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Il lavoro della Dott.ssa Otilia Maya Tănase nel triennio di frequenza del Dottorato in Scienze Chimiche si è rivolto allo 

sviluppo di metodi di frazionamento in campo-flusso (FFF) in particolare basati sull’impiego e sviluppo della versione miniaturizzata 

del canale separativo FFF chiamata hollow fiber FFF (HF5), in accoppiamento a tecniche di caratterizzazione spettroscopica e ottica, come 

metodi analitici innovativi per lo studio di campioni proteici complessi e fenomeni di aggregazione. Questo studio trova applicazioni in 

diversi campi che spaziano dal campo delle proteine terapeutiche, allo studio dei processi di aging alla base dello sviluppo di malattie 

neurodegenative.  

Nel corso dei primi due anni di dottorato, il lavoro di ricerca è stato rivolto allo sviluppo di metodi HF5 accoppiati a tecniche 

di rivelazione molto sensibili (spettroscopia UV/Vis, fluorescenza e multi-angle light scattering – MALS) per la caratterizzazione 

dimensionale e morfologica  di aggregati proteici spesso presenti nei biofarmaci (anticorpi e/o proteine utilizzate come veicolanti per 

biofarmaci) e formati durante il processo di sviluppo della loro formulazione. Tali metodi sono risultati caratterizzati da elevata 

sensibilità, selettività e riproducibilità dimostrandosi particolarmente adatti ad un controllo di qualità (QC) di campioni proteici ad 

elevato perso molecolare. I risultati ottenuti hanno dimostrato anche la superiorità dell’HF5 rispetto alla cromatografia ad esclusione 

dimensionale (SEC) – il punto di riferimento nelle pratiche di controllo qualità per proteine terapeutiche. La HF5 accoppiata a tecniche 

di rivelazione sensibili offre una notevole selettività rispetto alla SEC potendo separare analiti in un ampio intervallo di pesi molecolari, 

pertanto permette un’accurata valutazione della composizione delle formulazioni proteiche; spesso in SEC lo spazio cromatografico 

disponibile per la separazione di specie ad alto peso molecolare è molto limitato, causando la co-eluizione di specie con pesi molecolari 

simili. 

Nel terzo anno del Dottorato, la Dott.ssa Otilia Maya Tănase ha trascorso un periodio di ricerca all’estero presso il Laboratorio 

di Patologia, Immunologia e Microbiologia (Albert Einstein College of Medicine, Yeshiva University, NY, Stati Uniti) sotto la 

supervisione della prof. Laura Santambrogio. Durante tale periodo si è occupata dell’inserimento della tecnologia HF5 nei laboratori e 

procedure biochimiche utilizzate per lo studio dei fenomeni di aggregazione proteica attinenti al processo di aging 

(immunosenescenza). Ha quindi sviluppato un metodo Hf5-MALS per la caratterizzazione dimensionale e conformazionale di questi 

sistemi proteici complessi. L’HF5 accoppiata al MALS è stata applicata come prima dimensione separativa per lisati cellulari interi, di 

origine diversa e a diversi stadi dell’aging, pertanto contenenti diversi livelli e tipologie (covalenti e non-covalenti) di aggregati proteici. 

Inoltre, ha avuto l'opportunità di apprendere conoscenze su tecniche complementari per la caratterizzazione di tali aggregati (SDS-

PAGE, Native PAGE e FPLC). I risultati hanno confermato la capacità dell’HF5 accoppiata al MALS per colmare il “gap” di tecniche 

adatte per la caratterizzazzione di aggregegati proteici sub micrometrici. 

Il lavoro di ricerca all’estero è stato concluso con un manuscritto in fase avanzata di preparazione, che verrà inviato alla rivista  Nature 

Methods. 

Il progetto di dottorato ha permesso Dott.ssa Otilia Maya Tănase di approfondire le ricerche nel campo della chimica 

analitica/tecniche separative, iniziate con il lavoro di tesi e proseguite nel periodo successivo come borsista.. Durante il periodo di tesi la 

dottoranda ha dimostrato serietà nel lavoro di laboratorio e capacità di lavoro autonomo. La dottoranda ha trascorso un periodo di 

formazione presso Wyatt Technology Europe (Germania), azienda con la quale il gruppo di ricerca in Chimica Analitica ha una 

collaborazione stretta. La collaborazione ha avuto come frutto l’implementazione del prototipo miniaturizzato HF5 nel sistema 

separativo Eclipse® DUALTECTM prodotto dall’azienda tedesca, il primo sistema FFF commerciale del suo genere – sistema che ha 

costituito la strumentazione fondamentale nel lavoro di ricerca della dottoranda. 

Nell’ambito del suo progetto di ricerca, la Dott.ssa Otilia Maya Tănase ha mostrato un’elevata capacità di adattamento a diversi 

ambienti culturali e diverse strutture organizzative, ha contribuito a mettere le basi e mantenere collaborazioni internazionali e ha 

messo alla prova le sue capacità di problem-solving mediante la proposta e sviluppo di soluzioni innovative. Le sue doti naturali verso 

l’apprendimento delle lingue straniere, l’orientamento verso l’organizzazione, l’attenzione ai dettagli, la pazienza e la precisione, le 

hanno permesso di lavorare con costanza ed in modo efficace sul raggiungimento degli obiettivi a lungo termine, mostrandosi 

responsabile per il proprio lavoro e per le persone di cui ha coordinato il lavoro in laboratorio. 

Ha inoltre svolto attività di tutorato nel laboratorio di Chimica Analitica presso il CdL in Scienze Farmaceutiche Applicate 

(Imola) dimostrando buone capacità organizzative e didattiche. Inoltre, la Dott. ssa Otilia Maya Tănase si è mostrata disponibile e 

responsabile ad organizzare, coordinare e seguire il lavoro sperimentale di laureandi nel laboratorio di Chimica Analitica (Scienze della 

separazione) del Dipartimento "G. Ciamician". 

L’attività svolta dalla dottoranda si è finora concretizzata con due articoli pubblicati su riviste internazionali con referee; altri 

manoscritti sono in fase di avanzata preparazione e saranno presto inviati a riviste internazionali.  La dottoranda è stata anche co-autore 

di sei comunicazioni a congressi nazionali e internazionali, mostrando spiccate capacità di raccolta, elaborazione e preparazione del 

materiale scientifico da divulgare. Inoltre, la dottoranda ha regolarmente illustrato il suo lavoro mediante relazioni scritte e 

presentazioni orali in riunioni con gli altri collaboratori del progetto durante tutto il triennio. 



Abstract 

Recent advances in the fast growing area of therapeutic/diagnostic proteins and 

antibodies - novel and highly specific drugs - as well as the progress in the field of 

functional proteomics regarding the correlation between the aggregation of damaged 

proteins and (immuno) senescence or aging-related pathologies, underline the need 

for adequate analytical methods for the detection, separation, characterization and 

quantification of protein aggregates, regardless of the their origin or formation 

mechanism.  

Hollow fiber flow field-flow fractionation (HF5), the miniaturized version of 

FlowFFF and integral part of the Eclipse DUALTEC FFF separation system, was the 

focus of this research; this flow-based separation technique proved to be uniquely 

suited for the hydrodynamic size-based separation of proteins and protein 

aggregates in a very broad size and molecular weight (MW) range, often present at 

trace levels. HF5 has shown to be (a) highly selective in terms of protein diffusion 

coefficients, (b) versatile in terms of bio-compatible carrier solution choice, (c) able to 

preserve the biophysical properties/molecular conformation of the proteins/protein 

aggregates and (d) able to discriminate between different types of protein aggregates.   

Thanks to the miniaturization advantages and the online coupling with highly 

sensitive detection techniques (UV/Vis, intrinsic fluorescence and multi-angle light 

scattering), HF5 had very low detection/quantification limits for protein aggregates. 

Compared to size-exclusion chromatography (SEC), HF5 demonstrated superior 

selectivity and potential as orthogonal analytical method in the extended 

characterization assays, often required by therapeutic protein formulations. In 

addition, the developed HF5 methods have proven to be rapid, highly selective, 

sensitive and repeatable. HF5 was ideally suitable as first dimension of separation of 

aging-related protein aggregates from whole cell lysates (proteome pre-fractionation 

method) and, by HF5-(UV)-MALS online coupling, important biophysical 

information on the fractionated proteins and protein aggregates was gathered: size 

(rms radius and hydrodynamic radius), absolute MW and conformation (shape and 

mass distribution about the gravity center). 
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PREAMBLE 

 

 

 

This dissertation addresses two major aspects regarding the aggregation phenomena 

occurring in complex protein samples: the first regards the emerging field of protein 

therapeutics and the current need for adequate characterization methods for protein 

formulations; while the second one regards the study of aggregation phenomena 

occurring in living organisms as a consequence of the natural process of aging, as 

well as the cause of notorious neurodegenerative disorders.  

 

Therapeutic proteins and, in particular, antibodies, are the compounds most used as 

biopharmaceuticals. However, the biggest problem is their instability which often 

leads to aggregation. While aggregation is necessary in particular cases for the 

proteins to perform their biological activity, the presence of aggregated proteins for 

therapeutic use is undesirable. Even at very low levels, the aggregates of any kind 

may not preserve or, even worse, it may impede the desired biological functionality 

and above all, may represent a potential immunogenic risk. Hence the need to 

carefully evaluate their clinical relevance [Cromwell et al. 2006].  

In order to ensure the efficacy and safety of biopharmaceuticals it is essential to 

employ suitable analytical methods to monitor/evaluate efficiently and accurately the 

phenomenon of aggregation during development, production and storage of 

products. Usually, the various aggregation mechanisms are acting simultaneously 

and have not been fully elucidated [Mahler et al. 2009, Philo and Arakawa 2009, 
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Engelsman et al. 2011]. Moreover, the formed aggregates have sizes in a very wide 

dimensional range (few nm-mm). The limitations of currently employed analytical 

methods in terms of sensitivity, speed of analysis, robustness, range of application 

(Figure 1) or sample complexity and recovery, together with the fact that the term 

“aggregate” is constantly redefined as a consequence of continuous new findings in 

the clinical field, have created a “gap”[Philo 2006]. 

 

Biological aging, also known as senescence, is a fundamental process which is the 

main risk factor regarding the development of cancer, cardiovascular and 

neurodegenerative diseases (Alzheimer, Parkinson and Huntington disease) in 

vertebrates. In particular, immunosenescence represents the progressive 

deterioration of the immune system caused by the natural aging process. Inside any 

living organism, damaged cells are constantly being replaced and proteins are 

degraded to their constituting amino-acids (proteasome degradation or chaperone-

mediated autophagy by lysosome) and re-synthesized. Following senescence, the 

body gradually loses its ability to repair itself. This is due to loss of equilibrium 

between the oxidizing species (in particular, the reactive oxygen species) and 

antioxidants, leading to a pathological condition called oxidative stress 

[Bandyopadhyay et al. 1999, Squier 2001]. Upon oxidation (most frequently resulting 

in the carbonylation of particular side chains), the proteins lose their native 

conformation, becoming thermodynamically unstable, and have a high propensity to 

form larger assemblies. Moreover, since the degradation mechanisms no longer work 

efficiently, the aggregates accumulate in the endosomal compartments, increasing in 

size with advancing age [Cannizzo et al. 2011, Cannizzo et al. 2012]. An appropriate 

proteomics technology platform, based on a separation technique capable of 

separating protein aggregates based on their biophysical properties, would allow 

further analysis on how protein sequence/structure determine their tendency to 

aggregate, how different post-translational modifications affect unfolding and 

aggregation and the proteomic machinery associated with their degradation. 
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Moreover, it would open a world of possibilities towards the discovery of novel drug 

targets and early disease markers [Garbis et al. 2005]. 

Figure 1 [Zölls et al. 2012] depicts the size range of application of the currently 

employed analytical methods for the characterization of protein particles. As 

therapeutic proteins, as well as aging proteins can form different types and sizes of 

aggregates and particles, a case-by-case selection of the appropriate analytical 

characterization methods is required, since there is no “general solution” to fit all. 

 

 

Figure 1 – Approximate size range of current analytical methods for the size characterization of 

sub-visible and visible (protein) particles [Zölls et al. 2012] 

 

The figure shows that no single method is capable of providing a complete 

characterization, which would cover the whole nm-mm aggregates size range, 

therefore making the combination of several methods (usually based on different 

measurement/separation principles) mandatory for an extensive characterization 

[Philo 2006, Zölls et al. 2012]. The second challenge lies within the data 

interpretation; since different measurement/separation principle are applied, results 

may not always be directly comparable and need to be evaluated case-by-case 
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considering the underlying theory. The possibility of applying several orthogonal 

characterization methods has been proposed as means to bridge this “gap”, by 

selecting one or more methods for sample-to-sample comparison and searching for 

trends rather than concentrate on actual numbers. [Carpenter et al. 2010, Carpenter et 

al. 2012, Zölls et al. 2012]. 

  

Both protein aggregation topics were faced with the help of field-flow fractionation 

(FFF), a chromatographic – like flow-based separation technique [Giddings 1966], 

which is particularly suited for the separation of macromolecules (proteins and 

protein complexes/aggregates) in a very broad MW range [Zattoni et al. 2007]. FFF 

and liquid chromatography (LC) employ almost the same instrumental setup, but, 

since the separation in based on a different principle, the separation device in FFF is 

an empty channel instead of a chromatographic column. In FFF, the retention does 

not rely on interaction of the analytes with a stationary phase, but with an external 

field that is applied perpendicularly to direction of the mobile phase flow. Hence the 

field-flow dualism required for the separation [Giddings 1973, Giddings 2000].  

In flow FFF (Fl FFF or F4), the applied field consists in a second stream of mobile 

phase applied through the channel section, therefore called cross-flow [Reschiglian 

and Moon 2008]. This is the FFF variant of choice for the studies reported in this 

Thesis because of its ability to separate macromolecules and particles in a very wide 

size (few nm - µm) and MW range. Moreover, the flow field offers intrinsic 

advantages for the separation of proteins and protein aggregates: (i) the gentle 

separation mechanism and the lack of a stationary phase; (ii) bio-friendly, and 

virtually any type of mobile phase can be used; (iii) offers high selectivity in terms of 

diffusion coefficient differences. Features (i) and (ii) imply that interactions between 

the proteins and the separation device are negligible. This makes it possible to 

preserve the native molecular conformation, a fundamental bio-physical property. 

Feature (iii) is correlated to the separation principle in F4, based on differences in 

diffusion coefficients.  
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The diffusion coefficient (D) is a key parameter which relates to the protein size, shape 

and surface properties. [Reschiglian and Moon 2008]. 

 

In particular, this dissertation is centered on the applications in the bioanalytical field 

of the miniaturized version of F4, called hollow fiber flow field-flow fractionation (hollow 

fiber F4 or HF5), which is characterized by a symmetrical channel geometry 

represented by a cylindrical channel with porous walls. [Johann et al. 2010].  

 

Many efforts have been employed over the years by the Analytical Chemistry 

research team of the “G. Ciamician” Chemistry Department into developing the HF5 

separation device prototype. Thanks to the successful collaboration between the 

Analytical Chemistry team and Wyatt Technology Europe (Dernbach, Germany), 

once the HF5 separation device achieved its ready-to-market phase, it was 

implemented in the Eclipse® DUALTECTM FFF separation system. This novel 

implementation made “the first commercial FFF system using both HF5 and AF4 

technique integrated into one instrument”, which was launched on the market in 

2012. The commercial HF5 channel is equipped with an Enhanced Sealing 

Technology (EST, patented) facilitating the channel assembly and is also leakage-

proof. 

In addition to the key advantages offered by F4, HF5 distinguishes itself through 

unique features, such as: (i) low channel volume, which reduces sample dilution with 

fractionation, (ii) low flow rates, which makes it possible to be successfully coupled 

on-line with MS; (iii) disposable usage, which eliminates sample carry-over and 

possible sample contamination. Features (i) and (ii) also lead to a higher sensitivity 

by increasing the limit of detection/quantification for protein aggregates. Thanks to 

all these key advantages, which have led to the promising results described in the 

literature [Reschiglian et al. 2002, Reschiglian et al. 2004, Reschiglian et al. 2005, 

Silveira et al. 2005, Roda et al. 2006, Rambaldi et al. 2007, Kang et al. 2008, Kim et al. 

2008, Lee et al. 2009, Kang et al. 2010, Lee et al. 2010], HF5 offers unparalleled 
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performances that are fundamental for the characterization of proteins and protein 

aggregates. 

The analytical information was enhanced by HF5 on-line coupled with highly 

sensitive spectroscopic detection methods, such as UV absorbance and fluorescence 

emission detection, or with optical detection methods, like multi-angle light 

scattering (MALS), which measures the light scattered at multiple angles by the 

proteins and protein aggregates fractionated through HF5.  

Combined with a concentration detector (like a UV detector), MALS is able to 

provide directly the size (root mean square radius or rms radius, the mass-average 

distance between each point in the macromolecule and the center of mass), and the 

absolute molar weight (MW) of the fractionated proteins and protein aggregates as a 

function of their elution time. Comparing the rms radius values obtained from the 

MALS measurements with the hydrodynamic radius (rH) values, which are readily 

obtained from the experimental retention time, HF5-MALS allows obtaining 

information regarding the shape and mass distribution inside the protein aggregates 

[Reschiglian and Moon 2008].  

 

In Part 1 of this dissertation (Chapter 4, sub-chapter 4.1), HF5 coupled online with 

MALS, UV-Vis and/or fluorescence detection was proposed to bridge the "gap" of 

suitable techniques for the characterization of the sub-µm particles. A fast method is 

proposed for the characterization of a standard protein mixture, with particular 

regard to the repeatability, resolution, sensitivity, selectivity and robustness. The 

superior performance of HF5 is demonstrated, especially from the selectivity point of 

view, when compared to size-exclusion chromatography (SEC) – the benchmark in 

quality control (QC) of therapeutic proteins. Exploratory methods are proposed for 

the separation and characterization of self-associated immunoglobulins (IgGs) under 

different experimental conditions, showing the versatility and the sensitivity of HF5 

when coupled with fluorescence detection (FLD) and MALS. The advantages of 

miniaturization are explored further, sensitivity is improved even more when 
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employing a hollow fiber with a smaller inner diameter for the separation of an IgG 

with low aggregates levels. A fast method is proposed to compare HF5 and SEC 

performance, employing an IgG1 monoclonal antibody, once again demonstrating 

the HF5 superiority in terms of selectivity. Finally, a highly repeatable and sensitive 

HF5-MALS method, providing insight on the biophysical nature of aggregates, was 

developed employing an avidin derivate as sample model (AvidinOX®, provided by 

Sigma Tau).  

 

The aging-related protein aggregation topic, occurring under the effects of oxidative 

stress, was addressed in collaboration with the Laboratory of Pathology, 

Microbiology and Immunology, Albert Einstein College of Medicine of Yeshiva 

University (New York, USA), and the analytical information was enhanced or 

corroborated by complementary assays performed by the above-mentioned 

laboratory. In Part 2 of the dissertation (Chapter 4, sub-chapter 4.2), it is demonstrated 

that HF5 can be used as a first dimension of separation of aging-related protein 

aggregates from whole cell lysates and, by coupling HF5 with MALS, important 

biophysical information on the separated aggregates can be gathered (size, molecular 

weight and conformation). The effectiveness of the separation method was confirmed 

by both native-PAGE and proteomic analysis of the high molecular weight 

aggregates.  It is shown how, under the effect of the oxidative stress (either induced 

or naturally occurring in aging organism), protein aggregates are modified and have 

a smaller size when compared to native aggregates of same molecular weight. 

Moreover it is shown that oxidative stress-related proteins aggregate and have a 

different, more compact, molecular conformation. The ability to separate cell lysates 

under both physiological and denaturing conditions confirmed what previously 

reported: most of aging-related aggregates are urea-insoluble. Moreover, offline 

coupling of HF5 with Mass Spectrometry confirmed the presence of several proteins 

previously reported to be insoluble or with increased tendency to aggregate during 

aging. 
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1.1. INTRODUCTION TO THE ANALYTICAL PROBLEM: 

 PROTEIN AGGREGATION 

 

Aggregation is a general term that surrounds several types of protein-protein 

interactions or characteristics; protein aggregates may emerge from several 

mechanisms [Philo and Arakawa 2009, Wang et al. 2010] and may be classified in 

numerous ways, including soluble/insoluble, covalent/non-covalent, 

reversible/irreversible, and native/denatured. [Cromwell et al. 2006]. In order to 

address protein aggregation as an issue, an accurate definition of “protein aggregate” 

is required, even though not often available and definitely, not general. 

 

Protein aggregates sizes cover a very wide size spectrum, from small oligomers to 

visible “snow” or “flakes” and precipitates, and, as a rule of thumb, only the smaller 

species have a reversible character. Furthermore, even though less acknowledged, 

aggregates also display an ample range of life spans, and this aspect impacts greatly 

on the choice of appropriate detection methods. In addition, the measurement itself may 

destroy or create aggregates, hence impact on aggregates levels; this aspect 

represents a major analytical challenge and is decisive as well for appropriate method 

selection [Philo 2006]. 
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Consequently, there is no “general solution to fit all”, since no single analytical method 

or approach is able to provide a complete answer and, at the same time, able to work 

in all situations and on all different samples. Despite all the efforts to define the 

analytical challenge at stake and all the information currently available on the 

protein aggregation topic, many pharmaceutical scientists fail to acknowledge 

protein aggregation as an encompassing phenomenon and its implications on the 

measurement approach and on the data interpretation. In fact, the case-by-case use of 

complementary (orthogonal) characterization methods is recommended, as well as 

identifying trends in the obtained results instead on concentrating on raw numbers 

[Philo 2006, Carpenter et al. 2010, Carpenter et al. 2012, Zölls et al. 2012]. 

 

 

1.1.1. THE PROTEIN AGGREGATES HAVE A WIDE SIZE RANGE 

 

Due to the complexity of the protein aggregation phenomenon, there is no universal 

terminology to describe the numerous aggregate sizes or types; however, some of the 

commonly occurring aggregates are classified by [Philo 2006] as follows: (1) rapidly 

reversible, non-covalent small oligomers (dimer, trimer, tetramer, and so forth); (2) 

irreversible, non-covalent oligomers; (3) covalent oligomers (for instance, linked 

through Schiff bases or disulfide bonds); (4) “large” aggregates ( ≥ decamer); (5) “very 

large” aggregates (diameter ~50 nm - 3 µm); and (6) visible particulates ( “snow”, 

“flakes” or “floaters”), which are, most likely, irreversible. Except for the visible 

particulates, there is a chance that the large and very large protein aggregates have a 

reversible character, if associated through non-covalent bonds. 

In addition, protein aggregates are characterized by the tendency to “evolve” over 

time, typically into larger and less reversible/irreversible species; moreover, it is 

highly likely for a protein sample to contain more than one of these types or classes 

[Philo 2006, Philo and Arakawa 2009]. 
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1.1.2. MOST PROTEIN AGGREGATES ARE REVERSIBLE 

 

Despite the common tendency to make a black vs. white distinction, which usually is 

interpreted as a permanent and irrevocable classification of aggregates into 

“reversible” and “irreversible”, in reality, though, an aggregate that is irreversible in 

one context can become reversible in another, indicating the existence of a continuum 

of aggregation states between reversible and irreversible [Philo 2006]. 

 

1.1.3. THE LIFE SPAN OF PROTEIN AGGREGATES IS VARIABLE 

 

The ample range of life spans feature of reversible protein aggregates (their 

permanence in time) is probably their most neglected; the rates of 

association/dissociation phenomena between oligomers vary greatly, ranging from 

ms to several days. Many analytical methods, more in particular, separation 

techniques, allow only the detection the longer life span species; proteins displaying 

dynamic self-association (rapid and reversible protein self-assembly), under the 

effects of the separation method, find themselves under a constant struggle between 

separation and re-equilibration, because of the law of mass action. Consequently, the 

separation results often depend on the rates of the association/dissociation process, as 

well as the equilibrium constants [Philo 2006]. 

Although either SEC and SV-AUC or Flow FFF methods may successfully resolve 

multiple peaks, in fact, neither of those peaks represents a pure, individual oligomer, 

but more likely a dynamic mixture of multiple oligomers; however, if the 

association/dissociation reactions occur very slowly compared to the duration of the 

separation, the self-associated protein system behaves like a true mixture, therefore 

individual oligomers can be resolved. Such reversible, but extremely slow 

association/dissociation reactions, responsible for the existence of so-called 

“metastable oligomers”, are rather common [Philo 2006, Philo and Arakawa 2009]. 
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1.1.3. THE SEPARATION IS INTRINSICALLY DISTRESSING FOR PROTEIN AGGREGATES 

 

When analyzing protein aggregates, one of the fundamental problems is represented 

by the simple fact that most characterization techniques and, in particular, separation 

techniques, have a chance of perturbing the distribution of protein species in the 

sample to be analyzed; not only the measurement itself may destroy or cause the loss 

of some aggregates, but new aggregates can also be created by or during the 

measurement[Philo 2006, Engelsman et al. 2011].  

For instance, both SEC and FFF (AF4 or HF5) produce a high sample dilution of the 

sample during the separation, which potentially induces the dissociation of the 

reversible aggregates. Moreover, SEC is also infamous for filtration effects and poor 

sample recovery, which makes the use of an elution buffer containing high levels of 

salts and/or organic modifiers mandatory; these carrier solution additives may 

modify the distribution of non-covalent aggregates. Generally less problematic that 

SEC, the protein recovery in FFF (AF4 and HF5) may also suffer from non-specific 

adsorption of proteins to the channel wall, therefore some adjustments of the carrier 

solution are in order. As for the creation of new aggregates, the major impacting 

factor is the composition of the carrier solution (and changes thereof); however, in 

both SEC and FFF, protein aggregates may also arise from pre-dilution of the sample 

with the separation buffer, whose composition is usually different than the protein 

formulation buffer [Arakawa et al. 2010, Carpenter et al. 2012, Zölls et al. 2012].  

 

1.1.5. IS IT POSSIBLE TO REPLACE SEC? 

 

Despite its notoriety, it is very likely that SEC (and its macro-column version, fast 

protein chromatography, FPLC) will continue to be the workhorse tool for protein 

aggregates characterization in the near future. Alternative analytical platforms, such 

as SV-AUC and FFF (AF4 and HF5) with or without multi-angle scattering (MALS) 

detection, still have one or more of the following drawbacks: (1) they are not robust 
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enough (do not provide repeatable results) or/and easy to use as routine QC 

procedures, therefore difficult to validate for lot release, (2) they have low 

throughput, (3) they require expensive equipment (SV-AUC) or extensive method 

development (FFF), therefore highly trained personnel, and (4) the software may be 

very far from being 21 CFR part 11 compliant [FDA 1997]. 

Despite these shortcomings, the above mentioned analytical methodologies proved 

themselves to be invaluable as orthogonal methods for SEC, whose purpose is to 

help determining the reliability of the results provided by SEC. Such cross-validation 

practices are usually time and resources-efficient, and they can be implemented fairly 

easily at all stages of drug development, as well as technological platforms in 

functional and structural proteomics. In addition, these complementary methods can 

help guiding the development and the improvement of SEC methods [Philo 2006, 

Arakawa et al. 2010, Carpenter et al. 2010, Engelsman et al. 2011, Carpenter et al. 

2012, Zölls et al. 2012]. 

For all the reasons described in the previous paragraphs, the protein aggregation 

phenomenon needs a targeted approach; two main fields of research and their 

applications are explored in this dissertation, and various aspects are described in 

order to obtain a wholesome understanding of the protein aggregation issue.  

Moreover, a critical evaluation of the most frequently employed analytical 

methodologies, which are currently dedicated to the study of protein aggregation, is 

due in order to find the best course of action in each described case. 

 

In this dissertation, the miniaturized variant of Flow FFF (hollow fiber FFF or HF5) online 

coupled with spectroscopic and/or optical detection methods, is employed for the study of 

protein aggregation phenomena. Various aspects, ranging from instrumental and method 

robustness (and validation), to detection sensitivity and instrumental/method versatility, in 

terms of aggregates size-range and MW range, as well as versatility in terms of carrier 

solution choice (enabling the discrimination of different types of protein aggregates), are 

explored. 



Chapter 1: Protein Aggregation Phenomena 

6 

 

1.2. PROTEIN AGGREGATION PHENOMENA RELATED  

TO BIOLOGICAL AGING (SENESCENCE) 
 

From the pathological and immunological point of view, protein aggregation is a 

general terminology which describes the association of proteins into larger assembly, 

following loss of the secondary, tertiary or quaternary protein structure and often 

leading to loss of biological activity. Protein aggregation is a common biological 

phenomenon associated to the cellular inability to maintain the homeostasis of their 

proteome (proteostasis). In physiological conditions, the tendency to aggregate of de 

novo synthesized unfolded proteins is balanced by the several chaperones that aid 

their folding [Kopito 2000]. Soluble aggregation is also commonly observed in 

ubiquitinated unfolded proteins before proteasome degradation or in oxidatively 

damaged proteins before translocation into the lysosomes by chaperone-mediated 

autophagy [Kiffin et al. 2004]. Additionally, temporal changes to the cellular 

homeostasis (temperature, pH, water content and salt/ions concentration) can induce 

transitory protein unfolding and soluble aggregation. Lately, it has been reported 

that, during physiological aging, proteostasis becomes gradually compromised and 

several hundred proteins tend to become more insoluble and aggregate. These 

proteins have been shown to have common biochemical and biological properties, 

such as a primary structure with amino acids stretches often found in proteins 

associated with neurodegenerative diseases and secondary structure with increased 

beta-sheets [David et al. 2010] or present extensive oxidative post-translational 

modifications [Cannizzo et al. 2012]. 

During pathological conditions, protein aggregation is also a very common occurrence 

giving rise to the group of diseases collectively known as protein conformational 

diseases. In many degenerative diseases of the CNS, such as Alzheimer’s, Parkinson’s 

and Huntington’s disease, protein aggregation is a common pathological hallmark 

[Rubinsztein et al. 2005]. Protein aggregates can be classified according to their 

biochemical and biophysical characteristics. Biochemically, aggregates can be formed 
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by covalent bonds, through Schiff-base formation, or non covalent bonds, mainly 

mediated by hydrogen bonds, hydrophobic and electrostatic interactions. The former 

are irreversible aggregates whereas the latter can be, at least partially, reversed by 

cellular molecular chaperones. Size-wise aggregates can range considerably, from 

protein oligomers up to visible cytosolic inclusions, known as the aggresome [Kopito 

2000]. The sub cellular location of these aggregates can also vary, from perinuclear to 

peri-ER or intra-endosomal. 

Recently, there has been a strong interest in analyzing protein aggregates for 

different reasons: (i) to determine how protein primary and secondary structure 

influence their tendency to aggregate during physiological or pathological 

conditions; (ii) to map the post-translational modifications observed in chronic 

inflammatory, metabolic and degenerative diseases that induce protein aggregation, 

and (iii) to analyze the machinery recruited to the aggregate to aid its disaggregation 

or to dispose them through proteasomal or autophagy-mediated endosomal 

degradation. 

Consequently, several methods have been employed to separate protein aggregates, 

including filter assay, analytical ultracentrifugation (AUC), gel electrophoresis and 

size exclusion chromatography (SEC) [Stegemann et al. 2005, Ishii et al. 2007, 

Linetsky et al. 2008, Scharf et al. 2013]. However, the first two methods separate the 

aggregates as a total, thus, making it impossible to analyze the biochemical 

composition of the aggregates with different MW, shape and biophysical properties. 

SEC is limited by the pores size of the column used for fractionation (therefore allow 

for a specific size range of aggregates to be separated), and by the amount of 

detergent that can be used during the run (which can, in turn, affect the size and 

composition of the aggregates). Gel electrophoresis does not allow for an accurate 

analysis of their MW, nor does provide any additional information on the 

biophysical properties of the aggregates.  

Therefore, an analytical methodology with the ability to separate soluble aggregates 

from terminal aggregates or aggregates with different biophysical properties would 
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allow for a more functional analysis. Indeed, in prion disease, a correlation between 

the size and the infectivity of the protein’s aggregate was reported [Silveira et al. 

2005]. 

 

1.3. PROTEIN AGGREGATION PHENOMENA IN  

THERAPEUTIC PROTEIN FORMULATIONS 
 

Antibodies, the most developed therapeutic proteins, are large multi-domain 

proteins. In particular, human monoclonal antibodies (mAbs) display poor biophysical 

properties characterized by low stability and unfavorable tendency towards 

aggregation. Among the factors that lead to these shortcomings, protein formulation 

plays an important role, even though the core of problem is the primary sequence of 

the protein itself; moreover, since mAb therapeutic action is so specific, there are 

significant differences among them (related to Fab differences and the particular 

antigen specificity of the monoclonal), which explains the differences in stability and 

aggregation propensity between antibodies [Lowe et al. 2011]. 

The final formulation of a therapeutic mAb therefore must be carefully chosen; not 

only to ensure drug quality (stability and purity), but also to allow drug manufacture 

at an appropriate scale. Moreover, an effective therapeutic drug requires high-

concentration liquid formulations, e.g higher than 100 mg/mL. The mAbs can lose 

stability and aggregate also, as a result of conformational changes [Schwegman et al. 

2009] which can occur upon storage (usually freezing in high-volume vessels [Singh 

et al. 2009]. Moreover, the constituting amino acids may undergo post-translational 

modifications during expression, purification, or storage, leading to loss of stability 

and eventually aggregation [Jenkins et al. 2008]. 

Known effects of aggregation among therapeutic proteins are: lower in vivo efficacy, 

increased variability among batches, and perhaps most importantly, immunogenicity 

in patients [Cordoba-Rodriguez 2008]. Therefore, it is vitally important that for each 

of the steps of expression, purification, concentration, formulation, storage, and final 



Chapter 1: Protein Aggregation Phenomena 

9 

 

filling of the mAb, protein degradation, such s aggregation, must be minimized 

[Lowe et al. 2011]. 

In the biopharmaceutical field, the aggregates are defined as high molecular weight 

(MW) protein assemblies; formed either spontaneously, through 

electrostatic/hydrophobic/hydrogen bonds interactions between native-state 

monomeric units (also known as protein self-association), or by association between 

denatured (damaged) monomers. Both types represent a concern from the 

immunological point a view, and their capacity to enhance immune responses to the 

monomeric form has been known for over a half a century [Rosenberg 2006]. While 

large aggregates are more easily identified and separated (eliminated through 

filtration; for example), as their presence is rigorously regulated by FDA [Zölls et al. 

2012], little is known about the immunological effects of protein self-association 

phenomenon, which may impede the effectiveness of the therapeutic protein by 

neutralizing the monomer action. 

Although it was initially believed that protein-protein favorable interactions can only 

occur if  hydrophobic surfaces are exposed upon denaturation (intended as 

irreversible damage), leading to aggregation and often causing severe precipitation, 

an increasing concern regarding the native protein interactions has recently emerged 

[Cromwell et al. 2006]. In fact, recent literature indicates that even small 

perturbations in the protein structure may cause the exposure of hydrophobic 

surface: it is belied that the formation of self-associated antibody species is mediated 

by electrostatic interactions [Liu et al. 2005], while dipole-dipole interactions are 

believed to be the cause of fibrillogenic association of b–sheets [Fernández 2005].  

Comprehension on how to control the aggregation phenomenon, through 

thermodynamic and kinetic studies, helps assessing the danger correlated to the 

presence of associated species during the formulation development of therapeutic 

proteins. The main rising concerns of the biopharmaceutical industry, which impacts 

on the safety and efficacy of therapeutic proteins, is represented by protein 

aggregation and particulate formation in protein formulations, with their very wide 
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size range (nm-µm) being the most pressing issue since no single analytical method 

is able to resolve it. In fact, many efforts have been employed to fill the “gap” of 

techniques able to identify, separate and characterize the presence of undesired 

protein aggregates in the sub-µm size range [Cao et al. 2009, Zölls et al. 2012].  

Moreover, many efforts have been developing in order to optimize the time and 

resources required for protein formulations by means of high-throughput techniques 

for formulation screening [Capelle et al. 2007, Goldberg et al. 2011], as well as of 

simplification and customization of the protein formulation process through FDA 

regulations based on Design of Experiments [Hinz 2006, Feng et al. 2012].  

 

 

1.4. THE NEED FOR APPROPRIATE 

 ANALYTICAL METHODOLOGIES 
 

 

The need for adequate analytical methods for the detection, separation and 

characterization of protein aggregates, regardless of their origin or formation 

mechanism, justifies the sudden growth of new analysis methods. Since therapeutic 

proteins, as well as aging proteins, can form different types and sizes of aggregates 

and particles, a case-by-case selection of the appropriate analytical characterization 

methods is required: there is no “general solution” to fit all.  

No single method is indeed capable to cover the nm-mm aggregates size range, 

therefore making the combination of several methods (usually based on different 

measurement/separation principles, therefore orthogonal) mandatory for an extensive 

characterization, as means to bridge this “gap”[Philo 2006, Zölls et al. 2012].  
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CHAPTER 2:                               

FIELD-FLOW FRACTIONATION 

(FFF) 

 

 

2.1. THE PROPOSED ANALYTICAL SOLUTION: 

FIELD-FLOW FRACTIONATION 

 

Albeit a little slower and less visible, but in parallel with traditional techniques such 

as electrophoresis (gel, GE or capillary, CZE), liquid chromatography (LC) and flow 

cytometry (FC)  [Reschiglian et al. 2005], the development and improvement of field-

flow fractionation (FFF) were motivated by the potential of FFF to fulfill many of the 

needs described in the previous Chapters. Since early stages of FFF “the great 

application range, resolution and versatility for macromolecular and supra-molecular 

samples, by providing high selectivity and speed, simultaneous measurement, simplified 

coupling to other measurement devices (…) and applicability to diverse samples over a broad 

mass‐size range, gentleness in separating delicate species, and flexibility in targeting specific 

problem areas”  make it the ideal candidate for the study of protein aggregation 

phenomena [Giddings 1993].  

 

Although LC and electrophoresis are still the most employed (traditional) methods 

for the separation and characterization of biological samples, field-flow fractionation 

arises as a highly selective, chromatographic-like flow-based separation technique 
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particularly suited for processing macromolecular and supra-molecular samples that 

range over 15 orders of magnitude in molecular weight [Giddings 2000] – 

incidentally, proteins and protein complexes/aggregates – under gentle instrumental 

conditions [Zattoni et al. 2007, Roda et al. 2009].  

 

The major strength of FFF is its versatility, because of the numerous field types which 

can be applied (Table 1), the instrumental setup, channel design and modes of 

operation, and not to mention the wide choice of experimental conditions. FFF is 

therefore suitable for the separation-characterization of a very wide selection of 

macromolecular and particulate samples [Giddings 2000]. 

 

Table 1 – Field types and corresponding FFF techniques  

Field FFF technique 

Cross-flow (Fl) Flow FFF (FlFFF) 

Sedimentation (Sd) Sedimentation FFF (SdFFF) 

Gravitational (Gr) Gravitational FFF (GrFFF) 

Thermal (Th) Thermal FFF (ThFFF) 

Electrical (El) Electrical FFF (ElFFF) 

Magnetic (Mg) Magnetic FFF (MgFFF) 

Dielectric (Dl) Dielectric FFF (DlFFF) 
 

Many types of fields have been employed for the FFF separation (displayed in order 

of their relevance in Table 1) in order to explore its versatility trait and motivated by 

the fact that they have different size ranges and areas of applicability. 

Its greatest strength it is also its major flaw; the wide choice of options (in terms of 

field, instrumentation or experimental conditions), as well as the broad applications 

range, have led the way to dispersive efforts being spent exploring the limits of FFF. 

Exploring the FFF “maze”, even though showing the resolution of topical issues and  

highlighting the particular FFF features [Reschiglian et al. 2005, Roda et al. 2009] , has 

left a relevant gap between potential and realization, therefore made this technique 

generally “good at everything” but, unfortunately, “not specific enough for a particular 
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purpose” and, more importantly, not yet able to replace any of the above-mentioned 

reference techniques [Giddings 2000].  

 

2.1.1. PRINCIPLES OF FFF  

 

The FFF concept and separation principle was described for the first time in 1966 by 

Calvin Giddings [Giddings 1966]; together with his research team, has contributed 

significantly during the four stages of FFF development described by [Wahlund and 

Nilsson 2012]. FFF is a flow-based separation family of techniques which, thanks to 

the “flow” concept, belongs to the wider chromatographic category; FFF and liquid 

LC employ almost the same instrumental setup. 

The typical FFF operation mode consists in injecting the sample in a narrow band 

into a stream flowing through a thin/capillary flow chamber, where the sample is 

separated into components and which are eventually flushed out towards a detection 

and /or collection system. As the sample components are driven through the length 

of the flow chamber, they get separated according to their biophysical features, 

therefore eluted at different times and sequentially detected and/or collected 

[Giddings 2000].  

Similar to the chromatographic column concept, in FFF, the flow chamber that makes 

sample separation possible is called channel. Since the FFF separation principle is not 

based on differential retention of sample components by the stationary phase as 

occurring in LC, the FFF channel is empty (no stationary phase required) and is 

usually made of inert and/or biocompatible material. In FFF, the retention relies on 

the analytes interaction with an external field, applied perpendicularly to direction of 

the mobile phase flow. Hence the field-flow duality required for the separation 

[Giddings 2000]. The lack of a stationary phase reduces considerably unwanted 

interaction between the analytes and the separation device, therefore makes FFF an 
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intrinsically “soft” separation method, ideally suited to macromolecular and supra-

molecular systems, such as protein aggregates.  

 

2.1.3. MECHANISM OF FFF 

 

In order to understand why FFF is valid candidate for the described problematic, the 

retention mechanism which lies behind the soft separation must be examined.  

First, the stream flowing through the thin/capillary empty FFF channel is a laminar 

flow (made of very thin streamlines also called layers or laminae), governed by an 

ideally parabolic flow profile (Figure 1a); the velocity of the parabolic flow is null in 

proximity of the channel wall and it gradually increases towards the channel center, 

where it reaches the maximum value, according to the law of Poiseuille. 

 

 

Figure 1 – Separation principle in FFF (a) parabolic flow profile, where vmax represents the 

maximum flow velocity at the center of the parabolic flow profile and (b) differential elution 

driven by the applied field 

 

In the absence of the applied field, if any particle (macromolecules, supra-molecular 

species etc.) is set free in the mobile phase flowing through the FFF channel, it will be 

driven randomly over the short distance between the walls of the channel by the 

Brownian motion, while being carried downstream by the flow. This random motion 

of the particle will carry it through stream lines of different velocity (reported in 

Figure 1a as arrows of different length, proportional to the stream velocity), 

following a movement called random walk. The particle will move downstream very 

slowly when found near the wall and very fast when near the parabolic flow center; 
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the average velocity <v> will be the same for particles of any size (but small enough 

to be driven by Brownian motion), therefore will reach the channel exit at the same 

time [Giddings 2000]. 

However, when the field is applied perpendicularly to the stream of mobile phase, it 

will drive the different particles in specific zones of the parabolic profile, between the 

channel walls; under the effect of the field, particles found in a certain region of the 

parabolic flow profile, will be moved downstream at a velocity equal to the mean 

flow velocity in that region, therefore carried toward the channel exit at different 

speeds. An example of differential elution of two analytes (A and B), under the effect 

of the field, is reported in Figure 1b; A is forced by the field in a stream line 

characterized by higher flow velocity compared to B, therefore will elute faster. 

The field itself must meet three requirements, in order to be effective and actually 

make the analytes separation possible. Firstly, it needs to be strong enough in order to 

drive forcefully the analytes into specific, highly localized regions of the parabolic 

flow profile. Secondly, it needs to be selective enough, in order to drive the analytes 

into different streamlines of the parabolic flow profile. Thirdly, it needs to be easily 

implemented, in order to make instrument development practical and possibly 

economical and, more importantly, easy to use and reliable [Giddings 2000].  

Many field types have been proposed in FFF over its 50 years of existence (Table 1), 

however their relevance and frequency of usage have changed over time, thanks to 

the development and improvement of adequate and affordable FFF instrumentation, 

not to mention their ability to meet the above-described criteria. 

 

2.1.3. FFF MODES OF OPERATION 

 

As the analytes are driven into different localized region within the parabolic flow 

profile, their relative distribution over the flow streamlines or laminae (ideally, only a 

few µm thick, meaning that the particles would be held essentially at a fixed position 
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within the parabolic flow profile) dictates their order of elution, selectivity, band 

broadening or other separation parameters.  

There are several types of distributions, also called operating modes; their variety adds 

flexibility to the intrinsically versatile FFF [Giddings 2000]. The most commonly used 

modes of operation, are: (a) normal (Brownian) mode; (b) steric mode and (c) lift-

hyperlayer mode; the normal mode will be examined in the following paragraphs. In 

order to understand how each mode operations, it is fundamental to examine how 

these distributions are formed. 

When a homogeneous population of sample particles enters into an FFF channel, the 

particles are distributed rather evenly over the channel cross section, at first. When 

the field begins to act by driving the particles toward the channel wall (or 

accumulation wall), in a process called sample relaxation, the particles will respond with 

forces of transport opposing the external field (whose origin will be discussed further 

on in this Chapter).  

Consequently, even though the field continues to act, the sample relation is 

completed after a short while because the opposing forces balance themselves and 

the sample components reach a steady state, therefore a corresponding equilibrium 

distribution. The nature of the opposing transport forces exerted by the particles 

themselves determines the form of the particles distribution, therefore the FFF 

operating mode and all separation parameters: order of elution, selectivity, 

resolution etc. [Giddings 2000]. 

 

2.1.3.1. NORMAL (BROWNIAN) MODE 

 

The normal (Brownian) mode governs the equilibrium distribution and subsequent 

elution of most sub-µm particles and virtually all macromolecules (proteins and 

protein aggregates included); it is the most widely implemented mode, therefore 

called “normal”. As the analytes are driven by the field against the accumulation 
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wall, their concentration builds up, creating a concentration gradient and causing the 

analytes to diffuse in the opposite direction (Figure 2a); this transport mechanism 

holds true until the analytes diffusion force balances the field force [Giddings 2000].   

When the Brownian diffusive and the field transport forces reach an equilibrium, the 

analyte concentration c (relative to the accumulation wall concentration, c0) 

approaches an exponential function of elevation x, above the accumulation wall, as 

reported in Equation 1 [Giddings 1973, Giddings et al. 1991, Schure et al. 2000] and 

reported in the enlarged view of Figure 2c, where l is the characteristic elevation of 

the analyte cloud from the accumulation wall and x is the distance to the channel 

wall.  

 

          
 
    

 Equation 1 

 

The separation is achieved in normal mode because different analytes form 

exponential distributions / layers of different thickness, as depicted in Figures 2b and 

2c; the greater the thickness of the layer, the higher flow velocity streamlines the 

analyte will reach and, consequently, the faster it will elute.  

 

 

Figure 2 – Normal operative mode: (a) balance between (Brownian) diffusive and field forces; (b) 

separation of analytes A and B (c) equilibrium distribution analytes A and B in normal mode, 

enlarged view of the exponential distribution 
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The thickest layers migrate fastest (analyte A) as opposed to the most compressed 

distributions (analyte B), which migrate slowest. The sequence of smaller particles 

eluting faster than larger particles is the characteristic elution order in normal mode 

[Giddings 2000].  

The characteristic elevation, l for each analyte represents the ratio between the 

analyte diffusion coefficient D and the field‐induced velocity U (Equation 2); the 

separation is therefore achieved because of differences in diffusion coefficient, since 

the field force is uniformly exerted.  

 

   
     

 Equation 2 

The diffusion coefficient, D is described by Stokes-Einstein equation (Equation 3), 

where k is the Boltzmann constant, T is the absolute temperature, η represents the 

viscosity of the mobile phase, rH is the hydrodynamic radius and dH is the 

hydrodynamic diameter of the diffusing particle: 

 

  
  

     
 

  

     
 

                                                                                                        Equation 3 

The field-induced velocity, U is described by Equation 4, where f represents the 

friction coefficient: 

   
                      

                                                                                                        Equation 4 

At the stationary state, the relationship between l and the force F exerted by the field 

on a single particle is described by Equation 5 [Giddings et al. 1991], where k is the 

Boltzmann constant and T, the absolute temperature: 

 

    
     

                                                                                                                  Equation 5  
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The distribution thickness (l) is, therefore, inversely related to the primary field force 

exerted on the particles. In order to achieve optimal levels, the values of l can be 

controlled by varying the field strength, to which F is directly correlated. Assuming 

that the sample particles are non‐interacting point masses, the velocity V of a cloud of 

such particles is the average velocity of an exponential distribution within the 

parabolic flow profile.  

The parabolic flow profile is therefore described by Equation 6 [Schure et al. 2000], 

where x represents the distance from the wall and x represents the channel thickness 

(height): 

       
 

 
 
  

  
  

Equation 6 

 The retention time of the particles is described by Equation 7 [Giddings et al. 1991], 

where L is the channel length.  

 

   
 
   

                                                                                                                     Equation 7 

If w is the channel thickness (w>x) and w >> l, as it should be for efficient operation, 

the ratio between a retained and an unretained analyte is given by Equation 8 [Schure 

et al. 2000], where t0 is the void time (the elution time of an unretained component), R 

is the retention ratio and represents the delay of a retained analyte caused by its 

compression by the field. Both t0 and R have the same meaning as in 

chromatography. 

 

  
  
  

 
 

  
 
    

  
 

Equation 8 

Equation 8 shows how the retention time of an analyte, tR is directly proportional to F 

and represents the fundamental expression that relates retention time to sample 
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properties in normal FFF; for instance, F (therefore tR) usually increases with particle 

size or molecular weight. 

 

2.1.4. FFF TECHNIQUES: FLOW FFF 

 

In Flow FFF (Fl FFF or F4), the applied field consists in a second, independent, stream 

of mobile phase applied across the channel section, therefore called cross-flow; the 

flow field permeates the channel walls and is applied perpendicularly to the to the 

primary flow stream.  

Flow FFF is the most universal of all FFF techniques, the flow itself, acting as an 

universal field (a moving fluid), is able to displace any unattached object [Giddings 

2000]; this is the FFF variant of choice in this dissertation, because of its versatility, 

being able to separate macromolecules and particles in a very wide size (few nm - 

µm) and MW range. The lower MW/size limit is determined by the MW cut‐off of the 

accumulation wall, which is usually constituted of an ultra filtration membrane able 

to retain the macromolecular and supra-molecular analytes inside the channel. 

Flow FFF became the most frequently employed FFF sub-technique thanks to the 

rapid growth in the 1990s and 2000s, growth which is motivated by the instrumental 

and application advancements and its commercialization [Wahlund and Nilsson 

2012].  

The flow field offers intrinsic advantages for the separation of proteins and protein 

aggregates, which are of interest in this dissertation. Firstly, like all other FFF sub-

techniques, Fl FFF has the gentle separation mechanism and does not require a 

stationary phase for separation. Secondly, its universality implies that virtually any 

type of mobile phase can be used; in particular, a bio-friendly mobile phase is 

appropriate for the separation of biological samples. Therefore, due to the lack of 

stationary phase, the interactions between the proteins and the separation device are 

negligible and since the separation can be performed in a bio-compatible carrier 
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solution, make it possible for the proteins and protein aggregates to preserve the 

native molecular conformation, a fundamental bio-physical property.  

Thirdly, it offers high selectivity in terms of diffusion coefficient differences; this 

feature is correlated to the separation principle in F4, based on differences in 

diffusion coefficients, where the diffusion coefficient (D) is a key parameter which 

determines the protein size, shape and surface properties, therefore unique 

[Reschiglian and Moon 2008]. 

Moreover, Fl FFF is also flexible in channel design, which led to the development and 

improvement of its sub-techniques: symmetrical Fl FFF (F4), asymmetrical Fl FFF (AF4), 

and hollow‐fiber Fl FFF (HF5). Over the past 20 years, AF4 was of particular interest in 

the FFF community; however, thanks to its particular features, HF5 gained terrain in 

the last decade, culminating with its commercialization in 2012. 

 

2.2. FLOW FFF SUB-TECHNIQUES:  

HOLLOW FIBER FLOW FIELD-FLOW FRACTIONATION (HF5) 
 

HF5 is the miniaturized version of Fl FFF, distinguishing itself through the 

symmetrical channel geometry and employing a channel with porous walls, 

represented by a cylindrical ultra-filtration membrane [Johann et al. 2010, 

Reschiglian et al. 2012]. The idea of hollow fiber membranes as tubular, micro-column 

channels for FFF was proposed initially in the 1970s and complete theories were 

worked out; however, it never turned into experimentally useful separations (Lee 

H.L., 1974 and Doshi M.R., 1979). In the late 1980s, HF5 regained interest in the FFF 

community and a much improved experimental design of the separation device was 

proposed (Jonsson J.A. and Carlshaf A., 1989-1993); however, technical problems 

caused by the quality and stability of the hollow fibers impeded further 

advancements [Wahlund and Nilsson 2012]. HF5 was reborn in the early 2000s [Lee 

et al. 1999, Kang and Moon 2005, Park et al. 2005, Reschiglian et al. 2005] and, later 

on, excellent results demonstrated the HF5 potential as pre-fractionation tool for 
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proteomics analysis [Lee et al. 2010]. Moreover, recent advancements suggest that, in 

the near future, HF5 can potentially replace AF4 as an extended characterization tool for 

protein therapeutics [Reschiglian et al. 2013], therefore complement SEC. 

Many efforts have been employed over the years by the Analytical Chemistry 

research team of the “G. Ciamician” Chemistry Department into developing the HF5 

separation device prototype, which was employed during the most experimental 

work presented in this dissertation. Thanks to the successful collaboration between 

the Analytical Chemistry team and Wyatt Technology Europe (Dernbach, Germany), 

once the HF5 separation device achieved its ready-to-market phase, it was 

implemented in the Eclipse® DUALTECTM FFF separation system, “the first 

commercial FFF system using both HF5 and AF4 technique integrated into one 

instrument” , which was launched on the market in 2011 [Johann et al. 2010]. The 

commercial HF5 channel is equipped with an Enhanced Sealing Technology (EST, 

patented) facilitating the channel assembly and is also leakage-proof. The commercial 

HF5 separation device consists in a 17 cm long PES hollow fiber, with a MWCO of 10 

kDa. 

In works reported in literature over the past 15 years [Reschiglian et al. 2002, 

Reschiglian et al. 2003, Roda et al. 2006, Kang et al. 2008, Kim et al. 2008, Lee et al. 

2009], the porous membrane was made of a an inert polymeric material, PES 

(polyethersulfone), CPVC (coated polyvinyl chloride) or PAN (polyacrylonitrile), 

usually with an internal diameter of 0.8 mm, an optimal length of ~24 cm and a 

membrane porosity (cut-off) of approximately between 10 and 100 kDa of MW.  

 

In addition to the key advantages offered by F4, the channel miniaturization in HF5 

distinguishes itself through unique features. Firstly, the low channel volume (~1/10 of 

the commercial AF4 channel) reduces considerably the sample dilution. Secondly, 

due to the reduced size of the separation device, HF5 employs low flow rates, which 

made it possible to be successfully coupled on-line with Mass Spectrometry 

[Reschiglian et al. 2005, Lee et al. 2010]. These first two features highlight the 
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advantages of miniaturization, in particular, the higher sensitivity which is achieved 

thanks to the increased limit of detection/quantification; this is of particular interest 

for very low levels of protein aggregates which may be present in therapeutic protein 

formulations, but also present in the proteome of whole cell lysates. Thirdly, the 

disposable usage eliminates sample carry-over and possible sample contamination, 

therefore ideal for biological samples; disposable channels can be particularly 

appealing for analytical and micro‐preparative scale bio‐separations, for which either 

sterility or inter‐run reproducibility are critical [Reschiglian and Moon 2008]. HF5 

disposable devices have been successfully employed for the fractionation of whole 

bacteria, yeast and red blood cells [Reschiglian et al. 2002, Reschiglian et al. 2003, 

Reschiglian et al. 2004] 

Because of the promising advancements described in the literature so far [Silveira et 

al. 2005, Roda et al. 2006, Kang et al. 2008, Kim et al. 2008, Zattoni et al. 2008, Lee et 

al. 2009, Kang et al. 2010], HF5 had to offer unequalled performances which were 

fundamental for the purpose of this dissertation. 

 

2.2.1. SEPARATION PRINCIPLES IN HF5 APPLIED TO  

PROTEINS AND PROTEIN AGGREGATES 
 

The principle of HF5 separation relies on differences in diffusion coefficient (D), 

specific for each protein, correlated to its size (hydrodynamic radius or diameter) 

through Equation 3 and molecular weight (MW) [Reschiglian et al. 2013].  Since in 

HF5 the radial flow, which acts as the separation field, cannot be controlled 

independently of the longitudinal one, the process of sample relaxation / focus is 

then performed by simultaneously pumping a stream of mobile phase through the 

entry and exit of the fiber (Figure 3a); this action results in the focusing of the sample 

in a narrow band. This aspect is of particular interest in HF5, considering the reduced 

volume of the fiber compared to that of traditional AF4 channels; if the sample band 
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is not narrow enough compared to the length of the fiber, it would compromise the 

separation efficiency.  

Therefore, a typical HF5 separation begins by injecting the sample into the hollow 

fiber, and initially subjecting it to the action of two longitudinal flows entering the 

channel from opposite sides (Flow in and Flow out), with a typical inlet to outlet flow 

ratio of 20:80 (Figure 3a).  The purpose of this step, called sample focus step, is the 

sample relaxation, which allows the sample components to reach their equilibrium 

distributions when the diffusive forces balance the force exerted by the cross-flow; a 

simultaneous result of this action is the sample concentration in a narrow band, at the 

focus position, where the resulting longitudinal flow is null.  

During the sample focus phase, the flow exiting in a radial direction through the 

hollow fiber pores, called focus flow, represents the sum between Flow in and Flow 

and has the same meaning as the cross-flow during the sample elution phase; it 

continues to push the sample components towards the fiber membrane (Figure 3a, 

black arrows), while being opposed by the proteins diffusive force (Figure 3a, white 

arrows). Since D is specific for each protein, each component will reach a steady state 

at a specific distance from the channel wall, where the diffusive force and the radial 

field force are in equilibrium.  

 

 

Figure 3 – HF5 separation principles: (a) sample focus/relaxation and (b) sample separation during 

elution 
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Once the sample components have reached their steady state and have been 

distributed in laminae embedded in the parabolic flow profile, the elution step begins: 

the Flow out is switched off, thus, the Flow in can push the sample components 

towards the channel exit, while the radial flow continues to push them towards the 

membrane (Figure 3b), allowing the sample components to maintain their specific 

distance from the fiber wall. 

As described previously in this Chapter, the longitudinal flow has a parabolic profile, 

characterized by a maximum flow velocity at the center of the hollow fiber and an 

almost null velocity near the channel wall (Figure 1 and 3b); larger proteins and 

protein aggregates (with smaller D) will find themselves closer to the fiber 

membrane, into slower velocity stream lines and will be more retained by the radial 

flow field, while smaller proteins will elute faster (Figure 3b).  

This represents the elution order in normal mode, as mentioned previously in this 

Chapter, and applies to proteins and protein aggregates with 5 nm up to ~ 500 nm in 

diameter [Schure et al. 2000]; when the protein aggregate size exceeds this limit, the 

elution will be switched into the so-called steric mode, when the diffusive forces 

become negligible and characterized by an inverted elution order with respect to the 

normal one (larger particles, with diameters up to 50 µm, being the first to elute) 

[Caldwell 2000]. 

Once the sample run is complete and the components of interest have been 

separated, the radial flow is switched off (procedure also called “field release”), 

allowing the cleaning of the injection line and flushing away all non-separated 

sample components, which have been retained for too long in the separation device 

(if their size exceeds the limits of either normal or steric mode, they have a virtually 

infinite retention time). The purpose of this phase is to clean the separation device, in 

order to avoid sample carry-over when the replacement of the hollow fiber is 

unnecessary. 
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2.2.2. HF5 RETENTION THEORY IN NORMAL MODE 

 

Assuming a uniform radial flow velocity along the hollow fiber length, through a 

series of approximations, the retention time of an unretained analyte, t0 (a.k.a. void 

time) is expressed by Equations 9, where Flowout = Flowin – Flowradial represents the 

longitudinal flow velocity during elution, V0 represents the channel void volume, 

calculated based on Rf, the hollow fiber inner radius and L, the hollow fiber length:  

 

   
  

          
   

      

       
               

  

Equations 9 

Based on a series of approximations [Wijnhoven et al. 1996, Lee et al. 1999], which 

include an ideal Gaussian concentration profile, the retention time of a separated 

component, tR is expressed by Equation 10, where D is the diffusion coefficient of the 

separated component and Rf is the fiber inner radius. 

 

   
  
 

  
   

      

       
  

Equation 10 

Taking into consideration the sample focusing/relaxation process [Lee et al. 1999], 

which occurs at a certain distance from the hollow fiber inlet, called focus position 

(L0), the expression of the retention time can be rewritten as Equation 11:  

 

   
  
 

  
  

 

  
 
        

  
             

       

 

  
 

 

Equation 11 

Correlating Equation 11 with the Stokes-Einstein expression for the diffusion 

coefficient, D (Equation 3), the relationship between the retention time and the 
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hydrodynamic diameter, dH is described by Equation 12, cited in [Zattoni et al. 2007, 

Reschiglian et al. 2012]: 

 

   
   

     
   

 

  
 
        

  
             

       

 

  
 
  

  

 

Equation 12 

Through Equation 12 is, then, possible to convert the retention times in the value of 

the hydrodynamic diameter of the particles and obtain the size distribution of the 

samples (particle size distribution). 

Moreover, the HF5 separation performance can be expressed in terms of number of 

theoretical plates per unit of time, N directly related to the analyte limit 

concentration which does not induce overloading, c* and the analyte limit of 

detection (minimum detectable concentration), cLOD expressed through Equation 13, 

cited in [Zattoni et al. 2007, Reschiglian et al. 2012]: 

 

 
 

  
 
   

  
   

  
     

 

Equation 13 

Equation 13 shows how the maximum separation efficiency is determined by the 

analytes biophysical and chemical properties, more specific, by their detectability 

and tendency towards overloading, a key aspect regarding HF5 applications. A 

performance decrease is, therefore, expected with increasing MW because of the 

consequent D decrease (D is inversely proportional to MW), but also because of the 

consequent c* decrease with increasing MW (c* is also inversely proportional to MW) 

[Moon and Myers 2000]. 

 

Equally important, Equation 13 shows how miniaturization enhances HF5 

performance; by further reducing the fiber inner radius the sample dilution is 
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decreased since the separation would require a lower longitudinal flow rate and by 

applying higher cross-flow rates, the separation performance improves. 

 

The relationship between D and MW is described by Equations 14, where A is a 

parameter correlated to the nature of the analyte and b is an empirical parameter, 

whose value can be calculated based on the shape of the particle; for a rigid sphere, 

the theoretical value of b is 0.33 [Wijnhoven et al. 1996, Valencia and González 2011]: 

  

                      
  

                   

Equations 14 

 

 

 

2.3. HF5 FOR PARTICLE SIZE-CHARACTERIZATION 

 

Typically, the HF5 separation is monitored by UV/Vis detection and occasionally by 

fluorescence (FLD) and multi-angle light scattering detection (MALS), which are 

usually set at a specific wavelength in order to facilitate the detection of the sample 

components on interest (for proteins, UV detection at 210, 215 and 280 nm is used, 

while, for florescence detection, an excitation/emission combination of 280 nm/340 

nm is usually employed).  

The output of such detectors, the sample elution profile, representing the sample 

concentration signal, reported as a function of time and is called fractogram, by 

analogy with the chromatogram. A typical HF5 elution profile/fractogram is reported 

in Figure 4b. 
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Figure 4 – Retention in HF5: (a) Separation occurring inside the hollow fiber, sample components 

A, B and C are eluted towards the detector; (b) typical elution profile, depicting the separated 

components A, B and C as seen by the detector (concentration over time) 

 

As previously stated in this Chapter, the steps of a typical HF5 separation are: (a) 

sample focus or relaxation, (b) sample separation or elution and (c) field release, all 

three depicted in figure 4b. Figure 4b also depicts the void time, t0 which can be 

determined applying Equations 9 and the specific retention time for each separated 

component tR, from which the size of components A, B and C can be determined 

though Equation 12. Moreover, the experimental retention time value can be used to 

determine the diffusion coefficient, D through Equations 3 and 11 and, through a 

series of approximations and applying Equation 14, the MW.  

HF5 is, therefore, able not only to separate, but also to characterize the analytes. The 

particle‐size distribution (PSD) can be obtained from the fractogram by means of a 

numerical conversion of the retention scale. Particle size distribution (PSD) analysis 

is considered one of the most remarkable trends in analytical science. In fact, many 

samples of topical analytical interest are found in dispersed form, and information 

regarding their size distribution is as fundamental as knowledge of their MW.  

For instance, in industrial applications, the size characterization of sample particles is 

routine procedure and is an essential part of the overall quality control (QC) 
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practices. In the pharmaceutical field, for particles used in drug delivery, the size is a 

critical factor because it has a strong influence on the particle bio-distribution, hence 

their performance as carriers, as well as their ability to bind to the active drug. From 

the hydrodynamic size, the analyte MW can be also derived; however, in this case, 

assumptions on analyte shape or conformation are required and not always accurate. 

 

2.4. HF5 SEPARATION PERFORMANCE EVALUATION:  

CRITICAL PARAMETERS 

 

Since FFF (therefore, HF5) is a chromatographic-like technique, many parameters 

which help evaluate the separation performance can be applied, parameters which 

will prove useful through this dissertation, especially when HF5 methods are being 

developed or when the HF5 performance is compared to the one obtained employing 

other separation techniques. 

Figure 5 depicts another typical HF5 elution profile, which will serve as example, 

used to facilitate the definition of the various separation parameters. 

 

 

Figure 5 – HF5-UV separation profile depicting the separation of two species and the correlated 

separation parameters (retention time and peak width at half height) 

 

The extent of peak broadening and the efficiency of the separation device can be 

evaluated by means of number of theoretical plates, N expressed through Equation 15, 
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and the height equivalent to a theoretical plate, H (plate height) reported in Equation 16, 

where σt2 represents the variance of the eluted peak and L is the length of the 

separation device [Podzimek 2011]: 

 

   
  
  
 
 

      
  
  

  

 

 

 

Equation 15  

  
  
 

 
 
   

  
 

    
 

Equation 16 

 

Unlike what occurs in chromatography, where the analyte occupies the carrier only 

for a time equal to t0, in FFF the analyte occupies the solute at all times, therefore the 

axial diffusion in FFF is inversely proportional to Rs; axial diffusion occurs in FFF as a 

response to the axial concentration gradients, which cannot be eliminated in FFF. 

However, this phenomenon is counteracted by the fact that high MW analytes have 

small D, therefore diffuse little. Another source of band broadening in FFF, the main 

one, is the non-equilibrium, which arises because individual components of the 

analyte cloud (distribution) are carried downstream at different velocities and 

resulting in the sample could dispersion along the axial coordinate. Other band 

broadening effects emerge, for example, from the sample relaxation process or even 

the sample polydispersity itself  [Davis 2000]. 

 

Peak symmetry is another parameter which characterizes the quality of a separation 

device, and is usually software-calculated; peak symmetry is a measure of peak 

tailing, which usually has a negative impact on resolution; a symmetry > 1.2 indicates 

the fact that the separation device is compromised and is no longer working properly 

[Podzimek 2011].  
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Resolution, Rs is a measure of separation between two bands and, for can be 

calculated employing Equation 17, where tR,A and tR,B represent the experimental 

retention time values of species A and B (B eluting after A, Figure 5) and w1/2 

represents the peak width at half peak height of peak A and B, respectively. 

 

   
    

 

           

   
       

     
 

Equation 17 

 

The difference in retention time reflects the selectivity of the separation process, 

whereas w represents the zone spreading that is correlated to the efficiency of the 

process. At a resolution of 1, peaks A and B are not completely separated, but the 

peak areas overlap is only 2%; complete separation (baseline separation) is achieved 

at a resolution of 1.25 [Podzimek 2011]. Equation 17 also shows how resolution is 

controlled by selectivity and efficiency, meaning that if the separation is not selective 

enough, a satisfactory resolution cannot be achieved. 

 

In order to achieve a better characterization, the specific resolution, Rsp can be 

employed in HF5 similarly to SEC, which takes into account the MW values of the 

two species, A and B [Podzimek 2011]; the expression for the specific resolution in 

reported in Equation 18: 

 

    
    

 

           

   
       

                    
 

Equation 18 

Selectivity is the defined as the inherent ability of a technique to separate two 

components; is FFF can be defined in terms of size, Sd or MW, SMW – Equations 19 

[Schure et al. 2000, Podzimek 2011]: 
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Equations 19 

 

High selectivity is a fundamental FFF feature, which makes it an appealing 

separation tool; high selectivity means a significant change in retention time 

corresponding to a small change in particle size or MW. Selectivity depends on the 

retention characteristics and is independent from band broadening (efficiency); the 

limit of maximum selectivity is approached as the retention levels increase. 

Maximum selectivity in Flow FFF varies between 0.5 – 0.7, comparable to SEC 

selectivity values of ~ 0.1, even though the SEC efficiency is much higher [Schure et 

al. 2000]. 

 

On the other hand, the SEC selectivity is related to the slope of the calibration curve, 

meaning that SEC columns which are highly efficient do not necessarily provide a 

good resolution, unless the calibration curve is low enough. The SEC calibration 

curves, although slightly curved, can be approximated by a linear function in a 

certain range of tR, Equation 20 [Podzimek 2011]: 

 

                         
                 

         
 

Equation 20 

The separation (selectivity) in SEC increases inversely to the slope value and depends 

also on the pore size of the column packing material; however, the calibration curves 

and, consequently, the slope b can be different for different MW regions separated on 

the same SEC column [Podzimek 2011].  

Finally, the fractionating power is even more specific for a technique than selectivity, 

because it defines the relative increment in particle diameter of MW which can be 

separated with unit resolution (Rs = 1). Similarly to selectivity, it can be defined as 
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size-based fractionating power, Fd or MW-based fractionating power, FMW – Equations 

21 [Schimpf 2000]: 

 

   
  
  

  
 

  
   

                
  

   
   

 
  
   

    

Equations 21 

 

Substituting Equation 13 in either of the Equations 21, the fractionating power can be 

rewritten as a function of efficiency and selectivity – Equation 22: 

 

             
 
         

Equation 22 

 

Consequently, the choice of working at high retention levels is motivated by higher 

selectivity values, as well as increased N [Schimpf 2000]. Equation 22 justifies the fact 

that SEC is given an advantage at lower MWs (< 100 kDa), while FFF quickly 

overtakes SEC at higher MW values (FFF is superior starting from MWs of few 

hundreds of kDa). Moreover, a uniform fractionating power can be achieved in FFF 

(HF5) by gradually decreasing the field strength during the experiments [Schure et 

al. 2000] 

Similar to the SEC capacity factor, k (or chromatographic partition coefficient), the 

retention level, RL in FFF (HF5) is defined through Equations 23 [Wahlund 2013]: 

 

   
     
  

                       
  
  

 

Equations 23 

The recommended RL differs from sample to sample, as observed by [Litzen et al. 

1993, Wahlund 2013]; however, they should be kept below a value of 50. Therefore, 

both selectivity and fractionating power can increase only up to a certain point. 
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On the other hand, in SEC, contrary to other types of chromatography, resolution can 

be controlled only through selectivity and column efficiency, since the capacity 

factor, k does not play a role [Podzimek 2011]. 

 

Most separation parameters are software-calculated (for example, by ChemStation – 

the chromatography software for the Agilent Technologies HPLC instrumentation); 

however, the software does not have the ability to correct the HF5 retention time by 

subtracting the focus time. 
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3.1. HF5 INSTRUMENTAL SETUP 
 

The HF5 instrumentation required for samples separation and characterization 

adopts the same components of a HPLC system (automated autosampler, pump, 

degasser and detection systems), but a hollow fiber FFF channel as a separation 

device instead of the HPLC or SEC column. The HF5 channel (also called cartridge) is 

implemented in the Eclipse® DUALTECTM FFF separation system (provided Wyatt 

Technology Europe, Germany). The FFF module, also automated, is controlled by a 

specific driver, implemented in the software which controls the HPLC 

instrumentation; in this dissertation, a 1200 Agilent HPLC system (Agilent 

Technologies, Santa Clara, USA) was used in all experiments, together with its 

correlated software, ChemStation®.  

The main purpose of the detector in an FFF system is to determine quantitatively the 

number of particles, and the volume or mass concentrations of the separated 

fractions through FFF according to size. Consequently, the sample concentration can 

be derived employing appropriate detection systems, which are able to correlate the 

signal intensity with the sample concentration through the Lambert-Beer law; for 

example, UV-Vis and refractive index detectors are also called concentration detectors. 

CHAPTER 3:  
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Moreover, online detectors such as multi-angle light scattering (MALS) or quasi-

elastic light scattering (QELS) detectors, are able to provide further information on 

the size, as well as on the MW distribution of the sample. 

An analytical separation technique requires a detection method which is able to 

respond to some or all of the components that elute from the separation system. The 

choice of the detector is, therefore, usually determined by sample requirements. In 

the FFF family of techniques, many of the detection systems have evolved from those 

used in LC. The detection can be performed either online, with a detector coupled to 

the stream of mobile phase, or by collecting sample fractions followed by subsequent 

analysis. For example, mass spectrometry and gel electrophoresis were used during 

the experimental work described in this dissertation as offline methods to 

characterize the HF5 fractions. 

When choosing a detector and designing the experimental setup, one needs to 

consider the concentration of the analyte, the sensitivity of the detector, the level of 

the background noise, as well as the detection limit. The maximum sample amount 

that can be injected is usually limited by the sample overloading limit [Moon and 

Myers 2000], which is a main limitation of FFF, resulting in inter-particle interactions 

that disturb separation. Therefore, a limit of detection well below the sample 

overloading concentration is required in order to be able to quantify the analytes 

without excessive background noise. 

 

3.2. DETECTION SYSTEMS 

 

It is a widely known fact that, since conformation of protein molecules affects their 

biological activity, their tendency towards aggregation, and consequently the 

immune responses directed towards such aggregates, are tightly correlated to 

conformational changes endured by the native form. Conformational studies of the 

protein molecules in soluble aggregates (native-form aggregates) may be performed 
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either directly in the protein formulation or after the isolation of the aggregate 

population of interest. Methods such as: fluorescence spectroscopy (intrinsic, with 

fluorescence dyes or quenching), UV absorbance and near-UV circular dichroism 

spectroscopy, binding to conformationally-dependent antibodies for tertiary 

structure investigations  and infrared and far-UV circular dichroism spectroscopy are 

usually employed for the analysis of the protein structure (tertiary, quaternary). 

Some native-state aggregated proteins may also lead to the loss of their active 

property. In some cases, large and insoluble protein aggregates can be separated 

from their formulation and studied with these same spectroscopic methods 

[Carpenter et al. 2012] (and references therein). 

 

Just like liquid chromatography (LC, SEC), FFF systems (therefore HF5), may employ 

standard concentration detectors, such as refractive index (RI), UV absorbance, 

fluorescence detectors and/or light scattering detectors, in order to monitor the 

elution process. [Qureshi and Kok 2011] (and references therein) 

HF5 separates according to the hydrodynamic size of the sample components. In the 

previous Chapter was shown how HF5-UV coupling can provide additional sample 

information, such as PSD. FFF is not only used in combination with UV or 

fluorescence detectors, but also with light scattering detectors (e.g., multi-angle light 

scattering, MALS), which enhance the analytical information by accurately 

determining the MW of the protein aggregates, either soluble or insoluble [Mahler et 

al. 2009] (and references therein).  

Static light scattering detection, usually in the multi-angle light scattering (MALS) 

version, is often used in a multitude of application fields. MALS detection can 

provide the absolute MW of proteins and protein aggregates, and the size (rms 

radius) can be obtained without any approximation on particle shape. Another 

interesting possibility is the recently developed online coupling of HF5 with dynamic 

light scattering (DLS), which is now commercially available. Online DLS provides 

immediate information regarding the hydrodynamic size or the diffusion coefficient 
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of the separated proteins and aggregate populations [Qureshi and Kok 2011] (and 

reference therein). 

 

FFF coupled with appropriate detection methods can be particularly suitable for the 

separation and characterization of soluble aggregates with sizes above 100 nm, where 

SEC or SDS-PAGE fail because of their operational range limitation. FFF is therefore 

able to fill the “gap” of suitable separation methods in this range [Mahler et al. 2009, 

Zölls et al. 2012] (and references therein). In SEC, the upper size limit of detectable 

protein aggregate is dictated by the column characteristics; larger aggregates can be 

filtered out by frits in the system or by the column itself, therefore large protein 

aggregates may be disrupted and be overlooked in the analysis [Engelsman et al. 

2011] (and references therein). 

In addition, since the FFF operational size range is wide enough, it makes it also 

suitable for the separation and characterization of insoluble aggregates, up to the sub-

visible size region (~500 nm – 50µm) [Mahler et al. 2009, Zölls et al. 2012] (and 

references therein). 

 

 

In a recent review, [Engelsman et al. 2011] critically analyzed the current analytical 

methods employed for the study of protein aggregation phenomena. For the purpose 

of this dissertation, only some of them – reported in Table 1 – will be discussed. 

 

Table 1 - Typical use of analytical techniques in the biopharmaceutical industry with respect to 

aggregate analysis [Engelsman et al. 2011] 

Method Validation Quantification Robustness Sensitivity 
Sample 

throughput 

QC 

method 

AUC No Yes Low Medium Low No 

SEC Yes Yes High Medium High Yes 

AF4 Yes Yes Medium Medium High No 

SEC-MALS No 
No 

(MALS part) 
Medium High High No 

UV-VIS 

spectroscopy 
No No Medium Medium High No 

Fluorescence 

spectroscopy 
No No Medium N/A High No 
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Table 1 (full table in [Engelsman et al. 2011]) helps classify and suggest the 

appropriate use of an analytical technique in the industry as analytical quality 

control (QC) and extended characterization assays (EC) particularly suited when the 

routine QC methods provide atypical/inconsistent results.  

For example, SEC robustness combined with sample throughput makes it the ideal 

candidate for QC assays, for which it has been routinely employed in the 

biopharmaceutical industry, despite its known shortcomings. On the other hand, 

even though FFF operates in a wider size range and has many advantages over SEC, 

it is not yet employed during QC of therapeutic proteins because it is less robust than 

SEC, less mature as a technique, and it often requires time-consuming method 

development.  

Nonetheless, FFF is extremely valuable during the extended characterization (EC) 

assays that are applied during all stages of therapeutic protein formulation 

development. Implementing the EC assays early in the product development can 

mitigate the presence of undesired protein aggregates in formulations during 

production. Since in vitro or in vitro tests for immunogenic reactions are not 

currently available, some effects of protein aggregation is only observed during the 

human trials or even only after commercialization [Engelsman et al. 2011] (and 

references therein).  

Implementing the FFF technology in the biopharmaceutical industry as EC assay has 

been suggested also by [Pollastrini et al. 2012], who highlight the FFF versatility at all 

stages of drug development, from the identification of the lead product candidate, to 

process scale-up, formulation development and process control maintenance 

(strongly recommended by FDA, [Hinz 2006, DiMasi and Grabowski 2007]), pre-

clinical and clinical development (drug stability tests) and last, but not least, to 

commercial product investigations.  
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3.2.1. SPECTROSCOPIC DETECTION SYSTEMS 

 

3.2.1.1. UV/VIS SPECTROMETRY 

 

UV-Vis spectrophotometers are the most commonly used detectors in FFF 

applications, mainly due to their availability, simplicity and low cost. Coupled with 

an FFF system, they have a dual purpose: monitor the separation process and allow 

the sample quantification (concentration detectors).  

For homogeneous samples (i.e. proteins), which absorb specific wavelengths, the 

relationship between sample absorption and concentration is straightforward, 

described by the Lambert-Beer law. However, when dealing with particulate samples 

(very large particles, usually > 1µm), their signal is a combination of light scattering 

and absorption. Therefore it needs to be corrected for scattering contributions 

[Sharpe 2012]. Consequently, the quantification of the separated particles is not 

straightforward, since the UV signal is actually a turbidimetric measure. The UV/Vis 

detector might be “blinded” by the light scattered in the forward direction. This leads 

to underestimating the fraction of the largest particles in a sample, especially when 

the particle size is close to the wavelength of the incident beam [Reschiglian et al. 

1997].  

However, for chromatographic applications, UV/Vis spectrophotometers have been 

designed for use as absorption detectors. They have a very low internal volume, 

which helps minimizing the sample band broadening.  

The simplest detectors operate at a single, yet variable, wavelength (variable 

wavelength detector, VWD), while more complex instruments allow for the 

simultaneous detection of different wavelengths to match the spectral properties of 

the analyte (diode array detectors, DAD). Moreover, DAD allows registering the 

entire UV/Vis spectra of eluting samples. UV/Vis spectra are particularly useful for 

monitoring (chemical or physical) changes in sample composition during separation. 
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The detection wavelength is generally chosen with the intent to maximize the 

sensitivity to the analyte while avoiding interferences, such as absorption by the 

carrier liquid. For instance, high concentration acetate buffer, succinate, citrate buffer, 

phthalate and barbiturate are known to absorb strongly at 215 nm [Aitken and 

Learmonth 2002], which is also one of the main protein absorption bands.  

In particular, protein quantification is usually made possible thanks to the specific 

protein absorption in the near UV region (280 nm), which depends on the amino acid 

(AA) content; tyrosine (Tyr) and tryptophan (Trp) are the major contributors, 

although a very small contribution to the UV absorption is also due to phenylalanine 

(Phe), and to the presence of disulfide bonds [Aitken and Learmonth 2002]. 

Since the AA sequence and content varies greatly from protein to protein, leading to 

different absorption intensities among proteins, a specific absorption for each protein 

must be determined. The extinction coefficient Ɛ relates the protein concentration with 

its absorption intensity. For protein solutions at 1 mg/mL, most Ɛ0.1%280nm values are 

between 0.5 and 1.5 (average 1.0). Moreover, the protein absorption at 280 nm can be 

employed to determine the protein AA composition, and the Trp, Thy and Phe %. 

Absorption interferences at 280 nm may exist, due to nucleic acids contamination. 

However, DNA contamination can be confirmed and quantified by detection at 260 

nm [Aitken and Learmonth 2002]. 

The protein peptide bond has a very strong, specific absorbance in the far UV 

(maximum at 190 nm, but usually detected between 205 and 215 nm), which can be 

exploited for protein quantification. However, due to oxygen interference at 190 nm, 

measurements are more convenient at 205 nm, where the absorbance is ~ half than 

that at 190 nm. As previously mentioned, at these wavelengths (205-215 nm) possible 

interference from the mobile phase composition (especially highly concentrated salts) 

may hinder detection, therefore protein quantification. Since protein absorption in 

the far UV region is not due to AA side chains, it does not distinguish among 

proteins, and it can be employed as an absolute method for protein quantification [Aitken 

and Learmonth 2002].  
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Protein quantification by spectrometric methods  is based on the Lambert-Beer law, 

which can be expressed as Equation 1, where A represents the absorption intensity, Ɛ 

represents the molar extinction coefficient (a proportionality constant which 

correlates the absorption intensity and the sample concentration), c represents the 

sample concentration (molarity, M) and l represents the path length [IUPAC 2014]: 

 

A = Ɛ · c · l 

Equation 1 

 

 A particular version Equation 1 is its adapted version for flow systems, expressed by 

Equation 2, where F represents the volumetric flow rate: 

 

A · F = Ɛ · c · l 

Equation 2  

 

Equation 2 describes the inverse proportionality between sample absorbance and 

elution flow rate; this relationship can be exploited to increase detection sensitivity in 

flow systems. According to Equation 2, a smaller flow rate implies a larger area under 

the peak, therefore decreased sample limit of detection (LOD) and quantification 

(LOQ), leading to higher detection sensitivity. By further reducing the fiber inner 

radius, both efficiency and sensitivity (cLOD) increase, according to Equation 13 in sub-

chapter 2.2.2 (Chapter 2).  Thanks to a smaller fiber inner radius, the separation 

would require a lower longitudinal flow rate, thus decreasing sample dilution and, 

by applying higher cross-flow rates, the separation performance improves (higher 

efficiency).  

Other methods for protein quantification are represented by offline, specific tests, 

like the Bradford assay or the BCA assay, which involve protein binding to an 

absorbing molecule (chromophores).  
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3.2.1.2. FLUORESCENCE SPECTROSCOPY 

 

Fluorescence spectroscopy is classified by [Engelsman et al. 2011] as an indirect 

method for assessing protein folding state, by detection of fluorescence emission 

(intrinsic or extrinsic) which aids observing the protein tertiary/quaternary structure. 

Its advantages comprise the non-destructive nature, the multiple fluorescence 

techniques, the possibility of combining fluorescence with microscopic tools, as well 

as the online detection possibility, which is one of the most appealing features when 

coupling with a separation technique is considered. 

 

Protein fluorescence is analyzed to monitor changes in the tertiary structure and the 

environment of the fluorescent amino acids, mainly tryptophan.  Intrinsic protein 

fluorescence is attributed to tryptophan (Trp or W), tyrosine (Tyr or Y)), and 

phenylalanine (Phe or F), with fluorescence intensities decreasing in this order. The 

absorption/emission maxima in aqueous solution are: 280 nm/350 nm for Trp, 275 

nm/304 nm for Tyr and 258 nm/282 nm for Phe. Trp is the mostly monitored 

fluorophore, since it exhibits the strongest fluorescence and is selectively excitable at 

wavelengths between 295 and 300 nm. However, Trp is usually very poorly 

represented in the AA structure of proteins. Moreover, its presence highly varies 

from protein to protein (i.e., Bovine Serum Albumin contains 2 Trp residues in the 

AA sequence, while Thyroglobulin contains 40 – [SwissPDB 2014]). Therefore the Trp 

fluorescence emission cannot be used as a method  of identification or quantification 

[Zölls et al. 2012] (and references therein). 

The Trp fluorescence intensity changes dependent on the polarity of the 

environment. For this reason the Trp property is used to monitor changes in the 

protein structure and the consequent formation of aggregates. However, fluorescence 

is only suitable to detect relative structural changes (qualitative information) and not 

to determine the absolute tertiary structure [Zölls et al. 2012] (and references therein). 
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Optical detectors are available for online coupling with separation techniques, such 

as UV/Vis absorbance and fluorescence detectors, that are highly sensitive in 

detecting chromophores. This allows characterizing proteins with a good S/N ratio 

for protein concentrations as low as 10 µg/mL [Mahler et al. 2009] (and references 

therein). 

 

In addition to intrinsic fluorescence, fluorescent dyes (extrinsic fluorescence) can also be 

used to examine the conformation and other properties of protein aggregates. 

Fluorescent dyes can be covalently or non-covalently attached to the protein of 

interest. Covalently attached fluorescent dyes can be used to analyze protein 

aggregates and particles in complex buffers or directly in serum. Non-covalent 

fluorescent dyes, bound by hydrophobic or electrostatic interactions, are usually 

more interesting for the study of therapeutic protein aggregates and particles because 

their fluorescence intensity changes with the polarity of the environment (behavior 

similar to intrinsic Trp). The fluorescence intensity of non-covalent dyes such as ANS 

(8-anilino-1-naphthalenesulfonate), bis-ANS (4,4-dianilino-1,1-binaphthyl-5,5-

disulfonate), SYPRO orange, or Nile Red can be employed to study the exposure of 

hydrophobic protein regions by unfolding and aggregation. Extrinsic dyes can 

provide information about structural changes and/or the formation of aggregates, as 

well as the properties of the formed aggregates, just like intrinsic fluorophores. 

However, the formation or suppression of protein aggregation should be carefully 

considered, known to be caused by the organic solvent in which they are prepared or 

caused by the fluorescent dye itself. [Zölls et al. 2012] (and references therein) 

Extrinsic fluorescence detection allows the characterization of very dilute samples 

employing fluorescent labels. However, careful consideration of protein label (dye) is 

due, because the extrinsic dye might alter the protein sample (protein-protein 

interactions), thus creating artifacts (for instance, protein aggregates). The addition of 

the dye itself may indeed induce artifacts by shifting the equilibrium between 

different conformational states of the protein [Mahler et al. 2009] (and references 
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therein). For the study of larger/insoluble aggregates, fluorescent dyes are mostly 

employed for visualization in fluorescence microscopy or for Fluorescence activated 

Particle Sorting, FAPS [Zölls et al. 2012] (and references therein). 

 

Intrinsic fluorescence proved to be extremely valuable in evaluating the 

structural/molecular conformational changes which occur as a consequence of 

changes in the environmental conditions, responsible for different degrees of protein 

aggregation [Song et al. 1999] (and references therein). 

Intrinsic fluorescence of tryptophan was employed to highlight differences between 

lyophilized and non lyophilized antibodies and to study the effects of sample 

lyophilization on antibody stability, leading to aggregation [Wang et al. 2007] (and 

references therein). IgG aggregation by means of fluorescence emission was also 

studied by [Demeule et al. 2007]. 

A recent study, where a fluorescent dye was added to the carrier solution or the 

sample, showed that SEC performed better for the separation of monomers and 

dimers, but AF4 was able to provide a higher recovery for larger aggregates. The 

increased fluorescence intensity observed upon heating an IgG antibody was 

correlated to IgG aggregates formation, as well as to structural changes in the IgG 

conformation [Qureshi and Kok 2011].  

Intrinsic Trp fluorescence spectroscopy (emission wavelengths of 300-450nm, using 

an excitation wavelength of 295nm) was employed successfully for the study of 

antibody conformational changes leading to non-native aggregation, which occurred 

during the denaturation process; the unfolding/refolding process of the antibody was  

induced by either treatment with concentrated GuHCl or at elevated temperature 

[Brummitt et al. 2011] (and references therein). 

Finally, intrinsic and extrinsic fluorescence spectroscopy coupled to an AF4 system, 

together with Differential Scanning Calorimetry (DSC), circular dichroism (CD) and 

FTIR were employed for the determination of the melting temperature and onset 

temperature of unfolding of an antibody during its formulation development; a 
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progressive destabilization of the native protein structure is usually observed as the 

temperature is increased, often leading to (irreversible) aggregation. This qualitative 

study of the conformational changes by means of sensitive and fast fluorescence 

detection, related to the degradation of the tertiary structure during formulation 

development, demonstrated the role of conformational stability, as well as colloidal 

stability on the final protein formulations [Hawe et al. 2012] (and references therein). 

 

3.2.2. OPTICAL DETECTION SYSTEMS:  

 

LIGHT SCATTERING 
 

Many analytical methods for the study of colloids are based on the interaction of 

particles with light; therefore light scattering techniques play a central role in protein 

particle characterization, as well [Zölls et al. 2012]. Since the intensity of light 

scattering increases with the sixth power of the aggregate radius, the sensitivity of 

light scattering detectors for large aggregates is considerably higher than UV, FLD or 

RI detection. However, when protein aggregates are present at low levels and only 

the light scattering signal is detected, the determination of MW and the 

quantification of the aggregates (as mass fraction) cannot be made performed, but 

light scattering can still provide a qualitative tool for monitoring the presence of 

aggregates [Carpenter et al. 2010]. 

 

Upon sample illumination, the light scattering phenomenon can be observed as a 

very fast sequence of photon absorption followed by an almost instantaneous 

emission of another photon. The absorbed energy can be released from the virtual 

state as photons in two different ways:  (1) if the scattered photon has the same 

energy/frequency as the absorbed photon, the phenomenon is called elastic light 

scattering, characteristic for scatterers smaller than the wavelength of the incident 

light (or Rayleigh scattering) and for scatterers in the range of the wavelength of the 

incident light and above (Mie scattering); (2) if the scattered photon has an 
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energy/frequency different from that of the absorbed photon, the phenomenon is 

called inelastic or Raman scattering and occurs only for 10−3 of all scattered photons.  

Rayleigh/Mie scattering (1) is employed for dynamic light scattering (DLS) or quasi-

elastic light scattering (QELS), nanoparticles tracking analysis (NTA), and static light 

scattering (SLS), while Raman scattering (2) is the basis for Raman spectroscopy 

[Zölls et al. 2012]. 

The most used light scattering techniques for the characterization of protein 

aggregates are dynamic light scattering and static light scattering (multi-angle light 

scattering); both can be used either as standalone (batch) techniques, or on-line 

coupled with FFF, although the on-line coupling is more advantageous. A quick 

review of the two techniques is reported in Table 2, adapted from [Engelsman et al. 

2011].  

Since DLS was not employed during the experimental part described in this 

dissertation, the focus will be directed towards MALS.  

Table 2 - Light scattering techniques for the analysis of protein aggregates [Engelsman et al. 2011] 

Method 
Static light scattering 

MALS 

Dynamic light scattering 

DLS 

Principle 

Time-averaged light scattering 

intensity of particles, detected at 

multiple angles 

Fluctuations in scattered light intensity 

due to Brownian motion 

Observable 
Molar mass, size  

(rms radius) 

Hydrodynamic size 

 

Size range 103Da – 109 Da 1 nm – 5 μm 

Advantages 

High sensitivity; absolute 

determination of size; commonly 

used as online detector 

Easy to perform (batch mode); non-

destructive; high sensitivity; low sample 

consumption 

Disadvantages 

Solute concentration must be known; 

complicated data analysis; not 

quantitative; limited use in batch 

mode; very sensitive to sample 

contamination 

Complicated data analysis; not 

quantitative; low resolution (weak 

differentiation between particle 

species); less suitable for 

polydisperse samples; very 

sensitive to contamination 

(e.g. dust) 

 

Although other methods, such as Mass Spectrometry, membrane osmometry or 

sedimentation equilibrium allow the determination of the absolute MW, MALS  is 
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non-destructive and the determination of the MW and size of the particles is 

performed without any calibration; therefore can be considered an absolute technique.  

These characteristics, combined with a relatively short analysis times, make MALS a 

fast and accurate analysis method, optimal for the characterization of 

macromolecules in solution. 

 

3.2.2.1. MULTI-ANGLE LIGHT SCATTERING (MALS) 

 

The analytical information provided by HF5-UV or HF5-FLD detection can be 

enhanced even further by online coupling with optical detection methods, like multi-

angle light scattering (MALS), which measures the light scattered at multiple angles by 

the proteins and protein aggregates, previously fractionated by means of HF5. 

Combined with a concentration detector (like a UV detector), MALS is able to 

provide directly the size (root mean square radius or rms radius, the mass-average 

distance between each point in the macromolecule and the center of mass) the 

absolute molar weight (MW) of the fractionated proteins and protein aggregates as a 

function of their elution time. Comparing the rms radius values obtained from the 

MALS measurements with the hydrodynamic radius (rh), which is readily obtained 

from the experimental retention time, HF5-MALS allows obtaining information 

regarding the shape (conformation) and mass distribution inside the protein 

aggregates [Reschiglian and Moon 2008] 

The coupling between a miniaturized separation device (HF5) and a highly sensitive 

detection method such as light scattering has a synergetic effect on decreasing the 

limit of detection, which proves particularly useful for the characterization of protein 

samples containing low levels of aggregates. Therefore, the HF5-(UV/FLD)-MALS 

coupling appears to be the ideal solution for the characterization of the widely-sized 

protein aggregates present in therapeutic formulations, as well as a possible new 

technological platform in functional and structural proteomics.  
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As previously mentioned, static light scattering can provide information about the size 

and MW of the proteins and protein aggregates in the measured solution. In SLS, the 

excess Rayleigh’s ratio is measured, this excess ratio represents the time-averaged 

intensity of scattered light by the particles at a certain angle, compared with the 

scattering intensity of the solvent. SLS is suitable for molecules which scatter light 

roughly isotropically, with a radius of gyration smaller than 1/20 of the incident 

wavelength (up to ~ 30 nm, as laser wavelengths in the range of 600–700 nm are 

mostly used). 

MALS is a particular case of static light scattering, where the scattered light is 

measured at multiple angles; MALS is necessary to obtain more detailed information 

about molecules whose scattering type is no longer isotropic (such as high MW 

protein aggregates) [Zölls et al. 2012] 

Parallel to Mass Spectrometry, the development of multi‐angle light scattering 

instruments represented a breakthrough in particle sizing [Wyatt 1968]. In a typical 

light scattering measurement, the MALS detector and a concentration detector 

(UV/Vis or a DRI detector) are connected in series after the fractionation device; 

MALS detection is applicable in a size range from 1 nm to over 1 μm, and its 

sensitivity increases proportionally to the particle size. 

The Zimm equation [Zimm 1948, Wyatt 1993] is used to calculate the size (rms 

radius, which represents the mass-averaged distance from each scattering point in 

the particle from its center of gravity) and the MW of the analyzed species from the 

angle-dependent light scattering intensities, which are  also correlated to the sample 

concentration and the refractive index difference between analyte and solution. The 

dependence of the radius on MW yields information on the molecular conformation 

of the species in dispersion. 

As previously mentioned, MALS can also be employed as a stand-alone technique, 

for batch measurements; however when applied to heterogeneous samples, like 

aggregated protein formulations, only a Z-average value for the MW of all species 

present in the solution is provided. Consequently, in protein aggregation analytics, 
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MALS is mostly used as a detector for SEC or FFF (AF4 or HF5), in combination with 

UV and/or refractive index detection (to measure the concentration that is needed to 

calculate the molecular weight).  The available MALS software, although powerful in 

most situations, is limited for the characterization of highly dispersed samples with 

very broad MW distributions are obtained and especially when the sample 

components characteristics (e.g. shape/conformation) vary over time [Wahlund 

2013]. 

The major advantage of MALS hyphenation with separation techniques is the 

possibility to calculate the MW and size of the individually eluting species; this 

makes the use of MW standards obsolete (i.e. standards for SEC column calibration); 

therefore, misinterpretation of aggregate sizes based on different elution behavior of 

standards can be avoided [Zölls et al. 2012].  

Consequently, the combination of MALLS with SEC or AF4 is the method of choice 

for the analysis of protein aggregates and particles as shown by numerous 

publications; moreover SEC and FFF complement each other, since FFF can pick up 

aggregates characterization when SEC fails to provide reliable results. 

SEC, as standalone technique, has been the workhorse in the biopharmaceutical 

industry for QC practices and batch release; however, cross-validation of SEC 

methods for aggregate analysis is nearly always required, by means of orthogonal 

methods, such as AUC, batch-mode SLS or DLS and FFF [Philo 2006, Arakawa et al. 

2010, Carpenter et al. 2010, Carpenter et al. 2012, Liu et al. 2012]. 

AF4 and SV-AUC were employed as orthogonal methods for the characterization 

and quantification of soluble aggregates of acid stressed/unstressed recombinant 

humanized monoclonal antibody, initially measured by SEC and analyzed by 

SEDFIT/c(s); SV-AUC and AF4 were able to detect markedly higher total aggregate 

levels than SEC in equivalent antibody samples. Moreover, SEC failed to detect 

higher MW soluble aggregates due to probable antibody physical adsorption to 

column matrix, which were apparent in SV-AUC and AF4 analyses, leading to 

incomplete mass recovery. An aggregation model, based on nearly linear end-to-end 
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assembly of monomeric subunits, is proposed and corroborated by SV-AUC, SEC, 

AF4, and DLS measurements [Gabrielson et al. 2007].  

SEC-MALS is very useful throughout product development as EC assay; however, 

due to MALS shortcomings, it is not recommended as a routine QC method. One of 

the major disadvantages of MALS in general is its sensitivity biased towards large-

sized particulate (including non-protein particulates, such as contaminations) and 

consequent prolonged equilibration times to obtain a stable baseline. Moreover, since 

data evaluation is so time consuming, its robustness is, therefore, significantly 

compromised [Engelsman et al. 2011].  

 

This hyphenation between separation and detection techniques, like FFF (HF5)-

UV/FLD/RI-MALS, has contributed greatly to the development of Flow FFF as an 

analytical separation method; this coupling has become a very popular instrumental 

setup for the determination of absolute MW, MW distribution and size-

characterization (z-average rms radius) of separated sample populations [Wahlund 

2013]. Here below, some of the most recent applications are briefly described. 

The aggregation of a monoclonal IgG1 type antibody, induced by freeze–thawing and 

elevated temperature, and the protein aggregates structural properties were studied 

by AF4 with UV and MALLS detection, and HP-SEC with UV and online fluorescent 

dye detection; the study demonstrated that thermal stress led to an increased 

formation of dimers and soluble oligomers, observed by both HP-SEC and AF4 

[Hawe et al. 2008]. 

A combination of spectroscopic techniques (UV-absorption, CD, ATR-FTIR and 

fluorescence), light obscuration, dynamic light scattering, SDS-PAGE, AF4 with UV 

and MALLS detection, and HP-SEC with UV and online fluorescent dye detection 

was employed in a study aimed to characterize the structural properties of 

aggregates formed after freeze–thawing and thermal stressing (typical stress factors 

during development, production and storage) of a humanized monoclonal IgG1 
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antibody; an increased formation of dimers and soluble oligomers was observed by 

both HP-SEC and AF4 [Hawe et al. 2009]. 

Like many other protein misfolding diseases, Prion diseases are notoriously known 

through the formation of abnormal protein aggregates, whose size ranges from 

oligomers to large amyloid fibrils and plaques; among the many approaches which 

were considered for the task of fractionating and characterizing abnormal prion 

protein particles, only AF4-MALS was effective. AF4-MALS was employed 

successfully by [Barton et al. 2012] in order to assess the infectivity associated with 

the widely-sized PrPres in a study which showed that, even though large amyloid 

fibrils of PrPres are still able to transmit disease, the most infectious J-particles, 

identified by [Silveira et al. 2005], are smaller oligomeric species. 

The time-dependent Aβ1-42 aggregation pattern, representing the  self-assembly of the 

42-amino-acid-long amyloid peptide Aβ1-42 into insoluble fibrillar deposits in the 

brain and a crucial event in the pathogenesis of Alzheimer's disease, was studied by 

AF4 with on-line multi-angle light scattering detection; the fibril deposition occurs 

through an aggregation process involving transient and metastable oligomeric 

intermediates, which are intrinsically difficult to be accurately monitored and 

characterized by traditional methods. On-line AF4-MALS coupling allowed the 

separation and the determination of the MW and size distribution of both the early-

forming soluble aggregates and the late pre-fibrillar and fibrillar species, 

demonstrating unique information on the dynamic aggregation kinetics [Rambaldi et 

al. 2009]. 

Using different analytical methods, which included visual inspection, turbidity, light 

obscuration, size exclusion chromatography, and dynamic light scattering, the 

aggregation behavior of an IgG1 stressed by shaking or heat following static storage 

was investigated, to determine whether protein aggregates exist in equilibrium; the 

study demonstrated obvious differences between shaken and heated samples upon 

storage [Kiese et al. 2010]. 
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A combination of intrinsic/extrinsic fluorescence (FL), circular dichroism, 

calorimetry, chromatography, capillary electrophoresis, and laser light scattering was 

used for the study of an IgG1 antibody under acidic conditions, as a function of 

solution pH; protein unfolding, refolding, native colloidal interactions, aggregate 

structure and morphology, and aggregate dissociation were observed [Brummitt et 

al. 2011]. 

A combination of dynamic light scattering, size exclusion chromatography (SEC) and 

field flow fractionation (FFF) was employed to study the effect of pH and salt 

concentration, on the stability and aggregation kinetics of IgG solutions under the 

conditions typically encountered in downstream processing. The oligomer 

distributions provided by SEC and FFF are consistent, demonstrating that, for the 

given antibody, low pH and presence of salt induce conformational changes that are 

responsible for progressive, but reversible aggregation, proportional to the salt 

concentration [Arosio et al. 2011]. 

A recent HF5-MALS-based application, consisting in a customized, fast and accurate 

method for characterization of therapeutic proteins, using as a model sample an 

oxidized form of Avidin (AvidinOX®), showed the boost in detection sensitivity 

obtained by combining a miniaturized separation device (HF5) and a highly sensitive 

detection method (MALS); the first application developed employing the commercial 

hollow fiber FFF miniaturized channel [Reschiglian et al. 2013]. 

A wide range of opportunities for inspiration and exploitation of the distinct 

characteristics of AF4-MALS throughout the long, winding and multifaceted 

therapeutic proteins development process are proposed by [Pollastrini et al. 2012] 

AF4-MALS was used to study the aggregation properties of antibodies, two different 

proteins and a protein-polysaccharide conjugate (PPC); the AF4 method was found 

to be less destructive on the aggregates, but at the expense of separation. Loose 

protein and antibody aggregates were detected by MALS and their presence was 

corroborated by complementary spectroscopic and microscopic techniques; the 

aggregates readily reversed to monomers during AF4 separation. The results 
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obtained by [Palais et al. 2012] demonstrate the importance of AF4 versatility in 

terms of experimental conditions (flow combinations), able to characterize the 

complexity of protein aggregation. 
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INTRODUCTION 

 

Therapeutic and diagnostic proteins represent the fastest growing area of 

biopharmaceutical applications [Daugherty and Mrsny 2006] and, among them, 

antibodies are the major player, controlling many types of diseases such as cancer, 

infectious diseases, allergy, autoimmune diseases, and inflammation [Wang et al. 

2007]. A fast keyword search on [ClinicalTrials.gov 2013] reports almost 3000 clinical 

trials involving monoclonal antibodies in 2013, spread globally (Figure 1). 

 

 

Figure 1 - Clinical studies involving monoclonal antibodies in 2013.  

Source: [ClinicalTrials.gov 2013] 

 

Therapeutic protein drugs, antibodies in particular, (a) have a very specific action, 

therefore lead to less side effects compared to small molecule drugs; (b) may be used 

for drug delivery, namely conjugated to another therapeutic drug for efficient 

delivery of this entity to a target site, therefore reducing potential side effects and (c) 

may be conjugated to radioisotopes for specific diagnostic purposes [Wang et al. 

2007]. All these reasons explain why this category of therapeutics is gaining 

extraordinary drive, as well as widespread recognition. Since the approval of the first 

monoclonal antibody product in 1986 (-OKT-3) [Wang et al. 2007], the booming 

increase in protein drugs development (30-fold increase over 7 years, 2006-2013) 

reflects the relevance of bio-therapeutics and the advances made in antibody 
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engineering. Most of the FDA-approved drugs target cancer or inflammation, 

pathologies which have not been previously treated effectively with traditional, 

small molecule drugs [Daugherty and Mrsny 2006]. 

Antibody therapeutics are large (MW>150 kDa), complex molecules and must be 

administered at high levels in order for them to be effective (~1g/dose). Their 

production and purification scale has reached unpredicted industrial levels, 

previously assumed impossible. Development of stable and high concentration 

formulations, as well as effective delivery strategies of large amounts of complex 

molecules progressively became pressing issues for the biopharmaceutical industry. 

Product stability soon became a critical aspect, since tightly related to its effectiveness, 

as well as its potential toxicity [Daugherty and Mrsny 2006].  

Consequently, the need for (improved) high throughput methods to optimize the 

development of protein formulation, the need for sensitive and accurate methods to 

determine and to monitor over time the composition of the protein formulation, as 

well as the need for robust QC protocols for batch release have emerged [Capelle et 

al. 2007, Carpenter et al. 2012].  

These needs justify the sudden growth of new analysis methods, aimed at the 

development of sensitive and selective separation techniques, with a wide range of 

applications, appropriate resolution and versatility regarding the analysis of complex 

samples. Among them, albeit a little slower and less visible, the development and 

improvement of field-flow fractionation (FFF) has progressed in parallel to the 

development of electrophoresis (gel, GE or capillary, CZE), liquid chromatography 

(LC) and flow cytometry (FC) [Reschiglian et al. 2005].  

The development of befitting technologies and scientific understanding of their 

manufacture and formulation have sustained the consequent booming 

commercialization of monoclonal antibodies therapeutics (mAbs). [Lowe et al. 2011] 
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SYNOPSIS: ANTIBODY INSTABILITY 

 

Antibodies are large multi-domain proteins with similar tertiary structures. The 

multitude of disulfide bonds and tight domain–domain interactions in antibodies 

make render them relatively stable and more resistant to moderate thermal stress 

compared to other proteins [Wang et al. 2007]. However, similar to most proteins, 

many human monoclonal antibodies display poor biophysical properties, such as low 

stability and a propensity to aggregate. The factors which contribute to instability and 

tendency towards aggregation are complex, act simultaneously and are not fully 

understood [Lowe et al. 2011]. 

Examples of physical and chemical instabilities regard phenomena such as: 

denaturation, aggregation, surface adsorption, deamidation, oxidation, isomerization 

or fragmentation. Due to their highly specific action, there is a significant difference 

in the primary sequence among different antibodies; therefore, the relative severity 

of these degradation pathways needs to be studied case-by-case. The most frequent 

manifestations of antibody instability include: aggregation, deamidation, and 

isomerization [Wang et al. 2007, Singh et al. 2009]. 

Due to differences in their stability, some antibody products are formulated in a 

liquid form, while others are lyophilized. Commercial antibody formulations are 

either neutral or weakly acidic, indicating the optimal pH range for most antibodies. 

Among the additives employed to suppress antibody aggregation, surfactants have 

been used in most of these antibody products. As for the excipients, aimed to assure 

the product stability over time, the two most commonly used are sucrose and NaCl; 

they have been equally successful in liquid formulations, while sucrose is preferable 

to NaCl for lyophilized formulations [Ohtake et al. 2011]. Nonetheless, a case-by-case 

study of appropriate formulation excipients and buffering agents is due, since 

antibodies differ at structural level.  

Major issues, regarding the antibody formulation challenging task, have emerged: (1) 
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the development of stable high-concentration formulations and (2) the management 

of the high-concentration associated viscosity of these formulations. However, the 

available stability data found in the literature and the information on the commercial 

antibody products suggest that antibody formulation, compared to other protein 

drugs, although challenging, is relatively manageable [Wang et al. 2007, Lowe et al. 

2011, Zölls et al. 2012]. 

 

Although more stable than other proteins, antibodies are subjected to a variety of 

physical and chemical degradation pathways, which can be observed in liquid, 

frozen, and lyophilized states. For instance, the glycosylation state of an antibody can 

significantly affect its degradation; however, in many cases, multiple degradation 

pathways can occur simultaneously and the degradation mechanism may change 

depending on the stress conditions. These degradation pathways are divided into 

two major categories: (A) physical and (B) chemical instabilities [Wang 2005, Wang et 

al. 2007, Wang et al. 2010] (and references therein).  

 

 

Understanding how these mechanisms act (and probably interact) is fundamental knowledge 

because it aids data interpretation, from protein formulation development, industrial process 

scale-up and manufacturing, choosing the most appropriate analytical tools for stability 

testing, to ensuring the adequacy of the procedures for stability tests or batch release tests 

and, ultimately, to ensuring the quality (purity and stability) of the finished drug product. 

Moreover, the development and the implementation of a Process Analytical Technology 

(PAT) [Hinz 2006] working side-by-side with Design of Experiments (DOE), is strongly 

suggested by the FDA, aimed to make the therapeutic drugs development more manageable, 

more time – efficient and more cost-effective [DiMasi and Grabowski 2007].  
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A. PHYSICAL INSTABILITY OF ANTIBODIES 

 

There are two major, correlated, pathways through which antibodies display 

physical instability: denaturation and aggregation. Protein denaturation leads to 

aggregation, but aggregation is not necessarily dependent upon antibody 

denaturation, since it can occur even among native antibody molecules [Cromwell et 

al. 2006] 

 

DENATURATION 

Antibodies can denature under a variety of conditions, including temperature 

change, shear, and various processing steps; however, antibodies appear to be more 

resistant to thermal stress compared to other proteins. Shear stress, as well as the 

lyophilization process, may cause antibody denaturation [Wang et al. 2007]. An 

example of forced antibody degradation which occurs during lyophilization was 

illustrated by [Hawe et al. 2008], employing AF4 and SEC coupled with tryptophan 

intrinsic fluorescence to demonstrate the various extents of protein denaturation.  

 

AGGREGATION 

Antibody aggregation is the most common manifestation of physical instability and 

was extensively discussed in the dedicated Chapter 1 of this dissertation. One of the 

greatest challenges in therapeutic protein formulation development is the 

concentration dependent antibody aggregation because, in order to be effective, the 

antibody formulations require high concentrations (>100 mg/mL in liquid 

formulations) [Lowe et al. 2011].  

Increasing the antibody concentration increases the aggregation propensity. Protein 

aggregates generally have reduced activity and, more worrisome, greater 

immunogenicity potential because of the multiplicity of epitopes and/or 

conformational changes [Wang et al. 2007] compared to the native monomeric form.  

Antibody aggregates can easily form both in liquid and solid states, under a variety 
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of conditions. The protein–protein interactions, which ultimately lead to protein 

aggregation, are influenced by both diffusion rate and geometric constraints of the 

interaction sites, therefore are tightly correlated to protein concentration changes, 

viscosity, ionic strength, pH, and temperature [Saluja and Kalonia 2008, Mahler et al. 

2009]. These factors impact greatly on the aggregation extent. Other conditions 

known to induce protein aggregation include: shaking (can accelerate antibody 

precipitation), long-term storage, freeze-thaw process [Hawe et al. 2009] and 

lyophilization process [Hawe et al. 2008]. 

Lyophilization may induce different extents of antibody aggregation, as well as 

different aggregate types (from non covalent- linked monomers and/or even disulfide 

linked aggregates). Furthermore, antibody aggregation is a common phenomenon 

during storage in a lyophilized state [Wang 2005].  

Thermal treatment (high temperature) is known to accelerate the aggregation process 

in antibodies, nevertheless, low temperature storage is believed by [Wang et al. 2007] 

to reduce the hydrophobic interaction (the major force in protein folding) therefore 

leads to  the formation of high molecular weight species. For instance, a well known 

example is the case of reversible aggregation in serum Cryoglobulins, which 

precipitate at temperatures below normal body temperature (37°C) and dissolve 

again if the blood is heated.  

Closely related to the low-temperature effect, the freeze-thaw process often induces 

protein aggregation; nonetheless, it does not pose a threat, partly due to the 

reversibility of antibody aggregates [Wang et al. 2007]. 

In this dissertation, the reversible freeze/thaw-induced aggregation phenomenon of an IgG1 

type antibody was monitored by HF5-UV in sub-chapter 4.1.3 and, employing the same self-

associated antibody, the performance of HF5-UV-MALS was compared to SEC, the 

benchmark in QC of antibodies, in sub-chapter 4.1.6. In the latter sub-chapter, a wide MW 

and size range of antibody aggregates was monitored over time and MW-characterized by 

online MALS detection. 
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Several protein aggregation mechanisms have been proposed by [Philo and Arakawa 

2009] and will be discussed in a separated sub-section, further on in this chapter. 

 

B. CHEMICAL INSTABILITY OF ANTIBODIES 

 

There are several types of chemical degradation pathways which cause antibody 

instability, which – based on the site of changes – may or may not lead to the loss of 

antibody activity [Wang et al. 2007]. 

DISULFIDE FORMATION/EXCHANGE 

Disulfide bond formation/exchange is likely the most frequent cross-linking pathway 

causing chemical aggregation during the various processing steps of antibody 

formulation development. Furthermore, storage often leads to disulfide-based 

aggregation [Wang et al. 2007]. 

DEAMIDATION 

This chemical degradation pathway has been widely reported in literature and is so 

frequent that purified antibody formulations may contain many deamidated forms 

[Wang 2005]. 

ISOMERIZATION 

Similar to deamidation, the relative rate of isomerization can be influenced strongly 

by steric effect; the most common isomerization pathway in antibodies is the 

formation of iso-aspartic acid, from direct isomerization of aspartic acid (Asp), as 

well as from hydrolysis of the pH-dependent succinimide intermediate [Wang et al. 

2007].  

OXIDATION 

Although not as prevalent as deamidation and isomerization in antibodies, oxidation 

of amino acid (AA) residues (such as: Met, Tyr, Trp, His, and Cys) can easily occur 

during storage. 
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FRAGMENTATION 

Fragmentation is a chemical degradation pathway that can easily occur in antibodies 

even during production processes. A variety of process conditions may accelerate it, 

for instance: acidic or basic treatment, thermal treatment, freeze/thaw, and storage. 

The most probable sequences leading to fragmentation in proteins are Asp-Gly and 

Asp-Pro; however, there are other sequences which can also experience cleavages, 

like Asn-Ser. Fragments types include monomer species that have lost a light chain 

(M-LC), a Fab arm (M-Fab), a heavy chain (HC) and the light-chain (LC). Though less 

commonly, fragments can also be represented by antibody subunits resulting from 

both peptide and/or disulfide bond cleavage. Furthermore, antibodies are also prone 

to (UV) radiation-induced cleavages [Wang et al. 2007] (and references therein). 

In this dissertation, the presence of fragments of IgG1 type of antibodies was observed during 

the exploratory study described in sub-chapter 4.1.4, probably caused by either processing or 

storage conditions (freeze/thaw). Furthermore, in the same study, it was shown how the 

specific but undesired UV absorption of the mobile phase (phosphate buffer) can hinder the 

detection of antibody fragments. 

 

SYNOPSIS: THERAPEUTIC DRUGS FORMULATION 

 

The most obvious and common solution to the antibody instability (ultimately 

leading to antibody aggregation) is to increase conformational and colloidal stability 

by changing the drug product formulation. The antibody formulation development 

involves simultaneous variation of multiple parameters (like ionic strength and pH) 

and the addition of excipients (such as amino acids, sugars, and detergents) [Lowe et 

al. 2011] (and references therein). Since antibodies are typically prepared in a wide 

range of formulations, high-throughput methods for structural and colloidal stability 

analyses, as well as accelerated stability studies are currently required during 
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therapeutic drug formulation, aimed to explore the optimal combination of 

parameters. The formulation development can take a significant toll on time, product 

and expenses. Nonetheless, these current needs led to the development of higher-

throughput methods for analysis [Lowe et al. 2011] (and references therein) and more 

efficient approaches, like the Design of Experiments implementation in the 

formulation development. 

 

A. LIQUID ANTIBODY FORMULATIONS 

 

Given that the antibody structure itself allows it, liquid dosage form is generally 

preferable to lyophilized products because it is easier to administer and less 

expensive to manufacture. Half of the commercial antibodies are stable enough to be 

formulated in a liquid form [Wang et al. 2007]. 

 

EFFECT OF PROTEIN CONCENTRATION 

A previously mentioned, the concentration-dependent protein aggregation is the 

greatest challenge to developing high-concentration protein formulations, since a 

relatively large amount of antibodies needs to be dosed to achieve any therapeutic 

effect (otherwise, a large volume of antibody preparation has to be infused). The 

solubility of antibodies does not pose issues, since it seems to be relatively high and 

excipients such as surfactants have been effective in increasing it even further. The 

decrease in antibody solution viscosity is achieved by adding sufficient amounts of 

NaCl, though even adjusting the formulation pH could produce a similar effect 

[Wang et al. 2007] (and references therein). 

From the analytical point of view, high protein concentration is a problem, as well. In 

SEC and FFF, both chromatographic flow-based separation systems, the 

quantification of aggregates levels usually involves not only sample dilution prior to 

analysis (because high volumes are required in order to provide robust results), but 
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also a high dilution during the separation itself. Since the sample dilution may 

induce the disruption of high MW species, it also leads to potential inaccurate 

aggregates quantification, as reported by [Gabrielson et al. 2007, Arakawa et al. 2010, 

Carpenter et al. 2010], therefore requiring orthogonal methods for results validation. 

In this dissertation, a phenomenon similar to the concentration effect was observed (though in 

a concentration range much lower than typical antibody formulation) during the study 

discussed in sub-chapter 4.1.5, where an IgG1 type antibody displayed decreasing aggregates 

levels, proportional to the injected amount. Other sample loading tests have been performed in 

order to establish the HF5 overloading limit, a critical parameter given the fact that HF5 is a 

miniaturized separation device, discussed in sub-chapters 4.1.3 and 4.1.4.   

 

 

EFFECT OF FORMULATION pH 

The determination of a stable formulation pH is often the starting point of 

formulation development. The pH has a known effect on the antibody stability, 

depending on the formulation composition, stress conditions and even antibody 

concentration, just like for other proteins. Formulation pH may have an effect of the 

(a) physical stability of antibodies, because it alters the number and distribution of 

charges on the protein surface, as well as on (b) chemical stability, playing a critical 

role in controlling many degradation pathways (such as disulfide bond 

formation/exchange, deamidation, fragmentation and isomerization). Oxidation may 

even be inhibited by adjusting the pH  [Wang et al. 2007] (and references therein).  

The formulation pH has to be adjusted in order to balance all the potential antibody 

pathways leading to degradation/aggregation. The optimum pH value depends on 

the AA sequence of the antibody; nonetheless, an acidic pH appears to be optimum 

for the antibody majority. The pH value appears to be an issue even when 

performing antibody stability tests, therefore depends on the analytical method 

chosen for these tests [Wang 2005, Wang et al. 2007], which will be discussed further 

on. 
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EFFECT OF BUFFERING AGENTS 

Both the type and concentration of a buffering agent may affect the stability of 

proteins; therefore, their combination needs to be carefully considered. Choosing the 

optimal buffering agent can potentially achieve both pH control and stabilization of 

antibodies [Arakawa et al. 2010]. Seldom, a buffering agent optimal for one antibody 

may be harmful to another [Wang et al. 2007]. The role of the buffering agent, aside 

from maintaining the pH stable, is to shield proteins by charge, therefore suppress 

aggregation. Moreover, as states before, the addition of salts (the most common, 

NaCl) with the purpose of decreasing the formulation viscosity, also has a shielding 

effect. The effects of the buffering agents and salts and their concentration on the 

separation process and antibody aggregates quantification will be discussed further 

on. 

 

EFFECT OF FORMULATION EXCIPIENTS 

One of the most convenient and effective methods employed to achieve antibody 

stability (and suppress/reduce aggregation) in solution is the use of formulation 

excipients. A plethora of formulation excipients have proven to be effective in 

protecting the physical and chemical stability of antibodies under different 

processing conditions and storage, including sugars, polyols, amino acids (arginine), 

surfactants and polymers [Wang et al. 2007] (and references therein). 

Among them, sugars and surfactants are the most commonly used. While they have 

proven to be useful in reducing shaking/stirring-induced aggregation, surfactants 

may have negative effects during long-term storage due to the presence of residual 

level of peroxides (which have been shown to cause protein oxidation), therefore 

should be carefully considered [Wang et al. 2007]. The addition of common antibody 

formulation excipients in the carrier solutions employed during the characterization 

of antibody formulations will be discussed further on. 
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B. LYOPHILIZED ANTIBODY FORMULATIONS 

 

Lyophilized formulations share common traits with the liquid formulations 

(previously described). However, they pose some particular issues, as well, since the 

lyophilization process itself can promote degradation pathways and lead to protein 

aggregation. 

 

 

EFFECT OF FORMULATION pH 

Although a pH of the solid state could not be defined for lyophilized formulations, 

the pH of the liquid formulation which is freeze-dried can have a potential effect on 

the stability of the lyophilized formulation. Therefore, the same precautions need to 

be taken (in fact, even more) in adjusting the formulation pH by employing various 

buffering agents, which, consequently, may have an effect on the antibody stability 

both during lyophilization and storage of the lyophilized products [Wang et al. 

2007]. 

 

 

EFFECT OF PROTEIN CONCENTRATION 

Often, increasing the protein concentration tends to increase the stability of the 

protein during lyophilization. However, antibodies do not seem to follow this trend 

and many of them have shown decreased stability both during lyophilization and 

storage at high concentrations [Wang et al. 2007] (and references therein). 
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PRODUCT QUALITY ASSURANCE: PURITY 

 

ANALYTICAL METHODS EMPLOYED FOR ANTIBODY 

FORMULATION CHARACTERIZATION: SEPARATION AND 

PROTEIN AGGREGATES LEVELS QUANTIFICATION 

 

SEC has been the benchmark analytical system for determining the composition of 

protein samples, thanks to the robustness of the data, the wide range of both HPLC 

systems and commercially available SEC columns and the time-efficient data 

generation [Arakawa et al. 2010]. Many published examples over the past 20 years, 

showing the use of SEC for the characterization of mAb formulations and detection 

of mAb aggregates, as well as the effects of changing buffer composition, pH, use of 

excipients, and mutations to the antibody sequence, have led to SEC implementation 

in the QC protocols for antibody formulations batch release [Lowe et al. 2011] (and 

references therein). 

Although a very robust system, which is the main reason for SEC implementation in 

QC assays, some of the drawbacks of SEC include: compromising between the 

dynamic range of analysis and the resolution, the possible loss of large aggregates 

(physically filtered out of the sample, either via the column frits or interaction with 

the column matrix) and possible sample interactions with the column matrix 

[Arakawa et al. 2010, Engelsman et al. 2011]. Moreover, when analyzing by SEC, 

protein samples are often diluted in a buffer which usually is quite different from the 

final formulation that has been chosen for antibody production and storage [Zölls et 

al. 2012].  

Data interpretation, choosing the most appropriate column matrix and the adequate 

mobile phase, together with employing appropriate known standard samples require 

a careful consideration [Carpenter et al. 2010, Lowe et al. 2011, Carpenter et al. 2012]. 

Incomplete sample recovery, compromised selectivity and resolution and inaccurate 

estimation of aggregates levels are the main reasons why complementary analyses 

are required when SEC fails. 
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It is a generally acknowledged fact that, in order to accurately characterize a protein 

formulation (identification, quantitation, as well as size- and MW-characterization 

of all present species), it is absolutely vital to employ analytical methods which 

allow such analyses in an environment as close as possible to the antibody 

formulation buffer. 

First of all, the dynamic ranges in HF5 in virtually unlimited, thanks to the opposite 

elution order with respect to SEC. This feature is very appealing for the separation of 

antibody aggregates in a very wide size and MW range (see Chapter 1). 

In this dissertation, the possibility to validate an HF5-UV method for the separation of 

protein mixtures was discussed in sub-chapter 4.1.1. Parameters like: results repeatability 

(first level of precision), resolution, efficiency, selectivity and robustness show the 

advancements achieved with a commercial instrumentation when compared to data found in 

literature on hollow fiber prototypes.  

SEC and HF5 performance was compared in the studies described in sub-chapters 4.1.2 

(standard protein mixture) and 4.1.6 (IgG1 type antibody). In both sub-chapters, HF5 

superiority in terms of selectivity is another appealing feature worth considering for this type 

of application. Moreover, it was shown how online coupling with MALS can enhance the 

analytical information. 

It is a known fact that the SEC columns offer a limited operational range in terms of 

pH, as well as aggregates sizes and MW (depending on the material and the size of 

the pores of the column packing). Even though the choice of commercial hollow 

fibers is more limited (as material type and MWCO), the same HF5 membrane type 

(for instance, PES material) can be employed for a wide spectrum of applications 

(protein aggregates separation included) because they operate in the whole pH range 

and are highly resistant. Furthermore, since the stationary phase is eliminated in 

HF5, one does not have to consider possible column packing-mobile phase 

interactions, which are another SEC limiting factor. In addition, hollow fibers are not 
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only less expensive than SEC columns, but can also be employed as disposable 

devices, thus avoiding sample carry-over or contamination.  

In order to maintain the sample integrity, thus the aggregates levels, it is highly 

important to separate in a mobile phase whose composition is as close as possible to 

the formulation of a given antibody and the FFF (HF5) versatility in terms of carrier 

solution composition allows doing so.  

In this dissertation, the effect of the pH of the carrier solution on the antibody stability and on 

the separation HF5 performance was discussed in sub-chapter 4.1.4, which describes an 

exploratory study performed on an IgG1 type antibody.  

Next, since the buffering agent and the (salts) concentrations have shown a great 

influence on antibody stability during formulation, it is expected for them to 

influence the antibody behavior during their characterization (and separation), as 

well. 

In this dissertation, an exploratory study employing HF5 coupled with UV detection for the 

separation of different IgG1 type antibodies is described in sub-chapter 4.1.4, showing the 

influence of the buffering agent and its concentration on the separation process, as well as on 

the sample stability.  

The carrier solution ionic strength is another important separation feature in HF5 

because it controls (by charge shielding) the protein interactions during separation, 

therefore influences protein stability and consequently the sample recovery (proteins 

interacting with the separation device) and the aggregates levels (protein-protein 

interactions).  

In this dissertation, different buffering agents and concentrations thereof, therefore having 

different ionic strengths, were explored in sub-chapter 4.1.4 with the purpose of observing 

their influence on antibody stability during HF5 separation and identifying the optimal 

combination for the aggregates levels quantification of an IgG1 type antibody. 
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SEC and HF5 performance is compared for the separation of an IgG1 type antibody in sub-

chapter 4.1.6, including aspects like sample recovery, identification of different types of high 

MW antibody aggregates and the reversibility of the aggregation process (which was 

monitored by UV-MALS detection).     

Seldom, the optimal a buffering agent for one antibody, may be harmful to another. 

In this dissertation, an exploratory study involving different buffering agents (phosphate 

buffer, citrate buffer and a combination of the two), different concentrations and different IgG1 

type antibodies was described in sub-chapter 4.1.4; the study shows differences among 

antibodies behavior during their separation.   

While the addition of salts (NaCl is the most common) is required for a complete 

sample recovery, it is not a guarantee. In fact, SEC requires very high NaCl 

concentrations (300-500 mM) [Arakawa et al. 2010] (and references therein), with the 

risk of disturbing the aggregates levels and achieving the opposite effect: incomplete 

sample recovery. On the other hand, HF5 can achieve complete sample recovery 

even at lower salt concentrations, added to carrier solutions whose composition is 

much closer to the antibody formulation (with a better chance of reflecting the true 

sample composition). 

In this dissertation, the HF5 performance for the separation of an IgG1 type antibody was 

compared to SEC when employing carrier solutions containing different amounts of NaCl 

and discussed in sub-chapter 4.1.6. In the same sub-chapter, two carrier solutions with a 

composition similar to the antibody formulation buffer were employed for the HF5 separation 

and characterization of IgG1 type antibodies. 

Moreover, the influence of different types of salt (NaCl and MgCl2, both known chaotropic 

agents) was observed during the HF5 separation of different IgG1 type antibodies and 

discussed in sub-chapter 4.1.4. 

The addition of excipients (such as sugars or surfactants) to the carrier solution in HF5, in 
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order to render it more sample-compatible (similar to the formulation buffer), was explored, 

although results are not shown in the experimental section of this dissertation. Sugars tend to 

modify the rheological properties of the carrier solution, causing instrumental setbacks and 

clogs in the HPLC capillaries, while surfactants, as they pass through the FFF system 

components, have a tendency to foam, therefore can only be employed at very low 

concentrations (with the risk of not being effective enough to suppress antibody aggregation). 

The use of low foaming surfactants may be a temporary solution, however, it may have 

unexpected effects on the antibody stability if they are different from the one used in the 

original formulation. High concentrations of surfactants (if provided in the original antibody 

formulation) may lead to the formation on micelles, which impede the aggregates detection 

and quantification by MALS, since MALS detection does not discriminate them from protein 

aggregates. 

 

PRODUCT QUALITY ASSURANCE: STABILITY 

 

ANALYTICAL METHODS EMPLOYED FOR THERAPEUTIC 

PROTEIN STABILITY TESTS 
 

Typically, therapeutic proteins (mAbs as well) are stored over several months 

between manufacture, filling, and clinical administration. As detailed previously, 

they are typically formulated at high concentrations (mAb formulations exceed 100 

mg/mL, for subcutaneous administration). In order to understand the stability and 

aggregation tendency of particular mAb in a given formulation, accelerated stability 

studies are conducted during development, although stability tests are conducted on 

the finished products, before and even after commercialization [Lowe et al. 2011] 

(and reference therein). In fact, the FDA regulates the quality of biopharmaceutical 

drugs (in terms of product purity and stability), from development to 

commercialization. 

The stability tests, although rigorously regulated by the FDA, are developed 

according to the ICH guidelines [ICH 2014] that are somewhat flexible (hence 
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guidelines, not rules), considering the particularities of antibodies, meaning that each 

test is antibody-customized. The short-term, as well as long-term stability of 

therapeutic proteins being at stake, suitable analytical tests are required on both 

liquid and lyophilized protein formulations, in order to monitor the behavior, 

identify and quantify (possibly discern between various types of) protein  

aggregates.  

The accelerated stability tests, also called stress tests, whose purpose is to simulate harsh 

and inappropriate storage conditions, as well as deliberately induce the accelerated 

formation of aggregates (in order to understand the underlying causes, as well as 

simulate long-term storage), typically involve the incubation of the antibody 

formulation at defined temperatures, usually 4 and 40°C over several months. At 

defined time intervals, samples are removed and subjected to stability analyses. The 

presence of low MW fragments (degradation products) and high MW aggregates 

levels, as well as aggregation/degradation rates are measured against previously 

defined values and used to determine whether the antibody is appropriately stable 

over long periods of time [Lowe et al. 2011] (and references therein). 

Nevertheless, the accelerated stability tests performed on therapeutic proteins (at 

room temperature or 5-8°C), may or may not be possible or accurate because the  

presence of complex and multiple degradation pathways – which may have different 

degree of temperature dependencies – are unpredictable, therefore may not be able 

to simulate the long-term behavior [Wang et al. 2010] (and reference therein).  

In this dissertation, a short-term accelerated stability study conducted by HF5 coupled with 

UV and MALS detection on a modified protein, stored in lyophilized form (AvidinOX®), was 

discussed in sub-chapter 4.1.7. The protein aggregates, present at trace levels, were 

successfully quantified and their MW values were calculated by MALS. The same study also 

highlighted the miniaturization advantages regarding the decreased limit of detection of 

protein aggregates and the HF5 versatility regarding the carrier solution composition (the 

possibility of working in denaturing vs. native mobile phase), which made possible the 
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distinction and quantification of different types of protein aggregates (covalent vs. non-

covalent). 

The advantages of miniaturization of the HF5 separation device (employing a hollow fiber 

with a smaller inner diameter), coupled online with highly sensitive detection methods 

(intrinsic fluorescence detection and peptide bond absorption) were explored and discussed in 

sub-chapter 4.1.5. The study showed how the detection limit of antibody aggregates can be 

decreased to ng of injected sample, even in antibody formulations where the aggregates levels 

represented only a 2% (mass fraction) of the injected sample. 

 

PROTEIN AGGREGATION MECHANISMS 

 

As thoroughly discussed in Chapter 1, therapeutic proteins (mAbs included) exhibit 

a wide spectrum of aggregation phenomena, making it virtually impossible to find a 

single analytical method able to work well in all cases. Moreover, though less 

recognized, aggregates also exhibit highly different life spans, and their lifetime has 

important consequences for detection methods. Another major analytical challenge 

resides in the fact that the measurement itself may destroy or create aggregates and is 

a key determinant for appropriate method selection [Philo 2006]. Lastly, SEC 

capabilities are limited, though routinely employed as benchmark analytical method 

in QC practices, therefore the use of orthogonal techniques is vital for an accurate 

estimation of the aggregation extent. For this purpose, MALS and (intrinsic) 

fluorescence are often employed as detection methods during the extended 

characterization assays, although their implementation as QC methods is currently 

not possible [Gabrielson et al. 2007, Engelsman et al. 2011, Zölls et al. 2012]. 

A general understanding of the underlying aggregation mechanisms which occur during 

formulation development may actually help finding solutions for the aggregation issue, but is 

just as important in choosing the appropriate characterization methods and data 
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interpretation. An accurate determination of the extent and type of aggregates contributes 

ultimately to assuring the quality of the therapeutic drug. 

Protein aggregation can occur through a number of distinct mechanisms or 

pathways, which are not mutually exclusive, therefore can act simultaneously on the 

same product, although usually one is dominant. A general understanding of the 

most frequent aggregation mechanisms may point development into the right 

direction (finding a good formulation, or a method to suppress and remove 

aggregates) or at least avoiding excipients and processes that are likely to make 

things worse. The following aggregation mechanisms were proposed by [Philo and 

Arakawa 2009, Wang et al. 2010] and reviewed by [Amani and Naeem 2013]. 

 

MECHANISM 1: REVERSIBLE ASSOCIATION OF THE NATIVE MONOMER 

 

Mechanism 1 describes the intrinsic tendency of the native form of the protein to 

reversibly associate (aggregate). As the surface of the native protein monomer is self-

complementary, it will readily self-associate to form reversible small oligomers. 

There may be multiple “sticky” or complementary zones on the monomer surface 

and, when the protein concentration rises (or, generally, when the monomers find 

themselves closer to each other), progressively larger oligomers form, driven by the 

law of mass action. Over time and as their size increases, these larger aggregates 

often become irreversible. Due to multiple mechanisms acting at the same time, these 

irreversible aggregates may be formed through covalent bonds, like disulfide 

linkages. Every known protein has an intrinsic tendency to self-associate; however, the 

aggregation propensity differs from one protein to another.  

For instance, insulin is the most commonly known example of a therapeutic protein 

which readily (and normally) associates to form reversible oligomers. Although the 

reversible insulin aggregates do not pose a threat due to their reversible nature, such 

association can have important consequences for bioactivity, information which led 
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to the development of important new therapeutic products [Philo and Arakawa 2009] 

(and references therein).  

 

MECHANISM 2: AGGREGATION OF CONFORMATIONALLY-ALTERED 

MONOMER 

 

Mechanism 2 is similar to Mechanism 1, but applies to native monomers with a very 

low propensity to reversibly associate. The first step of Mechanism 2 is a transient 

conformational change/partial unfolding of the monomer to a non-native state, 

characterized by a strong tendency to associate. At any given time, the non-native 

(aggregation-prone) fraction of protein will usually be quite small. Conformational 

changes and aggregation through Mechanism 2 will be promoted by stress (such as 

thermal, heat or freeze/thaw or shear stress), which may trigger the initial 

conformational change. Consequently, the aggregates formation will be suppressed 

by conditions that stabilize the native conformation. This aggregation mechanism 

does appear to be the dominant one for many proteins [Philo and Arakawa 2009] 

(and references therein).  

In this dissertation, the reversibility of the self-association process between IgG1 type antibody 

monomers, which have (most likely) suffered a conformational change due to freeze/thaw 

process and/or due to the fact that the sample was diluted in a buffer with a composition 

different from the formulation buffer, was monitored by HF5-UV-MALS (and SEC-UV-

MALS) and discussed in sub-chapters 4.1.3 and 4.1.6. 

 

MECHANISM 3: AGGREGATION OF CHEMICALLY- MODIFIED PRODUCT 

 

As discussed previously in this Chapter, the chemical instability of proteins leads to a 

series of degradation pathways. Mechanism 3 is, in fact, a version of Mechanism 2, 

where the change in protein conformation is caused by modifications in the covalent 

structure, which lead to aggregation. Chemical changes may include degradation 
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pathways like oxidation, deamidation, or proteolysis and may induce the formation 

of new “sticky” patches on the surface, or even change the electric charge leading to 

reduced electrostatic repulsion between monomers.  

A particular feature of this type of aggregation is that the aggregates will be enriched 

in the modified form. Nonetheless, improving the chemical stability of the monomer 

will reduce the aggregation extent. Importantly (and intuitively), chemically-altered 

aggregates can be particularly immunogenic [Philo and Arakawa 2009] (and 

references therein). 

In this dissertation, the self-association process between monomeric units of an oxidized 

protein (AvidinOX®), which have (most likely) suffered a conformational change due to 

chemical instability, and/or promoted by the presence of degradation products, was monitored 

by HF5-UV-MALS and discussed in sub-chapter 4.1.7. The study showed that the 

AvidinOX® oligomeric species are stable over time and, thanks to the HF5 versatility, non-

covalent, as well as covalent aggregates were discriminated, quantified and monitored over 

time.  

 

MECHANISM 4: NUCLEATION-CONTROLLED AGGREGATION 

 

Mechanism 4 is common mechanism for the formation of visible particulates or 

precipitates, a process which is similar to growing large crystals by adding micro-

crystal “seeds” to a saturated solution. The critical nuclei are also sometimes called 

the “seeds” or “templates” for aggregate growth. When the native monomer has a low 

tendency to form small and moderately-sized oligomers (because is not 

thermodynamically favored), but an aggregate of sufficient size still manages to 

form, afterwards the growth of this “seed”/critical nucleus through addition of 

monomers is highly favored and the formation of much larger species is very fast. A 

special feature of Mechanism 4 is that the rate of formation of the large particles or 

precipitates usually exhibits a lag phase (whose length can vary from vial to vial 

within the same lot), that is, no particles or precipitates can be observed for a long 
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period of time, but then, all of a sudden, the large species appear and accumulate 

[Philo and Arakawa 2009] (and references therein).  

 

The main advantage in understanding of the mechanism of aggregation is that it can 

help guide either upstream or downstream process development. For instance, when 

proteins are prone to conformational changes (partial or complete unfolding), 

mechanical stress and exposure to air or solid surfaces, which may lead to 

adsorption-induced unfolding, must be avoided at all costs. While the addition of 

“generic protein stabilizers”(sucrose, polyols and certain amino acids and salts), may 

aid against various environmental stresses that cause unfolding by suppressing 

aggregation via Mechanism 2,  in fact will usually significantly increase aggregation 

via Mechanisms 1 and 4 [Philo and Arakawa 2009] (and references therein). 

 

Some forms of aggregates may be worse than others. High order (high MW) native-

like oligomers formed via Mechanism 1are more likely to cross-react with the native 

monomer, potentially neutralizing it, rather than induce an immune response. On the 

other hand, non-native aggregated monomers formed via Mechanisms 2-4 are more 

likely to have altered potency, as well as altered immunogenicity.  

 

Understanding aggregation mechanisms is also important from the analytical point 

of view, because it may aid in choosing an optimal chromatographic purification step 

in order to remove aggregates during production or by applying pressure-induced 

aggregates disruption, provided that the chosen purification method does not 

generate new aggregates. Furthermore, knowing the type of aggregates may even 

help design a better chromatography method for aggregate removal [Philo and 

Arakawa 2009] (and references therein). 
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4.1.1. HF5 – UV PERFORMANCE EVALUATION FOR THE 

SEPARATION OF A STANDARD PROTEIN MIXTURE.  

HF5-UV METHOD VALIDATION TENTATIVE: SPECIFICITY, 

REPEATABILITY / FIRST LEVEL OF PRECISION, SELECTIVITY AND 

ROBUSTNESS. 

 

 

 

 

 

This chapter is aimed towards deepening the understanding of the critical 

parameters which affect HF5 performance during the separation of protein 

formulations and to establish whether HF5 is a valid candidate for the QA (quality 

assurance) and QC (quality control) of biopharmaceutical products.  

In particular, the following characteristics of the proposed HF5 method were 

investigated: method specificity, method repeatability / first level of precision, method 

selectivity and method robustness. All the experimental work described in this chapter 

is aimed on evaluating the HF5 separation performance of a mixture consisting in 

four standard proteins, with molecular weights (MW) ranging from 29 kDa to 670 

kDa. 

The method specificity was tested by comparing the separation profiles obtained 

during single proteins injections with the separation profile of the protein mixture 

containing the same proteins. The retention time value was the comparison/matching 

criteria.   
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Following the ICH guidelines [ICH 2014] regarding the validation of analytical 

procedures (Q2 (R1)), aimed to evaluate the quality of biopharmaceutical products, 

the method repeatability was studied employing a sequence of injections of the same 

sample (in terms of composition, amount and volume), performed under identical 

experimental conditions. The variability and the trends of the well known separation 

parameters (retention time, peak width at half height, peak symmetry and sample 

recovery) were monitored during subsequent analyses, as well as separation 

resolution and efficiency. The definitions and formulas of all analytical parameters 

employed for the method validation tentative in this sub-chapter were previously 

discussed in sub-chapter 2.4 (Chapter2). 

The method molecular weight-based selectivity (SMW) was calculated using the average 

values of the retention times, determined during the repeatability study, and the 

declared MW values.  

Finally, the method robustness was evaluated by varying simultaneously two critical 

parameters: channel flow rate and cross-flow rate, therefore by varying of the ratio 

between them, vc/vx. 
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4.1.1.1. EXPERIMENTAL SETUP 

 

HF5 was performed using an Agilent 1200 system (Agilent Technologies, Santa 

Clara, CA, USA) consisting in a 1200 Agilent degasser, a 1200 Agilent isocratic pump, 

a 1200 Agilent auto sampler, and a 1200 Agilent variable wavelength detector 

combined with an Eclipse® DUALTECTM prototype FFF separation system (Wyatt 

Technology Europe, Dernbach, Germany). The software package Wyatt Eclipse @ 

ChemStation Version B.04.02 [98] (Wyatt Technology Europe) was used to control the 

FFF separation system.  

The hollow-fiber was a 17 cm long polyether-sulfone (PES) fiber, type FUS 0181 

available from Microdyn-Nadir (Wiesbaden, Germany) with the following 

characteristics according to the manufacturer: 0.8mm ID, 1.3mm OD and a molecular 

weight cut-off (MWCO) of 10 kDa, corresponding to an average pore size of 5 nm. 

The UV detector response at 215 nm was used to monitor the separation process. 

 

4.1.1.2. SAMPLES AND REAGENTS 

 

The carrier solution (mobile phase) was 50mM NH4HCO3 (Fluka) with a pH ~ 8.0. 

The carrier solution was prepared using water purified by an Elix 3 UV Water 

Purification System (Millipore, Billerica, USA) and filtered through a 0.1 µm-pore 

membrane.  

The protein mixture stock solution contained 1 mg/mL of each of the following 

proteins: carbonic anhydrase (CAH), bovine serum albumin (BSA), apoferritin (Ferr) 

and thyroglobulin (Thy), all obtained from Sigma Aldrich (St. Louis, MO, USA) 

dissolved in the carrier solution, resulting in a total protein concentration of 4 

mg/mL. The standard protein characteristics are summarized in Table 1. The same 

mixture has been used as a benchmark in various publications [Kang and Moon 2005, 
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Lee et al. 2009]. The stock solution was diluted 1:10 in carrier solution before injection 

in HF5.  

Table 1 – Standard protein characteristics 

Proteins Abbreviation 
Product code    

(Sigma Aldrich) MW (kDa) pI 

Carbonic anhydrase 

(bovine erythrocytes) 
CAH C3934 29.0 5.9 

Bovine serum albumin (bovine; 

fatty acid free, and essentially 

globulin free) 

BSA A3782 66.7 4.7 

Apoferritin (equine spleen) Ferr A3641 481.2 4.4 

Thyroglobulin (bovine thyroid) Thy T1001 660.0 – 690.0 4.5 

 

Single protein samples were solutions of CAH, BSA, Ferr and Thy prepared at a 

concentration of 1 mg/mL (0.1%) in the carrier solution.  

 

4.1.1.3. METHODS 

 

The “step gradient” HF5 method evaluated in this chapter was developed as an 

improvement of a similar fractionation method proposed in a recent study [Johann et 

al. 2010] on the same standard protein mixture and using the same separation 

system. The radial field was reduced as the MW of the proteins increased by placing 

two steep flow field gradients to reduce as much as possible the time required for the 

fractionation, while considering the optimal retention factor for each protein. The 

radial field/cross flow rate (vx) was maintained constant at 0.85 mL/min for 13.5 min, 

linearly decreased to 0.5 mL/min in 0.5 min and maintained constant at this value for 

7 min. After the 7 min, the flow was linearly reduced to 0.4 mL/min in 0.2 min and 

maintained constant until the end of the run. The focus-inject step was performed for 

4 min at a focus flow rate of 0.85 mL/min. The sample was focused at a distance of 

approximately 15% fiber length from the channel inlet.   
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4.1.1.4. RESULTS AND DISCUSSION 

 

A. METHOD SPECIFICITY: PEAK IDENTIFICATION 

 

The specificity of an analytical method is defined in the ICH guidelines as “the ability 

to assess unequivocally the analyte in the presence of components which may be expected to be 

present. Typically these might include impurities, degradants, matrix, etc”. This definition 

implies that the proposed method, in order to be specific, it should be able to ensure 

the identity of an analyte, its purity (regarding the presence of possible contaminants 

such as related substance test) and the accurate composition of the sample 

(quantitation of active substance and known impurities) [ICH 2014]. 

An amount of 2 µg of standard protein mixture (0.5 µg of each protein) was injected 

and the separation was monitored by a UV detector set at 215 nm for more 

sensitivity. The choice of two steep field gradients in the method (depicted in Figure 

1, black trace) was made not only to speed up the fractionation process, but also in 

regard to the optimal retention factor for each protein. A field that is too strong not 

only has a negative effect on the performance of the separation itself, but also on the 

peak characteristics (shape and width) and on sample recovery. The radial flow was 

reduced as the MW of the proteins increased.  

 

 

Figure 1 – Separation profile of the standard protein mixture (blue) at 215 nm. The black trace 

above the fractogram represents the cross-flow rate during the separation. 
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The fractionations performed on the single proteins (0.5 µg each) simplified the peak 

identification for the protein mixture and also ensured that there are no interactions 

between the proteins in the mix. The fractograms reported in Figure 2 show that the 

retentions times of the proteins in the mixture and the corresponding peaks in the 

single protein are almost a perfect match.  

 

 

Figure 2 – Separation profiles at 215 nm corresponding to the standard protein mixture (a) and 

single standard proteins: carbonic anhydrase (b), bovine serum albumin (c) and apoferritin (d). The 

correspondence between the retention time values for specific proteins and their oligomers is 

traced in red 

 

Comparing the separation profiles (retention time values) of the single proteins with 

the profile of the protein mixture, (0.5 µg each), the BSA monomer shoulder was 

identified as the CAH trimer (peak 3). Moreover, the CAH dimer is completely 

covered by the BSA monomer (peak 2) and, similarly, the Ferr dimer is covered by 

the Thy monomer (peak 6). There is little separation between the Thy dimer and the 

Ferr trimer (peak 7) because of the small difference in MW (about 100 kDa) and 

because the width of the peaks tends to increase with the MW. 
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B. METHOD REPEATABILITY (A.K.A. INTRA-ASSAY PRECISION OR  

THE FIRST LEVEL OF PRECISION) 
 

The precision of an analytical method is defined in the ICH guideline as “the closeness 

of agreement (degree of scatter) between a series of measurements obtained from multiple 

sampling of the same homogeneous sample under the prescribed conditions. Precision may be 

considered at three levels: repeatability, intermediate precision and reproducibility”. 

The precision of an analytical procedure is usually expressed as the variance, 

standard deviation or coefficient of variation of a series of measurements. 

Repeatability, also called intra-assay precision, expresses the precision under the same 

operating conditions over a short interval of time [ICH 2014]. 

A total amount of 2 µg of protein (0.5 µg each protein) was injected repeatedly (in a 

series of 13 subsequent injections) in order to assess the first level of precision of the 

method and the results are reported in Figure 3. As it is evident from Figure 3, 

baseline separation for all proteins in the mixture was obtained in less than 30 min 

with a good peak shape. A high repeatability is also evident for the overlay of 

repeated runs, as further analyzed in the next paragraphs. 

 

 

Figure 3 – Separation profiles of the standard protein mixture recorded at 215 nm, representing 13 

subsequent injections. Separated species in eluting order: (1) CAH monomer; (2) BSA monomer; (3) 

BSA dimer, (4) Ferr monomer; (5) Thy monomer and (6) Ferr trimer 
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Only the completely separated species were considered, therefore the CAH trimer – 

which eluted as a shoulder of the BSA monomer – was not included in the 

repeatability study. 

The repeatability of the method was evaluated by calculating the average values (mean 

values) of the following parameters: retention time, peak width, peak shape, 

resolution between eluting species, efficiency (in terms of plate height and number 

of plates per minute) and assessing the standard deviation (STDEV) and the relative 

standard deviation (RSD%) values.   

 

C. RETENTION TIME AND PEAK WIDTH 

 

Table 2 and 3 summarize the average values, the standard deviation and the relative 

standard deviation (RSD %) of the retention time and peak width over 13 subsequent 

runs. Peak widths at half height values were considered for the statistical analysis. 

 

Table 2 – Retention time: average values, standard deviation and relative standard deviation over 

13 subsequent sample runs 

Retention time, tR (min) Average STDEV RSD (%) 

CAH monomer 6.34 0.053 0.843 

BSA monomer 8.99 0.082 0.912 

BSA dimer 12.40 0.134 1.084 

Ferr monomer 15.87 0.112 0.707 

Thy monomer 19.78 0.171 0.867 

Ferr trimer 25.17 0.287 1.141 

 

Table 3 – Peak width at half height: average values, standard deviation and relative standard 

deviation over 13 subsequent sample runs 

Peak width (min)  Average  STDEV  RSD (%)  

CAH monomer 0.667  0.007  1.032  

BSA monomer 0.773  0.013  1.747  

BSA dimer  1.189  0.034  2.878  

Ferr monomer 0.966  0.036  3.694  

Thy monomer 1.549  0.066  4.254  

Ferr trimer 3.029  0.316  10.444  
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As the MW of the eluted proteins increases, there is a slight but distinct increase in 

peak width with increasing number of injections. Since there is no significant shift in 

the retention time (retention time RSD <2% for all the proteins), it suggests that this 

variation is more likely due to the protein stability over time and consequently to 

different carry-over effect related to non-specific interaction with channel walls, 

rather than loss of performance due to the device itself. In fact, the peak width RSD 

exceeds 4% only above the MW of Thy (the largest and less stable protein in the 

mixture). 

 

D. SAMPLE RECOVERY  

 

The sample relative recovery was calculated considering the largest peak area as 

having a 100% sample recovery (for each protein). Table 4 summarizes the average 

values, the standard deviation and the relative standard deviation (RSD %) of the sample 

recovery over 13 subsequent runs. 

The sample relative recovery has a low variability for three of the eluted species 

(monomers of BSA, Ferr and Thy) with an RSD < 2%. From the fractograms reported 

in Figure 3 we can notice that the peaks become wider over time and their height 

decreases, even though the lowest recovery over 13 runs is about 89%, which is still 

relatively high for a biological sample. The recovery loss is most probably related to 

the protein stability over time.  

 

Table 4 – Sample relative recovery: average values, standard deviation and relative standard 

deviation over 13 subsequent sample runs 

Relative recovery* (%) Average STDEV RSD (%) 

CAH monomer 93.327 3.853 4.129 

BSA monomer 98.518 0.670 0.680 

BSA dimer 93.558 3.568 3.814 

Ferr monomer 98.587 0.999 1.013 

Thy monomer 97.047 1.538 1.585 

Ferr trimer 88.963 7.402 8.320 

* The largest area corresponds to 100%  sample recovery 
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E. PEAK SYMMETRY (SHAPE) 

 

Even under optimal experimental conditions, the peak shape in FFF can appear 

skewed. The peak shape can be easily altered as a consequence of an overloading 

effect. This effect is present if: (a) a high amount of sample is loaded in the channel 

and the sample does not have enough physical space for the relaxation step; (b) the 

radial field is too strong and the sample is pushed too forcefully towards the channel 

wall causing peak tailing or (c) the channel flow rate is too slow and the sample band 

is left for too long inside the channel causing peak tailing. Even the MW of the 

protein appears to have an overloading effect, therefore a smaller amount of sample 

is required for proteins with high MW values [Moon and Myers 2000, Podzimek 

2011]. 

The peak symmetry measures the peak tailing, which has a negative effect on the 

resolution. Some peak tailing is normal (symmetry <1.2), but a larger value is an 

indication of a damaged separation device or the presence of interactions between 

the analytes and the separation device [Podzimek 2011].  

Table 5 summarizes the average values, the standard deviation and the relative standard 

deviation (RSD %) of the peak symmetry over 13 subsequent runs. 

 

Table 5 – Peak symmetry: average values, standard deviation and relative standard deviation over 

13 subsequent sample runs 

Peak symmetry  Average  STDEV  RSD (%)  

CAH monomer 0.773  0.014  1.858  

BSA monomer 0.925  0.005  0.561  

BSA dimer  0.804  0.059  7.387  

Ferr monomer 0.917  0.018  2.010  

Thy monomer 0.794  0.045  5.870  

Ferr trimer 1.437  0.145  10.111  

 

BSA and Ferr monomers show an almost Gaussian peak, with symmetry close to 1. 

CAH monomer, BSA dimer and Thy monomer peaks are slightly fronted (symmetry 

< 1) and the Ferr trimer peak is tailed (symmetry > 1). The peaks corresponding to 



Chapter 4, Part 1, 4.1.1. HF5-UV performance evaluation (standard protein mixture) 

104 

 

CAH, BSA and Ferr monomers have low peak shape variability (RSD% < 2), but the 

variability tends to increase for the higher MW species. This effect can be attributed 

to the instability of Thy, the standard protein with the highest MW, instability which 

can ultimately lead to non-specific interactions inside the separation device. 

 

F. RESOLUTION 

 

Resolution is a measure of the separation between two zones. The difference in the 

retention times of two components reflects the selectivity of the separation, while peak 

width (w) represents the zone spreading that is related to the efficiency of the process. 

Therefore, resolution is controlled by both selectivity and efficiency. A resolution 

value of 1 indicates that a 2% of the peak areas overlap; therefore the peaks are not 

completely separated. The complete separation is achieved at a resolution of 1.25. A 

better evaluation of the separation process can be achieved by calculating the specific 

resolution (Rsp), which takes into account the MW values of the separated species, as 

well as retention time and peak width [Podzimek 2011]. 

Table 6 summarizes the average values, the standard deviation and the relative standard 

deviation (RSD %) of resolution between eluting species over 13 subsequent runs. 

 

Table 6 - Resolution: average values, standard deviation and relative standard deviation over 13 

subsequent sample runs 

 

All calculated resolution values exceed the 1.25 value, meaning that all considered 

peaks are completely separated. Figure 4 reports the resolution average values 

between eluting species. 

Resolution  Average  STDEV  RSD (%)  

CAH – BSA monomers 2.163  0.015  0.716  

BSA monomer– BSA dimer  1.757  0.030  1.698  

BSA dimer – Ferr monomer 1.899  0.066  3.489  

Ferr – Thy monomers 1.829  0.049  2.673  

Thy monomer – Ferr trimer  1.379  0.085  6.184  
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Resolution is influenced by both retention time and peak width but, since the 

retention time variability is not significant (RSD% < 2% for all proteins), we can only 

assume a great influence from the peak width on the corresponding resolution RSD% 

values.  

 

 

Figure 4 – Average resolution values between eluting species in the standard protein mixure 

 

The resolution average values are always higher than 1.25, with peak symmetry very 

close to unity, which implies a baseline separation between the eluted species. 

 

G. EFFICIENCY 

 

The efficiency of a separation device is affected by the amount of sample band 

broadening during the separation process. It is known that, the longer the time an 

analyte spends inside the separation device, the greater its band broadening will be. 

Band broadening (also called zone broadening, zone spreading, zone dispersion or 

axial dispersion) is expressed in terms of plate height (H) or number of theoretical plates 

(N) [Schimpf 2000]. High efficiency is characterized by a large plate count, N and a 

small plate height, H. High selectivity means high resolution only if band broadening 

is minimal, since high selectivity can be ruined by excessive band broadening 

[Podzimek 2011]. 

Table 7 summarizes the average values, the standard deviation and the relative standard 

deviation (RSD %) of efficiency over 13 subsequent runs, expressed as plate height. 
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Table 7 – Separation efficiency (plate height, cm): average values, standard deviation and relative 

standard deviation over 13 subsequent sample runs 

Plate height, H (cm) Average STDEV RSD (%) 

CAH 0.034 0.001 1.839 

BSA 0.023 0.001 2.577 

BSA dimer 0.028 0.001 4.536 

Ferr 0.011 0.001 6.131 

Thy 0.019 0.001 6.945 

Ferr trimer 0.045 0.010 22.014 

 

The separation efficiency for the standard protein mixture is also reported in Figure 

5, expressed as number of plates/minute. These values were obtained by dividing the 

number of plates calculated for each peak by the corresponding retention time. 

 

 

Figure 5 – Average efficiency values expressed as number of plates/minute 

 

A significant increase in efficiency is observed with respect to previous HF5 methods 

reported in the literature [Park et al. 2005], the plate height values obtained in this 

study are about 10 times lower than the values reported for the same protein 

mixture. 
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H. METHOD SELECTIVITY 

 

Selectivity is a parameter that quantifies the selective dispersion of the sample and 

represents the difference in retention time with MW of size. High selectivity means 

that there is a significant change in retention time with a small change in MW or size; 

therefore, selectivity can be expressed in terms of size (particle diameter, Sd) or MW 

(SMW). Resolution is the decisive parameter when it comes to evaluate the separation 

performance, because it takes into account both selectivity and efficiency [Davis 2000, 

Podzimek 2011]. 

The FFF selectivity calculated for this study was the MW-based selectivity (SMW), 

defined as the slope of the log (tR) against the log (MW) plot, derived from the 

experimental retention time values for the eluted species and standard MW values 

for proteins reported in Table 1. 

If a radial field gradient is to be used in the method, the relationship between the two 

logarithms is no longer linear. Therefore, when the “step gradient” method is 

employed (Figure 1 and Figure 6a), we can only calculate the selectivity for the first 

three eluting species, when a constant cross flow rate of 0.85 mL/min was applied.  

In Figure 6b, a method, which uses a constant cross-flow rate, was employed to 

separate the same standard protein mixture, in order to calculate the selectivity for 

more than 3 separated species.  

At a first glance, it can be noted that the peaks corresponding to proteins with higher 

MW (Ferr and Thy) are much wider, as a consequence of the stronger field (0.85 

mL/min). Moreover, if the method in Figure 6b is to be applied, the elution time 

should be increased in order for the Ferr and Thy oligomers to be eluted.  
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Figure 6 – Separation profiles of the standard protein mixture obtained employing the "step 

gradient" method (a) and the constant field method (b). The cross-flow rate is represented as a black 

line. 

 

The separation performances of the HF5 methods illustrated in Figure 6 were 

compared and the results are summarized in Tables 8 (“step gradient” method) and 9 

(constant field method). 

The retention level, RL (or level of retention) of each analyte was calculated, as 

proposed by [Wahlund 2013], a parameter similar to the capacity factor, k in column 

liquid chromatography, as well as the specific resolution, Rsp – a parameter which 

takes in consideration the MW of each species [Podzimek 2011] – previously 

discussed in sub-chapter 2.4 (Chapter 2) and in the Resolution section of this study, 

which can easily be applied to FFF separation methods. 

As expected, employing a stronger (and constant) field for the whole duration of the 

separation, the method depicted in Figure 6b offers a higher RL for all analytes, even 

though the maximum retention level should be kept, in general, in the range 5 – 50 to 

avoid band broadening and peak tailing [Litzen et al. 1993, Wahlund and Nilsson 

2012]. In fact, at constant strong field, the peaks are broader (Figure 6b), but the 

specific resolution is very similar to the one offered by “step gradient” method 

(Figure 6a) because of the analytes eluting at retention times further apart from each 

other. 
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Table 8 – Separation performance of the “step gradient” HF5 method (Figure 6a), evaluated through 

the following parameters: analytes retention level, resolution and specific resolution 

Peak  Species  
MW  

(g/mol)  
t

R (min) 
Retention 

level (R
L
)  

Resolution 

(R
s
)  

Specific 

resolution 

(R
sp

)  

1  CAH monomer  29000 6.34  14.1    

2  BSA monomer  66700 8.99  20.0  2.163  6.0  

3  BSA dimer  133400 12.40  27.6  1.757  5.8  

4  Ferr monomer  481200 15.87  35.3  1.899  3.4  

5  Thy monomer  670000 19.78  44.0  1.829  12.7  

6  Ferr trimer  1443600 25.17  55.9  1.379  4.1  

 

Table 9 – Separation performance of the constant field HF5 method (Figure 6b), evaluated through 

the following parameters: analytes retention level, resolution and specific resolution 

Peak  Species  
MW  

(g/mol)  
t

R 
 

Retention 

level (R
L
)  

Resolution 

(R
s
)  

Specific 

resolution 

(R
sp

)  

1  CAH monomer 29000 6.6  14.7    

2  BSA monomer  66700 9.5  21.2  2.16  6.0  

3  BSA dimer  133400 13.8  30.6  1.93  6.4  

4  Ferr monomer  481200 19.3  43.0  1.78  3.2  

5  Thy monomer  670000 27.5  61.2  1.89  13.1  

 

This comparison proves that an excessive retention level leads to compromising the 

separation performance, while the “step gradient” method is optimal for the 

separation of proteins in a wide MW range because it takes into consideration the 

optimal retention level for each protein in the standard mixture.  

