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1. MULTIPLE MYELOMA 

Multiple myeloma (MM) is a neoplastic plasmacell disorder that is characterized by clonal 

proliferation of malignant plasma cells in the bone marrow microenvironment, the presence of monoclonal 

immunoglobulin (Ig) in the blood or urine, and associated organ disfunction (1). It is a genetically complex 

disease that is becoming more common in today’s ageing population, and it accounts for approximately 1% 

of neoplastic diseases and 13% of hematologic cancers. Worldwide, approximately 86,000 patients will be 

diagnosed each year with myeloma, which, in many areas, makes it the second most common hematologic 

malignancy, while about 63,000 patients die every year from disease-related complications. In the United 

States, due to an aging populace, it is anticipated that the number of cases of myeloma will grow by 57% 

between 2010 and 2030 (2), ranking myeloma behind only stomach and liver cancer in the rate of growth 

of new cases. In Italy, the disease is more prevalent in men than women, and approximately 2,200 patients 

will be diagnosed each year, and the risk of developing this cancer in their lifetime ranges from 3.6 per 

thousand women (one woman out of 275) to 5.2 per thousand of men (one man out of 191). 

1.1 THE B CELL IMMUNE RESPONSE 

To better get insight into MM pathogenesis, it is important to understand how B cells develop. 

A virgin B cell that encounter antigen is able to generate a low-affinity plasma cell or stimulates its 

migration to a germinal centre. In the germinal centre, affinity maturation occurs and is mediated 

through two processes: somatic hypermutation and antigen selection. Subsequently, class switch 

recombination occurs, leading to the development of immunoglobulin (Ig) isotypes (4). Once this 

process is complete, the plasmablast leaves the germinal centre and migrates to the bone marrow 

where it becomes a long-lived plasma cell that produces antibody. The machinery that is necessary to 

generate these physiological DNA rearrangements can malfunction, leading to mutations in crucial 

oncogenes and tumour suppressor genes, and malignant change. Key challenges for a plasma cell 

include switching off cellular characteristics that are no longer required, such as cell cycling, activating 

programmes that are essential for antibody production, and undergoing apoptosis if they do not find a 

receptive niche in the bone marrow. Failure to complete these programmes correctly could potentially 

leave active cellular processes, which may result in the features of myeloma. The key transcription 

factors underlying this coordinated differentiation process are also shown in the figure below (Fig. 1). 

BCL-6, B cell lymphoma 6; BLIMP1, B lymphocyte-induced maturation protein 1; CIITA, MHC class II 

transactivator; ID3, DNA-binding protein inhibitor ID3; PAX5, paired box gene 5; XBP1, X box-binding 

protein 1 (3). 



 

Fig. 1 B cell development in Multiple Myeloma 

 

1.2 INITIATION AND PROGRESSION OF MYELOMA: THE EVOLUTION OF THE DISEASE 

Myeloma evolution is thought to start from a monoclonal gammopathy of undetermined clinical 

significance (usually known as MGUS) that progresses to smoldering myeloma and, finally, to symptomatic 

myeloma . MGUS is an indolent, asymptomatic condition that transforms to myeloma at a rate of 1% per 

annum. Smoldering myeloma lacks clinical features; by contrast, symptomatic myeloma has various clinical 

features that are collectively referred to as calcium, renal, anaemia and bone abnormalities (CRAB), which 

provide an indication that treatment is required (5). Later in the disease progression, the myeloma plasma 

cells become able to migrate from bone marrow to extramedullary sites. It is thought that the passage 

through these different states requires the acquisition of genetic aberrations that lead to the development 

of the biological hallmarks of MM. It has been proposed that the ancestral deregulated cell belongs to the 

MGUS clone; however, subsequent to the development of sufficient genetic alterations, it acquires a clonal 

advantage, expands and evolves. This clonal evolution is through the branching pathways that are typically 

associated with Darwin’s explanation of the origin of species. Along the evolution from MGUS to myeloma, 

these processes lead to the development of several ecosystems, which correspond to the clinically 

recognized phases of disease. At the end of this evolutionary process, at the stage of plasma cell leukaemia 

(PCL), the clone is proliferative and it is able to escape from the bone marrow; it expands rapidly and leads 

to patient’s death. Cells at this stage are almost fully genetically altered, and the precursor subclones is 

under-represented, due to the competition for the access to the bone marrow stromal niches, and they 



might  be eradicated by more aggressive clones (6-14). In evolutionary terms, this phase of disease could be 

considered to be initiated by a migration and founder effect whereby a cell that is able to survive and grow 

in the peripheral blood is faced with no competition, thus limiting its clonal expansion (3). All these 

fundamental concepts are resumed in the figure blow (Fig.2). 

 

             Fig. 2 Myeloma initiation and progression follows a Darwinian evolution 

 

1.3 GENETIC BASIS OF MULTIPLE MYELOMA 

In the classical view of the initiation and progression of MM, an initiating hit is required to 

immortalize a Multiple Myeloma initiating cell. Such a cell is then able to acquire additional genetic hits 

over time, mediated via 5 major type of alterations: translocation, loss of heterozygosity, gene 

amplification/deletion, mutation, or epigenetic changes. The acquisition of additional hits further 

deregulates the behavior of the MM initiating cell, leading to the clinically recognized features of MM (5). 

The basic premise underlying these interactions is that multiple mutations in different signalling finally lead 

to the alteration of the intrinsic plasma cell biology, modifying it in a way that generate the features of MM.  

1.3.1 Translocations 

At the cytogenetic level, the MM genome is recognized as being complex (6,9). The study of 

chromosomal translocations generated by aberrant class-switch recombination showed that several 

oncogenes, including cyclin D1 (CCND1), CCND3, MAF, MAFB, fibroblast growth factor receptor 3 (FGFR3), 

the MMSET domain (MMSET; also known as WHSC1), are placed under the control of the strong enhancers 



of the heavy chain Ig (IGH) loci, leading to their deregulation (15). Deregulation of the G1/S transition is a 

key early molecular event in MM, and the consistent deregulation of a D-group cyclin was first noted as a 

consequence of studying the t(11;14) and t(6;14) translocations, which deregulate cyclin D1 and cyclin D3, 

respectively (5). Overexpression of a D-group cyclin independent from translocation can also occur, and in 

the t(14;16) is modulated via MAF, which up-regulates CCND2 by binding directly to its promoter. Patients 

with the t(4;14), which translocates FGFR3 and MMSET to the IGH enhancers, also overexpress cyclin D2, 

but in this case the underlying mechanism is uncertain (15). Other IGH translocations are observed in MM 

and, in contrast to the class-switch recombination– driven events, tend to occur in the advanced phases of 

disease. The gene typically deregulated by such events is MYC, whose deregulation may lead to a more 

aggressive disease phase. Translocations outside of the Ig gene loci can also occur and constitute an 

important mechanism leading to gene deregulation that has not been yet fully explored (5). However, it is 

known that such translocations can range from single to multiple events per patient, but no recurrent 

events deregulating a single crucial gene have yet been identified (16). 

1.3.2 Copy number alterations 

The frequency and recurrent nature of interstitial loss of copy number and loss of heterozygosity 

suggests that the minimally deleted regions contain tumor-suppressor (TS) genes that are driver events 

(17,18). Most TS genes require the inactivation of both alleles and have been identified either by the study 

of homozygous deletions or through the integration of mutational analysis with copy number status (20). 

Examples of relevant TS genes include FAM46C, DIS3, CYLD, baculoviral IAP repeat containing protein 2 

(BIRC2; also known as cIAP1), BIRC3, and TNF receptor associated factor 3 (TRAF3) (6,9,10). Deregulation of 

the G1/S transition by overexpression of a D-group cyclin is a key early molecular abnormality in MM. 

Conversely, also important events are the loss of a negative cell-cycle regulator, the down-regulation of 

CDKN2C by loss of chromosome 1p32, and the inactivation of CDKN2A by methylation (9,21). Inactivation of 

RB1 also affects this checkpoint and may occur as a result of loss of chromosome 13, which is present in 

58% of cases of MM; however, homozygous loss and mutational inactivation of this gene is infrequent (6). 

Other important regions of loss of heterozygosity include 11q, the site of the BIRC2 and BIRC3 genes; 16q, 

the site of CYLD; and 14q32, the site of TRAF3 (17-19). All of these genes played in the NF-κB pathway, 

indicating that iperactivation of NF-κB signaling is important in MM. The other major set of recurrent 

genetic aberrations seen in MM is the hyperdiploidy, associated with the gain of the odd-numbered 

chromosomes, including 3, 5, 7, 9, 11, 15, 19, and 21. Interstitial copy number gain associated with 

increased gene expression or with activating mutations in oncogenes represents another set of “driver” 

genes that can lead to MM progression. A classic example is the amplification of 1q, which potentially 

harbors more than one relevant oncogene; for example, CDC28 protein kinase 1B (CKS1B), acidic leucine 

rich nuclear phosphoprotein 32 family member E (ANP32E), BCL9, and PDZK1 (9). 



1.3.3 Mutations 

There are approximately 35 nonsynonymous mutations per case in MM (6,22); this value  is 

intermediate between the one observed in the genetically simpler acute leukemias (8) (23), and the one 

observed  in the more complex epithelial tumors, such as lung cancer (540) (24). There are few recurrently 

mutated genes in MM and, in general, they affect known oncogenes. However, a few novel genes have 

been identified (FAM46C in 13% of cases, DIS3 in 11% of cases) and as the numbers of samples analyzed 

increases, the incidence of recurrent genes will undoubtedly increase as well. This observation is consistent 

with a hypothesis in which deregulation of pathways is pathogenically important, rather than the 

deregulation of a specific gene. Examples of deregulated pathways include the frequent deregulation of the 

NF-κB pathway, and strategies targeting this pathway upstream of mutated genes may fail if the presence 

of activating mutations is not taken into account. The observation that the ERK pathway is frequently 

deregulated (NRAS in 24% of cases, KRAS in 27% of cases, and BRAF in 4% of cases), suggests the need for a 

novel treatment strategy targeting this pathway. Moreover, deregulation of the PI3K pathway is also 

important in MM, but in contrast to the RAS pathway, the PI3K pathway is not frequently mutated (6). The 

frequency of these events makes MM a good model system in which to evaluate targeted inhibitors of the 

RAS and PI3K pathways.  

1.3.4 Epigenetic changes 

Despite the recent evidencies on the genetics of MM, little is known about the epigenetic changes 

leading to disease progression and their impact on therapy resistance. DNA can be modified by different 

modifications. In particular, methylation of cytosine residues in CpG dinucleotides and, in addition, 

chromatin structure may be modified via histone modifications such as methylation, acetylation, 

phosphorylation,and ubiquitination. Both DNA and histone modifications can play a part in modulating 

gene expression. The most important epigenetic change relevant to the pathogenesis of MM is global 

hypomethylation and gene-specific hypermethylation during the transformation of monoclonal 

gammopathy of undetermined significance to MM. The most relevant DNA methylation change is seen in 

the 15% of patients with the t(4;14) translocation, who have increased gene-specific hypermethylation 

compared with other cytogenetic subgroups. This subgroup enhanced MMSET overexpression, which 

encodes a histone methyltransferase and transcriptional repressor. MMSET mediates histone 3 lysine 36 

(H3K36) dimethylation, and its deregulation leads to global changes in histone modifications that promote 

cell survival, cell-cycle progression, and DNA repair. Other chromatin modifiers are also deregulated in MM, 

including UTX, a histone demethylase, MLL, KDM6B, and HOXA9, and the full importance of these 

modifications needs other validations (25-28) 

1.4 MODEL OF MOLECULAR PATHOGENESIS 



Based on the current knowledge on MM biology, a model for the molecular pathogenesis of MM 

has been proposed (Fig. 3). Chromosome alterations appears to identify two different, but perhaps 

overlapping, pathways of pathogenesis: Non-hyperdiploid tumors and Hyperdiploid tumors. In 

approximately 40% of the tumors, a primary chromosome translocation results in the dysregulated 

expression of an oncogene and direct or indirect CCND dysregulation. Like the primary IGH translocations, 

trisomies of chromosomes 3, 5, 7, 9, 11, 15, 19, and 21, are already present at the initial identified stage 

of tumorigenesis, and define subtypes of MM with distinctive clinical (eg, bone disease, heavy-chain 

subtypes, and prognosis), molecular (eg, types of CCND expressed and associated mutations), pathological 

(eg, morphology and CD expression), and cytogenetic (ploidy) features. A second “genetic hit” leading to 

subsequent transformation from MGUS to MM may be mediated by activation of MYC, mutation of KRAS, 

or del(13). The MYC pathway may be further dysregulated by late rearrangements, often involving an Ig 

locus. Activating mutations of the NFκB pathway and inactivating mutations of TP53 are associated with 

extramedullary migration of disease, and inactivation of CDKN2C and RB1 with increasingly proliferative 

disease (29). 

 

  Fig. 3 Model of molecular pathogenesis of Multiple Myeloma 

 

 

 

 



1.5 THERAPEUTIC STRATEGIES IN MULTIPLE MYELOMA TREATMENT 

A number of advances over the past decade have dramatically improved patient outcomes. 

Among these are the advent of novel chemotherapeutics, including the immunomodulatory agents 

thalidomide, lenalidomide, and pomalidomide, and the proteasome inhibitors (30) bortezomib and 

carfilzomib. All of these drugs have garnered regulatory approvals and are used in patients with newly 

diagnosed, relapsed, or relapsed/refractory disease and have contributed to a doubling of the median 

overall survival. 

1.5.1 IMiDs 

Thalidomide and its derivatives represent the class of antineoplastic compounds called 

ImmunoModulatory Drugs (IMiDs). The efficacy of these agents in MM and other hematologic 

malignancies is attributed to their immunomodulatory, antiinflammatory, and antiangiogenic 

properties. IMiDs target tumor cells directly by inducing cytotoxicity and indirectly by interfering with 

components of the bone marrow microenvironment that promote MM progression (31). 

Thalidomide, initially introduced in Germany in 1957 as a sedative, was withdrawn from the 

market in 1961, when it was linked to severe fetal malformations. The discovery of its activity in 

patients with MM renewed the interest in thalidomide (32). Thalidomide induces apoptosis of MM cells 

and down-regulates the expression of several cytokines involved in cell proliferation and survival, such 

as TNFα, IL-6, and VEGF. However, its precise mechanism of action has not been fully understand (33). 

Although the molecular target of thalidomide has yet to be detected, a recent study showed that 

cereblon (CRBN), a protein encoded by a candidate gene for mental retardation, binds thalidomide and 

mediates its teratogenicity (34). Clinically, the use of thalidomide in relapsed/refractory MM is 

associated with response rates (RR) ranging from 25% to 65% (31). The main side effects of thalidomide 

include sedation, peripheral neuropathy, bradycardia, hypotension, constipation, and venous 

thromboembolism. 

The second- generation thalidomide analogues lenalidomide and pomalidomide (CC4047) are 

IMiDs developed to enhance the anticancer properties and reduce the adverse effects associated with 

thalidomide. Lenalidomide proved effective in refractory patients including those who had relapsed 

following thalidomide treatment (35). Furthermore, lenalidomide generated superior response rates 

along with progression-free and overall survival compared to thalidomide in newly diagnosed patients 

(36). Pomalidomide elicited responses in 47% of patients who had received  three or more previous 

regimens, including lenalidomide (37). More clinical studies investigating the activity of pomalidomide 

are needed, but these data suggest that pomalidomide is clinically effective in advanced MM, even 

when the disease is refractory to other IMiDs.  



1.5.2 Proteasome Inhibitors 

The proteasome is a multi-subunit, cylinder-shaped protein complex that degrades 

ubiquitinated proteins. Plasma cells are terminally differentiated B-cells that are specialized for the 

secretion of immunoglobulins. The increased protein load associated with this task lowers the 

threshold for proteotoxic stress and increases the susceptibility of plasma cells to toxic 

misfolded/unfolded proteins that trigger proapoptotic signals of the unfolded protein response (UPR) 

and endoplasmic reticulum (ER) stress response (38). Additionally, plasma cell differentiation is 

accompanied by a dramatic decrease in expression of the proteasome(39). Taken together, these 

cellular characteristics are thought to make plasma cells particularly sensitive to inhibitors of the 

proteasome. In addition, the proteasome regulates the expression of proteins and cytokines that 

promote MM growth and angiogenesis, and inhibit apoptosis, such as Nf-kB (40).  

The proteasome inhibitor bortezomib was developed for the treatment of MM based on this 

rationale, and it has been widely recognized as a remarkable clinical success. Bortezomib received 

accelerated approval from the U.S. Food and Drug Administration (FDA) in 2003, after clinical efficacy 

was demonstrated in refractory MM (41). Bortezomib was later approved for first-line treatment of 

MM. Despite the efficacy of bortezomib, MM cells invariably develop resistance to it.  

Carfilzomib, a second generation proteasome inhibitor, has shown efficacy against bortezomib-

resistant MM cell lines and primary patient samples in vitro (42), and has also exhibited promising 

activity in patients (43). The activity of carfilzomib against bortezomib-resistant MM cells may be due to 

its pharmacological profile, which differs from bortezomib. Both drugs inhibit the same proteasomal 

subunit (20S chymotrypsin-like b5 subunit), but only carfilzomib does so irreversibly.  

1.5.3 Toward a targeted therapy in MM 

Targeted treatment based on the presence of a specific molecular lesion predictive for 

response to that treatment is the likely way forward so that we can achieve personalized cancer care 

for MM patients. The best illustration of this approach is the treatment of the t(4;14) subtype of MM, 

which has been associated with poor prognosis. In the table below (Tab.2, Fig. 4), are listed novel 

therapeutic agents that are currently in clinical development for the treatment of MM along with the 

associated clinical protocol.  



 

Tab. 2 Novel therapeutic agents in clinical development for Multiple Myeloma's targeted therapy 

 

1.5.3.1 Therapeutic mAbs 

The introduction of the mAb rituximab has revolutionized the clinical care of B-cell lymphomas. 

However, the search for a clinically efficacious mAb for patients with MM has been less challenge thus 

far (45). Rituximab is a monoclonal antibody against the B-cell specific membrane protein CD20. The 

rationale for this therapeutic strategy was that CD20 is expressed in 10–15% of MM plasma cells (46). 

Unfortunately, the use of rituximab provided no clinical benefit in a phase II study of ten patients with 

MM (47), and it did not demonstrate significant clinical activity in a cohort of 14 patients selected for 

CD20-expressing MM (48). 

Interleukin 6 ( IL - 6 ) is known to play an important role in growth, differentiation, and survival 

of normal and malignant plasma cells. The transforming potential of IL-6 is underscored by the fact that 

IL-6 overexpressing transgenic mice show accelerated development of malignant plasmacytomas (49). 

Monoclonal antibodies against IL-6 have been developed, and they have been used with success 

against Castleman’s disease, a rare B-cell lymphoproliferative disorder (50), but clinical experience in 

MM is currently lacking.  

Elotuzumab has shown anti-MM activity both in vitro as well as in an in vivo MM xenograft 

model (51). Many monoclonal antibodies are currently being evaluated in clinical trials for MM, with 

different targets and strategies. Some of these antibodies are designed to target surface proteins of 

plasma cells (e.g., CD38, CD56) or MM growth factors (e.g., IL-6), while others have been coupled to 

cytotoxins or chemotherapy agents. 

 

 



1.5.3.2 Agents Directed Against Dysregulated Translocation Products 

The t(11;14) (q13;q32) chromosomal translocation is a known translocation of MM. The 

t(11;14) translocation juxtaposes the IgH locus with theCCND1 gene (also called BCL1 ), which leads to 

overexpression of the CCND1 gene product cyclin D1. Cyclin D1 associates with cyclin-dependent kinase 

4 (CDK4) to form a catalytically active complex that drives progression through the G1/S phase of the 

cell cycle. Subsequently, up-regulation of cyclin D1 as a result of the t(11:14) translocation has been 

implicated in the uncontrolled proliferation of MM plasma cells (52,53). The selective targeting of cyclin 

D1 in one model was accompanied by compensatory up-regulation of cyclin D2 and demonstrated only 

modest inhibition of MM cell proliferation in vitro (54). By contrast, targeting CDK4 kinase activity with 

the small molecule inhibitor P276-00 was a more potent strategy for inhibiting growth of MM cells in 

vitro and tumors in vivo (55). Flavopiridol is a broad spectrum CDK inhibitor with activity against CDK1, 

CDK2, CDK4, CDK7, and CDK9. CDK9 is a key regulator of transcription as it functions as a subunit of the 

P-TEFb ( Positive- Transcription Elongation Factor b) complex, which phosphorylates the 

carboxyterminus of RNA polymerase II, a signaling event that releases the enzyme into the elongation 

phase of transcription (56). Targeting CDK9 is a promising strategy for the treatment of MM.  

The t(4;14) (p16;q32) chromosomal translocation is also common in MM, and is associated with 

worse prognosis (72). At least some recent clinical trial data support frontline treatment with 

proteasome inhibitors for this subtype and, in view of the characteristic oncogene profile, it is the 

optimum group in which to address the potential role of FGFR3 and MMSET inhibitors. This is a good 

example of how, by characterizing the biology of an initiating lesion thought to be present in 100% of 

cells, we can begin the development of novel targeted treatments. The realization that MMSET is a 

member of a family of oncogenes with H3K36me2 transferase activity raised the possibility of targeting 

this activity as a therapy for MM. Therefore, the crystal structure of the MMSET protein is currently 

being resolved and this information is being used in specific structure-function– based drug design 

approaches to specifically inhibit the activity of this enzyme. This translocation may induce 

overexpression of the FGFR3 gene, which encodes for a receptor tyrosine kinase. All cases overexpress 

MMSET, a histone methyltransferase, but about one third of cases do not overexpress FGFR3 (58). 

Moreover, FGFR3 amplification may occur even in the absence of t(4;14) (59). These mutations produce 

a constitutively active receptor, which exhibits ligand-independent dimerization and 

autophosphorylation. NF449, a novel compound that antagonizes FGFR3 signaling, was found to be 

active against MM in vitro (60). Anti-FGFR3 agents, such as CHIR-258, a small-molecule inhibitor of 

multiple receptor tyrosine kinases including FGFR3 (61), and PRO-001, an FGFR3- specific mAb (62), 

showed activity in mouse models of MM. In view of these promising results, anti-FGFR3 agents are 

currently being evaluated in clinical trials for FGFR3-expressing MM. 



1.5.3.3 Targeting the MM Tumor Microenvironment 

The role of the tumor microenvironment in the development, progression, and resistance of 

various tumor types to therapy is well recognized (63). In MM, the impact of tumor 

microenvironmental factors such as hypoxia, angiogenesis, and interactions between MM and bone 

marrow stromal cells have become an important consideration for understanding disease progression, 

resistance to treatment, and have been incorporated into novel therapy screening approaches (64). For 

instance, bone marrow angiogenesis has been implicated in MM disease development, as it 

progressively increases along the spectrum of plasma cell dyscrasias, from monoclonal gammopathy of 

undetermined significance (MGUS) to smoldering myeloma, and advanced MM (65).  

Malignant plasma cells not only secrete vascular endothelial growth factor (VEGF), a soluble 

protein that stimulates the growth of new blood vessels, but they can also express its receptors, 

VEGFR-1 and VEGFR-2 (66,67). After the availability and success of the anti-VEGF monoclonal antibody 

bevacizumab in the clinical practice against several types of solid malignancies (68), anti-angiogenic 

therapy was tested in MM, although the results with this strategy have been disappointing. In a phase II 

trial of vandetanib (formerly ZD6474), a small molecule receptor tyrosine kinase inhibitor of both 

VEGFR and epidermal growth factor  receptor (EGFR), no responses were found among 18 patients with 

relapsed MM (70). Similarly, no clinical responses were observed in another phase II trial of 21MM 

patients with the use of pazopanib, a multi-targeted receptor tyrosine kinase inhibitor of VEGFR-1, 

VEGFR-2, VEGFR-3, PDGFR- a / b , and c-kit (68). The fact that not a single response was observed 

among a total of 66 MM patients in three different clinical trials using anti-angiogenic drugs casts doubt 

that this therapeutic strategy will be further explored in MM. 

1.5.3.4  Other Targeted Therapies 

Several targeted therapies were initially judged as promising in the treatment of MM based on 

preclinical evidence or their scientific rationale, yet clinical trials using these agents failed to 

demonstrate their utility in humans. We report the following selected experiences: 

- Tipifarnib, a farnesyltransferase inhibitor, was administered to 43 patients with 

advanced MM, at a dose of 300 mg PO bid for 3 weeks every 4 weeks. The most common side 

effect was fatigue (66%). Although 64% of patients had disease stabilization, no complete nor 

partial responses were observed (69).  

- Oblimersen is an antisense drug (a short sequence of RNA which hybridizes with 

and inactivates a specific mRNA, preventing the formation of the protein) blocking the Bcl-2 



oncogene. Despite its activity in other hematologic malignancies, a phase III randomized study that 

included 224 patients found no clinical benefit of in MM (70).  

- Etanercept is a tumor necrosis factor (TNF) alpha-neutralizing agent. It is a soluble 

protein engineered by fusing part of the TNF-receptor with the Fc portion of an IgG antibody. 

Treatment with etanercept produced no response among ten patients with refractory MM (71) . 

- Imatinib is a tyrosine kinase inhibitor that blocks the activity of c-Abl, c-Kit, and 

PDGF receptors. The development of imatinib has been the most successful achievement of 

molecular biology applied to hematological malignancies. In a phase II trial of imatinib in 28 

patients with refractory/relapsed MM, no responses were observed. Of note, 52% of cases had 

positive c-kit staining (71).  

 

Fig. 4 Potential molecular targets in Multiple Myeloma along with the target-specific agents 

 

 

 

 

 

 

 



2. CANCER STEM CELL 

The consensus definition of “cancer stem cell” is  cell within a tumor that possesses the ability to 

self-renew and to cause the different lineages of cancer cells that include the tumor. Cancer stem cells can 

thus only be defined by experiment based on their capacity to recapitulate the generation of a growing 

tumor. The numerous published studies used various terms, such as ‘‘tumorigenic cell’’ and ‘‘tumor-

initiating cell’’ to describe putative cancer stem cells. A self-renewing cell division results in one or both 

daughter cells that have essentially the same ability to replicate and generate differentiated cell lineages as 

the parental cell. Moreover, they have the ability to undergo a symmetrical self-renewing cell division, that 

carry to the formation of identical daughter stem cells that have the self-renewal capacity, or an 

asymmetrical self-renewing cell division, resulting in one stem cell and one more differentiated progenitor 

cell. In addition, it is thought that stem cells may divide symmetrically to form two progenitor cells, which 

could lead to stem cell depletion. Promoting this form of division would be a way to deplete the cancer 

stem cell population and may constitute an alternative strategy to inducing cell death to fight cancer. 

2.1 THE CANCER STEM CELLS HYPOTHESIS AND ITS IMPLICATIONS  

The cancer stem cell hypothesis is at the center of a rapidly evolving research field that may play a 

pivotal role in changing the point of view on cancer. In the cancer stem cell model of tumors, there is a 

small subset of cancer cells, the cancer stem cells, which constitute a reservoir of self-sustaining cells with 

the exclusive ability to self-renew and maintain the tumor. These cancer stem cells have the capacity to 

both divide and expand the cancer stem cell pool and to differentiate into the heterogeneous non-

tumorigenic cancer cell types that in most cases appear to constitute the bulk of the cancer cells within the 

tumor (Fig.5). If cancer stem cells are relatively resistant to treatment that have been developed to 

eradicate the rapidly dividing cells within the tumor that constitute the majority of the non-stem cell 

component of tumors, then they are unlikely to be curative and relapses would be expected. If correct, the 

cancer stem cell hypothesis would require that we rethink the way we diagnose and treat tumors, as our 

objective would have to turn from eliminating the bulk of rapidly dividing but terminally differentiated 

components of the tumor and be refocused on the minority stem cell population that fuels tumor growth 

(73).   



