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Introduction 

 

 

Within a world, a society, more and more sensitive to the issue of 

sustainability and sustainable development, management and safeguarding of 

water resources play a major role. Thus, the water treatment processes turn 

today towards more and more restrictive quality objectives, not only in relation 

to the removal of macro/conventional pollutants (solid fraction, BOD,COD, N, P) 

but also in relation to micro/emerging pollutants (surfactants, endocrine 

disrupting chemicals, antibiotics, hormones, drugs, heavy metals, chlorinated 

and aromatic organic compounds. . .).The aims, according with the European 

Water Framework Directive 2000/60/EC, are the facilitation of water reuse and 

the maintenance, as unchanged as possible, of the characteristics of the 

receiving water bodies. To achieve higher levels of depuration new technologies 

are needed. More efficient water treatment technologies would decrease the 

water bodies’ pollution and the actual intake of water resource (if the 

concentrations achieved are lower than the values allowed by law for a reuse).  

The aim of this thesis is an in-depth analysis of the magnetic separation of 

pollutants from water by means of a continuous-flow magnetic filter subjected 

to a field gradient produced by permanent magnets. Different solutions have 

been studied. This technique has the potential to improve times and efficiencies 

of both urban wastewater treatment plants and drinking water treatment plants. 

It might also substitute industrial wastewater treatments. This technique 

combines a physico-chemical phase of adsorption and a magnetic phase of 

filtration. 

The first chapter briefly describes what are water and wastewater 

treatments, the magnetic separation and its applications and the previous work I 

have done at LIMSA (Laboratorio di Ingegneria dei Magneti e Superconduttività 

Applicata). 

The second chapter reports the materials I have used and the methods I 

have followed in laboratory during the experiments. 

The third chapter reports the experimental results obtained during the 

magnetic phase of filtration. The adsorbents removal results are reported in 

plots with time as x axis and the removal percentage as y axis. 

The fourth chapter describes the numerical model developed to reproduce 

the magnetic filtration with a steel spheres filter subjected to a field produced by 
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permanent magnets and the results of the model compared to the experimental 

ones. 

The fifth chapter reports the pollutants adsorption experimental results 

obtained in laboratory. 

The sixth chapter considers the importance of the sustainability of the 

process discussing about the reusability of the filter and the adsorbents and the 

possible costs and applications of the magnetic separation in water and 

wastewater treatment. 
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Chapter 1 
 
Water Treatment and Magnetic Separation 
 
1.1 Water Treatment 
 

Water treatment can be divided into three categories: urban wastewater, drinking 

water and industrial wastewater. The urban plants treat the sewage system effluents before 

the discharge in the environment and have generally the treatment steps reported in Figure 

1.1.a. 

 

 

Figure 1.1.a. Wastewater treatment plant conventional steps. 

 

The screening is the first step of the water treatment plants. A grid is a device provided with 

apertures that presents normally a uniform size and is used to retain the solids contained in 

the water entering the plant. The sand / grit removal section is designed to achieve the 

removal of sands, gravels and other heavy solids characterized by sedimentation velocity or 

specific gravity significantly higher than that of organic solids in wastewater. The primary 

sedimentation is instead intended for the removal of heavy organic solid particles; the 

objective is to remove settleable solids and floating material easily, thereby reducing the 

concentration of suspended solids in the treated wastewater (Metcalf&Eddy, 2003). The 

biological treatment section involves the use of microorganisms and has the following 

purposes: 

1) the transformation (oxidation) of the soluble constituents and biodegradable 

particulates in final products compatible with the environment; 

2) the interception of colloidal suspended and not settleable solids and their 

incorporation within the biological flocs or biofilms; 

3) the conversion or removal of nutrients such as nitrogen and phosphorus; 
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4) in some cases, the removal of specific constituents and organic compounds present in 

traces (Metcalf&Eddy, 2003). 

The secondary sedimentation section is dedicated to the removal of the flocs of biomass 

that are created in the biological section. The biomass settles by gravity because it has a 

specific weight slightly higher than the water one. The term disinfection means the removal 

of only partial pathogenic organisms. The fact that not all organisms are eliminated differs 

disinfection from sterilization. The disinfection is commonly achieved through the use of 

chemical agents, physical agents, mechanical actions and radiation. During the treatment 

various stages generate different residues due to the removal of solids. These residues are 

commonly referred as sludge and are treated in a dedicated section of the plant called 

“sludge line” (the small plants could not have this section and the residues have to be 

transported to larger plants that have a section dedicated to the sludge treatment). The 

sludge treatments differ depending on the section that has produced them (Metcalf&Eddy, 

2003). Recently an increasing number of plants has a tertiary step before the disinfection 

step (as shown in Figure 1.1.b) to increase the quality of the effluent. 

 

 

Figure 1.1.b. Wastewater treatment plant with a tertiary treatment. 

 

The tertiary treatments of wastewater are all those additional treatments needed for the 

removal of pollutants in colloidal, suspended or dissolved form still present in the 

wastewater downstream of the secondary treatment. The requirements imposed on 

sewage treatment plants are becoming progressively more demanding both in term of 

maximum concentration limits set for specific pollutants in the effluent, both in terms of 

limits on the overall toxicity of the effluent. Compliance with these limits in plants often 

requires modification of the existing secondary treatment units and the introduction of new 

advanced treatment units. Advanced treatments currently applied are: depth filtration, 
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surface filtration, ultrafiltration, membrane filtration, adsorption on activated carbons, ions 

exchange, advanced oxidation processes, reverse osmosis, electrodialysis, chemical 

precipitation, gas stripping and distillation (Metcalf&Eddy, 2003). Magnetic separation can 

be another possible tertiary treatment. 

Drinking water treatment plants treat water (groundwater, surface water) for human 

use and combine the processes of coagulation, flocculation, sedimentation, filtration and 

disinfection. Coagulation is defined as the destabilization of charge on colloids and 

suspended solids, including bacteria and viruses, by a coagulant. Flash mixing is an integral 

part of coagulation. Flocculation is the gentle mixing phase that follows the rapid dispersion 

of coagulant by the flash mixing unit. Its purpose is to accelerate the rate of particle 

collisions, causing the agglomeration of electrolytically destabilized colloidal particles into 

settleable and filterable sizes. The terms coagulation and flocculation are sometimes used 

interchangeably in technical literature. However, the aggregation of particulate material is 

actually a two-step process. The coagulation is the part where the coagulant reduces or 

eliminates the interparticulate forces responsible for the stability of the particulate and the 

subsequent particulate collisions and aggregation into flocks is the flocculation part. In 

drinking water treatment filtration is the fundamental step that removes particulate matter. 

The most common filtration process employs a granular medium of a certain size and depth 

(Kawamura, 2000). Magnetic separation can substitute and/or improve the main steps of 

water treatment. Water treatment has generally the steps reported in Figure 1.1.c. 

 

 

Figure 1.1.c. Water treatment plant conventional steps. 

 

The industrials plants have specific treatments according to the industrial process and 

the treated water is discharged in the sewage system. Depending on the characteristic of 

the industrial wastewater, magnetic separation can be a possible treatment technique 

(Ihara, 2004; Svoboda, 2004; Nishijima, 2006; Mishima, 2010). 
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Several studies were made on magnetic separation techniques and their applications. 

During the last forty years of the 20th century, magnetic separation evolved from a simple 

technology for manipulation of strongly magnetic coarse materials into a powerful 

technique for the treatment of weakly magnetic, finely dispersed particles. Important 

applications are: the concentration of various ferrous and non-ferrous minerals; the removal 

of low concentrations of magnetisable impurities; the recycling of metals from industrial 

wastes; the concentration or removal of biological objects in medicine and bioscience; 

water treatment (Svoboda, 2004). Considering the field of water treatment, the magnetic 

technique object of this thesis has the potential to: 

- treat part of the wastewater treatment effluent of a big wastewater treatment plant 

to reuse it in agriculture; 

- become a tertiary treatment for average medium urban wastewater treatment 

plants; 

- be applied to any non magnetic adsorbent powder by coagulation using magnetite 

and a coagulant. 

- improve the main treatment steps of a drinking treatment plant (coagulation-

flocculation, sedimentation and filtration); 

- treat industrial wastewater. 

 

1.2 Magnetic Separation 
 

Magnetic phenomena have been known and exploited for many centuries. Practical 

significance of magnetic attraction as a precursory form of magnetic separation was 

recognized in an English patent of 1792 on the separation of iron ore by magnetic attraction 

(Svoboda, 2004). Also the application of magnetic separation of pollutants from water is not 

a novelty (Oberteuffer, 1976; Anderson, 1982; Anderson, 1983; Svoboda, 1987; Chun, 2001; 

Anastassakis, 2002; Newns, 2002; Ihara, 2004; Svoboda, 2004; Nishijima, 2006; Hu, 2007; 

Ihara, 2009; Shen, 2009a; Shen, 2009b; Yavuz, 2006; Yavuz, 2009; Ishiwata, 2010; Mishima, 

2010; Nassar, 2010; Rossier, 2012). There are also two patents, CoMagTM and BioMagTM 

owned by Siemens Water Technologies S.r.l (http://www.water.siemens.com). However, the 

use of permanent magnets in magnetic separation studies is usually limited to batch tests 

(Chun, 2001; Nakahira, 2006;Yavuz, 2006; Ihara, 2009; Nassar, 2010) while continuous-flow 

tests typically employ superconducting magnets (Mitsuhashi, 2003; Ihara, 2004; Svoboda, 

2004; Nishijima, 2006; Ishiwata, 2010). A novelty of this work regards the possibility to use a 

relatively low magnetic field (about 0.5 T) for an effective separation in a continuous-flow 

filter by using permanent magnets. These magnets do not require an electrical power 

supply and have smaller footprint with respect to superconductive magnets (Mitsuhashi, 

2003; Ihara, 2004; Svoboda, 2004; Nishijima, 2006; Ishiwata, 2010).  
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A magnetic filter or separator exploits the magnetic force acting on a magnetizable particle 

(surrounded by non-magnetic fluid) in an externally applied flux density field with a spatial 

gradient (Svoboda, 2004; Abbasov, 2007; Mariani, 2009; Mariani, 2010; Borghi, 2014a). When 

the fluid is water at room temperature, the magnetic force Fmag must be able to capture and 

withhold particles mainly against the drag force of the surrounding fluid and the effects of 

Brownian motion. Conventional magnetic separators are generally restricted to use 

ferromagnetic materials. Generally there is a rotating drum separator, feed is introduced at 

the top of the drum and the magnetic components stick to the rotating drum because of the 

gradient fields produced by the stationary magnets within it. The nonmagnetic components 

fall off the drum. These separators are ineffective for very weakly magnetic particles of 

micron size. High Gradient Magnetic Separation (HGMS) devices utilize a filtering 

ferromagnetic material such as stainless steel wool which is placed in a magnetic field. This 

produces a large effective surface area of strong magnetic traps that makes possible the 

efficient separation of very weakly magnetic particles of micron size (Oberteuffer, 1973). In a 

HGMS magnetic filtering device (Figure 1.2.a) each particle is magnetized by a field B which 

is made of three terms: a relatively uniform field produced by sources external to the filter, a 

field produced by the ferromagnetic filtering elements and the field produced by the 

magnetic moments of the other particles. The external magnetic field can be used to 

saturate the particle to obtain the maximum possible magnetic force. The same field is used 

to magnetize the filtering elements which provide the magnetic field gradient. 

 

 

Figure 1.2.a. HGMS magnetic filtering device. 

 

The magnetic force acting on a particle with volume Vp can be expressed as : 

 

BBBMF ∇⋅
µ
χ

=∇⋅=
0

,effpp
ppmag

V
V  (1.2.1) 

where the magnetization of the particle Mp is proportional to the field B/µ0 trough an 

effective susceptibility χp,eff that depends on the material and the shape of the particle 

(Mariani, 2009). 

In order to remove non magnetic pollutants from water with a magnetic separation 

technique the magnetizable particle must combine adsorption capacity and magnetic 

properties. Magnetic separation can be extended to materials that are not naturally 

Magnetizable particles 
Filter 

Magnets 
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magnetic introducing a material (a carrier) which can selectively enhance the magnetic 

properties of a non magnetic material (a target) that needs to be separated. There are two 

basic mechanisms for using a magnetic particle so that it renders a non-magnetic particle 

magnetic, namely as magnetic carrier or as magnetic tag. Magnetic tags are smaller than 

the targeted magnetic species (usually fine magnetite or ions, e.g. Y3+) and are used to coat 

non-magnetic species in order to allow them to be manipulated by an external magnetic 

field, i.e. magnetically modified Activated Carbons, zeolites, polymers, etc (Oliveira, 2004; 

Svoboda, 2004; Nakahira, 2006; Nah, 2008; Gang, 2010; Lu, 2013; Nethaji, 2013). Magnetic 

carriers are usually larger than the target species and used to recover non- magnetic 

colloidal or macromolecules. Adding a coagulant together with magnetic carriers to treat a 

polluted water is called magnetic seeding (Svoboda, 2004). The addition of a coagulant is 

not a concern for the application in Water Treatment Plants (WTP) since it is already widely 

used to clarify suspensions. Usually, the separation of the suspended solid fraction is carried 

out introducing a coagulant during a rapid mixing to destabilize the suspension and 

generate aggregates (flocs) removed through a sedimentation followed by a sand or 

membrane filtration (Kawamura 2000; Metcalf & Eddy, 2003; Amirtharajah, 2005). In this 

thesis is analized the coagulation involving a magnetic fraction because this could allows to 

remove the generated aggregates using a fast magnetic filtration. Beside all the advantages 

of using an already-known adsorbent powder, avoiding the necessity of a new 

characterization, this solution can be applied to any non magnetic adsorbent powder and/or 

any existing coagulation/flocculation treatment in order to reduce the space and times 

requirements. In all conditions an “adsorption step” to capture the pollutants and an 

“adsorbent removal step” to remove the adsorbent are needed. Considering the 

“adsorption step”, several experimental laboratory adsorptions to test the pollutants 

removal efficiencies were carried out. Considering the “adsorbent removal step”, several 

experimental tests with two different continuous-flow laboratory setups and a comparison 

of the results with a numerical model were carried out.  

 

1.3 Initial work at LIMSA – the starting point  
 

This work began in LIMSA laboratories as a continuation of my master thesis work 

(Borghi, 2010). The application of the magnetic separation was firstly investigated 

evaluating the adsorption of detergents and pure surfactants on iron oxides powders 

(magnetite and hematite) and removing these powders by sedimentation near a magnet or 

filtration through a HGMS steel wool filter (Borghi, 2011). This filter was modeled and 

manufactured in laboratory by the former PhD student of LIMSA team Giacomo Mariani 

(Mariani,2009; Mariani, 2010). The removal using only magnetite and hematite technique 

lead to good results but without the possibility of improvement. Magnetite powder is a 

ferrimagnetic and non porous iron oxide so only a reduction of the diameter of the 
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adsorbent could improve the adsorption, due to the increase of the specific area. However, 

the reduction of the diameter worsens the capture in the magnetic filter reducing the 

efficiency of the separation. Hematite powder, which is a better adsorbent since it is porous, 

is paramagnetic and much more difficult to capture. Moreover, the important amounts of 

sludge generated by the powders and the necessity of disposal of the wool filter after each 

usage were problems that needed to be solved to have a sustainable process. Thus, this 

initial work at LIMSA (reported in Appendix I) was the starting point that led me to the 

research of a solution that employs a powder with both good absorbance and magnetic 

properties generating a limited amount of sludge and employing a magnetic filter that 

could be easily assembled, washed and reused. 
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Chapter 2 
 
Materials and methods 
 
2.1 Pollutants 
 
2.1.1 Surfactants  

Surfactants are amphiphilic molecules that have a non-polar tail and a polar head. 

According to the change of their hydrophilic part they are classified in non ionic, anionic, 

cationic and amphoteric (Showell, 2005). Surfactants are undesirable substances in water 

bodies and soil and their concentration limits according to Italian legislation, in drinking 

water, surface water, sewerage and for reuse in agriculture are 0.2 mg/l, 2 mg/l, 4 mg/l, 0.5 

mg/l respectively (Decree 31/2001, Legislative Decree 159/2006, Ministerial Decree 

185/2003). France has the same limit of 0.2 mg/l only for the anionic ones in drinking water 

(Decree 1220/2001). The Ministry of Health, Labour and Welfare in Japan gives the same 

limit DWQS (Drinking Water Quality Standard) of 0.2 mg/l for the anionic surfactants. Since 

2003 there is also a DWQS of 0.02 mg/l for non ionic surfactants. 

