
AALLMMAA MMAATTEERR SSTTUUDDIIOORRUUMM –– UUNNIIVVEERRSSIITTÀÀ DDII BBOOLLOOGGNNAA

FACOLTÀ DI INGEGNERIA

DOTTORATO DI RICERCA IN INGEGNERIA ELETTRONICA,
TELECOMUNICAZIONI E TECNOLOGIE DELL’INFORMAZIONE - CICLO XXV

SETTORE CONCORSUALE DI AFFERENZA: 09/E3
SETTORE SCIENTIFICO DISCIPLINARE: ING-INF/01

USE OF SHARED MEMORY IN THE CONTEXT
OF EMBEDDED MULTI-CORE PROCESSORS:

EXPLORATION OF THE TECHNOLOGY AND ITS LIMITS

PRESENTATA DA:
PAOLO BURGIO

COORDINATORE DOTTORATO RELATORI
ALESSANDRO VANELLI-CORALLI CHIAR.MO PROF. LUCA BENINI

 CHIAR.MO PROF. PHILIPPE COUSSY

ESAME FINALE ANNO 2013/2014

Use of shared memory in the

context of embedded multi-core

processor: exploration of the

technology and its limits

Paolo Burgio

Department of Electrical, Electronic

and Information Engineering “Guglielmo Marconi”

Universitá degli Studi di Bologna - Italy

and

Lab-STICC

Université de Bretagne-Sud - France

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

December 2013

mailto:paolo.burgio@gmail.com

ii

Abstract

Nell’ultimo decennio, i sistemi integrati (embedded systems) hanno sposato le architet-

ture many-core. Questo è stato necessario per continuare a soddisfare la richiesta di

performance e di bassi consumi da parte del mercato, in particolare da quando smart-

phone e tablet sono entrati nella vita di tutti i giorni.

Per utilizzare al meglio questa tecnologia, spesso si assume che lo spazio di memoria

disponibile sia totalmente condiviso fra i processori. Ciò è di grande aiuto sia perché

semplifica il lavoro del programmatore, sia durante il design della piattaforma e del

runtime stessi. Tuttavia, il paradigma a memoria condivisa è nato sui sistemi symmetric

multi-processors (SMP), e portarlo sulle moderne architetture embedded può essere

problematico. Qui, per ragioni di dimensioni e di consumo di potenza, si tende a

rimpiazzare le data cache con memorie scratchpad, che vanno gestite esplicitamente dal

software, e quindi dal programmatore.

La situazione si complica ulteriormente se si considera il fatto che le moderne appli-

cazioni devono essere parallelizzati, prima di poter essere eseguite sulle centinaia/migli-

aia di processori disponibili nella piattaforma. Per supportare la programmazione

parallela, sono stati proposti diversi linguaggi, orientati a diversi tipi di piattaforme

e paradigmi di programmazione. Tipicamente, questi linguaggi lavorano ad un alto

livello di astrazione, pertanto abbisognano di un supporto sotto forma di libreria di

runtime, che chiaramente ha un costo, un overhead che impatta negativamente sulle

performance. Minimizzare questo costo è fondamentale. In questa dissertazione, es-

ploro l’applicabilità del modello a memoria condivisa alle moderne architetture many-

core, con particolare attenzione alla programmabilità. In particolare mi concentrerò su

OpenMP, che è lo standard de facto per programmare i sistemi a memoria condivisa.

In una prima parte della tesi vengono analizzati i servizi di base (sincronizzazione, allo-

cazione della memoria) che si deve fornire a un livello più basso dello stack tecnologico,

iii

per consentire lo sviluppo di codice parallelo su un many-core a memoria condivisa, e

in particolare il loro costo, e infine vengono proposte alcune soluzioni per renderli più

snelli. In seguito ci si sposta a un livello più alto d’astrazione, e viene mostrato come

un runtime di supporto al programming model OpenMP debba essere implementato

in modo da supportare efficientemente più livelli di parallelismo, e un paradigma a

parallelismo irregolare, a tasking, in un sistema shared-memory.

Nella seconda parte della tesi, il focus si sposta su un altro trend per il design dei sis-

temi integrati, cioè, la possibilità di includere acceleratori hardware nella piattaforma,

che quindi viene detta eterogenea. Viene introdotto un template per un’architettura

eterogenea many-core, dove acceleratori e processori comunicano tramite la memoria

condivisa. Fissato lo schema di comunicazione, si può definire uno scheletro per un

generico acceleratore (HWPU) che verrà specializzato a seconda dell’applicazione, e si

può definire uno scheletro per una piattaforma con sia acceleratori che processori.

Una volta che il protocollo di comunicazione e la piattaforma sono definiti, si può

sviluppato uno stack software e un insieme di tool per svilupparla, e per consentire alle

applicazioni di sfruttare gli acceleratori hardware. Tutti i dettagli di basso livello, non

necessari allo sviluppo dell’applicazione, sono “nascosti” in un runtime, e il programma-

tore interagisce con esso tramite annotazioni OpenMP. In questa dissertazione vengono

presentati due approcci ortogonali: da un lato (top-down), si cerca di semplificare il

lavoro del progettista della piattaforma, includendo i vari tool necessari allo sviluppo

in un unico toolflow ; dall’altro (bottom-up), si forniscono agli sviluppatori di software

gli strumenti per sfruttare gli acceleratori hardware presenti nella piattaforma, senza

appesantire il proprio codice.

iv

Complimenti per l’ottimo acquisto

v

Acknowledgements

Premessa: visto che mi son rotto di inglese e francese, i ringraziamenti ve

li beccate in italiano (vedi http://translate.google.com).

Stavolta, di scrivere un papiro come per la specialistica, non se ne parla

neppure.

Per due principali motivi: uno, perché l’ho già fatto (e quindi andiamo

in “maniera incrementale” per dirla alla ingegnere), e due perché alla fine

della fiera, c’è solo una persona senza la quale questi 5 anni, con tutte le

cose che son successe, mi sarebbero veramente passati sopra come un rullo

compressore: me.

Ciononostante, alcune persone mi sono state vicine, magari anche solo per

pochissimo, o magari mi hanno semplicemente – e involontariamente – detto

la parola giusta al momento giusto: quello che mi serviva. Senza nulla volere

alle altre, sto giro sono loro che voglio ringraziare.

Paraculatamente, i primi sono Luca, Philippe e Andrea (in ordine – immag-

ino – di pubblicazioni). Grazie Luca: come ripetevo sempre, lavorare nella

“serie A” (o almeno quella che credo sia la serie A), paga sempre e cmq,

e lavorare per te è super-stimolante (anche se ha dei ritmi “un tantinello”

elevati...). Grazie Philippe per avermi riempito di fiducia e responsabilità,

l’ultimo passo che mi mancava per diventare quello che volevo (e che sono

contento di) essere. Grazie Andrea per avermi sopportato, per esserti fatto

sopportare, per le notti a casa tua, mia o in lab (spesso assieme alla “brutta

persona” – grazie anche a lui) a lavorare, a suonare, a mangiare come dei

maiali o anche solo al parco a demolire il Jesus Christ Superstar e i Queen.

E concorderai di ringraziare i reviewer di CASES, che hanno accettato il

Vertical Stealing e le sue menate matematiche frutto delle nostre menti

perverse e di 30 ore da svegli. Se non fosse passato, credo che ci saremmo

http://translate.google.com

suicidati o scannati a vicenda, dopo “una notte da leoni”. E per quella

notte, ringrazio sentitamente i manutentori di distributori di merendine del

terzo piano di Ing. per averli riempiti due giorni prima. Fra gli altri ragazzi

del lab, in particolare io e il mio fegato ricordiamo con affetto Criscian. E

poi il cast di Pasiones Multicore, e Luis Ceze, chiaramente.

Paraculate #2 – Grazie alla mia famiglia per avermi sopportato e per aver

soprattutto sopportato la mia lontananza, soprattutto tu mamma so quanto

ci tieni a vedermi e ad avermi vicino, ma questo non è stato quasi mai

possibile. E purtroppo non posso garantirti che la situazione migliorerà in

futuro. Mi spiace, avreste dovuto farmi nascere in un’altra nazione, o una

20na di anni prima...

Grazie – con scuse annesse – ai ragazzi di Ravenna. Con voi sono stato

ancor meno presente che con la mia famiglia: vi basti sapere che mi mancate

sempre e cmq, e non sto scherzando. E bona di giocare ad “Amici miei”,

siete un po’ grandicelli! (o no?)

Grazie a Caps (coglione), Ele, la Lugli, e la Eli. Voi in particolare mi

siete stati – gli unici – vicino quando ho toccato VERAMENTE il fondo.

Sulemani.

E il più grosso grazie va all’équipe di Lorient: Moira, Lucie, Dominique,

Maria, Steph, Vasco, Juli, Béréngere, Mariana&Tristan, Célie, Nelson, La

Chiarina, Fabian, Salma, Nolo e Leandro (in ordine sparso, dovreste esserci

tutti). Una volta, Célie mi disse che era troppo felice di avere un gruppo

di amici cos̀ı: io ribadisco il concetto. Nei prossimi anni, i km (e l’oceano)

separeranno o riuniranno alcuni di noi.. sarà divertente vedere come va a

finire!

Infine, grazie, a una persona che non ho neppure bisogno di nominare (tanto

hai capito benissimo). E non serve neppure il motivo: non ci starebbe in

questa pagina, e poi tu e io non abbiamo mai dovuto parlare, per dirci

qualcosa.

Paolo

viii

Contents

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Background: many-core shared memory architectures 1

1.2 Programming shared-memory architectures 2

1.3 Programming heterogeneous architectures 3

1.4 Overview of the Thesis . 4

2 Target architecture and programming model 7

2.1 Shared-memory many-core clusters . 7

2.1.1 ST Microelectronics’ P2012/STHORM 9

2.1.2 Kalray MPPA . 12

2.1.3 Plurality Hypercore Architecture Line 12

2.2 Shared-memory programming models . 13

2.3 The OpenMP programming model . 15

2.3.1 Workload partitioning . 16

2.3.2 Tasking . 19

3 Analysis of the costs of parallel programming support on shared-

memory MPSoCs 25

3.1 Introduction . 25

3.2 Related Work . 27

3.3 Target Architecture . 29

3.4 OpenMP Support Implementation . 31

ix

CONTENTS

3.4.1 Execution Model . 31

3.4.2 Synchronization . 32

3.4.2.1 Barrier synchronization in the clustered architecture . . 36

3.4.3 Data Sharing and Memory Allocation 41

3.4.3.1 Extensions for Data Sharing and Distribution on a cluster-

based architecture . 45

3.5 Experimental Results . 48

3.5.1 Data Sharing and Distribution in a Single Cluster 48

3.5.2 Data Sharing and Distribution in the Multi-Cluster Platform . . 53

3.6 Conclusion . 55

4 Workload distribution on 3D MPSoCs with shared memory 57

4.1 Introduction . 57

4.2 Related works . 59

4.3 Target architecture and memory model 61

4.4 Vertical Stealing . 62

4.4.1 Array Partitioning and Distribution 66

4.4.2 Locality-Aware Loop Partitioning 67

4.4.2.1 Static Analysis . 68

4.4.2.2 Profile-based Analysis 70

4.4.3 Runtime Support for Work Stealing 71

4.5 Experimental results . 74

4.5.1 IDCT and Luminance Dequantization 77

4.5.2 Matrix Multiplication . 78

4.5.3 Synthetic benchmark . 80

4.6 Conclusions . 81

5 Support for nested and irregular parallelism on shared memory many-

core clusters 83

5.1 Introduction . 83

5.2 Related works . 85

5.3 Shared-memory many-core clusters . 87

5.4 Multi-level parallelism: nesting . 89

5.4.1 Lightweight Support for Nested Parallelism 89

x

CONTENTS

5.4.1.1 Forking threads . 90

5.4.1.2 Joining Threads . 91

5.4.2 Experimental validation . 92

5.4.3 Strassen matrix multiplication 96

5.5 Irregular and dynamic parallelism: tasking 100

5.5.1 Analysis of OpenMP Tasking . 100

5.5.2 Design of the runtime layer . 102

5.5.3 Implementation details . 104

5.5.4 Experiments . 106

5.5.4.1 Tasking cost characterization 107

5.5.4.2 Task granularity impact on speedup 109

5.5.4.3 Real Benchmarks . 110

5.6 Hardware support for irregular parallelism 112

5.6.1 Analysis of OpenMP dynamic parallelism support 113

5.6.2 The Hardware Scheduling Engine 115

5.6.3 HW Module Implementation and integration in the cluster . . . 117

5.6.3.1 Programming Interface and integration in the libgomp 119

5.6.3.2 Applicability of the HWSE to different programming

models . 120

5.6.4 Experiments . 121

5.6.4.1 Synthetic benchmarks 121

5.6.4.2 Comparison with software schedulers 123

5.7 Conclusions . 123

6 Heterogeneous many-core clusters with shared memory 125

6.1 Introduction . 125

6.2 Related works . 128

6.3 HWPUs: zero-copy tightly-coupled hardware accelerators 130

6.4 Top-down approach: HLS-based flow for platform design 134

6.4.1 OpenMP extensions for hardware acceleration 134

6.4.2 Toolflow for platform design . 136

6.4.3 Experimental Results . 139

6.4.3.1 Comparison of Acceleration Techniques 140

xi

CONTENTS

6.4.3.2 Single HWPU Sharing 143

6.4.3.3 Multiple HWPUs . 145

6.5 Bottom-up approach: integrating accelerators in tightly coupled clusters 146

6.5.1 Architectural scalability problem 146

6.5.2 Data Pump scheme . 147

6.5.3 Class-based programming extensions 150

6.5.3.1 Naming conventions and class clause 152

6.5.3.2 Synchronization . 152

6.5.3.3 Runtime implementation 153

6.5.4 Experimental results . 154

6.5.5 JPEG decoder . 155

6.5.6 Face Detection . 157

6.6 Conclusions . 159

7 Conclusions 161

7.1 Future research directions . 162

8 Publications 163

References 167

xii

List of Figures

2.1 Multi-cluster shared-memory architecture 8

2.2 Single shared-memory cluster . 9

2.3 Simplified scheme of a P2012 configurable cluster 10

2.4 Mesh of trees 4x8 . 11

2.5 Kalray MPPA multicluster architecture 11

2.6 Plurality Hypercore Architecture Line (HAL), and single core 13

2.7 OpenMP parallel region . 15

2.8 OpenMP shared variables and atomic clause 16

2.9 Modified GOMP code . 17

2.10 OpenMP section/s construct . 17

2.11 OpenMP static for construct . 18

2.12 Modified GOMP code for loops . 19

2.13 OpenMP single construct . 20

2.14 Multi-level parallelism using OpenMP 2.5 21

2.15 Example in Figure 2.14 with nesting and tasking 22

3.1 Target cluster template . 29

3.2 PGAS . 29

3.3 2x2 Cluster Architecture . 30

3.4 Cost of barrier algorithms with increasing number of cores. 34

3.5 Impact of different barrier algorithms on real programs. 36

3.6 Projections for barriers cost in a 64 processor system 37

3.7 Measured cost of the distributed Master-Slave barrier on a cluster archi-

tecture . 37

3.8 MS Barrier in a Clustered Architecture 38

xiii

LIST OF FIGURES

3.9 2-stage Tree Barrier in a Clustered Architecture 38

3.10 Tree Barrier Cost, from left to right, for 4, 8, 16, 32, 64 processors . . . 40

3.11 Data and metadata allocation strategies (modes) 44

3.12 Implementation of data distribution in a multi-cluster MPSoC 47

3.13 Scaling of different allocation strategies for data sharing support structures. 51

3.14 Speedup of several data sharing support variants against the baseline for

16 cores. 52

3.15 Comparison of performance (execution cycles) for several data sharing

support variants in the multi-cluster platform 56

4.1 Target 3D architecture and PGAS . 61

4.2 Layout of blocked array pix in memory and loop footprint on the array. 65

4.3 Imbalanced work queues. 66

4.4 Profile-based analysis toolflows. 71

4.5 Implementation of the work queues and descriptors of stealable/non-

stealable regions. 73

4.6 Processor layout on the CMP die. 75

4.7 Zero-load NoC latency modeling. 76

4.8 Results for IDCT and Luminance Dequantization. 78

4.9 Results for Matrix Multiplication. Horizontal (left) and vertical (right)

blocking. 79

4.10 Static iteration space partitioning (left). Horizontal (middle) and verti-

cal (right) blocking. 79

4.11 Results for the Synthetic benchmark. 80

5.1 On-chip shared memory cluster template 87

5.2 Multi-cluster architecture and global address space 87

5.3 Mesh of trees 4x8 . 88

5.4 Application with nested parallelism . 89

5.5 Global pool descriptor . 89

5.6 Tree of team descriptors to track nesting 90

5.7 Thread docking, synchronization and team descriptor 92

5.8 Cost of creating a new team . 94

5.9 Cost of closing a team . 94

xiv

LIST OF FIGURES

5.10 Microbenchmark for nested parallelism overhead. A) 1 level, B) 2 levels,

C) 4 levels . 95

5.11 Cost for different level of parallelism . 95

5.12 Strassen algorithm for matrix multiplication and its basic kernels 97

5.13 Strassen algorithm parallelized with nesting support 97

5.14 Nesting and flat speedup . 98

5.15 Effect of task granularity on speedup for Strassen application 99

5.16 Design of tasking support . 101

5.17 Design of task scheduling loop . 102

5.18 Different architectural configurations (ARCH) of the TAS memory . . . 105

5.19 Breakdown of the time spent in high-level OpenMP services 108

5.20 Parallelization speedup for increasing task granularity 108

5.21 Parallelization speedup against existing OpenMP runtimes (c) 110

5.22 Speedup of Strassen Algorithm . 111

5.23 Different construct for dynamic parallelism: a) sections, b) dynamic

loops, c) tasks . 114

5.24 GCC-transformed dynamic parallelism constructs: a) sections, b) dy-

namic loops, c) tasks . 115

5.25 GOMP code snippet for loop INIT and END 116

5.26 GOMP code snippet for loop FETCH 116

5.27 Timing overhead of task INIT performed in software 117

5.28 Scheme of the HWSE . 117

6.1 Proposal for an heterogeneous cluster with shared-memory 127

6.2 Structure of a HWPU . 130

6.3 Timing diagram for programming HWPU channels 131

6.4 Tool Flow . 137

6.5 JPEG benchmark partitioning . 138

6.6 SIFT benchmark partitioning . 140

6.7 Comparison of different acceleration strategies. 141

6.8 Effect of sharing a single HWPU among an increasing number of cores

on JPEG . 143

6.9 Single HWPU sharing on SIFT . 144

xv

LIST OF FIGURES

6.10 Multiple HWPUs, IDCT (top) and GAUS (bottom) kernel 145

6.11 Scheme (a) and mathematical area model (b) of the Plurality intra-

cluster interconnection (109, 111) as a function of the number of con-

nected master ports . 147

6.12 Heterogeneous shared memory cluster template with Data Pump. 148

6.13 Scheme of the Data Pump . 149

6.14 Normalized Performance/Area/Watt for accelerated JPEG decoder . . . 155

6.15 DP-MPORTs Utilization for JPEG HWPUs 156

6.16 Comparison of Original and Block Programming model (JPEG application)157

6.17 Block scheme for Viola-Jones face detector 158

6.18 Normalized Performance/Area/Watt for accelerated Viola-Jones face de-

tector . 159

xvi

List of Tables

3.1 Architectural parameters . 48

3.2 Shared data and metadata allocation variants 50

3.3 Shared data and metadata allocation variants in the clustered system . 53

4.1 Compiler instrumentation of distributed array accesses 67

5.1 Architectural parameters . 92

5.2 Architectural parameters . 107

5.3 Speedup of the parallel FAST algorithm 112

5.4 Description of the different primitives for each of the three dynamic

parallelism constructs . 115

5.5 HWSE Module . 119

5.6 HWSE APIs . 120

5.7 Most relevant programming models supporting dynamic parallelism . . 121

5.8 HWSE performance improvement against libgomp and OMPi SW sched-

ulers. 122

5.9 Architectural parameters . 122

5.10 Sections and loop speedup compared to the pure SW version 122

6.1 Memory-mapped registers to interact with a HWPU 131

6.2 Architectural parameters . 139

6.3 Synthesis results for the considered variants of the IDCT HWPU 142

6.4 Synthesis results for the considered variants of the GAUS HWPU 142

6.5 Accelerator classes . 151

6.6 Architectural parameters . 155

6.7 Viola Jones main kernels sorted by execution time 158

xvii

LIST OF TABLES

xviii

1

Introduction

1.1 Background: many-core shared memory architectures

In the last decade, computing systems entered the chip multiprocessor (CMP) era.

Moore’s law is still valid, but, as H. Sutter said, “the free lunch is over” (117): proces-

sors’ manufacturers still follow the 40%-per-year increase of number of transistors per

chip area, but they are not able anymore to scale performance by increasing the clock

frequency and instruction throughput of single cores (24, 38, 45). Moreover, modern

applications are increasing in complexity and must deliver high performance at low

power budgets (4, 88, 118). A typical example is an audio/video stream from a web

page, to be decoded in real-time on a mobile device such as a smartphone.

As a consequence, computing platforms adopted multi- and subsequently many-

cores designs, where energy-efficient performance scaling is achieved by exploiting large-

scale parallelism, rather than speeding up the single processing units (1, 15, 70, 83, 109).

The trend involved both general purpose (55), high-performance (HPC) (64, 101),

and embedded (15, 109) computing, and in this thesis we will mainly focus on the

latter. In particular, the way communication between the different processing units is

implemented greatly impacts the performance of platforms (12). A typical and effective

solution is to implement it using shared memory banks (5, 12, 15, 109).

The abstraction of a shared memory was initially adopted in “traditional” sym-

metric multi-processors (SMP) systems, where processors are connected to a unique

memory, and where multiple coherent level of caches are used to increase the locality of

data to the core, fighting the so-called memory wall (20, 141). This paradigm is quite

1

1. INTRODUCTION

appealing for being adopted also in the embedded domain (12, 15), but it has some

drawbacks.

In first instance, while caches are an effective solution for general-purpose systems,

in the embedded domain things are quite different. Here, the area and energy budgets

are significantly scaled down, and the big spatial and power overhead of a hierarchical

cache system (35, 99, 100) can not anymore be tolerated. For this reasons, it is a

common design choice (15, 70, 109) to partially or totally replace data caches with

shared on-chip scratchpad memories (SPM): they are fast SRAMs, limited in size to

meet the area budget, and supported by bigger and slower off-chip DRAMs, from which

data is explicitly moved back and forth to increase locality to the processing cores, e.g.,

with DMA transfers. This means that the software – that is, embedded programmers

– have now the burden of explicitly handling the shared memory (23, 62): this hinders

programmability.

1.2 Programming shared-memory architectures

A second issue stems from the fact that many-core architectures have a tremendous

potential in terms of parallelism and energy efficiency (Gops/Watt), but the task of

turning it into actual performance is demanded at the software level, and at program-

mers’ skills. This is a non-trivial task: in 2010, Blake et al. (23) highlighted that most

of the existing desktop applications are not able to exploit more than a few cores at

the same time. To this aim, several languages/extensions were proposed, that provide

constructs (such as keywords or code annotations) to enable parallel code develop-

ment at a high level of abstraction (44, 63, 96, 106). Typically, low-level services –

such as thread and memory management, and orchestration of the data movements –

are transparent to programmer, and implemented inside a runtime library, which in

general-purpose systems leverages on the underlying operating system. In the embed-

ded domain, replicating this software stack as is is not possible, due to its overhead.

Since embedded systems have limited resources, typically runtime supports lie on a

lightweight micro-kernel, or run directly on bare metal using the board support package

(BSP).

This thesis starts from these issues, and investigates how a highly expressive parallel

programming model can be efficiently supported on embedded many-cores, in such a

2

1.3 Programming heterogeneous architectures

way that parallelism and the shared-memory management are as much as possible

transparent to programmers. Among the several possible programming languages (7,

63, 96), we will focus on OpenMP (106): it grew in the mid-90s out of the need

to standardize the different vendor specific directives related to parallelism, and has

subsequently emerged as the de-facto standard for programming shared memory SMPs.

The great expressiveness of OpenMP lets the analyses and solutions shown in this work

to be applicable to most of the existing programming language for embedded systems.

OpenMP exposes a simple and lightweight interface for parallel programming, and

preserving this simplicity of use is the primary goal of this work. However, due to the

aforementioned issues, it is necessary to modify and somehow “complicate” the software

stack, to handle parallelism and (explicit) memory management in such a way they they

are transparent to programmers. For this reason, most of the the techniques proposed

here are implemented (“hidden”) in the runtime layer. Where it is not possible, few

additional language constructs and extensions are proposed to expose them at the

application level.

1.3 Programming heterogeneous architectures

The second part of the thesis focuses on heterogeneous architectures. Nowadays, power

and energy efficiency are the primary concern for the embedded systems market, as

portable devices such as smartphones and tablets went mainstream (4, 88, 118, 138). To

cope with this issues, a widely adopted solution is to exploit architectural heterogeneity

(27, 82, 115, 118) of the platforms. Designers are increasingly including hardware

accelerators in many-core platforms, to implement key kernels with orders-of-magnitude

of speedup and energy efficiency compared to software counterparts (36, 48, 66, 118).

These kernels are implemented in ASIC/FPGA technologies, and the corresponding

hardware blocks are coupled to general-purpose cores in a tighly or loosely manner.

The second part of the thesis explores how architectural heterogeneity impacts pro-

grammability and how it changes the process of designing many-core systems. Coupling

one or more hardware accelerators and several general purpose cores poses three main

challenges, namely platform design, architectural scalability and programmability. The

former two mean providing system architects with architectural templates (82, 114),

methodologies and tools (17, 30, 133) to support and automate the design process of

3

1. INTRODUCTION

the platform, while the latter means providing languages, compilers and runtime li-

braries for developing software that effectively exploits its acceleration opportunities.

Especially, programmability is still an open issue, and in both industry and academia

there is a general effort for doing research in this direction. To give an example, in

the Khronos (127) consortium a set of key players of the market are pushing towards

a common set of standard APIs for programming heterogeneous computer vision and

image processing systems, called OpenVX (128).

Both from the software and platform design viewpoints, the process of integrating

accelerators and many-cores is greatly simplified by clearly defining the communication

protocol between them. The shared-memory communication mechanism is again bene-

ficial, especially from a programmability perspective, because it reduces the data copies

to the ones for increasing data locality. This happens, e.g., as opposite to GPU-based

systems, where data must be explicitly moved to/from the accelerator’s tile in any case

before and after the actual computation (for instance using OpenCL (80)). This the-

sis explores how, assuming shared-memory communication, we can simplify the task

of platform design and software development for heterogeneous many-core systems.

Starting from a clearly defined “communication contract”, an architectural template

for heterogeneous many-core platforms is shown, and a design flow and tools for sup-

porting it are proposed. Then, an efficient runtime support for communication based

on shared-memory is developed, and (existing or brand new) higher-level program-

ming abstractions (such as the ones proposed by OpenMP (107) or OpenACC (105))

can be enriched and ported on top of it. OpenMP perfectly fits the shared-memory

communication scheme, and is adopted also in this part.

1.4 Overview of the Thesis

This document covers four years of work. During this period, designs for embedded

platforms significantly changed, following the market trends and technological advances,

and so did the software design process. The generic baseline architecture targets mod-

ern embedded platforms, where small clusters of (up to 16) cores are replicated and

connected through a Network-on-Chip to scale to many-cores. This is shown in chapter

2, which also gives a detailed overview of the OpenMP programming model.

The remaining four chapters are the main contributions of my thesis.

4

1.4 Overview of the Thesis

Chapter 3 analyzes the costs for supporting OpenMP (and, more in general, any par-

allel programming model) on many-core embedded systems featuring a shared-memory.

Typically these platforms run a lightweight/reduced operating system (such as a Linux

Vanilla kernel (89)) or amicro-kernel where multiple threads cooperately execute paral-

lel tasks on the different processing units. OpenMP was originally designed for general

purpose systems, where low-level services such as synchronization, memory allocation

and multi-threading are provided by the operating system, and where resources (such

as the size of stack, heap and caches) are less constrained than in the embedded world.

When applied to embedded systems, “traditional” mechanisms for multi-threading and

synchronization come with an overhead that in some cases is significant (97), harnessing

performance and limiting their applicability to units of work that are coarse enough to

amortize their cost (42). Thus, they must be redesigned for being effectively adopted

also on these platform.

Chapter 4 explores different task allocation strategies on an architecture with parti-

tioned, 3D-stacked shared-memory. Several workload distribution schemes are consid-

ered, and their applicability to the target platform is analyzed, in such a way they are

applicable to fine-grained units of work, and scalable to tens and hundred of concurrent

processors. Custom extensions to OpenMP are shown, to effectively expose them to

the application level.

Chapter 5 studies how a runtime for supporting nested and irregular parallelism

can be efficiently implemented on shared-memory many-cores. OpenMP was tradition-

ally designed for general purpose systems expressing regular, loop-based parallelism,

whereas modern applications also exploit more complex partitioning schemes, e.g., with

a first level of coarse-grained parallel tasks, and then a second level of SIMD-like paral-

lelism, for instance using parallel loops. It is therefore crucial to efficiently supporting

this so-called nested parallelism on a shared-memory system. Moreover, modern ap-

plications are growing in complexity, and expose a form of parallelism more irregular

and dynamically created at runtime than simple SIMD-like parallelism. This is often

referred to as tasking or work-queues. Such a complex behavior is supported by the

underlying runtime library, whose overhead greatly affects the minimum granularity of

tasks that can be efficiently spawned on embedded platforms.

The last – and latest – part of my thesis focuses on heterogeneous platforms for

embedded systems. This part is a cooperation between University of Bologna and

5

1. INTRODUCTION

Université de Bretagne-Sud, under a joint PhD agreement. In chapter 6 an archi-

tecture is proposed where hardware accelerators are tightly-coupled to cores inside

shared-memory clusters. As already pointed out, the three main challenges in such

a system are platform design, architectural scalability and programmability, and this

chapter shows how they can be tackled. Communication between cores and accelera-

tors happens through tightly-coupled shared-memory banks, implementing the so called

zero-copy scheme (5), and accelerators embodying it are called Hardware Processing

Units (HWPUs). Hardware accelerators can become a nightmare to programmers, who

are required to write scalable, modular and portable code (as good programming prac-

tice says) that uses them. As a first contribution, this chapter describes the design

for a lightweight runtime layer to support cores-to-HWPUs zero-copy communication,

and proposes a lightweight set of extensions to the OpenMP set of APIs to efficiently

exploiting it from the application layer. The template for heterogeneous clusters and a

design methodology for it are shown, and tools are developed to automate the design

process. Subsequently, it is shown how heterogeneous clusters inherently suffer from

scalability issues when attempting to insert several (tens of) accelerators in the design.

An architectural variant is introduced to cope with this, where a so-called Data Pump

module interfaces the HWPUs to the on-cluster shared memory, and provide support

for efficiently programming them.

6

2

Target architecture and

programming model

The purpose of this Chapter is to give an overview of the baseline architecture and

the target programming model that are considered in this document. They are not

intended to fully cover the topics, but rather will help the reader providing a minimal –

yet exhaustive – background for reading my thesis. For more details, interested reader

may refer to the specific references mentioned.

2.1 Shared-memory many-core clusters

The architecture considered in this work follows a well-known design trend of modern

embedded many-core systems. In a clustered platform, processing cores are grouped

into small sets (i.e., few tens), which are highly optimized for performance and through-

put. Clusters are the “building blocks” of the architecture, which scales to many-core

by replicating them and connecting them through a scalable medium such as a Network-

on-Chip (14). In such a design each cluster has a separate clock frequency domain, thus

implementing a GALS architecture (Globally Asynchronous Locally Synchronous). No-

table examples are ST Microelectronics’ STHORM/P2012 (15), Plurality Hypercore

Architecture Line (HAL) (109), Kalray MPPA (70), Adapteva Epiphany IV (1) or

even GP-GPUs such as NVIDIA Fermi (101). Figure 2.1 shows a platform with three

clusters and an off-chip memory. The Figure also shows a typical design choice for

such an architecture, the one of sharing the memory space, which is partitioned among

7

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

SWITCH SWITCH

SWITCHSWITCH

MEM
CTRL

MAIN MEMORY

MEM 2

MEM 1
MEM 0

MAIN
MEMORY

0x00000

0x40000

0x80000

0xc0000

MEM

SLAVE

PORT

SLAVE

PORT

SLAVE

PORT

SLAVE

PORT
L2/L3

BRIDGE

CORE 0

MAST

PORT

I$

CORE M

MAST

PORT

I$

INTERCONNECT

MEM

SLAVE

PORT

SLAVE

PORT

SLAVE

PORT

SLAVE

PORT
L2/L3

BRIDGE

CORE 0

MAST

PORT

I$

CORE M

MAST

PORT

I$

INTERCONNECT

MEM

SLAVE

PORT

SLAVE

PORT

SLAVE

PORT

SLAVE

PORT
L2/L3

BRIDGE

CORE 0

MAST

PORT

I$

CORE M

MAST

PORT

I$

INTERCONNECT

MEM

SSLLAAVVEE

PPOORRTT

SSLLAAVVEE

PPOORRTT

SSLLAAVVEE

PPOORRTT

SSLAVEE

PORT
L2/L3

BRIDGE

CORE 0

MAST

PORRT

I$

CORE M

MAST

PORRT

I$

INTERCONNECTCLUSTER #1

MEM

SSLLAAVVEE

PPOORRTT

SSLLAAVVEE

PPOORRTT

SSLLAAVVEE

PPOORRTT

SSLAVEE

PORT
L2/L3

BRIDGE

CORE 0

MAST

PORRT

I$

CORE M

MAST

PORRT

I$

INTERCONNECTCLUSTER #0

MEM

SSLLAAVVEE

PPOORRTT

SSLLAAVVEE

PPOORRTT

SSLLAAVVEE

PPOORRTT

SLAVE

PORT
L2/L3

BRIDGE

CORE 0

MAST

PORRT

I$

CORE M

MAST

PORRT

I$

INTERCONNECTCLUSTER #2

Figure 2.1: Multi-cluster shared-memory architecture

the different clusters (on-chip memories) and the bigger – and slower – off-chip L3

memory, resulting in a Partitioned Global Address Space (PGAS). Not shown in the

Figure, a partitioned shared on-chip memory can also be featured, hosted on a sepa-

rate cluster, or 3D-stacked on top of the chip. Every core can access every memory

location in the system, experiencing different latencies and thus resulting in a NUMA

hierarchy. Internally, clusters have aggressive throughput-oriented designs and mem-

ory systems. Figure 2.2 shows a possible template for the single cluster: it features 16

RISC cores, each of which has a private instruction cache. There is no data cache, but

rather a multi-banked and multi-ported shared scratchpad memory, accessed through

an on-cluster crossbar.

A Network Interface enables off-cluster data access, and a special shared bank fea-

turing test-and-set programming is provided to support synchronization. The amount

of on-cluster memory is limited (typically, hundreds of kilobytes to few megabytes),

thus the full data set is initially stored in larger L2/L3 memories, and each cluster is

equipped with a DMA engine to efficiently on/offload the mostly referenced data set,

increasing its locality to the processing cores. Double buffering techniques are a typical

solution that developers employ to hide this latency. As we will see in each chapter,

the specific cluster is designed depending on the different goals considered time after

time, and following different platform generations.

8

2_progmodels/Images/arch-multicluster.eps

2.1 Shared-memory many-core clusters

TAS MEM

SLAVE
PORT

SLAVE
PORT

SLAVE
PORT

SLAVE
PORT

CORE 0

MAST
PORT

I$

CORE 15

MAST
PORT

I$

DMA

CORE 1

MAST
PORT

I$

XBARNI

Figure 2.2: Single shared-memory cluster

A brief overview of some notable architectures follows.

2.1.1 ST Microelectronics’ P2012/STHORM

Platform 2012 (15) is a low-power programmable many-core accelerator platform for

embedded system, designed by ST Microelectronics. It is structured in clusters of cores,

connected through a Globally Asynchronous Network-on-Chip (GANOC) and featuring

a shared memory space between the cores. Clusters are internally synchronous, and

the global architecture is GALS (Globally Asynchronous Locally Synchronous).

Figure 2.3 shows the internal structure of a single cluster. Each cluster features a

Cluster Controller (CC) and a multi-core system called ENCORE made of 16 processing

units. All cores are a proprietary 32-bit ISA, STxP70-V4, each of which features a

floating point unit (FPx), private instruction caches, and no data caches.

Processors are interconnected through a low-latency high-bandwidth logarithmic in-

terconnect, and communicate through a fast multi-banked, multi-ported tightly-coupled

data memory (TCDM) of 256kB. The number of memory ports in the TCDM is equal

to the number of banks to allow concurrent accesses to different banks. Conflict-free

TCDM accesses have two-cycles latency.

The logarithmic interconnect is built as a parametric, fully combinational mesh-

of-trees (MoT) interconnection network (see Figure 2.4). Data routing is based on

address decoding: a first-stage checks if the requested address falls within the TCDM

9

2_progmodels/Images/arch-singlecluster.eps

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

ENCORE

TCDM
(32 banks)

PORT PORT PORTDMA #0

STxP70
15

I$

…
TIMER

HWS

STxP70
0

I$

Cluster

Controller

I$

TCDM

IC

DMA #1

HWPE

WRAP

HWPE

WRAP

HWPE

WRAP

LIC

…

IF

NI

IF LogInt P
IC

CVP

Figure 2.3: Simplified scheme of a P2012 configurable cluster

address range or has to be directed off-cluster. The interconnect provides fine-grained

address interleaving on the memory banks to reduce banking conflicts in case of multiple

accesses to logically contiguous data structures. The crossing latency is one clock cycle.

If no bank conflicts arise, data routing is done in parallel for each core. In case of

conflicting requests, a round-robin based scheduler coordinates accesses to memory

banks in a fair manner. Banking conflicts result in higher latency, depending on the

number of conflicting requests.

Each cluster is equipped with a Hardware Synchronizer (HWS) which provides low-

level services such as semaphores, barriers, and event propagation support, two DMA

engines, and a Clock Variability and Power (CVP) module. The cluster template

can be enhanced with application specific hardware processing elements (HWPEs), to

accelerate key functionalities in hardware. They are interconnected to the ENCORE

with an asynchronous local interconnect (LIC).

Platform 2012 (and its first release, named STHORM, which features 4 homoge-

neous clusters for a total of 69 cores) comes with a software stack based on two pro-

gramming models, namely a component-based Native Programming Model (NPM) and

OpenCL-based (named CLAM – CL Above Many-Cores). OpenMP support is under

development.

10

2_progmodels/Images/p2012.eps

2.1 Shared-memory many-core clusters

P3P2P1P0

M
7

M
6

M
5

M
4

M
3

M
2

M
1

M
0

lev 1

lev 2

lev 3

lev 1

lev 2

R
o

u
tin

g
 tre

e
A

rb
tre

e

Cores

Mem
banks

Figure 2.4: Mesh of trees 4x8

Figure 2.5: Kalray MPPA multicluster architecture

11

2_progmodels/Images/interconnect.eps
2_progmodels/Images/MPPA_256.eps

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

2.1.2 Kalray MPPA

Kalray Multi Purpose Processor Array (MPPA) (70) is a family of low-power many-core

programmable processors for high-performance embedded systems. The first product,

MPPA-256, embeds 256 general-purpose cores divided in 16 tightly-coupled clusters,

connected through a Network-on-chip. It is shown in Figure 2.5. Each core is a pro-

prietary (named K1) 32-bit processor, with its own instruction and data cache. Each

cluster has a 2MB shared data memory, connected to processors through a full-crossbar.

Clusters are and arranged in a 4×4 grid, and at its sides, four I/O clusters provide off-

chip connectivity through PCI (North/South clusters) or Ethernet (West/East). Each

I/O cluster has a four-cores processing units, and N/S clusters have a DDR controller

to a 4GB external memory. The platform acts as an accelerator for an x86 host, con-

nected via PCI to the north I/O cluster. Compute clusters run a lightweight operative

system named NodeOS, while I/O clusters run an instance of RTEMS (102).

Two programming modes are provided, namely a dataflow programming and Posix-

based programming. Dataflow programming is based on SigmaC, a C/C++-like pro-

gramming model. Posix-based programming enables the usage of OpenMP (106) at the

level of the single cluster. A channel-based support for inter-cluster communication is

provided by the runtime library. OpenMP implementation is based on a proprietary

compiler and runtime for the target K1 processor.

An integrated development environment (IDE) is provided, based on Eclipse (126),

which provides debug and tracing capabilities. Using that, applications can be devel-

oped an deployed on the real board (if connected to the host), or with a simulator.

2.1.3 Plurality Hypercore Architecture Line

Plurality Hypercore (109) is an energy efficient general-purpose machine made of sev-

eral RISC processors (from 16 up to 256). It is shown in Figure 2.6. Figure also shows

the single processor structure, which is quite simple (e.g., has neither caches nor private

memory, no branch speculation, etc..) for keeping the energy and area budgets low.

The memory system (i.e., I/D caches, off-chip main memory) is fully shared, and pro-

cessors access it through a high-performance logarithmic interconnect (see Figure 2.4.

Processors share one or more Floating Point Units, and one or more shared hardware

accelerators can be embedded in the design.

12

2.2 Shared-memory programming models

Scheduling
NoC

Scheduler

C
O
R
E

C
O
R
E

C
O
R
E

…

FPU FPU

Shared
Accelerators

Shared Memory

NoC

…

…

C C

…

…

Scheduler IF

PC

ALU

Register

Register

Register

Memory IF

Figure 2.6: Plurality Hypercore Architecture Line (HAL), and single core

This platform can be programmed with a task -oriented programming model, where

the so-called “agents” are specified with a proprietary language. Tasks are efficiently

dispatched by a scheduler/synchronizer called Central Synchronizer Unit (CSU), which

also ensures workload balancing. Dependencies between tasks are specified on a token-

basis, and both task-parallelism (regular tasks) or data-parallelism (duplicable tasks)

are supported.

2.2 Shared-memory programming models

In last decade, several parallel programming models were adopted for embedded sys-

tems. Probably the most famous is OpenCL (80), which attempts to provide a com-

mon standard for programming generic many-core accelerators, e.g., GPUs. However,

in OpenCL the – hierarchical – memory space is explicitly non-shared (for instance,

processing cores on the accelerator tile cannot access the global memory on the host

side), thus data copies must be explicitly inserted, making the programming style cum-

bersome, and in some cases causing a complete rewrite of applications. Interesting is,

OpenCL is well-known to provide portability if code, but not “portability of perfor-

13

2_progmodels/Images/plurality_HAL2.eps

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

mance”, which is rather demanded at the specific implementation of the – necessary –

runtime support.