 

Fig. 5 The Cancer Stem Cells hypothesis 

 

Cells within the tumor often seem to correspond to different stages of development. Epithelial 

cancers, for example, typically contain cells exhibiting divergent nuclear morphologies and differentiation 

features. Prevailing explanations for the observed tumor cell heterogeneity include influences of the 

microenvironment and genomic instability that generate the genetic and epigenetic changes, which 

prevent faithful and accurate replication and transmission of stable genotypes and phenotypes. Such 

instability could also explain why tumors typically contain a subset of cells that are refractory to most 

treatments. However, an alternative emerging concept is that malignant cell populations may reflect the 

continuing works of perturbed differentiation processes. Inherent to such a model is the formation of 

malignant populations consisting of a developmentally defined hierarchy of heterogeneous phenotypes 

derived from a small subset of ‘‘cancer stem cells” (74). 

2.2 EVIDENCES OF CANCER STEM CELLS IN SOLID TUMORS 

Evidence for the existence of cancer stem cells in solid tumors has been more difficult to obtain for 

several reasons. Cells within solid tumors are more difficult to obtain, and functional assays suitable for 

detecting and quantifying normal stem cells from many organs have not yet been developed. Therefore, 

the cell surface markers required to enriched such cells have not been identified.  

There has been some important work in this field recently, including the demonstration that single 

mouse mammary cells can be transplanted and recapitulate a complete mammary gland. Cells have also 

been isolated from human breast tumors that can cause breast cancer in NOD/SCID mice through serial 

transplantations, suggesting a capacity for self-renewal. These cells were CD44+CD24- in eight of nine 

patients and established tumors in recipient animals when as few as one hundred cells were transplanted, 

whereas tens of thousands of breast cancer cells with a various marker set do not induce tumors. Brain 



tumor stem cells that can produce serially transplantable brain tumors in NOD/SCID mice have also been 

isolated from human medulloblastomas and glioblastomas. These cells can be isolated by sorting for 

CD133+, a marker found on normal neural stem cells, and the transplantation of one hundred CD133+ 

tumor cells was sufficient to initiate the growing of a tumor in recipient animals. In contrast, no mice 

injected with the negative population developed brain tumors. More recently, cells have been isolated 

from human prostate cancer patients that can produce serially transplantable prostate tumors in NOD/SCID 

mice (75).  

Together, these studies reveal that only a small subset of cells in several different tumor types have 

the ability to form the tumor in such transplant assays. These data are consistent with the cancer stem cell 

hypothesis. Nonetheless, caution needs to be exerted when interpreting transplantation assays. It is crucial 

to note that although many studies have clearly identified the lineage in which the cancer initiates, the 

unique cell type in the hierarchy in which transformation occurs remains elusive in most cases. 

Nevertheless, in mouse models of intestinal and prostate tumours, it seems clear that the cancers originate 

in a bona fide stem cell that is capable of self-renewal and multilineage differentiation. 

2.3 CANCER STEM CELLS IN HAEMATOLOGICAL MALIGNANCIES 

In different leukaemias, both normal stem and committed progenitor cells have been implicated as 

cellular targets of transformation Human cells fulfilling the properties expected of drug-resistant cancer 

stem cells were initially isolated from blood cancers. 

For human AML, cancer stem cells were defined as those cells capable of recapitulating human 

AML cell populations in irradiated transplanted non obese diabetic (NOD)/severe combined 

immunodeficient (SCID) mice. The AML stem cells owing this property were found to display a CD34+CD38- 

cell surface phenotype, similar to that typical of normal human primitive hematopoietic progenitors. This 

suggested that the AML stem cells may have originated from normal stem cells rather than deriving from 

more committed progenitors, although as will be discussed, this may not necessarily be the case for all 

cancer stem cells. 

In chronic myeloid leukaemia (CML) — one of the first disorders to be defined by a dominant 

genetic mutation — the long-term haematopoietic stem cell containing the BCR–ABL mutation has been 

established as the cell of origin by in vivo clonality studies in humans (76). Although the HSC maintains the 

chronic phase of the disease, analysis of samples from patients in blast crisis, has indicated that consequent 

genetic events occurring in downstream precursor cells give rise to leukaemia stem cells, highlighting the 

dynamic state of the tumorigenesis process (77). For mouse models of CML, only BCR–ABL targeted to 

HSCs, but not to committed progenitor cells, induced myeloproliferative disease (78), consistent with 

findings for human CML. Although HSCs generally appeared more susceptible to transformation than 



committed progenitors, a self-renewal pathway seemed to be reactivated in the cells during development 

of disease.  

2.4 IMPLICATIONS FOR CANCER THERAPY 

The cancer stem cell hypothesis posits that cancer stem cells are a minority population of self-

renewing cancer cells that fuel tumor growth and remain in patients after different treatment. The 

hypothesis predicts that effective tumor elimination will require obtaining agents that can target cancer 

stem cells while sparing normal stem cells. Experimental studies in human AML suggests that, compared 

with the bulk population of leukemic blasts, the leukemia stem cells are relatively resistant to conventional 

therapies. Although it has been speculated in solid tumors that conventional agents kill the non-

tumorigenic cancer cells while sparing the cancer stem cells, this has not been proven. The moving target 

nature of cancer stem cells may present a challenge in the clinic.  

To obtain effective introduction of new therapies, physicians will require methods of determining 

the type (or types) of cancer stem cells present in a given patient’s tumor. It is important that agents 

directed against cancer stem cells discriminate between cancer stem cells and normal stem cells. This will 

require identification of realistic drug targets unique to cancer stem cells. The identification of such targets 

and the development of anticancer agents will require a fuller understanding of normal stem cell biology as 

well as the genetics and epigenetics of tumor progression. There is some indication that such an approach 

can be successful. For example, stem cells isolated from AML patients display differences from normal 

hematopoietic stem cells. There has also been some success identifying agents effective against leukemia 

stem cells. Conventional anthracycline agents show synergy with proteasome inhibitors against AML stem 

cells, reducing viability in vitro dramatically. The novel agent parthenolide, isolated from Mexican medicinal 

plants and shown to be a potent nuclear factor-nB inhibitor, promotes apoptosis of AML stem cells and 

inhibits tumor development in NOD/SCID mice. Mutation of the Janus-activated kinase 2 (JAK2) kinase is 

found in many patients with the blood disorder Polycythemia Vera, and JAK2 inhibitors display efficacy 

against the cancer stem cells from these patients, although individual responses vary significantly (73). In 

Tab. 3 are showed potential cancer stem cell self-renewal pathway inhibitors. Among the others, Hedgehog 

and Notch signaling inhibitors are already included in phase I and II study in patients with refractory MM. 



 

Tab. 3 Cancer stem cell self-renewal pathway inhibitors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3. MULTIPLE MYELOMA CANCER STEM CELLS 

Neoplastic plasma cells are the hallmark of multiple myeloma. Like other hematologic malignancies, 

the vast majority of myeloma plasma cells appear mature and quiescent (5). This suggests that functional 

heterogeneity may exist within myeloma and the potential for clonogenic growth is restricted to a minority 

population of cells. The normal counterpart of myeloma cells are terminally differentiated plasma cells that 

lack substantial replicative capacity. Instead, these cells arise from the maturation of B cells. Therefore, it is 

possible that aspects of the hierarchical nature of normal B-cell and plasma cell development is maintained 

in multiple myeloma, similar to the relationship observed between relatively immature hematopoietic and 

neural stem cells in myeloid leukemias and brain tumors, respectively. Recent evidences have identified 

cells expressing the identical immunoglobulin idiotype and gene rearrangements as the neoplastic plasma 

cells within the blood and bone marrow of patients that phenotypically display a wide range of B-cell 

maturation. However, the role of these cells in the pathogenesis of the disease has been unclear and a 

point of controversy.  

3.1 PHENOTYPIC HETEROGENEITY IN MULTIPLE MYELOMA 

Unique immunoglobulin idiotype and gene sequences provide a highly specific means to establish 

clonal relationships in B-cell malignancies and have permitted the phenotypic heterogeneity of tumor cells 

to be studied within individual patients. The established relationship between normal B cells and plasma 

cells prompted identifications that myeloma plasma cells were derived from clonotypic B cells. Early 

evidence that peripheral blood lymphocytes were clonally related to myeloma plasma cells was provided by 

studies in which anti-idiotype antibodies formed against M protein were found to identify phenotypic B 

cells in the peripheral blood and bone marrow of patients with multiple myeloma (79-81). Subsequent 

studies examine the clonal relationship between plasma cells and B cells at the molecular level by means e 

ability to sequence tumor-specific immunoglobulin heavy chain gene sequences. Utilizing allele-specific 

oligonucleotide-based polymerase chain reactions, a number of studies have demonstrated that clonal cells 

expressing B-cell, rather than plasma cell, antigens could be found at varying frequencies within the bone 

marrow or peripheral blood of myeloma patients (82-88). Genetic, phenotypic, and functional studies have 

suggested that these clonotypic cells are equivalent to memory B cells. The analysis of immunoglobulin 

heavy chain gene sequences in myeloma demonstrates extensive somatic hypermutation without evidence 

of intraclonal variation suggesting that they arise from a post-germinal center compartment (89-91). 

Furthermore, clonotypic immunoglobulin gene rearrangements have been found within cells displaying a 

pre-switched isotype and in cells expressing surface CD19, CD27, and lacking CD38 consistent with memory 

B cells (82,92,93). The clinical relevance of circulating clonotypic cells has been controversial, but studies 

have suggest that these cells persist after systemic therapy (94-98). Functional evidence that these cells 

may give rise to myeloma plasma cells has been provided by evidence that earlier B cells can differentiate 



into immunoglobulin secreting–plasma cells in vitro (100,101). The clonogenic growth potential of 

clonotypic B cells has also been studied both in vitro and in vivo. These cells have been found to engraft 

immunodeficient non-obese diabetic severe combined immunodeficiency mice and give rise to clonal 

plasma cells that recapitulate bone disease and monoclonal immunoglobulin production similar to the 

clinical disease (101-103). Furthermore, using an in vitro clonogenic assay, has been shown that colony 

formation was not a property of cells expressing the characteristic surface antigen CD138 that is expressed 

by myeloma and normal plasma cells (104). Instead, cells lacking CD138 but expressing B-cell surface 

antigens formed tumor colonies that could be serially replated. Similarly, CD138+ plasma cells were not 

able of engrafting non obese diabetic severe combined deficiency mice whereas CD138- cells, later defined 

to phenotypically resemble memory B cells, produced disease in immunodeficient mice (103,104). These 

results contrast with those obtained by detecting the growth of primary myeloma specimens within severe 

combined immunodeficiency mice implanted with human or rabbit bone fragments (105-107). In these 

models, CD138+ plasma cells that were implanted into the ectopic bone can proliferate and be re-

transplanted into secondary recipients, whereas earlier B cells lack engraftment potential. The reasons for 

these controversies are not clear but they likely represent the intrinsic differences between the animal 

models used, similar to studies examining the growth of human leukemias (108). It is possible that the 

barriers of xeno-transplantation also play a role in these discrepancies and the characterization of 

clonogenic cells from a number of unique mouse models of myeloma might clarify this issue (109-112). 

3.2 STEM CELLS PROPERTIES OF MULTIPLE MYELOMA STEM CELLS 

The ability of multiple myeloma stem cells to self-renew and give rise to differentiated effectors (ie, 

plasma cells) are two properties they share with normal adult stem cells. Another property of normal stem 

cells is resistance to toxicities, and the continual risk of relapse among patients treated with standard 

therapies suggest that myeloma stem cells should also be relatively drug resistant. Resistance to standard 

cytotoxic agents and ionizing radiation has been demonstrated for leukemic and brain tumors stem cells, 

respectively (113-115). In multiple myeloma, several novel agents have been recently approved for clinical 

use. The ability of these drugs to produce disease responses seen as decreased mature cell compartments 

and suggest that they lack the ability to impact long term outcomes. Furthermore, it appears that myeloma 

stem cells display properties common to normal stem cells, such as expression of membrane-bound drug 

transporters, intracellular detoxification enzymes, and quiescence. Thus, the chemoresistance of cancer 

stem cells might be mediated by multiple processes similar to those protecting normal stem cells.  

Matsui et al. (104) recently reported the results of in vitro studies apparently confirming the 

existence of so-called ‘‘MM stem cells’’ at the B lymphocyte level of differentiation (Fig.6). The authors 

showed that human MM cell lines contain a small (about 5%) subpopulation that lack CD138 expression. 

They performed serial replating experiments in vitro with MM cell lines and MM cells isolated from clinical 



samples. CD138- cells isolated from the cell lines were shown to undergo significantly greater clonogenic 

expansion than CD138+ cells after serial replating. Similarly, CD138-MMcells from clinical BM samples gave 

rise to colonies and could be successfully replated, whereas CD138+ cells did not. In contrast to CD138+ 

cells, CD138- MM cells from human BM successfully engrafted longterm into NOD/SCID mice, indicating 

their potential for self-renewal. CD138- MM stem cells isolated from cell lines expressed CD19 and CD20 

molecules characteristic of B lymphocytes. In addition, depletion of CD19-, CD22-, and CD20- cells from the 

population of CD138- MM cells obtained from clinical samples significantly decreased their clonogenic 

growth. Therefore, it is reasonable to assume that MM stem cells are CD19+, CD20+, CD22+, and CD138- 

and express clonal immunoglobulin light chains, consistent with the findings of previous studies on 

clonotypic  MM B cells.  

