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Abstract

This thesis is the result of a project aimed at the study of a crucial topic in finance:

default risk, whose measurement and modelling have achieved increasing relevance

in recent years. We investigate the main issues related to the default phenomenon,

under both a methodological and empirical perspective. The topics of default pre-

dictability and correlation are treated with a constant attention to the modelling

solutions and reviewing critically the literature. From the methodological point of

view, our analysis results in the proposal of a new class of models, called Poisson

Autoregression with Exogenous Covariates (PARX). The PARX models, including

both autoregressive end exogenous components, are able to capture the dynamics of

default count time series, characterized by persistence of shocks and slowly decaying

autocorrelation.

Application of different PARX models to the monthly default counts of US in-

dustrial firms in the period 1982-2011 allows an empirical insight of the defaults

dynamics and supports the identification of the main default predictors at an ag-

gregate level.
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Chapter 1

Introduction to Default Risk

This chapter explains how default risk can be defined and measured, motivating

the importance of deriving models for its analysis and prediction. After giving a

technical definition of the default event, we illustrate the main empirical evidences

in the corporate default phenomenon as well as two crucial topics related to their

interpretation - default predictability and correlation between corporate defaults.

The structure and the motivation of the thesis work is then presented and connected

to the economic and financial issues introduced.

1.1 Default risk: definition and measurement

Default risk is defined as the risk of loss from a counterparty failure to repay the owed

amount in terms of either principal or interests of a loan. Default is considered as the

most serious event related to credit risk, the last referring to the more comprehensive

case of a change in the current value of a credit exposure due to an expected variation

of the borrower solvency.

Banks and financial groups are highly involved in both corporate and retail default

risk and are required to adopt methodologies for quantifying such risk and thereby

determining the amount of capital necessary to support their business and to protect

themselves against volatility in the level of losses. The default risk management

is included in the Basel II regulation for the stability of the international banking

6



CHAPTER 1. INTRODUCTION TO DEFAULT RISK 7

system and comprises both general economic capital requirements and internal rating

procedures. A key aspect in default risk management is the measurement of the

Probability of Default, i.e. the probability that, following the definition given by the

Bank of International Settlements, with regard to a particular obligor either or both

of the two events have taken place:

• the bank considers that the obligor is unlikely to pay its credit obligations to
the banking group in full, without recourse by the bank to actions such as

realising securities (if held)

• the obligor is past due more than 90 days on any material credit obligation to
the banking group.

There are two main approaches to default risk modelling: the structural and the

reduced form approach. The first considers default as an endogenously determined

event which can be predicted by the economic and financial conditions of the com-

pany, reflected in its balance sheet data and market value. Therefore, structural

models study the evolution of structural firm variables such as the assets and debt

values in order to determine the probability and the timing of bankruptcy, thus ex-

plicitly relating default to the first time the assets fall below a certain level - the

default barrier - as an endogenously determined event. This approach was intro-

duced by the seminal work of Merton (1974), which first relies on the option pricing

theory for deriving the probability that the assets fall below the outstanding value of

debt. Merton model is based on treating the assets of a firm as a call option held by

the stockholders, whose price - the (known) market value - implies the probability of

default. This approach is then extended by abandoning some irrealistic assumptions,

such as the existence of a fixed default barrier given by the nominal total value of

debt. Black and Cox (1976) introduce a time-varying threshold defined as a fraction

of the nominal value of liabilities, as it is done by Leland (1994), which also considers

the fiscal aspects of bakruptcy decision. Leland and Toft (1996) first evaluate the

effects of the presence of coupons and of short-term debt roll-over. A recent devel-

opment by Agosto and Moretto (2012) determines the curvature parameter of the
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nonconstant default barrier by using firm-specific balance sheet and market data.

Moody’s KMV, the proprietary model used by the rating agency Moody’s for de-

termining the probability of default, is the most famous application of a structural

model and is based on the extension of the Merton model developed by Kealhofer,

McQuown and Vasicek in 1989.

In contrast to the structural approach, reduced-form models consider default

as an exogenously determined process and use immediately available market and

credit data - mainly forward rates, rating and price of the issued bonds - rather than

modelling the asset value dynamics. Jarrow and Turnbull (1995) and its development

Jarrow, Lando and Turnbull (1997), for example, define a model which explicitly

incorporates credit rating information into debt instruments pricing and can also be

used for risk management purposes as it allows to derive the probabilities of solvency

implied by credit spreads. An important class of reduced-form models is that of the

so called intensity models. They consider the default time as the stochastic first

jump time of a count process - Poisson in many cases - whose intensity is a function

of latent or observable variables. Their link to probability of default modelling is

clear if one thinks that the limit of the intensity of a count process, for a time period

approximating zero, is the probability of observing one event. The popularity of

intensity models has increased in recent years, as they allow for many econometric

applications based on the estimation of default intensity through risk factors and

business failure predictors. This approach is followed, for example, by Duffi e and

Singleton (1999) and Lando (1998) and, as we shall explain, can be effectively used

for considering relevant aspects such as dependence between corporate defaults.

Looking at the empirical measures of default risk, the data typically used in risk

management and published in rating agencies and financial institutions reports are:

• default rate: it is the most widely used measure of the default phenomenon
incidence, being defined as the number of defaulting companies in a certain

time period divided by the total number of debt issuers in the same period.

An alternative definition, that we do not consider here, is the value-weighted

default rate, which considers the incidence of defaults in terms of money loss;
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• default count : it is the number of failures in a certain time period (typically
a month). As we shall see, there are several reasons motivating the counting

approach to default risk modelling;

• firm-specific measures, such as distance-to-default : this is a volatility-adjusted
measure calculated and periodically published by Moody’s, resulting from the

application of the above mentioned KMV model. Following Crosbie and Bohn

(2002), it can be defined as “the number of asset value’s standard deviations

between the market asset value and the default point”.

Most of the works presented in the following are focused on default rates or

counts modelling and often use “ready-available”measures of firm-specific risk such

as distance-to-default.

1.2 The Default Clustering

Looking at the corporate defaults phenomenon under an aggregate perspective, the

most relevant aspect is the strong empirical evidence that corporate defaults cluster

in time: both default rates and counts show very high peaks, followed by periods of

low incidence. This is clear from Figure 1.1, showing the time series of US default

rates and counts among Moody’s rated industrial firms from 1982 to 2011.

The potentially strong impact of the default clusters on the investors and financial

institutions risk has increased the interest of the financial and econometric literature

in the two main issues related to the presence of default peaks: default predictability

and default correlation.

First, a central objective in risk management is finding macroeconomic variables

and financial indicators that are able to predict the peaks in the number of defaults, in

support of financial vigilance and central banks decisions. There are indeed many em-

pirical studies analyzing the strong time variation of default frequencies and linking

it to macroeconomic variables and business cycle indicators. This is done, amongst

others, by Shumway (2001) and Duffi e et al. (2007).
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Figure 1.1: (a) Monthly default count of Moody’s rated industrial firms from January

1982 to December 2011. (b) Monthly default rate of Moody’s rated industrial firms

from January 1982 to December 2011.

The interpretation of default clustering is also connected to the issue of cor-

relation, as a high number of defaults in a short period could also be caused by

commercial and financial links between the companies. The study of correlation

between corporate defaults is an essential tool of credit risk management at portfo-

lio level and its importance has increased in recent years for several reasons. First,

banks minimum capital requirements in the Basel II approach are function, among

the other things, of the borrowers joint default probability, measured by asset correl-

ation. Second, there has been a large growth of financial instruments like Collater-

alized Debt Obligations, whose cash flows depend explicitly on default frequency at

portfolio level. Furthermore, the evaluation of default probability at the level of an

individual security is not able to give an adequate explanation of credit risk spreads,

whose dynamics are influenced by commonality in corporate solvency.

The default clustering phenomenon has given rise to a debate about its pos-

sible explanation. An important question is whether cross-firm default correlation

associated with observable macroeconomic and financial factors affecting corporate

solvency is suffi cient to explain the observed degree of default clustering or it is
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possible to document contagion effects by which one firm’s default increases the like-

lihood of other firms defaulting. The “cascade”effect which seems to be generated

by defaults could spread by means of contractual relationships (customer-supplier or

borrower-creditor, for example) or through an “informational”channel, that means

a change in the agents expectations of corporate solvency. An increased uncertainty

on the credit market leading to a worsening in funding conditions, like credit crunch

or higher interest rates, can indeed influence the risk perception. Furthermore,

the default clusters could be linked to the systematic (aggregate) risk generated by

common macroeconomic and financial risk factors affecting firm solvency: this case

is usually excluded from the most strict definition of contagion, that refers instead

to between-firms effects on default timing. The works we are going to present in

the following chapter are related to default prediction and correlation, investigated

through models for aggregate or firm-specific data on default events.

1.3 Motivation and overview

The aim of this work is to study how default risk can be measured and modelled.

We contribute to the existing literature by defining, studying and applying a count

time series model for the number of corporate defaults, providing a good in- and

out-of-sample forecasting of default counts in an extended group of debt issuers.

Our model specification results from the analysis of the stylized facts of corporate

default count time series presented in this chapter. First of all, as it often happens for

rare events, the default phenomenon is characterized by overdispersion: the variance

of the number of events is much higher than its mean, leading to series showing both

peaks (“clusters”) and periods of low incidence. Moreover, the default count time

series are characterized by a slowly decreasing autocorrelation function, which is a

typical feature of long-memory processes.

We start, in Chapter 2, with a review of the main econometric and financial

models for default risk, with a final focus on intensity models applied to count time

series of corporate defaults.

We then present, in Chapter 3, the main models for count data used in econo-
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metrics, which rely on the theory of Generalized Linear Models. For several reasons

related to the empirical evidences in corporate default count time series, we focus

on conditional Poisson models, taking Poisson Autoregression by Fokianos, Rahbek

and Tjøstheim (2009) as our main reference. This model (reviewed in Section 3.6)

is based on the definition of the count process as a sequence of Poisson drawings

which are independent conditional on the past count history. The time-varying in-

tensity (i.e. the expected number of events at time t) is specified as a linear function

of lagged counts and intensities. This approach shares some similarities with the

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) approach for

volatility (Bollerslev, 1986). The idea - which can be considered as the first part of our

contribution - is that of modelling default clustering in a similar way to the models

for volatility clustering, through an autoregressive model which also gives a measure

of “persistence” of the series. The dependence of the process (i.e. the number of

defaults, in our case) on its past history can indeed explain its long memory and al-

lows to study it under the perspective of shocks persistence. Poisson Autoregression

- differently from the traditional Poisson model - also allows for overdispersion.

The consideration that the expected number of defaults is probably influenced by

the macroeconomic and financial context in which corporate firms operate has led us

to the idea of extending Poisson Autoregression by including exogenous covariates.

Thus, in Chapter 4, we present our methodological contribution, developing a class

of Poisson intensity AutoRegressions with eXogeneous covariates (PARX) models

that can be used for modelling and forecasting time series of counts. We analyze the

time series properties and the conditions for stationarity and develop the asymptotic

theory for this new model. This way we provide a flexible framework for analyzing

dependence of default intensity on both the past number of default events and other

relevant financial variables. It is also interesting to consider the impact of including

a lagged covariate process on the estimated persistence.

In Chapter 5, we present an extended empirical study of US corporate defaults,

based on the application of alternative PARX models. We consider the monthly

default counts of US Moody’s rated corporate firms: the rating agency Moody’s

provides monthly and annual reports showing default rates and counts and also
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offers some instruments for looking more analitically through the data. One of these

services is the Credit Risk Calculator, which allows to create customized reports and

get data on defaults and rating transitions for specific sectors in a given geographical

area. We use a dataset which covers the period from January 1982 to December

2011 and consists in the monthly default counts of US Moody’s rated corporate

firms classified as “broad industrial”, that means it excludes banking, financial and

insurance companies as well as public utility and transportation activities. As we

will see in the review part, the use of data on industrial firms is common in the

corporate defaults analyses. We consider the impact on default intensity of several

covariate processes, such as business cycle indicators, production indexes and rating

downgrades. For analyzing the link between the financial and the credit market

we also include a measure of realized volatility of returns. Realized volatility is

expected to summarize the level of uncertainty during periods of financial turmoil

when corporate defaults are more likely to cluster and we show that it is significantly

and positively associated with the number of defaults.



Chapter 2

Econometric modelling of Default

Risk

The two main issues related to the corporate default phenomenon - default pre-

dictability and correlation - are now analyzed through an overview of the existing

financial and econometric literature of credit risk modelling, with a special focus on

the models for default intensity, defined as the expected number of bankruptcies in

a given period. These models often include macroeconomic and financial explanat-

ory variables, in the aim of finding both common and firm-specific risk factors for

solvency and default predictors. Furthermore, the count modelling framework allows

extensions easing the analysis of dependence between default events.

2.1 Default prediction

The most obvious default predictor for a single firm is represented by its business

and financial conditions, which can be summarized by balance sheet data such as

leverage and net profit measures. This approach is natural in the above mentioned

structural models, which are based on the study of the firm’s asset evolution, but

also characterizes a variety of statistical methods for credit risk measurement, such as

credit scoring. It is due, for example, to Altman (1968) the development of a multiple

discriminant statistical methodology applied to bankruptcy prediction through a

14
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set of financial and economic ratios which are shown to successfully discriminate

between failing and nonfailing firms. The discriminant function includes variables

such as working capital on total assets ratio, market on book value ratio and the

sales amount. It is clear that this represents a microeconomic approach which seems

not to be suitable when analyzing the default likelihood of large dimension or listed

companies, which are expected to be more involved with the overall financial and

macroeconomic scenarios.

Recently, there is a growing interest in the specification of models explaining the

number or the frequency of corporate defaults with a set of exogenous covariates. An

example can be found in Giesecke et al. (2011). They focus on modelling the default

rate, which is one of the most used measure of the default phenomenon incidence,

being defined as the number of defaulting companies in a certain time period divided

by the total number of debt issuers in the same period, and periodically published in

rating agencies reports. Their empirical analysis considers a large dataset of monthly

default rates of US industrial firms, spanning the 1866-2008 period, and is based on

the application of a regime-switching model, in the aim of examining the extent to

which default rates can be predicted by financial and macroeconomic variables. The

econometric specification is the following:

Dt = αt + βkXk,t−1 + εt, εt ∼ i.i.d.N(0, σ2) (2.1)

where X t−1 is a k-vector of exogenous explanatory variables and the βk terms are

the corresponding slope coeffi cients. The intercept term follows a three-state Markov

chain taking values α1, α2 and α3 - corresponding to “low”, “medium”and “high”

default regime respectively - and the πij probability of transition from state i to state

j is the (i, j)-th entry of a transition matrix. Following Hamilton (2005), the model

is estimated by a maximum likelihood algorithm based on the recursive updating of

the probability ξi,t of being in state i at time t, the recursion expression being:

ξi,t =

∑3
i=1 πijξi,t−1ηjt∑3

i=1

∑3
j=1 πijξi,t−1ηjt

(2.2)
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with conditional likelihood function ηjt given by

ηjt =
1

2πσ2
exp

−
(
Dt − αjt −

∑N
k=1 βkXk,t−1

)2

2πσ2

 (2.3)

Among the regressors the authors include both business cycle variables, such as

GDP and Industrial Production (IP) growth, and financial covariates (stock returns,

change in returns volatility and change in credit spread), as well as the lagged default

rate itself. Several covariates, like the change in returns volatility and returns them-

selves, turn out to be significant in explaining default rates dynamics, while others,

such as the growth in Industrial Production and the change in credit spreads, have a

low explanatory power. An interesting point - which seems to be not deeply investig-

ated in the paper - is the high value of the lagged default rate coeffi cient, highlighting

the relevance of the autoregressive components in default rate evolution. The max-

imum likelihood estimate of the time-varying intercept α goes from a minimum of

0.007 in the “low” regime to a value of 0.111 under the worst scenario, so it is in

general quite low. The “Dot-Com bubble”of 2001-2002, for instance, corresponds to

a high default regime, although its severity is not comparable to other crisis periods

such as the Great Depression. Other empirical studies which try to find a connec-

tion between the business cycle and the default rates are, amongst others, Kavvathas

(2001) and Koopman and Lucas (2005).

A missing element in this kind of approach is the absence of firm-specific vari-

ables, which are instead present in other, even previous, works, like Duffi e et al.

(2007). This article provides maximum likelihood estimators of multi-period con-

ditional probabilities of corporate default incorporating the dynamics of both firm-

specific and macroeconomic variables. The empirical analysis is again based on a

dataset of defaults among Moody’s rated US industrial firms. With regard to the

modelling framework, a Cox regression model for counting processes is used: this

approach is shared by some of the works related to the analysis of default correlation

presented in Section 2.2, so it will be described in detail later. The individual firm

covariates considered in Duffi e et al. (2007) are the previously defined distance to

default and the firm trailing stock return, while the overall regressors are the trailing
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S&P 500 returns and the three-month Treasury bill rate. It is quite surprising - and

also recalls the results of Giesecke et al. (2011) - the lack of significance of other

variables, such as credit spreads and GDP growth, that are instead expected to be

relevant in default prediction.

2.1.1 The role of rating

When talking about default predictability, an analysis of the role of credit rating

information cannot be avoided. Rating is, indeed, the main result of the evaluation

of a company solvency, made by specialized agencies. The rating information is

synthetical and categorical, two features that summarize the potential advantage

of this kind of evaluation and explain the wide use of rating in support of pricing

and investment decisions. Furthermore, rating agencies methodologies should rely

on statistical and econometric models, thus giving a quantitative judgement which is

reasonably thought to be objective. However, in the last years some well-known cases

like that of Lehman Brothers, whose collapse was not preceeded by any “in time”

rating downgrade - Standard & Poor’s maintained the investment-grade rating of

“A”and Moody’s downgraded Lehman only one business day before the bankruptcy

announcement - has given rise to a burning debate about the possible mistakes in

rating evaluation and whether other aspects than a rational and documented quantit-

ative analysis influence the action of rating agencies. Beyond the often unproductive

and simplistic discussions trying to mark rating as “good”or “bad”, the question

arising in a proper econometric analysis is whether the current rating of a firm is

a good predictor of its default probability. There is a double link between rating

and the probability of default (henceforth PD). First of all, “default” is one of the

classes characterizing the rating scale: class “D”is present in the classification used

by all the main rating agencies, such as Fitch, Moody’s and Standard & Poor’s.

In the long-term rating assignment, the companies in the “default class”are those

that have already failed to repay all or some of their obligations, even in case bank-

ruptcy has not been offi cially declared yet; in the short-term rating scale, class “D”

corresponds to an effective state of insolvency. Secondly, rating agencies periodical
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material establishes a correspondance between rating classes and PD, based on his-

torical default rates of firms with different rating scores. As an example, we briefly

describe the Moody’s approach to rating attribution: the output of its proprietary

(KMV) model - based on the application of Merton’s option pricing formulas in order

to derive the market value of assets and its volatility from the market value of equity

(firm stocks) - is the so-called Expected Default Frequency (EDF). Figure 2.1 gives

a graphical representation of EDF, as the probability that the firm assets fall below

a certain threshold over a given time horizon, typically one year or more, based on

the hypothesis of log-normal dynamics of the asset value which is typical of Black

and Scholes modelling framework.

Figure 2.1 Illustration of EDF determined by Moody’s KMV. Source: Moody’s.

To each interval of EDF, Moody’s associates a class of what the agency itself defines

as implied rating and declares to be a relevant component of the overall rating,

the latter also including qualitative and discretionary considerations. Thus, implied

rating represents the link between rating and PD.

The econometric analysis of rating is mainly based on the modelling of rating
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history, that is the changes in a firm rating. This is also motivated by the fact that

a kind of information widely used in the risk management of financial institutions is

given by the rating transition matrices, both historical and forecasted. The general

framework of the models for rating, chacterizing, among the others, Jarrow, Lando

and Turnbull (1997), is the following. A Markov chain is defined on a finite space of

states:

S = {1, 2, ..., k} (2.4)

Each state corresponds to a different rating class, so that the k-th state is the default

category, hence we may write, following, as an example, Moody’s classification,

S = {AAA,AA, ..., D}

It is assumed that the Markovian process describing rating evolution is homogenous,

i.e. its transition matrix does not change in time. The transition matrix Q for (2.4)

is defined as follows:

Q =



q1,1 q1,2 ... q1,k

q2,1 q2,2 q2,k

...
. . .

...

qk−1,1 qk−1,2 ... qk−1,k−1 qk−1,k

0 0 ... 1


where the generic entry qi,j is the probability that a company belonging to rating

class i in t will have rating j in t+ 1. It is trivial that the following must be verified

for i = 1, ..., k :

qi,j ≥ 0

qi,i = 1−
∑k

j=1
j 6=i

qi,j for i = 1, ..., k

Note that the last row corresponds to the obvious assumption that default is an

absorbing state, i.e. it is not possible to move from state k to another. The assumed

homogeneity implies that matrix, say, Q(t, T ), containing the probabilities q(t, T ) of

being in state i at time t and in j at T , is obtained by simply multiplying it for itself:

Q(t, T ) = QT−t
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The transition probabilities are, in general, given by historical data on average rating

changes rates. Another possibility is that of deriving “risk-neutral”transition prob-

abilities by multiplying Q by a matrix containing credit risk premiums estimated

from empirical credit spreads.