 

The selectivity plots corresponding to both methods are reported in Figure 7. 

The equation for the log (tR) vs log (MW) plot was: y=0.42x-1.05, where the slope 

(0.42) represents the selectivity of the “step gradient” method for the first 3 eluted 

species. From the calculated MW-based selectivity value and considering a globular 

shaped protein (dH proportional to MW1/3), the diameter-based selectivity was 

estimated. A high value of 1.23 was obtained.  
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The constant field method still provides a good selectivity (slope: 0.34) for the 

separation of 5 species, although band broadening is much more evident, 

compromising the separation performance. 

 

 

Figure 7 - Selectivity plots: log (tR) plotted against the corresponding log (MW). The slope 

represents the selectivity value 

 

I.  METHOD ROBUSTNESS 

 

As defined in the ICH guidelines, the method robustness is “a measure of the analytical 

method to remain unaffected by small but deliberate variations in method parameters and 

provides an indication of its reliability during normal usage”. Experiment design 

(fractional factorial design or Plackett-Burmann design) is common and useful to 

investigate multiple parameters simultaneously [Feng et al. 2012]. This result will 

help identify critical parameters that will affect the performance of the method [ICH 

2014]. 

As an example, in this study we chose to vary the ratio between the channel flow rate 

(vc) and the cross-flow rate (vx), therefore changing two parameters simultaneously. 

Moreover, different operators were assigned to perform the required sample 

injections. Since the obtained results (fractograms) were not significantly different 

between the two operators, only one set of results is depicted in Figure 8.  
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Figure 8 - Robustness of the method, evaluated by varying the ratio between the channel flow rate 

and the cross-flow rate 

 

It can be noted that, as the ratio between the channel flow rate and the cross-flow 

increases, the peaks shape and width remain almost constant, for all species. The 

only differences between the graphs consist, as expected, in the retention time values 

because as the vc/vx ratio increases, the proteins elute faster. Moreover, the CAH 

trimer can be observed up to a ratio of 0.31 as a shoulder to the BSA monomer, after 

which it disappears into the peak tail. 

 

4.1.1.4. CONCLUSIONS 

 

The work presented in this chapter shows an improvement of the fractionation 

performance for protein analysis of an HF5 method, accomplished employing the 

Eclipse® DUALTECTM FFF separation system prototype. The “step gradient” HF5 

method proposed for the fractionation of the standard protein mixture has proved to 

be effective, reproducible, efficient and highly selective, showing promise as a 

candidate for the separation of complex protein mixtures.  

The use of steep field gradients during sample elution served not only to reduce as 

much as possible the analysis time, but also considered the optimal retention factor 

for each protein in the mixture. By comparing the performance of the “step gradient” 
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HF5 method proposed for validation in this sub-chapter with an HF5 method which 

consists in applying a constant strong field thought the whole elution process of 

proteins in a wide MW range, it is proved that the first is superior to the latter. The 

“step gradient” method is faster and provides an optimal separation of even more 

protein species than the constant field method. 

The method also proved to be robust, when the flow rates affecting the separation 

performance were simultaneously varied.  

The work presented in this chapter represents a promising step towards the 

validation of an FFF method for the implementation as QA and/or QC method of 

biopharmaceutical products, even though many efforts have been and are currently 

employed towards this topic. 
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4.1.2. HF5 – MALS AND SEC – MALS PERFORMANCE 

COMPARISON FOR THE SEPARATION OF A STANDARD PROTEIN 

MIXTURE.  

FFF SELECTIVITY FEATURE 

 

 

 

 

In this chapter, the performance of an HF5 developed for the separation of the 

standard protein mixture is compared to size exclusion chromatography (SEC), the 

benchmark for the QA and QC of therapeutic proteins. The performance comparison 

was made under two different experimental conditions: (a) employing a high ionic 

strength (optimal/recommended for SEC) mobile phase and (b) employing a low 

ionic strength mobile phase. 

The identification of the separated species was possible due to HF5 and SEC online 

coupling with UV and MALS detection. This coupling allowed the determination of 

the absolute MW of the separated species, as well as the calculation of the sample 

recovery at all times. The separation performance was evaluated in terms of 

efficiency (N), resolution (Rs) and MW-based selectivity (SMW), as well as sample 

recovery. In particular, specific separation parameters like retention level (RL) for 

HF5 and capacity factor (k) for SEC and specific resolution (Rsp) values were 

compared under each experimental condition. The definitions and formulas of all 

analytical parameters employed for the comparison in this sub-chapter were 

previously discussed in sub-chapter 2.4 (Chapter 2).  
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This study shows the potential of HF5-UV-MALS as orthogonal method for the 

validation of SEC results during the characterization of protein formulations. 

Furthermore, the HF5 device employed in this study (having double the length of a 

commercial, standard device) allowed the scale-up of the injection amount to levels 

comparable to the SEC requirements, in order to provide reliable and robust results 

(absolute MW). 
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4.1.2.1. EXPERIMENTAL SETUP 

 

SEC and HF5 analyses were performed using an Agilent 1200 HPLC system (Agilent 

Technologies, Santa Clara, CA, USA) consisting in a degasser, an isocratic pump, an 

auto sampler and a variable wavelength UV detector, combined with an Eclipse® 

DUALTEC prototype separation system (Wyatt Technology Europe, Dernbach, 

Germany). The ChemStation version B.04.02 (Agilent Technologies) data system for 

Agilent instrumentation was used to set and control the instrumentation and for the 

computation of various separation parameters. The software package Wyatt Eclipse 

@ ChemStation version 3.5.02 (Wyatt Technology Europe) was used to set and 

control the FFF separation system. An Agilent 1100 UV-Vis variable wavelength 

detector operating at a wavelength of 280 nm was used as a concentration detector at 

all times. 

An 18-angle MALS detector model DAWN® HELEOSTM light scattering detector 

(Wyatt Technology Corporation, Santa Barbara, CA, USA), employing a laser 

operating at a wavelength of 658 nm, was used in all experiments.  

ASTRA® software version 5.3.2.14 (Wyatt Technology Corporation) was used to 

handle signals from the detectors (MALS and UV) and to compute the proteins MW 

and concentration values. 

The SEC column was a WTC-0305S (Wyatt SEC protein column for MALS, 5µm 

coated silica beads 300Å, size 7.8x300mm), operating in the MW range from 5.000 to 

1.250.000 g/mol. 

The HF5 separation device was a 34 cm long cartridge assembled from two 

commercial (17 cm long) cartridges connected with a union piece, thus called “double 

length” HF5 cartridge. A separation device this size should allow the scale-up of the 

injection amount to levels comparable to the SEC requirements and provide reliable 

and robust results (absolute MW). 

The hollow-fiber was a 34 cm long polyether-sulfone (PES) fiber, type FUS 0181 
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available from Microdyn-Nadir (Wiesbaden, Germany) with the following 

characteristics according to the manufacturer: 0.8mm ID, 1.3mm OD and a molecular 

weight cut-off of 10 kDa corresponding to an average pore size of 5 nm. 

 

4.1.2.2. SAMPLES AND REAGENTS 

 

The carrier solution/mobile phase was phosphate buffered saline (PBS) prepared at 

two concentrations, with different ionic strength values:  

(A) High/optimal ionic strength PBS, recommended for SEC column by the 

manufacturer: 50 mM phosphate buffer supplemented with 50 mM NaCl at pH 6.8 

(IS = 200 mM). 

(B) Low ionic strength PBS: 10 mM PB supplemented with 25 mM NaCl at pH 

7.0 (IS = 55 mM). 

Both carrier solutions employed during this study were prepared using MilliQ water 

purified by an Elix 3 UV Water Purification System (Millipore, Billerica, USA) and 

filtered through 0.2 µm pore membrane sterile filter units (Millipore), at all times. 

The protein mixture and the BSA solution at 1.0 mg/mL (0.1%) used for this study 

were prepared as described in the Samples and Reagents section of sub-chapter 

4.1.1.2 (Chapter 4), but the dilutions were prepared in the PBS mobile phase.  

 

4.1.2.3. METHODS 

 

An amount of 40 µg of total protein (10µg of each of the following proteins: CAH, 

BSA, Ferr and Thy) was injected in the SEC column and the separations were 

performed at 0.5 mL/min flow rate at all times. 
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The HF5 methods evaluated in this chapter are similar to the “step gradient” HF5 

method described in sub-chapter 4.1.1 (Chapter 4), but modified according to the 

mobile phase ionic strength, which is a known critical parameter in FFF.  

 

The same protein amount (40 µg) was injected in the HF5 separation device during 

the focus-inject step, which was performed for 4 min at a focus flow rate of 0.85 

mL/min. The sample was focused at a distance of approximately 15% fiber length 

from the channel inlet an eluted afterwards at a channel flow rate of 0.2 mL/min. The 

cross-flow rate was reduced as the MW of the proteins increased, by placing a steep 

field gradient to reduce as much as possible the time required for the fractionation, 

while considering the optimal retention factor for each protein. The HF5 methods for 

(A) and (B) mobile phases are summarized in Table 1. 

 

 

Table 1 – HF5 flow rates timetable for the protein mix separations in high IS mobile phase (Method 

A) and low IS mobile phase (Method B) 

Channel flow rate (vc): 0.2 mL/min 

Focus flow rate (vfoc): 0.85 mL/min 

Focus – Inject duration: 3.5 min (0.5 min focus time before focus-inject step) 

Method 
vx start 

(mL/min) 

vx end 

(mL/min) 

Duration 

(min) 

A (high IS) 

0.85 0.85 17.5 

0.85 0.40 0.5 

0.40 0.40 20.5 

0.00 0.00 2.0 

Total analysis time: 42.5 min    

B (low IS) 

0.85 0.85 15.5 

0.85 0.40 0.5 

0.40 0.40 20.5 

0.00 0.00 2.0 

Total analysis time: 40.5 min    
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4.1.2.4. RESULTS AND DISCUSSION 

 

A. SEC AND HF5-UV-MALS 

 IN HIGH IONIC STRENGTH MOBILE PHASE (200 mM) 

 

The standard proteins mixture was first injected in SEC and HF5 and separated 

employing the mobile phase recommended for SEC column (IS = 200 mM). The BSA 

sample was separated by both SEC and HF5 under the same conditions as the 

protein mixture in order to check the correspondence between the retention times 

and to confirm that there are not interactions between the proteins in the mixture 

which might lead to difficulties in the peaks assignment. 

The SEC separation profiles at 280 nm of the protein mixture and the BSA sample, 

confirming the identity of the BSA peak are reported in Figure 1 (a) standard protein 

mixture and (b) BSA sample and, respectively in Figure 2 for the HF5 separations. 

 

 

Figure 1 – SEC separation profiles at 280 nm for (a) standard protein mixture and (b) BSA sample. 

BSA oligomers identification based on the retention times and order of elution 

 

Figure 1b shows that the SEC separation under optimal conditions allows the 

identification of 3 BSA oligomers. In Figure 1a, when the BSA is mixed with other 

standard proteins, only the BSA monomer and dimer are visible, while the BSA 

trimer elutes under the peak of a different species in the mixture (most probably the 
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Ferr monomer), even though the MW difference is considerable (MW 200 kDa for the 

BSA trimer vs. MW 481 kDa for the Ferr monomer). This indicates low separation 

selectivity, topic which would be discussed in the following paragraphs. 

 

 

Figure 2 – HF5 separation profiles at 280 nm for (a) standard protein mixture and (b) BSA sample. 

BSA oligomers identification based on the retention times and order of elution. The black trace 

represents the cross-flow rates variation during the separation. 

 

Figure 2b allowed the identification of 3 BSA oligomers, just as in SEC, only in 

reversed elution order. Figure 2a shows that in HF5, when the BSA is mixed with 

other proteins, the BSA trimer elutes right before the Ferr monomer. This indicates 

that the HF5 method is more selective compared to the SEC method. 

Next, SEC and HF5 were coupled online with a MALS detector for the determination 

of the absolute MW. The separation profiles, as well as the calculated MW for each 

separated peak are reported in Figure 3 (SEC) and Figure 4 (HF5). 

In both cases the peak assignment was based on the elution order and confirmed 

afterwards by the absolute MW values derived from MALS data. Both SEC and HF5 

separation profiles show the presence of 7 separated species.  

The peak identification, as well as other fundamental separation parameters 

computed by Astra® and ChemStation – with the purpose of comparing the SEC and 

HF5 performance – is reported in Table 2 for the SEC separation and Table 3 for the 

HF5 separation. 
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Figure 3 – SEC-UV-MALS elution profile of the standard protein mixture at 200 mM ionic strength. 

Rayleigh ratio at 90° represented as a thick line and UV signal at 280 nm represented as a dotted 

thin line.  

 

All SEC peaks are slightly fronted, except for the first one, which represents a 

polydisperse population of Ferr and Thy oligomers. The complete separation is 

achieved in less than 30 minutes and the efficiency, expressed as number of plates, is 

very high. The SEC separation profile shows the presence of unidentified species 

eluting between the CAH and BSA monomers, which could be attributed to 

fragments of larger proteins broken or carrier over during the separation. These 

unidentified peaks may also indicate the malfunction of the SEC column. 

 

Table 2 – SEC separation performance evaluation: separation parameters derived from data at 

optimal ionic strength (200 mM). Peak assignment in agreement with the calculated MW 

Peak 

# 

tR 

(min) 

Calculated 

MW (kDa) 

Peak 

assignment 

w1/2 

(min) 

Peak 

symmetry 

Plates 

number 

Resolution 

(Rs) 

1 11.75 >3000.0 
Thy and Ferr 

oligomers 
0.4311 5.81 4115  

2 12.06 1358.2 Thy 2mer 0.7001 0.21 1644 0.32 

3 13.27 679.4 Thy 1mer 0.6673 0.78 2189 1.04 

4 15.06 485.1 Ferr 1mer 0.6455 0.93 3016 1.61 

5 16.52 137.0 BSA 2mer 0.8954 0.73 1886 1.11 

6 18.25 68.2 BSA 1mer 0.415 0.9 10714 1.55 

7 20.62 30.1 CAH 1mer 0.4174 0.62 13523 1.0 
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Figure 4 – HF5-UV-MALS elution profile of the standard protein mixture at 200 mM ionic strength. 

Rayleigh ratio at 90° represented as a thick red line and UV signal at 280 nm represented as a dotted 

thin red line.  

 

Most HF5 peaks are symmetrical, while the others are slightly tailed. The complete 

separation is achieved in approximately 40 minutes. The HF5 efficiency, expressed as 

number of plates, is very low compared to SEC because the HF5 peaks are very 

broad (it is a known fact that the peaks in FFF are much broader compared to 

chromatographic peaks). The resolution between species is comparable to SEC. The 

HF5 separation profile does not contain unidentified species, which confirms that the 

separation is very gentle and may confirm undesired sample-column matrix 

interactions observed previously in the SEC elution profile. 

 

Table 3 – HF5 separation performance evaluation: separation parameters derived from data at SEC 

optimal ionic strength (200 mM). Peak assignment in agreement with the calculated MW 

Peak 

# 

tR 

(min) 

Calculated 

MW (kDa) 

Peak 

assignment 

w1/2 

(min) 

Peak 

symmetry 

Plates 

number 

Resolution 

(Rs) 

1 7.66 29.9 CAH 1mer 0.8736 0.85 426  

2 10.71 68.8 BSA 1mer 1.2765 0.9 390 1.66 

3 14.54 135.6 BSA 2mer 2.8455 0.72 144 1.09 

4 20.52 483.5 Ferr 1mer 1.9365 1.35 622 1.47 

5 24.8 677.2 Thy 2mer 3.2275 1.15 327 0.97 

6 27.65 1356.3 Thy 2mer 4.8566 0 179 0.41 

7 34.64 > 2000.0 
Thy and Ferr 

oligomers 
2.8656 0.96 809 1.06 
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SPECIFIC SEPARATION PARAMETERS  

FOR PERFORMANCE EVALUATION 
 

Selectivity is a fundamental parameter in analyses of mixtures, because it is important 

to avoid co-elution of species. The selectivity was calculated as the MW-based 

selectivity (SMW), defined as the slope of the log (tR) against the corresponding log 

(MW) plot, where the retention times, as well as MW values, were derived from the 

experimental data. The selectivity plots obtained at high/optimal ionic strength are 

displayed in Figure 5a for the SEC separation and 5b for the HF5 separation. 

 

 

Figure 5 – Selectivity plots obtained at 200 mM ionic strength for (a) SEC and (b) HF5. The numbers 

near the data points represent the peak numbers in their elution order. 

 

Since the HF5 separation was performed employing two different cross-flow rates 

(see Figure 2), the selectivity was calculated by dividing the separated species into 2 

groups: the ones separated at a constant cross-flow rate of 0.85 mL/min and the ones 

separated at 0.4 mL/min. 

The SEC selectivity is related to the slope of the calibration curve, meaning that SEC 

columns that are highly efficient do not necessarily provide a good resolution, unless 

the calibration curve is low enough (optimal b value: 0.1). Since the separation, 

therefore the selectivity in SEC, increases inversely to the slope value and depends 

also on the pore size of the column packing material, a slope value of b = 0.15 for the 
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SEC WTC column indicates a lower selectivity when compared to the separation of 

polystyrene standards in the same MW range, reported by [Podzimek 2011]. 

Furthermore, the SEC selectivity decreases with the MW range of the proteins 

separated on the same column (b = 0.2 for peaks 2-4). 

On the other hand, maximum selectivity achievable in Flow FFF (therefore HF5) 

varies between 0.5 – 0.7, comparable to SEC selectivity values of ~ 0.1, even though 

the SEC efficiency is much higher [Schure et al. 2000]. Flow FFF selectivity also 

depends on the sample conformation and the carrier solution employed for the 

separation and varies in the range 0.3-0.7. Generally, the FFF selectivity is higher 

than SEC selectivity [Podzimek 2011]. 

As expected, the HF5 selectivity for both small and large proteins is higher compared 

to SEC, meaning that HF5 is potentially able to detect more species. These species 

may be overlooked by SEC analysis because they co-elute with proteins with similar 

MW value. The HF5 selectivity should increase with the MW of the separated 

species, but this applies to methods which use a constant cross-flow rate during 

elution (not the case described in this study).  

The specific resolution (Rsp) is another fundamental separation parameter and was 

calculated for both SEC and HF5 separations, as well as the retention levels (RL) and 

the corresponding retention factor (k) for the SEC separations. The obtained values 

are reported in Table 4. Peak 1 (SEC) and peak 7 (HF5) were excluded from the 

calculations because they represent polydisperse populations.  

The dead volume of the SEC column was calculated as the volume of the cylinder 

with the same size characteristics and was found to be 14.33 mL. Therefore, the dead 

time (t0) at 0.5 mL/min flow rate was 28.67 min (shown in Figure 1). The t0 was 

related to the retention time through capacity factor (k) for the analytes separated by 

SEC, instead of the retention level calculated for the analytes separated by HF5. 

In HF5, the RL for the protein with the highest MW is, as expected, the highest of all 

and above the recommended value (>50) [Litzen et al. 1993, Wahlund 2013].  SEC and 

HF5 present similar specific resolution values and, except for the high MW proteins 
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and oligomers, a baseline resolution is achieved with both techniques.  

 

Table 4 – Capacity factor (SEC), retention level (HF5), specific resolution and selectivity for SEC 

and HF5 at high ionic strength, 200 mM 

Peak Species 

Calculated 

MW 

(kDa) 

t
R (min) Retention 

Specific 

resolution 

(R
sp

) 
Selectivity 

SEC  Capacity factor (k)  

2 Thy dimer 1358.2 12.06 0.58  

0.2 3 Thy monomer 679.4 13.27 0.54 3.5 

4 Ferr monomer 485.1 15.06 0.47 11.0 

5 BSA dimer 137.0 16.52 0.42 2.0 

0.15 6 BSA monomer 68.2 18.25 0.36 5.1 

7 CAH monomer 30.1 20.62 0.28 2.8 

HF5  
Retention level 

(R
L
)  

1 CAH monomer 29.9 7.66 20.2  

0.36 2 BSA monomer 68.8 10.71 28.2 4.6 

3 BSA dimer 135.6 14.54 38.3 3.7 

4 Ferr monomer 483.5 20.52 54.0 2.7 

0.27 5 Thy monomer 677.2 24.8 65.3 6.6 

6 Thy dimer 1356.3 27.65 72.8 1.4 

 

 

A net distinction in the favor of HF5 is made by selectivity; the selectivity of both 

small and large proteins (and their oligomers) is always higher for HF5. The values 

reported in Table 4 will also be discussed by comparison with the ones obtained at 

low ionic strength. 
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B. SEC AND HF5-UV-MALS 

IN LOW IONIC STRENGTH MOBILE PHASE (55 mM) 
 

Next, the standard proteins mixture was injected in SEC and HF5 and separated 

employing the low ionic strength mobile phase (IS = 55 mM). The purpose of 

employing this mobile phase during the separations was to demonstrate the 

versatility of HF5 in regard to the wide choice of carrier solutions. SEC and HF5 were 

coupled online with a MALS detector for the determination of the absolute MW. The 

separation profiles, as well as the calculated MW for each separated peak are 

reported in Figure 6 (SEC) and Figure 7 (HF5). 

 

In both cases the peak assignment was based on the elution order and confirmed 

afterwards by the absolute MW values derived from MALS data. At low ionic 

strength, both SEC and HF5 separation profiles show the presence of 7 separated 

species. The peak identification, as well as other fundamental separation parameters 

computed by Astra® and ChemStation – with the purpose of comparing the SEC and 

HF5 performance – is reported in Table 5 for the SEC separation and Table 6 for the 

HF5 separation. 

 

Figure 6 - SEC-UV-MALS elution profile of the standard protein mixture at 55 mM ionic strength. 

Rayleigh ratio at 90° represented as a thick blue line and UV signal at 280 nm represented as a 

dotted thin blue line. 
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Table 5 – SEC separation performance evaluation: separation parameters derived from data at low 

ionic strength (55 mM). Peak assignment in agreement with the calculated MW 

Peak 

# 

tR 

(min) 

Calculated 

MW (kDa) 

Peak 

assignment 

w1/2 

(min) 

Peak 

symmetry 

Plates 

number 

Resolution 

(Rs) 

1 11.44 >2000.0 
Thy and Ferr 

oligomers 
0.5854 0 2123  

2 11.80 1358.2 Thy 2mer 0.6928 0.60 1608 0.33 

3 12.78 679.4 Thy 1mer 0.7183 0.91 1755 0.82 

4 13.98 485.1 Ferr 1mer 0.6115 0.83 2898 1.06 

5 15.56 137.0 BSA 2mer 0.8243 0.67 1976 1.29 

6 17.25 68.2 BSA 1mer 0.4125 0.65 9685 1.60 

7 20.34 30.1 CAH 1mer 0.5048 0.63 9001 0.99 

 

The peaks are broader compared to the separation at optimal IS, and the consequent 

decrease in efficiency is significant for the separation of CAH, BSA and Thy 

monomers. The resolution is not compromised as much as the efficiency when the 

analysis is performed in a carrier solution with lower salt content. The presence of 

unidentified species eluting between the CAH and BSA monomers persists, as 

expected, since the purpose of a high salt content in the carrier solution is to 

prevent/minimize analyte – matrix interactions. The specific resolution of the species 

separated by SEC, as well as the capacity factor and the selectivity will be discussed 

further on.  

 

 

Figure 7 – HF5-UV-MALS elution profile of the standard protein mixture at 55 mM ionic strength. 

Rayleigh ratio at 90° represented as a thick blue line and UV signal at 280 nm represented as a 

dotted thin blue line. The black line represents the cross-flow rate trend during the separation 
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Table 6 – HF5 separation performance evaluation: separation parameters derived from data at low 

ionic strength (55 mM). Peak assignment in agreement with the calculated MW 

Peak 

# 

tR 

(min) 

Calculated 

MW (kDa) 

Peak 

assignment 

w1/2 

(min) 

Peak 

symmetry 

Plates 

number 

Resolution 

(Rs) 

1 7.48 29.9 CAH 1mer 0.9658 0.86 332  

2 10.22 68.8 BSA 1mer 1.3881 0.73 300 1.37 

3 14.13 135.6 BSA 2mer 2.9284 0.84 129 1.06 

4 17.82 483.5 Ferr 1mer 1.1939 0.73 1234 1.05 

5 21.32 677.2 Thy 2mer 2.3879 0.82 442 1.15 

6 24.27 1356.3 Thy 2mer 4.5949 0 155 0.50 

7 29.57 > 2000.0 
Thy and Ferr 

oligomers 
3.7661 0 342 0.75 

 

In HF5, the separation of 7 species at low ionic strength is achieved in less than 40 

min. The peaks become broader compared to the separation at high ionic strength 

and the separation efficiency consequently decreases. A slight decrease in resolution 

is also observed. Compared to the SEC separation at low ionic strength, the HF5 

separation profile does not show any unidentified peaks. The specific resolution of 

the species separated by HF5, as well as the retention level and the method 

selectivity will be discussed separately. 

 

SPECIFIC SEPARATION PARAMETERS 

 FOR PERFORMANCE EVALUATION 

 

The MW-based selectivity (SMW) plots obtained at low ionic strength are displayed in 

Figure 8 (a) for the SEC separation and (b) for the HF5 separation. Peak 1 (SEC) and 

peak 7 (HF5) were excluded from the calculations because they represent 

polydisperse populations (not resolved).  

The HF5 selectivity was calculated by dividing the separated species into 2 groups: 

the ones separated at a constant cross-flow rate of 0.85 mL/min and the ones 

separated at 0.4 mL/min.  
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Figure 8 – Selectivity plots obtained at 55 mM ionic strength for (a) SEC and (b) HF5. The numbers 

near the data points represent the peak numbers in their elution order. 

 

The HF5 selectivity is always higher than SEC selectivity, shown by the 

corresponding selectivity slope trends for small MW proteins (b = 0.32 in HF5, vs. b = 

0.17 in SEC), as well as for high MW proteins (b = 0.28 in HF5, vs. b = 0.16 in SEC). 

Furthermore, at low IS, the SEC selectivity slope trend does not change significantly 

between lower and higher MW proteins (b = 0.16-0.17, Table 7), as previously 

observed at high IS (b = 0.15-0.2, Table 4). 

 

The superior HF5 selectivity indicates that the HF5 method is potentially able to 

separate more species. These species may be overlooked by SEC analysis because 

they co-elute with proteins with similar MW value. Employing this “step gradient” 

method, the HF5 selectivity does not increase with the MW, as it would normally do 

at constant cross-flow rate. The HF5 selectivity for high MW proteins at low ionic 

strength is slightly higher compared to the value obtained at high ionic strength 

(Figure 8b and Figure 5b). 

 

The specific resolution (Rsp) was calculated for both SEC and HF5 separations, as well 

as the retention levels (RL) and the corresponding capacity factor (k) for the SEC 

separations and the results are reported in Table 7. 
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Table 7 – Capacity factor (SEC), retention level (HF5), specific resolution and selectivity for SEC 

and HF5 at low ionic strength, 55 mM 

Peak Species 

Calculated 

MW 

(kDa) 

t
R (min) Retention 

Specific 

resolution 

(R
sp

) 
Selectivity 

SEC  
Capacity factor 

(k) 
 

2 Thy dimer 1358.2 11.8 0.59  

0.16 3 Thy monomer 679.4 12.78 0.55 2.7 

4 Ferr monomer 485.1 13.98 0.51 7.2 

5 BSA dimer 137.0 15.56 0.46 2.3 

0.17 6 BSA monomer 68.2 17.25 0.40 5.3 

7 CAH monomer 30.1 20.34 0.29 2.8 

HF5  
Retention level 

(R
L
)  

1 CAH monomer 29.9 7.48 18.7  

0.32 2 BSA monomer 68.8 10.22 25.6 3.8 

3 BSA dimer 135.6 14.13 35.3 3.6 

4 Ferr monomer 483.5 17.82 44.6 1.9 

0.28 5 Thy monomer 677.2 21.32 53.3 7.9 

6 Thy dimer 1356.3 24.27 60.7 1.7 

 

At low ionic strength, the SEC capacity factor, k shows only a slight increase for all 

species (2-9% increase), while the retention level, RL for all species separated by HF5 

decreases (7 – 18% decrease), especially for the high MW proteins. The specific 

resolution Rsp obtained in SEC and HF5 is comparable. Even at low ionic strength, 

HF5 presents a higher selectivity when compared to SEC, for all MW in the protein 

mixture. 
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C. SAMPLE RECOVERY AT HIGH AND LOW IONIC STRENGTH 

 

While an accurate MW characterization, as well as effective separation of all existing 

species in a protein formulation is important, the sample recovery is another 

fundamental parameter worthwhile taking into consideration. If the sample 

recovery, usually determined by MALS measurements or estimating the area under 

the peak at 280 nm (or any other protein specific wavelength), is not complete (100%) 

during QA or QC protocols based on SEC, a secondary separation/characterization 

technique is required to understand the reason. 

In this study, the sample recovery was calculated by Astra® for both SEC and HF5 

separations, and investigated when employing both low and high ionic strength 

mobile phases. The results are reported in Table 8. 

 

Table 8 – Sample relative recovery in SEC and HF5 in high (200 mM) and low (55 mM) ionic 

strength mobile phase 

Species 

SEC  

200 mM 

(µg) 

SEC  

55 mM 

(µg) 

HF5  

200 mM 

(µg) 

HF5  

55 mM 

(µg) 

CAH monomer 4,59 3,98 2,99 3,04 

BSA monomer 6,59 7,06 11,09 9,47 

BSA dimer 2,84 2,27 1,78 1,32 

Ferr monomer 13,39 14,78 15,28 12,34 

Thy monomer 6,39 6,62 6,58 6,09 

Thy dimer 3,34 2,35 1,94 1,52 

Total sample recovery (µg) 37,14 37,06 39,66 33,78 

Total sample recovery (%) 94.3 94.1 99.3 87.6 

 

First of all, it can be noted that the proteins proportion is no longer in balance 

(1:1:1:1), shown by both SEC and HF5 results. However, since the total recovered 

protein is close to the injected amount (40 µg), it may indicate the lack of sample 

homogeneity during injection. 

The SEC results indicate that, in this study, the recovered protein amount was not 

affected by the change in the salt composition of the mobile phase, as it would be 
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expected. It is a known fact that SEC requires a high salt content to supress sample-

matrix interactions which lead to loss of sample during the separation. However, 

even under high/optimal ionic strength conditions, SEC does not offer a complete 

recovery for all proteins. 

The highest recovery is observed when HF5 is performed in high ionic strength 

mobile phase. When the ionic strength is decreased in HF5, it is followed by a 

decrease in sample recovery, suggesting the presence of non-specific interactions 

between the proteins and the separation device. The ionic strength in HF5 is as 

important as it is in SEC when the sample recovery is at stake. 

 

4.1.2.5. CONCLUSIONS 

 

The scale-up of the HF5 separation device allowed a rather high sample amount 

(40µg) to be separated, detected reliably and, most importantly, recovered. 

While the separation efficiency is always higher for SEC thanks to the reduced band 

broadening, the resolution (Rs and Rsp) of SEC and HF5 is comparable and selectivity 

is always higher in HF5.  

However, as suggested by [Zölls et al. 2012], the comparison between results 

obtained employing techniques which are based on different principles should be 

done looking for data trends instead on focusing on numbers.  

In fact, this study shows that the SEC selectivity trend, even under optimal 

conditions (recommended by the column manufacturer), is lower than previously 

reported by [Podzimek 2011] on polystyrene standards with MWs in the same range 

(b = 0.13 – 0.14 for the protein mix in this study vs. b = 0.09 for the polystyrene 

standards, much closer to the optimal value of 0.1).  

The selectivity in HF5, on the other hand, displays an opposite trend, meaning that 

the slope values are higher than reported by [Podzimek 2011], on the polystyrene 

standards mentioned before (b = 0.27 – 0.28 for the protein mixture in this study vs. b 
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= 0.2 for the polystyrene standards). 

This is an appealing (HF5) feature for the separation of complex protein samples, 

because it allows the detection and quantification of species that otherwise would be 

overlooked. It was shown that, in SEC, the co-elution of species is very common, 

even if the MW difference between the separated species is considerable. The 

possibility to use mobile phases at low ionic strength is another appealing possibility, 

even though reducing the salt concentration should be considered carefully due to its 

correlation with sample recovery. 

Even if SEC compensates with higher efficiency, it does not earn any extra points if 

the species are co-eluting. A second SEC column with a different porosity may be 

coupled online with the first one, in order to ensure the required selectivity. 

However, placing a second SEC column, in series with the first one, could 

compromise further the sample recovery. 

The SEC sample recovery is incomplete, but still high and it does not change 

significantly upon ionic strength variation, indicating the robustness of the 

separation device. 

The highest sample recovery is obtained when the separation is performed in HF5 in 

high ionic strength carrier solution, and a direct correlation between the recovered 

sample amount and the ionic strength is shown. 
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4.1.3. FREEZE-THAW INDUCED ANTIBODY SELF-

ASSOCIATION MONITORING BY HF5 – UV AND 

MALS CHARACTERIZATION 

 

 

 

 

In this sub-chapter, the reversible self-association between antibody monomers was 

observed and monitored over time by HF5 and UV detection. The possible causes for 

this aggregation phenomenon were identified as freeze/thaw stress on the antibody, 

as well as sample dilution (previous to separation by HF5) in a buffer with a different 

composition than the formulation buffer.  

One of the main concerns in therapeutic proteins quality control (QC) and quality 

assurance (QA) is represented by the possible changes that the protein composition 

may undergo upon sample dilution, especially if the dilution is not performed in the 

formulation buffer. If the QC tests employ flow-based methods (either SEC or FFF), 

sample dilution is inevitable during the separation and is often required even before 

the separation [Arakawa et al. 2010]. 

In FFF, the sample concentration changes drastically during a normal separation 

because first, the sample needs to be focused (concentrated in a narrow band) and 

afterwards, the sample is inevitably diluted during elution. Upon dilution, and 

especially when the dilution is performed in a buffer different from the formulation 

buffer (which is usually the case), weakly-bound and/or associated protein species 

with rapid association/dissociation conversion rates, are likely to be disrupted [Philo 

2006, Arakawa et al. 2010, Engelsman et al. 2011].  
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In this study, the sample dilution was controlled to some extent during elution by 

adjusting the flow rates and employing a miniaturized separation device (HF5). Since 

the dissociation occurred very slowly compared to the duration of the separation, the 

self-associated protein system behaved like a true mixture, therefore individual 

oligomers could be resolved. Such reversible, but extremely slow 

association/dissociation reactions, responsible for the existence of so-called 

“metastable oligomers”, are rather common [Philo 2006, Philo and Arakawa 2009] and, 

due to their reversible nature, pose less threat from the immunogenic point of view. 

HF5 coupled with UV detection (absorption wavelength of the peptide bond, 215 

nm) proved to be rather sensitive in detecting changes in the sample composition, 

which occurred faster at first and experienced a deceleration over time. 
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4.1.3.1. INSTRUMENTAL SETUP 

 

HF5 analyses were performed using an Agilent 1200 HPLC system (Agilent 

Technologies, Santa Clara, CA, USA) consisting in a degasser, an isocratic pump, an 

auto sampler and a variable wavelength UV detector, combined with an Eclipse® 

DUALTEC prototype separation system (Wyatt Technology Europe, Dernbach, 

Germany). The ChemStation version B.04.02 (Agilent Technologies) data system for 

Agilent instrumentation was used to set and control the instrumentation and for the 

computation of various separation parameters. The software package Wyatt Eclipse 

@ ChemStation version 3.5.02 (Wyatt Technology Europe) was used to set and 

control the FFF separation system. An Agilent 1100 UV-Vis variable wavelength 

detector operating at a wavelength of 215 nm was used as a concentration detector at 

all times. 

An 18-angle MALS detector model DAWN® HELEOSTM light scattering detector 

(Wyatt Technology Corporation, Santa Barbara, CA, USA), employing a laser 

operating at a wavelength of 658 nm, was used in all experiments.  

ASTRA® software version 5.3.2.14 (Wyatt Technology Corporation) was used to 

handle signals from the detectors (MALS and UV) and to compute the proteins MW 

and concentration values. The hollow fiber was 17 cm long a polyether-sulfone (PES) 

fiber, type FUS 0181 available from Microdyn-Nadir (Wiesbaden, Germany) with the 

following characteristics according to the manufacturer: 0.8mm ID, 1.3mm OD and a 

molecular weight cut-off of 10 kDa corresponding to an average pore size of 5 nm. 

 

4.1.3.2. SAMPLES AND REAGENTS 

 

The mobile phase was 10 mM phosphate buffer supplemented with 25 mM NaCl, at 

a final pH of 7.2 (total ionic strength: 55 mM), prepared using MilliQ water purified 

by an Elix 3 UV Water Purification System (Millipore, Billerica, USA) and filtered 
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through 0.2 µm pore membrane sterile filter units (Millipore). 

The sample used in the study was an IgG1 type antibody, for simplicity named 

mAb1. The sample was diluted 1:100 in the mobile phase, at a final concentration of 

0.385 mg/mL and divided in two aliquots: Vial §1 and Vial §2. Vial §1 was used for 

analyses immediately after the sample dilution, while Vial §2 was stored at -20°C and 

thawed before the analyses. Both vials were stored at room temperature during the 

working days and at 4°C during the night and/or over the week-end.     

 

4.1.3.3. METHODS 

 

An amount of 2 µg of mAb1 (5.2 µL) was injected at all times, unless otherwise 

specified. The mAb1 sample was injected in the HF5 separation device during the 

focus-inject step, which was performed at a focus flow rate of 0.85 mL/min for 4 min. 

The sample was focused at a distance of approximately 15% fiber length from the 

channel inlet an eluted afterwards at a channel flow rate of 0.35 mL/min under the 

effect of a constant cross-flow rate of 0.35 mL/min.  

The separation was monitored by UV detection at 215 nm and, when specified, by a 

multi-angle scattering detector. The sample was injected at different time intervals 

and the oligomers distribution was observed. 

 

4.1.3.4. RESULTS AND DISCUSSION 

 

The purpose of the study presented in this sub-chapter was to observe by HF5-UV 

the changes that occur in therapeutic protein samples due to dilution, handling and 

different storage conditions.  

First, 2 µg of mAb1, taken from Vial §1, were injected and separated by HF5. The 

separation was repeated after 6 hours and after 3 days since the first injection. The 

separation profiles are reported in Figure 1. 
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Figure 1 – HF5-UV separation profiles at 215 nm of mAb1 in Vial §1 

 

Figure 1 shows the elution of two species, most likely mAb1 monomer and dimer. 

Even though the sample was diluted 1:100 in a buffer different than the formulation 

buffer, the composition of mAb1 in Vial §1 is stable over time. It is very likely that 

the phosphate buffer employed as carrier solution, as well as dispersion media, 

stabilizes mAb1. The retention times shift slightly, but this change is very likely due 

to the hollow fiber usage. 

Table 1 reports the exact composition of the sample immediately after dilution, after 

6h and 3 days after dilution and overnight storage at 4°C. 

 

Table 1 – mAb1 composition in Vial §1 at different time intervals 

Time point Peak 1 (%) Peak 2 (%) 

t0 97.95 2.05 

6h 97.76 2.24 

3 days 97.48 2.52 

 

Based on the retention time value, it was assumed that the first peak corresponded to 

the mAb1 monomer and the second to the dimer. Their amounts, which are reported 

in Table 1, confirm the fact that the sample composition did not change significantly 

over time. The monomer amount decreases slightly over time, suggesting the 

presence of mAb1 species which self-associate very slowly into dimer. 
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Next, the stability of mAb1 in Vial §2 was monitored. After dilution, Vial §2 was 

stored at -20°C to avoid mAb1 composition changes, while the study on Vial §1 was 

conducted immediately after the sample dilution. The same amount of mAb1 (2 µg), 

taken from Vial §2, was injected and separated by HF5 at all times. The separation 

was repeated after 6 hours and after 3 days since the first injection. The separation 

profiles are reported in Figure 2. 

 

 

Figure 2 – HF5 separation profiles at 215 nm of mAb1 in Vial §2 

 

Figure 2 shows the elution of two additional mAb1 species (four species in total), 

whose amounts vary greatly over time. It is very likely that peak 1 corresponds to the 

monomer and the following peaks (2 – 4) correspond to mAb1 oligomers. The exact 

sample composition is reported in Table 2. 

 

Table 2 – mAb1 composition in Vial §2 at different time intervals 

Time point Peak 1 (%) Peak 2 (%) Peak 3 (%) Peak 4 (%) 

t0 63.20 25.32 8.80 2.58 

6h 77.89 17.22 3.66 1.21 

3 days 93.98 5.75 0.25 - 

7 days 97.93 2.07 - - 

 

The mAb1 oligomers amounts reported in Table 2 show the increase of monomer 

amount over time at the expense of larger oligomers. This situation is opposite to the 

one observed for mAb1 in Vial §1. After only 6h, approximately 50% of all larger 
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oligomers have spontaneously dissociated into monomeric units.  

The mAb1 oligomers distribution in Vial §2 was assessed after one week (7 days) and 

the elution profiles are reported in Figure 3. The distribution of mAb1 species in Vial 

§2 after 7 days is very similar to the one reported for Vial §1 at t0 (Table 2).  

 

 

Figure 3 – HF5 separation profiles at 215 nm of mAb1 in Vial §2 immediately after dilution and 

after 7 days 

 

Figure 3 and the values reported in Table 2 suggest that mAb1 in Vial §2 reaches the 

species distribution of mAb1 in Vial §1 at t0 after a week. It is expected that, from this 

point forward, the oligomers distribution of mAb1 in Vial §2 will follow the trend 

which was observed for Vial §1. 

These findings suggest that mAb1 in Vial §2 experiences two aggregation 

phenomena. The first is depicted in Figure 2, showing the monomer in dynamic 

equilibrium with its larger oligomers. The mAb1 oligomers, which are self-

assemblies of the monomer, slowly dissociate into monomer over approximately 3 

days. The second aggregation phenomenon is the exact opposite, seen for mAb1 in 

Vial §1 in Figure 1, which is the slow self-association of monomeric units into larger 

assemblies.  

The self-association phenomenon was investigated by coupling the FFF separation 

system with a DAWN HELEOS multi-angle light scattering detector. The absolute 

MW values of mAb1 oligomeric species in both Vial §1 and Vial §2 are reported in 

Figure 4.  
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Figure 4 – HF5-MALS elution profiles of mAb1 in Vial §1 and Vial §2 at t0 

 

Figures 4a confirms the monomer assignment to the first peak, but the MW of the 

second peak does not correspond to the dimer. In fact, peak 2 appears to correspond 

to very high MW species (2×106 – 5×106 g/mol) that are present at trace levels and are 

very compact as size, since they elute very close to the monomer. Figure 4b, on the 

other hand, shows that mAb1 contains different levels of monomer (peak 1), dimer 

(peak 2), trimer and tetramer (peak 3). Therefore, it is very likely that peak 4 (which 

is shown in Figures 2 and 3) corresponds to high MW aggregates, whose MW could 

not be determined during the separations reported in Figure 4a. These HMW 

aggregates found in Vial §2 are larger in size than the ones found to co-exist with the 

monomer in Vial §1, since they elute later than the trimer or tetramer of mAb1. 

 

Finally, increasing amounts of mAb1 from Vial §2 were separated by HF5-UV in 

order to determine the sample overloading limit, which is topic closely related to the 

sample dilution requirement. Since the HF5 cartridge is a miniaturized device, the 

protein amount which can be injected into the channel and separated under optimal 

conditions without the risk of overcrowding is limited by the hollow fiber’s internal 

area (4.27 cm2) and/or the internal volume (85 µL).  

Figure 5 reports the separation profiles of increasing amounts of mAb1 from Vial §2, 

which were separated subsequently and under identical experimental conditions.   
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Figure 5 – HF5 separation profiles at 215 nm of different amounts (0.5 – 10.0) of mAb1 from Vial §2 

 

The enlarged view of the baseline for 0.5 µg of mAb1 (Figure 5, far right graph) 

shows that, when coupled with UV detection at 215 nm, HF5 is very sensitive in 

detecting and quantifying very low amounts of mAb1 aggregates. The trimer and 

tetramer amount below peak 3 represent roughly 44 ng of mAb1 (8.8% of the sample 

at t0). Since its detection and quantitation limit appear to be very low, there is no 

need for large amounts of sample, which are usually required for data 

reproducibility for batch release or sample complete workup.  

Figure 6 reports the separation profiles of even higher amounts of mAb1 from Vial 

§2, separated subsequently and under identical experimental conditions. 

 

 

Figure 6 - Separation profiles at 215 nm of different amounts (10.0 – 15.0) of mAb1 from Vial §2 

 

As expected, when the injected amount exceeds the overloading limit, not only the 

separation is no longer achieved properly because there is not enough physical space 

for the sample to relax properly during the focus step (at 15 µg, the peaks appear as 
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if they were “split”), but also the larger peaks actually cover below their tail smaller 

peaks, corresponding to species which are less abundant. For mAb1, the overloading 

limit appears to be around 10 µg. This amount should be sufficient for the MALS 

detector to provide reliable MW values for the species separated by HF5. 

 

4.1.3.5. CONCLUSIONS 

 

The HF5 true potential resides in the detection sensibility, especially when coupled 

with detection techniques which are intrinsically sensitive (such as UV absorption of 

the protein peptide bond at 215 nm or multi-angle light scattering), therefore it does 

not require large sample amounts to provide reliable results. 

However, a detection method which is too sensitive (like MALS) has its downsides, 

such as being also very sensitive to large-sized particles, without having the ability to 

discriminate between protein particles and impurities like dust particles [Zölls et al. 

2012].  

This is where hyphenated techniques come to the rescue. By online coupling a 

separation technique such as HF5, which brings its own miniaturization advantages, 

with a specific sample property (such as protein specific UV absorption and/or 

fluorescence emission), the analytical information provided by the MALS detector is 

enhanced. In the absence of specific UV signal, MALS cannot provide information 

regarding the nature of the sample or its absolute MW, even though it can provide 

accurate information about the size regardless of the nature of the sample. 

In this study was shown how HF5-UV can be employed to monitor antibody 

composition following dilution, how the freeze/thaw process – following sample 

dilution – induced dynamic aggregation (probably facilitated by the reduced volume 

of the sample when in frozen state) and how, once the sample was thawed, HF5-UV 

was able to monitor the slow dissociation into antibody monomeric units.  
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“LESS IS MORE” 

It is also shown that, when coupled with intrinsically sensitive detection methods 

(UV at 215 nm and MALS), HF5 reduces considerably the need for large sample 

amounts in order to detect the presence and quantify trace amounts of antibody 

aggregates. Moreover, if the sample amount exceeds certain limits (overloading 

limit), not only has a negative impact on the separation process, but even impedes 

the detection of low abundant species. 
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4.1.4. CARRIER SOLUTION SCREENING EXPLORATORY 

STUDY BY HF5-UV: 

INFLUENCE OF PH, SALT TYPE AND CONCENTRATION, IONIC 

STRENGTH AND BUFFERING AGENT ON THE 

IMMUNOGLOBULINS (IgGS) STABILITY DURING SEPARATION 

 

 

 

 

 

In this sub-chapter, the influence of parameters like pH, buffering agent and 

concentration, salt type and concentration, as well as carrier solution ionic strength 

(IS) on the stability of antibodies (immunoglobulins, IgGs) during their separation by 

HF5 was monitored by UV detection.  

The same parameters which impact greatly on the antibody stability also play a 

major role during the HF5 separation. For instance, the ionic strength value of the 

carrier solution influences the protein interactions during separation, shielding the 

proteins by charge and the same role (shield by charge) is played by the solution pH 

and the salt concentration.  

A universal buffer cannot be employed for all antibodies, since their structure varies 

substantially (hence their specific biological function), an optimal buffer for one 

antibody may be harmful to another. The same effect was observed when the salt 

type is changed (from NaCl to MgCl2). 
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Furthermore, the HF5 versatility in terms of carrier solution composition is shown, as 

well as the wide pH range (allowed by the PES hollow fibers) of carrier solutions that 

can be employed for the separation. The study also shows how the carrier solution 

components specific absorption can interfere with detection (in this study, the 

phosphate buffer absorption interfered with the detection of antibody degradation 

products/fragments, buy may also interfere with the detection of antibody 

aggregates), therefore need to be considered carefully.  

The phenomenon of nonspecific protein adsobtion to the hollow fiber inner wall leading 

to incomplete recovery, abnormal elution position, loss of peak symmetry and poor 

resolution is an issue which HF5 (FFF) and SEC have in common. The sample 

interaction with the column matrix is a known SEC limitation. In this study, this 

issue was addressed by performing a series of injections of the same sample (make-up 

runs) in order to improve sample recovery. This is a common practice in SEC and 

recommended by SEC columns manufacturers, therefore was adopted in HF5 as 

well.  

Finally, two mobile phases, with a composition similar to the antibody formulation 

buffer were employed during the HF5 separation. Nonetheless, even though the 

sample stability may be maintained, it appears that the low ionic strength leads to 

poor separation performance, as well as compromised sample recovery (even after 

make-up runs), therefore not optimal for sample characterization. 
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4.1.4.1. INSTRUMENTAL SETUP 

 

HF5 analyses were performed using an Agilent 1200 HPLC system (Agilent 

Technologies, Santa Clara, CA, USA) consisting in a degasser, an isocratic pump, an 

auto sampler and a variable wavelength UV detector, combined with an Eclipse® 

DUALTEC prototype separation system (Wyatt Technology Europe, Dernbach, 

Germany). The ChemStation version B.04.02 (Agilent Technologies) data system for 

Agilent instrumentation was used to set and control the instrumentation and for the 

computation of various separation parameters. The software package Wyatt Eclipse 

@ ChemStation version 3.5.02 (Wyatt Technology Europe) was used to set and 

control the FFF separation system. An Agilent 1100 UV/Vis variable wavelength 

detector operating at a wavelength of 280 nm was used as a concentration detector at 

all times. 

The hollow-fiber was a 17 cm long polyether-sulfone (PES) fiber, type FUS 0181 

available from Microdyn-Nadir (Wiesbaden, Germany) with the following 

characteristics according to the manufacturer: 0.8 mm ID, 1.3 mm OD and a 

molecular weight cut-off of 10 kDa corresponding to an average pore size of 5 nm. 

 

4.1.4.2. SAMPLES AND REAGENTS 

 

The reagents required to prepare the carrier solutions/mobile phases were supplied 

by Sigma and are reported in Table 1. All carrier solutions were prepared according 

to the schematic reported in Figure 1, using MilliQ water purified by an Elix 3 UV 

Water Purification System (Millipore, Billerica, USA) and filtered through 0.2 µm 

pore membrane sterile filter units (Millipore), at all times. 

The samples used in the study were three IgG1 type monoclonal antibodies, for 

simplicity named mAb1, mAb2 and mAb3. All the available information regarding 
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the antibodies is reported in Table 2. The sample aliquots were stored at room 

temperature during the working days and at 4°C during the night and/or over the 

week-end.     

Table 1 – Reagents used for the preparation of the mobile phases 

Reagent Buffer type Product code from Sigma 

Na2HPO4 · 2 H2O 
Phosphate buffer 

342483 

NaH2PO4 · 2 H2O S5136 

Na citrate 
Citrate buffer 

W302600 

Citric acid C0759 

NaCl - S5886 

MgCl2 - M2393 

 

Table 2 – Available information regarding the monoclonal antibodies (mAbs) used in this study 

Antibody 

short name 
IgG isotype pI 

MW 

(kDa) 
Initial concentration (mg/mL) 

mAb1 IgG1 8.73 142.2 38.5, in ammonium acetate, pH 5.0 

mAb2 IgG1 N/A 150.0 2.0, formulation N/A 

mAb3 IgG1 8.25 144.2 40.0, in phosphate/citrate buffer, pH 5.0 

 

 

Figure 1 – Carrier solutions preparation (a) phosphate buffer; (b) citrate buffer and (c) 

phosphate/citrate buffer similar to the formulation buffer for mAb3 
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4.1.4.3. METHODS 

 

The same amount of each mAb was injected at all times (2 µg of mAb1 and mAb2 

and 0.6 µg of mAb3), unless otherwise specified. The samples were injected in the 

HF5 separation device during the focus-inject step, which was performed at a focus 

flow rate of 0.85 mL/min for 4 min. The sample was focused at a distance of 

approximately 15% fiber length from the channel inlet an eluted afterwards at a 

channel flow rate of 0.35 mL/min under the effect of a constant cross-flow rate of 0.35 

mL/min.  The separation process was monitored by UV detection at 280 nm 

 

4.1.4.4. RESULTS AND DISCUSSION 

 

The factors which induce aggregation in therapeutic protein formulations were 

divided in: (a) sample variables (sample concentration) and (b) carrier solution/buffer 

variables. In the latter category we included: solution pH, buffer composition, 

solution ionic strength, salt type and salt concentration.  

Once the carrier solution variables were identified, their influence on the antibody 

stability and/or HF5 separation performance was observed under different 

experimental conditions, reported in Figure 1. The carrier solution variables that 

were taken into consideration are summarized in Table 3. One parameter was 

changed at a time, while all the others remained constant.  

Two buffer types were used in this study: phosphate buffer, which operates between 

a pH value of 5.7 and 8.0 and citrate buffer, which operates in the pH range between 

3.0 and 6.2 [Dawson et al. 1986, www.sigmaaldrich.com 2014]. A third buffer, which 

consisted in a mixture containing both phosphate and citrate buffers (whose 

composition was very similar to the mAb3 formulation buffer), was employed as 

carrier solution as well.  

Two salts were employed in the study: NaCl and MgCl2, both chaotropic agents 



Chapter 4, Part 1, 4.1.4. Carrier solution screening exploratory study by HF5-UV and IgGs stability 

153 

 

(protein stabilizers) according to the Hofmeister series, which divides tested 

reagents/substances into protein denaturants and protein stabilizers, according to the 

same principle on which protein salting in/salting out is based. NaCl was also used 

to adjust the mobile phase ionic strength, which has a known impact on the FFF 

separation performance, as well as on protein stability. 

The solution pH is another parameter that has a great impact on protein stability and 

therefore on FFF performance of protein samples. The pH extreme values (4.9 and 

10.5) were chosen below and above the reliable pH buffering range of the phosphate 

buffer, avoiding the proximity to the pI of IgGs, which is approximately 7.3 ± 1.2. 

Considering that no acids/bases were added to the mobile phase during the 

separations, the buffers maintained their set pH, although sometimes outside their 

operating range. 

 

Table 3 – Carrier solution variables and values employed in this study 

# Variable Values Buffer type Constant parameters 

1 pH 

4.9 

6.9 

10.5 

Phosphate 

Buffer composition (50 mM) 

Buffer salt: NaCl (150 mM) 

Solution ionic strength (300 mM) 

2 Salt I 
NaCl 

MgCl2 
Phosphate 

Buffer composition (50 mM) 

Solution ionic strength (300 mM) 

pH: 4.9 

3 Ionic strength I 

150 mM (A) 

75 mM (B) 

150 mM (C) 

300 mM (D) 

350 mM (E) 

Phosphate 

Buffer type 

Buffer salt: NaCl 

pH: 6.9 

4 Ionic strength II 

150 mM (F) 

150 mM (G) 

300 mM (H) 

350 mM (I) 

Citrate 

Buffer type 

Buffer salt: NaCl 

pH: 4.9 

5 Salt II 
NaCl 

MgCl2 
Citrate 

Buffer composition, 50 mM 

Solution ionic strength, 300 mM 

pH: 4.2 

6 Ionic strength III 
141 mM (J) 

216 mM (K) 

Phosphate / 

citrate 

Formulation 

Buffer salt: NaCl 

pH: 4.9 

 



Chapter 4, Part 1, 4.1.4. Carrier solution screening exploratory study by HF5-UV and IgGs stability 

154 

 

A. CARRIER SOLUTION PH VALUE – PHOSPHATE BUFFER 

 

The first carrier solution variable observed during this study was the pH value. To 

this purpose, three phosphate buffer solutions were prepared (Figure 1a), each one at 

a different pH, by adjusting the salts concentration (the ratio between the amounts of 

Na2HPO4 · 2 H2O and NaH2PO4 · 2 H2O) in order to meet as much as possible the 

desired final pH value. The final pH adjustment (to 4.9, 6.9 and 10.5) was performed 

by adding concentrated HCl or NaOH. 

Once the carrier solutions were prepared and the HF5-HPLC system was 

“conditioned” by fluxing the chosen carrier solution through the separation-detection 

system until the UV baseline was stable, a series of blank injections were performed. 

Their purpose was to establish the UV baseline variations during a normal HF5 run.  

It is a known fact that the phosphate buffer has a specific absorption in the UV range 

if its concentration exceeds a certain value [Aitken and Learmonth 2002] (sub-chapter 

3.2.1.1). Furthermore, the UV signal responds to pressure changes in the system that 

usually occur during a normal FFF run. The blank injections performed in phosphate 

buffer carrier solutions are reported in Figure 2. 

 

Figure 2 – Blank injections performed in phosphate buffer carrier solutions at different pH 

 

The blank runs reported in Figure 2 show that higher pH values (6.9 and 10.5) of the 

phosphate buffer have a significant impact on the UV baseline, especially 

immediately after the elution step begins, which represents the chromatographic 
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space for the elution of small proteins and/or protein fragments. A UV signal 

variation in this region could impede the detection of mAb fragments or degradation 

products. 

In order to verify if the above statement applies to mAb1, mAb2 and mAb3, each of 

them (2 µg of mAb1 and mAb2 and 0.6 µg of mAb3) was separated by HF5-UV and 

the elution profiles are reported in Figure 3, 4 and 5. 

 

 

Figure 3 – HF5 separation profiles of mAb1 at 280 nm in phosphate buffer solutions at different pH 

values. The false baseline signal marked with “F”, possible mAb1 fragments marked as “f” 

 

Figure 3 shows the presence of three species corresponding to mAb1, detected by UV 

at 280 nm. The mAb1 monomer is the predominant species and its peak partly covers 

the aggregates peak (peak 2). At pH 4.9, peak 2 is not even visible, but it is the only 

experimental condition which allows the detection of species eluting before the 

monomer (“f”, very likely mAb1 fragments/degradation products). At pH 6.9 and 

10.5, the UV baseline false peak “F” impedes the detection of mAb1 fragments. 

 

Figure 4 – HF5 separation profiles of mAb2 at 280 nm in phosphate buffer solutions at different pH 

values. The false baseline signal marked with “F”, possible mAb1 fragments marked as “f” 
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Figure 4 shows the elution profiles of mAb2, which are similar to the ones observed 

for mAb1. Just as for mAb1, at pH 4.9, peak 2 is not even visible, but it is the only 

experimental condition which allows the detection of species eluting before the 

monomer because, at higher pH values, the UV baseline false peak “F” impedes the 

detection of mAb1 fragments “f”. 

 

Figure 5 – HF5 separation profiles of mAb3 at 280 nm in phosphate buffer solutions at different pH 

values. The false baseline signal is marked with “F” 

Finally, Figure 5 shows the elution profiles corresponding to mAb3 under different 

experimental conditions. The UV signal at 280 nm does not detect the presence of 

fragments eluting before the monomer in any of them.  Even though the mAb3 

sample amount was the same in every experimental condition, the elution profile at 

pH 6.9 shows a sample overloading effect consisting in a broad and tailed monomer 

peak, with delayed retention time. This result indicates that the separation in 

phosphate buffer at this pH value is not suitable. It is very likely that mAb3 is 

unstable and interacts (non-specifically) with the hollow fiber. 

Peak 2, corresponding to mAb3 aggregates, is detected only at low and high pH. 

Under these experimental conditions the peaks are symmetrical and the highest 

sample recovery is obtained at high pH. 

 

These experiments have shown how the pH of the carrier solution influences the antibody 

stability in a very short time (equal to the duration of the HF5 run) and how the instability of 

an antibody leads to poor/lack of separation and/or interactions with the separation device. 
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Moreover, the results indicate a correlation between the phosphate buffer pH and the 

phosphate UV absorption. This specific absorption impedes the detection of antibody 

fragments/degradation products. 

 

B. CARRIER SOLUTION SALT (I) – PHOSPHATE BUFFER 

 

Next, the salt type was considered as variable and the two salts chosen for this study 

were NaCl and MgCl2. To this purpose, a phosphate buffer solution was prepared at 

pH 4.9 (Figure 1a) and divided in two containers which were supplemented with the 

necessary amount of each salt in order to reach a final solution ionic strength of 300 

mM. A concentration of 150 mM of NaCl added the same ionic strength to the final 

mobile phase as 50 mM MgCl2. The final pH adjustment to the desired values (4.9, 6.9 

and 10.5) was performed by adding concentrated HCl or NaOH. 

As soon as the system was “conditioned”, a series of blank injections were performed 

in order to check the UV baseline for variations caused by pressure changes. Since, in 

this case, there were no UV false peaks; each mAb (2 µg of mAb1 and mAb2 and 0.6 

µg of mAb3) was separated under both experimental conditions. The elution profiles 

are reported in Figures 6, 7 and 8. 

 

 

Figure 6 – HF5 separation profile of mAb1 and blank injection at 280 nm in phosphate buffer 

solutions supplemented with different salts. The mAb1 fragments are marked as “f” 

 

The separation profiles of mAb1 at 280 nm reported in Figure 6 show the elution of 3 



Chapter 4, Part 1, 4.1.4. Carrier solution screening exploratory study by HF5-UV and IgGs stability 

158 

 

peaks, corresponding to mAb1 fragments, monomer and aggregates. Since the 

monomer is the dominant species, its peak partly covers the aggregates peak. The 

sample recovery is slightly higher when NaCl is added to the phosphate buffer and 

the separation performance improves, the band broadening is reduced and the 

monomer symmetry is closer to a Gaussian peak.   

 

 

Figure 7 – HF5 separation profiles of mAb2 and blank injection at 280 nm in phosphate buffer 

solutions supplemented with different salts. The mAb2 fragments are marked as “f” 

 

The separation profiles of mAb2 reported in Figure 7 are very similar to the ones of 

mAb1 in Figure 6: the aggregates peak (peak 2) is separated better when MgCl2 is 

added to the carrier solution, but at the expense of sample recovery, peak symmetry 

and band broadening (separation efficiency).  

 

 

Figure 8 – HF5 separation of mAb3 and blank injection at 280 nm in phosphate buffer solutions 

supplemented with different salts. 

 

The separation profiles of mAb3 reported in Figure 8 show the presence of two 

eluting species: mAb3 monomer and aggregates. The resolution between species is 
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improved visibly when MgCl2 is added to the mobile phase and the sample recovery 

remains constant. There are no significant differences in terms of peak symmetry or 

band broadening. 

 

These experiments have shown the importance of choosing the appropriate salt to be added to 

the carrier solution. The purpose of supplementing the buffer/mobile phase with salt is to 

improve sample recovery.  The ions in solution (in this study, [Na+] + [Cl-] and [Mg2+] + 2[Cl-

]) surround the protein surface and create an electrostatic shield which suppresses protein 

interactions (protein-protein or protein-separation device interactions). While the separation 

of mAb1 and mAb2 is improved in carrier solution containing NaCl, the same effect is 

observed for mAb3 when adding MgCl2.  

 

C. CARRIER SOLUTION IONIC STRENGTH (I) – PHOSPHATE BUFFER 

 

The third variable considered for this study was the ionic strength of the carrier 

solution. To this purpose, different phosphate buffer solutions at pH 6.9 were 

prepared from a stock solution of 50 mM phosphate buffer supplemented with 150 

mM NaCl (IS 300 mM) that was subsequently diluted 1:2 (IS 150 mM) and 1:4 (IS 75 

mM). Part of the phosphate buffer solution was left as such (without NaCl 

supplement, IS 150 mM). The exact composition of the carrier solutions is reported in 

Table 4. 

Table 4 – Composition of phosphate buffer carrier solutions of different ionic strength (pH 6.9) 

Carrier Composition Ionic strength (mM) 

A 50 mM phosphate buffer 150 

B 50 mM phosphate buffer + 150 mM NaCl 300 

C 25 mM phosphate buffer + 75 mM NaCl 150 

D 12.5 mM phosphate buffer + 37.5 mM NaCl 75 

E 50 mM phosphate buffer + 200 mM NaCl 350 



Chapter 4, Part 1, 4.1.4. Carrier solution screening exploratory study by HF5-UV and IgGs stability 

160 

 

A series of blank injections was performed under each experimental condition to 

monitor the behavior of the UV baseline in response to the increasing ionic strength 

(NaCl amount) and the results are reported in Figure 9. 

 

 

Figure 9 – Blank injections at 280 nm in phosphate buffer solutions with increasing ionic strength. 

 

Figure 9 shows how the UV baseline suffers variations as the ionic strength of the 

mobile phase in increased, a situation which is similar to the one observed when the 

pH was varied (Figure 2). 

Next, an amount of 2 µg of mAb2 was separated by HF5-UV employing phosphate 

buffer carrier solutions B, C and D (Table 4) and the elution profiles are reported in 

Figure 10. 

 

Figure 10 – HF5 separation profiles of mAb2 and blank injection at 280 nm in phosphate buffer 

solutions of different ionic strength (pH 6.9). The false UV baseline signal is marked with “F” 

 

Figure 10 shows how the separation worsens as the ionic strength is decreased (B > C 

> D), not only the mAb2 fragments are completely covered by the false peak “F”, but 
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mAb2 starts interacting with the separation device when carrier D is employed (the 

monomer peak is a broad and highly tailed). 

 

D. CARRIER SOLUTION IONIC STRENGTH (II) – CITRATE BUFFER 

 

In order to determine whether the UV signal variations (that impede the detection of 

mAb2 fragments) could be avoided, a different type of buffer (citrate buffer) was 

employed as carrier solution for the separation of the antibodies. Four citrate buffer 

solutions were prepared at different ionic strength values according to the scheme in 

Figure 1b, at pH 4.9 and their exact composition is reported in Table 5.  

 

Table 5 – Composition of citrate buffer carrier solutions of different ionic strength (pH 4.9) 

Carrier Composition Ionic strength (mM) 

F 50 mM citrate buffer 150 

G 25 mM citrate buffer + 75 mM NaCl  150 

H 50 mM citrate buffer + 150 mM NaCl 300 

I 50 mM citrate buffer + 200 mM NaCl 350 

 

An amount of 2 µg of mAb2 and 0.6 µg of mAb 3 were separated by HF5-UV 

employing citrate buffer carrier solutions G, H and I (Table 5) and the corresponding 

elution profiles are reported in Figure 11. 

 

Figure 11 – HF5 separation profiles at 280 nm of (a) mAb2 and (b) mAb3 in citrate buffer solutions 

of different ionic strength (pH 4.9). Fragments/degradation products of mAb2 are marked as “f”. 
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Figure 11a shows that when citrate buffer is used as carrier solution, instead of 

phosphate buffer, it allows the detection of mAb2 fragments. Both Figures 11 show 

that, as the ionic strength is increased (G < H < I), the resolution between peaks 1 and 

2 improves. The highest sample recovery for both antibodies is achieved when 

carrier H is employed. Carrier solution G (IS 75 mM) does not allow the separation of 

the tested mAbs. 

Next, mAb2 and mAb3 separations were performed in buffers (phosphate and 

citrate) either containing a high NaCl content (200 mM) or not at all. The elution 

profiles corresponding to mAb2 and mAb3 are reported in Figure 12 and Figure 13, 

respectively. 

Figure 12a reports the separation of mAb2 in carrier solutions which do not contain 

NaCl. The presence of mAb2 fragments is detected (peak “f”), but the aggregates 

peak is absent. On the other hand, Figure 12b shows that the presence of high 

amounts of NaCl in the phosphate buffer leads to the UV false peak “F”, which 

covers the mAb2 fragments. However, the addition on NaCl allowed the separation 

of the aggregates peak (peak 2) in both phosphate and citrate buffers. 

 

 

Figure 12 – HF5 separation profiles at 280 nm of mAb2 in (a) carrier solutions without NaCl, A – 

phosphate and F – citrate and (b) carrier solutions containing a high amount of NaCl, E – phosphate 

and I – citrate. 

 

The best separation performance and the highest sample recovery were obtained (at 

both low and high IS) in citrate buffer. It is also very likely that the carrier solution 

pH had a contribution to improving the separation performance, since the citrate and 
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the phosphate were employed at different pH values. 

 

 

Figure 13 – HF5 separation profiles of mAb2 at 280 nm in (a) carrier solutions without NaCl, A – 

phosphate and F – citrate and (b) carrier solutions containing a high amount of NaCl, E – phosphate 

and I – citrate. 

 

Figure 13a reports the separation of mAb2 in carrier solutions which do not contain 

NaCl. The false UV peak “F” is visible in phosphate buffer, but neither buffer allows 

detecting the presence of mAb3 aggregates. Figure 13b shows that the presence of 

NaCl in the phosphate buffer leads to an increased UV false peak “F” that covers the 

mAb2 fragments, therefore, both phosphate salts and NaCl amounts contribute to its 

appearance. Furthermore, the separation performance worsens visibly in carrier E. 

Antibody mAb3 appears to interact with the separation device resulting in a broad, 

tailed peak. The best separation performance and the highest sample recovery were 

obtained in citrate carrier I.  

 

These experiments demonstrated how the carrier solution ionic strength affects both mAbs 

stability and HF5 separation performance. If the ionic strength is too low, the separation does 

not take place, whereas employing a higher ionic strength can consequently improve sample 

recovery, as well as aggregates peak separation from the monomer. However, employing 

phosphate buffer resulted to be problematic, especially at higher salts concentration, leading to 

system false peak “F” that covered mAb2 fragments. Replacing the buffer type, the UV system 

peak was eliminated and the separation performance was improved. It is very likely that a 

lower pH value played a role into improving the mAbs separation.  
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E. CARRIER SOLUTION SALT (II) – CITRATE BUFFER  

 

Similar to the experiments performed employing phosphate buffer described in 

subchapter 4.2, the salt type was considered as a variable in the citrate buffer 

composition. To this purpose, the same salts (NaCl and MgCl2) were added 

separately to a 50 mM citrate buffer solution at pH 4.2, as described in Figure 1b. 

Blank injections were performed in order to establish the UV baseline level, followed 

by sample injections. An amount of 2 µg of mAb2 and 0.6 µg of mAb3 were 

separated by HF5-UV in citrate buffers and the elution profiles are reported in 

Figures 14. 

 

 

Figure 14 – HF5 separation profiles at 280 nm of (a) mAb2 and (b) mAb3 in phosphate buffer 

solutions supplemented with different salts. The mAb2 fragments are marked as “f” 

 

Figures 14 show how the presence of MgCl2 in the citrate buffer improves the 

monomer peak symmetry, unfortunately at the expense of sample recovery, while 

other separation parameters like the resolution between species and band 

broadening (separation efficiency) remain unaltered. 

 

These experiments show once again the importance of choosing the appropriate salt to add to 

the buffer/carrier solution. Both NaCl and MgCl2 provide a good separation performance, 

while the presence of NaCl is better at assuring a high sample recovery of both mAb2 and 

mAb3. 
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Increasing amounts of mAb3 were separated by HF5-UV employing a carrier 

solution which consisted in 50 mM citrate buffer supplemented with 50 mM MgCl2 in 

order to establish whether the sample incomplete recovery was caused by the 

experimental conditions or by an autosampler error. The separation profiles are 

reported in Figure 15. 

The mAb3 total recovery increased when progressively higher sample amounts were 

injected, established by calculating the area under the peak in each case. The results 

are reported in Table 6. Since the sample recovery was actually improved when 

injecting higher amounts, these results exclude a systematic incomplete sample 

recovery. 

 

Figure 15 – HF5 separation profiles of mAb3at 280 nm. Increasing amounts of mAb3, separated in 

50 mM citrate buffer supplemented with 50 mM MgCl2, pH 4.2 

 

Table 6 – m Ab2 sample recovery calculations based on area under the peak at 280 nm values 

Sample 

amount (µg) 

Area under the peak 

(mAU*s) 

Sample relative 

recovery (%) 

Sample recovery 

increase (%) 

0.6 160 100  

1.2 330 103.1 3.1 

2.4 706 110.3 10.3 

3.6 1110 115.7 15.7 

5.0 1597 119.8 19.8 

 

The phenomenon of nonspecific protein adsobtion to the hollow fiber inner wall, 

leading incomplete sample recovery, abnormal elution position, loss of peak 

symmetry and poor resolution is an issue which HF5 (FFF) and SEC have in 
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common. The sample interaction with the column matrix is a known SEC limitation. 

However, this issue can be addressed by performing a series of injections of the same 

sample known as make-up runs, which is a common practice in SEC and 

recommended by SEC columns manufacturers. The purpose of these make-up runs, 

which are usually not described in journal articles, is to let the sample adhere to the 

column matrix until the sample recovery gradually starts to improve, indicating that 

the non-specific interactions have been diminished because the active “sticky” sites 

have been saturated. 

Since it is a proven method to overcome sample loss, this practice was adopted in 

FFF (HF5). Usually 10-20 µg of sample (or a standard protein, such as BSA) are 

injected repeatedly and separated by HF5, letting the protein adhere until it saturates 

the hollow fiber inner wall (HF5).  

The downside of this procedure is that, if it is performed with an unstable protein 

(which might be the case of a protein during formulation development), it might lead 

to progressive sample accumulation on the hollow fiber wall causing the depletion of 

the fiber. 

 

These experiments served to demonstrate how sample recovery can be improved by 

performing a hollow fiber make-up procedure, which is a practice adopted from SEC. 

Therefore, mAb3 separation could be performed in the carrier solution which proved to be 

optimal from all points of view (separation performance and sample recovery) and the sample 

recovery was improved by approximately 20%. 
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F. CARRIER SOLUTION IONIC STRENGTH (II) – PHOSPHATE / CITRATE BUFFER 

 

Finally, the last set of experiments was performed employing a mixture of phosphate 

and citrate buffer as carrier solution, at pH 5.0 and supplemented with different 

amounts of NaCl. This phosphate/citrate combination is very similar to the mAb3 

formulation buffer and its preparation is depicted in Figure 1c. The exact carrier 

solutions composition is reported in Table 7. 

 

Table 7 – Composition of phosphate/citrate buffer carrier solutions, different ionic strength (pH 

5.0) 

Carrier Composition Ionic strength (mM) 

J 
14.1 mM phosphate buffer + 7.8 citrate buffer 

+ 75 mM NaCl 
141 

K 
14.1 mM phosphate buffer + 7.8 citrate buffer 

+ 150 mM NaCl 
216 

 

Blank injections were performed to establish the UV baseline level, followed by 

sample injections. An amount of 2 µg of mAb2 and 0.6 µg of mAb3 were separated 

by HF5-UV employing the formulation buffer-like carrier solutions and the elution 

profiles are displayed in Figure 15. 

 

 

Figure 16 - Separation profiles at 280 nm of (a) mAb2 and (b) mAb3 in phosphate/citrate buffer 

solutions supplemented with different amounts of NaCl.  

 

Figure 15a, corresponding to the separation profiles of mAb2, shows the presence of 

fragments and aggregates peaks only in carrier K, with the highest ionic strength 



Chapter 4, Part 1, 4.1.4. Carrier solution screening exploratory study by HF5-UV and IgGs stability 

168 

 

value. On the other hand, the separation profiles of mAb3 depicted in Figure 15b 

show a poor separation in both cases, as well as false UV peaks probably caused by 

the phosphate/NaCl salts combination. This carrier solution, even though very 

similar to the mAb3 formulation buffer, is not suitable for the separation of mAb3.   

 

These experiments demonstrated the possibility to perform separations in carrier solutions 

whose composition is similar to the formulation buffer of therapeutic proteins. However, 

separating in such buffers, although guaranteeing less stress on the sample stability, did not 

lead to good separation results. Sample recovery as well as low abundant mAb species 

detection and separation may be compromised due to insufficient ionic strength.   
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4.1.5. HF5 – FLD METHOD OPTIMIZATION FOR THE 

QUANTIFICATION OF AGGREGATE LEVELS IN PROTEIN 

FORMULATIONS. 

INTRINSIC FLUORESCENCE-BASED DETECTION OF ANTIBODY 

AGGREGATES: LOD AND LOQ ESTIMATION. 

ADVANTAGES OF MINIATURIZATION: UV DETECTION 

SENSITIVITY BOOST EMPLOYING A SMALLER INNER DIAMETER 

HOLLOW FIBER. 

 

 

 

 

This sub-chapter summarizes the exploratory study aimed to demonstrate the 

advantages of miniaturization of the separation device, online coupled with high 

sensitivity detection systems, for the detection and quantification of protein 

aggregates that may be present in antibody formulations. The advantages of using a 

miniaturized separation device consist not only in a reduced sample dilution during 

the separation, but also in employing lower flow rates, which – according to Lambert 

Beer law applied to flow systems (Equation 2, discussed in sub-chapter 3.2.1.1, 

Chapter 3) – lead to increased detection sensitivity.  

Furthermore, the maximum separation efficiency is determined by the analytes 

biophysical and chemical properties, in particular, by their detectability and tendency 
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towards overloading, a key aspect regarding HF5 applications (Equation 13, discussed 

in sub-chapter 2.2.2, Chapter 2). 

 

The first part of this study describes the method development process of an HF5 

method that employs the intrinsic fluorescence of antibodies (in this case, an IgG1 

type antibody) as detection method. Once the HF5 method was optimized, the 

detection sensitivity was evaluated by means of Limit of Detection (LoD) and Limit 

of Quantification (LoQ) estimation.  

The second part of this study explores other methods of increasing HF5 detection 

sensibility, which consisted in employing a hollow fiber with a smaller internal 

diameter and the peptide bond absorption of antibodies as detection method. This 

study showed that a 4-fold increase in sensitivity as well as a 2-fold increase in 

efficiency was achieved, even when the antibody aggregates were present at trace 

levels, when compared to the separation performance obtained with the standard 

(commercial) hollow fiber membrane.  

The definitions and formulas of all analytical parameters employed in this study 

were previously discussed in sub-chapter 2.4 (Chapter 2). 
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4.1.5.1. EXPERIMENTAL SETUP 

 

HF5 analyses were performed using an Agilent 1200 HPLC system (Agilent 

Technologies, Santa Clara, CA, USA) consisting in a degasser, an isocratic pump, an 

auto sampler, a variable wavelength UV detector and a fluorescence detector, 

combined with an Eclipse® DUALTEC prototype separation system (Wyatt 

Technology Europe, Dernbach, Germany). The ChemStation version B.04.02 (Agilent 

Technologies) data system for Agilent instrumentation was used to set and control 

the instrumentation and for the computation of various separation parameters. The 

software package Wyatt Eclipse @ ChemStation version 3.5.02 (Wyatt Technology 

Europe) was used to set and control the FFF separation system. The fluorescence 

detector (FLD) was set at an excitation wavelength of 280 nm (specific for proteins) 

and an emission wavelength of 340 nm, which was the specific fluorescence emission 

maximum of tryptophan, Trp (therefore for proteins containing this amino acid, such 

as antibodies).  

The hollow-fiber was a 17 cm long polyether-sulfone (PES) fiber, type FUS 0181 

available from Microdyn-Nadir (Wiesbaden, Germany) with the following 

characteristics: 0.8 mm ID, 1.3 mm OD and a molecular weight cut-off of 10 kDa, 

corresponding to an average pore size of 5 nm. The HF5 separation device was 

already described in the previous chapters. A hollow fiber membrane with a smaller 

inner diameter, type FUS 0353 in PES material with 0.5 mm ID and a MWCO of 30 

kDa was employed in the last part of this study. 
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4.1.5.2. SAMPLES AND REAGENTS 

 

The first sample was an IgG1 antibody, for simplicity named mAb3, at a 

concentration of 40 mg/mL (stock solution). The sample was initially diluted 1:80 in 

the mobile phase and a sample volume of 10 µL containing 5 µg of mAb3 was 

injected at all times during the HF5 method development phase of this study. During 

the second part of this study – the estimation of LoD and LoQ of the mAb3 aggregate 

levels – the sample was diluted subsequently until the desired final concentration 

was achieved. Previous studies on mAb3, discussed in sub-chapter 4.1.4, showed that 

approximately 10% of the sample was represented by the dimer form of the 

antibody. 

In the third part of this study, where a hollow fiber with a smaller ID was employed 

to increase detection sensitivity, a different IgG1 type antibody was used, for 

simplicity named mAb2, at a concentration of 2 mg/mL. Antibody mAb2 was diluted 

at a final concentration of 0.5 mg/mL to suit the requirements for this study. During 

previous studies, reported in Chapter 4.1.4, mAb2 showed very low aggregates levels 

(1-2%). 

The carrier solution/mobile phase employed for the separation of mAb3 was 50 mM 

citrate buffer supplemented with 50 mM MgCl2, pH 4.2. A different carrier solution, 

consisting in 50 mM phosphate buffer supplemented with 150 mM NaCl (pH 7.2) 

was employed for the separation of mAb2. These carrier solutions were found 

optimal the separation of mAb2 and mAb3, respectively, according to the study 

conducted in sub-chapter 4.1.4.  The carrier solutions were prepared using MilliQ 

water purified by an Elix 3 UV Water Purification System (Millipore, Billerica, USA) 

and filtered through 0.2 µm pore membrane sterile filter units (Millipore), at all 

times. 
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4.1.5.3. HF5 – (UV) – FLD METHOD DEVELOPMENT FOR mAb3 

 

A. ESTABLISHING THE SIGNAL/NOISE RATIO FOR  

FLUORESCENCE EMISSION AT 340 nm 

 

First, a previously tested HF5 method was employed for the separation of mAb3, 

which represented the starting point for the method development. An amount of 5 

µg of mAb3 was injected during the focus-inject step, performed at 0.85 ml/mL focus 

flow rate for 4 min. When the focus step was completed, the sample was eluted at a 

channel flow rate of 0.35 mL/min, under the effect of a constant cross-flow rate of 

0.35 mL/min for 15 min. The fluorescence emission at 340 nm and the absorbance at 

280 nm were recorded simultaneously and the separation profiles are reported in 

Figure 1. 

 

 

Figure 1 – HD5 separation profiles of mAb3: (a) fluorescence emission at 340 nm and (b) UV 

absorbance at 280 nm (b) recorded during the same sample run  

 

Previous studies (sub-chapters 4.1.3 and 4.1.4) have confirmed that the UV signal is 

not only affected by pressure variations during a normal FFF run, in particular when 

switching between operational modes (such as the signal variations shown in the red 

circles in Figure 1), but also requires a long period of time to stabilize before a sample 

run can be performed (usually 45-60 min, called “system conditioning”). This is 

because many salts in the mobile phase composition (such as phosphates, but also 
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acetate and citrate) have an UV absorbance of their own [Aitken and Learmonth 

2002].  It is a known fact that, even though protein absorbance at 210 or 215 nm of the 

peptide bonds is very intense, it is rarely used because of possible impurities 

interference (such as the previously mentioned mobile phase salts).  

Figure 1b shows how the UV baseline is affected by the pressure changes during 

mAb3 separation performed in citrate buffer. The red arrow indicates a signal 

variation which could be easily mistaken for the presence of mAb3 fragments. 

Fortunately, Figure 1a confirms that mAb3 does not contain any fragments; 

therefore, the UV signal variation should be attributed to other factors. The lack of 

specific sample signal represents an important issue, especially when the sample 

composition is unknown or during the quantification of low protein aggregates 

levels. This is where the fluorescence detection comes into play. Figure 1a shows that 

not only the system conditioning is not required (since the mobile phase salts do not 

fluoresce at 340 nm), but also the baseline remains stable during the entire HF5 

sample run. 

 

Once the sample run is completed, the next one can be performed right away, 

without the need to wait for the baseline to stabilize again. The areas highlighted by 

the red circles in Figure 1a and 1b show the signal variation when the cross-flow is 

annulled (also called “field release”), allowing the sample components which were not 

separated to exit the system before the next injection. This “M” shaped signal 

variation is very common and is known as “system peak”. If the separation system 

and the online coupled detectors are clean, the height of this peak is constant and is 

identical even during blank runs (Figure 2a and 2b), therefore, serves as indicator. 

Next, the fluorescence emission and the UV absorbance were registered during a 

blank run in order to establish the signal/noise ratios (S/N) and the profiles are 

reported in Figure 2. 
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Figure 2 – (a) Fluorescence emission at 340 nm and (b) UV absorption at 280 nm during the same 

blank run; (c) estimation of the noise level of the fluorescence baseline 

 

The blank run in Figure 2b reflects, once more, the UV signal baseline variations 

caused by the pressure changes which occur during the normal operation of an FFF 

system. And, once again, Figure 2a shows that the fluorescence signal is not affected 

by the pressure changes. The fluorescence signal baseline was examined more closely 

in Figure 2c and the noise level was established at 0.0021 LU, as the signal random 

variations above and below the “zero line” in green.  

 

B. HF5 – FLD METHOD OPTIMIZATION FOR mAb3 

 

The first HF5 parameter that was optimized was the focus time. The same mAb3 

amount (5 µg) was injected during the focus-inject step at 0.85 mL/min of focus flow 

rate, while the focus-inject duration was increased over subsequent runs. The sample 

was eluted at a channel flow rate of 0.35 mL/min, under the effect of a constant cross-

flow rate of 0.35 mL/min. The separation profiles are reported in Figure 3. 
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Figure 3 – HF5 separations of mAb3 with different focus-inject durations (a) real scale and (b) 

peaks overlaid on the monomer retention time at 6 min focus-inject 

 

The mAb3 monomer peak height increases proportionally to the focus – inject 

duration. Figure 4a shows the importance of the sample relaxation process (sample 

focus step), which may lead to incomplete separation or even incomplete sample 

recovery. Figure 4b shows that, as the focus-inject time duration increases, the band 

broadening is reduced and the peaks become narrower. Moreover, the separation 

between the two peaks improves, shown by the progressive decrease of the valley 

height between the peaks.  

Table 1 reports the effects of the sample focus time on the separation through 

parameters like area under the peak, peak height and peak width at half height (w1/2), 

retention times, and peak symmetry.  

 

Table 1 – Sample focus-inject time variation effects on the separation performance 
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Increasing the focus time up to 4 min, an improvement in both sample recovery 

(estimated as total area under the peak) and monomer-dimer resolution is observed. 

Between 4 min and 6 min, the resolution is constant and only the sample recovery 

improved slightly. A 4 min focus time was considered optimal and used in the 

following experiments. 

Next, the cross—flow rate was chosen as a variable and all other separation 

parameters were kept constant. The same mAb3 amount (5 µg) was injected during 

the focus-inject step at 0.85 mL/min of focus flow rate for 4 min. The sample was 

eluted at a channel flow rate of 0.35 mL/min, under the effect of different, but 

constant cross-flow rates. The elution profiles are reported in Figure 4. 

  

Figure 4 – HF5 separation profiles of mAb3 under the effect of different cross-flow rates (a) real 

scale and (b) peaks overlaid on the monomer retention time at 0.65 mL/min cross-flow rate and (c) 

table reporting the separation performance parameters 

 

As the cross-flow rates increases, the resolution between the peaks improves 

noticeably up to a certain point (0.5 mL/min of cross-flow rate value). The sample 

recovery decreases slightly as the cross-flow value is increased. Since the sample 

spends more time inside the hollow fiber, while being retained by progressively 
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stronger fields, it was expected that the peaks became progressively broader because 

of the longitudinal diffusion effect (a.k.a. band broadening). The strength of the field 

(the flow rate) causes the peaks to become increasingly more asymmetrical (tailed). 

Finally, the effect of a field that is too strong for the separation of mAb3 (0.65 

mL/min) causes an effect which resembles very much to the sample overloading 

effect. This is the reason why the monomer peak looks “split” and the separation 

actually worsens. A cross-flow rate of 0.5 mL/min was considered optimal and used 

in the following experiments. 

Next, the channel (detector) flow rate was chosen as a variable and all other separation 

parameters were kept constant. The same mAb3 amount (5 µg) was injected during 

the focus-inject step at 0.85 mL/min of focus flow rate for 4 min. The sample was 

eluted at different channel flow rates, under the effect of a constant cross-flow rate of 

0.5 mL/min. The elution profiles are reported in Figure 5. 

 

Figure 5 – HF5 separation profiles of mAb3 under the effect of different  channel flow rates (a) real 

scale and (b) peaks overlaid on the monomer retention time at 0.35 mL/min channel flow rate and 

(c) table reporting the separation performance parameters 

 

As the channel flow rate is increased, the band broadening diminishes (the faster 

channel flow counteracts the sample longitudinal dispersion). The peaks resolution 
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remains constant, as well as the valley height between the monomer and dimer. Since 

the signal intensity increases inversely to the flow rate, a slower channel rate can be 

used to enhance detection. However, in this study a channel flow rate of 0.5 mL/min 

was considered optimal and used in the following experiments.  

Summarizing, the optimal HF5-FLD method consisted in injecting the mAb sample 

during focus, performed at 0.85 mL/min for 4 min. Once the focus step was complete, 

the sample was eluted at 0.5 mL/min (initially 0.35 mL/min), under the effect of a 

constant cross-flow rate of 0.5 mL/min (initially 0.35 mL/min). 

The comparison between the elution profiles of mAb3, obtained applying the initial 

HF5 method and the optimized method is reported in Figure 6. 

 

 

Figure 6 – HF5 separation profiles of mAb3: (a) initial HF5 method; (b) optimized HF5 method, (c) 

table reporting the separation performance parameters 

 

Since the ratio between the channel flow rate and the cross-flow rate did not change 

(=1), the optimized method allows the separation of mAb3 monomer and dimer in 

approximately 14 min of analysis time, while the separation performance is 

improved. This optimized method was employed at all times from this point 

forward. 

 

 



Chapter 4, Part 1, 4.1.5. Advantages of miniaturization: sensitivity boost by HF5-FLD online coupling and HF5 

separation device with smaller inner diameter  

181 

 

 

4.1.5.4. STUDY FOR THE DETERMINATION OF THE LIMIT OF DETECTION (LOD) 

AND THE LIMIT OF QUANTIFICATION (LOQ) OF AGGREGATE LEVELS PRESENT IN 

mAb3 FORMULATION. 
 

A. ASCERTAINING THE LINEARITY INTERVAL FOR THE mAb3 FLUORESCENCE 

EMISSION AT 340 nm 

 

Signal to Noise Ratio (S/N) is a dimensionless measure of the relative strength of an 

analytical signal (S) to the average strength of the background instrumental noise (N) 

for a particular sample and is closely related to the detection level. The ratio is useful 

for determining the effect of the noise on the relative error of a measurement [Skoog 

and Leary 1992].  

Limit of Blank (LoB), Limit of Detection (LoD), and Limit of Quantification (LoQ) are 

terms used to describe the smallest concentration of an analyte that can be reliably 

measured by an analytical procedure.  

LoD is a feature of limit assays, usually expressed as %, ppm or ppb and defined by 

the ICH guidelines as “the lowest amount of analyte in a sample that can be detected, but 

not necessarily quantitated under the stated experimental conditions”. There are two 

approaches for the determination of LoD. The first consists in comparing signals 

from samples with known levels of impurities with blank signals (the LoD is then 

established at a ratio of 2:1 or 3:1),while the second approach consists in estimating 

the LoD from the standard deviation of the signal and the slope of the calibration 

curve (LoD=3σ/s) [Guidelines 2014]. 

On the other hand, LoQ is a feature of quantitative assays for low levels of analytes 

in sample matrices and is defined by the ICH guidelines as “the concentration of the 

related substance in the sample that will give a S/N ratio of 10:1”. Impurities in bulk drug 

substance, as well as degradation products in final therapeutic protein formulations 

are characterized by means of LoQ. LoQ of an analytical method is influenced by 
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detector sensitivity, as well as sample preparation procedure at low levels of 

impurities [Guidelines 2014]. 

 

The Limit of Blank can be calculated from:  LoB = meanblank + 1.645 (STDEVblank).  

In this study, five blank injections were performed for the determination of LoB and 

a value of 0.00229 was found (meanblank = 0.00202 L.U. and STDEVblank = 0.000164 L.U.). 

 

In general, the fluorescence detection cannot be used to quantify (there are a few 

exceptions, and even so the method for quantifying cannot be validated) because, 

although directly correlated to the protein amount, an increase in the fluorescence 

signal can also indicate changes in the protein conformation, therefore not able to 

distinguish between the two. However, the intrinsic fluorescence signal is highly 

valuable in determining whether certain experimental conditions change the protein 

molecular conformation or whether the changes occur in the proximity of a 

fluorophore (observed as a shift in the emission wavelength or change in 

fluorescence intensity). Therefore, in general, fluorescence detection only provides 

qualitative information [Zölls et al. 2012]. 

Despite all these reasons, since this study did not involve drastic changes in the 

experimental conditions which would result in conformational modifications, the 

intrinsic Trp fluorescence is proposed as sensitive method of detection for the 

quantification of mAb3 aggregates levels.  

 

In order to ascertain of the linear relationship between the fluorescence signal intensity 

and the sample amount, in the concentration range of interest (which was as low as 

possible, since LoD and LoQ were to be determined), a series of six different sample 

amounts was injected and each of them was replicated 3 times, each time injecting 

the same sample volume. The mAb3 dilutions are reported in Table 2. 
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Table 2 – Sample dilutions of mAb3 in mobile phase 

Initial 

concentration of 

the stock solution 

Dilution 

Final 

concentration 

(mg/mL) 

Injected amount 

(constant Vinj=10 

µL) 

40 mg/mL 1:80 from 40 mg/mL 0.5 5.000 

 1:1.25 from 0.5 mg/mL 0.4 4.000 

 1: 2 from 0.5 mg/mL 0.25 2.500 

 1:2 from 0.25 mg/mL 0.125 1.250 

 1:5 from 0.5 mg/mL 0.1 1.000 

 1:3 from 0.1 mg/mL 0.0334 0.334 

 

The elution profiles of the different mAb3 sample amounts are reported in Figure 6. 

As the sample amount is diminished, the peaks become more symmetric (below 2.5 

µg) and the ratio between the monomer and the dimer peak height increases (from 7 

to 12.5).  

 

 

Figure 7 – HF5-FLD separation profiles of different amounts of mAb3, (a) above 1µg and (b) below 

1µg 

 

Figure 6b reports the separation profiles of sample amounts below 1 µg of mAb3 

sample. The dimer peak cannot be discriminated from the baseline if the injected 

mAb3 amount is too low (below 0.16 µg). 

The calibration curve, which correlates the intensity of the fluorescence signal and the 

sample concentration, was traced by plotting the mAb3 dimer peak height against 

the corresponding injected (total) sample amount and is reported in Figure 7, along 

with the separation performance parameters.  
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Figure 8 – (a) Calibration curve for the mAb3 dimer peak and (b) separation performance 

parameters, including the dimer peak height values used for the calibration curve 

 

Once the linear relationship was established, the LoD and LoQ for the mAb3 dimer 

were calculated and the results are reported in Table 3. 

 

Table 3 - LoD and LoQ determination of mAb3 aggregates 

Equation x1 (µg) x2 (µg) 

LoD = y1 = 0.0266 x1 – 0.0039 0.404  

LoQ = y2 = 0.0266 x2 – 0.0039  1.007 

Where: 

LoD = 3 × LoB = 0.006871 L.U. (y1) 

LoQ = 10 × LoB = 0.022903 L.U. (y2) 

 

The LoQ and LoD values reported in Table 3 refer to the mAb3 injected amount 

required for the dimer to the distinguished from the instrumental noise (0.404 µg) 

and the mAb3 amount required for the dimer to be quantified (1.007µg). When 1 µg 

of mAb3 was injected, the dimer represented 13.16% of the total amount (Table in 

Figure 7b), therefore, the smallest quantifiable dimer amount was 132 ng.  

Following the same procedure, the smallest dimer amount that can be detected by 

the FLD detector was found to be 47.86 ng, representing 11.82% of the mAb3 injected 

amount. 
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4.1.5.5. ADVANTAGES OF MINIATURIZATION: UV SIGNAL SENSIBILITY BOOST 

WHEN EMPLOYING A HOLLOW FIBER WITH A SMALLER INNER DIAMETER 

HF5 – UV METHOD FOR THE SEPARATION OF mAb2  

STUDY PERFORMED IN COLLABORATION WITH WYATT TECHNOLOGY EUROPE 

(DERNBACH, GERMANY) 

 

As discussed in sub-chapter 3.2.1.1, the Lambert-Beer law applied to flow systems 

(Equation 2) shows how the sample absorbance (A) is inversely related to the 

volumetric flow rate value (F). This linear relationship can be affected by sample 

recovery. The area under the peak for each analyte at a specific wavelength is 

correlated to the sample recovery through the extinction coefficient (at the same 

wavelength) and, therefore, inversely proportional to the flow rate at which the 

analyte is eluted through the UV detection system. Especially when dealing with 

trace levels of protein aggregates, we can make the most of this relationship by 

decreasing as much as possible the channel (detector) flow rate. However, we need 

take into consideration the implications of a slower channel flow rate on band 

broadening, as reported in the mAb3 method development part of this study. 

A relatively simple solution which could resolve the band broadening issue, even at 

very low channel flow rates, is further miniaturization of the separation device. In 

theory, this solution can be implemented by simply replacing the standard hollow 

fiber membrane (PES, ID 800 µm) with a hollow fiber of the same material having a 

smaller inner diameter.  

A variety of hollow fiber materials, pore sizes corresponding to different MWCOs are 

available from Microdyn Nadir (the supplier for the hollow fibers which are 

compatible with the HF5 cartridge commercialized by Wyatt Technology Europe), 

suitable for different fields of application (environment, metal, textile, paper, food, 

pharmaceutical/biotechnology and chemical). However, the choice in terms of 

hollow fiber inner diameter (ID) is restricted to a narrow range, from 0.5 to 1.0 mm.  
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Therefore, the hollow fiber of choice for this sensibility study was the one with the 

smallest ID, with the following characteristics: type FUS 0353, PES material, ID 0.5 

mm, pore size corresponding to a MWCO of 30 kDa and 17 cm of length. One of the 

main concerns in replacing the standard hollow fiber membrane (with a larger ID, 0.8 

mm) was the efficacy of the sealing system. Fortunately, there were no visible leaks 

when the smaller ID hollow fiber replaced the standard one, therefore we proceeded 

with the study.  

The protein chosen for this study was a different IgG1 type antibody, mAb2. During 

previous studies on this particular antibody (described in Chapter 4.1.4), the 

monomeric form was very stable and only a very small percentage of this mAb2 was 

found as dimer (roughly 1.5%), also very stable under various environmental 

changes. Therefore, mAb2 was considered the optimal sample type for this study 

because it contained only trace amounts of aggregates and they were stable. 

A very low amount of mAb2 (0.15 µg, 0.3 µL of a 0.5 mg/mL mAb2 solution) was 

injected at all times and the separations were performed employing 50 mM 

phosphate buffer supplemented with 150 mM NaCl (ionic strength: 300 m) at a final 

pH of 7.2 as mobile phase. A UV/Vis variable wavelength detector set at 205 nm was 

coupled online with the HF5 module on the Eclipse® DUALTECTM FFF separation 

system as a concentration detector and to monitor the separation process.  

While the UV signal at 280 nm is specific for the proteins amino acidic side chains (in 

particular, only three of them are chromophores: tyrosine, phenylalanine and 

especially tryptophan) and can be employed to identify a particular protein and 

discriminate between proteins, in the far UV region (between 190 and 230 nm) the 

protein chains have a very low absorbance compared to the peptide bond. Therefore, 

the peptide bond absorbance at 205 nm can be considered an absolute means to 

determine the protein presence in a sample and, even though the protein absorbance 

maximum intensity is at 190 nm (at 205 nm is only half the value obtained at 190 nm), 

the 205 nm is the wavelength of choice because there is no oxygen absorbance 

interference [Aitken and Learmonth 2002]. 
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The HF5 method was adjusted accordingly to suit the new hollow fiber membrane 

characteristics: the sample runs were performed by injecting the same amount of 

sample (0.15 µg of mAb2) during focus, performed at 0.22 mL/min for 6 min (to 

compensate for the very low flow rate). After the completion of the focus step, the 

sample was eluted at a channel flow rate of 0.22 mL/min under the effect of different 

cross-flow rates (different filed strengths). The elution profiles obtained under 

different cross-flow rates are reported in Figure 8. 

 

 

Figure 9 – HF5 separation profiles of mAb2 at 205 nm, employing a hollow fiber with an ID of 0.5 

mm (a – f) and the separation performance parameters table (g) 

 

All separation profiles show that the dimer is not completely separated from the 

monomer. However, this is not a reflection on the performance, but rather a 

consequence of the proportion between the two mAb2 species. Since the monomer is 

present in a very large amount (98.5% of the sample), its peak is very broad 
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compared to the dimer peak. Consequently, the tail of the monomer peak partly 

covers the dimer peak. 

Applying an increasingly stronger field, the dimer peak is better resolved, shown by 

Figures 8b through 8f. The separation efficiency for the monomer increases 

proportionally with the cross-flow rate, while the efficiency for the dimer has an 

opposite trend. This can be explained by the fact that the dimer peak width increases 

proportionally with the field strength, but so does the retention level (evaluated 

through the retention time value, tR). An opposite trend was observed for the 

monomer peak width (Table g in Figure 8). 

As the cross-flow rate increases, the monomer peak remains symmetric, while the 

dimer peak becomes tailed under the effect of stronger fields. The peak symmetry 

was calculated only when the flow conditions allowed the separation of the dimer 

peak (Figures 8d – 8f). 

There were no noticeable trends of the resolution as the cross-flow rate was 

increased. The monomer-dimer resolution had an acceptable value at all times (1.25 = 

baseline separation > RS > 1 = acceptable). 

 

4.1.5.6. CONCLUSIONS 

 

This study provided proof that, when a miniaturized separation device like a very 

small ID hollow fiber (membrane) is coupled online with a very sensitive detection 

method, such as UV detection at 205 nm, trace amounts of aggregate levels can be 

successfully detected and quantified. When injecting only 150 ng of mAb2, an 

amount as low as 2.25 ng of dimer can be quantified, corresponding to 1.5% of the 

total protein amount.  

The proposed HF5-UV method is not only time-efficient, allowing the mAb2 

separation under 13 min, but the use of a smaller ID hollow fiber as separation device 

also enhances considerably the detection sensitivity.  
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In Figure 9, a comparison between the separation performance of the commercial 

hollow fiber membrane and the smaller ID hollow fiber is reported. The fluorescence 

detection at 340 nm was used as detection method, based on the optimistic results 

described previously in this sub-chapter, when the sample of choice was mAb3 

(which contained a larger amount of dimer).  

 

Figure 10 – HF5 separation profiles of mAb2. Comparison between hollow fiber separation devices: 

standard membrane (ID 0.8 mm, black) and smaller ID membrane (ID 0.5 mm, red). Advantages of 

miniaturization: sensitivity and separation efficiency 

 

From the dimer peak height ratio obtained under the flow conditions (corresponding 

to the two hollow fiber devices), we obtain a 4-fold sensitivity increase when the 

hollow fiber ID is smaller. Similarly, for the same hollow fiber smaller ID, we observe 

a 2-fold efficiency increase, thanks to the more advantageous retention time/peak 

width ratio. These results are in agreement with the conclusions drawn from Equation 

13 in sub-chapter 2.2.2 (Chapter 2). 
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4.1.6. HF5 – MALS AND SEC – MALS PERFORMANCE 

COMPARISON FOR THE SEPARATION OF IMMUNOGLOBULINS 

(IgGs).  

FFF SELECTIVITY FEATURE 

 

 

 

 

In this sub-chapter, the advantages of HF5 in terms of versatility (carrier solution 

composition, even similar to the antibody formulation buffer), lower sample dilution 

and FFF selectivity are the features which make it an ideal candidate as SEC 

orthogonal method for therapeutic proteins formulation characterization. 

The miniaturization of the separation device – thus requiring lower volumetric flow 

rates – allows less sample dilution during the separation, as well as enhanced 

detection, according to Lambert-Beer law applied to flow systems (Equation 2, sub-

chapter 3.2.1.1, Chapter 3). In addition, the gentle HF5 separation mechanism should 

be less disruptive of large protein aggregates held together by weak, non-covalent 

forces.  

Thanks to the virtually unlimited chromatographic space for the separation of 

protein aggregates, when coupled with an appropriate detection system, HF5 should 

be able to allow the separation of a wide range (sizes and MW) of antibody 

aggregates, therefore able to quantify them reliably. As shown in the previous sub-

chapter 4.1.5, LoD and LoQ for antibody high MW species are in the nanograms 

range when the peptide bond absorption in the far UV is employed as detection 



Chapter 4, Part 1, 4.1.6: HF5-MALS and SEC-MALS performance comparison (Immunoglobulins, IgGs) 

 

193 

 

method. 

Although from many points of view a very robust system, SEC presents some 

drawbacks, including (a) the trade-off between the dynamic range of analysis (size 

and MW) and the species resolution, (b) the potential loss of large aggregates 

(physically filtered out, or by adsorption/interaction to the column matrix), (c) the 

potential disruption of large or “sticky” aggregates and even (d) the formation of new 

aggregates during the separation [Arakawa et al. 2010]. Moreover, protein samples 

are often diluted into a buffer which is usually different from the final formulation 

buffer, therefore may experience instability issues during separation [Lowe et al. 

2011].  

The performance of HF5 online coupled with UV and MALS detection is discussed in 

comparison with SEC for the separation of the same antibody formulation. The 

definitions and formulas of all analytical parameters employed for the method 

validation tentative in this sub-chapter were previously discussed in sub-chapter 2.4 

(Chapter 2). Furthermore, the sample recovery and the reversibility of the self-

association process were monitored over time by UV detection, like discussed in sub-

chapter 4.1.3, showing the sample evolution and the metastable equilibrium between 

antibody species. 

HF5 high selectivity allowed the separation and identification of more antibody 

species than SEC, which is a fundamental feature for the characterization of complex 

protein mixtures.  

Last, but not least, HF5 versatility is highlighted when employing a carrier solution 

with very low ionic strength and a carrier solution whose composition is similar to 

the antibody formulation. 
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4.1.6.1. EXPERIMENTAL SETUP 

 

SEC and HF5 analyses were performed using an Agilent 1200 HPLC system (Agilent 

Technologies, Santa Clara, CA, USA) consisting in a degasser, an isocratic pump, an 

auto sampler and a variable wavelength UV detector, combined with an Eclipse® 

DUALTEC prototype separation system (Wyatt Technology Europe, Dernbach, 

Germany). The ChemStation version B.04.02 (Agilent Technologies) data system for 

Agilent instrumentation was used to set and control the instrumentation and for the 

computation of various separation parameters. The software package Wyatt Eclipse 

@ ChemStation version 3.5.02 (Wyatt Technology Europe) was used to set and 

control the FFF separation system. An Agilent 1100 UV-Vis variable wavelength 

detector operating at a wavelength of 280 nm was used as a concentration detector at 

all times. 

An 18-angle MALS detector model DAWN® HELEOSTM light scattering detector 

(Wyatt Technology Corporation, Santa Barbara, CA, USA), employing a laser 

operating at a wavelength of 658 nm, was used in all experiments. 

ASTRA® software version 5.3.2.14 (Wyatt Technology Corporation) was used to 

handle signals from the detectors (MALS and UV) and to compute the proteins 

absolute MW and concentration values.  

The SEC columns were a WTC-0305S (Wyatt SEC protein column for MALS, 5µm 

coated silica beads 300Å, size 7.8x300mm), operating in the MW range from 5.000 to 

1.250.000 Da (g/mol), and a Mab PAC SEC-1 (Thermo Scientific Dionex, 5µm coated 

silica beads 300Å, size 4.0x300 mm), operating in a MW range from 10.000 to 

1.000.000 Da. 

The hollow-fiber was a 17 cm long polyether-sulfone (PES) fiber, type FUS 0181 

available from Microdyn-Nadir (Wiesbaden, Germany) with the following 

characteristics: 0.8 mm ID, 1.3 mm OD and a molecular weight cut-off of 10 kDa, 

corresponding to an average pore size of 5 nm. 
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4.1.6.2. MATERIALS AND METHODS 

 

The carrier solution/mobile phase was phosphate buffered saline (PBS) prepared at 

three concentrations, with different ionic strength values. Their exact compositions 

are reported in Table 1. 

 

Table 1 – The carrier solutions compositions employed in this study 

Carrier Composition Comment 

A 
50 mM phosphate buffer + 300 mM NaCl, 

pH 6.8 (IS 450 mM) 

Typical high IS buffer for the separation 

of proteins, recommended for Dionex 

SEC column by the manufacturer 

B 
50 mM phosphate buffer + 50 mM NaCl, 

pH 6.8 (IS 200 mM) 

Typical buffer recommended for Wyatt 

SEC column by the manufacturer 

C 
10 mM phosphate buffer + 150 mM NaCl, 

pH 7.0 (IS 180 mM) 

low IS eluent for mAbs recommended 

or Dionex SEC column by the 

manufacturer 

C 
10 mM phosphate buffer + 25 mM NaCl,  

pH 7.0 (IS 55 mM) 
Employed only in HF5 

D 
42 mM phosphate buffer + 24 mM citrate 

buffer + 105.5 mM NaCl, pH 5.0 (IS 171.5 mM) 
Employed only in HF5 

 

The carrier solutions were prepared using MilliQ water purified by an Elix 3 UV 

Water Purification System (Millipore, Billerica, USA) and filtered through 0.2 µm 

pore membrane sterile filter units (Millipore), at all times. 

The sample employed in this study was an IgG2 type antibody, for simplicity called 

mAb4, prepared at a concentration of 0.329 mg/mL. An amount of 2 µg of mAb4 was 

injected at all times. 

When the Dionex SEC column was employed, the separations were performed at 0.2 

mL/min flow rate and when the WTC SEC column was used, mAb4 was eluted at 0.5 

mL/min flow rate. 

When the separations took place in HF5, mAb4 was injected during focus, performed 

at 0.85 mL/min focus flow rate for 4.5 min. The sample was focused at a distance of 

approximately 15% fiber length from the channel inlet and eluted afterwards at a 
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channel flow rate of 0.35 mL/min under the effect of a constant cross-flow rate of 0.35 

mL/min for 20 min. 

 

4.1.6.3. RESULTS 

 

Sample mAb4 was separated by SEC employing two different columns (Dionex SEC 

and WTC SEC) and the recommended carrier solutions for each SEC column. HF5 

separations were performed afterwards under identical separation conditions 

(employing the same buffers) and the separation performance of the two techniques 

was compared. The separation was monitored by UV detection at 280 nm 

(concentration detector) at all times and, by coupling online the Eclipse® 

DUALTECTM separation system with a DAWN® HELEOSTM (MALS) detector, the 

absolute molecular weight (MW) of all eluting species was calculated. A mAbs 

specific value of      
                   was used in all MW calculations. 

 

A. SEC AND HF5-UV-MALS  

IN VERY HIGH IONIC STRENGTH MOBILE PHASE (450 mM) 
 

First, mAb4 was injected in HF5 and the Dionex SEC column and separated 

employing the carrier A reported in Table 1 (IS =450 mM), which was also the 

recommended elution buffer for the SEC column. The separation profiles at 280 nm 

of mAb4, as well as the MW value corresponding to each eluting peak, are reported 

in Figure 1, (a) the SEC separation and (b) the HF5 separation. Figure 1a depicts the 

SEC-UV-MALS elution profile of mAb4 in carrier A. The UV absorption at 280 nm 

allows the detection of four peaks and their assignment is reported in Table 2, while 

an additional peak is observed only by light scattering. Since the protein 

concentration signal is lacking in correspondence of the peak marked as “HMWS” 

(high MW species), it is not possible to confirm that this peak actually corresponds to 

protein aggregates.   
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Figure 1 – UV-MALS separation profiles of mAb4 in carrier A employing (a) Dionex SEC column 

and (b) HF5 channel. 

 

Table 2 – Peak assignment for the SEC separation profile reported in Figure 1a. Absolute MW 

values derived from MALS measurements. 

Peak # MW (g/mol) MWHMWS/MW1mer  Peak assignment 

HMWS > 108  Polydisperse population 

1 850.000 5.8 Hexamer 

2 599.200 4.1 Tetramer 

3 304.500 2.1 Dimer 

4 146.400 1.0 Monomer 

 

Figure 1b shows the HF5-UV-MALS elution profile of mAb4. In this case, the UV 

signal at 280 detects six eluting species, whose assignment is reported in Table 3.  

 

Table 3 - Peak assignment for the HF5 separation profile reported in Figure 1b. Absolute MW 

values derived from MALS measurements 

Peak # MW (g/mol) MWHMWS/MW1mer Peak assignment 

1 143.500 1.0 Monomer 

2 244.500 1.7 Dimer 

3 397.800 2.8 Trimer 

4 587.300 4.1 Tetramer 

5 1.188.000 8.3 Octamer 

6 2.561.000  Polydisperse population 

 

Aside from the opposite elution order, several observations can be drawn from the 

comparison between SEC and HF5 results. The most obvious one is that HF5 allows 
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the separation of two additional mAb4 species (oligomers) that were not separated 

by SEC: the trimer and the octamer, while the mAb4 hexamer is only present in the 

SEC elution profile. Since mAb4 is a highly self-associated antibody, most likely 

induced by the storage conditions, it is possible that the dynamic dissociation of the 

HMWS into smaller MW species is so fast that its composition changed between the 

SEC and HF5 analysis. In addition, as demonstrated in sub-chapter 4.1.2 (Chapter 4), 

it is also very likely that SEC is not selective enough and the trimer as well as the 

octamer co-elute with other species.  

Selectivity is a fundamental parameter in the analyses of mixtures, because it is 

important for the separation technique to allow the separation and detection of all 

species present in the protein formulation. If selectivity is not high enough, the 

presence of several species can be overlooked, in which case the separation profile 

would not reflect the true sample composition. 

Just like for the protein mixture in sub-chapter 4.1.2, the SEC and HF5 selectivity the 

separation of mAb4 in carrier A was calculated as the MW-based selectivity (SMW), 

defined as the slope of the log (tR) against the corresponding log (MW) plot, where 

the retention times, as well as MW values, were derived from the experimental data. 

The slopes were calculated on the first four eluting species, where the relationship 

between the two logarithms is linear, and the selectivity plots are reported in Figure 

2, (a) for the SEC separation and (b) for the HF5 separation. 

 

 

Figure 2 – Selectivity plots obtained in carrier A for (a) SEC and (b) HF5. The numbers near the data 

points represent the peak numbers in their elution order. 

As expected, the HF5 selectivity for the separation of mAb4 is higher compared to 
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SEC, meaning that, at equal MW values, the difference in retention time is higher in 

HF5 when compared to SEC. This finding confirms the fact that SEC does not allow 

the separation / detection of mAb4 trimer and octamer resulting in them co-eluting 

with other species with similar MW value.  

For a more in-depth comparison between SEC and HF5, several specific separation 

parameters were calculated, like separation efficiency (N, number of plates) specific 

resolution (Rsp), HF5 retention level (RL) and its equivalent in SEC, the capacity factor 

(k), as well as selectivity (SMW) and their values are reported in Table 4. HMWS peak 

(SEC) was excluded from the calculations because it corresponds to a polydisperse 

population (non resolved species, whose protein nature was not confirmed). 

 

Table 4 - Separation performance parameters for SEC Dionex and HF5 separations in carrier A 

Device 
Peak 

# 

tR 

(min) 
Retention 

MW 

(g/mol) 

Efficiency 

(N) 

Resolution 

RS 

Specific 

resolution 

(Rsp) 

Selectivity 

SMW 

   k       

SEC 1 9.6 0.49 850.000 3542   

0.15 
 2 10.0 0.47 599.200 1964 0.48 3.2 

 3 10.9 0.42 304.500 2975 1.08 3.7 

 4 12.5 0.34 146.400 4649 2.05 6.4 

   RL       

HF5 1 8.3 21.8 143.500 556   

0.38 

 2 11.3 29.7 244.500 695 1.89 8.2 

 3 13.0 34.2 397.800 1184 1.09 5.2 

 4 14.2 37.4 587.300 1785 0.82 4.8 

 5 15.1 39.7 1.188.000 1878 0.67 2.2 

 6 16.0 42.1 2.561.000 2108 0.65 1.9 

 

The dead volume of the SEC column was calculated as the volume of the equivalent 

cylinder (4.0x300 mm) and was found to be 3.77 mL. The dead time (t0) at 0.2 mL/min 

flow rate was 18.85 min. The t0 was related to the retention time through the capacity 

factor, k (also called chromatographic partition coefficient) for the analytes separated 

by SEC, instead of the retention level, RL calculated for the analytes separated by 

HF5. The SEC capacity factors are in the expected range (0 < k < 1) and the HF5 

retention levels are in the range recommended by [Wahlund 2013] and [Litzen et al. 
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1993] (RL<50). 

As expected, efficiency is always higher for SEC because the band broadening in HF5 

(FFF in general) is higher. The specific resolution values (Rsp), which take into 

consideration the MW of the resolved species, are similar. Baseline resolution (Rs > 

1.25)  is achieved only for the first two peaks in HF5 and the last two peaks in SEC, 

while acceptable resolution is obtained between peaks 2 and 3 (Rs > 1), in both SEC 

and HF5. 

A net distinction in the favor of HF5 is made by selectivity: the selectivity of both 

small and large mAb4 oligomers is always higher for HF5. The SEC analysis is more 

time-efficient, but the downside is the reduced chromatographic space available for 

the separation of all mAb4 oligomers. Altogether, these observations illustrate the net 

advantages of employing the HF5 separation device for an accurate characterization 

of mAb4 instead of the SEC Dionex column. 

 

B. SEC AND HF5-UV-MALS  

IN MODERATE IONIC STRENGTH MOBILE PHASE (200 mM) 

 

Next, mAb4 was injected in HF5 and the WTC SEC column and separated employing 

the carrier B reported in Table 1 (IS =200 mM), which was also the recommended 

elution buffer for the SEC column. The separation profiles at 280 nm of mAb4, as 

well as the MW value corresponding to each eluting peak, are reported in Figure 3, 

(a) the SEC separation and (b) the HF5 separation. 

Figure 3a depicts the SEC-UV-MALS elution profile of mAb4 in carrier B: the UV 

absorption at 280 nm allows the detection of four peaks and their identification is 

reported in Table 5, while an additional peak is observed only by light scattering, 

similar to the one reported in Figure 1a. Not even in this case is possible to confirm 

that this peak actually corresponds to protein aggregates due to the lack of UV signal 

in this chromatographic region.   
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Figure 3 – UV-MALS separation profiles of mAb4 in carrier B employing (a) Dionex SEC column 

and (b) HF5 channel. 

 

Table 5 – Peak assignment for the SEC separation profile reported in Figure 3a. Absolute MW 

values derived from MALS measurements. 

Peak # MW (g/mol) MWHMWS/MW1mer Peak assignment 

HMWS > 107  Polydisperse population 

1 2.100.589 13.9 Polydisperse population 

2 856.500 5.7 Hexamer 

3 352.700 2.3 Dimer 

4 151.500 1.0 Monomer 

 

Figure 3b shows the HF5-UV-MALS elution profile of mAb4: in this case, the UV 

signal at 280 detects four eluting species, just like in SEC, whose assignment is 

reported in Table 6.  

 

Table 6 - Peak assignment for the HF5 separation profile reported in Figure 3b. Absolute MW 

values derived from MALS measurements 

Peak # MW (g/mol) MWHMWS/MW1mer Peak assignment 

1 138.500 1.0 Monomer 

2 282.300 2.0 Dimer 

3 492.600 3.6 Tetramer 

4 2.500.000 18.1 Polydisperse population 

 

Both SEC and HF5 allow the separation and detection of four eluting peaks, but the 

MW values derived from experimental data show that, based on the 

MWHMWS/MW1mer ratios, SEC and HF5 do not separate exactly the same species. This 



Chapter 4, Part 1, 4.1.6: HF5-MALS and SEC-MALS performance comparison (Immunoglobulins, IgGs) 

 

202 

 

is a known issue when comparing results obtained with techniques which employ 

different principles (in this case the separation mechanism) or when complementary 

tests are preformed on the same sample: there is no way of knowing which one 

provides the true sample composition. Nonetheless, due to the reversibility of the 

antibody self-association, it is conceivable that the sample composition may have 

changed between the SEC and HF5 analyses or that the SEC and HF5 profiles simply 

show different stages of the mAb4 oligomers dissociation process.  

Moreover, when the sample recovery is incomplete, due to preferential adsorbtion of 

aggregates, it leads to questionable accuracy on aggregate levels [Carpenter et al. 

2010]. For instance, in a recent publication [Gabrielson et al. 2007], where FFF and 

SV-AUC were proposed as orthogonal techniques when SEC failed to detect the 

HMWS of mAbs present at trace levels, all three techniques provided different 

results. SEC not only underestimated the aggregates levels, but modified the 

aggregates distribution. Moreover, certain oligomers have shown preferential 

adsorbtion to the SEC column matrix. 

Since it was not possible to determine which technique led to erroneous results, the 

separation performance of SEC and HF5 was compared using the values derived 

from experimental data. First, the MW-based selectivity of SEC and HF5 for the 

separation of mAb4 in carrier B was calculated from the experimental retention time 

and MW values. The slopes were calculated on the first three eluting species, where 

the relationship between the two logarithms is linear, and the selectivity plots are 

reported in Figure 4, (a) for the SEC separation and (b) for the HF5 separation. 

As expected, even in this case, the HF5 selectivity for the separation of mAb4 is 

higher compared to SEC, meaning that, at equal MW values, the difference in 

retention time is higher in HF5 when compared to SEC. In order to compare the SEC 

and HF5 performance, the same specific separation parameters were calculated as for 

mAb4 separation by SEC and HF5 in carrier A and their values are reported in Table 

7. HMWS peak (SEC) was excluded from the calculations because of the polydisperse 

nature of the population (non resolved species).  
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Figure 4 – Selectivity plots obtained in carrier B for (a) SEC and (b) HF5. The numbers near the data 

points represent the peak numbers in their elution order. 

 

Table 7 – Separation performance parameters for SEC WTC and HF5 separations in carrier B 

Device 
Peak 

# 

tR 

(min) 
Retention 

MW 

(g/mol) 

Efficiency 

(N) 

Resolution 

RS 

Specific 

resolution 

(Rsp) 

Selectivity 

SMW 

   k       

SEC 1 12.6 0.56 2.100.589 5474   

0.13 
 2 13.0 0.55 856.500 3084 0.53 1.4 

 3 14.1 0.51 352.700 4661 1.23 3.2 

 4 16.2 0.43 151.500 7293 2.67 7.3 

   RL       

HF5 1 8.5 22.4 138.500 401   

0.34 
 2 11.3 29.7 282.300 615 1.60 5.2 

 3 13.0 34.2 492.600 1025 1.03 4.3 

 4 14.2 37.4 2.500.000 1302 0.74 1.0 

 

The dead volume of the SEC column was calculated as the volume of the equivalent 

cylinder (7.8x300 mm) and was found to be 14.33 mL. The calculated dead time (t0) at 

0.5 mL/min flow rate was 28.67 min. The t0 was related to the retention time through 

the capacity factor, k for the analytes separated by SEC, instead of the retention level, 

RL calculated for the analytes separated by HF5. 

The SEC WTC column offers higher analytes retention compared to the Dionex 

column (k factor in Tables 4 and 7). The retention levels obtained in HF5 in carrier B 

are similar to the values obtained in carrier A (Table 4) and are always in the 

recommended range (< 50).  

As expected, the efficiency in SEC is higher than in HF5 and the SEC WTC column 

offers an even higher efficiency compared to the Dionex column (Table 4) for the 
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separation on mAb4. The SEC WTC column is a little more selective than the Dionex 

column, as well (b closer to 0.1, b = 0.13 for WTC vs. b = 0.15 for Dionex).  

As in the previous case (carrier A), reported in section A of this sub-chapter, the 

specific resolution in SEC and HF5 is similar and the resolution is obtained at 

baseline (Rs > 1.25) for the first two peaks in HF5 and the last two peaks in SEC, while 

an acceptable resolution is obtained for peaks 2 and 3 in both SEC and HF5. 

Even in this case, selectivity is higher in HF5, which means that HF5 has a higher 

ability to distinguish mAb4 species with similar MW values. Since both SEC and HF5 

analyses require almost then same amount of time (20 min) and taking into 

consideration all the observations made on the performance parameters, there is a 

clear advantage into employing the HF5 device instead of the SEC WTC column. 

 

C. SEC AND HF5-UV-MALS 

 IN LOWER IONIC STRENGTH MOBILE PHASE (180 MM) 

 

Lastly, mAb4 was injected in HF5 and both SEC columns and separated employing 

carrier C reported in Table 1 (IS = 180 mM), which was also the recommended low IS 

elution buffer for the SEC Dionex column. The separation profiles at 280 nm of 

mAb4, as well as the MW value corresponding to each eluting peak, are reported in 

Figure 5, (a) the SEC separation employing the Dionex column, (b) SEC separation 

employing the WTC column and (b) the HF5 separation. 

All separation profiles depicted in Figure 5 show only three peaks detected by UV 

absorbance at 280 nm, while MALS detection allows the detection of additional 

HMWS, whose presence would have otherwise been neglected. However, in the 

absence of UV signal in correspondence of the light scattering peak, the protein 

nature of these aggregates cannot be confirmed. 
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Figure 5 - UV-MALS separation profiles of mAb4 in carrier C employing (a) Dionex SEC column, 

(b) WTC SEC column and (c) HF5 

 

The peaks assignments, based on the MW values calculated for each peak are 

reported in Table 8. The MW values derived from experimental data show that based 

on the MWHMWS/MW1mer ratios, SEC and HF5 do not separate exactly the same 

species.  

 

Table 8 – Peak assignment for the separation profiles reported in Figure 5. Absolute MW values 

derived from MALS measurements. 

Device Peak # MW (g/mol) MWHMWS/MW1mer Peak assignment 

SEC Dionex HMWS > 106  Polydisperse population 

(Figure 5a) 
1 370.300 2.3 Dimer 

2 158.200 1.0 Monomer 

SEC WTC HMWS > 106  Polydisperse population 

(Figure 5b) 

1 950.400 5.9 Hexamer 

2 459.400 2.8 Trimer 

3 262.600 1.7 Dimer 

4 159.400 1.0 Monomer 

HF5 1 149.800 1.0 Monomer 

(Figure 5c) 

2 353.900 2.4 Dimer 

3 752.400 5.0 Pentamer 

4 4.024.589 26.9 Polydisperse population 
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Since this issue was already discussed in sections A and B, it can be interpreted like: 

(a) changes in the mAb4 composition caused by the dynamic and spontaneous 

dissociation of HMWS into species with smaller MW or (b) the SEC separation 

changing the oligomers distribution by disrupting the aggregates (interactions with 

the column matrix), documented in literature or (c) both.  

Since it is not possible to determine the real cause of SEC and HF5 detecting different 

mAb4 species only based on UV-MALS data, it was considered appropriate to 

continue this study using the experimentally-derived value as such. Therefore, the 

MW-based selectivity of SEC and HF5 for the separation of mAb4 in carrier C was 

calculated from the experimental retention time and absolute MW values. The slope 

values corresponding to HF5 and SEC WTC were calculated on the first three eluting 

species, where the relationship between the two logarithms is linear and using only 

two points available for the SEC Dionex column. The selectivity plots are reported in 

Figure 6, (a) for the HF5 separation and (b) for the SEC separations. 

 

 

Figure 6 – Selectivity plots obtained in carrier C for (a) HF5 and (b) SEC. The numbers near the data 

points represent the peak numbers in their elution order. 

 

As expected, once more, the HF5 selectivity for the separation of mAb4 is higher 

compared to both SEC Dionex and SEC WTC corresponding values, indicating that 

HF5 can separate mAb4 species with smaller differences in MW. Small MW 

differences correspond to significant differences in retention time. In order to 

compare the SEC and HF5 performance, the same specific separation parameters 
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discussed in section A and B were calculated and their values are reported in Table 7.  

The dead volumes of the SEC columns were calculated in sections A and B:  a dead 

volume of 14.3 mL and a t0 of 28.7 min for the SEC WTC column and a dead volume 

of 3.8 mL and a t0 of 18.9 min for the SEC Dionex column. The t0 was related 

afterwards to the retention time through the capacity factor, k for the analytes 

separated by SEC, instead of the retention level, RL calculated for the analytes 

separated by HF5. 

Table 9 – Separation performance parameters for SEC WTC and HF5 separations in carrier C 

Device 
Peak 

# 

tR 

(min) 
Retention 

MW 

(g/mol) 

Efficiency 

(N) 

Resolution 

RS 

Specific 

resolution 

(Rsp) 

Selectivity 

SMW 

   k       

SEC 

Dionex 

1 10.8 0.43 370.300 4808   
0.16 

2 12.4 0.34 158.200 1682 0.55 1.5 

   k      

SEC  

WTC 

1 12.6 0.56 950.400 5327   

0.21 
2 13.0 0.55 459.400 3261 0.56 1.8 

3 14.1 0.51 262.600 4770 1.25 5.1 

4 16.2 0.43 159.400 7822 2.69 12.4 

   RL      

HF5 

1 8.3 21.8 149.800 406   

0.25 
2 10.8 28.4 353.900 840 1.56 4.2 

3 12.5 32.9 752.400 958 1.10 3.4 

4 13.6 35.8 4.024.589 616 0.60 0.8 

 

Even at low ionic strength, the SEC WTC column offers higher analytes retention 

compared to the Dionex column and the RL obtained in HF5 employing carrier C are 

similar to the values obtained in other carriers  (carrier A, Table 4 and carrier B, Table 

7), always in the recommended range (< 50). 

As expected, the efficiency in SEC is higher than in HF5 and the SEC WTC column 

offers, once more, an even higher efficiency compared to the Dionex column for the 

separation on mAb4.   

As already observe din sections A and B, the Rsp in SEC and HF5 is similar and the 

resolution is obtained at baseline (Rs > 1.25) for the first two peaks in HF5 and the 

last three peaks in SEC, while the resolution in SEC Dionex is very low. 
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Once again, selectivity is higher in HF5 compared to SEC, which means that HF5 has 

a higher ability to distinguish mAb4 species with close MW values. Considering that 

both SEC WTE and HF5 analyses require almost then same amount of time (20 min) 

and taking into consideration all the observations made on the performance 

parameters, there is a net advantage into employing the HF5 device instead any of 

the SEC columns for the separation of mAb4. The selectivity of the SEC Dionex 

column does not change significantly when decreasing the ionic strength of the 

carrier (b = 0.16 at low IS vs. b = 0.15 at very high IS), thus demonstrating the 

robustness of the Dionex SEC column, while the SEC WTC column is the least 

selective among all separation devices (b = 0.21 at low IS vs. b = 0.13 at very high IS) 

in the low ionic strength buffer. 

 

D. SAMPLE RECOVERY AND mAb4 SELF – DISSOCIATION  

DURING THE STUDY 

 

The mAb4 recovery was calculated as the total area under peak for each 

experimental condition (carrier solutions A, B and C) and separating device (HF5, 

SEC WTC and SEC Dionex) and the results are reported in Figure 7. The highest area 

under the peak was associated to a complete (100%) sample recovery and all the 

other recovery values were calculated as relative to it. 

The self-dissociation of mAb4 HMWS was monitored over 8 working days, which 

corresponded to the duration of the study presented in this sub-chapter, by 

calculating the under each eluting peak. In addition, the disaggregation phenomenon 

is displayed as % distribution of the mAb4 species over time (color coded in Figure 

7).  

As expected, the highest sample recovery is obtained employing the SEC Dionex 

column in carrier A, since it contains the highest amount of salt (NaCl). Nonetheless, 

even at low IS (carrier C), the SEC Dionex column offers the highest mAb4 recovery. 

Under all experimental conditions and employing different separation devices, the 
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mAb4 recovery is always above 93%. 

 

 

Figure 7 – Sample recovery and mAb4 species distribution (%) by SEC and HF5 

 

The self-dissociation of mAb4 is a spontaneous phenomenon (dynamic), as seen for 

mAb1 in sub-chapter 4.1.3 (Chapter 4). It can be somewhat slowed down by storing 

the sample at 4°C, but not entirely stopped. Figure 7 shows that mAb4 oligomers co-

exist with the monomer and, at room temperature, the trend of their dynamic 

equilibrium is shifted towards their dissociation into monomer.  

The mAb4 conversion was monitored even after the SEC-HF5 comparison study was 

completed, by injecting the same mAb4 amount and separating by HF5 for the next 

few days and employing carrier solutions D and E. The mAb4 oligomers conversion 

into smaller MW species (usually monomer) is reported din Figure 8. 

 

Figure 8 shows the tendency of the oligomers to dissociate into monomer as an 

increase in the monomer % (Area 1) and a simultaneous decrease in the % of the 

higher order oligomers (Areas 2-6). This conversion is faster in the beginning and 

slows down as the time passes. Figure 8 also shows the fact that HF5 at 97.5 hours 

allows the separation of more species than the previous SEC separation (SEC WTC at 

96.0 hours), confirming the gentle separation mechanism of FFF. It is very likely that 

the SEC separation changed the aggregates % by disrupting high order oligomeric 

species through interactions with the column matrix. 
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Figure 8 - mAb4 oligomers conversion into smaller MW species over 7 days. Carrier solutions 

indicated by letters A – E. 

 

   E. HF5-UV-MALS IN LOWER IONIC STRENGTH MOBILE PHASES:  

CARRIER D (55 MM) AND CARRIER E (171.5 MM) 
 

Lastly, after the SEC-HF5 comparison was completed, HF5 was employed for the 

separation of mAb4 in low (E) and very low (D) ionic strength carrier solutions, to 

demonstrate the versatility of the technique residing in the wide choice of carrier 

solutions.  

The exact composition of the mobile phases was reported in Table 1. The mAb4 

sample was the same one used during the SEC-HF5 comparison study, therefore in 

an advanced stage of self-dissociation of the high order oligomers.   

The HF5 separation profiles at 280 nm of mAb4, as well as the MW value 

corresponding to each eluting peak, are reported in Figure 9, (a) in carrier D and (b) 

in carrier E. 

 

 

Figure 9 – HF5-UV-MALS separation profiles of mAb4 in (a) carrier D and (b) carrier E. 
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As expected, the separation profiles in Figure 9a and 9b show the separation of only 

3 and, respectively 2 mAb4 species. The exact MW values, as well as the peaks 

assignment are reported in Table 10. The values reported in Table 10 confirm that 

peaks 1 and 2 in Figures 9 correspond to mAb4 monomer and respectively, mAb4 

dimer.   

A third peak, corresponding to a polydisperse population of mAb4, with an average 

MW between the trimer and the tetramer is observed only in Figure 9a. It is 

conceivable that, during the separation reported in Figure 9b, these HMWS have 

already dissociated into monomer, therefore they are no longer present at the time of 

the analysis. This explanation is supported by the oligomers % distribution in Figure 

8, which shows the increased levels of monomer when carrier E is employed (time: 

168.5 h) compared to the previous monomer % value obtained in carrier D (time: 

163.0 h). 

 

Table 10 – Peak assignment for the separation profiles reported in Figure 9. Absolute MW values 

derived from MALS measurements. 

Carrier Peak # MW (g/mol) MWHMWS/MW1mer Peak assignment 

D 1 153.400 1.0 Monomer 

(Figure 9a) 
2 315.300 2.1 Dimer 

3 534.000 3.5 Polydisperse population 

E 1 149.500 1.0 Monomer 

(Figure 9b) 2 355.600 2.4 Dimer / polydisperse  

 

Next, the MW-based HF5 selectivity for the separation of mAb4 in carrier D and E 

was calculated from the experimental retention time and MW values. The slopes 

were calculated on the all the available experimental points and the selectivity plots 

are reported in Figure 10. 

The selectivity values are very similar to the ones obtained in higher ionic strength, 

(reported in Tables 4, 7 and 9), therefore, a direct correlation between the ionic 

strength of the mobile phase and the HF5 selectivity could not be established based 

on this data. The HF5 selectivity remains high (around 0.3) and appears not to be 
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influenced by ionic strength.  

 

Figure 10 – HF5 selectivity plots obtained in carrier D and carrier E. The numbers near the data 

points represent the peak numbers in their elution order 

 

The same specific separation parameters discussed in section A, B and C were 

calculated for the HF5 separations in carriers D and E and their values are reported 

in Table 11. The void time, t0 was related to the retention time through the retention 

level, RL. 

Table 11 – Separation performance parameters for HF5 separations in carriers D and E 

Carrier 
Peak 

# 

tR 

(min) 
Retention 

MW 

(g/mol) 

Efficiency 

(N) 

Resolution 

RS 

Specific 

resolution 

(Rsp) 

Selectivity 

SMW 

   RL       

D 

1 7.1 17.8 153.400 471   
0.31 

2 8.9 22.3 315.300 994 1.42 4.5 

3 10.5 26.3 534.000 471 0.94 4.1  

   RL      

E 
1 6.9 17.3 149.500 930   

0.27 
2 8.8 21.9 355.600 480 1.46 3.9 

 

The retention levels, RL, as well as specific resolution values, Rsp obtained in HF5 in 

carriers D and E are similar to the values obtained in other carriers (carrier A, Table 4 

and carrier B, Table 7 and carrier C, Table 9), with RL always in the recommended 

range (< 50). Baseline or at least acceptable resolution among mAb4 species is always 

obtained in carriers D and E. 

As mentioned previously in this section, the selectivity values are high (around 0.3) 

and apparently not influenced by the carrier solution ionic strength. Efficiency values 
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are even higher than the ones previously reported for carriers A – C. 

 

4.1.6.4. CONCLUSIONS 

 

HF5 has proven to be a highly selective (average SMW = 0.3) separation tool for the 

characterization of mAb4, a representative protein formulation which contained high 

order oligomers in dynamic equilibrium with the monomer. As the time passed, this 

equilibrium shifted towards the monomer, therefore the oligomers dissociated into 

smaller MW species. Thanks to the gentle separation mechanism, HF5 online coupled 

with MALS detection was able to detect and quantify these changes in the mAb4 

composition more accurately than SEC. 

Even though the SEC separation is slightly faster, allowing the mAb4 separation in a 

short analysis time, it is very likely that some mAb4 species co-eluted with other 

species with similar MW value, therefore their presence was not detected. It is also 

very likely that, during the SEC separation, the loosely bound oligomers were 

disrupted, hence, the results obtained by SEC did not reflect the true mAb4 

composition.  

These two SEC issues (insufficient selectivity and changes in the sample composition 

caused by the separation mechanism / interactions with the column matrix) were 

overcome when HF5 was employed, thanks to the gentle separation mechanism 

(since the retention is achieved by applying an external field a not by the sample 

passing through a sieving matrix) and to the high HF5 selectivity, which allowed the 

separation and detection of HMWS present at trace levels.  

Both SEC and HF5 provided a good sample recovery and the mAb4 oligomers 

dynamic dissociation was monitored over 7 days, providing valuable information 

regarding the spontaneous changes in the sample composition which were not 

necessarily related to the separation technique. Any separation technique 

intrinsically changes the sample composition, but the fact that we were able to 



Chapter 4, Part 1, 4.1.6: HF5-MALS and SEC-MALS performance comparison (Immunoglobulins, IgGs) 

 

214 

 

monitor these changes reflects the transient nature of these aggregates and the fact 

that these aggregates are, most likely, metastable higher order oligomeric species, as 

described by [Philo 2006, Philo and Arakawa 2009]. 
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4.1.7. HIGH REPRODUCIBILITY AND LOW DETECTION LIMIT 

HF5 – MALS METHOD FOR THE CHARACTERIZATION OF 

AGGREGATES IN PROTEIN FORMULATIONS. CASE STUDY: 

AVIDINOX® 

 

 

 

In sub-chapter, the short-term accelerated stability study of a modified protein, 

stored in lyophilized form (AvidinOX®), was conducted by HF5 online coupled with 

UV and MALS detection.  

The rapid development of protein-based pharmaceuticals highlights the need for 

robust analytical methods to ensure their quality (purity and stability). Monoclonal 

antibodies and large proteins that have an increasing role in biopharmaceutical 

applications for their highly specific action and are often modified to enhance or 

modulate their activity or stability when used as drugs. Their biological activity and 

the stability are closely related to the preservation of their complex structure, which 

is often subjected to stresses (external factors), which can cause their degradation 

and/or lead to aggregation. 

Due to its ability to easily aggregate in solution, AvidinOX® is a model sample that 

gives the opportunity to demonstrate the various HF5 advantages (described in sub-

chapters 4.1.1 – 4.1.6) for the of study the aggregation process, for the size and MW 

characterization and for the quantification of the various type of aggregates during 

several storage conditions in a relatively short time. 
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The detailed description of the HF5 method development is discussed in the first 

part of this study, where the design of experiments approach (a 2x2 factorial design) 

was employed and a simple algorithm was built to help choose the optimal 

combination of flow conditions for AvidinOX® formulation separation. Criteria like 

resolution, peak symmetry and valley height between species are employed for the 

construction of the algorithm. 

The protein aggregates, present at trace levels, were successfully quantified and their 

MW values were calculated by MALS. This study also highlighted the 

miniaturization advantages regarding the decreased limit of detection of AvidinOX® 

(protein) aggregates and the HF5 versatility regarding the carrier solution 

composition (the possibility of working in denaturing vs. native mobile phase) that 

made possible the distinction and quantification of different types of protein 

aggregates (covalent vs. non-covalent). 

The self-association process between units of an oxidized protein (AvidinOX®, each 

64 kDa unit is actually a very stable tetramer, therefore made of 4x16 kDa sub-units), 

which have (most likely) suffered a conformational change due to chemical 

instability, and/or promoted by the presence of degradation products, was 

monitored by HF5-UV-MALS. 

The definitions and formulas of all analytical parameters employed in this study 

were previously discussed in sub-chapter 2.4 (Chapter2). 
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4.1.7.1. EXPERIMENTAL SETUP 

 

HF5 was performed using an Agilent 1200 HPLC system (Agilent Technologies, 

Santa Clara, CA, USA) consisting in a degasser, an isocratic pump, an auto sampler 

and a variable wavelength UV detector, combined with an Eclipse® DUALTECTM 

FFF separation system (Wyatt Technology Europe, Dernbach, Germany). The 

ChemStation version B.04.03 [87] software for Agilent instrumentation (Agilent 

Technologies) was used to set and control the instrumentation and for the 

computation of various separation parameters. The software package Wyatt Eclipse 

@ ChemStation version 4.02 (Wyatt Technology Europe) was used to manage the FFF 

separation system. 

The hollow fiber was a 17 cm long polyether-sulfone (PES) fiber, type FUS 0181 

available from Microdyn-Nadir (Wiesbaden, Germany) with the following 

characteristics: 0.8 mm ID, 1.3 mm OD, and 10 kDa MWCO, corresponding to an 

average pore diameter of 5 nm.  

An 18-angle multi angle light scattering (MALS) detector model DAWN® HELEOSTM 

(Wyatt Technology Corporation, Santa Barbara, CA, USA) operating at a wavelength 

of 658 nm was used to measure the absolute MW of proteins in solution. An UV 

detector operating at 280 nm was used as concentration detector. ASTRA® software 

version 5.3.2.14 (Wyatt Technology Corporation) was used to handle signals from the 

detectors (MALS, and UV), to compute the protein MW values and to quantify the 

aggregate levels. 

 

4.1.7.2. SAMPLES AND REAGENTS 

 

AvidinOX®  (produced by Sigma Tau) is an oxidized form of avidin and indicated 

by its manufacturer as a ”pre-targeting receptor” for drug delivery in cancer, widely 

used in vitro for its capacity to bind biotin. However, due to its short residence in  



Chapter 4, Part1, 4.1.7. HF5-UV-MALS for the characterization of aggregates in protein formulations  

Case study: AvidinOX®  

219 
 

 

blood and tissues, in vivo use of avidin is limited to therapeutic treatments where the 

radiolabelled biotin or its derivatives must be rapidly eliminated from the 

circulation. AvidinOX® is obtained by 4-hydroxyazobenzene-2′-carboxylic acid-

assisted sodium periodate oxidation. Its synthesis method generates aldehyde 

groups from avidin carbohydrates, sparing biotin-binding sites from inactivation 

[Reschiglian et al. 2013].  

AvidinOX® binds cellular and interstitial protein amino groups through Schiff bases, 

in both normal and neoplastic tissues, resulting in a tissue half-life of 2weeks, 

compared with 2 h of native avidin. AvidinOX® preserves the native structure of 

avidin, consisting in four identical subunits (homotetramer) of 16 kDa and high 

affinity and specificity for biotin. Nonetheless, as a consequence of the chemical 

modifications that lead to Schiff base formations, in solution at neutral pH, the 

protein easily tends to aggregate, thus it is stored in lyophilized conditions [Santis et 

al. 2010, Petronzelli et al. 2011]. 

 

Sodium chloride (NaCl), sodium acetate and urea were acquired from Sigma Aldrich 

Co. (St. Luis, MO, USA).  Lyophilized AvidinOX® vials, supplied by Sigma-Tau, were 

reconstituted with ultrapure water to a final concentration of 3 mg/mL of protein in 

formulation buffer (mannitol 3 mg/mL, 0.067 M Sodium Acetate, pH 5.3). On one 

occasion, AvidinOX® was reconstituted in 4 M urea solution to the same final 

concentration, 3 mg/mL. Samples were injected immediately after preparation and 

after 3 h of storage at room temperature and 4°C or after 24 hours of storage at room 

temperature and 4°C.  
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4.1.7.3. RESULTS AND DISCUSSION 

 

A. DESIGN OF EXPERIMENTS (DOE) APPLIED TO HF5 METHOD DEVELOPMENT. 

SIMPLE ALGORITHM PROPOSED TO DETERMINE THE OPTIMAL SEPARATION 

METHOD, UNDER DIFFERENT EXPERIMENTAL CONDITIONS. CASE STUDY: 

AVIDINOX® FORMULATION. 
 

A 2x2 factorial design was employed during the HF5 method development. Two of 

the most important parameters that have great implications on the separation 

mechanism were considered as factors in the factorial design: the channel flow rate, vc 

and the cross-flow rate, vx. Each of them had two levels: a high value (+) and a low 

value (-), resulting in a total of 4 initial combinations. The flow rate values used for 

the 4 combinations are reported in Table 1.  

Table 1 - Factorial design for the HF5 method development, part 1 

Area vc 

(mL/min) 

Variable 

1 

vx 

(mL/min) 

Variable 

2 

Combination 

A 0.2 - 0.35 - - -  

B 0.2 - 0.85 + - + 

C 0.4 + 0.35 - + - 

D 0.4 + 0.85 + + +  

 

Taking into account the manufacturer’s (Wyatt Technology Europe) 

recommendations regarding the flow rates that can be achieved during a typical HF5 

run under optimal conditions with Eclipse® DUALTECTM (0.1 – 1.0 mL/min for the 

cross flow rate and 0.1 – 0.5 mL/min for the channel flow rate), the instrumental 

operational range was divided into 4 initial areas and a combination between the two 

factors was placed inside of each one (see Figure 1). 

Figure 1 depicts the approach used for the HF5 method development of AvidinOX®, 

considering also the MW of the protein (64 kDa): the instrument operational range 

was sliced into 4 sections and a flow rates combination was chosen inside each one. 
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Figure 1 – HF5 operational limits and flow rate combinations for the experimental design 

 

The experiments were performed following the order illustrated in Table 1. For each 

experiment, an amount of 9 µg of AvidinOX® was injected (3 µL of a 3 mg/mL 

solution) and separated in a carrier solution very similar to the protein’s formulation 

buffer: 50 mM acetate buffer supplemented with 100 mM NaCl (total ionic strength 

150 mM), at pH 5.3. A second mobile phase was employed to separate AvidinOX®, 

whose composition was identical to the first one, but supplemented with 4M urea, 

from this point forward called “denaturing carrier solution”. 

The focus flow rate (0.85 mL/min) and the focus time (3 min) were set constant for all 

experiments within the Eclipse method. The total elution time was set at 22 min 

(considered sufficient for all the species of interest to elute), followed by a 2 minutes 

field release to avoid possible sample carry over. 

The HF5 elution profiles at 280 nm are reported in Figure 2, for both non-denaturing 

and denaturing separation conditions. Each flow rates combination (A-D) allows the 

separations of at least two AvidinOX® oligomers. As expected, the retention times of 

the same species increase when the separation is performed under denaturing 

conditions, because of the urea 4 M solution viscosity (η/η0 = 1.2, therefore     

tR,urea/tR,water = 1.2). 
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Figure 2 – HF5 separation profiles at 280 nm obtained under non-denaturing and denaturing 

conditions applying flow conditions A, B, C and D. 

 

The separation was monitored by UV detection at 280 nm and the following 

separation parameters were calculated in order to choose the best out of the 4 

combinations: resolution, peak symmetry and valley height between peaks (expressed as % 

of the smallest separated peak) and the values are reported in Table 2. 

 

Table 2 – Separation performance parameters: resolution, peak symmetry and valley height 

between first and second peak (part 1) 

Mobile phase Area Resolution 
Monomer 

symmetry 

Valley height as % of the 

smallest peak 

Non denaturing A (- -) 0.94 1.02 58.8 

 B (- +) 0.82 1.77 58.8 

 C (+ - ) 0.85 1.03 94.4 

 D (+ +) 0.79 2.19 56.2 

Denaturing A (- -) 1.07 1.18 35.2 

 B (- +) 0.89 1.52 50.0 

 C (+ - ) 0.89 1.07 66.6 

 D (+ +) 0.97 1.91 43.4 

 

The best combination was found to be A, for both denaturing and non-denaturing 

separation conditions, not only based on the values corresponding to these 

separation parameters, but after careful observation of the UV elution profiles and 

after making sure that the values actually reflected the best separation conditions.  

Flow rates combination A was further explored to narrow down to the most suitable 
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separation method for the AvidinOX® samples. The same 2x2 factorial design 

approach was used, but with different flow rate values (reported in Table 3) – at the 

border with the other areas (Figure 1). The same sample amount and volume were 

separated and the same carrier solutions were employed. 

 

Table 3 - Factorial design for the HF5 method development, part 2 

Area vc 

(mL/min) 

Variable 

1 

vx 

(mL/min) 

Variable 

2 

Combination 

A 0.2 - 0.35 - - -  

A1 0.2 - 0.55 + - + 

A2 0.35 + 0.35 - + - 

A3 0.35 + 0.55 + + +  
 

The separation parameters values obtained from experiments involving areas A, A1, 

A2 and A3 are summarized in Table 4.  

 

Table 4 – HF5 performance parameters: resolution, peak symmetry and valley height between first 

and second peak (part 2) 

Mobile phase Area Resolution 
Monomer 

symmetry 

Valley height as % of the 

smallest peak 

Non denaturing A (- -) 0.94 1.02 58.8 

 A1 (- +) 1.15 1.36 31.5 

 A2 (+ -) 1.11 1.5 33.3 

 A3 (+ +) 0.89 1.22 55.5 

Denaturing A (- -) 1.07 1.18 35.2 

 A1 (- +) 1.28 1.37 33.3 

 A2 (+ -) 1.24 1.63 26.3 

 A3 (+ +) 1.14 1.25 37.5 

 

In order to facilitate data interpretation, the monomer symmetry value was plotted 

against the corresponding monomer-dimer resolution for each flow condition, under 

both non-denaturing (Figure 3a) and denaturing separation conditions (Figure 3b). 

In Figure 3, the acceptable resolution value (1) and peak symmetry optimal value (1) 

are highlighted as red lines. These are the same values which will be used in the 

objective approach to choosing the optimal separation flow rates combination of 
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AvidinOX®. 

 

 

Figure 3 – HF5 performance under (a) non-denaturing and (b) denaturing conditions. Symmetry 

plotted against corresponding resolution for each flow rates combination. The (resolution; 

symmetry) values are displayed under each flow condition 

 

 

Based on the computed separation parameters obtained with DOE approach, a 

simple algorithm is proposed in order help choose the optimal flow rates 

combination for the separation under both non-denaturing (Figure 4) and denaturing 

(Figure 5) separation conditions, represented as red dots in Figure 3. 

The first decisional block of the algorithm represents the resolution. A score is 

calculated for each flow rates combinations, represented by the difference between 

the calculated resolution (Rs) and 1, which corresponds to an acceblable separation 

(when 2% of peak ares overlapse).  

The positive resolution scores are tested according to the second decisional block, 

represented by the peak symmetry value, 1 representing a gausssian (symmetric 

peak). Negative values correspond to tailed peaks, while postive values correspond 

to fronted peaks.   

The negative resolution scores are tested again, and the ones that match the criteria 

(0.9<Rs<1) arrive to the symmetry decisional block, and tested following the above 

described procedure. 

A total score, represented by the sum between resolution score and symmetry score, is 

calculated for each value which passed the symmetry decisional block. The two 
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values closest to zero arrive to the third decisional block, which is represented by the 

valley height between the separated species and the other values are discarded. The 

flow rates combination with the smallest % is chosen as the optimal method. 

 

 

Figure 4 – Simple algorithm used to determine the optimal flow rates combination for the 

separation of AvidinOX® formulation under non-denaturing conditions 
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Figure 5 – Simple algorithm used to determine the optimal flow rates combination for the 

separation of AvidinOX® formulation under denaturing conditions 

 

The factorial experiment approach (2x2 in this case, but it could be extended to other 

factors/variables or levels) provides a simple and quick, yet effective way to “scan” 

the whole instrumental range in search for most suitable separation method for the 

sample of interest. The number of experiments depends on the considered factors 

and on the number of levels for each one.  

There are a few software meant for the design of experiments already commercially 

available that are able not only to generate the combinations (which becomes more 

difficult as the factors and/or the levels are more than 2) and to plan the order of 

experiments through randomization (to eliminate the succession of experiments as 

another variable to take into consideration), but are also able to calculate and 

represent visually the correlations between factors. 

Since one of the major drawbacks of FFF in general is having to take into 

consideration too many parameters when developing a method, without knowing 
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exactly how and if one parameter could influence another (or more), the factorial 

design approach could prove itself very useful to study the correlations between 

separation variables and their impact on the separation parameters.  

This approach could simplify immensely the method development step aimed for the 

separation of protein from their oligomeric species (i.e: antibodies), rendering FFF as 

separation method more “user-friendly”, not to mention time-saving, all the while 

remaining versatile. 

However, careful interpretation of the results is required, because the parameters 

values alone can be deceiving and could lead to an erroneous interpretation, if they 

are not supported by the confirmation from elution profiles.  

 

B. HF5 – MALS METHOD FOR THE STUDY OF AVIDINOX® FORMULATION 

STABILITY AND AS MEANS OF INVESTIGATING THE NATURE OF AVIDINOX® HIGH 

MOLECULAR WEIGHT SPECIES (HMWS) 
 

The HF5 methods that proved to be optimal for the separation of the AvidinOX® 

formulations were chosen applying the algorithms described in the previous section 

(marked with red dots in Figure 3) and are reported in Table 5. 

 

Table 5 – HF5 methods for the AvidinOX® stability study 

Mobile phase 
vc 

(mL/min) 

vfocus 

(mL/min) 

Focus time 

(min) 

vx 

(mL/min) 

Non-denaturing 0.2 
0.85 3 

0.55 

Denaturing 0.2 0.35 
 

AvidinOX® formulation’s stability was monitored over a series of injections at 

specific time intervals. More specifically, the variation of the protein oligomers levels 

was monitored by UV-MALS detection, immediately after the reconstitution (t0), after 

3h, at room temperature (t1) and after 24h, at 4°C (t2).  

AvidinOX® stability was investigated under both native and denaturing conditions, 

in order to determine the true nature of the protein aggregates. For each experiment, 
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an amount of 9 µg of AvidinOX® was injected (3 µL of a 3 mg/mL solution) and 

separated in a carrier solution very similar to the protein’s formulation buffer: 50 mM 

acetate buffer supplemented with 100 mM NaCl (total ionic strength 150 mM), at pH 

5.3.  

A denaturing mobile phase was also employed to separate AvidinOX®, which had a 

composition identical to the first one, but supplemented with 4M urea. Urea, as 

denaturant, has the ability to disrupt protein aggregates bound by weak interactions, 

such as hydrogen bonds or hydrophobic interactions.  

The HF5 elution profiles, as well as the oligomers levels are reported in Figure 6. The 

blue traces correspond to separation performed under native (non-denaturing) 

conditions, while the red traces were obtained under denaturing conditions. 

 

 

Figure 6 – HF5 separation profiles of AvidinOX® at 280 nm during the stability study (a) injected 

immediately after reconstitution; (b) injected after 3h of reconstitution and storage at room 

temperature and (c) injected after 24h of reconstitution and storage at 4°C 

 

Each HF5 separation method allows the elution of three bands of AvidinOX®. The 

retention time difference between the red and the blue traces at each time point can 

be explained by the different viscosity of the mobile phase. When 4 M urea was 

added to the mobile phase, a retention time delay was to be expected: since    

ηurea/ηwater = 1.2, the corresponding retention time delay will be directly related to the 

viscosity ratio according to HF5 retention theory (Equations 11 and 12 discussed in 
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sub-chapter 2.2.2, Chapter 2).  

From the retention time values, the peaks were assigned as follows: (1) AvidinOX® 

monomer, (2) AvidinOX® dimer and (3) AvidinOX® trimer. The oligomers levels 

have different trends under denaturing and non-denaturing separation conditions. 

Under native conditions, the trimer levels slightly increase over time, regardless of 

the storage temperature. Under denaturing conditions, the trimer levels decrease 

after 3h at room temperature, but increase when kept for 24h at 4°C. The dimer 

levels, under both non-denaturing and denaturing conditions, slightly decrease after 

3h of storage at room temperature, but increase after 24h at 4°C.  

The absolute MW values of the three elution bands were determined by online 

coupling Eclipse® DUALTECTM (HF5) with a DAWN® HELEOSTM (MALS detector) 

and using a UV concentration detector set at 280 nm. 

For each experiment, an amount of 9 µg of AvidinOX® was injected (3 µL of a 3 

mg/mL solution) and the aggregate levels, as well as their absolute MW was 

monitored as follows: at t0 (immediately after reconstitution) after 2h (kept at RT), 3h 

(kept at RT and at 4°C) and after 24h ( kept at 4°C). 

The elution profiles and the MW values corresponding to the three elution bands of 

AvidinOX® formulation kept at 4°C are reported in Figure 7 (a) separated in non-

denaturing mobile phase and (b) separated in denaturing mobile phase. 

 

 

Figure 7 - HF5-MALS elution profiles and MW corresponding to the three elution bands of 

AvidinOX® kept at 4°C after reconstitution 

With the passing of time, the elution bands tend to lose symmetry and the retention 
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times increase. The balance between the oligomers levels shifts slightly, as described 

before. The MW values were averaged over a series of 5 injections for each condition 

(5 x non-denaturing and 5 x denaturing) and the ratios MW oligomer/MW monomer were 

found as follows: MW peak 2/MW peak 1 = 2.04 ± 0.06 and MW peak 3/MW peak 1 = 4.37 ± 0.08. 

These absolute MW values prove that the third peak was erroneously assigned (from 

the retention time value) to the AvidinOX® trimer, when, in fact, its MW value 

corresponds to the tetramer. 

The elution profiles and the MW values corresponding to the three elution bands of 

AvidinOX® formulation stored at room temperature are reported in Figure 8 (a) 

separated in non-denaturing mobile phase and (b) separated in denaturing mobile 

phase. 

 

Figure 8 – HF5-UV-MALS elution profiles and MW corresponding to the three elution bands of 

AvidinOX® stored at room temperature after reconstitution 

 

When stored at room temperature after reconstitution, AvidinOX® elution bands 

have highly reproducible retention times up to 3h since sample reconstitution. The 

MW oligomer/MW monomer ratios are very similar to the ones already reported in the 

previous paragraph. 

The aggregates levels for all experimental conditions are reported in Table 6. The 

tetramer levels decrease when the separations are performed in denaturing mobile 

phase. This finding suggests the presence of two types of AvidinOX® aggregates: 

non-covalent, which dissociate into smaller units when urea 4 M is present and 

covalent, which are not disrupted by urea. The two types of aggregate levels are 

reported in Table 7. 
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Table 6 – Aggregates levels during the stability study of AvidinOX® formulation 

Time t (°C) Mobile phase Monomer (%) Dimer (%) Tetramer (%) 

reconstitution any Non denaturing 88.9 7.9 3.0 

  Denaturing 85.0 11.0 2.6 

2h RT Non denaturing 86.1 8.9 4.4 

  Denaturing 86.5 10.1 3.8 

3h RT Non denaturing 87.8 8.6 3.4 

  Denaturing 86.5 10.9 2.1 

3h 4°C Non denaturing 86.4 9.1 3.9 

  Denaturing 85.3 10.9 2.8 

24h 4°C Non denaturing 84.5 10.7 4.2 

  Denaturing 82.2 13.1 3.6 

 

The amount of covalent aggregates was calculated as the difference between the 

aggregate levels detected in non-denaturing and denaturing carrier solution and they 

are reported as % relative to the aggregates levels under non-denaturing conditions 

(100%). The dimer is the only oligomer whose levels increase under denaturing 

conditions. 

 

Table 7 – True nature of AvidinOX® hMWs 

Time t°C 

Tetramer 

covalent 

aggregates (%) 

Tetramer non-

covalent 

aggregates (%) 

Dimer % increase 

under denaturing 

conditions 

reconstitution any 86.7 13.3 28.2 

2h RT 86.4 13.6 11.9 

3h RT 61.8 38.2 21.1 

3h 4°C 71.8 28.2 16.5 

24h 4°C 85.7 14.3 18.3 

  

Table 7 reports that most of the aggregates in tetramer form are preserved under 

denaturing conditions, therefore stable to urea denaturation (most likely covalent), 

and the highest decrease occurs when the sample is stored at RT for 3h. The highest 

conversion rate occurs immediately after sample reconstitution, when 13.3% of 

tetramer dissociates into dimer units. The same phenomenon is observed in reverse, 

as a monomer dynamic association into dimer, occurring simultaneously with the 
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tetramer dissociation (4.4% of monomer converts into dimer).  

The same trend, though less obvious, of dynamic association (monomer into dimer) / 

dissociation (tetramer into dimer) can be noticed along all the time points. This 

suggests that all oligomers tend towards the dimer form, which appears to be the 

most stable of all oligomers, but this process can be slowed down over time, by 

keeping the sample at 4°C.  

In order to test the effectiveness of urea as denaturant and to understand whether the 

time that the denaturant spends in contact with the protein influences the aggregates 

levels, an AvidinOX® sample was reconstituted in 4M urea solution, separated 

under non-denaturing conditions after 3h and its elution profile was compared to the 

sample reconstituted in water. The comparison is reported in Figure 9. 