In contrast to MM CD138+ plasma cells, the clonogenic MM CD138- B cells were further revealed to 

be highly resistant to clinical antimyeloma agents in vitro (104). This is related, at least partially, to their 

high drug efflux capacity and intracellular drug detoxification activity, as shown in Hoechst efflux and 

Aldefluor assays. Cells with these characteristics have been found in the PB of MM patients as well. 

Therefore, it is reasonable to assume that circulating clonotypic B cell populations represent MM stem 

cells, and that the relative resistance of such cells to chemotherapy leads to relapse following 

chemotherapy and SCT. On the other hand, some earlier studies have suggested that cells with properties 

of MM stem cells reside within malignant plasma cell fraction (105). Yaccoby and Epstein (106) used a 

model of humanized SCID mice (SCID-hu) with human bone implant and sorted plasma cells based on their 

CD38++CD45- phenotype from the BM and blood of MM patients. Interestingly, they showed that only 

plasma cells could engraft into the human bone implant and produce xenogenic myeloma in recipient 

animals. In contrast, the remaining fractions, regardless of B lymphocyte content, did not produce MM. 

Moreover, the circulating plasma cells obtained from human blood appeared to grow more avidly in the 

SCID-hu hosts compared with their bone marrow counterparts. This suggests that these cells represent a 

subpopulation of the plasma cells in the bone marrow. Importantly, the MM plasma cells could engraft only 

human bone implants, not murine organs. They also could disseminate the disease to another implant, 

meaning that a fraction of them circulated within the murine model. These results have been argued by 

Matsui et al., since they reached the opposite conclusion, suggesting that the human BM environment used 

in the SCID-hu model could selectively enhance the proliferation of a more differentiated plasma cell 

fraction, as it does in the AML blast cell population. If this were the case, then the methodology of Yaccoby 

and Epstein would not provide reliable data for determining the MM stem cell phenotype. 

The similarities between normal adult stem cells and myeloma cancer stem cells suggest that 

specific signaling pathways conserved between these cell types can serve as therapeutic targets. For 

instance, highly conserved signaling pathways are required for axial patterning during embryonic 



development, such as Notch, Wnt, and Hedgehog. Accumulating data have demonstrated that these 

pathways play a role in regulating normal stem cells and the pathogenesis of a wide variety of human 

cancers, including multiple myeloma. Recently, a role for these developmental pathways in regulating 

cancer stem cells has begun to emerge. Aberrant activation of Hedgehog signaling has been identified in 

multiple myeloma and may have distinct biologic effects on plasma cells or stem cells (116). Within plasma 

cells, this pathway primarily mediates survival similar to a number of other signal transduction pathways. In 

contrast, the Hedgehog signaling pathway appears to regulate the fate decisions of myeloma cancer stem 

cells. Pathway activation by ligand results in the expansion of immature myeloma cells, whereas the 

inhibition of signaling utilizing a ligand-neutralizing monoclonal antibody or antagonists of the positive 

mediator of pathway signaling, smoothened, induces plasma cell differentiation. 

 

Fig. 6 B cells during development from MGUS to MM 

 

3.3 THE CLINICAL TRANSLATION OF MULTIPLE MYELOMA STEM CELLS HYPOTHESIS 

A major challenge in translating the cancer stem-cell hypothesis will be evaluating the efficacy of 

novel therapeutic strategies generated from basic studies of clonogenic myeloma cells. Traditional 

measures of response have relied on the serial measurement of serum and urine M proteins and bone 

marrow plasmacytosis, and these criteria have evolved over time as investigators have sought to more 

stringently define complete remissions based on the belief that the total disappearance of detectable 

tumor burden correlates with overall survival benefit. In the initial WHO criteria, complete remissions were 

defined by resolution of the serum or urine M protein. A negative immunofixation test was subsequently 

added by the European Group for Blood and Marrow Transplantation to the criteria required to achieve a 

complete remission followed by normalization of the serum free light chain assay and absence of clonal 



plasma cells by immunohistochemistry in the recently proposed uniform response criteria (118,119). 

However, neither the magnitude nor the kinetics of the response have been shown to impact overall 

survival, although the use of molecular techniques to define prognostic patient categories may identify 

subsets of patients in which this relationship holds true (120,121). These parameters are not likely to be 

helpful in assessing early changes in myeloma stem cells since they evaluate changes in the burden of 

malignant plasma cells. Therefore, the best indicators of response to multiple myeloma stem-cell–targeted 

approaches at present may be progression-free and overall survival, but these end points have typically 

required large numbers of patients and prolonged periods of follow-up.  New trial designs that incorporate 

novel end points will be needed to study myeloma stem-cell–targeted therapies. One potential strategy is 

to incorporate these approaches with existing therapies to determine whether they prevent tumor re-

growth and prolong the duration of remissions after cytoreduction with chemotherapeutic or novel agents. 

This approach could be studied in a randomized phase II design comparing the primary end point of 

response duration between patients receiving induction therapy alone with those additionally administered 

a myeloma stem-cell–directed therapy. The demonstration of a significant difference in conjunction with 

evidence for the specificity of these approaches would lend support to the clinical importance of 

eradicating myeloma stem cells. Thus, a secondary end point could be correlative laboratory studies 

directly assessing multiple myeloma cancer stem cells that might include the use of serial clonogenic 

assays. Furthermore, the quantitative detection of circulating myeloma stem cells by flow cytometry 

utilizing combinations of surface antigen expression and functional stem-cell assays may be used to 

monitor cells during treatment. 

 

 

 

 

 

 

 

 

 

 

 

 

 



4. HEDGEHOG SIGNALLING 

4.1 HEDGEHOG SIGNALLING IN CANCER 

The orderly process of development depends upon well orchestrated signals. These signals 

transform a single cell into a complex multicellular organism. Incredibly, in spite of the complex end result, 

the  transformation retains few types of signals, including Wnt, Notch, transforming growth factor-b, 

fibroblast growth factor and Hedgehog (Hh). These secreted protein signals direct rearrangement of cells by 

motility and  adhesion changes, cell proliferation, epithelial-to-mesenchymal transitions and the cell fate 

determination. The processes used to build organs and tissues during development are highly relevant to 

cancer. Recent evidence suggests that tumors used normal developmental pathways for their own growth; 

by activating a single transduction signal, tumors can grow, recruit a blood supply and migrate adjacent 

tissues. Between others, Hh signaling contributes to normal organ development and the reawakened Hh 

cascade drives the initiation, growth, invasion and maintenance of tumors associated with these organ 

systems (122).  

Hh signaling was first described in the context of cell fate determination and patterning of the fruit 

fly, Drosophila melanogaster. The core components of the Hh pathway that were identified in Drosophila 

are conserved in mammals. The basic signaling cascade consists of a series of repressive interactions, with 

each protein holding the next in check, until the transcription of a still mostly unknown array of target 

genes is affected. In the absence of Hh pathway activity, these target genes are actively repressed. When 

secreted Hh binds to its receptor Patched (Ptc/PTCH), the inhibition of Smoothened (Smo/SMOH), a G-

protein-coupled receptor that activates downstream intracellular components of the pathway, by Ptc is 

relieved. The  transcription of target genes (including Ptc and Gli) is subsequently activated by the Gli family 

of transcription factors (Fig. 7) (124).  



 

Fig. 7 Hedgehog pathway: OFF and ON state 

 

The resultant genetic program forms and organizes many tissues and organ  systems during 

embryogenesis. The role Hh plays in the growth of tumors can be classified according to how the pathway 

is activated. These mechanisms include loss-of-function mutations in inhibitory proteins such as Ptc1, gain-

of-function mutations in positive regulators such as Smo and overexpression of the Hh ligands, leading to 

autocrine or paracrine activation of the pathway and renewal of cancer stem cells. Hh signaling was first 

linked to cancer when a mutation in PTCH, the gene encoding PATCHED1, was found to cause Gorlin 

syndrome, a rare genetic disorder characterized by tumor formation in the skin (basal cell carcinoma, BCC), 

cerebellum (medulloblastoma, MB) and soft tissue (rhabdomyosarcoma, RMS). Loss of one copy of PTCH is 

sufficient to cause the syndrome; germline mutation of both copies is presumed fatal based on mouse 

models. In the tumors, both copies of the gene are often inactivated. In the late 1990s, most sporadic BCCs 

were found to have hyperactivated Hh signaling. Subsequently, mutations in other Hh pathway 

components, including hyperactivating mutations of SMO and loss-of-function mutations in Suppressor of 

fused (SUFU), have been discovered in BCC. Activating Hh pathway mutations can cause sporadic MB. As is 

typical in other developmental pathways,  activating components of the pathway are potential proto-

oncogenes that promote tumor growth when overactive, whereas restraining components of the normal 

pathway are tumor suppressors that allow tumor growth if they are damaged.  

Following initial findings that the Hh pathway plays a role in rare cancers, aberrant Hh pathway 

activation has been observed in numerous other cancers. It has been speculated that Hh plays a role in 

tumors responsible for over a third of cancer deaths. Development provides a context for understanding 



tumorigenesis; as Hh signaling plays a different role in the formation of each tissue, the effect of abnormal 

Hh signaling might have different implications for each type of cancer. It is possible to classify tumors by 

when Hh becomes important for the neoplastic process.  

4.2 HEDGEHOG SIGNALLING IN MULTIPLE MYELOMA 

Recent findings has demonstrated that Hedgehog pathway was also involved in Multiple Myeloma 

disease. In particular, it has been showed  the hedgehog signaling regulated the maintenance of CD19+ 

CD138- cells isolated from MM cell lines and clinical BM samples. Hh stimulation was not required by 

terminally differentiated CD19-CD138+ plasma cells, however (116). The Hh ligand promoted expansion of 

MM stem cells without their differentiation. On the other hand, the Hh pathway blockade, although having 

little or no effect on malignant plasma cell growth, markedly inhibited clonal expansion, accompanied by 

terminal differentiation of purified MM stem cells.  

Hh signaling in multiple myeloma exacerbate its function by the inhibition of multiple myeloma CSC 

and the induction of terminal plasma cells differentiation of multiple myeloma CSC as indicated by the 

expression of CD138 (Fig. 8). Multiple modes of signaling seem to be active in multiple myeloma. 

Experimental data suggest that differentiated plasma cells can produce the ligand necessary for CSC 

survival and proliferation. Blocking signaling leads to CSC differentiation. Normal bone marrow stromal cells 

can also produce ligand and signal to myeloma cells to support their growth and survival. A possible role for 

tumor-to-stroma paracrine signaling may also take occur.  

 



 

Fig. 8 A,B: Hedgehog pathway inhibition. C: proposed model of activation of the signaling 

 

In contrast to these findings, the group of Blotta et al. (123) have published data that supporting a 

role of Hh pathway also in CD138+ PCs, and showed canonical as well as non canonical mechanisms leading 

to its activation in MM. They demonstrated that CD138+ PCs from MGUS patients have a significant up-

regulation of Hh-activating genes, such as Smo, Ptch1, and Gli2 compared with CD138+ PCs from healthy 

persons. This supports a role of Hh pathway in malignant transformation of PCs and in the pathogenesis of 

the precursor condition MGUS. In contrast, they observed a significant down-regulation of Hh-repressor 

genes, such as Ptch2 and Gli3 in MM PCs compared with their normal cellular counterpart. In addition, MM 

tumor cells overexpress Gli1/Gli2 and Ptch1, which is itself a Gli1 target gene, suggesting a Gli-dependent 

Hh activation. These data suggest that Hh activity may be induced in MM cells in a Smo-independent 

manner. Finally, they found a relatively reduced Hh-gene expression in MM cell lines and PCL, a more 

advanced and BM-independent disease, suggesting a critical role for stroma derived Hh signals consistent 

with a paracrine model of Hh pathway in MM. Despite the Hh-gene expression, Hh-protein analysis in MM 

cell lines revealed that Shh ligand is expressed at significant levels in both CD138+ as well as CD138- cells. 

The CD138- MM cell population probably also includes the side population, which is a CD138low 

subpopulation with stem cell properties. Matsui et al. have previously reported predominant effect and 

activity of Hh signaling in CD138- MM stem cells, although we observed that CD138+ cells are also 



susceptible to inhibition by NVP-LDE225. Various molecular explanations can be considered for this 

observation, including a lower level or differential expression of some Hh genes in CD138+ MM cells versus 

CD138low side population. Moreover, a wide spectrum of genetic alterations have been described in MM 

and are differently associated with MM disease initiation and progression; disease stage and previous 

treatment may also impact the biology of the cancer and hence Hh signaling in MM cells. Therefore, it is 

possible that MM represents a number of biologically distinct disease, each containing different initiating 

cells. These factors may all contribute to the reported differences. They did not find correlation between 

Shh expression and Hh responsiveness, suggesting the absence of link among expression level and 

functional activity; therefore, autocrine and/or paracrine mechanisms can both contribute to Hh activation. 

Importantly, MM cell lines strongly coexpress Ptch1 and Smo receptors, suggesting their potential Hh 

responsiveness. They confirmed Smo-dependent Hh signaling in MM using an Smo inhibitor 

NVPLDE225,16,17 which decreased MM cell viability in a range of 3-5 Min the majority of MM cell lines 

tested. This was associated with specific down-regulation of Gli1 and/or Ptch1, hallmarks of cell response to 

the Hh pathway. In the remaining MM cell lines, despite Smo expression, Gli1 and/or Ptch1 down-

regulation was not observed after treatment, suggesting lack of correlation between Smo expression level 

and functional protein activity. Importantly, in those MM cell lines not responding to Smo inhibitor, Gli1 

nuclear localization indicates that the Hh pathway is constitutively activated, suggesting that alternative, 

non canonical and Gli-dependent mechanisms may contribute to Hh signaling activation in MM. Therefore, 

the combination of Gli-modulating agents with Smo inhibitors may provide an alternative and more 

effective strategy for Hh inhibition. NVP-LDE225 similarly inhibited Gli1 nuclear translocation in MM cells 

with Smo-dependent Hh activity. Cytotoxicity of NVPLDE225 was also observed in primary MM cells, 

whereas no toxicity has been observed in PBMCs from healthy persons, suggesting a specific antitumor 

activity and a favorable therapeutic index. Finally, in vitro as well in vivo studies showed antitumor activity 

of NVPLDE225 in combination with bortezomib, demonstrating that NVP-LDE225 can potentiate the 

efficacy of well-established anti-MM agents. In conclusion, their findings suggest that both canonical (Smo-

dependent) and non canonical (Smo-independent) mechanisms are crucial regulators of Hh activation in 

MM cells. Canonical and noncanonical pathways probably work in parallel, with a possible crosstalk 

between them. Directed analyses of the non canonical Hh signaling as well as a better understanding of all 

the mechanisms contributing to the noncanonical Hh activation, such as genetic mutations, ciliary protein 

overexpression, crosstalk between Hh signaling and unrelated pathways, and MM-BMSCs interactions, are 

therefore needed (Fig. 9).  

 



 

Fig. 9 Crosstalk between HH signaling cells and HH responder cells 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



5. AIM OF THE STUDY 

Increasing data suggest that within an individual tumor, human cancers initiation, relapse, and 

progression might be driven by specific cell populations,. However, inconsistencies emerged in precisely 

defining the phenotypic markers that are reliably able to identify these “cancer stem cells” in nearly every 

human malignancy studied to date. In Multiple Myeloma, although plasma cells phenotypically characterize 

the disease, recent studies suggested that these cells lack significant proliferative capacity and instead, 

arise from clonogenic cells that resemble memory B cells.  

Aim of the study was to molecularly characterize the putative clone of Multiple Myeloma Stem 

Cells in order to identify specific alterations, like Copy Number Alterations and modulated expression of 

genes, which might unequivocally distinguish these type of cells in Multiple Myeloma environment. This 

might lead to better define whether these “initiating cells” might be as pathogenic as plasma cells, as well 

as whether they might contribute to Multiple Myeloma pathogenesis. 

To this aim, the following tasks have been considered: 

- Analysis of the in vitro clonogenic capacity of CD138- cells: flow cytometric analysis of the 

different cell subpopulations in MM cell lines, RPMI-8226 and NCI-H929. Enrichment of the 

CD138 negative population by depletions of the CD138 positive fraction. Plating of CD138 

negative and CD138 positive cells on methylcellulose and different concentrated media in order 

to evaluate the best growth conditions. Scoring of colonies. 

- Isolation of the putative Multiple Myeloma Stem Cells clone: enrichment of the different 

cell fractions from BM and PBL by means immunomagnetic beads. In particular, CD138 positive 

cells are separated by positive selection by using a specific antibody anti-CD138; subsequently, 

B cells are isolated by depletions of the uninterested populations by means a cocktail of 

antibodies directed versus all non-B cells (T cells, NK cells, monocytes, dendritic cells, 

granulocytes, platelets, and erythroid cells); finally, memory B cell fractions are enriched by 

positive selection by using specific antibodies anti-CD27. Flow-cytometric analysis pre and post 

separation are conducted in order to evaluate the purity of the selected cell fractions. 

- Analysis of the clonal relationships between immature and plasma cells: amplification of 

the VDJ rearrangement in the CD138 positive neoplastic clone by using a set of seven 

consensus primers derived from framework-1 region or six consensus primers derived from the 

IgH leader as forward primers, and a consensus primer derived from the joining region as the 

reverse primer. An approximately 300-bp band, corresponding to the VDJ gene rearrangement, 

is gel-purified and directly sequenced by traditional Sanger sequencing, using the VH primer 



corresponding to the VH family used in the VDJ rearrangement.  Identification of the CDRII and 

CDRIII regions and design of a couple of sequence-specific primers. Testing of the sequence-

specific primers on CD138 positive fractions and, then, in all the different cellular 

subpopulations of the same patient in order to track the clonal relationship. 

- Genomic characterization of Multiple Myeloma Stem cells: SNP Array analysis of Memory 

B cells and CD138 positive cells derived from BM and PBL of the same patient. Copy number 

analysis in order to evaluate specific alterations of Multiple Myeloma stem cells, like gains, 

losses or LOH, by direct comparison with a pool of blood samples from healthy individual. 

Aberrations included in genomic variants described in DGV – Database of Genomic variants are 

excluded in order to understand possible mechanisms strictly associated with the pathogenicity 

of these cells. 

- Analysis of the alterated pathways in Multiple Myeloma cellular subsets: Gene expression 

profiling of B cells and CD138 positive cells derived from MM patients.  In order to finely 

characterize the biology of the immature population, and to define the basic genetic 

characteristics that distinguish these two cell populations, the comparison need to be made 

with the normal counterpart of these cells. Analysis on the levels of expression of different 

mechanisms of self-renewal. Evaluation of the phenotype associated to the response to 

therapy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6. PATIENTS AND METHODS 

6.1 PATIENTS 

For the purposes of this project, B cells and B memory cells were obtained from BM and PBL 

samples of 133 patients which have been enrolled in different trials;  in particular. 92 out of 133 have been 

enrolled in the HOVON95-EMN02 trial, a randomized phase III study to compare Bortezomib, Melphalan, 

Prednisone (VMP) with high dose Melphalan followed by Bortezomib, Lenalidomide, Dexamethasone (VRD) 

consolidation and Lenalidomide maintenance in patients with newly diagnosed MM. Baseline 

characteristics of these 92 patients are resumed in the table below (Tab. 4).  

 

PATIENTS CHARACTERISTICS  EMN02 (n=92) 

Median age 72,6 

Sex, %   

Male 56 

Female 44 

ISS, %   

ISS 1 24 

ISS 2 52 

ISS 3 24 

Ig heavy chains, %   

IgG 82 

IgA 18 

IgD 0 

Ig light chains, %   

K 70 

L 1 

Not known 29 

Median β2-microglobulin, mg/L 4 

Median hemoglobin, g/dL 10,5 

Median Albumin, g/L 34 

Median creatinine, μM 96 

Median LDH, U/L 293 

Tab. 4 Baseline clinical characteristics of patients included in the study 

 

We aimed to study the MM immature cells in newly diagnosed patients and, to this purpose, we 

collected biologic material mainly at diagnosis but, whenever it has been possible, we also collected cell 



fractions obtained at different disease phases, as showed in Tab. 5, in order to get insight into the behavior 

of these immature cells during disease progression. 

 

CELL FRACTIONS SOURCE TOTAL 

DISEASE PHASE 

MGUS DIAGNOSIS 
COMPLETE 
REMISSION 

RELAPSE 

B CELLs BM 16 1 11 4 0 

B CELLs PBL 85 0 74 2 7 

B MEMORY CELLs  BM  23 3 11 0 9 

B MEMORY CELLs  PBL 48 3 36 0 9 

Tab. 5 Samples obtained during different disease phases 

In synthesis, B memory cell fractions were obtained both from the PBL (36) and the BM (11) 

collected from 47 patients at diagnosis. On the contrary, B cell fractions were isolated both from the BM 

(16 patients) and the PBL (85 patients). This, is mainly due to the poor amount of cells in the samples (B 

memory cells: <6% of total sample), confirmed by the flow citometry analysis. Indeed, for most samples we 

encountered a lot of difficulties in order to obtained enough cells to isolate good quality and quantity 

nucleic acids. . Moreover, whenever it has been possible, we aimed at characterized , the immature cells 

and the respective mature neoplastic clone obtained from the same patient, in order to enlighten every 

possible differences in their biology in the tumor framework. This has led to perform molecular analyses 

only in a small series of samples (Tab. 6). 

 

CELL FRACTIONS SOURCE 
TOTAL 
(pts) 

TOT CELLS (*106) 
SAMPLES AVAILABLE 
for molecular studies 

(>500.000 cells) 

DNA/RNA 
isolation 

B CELLs  BM 16 0,49 (0,07 - 1,1) 25% (4) 4 

B CELLs  PBL 85 1,21 (0,02 - 9) 40% (34) 15 

B MEMORY CELLs  BM  23 0,17 (0,03 - 0,87) 17% (4) 4 

B MEMORY CELLs  PBL 48 0,25 (0,02 - 1) 8% (4) 4 

Tab. 6 Samples characteristics 

In particular, we profiled by gene expression  B cells fractions of 14 patients; for 8 of them, we also 

performed the gene expression profile of the CD138+ neoplastic clone. To validate the results, an 

expression dataset obtained from 122 newly diagnosed MM patients (unpublished data), as well as data 

obtained from public repositories, have been used. SNP array experiments were performed on 4 patients at 

diagnosis; , in each patient, genomic aberrations of 4 cellular populations have been characterized, ie the 



CD138+neoplastic clone from BM and PBL and the CD138-19+27+ B memory cell clone from BM and PBL. 

Deletions and amplification were subsequently validated in a larger set of 94 138+ SNP array experiments. 

VDJ sequencing was performed on the 4 patients, already analyzed by SNP array. A complete list of the 

molecular analysis performed is resumed in the table below (Tab. 7). 

 

CELL FRACTIONS SOURCE 

MOLECULAR ANALYSIS 

GEP SNP VDJ sequencing 

B CELLs  BM / 6 / 

B CELLs  PBL 14 / / 

B MEMORY CELLS  BM  / 4 10 

B MEMORY CELLS  PBL / 4 10 

PLASMACELLS BM  131 94 10 

PLASMACELLS PBL / 4 10 

Tab. 7 Molecula analysis performer 

 

6.2 METHODS 

6.2.1 Sample collection and enrichment 

Bone marrow (BM) and peripheral blood (PBL) samples for molecular studies were obtained during 

standard diagnostic procedures. Written informed consent was obtained from each patient. Plasmacells 

were purified from mononuclear BM and PBL cells obtained by Ficoll-Hypaque density gradient 

centrifugation using anti-CD138 micro beads on an AutoMacs Magnetic Cell Separator (MACS system, 

Miltenyi Biotec, Auburn, CA). Subsequently, we isolated B cells from CD138- cell fractions by means a 

cocktail of antibodies that depletes all non-B cells. Non-B cells (T cells, NK cells, monocytes, dendritic cells, 

granulocytes, platelets, and erythroid cells) were labeled with a cocktail of biotinylated CD2, CD14, CD16, 

CD36, CD43, and CD235a (glycophorin A) antibodies. These cells were subsequently magnetically labeled 

with Anti-Biotin MicroBeads for depletion. Highly pure B cells have been obtained by depletion of 

magnetically labeled non-B cells. From B cells enriched fraction we then isolated by positive selection the B 

memory populations by means anti-CD27 micro beads. All the cell fractions isolated were then stored at 

−80 °C in guanidium thiocyanate, until use (Miltenyi Biotech).  

 

 

 



2.2 Immunophenotypic evaluation 

The purity of positively selected plasma cells was assessed by flow cytometry and was ≥90 % in all 

cases. Moreover, we assessed the absence of any CD138+ cell in the negative fractions and we evaluate the 

presence of CD19 and CD27 markers before and after separation (Miltenyi Biotech). 

 

 

Fig. 10 Immunophenotypic evaluation pre- and post-separation 

 

6.2.3 Nucleic acids isolation 

Total DNA was obtained from each sample by Maxwell 16 LEV Blood DNA kit (Promega).Total RNA 

was obtained from each sample by the RNeasy® kit (Qiagen, Valencia, CA) extraction procedure: the 

RNeasy® Mini kit was used for more than 5×105 cells, the RNeasy® Micro kit for less than 5×105 cells. To 

measure concentration and purity of RNA, a NanoDrop ND-1000 spectrophotometer was used (NanoDrop 

Technologies, Wilmington, DE), which require only 1 μL of undiluted sample for assessment of 

concentration; purity of the extracted RNA was based on the 260/280 and the 260/230 O.D. ratios, as 

calculated and displayed by the NanoDrop spectrophotometer.  

6.2.4 Clonogenic assay 

Clonogenic assay were conducted as described in Matsui et al. (125). We used RPMI-8226 and NCI-

H929 cell lines (DSMZ, Germany); clonogenic growth was evaluated by plating cells (1000 cells/mL for cell 

lines or 1x105 to 5x105 cells/mL for clinical specimens) in 1 mL 1.2% methylcellulose, 30% bovine serum 

albumin (BSA), 10_4 M 2-mercaptoethanol, and 2 mM L-glutamine. Methylcellulose cultures assessing 

clinical MM growth also contained 10% lymphocyte conditioned media as a source of growth factors. 



Samples were plated in quadruplicate onto 35-mm2 tissue culture dishes and incubated at 37°C and 5% 

CO2. Colonies consisting of more than 40 cells were scored at 7 days for cell lines and 14 to 21 days for MM 

colonies from clinical samples.  

6.2.5 Qualitative analysis of immunoglobulin gene rearrangement 

VDJs were amplified, starting from genomic DNA or total cDNA, depending on sample availability. 

Briefly, 1 mg of genomic DNA or 1 mL of total cDNA (1/50th of the RT reaction) was amplified using a set of 

seven consensus primers derived from framework-1 region or six consensus primers derived from the IgH 

leader as forward primers, and a consensus primer derived from the joining region as the reverse primer 

(126). The reaction was carried out for 30 cycles (denaturation at 94°C for 30 seconds, annealing at 61°C for 

40 seconds, and extension at 72°C for 50 seconds), with a final extension of 7 minutes. PCR products were 

analyzed by electrophoresis on 3% agarose gel. An approximately 300-bp band, corresponding to the VDJ 

gene rearrangement, was gel-purified and directly sequenced by traditional Sanger sequencing, using the 

VH primer corresponding to the VH family used in the VDJ rearrangement. Sequencing analysis was 

performed using the FASTA program at the European Molecular Biology Laboratory Web site 

(www2.ebi.ac.uk/fasta3/). CDRII and CDRIII regions were identified and a couple of sequence-specific 

primers was designed (forward on CDRII and reverse on the CDRIII region). Primers were purchased by 

PRIMM. First, primers were tested on the CD138+ neoplastic clone and, then, we repeated the same PCR 

reactions including the cDNA of all the different cellular populations. The amplification products were 

checked by electrophoresis on 3% agarose gel. 

6.2.6 SNP array  

SNP Array procedure was performed in all the samples in which sufficient and high quality DNA was 

obtained. In particular, a total of 500 ng was the minimum amount of DNA required to conduct the analysis. 

Total genomic DNA (500 ng; 250 ng each enzyme) was digested with Nsp I and Sty I restriction enzymes and 

ligated to adaptors that recognize the cohesive 4 bp overhangs. All fragments resulting from restriction 

enzyme digestion, regardless of size, were substrates for adaptor ligation. A generic primer that recognizes 

the adaptor sequence was used to amplify adaptor-ligated DNA fragments. PCR conditions were optimized 

to preferentially amplify fragments in the 200 to 1,100 bp size range. PCR amplification products for each 

restriction enzyme digest were combined and purified using magnetic beads. The amplified DNA, if we 

obtained a minimum of 450 ng/μl, was then fragmented, labeled and hybridized to the array. The Genome-

Wide Human SNP Array 6.0 contains more than 906,600 single nucleotide polymorphisms (SNPs) and more 

than 946,000 probes for the detection of copy number variation. SNPs on the array are present on 200 to 

1,100 base pairs (bp) Nsp I or Sty I digested fragments in the human genome, and were amplified using the 

Genome-Wide Human SNP Nsp/Sty Assay Kit 5.0/6.0. SNPs on the SNP Array 6.0 were screened in more 



than 500 distinct samples, including 270 HapMap samples and separate diversity samples. Approximately 

482,000 SNPs were derived from the previous-generation Mapping 500K and SNP 5.0 Arrays. The remaining 

424,000 SNPs included tag SNP markers derived from the International HapMap Project. These novel 

markers have better representation of SNPs on chromosomes X and Y, mitochondrial SNPs, SNPs in 

recombination hotspots, and new SNPs added to the dbSNP database after completion of the GeneChip® 

Human Mapping 500K Array Set. This array contains a total of 946,000 non-polymorphic copy number 

probes. These probes—744,000 originally selected for their spacing and 202,000 selected based on known 

copy number changes reported in the Toronto Database of Genomic Variants (DGV)—enable to detect de 

novo copy number changes and perform association studies by genotyping both SNP and known copy 

number polymorphism (CNP) loci (as reported by McCarroll, et al.). The median inter-marker distance over 

all 1.8 million SNP and copy number markers combined is less than 700 bases. 

6.2.7 Gene expression profiling 

To perform the gene expression profile experiments the GeneChip® 3’ IVT Express Kit has been 

used, according to the manifacturer’s instructions; briefly, the method is based upon linear RNA 

amplification and employs T7 in vitro transcription technology. The total RNA was reverse transcribed to 

synthesize first-strand cDNA. This cDNA was then converted into a double-stranded DNA template for 

transcription. In vitro transcription synthesized aRNA and incorporated a biotin-coniugated nucleotide 

(cRNA is also known as amplified RNA or aRNA). The aRNA was then purified to remove unincorporated 

NTPs, salts, enzymes, and inorganic phosphate. Fragmentation of the biotin-labeled aRNA prepared the 

sample for hybridization onto GeneChip 3’ expression arrays. The GeneChip® Human Genome U133 Plus 

2.0 Array (HG-U133 Plus 2.0 Array) analyzes the relative expression level of more than 47,000 transcripts 

and variants, including more than 38,500 well characterized genes and UniGenes. Moreover, offers an 

additional 9,900 probe sets, representing approximately 6,500 new genes, compared to the previous 

generation HG-U133 Set. Comprised of more than 54,000 probe sets and 1,300,000 distinct oligonucleotide 

features. 

6.2.8 Data analysis 

SNP array results were processed by ChAS (Chromosome Analysis Suite 2.0, Affymetrix)in order to 

evaluate the copy number alterations in each sample. The software use an optimal reference that  includes 

380 microarrays which were run as part of a larger set of microarrays by nine operators processing  at least 

48 unique samples in two rounds each, with randomization of the placement of sample DNAs across the 

PCR plates and randomization of the reagents and instruments used. The source DNA includes: 



- 284 HapMap samples including at least one replicate of each of 270 HapMap 

samples: 90 from each of the Yoruban, Asian, and Caucasian ethnic groups, from cell-line 

derived DNAs from the Coriell Institute of Medical Research; 

- 96 DNA samples from blood of phenotypically healthy male and female individuals 

obtained from BioServe Biotechnologies. 

The biologic interpretation of CNAs was attained by using Panther analysis. 

In order to analyze the gene expression data, the CEL files corresponding to both the B and the 

CD138+ cells have been downloaded at http://www.ncbi.nlm.nih.gov (GEO, Gene Expression Omnibus; 

accession number: GSE12453, Brune V et al, J Exp Med 2008 (128) and were directly compared to their 

neoplastic counterparts, by means of Partek Genomic® software. All samples were normalized and 

analyzed using the bioconductor function for Robust Multi-Array Analysis (129), in which perfect match 

intensities were background adjusted and normalized by means of quantile-quantile normalization. 

Differentially expressed genes were then analyzed by means of GeneGo® software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7. RESULTS 

7.1 CLONOGENIC CELLS RESIDES IN THE CD138- COMPARTMENT 

Recent studies suggested that both human and murine MM cell lines are able to heterogeneously 

express several MM-related cell surface antigens, in particular syndecan-1 CD138 antigen. Therefore, we 

analyzed the expression of CD138 in 2 distinct human MM cell lines, RPMI 8226 and NCI-H929. As expected, 

the majority of cells in both lines expressed high levels of CD138; however, distinguishable CD138- cells 

populations, representing approximately 2% to 6% of total cells, respectively, can be identified in both 

analyzed cell lines (Fig. 11).  

 

 

Fig. 11 Flow citometry analysis on MM cell lines 

 

To evaluate the clonogenic capacity of these subpopulations, the CD138+ and CD138- cells fractions 

have been enriched from both cell lines, by means immunomagnetic beads and a methylcellulose colony 

formation assay was set up for each subpopulation. We set up the best conditions for CD138- growth, 

represented by methylcellulose with growth factors-enriched conditioned media (Fig. 12). Interestingly, 

after 2 weeks culture, the number of colonies grown from the CD138- plated cells was higher, as compared 

to that obtained from the CD138+ cells (4 vs 1).These data, even if preliminary, suggest that CD138- cells 

hold an higher clonogenic potential, as compared to CD138+ cells; to validate this hypothesis it could be 

important to evaluate a) whether these immature cell fraction might actually include the MM cancer stem 



cells and b) which were the possible mechanisms, allowing the maintenance and persistence of this side 

population during MM disease. 

 

          Fig. 12 Colonies observed in different growth conditions 

 

7.2 VDJ REARRANGEMENT IS RESTRICTED TO MEMORY B CELL CLONES BUT NOT IN AN EXCLUSIVE 

WAY 

To identify the VH family used in the patient-specific VDJ gene rearrangement, the VDJ regions of 4 

MM patients were amplified either with a set of seven VH family-specific primers, together with a JH-

consensus primer. We have been able to obtain the VDJ patient-specific rearrangement only 10 out of 18 

patients, due to the lack of suitable samples; the direct sequencing of the amplified rearrangements 

allowed to identify the monoclonal VDJ rearrangement in 4 patients, whereas 6 patients gave rise to 

polyclonal PCR bands. Patients’ specific primers were designed over the CDR2 (forward) and the CDR3 

(reverse) regions; the sensitivity and specificity of our assay was tested as previously described.  

The patients’ specific VDJ amplification, performed for each patients on the different isolated cell 

fractions showed that the same rearrangement was present in the CD138+ cells, obtained both from BM 

and PBL. The same patient-specific primers were tested also on the B memory cells obtained from the same 

patients, in order to evaluate whether these cells might be clonally related to the neoplastic clone, thus 

showing that the immature cell populations and the neoplastic clone shared the same rearrangement , in 



the circulating as well as in the bone marrow cell fractions. Consistent with previous report (101-102), the 

same rearrangement was observed also in the CD138-19+27- cells that we used as a negative control, 

fading away the hypothesis that the specific VDJ rearrangement was exclusively owned by the CD138+ 

neoplastic clone and the putative stem cell clone (Fig. 13).  

 

 

                  Fig. 13 VDJ rearrangement analysis on different cell fractions 

 

7.3 MOLECULAR CHARACTERISTICS ASSOCIATED TO MULTIPLE MYELOMA HETEROGENEITY: A COPY 

NUMBER ANALYSIS 

7.3.1 Genomic instability of the neoplastic mature clone 

Whereas to date the genomic instability, which characterize the MM plasma cells, has extensively 

been described, very few data are available regarding the molecular landscape of the CD138 negative cell 

compartment, where presumably the putative MM cancer stem cells resides.  

To explore these issues, we analyzed the genomic profile of 4 different cell populations (the 

CD138+ cells from BM and PBL, and the CD138-19+27+ cells from BM and PBL) obtained from 4 different 

newly diagnosed patients, by using  a high throughput technology for genomic analysis, as a SNP array. This 

small series of samples was intended as “training set”, and the observed molecular aberrations were 

subsequently monitored in a larger series of 90 CD138+ SNP array-profiled samples.. 

We first observed that, in all analyzed patients, the CD138+ neoplastic clone was characterized by 

an extended genomic instability, proven by the presence of several macroalterations. Due to the small 

number of analyzed samples, we were not able to perform a statistical analysis;  the complete set of 

macroalterations is resumed in the following table (Tab. 8) 



 

PATIENTS n. SNP CELLS CNAs 

1 197 

CD138+ 
BM 

Del1p, Amp3, monosomy chr4, del8p, Del10p 

2 105 Hyperdiploidy of chr 5,7,9,11,19, Del16q 

3 193 Amp1q, Amp19p 

4 149 Del1p, Amp1q, Del6q, Del12p, Del13q, Del14q 

Tab. 8 Set of macroalterations observed in CD138+ cells 

 

Interestingly, we showed that all the macroalterations observed in the CD138+ cells obtained from 

BM were shared also by the circulating CD138+ cell fractions,, as shown by the karyoviews displayed in the 

figure below (Fig. 14). 

 

Fig. 14 Karyoview of CD138+ from BM and PBL of one selected patient 



7.3.2.Inside the genome of Multiple Myeloma Stem Cells 

The genomic background of the putative stem cells clone was as well evaluated by copy number 

alterations analysis. Notably, B memory cell clones lack any previously reported macroalterations, whereas 

they carry an extended number of microalterations, as shown in the carioviews displayed in figure (Fig. 15). 

 

 

Fig. 15 Karyoview of CD138-19+27+ from BM and PBL of one selected patient 

 

7.3.2.1 Microdeletion on chromosome 14 

Among the numerous microalterations observed in the CD13-19+27+ cells, we first focused on that 

observed on the telomeric region of the chromosome 14 q arm. This chromosome 14 region is known to 

play a crucial role in MM pathogenesis, since it carries the IgH locus, which is known to be involved in most 

primary translocations, as t(4;14), t(11;14), t(16;14) and t(6;14).  

In any analyzed B memory cell fraction, we observed the presence of a microdeletion on chr 

14q32.33 (minimal deleted region = 410 Kb, see table 9), which includes the following 5 genes:  



 JAG2, a Notch pathway’s ligand, critical for self-renewal of myeloma cells; 

 BRF1, which encodes one of the three subunits of the RNA polymerase III 

transcription factor complex; this complex plays a central role in transcription initiation, 

regulates ES cells development and acts as tumor suppressor; 

 PACS2, which is involved in trafficking acid cluster-containing ion channels to 

distinct subcellular compartments; it has a propapoptotic rôle and its knockdown increased 

clonogenic cell survival; 

 NUDT14, an UDP-glucose pyrophosphatases, overexpressed in tumors; 

 BTBD6, a cytoplasmatic mRNA processing body. 

 

Chromosome 14  
Copy Number lenght markers CN state SNP CNV 

Deletion 414 224 1 53 171 

Tab. 9 Microdeletion on chromosome 14q32.33 

Similarly, a deleted region on chromosome 14 was also observed in the corresponding CD138+ cell fraction 

obtained from the same patient, even if the extension of the deletion either is higher or regards the whole 

chromosome 14 q arm. Moreover, the CD138+ cells of 2 out of the 4 analyzed patients carry also an IgH 

translocation (patients n.4: t(4;14); patient n. 3: t(11;14)), as evaluated by FISH analysis. 

Of note, the transcriptional down-regulation of the genes located within the microdeletion was observed, 

by analyzing the gene expression data. 

Interestingly, a microdeletion on 14q32.33 has been previously associated with a pediatric syndrome (135), 

suggesting that the deletion extension might lead to different developmental disorder and mental retard 

(136). 

 

7.3.2.2 Microalterations: losses and amplifications 

A series of microalterations have been observed exclusively in the B memory clone: an average of 

32 amplifications and 16 losses were observed for any given analyzed sample, whose dimensions span 

between 81 and 122 Kb, for amplifications and losses respectively. Each alterations were well represented 

by an average of 50 marker per region (Tab. 10). 

VARIATION  NUMBER  DIMENSION (Kb)  MARKERS  

AMPLIFICATION  32 122 60 

LOSS  16 81 40 

Tab. 10 Microalterations of Multiple Myeloma stem cells 



A list of genes affected either by losses (a total of 17) or amplifications (a total of 46) was obtained 

by excluding all affected regions described in the DGV (Database of Genomic Variant, Toronto) (Tab 11); 

these genes are presumably most related to MM pathogenesis. 

 

LOSS AMPLIFICATION 

AKT3  ADCY2  MPPED1  TTTY3 

AMY2A  BACE2  MUC16  UGT2B17  

AUTS2  CASP7 MYOD1  UNC5B  

ERBB4  CDY1  NBPF1 WNT4  

ETS1  CFHR3  NETO1  WWOX  

FAM90A7P  CHST1  PCBP3  XIAP 

GLIS3  CLIC5  PDGFRA KANSL1  

LCE1E  CPA6  PPFIBP2  KCNC1  

LIG1  DAB2IP  PPYR1  KRAS 

MACROD2  DYSF  PRSS2  KRT6A  

MCPH1  ECE1  RBFOX1  LMO1  

MGAM  EPHB1 RXFP3 MASP1  

MRGPRX1  FAM72B  SIRPB1 TENM2  

PDXDC1 GALNT2  SLIT1  TGIF2LX  

PKNOX2  GSTM2  STRA6   

POTEG  IRX1      

RGS13  JAK1      

Tab. 11 Genes involved in microalterations 

 

The Panther analysis tool was used to explore the biologic significance of genes included in the 

above mentioned list and already described as being involved in cancer development, thus showing that 

deleted genes are mainly involved in DNA repair mechanisms and in the transcriptional regulation, whereas 

amplified genes are mainly involved in the negative regulation of apoptosis and in the angiogenesis (Fig. 

16).  

 



 

Fig. 16 Biological processes affected by microalterations 

 

In particular, genes included in the list comprise XIAP, WWOX and KRAS, which have been already 

described as being involved in MM pathogenesis. XIAP is the best characterized and the most potent direct 

endogenous caspase inhibitor, and is considered a key actor in the control of apoptotic threshold in cancer 

cells. Importantly, it has been shown that XIAP knockdown by RNA interference enhances drug sensitivity 

and decreases tumor formation in NOD/SCID mice (131). WWOX is a well known tumor suppressor gene 

involved in apoptosis. In MM, numerous studies confirmed that alterations, and in particular del(16q), is 

important to determining the clinical outcome of MM patients; furthermore, the gene spans in the FRA16D 

chromosomal fragile site that have been proposed to have a determining role in cancer-associated DNA 

instability . This is consistent with a protective role for normal WWOX gene, where aberrant expression, as 

a result of breakage at the associated fragile site, could contribute directly to cancer progression (132-133). 

Finally, KRAS is a Kirsten ras oncogene homolog from the mammalian ras gene family, and encodes a 

protein that is a member of the small GTPase superfamily. Its role in MM is well known, because a single 

amino acid substitution is responsible for a frequently detected activating mutation. Indeed, NRAS and/or 

KRAS mutations were found in 54.5% of MM at diagnosis, and in 81% at the time of relapse, justifying thei 

important function in MM disease (134). 

 

 



7.3.2.3 LOH regions 

Besides the presence of deletions and amplifications, the copy number analysis of SNP data 

highlighted the presence of Loss Of Heterozigosity (LOH) regions, as well. LOH is a common occurrence in 

cancer, where it indicates the absence of a functional tumor suppressor gene (TS) in the lost region. 

Although most people remain healthy with such a loss, since one functional gene is functional, on the not 

affected chromosome , nevertheless the remaining copy of the tumor suppressor gene might be 

inactivated, e.g. by a point mutation, thus leaving any tumor suppressor gene to protect the normal 

functionality of the genome.  

We showed that each patient is characterized in the B memory cell clones by an average of 65 LOH 

regions whose dimension is higher than 1 Mb, containing an average number of 257 markers (Tab. 11). 

Interestingly, the LOH regions are shared by the B memory cell clone and the CD138+ neoplastic clone. 

 

VARIATION  NUMBER  DIMENSION   MARKERS  

LOH  65 >1 Mb  257 

Tab. 11 LOH regions in Multiple Myeloma stem cells 

  

The Tumor Suppressor Gene Database (TSgene) analysis tool was employed to investigate the TS 

gene which might be included in these regions;  we set up a list of 106 TS genes already known to be 

involved in MM and in other hematological malignancies. The list includes 23 TS gene already described in 

MM pathogenesis, 30 TS gene already described in leukemia pathogenesis, 10 TS gene already described in 

chronic lymphocytic leukemia pathogenesis, 7 TS gene already described in chronic myeloid leukemia 

pathogenesis and 36 TS gene already described in lymphoma pathogenesis. Of the TS genes included in the 

above-mentioned list, 8 were located in the LOH regions described in the group of samples analyzed here; 

of these, CDKN2C, and TP53 are known to be included in cytoband frequently affected by deletions in MM 

disease and are known to be associated to poor prognosis (Tab. 12). 

Data overall suggest the relevance of LOH regions in MM precursor cells, suggesting a possible 

involvement of particular TS genes in MM pathogenesis, whenever mutated or altered by epigenetic 

changes along the B cell development. 

 

 

http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Tumor_suppressor_gene
http://en.wikipedia.org/wiki/Point_mutation


TS Gene CHR 

CDKN2C 1p32 

RASSF1A 3p21.3 

TP53 17p13.1 

ST13 22q13.2 

NF1 17q11.2 

CEACAM1 19q13.2 

PPP2R4 9q34 

CTDSPL 3p21.3 

Tab. 12 TS genes in LOH regions 

 

7.4 ALTERATED PATHWAYS IN MULTIPLE MYELOMA CELLULAR SUBSETS: A GENE EXPRESSION 

ANALYSIS  

To analyze the transcriptome of the putative clone of MM initiating cells, gene expression profile 

experiments were performed on CD19+ B cells and the following comparison among gene profiles were 

analyzed: 

 MM B cells versus healthy donors B cells (8 vs 5 samples),  to obtain a fine characterization 

of  the immature population biology; 

 MM B cells versus CD138+ cells, obtained from the same patients (8 vs. 8 samples), to 

define the basic genetic characteristics distinguishing these two cell populations; 

 MM CD138+ cells vs healthy donors CD138+ cells (130 vs 5 samples), to identify the main 

altered pathways and to confirm already published data. 

We have not been able to perform the gene expression analysis of B memory cells, due to the low 

amount of cells/nucleic acids. We thus decided to analyze the B cell compartment, since the VDJ 

rearrangement analysis confirmed the clonal relationship between CD19+ cells and the neoplastic clone, 

7.4.1 The biology of MM circulating B cells 

We first compared the gene expression profiles of 11 MM B cells patients versus 5 healthy donors, 

to obtain a fine characterization of the immature population biology. An unsupervised hierarchical 

clustering was able to highlight the differential expression of 11,480 probes sets between the two 

compared groups (fold change: <-2;>2; FDR: 0,05; p-value: <0,05). A gene enrichment analysis identified the 

whole set of genes acting as transcription factors, receptors and secreted ligands in MM circulating B cells 



(Tab. 13). Three pathways, identifying the biology of MM precursor cells, were shown to be the most 

significative (p<0,05): the Wnt pathway, the Nf-kB pathway and the TGF-beta signaling. Whereas the 

predominant role of the Nf-kB pathway and the TGF-beta signaling might suggest the possible incipient role 

of inflammation processes in MM B cells, which might lead and contribute to disease progression, the 

deregulated expression of genes involved in the Wnt pathway might suggest a possible concomitant 

activation of other interacting pathways, involved in self-renewal processes. 

Transcription factors Receptors Secreted proteins 

Edges IN Edges OUT Edges IN Edges OUT Edges IN Edges OUT 

c-Jun Lef-1 
alpha-10/beta-1 

integrin 
alpha-10/beta-1 

integrin 
Fibronectin DKK1 

c-Myc SLUG 
alpha-2/beta-1 

integrin 
alpha-2/beta-1 

integrin 
WNT Laminin 1 

Fra-1 Tcf(Lef) 
alpha-3/beta-1 

integrin 
alpha-3/beta-1 

integrin 
WNT5A WNT 

ITF2 TCF7 (TCF1) CD44 LRP5 BAFF(TNFSF13B) WNT5A 

Lef-1 
TCF7L2 
(TCF4) 

LRP5 LRP6 IL-1 beta Angiopoietin 3 

MITF 
NF-

AT2(NFATC1) 
LRP6 BAFF-R IL-12 alpha APRIL(TNFSF13) 

NRSF NF-kB BAFF-R BCMA(TNFRSF17) IL-12 beta BAFF(TNFSF13B) 

PPAR-
beta(delta) 

NF-kB1 (p50) BCMA(TNFRSF17) TACI(TNFRSF13B) IL-6 ENA-78 

SLUG 
RelA (p65 

NF-kB 
subunit) 

CD21 TIE2 MIP-1-beta Epo 

Tcf(Lef) C/EBPalpha CD23 TLR4 TNF-alpha GRO-1 

TCF7 (TCF1) C/EBPbeta CD69 Epo receptor 

 

IL-8 

TCF7L2 
(TCF4) 

CREB1 CD86 LIF receptor 

 

LIF 

NF-
AT2(NFATC1) 

ER81 ICAM1 

  

TGF-beta 1 

NF-kB SMAD2 TACI(TNFRSF13B) 

  

VEGF-A 

NF-kB1 (p50) SMAD3 TIE2 

   RelA (p65 
NF-kB 

subunit) 
SMAD4 TLR4 

   c-Fos SP1 Epo receptor 

   C/EBPalpha 

 

LIF receptor 

   C/EBPbeta 

     CREB1 

     ER81 

     SMAD2 

     SMAD3 

     SMAD4 

     SP1 

     Tab. 13 Principal alterated pathways in MM B cells 

  



 

Fig. 17 Hierarchical clustering and PCA analysis of MM B cells vs normal B cells 

 

The hierarchical clustering of MM vs normal B cells highlighted the presence of two distinct subsets 

of samples, with slightly different transcriptional profiles (subtype 1 and subtype 2) (Fig. 17). In detail, the 

subtype 1 samples showed an elevated upregulation of the PKA signaling, which suggest a tight 

interconnection both with Nf-kB pathway and with TGF-beta signaling, as well as the involvement in the 

regulation of cell cycle, proliferation and cell survival. These preliminary data need to be more deepened in 

a larger series of samples, in order to understand the role of the differentially affected pathways shown 

here; nevertheless, data support the hypothesis that MM heterogeneity originates during the early 

development stages of B cell differentiation. 

7.4.2 Principal differences between B cells and CD138+ cells 

To define the basic genetic characteristics distinguishing B and CD138+ cells, we than compared the 

gene profiles of 8 MM B cells versus 8 MM CD138+ cells, obtained from paired samples. An unsupervised 

hierarchical clustering was able to discriminate the differential expression of 8,131 probes sets between the 

two groups (fold change: <-2;>2; FDR: 0,05; p-value: <0,05) (Fig. 19). The main affected pathways, 

modulated in B cells with respect to the CD138+ cells are those involved in the oxidative phosphorylation, 

the remodeling of cytoskeleton and mechanisms of cell adhesion. This might be related to the different 



environments, where are located the two types of cells : B cells circulate in the peripheral blood, whereas 

the plasma cells are confined to the bone marrow. Basically, plasma cells are more quiescent but also 

particularly activated in order to create connections with the hypoxic microenvironment, as suggested by 

the deregulations of the above-mentioned pathways. 

 

 

Fig. 18 Hierarchical clustering and PCA analysis of MM B cells vs MM plasma cells 

 

7.4.3 The Hedgehog pathway in MM circulating B cells 

The Hedgehog pathway role in the maintenance of myeloma stem cells in MM disease has been 

recently described by Matsui et al. (116). Our data regarding the comparison of B cells transcriptome 

obtained from MM and healthy donor samples showed a complete shut-off of the HH pathway in the MM B 

cells, supported by the significant downregulation of ligands and transcription factors involved in the 

pathway (Tab. 14). 

 



 

Tab. 14 HH gene expression in MM B cells 

 

We thus explored the possibility that alternative self-renewal mechanism might be active in this cell 

compartment, showing that Notch signaling resulted significantly iper-activated. Indeed, several genes, like 

NOTCH2 and JAG1, which are the receptor and the ligand of Notch pathway, respectively resulted over 

expressed. Similarly, we also observed the possible overexpression of Wnt signaling, due to the 

overexpression of β-catenin gene . (Tab. 15). 

 

 

 

Notch pathway genes log ratio p-value 

HES1 0,80 0,043694 

NUMB 1,87 1,14E-05 

NOTCH2 2,69 8,51E-09 

JAG1 0,16 0,195631 

DLL1 2,07 0,000377 

EP300 2,58 1,82E-07 

   



Wnt signalling genes log ratio p-value 

WNT6 1,11 0,004437 

LEF1 0,13 0,002848 

APC 1,64 0,000223 

DKK4 0,27 0,001617 

FZD1 0,14 1,52E-06 

CTNNB1 2,78 2,05E-06 

Tab. 15 Notch and Wnt signalling genes expression in MM B cells 

 

7.4.4 The Hedgehog pathway in CD138+ MM cells 

The role of HH pathway has been recently explored also in CD138+ mature plasma cells (123), 

showing that both canonical and non-canonical Hedgehog pathway participated in MM pathogenesis; the 

study demonstrated that Hedgehog pathway was strongly over-expressed in MGUS and in MM patients, 

whereas it resulted down-regulated in the more advanced and BM-independent phase of the disease, 

known as plasma cell leukemia. 

Our data, obtained from the comparison of the gene profiles of 122 newly diagnosed MM patients 

versus 5 healthy donors showed, on the contrary, that all principal ligands and transcription factors 

involved in Hedgehog pathway were down-regulated, whereas PTCH1 was over expressed, thus indeed 

confirming the shut-off state of HH pathway, since when PTCH1 is over expressed, SMO will be turned off 

and the pathways will be inactivated (Tab. 16). 

