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Chapter 1

Introduction

Early-Type galaxies (ETGs) are embedded in hot (106 − 107 K), X-ray emitting
gaseous haloes (Fabbiano 1989; O’Sullivan et al. 2001), produced mainly by stellar
winds and heated by Type Ia supernovae (SNIa) explosions, by the thermalization of
stellar motions and occasionally by the central super-massive black hole (SMBH). In
particular, the thermalization of the stellar motions is due to the interaction between
the stellar and the SNIa ejecta and the hot interstellar medium (ISM) already residing
in the ETG (e.g. Parriott & Bregman 2008a). A number of different astrophysical
phenomena determine the X-ray properties of the hot ISM, such as stellar population
formation and evolution, galaxy structure and internal kinematics, Active Galactic
Nuclei (AGN) presence, and environmental effects. With the aid of high-resolution
hydrodynamical simulations, in this Thesis we focus on the effects of galaxy shape,
stellar kinematics and star formation on the evolution of the X-ray coronae of ETGs.

To put this Thesis in perspective, one of the empirical discoveries that followed
the analysis of first X-ray data of ETGs was the sensitivity of the hot gas content to
major galaxy properties as the shape of the mass distribution, and the mean rotation
velocity of the stellar component (see Mathews & Brighenti 2003; Kim & Pellegrini
2012 for a full discussion of the most relevant observational and theoretical aspects
concerning the X-ray haloes). From Einstein observations it was found that, on
average, flatter ETGs and S0 galaxies have lower total X-ray luminosity LX and
LX/LB (a measure of the galactic hot gas content), than rounder systems of similar
optical luminosity LB (Eskridge et al. 1995). Moreover, galaxies with axial ratio
close to unity span the full range of LX, while flat systems have LX . 1041 erg s−1.
This result holds across the whole range of LB where the two shapes, round and flat,
coexist (Pellegrini 1999a), as shown in Figure 1.1. In addition, it was found that
LX/LB can be high only in slowly rotating galaxies, and is limited to low values for
fast rotating ones (Pellegrini et al. 1997; Sarzi et al. 2010). The relationship between
LX and shape/rotation was reconsidered, confirming the above trends, for the ROSAT
PSPC sample (Pellegrini 2012), and for the Chandra sample (Li et al. 2011a; Boroson
et al. 2011; Sarzi et al. 2013). In particular, Sarzi et al. (2013), after confirming
that slow rotators generally have the largest LX and LX/LB values, also found that
their gas temperature values TX are consistent just with the thermalization of the
stellar kinetic energy, estimated from σe (the luminosity averaged stellar velocity
dispersion within the effective radius Re). Fast rotators, instead, have generally
lower LX and LX/LB values, and the more so the larger their degree of rotational



2 Introduction

The X-ray Halos of Fast and Slow Rotators 7

Figure 5. Same as Figs. 2 and 3, but now with elliptical symbols coded by colour and flattening according to the degree of rotational support and the apparent
ellipticity of the galaxies they are representing, in order to visually convey the dependence of the scatter in their total X-ray luminosity on these two physical
parameters, as quantified in Fig. 4. The grey labels indicate the galaxies that were excluded from the analysis of the correlation presented in Fig. 4. The other
galaxies labelled on the left and right panels are, respectively, most likely face-on but intrinsically flat and rotationally-supported galaxies and the flattest
slow rotators in our low X-ray resolution ATLAS3D subsample. Finally, in both panels we also label in grey the two most massive X-ray bright fast-rotators,
NGC 4649 and NGC 5353. The kinematic classification of NGC 4649 is somehow uncertain, however, since this object lies almost exactly on the dividing line
between fast and slow rotators defined in Paper III, whereas the very flat NGC 5353 happens to be the most massive member of the compact group of galaxies
HCG 68, so that its total LX may also include emission from hot gas confined by the group potential.

from the Spearman rank analysis the correlations involving λRe

in Fig. 4 become more significant, and the same holds when ex-
cluding the face-on fast rotators from the correlations involving �e.
Finally, we note that even a modest contamination from a cen-
tral AGN or the the intra-group or -cluster medium to the total
X-ray in the least massive objects could significantly impact on
the total LX values for these object. In turn, this would gener-
ally weaken the significance of any correlation between λRe or �e
and the LX/LX,discr or LX/LX,discr+diff ratios, since low-mass
galaxies generally tend to be fast rotators (Paper III). The possible
impact of AGNs or the intra-group or -cluster medium is most no-
ticeable in the correlation between λRe and the LX/LX,discr+diff

deficit (lower left panel of Fig. 4), where the majority of the most
rotationally-supported galaxies with LX/LX,discr+diff values near
unity have logLKσ2

e values below of 15.4 LK,� km2 s−2. At such
a low logLKσ2

e regime the typical AGN X-ray emission LX,AGN

of early-type galaxies could be comparable to the predicted values
for LX,discr and LX,diff (Fig. 3). For instance, the median LX,AGN

value for the ATLAS3D sample galaxies that appear in the study of
Liu (2011, 42 objects) is 2.6× 1039erg s−1.

To summarize the results of this subsection, in Fig. 5 we re-
draw the same LK − LX and LKσ2

e − LX diagrams presented in
Figs. 2 and 3, but now with elliptical symbols coded by colour and
flattening according to the values of λRe and the �e of the galaxies
they are representing. This is done in order to convey more visually
our preliminary conclusion, based on our low X-ray resolution sam-
ple, that only round slow rotators can sustain a halo of hot gas from
the thermalisation of the kinetic energy carried by their stellar-mass
loss material whereas fast rotators (and apparently also flat slow ro-
tators) have progressively fainter X-ray halos the flatter and more
rotationally-supported they appear.

3.2 High X-ray Resolution Sample

The previous conclusions on the more limited ability of fast-
rotating, or even more generally just flat, early-type galaxies to re-
tain their halos of hot gas have to be taken with care given that they
are based on X-ray data of rather coarse spatial resolution where
the contribution from a central AGN, the intra-group or -cluster
medium or LMXBs to the total LX values can only be estimated,
and which in the case of LMXBs is known to be the subject of
considerable scatter.2 It is therefore important to ask whether our
results hold when such factors can be properly isolated through the
use of Chandra or XMM.

Recently, Boroson, Kim, & Fabbiano (2011) published one of
the largest samples of early-type galaxies with consistently derived
LX,gas measurements, which overlaps well with the ATLAS3D

sample and excludes the dominant members of groups and clusters
of galaxies. For the objects that we have in common with the sam-
ple of Boroson et al., Fig. 6 shows how their LKσ2

e and LX,gas val-
ues compare to each other, thus allowing to directly check whether
the hot-gas luminosity corresponds to the input rate of kinetic en-
ergy from stellar-mass loss. The use of the same color coding and

2 If we consider that globular clusters (GCs) may be the birthplace of
the LMXB population in galaxies (e.g. Sarazin, Irwin, & Bregman 2000;
White, Sarazin, & Kulkarni 2002; Zhang, Gilfanov, & Bogdan 2012) and
that in turn lenticular galaxies may have a lower specific frequency SN of
GCs than elliptical galaxies (Kundu & Whitmore 2001a,b), it may be even
possible that a systematically smaller number of LMXBs in fast rotators
contributes to their lower X-ray luminosity. Nearly all (94%) S0 galaxies
and most (66%) Es belong in fact to the class of fast-rotating galaxies (Pa-
per III).

c� 2012 RAS, MNRAS 000, 1–16

Figure 1.1: LX versus LK of the ATLAS3D sample of Sarzi et al. (2013). The
elliptical symbols are coded by colour and flattening according to the degree of
rotational support and the apparent ellipticity of the galaxies they are representing.
Low and high values of λRe correspond to slow and fast rotators (Emsellem et al.
2007). The solid line represents the expected contribution to the observed LX values,
with uncertainties, from the unresolved emission of low mass X-ray binaries, as given
in Boroson et al. (2011).

support; the TX values of fast rotators keep below 0.4 keV and do not scale with σe.
Summarizing, there seems to be a dependence of the hot gas content and temperature
on the galactic shape and internal dynamics. The investigation of the origin of this
dependence is the one of the main goal of the present Thesis.

From an observational point of view, the determination of the origin of these
trends is not trivial. In fact, since rotation is dependent on flattening, only galaxies
sufficiently flattened are expected to rotate significantly; moreover, given that the
observed flattening in real objects is biased by projection effects, intrinsically flattened
galaxies, if observed face-on, can be found in the region occupied by rounder galaxies
in the ellipticity-X-ray properties diagrams, increasing the scatter in the observed
trends. Thus, it is difficult to observationally disentangle purely rotational and purely
flattening effects.

Theoretically, different explanations have been proposed, and explored both
analytically (Ciotti & Pellegrini 1996, hereafter CP96; Posacki et al. 2013b, hereafter
P13) and numerically (Brighenti & Mathews 1996; D’Ercole & Ciotti 1998, hereafter
DC98). The proposed explanations can be classified in two broad categories: the ener-
getic ones and the hydrodynamical ones. Of course, the difference is not sharp, as the
flow energetics affects the hydrodynamical evolution, and different hydrodynamical
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configurations lead to different redistributions of the energy available. Explanations
based on energetic effects suppose that the ISM in flat and rotating ETGs is less
bound than in rounder and non rotating galaxies of similar luminosity, so that in
the former objects the ISM is more prone to develop a global/partial galactic wind,
with the consequent decrease of LX. A subdivision of energetic explanations is given
by flattening effects versus rotational effects: the former supposes that flat galaxies
have shallower potential wells than rounder galaxies of similar luminosity, so the gas
is less bound (independently of the galaxy kinematical support, ordered rotation or
velocity dispersion); the latter assumes that the gas injected in the galaxy retains the
stellar streaming motion, and so it is less bound in rotating galaxies than in velocity
dispersion supported galaxies of similar shape. Note that, at variance with the stellar
random kinetic energy Lσ which is always supplied to the ISM (equation 2.29), the
thermalization of the stellar ordered kinetic energy Lv depends on the relative motion
between the stellar population and the ISM (equation 2.30), therefore it cannot be
predicted a priori from the galaxy structure and kinematics. The energetic scenario
has been explored analytically in CP96 by using two-component Miyamoto-Nagai
models, and in P13 by building a wide set of more realistic ETG models, with different
flattened structures and kinematics. These works showed that the binding energy of
the gas depends on the procedure adopted to “flatten” the galaxy models, and that
rotation affects also the hot gas temperature. Explanations based on hydrodynamical
effects are less direct. In this scenario the rotation of the gas injected in the galaxy
leads to hydrodynamical configurations of the ISM that, for different but cooperating
reasons associated with angular momentum conservation, are less X-ray luminous
than in non rotating systems. For example, the gas density in the central galactic
region is lower in rotating models, where a rotationally supported cold disc forms,
than in non-rotating ones, where the gas flows straight to the centre, forming a hot,
dense core. Thus, the X-ray faintness is not due to the onset of galactic winds, but
to redistribution of the gas inside the galaxy. The rotation is the main driver of
X-ray under luminosity, and correlation with galaxy flattening is a by-product. The
dependence of the energetics on the kinematical status of the ISM is the reason why
hydrodynamical simulations are required; the implementation of such simulations
and their results are the main subject of this Thesis.

Numerical simulations have been used in this Thesis also to explore the effects of
counter-rotating structures in ETGs. Counter-rotating discs have been observed in
the central parts of ETGs, e.g., in the cases of NGC7097 (De Bruyne et al. 2001),
NGC4478 and NGC4458 (Morelli et al. 2004), NGC3593 and NGC4550 (Coccato
et al. 2013), IC719 (Katkov et al. 2013), NGC 4473 (Foster et al. 2013) with a counter-
rotating disc summing up to the 30% of the total stellar mass, and other cases in
Kuijken et al. (1996) and in Erwin & Sparke (2002). Moreover, Krajnović et al. (2011)
identified 19 galaxies hosting a counter rotating stellar component over the 260 ETGs
of the ATLAS3D sample (Cappellari et al. 2011). Two competing effects could be at
work as the ISM flows towards the centre of a galaxy with a counter-rotating stellar
structure. On one hand, as a consequence of cooling and conservation of angular
momentum, the infalling gas increases its rotational velocity until it reaches the region
where the counter-rotating disc lies, and then interacts with a counter-rotating mass
injection, with the consequent additional heating contribution in Lv (equation 2.30).
On the other hand, this interaction also causes a reduction of the specific angular
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momentum of the local ISM, which will reduce the local centrifugal support, and
will favour central accretion. What of the two competing effects will dominate can
be quantified only with high resolution numerical simulations.

An additional, potentially relevant effect related to ordered rotation is the possibil-
ity of large-scale instabilities in the rotating ISM, as those revealed by the simulations
of hot gas flows in S0 galaxies presented in DC98, where the formation of large scale
cold filaments are found in rotating flattened galaxies. Renewed interest in these hot
halo instabilities came after the observation in fast rotators of cold, molecular gas
discs, almost undetected in slow rotators (Davis et al. 2011; Young et al. 2011; Sarzi
et al. 2013; Davis et al. 2013). The observed molecular discs show a kinematical
misalignment that vanishes in the case of massive fast rotators, thus suggesting an
internal origin of the cold gas. Davis et al. (2011) proposed that the hot halo, formed
by the secular mass losses of the ageing stellar population, may be unstable and then
hosting cooling episodes that produce the detected cold gas. However, the physical
explanation of the lack of molecular gas in slow rotators is still debated. In this
context, the simulations have explored the formation of cold gaseous discs and the
related star formation processes in both rotating and non-rotating galaxies.

Summarizing, the main goal of the present Thesis is to investigate the dependence
of the hot gas content in ETGs on the galaxy shape and stellar dynamics by using
the ZEUS-MP 2 code to perform high-resolution, 2D hydrodynamical simulations of
gas flows in realistic, state-of-the-art models of ETGs. In particular, we aim to (1)
disentangle the effects of flattening and rotation in determining the X-ray properties
of flat and rotating ETGs, (2) investigate both the energetic and the hydrodynamical
explanations, so as to quantify their relative importance and their role in determining
the X-ray under-luminosity of flat and rotating ETGs, (3) understand the effects of
a counter-rotating stellar disc on the hot gas dynamical status, (4) probe the hot
halo instabilities in both rotating and non-rotating galaxies, estimate the consequent
star formation history and investigate the star formation effects on the halo X-ray
properties.

Given the complexity of the subject, we performed three different, but correlated,
studies. In a first, exploratory work, we followed the evolution of the hot ISM
in flat ETGs, modelled as two-component, self-consistent, axisymmetric realistic
S0 galaxies, with different degrees of rotational support, dark matter and counter-
rotation amounts. The total gravitational field, the ordered and random stellar
motions are computed by solving the Poisson and the Jeans equations with the code
described in P13. The hydrodynamical simulations account for a passively evolving
stellar population with the associated injection of mass, momentum and energy from
Type Ia supernovae and stellar winds of giant stars, along with the thermalization
of stellar streaming and random motions. In order to reduce the number of free
parameters, we focussed only on the effects of rotation and counter-rotation on the
hot halo by keeping constant the shape of the model galaxy, leaving the study of
galaxy flattening dependence for the subsequent work.

Motivated by the simulations results of the exploratory work, we expanded our
research by performing hydrodynamical simulations of a large set of realistic, state-of-
the-art galaxy models constructed with the P13 code and tailored to reproduce the
observed properties and scaling laws of ETGs. The galaxy models are characterised
by different stellar mass, intrinsic flattening, distribution of dark matter, and internal
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kinematics.
In the two previous works we found an ubiquitous presence of cooling episodes and

formation of cold discs in rotating systems, due to angular momentum conservation;
these are absent in velocity dispersion supported galaxies. For this reason, we
investigated the effects of the star formation in ETGs on hot flows in a third work,
where the numerical code accounts for star formation and Type II SNe explosions, as
well as the injection of energy due to the thermalization of the random and ordered
motions of the new stellar population. We re-simulated a sub-group of the previous
entire large set of galaxies with different star formation schemes and efficiencies, in
order to provide an adequate covering of the parameter space. Finally, we are now
moving to consider also the effects of AGN feedback in a joint work in collaboration
with G.S. Novak and J.P. Ostriker.

The Thesis is organized as follows. In Chapter 2 we describe the galaxy models,
the physical processes considered in the simulations and the adopted numerical
code. In Chapter 3 we present our exploratory work on the X-ray emission of S0
galaxies, while Chapter 4 is dedicated to the exploration of hot flows in a large set
of ETGs with different shape and internal kinematics. The studies regarding the
star formation, its effects on the X-ray coronae, and the ongoing work related with
AGN feedback simulations are presented in Chapter 5. In Chapter 6 we draw our
conclusions.





Chapter 2

The simulations

In the last two decades, numerical simulations became an essential tool in astrophysics,
allowing the study of an astonishing variety of physical phenomena on a different
scales, ranging from the large scale structure formation, to cluster and galaxy
evolution, down to accretion on BHs, even in presence of a complex physics (e.g.
cooling, star formation, AGN feedback, accretion disc, nuclear reactions, etc). The
main focus of this Thesis is simulate the hot, X-ray emitting halos of ETGs. Given the
great variety of physical phenomena present in the ISM evolution (cooling, formation
of cold discs and star formation, to mention a few), this study would have been
impossible without numerical hydrodynamical simulations.

We adopted the ZEUS-MP 2 code (Hayes et al. 2006), widely used in the as-
trophysical community, to perform 2D hydrodynamical simulations of ETGs X-ray
haloes. Since ZEUS-MP 2 is a general purpose fluid dynamical code, the compu-
tational core of the original (public) version includes only the standard equations
of fluid dynamics (i.e. without source or sink terms). Moreover, it lacks of all the
astrophysical processes typical of a galactic environment, such as the baryon cooling
or the evolution of the stellar population. Finally, the initial conditions (stellar
model, dark matter halo and central black hole) must be set by the user.

We modified the code to simulate realistic, axisymmetric, two-component state-
of-the-art galactic models having self-consistent rotation, random motions and self-
gravity, calculated with a dedicated Jeans code (P13; Posacki 2014). In addition,
we incorporated new physical processes, such as the ISM radiative cooling, the
self-consistent injection of mass, momentum and energy by stellar winds and type Ia
SNe, star formation, type II SNe feedback, and thermalization processes of the mass
ejected by stars when it hits the ISM in situ.

The intent of this Chapter is to give a complete description of the new physical
modules implemented in the code. The Chapter is organised as follows. In Section 2.1
we describe the structural and dynamical properties of the galaxy models. In
Section 2.2 we present the detailed input physics of the numerical code, while
Section 2.4 the code numerical methods are reported.
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2.1 The galaxy models

For the simulations we adopted axisymmetric two-components state-of-the-art galaxy
models, produced by a dedicated code built on purpose (P13; Posacki 2014). Here
we summarize the building process and the main features of the galaxy models.

Each galaxy model consist of a stellar distribution, embedded in a gravitational
field due to the different contributions of the stellar population self-gravity, a dark
matter halo (DM) and a central BH. The code can produce various type of stellar
profiles having different intrinsic shape and flattening, among which we employed the
de-projection (Mellier & Mathez 1987) of the de Vaucouleurs (1948) law, generalized
for ellipsoidal axisymmetric distributions,

ρ∗(R, z) = ρ0ξ
−0.855e−ξ

1/4
, (2.1)

ρ0 =
M∗b

12

16πqR3
e 0Γ(8.58)

, ξ =
b4

Re 0

√
R2 +

z2

q2
, (2.2)

where (R,ϕ, z) are the cylindrical coordinates and b ' 7.67. The flattening is
controlled by the parameter q 6 1, so that the minor axis is aligned with the z
axis. Re 0 is the projected half mass radius (effective radius) when the galaxy is seen
face-on; for an edge-on view, the circularized effective radius is Re = Re 0

√
q. While

we applied the de Vaucouleurs (1948) profile to describe the stellar surface brightness
of elliptical galaxies in Negri et al. (2014b), we employed the Miyamoto & Nagai
(1975) density profile

ρ∗(R, z) =
M∗b

2

4π

aR2 + (a+ 3ζ)(a+ ζ)2

ζ3 [R2 + (a+ ζ)2]5/2
, (2.3)

to simulate S0 galaxies (Negri et al. 2014a), where a and b are scalelenghts, ζ ≡√
z2 + b2. For a = 0, equation (2.3) reduces to the Plummer (1911) model, while for

b = 0 to the Kuzmin (1956) disc.
As a DM halo, we adopted the spherical untruncated Navarro-Frenk-White profile

(Navarro et al. 1997, hereafter NFW):

ρh(r) =
ρcrit δcrh

r(1 + r/rh)2
, (2.4)

Φ(r) = −4πGρcritδcr
3
h

ln(1 + r/rh)

r
, (2.5)

where r =
√
R2 + z2 and ρcrit = 3H2/8πG are the spherical radius and the critical

density for closure, respectively. The total mass of the NFW profile diverges, so we
refer to the DM mass enclosed within r200 (the radius of a sphere of mean interior
density 200ρcrit), as to the halo mass Mh. The concentration parameter c ≡ r200/rh

and the δc coefficient are related as

δc =
200

3

c3

ln(1 + c)− c/(1 + c)
, c ≡ r200

rh
. (2.6)
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Recently, the Einasto (1965) profile has been reconsidered as a suitable choice to
model DM haloes (Navarro et al. 2004; Merritt et al. 2006; Gao et al. 2008; Navarro
et al. 2010). The spherical Einasto density distribution is the three dimensional
equivalent of the Sérsic law:

ρh(r) = ρce
dn−x, x ≡ dn

(
r

rh

)1/n

, (2.7)

Φh(r) = −GMh

r

[
1− Γ(3n, x)

Γ(3n)
+
xnΓ(2n, x)

Γ(3n)

]
, (2.8)

where rh is the half mass radius, n is a free parameter, and ρc = ρh(rh) =
Mhd

3n
n e
−dn/(4πnΓ(3n)r3

h) is the density at the spatial half-mass radius. For dn
we use the asymptotic relation

dn ' 3n− 1

3
+

8

1215n
(2.9)

(Retana-Montenegro et al. 2012).
The stellar and DM halo profiles are discretized on a high-resolution numerical

grid in cylindrical coordinates, then the stellar gravitational potential, the radial and
vertical forces are calculated by solving the Poisson equation. Afterwards, the same
code solves the Jeans equations

∂ρ∗σ
2

∂z
= −ρ∗

∂Φtot

∂z
, (2.10)

∂ρ∗σ
2

∂R
+ ρ∗

σ2 − v2
ϕ

R
= −ρ∗

∂Φtot

∂R
, (2.11)

where Φtot is the total gravitational potential (due to stars, dark matter and BH),
and σ is the stellar velocity dispersion (see below). The stellar random and ordered
motions are therefore calculated. As well known (Ciotti & Pellegrini 1996; Ciotti 2000),
for a two-integral distribution function the radial and vertical velocity dispersion are
equal, σR = σz ≡ σ, and the only non-zero streaming motion is in the azimuthal
direction. However, the Jeans equations provides only v2

ϕ, so that we adopted the
Satoh (1980) k-decomposition to calculate the stellar streaming velocity

v2
ϕ = k2

(
v2
ϕ − σ2

)
, (2.12)

and the azimuthal velocity dispersion

σϕ = σ + (1 + k2)(v2
ϕ − σ2), (2.13)

where 0 ≤ k ≤ 1. In the case k = 0, no streaming motions are present and all
the flattening is due to the azimuthal velocity dispersion, whereas the case k = 1
represents the isotropic rotator. In principle, the k parameter is a function of the
position on the (R, z) plane, and so more complicated rotational velocity fields can
be realized (e.g. see Chapter 3 and Negri et al. 2014a).

Finally, all the galaxy model physical fields are then interpolated from the original
high-resolution cylindrical grid on the hydrodynamical mesh by a separate code,
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via bilinear interpolation (Press et al. 1992). In addition, in the case of a hydro
simulation in spherical coordinates, the code transforms all the vector quantities1

(stellar and DM gravitational fields) from cylindrical to spherical components by
means of equation B.8.

2.2 The input physics

In this section we present the input physics implemented in the ZEUS code, while the
detailed numerical schemes are presented in Section 2.4. As usual in numerical works
of hot flows in ETGs (D’Ercole & Ciotti 1998; Ciotti & Pellegrini 1996; Negri et al.
2014a,b), in order to simulate the evolution of ETGs over cosmic time-scales, we
account for: (1) passive stellar evolution, (2) star formation and Type II supernovae
explosions, (3) radiative cooling. Moreover, we included the treatment of the ISM
viscosity.

2.2.1 Passive stellar evolution: stellar winds and SNe Ia

The principal ingredient of the ETGs evolution is the initial stellar population, which
evolves in a passive fashion. Two main contributions due to the primordial stellar
population can be identified: gas injections from post main-sequence stars via stellar
winds, which is the dominant source of mass in isolated ETGs, and Type Ia SNe
explosions. Both the physical processes inject mass (due to stellar winds and SN
ejecta mass), momentum (due to ordered streaming motions of the parent stars)
and energy (by SNIa explosions and thermalization of random and streaming stellar
motions) in the ISM.

The rigorous derivation of the hydrodynamical equations with multiple isotropic
source fields is given in Section A.2; by characterizing the mass and specific energy
injection rates of the two physical processes we can explicitly write the source
terms present in equations (A.48)-(A.50). In addition, the source terms are further
simplified by the fact that the two sources belong to the same stellar population,
thus they share the same kinematical properties. The mass injection rate due to
stellar winds and SNIa explosions are parametrized respectively by ρ̇SN = αSN(t)ρ∗
and ρ̇∗ = α∗(t)ρ∗ (Pellegrini 2012), where

αSN(t) =
1.4M�
M∗

RSN(t), (2.14)

α∗(t) = 3.3× 10−12t−1.3
12 (yr−1). (2.15)

For the SNIa explosion rate RSN(t), we adopted the parametrization

RSN(t) = 0.16H2
0,70 × 10−12LBt

−s
12 (yr−1), (2.16)

where H0,70 is the Hubble constant in units of 70 km s−1 Mpc−1, LB is the present
epoch B-band galaxy luminosity in blue solar luminosities, t12 is the age of the stellar

1In the case of axisymmetric galaxy models, it can be proved that the following relation holds:
σR = σz = σr = σθ ≡ σ, therefore σ on the spherical mesh is simply calculated via bilinear
interpolation, as all scalar fields, e.g. the stellar density.
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population in units of 12 Gyr, and s parametrizes the past evolution. Equation (2.15)
holds for a Kroupa Initial Mass Function (Pellegrini 2012). The SNIa’s heating rate
is obtained as LSN(t) = ESNRSN(t) erg yr−1, where ESN = 1051 erg is the kinetic
energy of one event. Following recent theoretical and observational estimates of the
SNIa explosion rate (Mannucci et al. 2005; Greggio 2005, 2010; Sharon et al. 2010;
Maoz et al. 2011), we adopted s = 1. The momentum injection term accounting for
both the sources follows directly from equation (A.49) and it is equal to ρ̇(vϕêϕ−u),
where we defined ρ̇ ≡ ρ̇SN + ρ̇∗.

At variance with the mass and momentum explicit source terms, which have been
calculated in an exact way, the energy injection requires an in-depth analysis. From
equation (A.50), the exact source term for a generic isotropic source field is given by:

Ė =
ρ̇

2

[
‖v − u‖2 + Tr(σ2)

]
+ ρ̇

(
einj +

u2
s

2

)
, (2.17)

where ρ̇, v, u, einj, us, σ2 are the mass injection rate per unit volume, the source
streaming velocity field, the velocity of the ambient gas, the internal energy per unit
mass of the injected gas, the modulus of the relative velocity of the injected material
and the source (i.e., the velocity of the stellar winds and of the SNIa ejecta), and
finally the velocity dispersion tensor of the source field. In the case of SNIa’s mass
input, the thermalization of random motions is usually neglected, due to the high
velocity of the ejecta us =

√
2ESN/1.4M� ' 8.5× 103 km s−1, far above the typical

value of the velocity dispersion in ETGs (' 150 − 300 km s−1). In addition, the
ejecta is thermalized via shocks in the ISM (due to its high velocity), so that internal
energy einj of the ejected material is negligible with respect to u2

s. The opposite
applies to stellar winds: a typical red giant star injects mass in the ISM via winds
with a speed of few 10 km s−1 (Parriott & Bregman 2008b), one order of magnitude
lower than the velocity dispersion of a typical ETG, so that the contribution of the
winds internal energy and kinetic energy is usually ignored. In our work we neglect
einj term for both stellar wind and SNIa, the us term of stellar winds, but we consider
that of SNIa ejecta and all the energy injection terms related to the stellar kinematic;
this leads to the present form of the energy input from the ageing stellar population:

Ė = ρ̇SNηSN
u2
s

2
+
ρ̇

2

[
‖vϕêϕ − u‖2 + Tr(σ2)

]
, (2.18)

where we adopted a thermalization efficiency equal to 0.85 for the kinetic energy
input from SNIa (e.g. Thornton et al. 1998; Tang & Wang 2005). An important point
follows from the adopted trend of mass and energy injections. Given that LSN is
typically larger than the integrated contribution from the thermalization of random
and ordered motions, due the high velocity of SNIa ejecta, we can approximate the
specific heating as Ė/ρ̇ ' usαSN/α∗ ∝ t0.3. This difference in the time dependence of
the mass and energy inputs from the evolving stellar population produces a long-term
time-increase of the specific heating of the input mass. In other words, the injected
mass from the passively evolving stellar population is hotter and hotter as time
increases.
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2.2.2 Star formation and SNe II heating

Star formation is often regarded as the most challenging problem in hydrodynamical
simulations. A complete and self-consistent simulation of star formation in a galactic
environment is nearly impossible, due to the extremely complex physics involved
(magnetic fields, gas self-gravity, bipolar diffusion of the primordial cloud, molecular
formation and dust shielding, to name a few; for a review see Larson 2011, 2012).
For this reason, we adopted the Kennicutt (1998) recipe that reproduce the empirical
Kennicutt-Schmidt law for star formation (Schmidt 1959; Kennicutt 1998), which
links the star formation rate (SFR) to the local ISM density. Following Ciotti &
Ostriker (2012) and references therein, the local star formation rate per unit volume
is given by

ρ̇SF = ηSF
ρ

tSF
, tSF = max(tcool, tdyn), (2.19)

where 0.01 6 ηSF 6 0.1 is the star formation efficiency, and the involved time-scales
are the cooling (the ISM must be cold to form a star) and the Jeans one (the ISM
must reach a critical density in order to collapse by self-gravity):

tcool ≡ E/L , tdyn ≡
√

3π

32Gρ
, (2.20)

where G is gravitational constant. When star formation takes place in a compu-
tational cell, the cold ISM is removed from the numerical grid and a new stellar
population appears. While the mass sink term related to the star formation episode
is straightforward, being equal to the negative of ρ̇SF, the momentum and energy sink
are not trivial, since they depend on the cold cloud collapse process. We assumed
that the cloud gas sink velocity is that of the local ISM, therefore the sink term in
the momentum equation A.49 is identically zero, while the energy sink term is:

ĖSF =
ηSFE

tSF
, (2.21)

where E is the ISM internal energy density.
For a given mass ∆M∗ = ρ̇SF∆t∆V of new stars formed in a computational cell

of a given volume ∆V , by assuming a Salpeter IMF (x > 1, M ≥Minf = 0.1 M�)

dN

dM
= (x− 1)

∆M∗
M2

inf

×
(
M

Minf

)−1−x
, (2.22)

the number of stars having a mass greater than MII = 8 M�, that will explode as
Type II SNe, are:

N =

(
1− 1

x

)(
Minf

MII

)x ∆M∗
Minf

' 7× 10−3 ∆M∗
M�

, (2.23)

where x = 1.35 (for details see Ciotti & Ostriker 2012). By assuming that each
SNII leaves a remnant of 1.4 M�, the total mass injected by SNIIe formed in a
computational cell is ' 0.2∆M∗, while they will injects a total amount of energy
equal to

εII =
NESNηSN

∆M∗c2
' 3.9× 10−6ηSN. (2.24)
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To recover the mass source term ρ̇II for Type II SNe we have to consider that,
on one hand, a given star formation episode generates SNIIe that will exponentially
decline their mass and energy output on a time-scale τII = 2× 107 yr. On the other
hand, at a certain time t1 during the evolution of the very first SNIIe formed by the
code, another star formation episode may take place, which forms younger SNIIe that
in turn will eject into the ISM a mass of hot gas equal to 0.2ρ̇SF(t1). This process
can be formalized as:

dρ̇II

dt
= − ρ̇II

τII
+

0.2ρ̇SF

τII
. (2.25)

By solving equation (2.25), the mass source term related to SNIIe is obtained, while
the energy injection due to the ejecta thermalization is ρ̇IIεIIc

2.
As for the initial stellar population, the random and streaming motions of the

SNIIe are thermalized via inelastic mixing of the ejecta in the ISM. However, in
the case of the primordial stars, the stellar kinematics is determined by the initial
conditions, whereas the velocity dispersion and azimuthal motions of the new stars
are, in principle, a function of the pre-existing cold cloud that generated them, and
they can even possess a non-vanishing velocity on the (R, z) plane (e.g. in the case
of a cold clump that forms stars while falling towards the galaxy centre)2. However,
since the natural places for star formation are the rotationally supported discs formed
by cooled gas (see Chapter 3 and 4), we assumed that the every new stellar population
formed inherits all the kinematical features of the initial stellar component. Thus,
the total heating due to Type II SNe is

ĖII = ρ̇IIεIIc
2 +

ρ̇II

2

[
‖vϕêϕ − u‖2 + Tr(σ2)

]
. (2.26)

2.2.3 Radiative cooling

The radiative cooling is implemented by adopting a modified version of the cooling
law reported in Sazonov et al. (2005). We neglect the Compton heating/cooling and
the photo-ionization heating, allowing only for line and recombination continuum
cooling. As usual in numerical simulations of hot flows in ETGs, we impose a lower
limit for the ISM temperature of 104 K by modifying the cooling function at low
temperatures, in order to obtain a smooth decline of the radiative emission as the
temperature of a cooling element approaches the limit value. With these assumptions,
our version of the cooling function, derived from equation (A32) of Sazonov et al.
(2005), becomes L = n2

HΛ(T ), where nH is the hydrogen number density and

Λ(T ) =
[
S1(T ) + 10−23a(T )

](
1− 104 K

T

)2

(erg s−1 cm3), (2.27)

when T ≥ 104 K and Λ(T ) = 0 otherwise (Figure 2.1). The coefficients in equa-
tion (2.27) are, in the cgs system, S1(T ) = −3.8× 10−27

√
T and

a = − 18

e25(log T−4.35)2
− 80

e5.5(log T−5.2)2
− 17

e3.6(log T−6.5)2
. (2.28)

2Even in the case of vanishing meridional velocity for a new stellar population, it is very unlikely
that a star is formed directly on a circular orbit; thus the process of asymmetric drift may take
place for every stars formed during the entire simulation.
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Figure 2.1: The bolometric cooling function Λ(T ). For temperatures lower than
104 K the gas does not lose energy via radiative emission.

2.3 The contribution of stellar kinematics to the ISM
energetics

One of the main goal of this Thesis is to study the effects of flattening and ordered
rotation on the ETGs X-ray coronae. Analytical studies, based on global energetics
arguments, showed that different and competitive effects should be taken into account
(CP96, Pellegrini 2011, P13). However, the effects of rotation on the flow energetics
are not trivial to predict from first principles. Indeed, the stellar population injects
energy via SNIa explosions and thermalization of stellar motions (see equation 2.18).
At variance of the stellar random kinetic energy

Lσ ≡
1

2

∫
ρ̇Tr(σ2) dV, (2.29)

which is always supplied to the ISM, the thermalization of stellar ordered (streaming)
motions, which provides an energy input per unit time to the ISM of

Lv ≡
1

2

∫
ρ̇ ‖v − u‖2 dV

=
1

2

∫
V
ρ̇(u2

R + u2
z) dV +

1

2

∫
V
ρ̇(vϕ − uϕ)2 dV = Lm + Lϕ,

(2.30)

depends on the relative motion between stars and ISM, thus it cannot be predicted
a priori from the knowledge of the galaxy structure and kinematics. Note that in
our galaxy models v = vϕêϕ, and Lm and Lϕ are respectively the energy input rate



2.4 The code 15

due to the ISM velocity in the meridional plane (R, z), and to the relative velocity
of stars and the ISM in the azimuthal direction.

To parametrize the amount of thermalization of the stellar streaming motions,
and to compare the results of the hydrodynamics simulations with the global energetic
estimates, we introduce the thermalization parameter

γth ≡ Lv/Lrot, (2.31)

where
Lrot ≡

1

2

∫
ρ̇v2
ϕ dV (2.32)

is the energy input per unit time that would be injected in a galaxy with an ISM
at rest (i.e., u = 0), due to thermalization stellar streaming motions. Note that γth

is undefined (formally, it diverges) for velocity dispersion supported models, and
can be very large for slow rotators and/or for gas flows with large velocities in the
meridional plane (as in the case of galactic winds). Using these definitions, the total
energy supplied to the ISM due to thermalization of stellar motions can be written as

Lkin ≡ Lσ + Lv = Lσ + γthLrot. (2.33)

Of course, Lσ decreases when increasing the galaxy rotational support, at fixed
galaxy structure. Note that, if γth = 1, the virial theorem assures that at fixed
galaxy structure, Lkin is independent of the level of rotational support. In the other
extreme case, if γth = 0, the gas is injected everywhere with the same local velocity
of the ISM, and then Lkin decreases for a larger rotational support. However, ordered
rotation acts also in a competing way, i.e., it tends to unbind the gas; therefore,
when rotation is unthermalized, the ISM is less heated but it is also less bound.
Which of the two competing effects dominate can be inferred only with the aid
of hydrodynamical simulations: a goal of this Thesis is to determine which of the
two competing effects dominate, and to obtain estimates of γth that can be used in
analytical works (P13). Finally, all the luminosities defined above can be converted
into equivalent temperatures as

Tσ =
µmp

3kBM∗

∫
ρ∗Tr(σ2) dV, Trot =

µmp

3kBM∗

∫
ρ∗v

2
ϕ dV, (2.34)

where kB is the Boltzmann constant, mp is the proton mass and M∗ is the total
stellar mass, so that

Tkin = Tσ + γthTrot; γthTrot = Tm + Tϕ. (2.35)

2.4 The code

The ZEUS-MP 2 code (Hayes et al. 2006) is a widely used general purpose magneto-
hydrodynamical, Eulerian, operator splitting, fixed mesh, second order upwind
code which operates in one, two and three dimensions in Cartesian, spherical and
cylindrical coordinates. In the following we present the hydrodynamical equations
solved by the code, and the adopted numerical schemes.
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Coordinate system x1 x2 x3 dV1 dV2 dV3 g31 g32

Cylindrical z R ϕ dz R dR dϕ 1 R
Spherical r θ ϕ r2 dr sin θ dθ dϕ r sin θ

Table 2.1: ZEUS numerical grid formalism. In the coordinate independent formalism,
the three spatial coordinates are denoted as (x1, x2, x3), and the total volume of a
single cell is dV1 dV2 dV3 (for details see Stone & Norman 1992; Hayes et al. 2006).

2.4.1 The hydrodynamical equations

The code has been modified to take into account all the source and sink terms listed
in the previous Section, thus the equations of the hydrodynamics solved by the code
are

∂ρ

∂t
+∇·(ρu) = ρ̇SN + ρ̇∗ + ρ̇II − ρ̇SF, (2.36)

ρ
∂u

∂t
+ ρ (u · ∇)u = −∇p− ρ∇Φtot + (ρ̇SN + ρ̇∗ + ρ̇II)(vϕêϕ − u), (2.37)

∂E

∂t
+∇·(Eu) = −p∇·u−L + Ė + ĖII − ĖSF, (2.38)

where ρ, u, E, p, Φtot, and L are respectively the ISM mass density, velocity, internal
energy density, pressure, total gravitational potential, and bolometric radiative losses
per unit time and volume. As usual, the gas is assumed to be an ideal monoatomic
fully ionized plasma, so that p = (γ − 1)E, where γ = 5/3 is the adiabatic index.
The chemical composition is fixed to solar (µ ' 0.62), and the gas self-gravity is
neglected.