Sources of surfactants in the environment are of different origins: domestic (house 

cleaning), urban (street cleaning) and industrial (their main application is the industry of 

detergents but they are used also in textiles, pharmaceutics, petrochemical products, 

fertilizer, etc) (Wang, 2004). The continuing increase in consumption of detergents and the 

increase in production of surfactants are the origin of a type of pollution whose most 

significant impact is the formation of toxic or nuisance foams in rivers, lakes, and treatment 

plants. Masses of foam floating on river waters represent an aesthetically objectionable 

nuisance, a problem for the tourism industry and can generate trouble and worries for 

navigation (mostly in the areas of dams and river locks). In addition, the surfactants reduce 

the capacity of organic self-purification of natural waters (Wang, 2004). The effectiveness of 

active sludge wastewater treatment plants is reduced by the presence of surfactants as well 

because the process is based on sedimentation and surfactants are molecules that prevent 

fine particles from falling (Wang, 2004). Furthermore the use of water contaminated with 

surfactants for irrigation contaminates the groundwater, generates a depletion of soil and 

adversely affects plant growth (Bouwer, 2005; Duncan, 2009). Another impact of these 

substances is the risks to public health because foams are possible habitat for 

microorganisms able to resist the disinfecting power of detergents, such as mycobacteria 

and polio or hepatitis viruses. Human health is also affected when surfactants arrive into 

drinking water (Wang, 2004). 

In literature there is no agreement on the degree of ecological danger of synthetic 

surfactants. Some authors do not include the surfactants between the relevant pollutants 

and believe that there is virtually no risk to aquatic ecosystems, but there are many 
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publications on the various biological effects and altered structure and functions of 

organisms under the influence of synthetic surfactants (Ying, 2004; Ostrumov, 2006). 

Surfactants with higher volume on the market today, with the exception of soaps, are the 

linear alkylbenzene sulfonates (LASs), alkylethoxy sulfates (AESs), alkyl sulfates (ASs), 

alkylphenol ethoxylates (APEs), alkylethoxylates (AEs) and quaternary ammonium-based 

compounds (QACs). These surfactants are the few for which monitoring and laboratory 

studies were carried out by following a specific analytical method (Cavalli, 2004;Ying, 2004) 

Traditionally the examined substances are the ones with significant lethal effects on 

organisms. The various types of surfactants are considered non-toxic or low toxic and 

attention to their ecological importance is low. A general rule valid for all surfactants is that 

toxicity increases with increasing hydrophobicity of the molecule, a characteristic that often 

coincides with increasing alkyl chain length; on the contrary an increase of the number 

ethylene oxide (EO) units reduces hydrophobicity and toxicity (Cavalli, 2004). Surfactants 

are significantly different from the "classical" pollutants (heavy metals, organ metallic 

compounds and pesticides), because they show a rather broad range of examples of their 

stimulating action on several enzymatic activities of aquatic organisms (Ostrumov, 2006). 

The median lethal concentration LC50 (i.e. the concentration of a pollutant at which 50 % of 

the test organisms die after some specified exposure time) and the half maximal effective 

concentration EC50 (that refers to the concentration of a toxicant which induces a response 

halfway between the baseline and maximum after some specified exposure time) of many 

organisms subjected to the most common surfactants, in particular cationic ones, are in 

many cases lower than the concentration of 2 mg/l, allowed by Italian legislation 

(Legislative Decree 159/2006) for discharge into surface water bodies (Madsen, 2004; Ying, 

2004). However, surfactants degradation products could have a higher toxicity than the 

former substance. For example, the non ionic APEs nonylphenol ethoxylated and 

octylphenol ethoxylated are much less toxic to aquatic organisms than their degradation 

products (nonylphenol and octylphenol) which are endocrine-disrupting chemicals. Thus, 

the removal of their surfactant precursors, could allow controlling these emerging 

pollutants (Naylor, 2004; Ying, 2004; EPA, 2005; Jonsson, 2006; Ning, 2007; Soares, 2008; 

Ifelebuegu, 2011). 

Biodegradation is the dominant removal mechanism for surfactants discharged into 

water bodies. The process can be aerobic or anaerobic depending on the microorganisms 

present in water. Aerobic biodegradation, however, is of primary importance because the 

surfactants are discharged into the sewer and eventually into rivers and the sea. 

Mechanisms of anaerobic biodegradation can take place only in the absence of oxygen and 

this is possible in sludge and sediments; the end products are CO2 and CH4. The kinetics of 

biodegradation is influenced by temperature, which is in turn linked to the metabolism of 

the microorganism (Cavalli, 2004; Ying, 2004). The aerobic and anaerobic biodegradability 

of surfactants varies greatly depending on the kind of surfactant (Madsen, 2004; Ying, 2004). 
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The non-ionic and cationic surfactants are significantly slower to decompose in the 

environment than anionic surfactants (Ying, 2004; Ostrumov, 2006).  

For laboratory experiments artificial samples were prepared by mixing distilled water 

with pure surfactants (all purchased by Sigma-Aldrich S.r.l but Kemfluid EQ18 that was a 

gift from Biochimica S.p.A). Table 2.1.1.a reports the name, CAS number (Chemical 

Abstracts Service numerical identifier) and molecular formula of the tested surfactants. 

 

Table 2.1.1.a. Tested surfactants. 

Surfactant Name / CAS Number / Molecular Formula 

Anionic 

SDS 

[Sodium Dodecyl Sulphate] 

CAS Number 151-21-3 

Molecular Formula NaC12H25SO4 

Cationic 

Kemfluid EQ18 

[Bis-(acyloxyethyl)-hydroxyethyl-methylammonia-methylsulphate] 

CAS Number 91995-81-2 

Molecular Formula SO4CH3[(C4H7O3)2NC3H8O] 

Cationic 

DDAB 

[Didecyldimethylammonium bromide] 

CAS Number 2390-68-3 

Molecular Formula [CH3(CH2)9]2N(CH3)2Br 

Non ionic 

Triton X-100 

[polyethylene glycol p-(1,1,3,3-tetramethylbutyl)-phenyl ether] 

CAS Number 9002-93-1 

Molecular Formula C14H22O(C2H4O)n (n=9-10) 

Non ionic 

IGEPAL CO-630 

[Polyoxyethylene (9) nonylphenylether] 

CAS Number 68412-54-4 

Molecular Formula C15H24O (C2H4O)n branched (n=9-10) 

 

2.1.2 Octylphenols and Nonylphenols 

Octylphenols (OP) and nonylphenols (NP) are endocrine disruptors present in the list 

of priority substances of the European Directive 2008/105/EC on the environmental quality 

standards and in the new proposal of the same Directive COM(2011)875. The basic structure 

of alkylphenols (APs) is a phenol ring with a hydroxyl group, and an alkyl chain. APs have 

low acute toxicity and OP and NP have low carcinogenic potential. OP and NP have been 

found to be estrogenic in several in vitro and in vivo systems (EPA, 2005; Jonsson, 2006; 

Soares, 2008; Ying, 2012). The general population is mainly exposed to OP and NP from food 

(especially fish), food packaging, skin care/cleaning products and to some degree drinking 
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water (Jonsson, 2006; Soares, 2008). OP and NP are reaction intermediates in various 

industrial formulations but the main source of these substances is the degradation of 

alkylphenol ethoxylated surfactants (APEs) used in detergents and cleaning products. This 

degradation often occurs in the wastewater treatment plants (WWTP), mainly in the 

secondary biological treatment (Frassinetti, 1996; EPA, 2005; Soares, 2008; Ifelebuegu, 2011; 

Asimakopoulos, 2012). Residues of APEs metabolism in secondary effluents have been 

shown to be partially halogenated during chlorine disinfection of wastewater and drinking 

water producing chlorophenols that appear to be more resistant to biodegradation (Bansal, 

2005; Ifelebuegu, 2011). Therefore the removal of the APEs surfactants leads to the 

prevention of APs and chlorophenols productions. The structure of APEs is a fat soluble 

phenol ring with a varying alkyl chain, and a water soluble chain of 1-100 ethoxylated groups 

(1EO-100EO). The mostly used APEs, nonylphenols ethoxylated (NPEs) has an alkyl chain 

(C9H19, usually branched) and a chain of 9-10 EO groups. With decreasing length of the EO 

chain, bioaccumulation and toxicity of APEs increases. The greater the number of EO units, 

the more water soluble the APE becomes. NPEs comprise about 80% of the total APEs 

market volume and octylphenols ethoxylated (OPEs) are most of the remaining 20% (Naylor, 

2004; Jonsson, 2006).  

For laboratory experiments artificial samples were prepared by mixing osmotic water 

with pure endocrine disruptors or precursors (all purchased by Sigma-Aldrich S.r.l). Table 

2.1.2.a. reports the APs and APEs tested: 4-OP, 4-n-NP, TRITONTM X-100 and IGEPAL® CO-

630. TRITONTM X-100 is a precursor of 4-tert-OP; it is commonly used as detergent in 

laboratories and it can be found in several types of cleaning compounds. IGEPAL® CO-630 is 

a precursor of branched 4-NP and with 9EO is known as Nonoxynol-9 (used in cleaning, 

cosmetics and contraceptive products).  

 

Table 2.1.2.a. Tested APs and APEs. 

Name 
CAS Number 

Molecular Formula 

Molar 

Weight 

(g/mol) 

Molecular structure 

4-n-nonylphenol 
CAS 104-40-5 

C15H24O 
220 

 

4-octylphenol 
CAS 1806-26-4 

C14H22O 
206 

 

IGEPAL CO-630 

CAS 68412-54-4 

C15H24O (C2H4O)n 

branched (n=9-10) 

617 

average 
 

TRITON X-100 

CAS 9002-93-1 

C14H22O(C2H4O)n 

branched (n=9-10) 

625 

average 
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The first precursor was tested instead of 4-tert-OP because this OP has a category 2 

carcinogenic effect (http://www.sigmaaldrich.com/; Jonsson, 2006) and the second precursor 

was tested instead of 4-NP because it has a lower estrogenic potential (Soares, 2008; 

Asimakopoulos, 2012; Ying, 2012). In addition, the removal of the precursors is interesting 

because it prevents the formation of APs (Naylor, 2004; Ying, 2004; EPA, 2005; Jonsson, 

2006; Ning, 2007; Soares, 2008; Ifelebuegu, 2011). 

 

2.1.3 Cations 

Manganese and iron are metallic cations related to the corrosion of iron pipes and are 

the main source of coloration of drinking water in distribution systems. Corrosion in 

distribution systems restricts water flow, causing deterioration in terms of quality. The 

presence of iron and manganese in the systems, which may be soluble in the water, may 

cause sensory problems such as colored water, stains, dirt in the systems, and complaints by 

consumers (Kawamura, 2000; Chaturvedi, 2012; Alvarez-Bastida, 2013). An iron potential 

problem is the growth of iron bacteria within the distribution main; these bacteria may 

become dense enough in population to clog pipes and reduce flow rates (Kawamura, 2000; 

Chaturvedi, 2012). From the toxicological point of view, the adverse effects of manganese 

on human health depend on the route of exposure, the chemical species, and the age and 

nutrition status of the consumers. It is known that manganese exposure affects nervous 

system functions and may even cause an irreversible Parkinson-like syndrome known as 

manganism, which is characterized by weakness, anorexia, muscle pain, apathy, slow 

speech, emotionless “mask-like” facial expressions, postural difficulties, rigidity, tremors, 

decreased mental status, and slow, clumsy movements of the arms and legsand. Studies in 

animals that have been exposed to different concentrations of manganese have revealed 

neurotoxic effects (Alvarez-Bastida, 2013). Iron intake has positive effects on our health in 

moderate doses and is an essential nutrient. Thus, intake of untreated water would not be 

harmful to our health (Chaturvedi, 2012).The Secondary Drinking Water Standards (EPA) 

recommends Maximum Contaminants Level (MCL) of 0.3 mg/l for iron and 0.05 mg/l for 

manganese.  

Calcium and magnesium are the major divalent metallic cations that contribute to 

water hardness. Hard water is not currently known to adversely affect human health in any 

significant manner. Quite a few studies have demonstrated an inverse correlation between 

the incidence of cardiovascular disease and the hardness level of drinking water. Yet 

conflicting studies have also been reported (Kawamura, 2000). However many consumers 

prefer softened water due to convenience issues such as avoidance of removing limescale 

deposits from household appliances and surfaces, and to reduce consumption of cleaning 

agents and laundry detergents leading to lower household expenses (Zappone, 2008; 

Godskesen, 2012). Moreover, even though nowadays central softening of drinking water 

entailed an increased use of energy, sand and chemicals at the waterworks, the distributed 
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and softened drinking water supported a decrease in consumption of energy and chemical 

agents in the households along with a prolonged service life of household appliances which 

heat water (Godskesen, 2012).  

For laboratory experiments artificial samples were prepared using a very hard 

commercial water to test the Ca(II) removal and by mixing osmotic water with FeCl3·6H2O 

or MnCl2·4H2O (purchased by Sigma-Aldrich) to test the Fe(III) and the Mn(II) removal 

respectively. With the purpose to increase the removal of Ca(II) the complexing agent 

ethylenediaminetetraacetic acid (EDTA purchased by Sigma-Aldrich) was added and the 

adsorption of the complexed Ca(II) on the powders used was tested. 

 
2.2 Adsorbents 
 

2.2.1 Magnetic Activated Carbons (MACs) 

An adsorbent used to remove the tested pollutants was a Magnetic Activated Carbons 

(MACs) powder provided by MS-Engineering Ltd. (http://www.ms-engineering.co.jp/eng/). 

This is a synthetic powder obtained by precipitation on activated carbons of nanometric 

magnetite (Fe3O4) particles. This precipitate reduces the adsorption sites of AC leading to a 

20 to 30 % decrease of MACs adsorption ability with respect to ACs (Nakahira, 2006). Figure 

2.2.1.a shows Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy 

(TEM) images of MACs and Energy Dispersive X-ray Spectrometry (EDS) spectra confirming 

the presence of magnetite on AC surface (Nakahira, 2006).  

 

 

Figure 2.2.1.a. Images of (a) Scanning Electron Microscopy (SEM) and (b) Transmission Electron 

Microscopy (TEM) of MACs and (c) Energy Dispersive X-ray Spectrometry (EDS) spectra results 

regarding the circular area in the (b) image (Nakahira, 2006). 
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The particle’s diameter is about 40-50 nm, it was measured suspending MACs in 

ethanol and using a FOQELS particle size analyzer of Brookhaven Instruments Corporation. 

However, when suspended in water solutions, MACs generate micrometric aggregates due 

to their hydrophobicity. During this research experiments an ultrasonic washing of 30 

seconds was applied after MACs addition to the pollutant-water samples in order to break 

the particles’ aggregates with the purpose of maximizing the MACs surface available for 

adsorption (Borghi, 2014a). The time necessary for the regeneration of the aggregates is 

less than 10 minutes; at the end of the adsorption phase the aggregates, which are 

necessary to allow the capture also with low magnetic fields, were restored. Figure 2.2.1.b 

shows two distributions of the aggregates’ sizes of the MACs suspended in distilled water. 

They refer to the “as purchased” MACs and to the MACs after the ultrasonic washing. It can 

be seen that the ultrasonic washing changes the sizes distribution increasing by 2-3% in 

mass the particles fraction below about 3 µm. The two distributions were obtain taking an 

image of the suspension with an optical microscope and analysing it with a self- developed 

Fortran code. 
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Figure 2.2.1.b. Sizes distribution of MACs aggregates in water with and without ultrasonic washing. 

The insert shows a sample of the optical image obtained with a MO that was numerically processed. 

 

Activated Carbons (ACs) are obtained by the carbonization of carbonaceous raw 

material followed by an activation phase. They are excellent and versatile adsorbents that 

are used in many areas to remove organics, inorganics and vapours; the most important 

application of ACs adsorption is the purification of air and water, where large amounts of 

ACs are being consumed and where the consumption is ever increasing. ACs are used in 

powder, granular or fibrous form. In the last two forms they are usually fixed in beds, while 

ACs powders are suspended in water (Metcalf & Eddy,2003; Bansal, 2005; Gaspard, 2008). 