In this framework, the PD by time T calculated in t is defined as

PD(t, T ) = 1− qi,k(t, T ) (2.5)

This approch is simple but operationally appealing. Lando and Skødeberg (2002)

revisit it by introducing a corrected transition matrix that takes into account the

rating changes occured between t and T , as ignoring them can lead to underestimate

the probability of downgrade. A more complex intensity-based model for rating

transitions has been, instead, proposed by Koopman et al. (2008).

With regard to the investigation of the predictive power of rating information

through empirical analyses, a common strategy used in econometric works is that

of analyzing how much the current rating of a firm really incorporates the stage of

the business cycle and the risk profile of its sector, by studying dependence of the

published rating transition probabilities on a set of indicators. Nickell et al. (2000)

find that business cycle effects have a strong impact on rating especially for low-

grade issuers, while Behar and Nagpal (2001) argue that the current rating of a firm

seems not to incorporate much of the influence of the macroeconomic context on the

default rates.

2.2 Default correlation and Contagion

When modelling the rate or the number of defaults, one of the main objective is find-

ing macroeconomic variables and financial indicators able to predict the peaks in the

number of defaults, in support of financial vigilance and central banks decisions. An-

other crucial topic a great part of the literature focuses on is default correlation: are

corporate defaults independent rare events or are there connections between them?

First, there are several works supporting the hypothesis of default correlation with

empirical analyses. For example, Das et al. (2006) document default correlation -
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derived as correlation between individual default probabilities in an intensity-based

setting - in various economic sectors and emphasize that correlation effects are time-

varying. They further claim that it is possible to distinguish between two “default

regimes”: a high regime characterized by a higher correlation and a low regime in

which correlation is modest. Another important aspect is the already mentioned

possibility of contagion effects by which one firm’s default directly increases the

likelihood of other firms defaulting, generating the “default cascade” effect which

seems to characterize the crisis periods. Some examples of contagion models include

Davis and Lo (2001), Jarrow and Yu (2001) and Azizpour and Giesecke (2008a).

These models share the assumption that the default event of one firm directly trig-

gers the default of other firms or causes their default probabilities to increase. A

missing element in this kind of modeling is testing the hypothesis of conditional in-

dependence between default events, which are probably subject to a common source

of randomness due to the mutual exposure to common risk factors. The test of

the doubly stochastic assumption, i.e. the assumption that defaults are independent

after conditioning on common factors, has been introduced in two recent works about

contagion, Das et al. (2007) and Lando and Nielsen (2010), the latter reviewed in

the following. Both examine whether default events in an intensity-based setting can

be considered conditionally independent testing whether bankruptcy count behaves

as a standard Poisson process. This means to verify in an intensity-based setting the

doubly stochastic assumption, under which the default events are dependent only on

exogenous variables.

A distinct class of models for contagion is that of the so-called frailty models.

They aim at individuating latent (unobservable) factors acting as an additional chan-

nel for the spread of defaults. As stated in Azizpour and Giesecke (2008b), in frailty

models default clustering is indeed explained by three kinds of factors:

• observable common factors: changes and shocks in the macroeconomic and
financial context;

• frailty factors: unobservable common factors affecting corporate solvency;
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• contagion: the direct negative impact that the default event has on other
companies. This can be due to contractual relationships linking firms to each

other, but also to the “informational”aspect, as bankruptcy announcements

increase the market uncertainty and cause a decrease in the value of stocks

portfolio of both industrial and banking firms, with important consequences

on credit supply and companies financial conditions. The effects of default

announcements are also treated in Lang and Stulz (1992).

In this class of models, including, among others, Duffi e et al. (2009), Azizpour

et al. (2010) and Koopman et al. (2011), both frailty and contagion effects are ana-

lyzed with self-exciting point processes. These are characterized by the specification

of the conditional instantaneous default intensity of a counting process, that is of

the infitesimal rate at which events are expected to occur around a certain time,

allowing for dependence on the timing of previous events. The major reference for

this approach is the self-exciting process defined by Hawkes (1971).

A different specification of conditional default intensity can be found in Focardi

and Fabozzi (2005) and Chou (2012): both use the Autoregressive Conditional Dur-

ation (ACD) model introduced by Engle and Russell (1998). In the ACD model, the

expectation of the duration, i.e. of the interval between two arrival times, condi-

tional on the past is first specified and the conditional intensity is expressed as the

product of a baseline hazard rate - as in the tradition of proportional hazard models

for survival data - and a function of the expected duration.

2.3 The study of default correlation through count

models

The economic and financial relevance of the default phenomenon, showing peaks of

incidence like the sharp one in the crisis period of 2008-2010, has led to an increasing

interest in modelling and forecasting time series of corporate default counts. Model-

ing time series of counts rather than the default rate is quite common and justified

by the fact that the default rate denominator - the total number of borrowers in a
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certain economic sector or rating class - is usually known by the risk managers in

a certain advance. It is also possible to note (see Figure 1.1, for instance) that the

time series of default counts and default rates share a very similar trend.

2.3.1 Testing conditional independence of defaults

According to the doubly stochastic assumption, default events depend uniquely on

exogenous variables, that means they are independent conditionally on common mac-

roeconomic and financial factors. A method for testing this assumption is developed

by Lando and Nielsen (2010), revisiting the method of time change test already used

by Das et al. (2007), though reaching different results.

In Lando and Nielsen (2010), the default time of a firm is modelled through

its stochastic default intensity. If the firm is alive at time t, then the conditional

intensity at time t, i.e. the conditional mean default arrival rate for firm i satisfies

λit = lim
∆t→0

P (t < τ i ≤ t+ ∆t | τ i ≤ t,Ft)
∆t

(2.6)

where τ i is the default time for firm i. That means the probability of default within

a small time period ∆t after t is close to λit∆t, where λit depends on information

available at time t as represented by Ft .

The individual firm default intensity is then specified through a Cox regression:

λit = Rit exp(β′WWt + β′XXit) (2.7)

where Wt is the vector of covariates that are common to all companies whereas Xit

contains firm-specific variables and Rit is a dummy variable which assumes value

1 if firm i is alive and observable at time t, zero otherwise. The crucial point is

to determine the firm-specific and macroeconomic variables which are significant

explanatory variables in the regression of default intensity.

The Cox regression model was introduced by Cox (1972) in a survival data setting

and then extended to the general counting process framework by Andersen and Gill

(1982). This approach arises from the Cox proportional hazard model, which is a

semi-parametric proportional hazard model making no assumptions about the shape
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of the baseline hazard function h(t) in the definition of the conditional intensity. The

latter is in general expressed as:

h (t|X) = h(t) ∗ exp(β1X1 + ...+ βpXp)

The theory of Cox regression provides the partial log-likelihood to be maximized by

standard techniques in order to draw inference about the parameters vector β =

(βW , βX):

l(β) =
n∑
i=1

∫ T

0

(β′WWt + β′XXit) dNi(t)

−
n∑
i=1

∫ T

0

Rit exp(β′WWt + β′XXit)1(τ i>t)dt (2.8)

where Ni(t) is the one-jump process which jumps to 1 if firm i defaults at time t, n

is the total numbers of firms and T is the terminal time point of the estimation.

The cumulative number of defaults among n firms is then defined as:

N(t) =
n∑
i=1

1(τ i≤t)

The objective is to verify the assumption of orthogonality, i.e. that there are

never exact simultaneous defaults. Under this assumption, the aggregate default

intensity is the sum of the individual ones:

λ(t) =
n∑
i=1

λi(t)1(τ i≤t)

In order to execute the test, the cumulative default process has to be “time-

scaled”, that means the scale of time is replaced by the scale of intensity. This is

done by defining the compensator

Λ(t) =

∫ t

0

λ(s)ds

that allows to write the time-changed process as

J(t) = N(Λ−1(t))
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It is possible to show that J(t) is a unit-rate Poisson process with jump times

Vi = Λ(τ (i)) where 0 ≤ τ (1) ≤ τ (2) ≤ ... are the ordered default times. As a

consequence, the interarrival times V1, V2 − V1,... are independent exponentially

distributed variables and, for any c > 0, the jump times

Zj =
n∑
i=1

1]c(j−1),cj]Vi

are independent Poisson variables of c intensity.

Testing orthogonality of defaults means splitting up the entire time period into

intervals in which the cumulative integrated default intensity Λ increases by an in-

teger c and verifying, by using several test statistics, if the default counts in each

interval are independent and Poisson distributed with mean c. Note that the tested

property is the independence of defaults conditional to observable common factors,

with the aim of detecting an excess default clustering that is conceivable with the

existence of contagion effects.

The data used by the authors are the monthly number of Moody’s rated US

corporate firms’defaults occured between 1982 and 2005.

With regard to covariates, Wt vector contains the following selection of macroe-

conomic variables:

• 1-year return on the S&P index

• 3-month US Treasury bill rate

• 1-year percentage change in the US industrial production, calculated from
monthly data

• spread between the 10-year and the 1-year Treasury rate

while the firm-specific covariates entering vector Xit are:

• 1-year equity return

• 1-year Moody’s distance-to-default
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• quick ratio, calculated as the sum of cash, short-term investments and total

receivables divided by the current liabilities

• log book asset value.

The results obtained in the paper by applying the time-change method and then

using several test statistics - like the Fisher dispersion and the upper tail statistics -

in order to test the Poisson assumption, lead to accept the hypothesis that default

times are conditionally independent, that was rejected in Das et al. (2007). The

authors claim that this is due to the use of a different set of explanatory variables

and so that the contagion effects apparently revealed by the previous analysis are

instead explained by missing covariates. They also argue that the time-change test is

actually a misspecification test, as the hypothesis of correct intensity specification is

satisfied by construction and that, furthermore, the doubly stochastic assumption is

not needed for having orthogonality of default times. They find indeed no evidence

of contagion by considering a different specification, that is the Hawkes self-exciting

process

λit = Rit

(
exp(β′WWt + β′XXit) +

∫ t

0

(α0 + α1Ys) exp(−α2(t− s)dNs + δ)

)
where Ys is the log book asset value of the firm defaulting at time s. Model (2.13)

explicitly includes a contagion effect through an affi ne function of Y so that larger

firms’bankrupt has a higher impact on the individual default intensities. The ex-

ponential function makes the default impact decay exponentially with time, with α2

measuring the time horizon of influence of a default on the overall intensity. Estim-

ation can be carried out by partial maximum likelihood standard instruments (see,

for example, Andersen et al., 1992).

In a recent extension of Lando and Nielsen (2010), Lando et al. (2013) replace the

Cox multiplicative model with an additive default intensity, based on Aalen (1989)

regression model, where the covariate effects act in an additive way on a baseline

intensity. The authors claim that the advantage of this model is allowing for the

introduction of time-varying effects without the need for estimation procedures more

complex than the least squares methods. The focus moves from the test of the
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conditional independence hypothesis characterizing the previous paper to the search

for predictive variables acting on default intensity with nonconstant magnitude. The

results are partly different from those reached by the previous analysis: the time-

varying effects of firm-specific variables like distance-to-default and short-to-long

term debt are found significant, but none of the macroeconomic covariates - many of

which already successfully employed in Lando and Nielsen (2010) - are. A problem

in the interpretation of results is that some of the coeffi cients are negative, thus

leading to negative default intensities, which is a nonsense from a technical point of

view. With regard to this aspect, the authors claim that default intensity should be

interpreted as a risk measure rather than an expected rate and that negative values

could indicate that a firm is weakly involved in the risk of failure.

2.3.2 An Autoregressive Conditional Duration model of credit

risk contagion

The use of self-exciting processes for representing the cascading phenomenon of bank-

ruptcies was already present in another previous work, through a different specifica-

tion. Focardi and Fabozzi (2005) propose indeed a self-exciting point process. The

model belongs to the autoregressive conditional duration (ACD) family introduced

by Engle and Russell (1998) and is based on the idea of modelling default clustering

with econometric techniques that are the point process analogue of ARCH-GARCH

models. Applying the ACD specification to the number of defaults, the default pro-

cess in a time interval (0, t) is defined as a sequence of default times ti, i = 1, 2, ...,

with the related durations between defaults∆ti = (ti+1−ti). The model is specified
in terms of the conditional densities of the durations, defining

E [∆ti | ∆ti−1, ...,∆t1] = ψ [∆ti−1, ...,∆t1, θ] = ψi (2.9)

and

∆ti = ψiεt (2.10)

where εt are i.i.d. variables and θ is a parameter.

It is then assumed that the expectation of the present duration is linearly de-

termined by the last m durations between defaults and the last q expectations of
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durations:

ψi = ω +

m∑
j=0

αj∆ti−j +

q∑
j=0

αj∆ti−j (2.11)

This model is called an ACD(m, q) model.

The authors apply ACD models to simulated data of default durations in order to

evaluate the impact of different expected durations on the value of a credit portfolio.

2.4 Concluding remarks

We have investigated how the econometric and financial literature has faced the mod-

elling of default risk and the interpretation of the relative empirical results under the

perspective of default predictability and correlation, also clarifying the origin and the

issues of the current debate about contagion. The search for explanatory variables in

the default rates and counts evolution has led to not always obvious results, because,

for example, the link with business cycle indicators and macroeconomic variables

does not appear so strong. We have also considered the discussion on the predictive

power of rating and described some common approaches to the modelling of rating

transitions. We have progressively focused on models which consider count pro-

cesses for investigating the corporate defaults dynamics. Many of these models aim

at analyzing default correlation. With regard to this topic, we claim that the idea of

distinguishing between common factors and contagion, thus separating the system-

atic risk from other risk components, is worth being further investigated. An aspect

which seems somewhat missing in the literature yet is that of the autoregressive

components in the defaults dynamics, which could lead to interesting considerations

about the persistence in the default phenomenon. It is, indeed, present in Focardi

and Fabozzi (2005), but without considering the role of covariate processes, so giving

a limited definition of contagion which does not take into account crucial aspects of

credit and financial risk, and without presenting any application to real data. Our

approach to default risk modelling, which we will present in Chapter 4, considers

indeed both exogenous variables and autoregressive components and is applied to an

empirical corporate default count time series in Chapter 5.



Chapter 3

Econometric modelling of Count

Time Series

This chapter presents the main models for count time series. They are based on

the theory of Generalized Linear Models for time series, that is reviewed in the

first section. The aim of the next sections is to make a critical review, focused on

the suitability of the presented models to explain some features commonly found in

empirical count time series, such as overdispersion in the data. This is instrumental

to the following of our work, which proposes a modelling framework for default count

data, based on the extension of the Poisson autoregressive model introduced in the

last section.

3.1 Generalized Linear Models for time series

It is well known that generalized linear models (GLM), introduced by Nelder and

Wedderburn (1972), allow to extend ordinary linear regression to nonnormal data.

Applying the theory of GLM to time series makes thus possible to handle very

common processes like binary and count data, which are not normally distributed.

Before presenting the most important applications of GLM to the modelling of

count data, it is important to present the concept of partial likelihood, introduced by

Cox (1975). Partial likelihood is an useful tool when the observations are depend-

29
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ent and the covariates representing auxiliary information are also random and time

dependent. In these situations the likelihood function is not readily available as the

nonindependence prevents from deriving a simple factorization.

Consider a generic response time series {yt}, t = 1, ..., T . If no other assumption

is added, the joint density fθ(y1, ..., yT ), parametrized by vector θ, is defined as

fθ(y1, ...yT ) = fθ(y1)
T∏
t=2

fθ(yt | y1, y2, ..., yt−1) (3.1)

where the main diffi culty is that, if no other assumption is made, the size of θ

increases as the series size T does. A more tractable likelihood function can be

obtained by introducing limitations in conditional dependence such as Markovianity,

according to which we could use, for example, the following factorization:

fθ(y1, ...yT ) = fθ(y1)
T∏
t=2

fθ(yt | yt−1) (3.2)

where inference regarding θ can be based only on the product term, as the first factor

is not dependent on T .

Then, consider the case where the response variable is observed jointly with

some time-dependent random covariate Xt. Then the joint density of the X and Y

observations can be written, using conditional probabilities, as:

fθ(x1, y1, ..., xT , yT ) = fθ(y1)

[
T∏
t=2

fθ(xt | dt)
][

T∏
t=2

fθ(yt |ct)
]

(3.3)

where dt = (y1, x1, ..., yt−1, xt−1) and ct = (y1, x1, ..., yt−1, xt−1, xt). The idea of Cox is

to take into account only the second product of the right hand side of (3.3), which is a

“partial”likelihood in the sense that it does not consider the conditional distribution

of the covariate process Xt. Moreover, it does not specify the full joint distribution

of the response and the covariate. Cox (1975) shows that the second product term in

(3.3) can be used for inference, although it ignores a part of the information about

θ .

The general definition of the partial likelihood (PL) relative to θ, Ft−1 and the

observations Y1, ..., YT applies this idea joint with that of limited conditional depend-

ence mentioned above. Considering only what is known to the observer up to the
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present time allows for sequential conditional inference:

PL(θ;y1, ..., yT ) =
T∏
t=1

fθ(yt; θt|Ft−1) =

T∏
t=1

fθ(yt;θ) (3.4)

where Ft−1 is the filtration generated by all is known to the observer by t and pos-

sibly including the information given by a random covariate process. Note that this

definition simplifies to ordinary likelihood when there is no auxiliary information and

the data are independent, while it becomes a conditional likelihood when a determin-

istic - i.e. known throughout the period of observation - covariate process is included.

This formulation enables conditional inference for nonMarkovian processes where the

response depends on autoregressive components and past values of covariates, as it

does not require the full knowledge of the joint distribution of the response and the

covariates.

The vector θ maximizing equation (3.4) is called the maximum partial likelihood

estimator (MPLE) and its theoretical properties have been studied by Wong (1986).

We now show how the theory of GLM and partial likelihood can be applied to

time series (see Kedem and Fokianos, 2002 for a complete review).

Consider again the response series {yt}, t = 1, ..., T and include a p-dimensional

vector of explanatory variables xt = (xt,1, ..., xt,p)
′. Then denote the σ-field generated

by yt−1, yt−2, ...,xt−1,xt−2, ... as

Ft−1 = σ {yt−1, yt−2, ...,xt−1,xt−2, ...}

where is often convenient to define Zt = (yt,xt)
′ which contains both the past values

of the response and a set of covariates:

Ft−1 = σ {Zt−1,Zt−2, ...}

The main feature of GLM for time series is the definition of the conditional expect-

ation of yt given the past of the process Zt:

µt = E [yt | Ft−1] (3.5)

It is worth to note that defining the expected value of yt as a linear function of the

covariates can lead to senseless results when the data are not normal. For instance,
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linear regression of µt on the covariates may lead to negative estimates of intensity

when the response is Poisson distributed.

The GLM approach to time series can be stated in two steps:

1. Random component: the conditional distribution of the response given the

past belongs to the exponential family of distributions, that is

f(yt; θt | Ft−1) = exp {ytθt + b(θt) + c(yt)} (3.6)

where θt is the natural (or canonical) parameter of the distribution.

By setting
∏T

t=1 fθ(yt; θt | Ft−1) =
∏T

t=1 fθ(yt; θt), the latter product defines

a partial likelihood in the sense of Cox (1975), as it is a nested sequence of

conditioning history, not requiring the knowledge of the full likelihood.

2. Systematic component: there exists a monotone function g(·) such that

g(µt) = ηt =

p∑
j=1

βjZ(t−1)j = Z′t−1β (3.7)

where we call g(·) the link function, while we refer to ηt as the linear predictor
of the model, and β is a vector of coeffi cients. It is quite common to include

also Xt, i.e. the present value of x, in the covariate vector, if it is already

known in t− 1. It can happen, for instance, when x is a deterministic process

or when yt is a delayed output. We refer, then, to g−1(·) as the inverse link
function.

3.2 The Poisson Model

3.2.1 Model specification

When handling count data, a natural candidate is the Poisson distribution. If we

assume that the conditional density of the response given the past, i.e. the available

information up to time t, is that of a Poisson variable with mean λt, we get

f(yt;λt | Ft−1) =
exp(−λt)λytt

yt!
, t = 1, ..., T (3.8)
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In the Poisson model, the conditional expectation of the response is equal to its

conditional variance:

E [yt | Ft−1] = V ar [yt | Ft−1] = λt (3.9)

Then we denote by {Zt−1} , t = 1, ..., T a p-dimensional vector of covariates which

may include past values of the response and other auxiliary information. A typical

choice for Zt−1 is

Zt−1 = (1, yt−1, xt)
′

but it is also possible to consider interactions between the processes by defining, for

instance, Zt−1 = (1, yt−1, xt, yt−1xt)
′.