 



 

Tab. 16 HH gene expression in MM plasma cells 

 

7.4.5 Analysis of the phenotype associated to the resistance to therapy 

Recent evidences have gathered increasing attention on the CD138 negative compartment in MM 

patients, because it has been proposed that the resistance to therapy is intrinsic in this cell populations. 

Based on this studies, we explored if in B cells, as a precursors of the mature neoplastic clone, are 

characterized by a particular phenotype possibly associated with the resistance to therapy. Several genes 

possibly involved in mechanisms related to drug resistance have been shown to be deregulated, when 

comparing the gene profiles of MM versus healthy donors B cells. In particular, we examined the status of 

the endoplasmatic reticulum stress in our series of samples. Notably, IRE1α-XBP1 genes are affected by a 

significative down-regulation that presumably bring to an attenuation of the unfolded protein response. In 

the figure below, all the genes participating in the signaling are represented with the respective level of 

expression (Fig. 19). 

 



 

Fig. 19 The endoplasmatic reticulum stress response pathway 

 

Moreover, we investigated if there were other possible mechanisms that played in order to confer 

to this immature precursor a resistance phenotype. By focused our analysis on mechanisms of drug 

sensibility and resistance, we identified a series of genes which are strongly overexpressed. In particular, 

ABCA1, ABCC1, MDR1 and ABCG2 are known to be involved in the metabolism associated to drugs intake 

because they functioned as a membrane transporter or ion channels (Tab. 17). Their upregulation was also 

confirmed in the comparison of gene expression profiles between 8 MM B cells versus 8 MM CD138+ cells, 

as a demonstration that this gene signature is specific of MM B cells. 

 

 

 



GENES Signal p-value 

ABCA1 3,70 0,005556 

ABCC1 2,38 5,19E-05 

MDR1 16,68 1,08E-06 

ABCG2  4,55 0,006743 

Tab. 17 Genes associated to the resistance to therapy 

 

Our data suggested that the maturation status of MM heterogeneity is an important characteristic 

to be evaluated, because it may represent a common mechanism that possibly unifies a spectrum of 

genetic changes within MM tumors that escape theraupeutic pressures. Moreover, the inability of 

proteasome inhibitors to address these non-secretory tumor cell progenitors is mainly linked to the 

attenuation of the unfolded protein response, laying the groundwork for a possible introduction of IRE1α in 

MM treatment scenario. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



8. DISCUSSION 

Although so far Multiple Myeloma has been described as a neoplasm of the mature CD138 positive 

plasma cell , recent data have shed the light on the important role played also by the CD138 negative cells 

compartment . Indeed, over the last years the role of any different stage of B cell differentiation, starting 

from B cell to the complete differentiated plasma cell, has been highlighted, in contributing to the disease 

development and, most importantly, in representing a reservoir, which might reconstitute the neoplastic 

clone, throughout the clinical course of the disease. Moreover, in the wake of the cancer stem cell 

hypothesis, it has been postulated the existence of a cancer stem cell population also in Multiple Myeloma, 

which might resides in the CD138 negative compartment and might phenotipically resemble the memory B 

cells. Up to now, the role of these cells is however still unclear and it represents a point of controversy. 

The aim of this project has been to molecularly characterize the putative clone of Multiple 

Myeloma stem cells, in order to identify peculiar alterations, like Copy Number Alterations and modulated 

expression of genes, which might unequivocally identify these cells in the context of Multiple Myeloma 

microenvironment. 

To this purpose, we first evaluated the clonogenic potential of this cell compartment. Our results 

showed that the CD138- cell fraction obtained from two different Multiple Myeloma cell lines displayed a 

higher clonogenic potential, as compared to the CD138+ mature plasma cells; indeed, the number of 

colonies observed after two weeks of culture was higher in the CD138- as compared to the CD138+ plate. 

These data support the idea that the side myeloma-initiating cell population consist of B-lineage immature 

cells, lacking CD138 marker. Further analyses are required, in order to evaluate the ability of these colonies 

to recapitulate the tumor development, in terms of cells phenotype and activity.  Moreover, it will be 

important to test whether the clonogenic potential of CD138- cells will be maintained under the selective 

pressure of specific molecules, like self-renewal inhibitors. 

One of the hallmarks of the human B cell lineage consists in the ability to rearrange the germ-line 

immunoglobulin DNA to generate antibody diversity:  this represents an essential prerequisite for the 

production of a functional and efficient repertoire. While this mechanism is essential to prevent infections, 

it also represents the “Achilles heel” of the B cell lineage, occasionally leading to malignant transformation 

of these cells by translocation of proto-oncogenes into the immunoglobulin loci. 

The study of the configuration and rearrangements of the Ig gene locus has contributed extensively 

to our understanding of the natural history of myeloma. Indeed, immunoglobulin gene rearrangement 

molecular analysis is currently part of the routine clinical management, since  it represents one of the best 

methods to monitor high risk patients and to predict disease relapse. 

In order to evaluate the clonal relationships existing between the mature plasma cells and the 

immature clones, object of our study, we employed the IgH VDJ gene rearrangement as a patient-specific 



marker of clonality. This allowed to track the specific rearrangement between the various B cell 

differentiation stages that precede the mature plasma cells. 

We showed that the memory B cells and the terminally differentiated neoplastic plasma cells 

shared the same VDJ rearrangement; nevertheless, the same VDJ qualitative assay tested  on the CD27- 

negative fraction highlighted the presence of the same VDJ gene rearrangement observed in the other cell 

fractions, as well. Our data are in agree with previously reported ones and confirmed the clonal 

relationships existing between the quiescent plasma cells and the B memory clone; in addition to that, we 

also showed that the same VDJ rearrangement is shared between different stages of B cell differentiation. 

This need to be taken into account, when performing minimal residual disease analyses, since the cell 

population we track by means of the VDJ molecular marker is actually much more heterogeneous than 

what we have expected so far. Indeed, it might include not only the terminally differentiated plasma cells, 

but also more immature cells, which do not harbor the CD138 antigen, and which might temporarily 

precede the stage of established neoplasm. 

 

Once we have confirmed the restriction of clonogenic cells to the CD138- compartment, as well as 

the sharing of the same IgH VDJ patient-specific rearrangement of the neoplastic CD138+ clone, we 

projected to characterize the genomic and genetic background of 19+27- cells of the 138- compartment, by 

means of high-throughput technology, in order to highlight the presence of specific alterations, which 

might  contribute to the disease development and progression. 

To this purpose, for each patient included in the study, we compared the genomic profiles of the 

CD138+ cells andthe B memory cells, obtained either from BM or PBL. 

We first showed that the genomic complexity, that quite exclusively distinguish the bone marrow 

mature CD138+ plasma cells, is perfectly mirrored by the circulating CD138+ plasma cells. The presence of 

circulating CD138+ plasma cells, identical to the bone marrow CD138+ clonal cells might be related to the 

tumor spread typical of the more advanced disease phases; nevertheless, it is worth of note that since 

diagnosis, most MM patients do carry potentially pathogenic plasma cells in the peripheral blood; it cannot 

be excluded that these cells, while temporary preceding the CD138+ cells located in the bone marrow, are 

actually designated to “feed” the more mature neoplastic clone. 

Unlike mature CD138+ cells, memory B cells display a much more simple genomic landscape, 

where, any macroalterations can be detected, whereas several typical micro-alterations can be 

enumerated; this is actually expected, as being consistent with an immature state of these cells,   

Among others, the microdeletion located on the terminal portion of the long arm of chromosome 14 

seemed quite intriguing: indeed, it suggests that these immature cells already carry a chromosomal 

transforming event. Physiologically, normal cells tolerated continuous translocations that occurs in genome 

because they promptly activated mechanisms of DNA repairs. Thus, rare aberrant mutations and transloca-



tions that are capable of pushing a cell towards subsequent malignancy can be generated as a result of a 

normal physiological process. These rearrangements are tolerated because in most individuals they 

improve immune function and, as a consequence, the ability to reproduce and pass on genes to the next 

generation. Therefore, it seems that the price of an effective immune system protecting from infections 

throughout life is a background rate of B cell tumours and myeloma, particularly later in life. In this respect 

it is perhaps not surprising that in >3% of individuals over the age of 60 there is evidence of a clonal 

expansion of plasma cells in the form of MGUS3.. As myeloma is a cancer diffuse among  aged people, the 

finding that the micro deletion is present in memory B cells possibly proved the initial event of breakage of 

tolerance observed in the early phase of the disease.  

Overall, the analysis of the prevalent microalterations observed in memory B cells, either losses or 

amplifications, let suppose that these cells might be characterized by altered DNA repair and transcriptional 

regulation mechanisms, as well as negative regulation of apoptosis and angiogenesis. These data suggest 

that in this particular subset of cells, a complex series of events take place, which finally culminate in the 

well-established genomic complexity, usually observed in plasma cells. 

From this point of view, particularly interesting are the XIAP, WWOX and KRAS genes 

amplifications, since they have already been reported to be involved in the pathogenesis of myeloma; this 

again supports theidea that memory B cells do actually play an important role in the initiating events, 

leading to myeloma establishment.  

Finally, copy number analysis suggested also the involvement of tumor suppressor genes included 

in the observed LOH regions. The match between the presence of LOH regions in memory B cells and of an 

inactivated tumor suppressor gene in the CD138+ mature clone might finally demonstrate the mechanisms 

underlying myeloma pathogenesis, from B to plasma cells. Obviously, more studies in a larger series of 

samples are needed, in order to validate these preliminar results. 

Studies performed to analyze the gene profiles of the immature cells as compared to the mature 

clone confirmed the already observed differences between these two related compartments. 

We were able to show an early stratification of patients, according to their B cell transcriptome 

profiles; this suggests that the intrinsic heterogeneity typically observed in myeloma  takes place during the 

B cell lineage differentiation, quite earlier with respect to the final stage of mature plasma cell.  

 Recently it has been shown that the Hedgehog pathway is strongly involved in maintaining the stem 

cell population in Multiple Myeloma (116). This pathway is also known to be iperactivated in several solid 

tumors, as well as in hematological malignancies. Based on these findings, we focused on the identification 

of self-renewal pathways, which might be possibly related to the biology of the B cell subset. 

First, we showed an overall down regulation of Hedgehog pathway in myeloma immature B cells, as 

compared to B cells from healthy donors, ascribable to the down regulation of both ligands, receptors and 

transcription factors. Conversely, in these cells, the up regulation of Notch and Wnt signaling might be 



involved in  the proliferation processes, which  recapitulate the tumor evolution. These data need to be 

confirmed by in vitro assays, in order to evaluate the effective activation of these signaling at protein level; 

moreover it would be important to demonstrate also that the inhibition of these pathways is able to 

compromise the self-renewal of these cells. 

We then analyzed the gene profiles of the mature cell compartments, by comparing the 

transcriptome of CD138+ plasma cells obtained from MM patients and healthy donors. Indeed, it has been 

recently reported that Hedgehog signaling is activated in CD138+ plasma cells in different disease stages, 

starting from MGUS up to plasma cell leukemia, and that a decreasing gradient of expression of Hedgehog 

genes can be highlighted along the disease course. This suggests that this pathway might have a relevant 

role in malignant transformation and disease progression (123). Our results were in contrast with these 

findings, since all genes related to HH pathway resulted down regulated, whereas PTCH1, which is the 

receptor that activates SMO, resulted overexpressed, which finally confirms the overall off state of the 

pathway. We thus concluded that Hedgehog pathway seems to be not as much relevant in our context, as it 

has been previously reported, whereas both the activation of proliferation and the growth potential of 

myeloma B cells might be attributed to the up regulation of Notch and Wnt signaling, which are known to 

finally control the cell renewal and the cell fate in several biological contexts 

We finally tried to explain our results in the clinical context. Indeed, it has been recently shown that in 

Multiple Myeloma mechanism of resistance to therapy are mainly activated in the immature CD138- cell 

compartment (137). We thus looked for the expression at diagnosis of a particular “phenotype” possibly 

related to therapy resistance.  

The expression of genes involved in drug metabolism was evaluated in B cells, thus showing a 

significant over expression of genes known to played an important role in drug resistance, as ABCA1, 

ABCC1, MDR1 and ABCG2. In addition to that, also the IRE1α-XBP1 axis resulted attenuated, thus  

confirming the idea that the circulating myeloma B cells might be actually able to resist to the present 

treatment strategies employed for Multiple Myeloma therapy.  

 

 

 

 

 

 

 



9. CONCLUSIONS 

The study presented here represents the first attempt to delineate an extensive molecular 

characterization of Multiple Myeloma Stem cells. Specific genomic alterations have been highlighted in 

these immature cells, which might explain their specific role in the pathogenesis of myeloma. Gene 

expression analysis detected the over expression of both Notch and Wnt signaling, which might explain the 

ability of these cells to sustain the tumor; moreover, a peculiar phenotype of these cells was described, 

which might account for a general mechanism associated to the resistance to different therapeutic 

regimens. 

Based on these evidences, it seems increasingly important to not consider any more Multiple 

Myeloma as a disease of the fully mature CD138+ plasma cell; on the contrary more attention should be 

devoted to the CD138 negative compartment, since it actually might play an important role in the 

pathogenesis of myeloma. Indeed, our results showed that the well-known myeloma heterogeneity is not 

only restricted to the plasma cell compartment, but it also belongs to the more immature B cell 

compartment. 

These observations actually might be explained in the context of the recently proposed “clonal 

tide” theory of a clonal evolution of multiple myeloma. Indeed, it seems likely that each myeloma multiple 

genetic subclone - which respond to treatment with “clonal tides” modality – includes a range of 

progenitors that markedly contribute to intra-tumor diversity and to the ability of myeloma tumor to 

endure treatment. Since tumor progenitors might contribute to treatment failure in multiple myeloma, 

further investigations in a larger series of patients are warranted, in order to confirm our findings related to 

specific genomic alterations and molecular mechanisms active in multiple myeloma stem cells. This might 

drive to more specific therapies, targeted on the immature compartment, possibly able to produce a more 

durable control of the disease. 
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