The problem of ACs powder is their lack of magnetic properties that makes them removable 
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only by filtration or sedimentation with possible time and costs disadvantages. The 

combination of ACs with magnetite can exploit the advantages of both materials (Do, 2011; 

Jia, 2011; Lu, 2013). Thus this powder has the ACs part in order to adsorb pollutants and the 

magnetite part to be magnetically filtered. Considering that magnetite in MACs is around 

1/3 and the small porosity and specific surface of magnetite compared to the AC it can be 

assumed that the adsorption on the iron oxide is negligible. The main characteristics of 

MACs are listed in Table 2.2.1.a. The pHpzc (point of zero charge pH) was evaluated by 

measuring the electrophoretic mobility. At the pHpzc the number of positive groups on the 

powder surface equals the number of negative ones and, as the pH increases, the number of 

negative groups increases too (Bansal, 2005; Borghi, 2011). The magnetization curve of 

MACs measured by Quantum Design PPMS is shown in Figure 2.2.1.c (μ0 is the magnetic 

permeability of vacuum). As expected, due to their magnetite content, MACs show a 

ferromagnetic behaviour. 

Table 2.2.1.a. Properties of MACs. 

Content Fe3O4 25-35 (% vol) 

Average Pore Diameter 2.53 nm 

Pore Volume 0.49 ml/g 

Specific Gravity (ISO 787/10) 1.7 g/cm3 

Tamped Density (ISO 787/11) 0.45 g/cm3 

Specific Surface (ΣA) 773 m2/g 

pHpzc 4 

Representative particle size 40-50 nm 

Representative aggregate size 1-3 µm 

Magnetism ferrimagnetic 
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Figure 2.2.1.c. Magnetization curve of MACs. 
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2.2.2 Zeolite-Magnetite mixtures 

Zeolites are capable of exchanging ions with external medium, which is the significant 

characteristic of zeolite. Ion exchange proceeds in an isomorphous fashion. The ion-

exchange behaviour of natural zeolite depends on several factors, including the framework 

structure, ion size and shape, charge density of the anionic framework, ionic charge and 

concentration of the external electrolyte solution. Due to the formation environment, 

natural zeolite has varying chemical composition and cation-exchange capacity (Wang, 

2010). The adsorption characteristics of any zeolite are dependent upon the detailed 

chemical/structural makeup of the adsorbent; the Si/Al ratio, cation type, number and 

location are particularly influential in adsorption. These properties can be changed by 

several chemical treatments to improve separation efficiency of raw natural zeolite (Wang, 

2010). Natural zeolites have advantages over other cation exchange materials such as 

commonly used organic resins, because they are cheap, they exhibit excellent selectivity for 

different cations at low temperatures, they are compact in size and they allow simple and 

cheap maintenance in the full-scale applications.  

There are many natural zeolites identified in the world. Clinoptilolite, mordenite, 

phillipsite, chabazite, stilbite, analcime and laumontite are very common forms whereas 

offretite, paulingite, barrerite and mazzite, are much rarer. The one purchased by Verdi 

S.p.a. is mainly chabazite thus, as shown in Figure 2.2.2.b (Margeta, 2013), it has a 

hexagonal structure. The structure of natural zeolite is very interesting and complex. The 

primary building units (PBU) of zeolites are the SiO4 and AlO4 tetrahedra. They connect via 

oxygen ions into secondary building units (SBU), which are then linked into a three-

dimensional crystallinestructure of zeolite. Substitution of Si by Al defines the negative 

charge of the zeolite framework, which is compensated by alkaline and earth alkaline metal 

cations. The higher the aluminium concentration, the higher is the overall lattice charge 

leading to hydrophilic materials. The adsorption capacity of zeolite decreases with 

decreasing polarity and polarizability of adsorbates. On the other hand, zeolites with a low 

aluminium concentration are increasingly more hydrophobic and selectively adsorb 

hydrocarbons over water (Kogelbauer, 2001). Therefore, natural zeolites appear as cations 

exchangers because they have negative charge on the surface (Payra, 2003; Wang, 2010; 

Margeta, 2013). Zeolites are also characterized by the unique property that the internal 

surface is highly accessible and can compose more than 98% of the total surface area. 

Surface areas are typically of the order of 300-700 m2/g (Payra, 2003). In the zeolite lattice, 

substitution is not limited to the Si-Al one. Atoms of iron, boron, chromium, germanium, 

and titanium may also substitute silicon. The water molecules can be present in voids of 

large cavities and bonded between framework ions and exchangeable ions via aqueous 

bridges. The water can also serve as bridges between exchangeable cations (Wang, 2010; 

Margeta, 2013). 
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Figure 2.2.2.b. Chabazite hexagonal structure. 

 

As for ACs powder a zeolite powder weakness is the lack of magnetic properties that 

makes it removable only by filtration or sedimentation with possible time and costs 

disadvantages. The combination of zeolites with magnetite can exploit the advantages of 

both materials (Oliveira, 2004; Nah, 2008). The synthesis of a modified adsorbent has 

producing costs. As an alternative to the laboratory-produced MACs powder, two mixtures 

of zeolite and magnetite bonded trough the coagulant ferric chloride (FeCl3·6H2O ACS 

grade) during the experiments, were generated. The properties of the used powders are 

described in Table 2.2.2.a. Fig. 2.2.2.a shows the frequency of the particle size distribution 

of each powder measured using Fritsch Laser-Particle-Sizer “Analysette 22”. Magnetite 

#48400 was purchased by Kremer Pigmente GmbH and natural zeolite ZEOVER (Chabazite 

60 ± 5%, Phillipsite 5 ± 3%, K-Feldspar 4 ± 2%, Biotite 2 ± 1%, Pyroxene 4 ± 1%, Volcanic 

glass 25 ± 5% and a Si/Al ratio of 2.5) was purchased by Verdi S.p.a. One mixture was made 

by the magnetite and the zeolite as purchased, the other was made by the magnetite as 

purchased and the zeolite after a Na-activation. The Na-activation (Taffarel, 2009) of the 

purchased zeolite ZEOVER was carried out by mixing it with 1 M solution of sodium chloride 

(NaCl). 50 g of material were mixed to 1 l of solution and left for 24 h at room temperature. 

The suspension was agitated in a glass flask using a magnetic stirrer and then filtered and 

washed three times with 1 l deionised water, dried at 120 °C for 24 h before being used in 

the adsorption studies.  

 

Table 2.2.2.a. Properties of magnetite and zeolite powders. 

 Magnetite 48400 Zeolite ZEOVER 

Content Fe3O4 90 % 4 % 

Average Pore Diameter none 0.25- 0.7 nm 

Pore Volume none 0.5 ml/g 

Tamped Density (ISO 787/11) 0.8-1.2 g/cm3 0.7-0.9 g/cm3 

Specific Surface (ΣA) 11 m2/g 336 m2/g 

pHpzc 7.5 8.4 

Representative aggregate size 5-7 µm 50-60 µm 

Magnetism ferrimagnetic none 
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Figure 2.2.2.a. Experimental size distributions for magnetite powder #48400 and zeolite ZEOVER 

powder. 

 
2.3 Adsorption and adsorbents removal tests 
 

The adsorption of a solute from a solution is influenced by several factors: the porosity 

and the chemical nature of the solid surface, the nature of the components of the solution, 

the concentration of the solution, salts and molecules in the aqueous phase that can 

compete for adsorption sites, the adsorption time, the pH of the solution that determines 

the electric charge of the solid surface (Bansal, 2005). Positive, negative and neutral 

functional groups can coexist on the surface. At pH < pHpzc (pH of zero charge) the positive 

groups predominate over the negative ones, i.e. although the surface has a net positive 

charge, some negative groups are still present. At the pHpzc the number of positive groups 

equals the number of negative ones and as the pH increases, the number of negative groups 

increases (Cornell, 2003; Bansal, 2005). The adsorption of a nonpolar solute will be higher on 

a nonpolar adsorbent. Since there is competition between the solute and the solvent, the 

solvent should be polar in nature for the solute to be adsorbed preferentially. Other factors 

that also determine the adsorption from solutions are the hydrogen bonding and the steric 

arrangement or the chemical structure of the adsorbate molecule. As the AC have a highly 

microporous structure, some of the pores may be inaccessible to larger molecules of the 

adsorbate (Bansal, 2005). 

Each test started generating a sample by diluting the considered pollutant with 

osmotic water or tap water. The pH of the water was not changed to improve the 

adsorption as reported in literature (Chun, 2001; Dobiàs, 2005; Higgins, 2006) since these 

values were (i) in the correct range for a biological treatment of a WWTP (Metcalf & Eddy, 

2003), (ii) already compatible with the ones allowed for discharge according to Italian 

regulation 152/2006 (between 5.5 and 9.5). Moreover, in real WWTP the pH can not be 

changed without a significant increase of costs. Then, the concentration of the pollutant 
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was measured. The initial sample was divided in three/five equal jars and different amounts 

of powder were added. As reported in Figure 2.3.a (a), each subsample was mixed for 10 

minutes (about 60 rpm) to allow the adsorption of the pollutant on the adsorbent particles. 

After the adsorption step the powder separation step Figure 2.3.a. (d) was carried out 

immediately for 10 minutes or, if the coagulant FeCl3·6H2O was added as shown in Figure 

2.3.a (b), after 2 minutes of rapid mixing and 5 minutes sedimentation (Figure 2.3.a (c)) and 

lasted only 5 minutes. In the last case, the filtration system was filled only with the clarified 

part of the suspension. Finally, the concentration of the pollutants remaining in the treated 

water was measured.  

Hach-Lange and Nanocolor tubes-tests have been used to measure the pollutants 

concentration before and after each test (http://www.Hach-Lange.com; www.mn-net.com). 

The procedures of the tube-tests are reported in Appendix II. A particular care was kept in 

maintaining tubes and samples at a temperature between 20 °C and 25 °C for the correct 

kinetic of the chemicals reactions. For the same reason it was always verified that the pH of 

the samples was between 4 and 9. A Hach-Lange spectrophotometer DR2800 was used to 

evaluate the solutes concentrations; the measured optical absorbance was converted to the 

concentration value using an experimentally determined calibration curve. The error on the 

measures produced by the residual powders after the filtration was taken into account by 

measuring the absorbance of filtered samples made only by distilled water and the used 

powders, i.e. without pollutants. 

 

(a)  (b) 

(c)  (d) 

Figure 2.3.a. 10 minutes adsorption step (a) eventually followed by the addition of Ferric chloride, 2 

minutes of rapid mixing (b) and a 5 minutes sedimentation step (c). Filtration with or without 

addition of coagulant and sedimentation, lasting 5 or 10 minutes respectively (d). 
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In addition to the separations carried out during the adsorption tests, many sets of 

powder/water mixtures with and without ferric chloride were prepared and their turbidity vs. 

time was measured using a turbidity meter (Hanna Instruments 93703). Each separation test 

started creating a sample of tap water and adding to it 0.5 g/l of MACs or 0.5 g/l of zeolite 

and 0.25 g/l of magnetite. After an ultrasonic bath of 30 s in order to break powder 

aggregates, the mixture was homogenised using a magnetic stirrer. In all the tests with the 

addition of ferric chloride (FeCl3·6H2O), an amount of 15 mg/l (corresponding to 3 mg/l of 

Fe(III)) was added and followed by 2 minutes of rapid mixing in order to destabilize the 

solution and to allow the Fe(III) ions oxidation and deposition. This concentration of the 

coagulant is acceptable for water treatment. Thus, the samples were subjected to 

sedimentation or filtration or both. In the last case, the filtration system was filled only with 

the clarified part of the suspension. The filtration was carried out using continuous-flow 

magnetic filtration devices.  

 
2.4 Filtration experimental setups 
 

Two experimental setups (Borghi, 2014a) significantly different in terms of size, 

external flux density field, water flow rate and average velocity in the filter, were 

manufactured and tested (Figure 2.4.a and Figure 2.4.b). Both magnetic filtration devices 

consisted of a tank, input and output rubber pipes, a magnetic separation unit and a pump. 

Thus, the fluid circulated inside a closed-cycle system. The flow started from a tank filled 

with a mixture of water, pollutant, adsorbent powder (and eventually ferric chloride) and 

returned to the same reservoir after passing through the magnetic filter located between 

two permanent magnets (or on one permanent magnet in setup #1) which provided the 

external flux density field in the filter volume, mainly orthogonal to the fluid flow. The 

generated magnetic force was able to capture and withhold the powder particles against 

the drag force of the surrounding fluid and the effects of Brownian motion.  

 

  

Figure 2.4.a. Experimental setup #1.  
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Figure 2.4.b. Experimental setup #2. 

 

The filter was made of tightly packed stainless steel spheres that are commercial 

bearings produced by Koyo Italia S.r.l (Figure 2.4.c). The filter progressively clogged 

reducing its filtration efficiency and requiring a periodic wash or a substitution. Table 2.4.a 

shows the main parameters of the two systems with the steel spheres filter and the symbol 

used. The effective susceptibility χs,eff of the steel takes into account the spheres 

demagnetizing factor (Fiorillo, 2004; Mariani, 2009). The average fluid velocity u0 was 

calculated on the free water section (evaluated using the section filling factor). The applied 

external magnetic flux density field is relatively uniform in the filter volume; the values 

reported in Table 2.4.a refer to the maximum value in the centre and the lowest one on the 

inlet and outlet sections. The direction and the intensity of the magnetic flux density field 

are not constant in each cross section of the filter with a prevalence of the component 

normal to the flow velocity. Figure 2.4.d reports the magnetization curve of the steel 

spheres showing the correlation between the magnetic flux density B and the magnetic 

field H; the asymptote represents the spheres saturation level.  

 

  

Figure 2.4.c. Zoom of the filter device of setup #1 (left) and setup #2 (right) filled with spheres on a 

Nd-Fe-B permanent magnet and between two Sm-Co permanent magnets respectively. 
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Table 2.4.a. Magnetic filtration systems data. 

 Experimental setup #1 Experimental setup #2 

Filter data   

Material SUS440C SUS440C 

Saturation Magnetization 1.1 T 1.1 T 

Spheres Number 100 6900 

Relative permeability 200 200 

Effective Susceptibility χs,eff 2.9 2.9 

Diameter, ds 3 mm 3 mm 

Volume Filling Factor 55% 55% 

Section Filling Factor 78% 78% 

Cross Section Circular, 64 mm2 Rectangular, 37 mm × 23 mm 

Lenght 40 mm 210 mm 

Average Fluid Velocity, u0 0.16 m/s 1.3 m/s 

Circuit data   

System Volume, V 0.1 l 2.5 l 

Flow Rate, q 2.24 cm3/s 240 cm3/s 

Tubes inner diameter 7 mm 18 mm 

Fluid velocity inside tubes 5.8 cm/s 94 cm/s 

Filtration time 10-20 min 10-20 min 

Pump Roller Rotative 

Fluid Viscosity, η 1 mPa.s 1 mPa.s 

Magnet -to-filter gap 1-2 mm 5-6 mm 

External Magnet data   

Ingot Dimensions 25 mm × 25 mm × 12 mm 70 mm × 70 mm × 30 mm 

Ingot Material 1 Nd-Fe-B ingot 6 Sm-Co ingots 

Remanence 0.4 T 1.05 T 

Magnetic circuit absent C-shaped 

Applied Flux Density Field, B0 50-100 mT 450-500 mT 
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Figure 2.4.d. Magnetic B-H characteristic of the stainless steel SUS440C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 

Chapter 3 

 
Adsorbents Removal 
 

3.1 Magnetic Activated Carbons (MACs) 
 

MACs were separated using the magnetic filtering device of both the setups described 

in section 2.4. A turbidity meter (HI 93703) was used to evaluate the MACs concentration in 

the systems. The MACs concentration was deduced using an interpolating curve based on 

the values reported in Table 3.1.a.  

 

Table 3.1.a. Correlation values between turbidity and MACs concentration. 

MACs concentration 0.01 g/l 0.03 g/l 0.05 g/l 0.1 g/l 0.5 g/l 

Turbidity 4.7 FTU 8.6 FTU 15 FTU 26 FTU 47 FTU 

 

Figures 3.1.a and 3.1.b shows experimental MACs residuals for setups #1 and #2 

respectively, defined as 

100(%)Residual
0

×=
C

Cr

 
(3.1.1) 

where C0 and Cr are the initial and the residual MACs concentration, i.e. before and after the 

filtration. Figure 3.1.a reports the results obtained for setup #1, showing that the 

experimental removal of MACs after 10 minutes filtration was 93 ± 6%. The residual was 

nearly constant after 5 minutes of filtration. Figure 3.1.b reports the same results for setup 

#2. The experimental removal of MACs after 10 minutes filtration was 98 ± 2%. The removal 

was very fast at the beginning of filtration and than slowly decreased. In both cases 

filtration without external field, i.e. mechanical filtration, led to worse and spread results; 

the effect of the magnetic flux density field on the filter’s performance can be clearly seen 

since without external field the MACs residual was much larger. The relatively small capture 

obtained with the mechanical filtration may be due to the residual magnetization of the 

spheres, which were reused from previous experiments.  

Moreover, in order to analyze the behaviour of a synthetic magnetically-modified 

powder with the addition of a coagulant, a series of filtration and/or sedimentation tests 

with and without the addition of Ferric Chloride was made on MACs. The results in terms of 

residual percent turbidity defined as 

100
FTU

FTU
)%(Turbidity Residual

0

×= r  (3.1.2) 

where FTU0 and FTU r are the initial and the residual MACs turbidity, i.e. before and after the 

filtration, are reported in Figure 3.1.c. The initial turbidity values were always between 40 

and 70 FTU. All the data have an error of about ± 7% and ± 3% during the sedimentation and 
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filtration, respectively. The turbidity after 10 minutes filtration is in the range 3 FTU - 7 FTU 

and reaches 0.5 FTU - 5 FTU after 20 minutes. It can be seen that the main decrease occurs 

in the first minute of filtration. The Italian regulation 152/2006 sets limits on TSS (Total 

Suspended Solids) but these are not easily correlated with the turbidity because the 

relationship depends on the type of suspended solid. However the turbidity values obtained 

at the end of the magnetic filtration process are about 5 FTU; this value corresponds to the 

limpidity of the drinking water recommended in (WHO, 2006). Anyway, this does not imply 

that this water can be drinkable without further toxicological analysis on MACs. 
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Figure 3.1.a. Comparison between the MACs residuals after the filtration in setup #1 with and 

without the application of the magnetic field produced by the permanent magnet. 
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Figure 3.1.b. Comparison between the MACs residuals after the filtration in setup #2 with and 

without the application of the magnetic field produced by the permanent magnets. 
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Figure 3.1.c Percent reduction of the turbidity vs. time for MACs sedimentation and/or 

filtration with (dashed lines) and without addition of ferric chloride. 

 

All the test reported in Figure 3.1.a, 3.1.b and 3.1.c were performed using 0.5 g/l of 

MACs because this concentration was usually sufficient to capture near all the studied 

pollutants in (Borghi,2014a; Borghi, 2014b). The results show that the behaviour of the MACs 

with and without coagulant is very similar, as expected because they are already magnetic. 

Its addition improved the sedimentation of MACs of about 15-20% but did not improve the 

filtration significantly. Because the Fe(III) ions generated by the addition of ferric chloride 

could also remain in solution, the Fe(III) residual was checked after every test resulting 

under the limit of 20 µg/l of the tube test. This value is well below the MCL level of 0.3 mg/l 

recommended by the Secondary Drinking Water Standards (EPA).  

 

3.2 Zeolite-Magnetite mixtures 
 

Zeolite-magnetite mixtures were separated using only the magnetic filtering device of 

setup #2. The turbidity meter (HI 93703) was used to evaluate the turbidity. Test with and 

without a preliminary sedimentation and with and without the addition of ferric chloride 

were performed. These tests helped the evaluation of the applicability of the magnetic 

seeding technique to a non magnetic adsorbent. The results reported in Figure 3.2.a show 

the residual percent turbidity (defined in (3.1.2)) without ferric chloride addition. The initial 

turbidity values were always between 150 and 200 FTU. In Figure 3.2.b are shown the results 

with the addition of the coagulant.  

The coagulant addition effects on the efficiency of the separation varying the 

sedimentation times. Different tests were performed in order to find the best combination 

of sedimentation and filtration times with the aim to reduce spaces and times of the 

treatment. The magnetic filtration was applied immediately or after 5, 10, 15 minutes of 



CHAPTER 3: ADSORBENTS REMOVAL 
 

30 

sedimentation. All the reported data have an error of about ± 7% and ± 3% during the 

sedimentation and filtration, respectively. All the tests were made with a 2:1 (mass ratio) 

mixture zeolite-magnetite. This proportion was chosen to have a significant magnetization 

in the aggregates without generating too much sludge. It can be seen in Figure 3.2.b that 

the turbidity after 20 minutes is in the range 3 FTU - 10 FTU, close to the WHO suggestions. 

Anyway, this does not imply that this water can be drinkable without further toxicological 

analysis on the zeolite-magnetite mixtures (WHO, 2006). 
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Figure 3.2.a. Percent reduction of the turbidity vs. time for Magnetite-zeolite mix 

sedimentation and/or filtration without addition of ferric chloride. 
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Figure 3.2.b. Percent reduction of the turbidity vs. time for Magnetite-zeolite mix 

sedimentation and/or filtration with addition of ferric chloride. 
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It can be seen in Figure 3.2.a that all the curves without ferric chloride addition 

behaved essentially in the same way during the sedimentation phase. However, if the 

filtration was applied immediately the percent turbidity residuals were larger than the 

corresponding sedimentation ones after 10 minutes while in the first minutes were smaller. 

This was probably due to the rapid removal of the magnetite fraction inside the filter while 

all the zeolite content was not captured and maintained in suspension by the pump. 

Moreover, the curves which report the results of sedimentation followed by filtration show 

that after 5 minutes there was still a fraction of magnetite in the suspension that was rapidly 

captured by the filter and that after 10 minutes sedimentation was completely removed. 

The reduction of the percent turbidity with respect to the immediate filtration case can be 

due to the reduction of the zeolite content during the previous sedimentation phase. 

Figure 3.2.b shows the importance of the coagulant and its critic effect on the filtration 

efficiency. The generated Fe(III) ions promoted the formation of micrometric or millimetric 

aggregates of the two powders that are magnetic and easier to remove than the original 

zeolite-magnetite mix. Comparing Figure 3.2.a and 3.2.b it can be seen that the addition of 

the ferric chloride improve the sedimentation of about 10%, as expected. All the curves 

behave essentially in the same way during the sedimentation phase, as in Figure 3.2.a. 

Again, if the filtration was applied immediately the percent turbidity residuals were larger 

than the corresponding sedimentation ones after 10 minutes while in the first minutes were 

smaller. The reason may be that there was not enough time for the formation of the 

aggregates and therefore the rapid removal of the magnetite fraction inside the filter 

leaved in suspension almost only zeolite. However, the curves which report the results of 

sedimentation followed by filtration show that with at least 5 minutes of sedimentation 

there was a flocs formation which included magnetite. This can be seen from the strong 

decrease of the percent turbidity at the beginning of the filtration. Increasing the time of 

sedimentation to 10 and 15 minutes lead to an enlargement of the flocs (Kawamura 2000; 

Metcalf & Eddy 2003; Amirtharajah, 2005). This has beneficial effects on sedimentation and 

reduces the total amount of powders introduced in the filter. Moreover, the magnetic filter 

efficiency is increased by the larger dimensions of the aggregates allowing getting a lower 

final turbidity (Borghi, 2014a).  

It can be seen from Figure 3.2.b that the percent residual turbidity after 10 or 15 

minutes of filtration was almost the same. Anyway, even if the total time is the same, 

reducing the filtration time can have a positive effect on the process and maintenance costs. 

In fact the reduced content of powder in the filter allows enlarging the times between 

ultrasonic cleaning. The conclusion can be that the best compromise between 

sedimentation and filtration is of 15 minutes sedimentation followed by 5 minutes of 

filtration. Because the Fe(III) ions generated by the addition of ferric chloride could also 

remain in solution, the Fe(III) residual was checked after every test resulting under the limit 

of 20 µg/l of the tube test (like during the tests with MACs and ferric chloride).  
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Chapter 4 
 

Numerical Modelling 
 

A statistical study of the interaction particle-filter elements of a control volume at the 

centre of the filter (cell) was developed with periodicity conditions. The solutions of the 

magnetostatic problem and the fluid dynamics in the cell were obtained by an integral 

approach. The analysis of a small portion of the filter, but statistically representative, 

eliminates the need to model the entire device on the micrometer scale, with unacceptable 

computational costs, and constitutes the basis for the analysis of the efficiency of the 

proposed magnetic filtration process. The aim of the model is to provide indications 

regarding the influence of design parameters on separation efficiency. 

 

4.1 The spheres filter 

 
The spheres filters of setup #1 and setup #2 were made of tightly packed SUS440C 

stainless steel spheres with a diameter of 3 mm. In three-dimensional Euclidean space, the 

densest packing of equal spheres is achieved by a family of structures called close-packed 

structures. Two simple arrangements within the close-packed family correspond to regular 

lattices (see Figure 4.1.a).  

 

  

 

  
 

 
Figure 4.1.a. Hexagonal close packing (left) and cubic close packing or face centred cubic FCC (right). 

 

The one on the right in Figure 4.1.a is called cubic close packing (or face centred cubic), the 

layers are alternated in the ABCABC… sequence. The one on the left is called hexagonal 
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close packing and the layers are alternated in the ABAB… sequence. But many layer 

stacking sequences are possible (ABAC, ABCBA, ABCBAC, etc.), and still generate a close-

packed structure. As reported in Borghi, 2014a the model of the spheres filters was 

developed by modelling the simplest close-packed structure: the face-centred cubic (FCC) 

lattice created by the spheres. 

Modelling one elementary cell allows deducing the filter capture efficiency for the two 

experimental setups and the scaling up to larger filters also. The main hypothesis of the 

model is that each particles’ aggregate is spherical, suspended in the fluid, and subjected to 

the magnetic and fluid-dynamic forces. The gravitational force and the interaction among 

magnetized particles’ aggregates are neglected.  

The elementary cell was chosen as 1/8 of the FCC cell lattice in order to reduce the 

computational effort in evaluating the flux density and the water velocity fields. Assuming 

tightly packed spheres with 3 mm diameter, the elementary cell is cubic and has a side of 

2.12 mm. It contains four octants of sphere centred on opposite corners as shown in Figure 

4.1.b(a). The complementary volume shown in Figure 4.1.b(b) is the physical domain for the 

water flow and the particles inside it. A right handed Cartesian coordinate system Oxyz, 

with the origin defined in the left-down corner of the elementary cell shown in Figure 4.1.b 

and the axes parallel to the cell edges, was considered. The inlet section for the water flow 

was assumed to be in the y = 0 plane. The external flux density field B0 was assumed to be 

uniform in the cell and directed along the z axis.  

(a) (b) 

Figure 4.1.b. Spheres filter elementary cell: (a) steel and (b) water. 

 

The flux density field B inside the cell is assumed to be stationary. The water velocity 

field u inside the cell is assumed to be stationary and laminar. The effect of filter clogging is 

not taken into account. The flux density B(x) and the water velocity u(x) fields are defined 

as point-dependent functions in the pre-processing stage through the volume integral 

equation method (Fabbri, 2008; Mariani, 2010; Morandi, 2010; Borghi, 2014a). This method 
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lead to calculate the field’s sources (in a 3×3×3 array of cells surrounding the studied one) 

which are defined inside the discretized spheres. Each sphere is discretized with 512 

tetrahedrons. Thus the flux density field B(x) and the water velocity u(x), when evaluated 

outside the spheres, i.e. inside the water, do not suffer of singularities or discontinuities and 

are continuous and differentiable functions of the point x. This complies well with the 

numerical integration of particle’s trajectories where the gradients of the fields are needed 

in order to evaluate the forces. The distributions of magnetic flux density on the input, 

output and middle y-sections and on the middle z-section of the elementary cell are shown 

in Figure 4.1.c, for an external z-directed uniform field of 100 mT. The maximum values of 

the magnetic flux density are obtained near the tangency points among the upper and 

lower spheres.  

 

(a) (b) 

(c) (d) 

Figure 4.1.c. Magnetic flux density field distributions on the input (a), output (b) and middle (c) y-

sections and on the middle (d) z-section of the elementary cell. 

 

The magnetization distribution in one octant and in one elementary cell is shown in 

Figure 4.1.d. Note that the magnetization is strongly non-uniform inside the spheres. The 
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magnetic force takes the maximum values near the tangency point where is nearly radial 

and inward directed. The magnetic force distribution in the elementary cell is reported in 

Figure 4.1.e. 

 

(a) (b) 

Figure 4.1.d. Magnetization distribution in one octant (a) and in the elementary cell (b). As an aid for 

visualization the triangles show the sections of the volume elements through each barycentre, 

where the magnetizations are displayed. 
 

 
Figure 4.1.e. Magnetic force distribution in the elementary cell. 
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The distributions of water velocity on the lower, upper, middle z-sections and on the 

middle y-section of the elementary cell are shown in Figure 4.1.f, for an average y-directed 

velocity of 0.16 m/s. As expected, the water velocity field is nil on the spheres’ surfaces, in 

particular at the tangency points. As shown in Figures 4.1.c and 4.1.f the fields B and u are 

fully 3D; moreover their distributions on opposite faces of the cell are geometrically similar 

but reversed. The available symmetries (reflections of the components of flux density and 

water velocity fields in the planes orthogonal to the coordinate axes through the vertices) 

allow reconstructing the fields in a larger domain, if needed. 

 

(a) (b) 

(c) (d) 

Figure 4.1.f. Water velocity field distributions on the lower (a), upper (b), middle (c) z-sections and 

on the middle (d) y-section of the elementary cell. 

 

The trajectory of each particles’ aggregate is assumed to be independent from all the 

others. It is obtained by integrating numerically the dynamic motion equations where the 

effects of the surrounding fluid, the magnetic field, the constraints due to the filter 

geometry and the thermal fluctuations are taken into account, as follows: 
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(4.1.1) 

where xp is the time-dependent position of the particles’ aggregate, vp the time-dependent 

velocity of the particles’ aggregate and mp is its mass. Among the considered forces, 

described in the following, the leading ones are the drag force (Fdrag) and the magnetic force 

(Fmag). 

The force due to the interaction with the surrounding fluid is the sum of different 

terms, i.e. drag, added mass, Saffman's lift and pressure gradient (Meng, 1991; Clift, 2005). 

The drag force is evaluated in the following form: 

( ) ( )( )pppp
Dwp

drag

CS
xuvxuvF −−

ρ
−=

2  
(4.1.2) 

where Sp is the aggregate cross section and ρw the water density. CD is the drag coefficient, 

depending on the relative Reynolds number, defined as Rep = ρw |vp–u| dp /η, where dp is the 

aggregates’ diameter and η the water dynamic viscosity. The Schiller-Nauman CD = 

24·(1+0.15 Rep
0.687)/Rep correlation for smooth spherical particles, which recover the Stokes’ 

law in the limit of small relative Reynolds number, is used (Clift, 2005).  

The added mass force, i.e. the force required to accelerate the water surrounding the 

particle, is considered in the following form (Meng, 1991): 
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(4.1.3) 

where Vp is the aggregate volume, and the first term in the parenthesis is moved in the left 

hand side of (4.1.1) for the numerical integration. The spatial derivatives are discretised with 

finite-differences using dp as step size, centred in xp.  

The expression for the Saffman's lift force used in (4.1.1), which is valid for small 

particle Reynolds number, is taken from (Li, 1992): 

( )
( ) ( )( )pp

w

p

p
lift d

V
K vxuD

DD
F −⋅ηρ= 4/1

2/1

:
2

 
(4.1.4) 

where K = 2.594 is the constant coefficient of Saffman's lift force and the deformation 

tensor D is defined as Dij = ( ∂ui/∂xj + ∂uj/∂xi )/2 with i,j = 1, 2, 3 (Note that the deformation 

tensor is half of the shear rate gamma dot.). The double dot defines the summation on both 

indices of the tensor, i.e. D:D = Σij Dji Dij. The pressure gradient force is considered in the 

following form (Meng, 1991): 

( ) ( )( )pppwppgrad V xuxuvF 2
. ∇η−∇⋅ρ=

 (4.1.5) 

The second order derivatives are discretised using a centred-difference approximation with 

dp as step size, centred in xp. 
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The magnetic force Fmag is evaluated taking the scalar product of the magnetic 

moment of the particles’ aggregate times the spatial gradient of the magnetic flux density 

field applied to the particle (Mariani, 2010), as follows: 
( ) ( )pppmag V xBBMF ∇⋅=

 (4.1.6) 

The magnetization Mp of particles’ aggregates is function of the applied field B. In 

evaluating B, the contribution due to the magnetic moments of all the other particles is 

neglected with respect to the fields generated by the external permanents magnets and the 

steel spheres.  

The force Fth related to the thermal fluctuations can be modelled as an isotropic 

Gaussian random process with zero mean and constant variance 

(https://www.sharcnet.ca/Software/Fluent12/pdf/th/flth.pdf). In order to simplify the 

calculation the thermal force is formally time-integrated and subtracted to the particle 

momentum. Thus the particle velocity is written as a sum of an average term and an 

isotropic thermal fluctuation, as follows: 

thpp uvv +=
 

(4.1.7) 

The standard deviation of the resulting thermal velocity is √(3kT/mp), where k is the 

Boltzmann constant and T the room temperature. The components of the thermal 

fluctuation are evaluated at the beginning of each time step of integration of (4.1.1) using 

pseudo-random numbers (Fishman, 1990). This allows the use of a deterministic 5th order 

Runge-Kutta method for the integration of (4.1.1). At the considered mass flow rates the 

thermal kinetic energy 3kT/2 is negligible with respect to the kinetic energy of the particles’ 

aggregate mp<vp>2/2. Thus, the randomizing effects of Brownian motion at room 

temperature are negligible for the aggregates in the water stream. However, in the capture 

regions, which are near the tangency points among spheres, the fluid is almost at rest and 

the thermal fluctuations play a role against the particle retention.  

Finally, in order to take into account the collisions between particles and spheres, the 

constraints force Fcoll is considered. This force acts only when the distance between the 

aggregate centre and the nearest sphere surface is lower then half of the aggregate 

diameter dp. In the code when this condition is fulfilled at one integration step, in the next 

one the velocity is updated using the momentum conservation (the tangential component is 

conserved and the normal one is reversed). The breaking of the aggregates during collisions 

is possible, but this is not considered since it would require the modelling of the interactions 

between the hydrophobic and magnetic forces that stabilize the aggregate. Thus, only 

elastic collisions are considered. 

Figure 4.1.g shows some of the trajectories in the elementary cell as seen from two 

different viewpoints where one of the octants has been removed for easing the visualization. 

The particles’ starting positions are calculated applying (4.1.1) to a zero flux density field cell 

with a uniform input distribution. The number of trajectories considered in each run is about 

400. It can be seen that the particles tend to move near the spheres surfaces. In particular, 
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the tangency point among the spheres is the capture zone where the particles can stop. The 

trajectory calculation is stopped when the particle goes out of the cell or its average velocity 

vanishes. The CPU time required for the simulation of one cell is about 16 hours on CPU i7-

2600@3.4GHz (RAM 3.4 GB) excluding the pre-processing time for the velocity and flux 

density fields definition. 

 

  

Figure 4.1.g. Trajectories sample in the elementary cell as seen from two different viewpoints (inlet 

section seen from above on the left, outlet section seen from below on the right) where one of the 

octants has been removed for easing visualization. The red circle highlight the tangency point were 

the particles could stop. 

 

The results obtained integrating equation (4.1.1) are summarized in Figure 4.1.h, 

where the elementary cell capture efficiency vs. the capture parameter Ω is plotted. The 

capture efficiency σ is defined as the ratio between the numbers of captured and entering 

particles, as follows: 

particles
input

particles
output

particles
input

N

NN −
=σ

 
(4.1.8) 

The same definition applies also to the filter capture efficiency. The parameter Ω is defined 

as the ratio between the estimated magnitudes of the magnetic force and drag force (in the 

low velocity limit, i.e. Fdrag ~ 3π dp η u0) as follows: 

s

effspsp

du

BMd

0

0,
2

36η
χ

=Ω
 

(4.1.9) 

where dp and Mps are the diameter and the saturation magnetization of the particles’ 

aggregates, u0 the average fluid velocity, η the fluid dynamic viscosity, B0 the external flux 

density field, χs,eff the effective susceptibility of the steel spheres and ds their diameter. The 

magnitude of the magnetic force used in (4.1.9) is Fmag ~ (π dp
3/6)(Mps χs,eff B0/2)/ds. It is 

obtained assuming that a particle in the capture zone is fully magnetised. The local flux 
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density field in the capture zone is estimated as χs,eff B0. A variation of the particle’ magnetic 

energy of the order Mps χs,eff B0/2 at a distance equal to the steel spheres diameter is 

considered. 

The choice to use Ω as the capture parameter is clearly incomplete since there are 

other competing forces besides the drag and the magnetic ones. Therefore, there are 

different possible sets of values for the system parameters that correspond to the same 

value of Ω, but lead to different capture efficiencies. The elementary cell capture efficiency 

shown in Figure 4.1.h is obtained averaging the different outcomes for similar Ω for about 

100 sets of system parameters. All the parameters involved in the definition of Ω are varied. 

Also the fluid viscosity is varied, since a suspension has an effective viscosity larger than the 

surrounding fluid (Landau, 2011). Moreover, in certain cases there is evidence in ferrofluids 

of an increase of the viscosity with magnetic field (Odenbach, 1998). 
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Figure 4.1.h. Filters and elementary cell capture efficiencies vs. the capture parameter Ω.  

 

In order to calculate the filters efficiencies (σf) from the elementary cell one (σc), each 

filter is assumed to consist of N subsequent layers with equal thickness, each made of 

elementary cells, orthogonal to the filter axis. In this way the model is scalable and allows 

studying also larger devices. For each experimental setup the number of layers is evaluated 

as the ratio between the filter length and the cell side (18 for setup #1 and 94 for setup #2). 

Assuming that all the cells are statistically independent, the particle balance on the filter 

leads to the following relation between the filter capture efficiency and the cell one: 

( )N
cf σσ −=− 11

 
(4.1.10) 

The filter capture efficiencies shown in Figure 4.1.f are deduced from the cell one using 

(4.1.10). 
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Figure 4.1.h shows that the capture efficiency increases by increasing the capture 

parameter Ω; considering the definition of Ω given in (4.1.9), the increasing of the magnetic 

force against the drag obviously leads to an increase of the particles retention. Thus, 

increasing the external field or the particles magnetization has approximately the same 

effect of reducing the average fluid velocity or viscosity. The increase of the particle’s 

aggregates diameter, which influence both magnetic and drag force, leads to a more 

efficient capture. Finally, from (4.1.10) it can be deduced that increasing the filter length, i.e. 

the number of layers, increases the overall capture efficiency. In fact Figure 4.1.h shows that 

experimental setup #2, which is longer than #1, has higher capture efficiency. Anyway in 

both cases the thinner fraction of the powder is weakly captured. 

If the particles initial size distribution is known, the calculated capture efficiency can 

be used to evaluate the time evolution of the particles concentration in the system, as 

follows. The mass balance of the particles with similar diameters, labelled populations, 

leads to the following equation: 
( ) ( ) qdtCqdtCVCd kkfkk ,1 σ−+−=

 (4.1.11) 

where Ck is the particle’s concentration for population k made of particles with similar 

diameter, V is the system volume and q is the volume flow rate. σf,k is the filtering efficiency 

for population k, deduced from Figure4.1.h. Solving (4.1.11) leads to exponential time decay 

for each population: 
( ) ( ) ( )VqtCtC kfkk /exp0 ,σ−=

 (4.1.12) 

 

4.2 Numerical results 

 

For MACs tests the initial concentration Ck(0) for population k was deduced from the 

experimental distribution shown in Figure 2.2.1.b. and the total concentration at any given 

time was obtained summing up the concentration for all the populations, as follows: 

( ) ( )∑=
k

kTOT tCtC  (4.2.1) 

Figure 4.2.a and 4.2.b show the time dependence of the residuals calculated using (3.1.1) 

and (4.2.1). The error bars were obtained considering a mass redistribution up to 4% of the 

powder in the populations of particles with diameter lower than 3 µm. This can be justified 

considering the ultrasonic washing applied after MACs addition to the pollutant-water 

samples. Another possibility of redistribution can be the breaking of the aggregates during 

filtration because of collision with the spheres. The overall comparison of numerical results 

with laboratory tests is satisfying for both experimental setups but the correspondence is 

better for setup #2. This may be due to the larger number of spheres constituting the filter 

in setup #2 with respect to #1. In fact in setup #1 the possible positioning errors while 

realizing the filter itself, the larger non uniformity of the applied field and the larger fraction 

of spheres placed on the filter surface are all source of variability on the results (as shown by 

the larger error bars of Figure 4.2.a with respect to Figure 4.2.b).  
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The experimental results and the numerical ones shown in Figure 4.2.b well agree at 

the beginning of the filtration. As shown in Figure 4.1.h the capture efficiency of setup #2 

for all the particles with the diameter larger than about 0.5 µm (corresponding to Log Ω ≅ –

7.6) is near 100%. In this case (4.1.12) shows that the initial slope of the MACs residual 

depends only from the ratio between flow rate and system volume. For what concern the 

time behaviour of the filter after 10 minutes, it can be seen that setup #2 shows a weak 

decrease of the MACs residual that is not present in setup #1. This can be explained since 

the setup #2 has larger capture efficiency than #1 for the thinner fraction of the powder, as 

shown in Figure 4.1.h Figure 4.2.c reports some pictures of the tank of setup #2 during 

MACs filtration. 
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Figure 4.2.a. Numerical and experimental results on MACs removal with setup #1. 
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Figure 4.2.b. Numerical and experimental results on MACs removal with setup #2. 
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(a) (b) (c) 

Figure 4.2.c. Pictures of the tank of setup #2 at the beginning of MACs filtration (a), after 10 

seconds (b) and after 30 seconds (c). 

 

Considering zeolite-magnetite mixtures, the initial size distribution of the aggregates 

and their composition depended on the sedimentation step and was unknown. Only 

experimental and numerical tests with setup #2 were performed. Figure 4.2.d, Figure 4.2.e 

and Figure 4.2.f show the time dependence of the residuals during the filtration step 

calculated using (4.1.12) and (3.1.2) introducing different values for σf. The turbidity values 

were used instead of the concentration ones. Figure 4.2.d, Figure 4.2.e and Figure 4.2.f 

report the best interpolation of the experimental data , i.e. σf of 0.3 with error bars of ± 0.2.  
 

1

10

100

0 5 10 15 20 25 30
Time [min]

R
es

id
ua

l T
ur

bi
di

ty
 [

%
]

Sedimentation (5 min) & Filtration experimental results
Numerical results

 
Figure 4.2.d. Numerical and experimental results on zeolite-magnetite mixtures removal with setup 

#2. These results regard the tests performed applying 5 minutes of sedimentation followed by 

filtration.  

 

According to Figure 4.1.h, these values of σf are on the rapid slope of the filter capture 

efficiency curve; thus a small increase of Ω could speed up the removal. A possibility could 

be the increasing of the magnetite fraction but this would lead to a higher production of 

sludge. Another possibility could be the use of a magnetite powder with a smaller average 

diameter; the finer magnetite particles could bond with the finer particles of zeolite that 
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tend to remain in suspension, increasing the final capture efficiency. Considering that the 

values reported in Figure 4.2.d, Figure 4.2.e and Figure 4.2.f are close the lower limit of the 

slope of the filter capture efficiencies reported in Figure 4.1.h, a decreasing of the magnetite 

fraction would not lead to an acceptable final turbidity. 
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Figure 4.2.e. Numerical and experimental results on zeolite-magnetite mixtures removal with setup 

#2. These results regard the tests performed applying 10 minutes of sedimentation followed by 

filtration.  
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Figure 4.2.f. Numerical and experimental results on zeolite-magnetite mixtures removal with setup 

#2. These results regard the tests performed applying 15 minutes of sedimentation followed by 

filtration.  
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Chapter 5 
 

Pollutants adsorption results 
 

The aim of the pollutant adsorption tests performed was not to reach the equilibrium 

but to remove as quickly as possible the maximum amount of pollutants. The tests led to 

positive results for almost all the tested substances. The reproducibility of the data was 

checked doing at least two times all the tests. The results obtained are all reported in terms 

of residual as defined in (3.1.1) where C0 and Cr are the initial and the residual pollutant 

concentrations in the solutions. The residual was always reported varying the amount of 

adsorbent powder used. Some tests were made also with an adsorption time of 30 minutes 

to analyse the adsorption potential.  

 

5.1 Adsorption on Magnetic Activated Carbons (MACs) 

  

MACs were used to adsorb surfactants, endocrine disruptors and cations. Because of 

MACs composition the predominant adsorbents are, due to their large area, a microporous 

structure and a high degree of surface reactivity, the porous ACs (Bansal, 2005). The 

adsorption capacity of ACs is influenced both by the physical or porous structure and the 

chemical structure of the carbon surface. They have carbon atoms with unpaired electrons 

and residual valences that are highly reactive. The adsorption involves two types of forces: 

physical forces that may be dipole moments, polarization forces, dispersive forces, or short 

range repulsive interactions and chemical forces that are valency forces arising out of the 

redistribution of electrons between the solid surface and the adsorbed atoms. Depending 

upon the nature of the forces involved, the adsorption is of two types: physical adsorption 

and chemisorption. In the case of the physical adsorption, the adsorbate is bound to the 

surface by relatively weak van der Waals forces. Chemisorption, on the other hand, involves 

exchange or sharing of electrons between the adsorbate molecules and the surface of the 

adsorbent resulting in a chemical reaction (Metcalf&Eddy, 2003; Bansal, 2005; Gaspard, 

2008). 

 

5.1.1 Surfactants  

Surfactants can be adsorbed on the ACs part of MACs mainly by hydrogen bonding 

and hydrophobic and van der Waals interactions, secondly by electrostatic attraction; the 

shortest is the polar tail the better is the adsorption (Gonzalez-Garcia, 2001; Basar, 2004; 

Gonzalez-Garcia, 2004a; Gonzalez-Garcia, 2004b; Duman, 2010; Soria-Sanchez, 2010). 

During all the experiments performed the pH of the samples was always higher than pHpzc 

(that is about 4) where the negative groups predominate over the positive ones. The 

surfactants concentration range was always lower than the CMC (Critical Micelle 
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Concentration) value for all surfactants. The CMC is defined as the concentration of 

surfactants above which micelles form and all additional surfactants added to the system go 

to micelles (a micelle is an aggregation of surfactants with the hydrophilic head towards the 

water and the hydrophobic tails in the centre of the aggregate). Considering that magnetite 

in MACs is around 1/3 and the small porosity and specific surface of magnetite compared to 

the ACs it can be assumed that the adsorption on the iron oxide was neglegible; adsorption 

on iron oxides and magnetite properties are described in (Borghi, 2011). The tests led to 

positive results with regard to all surfactants. Various initial surfactant concentrations were 

considered and for some tests an increasing in the adsorption time or the addition of ferric 

chloride was evaluated. The adsorption of all surfactants led to concentration below the 0.5 

mg/l limit for water reuse in agriculture (according to Italian legislation), using at most 0.5 

g/l of MACs. 

Figure 5.1.1.a shows the results for all the tests concerning SDS; the data have an error 

of ± 5%. With 0.01 g/l of MACs appreciable variations are possible on the outcome but the 

whole session of experiments showed that regardless of the initial condition (concentration, 

adsorption time, ferric chloride addition) it was possible to capture about 95 ± 5% of the 

surfactant with 0.5 g/l of MACs and smaller concentrations of surfactant were easier to 

remove. Increasing the adsorption time led to better removals showing that the amount of 

powder added was not saturated after 10 minutes. It can be seen that the coagulant slightly 

increased the SDS removal. The coagulant addition allowed reaching the EPA Drinking 

Water Standard for foaming agents (0.5 mg/l) for SDS with 0.1 g/l of MACs without 

increasing the adsorption time.  
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Figure 5.1.1.a. Percent residual of anionic surfactant SDS vs. MACs concentration. The red-

rhomboidal curves represent results after 10 minutes of adsorption (with different initial 

concentration and with or without the addition of ferric chloride). The blue-triangular ones represent 

results after 30 minutes of adsorption (with different initial concentration). 
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The residual Fe (III) was checked after the filtration of every sample and was below the MCL 

level for MACs concentration above 0.1 g/l consistently with the results shown in Table 

5.1.3.a. 

Figure 5.1.1.b shows the results for all the tests concerning the cationic surfactants 

DDAB and Kemfluid EQ18; the data have an error of ± 5%. With the exception of the DDAB 

test without the addition of ferric chloride the whole session of experiments showed that 

regardless of the initial condition (concentration, adsorption time, and ferric chloride 

addition) it was possible to capture about 95 ± 5% of the surfactant with 0.5 g/l of MACs and 

smaller concentrations of surfactant were more difficult to remove. Increasing the 

adsorption time for Kemfluid EQ18 did not lead to appreciable better removals suggesting 

that the amount of powder added was already almost saturated after 10 minutes adsorption 

but, it can be seen that the coagulant significantly increased the cationic surfactants 

removal. This suggests an electrostatic interaction related to the ferric ions. The ferric 

chloride addition allowed reaching the EPA limit for both DDAB and Kemfluid EQ18 with 

0.05 g/l of MACs without increasing the adsorption time. The residual Fe (III) was checked 

after the filtration of every sample and was below the MCL level for MACs concentration 

above 0.1 g/l consistently with the results shown in Table 5.1.3.a. 
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Figure 5.1.1.b. Percent residual of cationic surfactants Kemfluid EQ18 and DDAB vs. MACs 

concentration. The red-circular and the red-square shaped curves represent the results after 10 

minutes of adsorption of DDAB and Kemfluid EQ18 respectively (with different initial concentration 

and with or without the addition of ferric chloride).The blue-triangular ones represent results after 

30 minutes of adsorption of Kemfluid EQ18 (with different initial concentration). 

 

Figure 5.1.1.c shows the results for all the tests concerning the non ionic surfactants 

TRITON X-100 and IGEPAL CO-630, precursors of 4-tert-OP and branched 4-NP 

respectively; the data have an error of ± 5%. With the exception of the TRITON X-100 test 
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with initial concentration of 10 mg/l the whole session of experiments showed that 

regardless of the initial condition (concentration, adsorption time, and ferric chloride 

addition) it was possible to capture about 95 ± 5% of the surfactant with 0.5 g/l of MACs and 

smaller concentrations of surfactant were easier to remove. Increasing the adsorption time 

for TRITON X-100 led to significantly better removals suggesting that the amount of 

powder added was not saturated after 10 minutes adsorption. Considering the same initial 

conditions TRITON X-100 achieved better captures than IGEPAL CO-630. An increase of the 

oxyethylenic length originates a decrease in the adsorption because of the excluded area 

created by the polyoxyethylene chain directed to the solution (Soria-Sanchez, 2010; 

Gonzalez-Garcia, 2004a). IGEPAL CO-630 and TRITON X-100 have the same 

polyoxyethylene chain bonded to a benzene ring but they have a different branched alkyl 

chain that during the 10 minutes of adsorption produced a slightly better adsorption of 

TRITON X-100.  
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Figure 5.1.1.c. Percent residual of non ionic surfactants IGEPAL co-630 and TRITON X-100 vs. MACs 

concentration. The red-triangular and the red-square shaped curves represent the results after 10 

minutes of adsorption of IGEPAL co-630 and TRITON X-100 respectively (with different initial 

concentration).The blue-circular ones represent results after 30 minutes of adsorption of TRITON X-

100 (with different initial concentration). 

 

The results achieved suggested the predominance of hydrophobic interactions over all. 

The pH conditions were less important for the capture. In fact the cationic Kemfluid EQ18 

was the one that achieved the worst removal also if the pH condition were always higher 

than the pHpzc, with the negative groups predominating over the positive ones (and 

increasing the electrostatic interactions). The smaller capture of cationic than anionic ones, 

despite the pH conditions were always over the pHpzc, could be explained with the different 

steric hindrance and the competition between the charged head and the predominance of 
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the hydrophobic interactions over all (Gonzalez-Garcia, 2001; Basar, 2004; Gonzalez-Garcia, 

2004a; Gonzalez-Garcia, 2004b; Duman 2010; Soria-Sanchez, 2010; Borghi, 2011). 

 

5.1.2 Octylphenols and Nonylphenols 

The relative affinity of alkylphenols (APs) and alkylphenols ethoxylated (APEs) toward 

the carbon surface is believed to be due to (i) the π- π dispersion interaction between ACs 

basal planes and the phenolic ring, (ii) electrostatic attraction-repulsion interactions, (iii) 

hydrogen bonding between adsorbate and carbon surface, (iv) the donor-acceptor 

complexes formed between the basic sites on the carbon surface and the organic ring of the 

phenol, (v) oligomerization of phenols on ACs surfaces in the presence of dissolved oxygen 

(Bansal, 2005; Lu, 2007; Soria-Sanchez, 2010; Mohan, 2011).  

Figure 5.1.2.a shows the residual of 4-OP and 4-n-NP with different initial 

concentration (5-10 mg/l for 4-OP and 6 mg/l for 4-n-NP, corresponding to 23.6-47.2 µM 

and 27.3 µM respectively). The experiments showed that it is possible to capture 95 ± 5% of 

both APs with 0.1 g/l of MACs. Smaller concentrations of AP were found to be easier to 

remove and 4-OP achieved slightly better captures than 4-n-NP for concentrations of MACs 

smaller than 0.1 g/l. This difference could be ascribed to the small molecular structure 

difference between 4-OP and 4-n-NP which consist of one more methyl group on the alkyl 

chain. It can be seen from Figure 5.1.2.a that the adsorption capacity of 4-n-NP on MACs is 

about 60 mg/g after 10 minutes, while (Nakahira, 2006) reports an equilibrium adsorption 

capacity of 270 mg/g. This shows that the MACs potential is not fully exploited.  
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Figure 5.1.2.a. Percent residual of APs vs. MACs concentration. The different curves refer to 

different initial concentrations of the tested polyalkylphenols. 

 

However, the aim of these tests was not to reach the equilibrium but to remove as quickly 

as possible the maximum amount of pollutants. The current Italian regulation D.Lgs 
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152/2006 states limits of 0.5 mg/l for the total phenols in surface water; concentration that 

was achieved with 0.1 or 0.5 g/l of MACs, depending on the initial concentration of the AP. 

Both 4-OP and 4-n-NP have the phenolic benzene ring and a linear alkyl chain. Unlike 

the APEs, they do not have the steric hindrance of the oxyethylenic chain that could 

decrease the adsorption (Soria-Sanchez, 2010; Gonzalez-Garcia, 2004a). Beside the effects 

due to the size of the molecules also the solubility is important for the adsorption. The 

adsorption of a nonpolar solute is higher on a nonpolar adsorbent: 4-n-NP and 4-OP, 

deprived of the polar polyoxyethylene chain, were less soluble and more affine to the ACs 

than the tested APEs (Bansal, 2005; Lu, 2007; Soria-Sanchez, 2010). In fact, despite the 

higher molar concentrations of APs than APEs, 4-n-NP was better adsorbed than IGEPAL 

CO-630 and 4-OP was better adsorbed than TRITON X-100 (Figure 5.1.1.b). At pH > pHpzc ≅ 

4 the negative groups predominate over the positive ones, i.e. although the surface has a 

net negative charge, some positive groups are still present (Bansal, 2005; Borghi, 2011). 

Since all the samples were found to have a pH in the range between 7 and 8.5, its effect on 

the adsorption should have been relatively small according to (Mohan, 2011); in order to 

obtain much larger phenols removal the pH value should have been reduced below 4 which 

could be difficult to manage in a real WWTP (Kawamura, 2000; Metcalf&Eddy, 2003). 

 

5.1.3 Cations 

The adsorption efficiency of Fe(III) on MACs was investigated both because is a 

parameter of interest in drinking water quality both to evaluate if the ferric chloride added 

in the magnetic seeding tests left Fe(III) ions in solution at the end of the treatment. 

Samples of Fe(III) of 1 mg/l or 3 mg/l were generated introducing ferric chloride in distilled 

water, MACs were added mixing for 10 minutes to allow the adsorption and filtrated for 10 

minutes. The results reported in Table 5.1.3.a show that 0.1 g/l of MACs are enough to reach 

the recommended Secondary Drinking Water Standard (EPA) of 0.3 mg/l in both conditions.  

 

Table 5.1.3.a. Residual of Fe(III) ions after adsorption on MACs (Initial Fe(III) 1-3 mg/l). 

MACs concentration (g/l) 0.01 0.03 0.05 0.1 0.5 

Residual % 36±10 22±10 10±5 4±2 <2 

 

The adsorption efficiency of Mn(II) on MACs was investigated both because is a 

parameter of interest in drinking water quality both to compare the results with the one 

obtained with the zeolite-magnetite mixtures. Samples of Mn(II) of 1 mg/l were generated 

introducing manganese chloride in distilled water, MACs were added mixing for 10 minutes 

to allow the adsorption and filtrated for 10 minutes. The results reported in Table 5.1.3.b 

show that 1 g/l of MACs was not enough to reach the recommended Secondary Drinking 

Water Standard (EPA) of 0.05 mg/l. The results obtained, considering the same amount of 

adsorbent, were better than the ones obtained with the natural zeolite-magnetite mixtures 
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and worst than the ones obtained with the Na-activated zeolite-magnetite mixtures (See 

section 5.2). 

 

Table 5.1.3.b. Residual of Mn(II) ions after adsorption on MACs (Initial Mn(II) 1 mg/l). 

MACs concentration (g/l) 0.05 0.1 0.3 0.5 1 

Residual % 100 90±10 70±10 50±5 30±5 

 

The adsorption efficiency of Ca(II) and Ca(II) chelated with EDTA 

(Ethylenediaminetetraacetic acid) on MACs was investigated both because hardness is a 

parameter of interest in drinking water quality both to compare the results with the one 

obtained with the zeolite-magnetite mixtures. The Ca(II) was chelated with the intent to 

improve the adsorption of Ca(II). The initial samples had a concentration of 150-300 mg/l 

(corresponding to a hard/very hard water). To chelate the Ca(II) 0.8 g/l of EDTA were added; 

this was the maximum amount of EDTA soluble in the used distilled water. In Figure 5.1.3.a 

the correlation between the amount of EDTA and the pH of the solution is reported; for 

larger concentrations than 0.8 g/l of EDTA the pH stays unvaried. The removal achieved was 

low both for Ca(II) and the chelate Ca(II). Considering 0.5-1 g/l of MACs, after 10 minutes 

adsorption and the filtration only 5-10% of Ca(II) was removed. Moreover, the experiments 

on the chelated Ca(II) did not show a significative capture. Thus, the addition of EDTA did 

not improve the hardness removal. 
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Figure 5.1.3.a. Correlation curve between the EDTA concentration and the pH of the solution. 

 

5.2 Adsorption on Zeolite-Magnetite mixtures 
 

The use of natural zeolites in water treatment is one of the oldest and the most 

perspective areas of their application. The efficiency of water treatment by using natural 
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and modified zeolites depends on the type and quantity of the used zeolite, the size 

distribution of zeolite particles, the initial concentration of contaminants, pH value of 

solution, ionic strength of solution, temperature, pressure, contact time of system 

zeolite/solution and the presence of other organic compounds and anions. A very unique 

property of natural zeolites is their selectivity towards cationic. The presence of heavy 

metals (Zn, Cr, Pb, Cd, Cu, Mn, Fe, etc.) in water is a serious environmental problem and 

their removal by natural zeolites has been extensively studied. The efficiency of removing 

metal ions from waters depends on many factors such as initial concentration of metal ions 

in wastewater, the pH value of the system, the possibility of formation of metal hydroxyl 

anion, previous chemical and thermal modification of zeolite and the amount of water that 

should be purified (Margeta, 2013).  

 
5.2.1 Cations 

The adsorption efficiency of Mn(II) was studied as in (Taffarel, 2009) both on natural 

zeolite-magnetite mix and Na-activated zeolite-magnetite mix. These tests were carried 

out in order to check if the adsorption improvement due to Na-activation was affected by 

the addition of the coagulant ferric chloride. Figure 5.2.1.a reports the percent residuals of 

Mn(II) using zeolite-magnetite mix with the addition of ferric chloride, both for zeolite 

ZEOVER and Na-activated zeolite. All the data have an error of ± 5%. It can be seen from 

Figure 5.2.1.a that Mn(II) adsorption on Na-activated zeolite roughly doubles as reported in 

(Taffarel, 2009). Thus, the effect of the coagulant on the adsorption is not detectable. The 

comparison with the zeolite-magnetite mixtures without coagulant was not carried out 

because the residual turbidity was too high for a correct measurement with the 

spectrophotometer. Increase in Mn(II) uptake by Na-activated zeolite is probably due to the 

decrease in Ca(II), Mg(II) and K(I) concentration and to the higher concentration of more 

easily exchangeable Na(I) (Taffarel, 2009). 

A major use of zeolites as ion exchange agents is for water softening applications in 

the detergent industry and substitute use of phosphates. The best Si/Al ratio for water 

softening is ≤ 2 (Kogelbauer, 2001; Payra, 2003). The adsorption efficiency of Ca(II) on 

natural zeolite-magnetite mix and Na activated zeolite-magnetite mix was investigated. 

The initial samples had a concentration of 150-300 mg/l (corresponding to a hard/very hard 

water). The removal achieved was low considering 0.25-0.75 g/l of zeolite (both natural and 

Na-activated) mixed with 0.25 g/l of magnetite, after 10 minutes adsorption, the addition of 

the coagulant and the filtration, only 5-10% of Ca(II) was removed. The Ca(II) was also 

chelated with the intent to improve the adsorption of Ca(II). To chelate the Ca(II) 0.8 g/l of 

EDTA were added as in zeolite-magnetite adsorption tests. The experiments on chelated 

Ca(II) did not show a significative removal. Thus, also with zeolite-magnetite mix (both 

natural and Na-activated), the addition of EDTA did not improve the hardness removal. The 
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poor results obtained could be explained by Si/Al ratio of the used zeolite (2.5), too high for 

water softening (Kogelbauer, 2001; Payra, 2003). 

 

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Zeolite [g/l]

R
es

id
ua

l [
%

]
Mn 1 mg/l + 0.25 g/l magnetite+ zeolite

Mn 1 mg/l + 0.25 g/l magnetite+ Na-activated zeolite

WITH FERRIC CHLORIDE

 

Figure 5.2.1.a. Removal of Mn(II) by adsorption on natural zeolite and Na-activated zeolite (filled 

dots) mixed with 0.25 g/l magnetite and the addition of FeCl3. 
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Chapter 6 

 

Sustainability and applicability of the process 
 

6.1 Filter and adsorbent reuse 
 

For a full-scale application is necessary to analyze the entire cycle of the powder and 

the possible techniques for reusing both the adsorbent and the filtering element present in 

the filtration plant. The filter progressively saturates capturing the powders and hence 

reducing its filtering capacity. Thus a washing section is needed. The saturation was 

calculated in laboratory for MACs adding increasing amounts of powder while measuring 

the turbidity after the filtration. The turbidity was converted in mg/l and considering the 

TSS lower limit (Italian legislation) of 35 mg/l, the saturation was of 1.3 mg MACs/sphere. As 

shown in Figure 6.1.a the filter performance decreases with the MACs mass holded on the 

spheres. Moreover, no increase of the pressure drop on the filter was detected. This is 

probably due to the large void fraction of the filter and to the localized magnetic traps near 

the tangency points between spheres. This has positive effect on the hydraulic losses and 

the piping. 
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Figure 6.1.a. Filter saturation curve calculated measuring the residual MACs after a progressive 

addition to the filter. The residuals were measured both after 10 and 20 minutes of filtration. 

 

In (Mariani, 2009; Mariani, 2010; Borghi, 2011) and in the Appendix I a magnetic filter 

using steel wool as filtering element was analysed. Despite its good capture efficiency, the 

wool filter has shown two main problems: firstly the needed periodic washing was difficult 

to achieve and secondly a careful wool fixing was required. In order to solve both these 

problems, stainless steel spheres were chosen as filtering elements (Abbasov, 2007, Borghi 
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2014a, Borghi 2014b). This choice allows an easier washing with an ultrasonic bath and a 

simpler assembling of the filter. Moreover, the spheres, with respect to meshes or wools, 

are relatively insensible to the local direction of the external magnetic field and lead to 

larger filling factors (thus requiring a lower applied field to be magnetized). Considering the 

sustainability of the process, It is important to highlight that the spheres used are 

commercial bearings and not a specific product that has to be manufactured exclusively for 

the treatment. 

A sustainable process needs also a regeneration and reactivation section of the 

adsorbent powder. A possible solution for MACs regeneration is the decomposition using 

H2O2 exploiting the catalytic properties of magnetite (Do, 2011). This process has been 

already tested successfully for the regeneration of MACs after the adsorption of COD 

(http://www.ms-engineering.co.jp/eng/technical/mac/index.htm). An alternative solution 

presented in literature is ultrasound regeneration (Lim, 2005). This method seems 

interesting since the steel spheres already need an ultrasonic treatment. Thus enhancing 

that phase a regeneration of both the filter and the adsorbent could be achieved. Finally, if 

the wastewater contains almost only surfactants as could be in detergent industry or car-

washing station discharges, the sludge may be used itself as a more effective adsorbent for 

other contaminants like dyes and natural organic matter (NOM) (Wang, 2007; Ding, 2010; 

Shariati, 2011). A solution for zeolites regeneration is desorption using different solutions of 

HNO3, NaCl, KCl, EDTA, NH4Cl, etc. with various molar concentrations. Recent studies of 

desorption efficiency of metal ions and regeneration of natural zeolites indicate that the 

adsorption process is reversible in most cases (Li, 2007; Katsou, 2011). If the pollutant 

adsorbed on the zeolite is not an ion a thermal regeneration might be possible (Sannino, 

2012). 

 

6.2 Large scale application 

 
For what concern the scalability of the proposed magnetic separation technique to a real 

WWTP, the analysis of the magnetic filtration process does not impose limits on the 

dimensions of the spheres filter; the main limit is due to the possibility to create a rather 

uniform field in the filter volume using permanent magnets (PMs). As shown in (Fabbri, 

2013) is possible to realize a field  of about 0.5 T using actual Sm-Co magnets in Halbach 

array configuration up to a filter volume of 30cm × 30cm × 120cm (Figure 6.2.a(A)). In the 

same conditions used in our laboratory scale setup these PMs would allow to treat a volume 

flow rate of about 90 m3/h which is compatible with the treated flow rates of an average size 

WWTP that has flow rate from 15 m3/h to 160 m3/h (Metcalf&Eddy, 2003). To treat a flow 

rate of 15 m3/h a configuration of volume 15cm × 15cm × 120cm is needed (Figure 6.2.a(B)). 

A comparison of the two devices is reported in the following.  
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(A) (B) 

Figure 6.2.a. Overall view of permanent magnets arrays used as the flux density field source for a 

magnetic filtration unit of 30cm × 30cm × 120cm (A) and 15cm × 15cm × 120cm (B). 

 

The direction of the magnetization in each PM, shown in Figure 6.2.b, was chosen in order 

to provide an almost uniform field (within 10% of the average) on each cross section of the 

channel. The geometrical dimensions of the PMs of the two configurations are given in 

Table 6.2.a. Considering both configurations, the main array generates a background field 

with a value at the center of the channel of about 0.46-0.47 T, transversal to the conduit axis.  

 

Table 6.2.a. Geometrical dimensions of the PMs. The (A) columns refer to the 30cm × 30cm × 120cm 

configuration and the (B) refer to the 15cm × 15cm × 120cm configuration. 

  Main 

PMs(A) 

Heads 

PMs(A) 

Main 

PMs(B) 

Heads 

PMs(B) 

a [cm] 30 54 15 27 

b [cm] 12 20 6 6 

c [cm] 120 - 120  

w [cm] - 22  20 

s [cm] - 106   106 

 

 

                        (K)            (J) 

Figure 6.2.b. Transversal (K) and longitudinal (J) sections of the permanent magnets arrays. The 

arrows in (K) show the directions of the magnetization inside each element of the array. The same 

arrangement is used for the headings and the main PMs array. 
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The background field produced on the axis by the main PMs array is shown in Figure 6.2.c. 

In order to compensate the filed decrease near the channel ends, two further arrays of PMs 

(heads) were placed near the ends for increasing the field up to 0.51-0.52 T. The field profile 

produced on the channel axis by the main PMs array and the heads is nearly uniform on 

each cross section and varies along the axis between 0.41 T and 0.51-o.52 T, as shown in 

Figure 6.2.c. 
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Figure 6.2.c. Profiles of flux density produced by main PMs and Heads in both the analyzed 

configurations (a and b) on the channel cross section along the axis. The non-uniformity on the cross 

section is lower than 10%. 

 

In (Fabbri, 2013) commercial Sm-Co brick magnets grade XGS-26 with a remanence of 

1 T were considered. To evaluate the costs of the described configurations also commercial 

Nd-Fe-B brick magnets grade N33EH with a remanence of 1 T are considered. These are low 

grade, i.e. cheap materials. Higher grades of Nd-Fe-B like N35H with a remanence of 1.4 T 

lead to a more compact layout. However, the reduced amount of material is more than 

compensated by the higher price of N35H. The volumes of the arrays are given in Table 

6.2.b. The Nd-Fe-B magnets are easier to realize than the Sm-Co ones and are more 

performing (they can achieve higher fields). Nd-Fe-B cannot work at elevated temperatures, 

in hydrogen rich atmospheres and they corrode in an aqueous environment 

(www.vacuumschmelze.com; http://www.mceproducts.com). This last disadvantage is the 

only one that should be taken into account for the water treatment application. Considering 

that they can be efficiently coated to avoid the humidity problem 

(www.vacuumschmelze.com; http://www.mceproducts.com), the difference of cost (2012 

quotation http://www.saimag.com). shown in Table 6.2.b (the Sm-Co cost is almost double) 

make Nd-Fe-B coated PMs the most advantageous choice for a real water treatment 

process. Moreover, for water treatment applications is important to remember that 
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permanent magnets do not require an electrical power supply and have smaller footprint 

with respect to superconductive magnets (Mitsuhashi, 2003; Ihara, 2004; Svoboda, 2004; 

Nishijima, 2006; Ishiwata, 2010). 

 

Table 6.2.b. Volumes and costs of the PMs arrays. 

 
Main  

PMs (A) 

Heads 

PMs (A) 

Main  

PMs (B) 

Heads 

PMs (B) 

Total cost 

(A) 

Total cost 

(B) 

Volume 192 dm3 156 dm3 60.5 dm3 31.7 dm3 - - 

Sm-Co Cost  

(4.2 k€/ dm3) 
1016 k€ 1094 k€ 254 k€ 133 k€ 2110 k€ 387 k€ 

Nd-Fe-B Cost 

(2.35 k€/ dm3) 
568.5 k€ 612 k€ 142 k€ 74.5 k€ 1180.6 k€ 216.6 k€ 

 

The data reported in Table 6.2.c refer to the construction costs of water treatment 

plants, wastewater treatment plants and municipal wastewater filtration sections. These 

costs are evaluated using the algorithms reported in (WRC, 1974, EPA, 1983) and actualizing 

them as indicated by the Federal Reserve Bank of Minneapolis 

(http://www.minneapolisfed.org/). The design flow used in these algorithms is the average 

daily flow.  

 

Table 6.2.c. Extrapolated construction costs for a water treatment plant, a wastewater treatment 

plant and a filtration section of a wastewater treatment plant. The extrapolation was made 

considering the two different flow rates mentioned above.  

 Water treatment plant 
Wastewater treatment 

plant 

Wastewater filtration 

section 

medium max min medium max min medium max min 
Q= 15 

m3/h 
272.2  

k€ 

347.1 

k€ 

98.1 

k€ 

1300.8 

k€ 

2746.8 

k€ 

689.8 

k€ 

172.6 

k€ 

206.8 

k€ 

149.6 

k€ 

medium max min medium max min medium max min 
Q= 90 

m3/h 
1004.3 

k€ 

1173.7 

k€ 

743.3 

k€ 

4690.3  

k€ 

8962.1 

k€ 

2573.9 

k€ 

505.3  

k€ 

553.9 

k€ 

462.4 

k€ 

 

Comparing the values reported in Table 6.2.c with the costs of the magnets shown in Table 

6.2.b it is possible to deduce that: 

1) Considering the water treatment the magnetic filtering seems inapplicable, in fact the 

cost of the plant is less than that of the magnets. However, in case an additional 

removal of contaminants is necessary (for example the introduction a new regulation 

regarding emerging pollutants and/or concentration limits) the introduction of a new 

treatment section could be the only possible solution. In this case, especially if the 
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space available for the filtration is limited, the magnetic filtering could be competitive 

also in terms of cost to the others commercially available technologies. 

2) With regard to the wastewater treatment plants the cost of the magnet is relatively 

small (around 10 % considering Nd-Fe-B PMs). In this case, the magnetic filtration 

could be considered as an addition or alternative to existing technologies.  

It is important to highlight that this estimate is based on an extrapolation which considers 

only the change in value of the currency; the laws of the market and the costs of new 

technologies, higher or lower than the old ones , are not taken into account. In addition, this 

estimate considers only the cost of the magnets, neglecting the cost of all the parts 

necessary for its operation (powder, spheres, pumps, ultrasounds, manufacturing, etc). As a 

possible element of comparison Siemens Water Technologies S.r.l states on its website that 

its CoMagTM and BioMagTM reduce footprint and capital cost of primary and tertiary 

treatments (http://www.water.siemens.com). However, the cost is not the only possible 

criterion for making a choice. The choice of a given process depends on several 

considerations: the intended destination for the treated effluent, the characteristics of the 

water, the compatibility between different operations or processes, the resources available 

for the disposal of residual pollutants, environmental and economic feasibility (Metcalf 

&Eddy, 2003). It should be noted that in some circumstances the economic feasibility may 

not be a limiting factor for the purposes of the design of a system of advanced treatment, in 

particular in cases where the specific security requirements of the environment necessitates 

the need to remove certain pollutants and/or if there is no space available for a plant 

expansion. In fact, the compactness of the magnetic filter and the time (and consequently 

the spaces) for the sedimentation may be an important element of evaluation. Thus, the 

issues relating to the magnetic filtration process introduction in the treatment plant must 

be evaluated case by case.  
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Conclusions 

 

 

After a short review of the state of the art of water treatment and 

magnetic separation a numerical and experimental study of the magnetic 

separation of pollutants from water by means of a continuous-flow magnetic 

filter subjected to a field gradient produced by permanent magnets was 

presented. The removal of both Magnetic Activated Carbons (MACs) and 

zeolite-magnetite mix with the addition of a coagulant was investigated. 

Adsorption tests of different pollutants (surfactants, endocrine disruptors, Fe(III), 

Mn(II), Ca(II)) on these adsorbents were also performed achieving good results. 

It is important to remember that in real water and wastewater the pollutants are 

not pure, there is a mixture of different pollutants with competition and 

synergies. Thus, the studied process needs to be tested on real samples to 

confirm the adsorption results. However, Activated Carbons and zeolites are 

already used in real treatment with good results, suggesting that MACs and 

zeolite-magnetite mix can achieve efficient captures also of mixtures of 

pollutants. The possibility to bond magnetite with any conventional adsorbent 

gives the chance to choose the better adsorbent for the specific polluted water 

that have to be treated, can avoid the characterization of the new adsorbent and 

allows the introduction of the technique in any powder adsorption process. The 

numerical results concerning the adsorbent removals well reproduced the 

experimental ones obtained from two different experimental setups. This 

confirmed that the discretization of the filter in elementary cells, evaluating the 

efficiency of the whole filter from the removal capacity of a single cell, allows 

using the model to predict the efficiency of larger scale devices. Because of the 

permanent magnets available on the market, in real situations the treatable flow 

rates are up to 90 m3/h (~2000 m3/d). The costs of permanent magnets are 

relevant but necessities of achieving higher removals and/or smaller footprints 

can make the magnetic separation a competitive choice, especially for 

wastewater treatment.  
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Appendix I 
 

Previous work at LIMSA 
 

The experimental investigations made during my master thesis (Borghi, 2010) on the 

adsorption of detergents and pure surfactants on iron oxides powders (magnetite and 

hematite) and the filtration through a HGMS steel wool filter were deepened during the first 

six month of my PhD Course (Borghi, 2011). The results obtained show the limitations of the 

iron oxides powders and the wool filter. The removal using only magnetite and hematite 

technique lead to good results but without the possibility of improvement. Moreover, the 

important amounts of sludge generated by the powders and the necessity of disposal of the 

wool filter after each usage were problems that needed to be solved to have a sustainable 

process. 

This filter was modeled and manufactured in laboratory by the former PhD student of 

LIMSA team Giacomo Mariani (Mariani,2009; Mariani, 2010). 

For laboratory experiments artificial samples were prepared by mixing tap water with 

commercial detergents and osmotic water with pure surfactants; Table I.I reports the 

surfactants of the detergents and the pure ones with whom they have been simulated (all 

the pure surfactants were purchased by Sigma-Aldrich S.r.l but Kemfluid EQ18 and the 

Cocamidopropyl Betaine that were a gift from Biochimica S.p.A). In commercial detergents 

several substances are added in addition to surfactants: isothiazolinones as antimicrobials, 

perfumes (limonene, linalool, hexyl cinnamaldehyde, lily aldehyde…), sodium salts as 

cleaning agents, etc.  

In order to investigate the adsorption of these surfactants and detergents on iron 

oxide powders, two hematite (α-Fe2O3, CAS 1309-37-1) powders with different average 

diameter, labeled #48100 and #48651, and one magnetite (Fe3O4, CAS 1317-61-9) powder, 

labeled #48800, were purchased from Kremer Pigmente GmbH. Micrometric powders of 

magnetite and hematite are easy available since they are actually used as pigments; they 

are non-toxic for humans and the environment, and in addition they have a relatively low 

cost, i.e. 1-10 Euro/kg (http://kremer-pigmente.de). The main features of the powders are 

listed in Table I.II (http://kremer-pigmente.de; Okada, 2002; Cornell, 2003). The pHpzc were 

obtained by mass titration (Reymond, 1999) and are comparable with the literature values 

although it is extremely sensitive to the presence of traces of impurities on the oxide surface 

(Fuerstenau, 2002; Cornell, 2003; Ji, 2007). Figure I.I shows the frequency of the particle size 

distribution of each powder measured using Fritsch Laser-Particle-Sizer “Analysette 22”.  
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Figure I.I. Experimental size distributions for the two hematite powders #48100 and #48651 and the 

magnetite powder #48800. 

 

Table I.I. Tested detergents and surfactants. 

 Prevailing Surfactant Secondary Surfactant 

Dishwashing 

Detergent  

(DD) 

Sodium Alkyl Ether Sulphate 

(5-15%) (anionic) CAS 68584-

34-2 

Cocamidopropyl Betaine (5%) 

(amphoteric) CAS 61789-40-0 

Simulated with 
Sodium Dodecyl Sulphate SDS 

(anionic) CAS 151-21-3 

Cocamidopropyl Betaine CB 

(amphoteric) 

CAS 61789-40-0 

Floor Degreaser 

(FD) 

Monobutyl Ether (5%) 

(non ionic) CAS 111-76-2 
- 

Simulated with 
Imbentin AGS/35 

(non ionic) CAS 68937-03-1 
- 

Washing 

machine 

Softener (WS) 

Alkyl Ester Ammonium (15-

30%) 

(cationic) 

Didecyldimethylammonium chloride 

(0.1-0.5%) (cationic) 

CAS 7173-51-5 

Simulated with 
Kemfluid EQ18 (cationic) 

CAS 91995-81-2 

Didecyldimethylammonium bromide 

DDAB (cationic)  

CAS 2390-68-3 

Surface Cleaner 

(SC) 

Alcol Ethoxylate (5-15%)  

(non ionic) CAS 68439-46-3 
- 

Simulated with 
Triton X-100  

(non ionic) CAS 9002-93-1 
- 
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Table I.II. Properties of the iron oxide powders. 

 Magnetite 

#48800 

Hematite 

#48651 

Hematite 

#48100 

Content Fe3O4 (wt %) 98.5 - - 

Content Fe2O3 (wt %) - 81.0 96.5 

Content SiO2 + Al2O3 (wt %) 1.2 7.5 < 4.0 

Content CaO + MgO (wt %) 0.14 4.3 - 

CAS number 1317-61-9 1309-37-1 1309-37-1 

Specific Gravity (ISO 787/10) 5.1 g/cm3 5.3 g/cm3 5.3 g/cm3 

Tamped Density (ISO 787/11) 1.4 g/cm3 0.81 g/cm3 0.84 g/cm3 

Specific Surface (ΣA) 2 m2/g 15 m2/g 19 m2/g 

pHpzc 8.1±0.3 8.3±0.2 7.9±0.3 

Most representative particle size 5 µm 1 µm 0.5 µm 

Magnetism ferrimagnetic antiferromagnetic antiferromagnetic 

Bulk magnetic susceptibility 3.8 2E-3 2E-3 

 

Each test started generating a sample by mixing the detergents or the surfactants 

with tap water or osmotic water, respectively. Then, the concentration of surfactants was 

measured with an Hach-Lange tube test (see Appendix II). The initial sample has been 

divided in three/four equal jars and the iron oxide powder was added. For the considered 

process the iron oxide concentration ranged typically between 1 and 51 g/l. Also lower and 

higher concentrations have been tested in some cases. Each subsample was mixed for 10 

minutes (about 60 rpm) to allow the adsorption of surfactants on the iron oxide particles 

and then the powder separation step was carried out. Finally, after the separation step, the 

concentration of the surfactants remaining in the treated water was measured through the 

Hach-Lange tube test. The separation step depended on the type of oxide used because of 

the different particle sizes and magnetic susceptibility of the three powders. In the case of 

hematite #48100 and #48651 the magnetic filtering device used was the setup #2 reported 

in section 2.4 with the steel wool filter shown in Figure I.II instead of the spheres filter.  

As shown in Figure I.II, the wool filter was made of AISI434 wool obtained from GMT 

Inc., with fibres of effective diameter of the order of 10 micron and a packaging factor of 

about 3.5E-3. Each filtering element was made rolling the wool around a circular drilled tube 

and placed inside the rectangular filtering section. The holes, with a diameter of 1 mm, were 

arranged in nine series of three equally spaced holes each. The flow was constrained to pass 

radially through the wool; in its working configuration the wool fibres were disposed 

orthogonally to the magnetic flux density field and, on average, to the mixture flow. A 

detailed description of the wool filter is reported in (Mariani,2009; Mariani, 2010). 

 



APPENDIX I: PREVIOUS WORK AT LIMSA 
 

68 

 (a)  (b) 

 (c)  (d) 

Figure I.II. Zoom of the wool filter opened showing the drilled tube (a), rolled (b), between two Sm-

Co permanent magnets (c) and opened after the filtration (d). 

 

In order to avoid damage to the laboratory device because of the high amount used, 

magnetite #48800 was separated only by sedimentation. The sedimentation was fast but 

the finer fraction of the powder floated on the surface; 10 minutes near the magnet allowed 

attracting the ferrimagnetic particles of magnetite cleaning the water. Figure I.III shows an 

optical microscope image of the chains of magnetized particles on the surface film. 

 

 

Figure I.III. Structure of the magnetite #48800 fine fraction floating on the water surface. 

 

The capture efficiency of the wool filter σ, defined as the ratio between the numbers 

of captured and entering particles, has been characterized in (Mariani, 2009; Mariani 2010) 

by a statistical analysis of the particle’s trajectory over randomly generated wool geometry. 

It depends on the adimensional parameter Ω (defined as in section 4.1). With reference to 

the bulk susceptibility values reported in Table I.II, the effective susceptibility for hematite is 

unchanged, while for magnetite takes a value of about 1.7. Figure I.IV reports the calculated 

capture efficiency of the filter. The error bars are due to the stochastic nature of the model. 

Figure I.IV, for given magnetic filter, shows the dependence of the particle diameter and 

susceptibility on the capture efficiency. Magnetite powder with its large diameter and 
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ferromagnetic behaviour lead to a Log Ω values in the range 0.5 - 4.4 implying a fast capture 

by the steel wool. In facts, as shown in Table I.III, one passage through the filter is sufficient 

to completely remove the magnetite #48800. On the contrary, for the hematite Log Ω 

ranges between -3.4 and 0.5 and many passages through the filter are required to 

completely remove the hematite powder. Since the capture is more effective for the larger 

particles sizes the mass retention is different from the particle one.  
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Figure I.IV. Calculated capture efficiency of the used wool filter. The error bars are due to the 

statistical nature of the model. 

 

Table I.III. Particle and mass retention for 1 g sample of the iron oxides powders as a function 

of the number of passages through the wool magnetic filter. 

 Magnetite #48800 Hematite #48651 Hematite #48100 

Number of 

passages 

Particle 

Retention 

[%] 

Mass 

Retention 

[%] 

Particle 

Retention 

[%] 

Mass 

Retention 

[%] 

Particle 

Retention 

[%] 

Mass 

Retention 

[%] 

1 99.8 99.9 53.9 86.1 48.2 83.6 

2 99.9  77.7 97.1 72.8 96.6 

3   89.0 99.2 85.6 98.9 

4   94.4 99.7 92.4 99.6 

5   97.2 99.9 95.7 99.8 

6   98.5  97.8 99.9 

7   99.2  98.8  

8   99.6  99.4  

 

Moreover, the size distribution of the suspended powder changes during the process, as 

shown in Figure I.V for hematite #48100. As shown in Table I.III, the mass capture was 
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above 99% after the 4th passage and the particle capture was above 99% after the 8th 

passage. Figure I.VI shows a sample of hematite #48100 suspended in water before and 

after the filtration with the wool magnetic filter. 
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Figure I.V. Calculated size distributions for the hematite powder #48100 after eight passages 

through the wool magnetic filter. The insert shows the evolution of the particle number distribution 

with the number of passages through the filter for a 1 g sample of hematite #48100. 

 

 

Figure I.VI. Sample of a water suspension of hematite #48100 before (left) and after (right) 10 

minutes filtration in the wool magnetic filter.  

 

The laboratory adsorption tests led to positive results with regard to all surfactants but 

using large amount of powders. Various initial surfactant concentrations was considered, 

the reproducibility of the data was checked several times, leading to an average variation of 

about 10% on the measures. 

The results are reported in terms of residual as defined in (3.1.1), where C0 and Cr are 

the initial an the residual concentration in the solutions. For each detergent and surfactant 

the residual (%) is plotted as a function of the concentration of powder used (in g/l). 
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Furthermore, the same data were used to plot the adsorption isotherms, showing the 

surface excess vs the residual concentration. The surface excess was calculated as follows: 

AA
s Σ

−=Γ
C

CC r0

 
(I) 

where CA and ΣA are the concentration and the specific area of the adsorbent. A larger 

mixing times of 20 minutes produced no changes on the final surfactants concentration, 

while a 2-5 minutes mixing caused roughly the doubling of the final surfactants 

concentration. We have not used an absorption model because our experimental points are 

insufficient to draw conclusions, especially in cases where the final concentration is 

constant with the absorbent producing no defined slope. However, since the iron oxides 

surface is certainly impure, for pure surfactants a Langmuir type model is not certainly 

applicable. 

Figures I.VII and I.VIII show the behaviour of non-ionic surfactants in SC, FD and the 

pure surfactants Triton X-100 and Imbentin AGS/35. There is few adsorption for magnetite 

#48800 and a quite good capture by both hematites. A difference in removal between pure 

surfactants and detergents could be explained by the presence of other species in the 

aqueous phase that can compete for adsorption sites at that pH. Figure I.IX and Figure I.X 

show the results for cationic surfactants in WS, simulated with Kemfluid EQ18 and the 

DDAB behaviour respectively. The DDAB was analyzed separately with higher 

concentrations than the softener ones (0.1-0.5% V/V) because of the limits of our 

spectrophotometer. All cationics seem to have a good removal (80-90%) and the same 

trend of adsorption. This satisfying results could be explained because at pH > pHpzc the 

negative groups on the iron oxide surface predominate over the positive ones generating a 

relevant electrostatic attraction to the hydrophilic positive head of the surfactant. Figure 

I.XI shows the results obtained using the three iron oxides on samples generated diluting 

the DD and the pure surfactant SDS alone and with the CB. We did not analyze the CB alone 

because the tube tests cannot measure amphoteric surfactants. The hematite, finer than 

magnetite and porous, removes larger amount of all types of surfactants. Furthermore, a 

lower amount of powder was required to achieve the same result or better values.  
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(b) 

Figure I.VII. Residual of SC and Triton X-100 after adsorption on the three iron oxides (a) and 

adsorption isotherms of SC and Triton X-100 on the three iron oxides (b). The initial concentration of 

the surfactants ranges between 1.4 and 4.2 mg/l. 
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(b) 

Figure I.VIII. Residual of FD and Imbentin AGS35 after adsorption on the three iron oxides (a) 

and adsorption isotherms of FD and Imbentin AGS35 on the three iron oxides (b). The initial 

concentration of the surfactants ranges between 1.5 and 2.9 mg/l. 
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(b) 

Figure I.IX. Residual of WS and the Kemfluid EQ18 after adsorption on the three iron oxides 

(a) and adsorption isotherms of WS and Kemfluid EQ18 on the three iron oxides (b). The initial 

concentration of the surfactants ranges between 1.2 and 3.6 mg/l. 
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(b) 

Figure I.X. Residual of DDAB after adsorption on the three iron oxides (a) and adsorption 

isotherms of DDAB on the three iron oxides (b). The initial concentration of the surfactant was 3 

mg/l. 
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(b) 

Figure I.XI. Residual of DD and SDS, alone and with CB, after adsorption on the three iron 

oxides (a). Adsorption isotherms of DD and SDS, alone and with CB on the three iron oxides (b). The 

initial concentration of the surfactants ranges between 0.2 and 2.1 mg/l. 
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Appendix II 
 

Tube tests procedures 
 

The measure of the initial and final concentration of the tested pollutants was carried 

out using Hach-Lange and Nanocolor tube tests. The spectrophotometer Hach-Lange 

DR2800 (shown in Figure II.I) was compatible with all the Hach Lange tube tests. The 

cuvettes of the Nanocolor tests were not compatible with the spectrophotometer. Thus, the 

content of the cuvette was decanted in Hach-Lange empty cuvettes and the correct wave 

length reported on the test procedure was set to read the corresponding absorbance. A 

concentration-absorbance correlation curve was always created reading the absorbance of 

different sample of the same pollutant with known concentration. All measure took from 5 

to 20 minutes and at least two measures are necessary to have a point on the curves 

reporting the residual pollutant after the treatment. So laboratory tests to evaluate the 

absorption of contaminants and to verify the residual concentrations have occupied much 

of the time of the research. All the tube tests procedures are reported in the following. 

 

 

 

 

Figure II.I. Hach-Lange spectrophotometer DR2800. 
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Procedure for cationic, anionic and non ionic surfactants: 

 

 Cationic surfactants  

(lck 331) 

Hach-Lange 

Anionic surfactants 

(lck 332) 

Hach-Lange 

Non-ionic surfactants 

(lck 333)  

Hach-Lange 

 

Pipette 4 ml of sample 
Pipette 3.5 ml of 

sample 

Pipette 2.5 ml of 

sample 

 

Pipette 0.4 ml of 

reagent A 

Pipette 0.4 ml of 

reagent A 
- 

 

Pipette 0.2 ml of 

reagent B 

Pipette 0.2 ml of 

reagent B 
- 

 

Close the cuvette and 

shake it for 2 minutes 

Close the cuvette and 

shake it for 60 

seconds 

Close the cuvette and 

shake it for 2 minutes 

 

Leave the cuvette 

standing upright for 

30 seconds 

Leave the cuvette 

standing upright for 

30 seconds 

Leave the cuvette 

standing upright for 2 

minutes 

 

Invert the cuvette 

twice carefully 

Invert the cuvette 

twice carefully 
- 

 

Thoroughly clean the 

outside of the cuvette 

and evaluate 

Thoroughly clean the 

outside of the cuvette 

and evaluate 

Thoroughly clean the 

outside of the cuvette 

and evaluate 
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Procedure for phenols, iron (FeIII) and organic complexing agents (EDTA): 

 

 Phenols (lck 345) 

Hach-Lange 

Iron (REF 985037) 

Nanocolor 

Organic complexing agents 

(REF 985052) Nanocolor 

 

Pipette 2 ml of 

sample 

Pipette 4 ml of 

sample 
Pipette 4 ml of sample 

 

Pipette 0.2 ml of 

reagent A 

Introduce 

NANOFIX R2 

reagent 

Introduce NANOFIX R2 

reagent 

 

Close the cuvette 

and shake it for 30 

seconds 

Close the cuvette 

and shake it for 30 

seconds 

Close the cuvette and shake 

it for 30 seconds 

 

Leave the cuvette 

standing upright 

for 2 minutes 

Leave the cuvette 

standing upright 

for 10 minutes 

Leave the cuvette standing 

upright for 5 minutes 

 

Pipette 0.2 ml of 

reagent B 
- - 

 

Close the cuvette 

and shake it for 30 

seconds 

- - 

 

Leave the cuvette 

standing upright 

for 2 minutes 

- - 

 3. 

 4. 

 5. 

 6. 

 7. 

 2. 
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Thoroughly clean 

the outside of the 

cuvette and 

evaluate 

Thoroughly clean 

the outside of the 

cuvette and 

evaluate 

Thoroughly clean the 

outside of the cuvette and 

evaluate 

 

Procedure for hardness (CaII, dH) and manganese (MnII): 

 
 Hardness (lck 327) 

Hach-Lange 

Manganese (REF 985058) 

Nanocolor 

 

Pipette 4 ml of reagent A Pipette 4 ml of sample 

 

Close the cuvette and shake it for 30 

seconds 

Close the cuvette and shake 

it for 30 seconds 

 

Leave the cuvette standing upright for 2 

minutes and introduce it in the 

spectrophotometer 

- 

 

Pipette 0.2 ml of sample Pipette 0.5 ml of reagent R2 

 

Close the cuvette and shake it for 30 

seconds 

Close the cuvette and shake 

it for 30 seconds 

 

Leave the cuvette standing upright for 

30 seconds and introduce it in the 

spectrophotometer 

Leave the cuvette standing 

upright for 1 minute 

 8. 

 2. 

 3. 

 4. 

 5. 

 6. 
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Pipette 0.2 ml of reagent B 
Introduce NANOFIX R3 

reagent 

 

Close the cuvette and shake it for 30 

seconds 

Close the cuvette and shake 

it for 30 seconds  

 

Leave the cuvette standing upright for 

30 seconds 

Leave the cuvette standing 

upright for 5 minutes 

 

Thoroughly clean the outside of the 

cuvette and evaluate 

Thoroughly clean the outside 

of the cuvette and evaluate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7. 

 8. 

 9. 

 10. 
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Acronyms list 
 

ACs Activated Carbons 

AEs Alkylethoxylates 

AESs Alkylethoxy Sulfates  

APs Alhylphenols 

APEs Alkylphenol Ethoxylates 

ASs Alkyl Sulfates 

BOD Biochemical Oxygen Demand 

COD Chemical Oxygen Demand 

CMC Critical Micelle Concentration 

CPU Central Processing Unit 

DD Dishwashing Detergent 

DDAB Didecyldimetylammonium bromide 

DWQS Drinking Water Quality Standard 

EC50 Half Maximal Effective Concentration 

EDS Energy Dispersive X-ray Spectrometry 

EDTA Ethylenediaminetetraacetic acid 

EO Ethylene Oxide 

EPA Environmental Protection Agency 

FCC Face Centred Cubic 

FD Floor Degreaser 

FTU Formazin Turbidity Unit 

HGMS High Gradient Magnetic Separation 

LASs Linear Alkylbenzene Sulfonates 

LC50 Median Lethal Concentration 

MACs Magnetic Activated Carbons 

MCL Maximum Contaminants Level  

NP Nonylphenols 

NPEs Nonylphenols Ethoxylated 

OP Octylphenols 

OPEs Octylphenols Ethoxylated 

PBU Primary Building Units 

PMs Permanent Magnets 

QACs Quaternary Ammonium-based Compounds 

SBU Secondary Building Units 

SC Surface Cleaner 

SDS Sodium Dodecyl Sulphate 

SEM Scanning Electron Microscopy  

TEM Transmission Electron Microscopy 

WHO World Health Organization 

WS Washing machine Softener 

WWTP Wastewater Treatment Plant 

 