Sequoia++ (51) provides C++ extensions to expose the memory hierarchy to pro-

grammer, who must manually orchestrate data transfer to achieve locality of data and,

eventually, performance.

OpenMP (106) provides a lightweight set of APIs for C, C++ and Fortran to spec-

ify parallelization opportunities. It was initially developed for general purpose system,

where the programmer is provided with the abstraction of a shared memory space, and

where data locality is silently improved using (more levels of) caches. With OpenMP,

the programmer works at a higher level of abstraction, with parallel threads (or tasks,

since specifications 3.0), without worrying of the underlying memory management.

This is provided via code transformations by the compiler, which works synergisti-

cally with the runtime library that provides thread creation and joining, synchroniza-

tion and (transparent) memory consistency. In general purpose system, typically the

OpenMP runtime leverages low-level services provided by the underlying Operative Sys-

tem, such as Pthreads (it’s the case of the – reference – GCC-OpenMP implementation

(52)) or custom libraries (such as OMPi with Psthreads (2), or BSC Mercurium with

NANOS++ (123)). A careful and ad-hoc implementation of this runtime is paramount

to achieving performance on the target –resource constrained – systems.

There is a whole “family” of shared memory-based programming languages that

embody a task-based programming model, that is, they let the programmer explicitly

partition an application onto parallel task, and provide mechanism for fork-join. No-

table examples are Cilk (96), Intel Threading Building Blocks (63), or the (explicitly)

queue-based Apple Grand Central Dispatch (7), as well as the aforementioned OpenMP

since specifications 3.0 (dated 2009) or Plurality’s proprietary language (109).

This work focuses on OpenMP because:

1. it’s the de-facto standard for memory programming: most of the parallel program-

mers are already familiar with it, and several applications already exist written

with it;

2. it’s annotation-based: is lightweight set of APIs enables fast application porting,

with minimal modifications to existing code;

14

2.3 The OpenMP programming model

T

/* Sequential code.

Only Master threads executes here. */
unsigned int myid;
#pragma omp parallel num_threads (4) \
private (myid)

{
/* Parallel code.

Four threads execute here */

myid = omp_get_thread_num ();
printf ("Hello World! \
I am thread number %d\n", myid);

} /* End of parreg: implicit barrier */

T T T

0 1 2 3

Thread

/

T

31 21

Fork

Join

Figure 2.7: OpenMP parallel region

3. it provides a wide range of constructs for specifying most of the common parallel

programming patterns: data parallelism (static and dynamic loops), task paral-

lelism (sections and tasks), explicit synchronization (barriers), fork-join, critical

sections, and so on. This makes all of the techniques and analysis that we will

see in the thesis applicable to most of other programming languages.

2.3 The OpenMP programming model

OpenMP (106) is a set of compiler directives, environment variables, and runtime APIs

to support thread-based parallelism on a shared-memory system.

Figure 2.7 shows an example of the OpenMP fork-join execution model. At startup,

a master Thread (in orange) executes the program, and upon encountering a parallel

construct, it spawns a team of worker/slave threads (in green), which in this example

are explicitly requested to be four. The four threads execute in parallel the code

enclosed within the so-called parallel region, and they are implicitly joined at its end,

that is, each parallel region ends with an implicit thread barrier. Figure also shows

the usage of omp get thread num () API, used to retrieve the unique ID assigned

to a thread in the scope of a parallel region. OpenMP implicit and explicit barriers

(enforced with the pragma omp barrier construct) are synchronization points for the

threads, the only point of a program at which memory consistency is ensured. This

implements the so-called OpenMP relaxed memory model. The private clause shown

in the example specifies that the storage of the automatic variable myid is local to

each executing thread, as opposite to the (default) shared clause which specifies a

15

2_progmodels/Images/omp-forkjoin.eps

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

T

int foo ()
{
unsigned int count = 0;
printf ("Count is %d\n", count);

#pragma omp parallel num_threads (4) \

shared (count)
{
/* Data storage for 'count‘

is SHARED among threads */
#pragma omp atomic

{ count++; }

} /* End of parreg: implicit barrier */

printf ("Count is %d\n", count);

return 1;
}

T

++

T

++

/

T

(Enforced)

dependencies

0

++

T
++

T
++

depe

++

++

4

Figure 2.8: OpenMP shared variables and atomic clause

variable whose memory location will be shared among threads. In this case, OpenMP

specifications state that the programmer is responsible for ensuring data consistency

and avoiding data races for shared variables, e.g., using the atomic and critical

constructs. This is shown in Figure 2.8.

To implement such complex behaviors, an OpenMP program is modified by the

compiler, so to replace the pragmas with calls to the runtime implementation. Fig-

ure 2.9 shows how the code in Figure 2.8 is modified by the GCC-OpenMP compiler

(GOMP) (52). As shown, the compiler inserts calls to the runtime APIs (which are

implementation-specific – in this case they start with the prefix GOMP) to handle re-

spectively the parallel region and the atomic region. For example, it is responsibility of

the GOMP atomic start () and GOMP atomic end () to ensure that only one thread at

a time enters the portion of code annotated as atomic, by leveraging on low-level mech-

anism provided by the hardware architecture (e.g., atomic locks), or software libraries

(e.g., mutexes).

2.3.1 Workload partitioning

Threads belonging to a parallel team execute the same (annotated) code. OpenMP pro-

vides several constructs for specifying workload partitioning. They are called work-

sharing constructs. Figure 2.10 shows the pragma omp sections construct, which

16

2_progmodels/Images/omp-atomic.eps

2.3 The OpenMP programming model

int foo()
{
unsigned int count = 0;
struct omp_data_s omp_mdata;
printf("Count is %d\n", count);

omp_mdata.count = &count;

__builtin_GOMP_parallel_start (omp_fn_0, &omp_mdata);
omp_fn_0 (&omp_mdata);
__builtin_GOMP_parallel_end ();

printf("Count is %d\n", count);
return 1;

}

void omp_fn_0 (struct omp_data_s * omp_mdata)
{
unsigned int *count_ptr, count;
count_ptr = omp_mdata->count;

/* Start the ATOMIC region */

__builtin_GOMP_atomic_start ();
count = *count_ptr;
count++;
*count_ptr = count;
__builtin_GOMP_atomic_end ();

}

/* Metadata to store address

of SHARED variables */
struct omp_data_s

{
unsigned int count;

};

Figure 2.9: Modified GOMP code

int foo()
{
#pragma omp parallel num_threads (4)

{
#pragma omp sections
{
#pragma omp section
{ task_A(); }
#pragma omp section
{ task_B(); }
#pragma omp section

{ task_C(); }
#pragma omp section

{ task_D(); }

} /* End of work-sharing construct */

} /* End of parreg: implicit barrier */
return 1;

}

T T

taskA

/

/

T T

taskBtaskCtaskD

Figure 2.10: OpenMP section/s construct

17

2_progmodels/Images/gomp-atomic.eps
2_progmodels/Images/omp-sections.eps

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

MEM

int foo()
{
unsigned int a[16], i;

#pragma omp parallel num_threads (4) \
shared (a) private (i)

{
#pragma omp for schedule (static, 4)

for (i=0; i<16; i++)
{
a[i] = i;

} /* End of work-sharing construct */

} /* End of parreg: implicit barrier */

return 1;
}

T T

0…3

i i i i

a

T T

Shared storage
a

Local storage

4…7 8…11 12…15iter

works on

Figure 2.11: OpenMP static for construct

supports task parallelism in a statically-defined fashion. Each thread request the run-

time for one of the tasks isolated by the pragma omp section constructs, until all of

them have been processed. Figure also shows how the order in which tasks are assigned

to parallel thread and executed does not necessarily follow the order in which they are

encountered (i.e., sections are written) in code. Similarly to parallel regions, an implicit

barrier for threads is present at the end of each worksharing construct, unless a nowait

clause is specified.

Worksharing construct are also provided to implement SIMD-like data parallelism.

Figure 2.11 shows how a loop can be parallelized so that every worker threads executes

a chunk of its iterations. In the example, the pragma omp for constructs specifies that

each of the thread will be assigned 4 iterations of the loop the works on the array a. By

specifying the (default) static scheduling, iterations are statically assigned to threads

before entering the loop construct. This can lead to unbalancing in case the amount of

work in each iteration is different, harnessing performance. To cope with this, a dynamic

scheduling scheme is also allowed, under which threads request a new chunk of iterations

to execute only when the previous one has been completed. Roughly speaking, this

scheme implicitly balances the workload at run-time, but such a more complex behavior

comes with additional overhead (more runtime calls). This is shown in Figure 2.12,

which show the code as transformed by GCC, highlighting (red arrows) the overheads

18

2_progmodels/Images/omp-sloop.eps

2.3 The OpenMP programming model

#pragma omp for schedule (, CHUNK)

for(i=START; i<END; i++)
{
loop_body ();

}

unsigned int istart, iend, thread_ID, num_threads;

/* Statically (i.e., ONLY ONCE) compute loop

boundaries for each thread, using specific APIs */

thread_ID = omp_get_thread_num ();
istart = thread_ID * CHUNK;
iend = MIN(END, istart + CHUNK);

for(i=istart, i<iend; i++)
{
loop_body ();

}

unsigned int istart, iend;

/* Init runtime with loop boundaries, chunk, inc */

GOMP_dynamic_loops_start (START, END, CHUNK, +1);

/* (Try to) fetch a chunk of iterations AT EACH CYCLE */

while (GOMP_dynamic_loop_next (&istart, &iend))
{
for(i=istart, i<iend; i++)
{
loop_body ();

}
}

GOMP_dynamic_loop_end ();static | dynamic

Figure 2.12: Modified GOMP code for loops

introduced by the two loop scheduling variants. One last worksharing construct, pragma

omp single, lets only one thread executing the annotated segment of code. It is shown

in Figure 2.13. Similarly, the non-data-sharing pragma omp master construct specifies

a portion of code to be executed only by the master threads (remember that the thread

that creates a parallel region implicitly participates at it – in orange in the examples).

The two latter constructs are extremely useful, for instance, in combination with the

task construct, which will be explained in next section. Worksharing constructs can

be closely nested one another, but only with an incurring parallel region.

2.3.2 Tasking

Up to the specification version 2.5 OpenMP used to be somewhat tailored to large

array-based parallelism. However, many embedded applications have a lot of potential

parallelism which is not regular in nature and/or which may be defined in a data-

dependent manner. This kind of parallelism can not be easily expressed with OpenMP

2.5, since its directives lack the ability to dynamically generate units of work that can

be executed asynchronously (10).

Nested parallelism can be used in OpenMP 2.5 to express irregular parallelism but

this solution has two main drawbacks. First, nesting parallel regions recursively implies

the creation of a potentially very high number of threads, which is known to carry a

very high overhead. Second, at the end of a parallel construct there is an implicit

19

2_progmodels/Images/gomp-loops.eps

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

int foo()
{
#pragma omp parallel num_threads (4)

{

#pragma omp single

{
printf("Hello World!\n");

} /* End of work-sharing construct */

} /* End of parreg: implicit barrier */
return 1;

}

T T T

Hello

single

TT T T

o

T

Figure 2.13: OpenMP single construct

barrier synchronization which involves all the threads, but which may be unnecessary

in the algorithm.

These limitations stem from the fact that OpenMP 2.5 has a thread-centric parallel

execution model. Creating additional parallelism can only be done by creating new

threads, which has significant cost. Similarly, synchronization can only take place

at the thread-team level. The size of a parallel team (i.e., the number of involved

threads) is determined upon region creation, and cannot be dynamically modified. This

obviously affects the way multiple levels of parallelism can be represented and handled

and requires static workload partitioning to prevent poor system usage. Figure 2.14

illustrates this situation. Coarse-grained tasks S0 and S1 are initially assigned to two

threads, then another two tasks T and U are encountered, which contain additional

parallelism and can be distributed among multiple threads. Picking the same number of

threads for both the nested (inner) parallel regions may result in unbalanced execution

due to different workload in tasks T and U. However, there is no means in OpenMP

2.5 to allow threads belonging to a team to migrate to another team, so when threads

assigned to task T finish their work they just stay idle, waiting for task U to complete.

OpenMP 3.0 introduces a task-centric model of execution. The new task construct

can be used to dynamically generate units of parallel work that can be executed by

every thread in a parallel team. When a thread encounters the task construct, it

prepares a task descriptor consisting of the code to be executed, plus a data environment

20

2_progmodels/Images/omp-single.eps

2.3 The OpenMP programming model

S1S00 S

SEQ

U3 U4 U5T0 T1 T2 U3

IDLE

THREADS

U U5U4T0 T T2T1

Outer

Parreg

SYNCH

SYNCH

SYNCH

S0

SEQ

S1S0

T T U UT T U U……

nested_loops

Figure 2.14: Multi-level parallelism using OpenMP 2.5

inherited from the enclosing structured block. shared data items point to the variables

with the same name in the enclosing region. New storage is created for private and

firstprivate data items, and the latter are initialized with the value of the original

variables at the moment of task creation. This means that a snapshot of the status of

variables inherited from the enclosing region is captured at the instant of task creation.

Shared variables are not included in the snapshot, thus the programmer is in charge of

ensuring their consistency by means of explicit synchronization. The execution of the

task can be immediate or deferred until later by inserting the descriptor in a work queue

from which any thread in the team can extract it. This decision can be taken at runtime

depending on resource availability and/or on the scheduling policy implemented (e.g.,

breadth-first, work-first (42)). However, a programmer can enforce a particular task

to be immediately executed by using the if clause. When the conditional expression

evaluates to false the encountering thread suspends the current task region and switches

to the new task. On termination it resumes the previous task. Figure 2.15 shows how

the same example previously shown (Figure 2.14) can be implemented either using

nested parallel regions and a mix of task-based and data-based parallelism (on the left),

and with tasking extensions. Besides the aforementioned performance and flexibility

issues (the red arrows indicate the – costly – opening of a new parallel region), reader

can also notice how the code is much cleaner and simpler in the second case, and

moreover, being less “structured” it is easier to maintain and to extend, that is, adding

more tasks.

21

2_progmodels/Images/motivation2.eps

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

int foo()
{
#pragma omp parallel num_threads (2)

{
#pragma omp sections
{
#pragma omp section
{
S0 ();

#pragma omp parallel num_threads (3)

#pragma omp for
for (int i=0; i < 9; i++)
{

T (i);
} /* SYNCH */

}
#pragma omp section

{
S1 ();

#pragma omp parallel num_threads (3)
#pragma omp for

for (int i=0; i < 21; i++)
{

U (i);
} /* SYNCH */

}
} /* SYNCH */

}
}

int foo()
{
/* Unique parallel region */

#pragma omp parallel num_threads (6)
{
#pragma omp single

{
/* We want only one thread to PRODUCE tasks */

#pragma omp task
{
S0 ();
for (int i=0; i < 9; i++)
{

#pragma omp task firstprivate (i)
T (i);

}
}

#pragma omp task
{
S0 ();
for (int i=0; i < 21; i++)
{

#pragma omp task firstprivate (i)
U (i);

}
}

} /* SYNCH */

}
}

Figure 2.15: Example in Figure 2.14 with nesting and tasking

The new specifications also enable work-unit based synchronization. The taskwait

directive forces the current thread to wait for the completion of every children tasks

previously generated in the scope of the current task region. This holds only for the

immediate successors, not their descendants. This means that a new task region also

embodies a synchronization context which comprises only the (possible) children of its

associated task.

Task scheduling points (TSP) specify places in a program where the encountering

thread may suspend execution of the current task and start execution of a new task or

resume a previously suspended task. From that moment on, the thread becomes tied

to that task, and it will be the only responsible for its execution from beginning to end

1. TSP are found:

1. at task constructs;

2. at implicit and explicit barriers;

1It is possible to avoid this behavior by specifying an untied clause, but we we will not consider

this possibility for now

22

2_progmodels/Images/omp-task.eps

2.3 The OpenMP programming model

3. at the end of the task region.

4. at taskwait constructs;

Switching tasks on a thread is subject to the Task Scheduling Constraint : “In order

to start [...] a new task, this must be a descendant of every suspended task tied to

the same thread, unless the encountered TSP corresponds to a barrier region”(106).

This prevents deadlocks when tasks are nested within critical regions. Moreover, the

Task Scheduling Constraint guarantees that “all the explicit tasks bound to a given

parallel region complete before the master thread leaves the implicit barrier at the end

of the region”(106). This means that the implicit barrier at the end of a parallel

region is enhanced with the semantic of consuming all the previously unexecuted tasks

spawned in the parallel region itself before execution can go on. Consequently, all of

the threads in the team are potential task consumers, and none of them can be idle

while there is still work left to do, as opposite to the implementation in Figure 2.14,

where by construction some threads cannot contribute to the whole parallel workload.

Moreover, since task constructs can be directly nested, multiple levels of parallelism can

be efficiently exploited, while as explained, traditional work sharing construct cannot

be closely nested without the cost of an intervening parallel region.

In Chapter 5 we will analyze in details OpenMP tasking, and show how it can be

efficiently implemented on shared-memory many-cores.

23

2. TARGET ARCHITECTURE AND PROGRAMMING MODEL

24

3

Analysis of the costs of parallel

programming support on

shared-memory MPSoCs

The ever-increasing complexity of MPSoCs is putting the production of software on the

critical path in embedded system development. Several programming models and tools

have been proposed in the recent past that aim to facilitate application development for

embedded MPSoCs, OpenMP being one of them. To achieve performance, however, it

is necessary that the underlying runtime support efficiently exploits the many peculiar-

ities of MPSoC hardware, and that custom features are provided to the programmer to

control it. This chapter considers a representative template of a modern multi-cluster

embedded MPSoC and present an extensive evaluation of the cost associated with sup-

porting OpenMP on such a machine, investigating several implementation variants that

are aware of the memory hierarchy and of the heterogeneous interconnection system.

3.1 Introduction

Advances in multicore technology have significantly increased the performance of em-

bedded Multiprocessor Systems-on-Chip (MPSoCs). Multi-cluster designs have been

proposed as an embodiment of the MPSoC paradigm, both in research (54, 68, 144)

and industry (15, 46, 70, 101, 109). The availability of such a heterogeneous and hier-

archical interconnection system, mixed with the presence of complex on-chip memory

25

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

hierarchies and – possibly – of hardware accelerators of a different nature obviously has

a great impact on application writing (22, 72). Embedded software design for a similar

platform involves parallel programming for heterogeneous multiprocessors, under per-

formance and power constraints (140). Being able to satisfy such constraints requires

programmers to deal with difficult tasks such as application and data partitioning and

mapping onto suitable hardware resources.

OpenMP allows programmers to continue using their familiar programming model,

to which it adds only a little overhead for the annotations. Moreover, the OpenMP

compiler is relieved from the burden of automatic parallelization and can focus on ex-

ploiting the specified parallelism according to the target platform. However, platform-

specific optimization cannot be achieved by a compiler only, since OpenMP directives

only convey high-level information about program semantics to the compiler. Most of

the target hardware specifics are enclosed within the OpenMP runtime environment,

which is implemented as a library into which the compiler inserts explicit calls. The

radical architectural differences between SMP machines and MPSoCs call for a custom

and careful design of the runtime library. The reference GCC-OpenMP implementation

(libgomp) (52) cannot be of use due to several practical reasons: the small amount of

memory available, the lack of OS services with native support for multicore and, above

all, a memory subsystem organized as a distributed shared memory, with NUMA la-

tencies within a unique address space.

In particular, different challenges have to be faced locally, at the cluster level and

globally, at the system-wide level.

Focusing at the cluster level, an efficient exploitation of the memory hierarchy is

key to achieving a scalable implementation of the OpenMP constructs. Particularly,

leveraging local and tightly coupled memory blocks to processors (e.g., scratchpads)

plays a significant role in:

1. Implementing a lightweight fork/join mechanism;

2. Reducing the cost for data sharing through intelligent placement of compiler-

generated support metadata;

3. Reducing the cost for synchronization directives.

26

3.2 Related Work

In this chapter, several implementation variants are considered for the necessary sup-

port to data sharing in OpenMP, that exploit the peculiarities of the memory hierarchy.

Focusing at the system level, that solutions for synchronization and data sharing

that are found efficient within a single cluster no longer behave well when considering

the platform in its entirety. Different solutions are here studied, which take into account

the presence of a hierarchical interconnection system and the strong NUMA effect

induced on memory operations by the presence of the NoC.

3.2 Related Work

This chapter presents an extensive set of experiments aimed at assessing the costs

and challenges of supporting OpenMP programming on an embedded MPSoC with a

large number of cores (up to 64). Authors in (54) propose a 4-cluster system with 17

cores per cluster, implemented on FPGA technology, and a custom programming model

(53) for their architecture. Their approach consists in providing the programmer with

a small and lightweight set of primitives to support embedded software development.

Their methodology requires an expert programmer with a good knowledge of the target

platform, while OpenMP ensures a productive and simplified software development

process.

Authors of (74, 77) implemented MPI (129) low-level synchronization mechanisms

in a topology-aware manner. MagPIe (77) targets wide area systems featuring symmet-

rical clusters of parallel processing units connected by a fast interconnection. Clusters

are connected each other by a high-latency low-bandwidth network, and this architec-

ture perfectly matches the one considered here. Karonis et al. (74) target a multi-level

hierarchy of asymmetric clusters connected by a Wide Area Network (WAN). The ap-

proach presented here here can be seen as a specialization of theirs for a single level

hierarchy of clusters. All these implementations are built upon the send/receive MPI

primitives provided by an existing runtime –MPICH (57)–, while, on the contrary, the

presented runtime runs directly on bare metal. In fact the proposed APIs do not im-

plement a specific programming model/specification and do not rely on another layer,

rather provides a fast and generic low-level API set for threads synchronization on a

clustered environment. Moreover, even though the clusters targeted here are made

27

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

symmetric processing units, the synchronization mechanisms could be extended also to

asymmetric ones with no significant modifications.

Several researchers have investigated the adoption of OpenMP for embedded MP-

SoCs with a similar memory model. However, previous work in this field either is

very specific to a particular platform, or lacks a detailed analysis of performance im-

plications of OpenMP programming patterns on the underlying hardware. Authors of

(67) present an OpenMP implementation for a Cradle CT3400 OS-less MPSoC. They

provide optimized implementation of the barrier directive, which is used as a direct

term of comparison in Section 3.5. An extended OpenMP programming framework for

the Cradle 3SoC platform is described by Liu et al. in (90)(91). Custom directives

are provided to enable parallel execution on DSPs and to exploit specific banks of the

memory hierarchy for data placement. The necessity of extensions to OpenMP to make

it a viable programming model for embedded MPSoCs are also discussed in (33, 69). In

(33) Chapman et al. suggest that directives to specify execution on accelerators should

be necessary, similar to those proposed by Liu, as well as language feature to specify

the priority (69) of a given thread to discriminate between more or less critical activ-

ities. Authors agree that data attribute extensions may help the compiler make good

decisions on where to store data, but no practical solution is discussed, nor implemen-

tations are proposed. An initial implementation of a standard OpenMP programming

interface is however provided for a TI C64x+ -based MPSoC with a multi-level memory

hierarchy. This architecture closely resembles the generic cluster template targeted in

this chapter. However, the authors do not provide a detailed evaluation of the imple-

mentation.

Extensions to OpenMP to enable data distribution have been proposed in the past

in the High Performance Computing domain (18, 33, 103). These proposals are closely

related in the choice of exposing features for locality-aware data placement at the pro-

gramming model level. On the other hand, the differences at the architectural level

between traditional NUMA multi-processors and embedded MPSoCs are very signifi-

cant and imply a completely different set of challenges and viable solutions. In par-

ticular, in traditional NUMA machines (computer clusters) inter-node communication

takes orders of magnitude longer than local operations, large enough to hide the cost

of virtual memory paging. This approach cannot be considered for two reasons. First,

the target architecture lack the necessary hardware and software support (i.e., per-core

28

3.3 Target Architecture

MMUs and full-fledged operating systems). Second, all communication travels on-chip,

where latency is much lower and bandwidth is much higher, which would no longer

compensate for the high cost of memory paging.

3.3 Target Architecture

The simplified block diagram of the target cluster architectural template is shown in

Figure 3.1. The platform consists of a configurable (up to 16) number of processing

elements (PEs), based on a simplified (RISC-32) design without hardware memory

management. The interconnection network is a cross-bar, based on the STBus protocol.

Support for synchronization is provided through a special hardware semaphore device.

XBAR

master port

slave port

L2 local 0 L2 local N

semaphores
DRAM

ctrl

L2 shared

cached uncached

L3 shared (DRAM)

…

core 0
RISC32

L1

D$

L1

I$

 L1

SPM
DMA

 core N
RISC32

L1

D$

L1

I$

 L1

SPM
DMA

Figure 3.1: Target cluster template

 0x0100_0000 L2 local 1

 0x0000_0000 L2 local 0

 0x0300_0000 L2 local 3

 0x0200_0000 L2 local 2

 0x0F00_0000 L2 local 15

 0x0E00_0000 L2 local 14

…

 0x1001_0000 L1 SPM 1

 0x1000_0000 L1 SPM 0

 0x1003_0000 L1 SPM 3

 0x1002_0000 L1 SPM 2

 0x100F_0000 L1 SPM 15

 0x100E_0000 L1 SPM 14

…

 0x1010_0000 Semaph

 0x1100_0000 L2 shared C

 0x1200_0000 L2 shared NC

 0x1300_0000 L3 shared

Figure 3.2: PGAS

The memory subsystem leverages a Partitioned Global Address Space (PGAS) or-

ganization. All of the on-chip memory modules are mapped in the address space of the

processors, globally visible within a single shared memory space, as shown in Figure

3.2. The shared memory is physically partitioned in several memory segments, each

of which is associated (i.e., tightly coupled, or placed in close spatial proximity) to a

specific PE. Each PE has an on-tile L1 memory, which features separate instruction

29

4_omp_support/Images/architecture.eps
4_omp_support/Images/memmap.eps

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

and data caches, plus scratchpad memory (SPM). Remote L1 SPMs can be either di-

rectly accessed or through on-tile Direct Memory Access (DMA) engines. Each PE is

logically associated to a local L2 memory bank, where by default program code and

data private to the core are allocated. Local L2 memory is only cacheable in a local

L1 cache. Accessing the local L2 memory of a different PE is possible, but requires

appropriate cache control actions. Processors can also directly communicate through

the L2 shared memory, which features both cacheable and non-cacheable banks. Data

allocated in the cacheable bank can be cached by every processor, therefore multiple

copies of the same shared memory location may exist simultaneously in the L1 caches.

Consistent with the OpenMP relaxed-consistency memory model, cache coherence is

managed through software flush instructions in the runtime library. The off-chip shared

L3 DRAM memory is also mapped in the address space of processors.

The proposed template captures several design choices proposed in recent embed-

ded MPSoCs, such as the Texas Instruments TNETV3020 (125) and TMS320TCI6488

(124).

Figure 3.3 shows the reference Multi-Cluster MPSoC, featuring 4 clusters inter-

connected through a Network on Chip based on (16). The NoC topology is a mesh

(2×2); it is a wormhole network: packets are divided into a sequence of flits, which are

transmitted over physical links one by one in pipeline fashion. Every switch has several

ports. Every port has two input and six output buffers. A flit is transmitted only

when the receiving port has free space in its input buffers. Every request of transaction

is split into several flits on the NoC. The path followed by the flits is decided by the

Network Interface (NI) (see Figure 3.1).

L2 MEM

PROC
XBAR NI

L2 MEM

PROC
XBARNI

L2 MEM

PROC
XBAR

L2 MEM

PROC
XBAR

NI NI

Figure 3.3: 2x2 Cluster Architecture

30

4_omp_support/Images/multi_cluster.eps

3.4 OpenMP Support Implementation

The network interface catches every non-local access and emits it on the NoC, which

forwards it to the NI of the destination cluster. Then the local Master port accesses

the local target address.

Finally, the overall address space of the multi-cluster platform is also organized as

a PGAS, but the effect of NUMA latencies to access memories from a different cluster

are even more pronounced due to the necessity of traversing the NoC.

3.4 OpenMP Support Implementation

An OpenMP implementation consists of a code translator and a runtime support library.

The framework presented here is based on the GCC 4.3.2 compiler, and its OpenMP

translator (GOMP (52)). Most of the platform-specific optimizations are enclosed in

the runtime library, which – on the contrary – does not leverage the original GCC

implementation. In the remainder of this section explains the needed modifications

to the compiler and runtime to achieve functionality and performance on the generic

MPSoC architectural template presented in Section 3.3.

3.4.1 Execution Model

OpenMP adopts the fork-join model of parallel execution. To support this, the GCC

implementation of the runtime library (libgomp (52)) leverages the Pthreads library to

dynamically create multiple instances of the outlined functions. Pthreads require ab-

straction layers that allow tasks on different cores to communicate. Inter-core commu-

nication on embedded MPSoCs requires specific support, and has significant associated

overheads (33).

For this reason, the libgomp library cannot be ported as-is on the target archi-

tecture, and the runtime environment was re-designed from scratch, implementing it

as a custom lightweight library where the master core is responsible for orchestrating

parallel execution among available processors. Rather than relying on dynamic thread

creation master and slave threads are statically allocated to the processors. At boot

time the executable image of the program+library is loaded onto each processor local

L2 memory. When the execution starts all processors run the library code. After a

common initialization step, master and slave cores execute different code. Slave cores

31

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

immediately start executing a spinning task, where they busy wait for useful work to

do. The master core starts execution of the OpenMP application.

When a parallel region is encountered, the master points slave cores to the outlined

parallel code and to shared data. At the end, a global barrier synchronization step is

performed. Slave cores re-enter the spinning task, while the master core jumps back

to the execution of the main application, thus implementing the join mechanism.

The spinning task executed by the slaves while not in parallel regions must be

implemented in such a way that it does not interfere with the execution of sequential

parts of the program on the master core. Polling or signaling activity should not

inject significant interfering traffic on the interconnect. To ensure this, a message

exchange mechanism is adopted, where the slave cores spin on a local queue. Queues are

implemented as buffers residing on the local L1 SPM of every slave core, so transactions

generated by polling activity never enter the system interconnect. Upon entrance into

a parallel region the master sends a message containing task and frame pointers in the

queues of all slave cores.

It must be pointed out that most of the OpenMP implementations leverage on

the same set of threads to execute all parallel regions during the entire application

(featuring the so-called Thread Parking). Dynamically spawning threads at run-time

in the target architecture has a significant cost for synchronization and communication.

Moreover, here mainly image processing domain are targeted, which leverages SIMD

and SPMD applications. Their control flows consist of parallel loops with no branches,

thus naturally fitting a parallel runtime based on parking instead than dynamic thread

spawning.

Key to minimizing the overhead associated with the join mechanism is the choice

of a lightweight barrier algorithm, which is discussed in the following section.

3.4.2 Synchronization

OpenMP provides several mechanisms to synchronize the parallel threads, with atomic,

critical and barrier being the most important. While critical and atomic sections

can be straightforwardly implemented on top of hardware test-and-set semaphores,

the barrier directive deserves more attention. In the OpenMP programming model

barriers are often implied at the end of parallel regions or work-sharing directives. For

32

3.4 OpenMP Support Implementation

this reason they are likely to overwhelm the benefits of parallelization if they are not

carefully designed to account for hardware peculiarities and potential bottlenecks.

This section focuses on intra-cluster synchronization, while global synchronization

across the entire platform is discussed in Section 3.4.2.1.

Several implementations of OpenMP for MPSoCs adopt a centralized shared barrier

(67, 90, 91). This kind of barrier relies on shared entry and exit counters, which are

atomically updated through lock-protected write operations. In a centralized barrier

algorithm, each processor updates a counter to indicate that it has arrived at the barrier

and then repeatedly polls a flag that is set when all threads have reached the barrier.

Once all threads have arrived, each of them is allowed to continue past the barrier.

A serious bottleneck arises with this algorithm, since busy waiting to test the value

of the flag occurs on a unique shared location. The Master-Slave barrier algorithm

works around this problem by designating a master processor, responsible for collecting

notifications from other cores (the slaves). Since this communication happens through

distinct memory locations the source of contention of the shared counters is removed.

The master-slave barrier is structured in two steps. In the Gather phase, the master

waits for each slave to indicate its arrival on the barrier on a private status flag. After

arrival notification slaves poll on a separate private location. In the Release phase of

the barrier, the master broadcasts a termination signal on each slave’s polling flag.

The implementation of the Master-Slave barrier must reflect two aspects:

1. During the gather phase the master core polls on memory locations through which

slaves indicate their arrival. During the release phase the slave cores poll on

memory locations through which the master notifies them of barrier termination.

Even if all these memory locations are distinct, significant contention can still arise

if all are hosted on the same memory device (we refer to this implementation as

a master-slave shared barrier in the following). Indeed the source of contention

has only been shifted from the memory cell to the memory port.

2. A situation in which traffic generated by polling activity of cores is injected

through the system interconnect towards shared memory locations potentially

leads to congestion. This may happen when the application shows load imbal-

ance in a parallel region, or when constructs such as master and single induce

33

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

a single processor to perform a useful job while the others (typically) wait on a

barrier.

In (33), Chapman et al. leverage a master-slave barrier algorithm for their OpenMP

implementation, but encounter similar problems to those described above. To address

these issues, the distributed implementation of the master-slave barrier considered here

leverages L1 scratchpads. Specifically, master and slave poll flags are allocated onto the

respective local L1 SPM and they are accessed through message exchange. In this way

the number of messages actually injected in the interconnect is limited to 2× (N − 1),

where N is the number of cores participating in a barrier operation.

The direct comparison of these barriers is shown in Figure 3.4.

y = 571.29x + 561

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 2 3 4 5 6 7 8 9 10111213141516

C
y

cl
e

s

Barrier Comparison

Master-Slave

DISTRIBUTED

Master-Slave

SHARED

Centralized

Jeun et al.

Jeun et al. (Linear)

Cores

Figure 3.4: Cost of barrier algorithms with increasing number of cores.

The centralized shared barrier provides the worst results. The cost to perform

synchronization across 16 cores with this algorithm is around 4500 cycles. The behavior

of the barrier is linearly dependent on the number of cores N, so it has a dependency

of ≈ 270 × N from linear regression. The high cost of this barrier algorithm is not

surprising, and is in fact cheaper than similar implementations. As a direct term of

comparison reported here results published by Jeun and Ha (67) for two variants of

34

4_omp_support/Images/barrier_comparison.eps

3.4 OpenMP Support Implementation

the centralized barrier implementation on an embedded MPSoC, which show trends of

≈ 725×N (original) and ≈ 571×N (optimized).

The master-slave shared barrier mitigates the effects of the bottleneck due to the

shared counter. The cost for synchronizing 16 cores is reduced to ≈ 3000 cycles (gather

+ release), and linear regression indicates a slope of ≈ 150×N .

Employing a distributed algorithm completely removes the traffic due to busy-

waiting, which significantly reduces the cost of the barrier. Synchronization among 16

cores requires around 1100 cycles, with a tendency of ≈ 56×N .

Plots shown in Figure 3.4 were obtained by only executing barrier code in the

system. This is clearly a best case for the barrier performance, since there is no other

interfering traffic competing for system resources. To investigate the impact of different

barrier algorithms on real program execution results are given, for three benchmarks

that emphasize the three representative use cases discussed above.

1. #pragma omp single: When the single directive is employed only one thread

is active, while the others wait on the barrier. This behavior is modeled with a

synthetic benchmark in which every iteration of a parallel loop is only executed

by the first encountering thread.

2. Matrix multiplication: A naive parallelization of the fox algorithm for matrix

multiplication, which operates in two steps. Each processor performs local com-

putation on submatrices in parallel, then a left-shift operation takes place, which

cannot be parallelized and is performed by the master thread only. The master

block must be synchronized with two barriers, one upon entrance and one upon

exit.

3. Mandelbrot set computation: This benchmark is representative of a common

case in which parallel execution is not balanced. The main computational kernel

is structured as a doubly nested loop. The outer loop scans the set of complex

points, the inner loop determines – in a bounded number of iterations – whether

the point belongs to the Mandelbrot set. Since the iteration counts are not equal

(and possibly very different) for every point, parallelizing the outermost loop with

static scheduling leads to unbalanced threads.

35

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 4 8 16

S
p

e
e

d
u

p

#pragma omp single

Centralized

Master-Slave
SHARED

Master-Slave
DISTRIBUTED

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 4 8 16

S
p

e
e

d
u

p

Matrix Mul!plica!on

#pragma omp master

Centralized

Master-Slave
SHARED

Master-Slave
DISTRIBUTED

0

1

2

3

4

5

6

7

8

9

1 4 8 16

S
p

e
e

d
u

p

Mandelbrot

(unbalanced threads)

Centralized

Master-Slave
SHARED

Master-Slave
DISTRIBUTED

Figure 3.5: Impact of different barrier algorithms on real programs.

Results for each of these benchmarks are shown in Figure 3.5. The plots confirm

that the barrier implementation has a significant impact on real programs adopting

common programming patterns such as single and master sections. Focusing on the

synthetic benchmark, it is possible to notice that the distributed master-slave barrier

allows the single directive to scale perfectly with an increasing number of processors.

On the contrary, the shared master-slave barrier and – in particular – the centralized

barrier degrade significantly program performance when the number of cores increases.

An analogous behavior can be seen in the Matrix Multiplication benchmark, where a

significant portion of the parallel loop is spent within the master block. The same

effect can be observed in Mandelbrot, and, more in general, whenever it is impossible

to ensure perfect workload balancing from within the application.

3.4.2.1 Barrier synchronization in the clustered architecture

Figure 3.6 shows the linear regression of the cost of the three barriers so far for up to

64 processors. This is clearly an optimistic projection, since it is based on the results

achieved with the single cluster, and does not account for the effect of the NoC for inter-

cluster communication, and does not considers effects of increased contention. Focusing

on 64 cores, notwithstanding the optimistic content of the plot, even the distributed

Master-Slave barrier, the only one worth considering so many cores, has a significant

cost. Indeed such a costly support for synchronization prevents efficient execution of

fine-grained parallelism. Things get even worse when actually execute the distributed

barrier algorithm on the multi-cluster architecture. Figure 3.7 shows the actual cost of

the Master-Slave barrier as a function of the number or processors in the system. As

explained in Section 3.3 the targeted architectural template consists of four clusters,

36

4_omp_support/Images/single.eps
4_omp_support/Images/master.eps
4_omp_support/Images/mandel.eps

3.4 OpenMP Support Implementation

y = 270.06x - 156.36

y = 158.17x + 134.16

y = 56.575x + 141.76

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 8 16 24 32 40 48 56 64

C
y

cl
e

s

Barrier Comparison (Projec!on)

Centralized

Master-Slave

SHARED

Master-Slave

DISTRIBUTED

Cores

Figure 3.6: Projections for barriers cost in a 64 processor

system

0

2

4

6

8

10

4 8 16 32 64

C
y

cl
e

s
(x

1
0

0
0

)

Cores

MS Barrier Cost (Master Proc)

Gather Release

Figure 3.7: Measured cost of the distributed Master-Slave

barrier on a cluster architecture

each featuring an equal (parameterizable) number of cores. Considering 1, 2, 4, 8, 16

cores per cluster the system configurations has 4, 8, 16, 32, 64 cores considered in the

X axis of Figure 3.7. The actual cost to synchronize 64 cores with the distributed

37

4_omp_support/Images/barrier_projection.eps
4_omp_support/Images/msbarrier_cost_2.eps

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

master-slave barrier is twice as large as expected from the projection. The increase in

CLUSTER 0

P0 P1 P2 P3

CLUSTER 1

P4 P5 P6 P7

CLUSTER 2

P8 P9 P10 P11

CLUSTER 3

P12 P13 P14 P15

PHASES

Gather

Release

Figure 3.8: MS Barrier in a Clustered Architecture

the cost of this barrier is due to two factors:

1. All cores have to communicate directly with the unique master in the system (and

vice-versa, see Figure 3.8), and they are subject to both non-uniform latencies

depending on their physical distance from the master and to priority arbitration

at the NI.

2. The master core is in charge of managing an increasing number of slaves, which

results in increased processing time (besides memory effects)

Both effects could be alleviated by adopting a barrier algorithm that introduces an

additional step in which cores synchronize locally prior to communicating with the

master core. The tree barrier algorithm (139) (97) (136) is a 2-phase multi-stage

CLUSTER 0

P0 P1 P2 P3

CLUSTER 1

P4 P5 P6 P7

CLUSTER 2

P8 P9 P10 P11

CLUSTER 3

P12 P13 P14 P15

PHASES

Local

Gather

Global

Gather

Global

Release

Local

Release

Figure 3.9: 2-stage Tree Barrier in a Clustered Architecture

synchronization mechanism. It can be seen as an extension of a standard Master-Slave

barrier, since it features a gather phase followed by a Release phase. Each phase is

38

4_omp_support/Images/msbarrier_stages.eps
4_omp_support/Images/treebarrier_stages.eps

3.4 OpenMP Support Implementation

however divided in a sequence on stages. In each gather stage a few processors (Cluster

Masters) are in charge of collecting each one a subset of the others (Slaves). Then at

the following stage the Cluster Masters become Slaves to the unique Global Master for

a global gather phase. The Release phase is specular. In Figure 3.9 a 16 processors

Tree barrier is depicted, with 4 Local Masters and 2 stages/phase. As shown, the

Processors set is partitioned so that for each subset a Local Master Processor is chosen:

P3 controls P0, P1 and P2; P7 controls P4, P5 and P6, and so on. Each Local Master

collects its Local Slaves (each subset has a different color). In the second, and last,

gather stage, P3, P7 and P11 become Slaves and P15, the so-called the Global Master,

collects them. The Release phase follows, where we see P15 Releasing P3, P7 and P11

which will themselves release their Local Slaves.

The Tree Barrier algorithm is cluster-aware and essentially acts as a Tournament

Barrier (61). The difference is that this implementation features two Stages (inter- and

intra-cluster), while in the standard implementation the tournament features Log2N

Stages. This means that for instance at the intra-cluster Stage all processors within

each cluster fight against each other, the winner being the Local Master. The overall

algorithm features four phases (Local and Global, gather and Release) for any number

of processors/clusters, thus performance scales perfectly with them. The tree barrier

limits the number of exchanged messages over the NoC to 2 × (C − 1), where C is

the number of clusters in the system. Furthermore, the Global Master has the sole

responsibility of managing C−1 Global Slaves, while local gather takes place in parallel

over different clusters. These benefits compensate for the additional stages needed.

Following listing shows barrier code executed by the local master.

39

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

void local_master_code(int myid)

{

int i;

/* Gather Local Slaves */

for (i=local_slaves_istart ; i<local_slaves_iend; i++)

while (!*((bool*) tree_bar_master_flags_local [i]));

/* Notify to Global Master */

((bool) tree_bar_master_flags_global [myid]) = TRUE;

/* Remote Wait */

while (!*((bool*) tree_bar_slaves_flags_global [myid]));

/* Release Local Slaves */

for (i=local_slaves_istart ; i<local_slaves_iend; i++)

((bool) tree_bar_slave_flags_local[i]) = TRUE;

}

Listing 3.1: Local Master Code for the Tree Barrier

Figure 3.10 shows the cost for the tree barrier running on a 4-cluster platform with

4, 8, 16, 32 and 64 processors (respectively 1, 2, 4, 8 and 16 processors per cluster,

the highest ID-ed being the Local master). For the 4-processor configuration the local

gather stage is empty (no Local Slaves to wait for).

Figure 3.10 shows both results for Local and Global Masters and provide the break-

down of the cost of each stage. Thus, for Local Master the local gather, global notify,

global wait and local release timings are plotted, while for the Global Master we see

local gather, global gather, global release and local release. This plot demonstrates that

0

0.5

1

1.5

2

2.5

3

3.5

4

P0 P1 P2 P3 P1 P3 P5 P7 P3 P7 P11 P15 P7 P15 P23 P31 P15 P31 P47 P63

4-Core System 8-Core System 16-Core System 32-Core System 64-Core System

C
y

cl
e

s
(x

1
0

0
0

)

CORE ID

Mul!-Stage Barrier Cost (Local/Global Master Processors)

Local Gather Global No!fy Global Wait Remote Gather Remote Release Local Release

Figure 3.10: Tree Barrier Cost, from left to right, for 4, 8, 16, 32, 64 processors

splitting synchronization into local gather operations and reducing the number of mes-

40

4_omp_support/Images/treebarrier_cost3.eps

3.4 OpenMP Support Implementation

sages traveling through the NoC has a dramatic effect on the barrier cost. With this

implementation 64 cores can be synchronized within roughly 3500 cycles. While it still

does not enable very fine-grained parallelization if frequent barrier synchronization is

required, this result is the best achievable with a software implementation. This results

suggest however that hardware support to global synchronization in many-cores will be

necessary to enable fine-grained data parallelism (136).

3.4.3 Data Sharing and Memory Allocation

OpenMP provides several clauses to specify the sharing attributes of data items in a

program, which can be broadly classified into shared and private types. The classifica-

tion depends on whether each parallel thread is allowed to reference a private instance

of the datum (private) or they must be ensured to reference a common memory loca-

tion, be it through the entire parallel region (shared) or only once at its beginning/end

(firstprivate/lastprivate, reduction).

When a variable is declared as private within a parallel region the GOMP compiler

duplicates its declaration at the beginning of the parallel region code. Each thread thus

refers to a private copy of the variable. This behavior can be implemented as is in the

target platform, since private data is allocated by default onto local L2 memories to

each core, thus ensuring the correct semantics for the private clause.

Shared data items are typically declared out of parallel regions, within the scope

of the function enclosing the parallel construct. This part of the program is only

executed by the master core, thus implying that shared variables are by default allocated

on the stack of the master thread.

int foo()

{

/* Shared variable lives in master thread ’s stack */

double A[100];

int i;

#pragma omp parallel for shared(A) private(i)

for (i=0; i<N; i++)

A[i] = f(i);

}

A common solution to make shared variables visible to slave threads1 is to rely on a sort

1which only exist within a parallel region

41

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

of marshalling operation in which the compiler generates metadata containing pointers

to shared data. Specifically, the compiler collects shared variable declarations into a

C-like typedef struct.

/* Compiler - generated metadata */

typedef struct

{

double [100] *A;

} omp_data_s;

Before entering a parallel region the master core stores the addresses of shared variables

into metadata, then passes the structure’s address to the runtime environment, which

in turn makes it available to the slaves.

int foo()

{

double A[100];

omp_data_s mdata;

/* Metadata points to shared data */

mdata.A = &A[0];

/* Then its address is passed to the runtime */

GOMP_parallel_start (foo.omp_fn0 , &mdata);

}

Finally, the compiler replaces all accesses to shared variables within the outlined parallel

function with references to the corresponding fields of the metadata structure.

int foo.omp_fn0 (omp_data_s *mdata)

{

int i;

for (i=LB; i<UB; i++)

/* Replace shared var accesses with metadata alias */

(mdata ->A)[i] = f(i);

}

On a MPSoC such as the considered one, efficiently implementing data sharing is

tricky due to the complex memory hierarchy. As explained in Section 3.3 each core

features a local bank of memory (L2 local) onto which stack/private data is by default

allocated. Local L2 memory to a core can be accessed by other processors, but the

access latency is non-uniform, since it depends on the physical distance of the core

from the memory bank, the degree of contention for the shared resource and the level

42

3.4 OpenMP Support Implementation

of congestion in the interconnect. This default data sharing implementation solution is

the baseline for investigations, and it will be later referred to as Mode 1. Here slave

processors access both shared data and metadata from the master core local L2 memory.

Since this memory bank also hosts all master core private code and data, it is delayed

by other processor activity on memory, as shown in Figure 3.11(a). To overcome this

bottleneck, a set of compiler-directed placement alternatives are explored, that take

into account the memory subsystem organization.

The first variant consists in exploiting the L1 SPM local to each core to host private

replicas of metadata. Since metadata contains read-only variables no inconsistency

issues arise when allowing multiple copies. The custom GCC compiler modifies the

outlined parallel function code in such a way that upon entrance into a parallel region

each core initiates a DMA copy of metadata towards its L1 SPM.

int foo.omp_fn0 (omp_data_s *mdata)

{

int i;

int *local_buf;

/* Allocate space in local SPM to host metadata */

local_buf = SPM_malloc (sizeof (omp_data_s));

/* Call runtime to initiate DMA */

__builtin_GOMP_copy_metadata (mdata , local_buf);

/* Point to local copy of metadata */

mdata = local_buf;

for (i=LB; i<UB; i++)

(mdata ->A)[i] = f(i);

}

This solution removes all traffic towards the master core L2 local memory due to ac-

cesses to metadata (see Figure 3.11(b)), and will be later referred to as Mode 2.

Since most memory traffic during parallel regions is typically due to shared variable

accesses, in the second placement variant the compiler checks for variables annotated

with sharing clauses and re-directs their allocation to the non-cacheable segment of the

shared L2 memory. This placement scheme is called Mode 3 (see Figure 3.11(c)).

Mode 4 combines Mode 2 and Mode 3: Metadata is accessed from L1 and shared

data from shared L2 memory.

43

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

Figure 3.11: Data and metadata allocation strategies (modes)

When the number of processors increases and the program exhibits significant activ-

44

4_omp_support/Images/mode1.eps
4_omp_support/Images/mode2.eps
4_omp_support/Images/mode3.eps
4_omp_support/Images/mode4.eps
4_omp_support/Images/mode5.eps
4_omp_support/Images/mode6.eps

3.4 OpenMP Support Implementation

ity on shared data another bottleneck arises. Multiple concurrent requests are serialized

on the port of the shared L2 memory. The use of the cache may clearly alleviate this

problem. Indeed, many OpenMP applications exploit data parallelism at the loop level,

where shared arrays are accessed by threads in (almost) non-overlapping slices. Besides

improving data locality, the use of (coherent) caches allow to allocate separate array

portions on different memories, thus eliminating the source of the bottleneck. To in-

vestigate this effect shared data can be placed on a cacheable region of the shared L2

memory. If metadata resides on the master core local L2 the placement scheme is called

Mode 5. If metadata is replicated onto every L1 SPM it’s called Mode 6.

3.4.3.1 Extensions for Data Sharing and Distribution on a cluster-based

architecture

The memory model of the clustered MPSoC still adheres to the Partitioned Global

Address Space paradigm. Indeed each of the memory banks hosted on every cluster

is mapped onto an unique system-wide address, so that each processor can directly

access every memory location. Clearly, the presence of a heterogeneous communication

medium makes the effect of non-uniform memory access cost (in terms of increased

latency and decreased bandwidth) even more important. It is therefore quite obvious

that the problems about data sharing discussed in the previous section will be amplified

when considering a clustered architecture. Indeed contention for shared data from a

unique memory device in the system will be subject to several sources of architectural

non-homogeneity, which eventually hinder execution of OpenMP parallelism:

1. massively increased contention;

2. NUMA latencies;

3. effect of the arbitration policy at the NI.

Array partitioning techniques (32)(18)(34) have been proposed in the past in the

high performance computing domain to address a conceptually identical problem: effi-

ciently programming NUMAmachines (computer clusters). Data distribution is the key

technique to ensure locality of computation and affinity between threads and memory.

In (94), Marongiu et al. investigated the effect of implementing a data distribution

techniques on a scratchpad-based MPSoC very similar to the basic cluster template

45

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

targeted here. The principal use of distribution in that case was efficient exploitation

of SPM space, and to improve data locality. The beneficial effect of data distribution

to relieve the pressure of high contention on a single memory device was not addressed

in that previous work, due to the small number of processors available in the system

(up to 8). They provide the typical block and cyclic distribution schemes found in

similar approaches through a custom extension to the OpenMP API and compiler.

While profile-based techniques such as those described in (94) can clearly be applied

to improve the efficiency of distribution, they are not the subject of this investigation.

The programmer can trigger array partitioning in the compiler through the custom

distributed directive.

double A[100];

#pragma omp distributed (A[, tilesize])

The optional tilesize parameter is used to specify the granularity of partitioning,

namely the size – expressed in terms of contiguous array elements – of the elementary

tile. If this parameter is not specified the compiler generates as many tiles as available

cores, thus implementing block distribution. If the parameter is given, tiles are sorted

out to memories in a round-robin fashion, thus implementing cyclic distribution.

To customize the architectural setup a few additional flags were implemented in the

compiler, to specify the number of clusters and cores in the system, the base address

for the distributed shared memory space, and the offset between consecutive mem-

ory nodes. These flags support flexible compilation of code for different architectural

templates.

The implementation of data distribution does not rely on traditional techniques

based on OS support for virtual paging and page migration, as such a heavyweight

software abstraction would be too costly for an embedded system such, and would

easily overwhelm the benefits of improved data locality and reduced contention. The

technique proposed here, rather improves the software address translation described in

(94).

The parser, the gimplifier and the OpenMP lowering and expansion passes in GCC

were modified to create a shadow copy of each distributed array in the program.

This shadow array contains the addresses of the tiles corresponding to the requested

46

3.4 OpenMP Support Implementation

L2 MEM

PROC

XBAR NI

L2 MEM

PROC

XBARNI

L2 MEM

PROC

XBAR

L2 MEM

PROC

XBAR

NI NI

int a[4][4];

#pragma omp distributed (a)

int b[4][4];

#pragma omp distributed (b,2)

unsigned int
a_SHDW[4] = {0x0c00 0000,

0x0c00 0018,

0x0c00 0030,

0x0c00 0048};

unsigned int
b_SHDW[8] = {0x0c00 0060,

0x0c00 0078,

0x0c00 0090,

0x0c00 00a8,

0x0c00 00c0,

0x0c00 00d8,

0x0c00 00f0,

0x0c00 0108};

a

a0

a1

a2

a3

b
b1

b3

b5

b7

b0

b2

b4

b6

Figure 3.12: Implementation of data distribution in a multi-cluster MPSoC

partitioning scheme (granularity and type). Figure 3.12 shows a pictorial representation

of this process.

Each reference to a distributed array in the program is transformed into three basic

operations:

1. computation of the target tile corresponding to the current reference offset

2. a lookup in the shadow array to retrieve the base address of the target tile

3. sum of the proper offset to address the correct element within the tile

In (94), the compilation process was split in two parts. Distributed array references

in the OpenMP application were instrumented by referencing an extern data structure,

conceptually equivalent to the shadow arrays described here. This data structure was

actually generated by a separate compilation process based on profile information, and

finally linked with the OpenMP program object code. The main drawback of this

approach consists in the fact that extern objects obviously escape the optimization

47

4_omp_support/Images/instrum.eps

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

process in the compiler. For this reason, instrumented accesses to distributed arrays in

(94) could not be optimized. Here, the declaration of shadow arrays is inlined in the

OpenMP program code, which allows GCC optimizers to polish distributed array

reference expressions.

3.5 Experimental Results

This section presents the experimental setup and the results achieved. An instance of

the MPSoC template described in Section 3.3 has been implemented within a SystemC

full system simulator (92). The architectural parameters are detailed in Table 3.1.

All implementation variants described in the previous sections are validated on several

Processor RISC @200MHz

Interconnect Hierarchical: Crossbar (STBus) + NoC (×pipes)

L1 I-cache 4KB, direct mapped, latency: 1 cycle

L1 D-cache 4KB, 4way set-assoc, latency: 1 cycle

L1 SPM 16KB, latency: 1 cycle (local), 10 cycles (remote)

L2 local/shared latency: 5 cycles (local), 15 cycles (remote)

remote L2 variable (single-hop traversal: 10 cycles)

Table 3.1: Architectural parameters

benchmarks from the OpenMP Source Code Repository (41) benchmark suite. For

simplicity and clarity of discussion the exposition is divided in two subsections. Section

3.5.1 discusses results relative to the single-cluster architecture and all the data and

metadata allocation variants discussed in Section 3.4.3. Section 3.5.2 shows results for

the multi-cluster architecture when data distribution techniques (discussed in Section

3.4.3.1) are compared to standard OpenMP data placement and caching.

3.5.1 Data Sharing and Distribution in a Single Cluster

This section focuses on an architectural template consisting of a single cluster (see

Section 3.3) and explore the effect of placing shared data and support metadata onto

different memory modules in the intra-cluster hierarchy. Here it’s shown how efficiently

implementing compiler and runtime support to data sharing through ad-hoc exploita-

tion of the memory hierarchy is key to achieving performance and to overcome scaling

bottlenecks.

48

3.5 Experimental Results

The benchmarks are run under the allocation combinations previously described in

Section 3.4.3:

• Mode 1: The default OpenMP placement. Data and metadata live in the mas-

ter thread stack, which physically resides in the master core local L2 memory

segment. Slave cores access them from there. This configuration is considered as

a baseline for the experiments.

• Mode 2: Shared data resides in the master core local L2 memory. Metadata is

replicated and transferred onto each core L1 SPM by means of a DMA transfer

upon entrance into the parallel region. This mode reduces contention on master

core L2 memory.

• Mode 3: Shared data is allocated in the non-cacheable segment of the shared

L2 memory. Metadata resides on the master core local L2 memory. This mode

reduces contention on the master L2 memory significantly.

• Mode 4: Shared data is allocated in the non-cacheable segment of the shared L2

memory. Metadata is replicated onto every L1 SPM. This configuration reduces

the number of accesses to the master core L2 memory for data sharing to a

minimum.

In case a program is memory-bound and most accesses are performed on shared arrays,

high-contention on a single memory bank is bound to occur. In this situation, as

discussed in Section 3.4.3, splitting arrays and allocating each partition on a different

memory block can mitigate the effect of request serialization on a single memory device

port. To investigate the effect of this kind of contention, two additional placement

variants are considered, that leverage the data cache to implement array partitioning:

• Mode 5: Equivalent to mode 3, but shared data is placed in the cacheable

segment of the shared L2 memory.

• Mode 6: Equivalent to mode 4, but shared data is placed in the cacheable

segment of the shared L2 memory.

They are summarized in Table 3.2.

49

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

Shared data Metadata

Mode 1 Master core local L2 Master core local L2

Mode 2 Master core local L2 Local L1 SPM

Mode 3 Non-cacheable Shared L2 Master core local L2

Mode 4 Non-cacheable Shared L2 Local L1 SPM

Mode 5 Cacheable Shared L2 Master core local L2

Mode 6 Cacheable Shared L2 Local L1 SPM

Table 3.2: Shared data and metadata allocation variants

The benchmarks were run under each of the described modes. This set of experi-

ments adopt the barrier that employ the distributed Master-Slave algorithm. Results

of this exploration are reported in Figure 3.13. The curves there plotted show the

scaling of the execution time speedup with the number of cores. Speedup results are

normalized to the run time of the baseline allocation Mode 1 (the default OpenMP

placement) on a single core.

In general the various allocation modes allow increasing degrees of improvement

with respect to default placement Mode 1, with the exception of benchmark Pi Com-

putation, which shows no difference between modes. Pi Computation computes π by

means of numerical integration. All threads participate in a parallel reduction loop.

The reduction operation is implemented in such a way that all processors accumulate

partial results onto a private variable, which is physically mapped onto each core local

L2 memory. No contention arises during this operation. At the end of the parallel

loop every processor atomically updates the shared variable by adding its partial re-

sult. Since the critical section has a very brief duration with respect to loop execution,

changing the allocation of the shared variable does not show significant performance

improvements.

Focusing on the rest of the benchmarks, it can be seen that replicating metadata

onto every core L1 SPM (Mode 2) allows significant improvements with any number of

cores. For processor counts up to 8, this mode is on average faster than simply allocating

shared data in non-cacheable shared L2 memory (Mode 3), and slightly slower than

accessing metadata from local L1 SPMs and shared data from non-cacheable shared L2

memory (Mode 4). This suggests that for most benchmarks the interconnect medium

is congested when both metadata and data are accessed from the master core local L2

50

3.5 Experimental Results

0

2

4

6

8

10

12

14

16

1 4 8 16

S
p

e
e

d
u

p

Pi Computa!on

0

1

2

3

4

5

6

7

8

9

10

1 4 8 16

S
p

e
e

d
u

p

FFT

0

1

2

3

4

5

6

7

8

1 4 8 16

Loops W Deps

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

0

1

2

3

4

5

6

7

8

9

10

1 4 8 16

Matrix Mul!plica!on

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

0

2

4

6

8

10

12

14

1 4 8 16

S
p

e
e

d
u

p

IDCT

0

0.5

1

1.5

2

2.5

3

1 4 8 16

LU Reduc!on

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

0

2

4

6

8

10

12

1 4 8 16

S
p

e
e

d
u

p

Histogram

0

1

2

3

4

5

6

7

1 4 8 16

Luminance Dequan!za!on

Mode 1

Mode 2

Mode 3

Mode 4

Mode 5

Mode 6

Figure 3.13: Scaling of different allocation strategies for data sharing support structures.

memory, but it is sufficient to divert the traffic towards one of the two items onto a

different memory bank to offload the network.

51

4_omp_support/Images/results1.eps
4_omp_support/Images/results2.eps

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

For 16 processors the behavior changes slightly, and in many cases mode 4 performs

identically to modes 2 and 3, particularly for the benchmarks Loops W Deps, Luminance

Dequantization and Matrix Multiplication. Figure 3.14 shows the speedup of Modes

Loops W

Deps
FFT

Matrix

Mult
Histogram

Lum

Dequan!z
IDCT

LU

Reduc!on
Average

Mode 2 1,57 1,29 1,68 1,29 1,44 1,58 1,10 1,42

Mode 3 1,73 1,42 1,72 1,28 1,49 1,57 1,27 1,50

Mode 4 1,73 1,41 1,69 1,30 1,45 1,62 1,24 1,49

Mode 5 2,14 1,82 2,11 1,40 1,49 1,67 1,38 1,72

Mode 6 2,79 1,88 3,66 1,43 1,44 1,82 1,36 2,05

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

S
p

e
e

d
u

p
 o

v
e

r
M

o
d

e
 1

 (
1

6
 c

o
re

s)

Figure 3.14: Speedup of several data sharing support variants against the baseline for 16

cores.

2-6 against Mode 1 for 16 cores only. This plot shows that on average Mode 2 results

in approximately 1.42x speedup. Mode 3 achieves approximately 1.50x speedup, but

Mode 4 does not do any better. This behavior is due to the above mentioned effect

of serialization of accesses on the port of the memory device hosting shared data.

As expected, allowing the cache to distribute shared data among different memory

banks solves the problem and achieves excellent scaling. Partitioning shared data also

magnifies the benefits of diverting metadata and/or shared data traffic out of the master

core local L2 memory (Modes 3 and 4 vs. Modes 5 and 6).

LU decomposition shows the worst scaling performance, only allowing a peak 2, 8×

speedup for 8 cores and worsening for 16 cores because of the parallelization scheme

and the dataset size. The algorithm operates on 32 × 32 matrices, which are scanned

– with an upper-triangular pattern – within a nested loop, the innermost loop being

parallelized. More precisely, the outer loop scans matrix rows. Row elements are

operated on in parallel within the innermost loop. Since the number of row elements

become smaller as the row index increases, at some point there will be more processors

than elements to process. From this point of the computation on, an increasing number

52

4_omp_support/Images/alloc_16.eps

3.5 Experimental Results

of processors will be idle (up to N − 1 in the last iteration). This ”point” is obviously

reached earlier for larger core counts, thus explaining the performance degradation from

8 to 16 cores.

3.5.2 Data Sharing and Distribution in the Multi-Cluster Platform

This section shows a new set of results aimed at evaluating the importance and effective-

ness of the proposed distribution techniques to achieve a scalable execution of OpenMP

applications on a multi-cluster MPSoC. The focus is on array-based applications be-

tween those presented previously, and the custom distributed directive citemarongiu

is combined with the standard OpenMP loop parallelization schedule clause to achieve

an efficient array partitioning scheme.

As previously, the baseline for experiments is the standard OpenMP policy for

shared data placement, still called Mode 1. In Mode 1 all shared data resides on the

private (local L2) memory of the master core. Regarding metadata placement, we will

always refer to the most efficient scheme among those discusses in the previous section.

Throughout the rest of the section metadata is thus always assumed to be replicated

in each processor’s L1 SPM. To maintain the names (and meaning) of the modes intro-

duced previously, only odd-numbered are considered among previous modes. As such,

Mode 3 and Mode 5 allocate shared data in the uncacheable and cacheable regions

of the shared L2 memory of the cluster 0, respectively.

New Mode 7 and Mode 8 are introduced, where shared data is distributed among

uncacheable and cacheable segments of the shared L2 segments of clusters, respectively.

Modes are summarized in Table 3.3.

Shared data

Mode 1 Master core’s local L2

Mode 3 Non-cacheable Shared MEM (on cluster 0)

Mode 5 Cacheable Shared MEM (on cluster 0)

Mode 7 Non-cacheable Distributed Shared MEM

Mode 8 Cacheable Distributed Shared MEM

Table 3.3: Shared data and metadata allocation variants in the clustered system

Figure 3.15 shows the results for these experiments. For the two kernels LD and

IDCT (both coming from a JPEG decoding process), Mode 1 and Mode 3 perform

almost identically poorly because both kernels are memory bound and thus performance

53

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

is influenced by the bottleneck on the unique shared memory device being concurrently

accessed by an increasing number of cores. This is confirmed by the fact that allowing

shared data to be cached (Mode 5) execution results in nearly 2x speedup. The use

of the cache, however, does not improve scalability, due to frequent misses traveling

through the NoC induced by a round robin distribution of the fine-grained workload.

Data distribution (Mode 7) results in perfect affinity between threads and memory

tiles for these benchmarks, as is confirmed by its good scalability. Allowing shared

data in cache from different shared memories further improves performance, since data

is accessed from faster L1 memories. Data distribution dramatically improves caching

benefits since every miss is serviced from within the cluster, and no miss traffic is

injected in the NoC.

For FFT all the modes scale equally well since the benchmark is computation-

intensive (power, exponential and logarithm). Due to the loose memory dependency

compared to CPU it is thus impossible to appreciate the benefits of data distribution

over standard data sharing

The histogram benchmark is representative of a class of irregular applications that

feature subscripted access patters. While the work on the target image can be pre-

cisely divided among processors, it is impossible to foretell the access pattern on the

histogram itself. This benchmark processes an input image consisting of randomly gen-

erated pixels, which implies that the memory access pattern is irregular and totally

unpredictable. This clearly goes against the principle of data distribution, which as-

sumes that an affinity between memory and threads can be statically enforced. Mode

7 is thus unfavored. This is in part confirmed by the results, which show that only

modes 1 and 3 perform worse, while caching (model 5 and 8) improves performance.

Similar considerations are true for the LU reduction kernel as well. Moreover, from

the previous paragraph it is known that the parallelization scheme adopted in the

algorithm is inherently non scalable, since parallelization takes place on rows, whose

items are increasingly fewer as an upper-triangular matrix is scanned, thus leading to

a large amount of idleness on most processors.

Finally, matrix multiplication is another data-parallel algorithm, for which is easy

to see the benefits introduced by data partitioning. Since it is data-intensive, Mode

1 unsurprisingly shows the worst results, which can in part be improved by modes 3

and 5. However, no scalability is achieved with these approaches, for the same reasons

54

3.6 Conclusion

explained for the LD and IDCT kernels. Data distribution significantly further improves

the general performance, and allows parallelization to scale to some degree. No better

results could be achieved in this particular implementation of the matrix multiplication

because one of the input matrices is integrally read by every thread, thus making void

the effect of distribution on that matrix.

3.6 Conclusion

Software development in the embedded MPSoC domain is becoming increasingly com-

plex as more and more feature-rich hardware is being designed. Pioneers pointed out the

challenges in porting OpenMP to complex MPSoCs, where the compiler and runtime

support must be revisited to account for the peculiarities of heterogeneous hardware

(memory and/or computing resources).

Previous research in this field either is specific to a platform, or lacks a detailed

analysis of performance implications of OpenMP programming patterns on the under-

lying hardware. This chapter showed an OpenMP implementation for a multi-cluster

embedded MPSoC based on a modified GCC 4.3.2 compiler and on a custom runtime

library. A thorough study of the performance achieved by several implementative vari-

ants of synchronization and data sharing support is also presented, focusing both at

the single cluster level and at the system-wide level. It demonstrates that careful im-

plementation of such a support on top of a heterogeneous communication medium and

NUMA memory are key to performance. An implementation of support for data dis-

tribution in a clustered MPSoC is also presented. Results confirm that data-intensive

application significantly benefit from data distribution.

Ongoing and future work is focused on further extending the OpenMP standard

with features to expose hardware features at the application level to a higher degree.

This includes directives for improved shared data distribution, DMA transfers, task

priority and exploitation of acceleration hardware.

55

3. ANALYSIS OF THE COSTS OF PARALLEL PROGRAMMING
SUPPORT ON SHARED-MEMORY MPSOCS

0

1

2

3

4

5

6

7

8

9

4 8 16 32 64

C
y

cl
e

s
(x

1
0

0
0

0
0

)

Luminance Dequan!za!on

Mode 1

Mode 3

Mode 5

Mode 7

Mode 8

0

5

10

15

20

25

30

4 8 16 32 64
C

y
cl

e
s

 (
x1

0
0

0
0

0
)

IDCT

Mode 1

Mode 3

Mode 5

Mode 7

Mode 8

0

2

4

6

8

10

12

14

16

18

20

4 8 16 32 64

C
y

cl
e

s
(x

1
0

0
0

0
0

)

FFT

Mode 1

Mode 3

Mode 5

Mode 7

Mode 8

0

2

4

6

8

10

12

14

16

4 8 16 32 64

C
y

cl
e

s
(x

1
0

0
0

0
0

)

Histogram

Mode 1

Mode 3

Mode 5

Mode 7

Mode 8

0

20

40

60

80

100

120

140

4 8 16 32 64

C
y

cl
e

s
(x

1
0

0
0

0
0

)

LU Reduc!on

Mode 1

Mode 3

Mode 5

Mode 7

Mode 8

0

50

100

150

200

250

4 8 16 32 64

C
y

cl
e

s
(x

1
0

0
0

0
0

)

Matrix Mul!plica!on

Mode 1

Mode 3

Mode 5

Mode 7

Mode 8

Figure 3.15: Comparison of performance (execution cycles) for several data sharing sup-

port variants in the multi-cluster platform

56

4_omp_support/Images/res_2_1.eps
4_omp_support/Images/res_2_2.eps

4

Workload distribution on 3D

MPSoCs with shared memory

Modern applications expose execution pattern based on units of work (aka tasks) that

are spawn and executed on parallel processing units. In a system where cores are ar-

ranged in tiles, and memory banks are physically partitioned (NUMA) among them,

increasing the locality of task to the working data set is crucial to achieving perfor-

mance. This chapter proposes two efficient workload distribution strategies for a shared

memory MPSoC, and as a use case targets applications whose tasks are created out of

iterations of a loop. The target platform has a silicon layer of multiple cores (up to

16 cores), and a shared DRAM whose banks are partitioned and 3D-stacked on top of

the single tiles. To obtain high locality and balanced workload a two-step approach is

considered. First, a compiler pass analyzes memory references in a loop and schedules

each iteration to the processor owning the most frequently accessed data. Second, if

locality-aware loop parallelization has generated unbalanced workload, idle processors

are allowed to execute part of the remaining work from neighbors by implementing

runtime support for work stealing. The two functionalities are exposed to application

layer using a few simple extensions of the standard OpenMP frontend.

4.1 Introduction

Modern shared-memory systems are hierarchical, NUMA systems, with fast and low-

power SRAMs tightly-coupled to cores, supported by bigger, yet slower and power-

57

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

hungry DRAMs, typically placed off-chip. DRAM is accessed through on-chip I/O con-

trollers which exploit sophisticated addressing mechanisms, thus making corresponding

accesses slow and energy-hungry. Furthermore, DRAM controllers are shared among

processors, which encounters scaling limitations when the complexity of the system

increases.

Three-dimensional (3D) stacking technology provides a number of means to over-

come the scalability limitations imposed on many-core integrated platform designs as

2D technology reaches the nanometer scale, both in general purpose and embedded

computing (47, 76, 138). Traditional design constraints based on the evidence that

the processor and memory subsystems had to be placed side by side can be overcome

in 3D stacking (6, 49, 93, 138), where they can be placed on top of each other and

linked through vertical interconnects based on Through-Silicon Via (TSV) technology

which are more than two orders of magnitude more energy-efficient and denser than

the most advanced off-chip I/O channels. Focusing on the high-end embedded domain,

this ground breaking technology will enable the construction of multi and many-core

data-processing systems with low latency and high bandwidth access to multiple, large

DRAM banks in close spatial proximity.

This chapter considers a 3D-stacked platform for multi-dimensional array process-

ing, which, for instance, targets image processing and computer vision domains. It

features one silicon layer containing multiple processors organized in a two-dimensional

mesh structure (communicating through a Network on Chip), and one or more DRAM

layers containing the entire memory subsystem on the top. The memory space is

shared among the cores, and explicitly software-managed, and adheres to the Parti-

tioned Global Address Space (PGAS) paradigm. In this memory model each processor

has quasi-ideal access to a vertical stack of memory banks in close vertical proxim-

ity. Memory transactions towards remote stacks travel through a horizontal on-chip

interconnect (NoC), and are thus subject to an increasing cost with distance. The con-

sidered problem is to efficiently partition both workload (to cores) and to place data

(in 3D-DRAMS) to maximize the accesses to local data.

The focus is on array-intensive applications, structured as a set of doall (i.e., data-

parallel) loops, whose iterations can be independently distributed among processors.

A naive assignment of iterations to processors, namely one which is unaware of the

architectural assumptions and/or of the task and data mapping, leads to poor locality

58

4.2 Related works

of memory references and/or load imbalance at runtime. In contrast to frequent cache-

or DMA-initiated data transfers to improve locality, the presented approach schedules

the workload (that is, loop iterations) in a locality-aware manner instead. Shared

array structures in a target program are divided in as many tiles as processors, and

tiles are distributed among their vertical DRAM stacks. A data-layout aware compiler

analysis pass inspects to determine which particular tile (i.e. which memory) is being

mostly referenced at each iteration. The iteration is assigned to the processor hosting

the tile. The compiler statically inserts in the program the definition of local queues

to each processor containing the description of work with high locality. Loops are

restructured in such a way that at each iteration the work is fetched from these queues.

The analysis pass requires that the access pattern performed on arrays is a statically

analyzable affine function of the loop iterator. If this is not the case the analysis fails.

However, profiling-based locality-aware parallelization is still allowed in this situation.

The compiler instruments the program so as to gather access pattern information during

a profile run. Profiling information enables the creation of high-locality work descriptors

(queues) in case of an irregular application. As explained above, shared arrays are

regularly distributed among memories. If the access pattern is not regular, or the loop

iteration space does not overlap with the data space, it is possible that a subset of the

tiles is accessed more frequently than the rest. This ultimately leads to assigning more

iterations to the processor(s) holding these tiles. Stated another way, the queues may

contain non-uniform amounts of work among processors, thus leading to unbalanced

execution time. Here, work-stealing is used to mitigate this effect. Idle processors are

allowed to steal part of the remaining work from remote queues in a locality-aware

manner, thus achieving balanced execution and locality of references. The proposed

techniques are compared against traditional data distribution or dynamic scheduling

policies.

4.2 Related works

Recently, several 3D memory designs have been announced, confirming the benefits of

3D technology for high-efficiency next-generation memory systems (71, 75). Kgil et

al. (76) present a high performance server architecture where DRAM is stacked on a

multicore processor chip. Overall power improvements of 2-3× with respect to a 2D

59

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

multi-core architecture are reported. Similarly, in (93) Loh presents a 3D stacked mem-

ory architecture for CMPs. By changing the internal DRAM architecture the author

claims a 75% speedup. Industry leaders IBM and Intel are active in technology and ar-

chitecture exploration (21, 47). Li et. al investigate in (87) the challenges for L2 design

and management in 3D chip multiprocessors. Their term of comparison is 2D NUCA

(Non-Uniform Cache Access) systems, which employ dynamic data migration to place

more frequently-accessed data in the cache banks closer to the processor. Experiments

show that a 3D L2 memory design with no dynamic data migration generates better

performance than a 2D architecture that employs data migration.

3D memory integration is also actively explored in the embedded computing domain.

All major players in the mobile wireless platform markets are very actively looking into

how to integrate memories on top of MPSoC platforms for next-generation hand-held

terminals (58).

More in general, the system size reduction, coupled with orders-of-magnitude im-

provements in memory interface energy efficiency are key enablers for disruptive inno-

vation in embedded computing (49), possibly even more than in performance-centric

general-purpose computing. In (108), Ozturk et al. explore core and memory blocks

placement in a 3D architecture with the goal of minimizing data access costs under

temperature constraints. Using integer linear programming, the best 2D placement vs

the best 3D placement are compared. Experiments with single- and multi-core systems

show that the 3D placement generates much better results (in terms of data access

costs) under the same temperature bounds.

Concerning the parallelization techniques shown in this chapter, useful background

work regarding the implementation of stealing policies can be found in (3, 131) and (31),

whereas related research on data distribution is presented in (19, 32, 34) and (113). The

main similarities are to be found in the language and programming model abstractions.

Indeed, several patterns proposed in the past to efficiently program NUMA machines

can be successfully adopted in the context of 3D MPSoCs. From the implementative

point of view, however, the radical architectural differences between these machines

require an in-depth reassessment of such techniques, based on the availability of a

completely different hardware and software support for their construction.

A two-step approach to efficient loop parallelization on cache-based machines is

proposed by Xue et al. in (143). Similarly to the technique presented here, they

60

4.3 Target architecture and memory model

leverage static compiler analysis to schedule iteration in a locality-aware manner and

runtime support for load balancing.

Figure 4.1: Target 3D architecture and PGAS

4.3 Target architecture and memory model

The platform template targeted by this work is the 3D-stacked MPSoC depicted in

Figure 4.1. The bottom layer hosts the 2D multicore subsystem, whereas the topmost

layer(s) consist of DRAM memory banks (93). Processing elements (PE) on the multi-

core die feature a core tile, composed by a RISC-like CPU, a small amount of local L1

memory (SPM, caches) and a DMA engine. Each PE also hosts a set of local hardware

semaphores implemented as a bank of registers with test-and-set read semantics and a

fast DRAM controller with TSV DRAM physical interface for vertical communication

to upper layers. Transactions towards remote memory neighborhoods are routed out of

the PE by a Network Interface (NI), which injects them through the on-layer network

(NoC) for horizontal communication. All the described IPs are interconnected through

a crossbar, which is also in charge of determining whether memory references issued

locally are to be transported vertically or towards the outer world. The memory sub-

system leverages a Partitioned Global Address Space (PGAS) organization, and is thus

accessible from the bottom layer by every tile through the described heterogeneous 3D

interconnection. All of the on-chip memory modules are mapped in the address space

of the processors, globally visible within a single shared memory space, as shown in

61

3_vstealing/Images/arch3d.eps

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

the rightmost part of Figure 4.1. Despite this unique view of the memory space, each

PE has a certain amount of tightly coupled physical memory, which we refer to as the

processors memory neighborhood, and that is organized as a two-level hierarchy. L1

memory within each PE features separate instruction and data caches, plus scratchpad

memory (SPM). Moreover, each PE is logically associated to a vertical stack of local

L2 DRAM memory. The latter is logically organized in two parts. A shared segment

(which constitutes part of the global shared memory), plus a (conceptually) private

segment, where by default program code and private data to the core are allocated.

L1 caches in this template are non-coherent, as hardware cache-coherence protocols

are very expensive in terms of area, and scale poorly. To prevent inconsistencies, only

private data and code to each processor are allowed to be cached. The logically private

segment on each memory neighborhood is the only one that can by default be cached.

Shared segments can only be directly accessed through the processor or DMA. It is

a programmers responsibility to deal with coherency issues in case multiple copies of

shared data are allowed. Similarly, if shared data is allowed to be cached, appropriate

actions (e.g. flushes) must be taken in software.

4.4 Vertical Stealing

The target 3D MPSoC leverages a Partitioned Global Address Space (PGAS) orga-

nization of the memory subsystem, which has some affinities with traditional Cache

Coherent Non Uniform Memory Access (CC-NUMA) multiprocessors (e.g. the SGI

Origin (116)). Such machines typically contain a large number of processing nodes

each with one or more processors and a portion of main memory connected through

a scalable interconnection network. Although global memory is uniformly accessible

by all the processors, remote memory latencies are typically much larger than local

memory latencies. To obtain high performance on CC-NUMA machines is often neces-

sary to distribute the data structures in the program so as to maximize the number of

cache misses of each processor that are satisfied from local rather than remote memory.

Data distribution (a.k.a. array partitioning) splits main arrays in the program in a set

of tiles, which can be independently mapped on different memory nodes. Language

abstractions and compiler techniques to enable data distribution in a program have

been proposed in the past (19, 32) for CC-NUMA multiprocessors. Two common array

62

4.4 Vertical Stealing

distribution strategies are block and cyclic. Block distribution splits arrays in as many

tiles as nodes thus assigning equally-sized tiles to each processor. Cyclic distribution

allows the programmer to specify a partitioning granularity (i.e. a tile size). In both

cases tiles are dealt out to processors in a round robin fashion. We describe a possible

implementation of such facilities in Section 4.4.1.

To achieve high data locality it is important that a thread running on a processor

operates on data which is hosted on the local memory neighborhood. Block (or cyclic)

data distribution delivers good locality in case of regular loops. Indeed, the iterations

of such loops can be distributed among processors in chunks whose size matches the

array partitioning granularity. An example of such a scenario is provided in the code

snippet below.

#define SIZE 16

/* The array A is block - distributed */

int A[SIZE];

#pragma omp distributed (A)

int i;

#pragma omp parallel for schedule (static)

for (i=0; i<SIZE; i++)

A[i] = ...

Let us consider a target architecture composed by 4 processors. In the example

above the array A is block distributed in 4 tiles of 4 elements each among the available

memory neighborhoods. The array A is indexed with the loop induction variable i.

This regular access pattern is amenable to static loop parallelization, where consecutive

iterations are folded in chunks of 4 and assigned to processors in a round robin fashion.

In this simple example there is perfect affinity between each thread and the referenced

dataset.

When more complicated access patterns are executed block distribution fails in de-

livering good locality. To solve this issue arrays should be re-distributed, in an attempt

to match the array access pattern exhibited by the running thread. To re-distribute ar-

rays we adopt DMA transfers, which update the content of each memory neighborhood.

However, this solution suffers from two main issues. First, the array access pattern in

a program may change frequently (e.g. across different loops). Trying to re-distribute

63

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

arrays in memory accordingly may thus require high amounts of DMA transfers. Sec-

ond, 3D technology enables big amounts of memory to be tightly coupled to PEs. As

a consequence, large array tiles can be entirely hosted on memory neighborhoods.

Frequently moving such large data blocks is likely to compromise the benefits of

improved locality. An alternative approach to moving data may be that of scheduling

loop iterations to processors in a locality-aware manner. More specifically, it is possible

to leverage compiler analysis of array accesses in a loop to determine which physical

memory is mostly accessed at a given iteration. The iteration is then scheduled to the

processor owning that memory. The proposed locality-aware parallelization technique

performs such analysis and builds work queues containing high-locality tasks (i.e. iter-

ation descriptors) for each processor. A detailed description of the technique is given

in Section 4.4.2.

Locality-aware loop parallelization does not require to move array tiles. Given an

initial (e.g., block) distribution, all loops are re-structured in such a way that each

processor is assigned the iterations that insist primarily on the tiles hosted on the local

memory. A clear drawback of this policy is that processors may be assigned a different

number of iterations, thus possibly leading to load imbalance among parallel threads.

Let us consider the following example.

#define ROWS 16

#define COLS 16

int pix[ROWS][COLS];

#pragma omp distributed (pix)

int i, j;

/* Loop to parallelize */

#pragma omp parallel for schedule (static)

for (i=7; i<ROWS; i++)

for (i=7; i<COLS; i++)

pix[i][j] = ...

The matrix pix is block distributed among four available memory neighborhoods.

Each memory hosts a tile of 64 elements. Corresponding cores must be assigned the

iterations of a loop which operates on a subset (lower loop boundaries are greater than

zero) of the matrix. Figure 4.2 highlights the part of the array which is accessed in the

loop, and the corresponding layout in memory. If locality of accesses drives paralleliza-

64

4.4 Vertical Stealing

Figure 4.2: Layout of blocked array pix in memory and loop

footprint on the array.

tion, a different number of iterations is assigned to each core. Figure 4.3 shows that

only one element from tile 0 which is hosted on Memory neighborhood 0 (MEM 0) is

accessed in the loop, thus processor 0 will be assigned a single loop iteration. On the

contrary, all elements belonging to tile 3 hosted on Memory neighborhood 3 (MEM

3) are accessed in the loop. Processor 3 will be assigned 64 iterations, thus leading to

load imbalance. Remote accesses on our MPSoC are subject to an increasing cost with

the distance (i.e. the number of hops traversed in the NoC). However, different from

CC-NUMA machines all the communication travels through tightly coupled layers, and

thus fetching remote data on our MPSoC is much cheaper than an equivalent access

on CC-NUMAs. Consequently, to solve the load imbalance issue we can afford the cost

to allow idle processors to execute iterations originally assigned to other cores. Even

if the stolen work has poor locality, the increased cost for remote references may still

be repaid by load balancing. Section 4.4.3 presents the implementation of a runtime

support to work stealing.

65

3_vstealing/Images/imbalanced-layout.eps

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

Figure 4.3: Imbalanced work queues.

4.4.1 Array Partitioning and Distribution

Programmer can trigger array partitioning with a custom distributed directive (94),

as follows.
int A[1024];

#pragma omp distributed (A[, tilesize])

The tilesize parameter is used to specify the granularity of partitioning, namely

the size expressed in terms of array elements of the elementary tile. The allocation

policy follows a cyclic distribution scheme. Block distribution can be triggered by

properly tuning the partitioning granularity so as to generate a number of tiles equal

to the number of processors. This is automatically done by default if no tilesize

parameter is given.

The primary concern when distributing data on CC-NUMA architectures is that

physical placement of data must be performed in units of an operating system page, thus

constraining the granularity of partitioning. If array tiles are much smaller than a page

size data items to be places in local memories of distinct processors may lie within the

same page. This situation leads to false sharing, and requires expensive data transfers

within the virtual address space of the process to map different tiles to distinct pages.

In alternative, data padding at the page level can be applied as a workaround, but

66

3_vstealing/Images/imbalanced-q.eps

4.4 Vertical Stealing

this leads to significant memory wastage. The scenario is quite different for the target

MPSoC. No specialized MMU hardware or OS support to virtual memory management

is available, thus data partitioning is implemented in a lightweight manner by means

of software address translation. Accesses to arrays annotated as distributed in the

program are instrumented by our compiler with necessary instruction to locate the

correct memory neighborhood at runtime as shown in Table 4.1. In this table t is the

Original reference Transformed reference

A[i] (*tiles A[i/t])[i%t]

Table 4.1: Compiler instrumentation of distributed array accesses

size of a tile for the distributed array A, and tiles A is a compiler-generated metadata

array containing the base address for each tile of A. Indexing this array with a tile

ID returns the base address for that tile. The ID of the tile being accessed is simply

obtained by dividing the current offset (i.e. the array index) by the tilesize t. Once

the base address of the target tile has been retrieved a modulus operation between the

same operands returns the offset of the reference within the current tile.

The availability of such an efficient and streamlined implementation of the necessary

support to data distribution enables to partition arrays at arbitrary granularities with-

out wasting memory resources or incurring in data copy overheads. Furthermore, the

cost (overhead) for a partitioned array reference does not change if different partitioning

granularities are considered.

4.4.2 Locality-Aware Loop Partitioning

Data distribution schemes such as block or cyclic attempt to capture the most com-

mon array access patterns in loop-intensive applications. However, the access pattern

may change at different points in a program (e.g. at different loops or parallel regions).

For this reason, it is necessary that the programming model or the compiler allows to

re-distribute arrays across different regions or to schedule loop iterations under a certain

affinity with the current layout of array tiles in memory. Continuously re-distributing

arrays may lead to a high number of data transfers. On the target platform, the amount

of memory made available by 3D stacking allows each memory neighborhood to accom-

modate big-sized tiles, whose frequent movement is likely to significantly impact the

67

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

performance. Affinity-based loop scheduling techniques appear therefore more suitable

to address the described issues. An example of such a technique is the Owner-Computes

Rule from the High-Performance Fortran (HPF) compilation system, which after dis-

tributing the ownership of array elements to the processors, distributes the charge of

executing each instruction to the processor owning the variable modified by this in-

struction (i.e. the Left-Hand Side expression of an assignment statement). This may

still lead to high amount of communication, since components of the Right-Hand Side

expression may have to be communicated to the owning processor before the assignment

is made.

A locality-aware parallelization strategy seems more appealing, because it assigns

an iteration to the processor whose memory neighborhood hosts the most frequently

referenced array tile(s) within that iteration.

To this aim, the GCC compiler was modified – as described in Section 4.4.2.1 –

to include a static analysis pass. This analysis can be applied to counted loops whose

array subscripts are affine functions of the loop iterator. In case the loop does not

satisfy such requirements, locality-aware parallelization is still allowed by leveraging

profile information (Section 4.4.2.2).

4.4.2.1 Static Analysis

The static component analysis operates on the following setup. Architectural informa-

tion required is the number N of processors, to which corresponds a set of m associated

memory neighborhoods.

m ∈ M = {m1, ...,mn} (4.1)

Let L be the set of loops in a program, and D the set of distributed arrays. Each

loop l ∈ L has an associated iteration space Il. Within the loop body executed at

each iteration i ∈ Il, a number K ∈ N of accesses to distributed arrays is performed.

Every access can be characterized with a subscript function sd,j , where d ∈ D and

j ∈ {1, ..,K}. These subscripts must be an affine function of the loop iterator i, namely

sd,j(i) = f(i) = a ∗ i+ b (4.2)

68

4.4 Vertical Stealing

where a, b ∈ N. This ensures that the compiler can determine the exact offset at

which the target array is accessed.

Remind from Section 4.4.1 that a distributed array declaration conveys to the com-

piler information about the partitioning granularity (i.e. the size of a tile). Based on

this information, and on the offset described by the subscript function, every array

access can be brought back to a specific tile, and finally to the memory hosting that

tile. If tSIZE is the size of a tile for the current distributed array, the ID tID of the tile

being accessed can be determined as follows:

tID =
sd,j

tSIZE

(4.3)

Since cyclic distribution is triggered by the compiler for distributed arrays, it is

possible to determine on which memory neighborhood mID a given tile is mapped to

mID = tID%N (4.4)

In short, if we indicate with S the set of all the subscripts representing array accesses,

we define a map function that associates each array access to a physical memory.

map : S → M (4.5)

Statements within the loop body are walked, and every array access found is ana-

lyzed as discussed. The outcome of this analysis step is a multiset Mi, which describes

the cardinality n(m) of each memory m accessed in the iteration i.

Mi = {(m,n(m)) : m ∈ M} (4.6)

The memory with the highest cardinality is the one with the highest affinity to the

current iteration, which is then assigned to the processor owning the memory. The

described analysis has been implemented within the OpenMP expansion pass in the

GCC 4.3 compiler (52), and is triggered by the use of the custom locality scheduling

clause for the original OpenMP #pragma omp for loop parallelization directive.

#pragma omp for schedule (locality)

for(i=LB; i<UB; i+=step)

/* Loop body */

exec_loop_body (i);

69

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

At the end of the analysis a queue containing the description of work with high

locality is created for each processor and for every loop. The original loop code is

transformed as shown in the code snippet below. As will be explained in Section 4.4.3,

the queues are managed through head and tail pointers which reside in each processor

L1 SPM for fast inspection. At the beginning of a loop the corresponding queue is

properly hooked to local pointers through the omp init queues function.

int i, ii , has_work;

omp_init_queues ();

has_work = omp_get_chunk (&lb , &ub);

if (! has_work)

goto LEAVE ;

LOOP:

for (ii=lb; ii <ub; ii ++)

{

i = omp_get_iteration (ii);

/* Loop body */

exec_loop_body (i);

}

has_work = omp_get_chunk (&lb , &ub);

if (has_work)

goto LOOP;

LEAVE :

After each queue has been copied locally, the work is fetched from there with the

omp get chunk function, which extracts part of the remaining work in the queue at

each invocation. The size of the chunk of iterations extracted can be defined by the

programmer. The range of queue elements to be processed upon this invocation is

described as lower and upper bounds (lb, ub) of a compiler-generated loop with. The

original loop iteration i is fetched from the queue through the omp get iteration

function and passed to the loop body for execution.

4.4.2.2 Profile-based Analysis

To enlarge the scope of applicability of the proposed approach to benchmarks containing

non-statically analyzable array accesses. The modified compiler can instrument the

program so as to collect information about which memory is mostly referenced within

each iteration during a profile run of the program. If the custom -fomp-profile flag

is given, the compiler emits instructions that generate a trace of the array accesses.

70

4.4 Vertical Stealing

These are captured at runtime by a script, which collects them into per-iteration access

descriptors, and are passed to a queue generator. The work queues are described as a

standard C array within a header file, which is later included for compilation during

the second program run and linked to our enhanced OpenMP runtime library. The

entire flow for the profile-based locality-aware parallelization is shown in Figure 4.4.

Figure 4.4: Profile-based analysis toolflows.

4.4.3 Runtime Support for Work Stealing

As introduced in the previous section, locality-aware loop parallelization is based on

work queues that describe which iterations are assigned to each processor at a given

loop. Every processor fetches its assigned iterations from these queues for execution

in chunks. If an attempt to extract work from a local queue fails, meaning that either

no iterations were assigned to the processor by the locality-aware parallelization pass

or all pre-assigned iterations have been processed already, then a work stealing policy

may be triggered so that an idle processor can transfer part of a remote queue to its

local descriptor and continue working.

Programmer can enable this kind of scheduling by associating the custom stealing

scheduling clause to an OpenMP loop, as follows.

71

3_vstealing/Images/profileanalysis.eps

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

#pragma omp for schedule (stealing[, range]*/)

for(i=LB; i<UB; i+=step)

/* Loop body */

exec_loop_body (i);

which gets transformed into:

int i, ii;

int has_local_work , has_global_work ;

omp_init_queues ();

has_local_work = omp_get_local_chunk (&lb , &ub);

if (! has_local_work)

goto STEAL;

LOOP:

for (ii =lb; ii <ub; ii ++)

{

i = omp_get_iteration (ii);

/* Loop Body */

exec_loop_body(i);

}

has_local_work = omp_get_local_chunk (&lb , &ub);

if (has_local_work)

goto LOOP;

STEAL :

has_global_work = omp_steal (&lb , &ub);

if (has_global_work)

goto LOOP;

The compiler restructures the original loop as two nested loops, a work loop and

a steal loop. Each processor owns two local queues, a Non-Stealable Queue (NSQ)

containing the set of iterations being currently processed, and a Stealable Queue (SQ),

visible to other stealers. From an implementative point of view this double-queue sys-

tem leverages a single multi-indexed memory region (the work queue), where head and

tail pointers to stealable/non-stealable elements are updated through lock-protected

operations. The work queue resides on main (DRAM) local memory, whereas control

pointers are allocated on SPMs for fast inspection, as shown in Figure 4.5.

Each processor attempts to fetch work from the local queue through the omp get local chunk

function, which sets lower and upper bounds for the work loop. The function returns

the size of the extracted work chunk. In case the chunk size is zero, no local work is

left to do, and thus a steal operation is attempted. Since array data are never moved,

72

4.4 Vertical Stealing

Figure 4.5: Implementation of the work queues and descrip-

tors of stealable/non-stealable regions.

allowing a processor to steal work from other cores breaks the locality contained in

the original work assignment. In case of memory-bound parallel loops allowing an idle

processor to steal work from far away processors is likely to significantly degrade per-

formance due to the high number of costly remote accesses. However, stealing only

from nearby processors may still be beneficial. Based on this rationale, a stealing pol-

icy was implemented, in which the stealer can only fetch work from processors within

a given distance. The programmer can annotate a maximum steal range (specified

as the maximum allowed number of hops to look for stealable work) to the schedule

(stealing) clause. The stealing policy is implemented within the omp steal library

function, shown in Listing 4.1.

Upon entrance into the function, each processor annotates in the shared variable

local done the information that it has no more work in its local queue. A stealer

then continuously considers other processors as possible victims. First, the distance

(in number of hops) between the stealer and the victim is inspected from within a

lookup table (LUT). If the distance is out of the allowed range the victim is discarded,

otherwise it is a good candidate for the steal operation, which is triggered by a call

to the omp get remote chunk function. The loop continues until every processor has

entered at least once the omp sleep function, thus signaling that no processor has local

work left to perform.

73

3_vstealing/Images/work-queue.eps

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

int omp_steal (int *lb , int * ub)

{

/* Get processor ID */

int pid = get_proc_num ();

/* Prior to entering the steal loop notify

that current processor has completed local work */

local_done |= 1<<pid;

while (1)

{

/* Iterate over processors */

for (i =0; i< NUM_PROCS; i++)

{

/* No processor has local work left.

Nothing to steal. Quit. */

if (local_done == 0xffff)

return 0;

/* Determine distance between stealer and victim */

int distance = LUT (i, pid);

/* Current victim is farther than

maximum allowed steal distance */

if (distance > range || !distance)

continue;

int chunk = omp_get_remote_chunk (i, lb , ub);

if (chunk)

return chunk ;

}

}

return -1;

}

Listing 4.1: omp steal runtime function

4.5 Experimental results

This section describes the experimental setup used to evaluate the proposed program-

ming framework, and the results obtained. The OpenMP-based programming frame-

work with the proposed extensions was implemented within the GCC 4.3 compiler

(GOMP (52)). The runtime environment (libgomp) adopts a MPSoC-specific imple-

mentation (94) which does not leverage OS support nor thread libraries. Each OpenMP

thread is pinned to a given processor based on its ID. The library code is executed by

every core. At system startup the processor with the highest ID is designated as the

74

4.5 Experimental results

master processor, and it is responsible for orchestrating parallel execution by synchro-

nizing slave processors and pointing them to parallel code and shared data. An instance

of the 3D platform template presented in Section 4.3 was implemented within a Sys-

temC full system simulator (26). The simulated 3D chip is composed by three layers.

The bottom level hosts 16 processor tiles, while L2 memory stacks (16 MB each) reside

on the topmost two layers, respectively devoted to the shared and private segments.

On-tile L1 memory features 16KB scratchpad memory (SPM) plus separate data (4KB)

and instruction (8KB) caches. It is worth recalling here that caches only manage pri-

vate data, therefore preventing any coherence issues. Figure 4.6 shows how PEs are

placed on the CMP die. Processor IDs increase with the pattern indicated by the ar-

Figure 4.6: Processor layout on the CMP

die.

row. Because of OpenMP’s master-slave execution paradigm, the program starts as a

single thread of execution. All data declared out of the scope of parallel constructs is

by default allocated on the memory neighborhood of the master core. Therefore, slave

cores will sometimes need to communicate through this memory stack. To minimize

the effect of the NUMA latencies seen by different slaves, the master core is kept in a

central position in the CMP die.

The memory access time depends on the transaction path. Accesses to local SPM

are subject to only 1 cycle latency. For remote SPMs this cost depends on the internal

75

3_vstealing/Images/pes-placement.eps

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

memory interface latency (≈ 2 cycles), the number of hops to the target memory

controller, the contention level on the network, the neighborhood interface latency (≈ 2

cycles), the neighborhood memory latency (1 cycle for SPM, ≈ 5 cycles for 3D stacked

DRAM). The network on chip on the CMP die is based on the ST Microelectronic

STBus protocol. The zero-load NoC latencies for remote accesses depend on the number

of traversed hops, and are modeled as shown in Figure 4.7. L is a parameterizable value

Figure 4.7: Zero-load NoC latency mod-

eling.

which represents the cost to traverse a single hop. For example, if L = 10 in absence of

contention accessing data on the memory neighborhoods of processors 4, 14 or 10 from

processor 12 is subject to a latency of 20 cycles. If interconnect resources are shared

with other concurrent transactions, the latency will be higher.

To test the effectiveness of the proposed techniques a synthetic benchmark (Synth)

and 3 representative application kernels from image processing domain were considered,

namely:

1. Inverse Discrete Cosine Transform (IDCT)

2. Luminance Dequantization

3. Matrix Multiplication

76

3_vstealing/Images/noc-latency.eps

4.5 Experimental results

Each of these benchmarks is executed under the following program configurations:

• static: Static loop parallelization. An identical number of iterations is assigned

to each processor

• dynamic: Dynamic loop parallelization. Work is scheduled in a first-come first-

served fashion to processors in chunks of N (configurable) iterations

• locality: Locality-aware loop parallelization. The loop executes under the work

description contained in the queues generated by the modified compiler.

• stealing (range = M): Locality-aware loop parallelization + work stealing. Pro-

cessors that run out of work are allowed to steal some iterations from processors

within a distance of M (configurable) hops.

Results of the experiments are collected in plots that show the execution time of each

program run (in millions of cycles) for increasing values of the latency L ∈ {1, 5, 10, 15}.

4.5.1 IDCT and Luminance Dequantization

Results for IDCT and Luminance Dequantization (LD) kernels are shown in Figure

4.8. These are two kernels extracted from a JPEG decoder, which operate on an image

composed by 600 DCT blocks. The two main differences between these kernels consist

in the access pattern which is regular for LD and scattered for IDCT and in the

number of accesses performed within each iteration, which is much bigger for IDCT

(384 vs 64). Arrays are partitioned with block distribution, but since the number of

memory neighborhoods does not evenly divide their size some processors own larger

tiles than others. Similarly, the number of processors does not evenly divide the number

of loop iterations (i.e. DCT blocks), and thus cannot capture with exact precision the

affinity between iterations and tiles. For this reason, as L increases the performance of

static scheduling decreases. Similarly, even if a certain (small) amount of unbalancing

is present in this loop, dynamic scheduling is overwhelmed by the cost for remote

references generated by this locality-agnostic parallelization scheme. On the contrary,

the locality scheduling exactly establishes the affinity between an iteration and the

corresponding array tile, as is confirmed by the fact that its execution time does not

change for varying L. For a realistic value of L = 10, in the IDCT kernel locality

77

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

Figure 4.8: Results for IDCT and Luminance Dequantiza-

tion.

scheduling is 21% faster than static scheduling, and stealing is up to 40% faster than

static and 50% faster than dynamic. In the LD kernel locality is 50% faster than

static, and stealing is up to 56% faster than static and 69% faster than dynamic.

4.5.2 Matrix Multiplication

Results for the Matrix Multiplication kernel are shown in Figure 4.9. This benchmark is

amenable to static loop parallelization, which generates the iteration space partitioning

shown in the plot on the left in Figure 4.10. Block distribution accommodates array tiles

in memory so as to exactly match the threads footprint (see plot in the middle in Figure

4.10). A worst-case array distribution was forced for the static loop scheduling, such

as the vertical blocking shown in the plot on the right in Figure 4.10. The plot in Figure

4.9 shows a very interesting result. As expected, block distribution associated to static

scheduling delivers excellent performance because of the high amount of local accesses

and the low scheduling overhead. For L = 10 it is possible to notice that our locality

78

3_vstealing/Images/idct.eps

4.5 Experimental results

Figure 4.9: Results for Matrix Multiplication. Horizontal (left) and vertical

(right) blocking.

Figure 4.10: Static iteration space partitioning (left). Horizontal (middle) and vertical

(right) blocking.

scheduling performs equally well. Work stealing can not do any better since the loop

is highly balanced, but it does not degrade much the performance, thus indicating

that the proposed techniques and runtime introduce a very low overhead. dynamic

scheduling, which lacks any locality awareness, significantly degrades performance as

L increases. When employing the unfavorable vertical block data distribution scheme,

static scheduling worsens. It can be seen that the locality scheduling is insensitive

to the data distribution scheme applied, thus delivering the best results. stealing

scheduling does slightly worse, since as already pointed out the loop is well balanced,

and thus dynamic techniques are not beneficial, and only add overhead.

79

3_vstealing/Images/matmult-res.eps
3_vstealing/Images/matmult-partition.eps

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

4.5.3 Synthetic benchmark

The aim of this synthetic benchmark is that of forcing the generation of work queues

which describe a very unbalanced loop scheduling (i.e. most iterations are assigned to a

single processor), to study the effect of the range parameter of the stealing techniques.

We will explore how the performance of work stealing changes when work is stolen from

N -hop distant processors, with N ∈ {1, 2, 4, 6}.

In this benchmark an array of 16K elements is block distributed in 16 tiles of

1024 elements. A parallel loop with 1074 iterations accesses the first 1074 elements

of the array, 1024 of which are contained in the first tile, and the remaining in the

second tile. It it therefore clear that the locality-aware parallelization assigns 1024

iterations to the first processor, 50 to the second processor, and none to the other

processors. Results for this experiment are shown in Figure 4.11. Unsurprisingly, the

Figure 4.11: Results for the Synthetic benchmark.

locality scheduling performs poorly, since most processors are idle. When L = 15

the high cost for remote accesses renders static scheduling even slower. dynamic

scheduling randomly assigns iterations to ready processors without caring about how

costly the consequent communication will be. For this reason its performance degrades

as L increases. stealing scheduling provides the best results, since it starts from an

original mapping with high-locality, and then manages the imbalance by dynamically

re-distributing the workload. It is possible to notice that the best results are achieved

when range = 2. Recalling that all iterations are originally assigned to processors 0

and 1, and considering the position of these processors in the CMP layout (cfr. Figure

4.6), it is evident that for smaller values of range only two processors are allowed to

80

3_vstealing/Images/synth.eps

4.6 Conclusions

steal from processor 0. On the other hand, when bigger values of range are allowed

the cost for remote accesses dominates the benefits of stealing.

4.6 Conclusions

This chapter investigated the integration of a locality-based approach to loop paral-

lelization with runtime support to work-stealing techniques as a convenient program-

ming abstraction for 3D integrated embedded manycore platforms. The compilation

strategy is based on a first analysis which associates an iteration to the processor which

owns the referenced data. In case such analysis cannot be carried out at compile time,

profile information are exploited to achieve the same result. At runtime idle processors

are allowed to steal part of the remaining work from remote queues in a locality-aware

manner, thus achieving balanced execution and locality of references. Results on a set

of data-intensive kernels underlined the effectiveness of locality-aware parallelization.

Work stealing appeared to be less beneficial on these benchmarks, where - however -

computation among parallel threads is inherently balanced. Intuitively, stealing would

allow much more significant speedups for imbalanced applications, which should there-

fore be considered in future work. Moreover, techniques were implemented to dynami-

cally (i.e. at runtime) determining the affinity between a given iteration and a target

memory neighborhood. These techniques can be adopted when a loop is not statically

analyzable and profiling can not be exploited (i.e., applications whose execution flow is

data dependant).

81

4. WORKLOAD DISTRIBUTION ON 3D MPSOCS WITH SHARED
MEMORY

82

5

Support for nested and irregular

parallelism on shared memory

many-core clusters

Modern designs for embedded systems are increasingly embracing cluster-based archi-

tectures, that can deliver very high peak performance within a contained power enve-

lope. However, making effective use of these platforms is becoming extremely difficult,

as embedded applications are growing in complexity and express a parallelism that is

less structured and regular than before. Parallel programming models have changed

to cope with this, and so must do the runtimes that support them. This chapter fo-

cuses on two powerful abstractions, namely nested and irregular parallelism, and show

the optimized design for a runtime for efficiently supporting them. OpenMP will be

the target programming model, because of its great expressiveness, which allows us to

extend the analysis and the proposed solutions also to other programming model.

5.1 Introduction

Modern embedded systems are embracing multi-clustered architectures, where each

cluster is composed of a small-medium number (typically up to 16) of cores, inter-

connected through a high-bandwidth, low-latency communication and memory sys-

tem, and inter-cluster communication is achieved through a scalable interconnection

medium, such as a NoC. Its leverages a a shared memory model, in which each cluster

83

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

can access local or remote (i.e., belonging to another cluster) L1 storage, as well as

L2 or L3 memories. However, due to the hierarchical nature of the interconnection

system, memory operations are subject to non-uniform accesses (NUMA), depending

on the physical path that corresponding transactions traverse. Similar to traditional

NUMA systems, nested (or multilevel) parallelism represents a powerful programming

abstraction for these architectures. Exploiting a single level of parallelism means that

there is a single thread (master) that produces work for other processors (slaves), and

additional parallelism possibly encountered within the unique parallel region is ignored

by the execution environment. When the number of processors in the system is very

large, this approach may incur low performance returns, since there may be not enough

coarse-grained parallelism in an application to keep all the processors busy. Nested par-

allelism is used to increase the efficiency of parallel applications in large systems, and

implies the generation of work from different simultaneously executing threads, en-

abling better resource exploitation. In a cluster-based architecture nested parallelism

is extremely beneficial, where a first level of parallelism can be used to distribute coarse

grained tasks to clusters, and one or more inner levels of fine-grained (e.g., loop-level)

parallelism can be distributed to processors within a cluster. This capability of con-

fining a macro-tasks within the boundaries of a cluster is key to achieving locality and

balancing, thus, performance. Nested parallelism can be implemented by using a mix

of programming models, but this will make application development cumbersome, as

the programmer is required to manually create threads and orchestrate their communi-

cation and synchronization using different paradigms. Moreover, this approach makes

it difficult, if not impossible, the application of global policies (for instance, to per-

form load balancing or improve data locality) that cross the boundary of each layer.

A more appealing solution is one where the programmer is allowed to create nested

parallel regions from within a unique programming model, such as OpenMP. In this

chapter, we will see the design for a runtime to efficiently support nested parallelism

on shared-memory many cores cluster.

At the same time, embedded applications from the domains targeted by such archi-

tectures (e.g., image processing, computer vision, ...) are increasing in complexity and

often expose high degree of parallelism which is irregular in nature and/or dynamically

generated. The tasking execution model represents a powerful abstraction to exploit

this kind of parallelism, as it enables asynchronous, dynamic creation of units of work

84

5.2 Related works

in a simple and straightforward manner. However, the applicability of the approach is

again limited to applications exhibiting units of work which are coarse-grained enough

to amortize the overheads introduced by the support runtime. A second part of this

chapter describes the design of an optimized runtime environment supporting the fine-

grained tasks on an embedded shared-memory cluster. The key aspects critical to

performance are identified, and several architectural support are proposed to minimize

the effect of major bottlenecks implied by the execution model.

Finally, a hardware implementation of a generic Scheduling Engine (HWSE) which

fits the semantics of OpenMP tasking is proposed. The adaptability of this HW block in

the context of different programming models is also discussed. The HWSE is designed as

a tightly-coupled block to the PEs within a multi-core cluster, communicating through a

shared-memory interface. This allows very fast programming and synchronization with

the controlling PEs, fundamental to achieving fast dynamic scheduling, and ultimately

to enable fine-grained parallelism.

5.2 Related works

Nested parallelism can be implemented in different ways (11, 59, 73, 95, 121). In

literature many techniques exist, which can be categorized into two main approaches:

1. Dynamic thread creation (DTC): Whenever the application asks for addi-

tional parallelism, it is mapped on a lightweight thread from some standard pack-

age (e.g., pthreads). This approach allows very flexible creation of parallelism as

needed, but has a major drawback: thread creation is expensive both in terms of

space (memory footprint) and time (98), (40). In a resource-constrained platform

such as the considered one, this approach would quickly run out of memory, and

the resulting time overheads would disallow fine-grained parallelism.

2. Fixed thread pool (FTP): A fixed number of lightweight threads (typically as

many as the number of processors) is created at system startup and constitute a

fixed pool of idle workers.

When a program requests the creation of parallelism, physical threads are fetched from

the pool. If the number of logical threads created at an outermost parallel construct is

85

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

less than the number of threads in the pool, some of them will be left unutilized and

available for nested parallelism.

There also are many hybrid approaches, which combine in some ways DTC and FTP.

Some techniques start with a FTP approach, and dynamically create new threads when

there are no idle workers on the pool (52). Other solutions leverage thread creation

at the outermost level of parallelism – where the computation is assumed to be coarse

enough to amortize the overhead – and a simple work descriptor shared by threads at

the innermost level of parallelism (11, 56). The work in (121) relies on a fixed thread

pool, but allows multiple logical threads to be mapped on a single physical thread and

maintains a work queue from which threads which become idle can fetch (or steal)

work.

The latter approach is based on the widely adopted abstraction of a work queue

(5, 7): is in fact an orthogonal technique to nesting, and it can be categorized as tasking.

Once a thread team has been defined, to extract more parallelism it is not necessary to

create additional threads: the more lightweight abstraction of the work queue allows

existing threads to push and fetch work from there. This offers in many situations a

more flexible means to creating parallelism than that offered by nesting alone, thus

can be orthogonally adopted to that. The tasking (a.k.a. work-queue) programming

model is well known in the domain of general-purpose computing and in last decade

it has been successfully adopted on several multi-core architectures. Cilk (96), Intel

Carbon (81), Apple Grand Central Dispatch (7) and OpenMP (106) are successful

technologies embodying this model. Recently, some attempts were made to explore its

applicability also to heterogeneous systems (i.e., CPU + GPU). The most representative

example in this sense is the Fusion series from AMD (5), where a centralized queue

system coupled to a task-based programming model enables distributed dispatching of

work units between a generic (x86) CPU and a GPU-like accelerator. Programming

effort is anyhow significant, since task execution and data transfers must be manually

orchestrated using OpenCL. From this point of view, OpenMP tasks (106) are more

programmer-friendly, thanks to an annotation-based interface and to the assumption of

a uniform memory space (a desirable abstraction also for heterogeneous architectures,

pursued by several major vendors).

Currently, there are several freely available open source implementation of the

OpenMP 3.x specifications (2), (42), (52). The GCC-OpenMP (GOMP) framework

86

5.3 Shared-memory many-core clusters

SHARED L1 TCDM

B
A

N
K

 0

SLAVE
PORT

LOGARITHMIC INTERCONNECT (MoT)

B
A

N
K

 1

SLAVE
PORT

B
A

N
K

 N

SLAVE
PORT

te
st-a

n
d

-se
t

se
m

a
p

h
o

re
s

SLAVE
PORT

L2/L3
BRIDGE

CORE 0

MAST
PORT

I$

CORE M

MAST
PORT

I$

Figure 5.1: On-chip shared memory clus-

ter template

SWITCH SWITCH

SWITCHSWITCH

MEM
CTRL

MAIN MEMORY

TCDM 2

TCDM 1
TCDM 0

MAIN
MEMORY

0x00000

0x40000

0x80000

0xc0000

Figure 5.2: Multi-cluster architecture

and global address space

(52) implements tasking on top of pthreads. The overheads implied by such a layer are

significant, as evidenced by many researchers (2, 42).

The cited works target general-purpose computing, using lightweight threading li-

braries to ensure portability and efficiency. However, embedded platforms are typically

more resource-constrained than general-purpose systems, thus requiring different design

choices for the implementation of tasking. Indeed, the introduction of an additional

threading layer limits the applicability of tasking support to units of work which are

coarse enough to pay its overhead. For example, Ayguadé et al.(10) consider tasks

with a duration of 10µs (which considering their 1.67 GHz cores and assuming a CPI

of 1 translates in 16K cycles). Similarly, Kumar et al. (81) consider an average of

5K clock cycles for fine-grained tasks. Agathos et al. (2) can afford a 4MB stack for

their threads. Clearly, all these numbers need to be significantly scaled down when

considering embedded applications and the hardware they run on.

5.3 Shared-memory many-core clusters

Figure 5.1 shows a simplified block diagram of a cluster composed of (up to) 16 RISC-32

processors connected through a low-latency, high bandwidth logarithmic interconnect

similar to the ones proposed by Plurality LTD (110) or Rahimi (111). The logarithmic

interconnect is built as a parametric, fully combinational Mesh-of-Trees (MoT) (see

Figure 5.3).

Processors communicate through a fast multi-banked, multi-ported Tightly-Coupled

87

5_libgomp/Images/arch-temp.eps
5_libgomp/Images/arch-temp-global.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

P3P2P1P0

M
7

M
6

M
5

M
4

M
3

M
2

M
1

M
0

lev 1

lev 2

lev 3

lev 1

lev 2

R
o

u
tin

g
 tre

e
A

rb
tre

e

Cores

Mem
banks

Figure 5.3: Mesh of trees 4x8

Data Memory (TCDM), which is configured as a shared, software-managed scratchpad

memory. The number of ports and banks is a multiple of the number of processors

to increase bandwidth, by a factor of two or three(25). In case there are no bank

conflicts, concurrent accesses by multiple cores to the TCDM are served simultane-

ously by the MoT. Bank conflicts result in a higher latency, due to contention, which

is resolved based on round-robin arbitration. The crossing latency of the MoT is one

clock cycle, and word interleaving enables fast concurrent accesses to adjacent mem-

ory locations. As a consequence, conflict-free TCDM accesses have two-cycle latency.

The interconnection supports read-broadcast: when multiple processors read the same

memory location at the same time all the requests are serviced in two cycles.

The L1 scratchpad (TCDM) has limited size of 256KB, thus program code and

most of the data are typically stored in larger L2 or L3 memory, while the content of

the TCDM is manually updated to the most referenced subset of data at any time.

A cluster thus features a L2/L3 bridge for communication with the outer world. This

work targets a two-level memory system, with an off-cluster main memory, and we

assume a global address space. Scaling to larger system sizes with this architectural

template is achieved by interconnecting several clusters through a NoC as shown in

Figure 5.2 (see (15)).

Synchronization among the processors is achieved through a segment of the local

TCDM address space featuring test-and-set semantics. As we will see in Section 5.5,

the way the test-and-set memory is physically implemented has a big impact on the

88

5_libgomp/Images/interconnect.eps

5.4 Multi-level parallelism: nesting

performance of the runtime support.

5.4 Multi-level parallelism: nesting

Supporting nested parallelism on a resource-constrained system such as a tightly-

coupled clusters is a challenging task. Relying on solutions where new threads are

created on the fly whenever more parallelism is needed is not feasible, since this ap-

proach would shortly run out of memory, and would impose too large time overheads to

enable fine-grained parallelism. Hence, lightweight and highly optimized data structure

are necessary. This section provides a detailed analysis of the necessary costs to create

additional parallelism at an arbitrary nesting level.

5.4.1 Lightweight Support for Nested Parallelism

C

E

D

F
A B

Bar 0

Bar 1 Bar 2

TEAM 0

TEAM 2

Implicit Barrier at

Join

t1

t2

Parallel

Loop

!
m

e

t0

E F

TEAM 1

Figure 5.4: Application with nested par-

allelism

1 0 0 0 00 0 0

TEAM 0

t0

1 1 1 1 00 0 0t1

T

1 1 1 1 11 1 1t2TEAM 1T

TEAM 2T

Global Master

(always ac!ve)
1

Free threads0

0 1 2 3

0 1 2 3 4 5 6 7 Persistent THREAD ID

0 1

0 1 2

0 1 2

0 1 2 3 4 5 6 7 Persistent THREAD ID

0 1 2 3 4 5 6 7 Persistent THREAD ID

Figure 5.5: Global pool descriptor

The previously FTP (Fixed Thread Pool) approach is the one which provides the

simplest requirements for supporting nested parallelism, thus it represents the natural

choice for the target architecture. At boot time as many threads as processors are

created, providing them with a private stack and a unique ID (matching the hosting

processor ID). These threads are called persistent, because they will never be destroyed,

but will rather be re-assigned to parallel teams as needed. Here it is important to point

out that persistent threads are non-preemptive. The thread with the lowest ID is

the global master thread. This thread will be running all the time, and will thus be

89

5_libgomp/Images/task_graph.eps
5_libgomp/Images/global_pool.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

Team

Desc 0

Team

Desc 1
Team

Desc 2

Dummy

Team

Desc

PARENT

0x430 0x4300x430 0x460 0x460 0x4600x400 0x400

PARENT

0 1 2 3 5 6 7

PARENT

TEAM 0

TEAM 1

TEAM 2

TEAM DESC PTR

0x400

0x430

0x460

Figure 5.6: Tree of team descriptors to track nesting

in charge of generating the topmost level of parallelism. The rest of the threads are

docked on the global pool, waiting for a master thread to provide them with work. At

startup, all the persistent threads other than the global master (hereafter called the

global slaves) execute a microkernel code where they first notify their availability on a

private location of a global array (Notify-Flags, or NFLAGS), then they wait for work

to do on a private flag of another global array (Release-Flags, or RFLAGS). The status

of global slaves on the thread pool (idle/busy) is annotated in a third global array,

the global pool descriptor. When a master thread encounters a request for parallelism

creation, it fetches threads from the pool and points them to a work descriptor. A

detailed description of the various data structures is provided in the following.

5.4.1.1 Forking threads

The first piece of information required by a master to create a parallel team is the

status of the global slaves in the pool. As explained, this information in stored in the

global pool descriptor array. Since several threads may want to concurrently create

a new team, accesses to this structure must be locked. Let us consider the example

shown in Figure 5.4. Here we show the task graph of an application which uses nested

parallelism. At instant t0 only the global master thread is active, as mirrored by the

pool descriptor depicted in Figure 5.5. Then parallel TEAM 0 is created, where tasks

A, B, C and D are assigned to threads 0 to 3. The global pool descriptor is updated

accordingly (instant t1). After completing execution of tasks C and D, threads 2 and 3

are assigned tasks E and F, which contain parallel loops. Thus threads 2 and 3 become

90

5_libgomp/Images/team_desc_tree.eps

5.4 Multi-level parallelism: nesting

masters of TEAM 1 and TEAM 2. Threads are assigned to the new teams as shown

in Figure 5.5 at instant t2. Note that the number of slaves actually assigned to a team

may be less than what requested by the user, depending on their availability. Besides

fetching threads from the global pool, creating a new parallel team involves the creation

of a team descriptor (see Figure 5.7), which holds information about the work to be

executed by the participating threads. This descriptor contains two main blocks:

1. Thread Information: A pointer to the code of the parallel function, and its argu-

ments.

2. Team Information: when participating in a team, each thread is assigned a team-

local ID.

The ID space associated to a team as seen by an application is expressed in the range

0, .., N − 1, with N being the number of threads composing the team. To quickly

remap local thread IDs into the original persistent thread IDs and vice versa, the data

structure maintains two arrays. The LCL THR IDS array is indexed with persistent

thread IDs and holds corresponding local thread IDs. The PST THR IDS is used for

services that involve the whole team (e.g., joining threads, updating the status of the

pool descriptor), and keeps the dual information: it is indexed with local thread IDs and

returns a persistent thread ID. Moreover, to account for region nesting each descriptor

holds a pointer to the parent region descriptor. This enables fast context switch at

region end.

This team descriptor has a memory footprint of only 48 Bytes. Once the team

master has filled all its fields, the descriptor it is made visible to team slaves, by storing

its address in a global TEAM DESC PTR array (one location per thread). Figure 5.6

shows a snapshot of the TEAM DESC PTR array and the tree of team descriptors at

instant t2 from the previous example.

5.4.1.2 Joining Threads

Joining threads at the end of parallel work typically involves global (barrier) synchro-

nization. Supporting nested parallelism implies the ability of independently synchro-

nizing different thread teams (i.e., processor groups). To this aim we can leverage the

mechanism described previously to dock threads, which behaves as a standard Master-

Slave barrier algorithm (see Section 3.4.2), extended to selectively synchronize only the

91

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

0 0

Master Slaves

1 0 00 1 1
Team

mask

x x 1 x xx - 1NFLAGS

GLOBAL SLAVE

No!fy

Availability

(1=available)

Wait for

new work

GLOBAL MASTER

Gather

Workers

Release

workers

Significant

flags

x x 0 x xx - 0RFLAGS

Writes

Reads

Team

Desc

Fill work

descriptor

Read descriptor

Busy wai!ng

void ** fn

void * data

BITMASK team_mask

int LCL_THR_IDS[]

int PST_THR_IDS[]

TEAM_INFO * parent

THREAD INFO

TEAM INFO

Team descriptor

Figure 5.7: Thread docking, synchronization and team descriptor

threads belonging to a particular team. The MS barrier is a two-step algorithm. In

the Gather phase, the master waits for each slave to notify its arrival on the barrier

on a private status flag (NFLAGS array). After arrival notification, slaves check for

barrier termination on a separate private location (RFLAGS array). The termination

signal is sent by the master in these private locations during the Release phase of the

barrier. Figure 5.7 shows how threads belonging to TEAM 1 (instant t2 in Figure5.4)

synchronize through these data structures.

5.4.2 Experimental validation

The architectural details of target platform are summarized in Table 5.1.

ARM v6 cores (up to) 16 TCDM banks 16

I$i size 1 KB TCDM size 512 KB

I$i line 4 words L3 latency 50 cycles

thit = 1 cycle L3 size 256 MB

Table 5.1: Architectural parameters

As a first exploration, the cost for opening and closing parallel teams is charac-

terized, providing a breakdown of the various sources of overhead. Two different im-

92

5_libgomp/Images/team_descriptor_docking.eps

5.4 Multi-level parallelism: nesting

plementations of thread docking are implemented, namely one which busy-waits for

available work to do, and one that puts cores to sleep when idling (idle/wake in the

plots). For the busy-wait implementation polling flags for global slaves are allocated

on different banks of the TCDM to reduce the conflicts. Figure 5.8 and Figure 5.9

show the cost in (hundred) clock cycles for opening and closing a team, respectively, at

the outermost level of parallelism. In this experiment the master thread requests the

maximum number of available threads, and we consider increasing sizes for the thread

pool. The breakdown plot shows the cost for each of the three main steps taken upon

creation of a new team:

1. Allocate and populate the team descriptor.

2. Fetch the slave threads from the global thread pool.

3. Release the slaves from global synchronization structures.

The first component does not depend on the number of threads requested. However,

the busy-waiting implementation is subject to the effect of memory bank conflicts. The

fact that it is almost insensitive to the polling activity of the slave threads idling on

the pool confirms the importance of distributing poll flags on separate memory banks,

which eventually make its performance very close to the sleep/wake implementation.

On the contrary, the time spent for fetching and releasing slave threads is dependent

on their number, since these operations take place from within a loop iterating for as

many times as the number of requested slaves.

Overall, it is possible to see that opening a new team composed of 16 threads takes

≈ 690 cycles for the busy-wait implementation, and ≈ 600 cycles for the sleep/wake

implementation.

The breakdown for the team closing shows two components: the time to collect the

team threads on the synchronization structure, and the time to tear down the team

descriptor and restore the execution context of the parent team by updating global data

structures. Collecting threads on the dock is done iterating over the team participants,

so the execution time of this section increases with the number of threads in the team.

Updating data structures with the information about the parent team context, on the

contrary, is independent of the number of threads. It is important to recall here that

opening and closing a team implies the use of critical sections to protect updates to

93

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

0

1

2

3

4

5

6

7

8

1 2 4 8 16 1 2 4 8 16

BUSY-WAIT SLEEP/WAKE

[C
y
c
le

s
 ×

1
0

0
]

Persistent
Threads

Team creation

Other Release threads

Fetch threads Team Desc Crea!on

Figure 5.8: Cost of creating a new team

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 1 2 4 8 16

BUSY-WAIT SLEEP/WAKE

[C
y
c
le

s
 ×

1
0

0
]

Persistent
Threads

Team closing

Other Release Team Gather Slaves

Figure 5.9: Cost of closing a team

global data structures. As such, if more than one attempt to create/destroy a new team

at the same time takes place the execution of (parts) of the procedure gets serialized

on the concurrent calling threads, which we study next.

Besides characterizing the cost of the basic constructs to create and destroy parallel

teams, we will now see the effect of nested parallelism creation from within OpenMP.

The library functions invoked by the compiler when a #pragma omp parallel construct

is encountered have been rewritten as a wrapper around the primitives for parallelism

creation. A programming model such as OpenMP exposes a simple and intuitive inter-

face for nested parallelism, however it introduces additional function call overhead to

interact with the runtime environment. To measure the OpenMP runtime overhead the

EEPC microbenchmarks (134) are used, and their methodology is extended to account

for nested parallel regions as described in (40). This methodology basically computes

runtime overheads by subtracting the execution time of the parallel microbenchmark

from the execution time of its reference sequential implementation. The parallel bench-

mark is constructed in such a way that it would have the same duration of the reference

in absence of overheads.

Figure 5.10 shows the task graph representation of the microbenchmarks used to

assess the cost of nested parallelism with depth 1, 2 and 4 respectively. The computa-

tional kernel (indicated as W in the plots) is composed uniquely of ALU instructions,

to prevent memory effects from altering the measure. We consider a simple pattern

where a parallel region is opened, then the block W is executed. This pattern is nested

94

5_libgomp/Images/team_start.eps
5_libgomp/Images/team_end.eps

5.4 Multi-level parallelism: nesting

up to 4 times. The thick gray lines in the plots represent the sources of overhead to

measure.

WW WW

get_cycle()

get_cycle()

WW WWWW WW

PAR

WW WW

get_cycle()

SEQ

W = workload

W

get_cycle()

= overhead

WW WW

W

get_cycle()

get_cycle()

WW

W

WWWW

W

WW

PAR

WW WW

W
get_cycle()

SEQ

W = workload

W

= overhead

W

WW

W

WW

W

W

WW

W

WW

W

W

get_cycle()

get_cycle()

WW

W

WW

W

W

WW

W

WW

W

W

W W

SEQ

W = workload
= overhead

PAR

W

W

get_cycle()

W

W

A

B C

get_cycle()

get_cycle()

Figure 5.10: Microbenchmark for nested parallelism overhead. A) 1 level, B) 2 levels,

C) 4 levels

The difference between the parallel and sequential versions of the microbenchmark

represents the total overhead for opening and closing as many parallel regions as the

nesting depth indicates. We thus divide the gross overhead by the nesting depth to

have an average cost for parallel region opening and close. Figure 5.11 shows this cost

for varying granularities of the work unit (W). The first two things to notice are that

0

0.5

1

1.5

2

2.5

-2 0 2 4 6 8 10 12

[C
y

cl
e

s
1

0
0

0
]

Workload granularity

[Cycles × 1000]

Avg nes!ng cost
(per team)

depth 4 depth 2 depth 1

×

Figure 5.11: Cost for different level of parallelism

i) the cost for single-level parallelism creation from OpenMP is, as expected, slightly

higher than the sum of the costs for opening and closing a team that we described

earlier, but not much so (roughly 15%), and ii) inner parallelism is slightly costlier to

95

5_libgomp/Images/tgraph_nesting.eps
5_libgomp/Images/nesting.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

create than the outermost level. The latter is a consequence of the fact that when two

or more threads try to concurrently open a new team, the execution of the opening

sequence gets serialized due lock-protected updates to global data structures. For this

reason, when W contains very small amounts of work this effect is dominant, and the

cost for parallelism creation increases with the depth of nesting.

5.4.3 Strassen matrix multiplication

This section evaluates the effectiveness of the nesting support on a real application

kernel, and compare it against a single-level parallelization scheme. As outlined in

Section 5.4.1, one efficient abstraction that can be orthogonally applied to nesting is

the work queue abstraction, or tasking. OpenMP supports this type of parallelism

through dynamic loops (or, in the latest specification, OpenMP tasks, that will be

extensively analyzed in the following Section). To implement this, the application was

rewritten exploiting a single level of parallelism, and workload was partitioned with

dynamic loops. We will refer to this scheme as flat.

The target application for experiment is the Strassen algorithm for matrix multipli-

cation. It is a good candidate for this kind of exploration, since it naturally exposes high

degrees of parallelism, both at the task- and data-level, thus being easily parallelized

with both the proposed approaches.

The algorithm is shown in the leftmost part of Figure 5.12.

The input matrices A and B are decomposed in four sub-matrices, which can be

processed in parallel. Sub-matrices undergo a number of sums/subtractions and mul-

tiplications. Each of these operations is fully data-parallel. The algorithm is naturally

structured in three stages: in stage one ten sums are computed, which we identify as S0

... S9. These sums can be mapped to parallel tasks, or be data-parallelized. In stage

two, seven multiplications are computed (P1 ... P7), which similarly exhibit both data

and task parallelism. Finally, in the third stage four sets (C11 ... C22) of sums and sub-

tractions lead to the final result. The flat strategy to parallelize the application with is

the following. A single level of parallelism is created using all the threads in the pool.

A large parallel region contains all the operations from the three stages in sequence. All

of the operations are data parallelized, namely, all the threads can dynamically fetch

work from all of the loops. Ideally, this scheme can extract the maximum degree of

parallelism, and has a theoretical speedup of 16×.

96

5.4 Multi-level parallelism: nesting

C11 = P1 + P4 – P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 - P2 + P6

C1C 1 =

C1C 2 =

C2C 1 =1

C2C 2 =

S0 = A11 + A22

S1 = B11 – B22

S2 = A21 + A22

S3 = B12 – B22

S4 = B21 – B11

S5 = A11 + A12

S6 = A21 – A11

S7 = B11 + B12

S8 = A12 – A22

S9 = B21 + B22

S0 ===

S1 ===

S2S ===

S3S ===

S4S ===

S5S ===

S6 ===

S7 ===

S8S ===

S9 ===

P1 = S0 * S

P2 = S2 * B11

P3 = A11 * S3

P4 = A22 * S4

P5 = S5 * B22

P6 = S6 * S7

P7 = S8 * S9

P1 ===

P2P ===

P3 ===

P4P ===

P5 ===

P6 ===

P7 ===

Stage 1 Stage 2 Stage 3

P1 = (A11 + A22) * (B11 – B22)

P2 = (A21 + A22) * B11

P3 = A11 * (B12 - B22)

P4 = A22 * (B21 – B11)

P5 = (A11 + A12) * B22

P6 = (A21 – A11) * (B11 + B12)

P7 = (A12 – A22) * (B21 + B22)

A11 A12

A21 A22

B11 B12

B21 B22

C11 C12

C21 C22
=X

C11 = P1 + P4 – P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 + P3 - P2 + P6

5 + P5 P75 P1 + PP1 P1 P

1 + P1 P31 P 2 + PP2 PP2 P

S’11 S’2

S’3 S’4

Figure 5.12: Strassen algorithm for matrix multiplication and its basic kernels

Figure 5.13 shows a pictorial representation the nesting parallelization scheme,

which follows the natural task partition of the application. At stage 1, all the ten

S0 S1 S2 S3 S5 S6 S7 S8 S9

P1 P’1 P2 P’2 P3 P’3 P4 P’4 P5 P’5 P6 P’6 P7 P’7

C11 C’11 C’11 C’11 C’11 C’11 C22 C’22 C’22 C’22 C’22 C’22C12 C’12 C21 C’21

Stage 1

Stage 2

Stage 3

Task parallelism Data parallelism

Unused Threads

Nested parallelism

S4

Figure 5.13: Strassen algorithm parallelized with nesting support

sums (S0, ... , S9) are assigned to as many threads. No additional data parallelism is

created on the remaining six threads, because this would lead to unbalanced execution.

These left out threads remain idle in this stage, thus inherently limiting the paralleliza-

97

5_libgomp/Images/strassen_alg.eps
5_libgomp/Images/strassen_nesting.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

tion speedup to 10×. In the second stage, the seven multiplications (P1, ... , P7) are

initially assigned to seven threads. Each of these threads generates a nested region and

exploits an additional thread thus leveraging data parallelism as well. The remaining

two threads in the global pool are left idle, thus the maximum achievable speedup is

limited to 14x. In the third stage, four parallel threads are assigned the final sums

(C11, ... , C22). The workload contained in these tasks is unbalanced by a factor of

3:1 for tasks C11 and C22 with respect to the other two (three sums instead of one).

By creating nested data-parallel regions with different number of threads (C11 and C22

will run on six threads, while C12 and C21 will run on two) the runtime is capable of

balancing the workload and exploiting all available threads. This stage fully exploits

the computational resources of the system, with a theoretical speedup of 16x.

Both the nesting and flat parallelization schemes were implemented in two variants,

with coarse-grained and fine-grained tasks, by sizing accordingly the chunk of loop

iterations. As a first experiment, let’s consider an instance of the algorithm using 64x64

Nes�ng Flat

STAGE 3 0.16 0.99

STAGE 2 14.22 10.02

STAGE 1 0.07 1.33

0

2

4

6

8

10

12

14

16

S
p

e
e

d
u

p

Nes�ng VS Flat

1,08% 8,04%

98,45% 81.46%

0,47% 10.80%

Figure 5.14: Nesting and flat speedup

matrices (four 32x32 submatrices). Results for this experiment are shown in Figure 5.14,

where the speedup achieved by the two parallelization strategies is reported. Overall,

the theoretical speedup for the nesting approach is ≈14× (16× for flat). It is possible to

see that, notwithstanding the threads left idle at times, the nesting approach matches

its theoretical speedup. The flat approach, on the contrary, is far from it. The numbers

on the table below the figure show the percentages of time spent in the three stages. It is

98

5_libgomp/Images/strassen_speedup-new.eps

5.4 Multi-level parallelism: nesting

possible to notice two things. First, the multiplication kernels unsurprisingly dominate

execution time. Second, the first and third stages take non negligible time with the flat

approach as compared to nesting. This is attributable to the overhead for distributing

workload from the work-queue at a too fine granularity.

In the following we “zoom-in” these phases to have better insight. Leftmost plot

in Figure 5.15 shows how the execution time of the first stage is affected by the size of

the input submatrices, which are set to 32x32, 64x64 and 128x128. This plot confirms

that for fine-grained workload (leftmost plot) the flat approach cannot achieve any

speedups. To see how this phenomenon can be mitigated by considering coarser work

units we increased the chunk size for the parallel loop to its maximum (the number

of iterations is evenly divided among participating threads). Even in this case (plot

in the middle), if the matrix size is too small the overhead for the work queue is not

amortized. With bigger matrix sizes (128x128) we achieved a 5× speedup. All of those

results are far from the theoretical speedup achievable with the loop parallelism because

of the implementation overheads. The rightmost plot shows how the nesting approach

achieves much better results. For matrix sizes of 128x128 this parallelization scheme

achieves its theoretical speedup peak.

0
2
4
6
8

10
12
14
16
18

TASKING (fine) TASKING (coarse) NESTINGS
p

e
e

d
u

p

Stage 1 - PARALLEL speedup

Ideal (Algo) Ideal (Par. Scheme) Measured

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

FLAT (fine)

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

FLAT (coarse)

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

NESTING

0
2
4
6
8

10
12
14
16
18

TASKING (fine) TASKING (coarse) NESTINGS
p

e
e

d
u

p

Stage 3 - PARALLEL speedup

Ideal (Algo) Ideal (Par. Scheme) Measured

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

FLAT (fine)

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

FLAT (coarse)

3
2

x3
2

6
4

x6
4

1
2

8
x1

2
8

NESTING

Figure 5.15: Effect of task granularity on speedup for Strassen application

Similar plots are provided for the third stage.

99

5_libgomp/Images/strassen_stage1.eps
5_libgomp/Images/strassen_stage3.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

5.5 Irregular and dynamic parallelism: tasking

OpenMP constructs for dynamic parallelism provide a powerful and flexible solution to

exploit irregular parallelism in target applications, but their practical implementation

requires sophisticated runtime system support, which typically implies important space

and time overheads. The applicability of the approach is thus often limited to appli-

cations exhibiting units of work which are coarse-grained enough to amortize these

overheads. This section describes the design of an optimized runtime environment

supporting fine-grained tasks on an embedded shared-memory cluster. An extended

analysis of the semantics of the programming model is performed, with the aim of

identifying key performance bottlenecks and finding solutions for solving them, and

ad-hoc architectural (HW) extensions are proposed for it.

5.5.1 Analysis of OpenMP Tasking

OpenMP 3.0 introduces a task-centric model of execution. The new task construct

can be used to dynamically generate units of parallel work that can be executed by

every thread in a parallel team. When a thread encounters the task construct, it

prepares a task descriptor consisting of the code to be executed, plus a data environment

inherited from the enclosing structured block. shared data items point to the variables

with the same name in the enclosing region. New storage is created for private and

firstprivate data items, and the latter are initialized with the value of the original

variables at the moment of task creation. The execution of the task can be immediate or

deferred until later by inserting the descriptor in a work queue from which any thread in

the team can extract it. This decision can be taken at runtime depending on resource

availability and/or on the scheduling policy implemented (e.g., breadth-first, work-

first (42)). However, a programmer can enforce a particular task to be immediately

executed by using the if clause. When the conditional expression evaluates to false

the encountering thread suspends the current task region and switches to the new task.

On termination it resumes the previous task. Specifications also enable work-unit

based synchronization. The taskwait directive forces the current thread to wait for

the completion of every tasks generated from the current task region. Task scheduling

points (TSP) specify places in a program where the encountering thread may suspend

100

5.5 Irregular and dynamic parallelism: tasking

execution of the current task and start execution of a new task or resume a previously

suspended task.

Figure 5.16 shows a layered approach to designing the primitives for the tasking

constructs. These constructs are depicted in the top layer blocks (in red). OpenMP

DEFERRED UNDEFERRED

TASK SCHEDULING

POINT

#pragma omp
taskwait

CREATE_TASK REGISTER_TASK

OpenMP tasking API

WORK QUEUE implementa!on

HAVE_CHILDRENTRYFETCH_TASK NOTIFY_END

POP_AND_EXEC

#pragma omp
task

CREATE_AND_PUSH

#pragma omp
task if(FALSE)

CREATE_AND_PUSH WAIT

D U

Figure 5.16: Design of tasking support

tasks are managed by a main work queue where units of work can be pushed to and

popped from (bottom layer block). The gap between OpenMP directives and the work

queue is bridged by an intermediate runtime layer (blue blocks), which operates on the

queue through a set of basic primitives (white blocks) to implement the semantics of

the tasking constructs.

The proposed runtime design relies on a centralized queue with breadth-first, LIFO

scheduling. Tasks are tracked through descriptors which identify their associated task

regions and which are stored in the work queue. The two basic operations on the queue

are task insertion and extraction. Inserting a task has two effects: i) creating a new

descriptor for it, and ii) registering it as a child of the executing task (its parent). These

semantics are formalized as a primitive called CREATE TASK.

Extracting a task from the work queue retrieves its descriptor for execution. This is

formalized with a TRYFETCH TASK primitive, which returns the task descriptor in case

of successful extraction, or a NULL pointer if the work queue is empty. Task extraction

should only return the descriptor to the caller, not detach it from the work queue until

101

5_libgomp/Images/primitives.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

the task has completed execution. This is necessary for correctly supporting synchro-

nization (taskwait). Thus, a separate NOTIFY END primitive is envisioned to dispose

of the descriptor, which acts as an epilogue to task execution.

Note that since the TRYFETCH TASK primitive does not remove the task descriptor from

the work queue, it is necessary to mark it as running to avoid multiple extractions of

the same descriptor. Thus, the CREATE TASK inserts a waiting task in the work queue

and the TRYFETCH TASK changes its status to running. NOTIFY END marks it as ended.

To support undeferred tasks (e.g., whose if condition is evaluated to false), a REGISTER TASK

primitive is introduced, which inserts a descriptor marked as running.

Finally, the HAVE CHILDREN primitive allows to determine if a task has children not yet

assigned to a thread (i.e., in the waiting state). As we will see in the next section, this

is necessary to implement task switching capability in presence of a taskwait.

UNLOCK

(taskwait lock)

PARENT IN TASKWAIT ?

…

NOTIFY END

N TAT SK

UNLOCK

while (1)

N

Y

N

LOCK

(barrier lock)

N

YCHILDREN

COUNT==0 ?

NOTIFY_END

** EXEC **

TITT FY_EN

* EXEE EC *

LOCK

(taskwait lock)

ND

*

ck)

Y

WAIT

while (1)

Y

Y

N

N

** EXEC **

TASK COUNT == 0 &&

all threads on bar ?

UNLOCK

(barrier lock)

TASK COUNT

!=0 ?

* EXEE EC

POP_AND_EXEC

OUNT =

UNLOCK

i l

YY

**

UUNNTT

*

TASK COUNT > MAX

||

UNDEFERRED ?

CREATE_AND_PUSH

N
Y

NOTIFY_END

** EXEC **

TITT F

REGISTER_TASK

* EXEE

U

(((tttaaask

PPPAAARRENTI

#pragma omp parallel
{
#pragma omp single
{
for (i = 1...N) {
#pragma omp task if()

WORK (i);
} /* End of task */
}

}/*Implicit bar - TSP*/

Usage of task construct
CCCOOOUNT >> MMMAX

||

DDDEFERREDDD ???

YYYY

ISTETT R_TATT SK

#pr
{
#p
{
f
#pragmgg amm ompmm task if()

WOWW RK (i);
/ /

#

N

TA

///

)

P**********///////////////////****//////// All children

are running

OUT
OUTUT

SCHEDULING

LOOP

(1)

N

_EXEC

TRYFETCH_TASK

NOTIFY_END

HAVE_CHILDREN ?

TTTAAATTTT SK C

aaalllll th

(((b

TTT
UNLOCK

(barrier lock)

ND

**

FY_EN

XEC *
}
}

}/*I

CREATE_TASK

T

LOCK

(barrier lock)

Figure 5.17: Design of task scheduling loop

5.5.2 Design of the runtime layer

Let us consider the simple example of the task construct in the code snippet of Figure

5.17. The parallel directive creates a team of worker threads, then only one of them

executes the single block. This thread acts as a work producer, since it is the only

102

5_libgomp/Images/tsp_CR.eps

5.5 Irregular and dynamic parallelism: tasking

one encountering the task construct. The control flow for the rest of the threads falls

through the parallel region to the implied barrier at its end.

The most important part of the implementation of the tasking execution model is

Task Scheduling Points (TSP). Parallel threads are allowed to switch from one task to

another:

1. at task constructs;

2. at implicit and explicit barriers;

3. at the end of the current task;

4. at taskwait constructs;

The first point prevents system oversubscription in cases where a thread is required

to generate a very high number of tasks (e.g., the task directive is nested inside a

loop with a huge number of iterations). Placing a TSP on a task construct allows the

producer thread to switch to executing some of the tasks already in the queue. Task

creation is resumed once the queue has been depleted to a certain level.

To keep the implementation of task scheduling as simple as possible, upon encoun-

tering a task directive, threads calls the CREATE AND PUSH runtime function, depicted

on the left part of Figure 5.17. Here, the caller first checks for the number of tasks al-

ready in the queue. If this number exceeds a given threshold the thread does not insert

the task in the queue, but it immediately executes it instead. Note that this can not be

implemented through a simple jump to the task block code. Executing a task without

creating a descriptor and connecting it to the others will in fact result in ignoring its

existence, which may lead to incorrect functioning of the taskwait directive due to bad

internal representation of the task hierarchy. Thus the act of creating and inserting in

the queue a descriptor for a running task is formalized by the REGISTER TASK primitive.

Similarly, task execution termination is signaled through a call to NOTIFY END.

This same solution is adopted when an undeferred task is explicitly generated by

the user through the if(FALSE) clause. In all the other cases, a call to CREATE AND PUSH

will result in regular creation of a team descriptor and insertion in the queue (CREATE TASK).

After that, the producer thread signals the presence of work in the queue by releasing

a barrier lock on which consumer threads wait.

103

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

This brings us to the second TSP. As explained before, threads not executing the

single block are trapped on the barrier implied at the end of the region. This is im-

plemented through a call to the POP AND EXEC function (central part of Figure 5.17).

Here, threads first check for the presence of tasks in the queue. If there are tasks avail-

able the encountering thread initiates an execution sequence. First, the task descriptor

is extracted from the queue with the TRYFETCH TASK primitive. Then, the associated

task code is executed. Finally, notification of task completion is signaled through the

NOTIFY END primitive. If the queue is empty, the encountering thread busy waits on

the barrier lock (note that this lock is initialized as busy at system startup). When the

lock is released by a producer pushing a task in the queue, the current thread checks

for the presence of tasks in the queue and for the number of threads waiting on the lock

(annotated in a counter). If all threads are on the lock and there are no tasks in the

queue, this indicates that the end of the parallel region has been reached. Otherwise,

there may still be work left to do, so the thread jumps back to the scheduling loop.

Note that upon task termination, an iteration of the scheduling loop is again per-

formed, thus implementing the third TSP.

Finally, a TSP is also implied at a taskwait construct. However, in this specific

case the Task Scheduling Constraint only allows to switch execution to a task that

was directly created by the current one to prevent deadlocks. This semantics are

implemented in the WAIT runtime function. Each task keeps track of its children. The

HAVE CHILDREN primitive allows to fetch the descriptor of a child task in the waiting

state. If a valid task descriptor is returned, the thread can be rescheduled on that task.

Otherwise, all the children are in the running state and the thread will have to stay

idle waiting for their completion. In this case, the last terminating child notifies the

parent through the NOTIFY END primitive.

5.5.3 Implementation details

Task descriptors are interconnected within two co-existing data structures; a queue and

a tree. The queue contains the descriptors of all the tasks in the waiting state for the

current parallel region and it is implemented as a doubly-linked list. Similarly, to build

the tree representation, each descriptor handles a reference to a doubly-linked list of

children, i.e., the set of tasks that it has previously created, being either in the waiting

or running state. Each descriptor also traces the parent task. Upon task creation, the

104

5.5 Irregular and dynamic parallelism: tasking

corresponding descriptor is inserted into the work queue by updating the connections

in the queue and in the tree data structures.

Consistency between the two representations is enforced by making their updates

atomic through a work queue lock. Each of the insertion/removal primitives protects

the critical sections that update the descriptor with this lock. The assembly was man-

ually optimized for the primitives to minimize the duration of critical sections.

To ensure fast access to task descriptors, they are stored in L1 memory. However,

the number of tasks co-existing in the system can become very high, thus a mechanism

is needed, which avoids memory oversubscription. The solution is to use a custom allo-

cator with a fixed number (1024) of statically reserved bins in a region of the TCDM.

The task malloc and task free retrieve and dispose memory for a new descriptor

using a LIFO list of free bins. Concurrent write accesses to the list are protected by a

lock (task malloc lock).

There are four main types of locks in the tasking support framework. Besides task malloc lock

and work queue lock, the barrier lock is used inside the task scheduling loop for idle

threads to wait for available tasks and the taskwait lock is used by a task to wait for

termination of its children.

Note that there is one work queue lock and one barrier lock for each parallel region

in the system, while there is a taskwait lock for every task in the system. In fact, the

number of locks used at any time can be high. As a consequence, the single-ported

test-and-set (TAS) memory may easily become a bottleneck if multiple threads are

concurrently performing any form of synchronization.

= busy

wai!ng

= single

read

= single

write = wake

T

T

TAS

ARCH 1
T

T

T

TAS

ARCH 2

T

T

= polling
= thread

(SIGNAL)

T = thread (WAIT)

T= sleep

T

T

T

T

T

TAS T

T T
ARCH 3

Figure 5.18: Different architectural configurations (ARCH) of the TAS memory

To address this issue the following architectural variants are considered. They are

105

5_libgomp/Images/archmodes.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

shown in Figure 5.18. The implementation with single-ported, single-banked TAS mem-

ory is referred to as ARCH 1 and it is considered as a baseline for the other solutions.

Any wait operation in this architecture is always implemented with busy-waiting (see

leftmost part of the figure). As the number of locks increases, the concurrent traffic

overloads the TAS port. However, in many cases the conflict is created by contention

for the memory port, not for a lock. This issue can be mitigated by considering an

architectural modification to increment the number of ports and banks of the TAS

memory. In this variant (referred to as ARCH 2) the TAS segment has 16 banks/-

ports and thus, similar to the data TCDM segment, can serve concurrent accesses to

different locks in parallel.

In both ARCH 1 and ARCH 2 all of the wait operations are implemented with

busy-waiting on the lock until the corresponding signal operation FREEs it. While

ARCH 2 solves the issue of sequentialization of accesses to distinct locks, it does

not remove the polling activity of multiple cores, which creates congestion. While

work queue lock and task malloc lock are used to implement critical sections protect-

ing atomic queue updates, barrier lock and taskwait lock implement a different syn-

chronization pattern, where one thread (or more) is waiting for another one (or more)

to notify verification of a specific event. Thus, while in the first case a busy-waiting

implementation is to be preferred (short duration of the critical section), in the second

case it could rather be beneficial an alternative idle/wake mechanism where threads

that find a busy lock enter a sleep state and will be awaken after the lock has been set

to FREE. We will refer to this architectural variant as ARCH 3.

5.5.4 Experiments

To validate the runtime design, an extensive set of experiments was performed using

a SystemC-based virtual platform modeling the tightly-coupled cluster described in

Section 5.3 (26). Table 5.2 summarizes the main architectural parameters, a typical

setup for the considered platform template (see (15), (25)). In this section three types

of experiments are shown:

1. cost characterization of the main tasking constructs;

2. parallelization speedup for varying task granularity and comparison with other

tasking implementations;

106

5.5 Irregular and dynamic parallelism: tasking

Table 5.2: Architectural parameters

ARM v6 cores 16 TCDM banks 16

I$ size 1 KB TCDM latency ≥ 2 cycles

I$ line 4 words TCDM size 256 KB

thit = 1 cycle L3 latency ≥ 60 cycles

tmiss ≥ 59 cycles L3 size 256 MB

3. parallelization speedup for two real programs: the Strassen matrix multiplication

benchmark and the FAST corner detection application.

5.5.4.1 Tasking cost characterization

Here, the cost of the OpenMP tasking services is measured. 16 threads were created,

one per processor, with one of them producing 256 tasks. The tasks are composed of

ALU instructions only, to exclude memory effects from the measurement (each task

consists of 500 ALU operations).

Figure 5.19 shows the results for these measurements for each of the three archi-

tectural variants discussed in the previous section. There is one additional bar per

plot, labeled IDEAL, which shows the cost for executing the corresponding runtime

operation on a single core, while the rest of the cores is idling (thus no interference of

any kind takes place). These experiments are run under architectural variant ARCH

1.

A first observation is that the cost for tasking in the IDEAL case is between 70 and

130 clock cycles. The optimized assembly routines allow a low cost for these services.

Figure 5.19 (a) shows the cost for creating a task with the task directive. Contri-

butions include time for creating the descriptor (task malloc) and initializing it (desc

init), work queue lock acquisition (lock) and release (unlock), plus update of the in-

ternal work queue data structures (update wq). Results for ARCH 1 show that the

duration of the lock and the unlock phases are greatly impacted by high contention for

the single-ported TAS memory, as well as task descriptor creation and initialization (in

which some locks are accessed). When moving to ARCH 2 most of this effect disap-

pears as expected. ARCH 3 further improves the results, since the polling traffic for

threads waiting on the barrier lock is removed, thus reaching the IDEAL performance.

107

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

0

20

40

60

80

100

120

140

160

180

200

TSP

(barrier)

unlock

update wq

lock

0

20

40

60

80

100

120

140

160

#pragma omp

task if(FALSE)

post

desc init

0

10

20

30

40

50

60

70

80

90

100

TSP

(taskwait)

unlock

update wq

lock

0

50

100

150

200

250

300

350

400

#pragma omp

task
task_malloc

desc init

lock

update wq

unlock

a b c d

Figure 5.19: Breakdown of the time spent in high-level OpenMP services

Figures 5.19 (b), (c) and (d) report similar cost results respectively for i) a Task

Scheduling Point occurring on implicit and explicit barriers ii) creating an undeferred

task (annotated with a if(FALSE) clause) iii) a Task Scheduling Point occurring on a

taskwait. Similar conclusions hold for the benefits of ARCH 2 and ARCH 3 over

ARCH 1. Note that for undeferred tasks there is no need to acquire a lock since the

descriptor is in a local variable, which also removes the need for task malloc/free.

The post cost refers to switching execution back to the calling context.

0.07 0.2 1.6 7.7 13.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 10 100 500 1000

Task granularity GR

Rela!ve speedup

ARCH 1 ARCH 2 ARCH 3

0

2

4

6

8

10

12

14

16

1 10 100 500 1k 5k 7.5k 10k 15k

Task granularity GR (Number of ALU OPs in loop)

Speedup
UPPER

ARCH 1

ARCH 2

ARCH 3

LOWER

Figure 5.20: Parallelization speedup for increasing task granularity

108

5_libgomp/Images/chart-breakdown-col.eps
5_libgomp/Images/openmpbench-small_CR.eps

5.5 Irregular and dynamic parallelism: tasking

5.5.4.2 Task granularity impact on speedup

Figure 5.20(a) shows how different task granularities affect speedup for each of the three

architectures. For this characterization a synthetic benchmark is considered, which

consists of a loop with a parameterizable number of iterations (GR) and whose body

contains one dummy ALU (MOV) instruction. The setup is the same of the previous

experiment, with 16 threads, where only one is responsible for the creation of 256 tasks

while the remaining 15 can immediately start to execute them (the producer thread

can also join task execution after creating them all). Experiments were performed for

task granularities (GR) varying in the range between 1 and 15K. To obtain the speedup

the reference is the total execution time for the 256 tasks on a single thread with the

parallel execution time. The theoretical maximum speedup (16×) is depicted by the

UPPER curve, while the LOWER curve shows a lower bound to the speedup (i.e.,

below this value there is slowdown).

The figure shows that the LOWER value is reached for values of GR ≈80, while

the UPPER bound is asymptotically reached for granularities of ≈5000. Note that

the actual maximum speedup is lower than 16×, because one processor acts as a task

producer and does not take part to the actual parallel execution. This limits the

maximum speedup achieved in slightly more than 15×. In this region there is no

significant difference among the architectures. For finer tasks, however, the performance

of different architectures differentiate. Figure 5.20 (b) “zooms in” the finer task region,

plotting the relative speedups referred to the ARCH 3 for a given granularity. The

numbers on top report the absolute values for the speedup of ARCH 3. A considerable

speedup (20 to 30%) is achieved when switching from ARCH 1 to ARCH 2, at any

granularity. Switching toARCH 3 further improves performance, up to +30% speedup

(for GR≈ 10).

In summary, these experiments identify 80 ALU instructions as the minimum task

granularity to achieve any speedup in the proposed implementation and 5000 to reach

the upper bound. Note that tasks in real applications are likely to have more than 80

instructions, including memory accesses, here not modeled.

The proposed tasking support was also compared to GCC-OpenMP (52) and OMPi

(2). Experiments were performed on a Intel i7 quad-core machine @3.4GHz, featuring

HyperThreading technology. Since the target machine only has four cores, for fair

109

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

0

1

2

3

4

5

6

7

8

9

1 100 5k 15k 100k 1,5M 5M 1G

Task granularity GR

GOMP (4T) OMPI (4T) ARCH3 (4T)

GOMP (8T) OMPI (8T) ARCH3 (8T)

Speedup

comparison

Figure 5.21: Parallelization speedup against existing OpenMP runtimes (c)

comparison the experiment was repeated on an instance of the target cluster with the

same number of PUs. In addition, HyperThreading (8 threads) was also compared

against with the runtime running on 8 PUs. The results for this experiment are shown

in Figure 5.21, where the gray area on the left matches the one of in Figure 5.21.

Solid lines refer to the experiment with four cores, dashed lines refer to the experiment

with 8 cores. The results show that ARCH 3 asymptotically reaches the maximum

speedup (4×) for GR≈5000, outperforming both GOMP and OMPi which reach their

peak values for GR≈100000. Similar conclusion applies when 8 threads are considered.

Note that, since the synthetic tasks are made of ALU instructions, HyperThreading

only achieves 6×. Results prove that the proposed solution achieve peak speedup for

tasks ≈ 20× finer-grained than both GOMP and OMPi.

5.5.4.3 Real Benchmarks

In this section the runtime is validated on two real programs: Strassen matrix multi-

plication and FAST corner detection.

The Strassen algorithm was already partitioned following the fine scheme shown

in Section 5.4.3, with the exception that OpenMP tasks were used instead of dynamic

loops. Figure 5.22 shows how the speedups for the two tasking strategies scale in

the different architectures, as the size of matrices increases and for each stage. Ideal

speedups are also reported in dotted black lines. Obviously the speedup increases with

matrix size, since the overhead of tasking becomes less significant as the the actual

110

5_libgomp/Images/openmpbench-x86.eps

5.5 Irregular and dynamic parallelism: tasking

0

4

8

12

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128

0

4

8

12

16

8

1
6

3
2

6
4

1
2

8 8

1
6

3
2

6
4

1
2

8 8

1
6

3
2

6
4

1
2

8

ARCH 1

ARCH 2

ARCH 3

STAGE 1

STAGE 2 STAGE 3

F
in

e
 g

ra
in

N

(Matrix size = NxN)

C
o

a
rs

e
G

ra
in

Figure 5.22: Speedup of Strassen Algorithm

workload grows. This is the reason why in Stage 2 (more computation) the runtime

reaches near-ideal speedup for small matrices (32x32 for the COARSE scheme, 64x64

for the FINE scheme). However, the FINE strategy does not always allocate enough

work to amortize the overheads, and this is the reason why Stages 1 and 3 do not scale

beyond 7× and 4×, respectively.

As shown in the charts, considering different architectures does not significantly

affect performance for Stages 1 and 2. This is due to the regular nature of the parallel

workload, which does not require synchronization. Stage 3, on the contrary, uses a

taskwait construct to separate the two sub-stages, thus showing the benefits of ARCH

3.

The FAST (112) algorithm compares the intensity value of each point p of the input

image with all the sixteen points on the circle of radius 3 and center p. p is classified as

a corner if there exists a set of contiguous pixels within the circle that are all brighter

(minimum) or darker (maximum) than p (with a tolerance threshold). The number of

contiguous pixels and the threshold value are both algorithm parameters; typical values

are respectively 9 and 20.

Given an N*M input image, the algorithm generates an output vector whose size is

N*M*3, containing the coordinates of the corner points and a score. The latter is used

in a subsequent non-maxima suppression stage, which merges multiple pixels belonging

to the same corner. Finally, a keypoint detection pass detects relevant features.

111

5_libgomp/Images/chart-strassen_CR.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

The core kernel performs most of the computation and it exhibit data-parallelism

at the pixel level. By estimating the number of instructions in the main loop body,

it is easy to determine a minimum number of iterations to achieve near-ideal speedup

by checking the chart in Figure 5.20. To achieve this goal, the tasks were designed to

process an entire image row. Experiments were performed increasing the size N ×N of

input images, with N ∈ {64, 128, 256, 512}, thus the granularity of tasks doubles with

the input size. However, due to the limited size of the TCDM it is not possible to store

the whole dataset therein. The image is split into stripes, which are processed one after

the other. The double buffering technique overlaps computation and DMA transfers

from the global memory. Table 5.3 shows the speedup of the parallelized algorithm

compared to the sequential version for different image sizes. A considerable speedup is

achieved even for small images (11× for a 64x64 image, with each task only processing

64 pixels) and the speedup reaches 91% of the theoretical 16× for N ≥ 256.

Table 5.3: Speedup of the parallel FAST algorithm

Input dim 64x64 128x128 256x256 512x512 Ideal

Speedup 11,01 13,54 14,19 14,60 16

5.6 Hardware support for irregular parallelism

OpenMP constructs for dynamic parallelism provide a powerful and flexible solution

to exploit irregular parallelism in target applications, but their practical implementa-

tion requires sophisticated runtime system support, which typically implies important

space and time overheads. The applicability of the approach is thus often limited

to applications exhibiting units of work which are coarse-grained enough to amortize

these overheads. In this section, the major sources of overhead in the implementation

of OpenMP dynamic loops, sections and tasks are studied, and hardware implemen-

tation is proposed for a generic Scheduling Engine (HWSE) which fits the semantics

of the three constructs. The adaptability of this HW block in the context of different

programming models is also discussed. The HWSE is designed as a tightly-coupled

block to the PEs within a multi-core cluster, communicating through a shared-memory

interface. This allows very fast programming and synchronization with the controlling

112

5.6 Hardware support for irregular parallelism

PEs, fundamental to achieving fast dynamic scheduling, and ultimately to enable

fine-grained parallelism. The HWSE was modeled in RTL, to obtain accurate synthesis

results, and in SystemC, to validate the proposed approach by running run complete

applications. Results are compared against two runtime implementations, OMPi (2)

and GNU LIBGOMP (52).

5.6.1 Analysis of OpenMP dynamic parallelism support

Here, the OpenMP constructs for dynamic parallelism are analyzed, aiming at i) de-

riving a minimal set of primitives that capture their semantics and ii) characterizing

the cost of each primitive, to discover best candidates for hardware acceleration. The

reference OpenMP implementation considered in this work is the GNU GCC runtime

library (libgomp (52)). This will be used as a baseline also in the evaluation section.

OpenMP features three different constructs to support dynamic parallelism: sec-

tions, dynamic loops and tasking.

1. Sections (Figure 5.23 (a)). Different portions of code are annotated to stati-

cally decompose a program into coarse-grained tasks (here, task A and task B)

deployed onto parallel threads;

2. Dynamic loops (Figure 5.23 (b)). Tasks are dynamically created out of chunks

of loop iterations and executed by parallel threads.

3. Tasking (Figure 5.23 (c)). OpenMP Tasks have been introduced since specifica-

tions 3.0 (106). Compared to sections, OpenMP tasks enable more sophisticated

forms of dynamic, irregular and asynchronous parallelism.

Chapter 2 explains in details each construct. Their basic usage is shown in Figure

5.23.

Figure 5.24 shows how the code in Figure 5.23 is transformed by the GCC compiler.

The compiler resorts to the runtime system to retrieve the next available chunk of loop

iterations for dynamic loops (GOMP loop dynamic next()) or the next available section

(GOMP section next()). Both functions implement a FIFO queue, to which parallel

threads access in a mutually exclusive manner to update a shared counter. sections

and dynamic loops rely on a work-share data structure, which describes the parallel

113

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

#pragma omp sections

{

#pragma omp section

{ task_A(); }
#pragma omp section

{ task_B(); }

} /* End of workshare:

(implicit) Synch */

#pragma omp for schedule \

(dynamic, 4)

for (i=0; i<64; i++)

{
task(i);

} /* End of workshare:

(implicit) Synch */

#pragma omp single nowait

{

for(i<64)

{ /* Task creation */
#pragma omp task

{ task_A(i); }

}

/* Task-based synch */
#pragma omp taskwait

#pragma omp task

{ task_B(i); }

} /* (Implicit) thrd synch:

execute all tasks */

a)

b)

c)

Figure 5.23: Different construct for dynamic parallelism: a)

sections, b) dynamic loops, c) tasks

work to be done (e.g., number of iterations, chunk size, global lower and upper bounds

of a loop, etc.).

Code snippet in Figure 5.25 shows how the work-share data structure is initialized

in the GOMP loop dynamic start() function, and how the current thread is pointed

to the next work-share when the loop (or section) is over in the GOMP loop end()

function. These operations can be captured by two generic INIT and END primitives.

Figure 5.26 shows how the GOMP loop dynamic next() function updates the work-share

during loop (or sections) execution. Figure 5.25 shows also the how the END primitive

updates thread status (in the GOMP loop end() function). OpenMP sections can be

seen as a specialized case of loops where chunk = stride = 1. A generic FETCH

primitive can be used to generalize the work-share update operation.

A more in-depth analysis is required for OpenMP tasks.

Figure 5.27 shows execution time breakdown for the INIT primitive. The major

contributors are the critical region to update the FIFO queue, and the memory allo-

cation for the OpenMP Task descriptor. Since management of pre-allocated memory

bins is also a very generic operation, used in virtually every runtime system, this func-

tionality was selected for HW acceleration. The FETCH primitive for tasks can thus

be enriched with this functionalities. A task in the work queue can be executing, unex-

ecuted or ended, thus a mechanism for tracing its status must be put in place. To this

114

5_libgomp/Images/omp-tasking.eps

5.6 Hardware support for irregular parallelism

/* N_SECTIONS: 2 */

GOMP_sections_start(2);

while(ID = GOMP_sections_next()) {
switch(ID)

{

case 1: task_A(); break;

case 2: task_B(); break;

case 0: /* END */ break;
}

}

GOMP_sections_end();

/* START: 0, END: 64, INCR: +1, CHUNK: 4 */

GOMP_loop_dynamic_start(0, 64, +1, 4);

while(GOMP_loop_dynamic_next(&ISTART, &IEND))

{
for(i=ISTART; i<IEND; i++)

task(i);

}

GOMP_loop_end();

if(GOMP_single_start())

{

for(i<64) /* Pass FN, DATA */

GOMP_task(&task_A, { &i });

GOMP_taskwait();

GOMP_task(&task_B, NULL);

}

GOMP_single_end();
/* (Implicit) thread synch:

execute all tasks */

a)

b)

c)

Figure 5.24: GCC-transformed dynamic parallelism constructs: a)

sections, b) dynamic loops, c) tasks

Type INIT FETCH END SYNC

Sections W task descr foreach section R task descr update -

update thrd status (section descr) thrd status

Dynamic W loop infos: start,end,.. R chunk istart, update -

loops update thrd status chunk iend thrd status

Tasking W task descr R task desc update explicit

update task status task status

Table 5.4: Description of the different primitives for each of the three dynamic parallelism

constructs

aim the semantics of the INIT and END primitives were enriched for tasks.

Table 5.4 summarizes the functionality of the selected primitives for HW accelera-

tion. Their implementation is discussed in Section 5.6.2.

5.6.2 The Hardware Scheduling Engine

This section describes the Hardware Scheduling Engine (HWSE), a module to accelerate

in HW the primitives introduced in Section 5.5.