Following the theory of of GLM and recalling (3.7), a suitable model is obtained

by setting µt = λt and

g(λt) = ηt = Z′t−1β t = 1, ..., T (3.10)

where β is a p-dimensional vector of unknown parameters.

The most common model is that using the canonical link function, which is

derived from the canonical form of the Poisson conditional density:

f(yt;λt | Ft−1) = exp {(yt log λt − λt)− log λt!} , t = 1, ..., T

where the natural parameter turns out to be log λt.

Hence,

g(λt) = log λt, t = 1, ..., T (3.11)

is defined as the canonical link, while the inverse link function g−1 guarantees that

λt > 0 for every t, as:

g−1(ηt) = exp(ηt), t = 1, ..., T (3.12)

The resulting definition of intensity

λt = exp(Z′t−1β), t = 1, ..., T (3.13)

characterizes the so-called log-linear model, which has been widely applied in eco-

nometrics since Hausman et al. (1984).
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3.2.2 Inference

Consider first the estimation of the parameter vector β=(β1, ..., βp) for the general

case of the Poisson model with g(λt) = Z′t−1β. Recalling (3.4), the partial likelihood

function is

PL(β) =
T∏
t=1

f(yt;β | Ft−1)

=

T∏
t=1

exp(−λt(β))λt(β)yt

yt!
(3.14)

Hence, the partial log-likelihood is the following:

l(β) ≡ logPL(β)

=
T∑
t=1

yt log λt(β)−
T∑
t=1

λt(β)−
T∑
t=1

yt log yt! (3.15)

The partial score function is then obtained by differentiating the log-likelihood:

ST (β) = ∇l(β) =

(
∂l(β)

∂β1

, ...,
∂l(β)

∂βp

)′
=

T∑
t=1

Zt−1
∂g−1(ηt)

∂ηt

1

λt(β)
(yt − λt(β)) (3.16)

Then, the MPLE β̂ (see Wong, 1986) is obtained by solving the system

ST (β) = ∇l(β) = 0 (3.17)

which has to be solved numerically, because is nonlinear. Besides the use of standard

Newton-Raphson type algorithms, a possible method for solving (3.17) is the Fisher

scoring, which is a modification of the Newton-Raphson algorithm where the ob-

served information matrix is replaced by its conditional expectation, yielding some

computational advantages. The application of the Fisher scoring method to the par-

tial likelihood estimation of the Poisson model is presented in Kedem and Fokianos

(2002).

Define first the observed information matrix as

HT (β) = −∇∇′l(β) (3.18)
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It admits the following decomposition:

HT (β) = GT (β)−RT (β) (3.19)

where GT (β) is the cumulative conditional information matrix, which is defined as

GT (β) =
T∑
t=1

Cov

[
Zt−1

∂g−1(ηt)

∂ηt

1

λt(β)
(yt − λt(β)) | Ft−1

]

=
T∑
t=1

Zt−1

(
∂g−1(ηt)

∂ηt

)2
1

λt(β)
Z′t−1

= Z′W(β)Z (3.20)

where Z = (Z′0,Z
′
1, ...,Z

′
T−1) is a T × p matrix and W(β) = diag(w1, ..., wT ) with

entries

wt =

(
∂g−1(ηt)

∂ηt

)2
1

λt(β)
, t = 1, ..., T

and

RT (β) =
T∑
t=1

Zt−1dt(β)Z′t−1(yt − λt(β)) (3.21)

with dt(β) = [∂2 log g−1(ηt)/∂η
2
t ].

By substituting HT with GT , if G−1
T exists, the iterations take the form

β̂
(k+1)

= β̂
(k)

+G−1
T (β̂

(k)
)ST (β̂

(k)
) (3.22)

An interesting feature of the Fisher scoring is that it can be viewed as an iterative

reweighted least squares (IRLS) method.

It should indeed be noted that equation (3.22) can be rewritten as

GT (β̂
(k

)β̂
(k+1)

= GT (β̂
(k)

)β̂
(k)

+ ST (β̂
(k)

) (3.23)

where the right-hand side is a p-dimensional vector whose i-th element is

p∑
j=1

[
T∑
t=1

Z(t−1)jZ(t−1)i

σ2
t

(
∂g−1(ηt)

∂ηt

)2
]
β̂

(k)

j +
T∑
t=1

(yt − λt)Z(t−1)i

σ2
t

∂g−1(ηt)

∂ηt

=

T∑
t=1

Z(t−1)iwt

{
ηt + (yt − λt)

∂g−1(ηt)

∂ηt

}
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Thus, defining

q
(k)
t =

T∑
t=1

Z(t−1)iβ̂
(k)

j + (yt − λt)
∂g−1(ηt)

∂ηt

= ηt(β̂
(k)

) + (yt − λt)
∂g−1(ηt)

∂ηt

and, denoted by q(k) the T -dimensional vector whose elements are the q(k)
t , the right-

hand side of (3.23) is equal to Z′W(β(k))q(k). By applying (3.20) to the left side,

(3.23) becomes

Z′W(β̂
(k)

)Zβ̂
(k+1)

= Z′W(β̂
(k)

)q(k)

and the iteration simplifies to

β̂
(k+1)

= (Z′W(β̂
(k)

)Z)−1Z′W(β̂
(k)

)q(k) (3.24)

The limit for k →∞ of recursion (3.24) is the maximum partial likelihood estim-

ator β̂. In each iteration we can recognize the form of the weighted least squares with

adjusted weightW(β(k)) and the adjusted dependent variable q(k). For initializing

the recursions the conditional means can be replaced by the corresponding responses

in order to get a first estimate of the weight matrix W and hence a starting point

for β.

When the canonical link is used, we have

λt(β) = exp(Z′t−1β)

and several semplifications are possible. Indeed, for the log-linear model, equations

(3.17) and (3.20) become

ST (β) =

T∑
t=1

Zt−1(yt − λt(β)) (3.25)

and

GT (β) =
T∑
t=1

Zt−1Z
′

t−1λt(β) (3.26)

Moreover, as dt = 0 in (3.21), RT (β) vanishes and we get

HT (β) = GT (β) (3.27)

thus for the log-linear model the Fisher scoring and Newton-Raphson methods coin-

cide.
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3.2.3 Asymptotic theory

In the general theory of GLM the following assumptions (see Fahrmeir and Kaufmann,

1985 for more details) allow to show consistency and asymptotic normality of the

MPLE β̂:

Assumption 1 The true parameter β belongs to an open set β ⊆ Rp.

Assumption 2 The covariate vector Zt−1 almost surely lies in a nonrandom

compact subset Γ of Rp, such that P
[∑T

t=1 Zt−1Z
′
t−1 > 0

]
= 1. In addition, Z

′
t−1β

lies almost surely in the domain H of the inverse link function g−1 for all Zt−1 ∈ Γ

and β ∈ B.

Assumption 3 The inverse link function g−1 is twice continuously differentiable

and |∂h(γ)/∂γ| 6= 0.

Assumption 4 There is a probability measure ν on Rp such that
∫
Rp
zz′ν(dz)

is positive definite, and such that, if the conditional distribution of Yt belongs to the

exponential family of distributions in canonical form and under (3.10), for Borel sets

A ⊂ Rp,
1

T

T∑
t=1

I[Zt−1∈A]
p→ ν(A)

as T →∞, at the true value of β.
Assumption 4 assures the existence of a p × p nonrandom limiting information

matrix

G(β) =

∫
Rp
Z

(
∂g−1(η)

∂η

)2
1

g−1(η)
Z′ν(dz) (3.28)

with η = Z′β such that
GT (β)

T

p→ G(β) (3.29)

Once stated the above assumption, the following theorem, providing the asymp-

totic properties of the MPLE, can be presented.

Theorem 3.1 For the Poisson model, as well as for the general case of GLM, it

can be shown that, under assumptions 1-4, the maximum partial likelihood estimator

is almost surely unique for all suffi ciently large T and
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1. The MPLE is consistent and asymptotically normal:

β̂
p→ β

and
√
T (β̂ − β) d→ N(0,G−1(β))

as T →∞.

2. The following holds:

√
T (β̂ − β)− 1√

T
G−1(β)ST (β)

p→ 0

as T →∞.

3.2.4 Hypothesis testing

Consider the test of the hypothesis

H0 : C′β = r

whereC is a known p×q matrix with full rank and r is a known q-dimensional column
vector. Then denote by β0 the restricted maximum partial likelihood estimator under

the null hypothesis.

The most commonly used test statistics for testing H0 in the context of the

Poisson model are:

- the partial likelihood ratio statistic

LRT = 2
{

logPL(β̂)− logPL(β0)
}

(3.30)

- the Wald statistic

WT = (C′β̂ − β0)′(C′G−1(β0)C)−1(C′β̂ − β0) (3.31)

- the partial score statistic

LMT =
1

T
S′T (β̃)G−1(β̃)ST (β̃) (3.32)
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Kedem and Fokianos (2002) prove the following theorem concerning the asymp-

totic distribution of the test statistics defined above.

Theorem 3.2 Under the set of assumptions 1-4, the test statistics LRT , WT

and LMT are asymptotically equivalent. Furthermore, under H0, their asymptotic

distribution is chi-square with r degrees of freedom.

3.2.5 Goodness of fit

In the context of Poisson regression for count time series, several definitions of resid-

uals can be employed (see Cox and Snell, 1968).

- The raw residual is the difference between the response and its conditional ex-

pectation:

r̂t = yt − λt(β̂), t = 1, ..., T (3.33)

- The Pearson residual is the standardized version of the raw residual, taking into

account that the variance of Yt is not constant:

êt =
yt − λt(β̂)√

λt(β̂)
, t = 1, ..., T (3.34)

- The deviance residual

d̂t = sign(yt − λt(β̂))
√
lt(yt)− lt(λt(β̂)) (3.35)

can be viewed as the t-th contribute to the model deviance.

The notion of deviance is based on a likelihood comparison between the full

(or saturated) model and the estimated model. The full model is that where λt

is estimated directly from the data y1, ..., yT disregarding β, thus it has as many

parameters as observations, as in this case the maximum partial likelihood of λt is

yt. The estimated model includes p < T parameters instead. Since l(y;y) ≥ l(λ̂t;y),

the deviance statistic

D = 2
{
l(y;y)− l(λ̂t;y)

}
(3.36)
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where l(y;y) =
T∑
t=1

yt has been suggested as a measure of the model overall goodness

of fit. Lower positive values correspond to a better fitted model. The deviance

statistic has been shown to be have an approximate χ2
T−p distributions under certain

conditions (see Mc Cullagh, 1986).

In many generalized linear model, including the Poisson, Pearson residuals are

known to be skewed and fat tails. It can be indeed convenient to use a normalizing

transformation so that they are more likely to achieve approximate normality under

the correct model, like the Anscombe residuals. In McCullagh and Nelder (1983)

these are defined as:

ât =
3
2
y2/3 − λ̂2/3

t

λ̂
1/6

t

(3.37)

Autocorrelation of Pearson residuals

The large sample properties of the MPLE stated by Theorem 3.1 imply that êt is a

consistent estimator of et = yt−λt(β)√
λt(β)

, so that the autocorrelation of the et’s at lag k

ρe(k) can be consistently estimated by

ρ̂e(k) =
1

T

T∑
t=k+1

êtêt−k (3.38)

Li (1991) has proved the following theorem relative to the asymptotic distribution

of the autocorrelation vector.

Theorem 3.3 Under the correct model, the vector

1√
T
ρ̂e =

(
ρ̂e(1)√
T
,
ρ̂e(2)√
T
, ...,

ρ̂e(m)√
T

)
for some m > 0 is asymptotically normally distributed with mean 0 and some diag-

onal limiting covariance matrix (see Li, 1991 for details).

Testing the “whiteness” of Pearson residuals is used in many applications for

goodness of fit analysis, as they should be a white noise, i.e. a sequence of uncorrel-

ated random variables with mean 0 and finite variance, under the correct model (see

Kedem and Fokianos, 2002). Plots of the sample autocorrelation function of Pearson
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residuals with confidence bands at ±1.96/
√
T are commonly used for goodness of fit

evaluation.

3.2.6 Model selection

In GLM for count time series, selection among competing models can be based on the

traditional information criteria. The Akaike Information Criterion (AIC) introduced

by Akaike (1974), in the partial likelihood estimation context is a function of the

partial log-likelihood and the number of parameters:

AIC(p) = −2 logPL(β̂) + 2p (3.39)

The model with the number of parameters p which minimizes (3.39) is preferred.

The so-called Bayesian information criterion (BIC), following Schwarz (1978) is

defined as

BIC(p) = −2 logPL(β̂) + p log T (3.40)

3.3 The doubly-truncated Poisson model

The traditional Poisson model can be generalized, as in Fokianos (2001), by assuming

that the conditional distribution of the response is doubly truncated Poisson. Let

{Yt}, t = 1, ..., T be a time series of counts and suppose to obmit the values below

a known fixed constant c1 and exceeding another known fixed constant c2, with

c1 < c2. Then the doubly truncated Poisson conditional density is

f(yt;λt; c1, c2 | Ft−1) =
exp(−λt)λytt
yt!ψ(c1, c2, λt)

, t = 1, ..., T (3.41)

where the function ψ is defined as

ψ(c1, c2, λt) =


c2∑
y=c1

λyt
y!

if 0 6 c1 < c2

ψ(0, c2, λt) otherwise

and clearly ψ(0,∞, λt) = exp(λt) leads to the common Poisson model. This gener-

alization turns out to be useful for modelling truncated count data.
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An often used specification is that obtained by setting c1 = 1 and c2 = ∞. In
this case (3.41) becomes:

f(yt;λt; 1,∞ | Ft−1) =
λytt

yt!(exp(−λt)− 1)
, t = 1, ..., T

It should be noted that, differently from the traditional Poisson model, for the trun-

cated Poisson model the conditional mean is not equal to the conditional variance,

as

Etr [yt; c1, c2 | Ft−1] = λt
ψ(c1− 1, c2− 1, λt)

ψ(c1, c2, λt)

while

V artr [yt; c1, c2 | Ft−1] =
1

ψ2(c1, c2, λt)
{λ2

tψ(c1− 2, c2− 2, λt)

·ψ(c1, c2, λt) + λtψ(c1− 1, c2− 1, λt)

· [ψ(c1, c2, λt)− λtψ(c1− 1, c2− 1, λt)]}

As can be noticed from (3.41), the doubly truncated Poisson distribution belongs to

the exponential family of distributions, hence its canonical link is the logarithm and

the inverse link is the exponential. Therefore, we obtain again the log-linear model

λt exp(Z′t−1β)

and inference is based on maximization of the log-likelihood function derived by

(3.41).

3.4 The Zeger-Qaqish model

Zeger and Qaqish (1988) define the following multiplicative model:

µt(β) = exp(β0 + β1xt + β2 log(ỹt−1))

= exp(β0 + β1xt)ỹ
β2
t−1 , t = 1, ..., T (3.42)

and no distributional assumption for the response yt is specified. It is clear that,

when β2 < 0, there is an inverse relationship between ỹt−1 and µt(β), while the
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conditional mean grows with ỹt−1 when β2 > 0. Observe that, when β2 < 0, (3.42)

reduces to a log-linear model.

In this formulation Zt−1 = (1, Xt, log(ỹt−1))′, β = (β0, β1, β2)′, while ỹt−1 is

defined either as

ỹt−1 = max(c, yt−1), 0 < c < 1

or

ỹt−1 = yt−1 + c, c > 0

so that yt−1 = 0 is not an absorbing state.

Equation (3.42) defines the first conditional moment. With respect to the condi-

tional variance it is assumed:

V ar[yt | Ft−1] = φV (µt) (3.43)

where V (·) is a known variance function defining the relationship between the condi-
tional mean and the conditional variance, and ϕ is an unknown dispersion parameter.

The so-called working variance φV (µt) allows to accomodate some features found in

the data. For example, the variance model φµt, with ϕ > 1, may hold for count data

where the conditional variance exceeds the conditional mean. As can be seen, in

this model the assumptions on the response distribution concern only the first and

second conditional moments.

A possible extension of (3.42) is the following multiplicative error model:

µt(β) = exp(β0 + β1xt)

(
ỹt−1

exp(β0 + β1xt−1)

)β2
t = 1, ..., T

which can be generalized by considering, as in Kedem and Fokianos (2002), the

following model:

µt(β) = exp

[
x′tγ +

q∑
i=1

θi(log ỹt−1 − x′t−1γ)

]
t = 1, ..., T (3.44)

where β = (γ ′,θ1, ..., θq)
′ is an s+ q-dimensional parameter vector and {xt} is an s-

dimensional covariate vector of covariates. Note that when s = 2, q = 1, γ = (β0, β1),

xt = (1, xt)
′ and θ1 = β2, (3.44) reduces to (3.42).
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Turning to the theory of inference for the Zeger-Qaqish model (3.49), we consider

the case where c is known. In this case, the estimation of the parameter vector β

can be carried out by using the quasi-score function:

ST (β) =

T∑
t=1

Zt−1
δµt
δηt

(yt − µt(β))

φV (µt(β))
(3.45)

which resembles the score function (3.16), except that the true conditional variance

is replaced by the working variance.

According to the theory of quasi-partial maximum likelihood estimation for GLM

(see Wedderburn, 1974), the estimator β̂q is consistent and asymptotically normal:

√
T (β̂q − β)

d→ N(0,G−1(β)G1(β)G−1(β))

where G(β) and G1(β) are the following matrices:

GT (β) =
1

T

T∑
t=1

Zt−1

(
δµt
δηt

)2
1

φV (µt(β))
Z′t−1

p→ G(β)

and

G1(β) =
1

T

T∑
t=1

Zt−1

(
δµt
δηt

)2
σ2
t (β)

φ2V 2(µt(β))
Z′t−1

p→ G1(β)

where σ2
t (β) denotes the true conditional variance. In practice, the covariance mat-

rix of β̂q is estimated by replacing the parameters ϕ,β, σ
2
t (β) by their respective

estimates. The true conditional variance σ2
t (β) is replaced by

(
yt − µt(β̂q)

)2

. The

dispersion parameter φ can be estimated by

φ̂ =
1

T − s

T∑
t=1

êt

where êt is the Pearson residual at time t:

êt =
yt − µt(β̂q)√
V (µt(β̂q)
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3.5 Overdispersion and negative binomial regres-

sion

The equality of mean and variance characterizing the Poisson model makes it non-

suitable when the data show overdispersion, i.e. the response variance is higher than

the mean. We will show in the following that the introduction of lagged values of

the response among the regressors for λt allows the unconditional variance to be

higher than the unconditional mean, differently from the traditional Poisson model

with only exogenous regressors. However, in general, when modelling count data the

problem of overdispersion should be addressed. Several post-hoc tests - i.e. performed

after modelling the data - have been proposed in order to detect overdispersion. One

of them is the Pearson statistic, defined as the sum of squared Pearson residuals:

χ2 =
T∑
t=1

(
yt − λt(β̂)

)2

λt(β̂)
(3.46)

Its distribution was studied, among the others, by McCullagh (1986) and McCullagh

and Nelder (1989). Under suitable regularity conditions, its distribution converges

to a chi-square with T − p degrees of freedom.

A distribution which is known to fit overdispersed count data is the negative

binomial. If the conditional density of a time series given the past is that of a

negative binomial variable with parameters pt and r , its distributional law is

f(yt; pt, r | Ft−1) =

(
yt + r − 1

r − 1

)
prt (1− pt)yt , t = 1, ..., T (3.47)

where pt is the probability that an event occurs in t while r is the scale parameter

and its inverse 1/r is known as the overdispersion parameter. The conditional mean

E [Yt | Ft−1] = µ =
r(1− pt)

pt
is lower than the conditional variance V ar [Yt | Ft−1] =

r(1− pt)
p2
t

.

The systematic component of the GLM in the negative binomial case, linking pt,

and thus the expected conditional value, to a set of covariates Z, can be defined, as

in Davis and Wu (2009), through the following logit model:

− log

(
pt

1− pt

)
= exp(Z′t−1β) (3.48)
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yielding

µ = r exp(Z′t−1β) (3.49)

The maximum likelihood estimator β̂ maximizes the partial log-likelihood function

l(β) ≡ logPL(β) =−r
T∑
t=1

log(1+exp(Z′t−1β))−
T∑
t=1

Yt log(1+exp(Z′t−1β))+log

T∏
t=1

(
yt + r − 1

r − 1

)
(3.50)

Several optimization algorithms have been proposed by Hilbe (2007).

As we said, negative binomial is often used as an alternative to the Poisson

model. For testing the Poisson model against the negative binomial distribution,

a commonly used test statistic is that characterizing the Z test, which Lee (1986)

defines as follows:

Z =

T∑
t=1

(
yt − λt(β̂)

)2

− λt(β̂)

√
2

T∑
t=1

λt(β̂)

(3.51)

and is shown to have asymptotic standard normal distribution. As the probability

limit of the numerator is shown to be positive under the alternative hypothesis that

the negative binomial distribution is preferable, a one-sided test is convenient. In

particular, the Poisson specification is rejected in favour of the negative binomial

with a level of significance α if

T∑
t=1

(
yt − λt(β̂)

)2

− λt(β̂) > cα
√

2
T∑
t=1

λt(β̂)

where cα is the critical value.

3.6 Poisson Autoregression

Fokianos, Rahbek and Tjøstheim (2009), henceforth FRT (2009), study a particular

Poisson time series model, characterized by a linear autoregressive intensity and

allowing to fit data showing a very slowly decreasing dependence. This model was

already existing in literature and shown to fit some financial count data satisfactorily,

but FRT (2009) is the first work to study ergodicity and develop the asymptotic

theory, which is crucial for likelihood inference.
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3.6.1 Model specification

FRT (2009) study the properties of the following Poisson model:

yt|FY,λt−1 ∼ Pois(λt)

λt = ω + αyt−1 + βλt−1 t > 1 (3.52)

where the parameters ω, α and β are assumed to be positive. In addition, λ0 and y0

are assumed to be fixed.

By introducing for each time point t a “scaled” Poisson process Nt(·) of unit
intensity, it is possible to rephrase (3.52) so that the response is defined explicitly as

a function of the conditional mean:

yt = Nt(λt)

λt = ω + αyt−1 + βλt−1 t > 1 (3.53)

where yt is then equal to the number of events of Nt(·) in the time interval [0, λt]. The
rephrased model (3.53) is found to be more convenient when proving the asymptotic

normality of the parameter estimates. Furthermore, expressing yt as a function of

conditional mean - which in the Poisson model is equal the conditional variance -

recalls the first defining equation in the GARCH model. It is interesting to note that

the sum (α + β) can be considered as a measure of persistence in intensity, just as

the sum of the ARCH and GARCH parameters in the GARCH model can be read

as a measure of persistence in volatility.

Both (3.52) and (3.53) refer to the theory of generalized linear model (GLM)

for count time series. Here the random component is the Poisson distribution, as

the unobserved process λt can be expressed as a function of the past values of the

observed process yt after recursive substitution.

The peculiarities of this approach are mainly two. First, it is characterized by

a noncanonical link function - the identity - while, as we have seen, the traditional

Poisson model uses the log-linear specification. The other contribution is the in-

troduction of an autoregressive feedback mechanism in {λt}, while in the tradition
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of GLM the intensity is function of a vector of covariates, possibly including the

lagged value of the response. This aspect makes the model able to capture a strong

persistence with a small number of parameters.

As said before, although FRT (2009) is the first work studying ergodicity of

(3.53), that is critical in developing the asymptotic theory, this model was already

been considered in the econometric literature. It belongs indeed to the class of

observation-driven models for time series of counts studied, among the others, by

Zeger and Qaqish (1988) and, more recently, by Davis et al. (2003) and Heinen

(2003). The latter defines, in particular, an Autoregressive Conditional Poisson

model (ACP), which is a more general form of 3.53 including several lags of counts

and intensity. A strong motivation for the analysis of this class of models is that

is shown to well approximate some common financial count time series, such as the

number of trades in a short time interval (Rydberg and Shephard, 2000 and Streett,

2000).

In particular, Ferland et al. (2006) define model (3.53) explicitly as an an integer-

valued GARCH(1,1), i.e. an INGARCH(1,1), and show that Yt is stationary provided

that 0 6 α + β < 1. In particular,

E[yt] = E[λt] = µ = ω/(1− α− β)

They further show that all the moments are finite if and only if 0 6 α + β < 1.

Turning to the second moments, as

V ar[yt] = µ

(
1 +

α2

1− (α + β)2

)
it is immediate to conclude that V ar[Yt] > E[Yt], with equality when α = 0. Thus,

including the past values of the response in the evolution of intensity leads to over-

dispersion, a feature often found in real count data.

3.6.2 Ergodicity results

A crucial point in the analysis of this model is to prove the geometric ergodicity of the

joint process (yt, λt), where yt is the observed component, while the intensity process

is latent. The notion of geometric ergodicity for a Markov chain process can be
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summarized as follows. First, the concept of ϕ-irreducibility has to be introduced.

Consider the homogenous Markov chain Zt defined on a σ-field M on A, where

P t(z, B) = P (Zt ∈ B | Z0 = z) is the probability of moving from z ∈ A to the set
B ∈M in t steps. The Markov chain (Zt) is said φ-irreducible if, for some nontrivial

σ-finite measure φ on (A,M),

∀B ∈M φ(B) > 0⇒ ∀x ∈ A,∃t > 0, P t(z, B) > 0

If a φ-irreducible Markov chain is positive recurrent (see Meyn and Tweedie, 1996),

then there exists a (unique) invariant distribution, that is a probability measure π

such that

∀B ∈ B π(B) =

∫
P (z, B)π(dz)

Finally, (Zt) is said to be geometrically ergodic if there exists a ρ ∈ (0, 1) such that

∀x ∈ A ρ−t
∥∥P t(z, ·)− π

∥∥→ 0 as t→ +∞

Thus, geometric ergodicity states convergence to the invariant distribution.

FRT (2009) succeed in proving geometric ergodicity of (yt, λt) by using an ap-

proximated (perturbed) model and proving that is geometrically ergodic under some

restrictions on the parameter space. Then, they show that the perturbed model can

be made arbitrarily close to the unperturbed one, allowing to extend the results to

the latter.

The perturbed model is defined as:

ymt = Nt(λ
m
t )

λmt = ω + αymt−1 + βλmt−1 + εt,m (3.54)

where λm0 and ym0 are fixed and

εt,m = cmI
{
ymt−1 = 1

}
ut,

cm > 0

cm −→ 0 as m −→∞

where I {·} is the indicator function and {Ut} is a sequence of i.i.d. uniform random
variables on (0, 1) such that {Ut} and {Nt} are independent. The introduction of
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{Ut} enables to establish φ−irreducibility, where φ is the Lebesgue measure with
support [k,∞) for some k ≥ λ∗, with λ∗ = ω/(1 − β) solution of λ = ω + βλ. The

proof that the point λ∗ is reachable, and so that {λt} is open set irreducible on
[λ∗,∞), provided that β < 1, is instead given (see FRT, 2009 for details) without

using any perturbation.

The following lemma allows to complete the proof of ergodicity of (3.53), estab-

lishing that the perturbed model can be made arbitrarily close to the unperturbed

one.

Lemma 3.1 With (yt, λt) and (ymt , λ
m
t ) defined by (3.53) and (3.54) respectively,

if 0 ≤ α + β ≤ 1, then the following statements hold:

1. |E(λmt − λt)| = |E(ymt − yt)| ≤ δ1,m

2. E(λmt − λt)2 ≤ δ2,m

3. E(ymt − yt)2 ≤ δ3,m

and δi,m −→ 0 as m −→ ∞ for i = 1, 2, 3. Furthermore, with m suffi ciently

large, |λmt − λt| ≤ δ and |ymt − yt| ≤ δ for any δ > 0 almost surely.

3.6.3 Estimation of parameters

Denoting by θ the three-dimensional vector of unknown parameters, i.e. θ =

(ω, α, β)′, the conditional likelihood function for θ based on (3.52) in terms of the

observations y1, ..., yT given the starting values λ0, y0 is the following:

L(θ) =
T∏
t=1

exp(−λt(θ))λytt (θ)

yt!
(3.55)

where λt(θ) = ω + αyt−1(θ) + βλt−1, while, denoting the true parameter vector

by θ0 = (ω0, α0, β0)′, we can write λt = λt(θ0).

Thus the conditional log-likelihood function is given, up to a constant, by

l(θ) =

T∑
t=1

lt(θ) =
T∑
t=1

(yt log λt(θ)− λt(θ)) (3.56)

while the score function is

ST (θ) =
T∑
t=1

(
yt

λt(θ)
− 1

)
∂λt(θ)

∂θ
(3.57)
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where ∂λt(θ)/∂θ is a three-dimensional vector with components

∂λt
∂ω

= 1 + β
∂λt−1

∂ω
,

∂λt
∂α

= λt−1 + β
∂λt−1

∂α
,

∂λt
∂β

= yt−1 + β
∂λt−1

∂β

The solution of ST (θ) = 0 yields the conditional maximum likelihood estimator of

θ, denoted by θ̂ .

The Hessian matrix is then obtained by further differentiation of the score equa-

tions (3.57):

HT (θ) = −
T∑
t=1

∂2lt(θ)

∂θ∂θ′

=
T∑
t=1

yt

λ2
t (θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′
−

T∑
t=1

(
yt

λt(θ)
− 1

)
∂2λt(θ)

∂θ∂θ′
(3.58)

In order to study the asymptotic properties of the maximum likelihood estimator for

the unperturbed model which are presented in the following, it is again helpful to

use the ergodic properties of the perturbed model, whose likelihood function, based

on the Poisson assumption and the independence of Ut from (ymt , λ
m
t ), is defined as

Lm(θ) =
T∏
t=1

exp(−λmt (θ))(λmt (θ))y
m
t

ymt !

T∏
t=1

fu(Ut)

where fu denotes the uniform density. Note that, as Lm(θ) and L(θ) has the same

form, then SmT (θ) andHm
T (θ) are the counterpart of ST (θ) andHT (θ), where (yt, λt)

are replaced by (ymt , λ
m
t ).

3.6.4 Asymptotic theory

FRT (2009) prove that the maximum likelihood estimator θ̂ is consistent and asymp-

totically normal by first showing these properties for θ̂
m
. For proving consistency and

asymptotic normality of θ̂
m
they take advantage of the fact that the log-likelihood
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function is three times differentiable, which allows to apply Lemma 1 of Jensen

and Rahbek (2004). The latter states consistency and asymptotic normality of the

maximum likelihood estimator for the traditional GARCH(1,1) model when some

assumptions on parameters are relaxed. It is then shown that the score function, the

information matrix and the third derivatives of the perturbed likelihood tend to the

corresponding quantities of the unperturbed likelihood function. This allows to use

proposition 6.3.9 of Brockwell and Davis (1991), stating convergence in distribution

of a random vector when some conditions are satisfied.

Before formulating the theorem stating the main result, it is necessary to define

the lower and upper values of each component of θ, ωL < ω0 < ωU , αL < α0 < αU <

1, and βL < β0 < βU :

O(θ0) = {θ|0 < ωL ≤ ω ≤ ωU ,

θ|0 < ωL ≤ ω ≤ ωU ,

0 < αL ≤ α ≤ αU < 1 and

0 < βL ≤ β ≤ βU }

The following theorem states the properties of consistency and asymptotically nor-

mality of the maximum likelihood estimator, under a stationarity condition.

Theorem 3.3 Under model (3.53), assuming that at the true value θ0, 0 <

α0 + β0 < 1, there exists a fixed open neighborhood O = O(θ0) of θ0 such that

with probability tending to 1, as T → ∞, the log-likelihood function has a unique
maximum point θ̂ and, furthermore, θ̂ is consistent and asymptotically normal:

√
T (θ̂ − θ0)

d→ N (0,G−1(θ))

where the conditional information matrix G(θ) is defined as

G(θ) = E

[
1

λt(θ)

(
∂λt
∂θ

)(
∂λt
∂θ

)′]
(3.59)

and can be consistently estimated by

GT (θ) =
T∑
t=1

V ar

[
∂lt
∂θ
| Ft−1

]

=
T∑
t=1

1

λt(θ)

(
∂λt
∂θ

)(
∂λt
∂θ

)′
(3.60)
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The standard errors of parameter estimates can be obtained from matrix GT (θ).

3.7 Concluding remarks

We have reviewed the main models for time series of counts used in econometrics.

They belong to the class of GLM and their estimation relies on partial likelihood

theory. We have deeply analyzed one of the most used count model, which is the

Poisson with log-linear intensity. Then we have introduced a recently developed

Poisson model: Poisson Autoregression by Fokianos, Rahbek and Tjøstheim (FRT,

2009). This model defines intensity as a linear function of its own past values and

the past number of events and is able to capture the overdispersion and the strong

persistence characterizing many count data. As these features are also found in the

corporate default count time series, we can think to Poisson Autoregression as an

useful tool for the count time series analysis of the default phenomenon.



Chapter 4

A new Poisson Autoregressive

model with Exogenous Covariates

We have concluded the previous chapter by presenting Poisson Autoregression by

Fokianos, Rahbek and Tjøstheim [FRT] (2009) and explaining its potential advant-

ages in modelling overdispersed and long-memory count data, which are features

found in the corporate default counts that will be the object of our empirical study

in Chapter 5. Though, this formulation does not consider the role of covariate pro-

cesses in the intensity dynamics, i.e. in the distribution of the number of events. We

claim that including exogenous predictors in the conditional mean specification can

enrich the analysis of count time series and also improve the in- and out-of-sample

forecasting performance, especially when applying the model to empirical time series

strongly linked to the financial and economic context. In this chapter we then propose

and develop a class of Poisson intensity AutoRegressions with eXogenous covariates

(PARX) models. Extending the theory developed by FRT (2009) allowing for cov-

ariate processes requires a strong theoretical effort which is a relevant part of our

methodological contribution. First, we provide results on the time series properties

of PARX models, including conditions for stationarity and existence of moments.

We then provide an asymptotic theory for the maximum-likelihood estimators of the

parameters entering the model, allowing inference and forecasting.

54
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4.1 Related literature

The PARX model is related to a recent literature on GARCH models augmented by

additional covariates with the aim of improving the volatility forecasting perform-

ance. In many cases the lagged squared returns offer just a weak signal about the

level of volatility and, as a consequence, the approximation provided by standard

GARCH models is poor when volatility changes rapidly to a new level. Realized

volatility measures calculated from high-frequency financial data and introduced in

the literature by seminal works such as Andersen, Bollerslev, Diebold and Labys

(2001) and Barndorff-Nielsen and Shephard (2002) can be useful to improve the ap-

proximation of these models. These measures are found indeed to approximate the

level of volatility very well. The first models including realized volatility measures

in the GARCH equation are the so-called GARCH-X models estimated by Engle

(2002), but are quite incomplete as they do not explain the variation in the realized

measures. More complete models are those introduced by Engle and Gallo (2006)

and the HEAVY model of Shephard and Sheppard (2010), both specifying multiple

latent volatility processes, and the Realized GARCH model of Hansen et al. (2012),

which combines a GARCH structure for the daily returns with an integrated model

for realized measures of volatility. More generally, there are several works presenting

empirical analyses where the time-varying volatility is explained by past returns and

volatilities together with additional covariates, typically the volume of transactions

as a proxy of the flow of information reaching the market (see, for example, Lam-

oureux and Lastrapes, 1990 and Gallo and Pacini, 2000). An econometric analysis

of ARCH and GARCH models including exogenous covariates can be found in Han

and Park (2008) and Han and Kristensen (2013). The PARX shares the same mo-

tivation and modelling approach of the presented literature, except that the variable

of interest in our case is the time-varying Poisson intensity.
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4.2 Specification of PARX models

Consider the Poisson model for the counts yt, conditional on past intensity and

counts, denoted by λt−m and yt−m, for m ≥ 1, respectively, as well as past values of

an explanatory variable xt:

yt | Ft−1 ∼ Pois(λt) (4.1)

where Ft−1 = σ(yt−m, λt−m, xt−m,m ≥ 1) and λt is the, potentially time-varying,

Poisson intensity. Following FRT (2009), equation (4.1) can be rewritten in terms

of an i.i.d. sequence Nt(
.) of Poisson processes with unit-intensity

yt = Nt(λt) (4.2)

The time-varying intensity is specified in terms of the linear link function con-

sidered in FRT (2009), here augmented by an exogenous covariate xt ∈ R entering
the intensity through a known function f : R→ R+:

λt = ω +

p∑
i=1

αiyt−i +

q∑
j=1

βiλt−i + γf(xt−1) (4.3)

The parameters of interest are given by ω > 0, and α1, ..., αp, β1, ..., βq and γ ≥ 0. It

is easy to observe that, when γ = 0, the model reduces to the Poisson Autoregression

in FRT (2009). Also note that we define a more general specification, allowing for

p lags of the response and q lags of the intensity. We can then use the notation

PARX(p, q) in an analogous way as GARCH(p, q) identifies a GARCH models where

p lags of the returns and q lags of the volatility are included. The presence of the

lagged covariate value rather than the value at time t allows the definition of a

conditional intensity that is known at time t given the information available up to

time t− 1.

In order to carry out multi-step ahead forecasting, we close the model by imposing

a Markov-structure on the covariate,

xt = g(xt−1, εt; η) (4.4)

for some function g(x, ε; η) which is known up to parameter η and where εt is an

i.i.d. error term. We will assume that {εt} and {Nt(
.)} are mutually independent so

that there is no feedback effect from yt to xt.
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4.3 Time series properties

We here provide suffi cient conditions for a PARX process to be stationary and ergodic

with polynomial moments of a given order1. The analysis is carried out by applying

recent results on so-called weak dependence developed in Doukhan and Wintenberger

(2008). The notion of weak dependence allows to prove the existence of a strictly

stationary solution for a large variety of time series models called chains with infinite

memory, defined by the equation

Xt = F (Xt−1, Xt−2, ..., ; ξt) a.s. for t ∈ T

where F takes values in a Banach space and ξt constitutes an i.i.d. sequence (see

Doukhan and Wintenberger, 2008 for details). These models can be seen as a natural

extension either of linear models or Markov models. While weak dependence is a

slightly weaker concept than the geometric ergodicity used in FRT (2009), it does

imply that a strong law of large numbers as well as a central limit theory, both used

for the results on econometric inference shown in the following, apply.

Specifically, we make the following assumptions:

Assumption 1 |f(x)− f(x̃)| ≤ L ‖x− x̃‖, for some L > 0 and for every pair

of points x, x̃ ∈ R.
Assumption 2 E [‖g(x; εt)− g(x̃; εt)‖s] ≤ ρ ‖x− x̃‖s for some ρ < 1, s ≥ 1

and for every pair of points x, x̃ ∈ R, and E [‖g(0; εt)‖s] <∞.

Assumption 3
∑max(p,q)

i=1 (αi + βi) < 1.

Assumption 4 (ε′t, Nt(
.)) are i.i.d.

A few remarks on these assumptions are needed.

First, Assumption 1 states that f satisfies the Lipschitz condition. This assump-

tion will be weakened in the following in order to gain flexibility in the choice of the

function f .

Assumption 2 concerns, instead, a function g defining the structure of the cov-

ariate process and requires it to be Ls-Lipschitz for all values of x. This is a key

1All theorems and lemmas are proved in Appendix A.
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assumption when proving stationarity of many popular time series models, including

the linear autoregressive ones.

Assumption 3 implies that the function L(y, λ) = ω +
∑p

i=1 αiyi +
∑q

i=1 βiλi is

Lipschitz. This assumption is imposed in Doukhan and Wintenberger (2008) for

applying the weak dependence theory and it is identical to the condition imposed in

FRT (2009) for the Poisson autoregressive model.

Finally, Assumption 4 rules out dependence in the two error terms driving the

model. It could be weakened, still satisfying the conditions of Doukhan and Winten-

berger (2008), by allowing the two joint innovation terms to be Markov processes.

This would accomodate “leverage intensity-effects”if {εt} and {Nt(
.)} are negatively

correlated. Though, for our purpose here we maintain Assumption 4.

In the following we provide a theorem stating the existence of a stationary solution

for process yt under the assumptions defined above. Before stating it, we briefly

present the theory of weak dependence developed by Doukhan and Wintenberger

(2008). They use the notion of weak dependence introduced by Dedecker and Prieur

(2004) and defined as follows.

Let (Ω, C,P) be a probability space, M a σ-subalgebra of C and Z a generic

random variable with values in A. Assume that ‖Z‖1 <∞, where ‖·‖m denotes the
Lm norm, i.e. ‖Z‖mm = E‖Z‖m for m ≥ 1, and define the coeffi cient τ as

τ(M, Z) =

∥∥∥∥sup

{∣∣∣∣∫ f(z)PX|M(dz)−
∫
f(z)PX(dz)

∣∣∣∣ with f ∈ Λ1(A)

}∥∥∥∥
1

An easy way to bound this coeffi cient is based on a coupling argument:

τ(M, Z) ≤ ‖Z −W‖1

for anyW with the same distribution as Z and independent ofM. Under certain

conditions on the probability space (Ω, C,P) (see Dedecker and Prieur, 2004), then
there exists a Z∗ such that ‖Z − Z∗‖1 and, using the definition of τ , the dependence

between the past of the sequence (Zt)t∈T and its future k-tuples may be assessed.

Consider the norm ‖z − w‖ = ‖z1 − w1‖+ ...+ ‖zk − wk‖ on Ak, setMp = σ(Zt, t ≤
p) and define
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τ k(r) = max
1≤l≤k

1

l
sup {τ(Mp, (Zj1, ..., Zjl)) with p+ r ≤ j1, ..., jl} ,

τ∞(r) = sup
k>0

τ k(r)

The time series (Zt)t∈T is said τ -weakly dependent when its coeffi cients τ∞(r)

tend to 0 as r tends to infinity. The notion of geometric ergodicity (see 3.6.2)

is stronger and refers to the rate of convergence of the Markov chain transition

probabilities to the invariant distribution. It requires the φ-irreducibility of the

Markov chain and in FRT (2009) is shown for an approximated (perturbated) Poisson

Autoregressive model.

Theorem 4.1 Under Assumptions 1-4 there exists a τ -weakly dependent sta-

tionary and ergodic solution X∗t = (y∗t , λ
∗
t , x
∗
t ) with E [‖X∗t ‖

s] <∞ and τ(r) = max(∑max(p,q)
i=1 (αi + βi), ρ

)
.

The above theorem complements the results of FRT (2009). Note that here

we provide suffi cient conditions for weak dependence of the actual model, not an

approximated version. On the other hand, we do not show the stronger property of

geometric ergodicity.

Given the existence of a stationary distribution, it can easily be shown that

E[yt] = E[λt] = µ =
ω + γE [f(xt−1)]

1−
∑max(p,q)

i=1 (αi + βi)

and furthermore V ar [yt] ≥ E[yt]. Thus, by including past values of the response and

covariates in the evolution of the intensity, the PARXmodel generates overdispersion,

which is a prominent feature in many count time series.

An important consequence of Theorem 4.1 is that, using again the results of

Doukhan andWintenberger (2008), if Assumptions 1-4 are satisfied then the (strong)

law of large numbers (LLN) applies to any function h(.) of Xt = (yt, λt, xt) provided

E [‖h(X∗t )‖] < ∞. As a lemma we note that the same applies independently of the
choice of initial values (y0, λ0, x0), that is:

Lemma 4.1 If Xt = F (Xt−1, ξt) with ξt i.i.d. and Xt τ -weakly dependent,

then
1

T

∑T

t=1
h(Xt)

a.s.→ E [h(X∗t )] provided that E [‖h(Xt)‖] <∞.
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Note that no role is played by the initial values in what stated above.

Also observe that when εt is an i.i.d.(0, σ2) sequence and E [h2(X∗t )] < ∞, it
follows by Lemma 4.1 and a CLT for martingales (see Brown, 1971) that

1√
T

T∑
t=1

h(Xt) εt
d→ N(0, σ2E

[
h2(X∗t )

]
) (4.5)

It is worth remarking that the Lipschitz condition in Assumption 1 rules out some

unbounded transformations f(x) of xt, such as f(x) = exp(x).

In order to handle such situations we introduce a truncated model:

λct = ω +

p∑
i=1

αiyt−i +

q∑
i=1

βiλ
c
t−i + γf(xt−1)I {‖xt−1‖ ≤ c} (4.6)

for some cut-off point c > 0.

We can then relax Assumption 1 allowing f(x) to be locally Lipschitz in the

following sense:

Assumption 1’ For all c > 0, there exists some Lc <∞ such that

|f(x)− f(x̃)| ≤ L ‖x− x̃‖ , ‖x‖ , ‖x̃‖ ≤ c

By replacing Assumption 1 with Assumption 1’, we now obtain, by identical ar-

guments as in the proof of Theorem 4.1, that the truncated process has a weakly

dependent stationary and ergodic solution. Though this approach recalls the ap-

proximated GARCH-type Poisson process introduced in FRT (2009), the reasoning

is different. In FRT (2009) an approximated process was needed to establish geomet-

ric ergodicity of the Poisson process, while here we introduce the truncated process

in order to handle the practice - often used in literature - of introducing non-log real-

ized volatility measures as exogenous covariate. Note that, as c→∞, the truncated
process approximates the untruncated one (c = +∞) in the following sense:

Lemma 4.2 Under Assumptions 1’- 4 together with E [f(x∗t )] <∞,

|E [λct − λt]| = |E [yct − yt]| ≤ δ1(c),

E [λct − λt]
2 ≤ δ2(c), E [yct − yt]

2 ≤ δ3(c)
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where δk(c)→ 0 as c→∞, k = 1, 2, 3.

The above result is akin to Lemma 2.1 in FRT (2009). The additional assumption

of E [f(x∗t )] being finite needs to be verified on a case-by-case basis. For example,

with f(x) = exp(x), then this holds if x∗t has a Gaussian distribution, or some

other distribution for which the moment generating function, or Laplace transform,

is well-defined.

4.4 Maximum likelihood estimation

Denote by θ = (ω,α,β, γ) ∈ Rp+q+2, where α = (α1, ..., αp)
′ and β = (β1, ..., βq)

′ the

set of unknown parameters entering the PARX model in (4.2)-(4.3). The conditional

log-likelihood function in terms of observations y1, ..., yT , given the initial values

(λ0, λ−1, ..., λ−q+1, y0, y−1, ..., y−p+1), takes the form

LT (θ) =
T∑
t=1

lt(θ), where lt(θ) = yt log λt(θ)− λt(θ) (4.7)

where we have left out a constant term and

λt(θ) = ω +

p∑
i=1

αiyt−i +

q∑
i=1

βiλt−i(θ) + γf(xt−1)

The maximum likelihood estimator is then computed as

θ̂ = arg max
θ∈Θ

LT (θ) (4.8)

where Θ ⊂ Rp+q+2 is the parameter space.

We now impose the following conditions on the parameters:

Assumption 5 Assume that θ ∈ Θ ⊂ Rp+q+2, with Θ compact and θ0 ∈ intΘ.
Moreover, for all θ = (ω,α,β, γ) ∈ Θ, βi ≤ βU < 1/q for i = 1, 2, ..., q and

ω ≥ ωL > 0.

Under this assumption together with the ones used to establish stationarity of

the model, we obtain the following asymptotic result for the maximum likelihood

estimator:
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Theorem 4.2 Under Assumptions 1-5, θ̂ is consistent and

√
T (θ̂ − θ0)

d→ N(0, G−1) G = −E
[
δ2lt(θ)

δθδθ′

∣∣∣∣
θ=θ0

]
(4.9)

An important remark is the following. If the distribution of yt is misspecified, thus

there is an error term in the definition of intensity, but it still holds that E[yt] = λt,

we expect the asymptotic properties of the maximum likelihood estimator to remain

correct except that the asymptotic variance now takes the sandwich form G−1ΩG−1

where

Ω = E

[
δlt(θ)

δθ

δlt(θ)

δθ′

∣∣∣∣
θ=θ0

]
See Gourieroux et al. (2004) for an analysis of Quasi-Maximum Likelihood Estima-

tion (QMLE) of Poisson models.

Theorem 4.2 generalizes the result of FRT (2009) to allow for estimation of para-

meters associated with additional regressors in the specification of λt. By combining

the arguments in FRT (2009) with Lemma 4.2, the asymptotic result can be extended

to allow f to be locally Lipschitz (see Assumption 1’).

More precisely, we define the likelihood quantities for the approximated, or trun-

cated, model as

LcT (θ) =
T∑
t=1

lct (θ), where lct (θ) = yct log λct(θ)− λct(θ) (4.10)

It immediately follows that the results of Theorem 4.2 holds for the QMLE θ̂
c
of

LcT (θ). However, as the approximated likelihood function can be made arbitrarily

close to the true likelihood as c→∞, one can show that we can replace Assumption
1 in Theorem 4.2 by Assumption 1’:

Theorem 4.3 Under Assumptions 1’, 2-5 and E [f(x∗t )] < ∞, then θ̂ is

consistent and

√
T (θ̂ − θ0)

d→ N(0, G−1) G = −E
[
δ2lt(θ)

δθδθ′

∣∣∣∣
θ=θ0

]
(4.11)

With the above theorem we have generalized the asymptotic results by allowing the

assumptions on function f to be relaxed.
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4.5 Forecasting

The PARX model can be used to generate forecasts of both the intensity, λt, and the

number of events, yt. It is important to remark that, for multi-step forecasting, we

also need to estimate the model for xt as given in (4.4). Given that xt is exogenous, we

can estimate the parameters entering equation (4.4) independently of θ. If no model

is available for xt, only one-step ahead forecasts are possible. In the following, we

treat the parameters entering the model as known for notational ease. In practice,

the unknown parameters are simply replaced by their estimates. Forecasting of

Poisson autoregressive processes is similar to forecasting of GARCH processes (see,

e.g., Hansen et al, 2012, Section 6.2) since it proceeds in two steps. First, a forecast

of the time-varying parameter - the variance in the case of GARCH, the intensity

in the case of PARX - is obtained; then, this is substituted into the conditional

distribution of the observed process yt.

Consider the forecasting of λt. A natural one-step ahead forecast is

λT+1 | T = ω +

p∑
i=1

αiyT+1−i +

q∑
i=1

βiλT+1−i + γf(xT ) (4.12)

More generally, a multi-step ahead forecast of the distribution of yT+h, for some

h > 1, takes the form

FT+h | T (y) = F
(
y | λT+h | T

)
where λT+h | T is the final output of the following recursion:

λT+h | T = ω +

max(p,q)∑
i=1

(αi + βi)λT+k−i | T + γf(xT+k−i | T ), k = 1, ..., h (4.13)

where the initial value λT+1 | T derives from (4.12) and xT+k | T , k = 1, ..., h − 1, is

obtained from some forecast procedure based on (4.4). For example, if the model for

xt is an AR, the natural forecast is

yT+h | T := E [yT+h | Ft] = λT+h | T

together with the 1− α confidence interval (as implied by the forecast distribution)
for some α ∈ (0, 1). The symmetric 1− α confidence interval takes the form

CI1−α =
[
Q
(
α/2|λT+h | T

)
, Q
(
1− α/2|λT+h | T

)]
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where p 7−→ Q(p|λ) denotes the quantile function of a Poisson distribution with in-

tensity λ. The quantile function is available in standard statistical software packages,

such as Matlab. The forecasting results can be used to evaluate competing PARX

models, e.g. based on different choices of covariates. A number of different tests have

been proposed in the literature for comparing forecasting models. One can either use

forecast evaluation methods based on point forecast, yT+h | T , as proposed in, among

others, Christoffersen and Diebold (1997). Alternatively, the evaluation of the fore-

cast distribution can be made by using the so-called scoring rules (Diebold et al.,

1998). These take as starting point some loss function S(P, y) whose arguments are

the probability forecast, P , and the future realization, y. For instance, the log-score,

S(P, y) = logP (y) can be used for ranking probability forecast methods by compar-

ing their average scores. A test based on the scoring rules is the likelihood ratio test

studied by Amisano and Giacomini (2007). Suppose we have two competing PARX

models with corresponding intensity forecasts λ(1)
T+h | T and λ

(2)
T+h | T . We then define

the corresponding log-likelihood functions given the actual outcome in period T +h,

λ
(k)
T+h | T = yT+h log λ

(k)
T+h | T − λ

(k)
T+h | T , k = 1, 2

and compare the two forecasting models in terms of the Kullback-Leibler distance

across k ≥ 1 realizations and corresponding forecasts

LR =
1

k + 1

m+k∑
T=m

{
λ

(1)
T+h | T − λ

(2)
T+h | T

}
where m ≥ 1 is the “training sample size” with {yt, xt : t = 1, ...,m} being used
to obtain the parameter estimates. If LR > 0 (< 0) we prefer the first (second)

model. Amisano and Giacomini (2007) show that LR follows a normal distribution

as k →∞.

4.6 Finite-sample simulations

In this section we present a simulation study with the aim of evaluating the per-

formance of MLE for PARX models. We consider the results of simulations from
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PARXmodels with different covariate processes, mainly distinguishing between long-

memory and short-memory processes. The objective is indeed to show not only the

satisfactory performance of the estimation algorithm, but also the flexibility of PARX

in terms of choice of the covariates.

4.6.1 Simulation design

This experiment2 is focused on the finite-sample behaviour of MLE for PARXmodels.

We evaluate the parameter estimates for different sample sizes, in order to verify not

only the accuracy but also the convergence to the asymptotic Gaussian distribution.

In particular, our study is organized as follows. We simulate and fit the PARX(1,1)

model

yt | Ft−1 ∼ Pois(λt)

λt = ω + α1yt−1 + β1λt−1 + γ exp(xt−1)

Though here our Monte Carlo experiment is shown for a PARX(1,1) model only,

the results are very similar if more lags of the response and intensity are included.

We choose the exponential function as the positive function f for including the gen-

erated exogenous covariate in the model (see Equation 4.3). This allows to evaluate

the parameter estimates when the Lipschitz condition on f is relaxed, allowing for

unbounded transformation to be employed (see assumption A’). The exponential

transformation will also be used in our empirical study.

We examine different cases, based on alternative choices of the function g(x, ε; η)

in

Xt = g(xt−1, εt; η)

The cases included in our simulation design are the following:

• Case 1: stationary AR(1) covariate

xt = ϕxt−1 + εt

φ = 0.50

2We use Matlab for writing the data generation and estimation code.
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• Case 2: MA(1) covariate

xt = θxt−1 + εt

θ = 0.50

• Case 3: ARFIMA (0,0.25,0) covariate

∆d
jxt = xt−1+ εt

d = 0.25 where, using the backward shift operator L, ∆d
j = (1 − L)d =∑j

k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
, with Γ(·) denoting the gamma function and j denot-

ing the truncation order of the theoretical infinite sum ∆d = (1 − L)d =∑∞

k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
.

In each case the innovation process {εt} is chosen to be i.i.d. normal with variance
σ2 such that the variance of the covariate model is 1 and thus facilitating compar-

isons. In all cases the initial values are set to x0 = 0. Note that the choice of a

fractional differencing order d = 0.25 for the fractional white noise satisfies the sta-

tionarity condition for autoregressive fractionally integrated processes |d| < 0.50, so

that Assumption 2 on the Lipschitz condition is not violated.

For each case we consider four alternative scenarios for the data-generating para-

meter values, changing the value of the sum of the persistence parameters α1 + β1:

• Scenario 1: null coeffi cient of intensity:

ω = 0.10, α1 = 0.30, β1 = 0.00, γ = 0.50

• Scenario 2 - “low”persistence:

ω = 0.10, α1 = 0.30, β1 = 0.20, γ = 0.50

• Scenario 3 - “high”persistence with the coeffi cient of the response larger than
the coeffi cient of intensity:

ω = 0.10, α1 = 0.70, β1 = 0.25, γ = 0.50
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• Scenario 4 - “high”persistence with the coeffi cient of intensity larger than the
coeffi cient of the response:

ω = 0.1, α1 = 0.25, β1 = 0.70, γ = 0.50

The first scenario is comparable to an ARCH model as only the lagged response

is included. Note that none of the presented scenarios violates the condition of

stationarity
∑max(p,q)

i=1 (αi + βi) < 1 (Assumption 3) that we have imposed when

developing the asymptotic theory.

For all scenarios we simulate for sample sizes T ∈ {100, 250, 500, 1000} with 1000
replications. We also include small sample sizes for providing insights into the quality

of the estimates for short length count time series which are commonly modeled in

many empirical applications.

4.6.2 Results

As discussed above, our study of the MLE performance in finite samples concerns

both the accuracy and the speed of convergence to normality. In Tables 4.1 to 4.6,

the mean of the parameter estimates (obtained averaging out the results from all

the replications) is reported in the fourth column, while the fifth shows the root

mean square error (RMSE) of the estimates. The sixth and the seventh column re-

port the skewness and the kurtosis of the estimates distribution. We also perform a

Kolmogorov-Smirnov test on the estimates for testing against the standard normal

distribution and report the corresponding p-value in the last column. In what fol-

lows, we comment the results obtained for the cases with AR/MA (short-memory)

covariates and long-memory covariates separately.

Results for the short-memory covariates

In Tables 4.1 to 4.4, we show the results for the case where short-memory processes

are included in the intensity specification. We consider a stationary AR(1) and a

stationary MA(1), thus two short-memory processes characterized by a different rate

of decrease of the autocorrelation function. The results are very similar. In both
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cases the estimate precision is fully satisfactory for a sample size of 500. We can also

note a relevant improvement moving from T = 100 to T = 250. The best results are

obtained in the first and second (low persistence) scenarios (see Tables 4.1 to 4.4).

The “worst” scenario appears to be the third, i.e. when the value of persistence

is close to one and the coeffi cient of the response α1 is higher than the coeffi cient

of intensity β1. Moreover, even in this case, the approximation improves quicky

as the sample size increases. The less accurate estimate is that of the constant (ω)

parameter. Convergence to normality is evident in both cases and for all the scenarios

considered, as normality is never rejected at a 5% significance level when the sample

size is at least 500.

Results for the long-memory covariates

Case 3 considers the inclusion of a fractionally integrated process (Tables 4.5 to

4.6). ARFIMA processes are weakly stationary if the condition |d| < 0.50 (as in our

experiment) is satisfied, but have slowly-decaying autocorrelations compared to the

exponential rate of decay typical of ARMA models. Considering this case separately

is then convenient. The results do not show substancial differences with respect to

the previously examined case of AR/MA covariates. Again, the approximation is

satisfactory, except for the constant parameter in Scenario 3, which substantially

improves for a sample size of 1000, though. Convergence to normality is confirmed,

as the only rejection for sample sizes larger than 250 concerns the constant parameter

in Scenarios 3 and 4 (see Tables 4.5 to 4.6).
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4.7 Concluding remarks

In this chapter we have defined and studied the properties of Poisson Autoregressions

with Exogenous Covariates (PARX). Specifically, we have developed both the asymp-

totic and estimation theory, in addition to establishing the conditions for stationarity

and ergodicity of the defined process. We have also considered how forecasting can

be carried out and evaluated in our framework. In the last section we have conduc-

ted a simulation study of different PARX models, i.e. including different covariates.

The results show a good performance of MLE and very little differences among the

alternative PARX models considered. In the empirical analysis discussed in the next

chapter, we will show that the PARX model is extremely useful for investigating the

corporate defaults phenomenon.



Chapter 5

Empirical study of Corporate

Default Counts

So far we have presented default risk and the main measures and models for analyzing

it (see Chapter 1 and 2). We have presented and discussed the literature of default

correlation as well as several studies investigating the phenomenon - which is central

in risk management - of the default peaks predictability. We have reviewed regression

models including variables which may explain the incidence of corporate defaults

phenomenon, in terms of either default rates or counts. We have progressively focused

on models for default counts, encouraged by the fact that the same clusters shown

in the default rates time series are also evident in the time series of bankruptcy

counts. Furthermore, as previously said, the main point in default rate prediction is

forecasting the number of defaulting issuers by a certain time horizon. The predicted

default intensity - the expected number of defaults - can be an easy and immediate

instrument in bank risk management communications. The count models typically

used for rare events like the Poisson, presented in Chapter 3 together with other

count time series models, seem to be suitable. Our idea of using Poisson models with

both autoregressive components and exogenous regressors for capturing the default

clustering has led to the definition of a new model called Poisson Autoregression with

Exogenous Covariates (PARX). How Poisson Autoregressions and PARX models

perform when handling actual corporate default data and how the results of their

76
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application should be intepreted are the research questions we address in this chapter.

5.1 Overview of the approach

We investigate the corporate default dynamics through a count time series approach

including autoregressive components and exogenous variables, sharing some similarit-

ies with the generalized autoregressive models for conditional volatility. Our analysis

of corporate defaults dynamics is made under an aggregate perspective, which does

not take into account firm-specific conditions determining the individual probability

of default of a company. This study tries indeed to measure an overall default risk

concerning debt issuers of considerable relevance in terms of dimension, because we

consider defaults among rated, thus in most cases listed, firms. The default intensity

of high dimension firms is expected to be linked to common risk factors arising from

the financial and macroeconomic context, as well as possible contagion effects. We

claim that this approach can give a useful measure of the general tendency in the

corporate default dynamics, providing a measure of “systematic”default risk which

can support the traditional analysis of individual firm solvency conditions.

5.2 Corporate default counts data

The time series of corporate default counts we analyze here refers to the monthly

number of bankruptcies among Moody’s rated United States firms in the period go-

ing from January 1982 to December 2011. The default count dataset is one of the risk

monitoring instruments provided by Moody’s Credit Risk Calculator (CRC), which

allows to download historical default rates and counts in the form of customized

reports, with many options in terms of time interval length and economic sectors.

We choose to focus our study on the industrial sector: this means to include all the

firms covering nonfinancial activities and exclude banking, financial and insurance

companies. This choice is quite common in the study of corporate default counts

(see, for instance, Das et al., 2007, Lando and Nielsen, 2010 and Lando et al. 2013)

and motivated by the convenience of considering the real and financial economy
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default events separately, at least in the first place. Other categories typically ex-

cluded are the public utilities and transportation activities, because of their peculiar

management structure, often linked to the public sector.

More generally, the choice of using US data is motivated by the good quality and

organization of the default data material, at least from the 1980s. The Bankruptcy

Reform Act of 1978, amending the Bankruptcy Act of 1898, is the first complete

expression of the US default law, trying to give protection to the creditors as well as

the chance to the borrowers to reorganize their activity. With this act, the default

legislation becomes uniform in all the federal states. The Bankruptcy Reform Act of

1978 continues to serve as the federal law that governs the bankruptcy cases today,

and again a strong emphasis is given to business reorganization (see Skeel, 2001 for

a history of the US bankruptcy law). However, in the US as in many European

countries, during the period from World War II through the 1970s, bankruptcy was

a nearly exceptional event. With the exception of Northeastern railroads, there were

not many notable business failures in the U.S. in that time. During the 1970s, there

were only two corporate bankruptcies of prominence: Penn Central Transportation

Corporation in 1970 and W.T. Grant Company in 1975. It is interesting that the

failure of Penn Central and Northeastern railroads is often cited as the first docu-

mented case of contagion, as the major case of the railroads default was the missed

payment of obligations by Penn Central. Both Das et al. (2007) and Lando and

Nielsen (2010) cite the Penn Central case in their empirical analyses. The small

number of defaults before the 1980s explains our choice of using January 1982 as the

starting period of our empirical analysis.

Some first considerations about the time series of corporate default counts in US

in the last thirty years can be made by inspecting a simple plot of our data, shown

in Figure 5.1.

The first evidence from Figure 5.1 is that the data show the peaks typically found

in corporate default counts time series and also referred to as “default clusters”. The

long memory of the series is evident from the slowly decaying autocorrelation function

(see Figure 5.2).

Looking more in detail at the peak periods and trying to connect them with
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Figure 5.1: Monthly default counts of US Moody’s rated industrial firms from Janu-

ary 1982 to December 2011.

Figure 5.2: Autocorrelation function of the monthly default counts.
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the financial crises, during the 1980s and early 1990s many bankruptcies took place.

Many well-known companies filed for bankruptcy, mainly encouraged by reorgan-

ization opportunities. These Include LTV, Eastern Airlines, Texaco, Continental

Airlines, Allied Stores, Federated Department Stores, Greyhound, Maxwell Commu-

nication and Olympia & York. Indeed, also the financial sector lived years of trouble

between the 1980s and the 1990s, like the well-known “savings and loan”crisis. The

financial crisis did not involve the banking sector only, as the 1987 market crash

showed. The second peak in our series appears in the 1999-2002 period and, again,

this is not surprising: in the years 2000-2001 a strong financial crisis took place,

starting from the so-called “Dot-com”(or “Tech”) bubble, causing the recession of

2001 and 2002. After a period of stability from 2003 to 2007, a new peak charac-

terizes the final part of our sample, from 2008 to 2010, starting from the financial

sector with the subprime crisis of 2007 and spreading to the real, as a global and

systemic crisis, in the following years.

It is interesting to compare the default count time series to macroeconomic in-

dicators such as the monthly Leading Index published by the Federal Reserve. The

Leading Index includes the Coincident Index and a set of variables that “lead”the

economy: the state-level housing permits, the state initial unemployment insurance

claims, the delivery times from the Institute for Supply Management (ISM) man-

ufacturing survey, the interest rate spread between the 10-year Treasury bond and

the 3-month Treasury bill.

Looking at Figure 5.3, the low level in the late 1980s and earlier 1990s as well as

in 2000-2002 confirms the previous analysis, and again the last crisis turns out to be

the most dramatic period. Another relevant index, explicitly signalling the phases

of the business cycle, is the recession indicator released by the National Bureau of

Economic Research (NBER): the NBER recession indicator is a time series which

consists in dummy variables that distinguish the periods of expansion and recession,

where a value of 1 indicates a recessionary period, while a value of 0 signals an

expansionary one. The shaded areas created by the recession dates in Figure 5.4

confirm the previous identification of three turbolence periods (1982-1991, 2000-

2002, 2008-2010). In our analysis we shall also consider the connection between the
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Figure 5.3: Monthly Leading Index from January 1982 to December 2011.

business cycle and the number of corporate defaults.

Based on the previous considerations, in Table 5.1 we show some descriptive

statistics of the data in different subsamples of our dataset, which includes a total

of 360 observations. In particular, we distinguish the three clusters of the late 1980s

and early 1990s, the first 2000s and 2007-2010 respectively. In addition to the mean,

the standard deviation and the median we also report the variance, underlying that

all the considered subsamples present data overdispersion.

It is interesting to note that the effects on defaults of the crisis spread in 2000

Table 5.1: Descriptive statistics of the default count data.

Sample Mean Std. Dev. Variance Median

first cluster: 1986-1991 3.54 3.54 7.50 3

second cluster: 2000-2003 7.69 3.79 14.83 7

third cluster: 2007-2010 5.96 6.65 44.17 4

whole dataset 3.51 3.95 15.57 2
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Figure 5.4: Monthly NBER recession indicator from January 1982 to December 2011.

are the most severe in terms of average number of defaults. In the last financial

and economic crisis period the most relevant aspect is instead the variance, as the

number of defaults explodes and decreases quickly, while the previous clusters are

more lasting in time.

5.3 Choice of the covariates

Our empirical study concerns the time series analysis and modelling of the number

of corporate defaults and also aims at measuring the impact of the macroeconomic

and financial context on the defaults phenomenon. This needs some reflections about

the variables to be considered, that are expected to be common factors for corporate

solvency conditions and thus to be predictive of the default clusters. This section

complements the previous - describing the default counts dataset which will be our

response time series - by presenting the other data included in our study and motiv-

ating our choices. The covariates presented in the following can be divided into two

groups:
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• financial and credit market variables

• production and macroeconomic indicators

All the variables are included using monthly frequency data.

5.3.1 Financial market variables

The performance of the financial market influences both firms returns on financial

investments, thus their profitability, and their funding capability, two aspects which

strongly affect the liquidity and solvency conditions. Not only the stock market, but

also the monetary market, which includes short-term financial instruments such as

Treasury Bills, deposits and short-lived mortgages, is part of the financial market and

a relevant part of the credit market, where the companies raise funds. With respect

to funding, important variables are those expressing its cost, thus the interest rates

and the relations between different interest rates, i.e. the credit spreads, which are

widely used for deriving the implied differences in risk. The market is not the only

evaluator of the corporate debt issuers, which are subject to the risk to become

insolvent, but also to that of being downgraded by the rating agencies. Based on the

above considerations, the financial and credit market variables we consider here are a

measure of realized volatility of returns, the spread between the Moody’s Baa rated

corporate bonds yield and the 10-year Treasury rate and the number of Moody’s

downgrades.

Realized Volatility of returns

Our choice of using a measure of volatility of the stock returns rather than the re-

turns themselves is motivated by the features of the corporate defaults time series,

whose dynamics are mostly driven by variance. Indeed, as expected for rare events,

the mean number of defaults is low and the level often comes back to zero. It is inter-

esting to investigate the link between the financial market and the corporate defaults

dynamics, which is expected to be strong in the crisis periods. Realized volatility

deserves a special insight for several reasons. First, as for each of the covariates we
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include in PARX models, it is important to analyze its time series properties and

verify whether the assumptions on its dynamics (see in particular Assumption 2 in

Chapter 4) are satisfied. Furthermore, estimating a model for the covariate processes

allows multi-step ahead forecasting (see Section 4.5). Recalling Section 4.1, the tra-

ditional realized volatility measures rely on the theory of a series of seminal papers by

Andersen, Bollerslev, Diebold and Labys (2001), Andersen, Bollerslev, Diebold and

Ebens (2001), and Barndorff-Nielsen and Shephard (2002), showing that the daily

integrated variance, i.e. the integral of the instantaneous variance over the one-day

interval, can be approximated to an arbitrary precision using the sum of intraday

squared returns. Furthermore, other works such as Andersen, Bollerslev, Diebold,

and Labys (2003) show that direct time series modelling of realized volatility strongly

outperforms both the GARCH and stochastic volatility models.

Our approach refers to this theory, even though is not really high-frequency: we

construct a proxy of monthly realized volatility by using the daily returns. Monthly

volatility proxies of this kind can be found, for example, in French, Schwert and

Stambaugh (1987) and Schwert (1989). According to this approach we define the

following measure for the S&P 500 monthy realized volatility:

RVt =
nt∑
i=1

r2
i,t (5.1)

where ri,t is the i-th daily return on the S&P 500 index in month t and nt is the

number of trading days in month t.

The high values of skewness (9.02) and kurtosis (100.26) of our proxy of realized

variance indicate that it is far from being normally distributed. Nonnormality is

pointed out in empirical works based on realized volatility measures from high fre-

quency data, such as Martens et al. (2009). Realized volatility time series usually

show high variance and peaks, recalling the sharp spikes of infinite variance processes

that have often been used for modelling the stock market prices (see, for example,

Fama, 1965). The logarithmic transformation of our monthly realized volatility (see

Figure 5.5 (a)) is more suitable for standard time series modelling, because the vari-

ance is lower and there are no outlier observations. The high and slowly decaying

autocorrelation (see Figure 5.5 (b)) suggests the use of long memory processes such



CHAPTER 5. EMPIRICAL STUDY OF CORPORATE DEFAULT COUNTS 85

Figure 5.5: (a) Logarithm of S&P 500 monthly realized volatility. (b) Autocorrela-

tion function of logarithmic realized volatility.

as ARFIMA. The long memory of realized volatility is a crucial point in some recent

works on this topic - such as Andersen, Bollerslev and Diebold (2007) and Corsi

(2009) - and put in doubt that the needed stationarity condition is satisfied. How-

ever, the same works claim that the long memory is “apparent”in the sense that the

persistence in realized volatility series can be effectively captured by a special class of

autoregressive models, which include different autoregressive parts corresponding to

volatility components realized over different time horizons. These models are called

Heterogeneous Autoregressive model of Realized Volatility (HAR-RV).

Corsi (2009) defines a HAR model for daily realized volatility calculated from

intraday data by considering three volatility components corresponding to time ho-

rizons of one day (1d), one week (1w) and one month (1m). These “heterogeneous”

lags can be interpreted as taking into account financial returns variability with re-

spect to different investment time horizons. The specification proposed by the author

for the daily realized volatility is the following:

RV
(d)
t = c+ β(d)RV

(d)
t−1d + β(w)RV

(w)
t−1d + β(m)RV

(m)
t−1d + εt (5.2)

where RV (d)
t =

√∑nt
i=0 r

2
i,t and nt number of available intraday squared returns while
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RV
(w)
t−1 and β

(m)RV
(m)
t−1 denote the weekly and monthly realized volatility respectively,

computed as:

RV
(w)
t = 1

5
(RV

(d)
t +RV

(d)
t−1d + ...+RV

(d)
t−4d)

RV
(m)
t = 1

22
(RV

(m)
t +RV

(m)
t−1d + ...+RV

(m)
t−21d)

where the multiperiod volatilities are calculated as the simple averages of the

daily ones during the period.

This model is shown to be able to reproduce the long memory of the empirical

volatility. The model performance in terms of both in-sample and out-of-sample fore-

casting is comparable to that of fractionally integrated models and can be estimated

more easily, since OLS can be employed.

Adapting this approach to our monthly realized volatility could be useful for

carrying out multi-step ahead forecasting in a PARX model including this variable.

A possible choice of the “heterogeneous”lags suitable for our monthly measure would

be including the first lag of logarithmic realized volatility and the last half-year

logarithmic realized volatility. The latter is computed as the simple average of the

last six monthly logarithmic realized volatility. This yields the following model:

logRVt = c+ β(1m) logRVt−1 + β(6m) logRV
(6m)
t−1 + εt (5.3)

where RVt is defined in (5.1), while for the longer period component we have:

logRV
(6m)
t =

1

6
(logRVt + logRVt−1 + ...+ logRVt−5)

Following the notation of Corsi (2009), this specification corresponds to a HAR(2)

model, because two volatility components are entered.

As an example, estimation of (5.3) for the logarithm of monthly realized volatility

in the period from 1982 to 2011 yields the following model:

logRVt = −1.1030
(0.2711)

+ 0.5543
(0.0580)

logRVt−1 + 0.2733
(0.0527)

logRV
(6m)
t−1

which is a stationary autoregressive process.

Baa/10-year Treasury spread

The default risk premium, i.e. the risk premium the investors require for accepting

the risk of corporate default, is often calculated as the difference between the yields
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Figure 5.6: Monthly spread between Baa Moody’s seasoned corporate bonds and

10-year Treasury yield.

on corporate bonds and the yields on government securities - mainly the Treasury

bills - which are expected to be risk free. The spreads on Treasury rates can be

considered as an implied default risk, which we expect to be positively correlated to

default intensity. One of the most used is the Baa/10-year Treasury spread, i.e. the

difference between the Moody’s seasoned Baa corporate bond yield and the constant

maturity 10-year Treasury rate. Our source for both rates is the FRED website1,

provided by the Federal Reserve Bank of St. Louis. Being a measure of the market

perception of credit risk, the Baa/10-year spread is usually higher during recession

periods, when the investors are worried of default risk even for upper-medium quality

firms like the Baa rated. This is evident from Figure 5.6: look, for example, at the

high peak in the last crisis period.

1http://research.stlouisfed.org/.
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Number of downgrades

The monthly counts of defaults are not the only data we get from Moody’s CRC,

which also provides the monthly rating transition matrices, where each entry is the

number of firms moving from a rating class to another (see 2.1.1 for a comprehensive

analysis of rating and its modelling). As discussed before, the main role of rating is

to give an objective evaluation of corporate solvency. Therefore, the number of firms

which are downgraded, i.e. moved to a lower rating class, it is naturally expected to

be predictive of an increased default probability. However, the capability of rating to

be a default predictor is not so fair, and, as seen, also put under discussion by several

econometric analyses, like, among the others, Blume et al. (1998) and Nickell et al.

(2000). Thus we think that is important to measure whether and how much the

number of downgrades can support the prediction of the number of defaults. At a

first sight (see Figure 5.7), most of the downgrade peaks correspond to the recession

periods and the default clusters, except for the first peak taking place in 1982, which

is due to a credit rating refinement carried out and announced by Moody’s, which

modifies the classes number and assignment (see Tang, 2009).

5.3.2 Production and macroeconomic indicators

Change in Industrial Production Index

The Industrial Production Index is an economic indicator that measures the real

output for all facilities located in the United States manufacturing, mining and util-

ities. It is compiled by the Federal Reserve System on a monthly basis in order to

bring attention to short—term changes in the industrial production. As it measures

the movements in the industrial output, it is expected to highlight the structural

developments in the economy. Its change can be considered as an indicator of the

growth in the industrial sector and is already used as a default intensity regressor in

Lando and Nielsen (2010). The monthly percentage change in Industrial Production

index (Figure 5.8) is computed as the logarithmic difference of the monthly Industrial

production Index downloaded from the FRED website.
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Figure 5.7: Monthly number of downgrades among industrial Moody’s rated firms.

Figure 5.8: Monthly percentage change in Industrial Production Index.
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Leading Index and NBER recession indicator

As our analysis of the default phenomenon is made under an aggregate perspective,

we claim that the effect of business cycle on the default intensity has to be measured

through overall indicators, representing the state of the economy - such as the Leading

Index published by the Federal Reserve - or signalling the expansion and recession

periods, as captured by the NBER recession index. They have been presented in

Section 5.2. The data for both variables are downloaded by the FRED website.

For each financial and macroeconomic covariate described above, we perform an

Augmented Dickey-Fuller (ADF) test, rejecting the null hypothesis of presence of

unit roots in all the cases. All the variables introduced above can thus be employed

in the following analysis, since they satisfy the Lipschitz condition (see Assumption

2 in Chapter 4). For realized volatility, the ADF test has been performed on the

series in logarithms, whose properties we have previously investigated.

5.4 Poisson Autoregressive models for corporate

default counts

The first objective of our analysis of corporate default counts dynamics is to evaluate

whether the inclusion of exogenous variables can improve the prediction of the num-

ber of defaults. In particular, we consider alternative PARX models by including

different covariates and compare the results. Furthermore we compare the PARX

models with the Poisson Autoregression without exogenous regressors as proposed

by FRT (2009) (PAR). We mainly focus on two aspects: first, we evaluate which

of the chosen variables allow to explain the default intensity; second, we compute

the value of the estimated persistence. As seen before, the latter allows to measure

the persistence of shocks in the default counts process. We also aim at evaluating

whether the inclusion of different covariates has a different impact on the estimated

persistence: the magnitude of the autoregressive coeffi cients is expected to decline

in the case one or more covariates explain most of the series long memory. This

objective is thus similar to that of several empirical studies which consider the im-
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pact of covariates, such as the trading volume, in the GARCH specification (see,

for instance, Lamoureux and Lastrapes, 1990 and Gallo and Pacini, 2000) and eval-

uate their effect on the ARCH and GARCH parameter estimates. In our context,

the financial and macroeconomic variables explaining the default intensity can be

considered as common factors influencing the solvency conditions of all companies.

As seen before, in PARX models negative covariates are handled by transforming

them through a positive function f , which can be chosen case by case, as long as the

Lipschitz condition stated in Assumption 1’of Chapter 4 is satisfied. The specifica-

tion which generalizes (4.3) by including an n-dimensional vector of covariates is the

following:

λt = ω +

p∑
i=1

αiyt−i +

q∑
i=1

βiλt−i +

n∑
i=1

γifi(xi,t−1) (5.4)

where ω > 0, α1, α2, β1, γi ≥ 0, f : R→ R+.

According to the choice motivated in the previous section, the covariates included

are the following:

• S&P 500 realized volatility (RV ) (see Section 5.3.1 for details on its computa-
tion)

• Baa Moody’s rated to 10-year Treasury bill spread (BAA_TB)

• Moody’s downgrade count (DG)

• NBER recession indicator (NBER)

• percentage change in Industrial Production Index (IP )

• Leading Index (LI)

Function f is simply the identity for covariates assuming only positive values,

while we use the absolute value for transforming the two variables which assume also

negative values, that are the percentage change in the Industrial Production Index

(IP) and the value of Leading Index (LI). Both are also expected to be negatively

correlated to default intensity. Then, for capturing the asymmetric effect of positive

and negative values of these covariates, we introduce a dummy variable which is 1
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when the value is lower than zero. This solution is analogous to that adopted in

the GJR-GARCH model by Glosten et al. (1993), where a dummy variable is intro-

duced for capturing the asymmetric effect of positive and negative lagged returns.

According to Engle and Ng (1993), in the volatility modelling this approach outper-

forms other specifications that overcome the problem of nonnegativity, such as the

EGARCH by Nelson (1991). As to realized volatility covariate, in the previous sec-

tion we have analyzed its logarithmic transform, which is stationary according to the

ADF test performed. Furthermore, as we have seen, our logarithmic realized volat-

ility has similar properties to the realized volatility measures analyzed in literature,

whose long memory can be effectively captured by stationary HAR processes (Corsi,

2009). Variable RV can then be considered as the exponential transformation of the

logarithmic realized volatility, satisfying the model assumptions.

Preliminary model selection based on information criteria and likelihood ratio

tests leads to choose p = 2 and q = 1, i.e. two lags of the response and one lag of

intensity. Thus, the model including all the six covariates - nesting all the estimated

models presented in the next section - is specified as

λt = ω + α1yt−1 + α2yt−2 + β1λt−1 + γ1RVt−1 + γ2BAA_TBt−1 + γ3DGt−1 (5.5)

+γ4NBERt−1 + γ5 |IPt−1|+ γ6I{IPt−1<0} |IPt−1|+ γ7 |LIt−1|+ γ8I{LIt−1<0} |LIt−1|

5.4.1 Results

Table 5.2 shows the results obtained by estimating2 nine different PARX models.

The upper portion of Table 5.2 reports the parameter estimates (standard errors

in brackets). The lower portion reports, for each model, two information criteria,

i.e. the AIC (Akaike, 1974) and the BIC (Schwarz, 1978), and the p-value of the

likelihood ratio (LR) test. The latter compares each estimated model with respect

to the one which includes all the six covariates (All in Table 5.2), thus following a

specific-to-general model selection approach. The second column reports the results

for the PAR model, i.e. the model with no covariates. The columns from third to

eighth in Table 5.2 report the results of estimation of models including one covariate

2We write in Matlab the optimization code for maximum likelihood estimation.
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at the time. As explained above, for covariates IP and LI we also consider the

effect of negative values separately, by introducing a dummy variable as in (5.5).

The first evidence from our results is that the autoregressive components play the

main role in the defaults dynamics. The estimated persistence is indeed not far

from one in all the models. The number of defaults in the US economy shows a

high persistence of shocks, supporting our proposal of a model able to capture long

memory. But can exogenous covariates explain the strong autocorrelation, and then

the clusters, of defaults? The first evidence is that several of the covariates we have

considered are found significant in explaining default intensity when included one at

the time. They are the S&P 500 index realized volatility, the Baa Moody’s rated

to 10-year Treasury spread, the number of Moody’s downgrades and the NBER

recession indicator3. First of all, we think that it is of particular interest that a

financial variable as realized volatility accounts for a real economic issue as defaults

of industrial firms. The inclusion of realized volatility is indeed new in default risk

analysis. While the use of credit spreads like the Baa to 10-year Treasury Bill is quite

common in default risk prediction - especially in the reduced-form models mentioned

in Chapter 1, using a pricing approach to default risk measurement - the inclusion

of the number of downgrades among the regressors of default counts is new as well.

In fact, there are in literature several works focusing on the link between the rating

transitions and the business cycle - like, among the others, Nickell et al. (2000) and

Behar and Nagpal (2001) - but not estimating a direct relation between downgrades

and defaults at an aggregate level. The significance of the NBER recession indicator

highlights a connection between the business cycle and the defaults dynamics and

confirms the idea of a relation between economic recession and default clusters. The

effect of the macroeconomic context on default intensity is also captured by including

the Industrial Production Index and the Leading Index. The asymmetric effect of the

positive and negative values of variables IP and LI on default intensity is confirmed,

3All the mentioned covariates are found significant at a level of 5% or less, except for the number

of downgrades, which is found significant at the 10% level.
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as they are found significant only when assuming negative values4: both a decrease in

Industrial Production and a decrease in the value of Leading Index result in a higher

predicted level of default risk. According to the LR test, as well as information

criteria, all the models including one covariate at the time are preferable to the

PAR model, thus highlighting that covariates are needed to account for the default

phenomenon. Among these PARXmodels, according to both the information criteria

and the LR test, the best are RV and LI. Realized volatility of returns and negative

values of Leading Index are indeed the only two significant covariates in the All

model (5.5), including all the covariates. The result that the number of defaults

is positively associated to the level of uncertainty shown by the financial market

only one month before is of particular interest and could be effectively used for risk

management operational purposes. Furthermore, the significance of Leading Index

shows that the macroeconomic context is relevant in default prediction. This is not

an obvious result, as the existence of a link between macroeconomic variables and

corporate default phenomenon is not always supported by similar analyses in the

econometric literature. While, for example, Keenan, Sobehart, and Hamilton (1999)

and Helwege and Kleiman (1997) forecast aggregate US corporate default rates using

various macroeconomic variables, including industrial production, interest rates and

indicators for recession, in some recent works the estimated relation between the

default rates and the business cycle is not so strong. In particular, the empirical

results of both Duffi e et al. (2009) and Giesecke et al. (2011) show a not significant

role of production growth and Lando et al. (2013) find that, conditional on individual

firm risk factors, no macroeconomic covariate is significant in explaining default

intensity.

Looking now at the estimated persistence (α̂1+α̂2+β̂1) and comparing it between

PAR and All models, we observe that the inclusion of covariates leads to a small

decrease in the level of persistence (from 0.9155 to 0.8758), which is not significant.

The large value of the estimated persistence and its substantial invariance when exo-

genous covariates are included indicates that the autoregressive parts of the model

4For models “IP” and “LI”, as well as “All”, we perform a restricted maximization of the

log-likelihood function by constraining the coeffi cients to be positive.
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explain most of the slowly decaying behaviour of the autocorrelation function charac-

terizing the default dynamics (see Figure 5.2). However, finding significant variables

in default count time series is of relevant interest in default risk evaluation and

forecasting. An increase in the level of the identified risk factors can indeed be a

“warning”for risk managers and, in general, default risk evaluators.

The final model we obtain on the basis of our model selection procedure is labelled

LMRV & LI (-) in Table 5.2. Here we include both the S&P 500 realized volatility

and the Leading Index - when taking negative values - in the model specification.
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Figure 5.9: Observed and fitted monthly number of defaults from January 1982 to

December 2011 for PARXmodel including logarithmic realized volatility and Leading

Index.

5.4.2 Goodness of fit analysis

Overall, as can be seen from Figure 5.9, the model including realized volatility and

Leading Index using the prediction ŷt = λ̂t captures the default counts dynamics

satisfactorily.

A commonly used diagnostic check for Poisson-type count models is to test the

absence of autocorrelation in the Pearson residuals (see Section 3.2.5), which are

the standardized version of the raw residual yt − λt(θ̂), taking into account that the

conditional variance of yt is not constant. In fact, the sequence of Pearson residuals

estimates the sequence

et =
yt − λt√

λt
, t = 1, ..., T

which, as previously seen, is an uncorrelated process with mean zero and constant

variance under the correct model. In addition, no significant serial correlation should

be found in the sequence e2
t as well. As can be seen from Figure 5.10, the Pearson

residuals of our final estimated model do not show significant autocorrelation at any

lag, thus approximate a white noise satisfactorily. In order to check the adequacy of
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Figure 5.10: Autocorrelation function of Pearson residuals for PARXmodel including

logarithmic realized volatility and Leading Index.

our model, following Jung et al. (2006) we perform a Ljung-Box test for the Pearson

residuals and the squared Pearson residuals including 30 lags. The resulting p-values

(0.661 and 0.373 respectively) indicate that the model successfully accounts for the

dynamics of the first and second order moments of our default counts.

An important point concerning the PARX model goodness of fit analysis in the

specific case of our empirical study should be considered: when applying the PARX

model to the counts of defaults, the aim is to capture the default clusters and signal

the periods where the default intensity, and thus the default risk, is higher. Then, the

model performance is crucial when the number of observed events is relatively high.

In this respect, Table 5.3 compares the empirical (second column) and estimated

frequencies (third column) for different values of yt. Each of the estimated frequencies

is computed as the probability of observing a count falling in the range defined in

the first column, under the estimated model.

In order to test the equality between theoretical and observed frequencies, we

employ the test derived in the following and similar to the common test for equality

of Bernoulli proportions. Suppose that we want to test the equality of the empirical

and theoretical frequency of yt values belonging to a subsetA of N∪{0} = {0, 1, 2, ...}.
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Count Empirical frequency Estimated frequency p-value

yt = 0 0.18 0.12 0.001

0 < yt ≤ 5 0.62 0.68 0.002

yt > 5 0.21 0.19 0.384

5 < yt ≤ 10 0.14 0.14 0.741

Table 5.3: Empirical and estimated frequencies of default counts.

First define

Zt = I (yt ∈ A)

and

πt = Pr (Zt = 1|Ft−1)

It can be noted that E (Zt − πt|Ft−1) = 0, i.e. Zt − πt is a martingale difference

sequence with respect to Ft−1. The conditional variance of each Zt−πt variable can
be derived as follows:

V (Zt − πt|It−1) = E
(
(Zt − πt)2 |It−1

)
= E

(
Z2
t |It−1

)
+ π2

t − 2πtE (Zt|It−1)

= E
(
Z2
t |It−1

)
+ π2

t − 2π2
t

= E
(
Z2
t |It−1

)
− π2

t = πt − π2
t = πt (1− πt)

Define now

ST =

T∑
t=1

(Zt − πt)

As the sequence πt (1− πt) is a stationary and ergodic process, we have that the
mean of the conditional variances is asymptotically constant:

V

(
ST√
T

)
=

1

T

T∑
t=1

πt (1− πt)
p→ σ2

This allows to apply the Martingale Central Limit Theorem (Brown, 1971) to ST

and state that

sT =
ST√∑T

t=1 πt (1− πt)
→d N (0, 1)
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A one-sided or two sided test can be constructed based on N (0, 1) critical values,

replacing the unknown πt’s with their estimates

π̂t = Pr
(
Zt = 1|λt(θ̂)

)
given by the model.

The last column of Table 5.3 shows the p-value of the two-sided test constructed

as above for different A subsets.

As can be seen from Table 5.3, for values larger than 5 and for the subset (5, 10],

we accept the null hypothesis of equality between the empirical and theoretical pro-

portion at the 5% significance level. It is a good result that the model correctly

estimates the frequency of defaults when the relevance of the phenomenon becomes

considerable. Prediction is indeed not crucial in periods of stability, when defaults

are rare and isolated events. Equality is rejected when the number of defaults is null

or very low.

Some considerations have to be made about the incidence of zero counts. Default

of rated firms is a rare event, nearly exceptional in periods of economic expansion

and financial stability. Thus, default count time series are characterized by a high

number of zero observations. In our default counts dataset, there are 63 zeros on

a total of 360 observations, corresponding to a proportion of 17.5%. In the PARX

models, the distribution of the number of events conditional on its past and on the

past value of a set of covariates is Poisson. The Poisson distribution does allow for

zero observations. At each time t, the probability of having a zero count is given by

exp(−λt), i.e. the probability corresponding to value 0 in a Poisson distribution of

intensity λt. An aspect often investigated in Poisson regression models specification

analysis is whether the incidence of zero counts is greater than expected for the

Poisson distribution. In our application, the analysis of the incidence of zero counts

should take into account two main points. First, the empirical frequency of zero

counts has to be compared to that implied by the PARX model. Then, the relevance

of a possible underestimate of the number of zeros has to be evaluated with respect

to our specific case.

Figure 5.11 can give an idea of the relation between the observed zeros and the
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Figure 5.11: Empirical zero counts (asterisks) and probability of having a zero count

under the estimated model (crosses).

probability of having a sampling zero under the model assumptions. There is a clear

correspondance between the periods characterized by a higher number of zeros and

the probability of having a sampling zero. The latter reaches values of more than

40% in the two most “zero-inflated”periods of 1982-1987 and 1994-1997. There is

only one part of the series, around year 1987, showing an estimated frequency of less

than 10% zeros when the empirical one is high. However, this period anticipates that

of the last eighties financial crisis, characterized by a rapidly increasing number of

defaults and corresponding to a decrease in the estimated zero counts probability.

A possible way of accounting for excess zeros in the Poisson models is to define

mixture models such as those proposed and applied in the works of Mullahy (1986),

Johnson, Kotz, and Kemp (1992) and Lambert (1992) and known as Zero-Inflated

Poisson models (ZIP). In ZIP models, an extra-proportion of zeros is added to that

implied by the Poisson distribution.The zeros from the Poisson distribution can be

considered as sampling zeros, occurring by chance, while the others are structural

zeros, not depending on the regressors dynamics. It is worth to note that in our ap-

plication, considering an aggregate data of default incidence, the distinction between
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structural and sampling zeros is not so relevant. First of all, the occurrence of the

single default is linked to the individual firm history and to occasional - and diffi cult

to predict - individual events. Furthermore, the zero-inflated periods are those where

the importance of default prediction is low.

5.5 Out-of-sample prediction

We perform a forecasting experiment for evaluating the PARX model out-of-sample

performance. We focus, in particular, on the out-of-sample prediction in the period

going from January 2008 to December 2011, corresponding to the last financial crisis

and showing a sharp peak in the number of defaults. In particular, we perform a

series of static one-step-ahead forecasts, updating the parameter estimates at each

observation. The PARX model we consider includes the S&P 500 realized volatility

and the negative values of the Leading Index, which is the preferable model according

to the selection presented in the previous section. We also compare the results with

those obtained with the PAR model, for evaluating whether the covariates included

improve the prediction. Table 5.4 shows the results of both point (third and sixth

column) and interval (columns fourth to fifth and sixth to seventh) estimate at each

step, from h = 1 to h = 48, corresponding to the last observation in our dataset.

Following Section 4.5, the point estimate of yT+h is defined as

ŷT+h|T+h−1 = λ̂T+h|T+h−1

while the 95% confidence interval for the estimate of ŷT+h|T+h−1 is given by

CI1−α =
[
Q
(
α/2|λ̂T+h|T+h−1

)
, Q
(

1− α/2|λ̂T+h|T+h−1

)]
where α = 0.05. In Table 5.4, Q

(
α/2|λ̂T+h | T

)
and Q

(
1− α/2|λ̂T+h | T

)
are indic-

ated as “min” and “max” respectively. We also report, as performance measures,

the mean absolute error (MAE) and the root mean square error (RMSE). According

to both indicators, the PARX model slightly outperforms the model without cov-

ariates. A comparison between the two models is also possible from Figure 5.12,

plotting the actual number of defaults joint to the minimum (“min”) and maximum
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(“max”) value of the forecast confidence interval for the PARX (first panel) and the

PAR (second panel) model. Not surprisingly, in both cases the peak of March 2009,

corresponding to an outlier in the default count time series, is out of the forecasting

interval. There is indeed for both models a delay of three months in predicting the

sharpest peak of the series. However, the PARX model predicts four defaults more

than the PAR in the peak, thus considering the realized volatility - as a proxy of the

financial market uncertainty- and the Leading Index - summarizing the macroeco-

nomic context - allows to reduce the underestimate of the number of defaults in this

cluster. Furthermore, the rapid increase of the default counts starting from Novem-

ber 2008 is captured better from the PARX model, whose predicted values increase

more quickly than the number of defaults forecasted by the PAR. The high value of

persistence, not far from one in all the estimates, and the consequent slow decrease

of the autocorrelation lead the predicted series to decrease more slowly than the

empirical series of default counts. Overall, the PARX model performs better than

the PAR in capturing the default clustering.



CHAPTER 5. EMPIRICAL STUDY OF CORPORATE DEFAULT COUNTS 104

PARX PAR

h yT+h ŷT+h|T+h−1 min max ŷT+h|T+h−1 min max

1 5 1.094 0 4 1.081 0 3

2 3 1.786 0 5 1.779 0 5

3 4 2.340 0 6 2.337 0 6

4 3 2.703 0 6 2.705 0 6

5 7 2.958 0 7 2.919 0 7

6 3 3.635 0 8 3.602 0 8

7 6 3.953 1 8 3.893 1 8

8 4 4.230 1 9 4.108 1 8

9 5 4.501 1 9 4.287 1 9

10 4 4.590 1 9 4.334 1 9

11 3 4.589 1 9 4.321 1 9

12 16 6.077 2 11 4.059 1 8

13 11 8.912 4 15 6.046 2 11

14 16 11.066 5 18 8.144 3 14

15 29 13.230 7 21 10.178 4 17

16 19 17.216 10 26 15.170 8 23

17 23 19.602 11 29 18.103 10 27

18 21 20.121 12 29 18.963 11 28

19 14 20.290 12 30 19.600 11 29

20 5 18.369 10 27 17.767 10 26

21 16 14.690 8 23 13.650 7 21

22 6 12.512 6 20 11.867 6 19

23 5 11.062 5 18 10.786 5 18

24 6 8.255 3 14 7.840 3 14

25 6 6.705 2 12 6.470 2 12

26 1 5.970 2 11 6.012 2 11

27 5 4.731 1 9 4.617 1 9

28 4 3.799 1 8 3.788 1 8

29 0 3.926 1 8 4.116 1 9

30 3 3.161 0 7 3.063 0 7

31 3 2.546 0 6 2.387 0 6

32 4 2.801 0 6 2.790 0 6

33 2 3.076 0 7 3.205 0 7

34 2 3.055 0 7 3.138 0 7

35 4 2.599 0 6 2.652 0 6

36 4 2.723 0 6 2.917 0 7

37 0 3.212 0 7 3.479 0 8

38 1 2.660 0 6 2.762 0 6

39 3 1.832 0 5 1.822 0 5

40 0 1.964 0 5 2.070 0 5

41 2 1.876 0 5 1.912 0 5

42 2 1.595 0 4 1.656 0 5

43 0 1.849 0 5 1.971 0 5

44 0 1.613 0 4 1.634 0 5

45 1 1.185 0 4 1.049 0 3

46 1 1.298 0 4 1.018 0 3

47 3 1.465 0 4 1.224 0 4

48 2 1.933 0 5 1.802 0 5

MAE 2.543 2.840

RMSE 4.119 4.613

Table 5.4: Out-of-sample estimation results of PARX and PAR model.



CHAPTER 5. EMPIRICAL STUDY OF CORPORATE DEFAULT COUNTS 105

Figure 5.12: Actual and forecasted number of defaults with PARX (first panel) and

PAR (second panel) model.

5.6 Concluding remarks

In this chapter we have presented an empirical analysis of the corporate default

dynamics. Our study is based on the estimation of Poisson Autoregressive models

for the monthly count of defaults among Moody’s rated industrial firms in the period

from January 1982 to December 2011. The objectives of our analysis is two-fold:

first, we want to evaluate whether there are macroeconomic and financial variables

which can be useful in default prediction; secondly, an important point is to consider

the relevance of the autoregressive components, whose presence is an essential part
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of our modelling approach. We estimate both the Poisson Autoregression without

covariates (PAR) and different PARXmodels, including macroeconomic and financial

covariates. Our results show that all the PARX models estimated are preferable to

the PAR. The more relevant covariates in explaining default intensity according to

our results are a macroeconomic variable - the Leading Index released by the Federal

Reserve - and a financial variable - the realized volatility of the S&P 500 returns.

At our knowledge, this is the first work showing a positive association between the

financial market uncertainty captured by the realized volatility and the number of

corporate defaults. The link between the returns realized volatility and the defaults

dynamics worths to be further investigated. Another aspect which should be further

analyzed is the high persistence in the default intensity estimated by PARX models.

The persistence of the shocks in the number of defaults could be caused by both

persistence in the common default risk factors and contagion effects among firms.

Overall, our results show that the PARX model including realized volatility and

Leading Index fits the data satisfactorily and captures the default clustering. We have

also performed a forecasting experiment in order to evaluate the PARXmodel out-of-

sample performance during the 2008-2011 crisis period and reached quite satisfactory

results, showing that including covariates improves the out-of-sample prediction of

the default counts.



Chapter 6

Conclusions

We have developed this thesis work in the aim of studying the modelling of de-

fault risk, proposing a new modelling framework and highlighting the main factors

influencing the corporate defaults dynamics.

We have started from the analysis of the stylized facts in corporate default counts

and rates time series. The default phenomenon, as most rare events, is character-

ized by overdispersion - the variance of the number of events is much higher than

its mean - leading to series showing both peaks (“clusters”) and periods of low in-

cidence. Moreover, the defaults time series are characterized by a slowly decreasing

autocorrelation function, which is a typical feature of long-memory processes. In re-

cent years, encouraged by the increasing relevance of the default phenomenon during

the financial crisis started in 2008, the econometric and financial literature has shown

a growing interest in default risk modelling. In particular, as seen in Chapter 2, in

most works the topic of default predictability has been investigated by analyzing the

link between the default clusters and the macroeconomic context. Another relevant

aspect in default prediction is the role of rating, which we have analyzed both in

the theoretical part of the thesis and in our empirical study. Several recent works

- we have reviewed in details the approach of Das et al. (2006), Lando and Nielsen

(2010), Lando et al. (2013) - have developed and applied models based on count-

ing processes, where the modelled variable is the default intensity, i.e. the expected

number of defaults in the time unit, typically a month. The use of counts eases

107
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the test of independence of default events conditional on common macroeconomic

and financial factors. Comparing the distribution of the default counts to a Poisson

distribution with constant intensity is the crucial feature of the cited works and has

inspired our idea: modelling defaults with a conditional Poisson models with time-

varying intensity, allowing for overdispersion and slowly decaying autocorrelation of

the counts through the inclusion of autoregressive dynamics. We have, then, reviewed

the recent literature of Autoregressive Conditional Poisson models (ACP), focusing

on Poisson Autoregression by Fokianos, Rahbek and Tjøstheim (2009), which is the

first work studying ergodicity of these models and providing the asymptotic theory,

allowing for inference. Defining an autoregressive Poisson model for default counts,

linking the expected number of default events on its past history, is the first part of

our contribution. The inclusion of autoregressive components is also relevant in the

analysis of correlation between corporate defaults, linked to the recent debate about

the possible existence of default contagion effects.

