassen et al. 2010).  

The results showed that ecological corridors of wolves in Italy are clearly affected by ecological 

features, as confirmed by the comparison between ecological and Euclidean distances. Patch 

occupancy and movement of species are affected by the interaction of many factors such as 

physiological constraints, environmental factors and behavioral patterns (Squires et al. 2013; 

Milanesi et al. submitted). Therefore, numerous species distribution models, developed over the last 

decade (Huck et al. 2010), have been used by conservation practitioners to reduce this complexity 

and to define suitable habitat and ecological corridors for endangered species (Marmion et al. 

2008). For the first time, specific spatial corridors for wolves were extrapolated in highly 

fragmented areas (Marucco and McIntire 2010), such as lowlands between the Adriatic and the 

Tyrrhenian Sea to the ridge of the Apennines (Marche Region) and those in the Southern and 

Western Alps. Combining ecological corridors based on habitat suitability with genetic structure 

(Holderegger and Wagner 2008), whether corridors provide functional connectivity for the wolves 

in Italy was tested. Even if the ten habitat suitability models showed some differences in the 

potential distribution of wolves (Figure R.5.1), they all agreed that wolf connectivity in Italy was 

basically maintained by one main corridor. It started on the edges of the mountains that separate f 

Umbria and Marche Regions in the Central Apennines and, following the border between Emilia-

Romagna and Tuscany Regions, where it reached the South-Western Alps between Liguria and 

Piedmont Regions, it reached the boundary of the French and Swiss Alps. This South-North 

corridor thus connects the central part of the Northern Apennines  with the Alps (Valière et al. 

2003; Figure R.5.2). This major connection was also suggested by Fabbri et al. (2007), confirming 

that the Apennine Italian wolf population served as a source of immigrants to the Alps. This 

corridor, providing functional connectivity between suitable wolf areas, plays a crucial role for the 

conservation of wolves in Southern and Central Europe. Potentially this holds true for other 
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expanding species too, because the corridor turns "suitable habitat" into "accessible habitat" 

(Eigenbrod et al. 2008). Some secondary corridors on both sides of the Apennines in the southern 

part of the study area were detected (Figure R.5.2). They connected the primary corridor to the 

more peripheral and low elevation parts of the wolf distribution in Italy in the south-eastern part of 

the study area, i.e. the lowlands in front of the Adriatic Sea (Marche Region), and in the south-

western part of Tuscany, closed to the Tyrrhenian Sea (Figure R.5.2). In the Italian lowlands, 

wolves are currently re-colonizing parts of their historical distribution range. MADIFA, MARS and 

RF identified also some corridors across the Po plain. Several protected areas (e.g. Ticino Regional 

Park and the Natura 2000 Network) do not only harbor suitable habitats for wolves and their prey 

but provide functional connectivity in this region too, though the large width of river Po 

(approximately 500m) is usually considered as a natural barrier to animal movement (Lucchini et al. 

2004). LCP analysis, based on habitat suitability models and landscape genetic analysis, allowed us 

to also to detect gaps in the corridor network for wolves in Italy. A primary gap was identified, 

separating the Northern Apennines from the Central Alps in the Lombardy Region (Figure R.5.2), 

likely due to the high level of human activities in this area, even if protected areas are available. 

Another gap (between western Liguria and Piedmont) at the beginning of the Alpine chain was 

detected, again probably due to human disturbance and infrastructure.  
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CONCLUSIONS 

 

Wolves in Italy prefer wild ungulates, while the occurrence of livestock decreases, especially in the 

Alps. This is certainly positive as a solution to the problems of human attitudes towards the wolf in 

the areas of new colonization, even if the effects on wild ungulate populations should be deeply 

studied. In Europe wolves seem to have a limiting effect only on red deer, for which predation 

accounts up to 40% of their total mortality (32% in the western Alps, Gazzola et al. 2007), whereas 

for the other species of wild ungulates the main limiting factors are habitat, food supply, climate, 

hunting, and traffic accidents (Okarma 1995, Jedrzejewski et al. 2002, Melis et al. 2006, 2009, 

Gazzola et al. 2007). In Italy, considering the present and potential densities of wild ungulate 

populations and the specific richness of the guilds, it is not plausible that wolf predations can be a 

limiting effect. In fact, in Italy the mild climate and the high productive habitats can reduce the 

impact of predation, possibly because of a better ability of ungulate species to compensate for 

predation losses by higher reproduction rate (Jedrzejewska and Jedrzejewski 2005, Melis et al. 

2009). The shift in wolf diet recorded in the Northern Apennines towards an increasing use of wild 

ungulates and a decreasing of anthropogenic food sources is a clear example and can strongly 

contribute to the recovery in wolf numbers and conservation. In fact it seems that both over wolf 

range and at local level the use of large wild herbivores and livestock by wolves are negatively 

correlated (Meriggi and Lovari 1996; Meriggi et al. 2011); this can mitigate wolf-man conflicts and 

remove a strong motive for the illegal killing of wolves.  

Thus, also temporal trends in abundance and density are key parameters for wildlife conservation, 

even if they are challenging to obtain in widespread elusive species such as some carnivores 

(Boitani et al. 2012). Extensive noninvasive genetic sampling and molecular identifications, 

possibly integrated with field data, provide the kind of genetic and demographic information needed 

by conservation programs of wolves and other carnivores. Although the results showed in this thesis 

may not be generalized to other populations, the empirical data obtained in this study can be used to 

perform demographic analyses (Caniglia et al. 2012) and monitor future demographic trends in the 

Apennine Mountain wolf population. Such a large genetic database has been essential also to 

implement maps of predation risk and predictive habitat models of wolf expansion. In fact, habitat 

suitability models and predation risk maps were developed. By providing detailed information on 

the highest-risk pastures, the spatial approach should help farmers and public administrations to 

identify areas where anti-predation tools may be primarily posed, especially when economic 

resources are limited and inadequate for all the pastures. Therefore, the development and use of 
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season-specific habitat suitability models as a decision-support tool to prevent livestock 

depredations is strongly suggested. The appropriate location of anti-predatory devices can reduce 

human-carnivore conflicts in areas where large carnivores are already present and to prevent their 

attacks in new colonization areas. Thus, the approach selected, based on true-presence-only data, 

offers a robust framework to interpret the dynamics of the wolf population, fundamental for the 

conservation of the species. As GNESFA may provide different outputs, corresponding to different 

points of view of the niche-environment system, its application is suggest to a large range of 

ecological contexts, to define the ecological niche and the main resources necessary for the target 

species. This approach could be used to identify habitat features of prime importance and should be 

preserved or reinforced for optimal management choices. Suitability models can provide 

information to design the best management policy at a large-scale, essential for the conservation of 

large predators. Since poaching and conflicts with human activities are among the most critical 

factors in carnivore conservation, increasing the coexistence and acceptance by people through the 

application of cost-effective prevention tools is mandatory.  

From the landscape genetics point of view, the use of habitat suitability models is relatively new 

and this study showed how different landscape genetic statistical analyses might have stronger 

effects on results than the applied habitat suitability models have. Therefore it is strongly suggested 

that researchers use different habitat suitability models in a landscape genetic framework. They 

should also apply different landscape genetic statistical analyses to discriminate those effects that 

are due to methodological issues from the effects caused by real ecological processes. Habitat 

suitability models in combination with genetic data have been effective in predicting functional 

ecological corridors for wolves in Italy. This provides useful information for public administrations 

and managers on functional connectivity not only based on the potential distribution of the species 

but also verified based on empirical genetic data. Areas with low functional resistance to animal 

movement could be promoted to implement mitigation measures. In particular, the gap should be 

closed by artificial under- and overpasses across roads and highways, to avoid road kills and 

increase landscape connectivity (Huck et al. 2010), while forest cover and natural habitat types 

should be increased. Furthermore, the combined approach (Figure M.5.3) could also be used to 

assess whether females and males differ in their preferred landscape features for movement or 

whether dispersal is significantly higher in males (Caniglia et al. in press).For these reasons, it is 

suggested that conservation management for dispersal and gene flow should be based on an 

assessment of both, structural and functional connectivity (Manel and Holderegger 2013) following 

a step-by-step procedure (such as showed in Figure M.5.3). Moreover, validation at different steps 
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of analysis is fundamental to avoid the computation of unsuitable LCPs and ecological corridors 

due to inappropriate habitat suitability models.  

Several aspects of the ecology and genetics of the large carnivore were investigated in this thesis 

and many information to plan long-term species conservation were provided to reduce human-

carnivore conflicts. In fact, in Italy the impact of wolves on livestock is decreasing, evolving in a 

sustainable use of wild ungulates, prevention tools should be posed only on specific pastures and 

ecological corridors provide good way for the dispersion of wolves and continuous gene-flow. 

However, illegal killing still represents a problem for species stability and thus should be strongly 

reduced, providing economical resources to prevent wolf attack and inform/educate local 

populations on the real impact of wolves on domestic and wild prey.  
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