Advanced lithium battery chemistries for sustainable transportation

Monaco, Simone (2014) Advanced lithium battery chemistries for sustainable transportation, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Chimica, 26 Ciclo. DOI 10.6092/unibo/amsdottorato/6287.
Documenti full-text disponibili:
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (3MB) | Anteprima


The specific energy of lithium-ion batteries (LIBs) is today 200 Wh/kg, a value not sufficient to power fully electric vehicles with a driving range of 400 km which requires a battery pack of 90 kWh. To deliver such energy the battery weight should be higher than 400 kg and the corresponding increase of vehicle mass would narrow the driving range to 280 km. Two main strategies are pursued to improve the energy of the rechargeable lithium batteries up to the transportation targets. The first is the increase of LIBs working voltage by using high-voltage cathode materials. The second is the increase of battery capacity by the development of a cell chemistry where oxygen redox reaction (ORR) occurs at the cathode and metal lithium is the anode (Li/O2 battery). This PhD work is focused on the development of high-voltage safe cathodes for LIBs, and on the investigation of the feasibility of Li/O2 battery operating with ionic liquid(IL)-based electrolytes. The use of LiMn1-xFexPO4 as high-voltage cathode material is discussed. Synthesis and electrochemical tests of three different phosphates, more safe cathode materials than transition metal oxides, are reported. The feasibility of Li/O2 battery operating in IL-based electrolytes is also discussed. Three aspects have been investigated: basic aspects of ORR, synthesis and characterization of porous carbons as positive electrode materials and study of limiting factors to the electrode capacity and cycle-life. Regarding LIBs, the findings on LiMnPO4 prepared by soluble precursors demonstrate that a good performing Mn-based olivine is viable without the coexistence of iron. Regarding Li/O2 battery, the oxygen diffusion coefficient and concentration values in different ILs were obtained. This work highlighted that the O2 mass transport limits the Li/O2 capacity at high currents; it gave indications on how to increase battery capacity by using a flow-cell and a porous carbon as cathode.

Tipologia del documento
Tesi di dottorato
Monaco, Simone
Dottorato di ricerca
Scuola di dottorato
Scienze chimiche
Settore disciplinare
Settore concorsuale
Parole chiave
Lithium-air battery Lithium-ion battery Lithium battery chemistries for sustainable transportation
Data di discussione
11 Aprile 2014

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi