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ADVANCES IN METHODS TO DETECT, ISOLATE AND 
QUANTIFY FOODBORNE PATHOGENS 

 
by 

Gian Marco Baranzoni 

 

ABSTRACT 

Foodborne diseases impact human health and economies worldwide in 

terms of health care and productivity loss.  Prevention is necessary and 

methods to detect, isolate and quantify foodborne pathogens play a 

fundamental role, changing continuously to face microorganisms and food 

production evolution. 

Official methods are mainly based on microorganisms growth in different 

media and their isolation on selective agars followed by confirmation of 

presumptive colonies through biochemical and serological test.  A complete 

identification requires form 7 to 10 days. 

Over the last decades, new molecular techniques based on antibodies and 

nucleic acids allow a more accurate typing and a faster detection and 

quantification.  The present thesis aims to apply molecular techniques to 

improve official methods performances regarding two pathogens: Shiga-like 

Toxin-producing Escherichia coli (STEC) and Listeria monocytogenes.   

 

In 2011, a new strain of STEC belonging to the serogroup O104 

provoked a large outbreak.  Therefore, the development of a method to detect 

and isolate STEC O104 is demanded.   
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The first objective of this work is the detection, isolation and identification of 

STEC O104 in sprouts artificially contaminated.  Multiplex PCR assays and 

antibodies anti-O104 incorporated in reagents for immunomagnetic separation 

and latex agglutination were employed.  Contamination levels of less than 1 

CFU/g were detected.  Multiplex PCR assays permitted a rapid screening of 

enriched food samples and identification of isolated colonies.  

Immunomagnetic separation and latex agglutination allowed a high sensitivity 

and rapid identification of O104 antigen, respectively.  

 

The development of a rapid method to detect and quantify Listeria 

monocytogenes, a high-risk pathogen, is the second objective.  Detection of 1 

CFU/ml and quantification of 10–1,000 CFU/ml in raw milk were achieved by 

a sample pretreatment step and quantitative PCR in about 3h.  L. 

monocytogenes growth in raw milk was also evaluated. 
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CHAPTER 1: General Introduction 

Food is essential for living and despite the improvements in food 

hygiene and preserving technologies, foodborne outbreaks continue to occur 

worldwide.  Globalization has led to a more intensive and centralized food 

production and a wider distribution of raw materials and food products 

promoting foodborne pathogens diffusion.  Note that microorganisms continue 

evolution and changing in food habits have also contributed. 

Illnesses associated to food and water consumption are frequent and even if 

the rate of hospitalization and deaths are low, the economic cost of health 

care and productivity losses are onerous. The estimation of burden of 

foodborne illnesses is complex because there are several pathogens, 

transmission routes are different and data are not homogeneous among the 

countries. 

 

Foodborne pathogens are potentially everywhere and their infection is 

perpetuated by oral transmission associated with contaminated food 

consumption and distribution in the environment through feces.  

Consequently, it is necessary to control food products to prevent their 

contamination.  

Competent authorities have defined microbiological criteria to establish the 

acceptability of food products and its production and distribution processes.  

Moreover, they provide official methods to detect and quantify specific 

microorganisms or their products.  These methods are generally based on 
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microbiological cultures in several media to isolate single colonies on 

selective agars.  Then, presumptive colonies are confirmed by biochemical 

and serological tests.  It is widely accepted that official methods are time-

consuming and demanding, in fact from 7 to 10 days are necessary for the 

complete identification of the target microorganism.   

The advent of new molecular techniques based on antibodies or nucleic acids 

permitted a more accurate subtyping and a faster detection and quantification 

of microorganism or their products.  These new techniques can support 

official methods and may substitute them in the future. 

 

1.1 Objectives 

The present thesis aims to improve methods for determination, 

isolation and quantification of foodborne pathogens.  Two microorganisms 

were studied: 1) Shiga-like Toxin producing Escherichia coli (STEC), in 

particular the serogrup O104; and 2) Listeria monocytogenes (L. 

monocytogenes). 

 

STEC O104 was considered a minor pathogen until 2011 when new 

recombinant strain provoked a large outbreak mainly located in Germany 

(Robert Koch institute, 2011).  Official methods to identify this specific strain 

along with the serogroup O104 are under development.  Regarding this 

pathogen, this work pursues to test the methods available for STEC, improve 

their sensitivity detecting the strain responsible of the German outbreak and 

other general STEC O104.  Results will aid to define new official methods. 
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L. monocytogenes is a well-known pathogen, which has low incidence, but 

persistent, provoking severe symptoms that may lead to death.  Therefore, it 

is very important to prevent its diffusion.  The second objective of the thesis is 

to develop a rapid method for detection and quantification of L. 

monocytogenes in raw milk through quantitative Polymerase Chain Reaction 

(PCR). 

The major impact of this objective relies in the ability to provide results very 

quickly, as it is possible to remove contaminated products before they enter in 

the market.  Sensitivity and specificity have to be comparable to official 

methods.  Furthermore, knowledge about level of L. monocytogenes 

contaminations is very useful to compare different farming methods or food 

processes. 
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CHAPTER 2: Literature Review  

2.1 Emergency of foodborne pathogens 

Foodborne illnesses appear to be a never-ending issue, which impact 

human health and economies worldwide.  Food is fundamental for living; its 

increasing demand due to an expanding world population and globalization 

introduces new challenges to the food safety field.  Over the last decades, 

new farming and cultivation methodologies were developed, achieving a more 

intensive and centralized food production.  Moreover, new preserving and 

packing technologies allow for extended food shelf-life and distribution.  

Consequently, nowadays food production requires the use of machinery and 

more workers, which increases the chances for contamination.  Raw materials 

are often imported from other countries allowing a worldwide diffusion of 

foodborne pathogens.  Furthermore, people life-style changed during this 

period. For instance, the number of people eating in restaurants and the 

consumption of ready-to-eat products have increased, augmenting the risk to 

contract foodborne diseases (Nyachuba, 2010). 

These diseases can be asymptomatic or provoke gastrointestinal symptoms 

that can also degenerate to serious life threatening forms or even death.  

Pathogens that can be transmitted with food include bacteria, viruses, fungi, 

parasites and prions.  Together with chemicals, their appearance can 

potentially occur anytime, from food production to its consumption at home. 

 

The quantification of the number of illnesses caused by foodborne 

pathogens is a very difficult task.  Foodborne pathogens are a large and 
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heterogeneous group of causative agents that can also be transmitted by 

different routes, like direct contact with animals or indirect contact through a 

non-food vehicle.  Surveillance is based on laboratory results.  Thus, it means 

that a sick person has to look for medical care, a doctor has to send the 

specimen to analyze, the laboratory has to identify the pathogen, and then, 

the disease has to be reported to the competent health authority.  Any 

interruptions of this chain of events result in an underestimation of the number 

of illnesses caused by foodborne pathogens due to underreporting.  

Additionally, certain countries do not monitor outbreaks properly; in 

developing countries, food dynamics and their role as transmission routes of 

foodborne diseases are not well understood (Flint et al., 2005). 

In 2006, the World Health Organization (WHO) expressed the need of filling 

these gaps and proposed to estimate the global burden of foodborne disease 

in terms of incidence, morbidity and Disability–Adjusted Life Year (DALY); a 

parameter that includes the values of years spent in disability or lost due to 

premature death (WHO, 2006). 

 

Despite the lacking of standard methods and the data heterogeneity among 

the foodborne pathogens spectrum, many studies were performed.  In 

general, data from different surveillance programs were compared to calculate 

pathogens-specific multipliers in order to harmonize data derived from active, 

passive and outbreak surveillance reducing the number of under-diagnosed 

and under-reported cases.  When laboratory-based surveillance was not 

available, usually the number of illnesses was evaluated from a scale down of 

the entire population through incidence data. 



 

 

Table 2.1 – Evaluation of number of cases of domestically acquired foodborne illnesses 

Country; Study 

Period 

Population 

size
a
 

Number of 

pathogens 
Major pathogens 

(Cases per year) 

Unspecified pathogens 

(Cases per year) 

Hospitalizations  

(per year) 

Deaths  

(per year) 
Reference 

B P V 

Europe          

England and Wales; 

1996–2000 
52,700,000 18 3 5 885,171 839,144 99,597 602 Adak et al. (2005) 

France; 

1997–2000
b
 

60,185,831 13 8 2 239,000–269,000
c
 N.A. 10,200–17,800

c
 228–691

c
 

Vaillant et al. 

(2005) 

Greece 
d
;  

1996–2006 
N.A. 9 5 1 N.A. 

369,305/million 

inhabitants 

905/million 

inhabitants 

3.1/million 

inhabitants 

Gkogka et al. 

(2011) 

Netherlands;  

1998–2009 
16,500,000 7 3 5 680,000 4,780,000 N.A. 78 

Havelaar et al., 

(2012) 

Oceania          

Australia; 

2001–2002 
18,972,350 11 2 3 1,480,000 N.A. 3,640 76 Hall et al. (2005) 

New Zealand; 

2000–2009 
4,320,000 16 3 5 557,542 1,368,421 4,279 17 

Cressey & Lake 

(2011) 

North America          

Canada;  

2000–2010 
32,500,000 19 5 6 1,630,636 2,400,000 N.A. N.A. 

Thomas et al. 

(2013) 

USA; 

2000–2008 
299,000,000 21 5 5 9,388,075 38,400,000 55,961 1,351 

Scallan et al. 

(2011a; 2011b)  

Note: B – Bacteria, P – Parasite, V – viruses; N.A. – Not Available 
a
 Data were taken from the references.  For England and Wales, France and Australia data were not available, therefore were obtained from their national office of statistic 

relative to the year 1999, 1999 and 2001, respectively (ABS, 2002; Horsfield, 2000; INSEE, no date) 
b
 For rare diseases the period was extended by 5 years. 

c
 Depending on the data sources, high and low estimates were evaluated and presented as “plausible interval” 

d
 Data reported per million inhabitants. Information includes major and unspecified pathogens. 
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Table 2.1 summarizes the most up to date findings from studies that 

evaluated the number of cases of foodborne illnesses distributed by country.  

Care should be taken when doing comparisons because the information 

provided differs by source, methods of inference, period of time and number 

of foodborne pathogens considered.  The annual number of cases from 

illnesses due to the known pathogens associated to food consumption ranged 

from 239,000 to 9,388,075 (Table 2.1).  Greece was not considered because 

unspecified pathogens were also included (Gkogka et al., 2011).  

Campylobacter various species (spp) was always in the top three pathogens 

responsible for foodborne illnesses, except for Netherlands.  England and 

Wales, Netherlands, New Zealand, Canada and USA provided also data on 

the number of domestic cases caused by undefined foodborne pathogens.  

Their amount ranged from 839,144 to 38,400,000, which is almost 1 to 7-fold 

higher than the reported cases for the major pathogens (Table 2.1).  

Considering population size, Greece reported the highest number of cases 

(369,305 cases per million of inhabitants), but is understandable since major 

and unspecified pathogens were considered together and gastroenteritis were 

not limited to foodborne pathogens. 

 

Despite the high incidence, the number of hospitalizations and deaths are low.  

In general, less then 1% of cases were severe enough to require a hospital 

visit and less than 0.26 % lead to death.  Only France and England and 

Wales, presented higher hospitalization rates, resulting in 4.3%–6.6% and 

11%, respectively.  Regarding undefined pathogens, hospitalization and death 

rates are similar than for known pathogens. 
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Among the studies collected in Table 2.1, Gkogka et al. (2011) and Havelaar 

et al. (2012) were the only ones to introduce the DALY parameter. DALY 

estimates a different aspect of the foodborne pathogens burden, because 

considers not only the frequency, but also the severity of the disease 

outcome.  An example is the increase in importance for toxoplasmosis and 

listeriosis. This observation is far from surprising as, in the case of listeriosis, 

most of the studies showed the highest fatality rates, ranging from 15% to 

35% (Adak et al., 2005; Cressey & Lake, 2011; Gkogka et al., 2011; Scallan 

et al., 2011a; Vaillant et al., 2005); excluding 5% in Netherlands (Havelaar et 

al., 2012). 

 

Burden of foodborne illnesses can also be considered from an 

economic point of view.  Robert Scharf (2012) estimated the losses of 

productivity, cost in medical care and illness-related mortality, for USA, using 

the data collected by Scallan et al. (2011a; 2011b).  According to the author, 

USA estimated expenditure per year was 51.0 billion dollars resulting in 1,068 

dollars per foodborne illness case.  The annual cost rises up to 77.7 billion 

dollars, when loss of quality life is added to the model. 

 

2.1.1 Europe situation 

Although passive surveillance underestimates the burden of foodborne 

illnesses to the society, it is a powerful tool when doing risk management of 

these diseases and helping competent authorities to locate resources.  The 

European Center for Disease Prevention and Control (ECDC) is the agency 

that coordinates the surveillance of foodborne diseases together with all the 
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other infective diseases in the European Union.  Starting in 2007, ECDC 

reports in the European Surveillance System (TESSy), all the human cases of 

communicable disease for every state member including Norway and Iceland.  

Every year, according to the directive 2003/99/EC (European Commission, 

2003), the European Food Safety Authority (EFSA) uses TESSy results to 

report about zoonosis, zoonotic agents and foodborne outbreaks.  Switzerland 

reports its data directly to EFSA.  The last published report estimated 5,648 

food-borne outbreaks, including of 7,125 hospitalizations and 93 deaths, 

occurred in 2011 (EFSA & ECDC, 2013).  Note that the previously stated 

values reported by EFSA are not cases but ‘foodborne outbreaks’, which 

comprise two or more cases of similar illness associated with the consumption 

of the same food to be regarded as an outbreak (European Commission, 

2003).  From 2008, the first reported year, until 2011 the number of food-

borne outbreaks remained constant ranging from 5,276 to 5,648 (EFSA & 

ECDC, 2010; 2011; 2012; 2013).  
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Table 2. 2 – Human cases in Europe of the main foodborne pathogens in 

2011 (EFSA & ECDC, 2013) 
Foodborne 

pathogen 

Europe
a
 Italy 

reported confirmed reported confirmed 

Campylobacter spp
b
 235,836 231,301 468 468 

Salmonella spp 100,532 98,183 3,344 3,344 

STEC
c
 9,743 9,605 69 51 

Yersinia spp
d
 7,128 7,077 15 15 

Listeria spp
e
 1,553 1,545 83 83 

Echinococcus spp
f
 786 784 - - 

Trichinella spp
g
 363 268 6 6 

Brucella spp
h
 362 340 21 21 

Micobacterium bovis
i
 147 147 11 11 

Total 356,450 349,250 4,017 4,017 

Note: spp – various species 
a
 Twenty-seven European country members plus Iceland, Norway and Switzerland. 

b
 No surveillance reports available for Greece and Portugal. 

c
 No surveillance reports available for Portugal. 

d
 No surveillance reports available for Iceland, Greece, Netherlands, Portugal and Switzerland. 

e
 No surveillance reports available for Portugal. 

f
 No surveillance reports available for Denmark, Iceland and Italy. 

g
 No surveillance reports available for Denmark and Iceland. 

h
 No surveillance reports available for Denmark. 

i
 No surveillance reports available for France. 

 

 

Table 2.2 lists all the human cases (including sporadic cases) occurred in 

Europe in 2011, divided by pathogen.  Rabies was not considered because its 

transmission is not related to food or water consumption.  A total number of 

356,450 cases were reported, among them, 349,250 were confirmed and 

4,017 were located in Italy.  In 2011, Campylobacter spp and Salmonella spp 

resulted to be the main foodborne pathogens in Europe, being responsible of 

94% of the human cases reported by EFSA (EFSA & ECDC, 2013).  

Campylobacter spp alone was 66% of the total reported cases and this 

number has increased since 2008, probably due to higher awareness for the 

pathogen and surveillance improvements.  On the contrary, Salmonella spp 

human cases in 2011 are 5.4% less than in 2010; and a statistically significant 

negative trend was observed from 2008 to 2011.  Probably the mandatory 

programs of control in egg poultry houses helped to achieve this result.  
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Campylobacter spp and Salmonella spp are gram-negative bacteria that 

provoke gastro-intestinal disease in humans.  Their reservoirs are the 

alimentary tract of wild and domestic animals; hence contamination is not 

limited to animal produce, as it has been already seen in the case of 

vegetables (EFSA & ECDC, 2013). 

Among the pathogens reported by EFSA in 2011, special attention should be 

given to STEC and Listeria spp, as they will be further examined during this 

thesis. 

 

STEC is a group of Escherichia coli (E. coli) that produce at least one 

of the verocytotoxins also known as Shiga toxins. These toxins, together with 

other virulence factors, give the bacteria the ability to provoke enteric 

diseases such as bloody diarrhea that can degenerate in Haemolytic-Uraemic 

Syndrome (HUS).  In 2011, the number of confirmed human cases resulted to 

be 159.4% more than the previous year due to a large outbreak caused by a 

recombinant E. coli belonging to the O104:H4 serogroup (EFSA & ECDC, 

2013; Rasko et al., 2011; Rohde et al., 2011).  Despite the spike on number of 

cases during 2011, human cases of STEC have a statistical significant 

positive trend from 2008 to 2011 (EFSA & ECDC, 2013).   

All the cases of listeriosis are mainly provoked by the specie monocytogenes.  

Despite its low incidence and the lack of a specific trend during 2008 to 2011, 

this pathogen has the highest rate of fatality. In 2011, EFSA reported that 

12.7% of the total of confirmed cases were deaths caused by listeriosis (134 

out of 1,054 cases, when information about hospitalization and/or death was 

available). As a matter of fact, L. monocytogenes can provoke severe life-
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threatening symptoms. Although direct and zoonotic transmissions are 

possible, the main cause of infection is the consumption of contaminated 

food.  

 

Active monitoring of foodborne pathogens along with their studies, has 

strongly contributed to prevent and control foodborne illnesses.  Even though 

before 1900, Clostridium botulinum, Salmonella typhi and toxigenic Vibrio 

cholerae were considered important foodborne pathogens, in 1997, they 

accounted for only 0.01% of the cases of foodborne diseases (Tauxe, 2002).  

Unfortunately, even if many advances in food safety were achieved, 

foodborne illnesses will continue to be a burden for society. Microorganisms 

can evolve very quickly and new pathogens will always emerge as noted by 

the outbreak of E. coli O104:H4 in Germany in 2011. 
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2.2 Techniques to detect, isolate and quantify foodborne 

pathogens 

Diseases transmitted by food and water consumption are noteworthy 

and wide distributed all over the world.  Foodborne pathogens are mainly 

zoonotic agents and they are potentially everywhere.  The infection occurs by 

oral transmission and the host spreads the causative agents in the 

environment through its feces (Jay et al., 2005). 

Domestic animals can infect one another in the farm.  Contaminated feed, 

tools, operators and wild animals can also transmit the infection, being the last 

two both active and passive vehicles.  These types of contamination may take 

place during any food production processes.  In particular, the removal of the 

intestinal package during the slaughtering is a critical point (EFSA, 2013a).  

 

Food producers, processors, packagers and distributors play an 

important role to avoid contaminations; hence, it is not enough to control just 

the final product.  Therefore, these factors must be considered in order to 

prevent the spreading of foodborne diseases.  This new concept of prevention 

was introduced in the late 1990s, when the Codex Alimentarius Commission 

(CAC) and the National Advisory Committee on Microbiological Criteria for 

Food (NACMCF) defined the principles for Hazard Analysis Critical Control 

Point (HACCP) (CAC, 1997; NACMCF, 1998).  These principles guided food 

business operators to create an internal plan to find and monitor any critical 

point present in its production. 

The HACCP system was used in 2004 by the European Commission (EC) to 

write the regulations 852, 853, 854 and 882 (European Commission, 2004a; 
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2004b; 2004c; 2004d) concerning hygiene of foodstuff; in particular for food of 

animal origins and its control.  A year later, official microbiological criteria 

were established in the Regulation EC 2073 (European Commission, 2005) 

and modified over the years to integrate the HACCP system as powerful tools 

for control (European Commission, 2007; 2010; 2011; 2013a; 2013b).  A 

microbiological criterion is defined as:  

“acceptability of a product, a batch of foodstuffs or a process, based on the 

absence, presence or number of microorganisms, and/or on the quantity of 

their toxins/ metabolites, per unit(s) of mass, volume, area or batch” 

(European Commission, 2005). 

Microbiological criteria can be evaluated for pathogens or bacterial indicators 

of food quality during food product shelf-life or its production.  Every criterion 

contains: 1) the target organism or its products; 2) the limit of tolerance that 

has to be verified; 3) the official method used for detection and/or 

quantification of the target organism or its products; 4) a sampling plan; and 5) 

the required number of compliant samples out of the total. 

Official analytical methods are validated standard protocols (or they 

equivalents). In Europe, standards are provided by the International 

Organization for Standardization (ISO) and in the USA by the Food and Drug 

Administration (FDA) and the United State Department of Agriculture (USDA) 

Food Safety and Inspection Service (FSIS). 
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2.2.1 Methods 

During the history of food microbiology, different types of methods have 

been discovered and developed.  Food safety requires fast detection and 

quantification techniques to achieve results before the food product enters in 

the market.  Moreover, false-positive and false-negative results should be 

minimized and the cost of the control should not be overwhelming for the food 

business operator.  Unfortunately, pathogens detection and quantification is 

very challenging and methods that accomplish all these requirements are still 

not available.  Food matrixes have very different composition and background 

flora can be very high, especially in raw food.  Moreover, pathogens can be 

stressed during food processing and their level of contamination be generally 

low and non-homogeneously distributed (Feng, 2007). 

 

2.2.1.1 Conventional methods  

Conventional cultural methods are based on cultivating certain 

foodborne pathogens using specific media.  Basically, qualitative methods 

follow 4 steps: 1) food sample preparation by blending or homogenization; 2) 

pre-enrichment and/or selective enrichment; 3) isolation onto solid selective 

media; and 4) identification through several tests mainly of biochemical and 

serological nature.  Quantitative cultural methods are also possible through 

Standard Plate Count (SPC) or Most Probable Number (MPN) techniques.  In 

the first approach, serial dilutions are performed from prepared food sample 

and plated onto solid selective media.  Then, Colony Forming Units (CFUs) 

are counted on one or more plates and the concentration is calculated 

considering the volume of inoculum and the dilution factor used.  For MPN, 
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the sample is prepared in the same way as before, but more dilution 

replicates are done.  Subsequently, each dilution tube undergoes enrichment, 

isolation and identification steps as done for qualitative methods. Ultimately, 

based on the combination of positive and negative tubes and their dilution 

factor, it is possible to calculate the most probable number of pathogen 

present in the sample (Anonymous, 2007; USDA, FSIS, 2014). 

 

Biochemical tests for identification generally entail the cultivation of the 

isolated microorganism in different media.  A variety of media types are 

available depending on the content of different substrates, such as 

carbohydrates or amino acids together with pH indicators.  If the presumptive 

pathogen is able to grow, the pH would change modifying the media color.  

Other tests such as immunoagglutination and haemagglutination can be used 

to identify the serotype or toxins and confirm haemolysis ability (Jay et al., 

2005). 

 

Conventional cultural methods are widely used and they are the gold standard 

for detection and quantification of foodborne pathogens.  These methods are 

characterized by laborious protocols and the need of bacterial growth, 

requiring approximately 7-10 days for pathogen identification.  Moreover, 

quantitative methods may underestimate the number of pathogens as stress 

due to food processing or other environmental factors may cause damage 

making them not able to grow in selective media (Velusamy et al., 2010). 
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Other conventional methods like dye-reduction and microscope based 

enumeration methods are used on food.  Their variability is very high due to 

dye distribution among single cells or clumps and dye metabolism from 

different types of cells.  Due to their low specificity, they cannot be used for 

pathogens detection or quantification, but since they are fast simple and 

inexpensive, they are useful for microbial quality evaluation of raw milk and 

dairy product (Jay et al., 2005). 

 

2.2.1.2 Advances in conventional cultural methods 

In the last years, conventional cultural methods have been improved in 

order to achieve better performances, increase the work efficiency, and face 

the advent of new foodborne pathogen. 

 

The demand to examine many samples at the same time encouraged 

industrials to produce instruments to automatize and improve many 

processes.  Solid food samples can be pummeled by a stomacher or beaten 

by a pulsifier to avoid homogenization and facilitate the entrance of 

microorganisms into the initial suspension.  Gravimetric-diluters and spiral 

plater apparatus are used for automatized dilution and plating, respectively.  

Also, software for image analysis have been developed to count CFUs on a 

plate pictures (Mandal et al., 2011). 

 

Concentrations techniques such as filtration or Immunomagnetic Separation 

(IMS) can be applied before or after the enrichment step.  Different kinds of 
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filters are commercially available and, depending of the pore size, they can 

trap or not bacteria. 

IMS is a technique based on the association between magnetic beads and 

antibodies, which are able to bind specifically to one pathogen.  Briefly, beads 

covered with specific antibodies are added to the enriched food sample in 

order to let the antibodies hybridize with antigens. Subsequently, the 

complexes beads–antibodies–pathogens are collected using a magnet, 

washed with saline solution and plated onto a solid selective media.  

Filters and IMS are able to concentrate bacteria in a small volume, separating 

them from undesired substances present in the food matrixes or enrichment 

media.  Therefore, these techniques increase the performance of cultural 

methods (Dwivedi & Jaykus, 2011).  

 

Regarding pathogens isolation, the continue advent of new pathogens and 

advances in knowledge of bacteria metabolism permitted the development of 

new cultural media.  For instance, the addition of specific substrates into the 

plates, which are metabolized in different ways by different microorganisms, 

lead to the formation of chromogenic, fluorogenic and luminogenic products.  

These compounds are visible on the plate facilitating pathogen identification 

(Orenga et al., 2009).  Furthermore, ready-to-use kits based on SPC or MPN 

are available.  Despite to the cost, they not require reagents preparation and 

are easier to perform (Jasson et al., 2010). 

 

For the same advantages, commercial kits are also available for identification 

tests.  Small biochemical kits containing a battery of different media provide 
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the confirmation of presumptive colonies in 16-24 h (Gracias & McKillip, 

2004). Similarly, kits based on antigen-antibody reaction like latex 

agglutination provide the identification of a serogroup in real time. 

Nucleic acids based techniques allow a more accurate microorganism typing 

and support conventional cultural methods.  Although they are powerful tools 

for food outbreak investigations, these methods lack of standardized protocols 

(EFSA, 2013b). 

 

2.2.1.3 Alternative methods for detection and quantification of foodborne 

pathogens 

Among the immunological methods the most important is the Enzyme-

Linked Immunosorbent Assay (ELISA).  ELISA is commonly used in 

diagnostic and biomedical research and it has been also applied for 

pathogens and toxins detection in food.  ELISA uses antibodies to both 

capture specific antigens and bind enzymes (usually alkaline phosphatase or 

glucose oxidase) to them.  When the substrate for the enzyme is provided, the 

product can be quantified through a spectrophotometer.  If different dilutions 

of food samples are tested, ELISA can be quantitative (Jay et al., 2005).  

Besides its antibody specificity and the fast speed, ELISA lacks of sensitivity 

103–105 CFU/ml for bacterial cells when used directly on food (Mandal et al., 

2011). 

 

Polymerase Chain Reaction (PCR) was developed in 1971 (Kleppe et 

al., 1971) and significantly improved in 1988 (Saiki et al., 1988; Stoflet et al., 

1988).  PCR is a technique that allows the amplification of a specific nucleic 
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acid sequence (template).  The target sequence can be chosen arbitrarily 

designing specific oligomers (primers) that bind before and after it.  A 

thermocycler changes repetitively the temperature up, to denaturate the 

double–stranded DNA, and down, to let the primers hybridize. When this 

happen, a thermo resistant DNA polymerase recognizes the primers and 

starts the replication of the template.  Theoretically, this technique is able to 

recognize 1 single copy of the target sequence in the reaction mix and amplify 

it millions of times in a few hours, making the product visible in an agarose gel 

electrophoresis.  Moreover, if the template sequence is specifically associated 

to determinate pathogens, it is possible to detect their presence in DNA 

extracted from food. 

The potential of molecular techniques was already clear in the late 1990s but 

the presence of inhibitors in food matrixes made their application very difficult. 

Also, it is no possible to distinguish between the DNA extracted from dead or 

live cells (Feng, 1997).  The addition of fluorogenic dyes into the reaction mix 

and the association of an optical detector to the thermocycler allowed to 

observe the amplification in real-time during all the cycles of the reaction. 

Therefore, real-time PCR assays do not necessitate of any sort of post-

amplification analyses reducing the work time and the risk of contamination by 

previous amplified products.  Using dyes that bind unspecifically DNA duplex, 

it is possible to run melting curves and check unwanted amplification.  

Fluorescent dyes can also be connected to an oligonucleotide that binds 

specifically to the template.  In this way, more dyes can be used at the same 

time and a real-time multiplex PCR can be performed.  Furthermore, these 

techniques allow for DNA quantification.  In fact, the higher the amount of 
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DNA template in the reaction, the lower are the number of cycles (CT) needed 

to produce enough fluorescence to exceed the threshold and becoming visible 

by the detector.  Using the CT values of DNA standards with known 

concentration, it is possible to create curves and quantify unknown samples. 

Real-time PCR is very sensitive, but its results depend on the quality of 

extracted DNA.  As a matter of fact, it is very effective in food when it is 

preceded by an enrichment step (Hanna et al. 2005).  

 

Biochemical methods based on measurement of impedance or 

adenosine triphosphate bioluminescence are able to enumerate 

microorganisms in food.  However, considering their sensitivity and specificity, 

they are not appropriated for foodborne pathogens detection and 

quantification (Jasson et al., 2010). 

 

Other techniques such as microarrays and biosensors are very 

interesting in terms of sensitivity and specificity.  Potentially, they are powerful 

alternative methods, however the requirement of very expensive 

instrumentations limits their diffusion. 

 

Microarray assays, through the hybridization of several DNA fragments 

incorporated into a chip, permit to detect a large number of target sequences 

simultaneously.  This technique is generally used for typization of isolated 

microorganism, like Salmonella (Wattiau et al., 2008) or E. coli (Bugarel et al. 

2010b); however, it is affected by all the relative issues of DNA extraction 
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from food matrixes.  In the future, microarrays could be able to detect multiple 

pathogens at the same time (Jasson et al., 2010). 

 

Biosensors are a new group of multidisciplinary techniques that use a 

bioreceptor to detect the target molecules and transduce them in a second 

signal.  This signal is detected or quantified by an appropriate device.  The 

most used bioreceptors are antibodies, enzymes and nucleic acids that 

produce optical, electrochemical or mass variations effects.  Biosensors 

permit a rapid detection and could be the foundation to create compact 

devices for in situ analysis (Velusamy et al., 2010). 
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CHAPTER 3: Advances in method for Detecting and 

Isolating Shiga Toxin-Producing Escherichia coli 

O104 in sprouts 

3.1 BACKGROUND 

Escherichia coli are rod-shape, gram-negative bacteria, prevalent in 

the intestine flora of warm-blooded animals.  Several E. coli are considered 

human pathogens, infecting the respiratory, urinary and intestinal tract.  

Special attention is given to diarrheagenic E. coli because they can be 

transmitted by consumption of contaminated food or water (CDC, 2012).  

These pathogens are divided in groups based on their mucosal colonization 

and pathogenic strategies: enterotoxigenic E. coli (ETEC), enteropathogenic 

E. coli (EPEC), enterohaemorrhagic E. coli (EHEC), enteroinvasive E. coli 

(EIEC), enteroaggregative E. coli (EAEC) and diffusely adherent E. coli 

(DAEC) (Kaper et al., 2004; Nataro & Kaper, 1998).  Moreover, E. coli are 

usually identified by serotyping of the somatic antigens “O” and flagellar 

antigens “H” following the Salmonella scheme  (Kauffmann, 1947). 

 

EHEC is the most concerning group due to the severity of their outcome, 

provoking bloody diarrhea and hemolytic uremic syndrome (HUS), which may 

lead to death (Nataro & Kaper, 1998).  EHEC is also called Verocitotoxigenic 

E. coli (VTEC) or Shiga-like Toxin producing E. coli (STEC) because it 

exhibits a cytotoxic effect in Vero cells as a consequence of Shiga toxin 
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production.  For the purpose of this works, the author will continue using the 

name STEC. 

 

E. coli O157:H7 is considered the major serotype involved in STEC 

outbreaks, but also many non-O157 serotype play an important role in human 

infections, requiring all STEC related diseases to be communicable 

(European Commission, 2003; Gould et al., 2013).  During the following 

decade, the Foodborne Diseases Active Surveillance Network (FoodNet) 

collected data on STEC infections and in an analysis by Gould et al., (2013) it 

was reported that E. coli O157:H7 was isolated from 74% of the total 7695 

human cases of STEC in USA.  The remaining cases were mainly provoked 

by the serogroups O26, O45, O103, O111, O121 and O145 (Gould et al., 

2013).  Moreover, STEC O91, O113 and O104 have also been described as 

human pathogens (Bettelheim, 2007; Bielaszewska et al., 2011; Brooks et al., 

2005; CDC, 1995).    

In the past, the serogroup O104 was responsible for a small outbreak of 11 

people in USA, 15 sporadic cases in Europe and 1 case in South Korea.  

Since the incidence rate was very low and HUS was described only in 4 

cases, it was considered a minor STEC pathogen (ECDC & EFSA, 2011).   

The serogroup O104 became relevant in 2011, when a strain of E. coli 

O104:H4 gave rise to a large outbreak mainly located in Germany.  The 

infection was transmitted by sprouted fenugreek seeds and provoked bloody 

diarrhea in 3842 people, HUS in 855 and death in 50 (Robert Koch Institute, 

2011).  The pathogen was immediately characterized through multiplex real-

time PCR assay, revealing that it possessed virulence genes associated to 
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both STEC (stx2, iha, lpfO26, lpfO113) and EAEC (aggA, aggR, set1, pic, aap) 

groups (Bielaszewska et al., 2011).  When the genome was sequenced, it 

was clear that E. coli O104:H4 is an EAEC which had acquired stx2 gene and 

other antibiotic-resistance factors by a prophage-mediated transmission, 

becoming an enteroaggregative STEC (Rasko et al., 2011; Rohde et al., 

2011). 

 

Consumers diet changed among the last decades.  Currently, eating 

fresh fruits and vegetables, including sprouts has become more common and 

the production of ready-to-eat food has augmented.  This has exposed people 

to new risk of contracting foodborne illnesses (Berger et al., 2010; Taormina 

et al., 1999).  The aggregative STEC O104:H4 outbreak could be an example 

of this trend.  STEC are generally maintained in the environment through 

cattle reservoirs, which could contaminate the water that is used for cultivation 

(Gyles, 2007).  

 

Seeds are full of nutrients and during the sprouting process they are 

incubated in a warm humid place.  Consequently, this food matrix is 

particularly keen to bacterial growth; high level of background flora especially 

coliforms are troublesome during detection and isolation of STEC pathogens 

(Weagant & Bound, 2001).  Weagant and Bound (Weagant & Bound, 2001) 

evaluated different selective media for sprouts enrichment and described that 

modified Buffered Peptone Water with pyruvate (mBPWp) supplemented with 

Acriflavin, Cefsulodin and Vancomycin (ACV) was very effective against 

sprouts background flora during the isolation of E. coli O157:H7.  
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Subsequently, FDA recommends, in the Bacteriological Analytical Manual the 

enrichment in mBPWp + ACV for detecting E. coli O157 (Feng et al., 2010).  

Moreover, Jinneman et al. (2012) successfully detected approximately 1 

CFU/g of two STEC O104 strains in sprouts. 

IMS can increase the sensitivity of cultural methods in difficult food matrixes 

(Weagant et al., 2011) and it is currently used in the ISO method to detect 

STEC O157:H7 (Anonymous, 2001).   

 

In this work, novel IMS and latex agglutination reagents based on 

antibodies that recognize the antigen O104 were evaluated to isolate and 

identify two strains of STEC O104 in artificially contaminated sprouts.  

Furthermore, two multiplex real-time PCR assays with an internal positive 

control were developed based on the virulence genes profile of the 

enteroaggregative STEC O104 isolated during the German outbreak and a 

general STEC O104.  Differently to E. coli O157:H7, STEC O104 strains do 

not present intimin (encoded by eae gene), but similarly to STEC O91 and 

O113 they usually produce enterohemolysin (encoded by ehxA gene) (Feng 

et al., 2001; Rump et al., 2012).  The assay designed for enteroaggregative 

STEC O104 targeted stx2 gene, responsible of the Shiga toxin 2 production, 

aggR gene, involved in the AAF fimbriae assembly, and wzy104, which is 

associated to the O104 antigen.  Meanwhile, STEC O104 real-time PCR 

assay targeted stx1-2, ehxA (encoding for enterohemolysin), and wzx104.  The 

developed assays were tested for detection of enteroaggregative STEC O104 

and STEC O104 in sprouts after enrichment and for confirmation of 

presumptive colonies isolated on selective agars. 
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3.2 METHODS AND MATERIALS 

3.2.1 Bacterial strains and inoculum preparation 

Two strains of STEC belonging to the serogroup O104 were used to 

artificially contaminate sprouts samples.  Enteroaggregative STEC O104:H4 

2011C-3493, provided by the Center for Disease Control and Prevention, was 

isolated from a U.S. traveler patient with HUS associated with the German 

outbreak in 2011.  STEC O104:H7 RM9387 was isolated from cattle by 

Robert Mandrell (USDA, Agricultural Research Service, Western Regional 

Research Center in Albany California, USA).   

 

STEC O104:H4 and O104:H7 were stocked in Tryptic Soy Broth (TSB; 

Becton, Dickinson and Company, Sparks, MD, USA) with 20% glycerol at -

80°C.  The stock cultures, were scratched with a sterile loop to transfer part of 

the frozen culture in TSB, and incubated overnight at 37°C. Then, E. coli 

strains cultures were maintained in Tryptic Soy Agar (TSA; Becton, Dickinson 

and Company) plates.   

The inoculum was prepared by picking a well-separated colony with a sterile 

loop and dissolving it into 10 ml of TSB.  After an incubation at 37°C for 18 h, 

the grown culture was ten fold diluted with sterile 0.1% peptone water 

(Becton, Dickinson and Company).  Volumes ranging from 1 to 3 ml of the 10-

8 or 10-7 dilution were added to every sprouts sample in order contaminate 

them at two different levels of approximately 10 and 100 CFU in 25 g.  A SPC 
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was performed to quantify the number of cells added to the samples, 

spreading the inoculum on TSA plates and incubating overnight at 37°C.  

 

3.2.2 Enrichment and Immunomagnetic separation 

Alfalfa and dill sprouts were obtained from a local market and stored at 

4°C in their original package.  In every experiment, samples of 25g were 

prepared and artificially contaminated as described above.  Negative controls 

of uninoculated sprouts were also prepared.  All the samples were stressed at 

4°C for 48h and then BAM method enrichment was followed (Feng et al., 

2010).  First, a non selective pre-enrichment was performed adding 225 ml of 

mBPWp (Acumedia, Neogen Corporation, Lansing, Michigan), blending for 

30s in a Stomacher Lab-Blender 400 (Seward Laboratory System) and 

incubating at 37°C for 5h.  Second, a selective enrichment was carried out 

adding 10 mg/l of acriflavin hydrochloride (Sigma Aldrich, St. Louis, MO, 

USA), 10 mg/l of cefsulodin sodium salt (A. G. Scientific, Inc., San Diego, CA, 

USA) and 8 mg/l vancomycin hydrochloride (Sigma Aldrich) and incubating at 

42°C for 18h.  After the enrichment, samples were concentrated by IMS and 

screened by multiplex real-time PCR assay. 

 

For IMS concentration, 1 ml of enriched sprouts sample broth was transferred 

to a 1.5 ml microtube and 20 µl of E. coli O104 IMS beads (Abraxis, 

Warminster, PA, USA) were added.  The vial was incubated at room 

temperature for 10 min with continuous agitation by inversion and placed in a 

magnetic rack provided by Abraxis in order to trap all the beads.  After 3 min, 

the supernatant was discarded and the beads were rinsed twice with 1 ml of 
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0.01 M Phosphate Buffered Saline solution supplemented with Tween 20 

(PBST).  Note that PBST solution was prepared by dissolving one tablet 

provided by Sigma Aldrich in 500 ml of autoclaved deionized water (0.138 M 

NaCl, 0.0027 M KCl, 0.05% Tween 20, and pH 7.4) and stored at 4°C. 

Subsequently, the beads were resuspended in 100 µl of PBST, vortexed and 

placed on two solid selective media.  A swab was used to spread the beads 

suspension (~50 µl) over one half of the plate and a sterile loop was used to 

streak the suspension over the last two quadrants to obtain isolated colonies.  

Samples contaminated with enteroaggregative STEC O104:H4 were plated 

onto modified Rainbow Agar O157 (mRBA) and CHROMagar STEC O104 

(CHROMagar, Paris, France), while samples contaminated with STEC104:H7 

were plated onto mRBA and CHROMagar STEC (CHROMagar).  Rainbow 

Agar O157 (Biolog, Hayward, CA, USA) was modified according to (Tillman et 

al., 2012) adding 0.05 mg/l cefixime trihydrate (Sigma Aldrich), 5 mg/l 

novobiocin sodium salt (Sigma Aldrich) and 0.15 mg/l potassium tellurite 

hydrate (Sigma Aldrich).  In order to let the bacteria grow, selective agars 

were placed in the incubator at 37°C for 24 h.   

 

3.2.3 DNA extraction methods 

DNA from enriched sprouts sample broth was extracted from 750 µl 

using PrepSEQ Rapid Spin Sample Preparation kit (Applied Biosystem, 

Foster City, CA, USA) following the manufacturer’s instructions. The extracted 

DNA was used for the multiplex real-time PCR assay adding 2.9 µl in the PCR 

reaction mixture and storing the remaining DNA at -20 °C. 
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DNA extraction from presumptive colonies isolated on a solid selective 

agar, was performed by picking a well separated colony with a sterile loop, 

dissolving it in 100 µl of nuclease-free water (Integrated DNA Technologies, 

Coralville, IA, USA) and incubating it in a heat-block at 99°C for 10 min.  After 

centrifugation at 12,000 g for 1 min, 1 µl of supernatant was used in the PCR 

reaction mixture.  

 

3.2.4 Multiplex real-time PCR assays 

Two multiplex real-time PCR assays were used to detect 

enteroaggregative STEC O104 and STEC O104 in enriched samples and to 

identify the presumptive isolated colonies.  Both assays were performed with 

an Internal Positive Control by means of TaqMan® Exogenous Internal 

Positive Control Reagents (VIC Probe) kit (Life Technologies, Austin, TX, 

USA) and optimized with the 7500 Fast Dx Real-time PCR thermocycler 

(Applied Biosystem).  Enteroaggregative STEC O104 assay was used to 

detect E. coli O104:H4, targeting the genes: stx2, wzx104 and aggR.  

Additionally, STEC O104 assay was used to detect E. coli O104:H7, targeting 

the genes: stx1-2, wzx104 and ehxA.  Sequences and concentrations of primers 

and probes for both assays are described in Tables 3.1 and 3.2.   

The PCR reaction mixture contained 1X TaqMan Environmental Master Mix 

2.0 (Applied Biosystems), 1X Exo IPC Mix, 1X Exo IPC DNA, and 2.9 µl of 

DNA template in 25 µl total volume.  PCR cycling conditions included 50°C for 

2 min, 95°C for 10 min and 40 cycles at 95°C for 15 s and 59°C for 1 min with 

standard temperature ramps.   
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Sensitivity of multiplex real-time PCR assay was evaluated as 

explained below. Complete enrichment of an uninoculated sprouts sample 

was performed and 675 µl of the enriched culture were transferred into 8 

microtubes.  Additionally, 8 microtubes containing 675 µl of clean mBPWp + 

ACV were prepared.  For both strains, an overnight culture was decimally 

diluted in Peptone Water 0.1%. From each dilution tube, 75 µl were used to 

inoculate one microtube containing the enriched culture and one with mBPWp 

+ ACV.  Ultimately, microtubes of 10-fold increasing concentration (from 100 

to 107 CFU/ml) for each strain were prepared. 

DNA was extracted from the whole volume through PrepSEQ Rapid Spin 

Sample Preparation kit (Applied Biosystem) as explained previously and 

analyzed by multiplex real-time PCR. 



 

 

Table 3. 1 – Primers and probes of enteroaggregative STEC O104 multiplex PCR assay  

 Sequence
a
 

Conc. 

(µM) 
Reference 

stx 1/2 F 5’-TTT GTY ACT GTS ACA GCW GAA GCY TTA CG-3’ 0.1 

Wasilenko et al. (2012)  stx 1/2 R 5’-CCC CAG TTC ARW GTR AGR TCM ACR TC-3’ 0.1 

stx2 P 6FAM/5’-TCG TCA GGC /ZEN/ ACT GTC TGA AAC TGC TCC -3’/IAbkFQ 0.2 

aggR-333 F 5’-CAG CGA TAC ATT AAG ACG CCT AAA G-3’ 1 

Hidaka et al. (2009)  

dyes and probe modified 
aggR-448 R 5’-CGT CAG CAT CAG CTA CAA TTA TTC C-3’ 1 

aggR P  6TAMN/5’-AGA TGC TTG CAG TTG TCC GAA TTG GTC
b
-3’/BHQ_2 0.2 

wzxO104 F  5’-TGT CGC GCA AAG AAT TTC AAC-3’ 1 

Bugarel et al. (2010b)  

dyes modified 
wzxO104 R 5’-AAA ATC CTT TAA ACT ATA CGC CC-3’ 1 

wzxO104 P Cy5/5’-TTG GTT TTT TTG TAT TAG CAA TAA GTG GTG TC-3’/BHQ_2 0.2 

Note: F – Forward primer, R – Reverse primer, P – Probes;  
a
 Legend for degenerate nucleotides: Y (C,T), W (A,T), R (A,G), M (A,C), S (C,G). 

b
 The underlined bases were added to the probe designed by Hidaka et al. (2009) in order to increase the melting temperature to be similar to other probes used in the 

multiplex PCR assay. Also the dyes were modified.  

  



 

 

Table 3. 2 – Primers and probes of STEC O104 multiplex PCR assay  

 Sequence
a
 

Conc. 

(µM) 
Reference 

stx 1/2 F 5’-TTT GTY ACT GTS ACA GCW GAA GCY TTA CG-3’ 0.1 

Wasilenko et al., 2012  

stx 1/2 R 5’-CCC CAG TTC ARW GTR AGR TCM ACR TC-3’ 0.1 

stx1 P 6FAM/5’-CTG GAT GAT /ZEN/ CTC AGT GGG CGT TCT TAT GTA A-3’/IAbkFQ 0.2 

stx2 P 6FAM/5’-TCG TCA GGC /ZEN/ ACT GTC TGA AAC TGC TCC-3’/IAbkFQ 0.2 

ehxA F 5’-GTG TCA GTA GGG AAG CGA ACA-3’ 1.25 

Bugarel et al. (2010a)  

dyes modified 
ehxA R 5’-ATC ATG TTT TCC GCC AAT G-3’ 1.25 

ehxA P 6TAMN/ 5’-CGT GAT TTT GAA TTC AGA ACC GGT GG-3’/BHQ_2 0.2 

wzxO104 F  5’-TGT CGC GCA AAG AAT TTC AAC-3’ 1.25 

Bugarel et al. (2010b)  

dyes modified 
wzxO104 R 5’-AAA ATC CTT TAA ACT ATA CGC CC-3’ 1.25 

wzxO104 P Cy5/5’-TTG GTT TTT TTG TAT TAG CAA TAA GTG GTG TC-3’/BHQ_2 0.2 

Note: F – Forward primer, R – Reverse primer, P – Probes;  
a
 Legend for degenerate nucleotides: Y (C,T), W (A,T), R (A,G), M (A,C), S (C,G). 
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3.2.5 Identification of presumptive colonies  

 STEC forms mauve colonies in mRBA and both CHROMagar plates.  

Therefore, for every sprout sample a mauve colony was taken from each solid 

selective media and tested by multiplex real-time PCR and E. coli O104:H4 

Latex Test Kit (Product No. 541060; Abraxis, Warminster, PA, USA) following 

manufacturer’s instructions.  

 

3.3 RESULTS AND DISCUSSION 

The purpose of this work was to develop and evaluate tools using 

molecular techniques to improve the ability of detection an isolation of STEC 

O104.  Abraxis LLC has recently created IMS and latex agglutination reagents 

based on antibodies that bind specifically to the antigen O104; they are used 

to increase the recovery and rapidly identify the serogroup O104 from isolated 

colonies, respectively.  Moreover, two multiplex real-time PCR assays that 

detect a set of three genes associated with enteroaggregative STEC O104 

and STEC O104, were developed and applied to screen the enriched sprouts 

samples and identify presumptive colonies. 

 

Even though Jinneman et al. (2012) were able to detect STEC O104 using 

BPWp + ACV, they noticed that the high level of background flora present in 

sprouts interfered with pathogen detection.  Hence, high sample dilution was 

necessary to recover well-separated colonies in most of the selective agar 

tested.  Conversely, IMS was described to specifically concentrate STEC 
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O157:H7 from enriched sprouts (Weagant et al., 2011). Therefore, since IMS 

reagents for O104 are recently commercially available, a better isolation rate 

for STEC O104 was expected.  

 

3.3.1 Screening by multiplex real-time PCR assay 

Sprouts background flora was quantified before and after the stress 

treatment of 48h at 4°C by aerobic plate count using TSB or mBPWp for the 

initial suspension.  Samples were diluted in 0.1% peptone water and plated on 

TSA.  Level of flora after selective enrichment was also evaluated and results 

are listed in Table 5.  The number of aerobic bacteria in sprouts was very high 

(approximately 107) and it was consistent after the cold treatment. 

Additionally, background flora was able to grow during the enrichment despite 

of the selective factors (Table 3.3). 

 

 

Table 3. 3 – Sprouts background flora  

Sample 

condition 

Initial 

suspension 

Aerobic plate count
a
 

(CFU/g) 

Mean Std. Dev. 

None TSB 1.10×10
7
 3.97×10

6
 

Cold stressed 

(4°C for 48h) 
mBPWp 1.08×10

7
 2.22×10

6
 

Selective 

enrichment 
mBPWp+ACV 1.38×10

8
 7.37×10

7
 

Note: TSB – Tryptic Soy Broth; mBPWp – modified Buffered Peptone Water with pyruvate; ACV – 

Acriflavin, Cefsulodin and Vancomycin. 
a
 Mean and standard deviation are calculated on four replicates. 
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Sprouts samples were artificially contaminated at ~10 CFU/25g and ~100 

CFU/25g, cold stressed and subjected to enrichment.  The sample enriched 

broth was screened by PCR assays and plated onto two selective agars after 

IMS.  

As shown in Table 3.4, samples with high level of contamination (ranging from 

43 to 160 CFU/25g) were detected by multiplex real-time PCR and mauve 

presumptive colonies were recovered.  Samples with low level of 

contamination (below 24 CFU/25g) were also positive, except for a few 

inoculated samples, which resulted negative by multiplex real-time PCR and 

no presumptive colonies were isolated in all the selective agars tested (Table 

6).  Particularly, samples contaminated with enteroaggregative STEC 

O104:H4 at the levels of 14, 13 and 6 CFU/25g resulted negative in 1/5, 2/2 

and 1/3 samples, respectively.  Also, for sprouts inoculated with STEC 

O104:H7 at the levels of 22, 9 and 6 CFU/25g, only 3/4, 1/3 and 1/3 resulted 

negative, respectively. 

The reason why these samples gave negative results is ambiguous since 

others with lower contamination levels such as 4 CFU/25g were screened 

positively and mauve colonies were isolated.  Probably the cold stress may 

have damaged the cells of interest allowing the background flora to overgrown 

them during the enrichment.  Moreover, some samples may have not received 

any cell from the inoculum since the level of pathogens was very low and 

pipetting errors may have also occurred. 

A similar finding was reported by Tzschoppe et al. (2012) where 3 strains of 

STEC were not detected in salad samples with low level of contamination (1–
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10 CFU/g) and stored at less than 6°C for 72h.  Additionally, it was reported 

that salad background flora is able to grow at low temperature. 

 

Multiplex real-time PCR assays included the internal positive control kit 

provided by Life Technologies, which resulted positive for all contaminated 

samples and controls.  Therefore, negative results are not expected to occur 

due to possible presence of PCR inhibitors.  The detection limit of the PCR 

assays for enteroaggregative STEC O104 and STEC O104 were ≤103 

CFU/ml and ≤104 CFU/ml, respectively (Table 3.5).  However, some genes 

were also amplified at lower dilutions.  The presence of background flora in 

the enrichment did not seem to interfere with the sensitivity, obtaining similar 

performance.  The author recommends repeating the experiment several 

times to better assess the detection limits.  PCR assays designed by 

Fratamico et al. (2011) and Hidaka et al. (2009) have shown comparable 

detection limits ranging from 7×102 to 1.1×104 CFU/ml. 

Moreover, Tzochoppe et al. (2012) designed a protocol for rapid detection of 

EHEC including enteroaggative STEC O104:H4. The method was tested on a 

ready-to-eat salad and entailed a 6h enrichment step followed by different 

real-time PCR assays.  As the authors reported E. coli O104:H4 grew of up to 

5.8×104, thus multiplex real-time PCR assay designed in this work could be 

applied after the short enrichment step (Tzschoppe et al., 2012). 
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Table 3. 4 – Positive sprouts samples to multiplex real-time screening and 

isolation of presumptive colonies 

Contamination 

level  E. coli strain 
Multiplex real-time 

PCR screening
a
 

Isolation of 

presumptive 

colonies 
a
 

CFU/g 25 g 

3.6 90 

Enteroaggregative STEC 

O104:H4 

1/1 1/1 

2.7  68 2/2 2/2 

2.4 60 1/1 1/1 

1.8 45 2/2 2/2 

0.76 19 3/3 3/3 

0.56 14 4/5 4/5 

0.52 13 0/2 0/2 

0.36 9 4/4 4/4 

0.24 6 2/3 2/3 

0.16 4 3/3 3/3 

6.4 160 

STEC O104:H7 

1/1 1/1 

4.4 110 2/2 2/2 

3.8 95 2/2 2/2 

3.2 80 1/1 1/1 

1.72 43 3/3 3/3 

0.96 24 5/5 5/5 

0.88 22 1/4 1/4 

0.52 13 2/2 2/2 

0.36 9 2/3 2/3 

0.24 6 2/3 2/3 

0 0 CTRL 0/5 0/5 

Note: CTRL – Negative Control 
a
 Number of positive samples out of number of total sample enrichments tested for every experimental 

group 

 

Table 3. 5 – Multiplex real-time PCR assays sensitivity 
Enteroaggregative STEC O104 Bacteria target concentration (CFU/ml) 

Matrix Gene 10
0
 10

1
 10

2
 10

3
 10

4
 10

5
 10

6
 10

7
 

mBPWp+ACV stx2 - - - + + + + + 

 aggR - + + + + + + + 

 wzx - - + + + + + + 

sprouts
a
 stx2 - - - + - + + + 

 aggR - + + + + + + + 

 wzx - - + + + + + + 

STEC O104         

Matrix Gene         

mBPWp+ACV stx1-2 - + + + + + + + 

 ehxA - - - + + + + + 

 wzx - - + + + + + + 

sprouts
a
 stx1-2 - - - - + + + + 

 ehxA - - - - + + + + 

 wzx - - - + + + + + 

Note: TSB – Tryptic Soy Broth; mBPWp – modified Buffered Peptone Water with pyruvate; ACV – 

Acriflavin, Cefsulodin and Vancomycin. 
a
 Enrichment broth of an uninoculated sprouts sample.  
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3.3.2 Colonies identification 

After IMS, enrichment broth of sprouts contaminated with 

enteroaggregative STEC O104:H4 was plated onto mRBA and CHROMagar 

STEC O104. In the same fashion, enriched sprouts inoculated with STEC 

O104:H7 were plated onto mRBA and CHROMagar STEC.  Confirmation was 

done by picking two mauve colonies, one from each selective agar, and 

testing for latex agglutination and multiplex real-time PCR. 

 

As stated previously, STEC form mauves colonies when they grow on mRBA 

and/or CHROMagar.  Mauve colonies were recovered from every sample only 

when screened positively by PCR assay.  Moreover, all the tested mauve 

colonies resulted positive by latex agglutination and multiplex real-time PCR.  

However, E. coli O104:H4 was not able to grow on CHROMagar STEC plates 

even if 100 µl of an overnight culture were plated (Table 3.6), thus the two 

presumptive colonies were picked solely from mRBA plates. 

Similarly, Jinneman et al. (2012) described that CHROMagar O157 does not 

allow the growth of E. coli O104:H21.  Since STEC strains that are not tellurite 

resistant, do not grow on CHROMagar O157 (Tzschoppe et al., 2012); 

probably the strains used in this work (E. coli O104:H7) and E. coli O104:H21 

(Jinneman et al., 2012) lack of terB gene, associated to tellurite resistance.   

E. coli O104:H7 grows easily on mRBA, therefore the modifications provided 

by Tillman et al. (2012) (reduction of tellurite and novobiocin concentration) 

are very effective.  This statement is also supported by the results shown in 

Table 3.6, where almost no difference was observed when the same 

overnight culture is quantified through SPC in TSA and mRBA.   



 

 42 

E. coli O104:H4 was successfully recovered in mRBA and CHROMagar 

STEC O104, but when its growth was tested on selective agar, a ~2 log 

difference was noted between TSA and CHROMagar STEC O104 (Table 3.6). 

 

 

Table 3. 6 – Standard plate count of overnight culture in different selective 

agar 

E. coli strain Solid media 

Concentration 

(CFU/g) 

no stress cold stress
a
 

Enteroaggregative 

STEC O104:H4 

TSA 4.45×10
8
 6.64×10

8
 

mRBA 3.91×10
8
 8.64×10

8
 

CHROMagar 

STEC O104 
7.27×10

6
 2.73×10

6
 

STEC O104:H7 

TSA 1.34×10
9
 1.40×10

9
 

mRBA 1.06×10
9
 1.02×10

9
 

CHROMagar 

STEC O104 
0 0 

Note: TSA – Tryptic Soy Agar; mRBA – modified Rainbow Agar. 
a
 Overnight culture incubated at 4°C for 48h 

 

3.4 CONCLUSIONS 

STEC non-O157 are an heterogeneous group of emergent pathogens 

that like STEC O157:H7 can lead to severe foodborne illnesses.  Since official 

methods are mainly based on the serogroup O157, it is necessary to broaden 

their detection spectra including other serogroups, because the advent of a 

novel dangerous strain can always occur. 
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The current study focused on STEC O104, which provoked a large outbreak 

in 2011 located mostly in Germany, and described a protocol able to detect 

less than 1 CFU/g.  Modified BPWp supplemented with ACV and 

immunomagnetic separation were used to increase and concentrate the target 

microorganisms in artificially contaminated sprouts stressed at 4°C for 48h.  

Additionally, isolation on two different selective agars was evaluated.  The 

enrichment and IMS resulted effective despite the high level of sprouts 

background flora and mRBA allowed an easy recovery of both 

enteroaggregative STEC and STEC O104 strains.  The isolated presumptive 

colonies were tested by latex agglutination kit, which provided a rapid 

identification of the O104 antigen.  Furthermore, two multiplex real-time PCR 

assays with an internal positive control were designed to detect three genes 

associated with enteroaggregative STEC and STEC O104.  They were 

successfully used to screen sprout samples after the enrichment and to 

identify the isolated colonies. 
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CHAPTER 4: Rapid Method to Detect and Quantify 

Listeria monocytogenes in raw milk through real-time 

PCR 

 

4.1 BACKGROUND  

Listeria is a genus of gram-positive bacteria and the specie 

monocytogenes is basically the only responsible for listeriosis.  However, 

human cases caused by the species ivanovii and seeligeri have been 

reported (McLauchlin et al., 2004).  Although Listeriae are not sporigenic 

bacteria and it is still not clear who is their reservoir, they are widely 

distributed in the environment (Valderrama & Cutter, 2013).  Moreover, they 

are able to grow in a wide range of temperatures (1°–45°C) and pH (4.1–9.6).  

Probably, listeria capacity to create biofilms contributes to its distribution and 

resistance (Jay et al., 2005).  Cases of L. monocytogenes are not widespread, 

but they have a very high lethality rate as it was explained in Chapter 2.  In 

fact, L. monocytogenes is an intracellular pathogen, which is able to reach the 

central nervous system by the hematogenous or retrograde neuronal route 

(respectively in human and animals) and provoke septicemias, meningitis, 

meningoencephalitis and rombhoencephalitis (Disson & Lecuit, 2012).  

People who have a weak immune defense system such as elderly, pregnant 

women and immunodepressed due to diseases or medical treatment, have 

higher risk to contract listeriosis (Muñoz et al., 2012; Ramaswamy et al., 
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2007).  Furthermore, L. monocytogenes is able to pass the placental blood 

barrier during pregnancy, spreading the infection to the fetus, which could 

degenerate into abortion (Mateus et al., 2013). 

 

Milk is considered a good vehicle and it is very important to detect the 

contamination in time otherwise the pathogen can reach dangerous levels of 

102–104 cells per g of food.  Infective dose differs among monocytogenes 

specie and host susceptibility (Vazquez-Boland et al., 2001).  L. 

monocytogenes has been isolated from 2.8% to 6.5% bulk tanks of raw milk 

taken from different producers across the USA (Jayarao & Henning, 2001; 

Jayarao et al., 2006; Van Kessel et al., 2004).  Raw milk can be sold directly 

to consumers (Code of Federal Regulations, 2011; Bucchini, 2012) and it is 

used for cheese production.  Even though pasteurization kills listeria, post 

contaminations can occur (Carminati et al., 2004; Lomonaco et al., 2009).  

Although it is not known if the milk was the contamination origin, the majority 

of L. monocytogenes outbreaks in USA between 2009 and 2011 were 

associated with fresh cheese consumption (CDC, 2013). 

 

European Commission established two microbiological criteria for L. 

monocytogenes: 1) absence in 25 g for food designed for infants or medical 

purposes; and 2) a limit of 100 CFU/g for ready-to-eat food, where the 

pathogen is not able to grow.  Furthermore, for ready-to-eat food that supports 

L. monocytogenes growth, absence in 25 g is required; however, if the 

producer can ensure that the pathogen will not exceed the upper limit of 

100CFU/g during shelf-life, the second limit can be used.  Note that this can 
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be applied only when the food product is placed in the market (European 

Commission, 2007; 2010; 2011; 2013a; 2013b).  Similar criteria are used in 

USA, where FDA does not consider the product acceptable when L. 

monocytogenes is detected in 25g of sample (FDA, 2010).  Only in ready-to-

eat food that does not support the pathogen growth its presence is tolerated 

up to 100 CFU/g (FDA, 2008). 

 

Standard methods to detect and quantify L. monocytogenes provided 

by ISO and FDA are based respectively on isolation or SPC techniques on 

chromogenic selective plate agars (Anonymous, 2004; Hitchins & Jinneman, 

2010).  As it was mention in Chapter 2, conventional cultural methods are 

time consuming and very demanding.  Moreover, it has been described that 

background flora in food may not allow the growth of a low number of L. 

monocytogenes during the enrichment, leading to false negative results 

(Stessl et al., 2009). 

Different real-time PCR assays have been developed to detect rapidly L. 

monocytogenes.  However, they lose sensitivity when applied directly on heat 

treated milk (Dadkhah et al., 2012; Hein et al., 2001; Nogva et al., 2000; 

Rantsiou et al., 2008) because this food matrix contains many PCR inhibitors 

such as fats carbohydrates, ions and enzymes (Schrader et al., 2012).  Many 

studies have avoided this problem adding an enrichment step before the real-

time PCR assay (Oravcová et al., 2007; O’ Grady et al., 2008; Rossmanith et 

al., 2006; Rossmanith et al., 2010; Schoder et al., 2012).  Nevertheless, this 

extends the time of analysis and excludes pathogen quantification. 
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The aim of the present work is to evaluate L. monocytogenes growth in 

raw milk and develop a rapid method for detection and quantification. 

Raw milk was artificially contaminated with L. monocytogenes at three 

different levels (1, 10 and 100 CFU/ml) and stored at 0°C, 2°C and 4°C. The 

pathogen concentration was estimated by SPC on ALOA during five days. 

Paul et al., (2013) developed the first method able to detect 1 CFU/ml and 

quantify less than 10 CFU/ml of E. coli O157 in raw milk with quantitative PCR 

in 3 h.  Their study introduced a pre-treatment for a 10 ml raw milk sample 

composed by different centrifugation steps to eliminate fat, collect bacteria in 

a volume of ~10 µl and wash them to remove PCR inhibitors.  Since using a 

large sample size and an effective sample pre-treatment have significantly 

improved the method’s sensitivity, the author decided to adapt and evaluate 

the above-mentioned method for L. monocytogenes analysis, considering its 

different dimensions and rate of sedimentation.  Moreover, L. monocytogenes 

has shown a lower DNA yield compared to E. coli (Brewster & Paoli, 2013). 

Therefore, different DNA extraction procedures and sets of primers and 

probes will be tested to obtain a similar sensitivity as to the E. coli O157 

method.  
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4.2 MATERIALS AND METHODS: Evaluation of L. 

monocytogenes growth in raw milk at low 

temperatures 

Fresh bovine raw milk was purchased from an automatic vending 

device in a farm in Ozzano dell’Emila area and stored at 4°C. 

 

4.2.1 Bacterial strains and inoculum preparation 

L. monocytogenes ATCC 7644 and three strains isolated from food 

samples: 87-1771, 88-1777 and 115-1921 were used to evaluate the 

pathogen growth in raw milk.  They were stocked at -20°C in TSB 

supplemented with 0.6% Yeast Extract (YE; Becton, Dickinson and company) 

and 20% Glycerol (Carlo Erba reagenti spa, Rodano, Italy). 

Each strain was cultivated adding 100 µl of the stock solution into a tube 

containing 10 mL TSB-YE and incubated overnight at 37°C.  Then, 100 µl of 

the grown culture were added again to a new tube with 10 ml of TSB-YE and 

incubated at 7°C for 96 h.  The obtained cultures were diluted in a solution of 

0.1% Tryptone (Oxoid Ltd, Basingstoke, England) and 0.85% NaCl (Oxoid 

Ltd, Basingstoke, England) and used to contaminate raw milk at level of 1, 10 

and 100 CFU/ml.  The concentrations of L. monocytogenes strains in TSB-YE 

were measured through SPC technique onto Trypticase Soy Agar 

supplemented with 0.6% of YE (TSA-YE, Becton, Dickinson and company).  
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4.2.2 Evaluation of L. monocytogenes growth in raw milk at low 

temperature 

Three raw milk batches were tested for quantification of L. 

monocytogenes (Anonymous, 2004) and aerobic mesophilic bacteria 

(Anonymous, 2003).  

Then, L. monocytogenes ATCC 7644, 87-1771, 88-1777 and 115-1921 were 

prepared as previously described and inoculated together in 500 ml raw milk 

samples. Three levels of L. monocytogenes (1, 10 and 100 CFU/ml) were 

performed in triplicates and samples were incubated at 4°C.  L. 

monocytogenes concentrations were determinate after 3 h, 24 h, 48 h, 72 h 

and 96 h by SPC on Agar Listeria Ottaviani and Agosti (Biolife, Milan, Italy). 

The results were calculated and expressed according to ISO 7218 

(Anonymous, 2007).  The experiment was repeated changing the incubation 

temperature to 2°C and 0°C. 

 

Least square linear regression of L. monocytogenes concentration (Log 

CFU/ml) versus time (h) was used to evaluate the pathogen growth in raw 

milk artificially contaminated at 100 CFU/ml and incubated at 0°C, 2°C and 

4°C.  Moreover, a Student’s t-test was done to check the significance of the 

slopes.  Welch one-way ANOVA followed by the Duncan-Waller post hoc test 

were used to compare line slopes.  All data were analysed by means of R 

software version 2.12.2 (Copyright© 2011 The R Foundation for Statistical 

Computing). 
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4.3 MATERIALS AND METHODS: Rapid method to 

detect and quantify L. monocytogenes in raw milk 

Fresh bovine raw milk was acquired from a store in Philadelphia area 

and stored at 4°C. 

Chemical products utilized were of reagent grade and solutions were 

prepared with home made deionized water (Nanopure water treatment 

system, Barnstead, Dubuque, IA, USA). 

 

4.3.1 Bacterial strain and inoculum preparation 

L. monocytogenes ATCC 19115 was used to optimize the detection 

and quantification method by real-time PCR.  L. monocytogenes was stocked 

in Brain Heart Infusion (BHI; Becton, Dickinson and Company) supplemented 

with 20% glycerol at -80°C.  The stock cultures, were scratched with a sterile 

loop to transfer part of the frozen culture in BHI broth, and incubate it 

overnight at 37°C.  Then, L. monocytogenes culture was maintained in BHI 

agar (BHIA; Becton, Dickinson and Company) plates. 

Inocula were prepared picking a well separated colony with a sterile loop and 

dissolving it into 3 ml of BHI broth followed by incubation at 37°C, shaking at 

250 rpm for 16–20 h.  The grown culture was decimally diluted in 

physiological saline solution (PS; 0.85% NaCl; Fisher Scientific, Philadelphia, 

PA, USA) and 200–300 µl of the 10-7 dilution were plated on BHIA and 

incubated overnight at 37°C to enumerate L. monocytogenes.  Artificial 

contaminations were performed with small volumes (20–200 µl) of the 
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appropriate dilution of L. monocytogenes ATCC 19115 overnight culture. 

Levels of contamination are specified in every experiment. 

 

4.3.2 Raw milk pretreatment for molecular assays 

Raw bovine milk was pretreated before DNA extraction according to 

Paul et al. (2013).  In many steps, this procedure requires to discard fat layer 

or supernatants by aspiration.  The aspirator is composed by a vacuum pump 

with a collection vessel connected through a tube to a 1 ml pipette with a 

micropipet tip in the other end.  Aspiration was carried out under full vacuum 

(~500 torr) for larger volume samples and reduced vacuum (~100 torr) for 

smaller volume samples. 

The pretreatment protocol is briefly described as follow: 10 ml of raw milk 

were placed in a 15 ml centrifuge tube made of polypropylene and 800 µl of 

0.5 M EDTA (ethylenediaminetetraacetic acid; Integrated DNA Technologies).  

After an incubation at 40°C for 5 min in a water bath, L. monocytogenes 

(prepared as mentioned above) was added into the tube and mixed by 

inversion. 

The contaminated raw milk tube was centrifuged in a swinging-bucket rotor at 

4,696g for 15 min at room temperature, and the fat layer and supernatant 

were discarded.  From the filtered sterilized lysis buffer was previously 

prepared containing 0.1% SDS (Fisher Scientific), 30 mM NaCl and 2 mM 

MgCl2 (Sigma Aldrich), 450 µl were added.  Pellet was resuspended by 

pipetting and transferred into a 0.6 ml microfuge tube containing 2 µl of 500 

U/ml DNase I (Sigma Aldrich).  Incubation at room temperature for 5 min 

followed by centrifugation in an angled rotor at 15,000 g for 2 min were done.  
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After removal of the supernatant, 100 µl of PS with 1 mM EDTA were added 

and the pellet was dissolved by pipetting.  Then, 10 µg of Trypsin TCPK 

treated (Sigma Aldrich) were added.  Room temperature incubation under 

vortex mixing every minute was done and, after 5 min, 400 µl of PS 

supplemented with 0.1% Tween-20 (Fisher Scientific) were added.  The 

sample was then spun at 15,000 g for 2 min, and the supernatant was 

discarded by aspiration.  Less than 5 µl remained in the microtube. 

 

4.3.3 DNA extraction methods 

Two DNA extraction methods were used: HotSHOT and 

QuickExtract™ kit. 

 

According to Truett et al. (2000), extraction and neutralization solutions for 

HotSHOT protocol were prepared from 30x of 0.75 M NaOH, 0.75 M HCl, 6 

mM disodium EDTA, and Tween-20 (0.3%) using autoclaved deionized water.  

HotSHOT (HS) and HS neutralizer reagents were designated as 2x, 30x etc. 

based the original composition of 25 mM NaOH and 0.2 mM EDTA, 25 mM 

HCl, respectively.  Thus, 5x HS contained 125 mM NaOH and 1.0 mM EDTA. 

Pretreated milk sample was briefly centrifuged and 10 µl of 5x HS solution 

supplemented with 0.1% Tween-20 were added.  After a vortex mixing, the 

sample was incubated at 95°C for 5 min in an MJ Research P-100 

thermocycler (Waltham, MA, USA).  Ten microliters of 5x HS neutralizer were 

added and followed by vortex mixing and brief centrifugation. Lastly, 9 µl of 

the mixed contents were added to the PCR reaction mixture. 
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QuickExtractTM Bacterial DNA Extraction kit (Epicentre 

Biotechnologies,  Madison, WI, USA) was also tested to isolate DNA from 

pretreated milk samples following manufacturer’s instructions.  Ten microliters 

of QuickExtract Bacterial DNA Extraction Solution and 0.1 µL Ready-Lyse 

Lysozyme Solution were added to the vial followed by mixing by inversion and 

brief centrifugation.  The sample was first incubated at room temperature for 

15 min and second at 80°C for 2 min in a heat-block. Lastly, 9 µl of the extract 

were added to the PCR reaction mixture. 

 

4.3.4 L. monocytogenes DNA standards preparations 

Standards for L. monocytogenes were prepared by DNA purifications 

using DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA, USA) or by DNA 

extractions using HotSHOT.  

 

Preparation with Qiagen’s kit: pretreatment for Gram-positive bacteria protocol 

and purification of total DNA from animal tissues spin-column protocol of the 

manufacture’s handbook were done.  Then, appropriate dilutions of the 

purified DNA were produced with nuclease-free water (Integrated DNA 

Technologies) and their concentrations in ng/µl were determined by an ND-

1000 spectrophotometer (Nanodrop Technologies, Wilmington, DE, USA).  

Conversion of in copy number was estimated considering the L. 

monocytogenes genome size 2.23×106 bp. 

 

Preparation with HotSHOT kit: a L. monocytogenes overnight culture in BHI 

was serially diluted in PS and an appropriated volume (10–100 µl) containing 
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~1,000 CFU was mixed with 400 µl of PS supplemented with 0.1% Tween-20 

in a 0.6 ml tube.  After centrifugation in an angled rotor at 15,000 g for 2 min, 

DNA was extracted from the pellet with HotSHOT as previously described.  

DNA standards were stored at -20°C.  

 

4.3.5 Quantitative PCR assay 

Two sets of primers and probes (hlyA and hlyQ) targeting listeriolysin O 

gene were tested to detect L. monocytogenes using StepOne real time 

thermocycler (Applied Biosystems).  Sequences and references of both sets 

of primers and probes are shown in Table 4.1.  The qPCR reaction mixture 

contained: 10 µl of TaqMan Fast Advanced Master Mix (Applied Biosystems), 

1 µl of 20x primers/probe, and 9 µl of DNA template.  Final concentrations of 

hlyA set and hlyQ set are shown in Table 4.1.  Before run qPCR, samples 

were vortexed and spun at 1,500 g for 1 min. 

PCR cycling conditions had fast temperature ramps.  For hlyA set the 

conditions used were: 20s at 95°C, and 40 cycles of 1s at 95°C and 20s at 

62°C.  While for hlyQ set the conditions were: 20s at 95°C, and 40 cycles of 

1s at 95°C and 20s at 65°C.  Standard curves were prepared as descripted 

earlier and ran in triplicate.   
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Table 4. 1 – Sequences of L. monocytoges primers and probes  

 Sequence  Conc.
a
 (nM) Reference 

hlyA F 3’-TGC AAG TCC TAA GAC GCC A-5’ 500 

Nogva et al., 

(2000) 
hlyA R 3’-CAC TGC ATC TCC GTG GTA TAC TAA-5’ 500 

hlyA P 
FAM/3’-CGA TTT CAT CC GCG TGT TTC TTT TCG-

5’/BkFQ 
250 

hlyQ F 3’-CAT GGC ACC ACC AGC ATC T-5’ 250 

Rodriguez-

Lazaro et al. 

(2004) 

hlyQ R 3’-ATC CGC GTG TTT CTT TTC GA-5’ 250 

hlyQ P FAM/3’-CGC CTG CAA GTC CTA AGA CGC CA-5’/BkFQ 125 

Note: F – Forward primer, R – Reverse primer, P – Probes;  
a
 Sets primers and probe were purchased as PrimeTime

®
 assay kits (Integrated DNA Technologies). 

Each kit contains 5 nmoles of both primers and 2.5 nmoles of probe which were resuspended in 10 mM 

Tris, 1 mM EDTA, pH 8.0 buffer (Integrated DNA Technologies). 

 

 

 

4.4 RESULTS AND DISCUSSION: Evaluation of L. 

monocytogenes growth in raw milk at low 

temperatures 

Raw milk was first tested for L. monocytogenes and aerobic mesophilic 

bacteria quantification by ISO 4833 (Anonymous, 2003) and ISO11290-2 

(Anonymous, 2004), respectively. L. monocytogenes was not detected and 

background flora ranged from 2,337 to 3,204 CFU/ml. 

Then, raw milk was aseptically aliquoted in 500 ml samples and artificially 

contaminated with four strains of L. monocytogenes cultivated at low 

temperatures.  Uyttendaele et al. (2004) described that adapting the inoculum 
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at cold temperature reduces the lag time period of L. monocytogenes growth 

in the food matrix. 

Contaminated raw milk samples were incubate at 4°C for 5 days and L. 

monocytogenes concentration was estimated every 24h.  The experiment was 

repeated at temperature of 2°C and 0°C.  Results are shown in Figure 4.1 and 

raw data are available in Appendix B.   

Concentration of L. monocytogenes was under the detection limit (13 CFU/ml) 

in most of samples artificially contaminated at ~1 CFU/ml during 5 days of 

experimentation.  Instead, the pathogen concentration was detectable, but 

below the quantification range in most samples inoculated at ~10 CFU/ml and 

incubated at 0 °C.  Meanwhile, L. monocytogenes was quantified at a higher 

incubation temperature and it exceeded the criterion of 100 CFU/ml only in 

raw milk samples incubated at 4°C after 72 h (Figure 4.1).  At the same 

temperature and initial concentration of ~100 CFU/ml, L. monocytogenes 

reached the level of 103 CFU/ml after 72h, which was associated with 

listeriosis (Vazquez-Boland et al., 2001).   
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Figure 4. 1 – Concentration L. monocytogenes in raw milk after 3, 24, 48, 72 and 96 

hours incubated at a) 4°C, b) 2°C and c) 0°C.  Columns and error bars represent the 

average of three replicates and their standard deviation, respectively. 
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Data form raw milk samples contaminated at ~100 CFU/ml were used 

to evaluated L. monocytogenes growth rate by linear regression of bacterial 

concentration (Log CFU/ml) versus time (h).  Lines for each replicate are 

graphically represented in Figure 4.2, and equations, slope significance and 

Pearson’s coefficient of correlation (r) are reported in Table 4.2.  The slopes 

were compared and values of samples incubated at 0°C were statistically 

different from those at 2°C and 4°C by Welch one-way ANOVA (P <0.01) and 

Duncan-Waller post hoc test (slope difference > 0.0022 Log (CFU/ml)/h) 

(Table 4.2).  Moreover, the null hypothesis (slope = 0) of Student’s t test was 

not rejected for this group of slopes, therefore it can be presumed that L. 

monocytogenes growth was strongly decreased at a temperature of 0°C.  In 

fact, Pearson’s coefficient of correlation values of sample incubated at 0°C 

were < 0.518 and this did not occur for samples incubated at 2°C and 4°C (> 

0.977, except for one replicate at 2°C).  

 

Overnight cultures of L. monocytogenes strains used for the inocula 

were quantified by SPC on TSA and used for estimate the level of 

contamination in raw milk samples.  Results are listed in Table 4.3.  Samples 

incubated at 4°C showed levels of contaminations slightly higher than for the 

ones incubated at 2°C and 0°C. This could justify by the different values of 

intercepts.  However, the latter observation did not affect the evaluation of 

growth rate since almost no difference was noticed between linear parameters 

of raw milk samples incubated at 2°C and 4°C.  
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Figure 4. 2 – Linear trends of L. monocytogenes growth in raw milk artificially 

contaminated at ~100 CFU/ml incubated at 4°C (Red), 2°C (Green) and 0°C (Blue). 

Replicates were represented using three different symbols. 

 

 

Table 4. 2 – Linear regression of concentration of L. monocytogenes (Log 

CFU/ml) versus time (h) under three temperature conditions. Parameters, r 

and significance of slopes are shown for each replicate. 

Incubation 

temperature 

(°C) 

Line equations 

Student’s t 

test
a
 

 (P value) 

r 

 Y = 0.0102 X + 2.173 0.0016* 0.988 

4 Y = 0.0109 X + 2.256 0.0006* 0.994 

 Y = 0.0089 X + 2.265 0.0043* 0.977 

 Y = 0.0081 X + 1.735 0.0017* 0.987 

2 Y = 0.0103 X + 1.765 0.0024* 0.984 

 Y = 0.0098 X + 1.721 0.0484* 0.881 

 Y = - 0.0006* X + 1.876 0.8053 -0.153 

0 Y = - 0.0002* X + 1.802 0.9654 -0.027 

 Y = - 0.0017* X + 1.710 0.3718 0.518 

Note: r – Pearson’s coefficient of correlation; Y – L. monocytogenes (Log CFU/ml), X – Time (h).  
a
 Student’s t tests were performed with null hypothesis: Line slope = 0; which was rejected when P< 

0.05.  

The line slopes of samples incubated at 0°C were statistically different from those at 2°C and 4°C by 

Welch one-way ANOVA (P <0.01) and Duncan-Waller post hoc test (slope difference > 0.0022 Log 

(CFU/ml)/h).   
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Table 4. 3 – Contamination level of L. monocytogenes in raw milk based on 

overnight cultures concentration 
L. monocytogenes concentration in raw milk  

(CFU/ml) 

Temp. 4°C Temp. 2°C Temp. 0°C 

195  60  51  

19  6  5.1  

1.9 0.6 0.5 

 

 

 

4.5 RESULTS AND DISCUSSION: Rapid method for 

detect and quantify L. monocytogenes in raw milk 

 

4.5.1 Real-time PCR: comparison of primers/probe sets 

Nogva et al. (2000) and Rodriguez-Lazaro et al. (2004) have both 

designed a set of primers and probe (hlyA and hlyQ, respectively) that are 

able to detect hly gene in L. monocytogenes.  These authors have also show 

the specificity of hlyA and hlyQ sets testing them on several L. 

monocytogenes, L. non-monocytogenes and non-Listeria strains.  Both set 

were purchased from Integrated DNA Technologies as PrimeTime® assay kits 

and the manufacturer recommends using 500 nM of each primer and 250 nM 

of probe.  In order to reduce possible non-specific amplification, lower 

concentrations and higher annealing temperatures compare to previously 

reported were evaluated.  L. monocytogenes DNA purified with DNeasy Blood 

and Tissue kit was decimally diluted (1–1000 pg) and amplified in duplicates 
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by real-time PCR.  Values of CT and reactions efficiencies are shown in tables 

4.4 and 4.5 for hlyA and hlyQ, respectively.  

 

CT values for hlyQ set are variable among annealing temperatures and primer 

concentrations and the highest CT values was reported at 67°C.  On the 

contrary, CT values for hlyA set are more stable.  Different combinations of 

concentrations of primers and annealing temperatures such as 250 nm at 

62°C and 500 nm at 64°C for hlyA set and 250 nm at 63°C and 250 nm at 

65°C for hlyQ set worked very well.  Since the results of both sets are similar, 

the author decided to use hlyA set because it has been described to be 

effective in milk (Nogva et al., 2000).  Additionally, the concentration of 250 

nm was presumed to produce less non-specific amplifications.  
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Table 4. 4 – Real-time PCR assays with hlyA set of primers and probe at 

different concentrations and annealing temperatures. 

DNA 

Template 

(pg) 

Annealing temperature 60°C 

Primer Conc. 500 nM Primer Conc. 250 nM 

Cт Mean 
Cт Std. 

Dev. 

Efficiency 

(%) 
Cт Mean 

Cт Std. 

Dev. 

Efficiency 

(%) 

1 29.4 0.02 99 31.7 0.04 91 

10 25.9 0.07  28.0 0.00  

100 22.7 0.00  22.5 0.01  

1000 20.9 0.01  20.9 0.01  

 Annealing temperature 62°C 

 Primer Conc. 500 nM Primer Conc. 250 nM 

 Cт Mean 
Cт Std. 

Dev. 

Efficiency 

(%) 
Cт Mean 

Cт Std. 

Dev. 

Efficiency 

(%) 

1 29.2 0.00 101 30.7 0.09 94 

10 25.8 0.01  27.1 0.14  

100 22.5 0.01  23.9 0.01  

1000 20.9 0.00  20.2 0.01  

 Annealing temperature 64°C 

 Primer Conc. 500 nM Primer Conc. 250 nM 

 Cт Mean 
Cт Std. 

Dev. 

Efficiency 

(%) 
Cт Mean 

Cт Std. 

Dev. 

Efficiency 

(%) 

1 28.7 0.18 97 30.8 0.14 89 

10 25.9 0.07  27.2 0.39  

100 22.0 0.00  23.7 0.01  

1000 21.0 0.02  19.9 0.01  

Note: Conc. – concentration; CT – Threshold Cycle; Std. Dev. – Standard Deviation  
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Table 4. 5 – Real-time PCR assays with hlyQ set of primers and probe at 

different concentrations and annealing temperatures. 

DNA 

Template 

(pg) 

Annealing temperature 63°C 

Primer Conc. 500 nM Primer Conc. 250 nM 

Cт Mean 
Cт Std. 

Dev. 

Efficiency 

(%) 
Cт Mean 

Cт Std. 

Dev. 

Efficiency 

(%) 

1 28.7 0.01 85 29.7 0.02 95 

10 24.8 0.02  26.0 0.02  

100 21.2 0.00  22.2 0.01  

1000 17.5 0.03  19.5 0.34  

 Annealing temperature 65°C 

 Primer Conc. 500 nM Primer Conc. 250 nM 

 Cт Mean 
Cт Std. 

Dev. 

Efficiency 

(%) 
Cт Mean 

Cт Std. 

Dev. 

Efficiency 

(%) 

1 29.1 0.13 82 31.2 0.02 90 

10 24.9 0.00  27.2 0.07  

100 21.3 0.04  23.2 0.00  

1000 17.5 0.02  20.6 0.03  

 Annealing temperature 67°C 

 Primer Conc. 500 nM Primer Conc. 250 nM 

 Cт Mean 
Cт Std. 

Dev. 

Efficiency 

(%) 
Cт Mean 

Cт Std. 

Dev. 

Efficiency 

(%) 

1 33.0 0.00 58 39.3 0.37 69 

10 26.9 0.07  33.9 0.00  

100 22.4 0.03  28.9 0.02  

1000 17.6 0.01  23.3 0.07  

Note: Conc. – concentration; CT – Threshold Cycle; Std. Dev. – Standard Deviation  
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4.5.2 Selection of DNA extraction procedure 

DNA extraction from gram-positive bacteria is more difficult compare to 

gram-negative ones due to the different composition of the cell’s envelope.  

Additionally, if higher amount of extracted DNA is added to the PCR reaction 

mix, higher are the chances that a target sequence is recognized by the 

primers increasing the method’s sensitivity (Brewster & Paoli, 2013).  

Therefore, a technique that is able to extract DNA from gram-positive cells in 

a small volume free of inhibitors is necessary.  Two procedures were 

evaluated: the commercial kit QuickExtractTM Bacterial DNA Extraction by 

Epicentre Biotechnologies and HotSHOT DNA extraction (Truett et al., 2000). 

Epicentre Biotechnologies provides a protocol where pelleted cells are 

resuspended in QuickExtractTM Bacterial DNA Extraction solution, incubated 

at room temperature for 15 min followed by a second incubation at 80°C for 2 

min.  In order to evaluate the heating effect on DNA yield, 0, 1, 2 and 4 min at 

80°C and the removal of the reagent were tested in triplicates by real-time 

PCR assay.  Negative controls made of QuickExtractTM Bacterial DNA 

Extraction solution were also performed.  The results from the extraction of 

500 CFU sample are shown in Figure 4.3. 
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Figure 4. 3 – CT values of real-time PCR assays of DNA extracted from 500 CFU by 

QuickExtractTM Bacterial DNA Extraction kit at different heating time.  Columns and 

error bars represent the average of three replicates and their standard deviation, 

respectively.  Negative controls were not detected by real-time PCR assays. 