115

5_libgomp/Images/gomp-tasking.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

/* INIT */

int GOMP_loop_dynamic_start(int start, int end,

int incr, int chunk) {

gomp_work_share_t ws = /* Init WS */;

// ...

ws.chunk = chunk;

ws.end = ((stride > 0 && start > end)

|| (stride < 0 && start < end)) ? start : end;

ws.stride = stride;
ws.next = start;

return INIT_OK;
}

/* END */

void GOMP_loop_end() {

current_WS[thread_ID]++;
}

Figure 5.25: GOMP code snippet for loop INIT and END

/* FETCH */

int GOMP_loop_dynamic_next (gomp_work_share_t *ws,

int * pstart, int * pend) {

/* 'ws' holds the status on thread’s current WorkShare */
int start, end, chunk, left;

LOCK();

start = ws->next;

if (start == ws->end)

return WS_ENDED; /* WS finished! */

chunk = ws->chunk_size * ws->stride;

left = ws->end - start;

/* Adjust the boundaries */

if (ws->stride < 0) {
if (chunk < left) chunk = left;

} else {

if (chunk > left) chunk = left;

}

end = start + chunk;
ws->next = end;

*pstart = start; *pend = end;

UNLOCK();

return WS_HAVE_WORK;

}

Figure 5.26: GOMP code snippet for loop FETCH

116

5_libgomp/Images/ws-loops-init.eps
5_libgomp/Images/ws-loops-fetch.eps

5.6 Hardware support for irregular parallelism

Retrieve

Thread Team

infos

12%

Check

Un/Deferred

9%

Desc alloc +

init

24%

Arg copy

4%

Cri!cal

region

(Update

FIFO + Team

infos)

40%

Wake

Threads

11%

OpenMP Task INIT Breakdown

So"ware

Figure 5.27: Timing overhead of task INIT per-

formed in software

HWSE

MEMORY-MAPPED

SHARED REGISTERS

FIFO QUEUE

SHARED

DATAPATH

LOOP_START

LOOP_END

LOOP_INCR

+
+

Decoder

thdr status
SLAVE PORT

Request

FSM

+

LOOP_INCR

CMD

LOAD/

STORE

PTR

thdr status

UPDATE

thread

status

thdr statusthrd status

Figure 5.28: Scheme of the HWSE

5.6.3 HW Module Implementation and integration in the cluster

The internal core structure of the HWSE (shown in Figure 5.28) consists of a control

finite-state machine that receives the various INIT, FETCH and END primitives and

117

5_libgomp/Images/task-init-sw.eps
5_libgomp/Images/hwse.eps

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

responds accordingly. A central core datapath implements these primitives, and has

additional logic to specialize their behavior for the construct at hand (loops, sections,

tasks, memory allocation). Before using it, the HWSE must be configured to enable

the desired construct. This can be done via memory-mapped configuration registers,

which are appropriately set within the provided SW routines (hwse init *, see Section

5.6.1). The INIT primitive for dynamic loops simply consists of writing lower bound,

upper bound and stride into the LOOP START, LOOP END, LOOP INCR registers.

The same happens for sections (remember they are a special case of loops with chunk

= 1). Loop boundaries (or the next available section) are computed by a submodule

implementing the FETCH primitive. A simple circular buffer of 32, 64 or 128 elements

implements the FIFO queue; the control FSM is responsible for storing and extracting

elements from the queue. Invoking the END primitive results in updating a thread-

specific register which stores its current work-share.

To implement the memory allocator functionality the logic for loop scheduling was

entirely reused. In the INIT primitive the base address for the memory heap, its global

size and the size of a memory bin (containing the specific work/task descriptor) are

stored respectively in the LOOP START, LOOP END and LOOP INCR registers.

Requests for a new memory bin are serviced through the loop iterations scheduler,

until the there are available bins. Then, memory bins are extracted from the FIFO

queue (alloc) in the FETCH primitive, and inserted back therein (free) in the END

primitive.

Task support deserves further discussion. The INIT primitive supports the creation

of a task (function GOMP task() in Figure 5.24 (c))) by inserting the address of a

newly created task descriptor in the FIFO queue. Similarly, the the FETCH primitive

dequeues a task descriptor address from the queue. The END primitive for tasks was

not accelerated in hardware, and the reason will be explained in next section.

The HWSE is integrated in the target cluster, tightly-coupled to cores through the

high-speed interconnection. The FSM can be controlled by the cluster by means of a

memory-mapped interface; registers are memory-mapped, and special addresses trigger

the different primitives.

A RTL (SystemVerilog) model of the HWSE was implemented, and synthesized

using the STMicroelectronics 28 nm bulk low-threshold libraries as a target, with a

clock frequency of 400 MHz. Table 5.5 summarizes the results regarding area (in gates)

118

5.6 Hardware support for irregular parallelism

Area (kgates) Power (mW)

#tasks 32 64 128 32 64 128

Decoder FSM 5.42 5.42 5.38 2.42 4.80 9.57

Datapath 3.00 2.81 2.78 1.35 1.27 1.27

Task queue 4.70 9.39 18.69 2.47 2.47 2.46

Total 13.12 17.62 26.85 6.24 8.54 13.30

% of cluster 1.49 1.99 3.01 1.23 1.67 2.59

Table 5.5: HWSE Module

and power (in mW), and the impact on the cluster area and power (in %), which were

gathered similarly. Depending on the queue size, the HWSE adds ≈ 1%-3% to the

area and power of the original cluster design. Much of the area occupation and power

consumption of the HWSE is in the FIFO queue and thus depends of its depth (the

maximum number of tasks supported). In absence of contention only 2 (for crossing

the IC) + 1 (the delay added by the module) clock cycles are necessary to execute any

primitive.

5.6.3.1 Programming Interface and integration in the libgomp

To conveniently program the HWSE, a SW API was developed, which abstracts the

low-level process of register configuration. Table 5.6 summarizes the functions provided

by this API and their description. As already discussed previously, the HWSE imple-

mentation is based on the analysis and optimization of the GCC-OpenMP runtime

library: libgomp (52). Table 5.6 also lists the corresponding functions in the libgomp

library for supporting dynamic loops, sections and tasks. Starting from this implemen-

tation, the schedulers for sections, dynamic loops and tasks were replaced with calls to

the HWSE APIs. For the former two constructs the operation was straightforward, due

to the one to one correspondence between the HW and SW primitives. Tasks, on the

contrary, have much more sophisticated semantics than a simple FIFO queue, which

required more work for the integration. Task-level synchronization implies that any

thread encountering a taskwait construct must “wait on the completion of child tasks

of the current task” (cit (106)). This implies that parent-children information among

tasks must also be stored, other than a FIFO representation. libgomp does so by using

a tree data structure. Here, a more lightweight implementation is provided, based on

119

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

Type HWSE APIs libgomp API

Sections INIT hwse sections init count(n sections) GOMP sections start(n sections)

FETCH hwse sections fetch ID() GOMP sections next()

Dyn loops INIT hwse loops init loop(start,end, incr*chunk) GOMP dynamic loop start(start,end,incr,chunk)

FETCH hwse loops fetch iters(&istart,&iend) GOMP dynamic loop next(&istart,&iend)

Tasking INIT hwse task init desc addr(addr) GOMP task(FN PTR,DATA PTR,...)

FETCH hwse task fetch desc addr() -

Table 5.6: HWSE APIs

atomic counters (2)(63), handled in software rather than in the HWSE, to maintain

the generality of the primitives implementation.

Task descriptors contain information on shared data, thus can become very large.

Thus the descriptors themselves are not stored in the HWSE FIFO, but only their

address. Descriptors are stored in the shared L1 SPM, so once their address is ex-

tracted the SW can quickly access the information therein. As a consequence, the

END primitive for tasking was not implemented in hardware.

5.6.3.2 Applicability of the HWSE to different programming models

As shown in Table 5.7 , most programming models are implicitly asynchronous, and in

some cases also embody a fork-join execution model. The semantic of INIT/FETCH

primitives perfectly matches the behavior of a work queue supporting asynchronous

execution. Synchronicity (and synchronization) can be implemented with the support

of the FETCH primitive, e.g., wrapping it in a software loop until there are tasks to

execute. Complex dependencies between tasks (e.g., parent-children relationship) can

be expressed enriching the descriptors of the work to execute. Indeed, the primitives

(and the corresponding HWSE implementation) agnostically handle a language-specific

data structure describing a single task, that therefore can include information – such as

references to other task structures – to be managed by a higher software level. The work

descriptor can be enriched also to specify a set of tasks, e.g., to support data parallelism

similarly to what happen in Intel TBB (63), where high-level data parallel constructs

are built on top of a task scheduling library. Finally, all the programming models

shown in Table 5.7 abstract memory allocation to software. The HWSE proposed

in this work can be configured as a pre-allocated memory manager to support and

accelerate memory allocation and free primitives.

120

5.6 Hardware support for irregular parallelism

Name Explicit a/synch exec. Task synchronization Task Parallelism

Intel TBB (63) Fork/Join Explicit Join Tasks

OpenMP (106) . Implicitly asynch . Implicit at TSP Tasks

. Explicit synch . Explicit (taskwait) Sections

Cilk (96) Fork/Join Explicit Join Co-operative

Tasks

Apple GCD (7) Synch/Asynch Explicit Tasks

(queue-based) (Q WAIT)

Plurality CSU (109) Asynch Token-based Regular

Tasks

Name Data Parallelism Inter-task dep. Memory allocation

Intel TBB (63) Lib built on top of Group Implicit in

Task scheduler spawn and wait Class Inherit.

OpenMP (106) Dynamic Parent-child Transparent

Loops taskwait

Cilk (96) cilk for - Transparent

Apple GCD (7) - - Implicit in

Q ALLOC

Plurality CSU (109) Duplicable Tokens Transparent

Tasks

Table 5.7: Most relevant programming models supporting dynamic parallelism

5.6.4 Experiments

The proposed cluster was prototyped using a SystemC Virtual Platform (26) which

models the HWSE integrated in the cluster platform described in Section 5.3, with main

architectural parameters as summarizes in Table 5.9. With this setup, the approach

was validated both with synthetic benchmarks, and applications from image processing

domains.

5.6.4.1 Synthetic benchmarks

The first experiment to measure the performance improvement brought by the HWSE

compared to the software schedulers consists of three synthetic workloads. To test

accelerated sections, 24 sections were spawned each consisting of 100 NOPs (to prevent

side effects due to memory contention). For dynamic loops, a loop was created of 64

121

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

Type JPEG Tracking Strassen FAST Face Average

Detection

GCC-OpenMP (52)

Loops 27% 6% S1 : 80% S2 : 28% S3 : 80% 53% 20% 42%

Tasks 26% 27% S1 : 26% S2 : 0.5% S3 : 22% 48% 3% 21.8%

OMPI (2)

Loops 48% 27% S1 : 83% S2: 83% S3 : 82% 83% 85% 70.1%

Tasks 80% 97% S1 : 96% S2 : 44% S3 : 97% 95% 90% 85.6%

Table 5.8: HWSE performance improvement against libgomp and OMPi SW schedulers.

ARM v6 cores 16 # L1 SPM banks 32 (K=2)

L1 SPM size 256 KB # L1 SPM latency ≥ 2 cycles

L3 size 256 MB L3 latency ≥ 59 cycles

I$i size 1 KB I$i line 4 words

thit = 1 cycle tmiss ≥ 59 cycles

Table 5.9: Architectural parameters

iterations each containing 100 NOPs, while for the tasking 18 tasks were spawned each

containing a loop of 5000 iterations of 100 NOPs. All the processors are involved in

the computation. Table 5.10 summarizes the speedup brought by the HWSE for each

of the three primitives, over the pure SW version.

Type INIT FETCH END

Sections 16× 78× 181×

Dynamic loops 1.07× 6× 14×

Tasks 1.41× 1.21× -

Table 5.10: Sections and loop speedup compared to the pure SW version

Accelerated sections provide the best speedups, significantly higher than dynamic

loops even if the two constructs share almost identical semantics. The reason for this

difference is that each INIT and FETCH event for the sections implies a single write

in the HWSE, while loops require multiple consecutive writes. Consequently the HWSE

must be locked to prevent non-mutually exclusive updates from distinct threads. This

122

5.7 Conclusions

operation is done in software, and implies the difference in performance that we can

observe. Similarly, the HWSE can only accelerate a portion of the sophisticated task

scheduler, leaving a relevant portion of the code to be executed in software. For this

reason we observe a more modest 41% speedup for the INIT and 21% for the FETCH.

The END primitive, as already explained, was not accelerated.

5.6.4.2 Comparison with software schedulers

The HWSE was compared against two freely available OpenMP runtimes, namely

libgomp (52) and OMPi (2). Both runtime systems have been ported on the target

cluster platform. For this comparison 5 image processing applications were considered:

JPEG decoding, Color Tracking, Strassen matrix multiplication, FAST corner detec-

tion, Viola-Jones Face Detection. For each of them were proposed, where possible, two

alternative implementations: one which uses tasks and one which uses dynamic loops

or sections. In both cases work units were generated as fine-grained as possible, to

verify the effectiveness of the HWSE.

Table 5.8 shows the performance improvement for each application, when the HWSE

is compared to the software schedulers in libgomp and OMPi. For the Strassen ma-

trix multiplication the speedup for each of the three main phases of the algorithm is

plotted. We see almost no performance gain for stage 2, because the work units are

very coarse grained, which tends to minimize the impact of the software overheads A

similar situation takes place for the task-based version of Face Detection. Besides these

two cases, on average the HWSE achieves ≈ 32% speedup versus libgomp, and ≈ 76%

speedup versus OMPi.

5.7 Conclusions

Many-core clustered architectures are increasingly being adopted to design embedded

many-cores. These platforms can deliver very high peak performance within a con-

tained power envelope, provided that programmers can make effective use the available

parallel cores. This is becoming an extremely difficult task, as embedded applications

are growing in complexity and exhibit patterns of parallelism that is multi-level, and/or

irregular in nature. To cope with the increasing application complexity, several lan-

guages and extensions were proposed, one of the major being OpenMP. OpenMP lets

123

5. SUPPORT FOR NESTED AND IRREGULAR PARALLELISM ON
SHARED MEMORY MANY-CORE CLUSTERS

the programmer specifying complex forms of parallelism in its code, such as nested and

irregular (tasking) parallelism, but, to effectively support them on modern many-cores,

a runtime support is required, and it must be designed ad-hoc for efficiently exploiting

the underlying hardware. In this chapter, a novel design was proposed for the GCC-

OpenMP runtime (libgomp (52)), which supports both nested and tasking parallelism.

The runtime support for nested parallelism was validated against a runtime whose

design is capable of simple flat parallelism, showing how the introduced overhead is

negligible compared to the achievable performance gain.

For the tasking support, several architectural variants were considered for the target

cluster, aimed at removing the bottlenecks arising in the shared memory system. All of

them were exhaustively validated, on a virtual platform using both synthetic benchmark

and real applications from the image processing domains. Performance of the runtime

was characterized in terms of the minimum granularity of tasks than can be effectively

spawned on it, outperforming existing implementations by a factor of 20×.

At last, key functionalities of the libgomp were identified and a hardware imple-

mentation for them was proposed, based on a Hardware Scheduling Engine (HWSE)

that was tightly-coupled inside the cluster template. The performance gain given by the

HWSE was validated with several benchmarks running on a virtual platform simulation,

and its area and power estimated with RTL synthesis. Results prove the effectiveness

of the proposed approach.

124

6

Heterogeneous many-core

clusters with shared memory

Modern embedded systems increasingly adopt heterogeneous platforms, where hard-

ware accelerators are coupled to cores, to trade specialization of the platform to a

specific application domain for speedup and energy efficiency. In a shared-memory

platform, the task of communicating and synchronizing between hardware accelerators

and cores can be achieved via shared memory banks, so that the data copy needed –

e.g., in a GPU-based system – to feed the accelerators are completely removed. This is

called zero-copy scheme (5). This chapter targets this kind of architecture, and three

main issues are considered, namely platform design, architectural scalability and pro-

grammability. This part of the thesis is the result of a cooperation between University

of Bologna and Université de Bretagne-Sud, under a joint PhD agreement.

6.1 Introduction

Modern embedded systems are increasingly exploiting architectural heterogeneity to

improve energy efficiency and performance. High-end products such as smartphones

and tablets typically include hardware accelerators, and we can foresee that this trend

will continue, possibly exploiting on-chip programmable logic (142) to customize the

system functionality to a specific application domain. This happens especially for im-

age and video processing systems, which greatly benefit from hardware acceleration of

critical computation-intensive code kernels such as convolutions, discrete cosine trans-

125

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

form, color space conversion etc., frequently found at the heart of several applications.

These key kernels are implemented in ASIC/FPGA technologies, and the correspond-

ing hardware blocks are coupled to general-purpose cores as co-processors. This form

of architectural heterogeneity is an effective solution to improve energy efficiency of

SoC designs by a factor of 10× to 100×.

Key to designing such heterogeneous platforms are efficient mechanism for core-to-

accelerators communication and synchronization. In shared-memory systems, such as

the ones considered in this work, these tasks can be easily implemented through shared

memory banks. This clean and efficient communication scheme greatly simplifies the

process of designing such a platform and the integration of hardware accelerators with

the software stack. The target architecture here considered are shared-memory many-

core heterogeneous clusters shown in Section 2.1, and more in details, the proposal is to

tightly-couple accelerators inside the clusters, so that they share the L1 memory banks

with the general purpose cores. This is called zero-copy scheme, and from now on we

will call the accelerators implementing it Hardware Processing Units - HWPUs. The

template for the target heterogeneous cluster is shown in Figure 6.1.

In such an template, there is no need to perform data movements other than the

ones which are however necessary to increase the locality of data, as opposite to what

happens e.g., in GPU-based systems, where data movements are necessary (e.g., using

OpenCL (80)), and efficiently orchestrating them is paramount to achieving perfor-

mance.

The architectural template and communication scheme are clearly defined, and

this enables the development of design techniques and tools, and a modular design

for the software stack to support programming. The zero-copy scheme perfectly fits

the semantics of most of the programming models used in embedded systems (e.g., C,

C++), which are shared-memory based.

Once the communication scheme have been fixed, there are three challenges in

designing heterogeneous many-core platforms:

1. Platform design. This means providing methodologies and tools to help engi-

neers in prototyping and exploring the design space of such an architecture and

HW/SW partitioning of an application. Roughly speaking, this means answering

to questions such as: “How can I identify the portions of an application that

126

6.1 Introduction

SHARED L1 TCDM

CORE 0

HWPU 0

B
A

N
K

 0

SLAVE
PORT

LOGARITHMIC INTERCONNECT (MoT)

MAST
PORT

B
A

N
K

 1

SLAVE
PORT

B
A

N
K

 N
SLAVE
PORT

te
st-a

n
d

-se
t

se
m

a
p

h
o

re
s

SLAVE
PORT

MAST
PORT

CORE M

MAST
PORT

L2/L3
BRIDGE

I$ I$
SLAVE
PORT

HWPU N

MAST
PORT

SLAVE
PORT

Figure 6.1: Proposal for an heterogeneous cluster with shared-memory

should be accelerated on HW rather than in SW?”, “How many HWPUs and

cores should I plug in the cluster?”.

2. Architectural scalability, that is, providing architectural templates to include sev-

eral (tens of) HWPUs inside a many-core cluster, identifying and solving the

bottleneck that may arise (e.g., the memory bandwidth) when doing so.

3. Programmability. Software developers must be provided with compilers, run-

time libraries and programming languages to efficiently exploit HWPUs from

within their (already existing?) code, and develop applications that are modular,

portable and scalable (in the “software engineering” meaning of the word).

While considering these problems, there are two possible “points of view”, namely

a top-down approach, where platform is designed from scratch given a high-level spec-

ification of the kernels to accelerate (e.g., in C language), and a bottom-up approach,

where accelerators that already exist in the platform must be detected and exploited

from application code. This chapter explores both of them. The programming model

considered is OpenMP, for which at the time we write this thesis, the steering board is

discussing (specifications 4.0 (107)) future extensions to cope with hardware accelera-

tion. Here, a few custom APIs are proposed, that achieve this goal.

127

6_heterogeneous/Images/arch-cluster.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

6.2 Related works

SoC architectures featuring HW accelerators have been widely studied in literature. Ap-

proaches based on ASIP and Instruction Set Extensions (ISE) exhibit a limited data

bandwidth between processors and acceleration logic due to constraints on register file

port availability. To overcome this limitation, Architecturally Visible Storage (AVS)

(20) uses local memory elements to intrinsically increase the data bandwidth. Allow-

ing separate L1 memory segments introduces consistency issues when several copies

of data are created. In particular, if processors leverage L1 data caches AVS suffers

from coherence problems. Kluter et al. (78) present a memory coherence scheme for

ISEs with AVS meant to ensure execution correctness with minimal area overhead. An

evolution of this approach, Way Stealing, is presented in (79), where AVS is imple-

mented by locking target lines in processors’ caches and is coherent by construction.

AMD Fusion provides a GPU-based architecture which implements zero-copy commu-

nication, and to the best of my knowledge, they are the first adopting this terminology.

It is shared-memory GPU-based architecture, where the accelerator unit (APU) is not

tightly coupled to cores, and hardware tasks are dispatched through a FIFO queue

system. Fajardo et al (50) propose an architecture where cores and accelerators share

a common L2 SRAM, called Buffer-Integrated-Cache (BIC). However, accelerators are

not coupled at L1, hence “the shared BIC cannot completely eliminate physical local

storage”. Moreover, they add what they call a BIC substrate, to let the cores access it

as a cache, and accelerators access it as a local storage (but with higher latency). Their

design is more complex and less efficient than the proposed heterogeneous clusters and

– most important – not scalable to a high number of accelerators, because the BIC

substrate is implemented as a shared “augmented conventional cache”.

Some works attack the scalability problem by providing smart controllers for the

accelerators that resemble the ones proposed here. Bin et al. (86) propose a Memory

Access Engine (MAE) to hide the increasing latency towards the shared memory system

as the number of PEs grow. To do so, they perform data prefetching based on access

patterns that are recurring in the image processing domain. However, their accelerators

are not tightly-coupled neither to cores nor to the memory banks, thus the zero-copy

scheme cannot be implemented efficiently.

128

6.2 Related works

The approach of Cong et al. (37) is probably the closest to this work from the

point of view of programmability. They propose a hardware module (called GAM) for

supporting the execution of accelerators, to tackle programmability issues. The GAM

features hardware support for virtualizing and composing the available accelerators,

to offload complex units of works (macro-tasks). However, their architecture features

loosely-coupled accelerators, thus it significantly differs from heterogeneous clusters.

Each accelerator resides on a different tile, other than cores and memory banks, so there

are no opportunities for efficiently implementing shared memory-based communication.

Conservation-Cores (118, 135) provide a generic template for building low-power,

reconfigurable accelerators. However, they are not application-specific circuits but gen-

eral cores, whose goal is not on improving performance but energy-delay.

Programming models will be key instruments to efficiently program accelerator-

based MPSoCs. Several efforts in academia (8, 28, 37) and industry (65) are pushing

for solutions to ease programmability on accelerator-based platforms, as witnessed by

initiatives such as HSA (82) and Khronos (127). The Khronos vision working group

has been formed to drive industry consensus to create a cross-platform API standard

(OpenVX (128)) that enables hardware vendors to implement and optimize accelerated

computer vision algorithms. The Khronos vision API can accelerate high-level libraries,

such as the popular OpenCV open source vision library (104), or can be used by

applications directly. The Khronos vision working group has not converged towards a

standard for OpenVX yet, but Section 6.5 shows how embracing this “philosophy” is

highly beneficial on the considered platform.

OpenCL (80) attempts to unify the programming models for such platforms into

a unique standard. However its low-level programming style requires deep knowledge

of the underlying platform, making it cumbersome to use for non-experts. The more

appealing directive-based approach of OpenMP inspired a number of other approaches,

such as PGI Accelerator (130) or StarSS (9). OpenMP has also been proposed as

a programming model for FPGA-based accelerators (29), or to co-specify a HW/SW

platform including multiple cores and accelerators (60). Both the architectures leverage

data copies to feed accelerators.

Several methodologies and tools exist to simplify the process of designing hardware

accelerators from high-level descriptions. In the context of ASIP acceleration, Synop-

sys (120) and Tensilica (122) provide complete environments and toolchains for the

129

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

development and testing of application specific processors and software. OpenMP has

been proposed as a high-level interface to describing hardware in (13, 43, 85), typically

targeting FPGA/ASIC accelerators. Different from these proposals, the way OpenMP

is used here aims at defining a complete HW/SW architecture, where multiple cores

and accelerators communicate through pre-defined interfaces.

S

P

O

R

T

M

P

O

R

T

Master

Cont.

IC

Slave

Cont.

Data Path

Controller

COMU PU

M
E

M
U

Ping-Pong

registers

Figure 6.2: Structure of a HWPU

6.3 HWPUs: zero-copy tightly-coupled hardware accel-

erators

The Hardware Processing Units (HWPUs) are user-defined hardware accelerators that

are tightly-coupled inside a cluster, and embody the zero-copy communication scheme.

Different from the typical host+accelerator architecture, in the zero-copy accelerator

model data need not to be moved in and out of the accelerator private memory space.

In a cluster such as the one depicted in Figure 6.1, HWPUs access data directly from the

L1 scratchpad through the logarithmic interconnect. This has a key advantage. While

– similar to traditional NUMA systems – in a cluster-based architecture moving data to

local memories is crucial to achieving performance, once a given data item (e.g., a slice

of a large image) has been brought close to the processors (e.g., the considered TCDM,

or a data cache in a different architecture), no further movements are required to make

it visible to HWPUs. The HWPU template is composed of three main functional units:

a processing unit (PU), a memory unit (MEMU) and a Communication Unit (COMU)

130

6_heterogeneous/Images/hwpu2.eps

6.3 HWPUs: zero-copy tightly-coupled hardware accelerators

DATAPATH

PROG.

CHAN.

EX 0 EX 1 EX 2

Stall

Offload

req #0

Offload

req #0

EX 0 EX 1

Offload

req #1

Offload

req #1

Offload

req #2

EX 2

Offload

req #2

Stall

busy busy busy

Time

PROCESSOR

HWPUStall

busy

busy

busy

DATAPATH

PROG. CHAN 0

PROG. CHAN 1

Time

PROCESSOR

HWPU

for (i=0; i<N; i++)

while (!<acquire channel>);

SINGLE

CHANNEL

DOUBLE

CHANNEL

Figure 6.3: Timing diagram for programming HWPU channels

(see Figure 6.2). The PU is a data-path providing the implementation of the target

algorithm. The MEMU is composed of memory banks to store temporary results,

coefficient values, etc. The COMU includes in/out buffers, a synchronization processor

and a set of registers, used to initiate an offloading sequence from a processor. These

registers (see Table 6.1) are mapped in the global address space, thus HWPUs can be

programmed by directly writing therein. A duplicated set of such registers is provided,

Register name SIZE R/W Brief description

working 32 R 1 = HWPU doing work

in addrs 8 × 32 W In parameter addresses

out addrs 8 × 32 W Out parameter addresses

trigger 32 W Starts HWPU execution

Table 6.1: Memory-mapped registers to interact with a HWPU

which can be seen as a double programming channel to schedule jobs on the HWPU.

Two processors concurrently trying to offload a job on the same HWPU do not need

to wait for the competing processor to complete its programming sequence.

Figure 6.3 shows a timing diagram of the offload and execution sequence when single

and double programming channels are used to program a HWPU. Double programming

131

6_heterogeneous/Images/hwpu_prog.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

channel allows to overlap the execution phase for an offload request with the program-

ming phase of another. Note that double channels only involve the programming phase

of the HWPU, and they are not to be mistaken for double buffering techniques to over-

lap execution and data transfer. The two mechanisms are orthogonal one another, and

can be adopted at the same time.

When the HWPU needs to access data from memory the corresponding transaction

is appropriately packetized to match the interconnect protocol and brought to the

master port (MPORT). The interconnect supports 32bit-wide transactions. To enable

higher data bandwidth, the generic HWPU template supports multiple master ports.

Access requests to contiguous memory addresses are thus split into multiple parallel

transactions on different ports. The semantics of accelerator execution is non-blocking :

once a processor has successfully completed the set of steps required to offload a given

code kernel, it can asynchronously execute independent code, without the need to wait

for the accelerator to finish. Synchronization can be enforced at specific points by

checking for HWPU termination on the working register.

When a processor wants to offload a job on the HWPU it initiates a programming

sequence which consists of the following steps:

1. it acquires a lock on the available programming channel

2. it notifies the addresses of each input and output data item in the in addrs and

out addrs sets of registers

3. it triggers the HWPU by writing on the trigger register.

4. upon encountering a synchronization instruction it busy waits on the working

register.

A possible programming sequence implementation, where offloading is aborted in

case there are no available channels is shown in the following code listing.

132

6.3 HWPUs: zero-copy tightly-coupled hardware accelerators

int

hwpu_program (unsigned int hwpu_ID , int numin , int numout ,

unsigned int *inaddr , unsigned int *outaddr)

{

unsigned int i;

WAIT (LOCKOF (hwpu_ID));

/* Acquired the lock. Start programming sequence */

if (! hwpu_has_free_slot_1(hwpu_ID))

{

/* HWPU has no free channels. Offload failed. */

SIGNAL (LOCKOF (hwpu_ID));

return HWPU_OFFLOAD_FAILED ;

}

hwpu_start_prog (hwpu_ID);

hwpu_write_indatacount (hwpu_ID , numin);

for(i=0; i<numin; i++)

hwpu_write_inaddr (hwpu_ID , inaddr[i]);

hwpu_write_outdatacount (hwpu_ID , numout);

for(i=0; i<numout; i++)

hwpu_write_outaddr (hwpu_ID , outaddr[i]);

/* We loaded in/out data addresses. Trigger the HWPU. */

hwpu_trigger (hwpu_ID);

/* Release the HWPU , so that other cores can program it. */

SIGNAL (LOCKOF (hwpu_ID));

return HWPU_OFFLOAD_OK ;

}

The following listing shows an implementation of the hwpu wait, which continuously

polls on its working register.

void

hwpu_wait (unsigned int hwpu_ID)

{

while (hwpu_read_reg (hwpu_ID , HWPU_WORKING_REG) == TRUE)

;

}

133

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

6.4 Top-down approach: HLS-based flow for platform de-

sign

To quickly build and explore several HW and SW architectures, this section describes an

integrated design flow which starting from the high-level OpenMP application specifica-

tion automatically generates a cycle-accurate simulation model of the target platform.

At first, an extension to OpenMP is proposed, to annotate portions of code suitable

for acceleration in HW, then the automated design flow is shown. The adoption of

OpenMP enables a mix of parallelization and acceleration. A modified GCC compiler

outlines annotated code regions into synthesizable C code - from which a SystemC

model of the HWPU is generated - and substitutes HW-accelerated code segments in

the original application with a sequence of instructions to offload computation to the

target HWPU. The adoption of OpenMP enables a mix of parallelization and accel-

eration using the same programming model. Then, the HWPU accelerator model is

compared against ASIP solutions and traditional accelerators with copyin/copyout se-

mantics. Experimental results confirm that a synergistic approach based on a mix of

parallelization and acceleration provides excellent performance and scalability.

6.4.1 OpenMP extensions for hardware acceleration

OpenMP provides a key construct, the #pragma omp parallel directive, to specify

code regions that must be executed concurrently by parallel threads. Worksharing

constructs are provided to partition the workload within those code regions among

threads, and allow programmers to control how application tasks are to be mapped on

hardware computational resources. The set of worksharing constructs was extended

with a key custom #pragma omp accelerate directive to outline code regions which

are to be hardware-accelerated, rather than executed in software on some processors.

#pragma omp accelerate [clause [[,] clause]...]

structured -block

where clause is one of the following:

private (list)

firstprivate (list)

lastprivate (list)

num hwpus (integer-expression)

134

6.4 Top-down approach: HLS-based flow for platform design

nowait

Data items referenced within an accelerate region can be made private by an-

notating it with the private clause, which is also the default datasharing attribute.

firstprivate variables are initialized with the value of the twin variable from the

enclosing parallel construct at the beginning of an accelerate region. lastprivate

variables update the value of the twin variable with theirs at the end of the accelerate

region. shared variables implement both these mechanism. Roughly speaking, they

respectively specify a variable as input, output and inout data of the accelerators. The

num hwpus clause allows to specify how many HWPUs of the same kind are to be cre-

ated to accelerate the target code region. By default, upon encountering an accelerate

region the processor is stalled until the offloaded (hardware) task returns. The HWPU

can be programmed to work asynchronously with the processor by using the nowait

clause. In this case, a custom omp wait HWPU library function can be manually inserted

in the code at the point where is necessary to enforce a synchronization point.

The HW accelerator template is seamlessly integrated in the OpenMP execution

and memory model. From the point of view of the programming model, an accelerated

code region is transparently abstracted as a generic task that performs best if mapped

on a specific HW resource, the target HWPU. At the system level, the latter is treated

as a generic computational resource communicating through the main shared memory.

In respect of the OpenMP relaxed consistency memory model (see Chapter 2), HWPUs

are allowed their own temporary view of shared variables (into local buffers), but upon

synchronization a consistent (system-wide) view of the shared memory is enforced.

Among other advantages, this accelerator model simplifies application development,

since the programmer sees a unique memory space and needs not take responsibility

for explicitly moving data across distinct address spaces.

Let us consider the example in the code snippet below.

#pragma omp parallel shared (a) private (i)

#pragma omp accelerate shared (a) private (i)

for (i=0; i<N; i++)

a[i] = .. a[i] ..;

Here the array a is read and written within a loop, which is annotated for acceleration.

The array is declared as shared. The compiler transforms the accelerate construct

as follows:

135

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

int *in_addrs , *out_addrs;

in_addrs = { &a };

out_addrs = { &a };

/* 11 is the ID of HWPU */

while (omp_program_HWPU (11, 1, 1, in_addrs , out_addrs)

!= HWPU_OFFLOAD_OK);

omp_wait_HWPU (11);

The compiler infers the presence of one input data item and one output data item within

the accelerated region, which addresses are stored in the in addrs and out addrs

compiler-generated temporaries. To actually trigger the offloading of the task a call

to the omp program HWPU function is emitted. This function implements the standard

HWPU programming procedure described in Section 6.3. It is implemented as an

extension to the OpenMP runtime library, and takes five parameters: a unique ID to

identify the target HWPU, the number of variables read (input) and written (output),

and the two arrays containing their addresses. It is assumed that the processor stalls if

none of the programming channels is free. It thus becomes the software’s responsibility

to make sure that a query to the HWPU is successful. To implement this semantics, the

compiler nests the call to the programming primitive omp program HWPU within a while

constructs. The program can continue beyond the while construct once offloading

returns successfully. By default synchronous offloading is assumed, thus a call to the

omp wait HWPU synchronization primitive is automatically inserted at the end of an

accelerated region, unless the nowait clause is specified.

At the moment this document is being written, new OpenMP specifications (4.0

(107)) are being published that expose the concept of execution device, to the software

layer. This is clearly introduced to shift to a more “device-oriented” model of execution,

to efficiently exploit hardware acceleration opportunities. Exploring the applicability

of the new OpenMP 4.0 to heterogeneous cluster is hence a promising direction for

future research.

6.4.2 Toolflow for platform design

The process of devising a HW/SW co-design for application acceleration typically in-

volves several steps. First, once candidate program code segments for acceleration have

been identified they must be manually extracted from the application, and partly rewrit-

ten/adjusted to match a format understood by High-Level Synthesis tools. Second, it

is necessary to define a clear interface to allow HW and SW components to exchange

data and synchronize correctly. Third, the application code must be transformed so as

136

6.4 Top-down approach: HLS-based flow for platform design

mul�core

simula�on

parser
OpenMP

expansion
backend

GAUT

SystemC

modules

ISS

Interconnect

memory

ISS
ISS

ISS

HWPUsta�s�cs
HWPU

HWPU

Pla!orm

builder

synthesis

results (latency,

area…)

outlined

func�on(s) to

accelerate

Applica�on with

annotated

func�on(s) to

accelerate

SW

HW V
IR

T
U

A
LS

O
C

simulator executable

applica�on executable

lib

HWPU

Figure 6.4: Tool Flow

to replace original SW execution of the target kernels with their HW counterparts (i.e.,

by offloading code to the HWPUs). Here, a complete toolflow is described that simpli-

fies the process of building all the necessary HW and SW components for design space

exploration of accelerator-based architectures. Figure 6.4 shows a pictorial overview of

the design flow, depicting all the involved steps and interfaces. The target test plat-

form is based on cycle-accurate SystemC simulation (26) of the several key architectural

blocks described in Section 6.1. Programmers specify application partitioning (parallel

and accelerated code regions) at a very high level of abstraction by using the enhanced

OpenMP programming model introduced in Section 6.4.1. The GCC OpenMP compiler

(52) was modified to manipulate the program in a two-fold way. The annotated code

regions for acceleration are automatically outlined into a suitable file format for the

HLS tool to operate on it. Outlined functions are replaced in the application code with

library functions that trigger code offloading. An executable image of the transformed

application is the final output of this compilation step. The HLS tool automatically

extracts the functional SystemC description of the HWPU, plus a VHDL model. The

latter is an input for logic synthesis tools, from which timing (and area) information are

gathered. HWPU execution latency (processor cycles) information is integrated in a

dedicated module for gathering statistics (performance, energy) in the simulator, and is

used to evaluate correct execution time spent on the accelerator. The described design

137

6_heterogeneous/Images/toolflow.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

JPEG

Kernels 1) Huffman AC

2) Huffman DC

3) DQTZ

4) IDCT

for(i<NBLKS)

for(i<NBLKS)

for(i<…)

3) DQTZ

4) IDCT

for(i<…)

4) IDCT

for(i<…)

3) DQTZ

….

Not explored

Parallel

Accelerate

LEGEND

Available

HWPUs

IDCT #0

IDCT #N

Offload

requests

….

Figure 6.5: JPEG benchmark partitioning

flow leverages a research HLS tool, GAUT (133), but any other research or commercial

tool could be integrated. Similarly, other components of the flow could be replaced or

integrated with different tools. The overall approach will still work with just minor

modifications. The input specification to GAUT has to be written in C and should not

include any notion of time or explicit parallelism. Constructs that are not supported

for synthesis mainly include dynamic allocation (malloc, free), pointer arithmetic and

dynamic loops.

Required parameters to specify the target technology (component library) and the

clock period can be passed to HLS tool in a text file, and in the future it will be

possible to directly pass them to the compiler by means of custom flags. Additional

flags are provided to optionally control interface synthesis, array to memory mappings,

hardware hierarchy through function calls, scheduling (latency/cycle) constraints, allo-

cation directives to constrain the number and/or type of hardware resources, etc. As

a last step of the tool flow, all of the SystemC modules are assembled into the Virtual-

SoC MPSoC simulator (26), which is capable of executing the accelerated application.

This integrated approach allows very fast yet accurate definition and implementation

of several accelerator-based architectures.

138

6_heterogeneous/Images/jpeg-CR.eps

6.4 Top-down approach: HLS-based flow for platform design

ARM v6 cores 16 TCDM banks 16 (K=1)

I$i size 1 KB TCDM size 256 KB

I$i line 4 words L3 latency 100 cycles

thit = 1 cycle L3 size 256 MB

tmiss ≥ 59 cycles

Table 6.2: Architectural parameters

6.4.3 Experimental Results

This section evaluates an instance of the target cluster presented in Section 6.1 (Figure

6.1). Architectural parameters are summarized in Table 6.2.

A set of kernels from two real applications is considered: a JPEG decoder and a

Scale-Invariant Feature Transform (SIFT), a widely adopted algorithm in image recog-

nition systems. By profiling the execution cycles spent over different kernels, the most

time-consuming ones were identified and sped-up by means of parallelization, acceler-

ation, or a mix of the two.

For JPEG the focus is on the dequantization (DQTZ) and on the inverse DCT

(IDCT) kernels. DQTZ is parallelized, IDCT is accelerated. From the SIFT algo-

rithm three kernels are extracted: image up/down-sampling (SMPL), Gaussian Filter-

ing (GAUS) and Difference of Gaussians (DOG). GAUS is accelerated while SMPL and

DOG are parallelized. Figures 6.5 and 6.6 show a block diagram representation of the

two target applications considered in the experiments. Figures highlight the kernels

used in the experiments, and the workload partitioning strategy. White blocks rep-

resent parallelized kernels, orange blocks represent hardware-accelerated kernels, gray

blocks represent kernels not considered in the experiments.

Three different sets of experiments are performed:

1. Comparison of the Zero-Copy HWPU model with other traditional acceleration

strategies;

2. Explore how sharing a single HWPU among an increasing number of cores scales,

and how double channels help;

3. Explore the effect of multiple identical HWPUs.

Since the focus is on the effectiveness of zero-copy processor/HWPU communication

at L1 as compared to other approaches, experiments do not account for those data

transfers from main memory to the TCDM required in every acceleration solution to

139

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

GAUS

7x7

Not explored

Parallel

Accelerate

LEGEND

1:1

SMPL

1:4

SMPL

for(each_row)

for(each_pix)

Keypoint

extrac on

GAUS

11x11

GAUS

13x13

DOGDOGDOG

IMG

2:1

SMPL

1:2

SMPL

Desc Vector

Genera on

Images

for(each_row)

SIFT

Kernels

Available

HWPUs
GAUS#0 GAUS #N

Offload

requests

Figure 6.6: SIFT benchmark partitioning

keep most frequently accessed data in L1. More precisely, the snapshot of the system

only captures the effects of program execution after data has been brought in L1 and

before it is flushed back to main memory. Transfers to/from L2 or L3 are only modeled

for those copy-based acceleration approaches where communication can only take place

during the program through that particular memory level. Data transfers to/from main

memory to deal with limited L1 size are not explored.

6.4.3.1 Comparison of Acceleration Techniques

In this section the zero-copy HWPU model (ZC-HWPU) is compared against typical

acceleration approaches.

Standard ASIP can be considered as an acceleration technique where ALU and

acceleration extension logic share L0 memory (i.e., the register file). The number of

read and write ports to the register file poses a constraint on the number of input

and output operands of the accelerated function (typically 2 inputs, 1 output). Thus,

even if standard ASIP provide the tightest coupling to a “standard core”, efficiently

accelerating computation of arbitrary complexity, the footprint of the involved dataset

is necessarily very small. To model ASIP acceleration clusters of instructions were

identified in the disassembled application code which operate on two inputs and produce

a single output, and replaced with a single special instruction executing in one processor

cycle.