The consideration that the expected number of defaults is probably influenced by

the macroeconomic and financial context in which corporate firms operate has led us

to the idea of extending Poisson Autoregression by Fokianos, Rahbek and Tjøstheim

(2009) (PAR) by including exogenous covariates. This is our methodological contri-

bution, developed in Chapter 4, where we have presented a class of Poisson intensity

AutoRegressions with eXogeneous covariates (PARX) models that can be used for

modelling and forecasting time series of counts. We have analyzed the time series

properties and the conditions for stationarity for this new models, also developing

the asymptotic theory. The PARX models provide a flexible framework for analyz-

ing dependence of default intensity on both the past number of default events and

other relevant variables. In Chapter 5 we have applied different Poisson Autoregress-

ive models, presenting an extended empirical study of US corporate defaults based

on Moody’s monthly default count data. The time interval considered, going from

January 1982 to December 2011, includes three clusters of defaults corresponding to

three crisis periods: the last eighties financial markets crisis, the 2000-2001 inform-

ation technology bubble and the financial and economic crisis started in 2008. We

have proposed and motivated a selection of covariates which can potentially explain
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the default clusters and the strong autocorrelation in the number of defaults. An

original feature is, in particular, the inclusion of a measure of intra-monthly realized

volatility, computed from daily S&P 500 returns. Realized volatility is indeed expec-

ted to summarize the uncertainty on financial markets, characterizing the periods of

financial turmoil when defaults are more likely to cluster. According to the results

of our empirical analysis, the one-month lagged realized volatility of returns is the

most relevant covariate in explaining default intensity, together with the one-month

lagged Leading Index. The latter is a macroeconomic indicator provided by the Fed-

eral Reserve and including a set of variables expected to anticipate the US economic

tendency. At our knowledge, ours is the first work showing a positive association

between the financial market uncertainty captured by the realized volatility and the

number of corporate defaults. Also the inclusion of the Leading Index is new and

its significance highlights the predictive role of the business cycle, which previous

works try to include using GDP and industrial production growth, not always found

significant in explaining default frequencies. Overall, our results have shown that the

PARX model including realized volatility and Leading Index fits the default count

data satisfactorily and captures the default clustering. We have also performed a

forecasting experiment in order to evaluate the PARX model out-of-sample perform-

ance during the 2008-2011 crisis period and reached quite satisfactory results, show-

ing that including covariates improves the out-of-sample prediction of the default

counts. However, the default counts dynamics are mainly led by the autoregressive

components and show a high persistence of shocks, even when significant exogenous

covariates are included. In this respect, the main consideration arising is that the

modelling of the aggregate default intensity should be supported by the analysis of

firm-specific, or, at least, sector-specific variables. Sector profit indexes, for example,

could improve the default prediction, as solvency is strongly linked to the firms bal-

ance sheet data. Including less aggregate data in default risk analysis could also

allow to identify the risk factors linked to correlation among the solvency conditions

of different companies. The fact that the autoregressive components have a stronger

role than the overall default risk factors in explaining the defaults dynamics is an

interesting result. However, it is not suffi cient to state that contagion effects explain
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the autocorrelation in the number of defaults, as long as the commercial and finan-

cial links among companies are not taken into account. Another important aspect to

point out relative to the prominent role of the autoregressive part is that it should

not discourage the search and the analysis of exogenous risk factors. Finding vari-

ables significantly associated to the number of defaults can indeed provide warning

signals in default risk evaluation.

At the aggregate level, the default phenomenon is influenced by the financial

and macroeconomic context, but, at the same time, has an effect on it. The most

immediate example is that of the credit spreads - included in our empirical study

- which reflect the level of default risk connected to financial positions. A higher

default risk also affects the agents expectations, having an impact on the uncertainty

captured by the financial returns volatility. When the number of defaults is high,

also the companies investment decisions and the commercial links among firms are

affected, with consequences on industrial production. These considerations suggest

the relaxing of the covariate exogeneity assumption and, as a future development of

our work, the definition of a multivariate model. Another aspect which should be

further analyzed is the usefulness of the PARX models for defaults at the operational

level: the relevance of a new model for default risk should be evaluated with respect

to the actual needs in risk management practices. As an example, one of the main

applications of the models for default risk concerns the pricing of corporate bonds.

Measuring how much our estimated default intensity reflects in the market price of

the financial instruments issued by rated companies could support the evaluation of

the PARX models performance.



Appendix A

Proofs

Proof of Theorem 4.1

Define ζ := max
(∑max(p,q)

i=1 (αi + βi) , ρ
)
< 1. Moreover, consider the norm given

by ‖(x, λ)‖w := wx ‖x‖ + wλ ‖λ‖, where wx, wy > 0 are chosen below. Next, with

α = (α1, ..., αp) and β =
(
β1, ..., βq

)
, and, correspondingly, N of dimension p and λ

of dimension q,

F (x, λ; ε,N) = (g (x; ε) , ω + αN (λ) + βλ+ γf (x))′ , (A.1)

consider, with N̄t = (Nt, ..., Nt−p)
′,

E
[∥∥∥F (x, λ; εt, N̄t (·)

)
− F

(
x̃, λ̃; εt, N̄t (·)

)∥∥∥
w

]
= wxE [‖g (x; ε)− g (x̃; ε)‖] + wλE

[∣∣∣α{N̄t (λ)− N̄t

(
λ̃
)}

+ β
{
λ− λ̃

}
+ γ {f (x)− f (x̃)}

∣∣∣]
≤ wxρ

1/s ‖x− x̃‖+ wλ

max(p,q)∑
i=1

(αi + βi)
∥∥∥λ− λ̃∥∥∥+ wλγL ‖x− x̃‖

=
[
wxρ

1/s + wλγL
]
‖x− x̃‖+ wλ

max(p,q)∑
i=1

(αi + βi)
∥∥∥λ− λ̃∥∥∥ (A.2)

If ζ =
∑max(p,q)

i=1 (αi + βi), then choose wλ = wx
(
ζ − ρ1/s

)
/ (γL) such that,

E
[∥∥∥F (x, λ; εt, N̄t (·)

)
− F

(
x̃, λ̃; εt, N̄t (·)

)∥∥∥
w

]
≤ ζ

∥∥∥(x, λ)−
(
x̃, λ̃
)∥∥∥

w
. (A.3)

If ζ = ρ1/s, then choose,

wxρ
1/s + wλγL = (1 + δ) ρ1/swx,
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or wλ = δρ1/swx/ (γL), for some small δ > 0, such that (1 + δ) ρ < 1, and hence

E
[∥∥∥F (x, λ; εt, N̄t (·)

)
− F

(
x̃, λ̃; εt, N̄t (·)

)∥∥∥
w

]
≤ (1 + δ) ζ

∥∥∥(x, λ)−
(
x̃, λ̃
)∥∥∥

w

.

Finally, E
[∥∥F (0, 0; εt, N̄t

)∥∥
w

]
= wxE [‖g (0; ε)‖] + wλ (γf (0) + ω) < ∞ by As-

sumption 4. Then the result holds by Corollary 3.1 in Doukhan and Wintenberger

(2008).

That yt is stationary is clear. Next, with zt := (x′t, λt)
′ consider

P ((yt, zt) ∈ A×B | My,t−p,Mz,t−p) = P (yt ∈ A | zt ∈ B,My,t−p,Mz,t−p)

P (zt ∈ B | My,t−p,Mz,t−p) ,

whereMx,t−k = σ (xt−k, xt−k−1, ...). Now by definition of the process,

P (yt ∈ A | zt ∈ B,My,t−p,Mz,t−p) = P (yt ∈ A | zt ∈ B) .

Next, using the Markov chain property of zt,

P (zt ∈ B | My,t−p,Mz,t−p) = P (zt ∈ B | Mz,t−p) ,

where the right hand side by τ weak dependence of zt converges to the marginal

P (zt ∈ B) as p → ∞. Hence so does P ((yt, zt) ∈ A×B | My,t−p,Mz,t−p) for any

A,B and p, p→∞.
Now consider E [|y∗t |s] =

∑s
j=0

(
s
j

)
E[(λ∗t )

j], where

E[λ∗t ] =

max(p,q)∑
i=1

(αi + βi)E (λ∗t ) + γEf
(
x∗t−1

)
+ ω

(λ∗t )
s =

s∑
j=0

(
s

j

)(
αȳ∗t−1 + βλ̄

∗
t−1

)j (
ω + γf

(
x∗t−1

))s−j
,

with ȳt = (yt, ..., yt−p+1)′ and λ̄t = (λt, ..., λt−q+1)′.

Hence,

E[(λ∗t )
s] =

s∑
j=0

(
s

j

)
E
[(
αȳ∗t−1 + βλ̄

∗
t−1

)j (
ω + γf

(
x∗t−1

))s−j]
= E

[(
αȳ∗t−1 + βλ̄

∗
t−1

)s
+ E

(
ω + γf

(
x∗t−1

))s]
+ E

[
rs−1

(
ȳ∗t−1, λ̄

∗
t−1, f

(
x∗t−1

))]
,



with rs−1 (y, λ, z) an (s− 1)-order polynomial in
(
ȳ, λ̄, z

)
and so E [rs−1 (·)] <∞ by

induction assumption.

Moreover, E
[(
ω + γf

(
x∗t−1

))s]
< ∞ by applying Doukhan and Wintenberger

(2008) (Theorem 3.2) on xt and applying Assumption 2, such that we are left with

considering terms of the form,

E
[(
αiy

∗
t−1−i + βiλ

∗
t−1−i

)s]
=

s∑
j=0

(
s

j

)
αjiβ

s−j
i E

[(
y∗t−1−i

)j (
λ∗t−1−i

)s−j]
=

s∑
j=0

(
s

j

)
αjiβ

s−j
i

j∑
k=0

(
j

k

)
E
[
(λ∗t )

s+(k−j)
]

=
s∑
j=0

(
s

j

)
αjiβ

s−j
i E [(λ∗t )

s] + C

= (αi + βi)
sE [(λ∗t )

s] + C,

as by induction assumption all E
[
(λ∗t )

k
]
<∞, for k < s. Collecting terms,

E [(λ∗t )
s] =

max(p,q)∑
i=1

(αi + βi)

sE [(λ∗t )
s] + C̃,

which for
∑max(p,q)

i=1 (αi + βi) < 1 has a well-defined solution. �

Proof of Lemma 4.1

In terms of initial values, consider, next, a process Xt = F (Xt−1, εt), where

‖F (x; ξ)− F (x̃; ξ)‖φ ≤ ρ ‖x− x̃‖, |ρ| < 1 and ‖g (0; ε)‖φ < ∞, which is τ -weakly
dependent. With X∗t denoting the stationary solution and X0 = x fixed, we wish to

show, for some h ≤ φ, 1
T

∑
t=1 h (Xt)

a.s.→ E[h (X∗t )]. Now,

1

T

∑
t=1

h (Xt) =
1

T

∑
t=1

[h (Xt)− h (X∗t )] +
1

T

∑
t=1

h (X∗t ) ,

and ∣∣∣∣∣ 1

T

∑
t=1

[h (Xt)− h (X∗t )]

∣∣∣∣∣ ≤ 1

T

∑
t=1

|h (Xt)− h (X∗t )| .
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Assume furthermore that |h (x)− h (x̃)| ≤ L||x − x̃||, φ (z) ≥ z, z > 0, then we

find by repeated use of iterated expectations,

E [|h (Xt)− h (X∗t )|] = E
[
E
[
|h (Xt)− h (X∗t )||Xt−1, X

∗
t−1

]]
≤ LE

[
E
[∥∥g (Xt−1, εt)− g

(
X∗t−1, εt

)∥∥∣∣Xt−1, X
∗
t−1

]]
≤ LρE

[
E
[∥∥Xt−1 −X∗t−1

∥∥∣∣Xt−1, X
∗
t−1

]]
= LρE

[∥∥Xt−1 −X∗t−1

∥∥] ≤ LρtE [‖X0 −X∗0‖]

Proof of Lemma 4.2

The proof mimics the proof of Lemma 2.1 in Fokianos, Rahbek and Tjøstheim

(2009), where the case p = q = 1 is treated. Without loss of generality, set here

p = q , such that, by definition,

λct − λt =

p∑
i=1

[
αi
(
yct−i − yt−i

)
+ βi

(
λct−i − λt−i

)]
+ γect , (A.4)

with ect := f (xt−1) I (‖xt−1‖ ≥ c). HenceE [λct − λt] =
∑t−1

i=0

(∑p
j=1

[
αj + βj

])i
E
(
ect−i
)
,

and, as
∑p

j=1

[
αj + βj

]
< 1,

∣∣E (ect−i)∣∣ ≤ ζ1 (c) with ζ1 (c) → 0 as c → ∞, the first
result holds with δ1 (c) := ζ1 (c) /

(
1−

∑p
j=1

[
αj + βj

])
. Next,

E (λct − λt)
2 =

p∑
i=1

α2
iE
(
yct−i − yt−i

)2
+ β2

iE
(
λct−i − λt−i

)2
+ γ2E (ect)

2

+ 2

p∑
i,j=1,i<j

αiβjE
(
λct−j − λt−j

) (
yct−i − yt−i

)
+ 2

p∑
i=1

αiE
[(
λct−i − λt−i

)
γect
]

+ 2

p∑
i=1

βiγE
[
ect
(
yct−i − yt−i

)]
+ 2

p∑
i,j=1,i<j

αiαjE
(
yct−j − yt−j

) (
yct−i − yt−i

)
+ 2

p∑
i,j=1,i<j

βiβjE
(
λct−j − λt−j

) (
λct−i − λt−i

)



With λct ≥ λt, and t ≤ s,

E [(λct − λt) (ycs − ys)]

= E [E ((λct − λt) (ycs − ys)| Fs−1)]

= E [(λct − λt)E (Ns [λs, λ
c
s])] = E (λct − λt) (λcs − λs) , (A.5)

where Fs−1 = σ (xk, Nk, k ≤ s− 1) and Nt [λt, λ
c
t ] is the number of events in [λt, λ

c
t ]

for the unit-intensity Poisson process Nt. Likewise for λt ≥ λct . Also observe that,

still for t ≤ s,

E [(yct − yt) (ycs − ys)] = E [E ((yct − yt) (ycs − ys)| Fs−1)]

= E [(yct − yt)E ((ycs − ys)| Fs−1)] = E (yct − yt) (λcs − λs) , (A.6)

For t ≥ s, note that the recursion for (λct − λt) above gives,

λct − λt =

p∑
i=1

[
αi
(
yct−i − yt−i

)
+ βi

(
λct−i − λt−i

)]
+ γect

=

p∑
i=1

βi

[
p∑
j=1

[
αj
(
yct−i−j − yt−i−j

)
+ βj

(
λct−i−j − λt−i−j

)]
+ γect−i

]

+

p∑
i=1

[
αi
(
yct−i − yt−i

)
+ γect

]
= ...

=

t−s∑
j=1

(
aj
(
yct−j − yt−j

)
+ gjet−j

)
+

p∑
j=1

[
cj
(
λcs−j − λs−j

)
+ dje

c
s + hj

(
ycs−j − ys−j

)]
.

(A.7)

Observe that aj, gj, cj, dj and hj are all summable. Using this, we find,

E [(λct − λt) (ycs − ys)] = E

(
t−s∑
j=1

(
aj
(
yct−j − yt−j

)
+ gjet−j

)
(ycs − ys)

)

+ E

(
p∑
j=1

[
cj
(
λcs−j − λs−j

)
+ dje

c
s + hj

(
ycs−j − ys−j

)]
(ycs − ys)

)
(A.8)

Collecting terms, one finds E (λct − λt)
2 is bounded by C

∑t
j=1 ψjE

(
ect−j

)2
for some

constant C, some ψi with
∑∞

i=1 ψi <∞ and which therefore tends to zero.
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Finally, using again the properties of the Poisson process Nt, we find

E (yct − yt)
2 ≤ E

[
(λct − λt)

2]+ |E (λct − λt)| ≤ E (λct − λt)
2 + δ1 (c) . (A.9)

This completes the proof of Lemma 4.2.

Proof of Theorem 4.2

We provide the proofs for the case of p = q = 1 as the general case is complex in

terms of notation. With p = q = 1,

λt (θ) = ω + αyt−1 + βλt−1 (θ) + γf (xt−1) .

The result is shown by verifying the conditions in Kristensen and Rahbek (2005,

Lemma X).

Score

The score ST (θ) = ∂LT (θ) / (∂θ) is given by

ST (θ) =
T∑
t=1

st (θ) , where st (θ) =

(
yt

λt (θ)
− 1

)
∂λt (θ)

∂θ
. (A.10)

Here, with η = (ω, α, γ)′ and vt = (1, yt−1, f (xt−1))′

∂λt (θ)

∂η
= vt + β

∂λt−1 (θ)

∂η
(A.11)

∂λt (θ)

∂β
= λt−1 (θ) + β

∂λt−1 (θ)

∂γ
(A.12)

In particular, with λt = λt (θ0),

st (θ0) =
∂λt (θ)

∂θ
ξt, ξt :=

(
Nt (λt)

λt
− 1

)
. (A.13)

and where λ̇t = ∂λt (θ) / (∂θ) θ=θ0 . This is a martingale difference sequence with

respect to Ft = F (yt−k, xt−k, λt−k, k = 0, 1, 2, ...) as E (ξt|Ft−1) = 0. It therefore

follows by the CLT for martingales, see, e.g., Brown (1971), that
√
TST (θ0) →d

N (0,Ω), where

Ω = E
[
st (θ0) st (θ0)′

]
,
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if we can show that the quadratic variation converges, 〈ST (θ0)〉 →P Ω. To this

end, observe that E
[
ξ2
t |Ft−1

]
= 1/λt < 1/ω0. Thus,

〈ST (θ0)〉 =
1

T

T∑
t=1

E
[
st (θ0) st (θ0)′ |Ft−1

]
=

1

T

T∑
t=1

λ̇tλ̇
′
t/λt, (A.14)

where λ̇t = ∂λt (θ) / (∂θ) θ=θ0 . As λ̇0 = 0,

λ̇t = (v′t, λt−1)
′
+ βλ̇t−1 =

t−1∑
i=1

βi
(
v′t−i, λt−1−i

)′
, (A.15)

By the same arguments as in the proof of Theorem 4.1, it is easily checked that the

augmented process X̃t :=
(
Xt, λ̇t

)
, with Xt defined in Theorem 4.1, is weakly de-

pendent with second moment. Since λt ≥ ω, it therefore follows thatE
[
λ̇
∗
t

(
λ̇
∗
t

)′
/λ∗t

]
<

∞. Thus, we can employ Lemma 4.1 to obtain that 1
T

∑T
t=1 λ̇tλ̇

′
t/λt → Ω.

Information

It is easily verified that

−∂
2lt (θ)

∂θ∂θ′
=

yt

λ2
t (θ)

∂λt (θ)

∂θ

∂λt (θ)

∂θ′
−
(

yt
λt (θ)

− 1

)
∂2λt (θ)

∂θ∂θ′
, (A.16)

where

∂2λt (θ)

∂η∂β
=
∂λt−1 (θ)

∂η
+ β

∂2λt−1 (θ)

∂η∂β
=

t−1∑
i=1

βi
∂λt−i (θ)

∂η
(A.17)

∂2λt (θ)

∂β2 = 2
∂λt−1 (θ)

∂β
+ β

∂2λt−1 (θ)

∂β2 = 2
t−1∑
i=1

βi
∂λt−i (θ)

∂β
(A.18)

∂2λt (θ)

∂η2
= β

∂2λt (θ)

∂η2
= ... = 0 (A.19)

In particular, the augmented process X̃t (θ) :=
(
X ′t (θ) , λ̇t (θ) , λ̈t (θ)

)′
can be shown

to be weakly dependent with second moments for θ ∈ Θ. In particular, for all θ ∈ Θ,

1

T

T∑
t=1

∂2lt (θ)

∂θ∂θ′
=

1

T

T∑
t=1

h
(
X̃t (θ)

)
→P E

[
h
(
X̃∗t (θ)

)]
, h

(
X̃t (θ)

)
=
∂2lt (θ)

∂θ∂θ′
.

Moreover, θ 7→ ∂2lt (θ) / (∂θ∂θ′) is continuous and satisfies∥∥∥∥∂2lt (θ)

∂θ∂θ′

∥∥∥∥ ≤ D̄
(
X̃t

(
θ̄
))

:=
yt
ω2
L

∂λt
(
θ̄
)

∂θ

∂λt
(
θ̄
)

∂θ′
−
(
yt
ωL
− 1

)
∂2λt

(
θ̄
)

∂θ∂θ′
,
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where θ̄ = (ωU , αU , βU , γU) contains the maximum values of the individual para-

meters in Θ, with E
[
D̄
(
X̃∗t (θ)

)]
<∞. For example,

∂λt (θ)

∂β
= λt−1 (θ) + β

∂λt−1 (θ)

∂γ
≤

t−1∑
i=0

βiUλt−1−i
(
θ̄
)

=
∂λt

(
θ̄
)

∂β
(A.20)

and

∂2λt (θ)

∂β2 = 2
∂λt−1 (θ)

∂β
+ β

∂2λt−1 (θ)

∂β2 ≤ 2
t−1∑
i=0

βiU λ̇t−1−i
(
θ̄
)

=
∂2λt

(
θ̄
)

∂β2 . (A.21)

It now follows by Lemma X in Kristensen and Rahbek (2005) that

sup
θ∈Θ

∥∥∥∥∥ 1

T

T∑
t=1

∂2lt (θ)

∂θ∂θ′
− E

[
h
(
X̃∗t (θ)

)]∥∥∥∥∥ p→ 0. (A.22)

Proof of Theorem 4.3

The proof follows by noting that Lemmas 3.1-3.4 in FRT (2009) hold for our

setting. The only difference is that the parameter vector θ include γ loading f (xt−1) .

However, as E[f (xt−1)] < ∞, all the arguments remain identical as is easily seen
upon inspection of the proofs of the lemmas in FRT (2009).
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