 

 

Figure 9 – AvidinOX® aggregates levels after 3h since sample reconstitution, storage at room 

temperature 

 

Figure 9 shows that the AvidinOX® oligomers levels do not change significantly 

when the sample reconstitution is performed in 4 M urea and the 2% decrease in 

monomer levels appears to be directly related to the increase in the dimer levels. This 

finding suggests that the presence of urea causes the denaturation of the monomeric 

units leading to the aggregation of conformationally-altered monomers into dimers 

(probably according to aggregation mechanism 2, sub-chapter 4.1). 
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C. LIMIT OF QUANTIFICATION (LOQ) AND LIMIT OF DETECTION (LOD) 

ESTIMATION FOR HIGH MW AGGREGATES IN AVIDINOX® FORMULATION             

BY HF5 – UV.  

 

The reproducibility of the HF5-UV method was tested under both native (non-

denaturing) and denaturing conditions, at different time intervals from sample 

reconstitution and at different sample storage temperatures. In particular, the 

reconstituted sample was separated at t0, after 3h (t1) stored at RT and after 24h (t2) 

stored at 4°C. Each separation was performed three times and the method 

repeatability was tested on the retention times of the three main bands. The retention 

time mean (average) value and the relative standard deviation (RSD%) calculated 

over three repeated runs are reported in Table 8.  

No significant differences can be observed between the retention time values of the 

same species, repeated under the same experimental conditions. The HF5 method is 

therefore highly repeatable (first level of precision is met).  

Table 8 – Average retention time values and standard deviation (n=3) for the three main elution 

bands in native (non-denaturing) and denaturing conditions. 

 Non denaturing Denaturing 

 
# Peak 

Average 

tR (min) 
RSD% # Peak 

Average 

tR (min) 
RSD% 

t0 1 8.7 4.6 1 10.6 7.5 

 2 11.8 5.1 2 14.0 19.3 

 3 14.2 5.6 3 16.3 7.4 

3h (t1), RT 1 8.8 8.0 1 10.6 0.9 

 2 11.7 7.7 2 14.0 11.4 

 3 13.9 4.3 3 17.0 4.7 

24h (t2), 4°C 1 9.0 2.2 1 10.2 2.9 

 2 12.0 5.8 2 13.5 3.7 

 3 14.3 11.9 3 15.9 3.1 

 

Next, the reliability on the detection method was evaluated. For this purpose, the 

signal from a fluorescence detector was included in the study, along with the UV 

signal which was always recorded. The fluorescence detector was set on an excitation 

wavelength of 280 nm and an emission wavelength of 340 nm, specific for proteins. 
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The UV signal was set, as usual, to record an absorbance wavelength of 280 nm. 

Since both detectors were coupled online with the Eclipse® DUALTECTM FFF 

separation system, their signals were recorded simultaneously. 

Aliquots of the same AvidinOX® sample were placed in three different vials and the 

same sample amount (9 µg) was injected in sequence. Figure 10 reports the elution 

profiles of AvidinOX® injected immediately after reconstitution (a and c) and after 

3h, samples stored at room temperature (b and d). 

 

 

Figure 10 – HF5 elution profiles of different aliquots of AvidinOX®, fluorescence emission at 340 

nm (a and b) and UV absorbance at 280 nm(c and d).  

 

Figures 10a and 10b show the variation of the monomer peak height and the table 

below shows the same significant variations in the area under the peak (either total 

or monomer) when the fluorescence signal is used to monitor AvidinOX® 

separation. Figures 10c and 10d show that the elution profiles are identical under 

either separation conditions and the table below confirms the repeatability of the 

measurements, since the RSD is only 2%. This findings confirm that the UV 

absorbance signal in much more reliable for the quantification of the aggregates 

levels in AvidinOX® formulation than the fluorescence emission signal (as discussed 

in sub-chapters 3.2.1.2 and 4.1.5., the fluorescence signal might also reflect changes in 

the molecular conformation of AvidinOX®, which disturb the linear relationship 

between protein concentration and fluorescence emission).  



Chapter 4, Part1, 4.1.7. HF5-UV-MALS for the characterization of aggregates in protein formulations  

Case study: AvidinOX®  

235 
 

Next, the Limit of Blank (LOB = meanblank + 1.645×STDEVblank) was determined over 10 

blank injections and was found to be 0.019 mAU. 

The limit of detection (LoD) and of quantification (LoQ) for dimer and tetramer were 

determined from the corresponding calibration curves obtained by injecting different 

amounts of AvidinOX® and separating by HF5-UV under non-denaturing conditions. 

LoD and LoQ were determined on samples injected immediately after the 

reconstitution, when the aggregates level was the lowest.  

The calibration curves were determined as dimer and tetramer height (expressed in 

mAU) plotted against the corresponding dimer and tetramer injected amount 

(expressed in µg). Since the sample recovery was considered complete and the 

injected amount was known at all times, the dimer amounts used in the calibration 

curves were estimated as % of the (total) injected amount.  The calibration curves and 

their equations are reported in Figure 11. 

 

 

Figure 11 – Calibration curves for the calculation of LoD and LoQ of AvidinOX® aggregates 

 

The limit of detection (LOD = 3 × LoB) and quantification (LoQ = 10 × LoB) are 

reported in Table 9, for both dimer and tetramer. 

The following oligomers distribution was determined at t0 under non-denaturing 

conditions: monomer (88.9%), dimer (7.9%) and tetramer (3.0%), previously reported 

in Table 6. Correlating this distribution with LoD and LoQ values from Table 9, the 

lowest AvidinOX® amount which needs to be injected in order for the dimer to be 

detected is 215 ng and 524.9 ng in order for the dimer to be quantified and, 

respectively, the lowest AvidinOX® amount which needs to be injected in order for 
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the tetramer to be detected is 489.7 ng and 1723.6 ng in order for the tetramer to be 

quantified. 

Table 9 – LoD and LoQ determination of AvidinOX® aggregates 

Aggregate type Equation x1 (ng) x2 (ng) 

Dimer LoD = y1 = 5,4046 x1 - 0,0351 16.99  

 LoQ = y2 = 5,4046 x2 - 0,0351  41.46 

Tetramer LoD = y1 = 3,5739 x1 + 0,0042 14.69  

 LoQ = y2 = 3,5739 x2 + 0,0042  51.71 

Where: 

LoD = 3 × LoB = 0.0567 mAU (y1) 

LoQ = 10 × LoB = 0.189 mAU (y2) 

 

 

4.1.7.4. CONCLUSIONS 

 

Since one of the major drawbacks of FFF, in general, is having to take into 

consideration too many parameters when developing a method, design of 

experiments (DOE) approach could simplify immensely the method development 

process aimed at the separation of (therapeutic) protein self-associated species 

(monomers and their oligomeric species, rendering FFF more “user-friendly”, not to 

mention time-saving and sample- customizable. A simple algorithm was successfully 

applied, which provided the optimal flow rates combination for the separation of 

AvidinOX® under both denaturing and non-denaturing conditions. 

The versatility of HF5 allowed the use of a denaturing mobile phase containing a 

high urea concentration and the online coupling of HF5 with MALS provided the 

accurate MW of AvidinOX® elution bands. The stability of the AvidinOX® 

formulation was monitored over time and under different sample storage conditions. 

Employing denaturing and non-denaturing carrier solutions, the true nature of the 

aggregates was established and most of the high MW aggregates were found to be 

urea-insoluble, therefore considered covalent.  

Lastly, the repeatability of the HF5 results was confirmed, meeting the first level of 
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precision and – after ascertaining the UV signal’s reliability as detection method – the 

LoD, as well as LoQ values, were determined for both dimer and tetramer. The 

developed HF5-UV-(MALS) methods are highly sensitive, able to detect and quantify 

trace levels of AvidinOX® aggregates and it is proven that they provide repeatable 

results.  

This study proves how, thanks to (a) the wide size range of separation and (b) the 

virtually infinite chromatographic space for the elution of aggregates, (c) the ability 

to analyze protein formulation under a variety of storage conditions and 

formulations and (d) the great versatility toward the choice of separation conditions 

(mobile phase composition, pH, additives) without loss of efficiency, HF5-UV-MALS 

could become the method of choice for the analysis of proteins formulations, where it 

can be invaluable in quantifying trace levels of high MW protein aggregates 

 

Note: parts B and C of this sub-chapter were published as [Reschiglian et al. 2013] 
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INTRODUCTION 

 

 SYNOPSIS: SENESCENCE 

 

Senescence (from the Latin word: “senescere”, meaning “to grow old”) or biological 

aging represents an intrinsic process occurring in all living organisms that consists in 

the age-related progressive deterioration of all physiological functions, loss of 

viability, increased vulnerability towards pathogens, reflecting changes at molecular 

and cellular level and ultimately leading to death. At both organism and cellular 

level, the ability to respond to stressors declines and the homeostatic imbalance, as 

well as the risk of aging-associated diseases increase – all hallmarks or aging. 

The factors that cause the development of cancer, neurodegenerative and 

cardiovascular diseases are all rooted in the natural biological aging process. 

Consequently, understanding the molecular mechanisms underlying aging is 

fundamental to understand many disease processes. For instance, the oxidation and 

nitration of intracellular proteins leading to the formation and accumulation of 

protein aggregates are suspected to be the culprits behind the loss of cellular function 

and the reduced ability of senescent animals to fight against physiological stresses 

[Squier 2001, Cannizzo et al. 2011] (and references therein).  

Since oxidatively modified proteins are thermodynamically unstable and assume 

partially unfolded tertiary structures prone to form aggregates, it is very likely that 

oxidized proteins are intermediates in the formation if amyloid fibrils. Therefore, 

identifying oxidatively sensitive protein targets, which may play a protective role (by 

to down-regulating the energy metabolism and, consequently, reducing the 

generation of reactive oxygen species, ROS) is of particular interest.  

Accordingly, regulating the rate of ROS generation, may enhance cellular 

maintenance and repair functions, which, in turn, have proven to enhance life-span 

and  diminish a host of age-related diseases [Squier 2001] (and reference therein). 
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SYNOPSIS: OXIDATIVE STRESS 

 

Inside any living organism, damaged cells are constantly being replaced and the 

proteins degraded to constituting AA and re-synthesized. The reactive oxygen species 

(ROS), such as hydrogen (H*), hydroxyl radical (OH*), transition metals (copper and 

iron), oxygen (O*and RO*), diatomic oxygen (O2*,HO2*, RO2*), and its superoxide 

(O2*-) [Cannizzo et al. 2011], highly reactive chemical species, are formed as a natural 

by-product of the normal metabolism of oxygen [Mirzaei and Regnier 2008] (and 

references therein). ROS are employed by the organism to fight against pathogens or 

to dispose of damaged cell components, thus, have important roles in cell signaling, 

homeostasis (maintaining the equilibrium inside the living organisms) and 

programmed cell death. Under normal circumstances, cells defend themselves from 

the damage caused by ROS through antioxidants like glutathione, vitamins A, C, and 

E, and flavonoids and enzymatic scavengers of ROS such as superoxide dismutase 

(SOD), catalase, and glutathione peroxide [Aiken et al. 2011] (and references therein), 

whose role is to prevent the unnecessary formation of ROS or to dispose of them 

before they can damage vital components of cells. ROS are present at very low levels 

and their damage is constantly repaired. Therefore, under normal circumstances, 

there is equilibrium between antioxidants and ROS levels, which makes it possible 

for the cells to be continuously renewed and disposed of [Bandyopadhyay et al. 1999] 

(and references therein).  

Nonetheless, following natural aging/senescence, the body gradually loses its ability 

to repair itself, due to the loss of equilibrium between the oxidizing species (ROS) 

and antioxidants, which is believed to be the main cause of biological aging [Imlay 

2003] (and references therein). This imbalance between the over-production (and 

action) of ROS and the reduced ability of the organism to readily dispose of the 

reactive intermediates or to repair the resulting damage is a condition called oxidative 

stress. The consequences of oxidative stress in the living organisms include toxicity 

induced by the production of peroxides and free radicals which damage cellular 
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components (proteins, lipids, and DNA). In addition, oxidative stress may disturb 

normal mechanisms of cellular signaling, since some ROS act as cellular messengers 

in redox signaling [Dare et al. 2014] (and references therein).  

Oxidative stress is believed to be the root cause of a plethora of pathologies, 

including cancer, Parkinson's disease, Alzheimer's disease, Huntington’s disease, 

atherosclerosis, heart failure, myocardial infarction, fragile X syndrome, Sickle Cell 

Disease, autism, and chronic fatigue syndrome [Rubinsztein et al. 2005, Patel and 

Chu 2011] (and references therein). 

Associated with an increased production of ROS and/or significantly less efficacious 

antioxidant defenses, the effects of oxidative stress depend upon the entity of these 

changes. For instance, cells are able to overcome small perturbations and regain their 

function, nonetheless, even moderate oxidation can trigger apoptosis (programmed 

cell death), while more intense stresses may cause necrosis and severe oxidative 

stress can cause cell death [Imlay 2003] (and references therein). 

 

A. REACTIVE OXYGEN SPECIES (ROS), OXIDATIVE STRESS AND 

SENESCENCE 
 

The ROS are employed by the immune system as lethal weapons against pathogens, 

therefore, the production of ROS (and reactive nitrogen species) is a central part of 

this mechanism of pathogens disposal. The non-specific action of these highly 

reactive oxidants is advantageous because it targets and damages the entire cell, 

therefore impeding the pathogen to escape [Imlay 2003] (and references therein). 

However, the production of ROS is a particularly destructive aspect of oxidative 

stress because, for instance, when reactive oxygen and nitrogen species overwhelm 

cellular antioxidants, it leads to oxidative damage to cellular proteins (and 

aggregation thereof) and impaired homeostasis. Furthermore, protein aggregation 

contributes to the formation of amyloid deposits that accumulate during biological 

aging [Squier 2001] (and references therein). 
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Due to their non-specific action, ROS (inescapable side-products of oxidative 

metabolism) can damage lipids, nucleic acids and proteins. More specifically, ROS-

mediated protein oxidation causes tertiary structural alterations (therefore loss or 

impairment of biological function) that promote protein aggregation and amyloid 

formation. The production of ROS roughly correlates with the life-span of living 

organisms, and is believed to represent a major determinant for the rate of aging and 

the development of numerous age-related diseases [Squier 2001] (and references 

therein). 

Although, even under normal conditions, the efficiency of antioxidant and repair 

mechanisms cannot avoid completely the oxidation reaction mediated by ROS, 

during aging, the cellular homeostatic machinery becomes progressively impaired, 

which, in turn, increases the vulnerability towards oxidative damage. Oxidative 

processes cause reversible or irreversible changes/damage to macromolecules and 

their accumulation is associated to senescence [Valle 2011] (and references therein). 

 

B. OXIDATIVE STRESS, SENESCENCE AND PROTEIN DAMAGE 

 

PROTEIN POST-TRANSLATIONAL MODIFICATIONS  

 

Protein oxidative modifications that occur during aging consist in post-translational 

modifications, which lead to altered stability and decreased function, observed in a 

variety of proteins isolated from senescent animals. Following oxidation, these 

proteins become conformationally unstable and prone to aggregation. Furthermore, 

it is highly probable that these oxidized proteins act as nucleation sites/intermediates 

in amyloid formation. The balance between protein oxidation and misfolding 

(leading to aggregation) and their degradation and repair (re-synthesis) will decide 

the aggregation extent. Thus, a decreased repair rate of damaged proteins and a 

consequent extended half-life of oxidized proteins in the cell, will promote 
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aggregation and amyloid fibril formation [Squier 2001] (and references therein).  

Oxidative stress-mediated protein modifications that occur during senescence 

include direct amino acid (AA) modifications by hydroxylation and formation of 

carbonyl derivatives (aldehyde and ketonic groups on AA side chains), protein 

nitrosylation, or indirect AA modifications by addition of peroxidated lipids or 

products from glycation and glycoxidation. Among these modifications, protein 

carbonylation is the most frequent and a true biomarker of aging (or oxidative stress 

presence, in general). More specifically, AA like lysine, arginine, threonine and proline 

residues undergo aging-related carbonylation more frequent than others [Kopito 

2000, Lindner and Demarez 2009, Scharf et al. 2013] (and references therein).  

Other post-translation modifications include (a) nitration, which occurs at tyrosine 

residues (several nitro-tyrosines have been detected in aging proteins, as well as in 

proteins implicated in neurodegenerative diseases) or by cystein-s-thiolation, which 

has also been implicated as a post-translational protein modification occurring in 

aging (induces loss or gain of function in different proteins) and (b) sulfoxidation of 

several AA and, among them, methionine is particularly susceptible to this 

modification resulting in loss of biological function and conformational alterations.  

Protein fragmentation, sub-unit dissociation, unfolding, and exposure of 

hydrophobic residues and aggregation, with an overall loss of function represent 

other consequences of protein degradation by oxidation during aging [David et al. 

2010] (and references therein).   

Therefore, protein aggregates are seen as an inherent part of aging and evidence 

points towards the primary AA sequence and the overall protein structure to play an 

important role in the tendency of the protein to form aggregates [Bandyopadhyay et 

al. 1999, Cannizzo et al. 2012] (and references therein). 
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CLEARANCE OF OXIDIZED PROTEINS AND FORMATION MECHANISM OF 

PROTEIN AGGREGATES: WHY DAMAGED PROTEINS AND AGGREGATES 

ACCUMULATE 

 

Senescence-related AA substitutions or post-translational modifications of specific 

AA and/or decreases in the function of chaperones or proteases can result in an 

increase in the fraction of misfolded and damaged proteins, a process associated with 

the formation of protein aggregates. Consequently, protein aggregates interfere with 

the biological activity of native proteins by disrupting cellular functions and act as 

nuclei for the aggregation of other unrelated proteins, overloading chaperones and 

proteases in a way that progressively increases the fraction of misfolded proteins in 

the cell [Squier 2001] (and references therein). 

The extent of production of oxidized species, and the level of oxidation are the two 

determinant factors for the clearance of oxidized proteins. When the oxidative 

damage is too extensive and irreversible, proteins are targeted for degradation [Kiffin 

et al. 2004] (and references therein). The main requirement for proteins to enter the 

narrow proteasome catalytic chamber is the proteasome protein unfolding capability. 

For instance, since a low oxidation extent still allows protein unfolding, mildly 

oxidized proteins are almost completely degraded by the proteasome system, while 

extensively oxidized proteins (often entangled in misfolded aggregates) cannot be 

unfolded for proteasome degradation [Kiffin et al. 2004] (and references therein). In 

this case, extensively damaged proteins will form an “inclusion-like” body named 

“aggresome”, which actively seizes insoluble proteins, will be transported to the late 

endosomes and lysosomes by macroautophagy [Kopito 2000]. 

Moreover, extracellular aggregates and aggregates from cells which were 

programmed to die (apoptotic) are engulfed by tissue resident macrophages 

(phagocytes) and dendritic cells. Normally, damaged biomolecules are degraded to 

their constitutive AA inside the endosomal tract by a series of acidic hydrolases. 

Nonetheless, when the proteins suffer extensive damage, oxidized protein, together 

with carbohydrates and lipids often form entangled aggregates, which polymerize as 
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lipofuscin-like aggregates, which are resistant to endosomal degradation. These 

endosomal-resistant aggregates can increase progressively over time by the addition 

of newly damaged molecules, and induce cytotoxic cell death [Kiffin et al. 2004, Patel 

and Chu 2011, Cannizzo et al. 2012] (and references therein). 

Amyloid fibrils formation occurs when protein aggregates form ordered filaments, 

and the underlying cause of a range of age-related disease (such as Alzheimer). 

Furthermore, amyloid fibrils are protease-resistant structures, therefore their 

formation is irreversible once initiated, behaving like nuclei for further aggregation 

[Squier 2001, Rubinsztein et al. 2005, Nixon 2013] (and references therein). 

Recent advances in the understanding of proteasome structure and mechanism of 

action during oxidative stress were discussed  by [Aiken et al. 2011], along with a 

visual description of how cells cope with oxidative stress through proteasome-

mediated degradation pathways. The oxidative stress-triggered cellular response is 

summarized as a flowchart, reported in Figure 1([Aiken et al. 2011]): 

 

 

Figure 1 – Oxidative stress-triggered cellular response. The flow chart details the production of ROS and the 

consequent cellular response: either the restoration of normal cellular homeostasis or apoptotic/necrotic cell 

death [Aiken et al. 2011] 
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One common feature of oxidative stress-induced protein aggregates is that they are 

supposed to have a higher MW and size than the individual protein components of 

which they are composed. Furthermore, protein fragmentation is another effect of 

ROS damage and it was shown that protein fragments also have aggregation 

propensity [Mirzaei and Regnier 2008] (and references therein). 

 

C. IMMUNOSENESCENCE, OXIDATIVE STRESS, PROTEIN 

DAMAGE AND ACCUMULATION OF PROTEIN AGGREGATES 
 

Immunosenescence represents the progressive deterioration of the immune system as 

a consequence of natural aging. It manifests through a reduced capacity to respond 

to pathogens, as well as reduced vaccination efficacy (declining long-term immune 

memory) and is believed to be a function of age of the living organism relative to 

their life expectancy [Scharf et al. 2013] (and references therein).   

There are two main biochemical mechanisms which relate immunosenescence to 

oxidative stress: (1) a decline in cellular functions consequent to protein, lipid and 

carbohydrate oxidative damage, and (2) cellular death subsequent to the progressive 

accumulation of oxidatively-damaged protein aggregates. As for any other aging 

cells inside the living organism, an increased amount of free radicals (ROS) was 

observed in the cells of the immune system. Consequently, innate immune responses 

(phagocytosis – dendritic cells, ROS production, and Toll Like Receptor functions) 

are generally compromised, as well as adaptive immune responses which are hampered 

by a decrease in the variety of the B and T immune cell repertoires,as well as their 

ability to clonally expand (proliferate from a common ancestor) following antigen 

stimulation. Furthermore, it was believed that endosomal accumulation of 

oxidatively-damaged proteins hinders the efficient processing of antigens and the 

macroautophagy-delivered degradation of proteins [Cannizzo et al. 2011] (and 

references therein).  

An aspect of immunosenescence which was unknown until not so long ago was 
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whether the aging-related oxidative stress compromised the biological function of dendritic 

cells (major players in the innate immune system). In this regard, [Cannizzo et al. 

2012] showed in a recent study the causality between the accumulation of oxidized 

products (damaged proteins and their aggregates) and the lack of efficacy of the  

immune response from dendritic cells, as well as an improvement in the adaptive 

immune system in recognizing antigens upon oxidative stress decrease, aspects 

which were not yet confirmed. 

Moreover, the study showed the accumulation of oxidatively damaged proteins in the 

dendritic cells from aging lymphatic organs. The accumulation of oxidatively-damaged 

proteins in the endosomes of aging dendritic cells was investigated, showing that 

accumulation of such protein aggregates was not possible due to the short life span 

of dendritic cells. Large protein aggregates accumulate only in non-dividing cells 

endosomal compartments (neurons, cardiomyocytes and endothelial cells) [Cannizzo 

et al. 2012] (and references therein). 

 

OXIDATIVE STRESS DAMAGE: PROTEIN CARBONYLATION 

 

As previously stated, protein carbonylation of AA residues is as hallmark and a true 

biomarker for the age-related protein post-translational modifications. Protein 

carbonyls result from the oxidation of AA residues, the most frequent targeted being 

arginine, lysine and proline. Protein carbonyls can also arise from reactions of the AA 

like lysine, cysteine, or histidine with unsaturated aldehydes, which develop during 

the peroxidation of polyunsaturated fatty acids or from the oxidation of advanced 

glycation end (AGE) products [Cannizzo et al. 2011] (and references therein).  

Typical post-translational protein modification associated with oxidative stress 

consists in the addition of carbonyl groups (aldehydes or ketones) to AA side chains. 

Semialdehyde carbonyls are mainly present on lysine, arginine and proline and 

represent the most abundant carbonyls observed in aging cells, while ketone 

carbonyls are mainly seen on histidine, proline, threonine and tryptophan residues 
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[Bandyopadhyay et al. 1999, Butterfield et al. 2012] (and references therein). 

Another post-translational oxidative modification, introduced by either α-amidation 

or following oxidation of the glutamyl side chain, is the oxidative AA side-chain 

cleavage. In addition, some of the degradation products of lipid oxidation can directly 

bind AA side chains (mainly cysteine, lysine and histidine) through a Michael 

addition or Schiff base formation. Glycation, the non enzymatic addition of sugar to 

AA side chains, is also increased during oxidative stress conditions, while glycation 

additions to amine groups are collectively referred to as Maillard reactions. 

Advanced End Glycation products (AGE) are generated through aldose groups of a 

mono or polysaccharide binding to the amine groups on proteins, mainly on a lysine 

side chain. Most AGE products are rather unstable and promote further 

rearrangements, referred to as Amadori reactions [Imlay 2003, Cannizzo et al. 2011, 

Grune et al. 2013] (and references therein). 

Another common modification following ROS-induced protein oxidation is cross-

linking. The two most common cross-linking reactions are: (1) the formation of 

disulfide bonds between two oxidized cysteins and (2) Schiff base formation between 

carbonyl groups on different AA [Ishii et al. 2007, Butterfield et al. 2012]. 

Protein carbonylation is an irreversible ROS-induced oxidative modification, which often 

leads loss of protein activity and irreversible modification/damage promoted protein 

aggregation, followed by increased susceptibility to proteolysis. Consequently, 

protein carbonylation is considered a true read-out of oxidative stress. Moreover, 

carbonylated proteins are present in many aging-related inflammatory and 

neurodegenerative diseases [Aiken et al. 2011, Cannizzo et al. 2011, Cannizzo et al. 

2012].  

In the case of neurological diseases like Alzheimer’s and Parkinson’s disease, protein 

aggregates are generally composed of a single protein. Another consequence of 

carbonyl formation is the protein conformation alteration (these neurodegenerative 

disorders are also known as protein misfolding diseases), which, in turn, can increase 

protein hydrophobicity and enhance nonspecific protein–protein interactions, and 
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subsequent compromised cell viability and impaired protein turnover [Mirzaei and 

Regnier 2008] (and references therein).  

 

IN VITRO AND IN VIVO EXPERIMENTAL MODELS FOR THE SIMULATION 

OF AGING EFFECTS: PARAQUAT – INDUCED OXIDATIVE STRESS 

 

Paraquat is the commercial name for N,N′-dimethyl-4,4′-bipyridinium dichloride, a 

quaternary ammonium bipyridyl compound and one of the most widely used 

herbicides in the world. Paraquat has long been known to participate in cyclic 

reduction-oxidation reactions in biological systems, where it readily undergoes a 

single electron reduction in tissues, forming a free radical. Paraquat is often used in 

science as catalyst for the formation of ROS and more specifically, for the formation 

of the superoxide free radical [Takizawa et al. 2007]. In vivo, Paraquat is reduced by 

an electron donor such as NADPH, before being oxidized by an electron receptor 

such as dioxygen to produce the superoxide, a major ROS [Bus and Gibson 1984] 

(Figure 2). 

 

Figure 2 – Example of oxidative stress-induces (irreversible) protein carbonylation reaction, 

adapted from [Aslan et al. 2008] and [Bus and Gibson 1984] 

 

Paraquat is used in murine models for the study of neurodegeneration [Manning-

Bog et al. 2002, McCormack et al. 2002, McCarthy et al. 2004, Yang and Tiffany-
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Castiglioni 2007] and leads to a reduced motor activity and, finally, cell death. 

Furthermore, the efficacy of Paraquat for oxidative stress generation purposes was 

reported in other types of cells. For example, used at low concentrations, Paraquat is 

able to induce protein aggregation in very short time, simulating the effects of aging  

both in vitro and in vivo [Scharf et al. 2013]. For in vitro studies of aging, solutions of 

known concentration of PQ are directly added to the cells in culture. 

In this dissertation, Paraquat was employed to simulate the effects of aging in vitro as well as 

in vivo. Dendritic cells (Jaws II cell line culture) were treated with increasing molarities of 

Paraquat (in vitro) and mice were injected intra-peritoneally with Paraquat (in vivo). The 

efficacy of the Paraquat treatment, as well as the oxidatively-damaged proteins aggregates 

formation, isolation, characterization and quantification by HF5-(UV)-MALS are discussed 

in sub-chapters 4.2.1.4.B and C. The Paraquat controlled protein aggregation model was 

setup and served for the HF5 method development.  

 

D. CURRENT PROTEOMIC TECHNOLOGIES AND THEIR 

LIMITATIONS 
 

Proteomics technologies show certain limitations that are mostly related to the 

detection sensitivity of the analytical techniques employed for the study of difficult 

protein classes, such as low abundant, hydrophobic and basic proteins. 

First of all, the selection of the proteomic methodology highly depends on the sample 

to be analyzed and the aim of the study. In general, the “standard” approach is the 

use of 2D gel/MALDI-TOF-MS and, since certain protein classes cannot be detected 

by these technologies, subsequent 2D LC–MS or tandem MS are necessary. However, 

it appears that the second approach is, generally, more effective. Moreover, as a rule 

of thumb, the complexity of the sample analysis protocol is directly related to the 

chemical integrity of the sample and analysis reproducibility, as well as the sample 

recovery [Garbis et al. 2005] (and references therein).   

Basically, the limitations in a proteomic analysis can be classified as: (1) limitations 
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related to the complexity (the composition) of the proteome to be analyzed, the major 

issue being protein expression levels (which appear in all proteomics analyses), and 

(2) limitations of the analytical methods [Reschiglian and Moon 2008]. Consequently, 

the field of proteomics concentrates on both increasing the quantity of the low 

abundant proteins, to enable an efficient detection, and to applying the proper 

analytical methods to visualize all proteins in the mixture. 

For instance, due to the vast protein diversity in terms of molecular sizes, charge 

state, hydrophobicity, protein conformational states, post-translational modifications 

or complex formation with other bio-macromolecules, it would be unfeasible to use a 

single sample preparation protocol, all the while capturing effectively the entire 

proteome. Since proteins are not expressed in equal amounts, there are large 

differences in the protein levels in all proteomes [Garbis et al. 2005] (and references 

therein). 

A wide variety of analytical methods are applied to achieve the isolation and 

characterization of low-abundant proteins, which usually require enrichment of the 

low-abundant fraction and/or the depletion of highly abundant proteins that may 

interfere with the detection. For instance, in order to increase the probability to detect 

low abundant proteins, the original protein mixture (proteome) is separated into less 

complex fractions, where each of them contains a lower number of total proteins in 

comparison with the starting material [Garbis et al. 2005] (and references therein).  

In a recent review, [Reschiglian and Moon 2008] discussed the pre-fractionation 

methods currently employed in proteomics, indicating the emerging role and gentle 

separation mechanism of Field Flow Fractionation (FFF) that allows proteins to 

maintain intact their biophysical properties (conformation included). In particular, 

the advantages brought by its miniaturized version, HF5, in terms of detection 

sensitivity, efficiency, solvent biocompatibility, as well as the possibility of on-line 

coupling with mass spectrometry (MS) are appealing features for proteomics.  

Many publications support their findings in the field of proteomics:[Reschiglian et al. 

2004, Reschiglian et al. 2005, Kang and Moon 2006, Reschiglian et al. 2006, Roda et al. 



Chapter 4, Part 2: Study of oxidative-stress related protein aggregation phenomena during biological aging 

255 

 

2006, Rambaldi et al. 2007, Kim et al. 2008, Lee et al. 2010, Reschiglian et al. 2011].    

 

In this dissertation, HF5 was employed as a pre-fractionation method in a proteomic study. 

Since the aim of the study was to purify, characterize and quantify oxidatively-damaged 

protein aggregates present at trace levels, the complexity of the proteome (originating from 

different types of cells and different stages of aging) was reduced. Fractions were pooled from 

subsequent HF5 fractionations of the same sample, dialyzed and lyophilized to enrich the high 

MW aggregates fraction, discussed in sub-chapter 4.2.1.4.B and C. 

 

E. IDENTIFICATION, ISOLATION AND PROTEOMIC ANALYSIS 

OF OXIDIZED PROTEINS AND PROTEIN AGGREGATES 
 

OXIDATIVE STRESS DETECTION 

 

The presence of oxidative stress can be achieved by fluorescent means, for instance, 

employing fluorogenic probes that can be used for measuring cellular oxidative 

stress in both live and fixed cell imaging. A highly efficient novel fluorogenic probe 

is CellROX® Deep Red Reagent (Life TechnologiesTM), with absorption/emission 

maxima at ~644/665 nm. This dye is cell-permeant and is non-fluorescent in a 

reduced state, meanwhile, upon oxidation by reactive oxygen species (ROS), it 

exhibits bright fluorescence.  

In this dissertation, the effectiveness of the in vivo Paraquat treatment, whose aim was to 

induce oxidative stress (and simulate in a brief time the effects of aging), was evaluated by 

fluorescent means, employing CellROX® Deep Red Reagent (Life TechnologiesTM).The test, 

discussed in sub-chapter 4.2.1.4.C, showed highly increased fluorescence intensity in the 

Paraquat-treated mouse.  

Recent developments in the field of functional proteomics have highlighted the 

selectivity of particular antibodies towards recognizing post-translational oxidative 
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modifications that occur following oxidative stress, therefore have provided the 

means for the detection, as well as affinity purification of aging-related oxidatively 

damaged entities. Coupled with proteomics and mass spectrometry, this selective 

purification has led the way towards mapping the oxidized proteins, and towards 

the identification of different types of oxidative modifications. [Cannizzo et al. 2011] 

(and references therein). 

 

IDENTIFICATION AND ANALYSIS OF CARBONYLATED PROTEINS 

 

The presence of carbonyl groups on oxidized proteins can be identified and 

quantified by derivatization with 2,4-dinitrophenylhydrazine (DNPH), which leads 

to the formation of hydrazones (Figure 3). When DNPH reacts with protein 

carbonyls, the  amount of protein-hydrazone complex produced can also be 

measured spectrophotometrically at 375 nm and quantified against a calibration 

curve with a standard protein (such as BSA).  

 

Figure 3 – Principle of carbonyl groups derivatization with DNPH [Aslan et al. 2008] 

 

In this dissertation, the quantification of oxidative-stress induced carbonyl modifications was 

performed on two sets of samples, both treated with the pesticide Paraquat to induce oxidative 

stress: (a) in vitro Paraquat-treated Jaws II dendritic cell lysate samples and (b) in vivo 
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Paraquat-treated spleen cell lysate samples originating from mice. The protein carbonyl 

spectrophotometric assay discussed in sub-chapters 4.2.1.4.B (in vitro) and 4.2.1.4.C (in vivo) 

showed increased amounts of carbonyl in the Paraquat-treated samples as compared to control 

(non treated samples). 

The DNPH-induced protein hydrazones can also be immunologically detected, using 

an anti-DNPH antibody that gives a precise indication on the amount of total protein 

carbonyls in a given sample. Furthermore, the advantage of having a DNPH specific 

antibody is that carbonylated proteins can be either immunoprecipitated or detected 

by SDS-PAGE or 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE), as 

preparative methods before mass spectrometry. 

Following this procedure, reported schematically in Figure 4, [Cannizzo et al. 2012] 

showed that spleen and lymph node cells from aging mice accumulate oxidatively 

damaged proteins that presented hallmarks like carbonylated AA side-chains, AGE 

products and lipid peroxidation.  

 

 

Figure 4 – Experimental procedure designed to identify the presence of oxidative stress-related 

protein modifications in dendritic cells, followed by the identification (mapping) of the 

modifications at biochemical level [Cannizzo et al. 2012] 
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SDS-PAGE performed on immunolabeled damaged proteins and protein aggregates 

showed an age-related progressively increased amount of high MW species (left in 

the stacking gel). Subsequent MS analyses performed on proteins excised from the 

stacking gel, as well as the resolved gel, allowed mapping the post-translational 

modifications suffered by proteins during aging. Moreover, the fact that damaged 

proteins and aggregates were found in dendritic cells derived from bone marrow 

(BM) CD34+ precursors indicates that these precursors are already compromised and 

is expected that they have a reduced biological function. 

In this dissertation, HF5-(UV)-MALS analytical platform was employed for the size-

separation, characterization (size and MW) and quantification of age-related protein 

aggregates in BM CD34+ precursor cells, discussed in sub-chapter 4.2.1.4.D. The results 

confirmed the previous finding by [Cannizzo et al. 2012].Furthermore, the offline MS 

analyses allowed the identification of age-related post-translational modifications and their 

extent. 

Previous attempts by [Cannizzo et al. 2012] to isolate and characterize protein 

aggregates in CD34+ precursor cells are schematically reported in Figure 5. Their 

approach consisted in employing as first dimension of separation Fast Protein Liquid 

Chromatography (FPLC), a preparative separation technique routinely used in 

proteomics  

Although FPLC was successfully employed by [Scharf et al. 2013] for the estimation 

of the oxidative post-translational modifications extent in structural proteins of 

intervertebral discs (IVDs) isolated from aging mice, where increased protein 

carbonylation was associated with protein fragmentation and aggregation, the study 

conducted by [Cannizzo et al. 2012] showed only the presence of age-related micro-

aggregates of carbonylated proteins (1-3×106 Da, Figure 5), separated employing FPLC. 

However, FPLC fractions did not show the presence of large aggregates, concluding 

that DCs endosomal compartments do not accumulate such aggregates due to their 

short turn-over. 



Chapter 4, Part 2: Study of oxidative-stress related protein aggregation phenomena during biological aging 

259 

 

 

 

Figure 5 – Experimental procedure designed to for the isolation of oxidative stress-related protein 

aggregates in dendritic cells, followed by the Western blot performed on FPLC fractions [Cannizzo 

et al. 2012] 

 

In this dissertation, FPLC was employed as first dimension of separation for the purifications 

of protein aggregates in oxidatively modified Jaws II dendritic cells (treated with Paraquat to 

induce oxidative stress and simulate the effects of aging in a short period of time). 

Nonetheless, FPLC proved not to be effective enough to resolve high MW protein aggregates, 

discussed in sub-chapter 4.2.1.4.B.  

On the other hand, since HF5 is based on a different separation principle, allowing proteins 

(and protein aggregates) elution in increasing MW and size order (opposed to FPLC order of 

elution), provided enough separation space even for very high MW protein aggregates 

(>3×106 Da). Moreover, thanks to HF5 versatility in terms of carrier solution composition, 

separations performed in denaturing carrier solution (containing different concentrations of 

urea), allowed the discrimination and quantification of urea-resistant covalent/irreversible 

protein aggregates, discussed in sub-chapters 4.2.1.4.B through 4.2.1.4.D.   
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Size exclusion chromatography (SEC) is another separation technique employed 

during proteomic procedures, recently used for the purification of oxidative stress-

modified proteins and complexes in a study by [Mirzaei and Regnier 2008]. The 

effects of oxidative stress-induced protein aggregation were studied employing 

standard proteins and yeast cells. Oxidized standard proteins, at increasing ROS 

concentrations, were fractionated by SEC and displayed different elution profiles, 

indicating that protein aggregation occurs in stages and that protein fragments 

(result of ROS damage) also give rise to aggregates. Moreover, several carbonylated 

proteins and proteins known to form complexes with higher MW protein complexes 

were identified by MS on SEC fractions of oxidatively stressed yeast cells. In 

addition, these proteins were found to be part of the proteome known as the 

aggresome [Mirzaei and Regnier 2008] (and references therein). 
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4.2.1. NOVEL METHODOLOGY BASED ON HF5 – MALS FOR 

THE SIZE-SEPARATION, CHARACTERIZATION AND 

QUANTIFICATION OF OXIDATIVE STRESS-RELATED PROTEIN 

AGGREGATES LEVELS IN WHOLE CELL LYSATES 

STUDY IN COLLABORATION WITH THE PATHOLOGY, IMMUNOLOGY AND MICROBIOLOGY 

LABORATORY OF A. EINSTEIN COLLEGE OF MEDICINE (YESHIVA UNIVERSITY, NY, USA) 

 

 

 

Protein aggregation is a common biological phenomenon, often occurring during 

pathological conditions, which can induce impaired proteostasis (proteostasis, 

“protein”+”homeostasis” is a concept which regards the plethora of competing and 

integrated biological pathways within cells that control the biogenesis, folding, 

trafficking and degradation of proteins present within and outside the cell).  

An analytical platform, such as HF5-UV-MALS, capable of separating protein 

aggregates based on their biophysical properties, integrated as a functional proteomics 

methodology, would allow further understanding of the correlation between the 

protein sequence/structure and their tendency to aggregate, how different post-

translational modifications affect unfolding and aggregation and the proteomic 

machinery associated with aggregates formation and degradation. 

In this sub-chapter, a methodology which employs HF5 online coupled with UV and 

MALS detection was developed for the hydrodynamic size-based separation, 

characterization (MW, rms radius and molecular conformation) and quantification of 

protein aggregates from complex protein samples. Developed on an experimental 

model based on a set of dendritic cells line (Jaws II) samples, treated with 

progressively increasing concentrations of the pesticide Paraquat to induce oxidative 
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stress (and simulate the effects of aging in a short period of time), the HF5-(UV)-

MALS method and was then applied on an in vivo Paraquat-treated murine model. 

The presence of high MW aggregates was observed in spleen and brain cells, as 

compared to control (non-treated) samples. The aggregates were isolated, 

characterized and quantified by HF5-(UV)-MALS and fractions were collected for 

complementary analyses. 

Finally, the same HF5-(UV)-MALS method was and applied successfully to oxidative 

stress-related (damaged) protein aggregates present in aging samples, more in 

particular, bone marrow CD34+ precursor cells. The wide size and MW range of HF5 

allowed the separation of highly complex samples (cell lysates) in a single-step 

analysis and in a relatively short time, therefore employed as the first dimension of 

separation in a functional proteomics study.  

The HF5 method was, therefore, applied successfully to cell lysates containing in 

vitro and in vivo oxidative stress-induced aggregates, as well as to cell lysates 

containing aging-related protein aggregates.   

Data processing allowed the analysis of the aggregates amount, absolute MW and 

size (rh and rms radius).  HF5 versatility allowed the samples separation under native 

conditions, as well as under different degrees of denaturing conditions (2 and/or 4 M 

Urea).  

Offline native PAGE analyses conducted on protein fractions separated by HF5 

corroborated the results obtained by HF5-(UV)-MALS: the separation occurred by 

molecular weight (MW), as well as by hydrodynamic size and the presence of 

aggregates above 5.0×106 Da only was observed only in conditions of oxidative stress. 

Offline mass spectrometric (MS) analysis, performed on high MW protein 

(aggregates) fractions separated by HF5, confirmed the presence of several proteins 

previously reported to be insoluble or aggregation-prone and allowed the 

identification of post-translational modifications associated with increased 

unfolding, aggregation and targeting by proteasome and autophagic/endosomal 

degradation.  
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4.2.1.1. INSTRUMENTAL SETUP 

 

All HF5 separations were performed employing an Agilent 1100 HPLC system 

(Agilent Technologies, Santa Clara, CA, USA) consisting in a degasser, a quaternary 

pump, an auto sampler and a diode array UV-Vis detector coupled with an Eclipse® 

DUALTECTM flow FFF separation system (kindly provided by Superon GmbH, 

Dernbach, Germany).  

The HF5 separation device was a 34 cm long cartridge assembled from two 

commercial (17 cm long) cartridges connected with a union piece, therefore called 

“double length” HF5 cartridge. Since a longer cartridge was employed successfully for 

the separation of a standard protein mixture in sub-chapter 4.1.2 (Chapter 2) without 

any downsides, on the contrary, allowing for a scale-up of the injected amount and 

complete sample recovery, the “double length” HF5 cartridge was considered the 

best solution for this study, able to provide enough protein per fraction for 

subsequent offline electrophoresis, MS analysis and other complementary assays.  

The HF5 channel was equipped with a 34 cm long  polyether-sulfone (PES) fiber, 

type FUS 0181 (Microdyn-Nadir, Wiesbaden, Germany) with the following 

characteristics: 0.8 mm inner diameter, 1.3 mm outer diameter and 10 kDa MWCO, 

corresponding to an average pore diameter of 5 nm. Its assembly and the modes of 

operation of the Eclipse® DUALTEC system have already been described in recent 

literature [Johann et al. 2010].  

The ChemStation version B.04.03 (Agilent Technologies) software for Agilent was 

used to set and control the HPLC components and the software package Wyatt 

Eclipse @ ChemStation version 4.02 (Wyatt Technology Europe) was used to manage 

the Eclipse® DUALTEC separation system.  

An 18-angle MALS detector model DAWN® EOSTM light scattering detector 

(provided by Wyatt Technology Corporation, Santa Barbara, CA, USA), employing a 
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laser operating at a wavelength of 658 nm, was used in all experiments.  

An Agilent 1100 UV-Vis diode array detector operating at a wavelength of 280 nm 

was used as a concentration detector at all times. A second UV signal at 260 nm was 

registered to assess the DNA presence in the samples. 

ASTRA® software version 6.0.6 (Wyatt Technology Corporation) was used to handle 

signals from the detectors (MALS and UV), for the determination of the molecular 

weight (MW) of proteins in solution and their size (rms radius). 

 

4.2.1.2. SAMPLES 

 

A mixture of native protein markers, NativeMarkTM Unstained Protein Standard, 

(Novex®, Life TechnologiesTM), employed as a sample model, was separated 

employing a native carrier solution in order to evaluate the performance of the HF5 

method under optimal separation conditions.  

 

MICE 

C57BL/6J mice (3, 12 and 22 month old) were purchased from Harlam as part of the 

age-controlled NIH mouse colony program. All animal procedures were carried out 

according to a protocol approved by the Institutional Animal Care of Albert Einstein 

College of Medicine.  

 

SAMPLE PREPARATIONS – performed by the Laboratory of Pathology, Immunology and 

Microbiology of A. Einstein College of Medicine (Yeshiva University, NY, USA) 

 

 BONE MARROW cells were flushed from the femur and tibia of 3, 12 and 22 

months old mice. Cells were centrifuged at 1500 rpm for 10 minutes, and 

CD34+ bone marrow precursors were purified by magnetic beads 

immunoselection (Miltenyi Biotec), following the manufacturer’s instructions.    
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After positive immunoselection cells were washed with cold PBS three times 

and immediately lysed in 1% NP40,  50 mM Tris/HCl, 150 mM NaCl, 5mM 

EDTA and 10 mM DTT,  supplemented with 1X  protease inhibitor cocktail for 

30 minutes on ice. Lysates were spun at 8,000 rpm and the supernatant 

collected for total protein determination using Bradford assay (Biorad). 

 SPLEEN cells were harvested from C57Bl6 mice, and digested for 30 minutes at 

37°C with 4000 U/ml of collagenase type II (Invitrogen) in sterile Hanks’ 

balanced saline solution (HBSS) with Ca2+ and Mg2+ (Life Technologies).  Cells 

were collected through a 70 

and the cell pellet resuspended in red blood cell lysis buffer (8.3 g/L 

ammonium chloride in 0.01 M Tris-HCl buffer from Sigma, Aldrich).   

Following 5 minutes incubation at room temperature, complete media was 

added to stop the lysis reaction and the cells were pelleted at 1500 rpm for 10 

min and further processed for HF5 separation or FACS analysis.   

 BRAIN cells from control and Paraquat-treated mice were harvested and 

dissected on ice to separate their cortex regions. Upon pooling the cortex 

regions of three mice they were minced and immediately homogenated in 

0.25M sucrose using a motorized homogenator with Teflon pestle (8 strokes at 

maximal speed).  Protein concentration was estimated using Bradford assay 

(Biorad) and samples were stored frozen until use. 

 

INDUCTION OF OXIDATIVE STRESS AND CELL LYSIS – performed by the Laboratory of 

Pathology, Immunology and Microbiology of A. Einstein College of Medicine (Yeshiva 

University, NY, USA) 

 

 IN VITRO: Jaws II cells (CLR-11904; American Type Culture Collection), a DCs 

cell line established from C57Bl6 bone marrow were grown in complete media 

HyClone DMEM/High glucose (Thermo Scientific) supplemented with 10% 

FBS and 1% Hepes Buffer (Fisher Scientific), MEM Non-essential amino acids, 
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1mM sodium pyruvate, 10 U/ml penicillin and 100 μg/ml streptomycin all 

from Sigma.  N,N′-dimethyl-4,4′-bipyridinium dichloride (Paraquat, PQ) was 

used to induce oxidative stress.  

Three final concentrations of the drug, 0.25 mM, 5 mM and 10 mM were used. 

Control cells remained untreated.  Twenty million cells for each condition 

were incubated at 37°C and 5% CO2 for 6 hours, then collected, centrifuged at 

1500 rmp for 5 minutes and washed twice with sterile PBS.  Pellets were lysed 

in 150 mM Nacl, 50 mM Tris-HCl, 1% nonidet p-40 , 10 mM DTT, 5 mM EDTA 

supplemented with 1X of protease inhibitor cocktail (Sigma, St. Louis) and 

Bradford assay was performed to determine protein concentrations against a 

standard curve. The total carbonyl content from total cell lysates and from 

each HF5 collected fraction was determined spectrophotometrically with the 

OxiSelect Protein Carbonyl Spectrophotometric Assay kit (Cell Biolabs, CA).  

The absorbance of the DNPH-derivatized carbonyl groups was read at 375 

nm.  Results were normalized to the amount of total protein in each sample 

fraction. 

 IN VIVO: Oxidative stress was induced in C57BL/6 mice by i.p injection with 

PQ-saline solution (2.5mg/25g body weight) on two consecutive days.  Twenty 

four hours prior to the experiment, animals were fasted to minimize the 

potential background. Before imaging all animals were intravenously injected 

with Cell-ROX Deep Red (2.5mM, excitation 640 nm/emission 664 nm, 

Molecular Probes, CA) for in vivo fluorescent imaging using the IVIS (In-Vivo 

F PRO imaging system (Bruker BioSpin Molecular Imaging, CT) system.  

Whole animals were imaged 30 minutes post injection and images were 

captured at an excitation 610 nm/emission 700 nm using a built-in cooled 

closed-caption device camera.  Images were threshold with respect to 

background intensity and different levels of fluorescence intensity were 

displayed using pseudo rainbow color scheme analyzed using built-in 

Carestream Molecular Imaging Software.   
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4.2.1.3. MATERIALS AND METHODS 

 

REAGENTS 

Trifluoroacetic acid, acetonitrile, acetic acid, formic acid, iodacetamide and methanol 

were purchased from Fisher Scientific (Pittsburgh, PA).  Urea, thiourea, 

octylglucoside, dithiothreitol (DTT), iodoacetamide, ammonium bicarbonate, 

Coomassie Brilliant Blue R-250, KCl, KH2PO4, H3PO4 and Na2CO3 were purchased 

from SIGMA (St. Louis, MO, USA). Complete Proteinase inhibitor cocktail was also 

purchased from Sigma.  Porcine trypsin (20 µg, specific activity > 5,000 units/mg seq. 

grade modified) and Lys-C (sequencing grade, 10µg) were purchased from Promega 

(Madison, WI). 

Tris-HCl 1M and pH 8.0 was supplied by Teknova, while NaCl and urea were 

supplied by Sigma. All carrier solutions employed during this study were prepared 

using MilliQ water purified by an Elix 3 UV Water Purification System (Millipore, 

Billerica, USA) and filtered through 0.2 µm pore membrane sterile filter units 

(SteritopTM, Millipore). 

 

HF5 METHOD 

Lysates were run in either native carrier solution buffer (50 mM Tris-HCl 

supplemented with 150 mM NaCl and proteases inhibitors, pH 7.4) or denaturing 

carrier solution, with a composition similar to the cells lysis buffer (50 mM Tris-HCl, 

supplemented with 150 mM NaCl, 2 or 4 M urea and proteases inhibitors, pH 8.0). 

Cell lysates were injected during the focusing step, performed at 0.5 mL/min of focus 

flow rate for 5 minutes, after which each sample was eluted at 0.5 mL/min of 

longitudinal flow rate under a field gradient decreasing from 0.4 mL/min to 0.1 

mL/min over 70 minutes.  

Protein fractions were collected after HF5 separation. Samples separated under the 
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same conditions (either native or denaturing) and using the same flow rates were 

pooled (3-5 runs) for further analysis.  To remove the high salt concentration (NaCl 

and urea), the fractions were dialyzed overnight against 10 mM Tris-Cl solution at 

pH 8.0 using Side – a – lyzer® cassettes (MWCO: 3500 Da, 3 – 15 mL, Pierce) or Snake 

Skin pleated dialysis tubing (MWCO: 3500 Da, capacity of 3.7 mL/cm, Pierce) for 

larger volumes. All fractions were lyophilized immediately after the dialysis was 

completed. 

 

ASTRA® COMPUTATIONS  

The Astra® software (version 6.0.6, Wyatt Technology Corporation) was used to 

calculate the MW ranges for all lysate samples. The light scattering intensity 

registered by detectors 2 through 18 and the concentration signal from the UV 

detector (280 nm) were correlated through a 1st degree Zimm model, thus providing 

the MW values. An average value of 1.0 (mL/mg×cm) for the extinction coefficient at 

280 nm (280nm0.1%) was used in all MW calculations. The ExPASy ProtParam free 

bioinformatics tool (http://www.expasy.org/) was used to compute the specific 

280nm0.1% for all protein standards in the mixture (Novex®, Life TechnologiesTM), used 

as a model sample.  

The angular dependency of the scattered light was correlated through a 1st degree 

Zimm model, thus providing the rms radius values. The sample recovery, as well as 

the protein aggregates amounts, calculated as % of the total protein amount in the 

lysates, were also quantified by Astra. 

Astra software was also employed to determine the molecular conformation of the 

protein aggregates. The correlation plots (conformation plots) were generated from 

experimental data, by plotting the rms radius values against the corresponding MW 

values (both in logarithmic scale). The plots were fitted linearly and the slope values 

were assigned to known conformation types. A slope value of 1.0 corresponds to a 

rod conformation, a slope value of 0.5 – 0.6 corresponds to a random coil conformation 

and a slope value of 0.33 corresponds to a sphere conformation. The trend (slope 
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and/or change of the slope) of the molecular conformations was determined for rms 

radius values above 10 nm (due to DAWN EOS® instrumental range limitation), with 

corresponding MW values usually above 1×106 g/mol. 

 

HYDRODYNAMIC RADIUS (rH) CALCULATIONS 

The Eclipse ISIS simulation software (Superon GmbH, Germany) was employed to 

predict the retention time (tR), hydrodynamic radius (rH) and diffusion coefficient (D) 

of each native marker in the mixture (Novex®, Life TechnologiesTM), by inputting the 

HF5 method flow rates and the known MW values (declared by the manufacturer).   

The same software was employed for the calculation of the rH range for each cell 

lysate (reported in each graph as a secondary x axis), but based on the experimental 

tR values instead of the ones predicted from the MW values.  

The viscosity values for the carrier solutions were extrapolated from data found in 

literature [Kawahara and Tanford 1966] (ηwater,25°C = 10-3 N·s/m2 for Tris-HCl buffer; 

1.0909× ηwater,25°C for Tris-HCl + 2M urea and 1.2215× ηwater,25°C for Tris-HCl + 4M urea). 