 

 

 

HotSHOT extraction techniques was used on E. coli cells by Paul et al. (2013) 

and no inhibition for PCR assay was observed.  However, 2x HS is insufficient 

to extract DNA from L. monocytogenes and instead 5x HS is required 

(Brewster & Paoli, 2013).  Consequently, different incubation times and 

temperatures (65°C/10 min, 65°C/20 min, 75°C/10 min, 85°C/10 min and 

95°C/5 min) were evaluated with 5x HS reagent, extracting ~500 CFU of L. 
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extracted DNA was amplified together with HotSHOT extracted samples to 

draw a comparison.  The resulted CT values are represented in Figure 4.4.  

 

 

 

 

Figure 4. 4 – CT values of real-time PCR assays of DNA extracted from 500 CFU by 

HotSHOT at different heating temperatures and times, and by QuickExtractTM 

Bacterial DNA Extraction kit.  Columns and error bars represent the average of three 

replicates and their standard deviation, respectively. 
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4.5.3 L. monocytogenes quantification 

Quantitative PCR assay was first tested for raw milk inhibition.  Thus, 

DNA was extracted with HotSHOT from a L. monocytogenes pure culture and 

from raw milk contaminated right after the pretreatment step.  Efficiency of the 

real-time PCR assay was calculated for both samples through four decimal 

dilutions of ~10,000 CFU/ml L. monocytogenes in triplicates. Resulted CT 

values and efficiency of real-time PCR assay were reported in Table 4.6. 

 

Similarly to Paul et al. (2013) work, the pretreatment step is able to clean 

effectively 10 ml of raw milk from PCR inhibitors. In fact, the efficiency of real-

time PCR assay from pure culture was 100% while real-time PCR assay from 

contaminated pretreated raw milk was 99% (Table 4.6).  Furthermore, CT and 

L. monocytogenes concentration presented a linear relationship from 10 to 

100,000 CFU, which is suitable for a standard curve.  Less than 10 CFU were 

also detected. 

 

Table 4. 6 – Real-time PCR amplification of DNA extracted from L. 

monocytogenes pure culture and raw milk contaminated after the pre-

treatment enrichment step 

L. monocytogenes
a
 

(CFU/ml) 

Pure culture Artificially contaminated milk 

Cт Mean
b
 

Cт Std. 

Dev. 

Efficiency 

(%) 
Cт Mean

b
 

Cт Std. 

Dev. 

Efficiency 

(%) 

6 35.8 1.01 100 35.6 1.50 99 

60 32.3 1.20  32.7 1.14  

600 28.1 0.97  28.7 0.94  

6000 24.5 0.74  24.6 0.92  

Note: CT – Threshold Cycle; Std. Dev. – Standard Deviation  
a
 L. monocytogenes concentration was calculated by SPC on BHIA 

b 
Linear regression of L. monocytogenes concentration (Log CFU/ml) versus threshold cycles (CT). For 

pure cultures: CT = -3.82 × (Log CFU/ml) + 38.89; R
2
 = 0.998.  For artificially contaminated milk: CT = -

3.68 × (Log CFU/ml) + 38.75; R
2
 = 0.996. 
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Since sample pretreatment, DNA extraction procedure and real-time 

PCR assay work, raw milk was contaminated with low levels of L. 

monocytogenes (1, 10 and 100 CFU/ml) and ran through the entire method to 

assess its sensitivity. The experiment was performed in triplicated and 

reproduced fourth times as represented in Figure 4.5.  Uninoculated raw milk 

and 10 pg of DNA purified with DNeasy Blood and Tissue kit were used as 

negative and positive control, respectively.  Amplifications with CT values over 

40 were considered false-positives.  Raw data are also available in appendix 

C. 

 

 

 

Figure 4. 5 – Threshold cycle values of real-time PCR of raw milk artificially 

contaminated at low levels.  Columns and error bars represent the average of three 

replicates and their standard deviation, respectively. 
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Positive controls were always amplified with a CT value of ~26.  Regarding 

negative controls, 1 out 3 replicates of trials 1, 2 and 4 were amplified with a 

CT values >40.  However, one replicate of trials 1 and 4 gave false-positive 

results (CT 39.1 and 37.8, respectively).   

Contamination level of 1 CFU/ml was always detected except for one replicate 

in trial 2.  Note that one replicate in trial 1 has a CT value of 40.2, which is 

considered a false negative.  

Despite the optimization of PCR assay parameters, it is not always possible to 

distinguish CT values between uninoculated and inoculated samples at a level 

of 1 CFU/ml.  

Furthermore, quantification was possible from level contamination of 10 

CFU/ml and the reproducibility of CT values was adequate. 

 

4.6 CONCLUSIONS  

The present work has evaluated L. monocytogenes growth in raw milk 

during 5 days.  L. monocytogenes level was under the criterion of 100 CFU/ml 

in raw milk samples contaminated at 1 CFU/ml during four days at all 

incubation temperatures.  Similarly, samples inoculated at 10 CFU/ml exceed 

that limit only when incubated at 4°C after 72h.  Additionally, as shown by the 

slopes comparison L. monocytogenes grows slower when incubated at 0°C 

compared to 2°C and 4°C. 
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A new quantitative method for L. monocytogenes based on real-time 

PCR was also described, providing a rapid quantification of 10 CFU/ml in raw 

milk in about 3h.  

Sample pretreatment protocol removed inhibitors for L. monocytogenes real-

time PCR assay as for E. coli O157 assay (Paul et al., 2013) and the modified 

HotSHOT technique is able to extract DNA from gram-positive bacteria.  Both 

procedures are powerful tools that can be used for other PCR assays.  Since 

foodborne pathogens are distributed heterogeneously in food, it is important 

to use a sample volume large enough to represent the entire food matrix.  In 

this work, 10 ml of raw milk were used in comparison with other methods that 

extract DNA from ~1 ml of milk (Dadkhah et al., 2012; Hein et al., 2001; 

Nogva et al., 2000). 

Quantitative PCR is able to achieve results within a half-day and the limit of 

quantification is comparable to 4 CFU/ml of official SPC method (Anonymous, 

2007).  Note that the high-level background flora present in raw milk can be 

troublesome when 1 ml is spread in one plate.  Consequently, in this study 

lower volumes of raw milk were spread in more plates achieving a detection 

limit of 13 CFU/ml.  
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CHAPTER 5: General Conclusion 

Several foodborne illnesses are distributed worldwide.  Food safety 

control from farm to fork is essential to seek sources of contaminations and 

prevent their diffusion.  The presented work, developed new tools that can 

support detection and isolation of STEC 104, and quantification of L. 

monocytogenes.  Potentially, these methods can be applied together to official 

methods.  

 

Regarding Shiga-like toxin-producing E. coli O104, it has been 

demostrated that IMS helps to isolate these pathogens from a food matrix 

characterized by a high level of background flora such as sprouts.  Multiplex 

real-time PCR assay was designed for enteroaggregative STEC O104 and 

other STEC O104.  This approach demonstrated to be effective for screening 

samples after an enrichment step and for identifying presumptive isolated 

colonies.  Moreover, the performances of commercially available latex 

agglutination kit that recognize the antigen O104 and two selective agars 

(mRBA and CHROMagar) were evaluated. 

Several other serogroups of STEC non-O157 are emerging human pathogens 

and methods for their detection are needed.  Currently, Abraxis is preparing 

new antibodies against antigens: O26, O45, O103, O111, O21, and O145, 

and producing reagents for IMS and latex agglutination.  Our collaboration will 

continue by testing the specificity and sensitivity of those reagents.  Then, 

protocols to isolate every serogroup will be optimized and, if possible, merged 

to design a single method able to detect all the major STEC pathogens at the 

same time. 
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L. monocytogenes was chosen because it provokes severe and lethal 

diseases, thus its presence in food has to be avoided.  

As milk can be a good vehicle of L. monocytogenes, pathogen growth was 

first evaluated in fresh raw milk artificially contaminated at three levels under 

three temperature conditions.  Moreover, a rapid quantitative method was 

developed.   

Large raw milk samples of 10 ml were pretreated to concentrate the bacteria 

and remove PCR inhibitors. DNA extraction and real-time PCR protocols were 

optimized and a quantification range of 10 to 1000 CFU/ml was achieved.  

The designed quantitative PCR method has a similar sensitivity to SPC in raw 

milk and provides results in half a day, which is a great advantage compare to 

official conventional cultural methods.  This is very important because it is 

possible to achieve results before raw milk is sold or used in further 

processes.  Additionally, the raw milk pretreatment and DNA extraction with 

HotSHOT can be used for detection or quantification of other pathogens by 

real-time PCR. 

Currently, the L. monocytogenes criterion of absence in 25 grams required by 

Europe and USA (European Commission, 2005; FDA, 2006) cannot be 

assessed directly with real-time PCR without a selective enrichment step.  

However, further studies can be done to enlarge the size of raw milk sample 

to 25 ml or 50 ml in order to improve the method sensitivity.   
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APPENDIX B: Concentrations of L. monocytogenes in 

raw milk during 96h incubated at 4°C, 2°C and 0°C. 

 

Table B. 1 – L. monocytogenes growth in raw milk at 4°C 

Contamination level 

(CFU/ml) 

L. monocytogenes concentration
a
 

(CFU/ml) 

3 h 24 h 48 h 72 h 96 h 

 143 290  453 970 1,243 

100 177  340 717 1,057  1,953 

 220 290 467  643 1,623 

 20 40 97 77 220 

10 D 17 50 217 110 

 17  D 40 253 260  

 ND D D D 23 

1 D ND D D 33 

 ND ND ND ND ND 

Note: D – Detected; ND – Non Detected. 
a
 SPC was performed in three plates inoculated with 100 µl for each dilution factor. According to ISO 

7218 (Anonymous, 2007), the limit of quantification was considered of 4 colonies counted in three plates 

(13 CFU/ml).  When less than 4 colonies were counted, L. monocytogenes was considered detected but 

not quantified. 
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Table B. 2 – L. monocytogenes growth in raw milk at 2°C 

Contamination level 

(CFU/ml) 

L. monocytogenes concentration
a
 

(CFU/ml) 

3 h 24 h 48 h 72 h 96 h 

 53 97 137 180 347 

100 53 117  190  377 480 

 60 53  

 

260 377 317 

 D 20  50 33 77 

10 D D ND 27 37 

 D ND ND 100 17 

 ND D ND ND ND 

1 ND ND ND ND ND 

 ND ND ND ND ND 

Note: D – Detected; ND – Non Detected. 
a
 SPC was performed in three plates inoculated with 100 µl for each dilution factor. According to ISO 

7218 (Anonymous, 2007), the limit of quantification was considered of 4 colonies counted in three plates 

(13 CFU/ml).  When less than 4 colonies were counted, L. monocytogenes was considered detected but 

not quantified. 
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Table B. 3 – L. monocytogenes growth in raw milk at 0°C 

Contamination level 

(CFU/ml) 

L. monocytogenes concentration
a
 

(CFU/ml) 

3 h 24 h 48 h 72 h 96 h 

 107  43  77  70  70  

100 53 123 40 40 90 

 47  77 53 53 90  

 D D D ND 30 

10 D D D D ND 

 D D D D D 

 ND ND D ND ND 

1 ND ND ND ND ND 

 ND ND ND ND ND 

Note: D – Detected; ND – Non Detected. 
a
 SPC was performed in three plates inoculated with 100 µl for each dilution factor. According to ISO 

7218 (Anonymous, 2007), the limit of quantification was considered of 4 colonies counted in three plates 

(13 CFU/ml).  When less than 4 colonies were counted, L. monocytogenes was considered detected but 

not quantified. 
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APPENDIX C: Reproducibility of real-time PCR on 

artificially contaminated raw milk 

 

Table C. 1 – Threshold cycle values of real-time PCR of raw milk artificially 

contaminated at low levels.  

L. monocytogenes 

(CFU/ml) 
Trial 1 Trial 2 Trial 3 Trial 4 

1 37.9 38.6 36.7 37.1 

 
40.2 35.6 38.1 35.6 

 
36.1 ND 37.4 36.0 

     

10 31.8 33.8 33.9 33.5 

 
32.8 35.1 32.9 34.9 

 
32.5 34.1 36.8 33.8 

     

100 30.6 31.1 31.3 33.5 

 
29.9 30.5 34.0 34.9 

 
29.9 34.1 29.2 33.8 

     

Negative CTRLa 45.7 41.0 ND 37.8 

 
ND ND ND ND 

 
39.1 ND ND 41.2 

     

Positive CTRLb 26.5 26.1 26.1 26.4 

 
27.1 26.1 25.9 25.9 

 
27.4 25.8 25.9 26.5 

Note: ND – Non Detected 
a
 Uninoculated raw milk sample 

b 
10 pg DNA purified with DNeasy Blood and Tissue kit

 

 