140

6_heterogeneous/Images/sift-CR.eps

6.4 Top-down approach: HLS-based flow for platform design

0,0

0,1

0,2

0,3

0,4

0,5

0,6

A
SI

P

C
-A

C
C

C
-A

C
C

 (
D

B
)

C
-A

C
C

C
-A

C
C

 (
D

B
)

C
-A

C
C

C
-A

C
C

 (
D

B
)

Z
C

-H
W

P
U

L1 mem

1 cycle

L2 mem

10 cycles

L3 mem

100 cycles

Copyout

Exec

Copyin

HWPU Prog

C
yc

le
s

(n
o

rm
)

0,0

0,1

0,1

0,2

0,2

0,3
A

SI
P

C
-A

C
C

C
-A

C
C

 (
D

B
)

C
-A

C
C

C
-A

C
C

 (
D

B
)

C
-A

C
C

C
-A

C
C

 (
D

B
)

Z
C

-H
W

P
U

L1 mem

1 cycle

L2 mem

10 cycles

L3 mem

100 cycles

Copyout

Exec

Copyin

HWPU Prog

C
yc

le
s

(n
o

rm
)

IDCT

(JPEG)

GAUS

(SIFT)

Figure 6.7: Comparison of different acceleration strategies.

Another traditional acceleration approach is one where accelerators access input/out-

put data from a private L1 memory (a buffer, or a scratchpad). Here, control processors

are responsible for moving data back and forth from main memory to private accel-

erators memory. Enhanced ASIP techniques such as Architecturally Visible Storage -

AVS (20) fall in this category. In the following we will refer to this acceleration ap-

proach as C-ACC. C-ACC accelerators have same datapath generated for ZC-HWPU

(i.e. the same execution cycles count), but memory accesses are not injected into the

system interconnect, rather all memory requests are satisfied from a local scratchpad

with 1-cycle latency. Data transfers from main memory are modeled as 4-word DMA

bursts. All of the HWPU implementation have 4 MPORTs. Information on latency is

extracted from synthesis targeting FPGA.

Tables 6.3 and 6.4 summarizes the synthesis results (target Xilinix V5LX110T

FPGA) for the two accelerated kernels, namely IDCT and GAUS. Area (slices), latency

(cycles) and speed (frequency) results are provided for three HWPU implementation

featuring 1, 2 and 4 MPORTs respectively, to explore the tradeoff between area cost

141

6_heterogeneous/Images/ASIP_VS_HWPU.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

Data Footprint: INPUT=256B, OUTPUT=256B

Operands Reg Area Lat. Freq

add mul sub sra (1bit FF) (slices) (cycles) (MHz)

Parallelism 1 10 8 4 3 5582 15499 178 218

(1 MPORT) 4 3 2 1 4583 12580 368 200

2 2 1 1 5730 11485 628 213

Parallelism 2 14 13 7 3 6463 18028 114 212

(2 MPORTs) 4 4 3 1 5542 15840 304 216

3 2 2 1 5756 13023 564 219

Parallelism 4 21 24 11 6 8494 24320 82 222

(4 MPORTs) 5 4 3 2 5686 17877 272 216

3 2 2 1 5913 14276 532 217

Table 6.3: Synthesis results for the considered variants of the IDCT HWPU

Data Footprint: INPUT=676B, OUTPUT=4B

Ker Operands Regs Area Lat. Freq

Dim mul add (1bit FF) (slices) (cycles) (MHz)

Parallelism 1 7x7 2 1 112 158 54 220

(1 MPORT) 11x11 2 1 149 301 126 243

13x13 2 1 153 372 175 247

Parallelism 2 7x7 4 2 208 373 30 260

(2 MPORTs) 11x11 4 2 219 384 66 276

13x13 4 2 225 486 90 289

Parallelism 4 7x7 8 4 438 820 18 262

(4 MPORTs) 11x11 8 4 419 741 39 268

13x13 8 4 417 787 48 273

Table 6.4: Synthesis results for the considered variants of the GAUS HWPU

and data bandwidth/speed. In the experiments, all HWPUs have 4 MPORTs. The

input/output data footprint is also indicated. It is important to stress that the simula-

tion infrastructure correctly models the behavior of MPORTs in case of a longer-latency

memory operation due to data conflicts in the TCDM.

Figure 6.7 shows the results of the comparison of the above described acceleration

strategies for the IDCT and GAUS kernels. The considered platform has a single

core and a single accelerator. The Y-axis shows execution cycles, normalized to the

sequential software implementation.

Three variants for C-ACC accelerators are studied, respectively considering data

transfers from L1 (representative of AVS (20)), L2 (representative of Buffer Integrated

Cache (50)) and L3 (representative of GPUs (5, 101)) memory. Each of these test

cases has two further variants: a naive copyin/execute/copyout scheme and a pipelined

implementation, using double buffering to overlap communication and computation.

They are called respectively C-ACC and C-ACC (DB).

142

6.4 Top-down approach: HLS-based flow for platform design

Focusing on IDCT, the ZC-HWPU performs better than any other variants. Its

performance is comparable to the C-ACC (DB) when considering transfers from a L1

memory, and allows a speedup of ≈ 3.12× w.r.t C-ACC, and ≈ 2.12× w.r.t C-ACC

(DB) when considering transfers from L2. The speedups increase to ≈ 14.35× and

≈ 13.35× when considering transfers from L3. ASIP is roughly 12 times slower.

Focusing on GAUS, the plot refers to a single instance of the kernel, where each

pixel of the image is processed based on the 13×13 neighboring elements (i.e. 169 input

pixels, 1 output pixel). For the C-ACC approach, however, copy-in a 13 × 13 block

are copied in only for the first pixel in a row, and for the successive pixels only copy-in

a 13-pixel border are copied because we can reuse the remaining pixels copied with

previous transfers. Due to the small amount of transferred data, when communicating

through L1 and L2 memory the computation time dominates, and the double buffering

scheme of C-ACC (DB) allows to hide all the communication cost, thus achieving equal

performance to the ZC-HWPU. However, ZC-HWPU obtains a speedup of ≈ 1.2× and

≈ 1.43× against single-buffering C-ACC from L1 and L2 respectively. When data

transfers take place through the L3 memory, ZC-HWPU is ≈ 2.56× faster than C-

ACC (DB) and ≈ 3.68× faster than C-ACC. ASIP is roughly 4.52 times slower than

ZC-HWPU.

6.4.3.2 Single HWPU Sharing

This section shows the effectiveness of the programming model by mixing parallelization

with acceleration on a single ZC-HWPU shared among all cores in the system. The

0

0,2

0,4

0,6

0,8

1

1,2

0 0 1 0 1 2 3 0 1 2 3 4 5 6 7

1 core 2 core 4 core 8 core

JPEG
DQTZ (parallel) + IDCT (accelerated)

SINGLE CHANNEL

IDCT WAIT

IDCT PROG

DQTZ

0

0,2

0,4

0,6

0,8

1

1,2

0 0 1 0 1 2 3 0 1 2 3 4 5 6 7

1 core 2 core 4 core 8 core

JPEG
DQTZ (parallel) + IDCT (accelerated)

DOUBLE CHANNEL

IDCT WAIT

IDCT PROG

DQTZ

Cycles
(norm)

Cycles
(norm)

Figure 6.8: Effect of sharing a single HWPU among an increasing number of cores on

JPEG

parallelization/acceleration strategy has been presented in Figures 6.5 and 6.6.

143

6_heterogeneous/Images/singleacc_jpeg.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

0

0,2

0,4

0,6

0,8

1

1,2

0 0 1 0 1 2 3 0 1 2 3 4 5 6 7

1 core 2 cores 4 cores 8 cores

SIFT
DOG, SMPL (parallel), GAUS (accelerated)

SINGLE = DOUBLE CHANNEL

DOG

GAUS WAIT

GAUS PROG

SAMPLING

Cycles
(norm)

Figure 6.9: Single HWPU sharing on SIFT

JPEG was parallelized so that each macroblock is processed independently on a

two-stage pipeline composed of DQTZ (executed on the target processor) and IDCT

(offloaded on the ZC-HWPU). With this acceleration scheme several processors will be

concurrently offloading computation onto a single HWPU, thus potentially incurring

significant contention. Here we see how the system scales when an increasing num-

ber of cores shares the single accelerator, and how the double programming channel

feature described in Section 6.3 possibly relieves the effect of heavy contention. The

same experiment has been conducted for the SIFT benchmark as well. Application

is partitioned onto three different parallel regions for the three main kernels: SMPL,

GAUS, DOG. It is important to underline that with these scheme a barrier is implied

at the end of each parallel region. Different from JPEG, where within a single loop

body execution processors would asynchronously execute the DQTZ kernel and offload

computation for the IDCT kernel, here the barrier implies that within the GAUS kernel

processors only offload computation on the HWPU, and remain otherwise idle.

Results for this exploration are shown in Figures 6.8 and 6.9 respectively. For

the JPEG it is possible to see that using HWPUs with a single programming channel

the system scales well up to 4 cores. With 8 sharers the HWPU can not handle all

offloading requests, and the effect of contention makes execution slower than with 4

cores. However, allowing processors to exploit a second programming channel to assign

their jobs to the HWPU efficiently removes the source of contention. For the SIFT

benchmark only the results for the HWPU with double programming channels are

shown, because they are almost identical to the single channel case. Here, as explained

above, within the GAUS kernel processors only spend their time in programming the

HWPU, so when more than 2 processors are concurrently trying to offload their jobs on

144

6_heterogeneous/Images/singleacc_sift.eps

6.4 Top-down approach: HLS-based flow for platform design

the HWPU most of their time is spent waiting for one of the two channels to become

available. This prevents the system from scaling to a higher number of processors.

0,00

0,02

0,04

0,06

0,08

0,10

0,12

1 core 2 cores 4 cores 8 cores

IDCT
Mul ple HWPUs, SINGLE CHANNEL

1 HWPU

2 HWPUs

4 HWPUs

N HWPUs

0,00

0,02

0,04

0,06

0,08

0,10

0,12

1 core 2 cores 4 cores 8 cores

IDCT
Mul ple HWPUs, DOUBLE CHANNEL

1 HWPU

2 HWPUs

4 HWPUs

N HWPUs

Cycles
(norm)

Cycles
(norm)

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

1 core 2 cores 4 cores 8 cores

GAUS
Mul ple HWPUs, SINGLE CHANNEL

1 HWPU

2 HWPU

4 HWPU

N HWPU
0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

1 core 2 cores 4 cores 8 cores

GAUS
Mul ple HWPUs, DOUBLE CHANNEL

1 HWPU

2 HWPU

4 HWPU

N HWPU

Cycles
(norm)

Cycles
(norm)

Figure 6.10: Multiple HWPUs, IDCT (top) and GAUS (bottom) kernel

6.4.3.3 Multiple HWPUs

Results in this section targets multiple identical HWPUs shared by processors (using the

num hwpus clause), focusing on the sole accelerated kernels. Results for this exploration

are shown in Figures 6.10 for both IDCT (top) and GAUS (bottom). The Y-axis of these

plots shows execution cycles normalized to the sequential software version. Different

curves represent different system configurations where we leverage 1, 2, 4 or N (i.e., as

many as processors) HWPUs. For both the kernels sharing a single HWPU scales only

up to 2 processors, even using double channels. Increasing the number of HWPUs to

two scales well up to 4 processors, and a perfect scaling is achieved with 4 HWPUs and

double channels.

145

6_heterogeneous/Images/multipleaccs_jpeg.eps
6_heterogeneous/Images/multipleaccs_sift.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

6.5 Bottom-up approach: integrating accelerators in tightly

coupled clusters

In the previous section, a design flow was described to design from scratch a system with

core and accelerators, implementing the zero-copy communication scheme using the

tightly-coupled banks of on-cluster memory. Here, the diametrically opposite approach

is shown: while the previous one targeted the design of a platform, that is, a top-

down approach, here it is assumed that the platform already exists, that is, a bottom-

up approach. From this perspective, integrating accelerators within a tightly-coupled

cluster with zero-copy communication poses two main challenges: i) how to achieve

tightly-coupled shared-memory communication for a large number of accelerators and

ii) how to efficiently expose accelerators to the software stack, to simplify accelerator-

based application development.

Several efforts in academia (8, 37) – as well as the approach already shown – and

industry (65) are pushing for solutions to ease programmability on accelerator-based

platforms, as witnessed by initiatives such as Khronos OpenVX (128). With it, the

Khronos vision working group attempts at driving industry consensus to create a cross-

platform API standard to enable hardware vendors to implement and optimize accel-

erated computer vision algorithms. At the time this document is being written, the

Khronos vision working group has not converged towards a standard for OpenVX yet.

However, we will see how this “philosophy” can be effectively embraced, by defining a

set of basic functionalities for computer vision and image processing (the own “stan-

dard” functions), and providing program interfaces for their support. The architectural

scalability problem is quite more complex, and it will be explained with an example.

6.5.1 Architectural scalability problem

In the considered architecture, typically clusters leverage a low-latency, high-bandwidth,

crossbar-like interconnection to support tightly-coupling of processing units (see for

instance the one in Figure 6.11(a)). However, the area/power cost for such an in-

terconnection can only be afforded for a small number of computing elements, as its

complexity becomes quickly too important. Figure 6.11(b) shows the area increment

(µm2) with the number of master ports for an interconnection system modeled after

that proposed by Plurality for its HAL processors (109). Adding a high number of data

ports for the accelerators i) increases the interconnect area and ii) generates longer crit-

ical paths, which eventually reduce the maximum achievable frequency target. In addi-

tion, typically accelerators increase efficiency by leveraging data parallelism to generate

146

6.5 Bottom-up approach: integrating accelerators in tightly coupled
clusters

P3P2P1P0

M
7

M
6

M
5

M
4

M
3

M
2

M
1

M
0

lev 1

lev 2

lev 3

lev 1

lev 2

R
o

u
tin

g
 tre

e
A

rb
tre

e

Cores

Mem
banks

0

50

100

150

200

250

300

350

4 8 16 32

A
r

e
a

 (

μ
m

2

x

1
0

0
0

0
)

cores

Interconnect area scaling with # cores

Combinatorial

Non Combinatorial

Buf/Invar

Polyn. regression:

y = 282x2 - 127x + 598

Figure 6.11: Scheme (a) and mathematical area model (b) of the Plurality intra-cluster

interconnection (109, 111) as a function of the number of connected master ports

SIMD-like datapaths, which require more data ports, exacerbating this problem. To

avoid the system becoming unmanageable, the interconnection exposes only a limited

bandwidth (data ports), to be shared between cores and accelerators.

Here, 16 MPORTs are considered (see (109), (25)), and explore two different con-

figurations of the heterogeneous cluster. One where 1/4 of the MPORTs is used for

accelerators, and one where 1/2 of the MPORTs is used.

6.5.2 Data Pump scheme

To address the problem of plugging several accelerators to the interconnection system

without increasing its complexity too much, the Data Pump is introduced: a module

that multiplexes data access requests to/from the accelerators on the available master

ports (from now on, called DP-MPORTs) of the main cluster interconnect. Figure

6.12 shows the generic cluster with M cores, N accelerators, and the Data Pump.

The block diagram of the Data Pump structure is shown in Figure 6.13. The Data

Pump stores a table containing the features about the accelerators (class, number of

accelerators per class, number of master port, data set size). It is split in two parts:

one Controller, which handles offload requests to the HWPUs, and a Master, which

handles data requests from HWPUs. They will now be described in details.

The Controller exposes a memory-mapped slave port (DP-SPORT) on the inter-

connect, to support offloading sequences by the cores to the HWPUs through their

SPORTs. It provides different programming modes:

1. The original programming mode (OPM). In this case, a core directly refer-

ences a specific accelerator instance through its unique ID, and the Data Pump

147

6_heterogeneous/Images/mot.eps
6_heterogeneous/Images/logint-area.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

Data Pump

SHARED L1 TCDM

HWPU 0

B
A

N
K

 0

SLAVE
PORT

INTERCONNECT

B
A

N
K

 1

SLAVE
PORT

B
A

N
K

 N

SLAVE
PORT

te
st-a

n
d

-se
t

se
m

a
p

h
o

re
s

SLAVE
PORT

MPORT

NI

SPORT

HWPU N

MPORT SPORT

DP-SPORT

CORE #0

MAST
PORT

CORE #M

MAST
PORT

I$ I$

DP-MPORT DP-MPORT

…

…

…

…

Figure 6.12: Heterogeneous shared memory cluster template with Data Pump.

transparently propagates the request to the target module. This corresponds to a

“standard” programming sequence, as shown in Section 6.3 and in Dehyadegari’s

work (39), where accelerators are directly exposed to the interconnection system

and the software layer.

2. With the class programming mode (CPM), the concept of accelerator classes

is introduced, that match one or more HWPUs in the system. In this model an

offload sequence specifies an accelerator class to offload to, and the Data Pump

will dispatch the request to one of the HWPUs implementing it, hiding hardware

scheduling details to the software level. Software-level support for this program-

ming mode, as well as accelerator classes are described in details in Section 6.5.3.

Internally, the offload request is stored in a class-specific queue. A unique ID

is returned to the calling program, and can be used for instance to implement

synchronization. The Controller is in charge of fetching the requests from the

queues, and to dispatch them to the target HWPU. To do so, it owns a table

which binds every accelerator to a specific class. The choice of which HWPU will

execute a given task is implementation-specific.

3. A quite common pattern for image processing applications is the one of executing

consequently the same algorithm on independent (i.e., non-overlapping) data sets,

such as image blocks. To support this, a block programming mode (BPM)

is provided, where in addition to the class and in/out data addresses, a number

148

6_heterogeneous/Images/HC-ArchDP2.eps

6.5 Bottom-up approach: integrating accelerators in tightly coupled
clusters

MUXM

REG_out REG_in

DEMUX

Master Controller

Register file

DATA PUMP

DP-MPORTS

RR CTRL

…

Queues

IDCT

GAUS

HWPU 0

MPORT SPORT

HWPU N

MPORT SPORT

Controller

Module

HWPUs

Descr Queues

DP-SPORT

Interconnect

4 4

Figure 6.13: Scheme of the Data Pump

niter of consecutive executions can be specified, which matches e.g., the number

of image blocks. A stride is also specified for each input and output data, to

compute data address offsets in subsequent HWPU invocations. A few additional

logics (e.g., a register file) are needed inside the Controller submodule to support

it.

The Master submodule is in charge of handling data requests from several HWPU

MPORTs, and to redirect them towards the memory system.

For that, it implements a round robin arbiter which pilots a MUX and a DEMUX

for arbitrating between the different requests (see Figure 6.13). The round robin scheme

works at the granularity of the single port. Each DP-MPORT holds registers to store

the in/out data, and its address for the current transaction. Thus, a two-cycle delay

is added to traverse the Data Pump logic. To avoid this delay, a fully combinational

Master block could be implemented. However, the interconnect itself being fully com-

binational may lead to too long critical paths to meet the target design frequency: this

research path is still unexplored.

Most of the HLS tools perform loop unrolling to increase the I/O parallelism of

the accelerator. As a consequence, the tool typically schedules several data accesses to

happen in the same clock cycle of the HWPU FSM, through the different MPORTs. In

such a template, if a single data access is delayed (for instance, for a conflict on SPM

banks or on the DP-MPORTs allocation), the full set of data requests for that FSM

state is stalled. During this time the DP-MPORTS are not reallocated. This issue

149

6_heterogeneous/Images/data_pump.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

can be tackled in several ways (implementing “smarter” arbitration schemes, or data

prefetching, or dimming the clock frequency of HW blocks to hide memory latency),

and it is left as a future research.

6.5.3 Class-based programming extensions

The #pragma omp accelerate directive (shown in section 6.4.1) is extended to support

Class Programming Mode, and more in details a class clause is introduced.

#pragma omp accelerate class ("<string >", var) [clause [[,] clause]...]

structured -block

The class clause is mandatory, and specifies which kernel class the code region identi-

fies, as defined by the standard. This eventually matches one of the accelerator classes

shown in Table 6.5, and detailed later in this section. The structured block enclosed

within an accelerate directive implements the SW version of the specified kernel

functionality. The compiler will eventually resort to the SW implementation when the

corresponding HW implementation is not available (or all the HWPUs are busy for a

long time). As previously explained, other clauses can be one of the following, and are

optional:

private (list)

firstprivate (list)

lastprivate (list)

shared (list)

nowait

The num hwpus clause is not considered in this scenario.

The following code shows a basic usage of the directive.

int handle , data [1024];

#pragma omp accelerate class ("IDCT", handle) shared (data)

{

idct_code (data , data);

}

The code is transformed so as to perform lookup of the available HWPUs in the

platform, and a call into an appropriate library function is inserted to offload compu-

tation to the target HWPU. The offloading routine returns an unique ID, which can

be used later as a handle to perform synchronization. Pointers to non-private data are

created and passed as parameters to the offloading routine. In this example, the array

150

6.5 Bottom-up approach: integrating accelerators in tightly coupled
clusters

Algorithm class Description Library function Params

CSC Color Space Conversion builtin omp library CSC (in) img

RGB → HVS (out) img

Detect VJ Viola-Jones Detection builtin omp library DetectVJ (in) II img, II2 img

Single cascade detection (out) result

(app.specific)

Detect HoG HoG Detection builtin omp library DetectVJ (in) img

(out) result

(app.specific)

Gaus Gaussian Blur builtin omp library Gaus (in) img

2 X (1D-convolution) (in) ker

(out) img

Gradient Gradient builtin omp library Gradient (in) img

(out) img

IDCT Inverse DCT builtin omp library IDCT (in) img

(out) img

IntegralImage Integral Image builtin omp library IntegralImage (in) img

(out) II img

Table 6.5: Accelerator classes

data is specified as in/out data using the (default) shared clause. The transformed

code looks like the following:

int handle , data [1024];

if (omp_query_HWPU("IDCT"))

{

/* Array data was declared SHARED => I/O */

handle = __builtin_omp_library_IDCT (data , data);

/* Synch */

omp_wait_HWPU (handle);

}

else

{ /* Lookup failed: run SW version */

idct_code(data , data);

}

The omp query HWPU primitive inspects the platform to check if there are any HWPUs

matching the specified class (in this case, ”IDCT”). This is done by inspecting dedi-

cated read-only registers in the Data Pump that store the configuration of the platform

(initialized at boot time). Note that the allowed class names are pre-defined by the

standard: this will be discussed later on, when the class clause is explained in details.

If the lookup succeeds, then an appropriate stub is invoked to perform offloading. Input

and Output data are inferred by the firstprivate, lastprivate and shared clauses

151

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

and their addresses are passed as parameters to the offloading function. If no HWPU is

present in the platform, the software version of the algorithm (extracted by the original

code) is executed. If no nowait clause is specified, the call is synchronous, that is, the

code running on host waits for the HWPU to end the execution. The runtime function

omp wait HWPU supports ID-based synchronization with HWPUs, and in this example

it is automatically inserted by the compiler.

6.5.3.1 Naming conventions and class clause

The kernel class specified with the class clause must match one entry of a set of

standard-defined functionalities. Specific implementations of the runtime must provide

a stub for each of them. The naming convention for the stubs is the following:

builtin omp library < CLASS NAME > (..)

To ensure correct compilation and linking of the code, in case the platform does

not provide a HW implementation for a given kernel, the stub will be empty, and the

omp query HWPU will return false (it must anyway be defined, to make the code linking

process possible). As a use-case embodiment of the proposed approach, the sample set

of accelerated functions is proposed (shown in Table 6.5), along with the corresponding

library function implementations. They target the domain of image processing and

computer vision applications.

6.5.3.2 Synchronization

By default, upon encountering an accelerate region the processor is stalled until the

offloaded task returns, unless the nowait clause is specified. In this case the offloading

call is asynchronous and it becomes duty of the programmer to enforce synchronization

where appropriate, using the directive:

#pragma omp accwait (var)

Note that the var parameter is the one specified in the class clause of the accelerate

directive. So, an example of code performing asynchronous offloading might look like:

152

6.5 Bottom-up approach: integrating accelerators in tightly coupled
clusters

int handle = -1, /* Holds the ID of the offloaded HW task */

data [1024];

#pragma omp accelerate class (" IDCT", handle) shared (data) nowait

{

idct_code (data , data);

}

// more (asynch) code

// [...]

if (handle >= 0) /* If executing on HW need to sync here */

#pragma omp accwait (handle)

The compiler transforms the code in:

int handle , data [1024];

if (omp_query_HWPU ("IDCT"))

{

handle = __builtin_omp_library_IDCT (data , data);

/* NO SYNCH HERE */

}

else

{ /* lookup failed: run SW version */

...

}

// more (asynch) code

// [...]

/* (manual) synch */

if (handle >= 0) /* If executing on HW need to sync here */

omp_wait_HWPU (handle);

So, in case the offload succeeds, the host performs its own computation in parallel, until

the synchronization point is reached. In case the offload fails (e.g., no HW support

present in the platform) the synchronization point is simply skipped.

6.5.3.3 Runtime implementation

It is duty of the specific library function implementation to offload the hardware task

to the Data Pump HWPUs controller. Low-level primitives are provided to support

this by accessing Data Pump registers and class queues. The following snippet of

code shows their basic usage inside the implementation of the IDCT standard library

function.

153

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

int

__builtin_omp_library_IDCT (int mdata_ptr [])

{

int handle;

while (DP_queue_full (IDCT_QUEUE_ID))

; /* If queue is full , wait */

/* Acquire the Data Pump */

DP_lock ();

task_ID = DP_reserve_queue (IDCT_QUEUE_ID);

/* Now we exclusively own the queue for

"IDCT" HW tasks */

DP_set_inaddr (IDCT_QUEUE_ID , mdata_ptr [0]);

DP_set_outaddr (IDCT_QUEUE_ID , mdata_ptr [1]);

/* End of the programming sequence.

Release the Data Pump so that other

tasks can be enqueued */

DP_unlock ();

return handle;

}

It is important to remark here that no data movements are needed here; since

communication is zero-copy, HWPUs just need to be aware of the location (addresses)

of data, that they will directly read from the shared memory system.

6.5.4 Experimental results

The proposed heterogeneous shared memory cluster was prototyped using the cycle-

accurate Virtual Platform VirtualSoC (26), with main architectural parameters as sum-

marizes in Table 6.6. As explained, two architectural variants are considered, namely

one with 12 cores and 4 DP-MPORTs, and one with 8 cores and 8 DP-MPORTs, for

a total of 16 MPORTs on the interconnection. With this setup, two applications from

the image processing and computer vision domain were run, namely a JPEG decoder

and the Viola-Jones algorithm for face detection (137). The purposes is to validate

the programming model and characterizing the architecture in terms of performance

and energy efficiency. SystemC models for the Data Pump and all the accelerators

were developed and included in the virtual platform, as well as RTL models which was

synthesized with Synopsys Design Compiler (119) to gather area and energy estimates.

To increase the locality of data to HWPUs, they must reside in the on-cluster SPM.

Big images are split in slices, which were manually moved to/from the off-chip L3

154

6.5 Bottom-up approach: integrating accelerators in tightly coupled
clusters

0

0.2

0.4

0.6

0.8

1

1.2

4 8 12 16

P
e

rf
/A

re
a

/W
a

�

HWPUs

JPEG - Perf/Area/Wa� (Normalized)

4 DP-MPORTS 8 DP-MPORTS No Data Pump

UPPER (4 DP-MPORTS) UPPER (8 DP-MPORTS)

Figure 6.14: Normalized Performance/Area/Watt for accelerated JPEG decoder

ARM v6 cores c1 :12 c2 :8 DP-MPORTs c1 :4 c2 :8

L1 SPM size 256 KB # L1 SPM banks 32 (K=2)

L3 size 256 MB L3 latency ≥ 59 cycles

I$i size 1 KB I$i line 4 words

thit = 1 cycle tmiss ≥ 59 cycles

Table 6.6: Architectural parameters

memory with DMA transfers. Communication latency is hidden with DMA double

buffering: this is a quite common decomposition style for image processing systems

(132, 145).

6.5.5 JPEG decoder

Figure 6.5 shows the structure of a JPEG decoder. It is composed of four main kernels:

Huffman AC and DC coefficient computation, luminance dequantization (LD) and in-

verse discrete cosine transform (IDCT). The focus is on LD and IDCT kernels, which

were synthesizing HWPUs with an unroll factor of 4 (i.e., with 4 MPORTs), a typical

optimization to exploit I/O parallelism in accelerator. As a HLS tool we used GAUT.

Two implementations were provided for each of the LD and IDCT kernels. A first im-

plementation called naive, whose datapath was designed “by-hand”, which fetches the

full data set (made of, by standard, 8x8 image blocks) before performing computation,

and resulting image is stored afterwards, thus following a a LOAD-EXEC-STORE pat-

155

6_heterogeneous/Images/JPEG-paw_CR.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

0

20

40

60

80

100

120

1 2 4 8 16

HWPUs

DP-MPORTs U!liza!on %

Smart - 4 DP-MPORTs

Smart - 8 DP-MPORTs

Naive - 4 DP-MPORTs

Naive - 8 DP-MPORTs

Figure 6.15: DP-MPORTs Utilization for JPEG HWPUs

tern. The second implementation is called smart, because it is capable of overlapping

execution and data accesses, and it was designed it using GAUT (133).

The target architecture is compared against the baseline heterogeneous shared mem-

ory cluster (i.e., a system with no Data Pump). It is important to stress that while

for the experiments the baseline architecture was instantiated with up to 32× 4-port

HWPUs (128 ports) directly to the interconnect, there is a maximum physical limit of

32 ports, beyond which it is not possible to synthesize the whole cluster at the target

frequency (500 MHz).

Results plot the Performance/Area/Watt (1
cycles∗µm2

∗mW
) of the accelerated appli-

cation, considering a cluster without Data Pump (No DP – the baseline architecture),

and two clusters with Data Pumps having 4 and 8 DP-MPORTs, respectively. Perfor-

mance was measured on the smart implementation of HWPUs. To do so, the cumulative

area and power were measured for each configuration. Figure 6.14 shows the results,

normalized to the maximum value. When only 4 (or less) accelerators are considered,

the Data Pump does not show any advantage, because the area/energy increase for the

baseline cluster is not significant. It must be noted anyhow that the 8 DP-MPORT

design delivers comparable results to the baseline. When the number of HWPUs is

increased to 8, the Data Pump provides much better results than the baseline. The

dashed lines are obtained with a mathematical model which represents the maximum

achievable performance for an ideal Data Pump which is data-dominated (i.e., at every

cycle all the ports are servicing a new request). This is computed taking into account

the data request rate and the data set size, and represents a upper bound on the achiev-

able results. Dotted lines in charts (actually, the line for 4 DP-MPORTs overlaps the

156

6_heterogeneous/Images/JPEG-util.eps

6.5 Bottom-up approach: integrating accelerators in tightly coupled
clusters

results line), Results show that the Data Pump-based systems are delivering results

very close to their full potential. This stems from the fact that HWPUs for JPEG algo-

rithm have significant memory boundedness (i.e., more than 50%) , as shown in Figure

6.15, which shows the percentage of cycles the DP-MPORTs are busy, normalized to

the overall HWPU execution time. JPEG application have a regular execution pattern,

0

5

10

15

20

25

1 2 4 8 16

S
p

e
e

d
u

p

HWPUs

JPEG - Programming Modes speedup

OPM BPM

Figure 6.16: Comparison of Original and Block Programming model (JPEG application)

whose kernels consecutively process non-overlapping image blocks. Hence, Block Pro-

gramming Mode can be adopted. Figure 6.16 compares speedups obtained using the

Original Programming Mode (OPM) and the Block Programming Mode (BPM). It is

evident the improvement achieved by the latter. Unfortunately, such a programming

model cannot be adopted with the OpenMP frontend, without heavily overloading its

semantics. OpenACC (105), on the other hand, seems a better candidate, and this

exploration is left as a future work.

6.5.6 Face Detection

The Viola-Jones algorithm (137) is widely adopted for practical face detection systems.

It is based on To do so, it scans an image, applying a set of so-called cascades to identify

predefined patterns (for instance, eyes). Figure 6.17 shows the block diagram of the

application. It is organized as a set of nested loops iterating over different image scales,

image stripes, (integral) image windows, cascades (i.e., trained sets of Haar features)

and different orientations (rotations) of the same cascade.

After profiling the application, a good candidate for acceleration was identified in

the kernel which applies the cascade on the target image window, searching for matching

features. Table 6.7 shows the results of the profiling. Note that this core function can

157

6_heterogeneous/Images/JPEG-prog_CR.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

Compute Scaling

Steps

Scale Image

Detect

Merge Results

Horizontal Scan

Integral Image

Ver!cal Scan

Sta!s!cal

Computa!on

Cascade Loop

Rota!on Loop

Horizontal Scan

VeVV r!cal Scaner!cal S

Viola-Jones

Kernels

Not explored

Parallel

Accelerate

execute

cascade

IMG

IMG

LEGEND

Figure 6.17: Block scheme for Viola-Jones face detector

Kernel Tot cycles %mem

execute cascade 21697626 11%

compute integral 16480006 18%

scale 3223930 <1%

compute stats 1085078 18%

Table 6.7: Viola Jones main kernels sorted by execution time

be aborted for increasing performance in case a patch is recognized as ”non-interesting”

with high probability. Thus, the exact execution time of the kernel, as well as its exact

memory boundedness, cannot be predicted in advance.

Figure 6.18 shows performance/area/watt results of the experiments with the face

detection, comparing the baseline shared memory cluster with the Data Pump-based

ones. Similar results to JPEG hold also in this case. When the number of accelerators

in the system increases, the Data Pump provides up to 20% better numbers than the

baseline cluster. Note that the upper bound to achievable results in this benchmark

is not measured, since it is not possible to accurately model the accelerator behavior

in terms of memory accesses due to data-dependent control flow. Results for this

application are slightly better from the JPEG ones (Figure 6.14) due to the different

memory boundedness.

158

6_heterogeneous/Images/VJ-app.eps

6.6 Conclusions

0

0.2

0.4

0.6

0.8

1

1.2

4 8 12 16

P
e

rf
/A

re
a

/W
a

�

HWPUs

Face Detect - Perf/Area/Wa� (Normalized)

DP 4-MPORTs DP 8-MPORTs No DP

Figure 6.18: Normalized Performance/Area/Watt for accelerated Viola-Jones face detec-

tor

6.6 Conclusions

Embedded platforms are increasingly embracing the heterogeneous paradigm, to take

advantage of hardware accelerators. In this chapter, an architecture was proposed where

hardware accelerators are tightly-coupled to cores inside many-core clusters, and zero-

copy communication was implemented by sharing the memory and the interconnection

system. Here, OpenMP was adopted for designing the platform, and for increasing

its programmability. To do so, a custom pragma omp accelerate was introduced to

annotate portions of code suitable for acceleration in hardware. As a first contribution,

a top-down approach was considered, and a design flow was proposed that starting

from an application, automatically generates an heterogeneous platform where acceler-

ators are created out of annotated portions of code using an HLS tool (133). A second

part considered the issues of programmability and architectural scalability of the target

cluster template, and tackled them by introducing the Data Pump module. Under this

bottom-up light, the Data Pump acts as a “virtualization” layer for accelerators, and

each of them is mapped to a more generic accelerator class. Using this abstraction, a

small set of standard APIs was provided for developing modular code in an efficient

manner. The proposed OpenMP frontend leverages on this API layer to automatically

detect and exploit accelerators that are already existing in the platform. If the archi-

tecture do not provide accelerating opportunities, code dynamically self-adapts so to

159

6_heterogeneous/Images/VJ-paw_CR.eps

6. HETEROGENEOUS MANY-CORE CLUSTERS WITH SHARED
MEMORY

resort to a pure-SW version of the application, thus it is portable as-is also on a differ-

ent (homogeneous) platforms. An extensive set of experiment validated the proposed

techniques on a cycle-accurate virtual platform (26), and demonstrated that the use of

OpenMP enables a productive mix of parallelization and hardware acceleration.

160

7

Conclusions

Many-core architectures have been adopted for embedded systems designs, to keep

performance scaling going on, while meeting the increasingly stringent power budgets

requested by the market. These platforms have a tremendous potential in terms of par-

allelism and energy efficiency, but the task of extracting their peak performance is more

and more demanded at the software layer, and at programmers’ skills. Shared-memory

communication is an effective mechanism for increasing performance, but when apply-

ing to modern platforms, which replace data caches with software-managed scratchpad

memories, it harnesses programmability.

Several programming models exist to support the development of parallel code under

a shared-memory assumption, but efficiently exploiting them on modern architectures

is not easy, because the necessary runtime support introduces an overhead that cannot

be tolerated in embedded systems, which are resource-constrained. This dissertation

explored the applicability of the shared-memory paradigm on many-core embedded

systems, from a software perspective, and more in details, when adopting the OpenMP

programming model.

A first part of the thesis analyzed the costs of basic services (i.e., synchronization

and workload distribution) for supporting an expressive parallel programming model

such as OpenMP (106) on these architectures. They were characterized, and techniques

were proposed aimed at improving them. Then, a custom runtime (libgomp (52)) was

proposed, which efficiently supports multi-level and irregular parallelism on the target

architectures, in a scenario where tasks are fine-grained, and traditional solutions were

shown not to be effective anymore.

The second part of the thesis explored the applicability of shared-memory commu-

nication to heterogeneous platforms, and proposed a template for a scalable many-core

161

7. CONCLUSIONS

cluster featuring tightly-coupled hardware accelerators. A design methodology for such

a platform was showed, together with a complete software stack for efficiently exploiting

the accelerators from the OpenMP frontend, using a small set of proposed extensions

(pragmas). Architectural scalability issues were also tackled, by introducing the Data

Pump module, which also provides lightweight low-level support for efficiently program-

ming the accelerators.

7.1 Future research directions

In chapter 5, we showed a novel design for the OpenMP runtime support, targeting

a shared-memory tigthly coupled cluster. No NUMA effects due to the multi-cluster

environment were considered, and taking them in account is the natural short-range

research path. For instance, the tree barrier proposed in chapter 3 can be effectively

adopted in a multi-cluster environment, as well as the meta-data replication schemes.

Similarly, the approach presented in chapter 4 can be adopted, for instance, inside the

OpenMP task dispatcher (chapter 5), so that knowledge on data partitioning schemes

can be used to maximize the locality of data to the processing clusters. This issues are

still unexplored.

Similar considerations hold for chapter 6, which targets a single heterogeneous clus-

ter. When moving to multi-cluster, what is more interesting is the problem of where

actually placing the accelerators, while designing the platform. Is it better to have a

single hardware cluster with all accelerators? Or to have symmetric identical clusters?

Or again, grouping accelerator of the same kind (i.e., GAUS, IDCT, CSC) in the same

cluster? This questions are still without answer.

A more longer-term goal refers to programmability, and consists in either studying

the applicability to many-core (heterogenous) clusters of the most recently proposed

languages (such as OpenACC (105) of the latest – device-aware – OpenMP 4.0 (107)),

or keeping following the standardization trend, similarly to what was shown in chapter

6, for instance as OpenVX (128) becomes officially a standard.

Finally, considering heterogeneous architectures, a current “hot” topic are neural-

network and bio-inspired computing (48, 84): the tasks of efficiently coupling many-

cores and neural accelerators and to effectively expose them at the application layer are

quite challenging and exciting. Looking from another perspective, many-core architec-

tures can also be used to support neural network computing, by simulating neurons on

many-cores, and communication happens through the shared-memory.

162

8

Publications

2010

Paolo Burgio, Martino Ruggiero, Francesco Esposito, Mauro Marinoni, Giorgio C.

Buttazzo, Luca Benini: Adaptive TDMA bus allocation and elastic scheduling: A uni-

fied approach for enhancing robustness in multi-core RT systems. ICCD 2010: 187-194.

Andrea Marongiu, Paolo Burgio, Luca Benini: Evaluating OpenMP Support Costs

on MPSoCs. DSD 2010: 191-198.

Andrea Marongiu, Paolo Burgio, Luca Benini: Vertical stealing: robust, locality-

aware do-all workload distribution for 3D MPSoCs. CASES 2010: 207-216.

2011

Andrea Marongiu, Paolo Burgio, Luca Benini: Supporting OpenMP on a multi-

cluster embedded MPSoC. Microprocessors and Microsystems - Embedded Hardware

Design 35(8): 668-682 (2011).

Alessio Franceschelli, Paolo Burgio, Giuseppe Tagliavini, Andrea Marongiu, Mar-

tino Ruggiero, Michele Lombardi, Alessio Bonfietti, Michela Milano, Luca Benini:

MPOpt-Cell: a high-performance data-flow programming environment for the CELL

BE processor. Conf. Computing Frontiers 2011: 11.

Jakob Rosen, Carl-Fredrik Neikter, Petru Eles, Zebo Peng, Paolo Burgio, Luca

163

8. PUBLICATIONS

Benini: Bus Access Design for Combined Worst and Average Case Execution Time Op-

timization of Predictable Real-Time Applications on Multiprocessor Systems-on-Chip.

IEEE Real-Time and Embedded Technology and Applications Symposium 2011: 291-

301.

2012

Andrea Marongiu, Paolo Burgio, Luca Benini: Fast and lightweight support for

nested parallelism on cluster-based embedded many-cores. DATE 2012: 105-110.

Paolo Burgio, Andrea Marongiu, Dominique Heller, Cyrille Chavet, Philippe Coussy,

Luca Benini: OpenMP-based Synergistic Parallelization and HW Acceleration for On-

Chip Shared-Memory Clusters. DSD 2012: 751-758.

2013

Paolo Burgio, Giuseppe Tagliavini, Andrea Marongiu, Luca Benini: Enabling fine-

grained OpenMP tasking on tightly-coupled shared memory clusters. DATE 2013: 1504-

1509.

Abbas Rahimi, Andrea Marongiu, Paolo Burgio, Rajesh K. Gupta, Luca Benini:

Variation-tolerant OpenMP tasking on tightly-coupled processor clusters. DATE 2013:

541-546.

Paolo Burgio, Andrea Marongiu, Robin Danilo, Philippe Coussy, Luca Benini: Ar-

chitecture and Programming Model Support for Efficient Heterogeneous Computing on

Tigthly-Coupled Shared-Memory Clusters. DASIP 2013, 22-29.

2014 – to appear

Paolo Burgio, Giuseppe Tagliavini, Francesco Conti, Andrea Marongiu, Luca Benini:

Tightly-Coupled Hardware Support to Dynamic Parallelism Acceleration in Embedded

Shared Memory Clusters. DATE 2014.

Paolo Burgio, Andrea Marongiu, Robin Danilo, Philippe Coussy, Luca Benini:

A tightly-coupled Hardware Controller to improve scalability and programmability of

164

shared-memory heterogeneous clusters. DATE 2014.

165

8. PUBLICATIONS

166

References

[1] Adapteva, Inc. Epiphany-IV 64-core 28nm Microprocessor. [Online] http://www.adapteva.com/products/\silicon-devices/

e64g401/, 2013. 1, 7

[2] S.N. Agathos, P.E. Hadjidoukas, and V.V. Dimakopoulos. Design and Implementation of OpenMP Tasks in the OMPi

Compiler. In Informatics (PCI), 2011 15th Panhellenic Conference on, pages 265–269, 2011. 14, 86, 87, 109, 113, 120, 122,

123

[3] Kunal Agrawal, Charles E. Leiserson, Yuxiong He, and Wen Jing Hsu. Adaptive work-stealing with parallelism feed-

back. ACM Trans. Comput. Syst., 26(3):7:1–7:32, September 2008. [Online] http://doi.acm.org/10.1145/1394441.1394443.

60

[4] Sameer Alawnah and Assim Sagahyroon. Modeling smartphones power. In EUROCON, 2013 IEEE, pages 369–374, 2013.

1, 3

[5] AMD. The AMD Fusion Family of APUs. [Online] http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx. 1, 6, 86, 125,

142

[6] R Anigundi, Hongbin Sun, Jian-Qiang Lu, K. Rose, and Tong Zhang. Architecture design exploration of three-

dimensional (3D) integrated DRAM. In Quality of Electronic Design, 2009. ISQED 2009. Quality Electronic Design,

pages 86–90, 2009. 58

[7] Inc. Apple. The Grand Central Dispatch . [Online] http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_

20090608.pdf. 3, 14, 86, 121

[8] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier. StarPU: a unified

platform for task scheduling on heterogeneous multicore architectures. Concurr. Comput. : Pract. Exper.,

23(2):187–198, February 2011. 129, 146

[9] Eduard Ayguad, RosaM. Badia, Pieter Bellens, Daniel Cabrera, Alejandro Duran, Roger Ferrer, Marc Gonzlez, Francisco

Igual, Daniel Jimnez-Gonzlez, Jess Labarta, Luis Martinell, Xavier Martorell, Rafael Mayo, JosepM. Prez, Judit Planas, and

EnriqueS. Quintana-Ort. Extending OpenMP to Survive the Heterogeneous Multi-Core Era. International Journal

of Parallel Programming, 38(5-6):440–459, 2010. [Online] http://dx.doi.org/10.1007/s10766-010-0135-4. 129

[10] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Yuan Lin, F. Massaioli, X. Teruel, P. Unnikrishnan, and Guansong Zhang. The

Design of OpenMP Tasks. Parallel and Distributed Systems, IEEE Transactions on, 20(3):404–418, 2009. 19, 87

[11] Eduard Ayguade, Xavier Martorell, Jesus Labarta, Marc Gonzalez, and Nacho Navarro. Exploiting Multiple Levels of

Parallelism in OpenMP: A Case Study. In Proceedings of the 1999 International Conference on Parallel Processing,

ICPP ’99, pages 172–, Washington, DC, USA, 1999. IEEE Computer Society. [Online] http://dl.acm.org/citation.cfm?

id=850940.852871. 85, 86

[12] L.A.D. Bathen and N.D. Dutt. Software Controlled Memories for Scalable Many-Core Architectures. In Embedded

and Real-Time Computing Systems and Applications (RTCSA), 2012 IEEE 18th International Conference on, pages 1–10,

2012. 1, 2

[13] T.F. Beatty, E.E. Aubanel, and K.B. Kent. An OpenMP-based circuit design tool: Customizable bit-width. In

Communications, Computers and Signal Processing, 2009. PacRim 2009. IEEE Pacific Rim Conference on, pages 17–22,

2009. 130

[14] L. Benini and G. De Micheli. Networks on chips: a new SoC paradigm. Computer, 35(1):70–78, 2002. 7

[15] L. Benini, E. Flamand, D. Fuin, and D. Melpignano. P2012: Building an ecosystem for a scalable, modular and high-

efficiency embedded computing accelerator. In Design, Automation Test in Europe Conference Exhibition (DATE),

2012, pages 983–987, 2012. 1, 2, 7, 9, 25, 88, 106

167

http://www.adapteva.com/products/silicon-devices/e64g401/
http://www.adapteva.com/products/silicon-devices/e64g401/
http://doi.acm.org/10.1145/1394441.1394443
http://sites.amd.com/us/fusion/apu/Pages/fusion.aspx
http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090608.pdf
http://images.apple.com/macosx/technology/docs/GrandCentral_TB_brief_20090608.pdf
http://dx.doi.org/10.1007/s10766-010-0135-4
http://dl.acm.org/citation.cfm?id=850940.852871
http://dl.acm.org/citation.cfm?id=850940.852871

REFERENCES

[16] D. Bertozzi and L. Benini. Xpipes: a network-on-chip architecture for gigascale systems-on-chip. Circuits and

Systems Magazine, IEEE, 4(2):18–31, 2004. 30

[17] Himanshu Bhatnagar. Advanced ASIC Chip Synthesis: Using Synopsys’ Design Compiler and PrimeTime. Kluwer Academic

Publishers, Norwell, MA, USA, 1999. 3

[18] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C.A. Nelson, and C.D. Offner. Extending OpenMP For NUMA

Machines. In Supercomputing, ACM/IEEE 2000 Conference, pages 48–48, 2000. 28, 45

[19] John Bircsak, Peter Craig, RaeLyn Crowell, Zarka Cvetanovic, Jonathan Harris, C. Alexander Nelson, and Carl D. Offner.

Extending OpenMP for NUMA machines. In Proceedings of the 2000 ACM/IEEE conference on Supercomputing

(CDROM), Supercomputing ’00, Washington, DC, USA, 2000. IEEE Computer Society. [Online] http://dl.acm.org/citation.

cfm?id=370049.370455. 60, 62

[20] P. Biswas, N.D. Dutt, L. Pozzi, and P. Ienne. Introduction of Architecturally Visible Storage in Instruction Set

Extensions. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 26(3):435–446, 2007. 1,

128, 141, 142

[21] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, Lei Jiang, G.H. Loh, D. McCauley, P. Morrow, D.W. Nelson, D. Pantuso,

P. Reed, J. Rupley, Sadasivan Shankar, J. Shen, and C. Webb. Die Stacking (3D) Microarchitecture. In Microarchitecture,

2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on, pages 469–479, 2006. 60

[22] G. Blake, R.G. Dreslinski, and T. Mudge. A survey of multicore processors. Signal Processing Magazine, IEEE, 26(6):26–

37, 2009. 26

[23] Geoffrey Blake, Ronald G. Dreslinski, Trevor Mudge, and Krisztián Flautner. Evolution of thread-level parallelism

in desktop applications. In Proceedings of the 37th annual international symposium on Computer architecture, ISCA ’10,

pages 302–313, New York, NY, USA, 2010. ACM. [Online] http://doi.acm.org/10.1145/1815961.1816000. 2

[24] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Commun. ACM, 54(5):67–77, May 2011. [Online]

http://doi.acm.org/10.1145/1941487.1941507. 1

[25] D. Bortolotti, F. Paterna, C. Pinto, A. Marongiu, M. Ruggiero, and L. Benini. Exploring instruction caching strategies

for tightly-coupled shared-memory clusters. In System on Chip (SoC), 2011 International Symposium on, pages 34–41,

2011. 88, 106, 147

[26] Daniele Bortolotti, Christian Pinto, Andrea Marongiu, Martino Ruggiero, and Luca Benini. VirtualSoC: a Full-System

Simulation Environment for Massively Parallel Heterogeneous System-on-Chip. In 013 IEEE 27th International

Symposium on Parallel & Distributed Processing Workshops and PhD Forum, pages 2182–2187. IEEE, May 2013. 75, 106,

121, 137, 138, 154, 160

[27] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmervik, and Olaf O. Storaasli. State-of-the-art in

heterogeneous computing. Sci. Program., 18(1):1–33, January 2010. [Online] http://dl.acm.org/citation.cfm?id=1804799.

1804800. 3

[28] P. Burgio, A. Marongiu, D. Heller, C. Chavet, P. Coussy, and L. Benini. OpenMP-based Synergistic Parallelization

and HW Acceleration for On-Chip Shared-Memory Clusters. In Digital System Design (DSD), 2012 15th Euromicro

Conference on, pages 751–758, 2012. 129

[29] Daniel Cabrera, Xavier Martorell, Georgi Gaydadjiev, Eduard Ayguade, and Daniel Jiménez-González. OpenMP exten-

sions for FPGA accelerators. In Proceedings of the 9th international conference on Systems, architectures, modeling and

simulation, SAMOS’09, pages 17–24, Piscataway, NJ, USA, 2009. IEEE Press. [Online] http://dl.acm.org/citation.cfm?

id=1812707.1812714. 129

[30] Calypto Design Systems Inc. Catapult Family. [Online] http://calypto.com/en/products/catapult/overview, 2013. 3

[31] Olivier Certner, Zheng Li, Pierre Palatin, Olivier Temam, Frederic Arzel, and Nathalie Drach. A practical approach for

reconciling high and predictable performance in non-regular parallel programs. In Proceedings of the conference

on Design, automation and test in Europe, DATE ’08, pages 740–745, New York, NY, USA, 2008. ACM. [Online] http://

doi.acm.org/10.1145/1403375.1403555. 60

[32] Rohit Chandra, Ding-Kai Chen, Robert Cox, Dror E. Maydan, Nenad Nedeljkovic, and Jennifer M. Anderson. Data distribu-

tion support on distributed shared memory multiprocessors. In Proceedings of the ACM SIGPLAN 1997 conference

on Programming language design and implementation, PLDI ’97, pages 334–345, New York, NY, USA, 1997. ACM. [Online]

http://doi.acm.org/10.1145/258915.258945. 45, 60, 62

[33] B. Chapman, Lei Huang, E. Biscondi, E. Stotzer, A. Shrivastava, and Alan Gatherer. Implementing OpenMP on a high

performance embedded multicore MPSoC. In Parallel Distributed Processing, 2009. IPDPS 2009. IEEE International

Symposium on, pages 1–8, 2009. 28, 31, 34

168

http://dl.acm.org/citation.cfm?id=370049.370455
http://dl.acm.org/citation.cfm?id=370049.370455
http://doi.acm.org/10.1145/1815961.1816000
http://doi.acm.org/10.1145/1941487.1941507
http://dl.acm.org/citation.cfm?id=1804799.1804800
http://dl.acm.org/citation.cfm?id=1804799.1804800
http://dl.acm.org/citation.cfm?id=1812707.1812714
http://dl.acm.org/citation.cfm?id=1812707.1812714
http://calypto.com/en/products/catapult/overview
http://doi.acm.org/10.1145/1403375.1403555
http://doi.acm.org/10.1145/1403375.1403555
http://doi.acm.org/10.1145/258915.258945

REFERENCES

[34] Barbara M. Chapman, F. Bregier, Amit Patil, and Achal Prabhakar. Achieving performance under OpenMP on cc-

NUMA and software distributed shared memory systems. Concurrency and Computation: Practice and Experience,

14(8-9):713–739, 2002. [Online] http://dblp.uni-trier.de/db/journals/concurrency/concurrency14.html#ChapmanBPP02. 45, 60

[35] Jongsok Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Czajkowski. Impact of Cache Architecture and Inter-

face on Performance and Area of FPGA-Based Processor/Parallel-Accelerator Systems. In Field-Programmable

Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium on, pages 17–24, 2012. 2

[36] E.S. Chung, P.A. Milder, J.C. Hoe, and Ken Mai. Single-Chip Heterogeneous Computing: Does the Future Include

Custom Logic, FPGAs, and GPGPUs? In Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM International

Symposium on, pages 225–236, 2010. 3

[37] J. Cong, M.A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman. Architecture support for accelerator-rich CMPs. In

Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pages 843–849, 2012. 129, 146

[38] Marco Cornero and Anyuru Andreas. Multiprocessing in Mobile Platforms: the Marketing and the Re-

ality. [Online]http://www.electronics-eetimes.com/en/multiprocessing-in-mobiles-platforms-the-marketing-and-the-reality.

html?\cmp_id=34&news_id=222915456, 2013. 1

[39] M. Dehyadegari, A. Marongiu, M.R. Kakoee, L. Benini, S. Mohammadi, and N. Yazdani. A tightly-coupled multi-core cluster

with shared-memory HW accelerators. In Embedded Computer Systems (SAMOS), 2012 International Conference on,

pages 96–103, 2012. 148

[40] Vassilios V. Dimakopoulos, Panagiotis E. Hadjidoukas, and Giorgos Ch. Philos. A microbenchmark study of OpenMP

overheads under nested parallelism. In Proceedings of the 4th international conference on OpenMP in a new era of

parallelism, IWOMP’08, pages 1–12, Berlin, Heidelberg, 2008. Springer-Verlag. [Online] http://dl.acm.org/citation.cfm?

id=1789826.1789828. 85, 94

[41] A.J. Dorta, C. Rodriguez, and F. de Sande. The OpenMP source code repository. In Parallel, Distributed and Network-

Based Processing, 2005. PDP 2005. 13th Euromicro Conference on, pages 244–250, 2005. 48

[42] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. Evaluation of OpenMP task scheduling strategies. In

Proceedings of the 4th international conference on OpenMP in a new era of parallelism, IWOMP’08, pages 100–110, Berlin,

Heidelberg, 2008. Springer-Verlag. [Online] http://dl.acm.org/citation.cfm?id=1789826.1789838. 5, 21, 86, 87, 100

[43] P. Dziurzanski, W. Bielecki, K. Trifunovic, and M. Kleszczonek. A system for transforming an ANSI C code with

OpenMP directives into a SystemC description. In Design and Diagnostics of Electronic Circuits and systems, 2006

IEEE, pages 151–152, 2006. 130

[44] J. Eker and J. W. Janneck. CAL Language Report Specification of the CAL Actor Language. Technical Report

UCB/ERL M03/48, EECS Department, University of California, Berkeley, 2003. [Online] http://www.eecs.berkeley.edu/

Pubs/TechRpts/2003/4186.html. 2

[45] Magnus Ekman, Fredrik Warg, and Jim Nilsson. An in-depth look at computer performance growth. SIGARCH

Comput. Archit. News, 33(1):144–147, March 2005. [Online] http://doi.acm.org/10.1145/1055626.1055646. 1

[46] Element CXI. ECA-64 elemental computing array. [Online] http://www.elementcxi.com/downloads/ECA64ProductBrief.doc,

2008. 25

[47] P.G. Emma and E Kursun. Is 3D chip technology the next growth engine for performance improvement? IBM

Journal of Research and Development, 52(6):541–552, 2008. 58, 60

[48] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Neural Acceleration for General-Purpose Approximate Pro-

grams. In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium on, pages 449–460, 2012. 3,

162

[49] Marco Facchini, Trevor Carlson, Anselme Vignon, Martin Palkovic, Francky Catthoor, Wim Dehaene, Luca Benini, and Paul

Marchal. System-level power/performance evaluation of 3D stacked DRAMs for mobile applications. In

Proceedings of the Conference on Design, Automation and Test in Europe, DATE ’09, pages 923–928, 3001 Leuven, Belgium,

Belgium, 2009. European Design and Automation Association. [Online] http://dl.acm.org/citation.cfm?id=1874620.1874847.

58, 60

[50] C.F. Fajardo, Zhen Fang, R. Iyer, G.F. Garcia, Seung Eun Lee, and Li Zhao. Buffer-Integrated-Cache: A cost-effective

SRAM architecture for handheld and embedded platforms. In Design Automation Conference (DAC), 2011 48th

ACM/EDAC/IEEE, pages 966–971, 2011. 128, 142

[51] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Houston, Ji Young Park, Mattan Erez,

Manman Ren, Alex Aiken, William J. Dally, and Pat Hanrahan. Sequoia: programming the memory hierarchy. In

Proceedings of the 2006 ACM/IEEE conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. [Online]

http://doi.acm.org/10.1145/1188455.1188543. 14

169

http://dblp.uni-trier.de/db/journals/concurrency/concurrency14.html#ChapmanBPP02
http://www.electronics-eetimes.com/en/multiprocessing-in-mobiles-platforms-the-marketing-and-the-reality.html?cmp_id=34&news_id=222915456
http://www.electronics-eetimes.com/en/multiprocessing-in-mobiles-platforms-the-marketing-and-the-reality.html?cmp_id=34&news_id=222915456
http://dl.acm.org/citation.cfm?id=1789826.1789828
http://dl.acm.org/citation.cfm?id=1789826.1789828
http://dl.acm.org/citation.cfm?id=1789826.1789838
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/4186.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2003/4186.html
http://doi.acm.org/10.1145/1055626.1055646
http://www.elementcxi.com/downloads/ECA64ProductBrief.doc
http://dl.acm.org/citation.cfm?id=1874620.1874847
http://doi.acm.org/10.1145/1188455.1188543

REFERENCES

[52] FSF - The GNU Project. GOMP - An OpenMP implementation for GCC. [Online] http://gcc.gnu.org/projects/gomp/.

14, 16, 26, 31, 69, 74, 86, 87, 109, 113, 119, 122, 123, 124, 137, 161

[53] Luo-feng Geng, Duo-li Zhang, and Ming-Lun Gao. Performance evaluation of cluster-based homogeneous multipro-

cessor system-on-chip using FPGA device. In Computer Engineering and Technology (ICCET), 2010 2nd International

Conference on, 4, pages V4–144–V4–147, 2010. 27

[54] Luo-Feng Geng, Duo-li Zhang, Ming-Lun Gao, Ying-Chun Chen, and Gao-Ming Du. Prototype design of cluster-based

homogeneous Multiprocessor System-on-Chip. In Anti-counterfeiting, Security, and Identification in Communication,

2009. ASID 2009. 3rd International Conference on, pages 311–315, 2009. 25, 27

[55] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem. Introduction to Intel Core Duo processor architecture. Intelli-

gence/sigart Bulletin, 2006. 1

[56] Marc González, José Oliver, Xavier Martorell, Eduard Ayguadé, Jesús Labarta, and Nacho Navarro. OpenMP Extensions

for Thread Groups and Their Run-Time Support. In Proceedings of the 13th International Workshop on Languages and

Compilers for Parallel Computing-Revised Papers, LCPC ’00, pages 324–338, London, UK, 2001. Springer-Verlag. [Online]

http://dl.acm.org/citation.cfm?id=645678.663945. 86

[57] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performance, portable implementation of the

MPI message passing interface standard, September 1996. [Online] http://dx.doi.org/10.1016/0167-8191(96)00024-5. 27

[58] S.Q. Gu, P. Marchal, M. Facchini, F. Wang, M. Suh, D. Lisk, and M. Nowak. Stackable memory of 3D chip integration

for mobile applications. In Electron Devices Meeting, 2008. IEDM 2008. IEEE International, pages 1–4, 2008. 60

[59] Panagiotis Hadjidoukas and Vassilios Dimakopoulos. Nested Parallelism in the OMPi OpenMP/C Compiler. In

Anne-Marie Kermarrec, Luc Boug, and Thierry Priol, editors, Euro-Par 2007 Parallel Processing, 4641 of Lecture Notes in

Computer Science, pages 662–671. Springer Berlin / Heidelberg, 2007. 10.1007/978-3-540-74466-5 70. [Online] http://dx.

doi.org/10.1007/978-3-540-74466-5_70. 85

[60] Thomas Hall and Ken Kent. A Hardware/Software Co-specification Methodology for Multiple Processor Custom

Hardware Devices Based On OpenMP. In Proceedings of the 2008 Research Exposition, 2008. 129

[61] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for barrier synchronization. Int. J. Parallel Program.,

17(1):1–17, February 1988. [Online] http://dx.doi.org/10.1007/BF01379320. 39

[62] J. Holt, A. Agarwal, S. Brehmer, M. Domeika, P. Griffin, and F. Schirrmeister. Software Standards for the Multicore

Era. Micro, IEEE, 29(3):40–51, 2009. 2

[63] Intel Corporation. Threading Building Blocks. [Online] http://threadingbuildingblocks.org/, 2006. 2, 3, 14, 120, 121

[64] Intel Corporation. Intel Xeon Phi. [Online] http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html,

2012. 1

[65] Intel Inc. Intel Xeon Phi, 2013. [Online] http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html.

129, 146

[66] Dongsuk Jeon, Yejoong Kim, Inhee Lee, Zhengya Zhang, David Blaauw, and Dennis Sylvester. A LOW-POWER VGA

FULL-FRAME FEATURE EXTRACTION PROCESSOR. 3

[67] Woo-Chul Jeun and Soonhoi Ha. Effective OpenMP Implementation and Translation For Multiprocessor System-

On-Chip without Using OS. In Design Automation Conference, 2007. ASP-DAC ’07. Asia and South Pacific, pages 44–49,

2007. 28, 33, 34

[68] Xin Jin, Yukun Song, and Duoli Zhang. FPGA prototype design of the computation nodes in a cluster based

MPSoC. In Anti-Counterfeiting Security and Identification in Communication (ASID), 2010 International Conference on,

pages 71–74, 2010. 25

[69] J. Joven, A. Marongiu, F. Angiolini, L. Benini, and G. De Micheli. Exploring programming model-driven QoS support

for NoC-based platforms. In Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP

International Conference on, pages 65–74, 2010. 28

[70] Kalray Corporation. Many-core Kalray MPPA. [Online] http://www.kalray.eu/, 2012. 1, 2, 7, 12, 25

[71] Uksong Kang, Hoe-Ju Chung, Seongmoo Heo, Soon-Hong Ahn, Hoon Lee, Soo-Ho Cha, Jaesung Ahn, DukMin Kwon, Jin-Ho Kim,

Jae-Wook Lee, Han-Sung Joo, Woo-Seop Kim, Hyun-Kyung Kim, Eun-Mi Lee, So-Ra Kim, Keum-Hee Ma, Dong-Hyun Jang, Nam-

Seog Kim, Man-Sik Choi, Sae-Jang Oh, Jung-Bae Lee, Tae-Kyung Jung, Jei-Hwan Yoo, and Changhyun Kim. 8Gb 3D DDR3

DRAM using through-silicon-via technology. In Solid-State Circuits Conference - Digest of Technical Papers, 2009.

ISSCC 2009. IEEE International, pages 130–131,131a, 2009. 59

170

http://gcc.gnu.org/projects/gomp/
http://dl.acm.org/citation.cfm?id=645678.663945
http://dx.doi.org/10.1016/0167-8191(96)00024-5
http://dx.doi.org/10.1007/978-3-540-74466-5_70
http://dx.doi.org/10.1007/978-3-540-74466-5_70
http://dx.doi.org/10.1007/BF01379320
http://threadingbuildingblocks.org/
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
http://www.kalray.eu/

REFERENCES

[72] L.J. Karam, I. AlKamal, Alan Gatherer, G.A. Frantz, D.V. Anderson, and B.L. Evans. Trends in multicore DSP platforms.

Signal Processing Magazine, IEEE, 26(6):38–49, 2009. 26

[73] Sven Karlsson. A portable and efficient thread library for OpenMP. In In Proc. 6th European Workshop on OpenMP,

KTH Royal Institute of Technology, pages 43–47. John Wiley, 2004. 85

[74] Karonis, Nicholas T. and Toonen, Brian and Foster, Ian. MPICH-G2: a Grid-enabled implementation of the Mes-

sage Passing Interface. J. Parallel Distrib. Comput., 63(5):551–563, May 2003. [Online] http://dx.doi.org/10.1016/

S0743-7315(03)00002-9. 27

[75] M. Kawano, N. Takahashi, Y. Kurita, K. Soejima, M. Komuro, and S. Matsui. Three-Dimensional Packaging Technology

for Stacked DRAM With 3-Gb/s Data Transfer. Electron Devices, IEEE Transactions on, 55(7):1614–1620, 2008. 59

[76] Taeho Kgil, Ali Saidi, Nathan Binkert, Steve Reinhardt, Krisztian Flautner, and Trevor Mudge. PicoServer: Using 3D

stacking technology to build energy efficient servers. J. Emerg. Technol. Comput. Syst., 4(4):16:1–16:34, November

2008. [Online] http://doi.acm.org/10.1145/1412587.1412589. 58, 59

[77] Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F. Bhoedjang. MagPIe: MPIs Collective

Communication Operations for Clustered Wide Area Systems. In Proc PPoPP’99, pages 131–140, 1999. 27

[78] Theo Kluter, Philip Brisk, Paolo Ienne, and Edoardo Charbon. Speculative DMA for architecturally visible storage

in instruction set extensions. In Proceedings of the 6th IEEE/ACM/IFIP international conference on Hardware/Software

codesign and system synthesis, CODES+ISSS ’08, pages 243–248, New York, NY, USA, 2008. ACM. [Online] http://doi.

acm.org/10.1145/1450135.1450191. 128

[79] Theo Kluter, Philip Brisk, Paolo Ienne, and Edoardo Charbon. Way Stealing: cache-assisted automatic instruction

set extensions. In Proceedings of the 46th Annual Design Automation Conference, DAC ’09, pages 31–36, New York, NY,

USA, 2009. ACM. [Online] http://doi.acm.org/10.1145/1629911.1629923. 128

[80] Kronos Group. The OpenCL 1.1 Specifications. [Online] http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf, 2010.

4, 13, 126, 129

[81] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen. Carbon: architectural support for fine-grained paral-

lelism on chip multiprocessors. SIGARCH Comput. Archit. News, 35:162–173, June 2007. [Online] http://doi.acm.org/

10.1145/1273440.1250683. 86, 87

[82] G. Kyriazis. Heterogeneous System Architecture: A Technical Review, 2012. [Online] http://developer.amd.com/

wordpress/media/2012/10/hsa10.pdf. 3, 129

[83] James Larus. Spending Moore’s dividend. Commun. ACM, 52(5):62–69, May 2009. [Online] http://doi.acm.org/10.1145/

1506409.1506425. 1

[84] Thai Hoang Le and Len Tien Bui. An approach to combine AdaBoost and Artificial Neural Network for detecting

human faces. In Systems, Man and Cybernetics, 2008. SMC 2008. IEEE International Conference on, pages 3411–3416,

2008. 162

[85] Y. Y. Leow, C. Y. Ng, and W.F. Wong. Generating hardware from OpenMP programs. In Field Programmable

Technology, 2006. FPT 2006. IEEE International Conference on, pages 73–80, 2006. 130

[86] Bin Li, Zhen Fang, and R. Iyer. Template-based memory access engine for accelerators in SoCs. In Design Automation

Conference (ASP-DAC), 2011 16th Asia and South Pacific, pages 147–153, 2011. 128

[87] Feihul Li, C. Nicopoulos, T. Richardson, Yuan Xie, V. Narayanan, and M. Kandemir. Design and Management of 3D Chip

Multiprocessors Using Network-in-Memory. In Computer Architecture, 2006. ISCA ’06. 33rd International Symposium

on, pages 130–141, 2006. 60

[88] Xueliang Li, Guihai Yan, Yinhe Han, and Xiaowei Li. SmartCap: User experience-oriented power adaptation for

smartphone’s application processor. In Design, Automation Test in Europe Conference Exhibition (DATE), 2013, pages

57–60, 2013. 1, 3

[89] Linus Torvalds. The Linux “Vanilla” Kernel. [Online] https://www.kernel.org/, 2013. 5

[90] F. Liu and V. Chaudhary. Extending OpenMP for heterogeneous chip multiprocessors. In Parallel Processing, 2003.

Proceedings. 2003 International Conference on, pages 161–168, 2003. 28, 33

[91] Feng Liu and Vipin Chaudhary. A practical OpenMP compiler for system on chips. In Proceedings of the OpenMP

applications and tools 2003 international conference on OpenMP shared memory parallel programming, WOMPAT’03, pages

54–68, Berlin, Heidelberg, 2003. Springer-Verlag. [Online] http://dl.acm.org/citation.cfm?id=1761900.1761907. 28, 33

171

http://dx.doi.org/10.1016/S0743-7315(03)00002-9
http://dx.doi.org/10.1016/S0743-7315(03)00002-9
http://doi.acm.org/10.1145/1412587.1412589
http://doi.acm.org/10.1145/1450135.1450191
http://doi.acm.org/10.1145/1450135.1450191
http://doi.acm.org/10.1145/1629911.1629923
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://doi.acm.org/10.1145/1273440.1250683
http://doi.acm.org/10.1145/1273440.1250683
http://developer.amd.com/wordpress/media/2012/10/hsa10.pdf
http://developer.amd.com/wordpress/media/2012/10/hsa10.pdf
http://doi.acm.org/10.1145/1506409.1506425
http://doi.acm.org/10.1145/1506409.1506425
https://www.kernel.org/
http://dl.acm.org/citation.cfm?id=1761900.1761907

REFERENCES

[92] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini, and R. Zafalon. Analyzing on-chip communication in a MPSoC envi-

ronment. In Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, 2, pages 752–757 Vol.2,

2004. 48

[93] G.H. Loh. 3D-Stacked Memory Architectures for Multi-core Processors. In Computer Architecture, 2008. ISCA ’08.

35th International Symposium on, pages 453–464, 2008. 58, 60, 61

[94] A. Marongiu and L. Benini. An OpenMP Compiler for Efficient Use of Distributed Scratchpad Memory in

MPSoCs. Computers, IEEE Transactions on, 61(2):222–236, 2012. 45, 46, 47, 48, 66, 74

[95] Xavier Martorell, Eduard Ayguad, Nacho Navarro, Julita Corbaln, Marc Gonzlez, and Jess Labarta. Thread Fork/Join

Techniques for Multi-level Parallelism Exploitation in NUMA Multiprocessors. In in NUMA Multiprocessors. In

13th Int. Conference on Supercomputing ICS’99, Rhodes, pages 294–301, 1999. 85

[96] Massachusets Institute of Technology. The Cilk Project. [Online] http://supertech.csail.mit.edu/cilk/, 1998. 2, 3, 14,

86, 121

[97] Ramachandra Nanjegowda, Oscar Hernandez, Barbara Chapman, and Haoqiang H. Jin. Scalability Evaluation of Barrier

Algorithms for OpenMP. In Proceedings of the 5th International Workshop on OpenMP: Evolving OpenMP in an Age of

Extreme Parallelism, IWOMP ’09, pages 42–52, Berlin, Heidelberg, 2009. Springer-Verlag. [Online] http://dx.doi.org/10.

1007/978-3-642-02303-3_4. 5, 38

[98] Girija J. Narlikar and Guy E. Blelloch. Space-Efficient Scheduling of Nested Parallelism. ACM Transactions on

Programming Languages and Systems, 21, 1999. 85

[99] S. Niar, S. Meftali, and J. Dekeyser. Power consumption awareness in cache memory design with SystemC. In

Microelectronics, 2004. ICM 2004 Proceedings. The 16th International Conference on, pages 244–247, 2004. 2

[100] Dan Nicolaescu, Alex Veidenbaum, and Alex Nicolau. Reducing data cache energy consumption via cached load/store

queue. In Proceedings of the 2003 international symposium on Low power electronics and design, ISLPED ’03, pages 252–257,

New York, NY, USA, 2003. ACM. [Online] http://doi.acm.org/10.1145/871506.871569. 2

[101] NVIDIA. Next Generation CUDA Compute Architecture: Fermi - WhitePaper. [Online] http://www.nvidia.fr/

content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf, 2010. 1, 7, 25, 142

[102] OAR Corporation. Real-Time Executive for Multiprocessor Systems. [Online] http://www.rtems.com/, 2006. 12

[103] Y. Ojima, M. Sato, H. Harada, and Y. Ishikawa. Performance of cluster-enabled OpenMP for the SCASH software

distributed shared memory system. In Cluster Computing and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM

International Symposium on, pages 450–456, 2003. 28

[104] Open Source Computer Vision library. [Online] http://opencv.willowgarage.com/wiki/. 129

[105] OpenAcc Specifications 1.0, 2011. [Online] http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf. 4, 157, 162

[106] OpenMP Architecture Review Board. OpenMP Application Program Interface v3.1. [Online] http://www.openmp.org/

mp-documents/OpenMP3.1.pdf, 2011. 2, 3, 12, 14, 15, 23, 86, 113, 119, 121, 161

[107] OpenMP Architecture Review Board. OpenMP Application Program Interface v4. [Online] http://www.openmp.org/

mp-documents/OpenMP3.1.pdf, 2011. 4, 127, 136, 162

[108] Ozcan Ozturk, Feng Wang, Mahmut T. Kandemir, and Yuan Xie. Optimal topology exploration for application-specific

3D architectures. In ASP-DAC, pages 390–395, 2006. 60

[109] Plurality Ltd. The HyperCore Processor. [Online] http://www.plurality.com/hypercore.html. xvi, 1, 2, 7, 12, 14, 25, 121,

146, 147

[110] Plurality Ltd. The HyperCore Processor. [Online] www.plurality.com/hypercore.html. 87

[111] Abbas Rahimi, Igor Loi, Mohammad Reza Kakoee, and Luca Benini. A fully-synthesizable single-cycle interconnection

network for Shared-L1 processor clusters. In Proceedings of the Design, Automation Test in Europe Conference Exhibition

(DATE) 2011, pages 1 – 6, 2011. xvi, 87, 147

[112] Edward Rosten, R. Porter, and Tom Drummond. Faster and Better: A Machine Learning Approach to Corner

Detection. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(1):105–119, 2010. 111

[113] Mitsuhisa Sato, Hiroshi Harada, Atsushi Hasegawa, and Yutaka Ishikawa. Cluster-enabled OpenMP: An OpenMP

compiler for the SCASH software distributed shared memory system. Sci. Program., 9(2,3):123–130, August

2001. [Online] http://dl.acm.org/citation.cfm?id=1239928.1239934. 60

172

http://supertech.csail.mit.edu/cilk/
http://dx.doi.org/10.1007/978-3-642-02303-3_4
http://dx.doi.org/10.1007/978-3-642-02303-3_4
http://doi.acm.org/10.1145/871506.871569
http://www.nvidia.fr/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.fr/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.rtems.com/
http://opencv.willowgarage.com/wiki/
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.plurality.com/hypercore.html
www.plurality.com/hypercore.html
http://dl.acm.org/citation.cfm?id=1239928.1239934

REFERENCES

[114] M. Shafiq, M. Pericas, N. Navarro, and E. Ayguade. TARCAD: A template architecture for reconfigurable accelerator

designs. In Application Specific Processors (SASP), 2011 IEEE 9th Symposium on, pages 8–15, 2011. 3

[115] Amar Shan. Heterogeneous processing: a strategy for augmenting moore’s law. Linux J., 2006(142):7, 2006.

[Online] http://portal.acm.org/citation.cfm?id=1119128.1119135. 3

[116] Silicon Graphics International Corporation. SGI Origin 3000. http://www.sgi.com/products/remarketed/servers/origin3000.

html, 2009. 62

[117] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software. Dr. Dobb’s

Journal, 30(3):202–210, 2005. [Online] http://www.gotw.ca/publications/concurrency-ddj.htm. 1

[118] S. Swanson and M.B. Taylor. Greendroid: Exploring the next evolution in smartphone application processors.

Communications Magazine, IEEE, 49(4):112–119, 2011. 1, 3, 129

[119] Synopsys Inc. Design Compiler Graphical. [Online] http://www.synopsys.com/Tools/Implementation/RTLSynthesis/

DCGraphical/Pages/default.aspx. 154

[120] Synopsys Inc. Processor Designer. [Online] http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx.

129

[121] Yoshizumi Tanaka, Kenjiro Taura, Mitsuhisa Sato, and Akinori Yonezawa. Performance Evaluation of OpenMP Appli-

cations with Nested Parallelism. In Selected Papers from the 5th International Workshop on Languages, Compilers, and

Run-Time Systems for Scalable Computers, LCR ’00, pages 100–112, London, UK, 2000. Springer-Verlag. [Online] http://

dl.acm.org/citation.cfm?id=648049.761156. 85, 86

[122] Tensilica. Xtensa Customizable Processors. [Online] http://www.tensilica.com/products/xtensa-customizable.htm. 129

[123] Xavier Teruel, Xavier Martorell, Alejandro Duran, Roger Ferrer, and Eduard Ayguadé. Support for OpenMP tasks in

Nanos v4. In Proceedings of the 2007 conference of the center for advanced studies on Collaborative research, CASCON ’07,

pages 256–259, Riverton, NJ, USA, 2007. IBM Corp. [Online] http://dx.doi.org/10.1145/1321211.1321241. 14

[124] Texas Instruments. TMS320TCI6488 DSP Platform. [Online] http://focus.ti.com/lit/ml/sprt415/sprt415.pdf. 30

[125] Texas Instruments. TNETV3020 carrier infrastructure platform. [Online] http://focus.ti.com/lit/ml/spat174a/

spat174a.pdf. 30

[126] The Eclipse Foundation. Eclipse IDE. [Online] http://www.eclipse.org/, 2013. 12

[127] The Khronos Group. [Online] http://www.khronos.org/. 4, 129

[128] The Khronos Group. OpenVX, 2013. [Online] http://www.khronos.org/openvx. 4, 129, 146, 162

[129] The MPI Forum. MPI Standard 3.0. [Online] http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf. 27

[130] The Portland Group. PGI Acceleration Programming Model for Fortran & C. [Online] http://www.pgroup.com/lit/

whitepapers/pgi_accel_prog_model_1.3.pdf, 2010. 129

[131] Daouda Traoré, Jean-Louis Roch, Nicolas Maillard, Thierry Gautier, and Julien Bernard. Deque-Free Work-Optimal

Parallel STL Algorithms. In Proceedings of the 14th international Euro-Par conference on Parallel Processing, Euro-Par

’08, pages 887–897, Berlin, Heidelberg, 2008. Springer-Verlag. [Online] http://dx.doi.org/10.1007/978-3-540-85451-7_95. 60

[132] A. Tumeo, M. Monchiero, G. Palermo, F. Ferrandi, and D. Sciuto. Lightweight DMA management mechanisms for

multiprocessors on FPGA. In Application-Specific Systems, Architectures and Processors, 2008. ASAP 2008. International

Conference on, pages 275–280, 2008. 155

[133] Université de Bretagne-Sud. GAUT HLS Tool. [Online] http://www-labsticc.univ-ubs.fr/www-gaut/publications/gaut_flyer.

pdf, 1993. 3, 138, 156, 159

[134] University of Edinburgh. OpenMP Microbenchmarks V2.0. [Online] http://www2.epcc.ed.ac.uk/computing/

research_activities/openmpbench/openmp_index.html. 94

[135] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav Bryksin, Jose Lugo-Martinez, Steven Swan-

son, and Michael Bedford Taylor. Conservation cores: reducing the energy of mature computations. SIGARCH

Comput. Archit. News, 38(1):205–218, March 2010. [Online] http://doi.acm.org/10.1145/1735970.1736044. 129

[136] Oreste Villa, Gianluca Palermo, and Cristina Silvano. Efficiency and scalability of barrier synchronization on NoC

based many-core architectures. In Proceedings of the 2008 international conference on Compilers, architectures and

synthesis for embedded systems, CASES ’08, pages 81–90, New York, NY, USA, 2008. ACM. [Online] http://doi.acm.org/10.

1145/1450095.1450110. 38, 41

173

http://portal.acm.org/citation.cfm?id=1119128.1119135
http://www.sgi.com/products/remarketed/servers/origin3000.html
http://www.sgi.com/products/remarketed/servers/origin3000.html
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DCGraphical/Pages/default.aspx
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DCGraphical/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://dl.acm.org/citation.cfm?id=648049.761156
http://dl.acm.org/citation.cfm?id=648049.761156
http://www.tensilica.com/products/xtensa-customizable.htm
http://dx.doi.org/10.1145/1321211.1321241
http://focus.ti.com/lit/ml/sprt415/sprt415.pdf
http://focus.ti.com/lit/ml/spat174a/spat174a.pdf
http://focus.ti.com/lit/ml/spat174a/spat174a.pdf
http://www.eclipse.org/
http://www.khronos.org/
http://www.khronos.org/openvx
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.3.pdf
http://www.pgroup.com/lit/whitepapers/pgi_accel_prog_model_1.3.pdf
http://dx.doi.org/10.1007/978-3-540-85451-7_95
http://www-labsticc.univ-ubs.fr/www-gaut/publications/gaut_flyer.pdf
http://www-labsticc.univ-ubs.fr/www-gaut/publications/gaut_flyer.pdf
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html
http://www2.epcc.ed.ac.uk/computing/research_activities/openmpbench/openmp_index.html
http://doi.acm.org/10.1145/1735970.1736044
http://doi.acm.org/10.1145/1450095.1450110
http://doi.acm.org/10.1145/1450095.1450110

REFERENCES

[137] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features. In Computer Vision and

Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, 1, pages I–511–I–518

vol.1, 2001. 154, 157

[138] C. Weis, I. Loi, L. Benini, and N. Wehn. An energy efficient DRAM subsystem for 3D integrated SoCs. In Design,

Automation Test in Europe Conference Exhibition (DATE), 2012, pages 1138–1141, 2012. 3, 58

[139] Barry Wilkinson and Michael Allen. Parallel programming: techniques and applications using networked workstations and

parallel computers. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999. 38

[140] Hae woo Park, Hyunok Oh, and Soonhoi Ha. Multiprocessor SoC design methods and tools. Signal Processing Magazine,

IEEE, 26(6):72–79, 2009. 26

[141] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: implications of the obvious. SIGARCH Comput. Archit.

News, 23(1):20–24, March 1995. 1

[142] Xilinx Inc. Zynq Series. [Online] http://www.xilinx.com/content/xilinx/en/products/silicon-devices/soc/zynq-7000.html. 125

[143] L. Xue, M. Kandemir, G. Chen, F. Li, O. Ozturk, R. Ramanarayanan, and B. Vaidyanathan. Locality-Aware Distributed

Loop Scheduling for Chip Multiprocessors. In Proceedings of the 20th International Conference on VLSI Design held

jointly with 6th International Conference: Embedded Systems, VLSID ’07, pages 251–258, Washington, DC, USA, 2007. IEEE

Computer Society. [Online] http://dx.doi.org/10.1109/VLSID.2007.97. 60

[144] Liu Zhuo, Gaoming Du, Duoli Zhang, Yukun Song, Li Li, and Hongbin Pan. Design and implemetion of DDR2 wrapper for

cluster based MPSoC. In Anti-Counterfeiting Security and Identification in Communication (ASID), 2010 International

Conference on, pages 60–62, 2010. 25

[145] C. Zinner and W. Kubinger. ROS-DMA: A DMA Double Buffering Method for Embedded Image Processing with

Resource Optimized Slicing. In Real-Time and Embedded Technology and Applications Symposium, 2006. Proceedings of

the 12th IEEE, pages 361–372, 2006. 155

174

http://www.xilinx.com/content/xilinx/en/products/silicon-devices/soc/zynq-7000.html
http://dx.doi.org/10.1109/VLSID.2007.97