 

PROTEIN CARBONYL SPECTROPHOTOMETRIC ASSAY – performed by the Laboratory of 

Pathology, Immunology and Microbiology of A. Einstein College of Medicine (Yeshiva 

University, NY, USA) 

The quantification of the protein carbonyl modifications was performed using the 

OxiSelect™ Protein Carbonyl Spectrophotometric Assay Kit supplied by Cell Biolabs, 

Inc. First, the protein carbonyls in BSA standards (1-10 mg/mL) were derivatized 

with DNPH. When DNPH reacts with protein carbonyls, the amount of protein-

hydrozone produced can also be measured spectrophotometrically at 375 nm. 

Proteins were then precipitated following the TCA (trichloroacetic acid) precipitation 

protocol and free DNPH was removed by washing the protein pellet. After 

dissolving the protein pellet in GuHCl, the absorbance of protein-hydrozone was 

measured at 375 nm, and the protein carbonyl was calculated.  
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ELECTROPHORESIS – performed by the Laboratory of Pathology, Immunology and 

Microbiology of A. Einstein College of Medicine (Yeshiva University, NY, USA) 

 SDS-PAGE was performed on whole cells lysates (before fractionation) in 

order to determine qualitatively the presence of HMW protein aggregates. 

Each cell lysate sample, containing approximately 20 µg of protein (previously 

quantified by BCA assay) were diluted in the recommended sample buffer 

62.5 mM Tris-Cl, pH 6.8, 2% SDS, 25% glycerol, 0.01 % bromphenol blue), 

supplemented with 2-mercaptoethanol and incubated for 5 min at 110°C. 

After the protein denaturation was completed, a sample volume of 15µL was 

loaded in each well of a Mini-PROTEAN® TGXTM Gel (4 -15%), supplied by 

BioRad and recommended for the MW range of 20–250 kD.  

The electrophoretic run was performed in the recommended Tris/Glycine/SDS 

running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS, pH 8.3) and was 

considered complete after approximately 1.5 hours. The gel was re-

equilibrated in water for 5 min and stained employing the Pierce Color Silver 

Stain Kit (supplied by Pierce), following the manufacturer’s instructions. 

 

 NATIVE PAGE. The HF5 fractions were desalted by dialysis and concentrated 

by lyophilization. After lyophilization the powdered proteins were 

resuspended in a total volume of 100 µL of Milli-Q water. Aliquots of  25 µL of 

samples, either diluted in water or not, were  further resuspended in a precast 

Native PAGE Sample Buffer (4X) and Cathode Buffer Additive (Invitrogen) 

and loaded in a NativePAGETM Novex® Bis-Tris Gel System (3%-12%) 

supplied by Invitrogen and recommended in the MW range from 30 to 10.000 

kDa. The same protein amount was loaded in each gel, based on previous 

protein quantification by BCA assay.  

The run was performed at 150 Volts for 110 minutes following the supplier’s 

instructions. After the run was completed, the gel was re-equilibrated in water 
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for 5 min and stained employing the Pierce Color Silver Stain Kit (supplied by 

Pierce), following the manufacturer’s instructions. 

 

FPLC SIZE-EXCLUSION CHROMATOGRAPHY – performed by the Laboratory of Pathology, 

Immunology and Microbiology of A. Einstein College of Medicine (Yeshiva University, NY, 

USA) 

 

An amount of 800 µg of total cell lysate, from untreated and Paraquat-treated 

samples, was loaded on a Superdex 200 column (HiLoad 16/60, prep grade, GE 

Healthcare Life Sciences) operated by a Biorad Biologic Duo Flow medium-pressure 

chromatographic system.  PBS or 50 mM Tris-Cl were used as mobile phase, eluted at 

an isocratic flow rate of 1/mL minute.  Protein elution was monitored at 280 nm.  

 

FACS ANALYSIS – performed by the Laboratory of Pathology, Immunology and Microbiology 

of A. Einstein College of Medicine (Yeshiva University, NY, USA) 

 

C57Bl6 spleen cells were harvested from control and PQ-treated mice, previously 

injected with Cell-ROX Deep Red. Spleens were digested for 30 minutes at 37°C with 

collagenase (4000 U/ml collagenase type II from Invitrogen) in sterile Hanks’ 

balanced saline solution (HBSS) with Ca2+ and Mg2+ (Life Technologies).  Cells were 

then collected using a 70 mm sieve, centrifuged at 1500 rpm for 10 minutes and the 

cell pellet resuspended in red blood cells lysis buffer for 5 min at RT (Sigma).  Cells 

were then washed at 1500 rpm for 10 minutes and the pellet resuspended in FACS 

buffer (PBS supplemented with 4% FBS and 0.2% sodium azide). The following FITC 

labeled antibody were used for staining: CD3, CD19, CD11b, CD11c and GR-1 

(Pharmingen).  Finally, cells were analyzed by flow cytometry (Becton Dickinson, 

N.J, USA) 

 

. 
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PROTEOMIC ANALYSIS OF HF5 PURIFIED AGGREGATES - performed by the Laboratory of 

Pathology, Immunology and Microbiology of A. Einstein College of Medicine (Yeshiva 

University, NY, USA) 

 

Protein aggregates purified by HF5 (with the highest MW) were incubated in 0.1 M 

ammonium bicarbonate buffer with 4M urea and sonicated for 15 minutes at RT.  The 

samples were further reduced with 10 mM TCEP-HCl in 0.1 M ammonium 

bicarbonate buffer, pH 8.9, for 30 minutes, at RT.  The reduction was followed 

immediately by alkylation with 55 mM iodacetamide solution in 0.1 M ammonium 

bicarbonate, at RT, in the dark for 45 minutes.   

Proteins were digested with trypsin and Lys-C (sequencing grade, Promega) at 37°C 

for 12 hours.  Following digestion, the samples were subjected to desalting using 

ZipTip (C18) reversed-phase system (Millipore, Billerica, MA) and submitted for 

MS/MS peptide sequencing.   

LTQ-MS/MS sequencing was performed using a Nanospray LC-MS/MS on a LTQ 

linear ion trap mass spectrometer (LTQ Thermo Scientific, San Jose, CA, USA) 

interfaced with a TriVersa NanoMate nanoelectrospray ion source (Advion 

BioSciences, Ithaca, NY, USA). The 15 most abundant ions were selected for MS/MS. 

Raw data files were converted to .mgf files using Proteome Discoverer 1.3 (Thermo 

Fisher Scientific). 

All .mgf files were searched against the house mouse (Mus musculus; 16,230 

sequences) in SwissProt 57.15 (515,203 total sequences; 181,334,896 total residues) 

using Mascot, in-house, (Matrix Science, London, UK; version 2.3.02). The following 

parameters were used for all searches: trypsin; 1 missed cleavage; fixed modification 

of carbamidomethylation (for Cys) and variable modifications: deamidation (Asn 

and Gln), oxidation (Met, Pro, Lys, Arg); monoisotopic masses: peptide precursor 

mass tolerance of 1.5 Da; and product ion mass tolerance of 0.5 Da.   
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A false discovery rate (FDR) for peptide identification was assessed by decoy 

database searching and was finally adjusted to less than 1.0% for proteins and 

peptides.  Proteins were considered identified having at least one bold red (BR) 

significant peptide with an ion score cut-off of 40 or greater (corresponding to p≤0.05 

and a FDR proteins ≤1.0%). 

 

PATHWAYS ANALYSIS – performed by the Laboratory of Pathology, Immunology and 

Microbiology of A. Einstein College of Medicine (Yeshiva University, NY, USA) 

 

The putative interactions among the identified proteins in the high MW aggregates, 

fractionated from 3 and 22 months old spleen and bone marrow, were analyzed 

using the functional networks interactive pathways analysis (IPA). The ArrayTrack™ 

(http://www.fda.gov) bioinformatics tool from the FDA web site was used to 

generate the heat map corresponding to the major up- and down-regulated pathways 

by importing the -log (p) values associated with each pathway as provided by IPA 

analysis.   
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4.2.1.4. RESULTS AND DISCUSSION 

A. NATIVE PROTEINS MIXTURE 

 

The developed HF5 method was simulated first, employing the ISIS simulation 

software (Superon GmbH), on a native proteins mixture (NativeMarkTM Unstained 

Protein Standard, Novex®, Life TechnologiesTM) used as a sample model, to check the 

correlations between retention time (tR), hydrodynamic size (rh), diffusion coefficient 

(D) and MW under ideal separation conditions (Figure 1).  

 

 

Figure 1 – Native markers: (a) relationship between hydrodynamic radius and retention time; (b) 

relationship between MW and retention time and (c) relationship between MW and D. 

 

The Eclipse ISIS simulation software was employed to predict the (theoretical) tR, rH 

and D of each native marker, by inputting the HF5 method flow rates and the known 

MW values (declared by Life TechnologiesTM in the product sheet). Figure 1a shows 

how the protein size influences the tR, therefore how the separation occurs according 

to size. Figure 1b shows how the protein MW influences the tR, therefore how the 

separation occurs according to MW.  

The slope of this plot (0.4) represents the value of parameter b, reported in Equation 

14 (sub-chapter 2.2.2 of Chapter 2). A slope value of 0.4 indicates molecular 

conformations between hard sphere (0.33) and random coil (0.5-0.6). Figure 1c shows 

how the diffusion coefficient, D (which determines the size, shape and surface 
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properties of proteins) is correlated to the proteins MW. The mathematical 

expression which represents D as a function of MW is reported in Equation 14. 

In FPLC-UV or SEC-UV, the MW value of an unknown protein/protein aggregate in 

a complex sample like a cell lysate, is determined by interpolation using the 

calibration curve, which is built by plotting known MWs of standard proteins against 

their experimental retention time (tR).  This procedure assumes constant molecular 

conformations, usually globular (rigid sphere). The same approximation was made 

by the ISIS simulation software. Since the MW value assignment is based on a 

specific tR, a slight change in the latter may lead to erroneous MW assignments, 

making this procedure faulty. 

Indeed, when the HF5 method was applied experimentally to the same native 

markers mixture,  discrepancies between the theoretical (Figure 1a) and experimental 

tR (Figure 2) were observed, most likely caused by proteins shape deviation from 

rigid sphere (globular conformation), especially at high MW values.  

 

 

Figure 2 – HF5-UV-MALS separation profile of the standard protein mixture. The peak assignment 

was based on the absolute MW values computed by Astra® 

 

Shifts in the tR are very likely due to molecular conformational changes (like the ones 

caused by carbonylation of proteins side-chains, under the effect of oxidative stress 

or by protein denaturation, under the effect of urea), but also by specific/non-specific 
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interactions between the lysate components and the column matrix in FPLC and SEC.  

On the other hand, the MW determined by multi-angle light scattering (MALS) 

measurements is absolute (does not require calibration with molecular standard, nor 

makes approximations on the shape of the protein).  

Based on differences in hydrodynamic size, proteins with the same MW may have 

different tR, indicating molecular conformation differences. Indeed, the native 

proteins MW values derived from MALS measurements matched the ones declared 

by the manufacturer (Life TechnologiesTM), even though there was a discrepancy 

between the experimental (Figure 2) and the predicted tR values (Figure 1a).  

The peaks were identified based on the absolute MW values, as follows: (1) soybean 

trypsin inhibitor, 20 kDa; (2) bovine serum albumin, 66 kDa; (3) lactate 

dehydrogenase, 146 kDa; (4) β-phycoerythrin, 242 kDa; (5) apoferritin band 1, 480 

kDa; (6) apoferritin band 2, 720 kDa; (7) IgM pentamer, 1048 kDa and (8) IgM 

hexamer, 1236 kDa.  

 

Given these satisfactory results, the next step consisted in applying the HF5-(UV)-

MALS method to the cell lysate samples.  
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B. HF5-UV-MALS OF PROTEIN AGGREGATES GENERATED IN VITRO 

 

To evaluate the capabilities of HF5 to separate over a wide MW range of proteins and 

complex protein aggregates, as present in a total cell lysate, an experimental culture 

of control cells and cells treated with different concentrations of Paraquat was setup. 

Paraquat is known to induce oxidative stress, a condition known to induce protein 

(irreversible) damage and promote protein aggregation. The Paraquat – induced 

oxidative stress is known to lead to the oxidation of the proteins side chains and the 

most frequent consequences are the carbonyl modifications, therefore considered 

markers of oxidative stress.  

The Carbonyl spectrophotometric assay was performed on total cell lysates in order 

to determine the extent of the carbonyl modifications suffered upon Paraquat 

treatment, therefore to validate the efficacy of the Paraquat treatment and the results 

are reported in Figure 3a. The same samples were run on SDS-PAGE and the gel is 

reported in Figure 3b. 

 

 

Figure 3 – Tests performed on whole cell lysates, following in vitro treatment with Paraquat: (a) 

protein carbonyl assay and (b) Silver staining of an SDS-PAGE. Performed and kindly provided by the 

Laboratory of Pathology, Immunology and Microbiology of A. Einstein College of Medicine (Yeshiva University, 

NY, USA) 

 

Figure 3a demonstrates the efficacy of the Paraquat treatment, since an increased 

amount of total protein carbonylation was observed, directly proportional to the 
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molarities of Paraquat treatment. Figure 3b shows an increased amount of SDS-

insoluble aggregates, as compared to untreated cells, also proportional to the amount 

of Paraquat added to the cell cultures. Moreover, Figure 3b shows an increased 

amount of low MW proteins/fragments in the Paraquat-treated cells, associated with 

oxidative cleavage. 

 

Analysis of the samples by gel filtration (FPLC) employing a Superdex S 200 column 

confirmed high MW aggregates in the PQ treated samples, as well as presence of low 

MW cleavage products (Figure 4).  However, the very high MW aggregates (MW > 

1x106 Da) did elute in the void volume with the dextran blue (MW = 2x106 g/mol).   

Running the samples on a Sephadex column with increased porosity (S300) did not 

separate with enough resolution aggregates above 2x106 g/mol (data not shown).   

 

 

Figure 4 – FPLC separation profile at 280 nm of protein lysates from control cells and cells treated 

with 5 mM Paraquat.  Dextran blue 2×106 MW elutes with the void volume. Performed and kindly 

provided by the Laboratory of Pathology, Immunology and Microbiology of A. Einstein College of Medicine 

(Yeshiva University, NY, USA) 

 

Next, control and Paraquat-treated cell lysates were separated by HF5 under native 

conditions and the elution profiles, as well as the corresponding MW ranges are 

reported in Figure 5a. Figure 5a also reports the elution of the native protein markers 

(the same as reported in Figure 1) and the elution of Blue Dextran (MW: 2000 kDa). 

The rms radius ranges, derived from the MALS measurements and computed by 

Astra® are reported in Figure 5b. 
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Figure 5 – HF5-UV-MALS elution profiles of the control and Paraquat-treated cell lysates, 

separated under native conditions, reporting: (a) MW range calculated by Astra; (b) rms radius 

range calculated by Astra and (c) lysate fractions collected for further characterization 

 

Increased protein aggregation and the presence of HMW aggregates could be 

observed in Paraquat-treated samples, as compared to the untreated cells. All 

samples contain a common MW range of proteins and protein aggregates with MWs 

up to 3.3×106 g/mol. All Paraquat treated samples also show the presence of HMWs 

which are not present in the control sample, reported in Figure 5a and 6a. An 

increase in the protein aggregates upper MW limit with increasing Paraquat molarity 

is also observed in Figure 6a and the exact values are reported in Table 1. 

Aggregates of the same MW value showed reduced rH and rms radius values in the 

Paraquat treated samples when compared to the control, suggesting changes in the 

aggregate molecular conformation following carbonylation. 

Conformational differences among the aggregates in the control and the treated 

samples were observed in the correlation plot reported in Figure 6b, obtained by 

plotting the log (rms radius) against the corresponding log (MW) values. The 

molecular conformation state (sphere, random coil or rod) was assigned based on the 

slope value of the correlation plot, as described in the Astra® Computations sub-

section of Materials and Methods. 
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Figure 6 – Control and Paraquat treated samples (a) MW ranges of the Paraquat-treated samples 

compared to the control and (b) conformation plots, the number below the assigned molecular 

conformation represents the slope derived from experimental data 

Figure 6b shows the conformation trend of the protein aggregates present in the Jaws 

II cell lysate samples separated under native conditions and how the increase in the 

Paraquat concentration progressively modifies the overall conformation trend of the 

protein aggregates. 

The Paraquat treatment had two distinct effects on the proteins/protein aggregates 

and their HF5 elution behavior in native carrier solution:  

(A) Conformation /shape effect: this led to observing different slope values in the 

correlation plot for the samples under examination. The protein aggregates are more 

compact in the treated samples and their compactness increases with the Paraquat 

concentration. Consequently, proteins aggregates with the same MW value have 

progressively anticipated retention times in the Paraquat-treated samples;  

(B) Density effect: at equal MW value, protein aggregates in the treated samples have 

smaller rms radii compared to the control sample and the rms radius decreases with 

the Paraquat concentration. A smaller rms radius indicates that the scattering points 

are found closer to the mass center, leading to the same MW being concentrated in a 

smaller space. This implies that aggregates with the same MW have higher densities 

in the treated samples. 

Moreover, the Paraquat has an overall effect on the elution behavior of all aggregates 

present in the treated samples, therefore even on aggregates whose formation was 

not mediated by the Paraquat treatment with MWs between 1.0×106 and 3.3×106 Da. It 
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is very likely that the Paraquat led to the carbonylation of the side chains causing a 

conformational change, but did not lead to further aggregation. The amount of the 

Paraquat – induced protein aggregates shows an increase with the Paraquat 

concentration and the values are reported in Table 1, along with the corresponding 

MW ranges and the elution times. 

 

The next step consisted in determining whether HF5 runs employing a denaturing 

carrier solution could help establish the biophysical properties of the protein 

aggregates. Lysates from control sample and sample treated with the highest amount 

of Paraquat (10 mM) were separated under mild denaturing conditions (2 M urea) 

and the elution profiles, as well as the corresponding MW ranges are reported in 

Figure 7a. The rms radius ranges, derived from the MALS measurements and 

computed by Astra® are reported in Figure 7b. 

 

Figure 7 – HF5-UV-MALS elution profiles of the control and Paraquat-treated cell lysates, 

separated under denaturing conditions (2 M urea), reporting: (a) molecular weight range calculated 

by Astra; (b) rms radius range calculated by Astra and (c) lysate fractions collected for further 

characterization 

Analysis of the rH and rms radius showed that protein aggregates with the same MW 

eluted at different tR, suggesting a reduced hydrodynamic size (for the aggregates 

with anticipated tR). Moreover, aggregates with the same MW had similar rms radius 

values, even though eluted at different tR. The results are reported in Table 2. 
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A drastic decrease in the percentage of the Paraquat-induced protein aggregates was 

observed (approximately 92%), indicating that many of the aggregates observed 

under native conditions are non-covalent. Nonetheless, Paraquat-induced aggregates 

representing 1.9% of the whole lysate, are present in the sample under denaturing 

condition (Table 1), therefore urea-resistant.  

Indeed, at low concentration (2M) urea acts by disrupting the hydrogen bonds in the 

protein secondary structure thus disrupting non-covalent aggregates. As expected 

under denaturing conditions, the presence of new protein aggregates with MW 

above 1.7×107 g/mol, was also observed (Figure 7a, Tables 1 and 2). 

Table 1 – Separation of Jaws II cell lysates under native and denaturing conditions 

Jaws II cell lysates 

Native conditions – Figure 5a 

Sample CTR 0.25 mM PQ 5 mM PQ 10 mM PQ 

Common MW range (g/mol) 1.5×104 – 3.3×106 

Hydrodynamic radius range (nm)  2 – 115  2 – 74  2 – 61  2 – 45  

MW range of Paraquat – induced 

aggregates (g/mol) 
- 

3.3×106  

5.5×106 

3.3×106  

6.2×106 

3.3×106  

1.7×107 

Hydrodynamic radius range (nm) of 

Paraquat – induced aggregates 
- 74 – 115  61 – 115  45 – 115  

Amount of Paraquat – induced 

aggregates 
- 12.5% 17.9% 25.1% 

Denaturing conditions – Figure 7a 

Sample CTR 10 PQ 

Common MW range (g/mol) 1.5×104 – 3.3×106 

Hydrodynamic radius range (nm)  2 – 30  2 – 22  

MW range of Paraquat – induced 

aggregates (g/mol) 
- 3.3×106 – 1.7×107 

Hydrodynamic radius range (nm) of 

Paraquat – induced aggregates 
- 22 – 37  

Amount of Paraquat – induced 

aggregates 
- 1.9% 

MW range of new aggregates 

(denaturing conditions) 
3.3×106 – 1.7×107 1.7×107 – 4.3×107 

Hydrodynamic radius range 

(nm) of new aggregates 
30 – 58  37 – 58  

Amount of new aggregates 

(denaturing conditions) 
8% 0.9% 
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The detailed fraction-by-fraction characterization by HF5-UV-MALS, containing the 

MW ranges, rms radius and hydrodynamic radius (rH) ranges for each lysate fraction 

reported in Figures 5c (native) and 7c (denaturing), is reported in Table 2. 

Table 2 - Fractions of Jaws II cell lysates separated under native and denaturing conditions. MW, 

rms radius and hydrodynamic radius (rh) ranges. 

Jaws II cell lysates fractions  

MW range (g/mol) – Figure 5a, fractions: Figure 5c 

Fractions 1 2 3 4 5 6 

Control 
4.4×104 

1.5×105 
1.5×105 

2.8×105 

2.8×105 

6.5×105 

6.5×105 

2.2×106 

2.2×106 

3.0×106 

3.0×106 

3.3×106 

rh range (nm) 5 – 10   10 – 18  18 – 26  26 – 48  48 – 76  76 – 115  

Treated (10PQ) 
1.6×104 

1.6×105 

1.6×105 

4.8×105 

4.8×105 

1.2×106 

1.2×106 

7.2×106 

7.2×106 

1.7×107 

1.7×107 

1.7×107 

rh range (nm) 5 – 10   10 – 18  18 – 26  26 – 48  48 – 76  76 – 115  

Rms radius range (nm) – Figure 5b, fractions below figure 

Fractions 1 2 3 4 5 6 

Control N/A N/A N/A 20.9 – 46.6 46.6 – 71.0 71.0 – 108.6 

Treated (10PQ) N/A N/A N/A 18.0 – 52.6 52.6 – 88.5 88.5 – 126.4 

MW range (g/mol) – Figure 7a, fractions: Figure 7c 

Fractions 1 2 3 4 5 6 

Control 
7.1×103 

3.4×104 

3.4×104 

1.4×105 

1.4×105 

3.1×105 

3.1×105 

3.1×106 

3.1×106 

3.3×106 
 

New aggregates 

(denaturing 

conditions) 

    
3.3×106 

9.1×106 

9.1×106 

1.7×107 

rh range (nm) 5 – 8  8 – 14  14 – 19  19 – 32  32 – 43  43 – 58  

Treated (10PQ) 
6.2×103 

3.9×104 

3.9×104 

1.2×105 

1.2×105 

6.8×105 

6.8×105 

1.0×107 

1.0×107 

1.7×107 

 

New aggregates 

(denaturing 

conditions) 

    
1.7×107 

3.9×107 

3.9×107 

4.3×107 

rh range (nm) 5 – 8  8 – 14  14 – 19  19 – 32  32 – 43  43 – 58  

Rms radius range (nm) – Figure 7b, fractions below figure 

Fractions 1 2 3 4 5 6 

Control N/A N/A N/A N/A 16.0 – 27.6  

New aggregates 

(denaturing 

conditions) 

    
16.2 – 27.6 27.6 – 38.9 

Treated (10PQ) N/A N/A N/A 7.5 – 23.6 23.6 – 26.1  

New aggregates 

(denaturing 

conditions) 

    
26.1 – 36.8 36.8 – 49.9 
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Under native conditions, the size of the aggregates progressively decreased as the 

Paraquat molarity increased. Moreover, under both denaturing and non denaturing 

conditions, aggregates of the same MW showed reduced rH and rms radius values in 

the Paraquat treated samples when compared to the control, suggesting molecular 

conformation changes induced by the Paraquat treatment.  

 

Figure 8 reports the correlation plots for the Jaws II cell lysates samples during the 

separation in denaturing buffer; the change in the slope value indicating the different 

molecular conformation trends, suggests overall modified conformations caused by 

the Paraquat treatment.  

 

Figure 8 – Conformation plots of control and Paraquat treated sample separated under denaturing 

conditions (2 M urea); the number below the assigned molecular conformation represents the slope 

derived from experimental data 

When separated under mild denaturing conditions, the aggregates in both control 

and treated samples tend to become more compact when compared to native 

conditions: their rms radius values decrease drastically (Table 2). Both samples 

contain protein aggregates with random-coil conformations in the common MW range 

(1.0×106 – 3.3×106 Da). In correspondence of the Paraquat-induced covalent 

aggregates (MWs above 3.3×106 Da), we observe a slope change towards even more 

compact, sphere-like, molecular conformations.  

 

To confirm the suitability of the HF5 method to separate protein aggregates of 

different MWs, protein fractions were collected from control and Paraquat-treated 
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samples separated under native conditions (Figure 5c) and run on a native gel. The 

results are reported in Figure 9. 

 

Figure 9 – Native-PAGE performed on the HF5 fractions form control and Paraquat-treated lysate 

samples. The fractions were dialyzed and lyophilized prior to electrophoresis. Performed and kindly 

provided by the Laboratory of Pathology, Immunology and Microbiology of A. Einstein College of Medicine 

(Yeshiva University, NY, USA) 

 

 

The gel confirmed protein separation by HF5, detected as the increment in MW in 

progressive fractions from 1x105 to over 2.5x106. Additionally, fraction 6 collected 

after the elution of dextran blue (2x106 Da) indicated the presence of protein 

aggregates in the Paraquat-treated cells, but not control ones (Table 2).  

 

Altogether, the results confirm the capability of HF5 to separate proteins and protein 

aggregates according to their MW, as well as hydrodynamic size, from a complex 

mixture of proteins as present in total cell lysate. 
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C. HF5-UV-MALS OF PROTEIN AGGREGATES GENERATED IN VIVO 

 

Next, the HF5 capabilities were evaluated during the separation of protein 

aggregates formed in vivo and in primary cells, during conditions of increased 

oxidative stress.  To this goal, mice were injected intraperitoneally with Paraquat 

(2.5mg/25g body weight) for two consecutive days. On day three mice were injected 

intravenously with the CellRox probe that fluoresces upon binding to reactive 

oxygen species and the results are displayed in Figure 10.    

 

 

Figure 10 – (a) In vivo Detection of Oxidative Stress in control (CTR) and Paraquat (PQ) treated 

mice. The in vivo detection of fluorescence was performed using the In-Vivo Imaging System FX 

PRO (Carestream); (b) FACS analysis of spleen cell subpopulations isolated ex vivo, following 

CellROX injection. Performed and kindly provided by the Laboratory of Pathology, Immunology and 

Microbiology of A. Einstein College of Medicine (Yeshiva University, NY, USA) 

 

Increased fluorescence was observed in parenchyma organs in Paraquat-treated mice 

(Figure 10a).  Similarly, increased ROS-generated fluorescence was also observed on 

ex vivo purified spleen cell subpopulations, as analyzed by FACS and reported in 

Figure 10b.   

Next, total spleen lysates from control and Paraquat treated mice were run by HF5 

and the elution profiles, as well as the corresponding MW ranges are reported in 

Figure 11. 
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Figure 11 – HF5-UV-MALS elution profiles of the control and Paraquat-treated spleen cell lysates, 

separated under (a) native conditions and (b) denaturing conditions (2 M urea), both reporting the 

molecular weight range calculated by Astra, and (c) lysate fractions collected for further 

characterization 

When separated under native conditions, both control and Paraquat-treated spleen 

cell lysate samples show a common MW range of proteins and protein aggregates, 

with MWs up to 1.2×106 g/mol. However, the treated sample also shows the presence 

of protein aggregates that are not present in the control sample (Figure 11a). The 

Paraquat–induced aggregates amounted to 21.4% of the total protein lysates of the 

treated sample, as reported in Table 3. 

The biophysical nature of the Paraquat-induced aggregates was investigated further, 

by separating the same samples under mild denaturing conditions (2 M urea). The 

HMWs observed only in the treated sample were still present (Figure 11b), but their 

amount decreased significantly.  

As reported previously for the in vitro Paraquat-induced aggregates (Table 1), the 

results indicate that most Paraquat-induced aggregates (approximately 74%) are non-

covalent. The aggregates amounts along with the corresponding MW ranges and the 

elution times are reported in Table 3.  

Once again, upon Paraquat treatment, aggregates having the same MW value 

showed reduced rH values when compared to the control sample suggesting more 

compact aggregates following protein carbonylation. This observation is valid for 

separations under native and mild denaturing conditions.  
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Table 3 – Separation of spleen cell lysates (control and treated sample) under native and 

denaturing conditions 

Native conditions – Figure 11a 

Sample CTR PQ 

Common MW range (g/mol) 5.0×105 – 1.2×106 

Hydrodynamic radius range (nm)  2 – 55  2 – 23  

MW range of Paraquat – induced 

aggregates (g/mol) 
- 1.2×106 – 2.6×106 

Hydrodynamic radius range (nm) 

of Paraquat – induced aggregates 
- 23 – 55  

Amount of Paraquat – induced 

aggregates 
- 21.4% 

Denaturing conditions – Figure 11b 

Sample CTR PQ 

Common MW range (g/mol) 5.0×105 – 1.2×106 

Hydrodynamic radius range (nm)  2 – 40  2 – 26  

MW range of Paraquat – induced 

aggregates (g/mol) 
-  1.2×106 – 2.6×106 

Hydrodynamic radius range (nm) 

of Paraquat – induced aggregates 
- 26 – 40  

Amount of Paraquat – induced 

aggregates 
- 5.5%  

 

Importantly, the quantification of protein carbonylation, as a measure of oxidative 

stress, showed an increase in the amount of carbonyl groups in each fraction of the 

Paraquat-treated cell lysate separated by HF5 (Figure 11c), but most predominantly 

in the high MW fractions of the spleen cell lysate. The results are reported in Figure 

12.  

 

 

Figure 12 – Protein carbonyl assay performed of different fractions, collected from control and 

Paraquat spleen samples (Figure 11c). Performed and kindly provided by the Laboratory of Pathology, 

Immunology and Microbiology of A. Einstein College of Medicine (Yeshiva University, NY, USA) 
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Next, brain lysates from control and Paraquat-treated mice were analyzed by HF5-

(UV)-MALS. Their elution profiles, as well as corresponding MW ranges are reported 

in Figure 13a (native) and 13b (denaturing, 2M urea). The rms radius ranges, derived 

from the MALS measurements and computed by Astra® are reported in Figure 13b. 

 

 

Figure 13 – HF5-UV-MALS elution profiles of the control and Paraquat-treated brain cell lysates, 

(a) separated under native conditions, reporting the MW ranges  calculated by Astra and  (b) rms 

radius ranges calculated by Astra and (c) separated under denaturing conditions (2 M urea), 

reporting MW ranges calculated by Astra 
 

A common MW range of proteins and protein aggregates, with MWs up to 7.5×106 

g/mol is observed for both control and treated sample, reported in Table 4. Once 

again, the brain sample from Paraquat-treated mice showed the presence of high MW 

aggregates, with MW above 7.5×106 g/mol, which were not detected in the control 

sample (Figure 13a).  These aggregates amounted to up to the 26.1% of total proteins 

in the treated sample, reported in Table 4.  



Chapter 4, Part 2, 4.2.1. Novel HF5-(UV)-MALS methodology for the size-separation, characterization and 

quantification of oxidative stress-related protein aggregates in whole cell lysates  

293 
 

 

Table 4 – Separation of brain cell lysates (control and treated sample) under native and denaturing 

conditions 

Native conditions – Figure 13a 

Sample CTR PQ 

Common MW range (g/mol) 1.0×105 – 7.5×106 

Hydrodynamic radius range (nm)  4 – 203  4 – 100  

MW range of Paraquat – induced 

aggregates (g/mol) 
- 7.5×106 – 3.9×107 

Hydrodynamic radius range (nm) 

of Paraquat – induced aggregates 
- 100 – 200  

Amount of Paraquat – induced 

aggregates 
- 26.1% 

Denaturing conditions – Figure 13c 

Sample CTR PQ 

Common MW range (g/mol) 1.0×105 – 7.5×106 

Hydrodynamic radius range (nm)  0 – 116  0 – 68  

MW range of Paraquat – induced 

aggregates (g/mol) 
- 7.5×106 – 3.9×107 

Hydrodynamic radius range (nm) 

of Paraquat – induced aggregates 
- 68 – 115  

Amount of Paraquat – induced 

aggregates 
- 14.8% 

MW range of new aggregates 

(denaturing conditions) 
7.5×106 – 2.0×107 3.9×107 – 8.0×107 

Hydrodynamic radius range (nm) 

of new aggregates 
116 – 177  115 – 177  

Amount of new aggregates 

(denaturing conditions) 
12% 10%  

 

Once again, upon Paraquat treatment, aggregates having the same MW value 

showed reduced rH values (anticipated tR) when compared to the control sample, 

suggesting more compact aggregates following protein carbonylation. Figure 13b 

shows a broad size range of proteins and protein aggregates for both lysates (control 

and treated sample) and, once again, at equal MW, the aggregates in the treated 

sample show reduced rms radius.  

However, the Paraquat-induced aggregates, eluting from 31.5 to 55 min, are larger 

than previously observed in the control sample, arriving up to 120 nm of rms radius. 

These findings support the protein molecular conformational changes caused by 

carbonylation, already reported for the Jaws II cell lysates (Figures 6b and 8).  
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Once the samples were separated under denaturing conditions (4 M urea, Figure 

13c), a decrease in their amount was observed, but less significantly of what observed 

in the spleen samples (Table 3), indicating that most Paraquat-induced aggregates in 

the brain samples are covalent (urea-resistant). As expected, under denaturing 

conditions, the presence of new protein aggregates was also observed and reported 

in Table 4 

 

Altogether the data indicate MW and size-based HF5 separation of protein 

aggregates formed in vivo in primary cells. Additionally, it indicates that the majority 

of proteins modified by carbonylation, a post-translational modification typically 

observed in condition of oxidative stress, are predominantly observed in the HMW 

fractions.  

 

D. HF5-UV-MALS OF AGING – RELATED PROTEIN AGGREGATES  

 

The increasing protein tendency to aggregate with aging is a generally 

acknowledged fact. Indeed, increased amounts of protein post-translational 

modifications including glycation, carbonylation and lipoxidation in aging bone 

marrow lysates were previously reported by [Cannizzo et al. 2011, Cannizzo et al. 

2012]. These modifications are normally associated with increased protein 

aggregation.   

 

Thus, as next step we set to determine whether the proposed methodology could be 

successfully applied to protein aggregates as occurring in aging bone marrow 

precursors cell.   CD34+ cells were purified from the total bone marrow of 3, 12 and 22 

months old mice and the lysates were run on an SDS-PAGE to confirm presence of 

protein aggregation. The results are reported in Figure 14 (Figure 4a). Indeed, a 

progressively increased amount of high MW aggregates was observed with aging. 
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Figure 14 - Silver staining of an SDS-PAGE gel of total bone marrow cell lysate from 3, 12 and 22 

months old mice. Performed and kindly provided by the Laboratory of Pathology, Immunology and 

Microbiology of A. Einstein College of Medicine (Yeshiva University, NY, USA) 

 

Next, the same lysates were separated and characterized by HF5-(UV)-MALS using 

either native or denaturing carrier solutions. The elution profiles, as well as 

corresponding MW ranges are reported in Figure 15. 

 

Figure 15 – HF5-UV-MALS elution profiles of bone marrow cell lysates from aging samples (mice 

of 3, 12 and 22 months), reporting the MW ranges calculated by Astra separated under: (a) native 

conditions, (b) mild denaturing conditions, 2 M urea and (c) denaturing conditions, 4 M urea; (d) 

protein fractions collected for further characterization. 

 

Figure 15a shows that all three aging samples contained a common MW range of 

proteins and protein aggregates with MWs up to 4.4×106 g/mol, reported in Table 5.  

Additionally, the 22 months old bone marrow cell lysate also contained higher MWs 

that were not present in the samples from 3 and 12 months old mice, representing 

approximately 15.9% of the 22 months sample (Table 5).  
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Next, the samples were fractionated under denaturing conditions (2M and 4 M urea). 

Figures 15b and 15c show that the majority of aging-related protein aggregates, 

observed under native conditions, were still present in the 22 months sample. 

Indeed, their amount decreased only slightly as the urea concentration increased, 

indicating that many of the age-related aggregates presented covalent bonds (Table 

5). 

Importantly, aggregates, with the same MW, but collected from different ages, eluted 

at different retention times due to differences in the hydrodynamic sizes (rh), also 

reported in Table 5.  These rh differences, between protein aggregates with the same 

MW value (but of different age), are due to changes in the aggregate molecular 

conformation, as previously reported for the Paraquat-treated cell lysates (Figure 6b 

and Figure 8). As expected under denaturing conditions, the formation of new 

aggregates was observed and reported in Table 5.  

 

The rms radius ranges, derived from the MALS measurements and computed by 

Astra® are reported in Figure 16a; whereas Figure 16b reports the conformation 

trends of the covalent aggregates present in bone marrow cell lysates from aging 

samples (mice of 3, 12 and 22 months)  

 

 

Figure 16 – HF5-UV-MALS elution profiles of the bone marrow aging (mice of 3, 12 and 22 months) 

cell lysates separated under mild denaturing conditions (2 M urea), reporting the (b) rms radius 

ranges calculated by Astra and (b) conformation plots; the number below the assigned molecular 

conformation represents the slope derived from experimental data 
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Table 5 – Separation of bone marrow cell lysates (3, 12 and 22 months under native and denaturing 

conditions 

Bone marrow cell lysates 

Native conditions – Figure 15a 

Sample 3 months 12 months 22 months 

Common MW range (g/mol) 5.0×10
4 
– 4.4×10

6 

Hydrodynamic radius range (nm)  3 – 111  3 – 111  3 – 53  

MW range of aging – induced 

aggregates (g/mol) 
- - 4.4×10

6 
– 1.3×10

7 

Hydrodynamic radius range (nm) of 

aging – induced aggregates 
- - 53 – 111  

Amount of aging – induced 

aggregates 
- - 15.9% 

Mild denaturing conditions (2 M urea) – Figure 15b 

Sample 3 months 12 months 22 months 

Common MW range (g/mol) 1.0×10
5 
– 4.4×10

6 

Hydrodynamic radius range (nm)  4 – 90  4 – 89  4 – 66  

MW range of aging – induced 

aggregates (g/mol) 
- - 4.4×10

6 
– 1.3×10

7 

Hydrodynamic radius range (nm) of 

aging – induced aggregates 
- - 66 – 97 

Amount of aging – induced 

aggregates 
- - 11.5% 

MW range of new aggregates 

(denaturing conditions) 
4.4×10

6
 – 1.2×10

7 4.4×10
6
 – 1.2×10

7 1.3×10
7
 – 2.1×10

7 

Hydrodynamic radius range 

(nm) of new aggregates 
90 – 113  89 – 113  97 – 113  

Amount of new aggregates 

(denaturing conditions) 
2% 3% 12% 

Denaturing conditions (4 M urea) – Figure 15c 

Sample 3 months 12 months 22 months 

Common MW range (g/mol) 1.0×10
5 
– 4.4×10

6 

Hydrodynamic radius range (nm)  3 – 7  3 – 7  3 – 9  

MW range of aging – induced 

aggregates (g/mol) 
- - 4.4×10

6 
– 1.3×10

7 

Hydrodynamic radius range (nm) of 

aging – induced aggregates 
- - 9 – 18  

Amount of aging – induced 

aggregates 
- - 11%

 

MW range of new aggregates 

(denaturing conditions) 
4.4×10

6
 – 3.0×10

7 4.4×10
6
 – 3.0×10

7 4.4×10
6
 – 1.5×10

7 

Hydrodynamic radius range 

(nm) of new aggregates 
7 – 51  7 – 51  18 – 51  

Amount of new aggregates 

(denaturing conditions) 
49% 56% 7% 
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Figure 16a shows the presence of very large protein aggregates in the 22 months 

sample that are not present in the younger ones.  Figure 16b shows the differences in 

the conformation trends, indicated by the slope values and how the overall 

molecular conformations change due to modifications (mostly carbonylation, but 

also lipoxidation and glycation) caused by oxidative stress during the aging process. 

Indeed, the aging-related protein aggregates in the 22 months sample presented 

sphere-like, highly compact conformations, whereas aggregates found in younger 

bone marrow present a relaxed rod-like conformation (Figure 4e).   

 

Additionally, the correlation plot reported in Figure 16b indicates different 

compactness degrees: the younger samples (3 and 12 months) show a very small rms 

radius increase over time, suggesting protein aggregates of very high density when 

compared to the oldest sample (22 months).  

Moreover, correlating Figures 16a and 16b, is shown that the age-related aggregates 

that are present only in the oldest sample not only have higher MW values (as 

reported in Table 5), but have a much larger size and a more compact conformation 

when compared to the non age-related aggregates.  

 

Analysis of the rH and rms radius showed how protein aggregates with the same MW 

eluted at different tR, suggesting a reduced hydrodynamic size for the aggregates 

with anticipated tR, as already reported for other cell lysate samples. The detailed 

fraction-by-fraction characterization by HF5-UV-MALS, containing the MW ranges, 

rms radius and hydrodynamic radius (rH) ranges for each lysate fraction depicted in 

Figures 15d and 16c is reported in Table 6. 
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Table 6 – Fractions of aging bone marrow cell lysates (3, 12 and 22 months old mice) separated 

under native and denaturing conditions. MW, rms radius and hydrodynamic radius (rh) ranges. 

Bone marrow cell lysates separated under mild denaturing conditions (2 M urea) 
Fractions 1 2 3 4 5 

Hydrodynamic radius 

range (nm) 
27 – 41  41 – 52  52 – 69  69 – 91  91 – 116  

Mass 

fraction 

3 months 8.3% 8.9% 6.1% 3.8% 1.7% 

12 months 11.4% 12.0% 8.2% 5.2% 2.5% 

22 months 12.1% 15.0% 11.5% 7.8% 4.5% 

MW range 

(g/mol) 

3 months 
2.322×105 

7.902×105 

7.902×105 

1.434×106 

1.434×106 

2.139×106 

2.139×106 

4.033×106 

4.033×106 

1.194×107 

12 months 
2.722×105 

8.655×105 

8.655×105 

1.321×106 

1.321×106 

2.323×106 

2.323×106 

4.129×106 

4.129×106 

1.244×107 

22 months 
1.254×106 

1.568×106 

1.568×106 

2.454×106 

2.454×106 

4.640×106 

4.640×106 

9.033×106 

9.033×106 

2.103×107 

Rms radius 

range (nm) 

3 months N/A 41.6 – 47.4 47.4 – 58.5 58.5 – 71.9 71.9 – 94.4 

12 months N/A 26.2 – 41.6 41.6 – 67.8 67.8 – 84.5 84.5 – 99.2 

22 months N/A 155.9 – 171.4 171.4 – 208.7 208.7 – 232.1 232.1 – 264.8 

 

Altogether the data demonstrate that H5F-MALS can separate age-related aggregates 

from total cell lysates and characterize their MW, hydrodynamic radius and 

conformation. 

 

E. MASS SPECTROMETRIC ANALYSIS OF AGING-RELATED PROTEIN AGGREGATES.  

PERFORMED BY THE LABORATORY OF PATHOLOGY, IMMUNOLOGY AND MICROBIOLOGY OF A. 

EINSTEIN COLLEGE OF MEDICINE (YESHIVA UNIVERSITY, NY, USA) 

 

It has been recently reported that, during physiological aging, several 

hundred proteins tend to become more insoluble and aggregate (metastable 

proteins). Proteomic analysis of these proteins identified communality in biochemical 

and biological properties, including amino acids primary sequence, increased beta-

sheets and grouping in specific biological pathways [Cannizzo et al. 2012].   

To determine whether HF5-purified protein aggregates shared similarities with what 

was previously published, samples collected from the highest molecular weight 

fractions were digested using a combination of Lys-C and trypsin in 0.1 M 

bicarbonate buffer and 4M urea and peptide fragments analyzed by mass 
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spectrometry (Table 7).   

In total bone marrow and spleen samples, 65% and 55% respectively of the proteins 

found in the high MW aggregate (MW>107) corresponded to proteins known to 

increase their tendency to aggregate in aging. Among those, several enzymes, 

histones and signaling molecules were found and reported in Figure 17 and Table 7.   

 

Figure 17 – (a) Pie charts of the aggregate proteome from 3 and 22 months old total bone marrow; b) 

Pie charts of the aggregate proteome from 3 and 22 months old spleen lysate. Proteins were 

identified by mass spectrometry and analyzed by scaffold analysis. Kindly provided by the Laboratory 

of Pathology, Immunology and Microbiology of A. Einstein College of Medicine (Yeshiva University, NY, USA) 

The other 35% and 45% (bone marrow and spleen respectively) were proteins known 

to have a tendency to aggregate and being insoluble regardless the aging process. 

This category comprised several matrix proteins and cytoskeleton proteins.  

 

Ingenuity pathway analysis of the urea collected high MW aggregates (MW>107) 

indicated grouping into few major pathways including cell growth, cellular 

respiration, metabolism, cytoskeleton and mobility and oxidative stress (Figure 18b).  

 

Figure 18a shows the proteins distribution in the CD34+ bone marrow cell lysates 

aggregates from 3, 12, 22 months old mice. 171 proteins common proteins were 

identified for all three ages, several common proteins for each pair (3 – 12; 3 – 22 and 

12 – 22 months), as well as age-specific proteins (13 proteins for the 3 months old, 14 

for the 12 months old and 2 proteins for the 22 months old mice). 
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Figure 18 – (a) Scaffold analysis for proteins distribution in the CD34+ bone marrow cell lysates 

aggregates and (b) heat map of the major functional pathways represented in the aggregate 

proteome fractionated from bone marrow cells collected from 3, and 22 months old mice. Kindly 

provided by the Laboratory of Pathology, Immunology and Microbiology of A. Einstein College of Medicine 

(Yeshiva University, NY, USA 

 
Table 7 – Mass spectrometry analysis of protein aggregates in bone marrow and spleen cell lysates. 

Bone marrow 

Identified Proteins Accession Number 3months 22 months 

Protein Kinase A 

anchor protein 
gi|6753026 26% 38% 

Aldehyde 

dehydrogenase II 
gi|191804 0 41% 

B-cell scaffold protein  1 gi|110835719 29% 0 

Beta actin gi|4501885 100% 100% 

Protein kinase 2, beta gi|148687716 28% 40% 

Cathepsin C gi|45219895 0 91% 

Cathepsin G gi|6681083 0 100% 

Collagen IV alpha-2 gi|556299 86% 90% 

Peroxidase gi|145966840 100% 100% 

Ribonuclease A family, 

member 6 
gi|21426871 0 91% 

Ferritin light chain 1 gi|114326466 0 98% 

Fibrillin 1 gi|118197277 100% 91% 

Fibronectin 1 gi|148667849 99% 100% 

High mobility group 1 

protein 
gi|600761 0 100 

High mobility group 

protein B2 
gi|11527222 0 47% 

Histone 1, H1e gi|13430890 86% 100% 

Inhibitor of CDK 

interacting with cyclin 

A1 

gi|47523979 0 38% 

Myeloperoxidase gi|226823250 0 91% 
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Rotamase gi|118091 0 45% 

Plectin-1 gi|122065897 55% 53% 

Potassium voltage-

gated channel A4 
gi|3023498 0 35% 

Cystatin-related protein 

1 
gi|82886009 0 41% 

Collagen IV alpha 1 gi|148690109 86% 91% 

Collagen XIX alpha 1 gi|111600306 0 53% 

Prosaposin gi|1381582 0 0 

Protease, serine, 1 gi|16716569 78% 89% 

Protein kinase C, beta 1 gi|148685332 0 44% 

Proteoglycan 2 gi|6679457 98% 98% 

Calgranulin B gi|6677837 86% 100% 

THAP domain 

containing 11 
gi|10946934 0 37% 

WD repeat domain 42A gi|148707088 0 41% 

Spleen 

Identified Proteins Accession Number 3 months 22 months 

Actin, gamma, 

cytoplasmic 1 
gi|123298587 100% 100% 

AHNAK nucleoprotein 

isoform 1 
gi|61743961 100% 100% 

Annexin A1 gi|124517663 86% 78% 

Beta tubulin gi|12846758 0 78% 

Proteoglycan 2 gi|6679457 100% 100% 

Collagen XIX, alpha 1 gi|111600306 65% 66% 

Cytochrome P450 gi|148666702 31% 25% 

DEAD box polypeptide  

50 
gi|60551791 0 0 

Dpep1 protein gi|13097534 0 34% 

Peroxidase gi|145966840 100% 100% 

Ribonuclease A family, 

member 6 
gi|21426871 0 78% 

Fca/m receptor gi|11071950 0 20% 

Fibronectin 1 gi|148667849 97% 100% 

Hist1h3e protein gi|119850953 33% 24% 

Igh-1 a protein similar gi|1334091 0 100% 

Major vault protein gi|13879460 100% 100% 

Myosin light chain 

kinase 
gi|126157499 33% 0 

Myosin-9 isoform gi|114326446 100% 100% 

Proline rich 12 gi|153791304 0 20% 

Protein kinase C, beta 1 gi|148685332 0 18% 
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Myeloperoxidase gi|129826 0 100% 

P(4,5)P2 3-kinase alpha gi|1171954 0 30% 

Plectin-1 gi|122065897 39% 40% 

Ribosomal L15 60S gi|12846287 98% 97% 

Ribosomal protein L27 

60S 
gi|6708474 79% 78% 

Spastin isoform 1 gi|244790106 0 20% 

    

Protein marked in red are equally expressed in aggregates from 3 and 22 months old mice 

 

 

4.2.1.5. CONCLUSIONS 

 

The work presented in this chapter showed the importance of developing a 

methodology that allows separation of protein aggregates based on their size and 

biophysical properties, providing insight on the different type of aggregates. Further 

analyses on the isolated protein aggregates may provide insight upon their formation 

and disposal under different stress conditions, altogether furthering our knowledge 

on the mechanisms controlling cellular proteostasis. 

 

Field-flow fractionation (FFF) and its miniaturized variant (HF5) was previously 

employed successfully for the separation of serum proteins including IgGs, albumin, 

hemoglobin and phospholipids in high-density and low-density lipoproteins from 

human plasma [Reschiglian et al. 2003, Kang and Moon 2006, Zattoni et al. 2007].  

Herein, by online coupling HF5 and MALS we were able to separate for the first time 

protein aggregates, based on their size, molecular weight and biophysical properties, 

from a total cell lysate [Reschiglian et al. 2004, Reschiglian et al. 2006, Reschiglian et 

al. 2013]. Data processing allowed analysis of the aggregates amount, molecular 

weight and size (rH and rms radius).  Samples were run under non denaturing 

conditions using PBS or Tris-Buffer and under different degrees of denaturing 

conditions (2 and/or 4 M Urea).  Further analysis of the collected fractions on native 
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gels confirmed separation by molecular weight and the presence of aggregates above 

5.0×106 Da only in conditions of oxidative stress.     

Additionally, proteomic analysis performed on the highest molecular weight 

aggregates (MW>107) confirmed the presence of several proteins previously reported 

to be insoluble or with increased tendency to aggregate during aging.  The proteomic 

analysis on the purified aggregates presented here confirmed the presence of an 

aggregate proteome which share several proteins previously reported to be 

associated with age-related aggregation [David et al. 2010]. 

 

Altogether, several information could be gathered by HF5 purification that would 

have not be possible to obtain with traditional methods employed to separate protein 

aggregates, including filter assay, ultracentrifugation, agarose gels and size-exclusion 

chromatography (FPLC).  

Firstly, and more importantly, we determined that HF5 does indeed separate 

proteins and protein aggregates over a wide range of sizes and molecular weights 

from complex protein mixtures such as the total cell lysates proteome, in a single step 

analysis.  

Secondly, we observed how protein aggregates of the same MW eluted at different tR 

because of different hydrodynamic sizes, which directly relate to their molecular 

conformation. Indeed, HF5-MALS online coupling allowed the determination of the 

molecular conformation of all protein aggregates, and showed that the oxidative 

stress-induced ones had a more compact conformation, following the protein 

modifications (carbonylation) caused by either Paraquat treatment or by the aging 

process. Thirdly, the ability to separate lysates under both physiological and 

denaturing conditions allowed establishing the biophysical nature of the aggregates. 

Schiff-base covalent bound protein aggregates that could not be disrupted by high 

molar urea were discriminated from the aggregates that were purely based on 

hydrophobic or electrostatic interactions and hydrogen bonds. In this respect, it is 

important to notice that samples obtained from mice, where oxidative stress was 
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induced for a short period of time, protein aggregates were indeed formed, but were 

readily solubilized in urea. However, we were able to report the percentages of the 

two types of oxidative stress-related aggregates. On the other hand, lysates from 

aging bone marrow presented high MW aggregates, as compared to the same 

specimens from younger mice, which could be fractionated in non-denaturing 

conditions and were poorly solubilized in high molar urea. This data indicates the 

suitability of HF5 (method and technique, in general) to separate aggregates with 

different biophysical properties.  

Last, but not least, the subsequent offline MS analysis on the HF5 high MW fractions 

of bone marrow cell lysates from aging mice confirmed the presence of several 

proteins previously reported to be insoluble or with increased tendency to aggregate 

during aging. 

 

Understanding the biophysical properties of the different species of protein 

aggregates can be highly relevant to predict their biological consequences. For 

instance, the compactness of the aggregates was shown recently to determine their 

ability to be cleared up by autophagy.  The autophagic machinery required for the 

sequestration of the aggregates and delivery to lysosomes can only assembly in the 

surface of compact aggregates, whereas those showing active disassembly by 

chaperones cannot be targeted to this pathway [Wong et al. 2012].  Additionally, 

soluble or insoluble protein aggregates have different consequences on cellular 

toxicity [Kopito 2000]. Thus, being able to correlate the aggregates biophysical 

properties with their clearance and their overall effect on cellular proteostasis is 

highly significant. 

 

In conclusion, this work shows for the first time that HF5 can be used to separate 

oxidative-stress and age-related protein aggregates from total cell lysates. By online 

coupling HF5 and MALS, important biophysical information on the separated 

aggregates can be gathered. The results provided by HF5-MALS were corroborated 
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by both native gel and proteomic analysis of the high molecular weight aggregates.  

In the future, the method could be applied for the separation of aggregates formed 

under different pathological conditions to better characterize their biochemical and 

biophysical properties and gain further insight into protein aggregation under 

different stressors. 
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