2.4.2 Numerical methods

The additional physics modules have been implemented with an operator-splitting,
Forward Time Centered Space (FTCS) differencing scheme by adding a new sub-step
in the ZEUS source step for each source/sink term, in conformance with the ZEUS
numerical methods. The transport step is unmodified with respect to the public
version. The discretization of equations (2.36)-(2.38) on the ZEUS grid (see Figure 2.2
and Table 2.1) with the FTCS is straightforward, e.g. in the case of the continuity
equation:

ρn+1
i,j,k − ρ

n
i,j,k

∆t
= ρ̇SNi,j,k + ρ̇∗i,j,k + ρ̇IIi,j,k − ρ̇SFi,j,k , (2.39)

where ρni,j,k and ρn+1
i,j,k are the old and new density values at (x1bi, x2bj , x3bk). The

same simple scheme applies also for the momentum and energy equations, except for
the cooling term in L in equation (2.38), see below. In addition, the mass injection
rate of SNII is calculated by discretizing equation (2.25) as

ρ̇n+1
IIi,j,k

=

(
1− ∆t

τII

)
ρ̇nIIi,j,k +

0.2∆t

τII
ρ̇n∗i,j,k , (2.40)
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Figure 2.2: Spatial position of an arbitrary point on a (x1, x2) slice. The discretized
variables on the ZEUS computational domain are denoted by the staggered coordinate
vectors x1ai or x1bi, and x2aj or x2bj . The a-mesh values are located at zone edges;
the b-mesh values are located at zone centres. The dots denote the centring and
indexing of zone-centred (scalars) and face-centred (vectors) variables on the mesh.
As a consequence, the scalar quantities ρ, Φ, E, ρ∗, uϕ, σ and σϕ are centred in
(x1bi, x2bj), whereas the first and second components of the velocity field are centred
in (x1ai, x2bj) and (x1bi, x2aj), respectively.

where ∆t is the simulation global time-step. Equation (2.40) allows to save computa-
tional storage, since it requires only the information at the previous time-step, thus
avoiding the storing of the entire star formation history in every gridpoint at every
time.

Due to the ZEUS explicit scheme, the global hydrodynamical time-step ∆t takes
into account the Courant–Friedrichs–Lewy stability condition imposing a minimum
value ∆thyd (equation 60 in Hayes et al. 2006). Our input physics leads to the
introduction of additional characteristic times, associated with the injection of mass
and energy:

∆tρ =
ρ

ρ̇SN + ρ̇∗ + ρ̇II + ρ̇SF
, ∆tc =

E

L
, ∆th =

E

Ė + ĖII + ĖSF

. (2.41)

The momentum time-step requires a special treatment: if a non-rotating blob of gas
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Figure 2.3: Numerical grid resolution in the radial direction (the same is adopted for
the z direction). Every dot is a numerical gridpoint of the computational mesh.

hits a grid characterized by a rotating stellar population, a normal prescription as
the ones above returns a null time-step. Thus, after several tests, we adopted a floor
value ∆tmin = 1 Myr for the momentum time-step only, obtaining

∆t−2
m = ∆t−2

min + ∆t−2
ρ

(vϕ − uϕ)2

u2
ϕ

. (2.42)

As a consequence, the global time-step is

∆t ≡ Ccfl√
∆t−2

hyd + ∆t−2
c + ∆t−2

ρ + ∆t−2
h + ∆t−2

m

, (2.43)

where Ccfl is the Courant coefficient (set to 0.5), and the minimum value of ∆t over
the numerical grid is considered.

While almost all the integration of equations (2.36)-(2.38) is performed by using
an explicit temporal advancement (as prescribed by FTCS), for the integration of
the cooling function we tested two different numerical algorithms: the fully explicit
Bulirsch–Stoer method and the fully implicit Bader–Deuflhard method (Press et al.
1992). All the results presented in this work are based on the fully implicit algorithm,
since it is far less computational time-consuming, and it allows to drop the cooling
time-scale from equation (2.43), while giving the same global evolution of the hot
gas flows (as proved with several tests).
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2.4.3 Code setup and outputs

The code is used in a pure hydro, 2.5D axisymmetric configuration (i.e. every
physical quantity depends only on two spatial variables although the simulation is
three dimensional) with a non uniform (logarithmic) computational mesh (R, z) of
480 × 960 gridpoints, having a resolution of ' 90 pc in the first 10 kpc from the
centre, as shown in Figure 2.3. Reflecting boundary conditions were set along the
z-axis, while on the outer edge of the simulated box the fluid is free to flow out of
the computational grid. In this work we adopted a cylindrical grid in order to better
resolve the regions near the equatorial plane, where a cold disc may form. Clearly,
such a choice is quite expensive in terms of computational time, as more gridpoints
than in the spherical case are needed, in order to maintain the shape of the grid
reasonably regular with a logarithmic spacing. We verified by performing several
tests that the code provides an excellent conservation of total mass and energy, where
the former is given by

Mgas(t) +Mesc = Minj +M II
inj −M∗new, (2.44)

where Mgas and Mesc are the gas mass present into the simulation box at a given
time t and the cumulative mass escaped, M∗new, Minj and M II

inj are the cumulative
mass of new stars, the cumulative mass injected by the passively evolving stellar
population and by the SNIIe events, respectively; e.g.

Minj =

∫ t

t0

∫
V

(ρ̇SN + ρ̇∗) dV dt, (2.45)

being t0 the simulation initial time. The conservation of energy can be written as∫
V

(Ė −L + ρ̇Φ) dV =
dEtot

dt
+

∫
S

(
e+

p

ρ
+
‖u‖2

2
+ Φ

)
ρu · n̂dS, (2.46)

where Ė is the total injection/sink of energy, ρ̇ is the total injection/sink of mass,
e = E/ρ is the ISM internal energy per unit mass, Etot =

∫
(e+ ‖u‖2 /2 + Φ)ρdV ,

and the two integrals are extended over the whole numerical grid and its boundary,
respectively.

The hydrodynamical fields are saved every 100 Myr, while grid-integrated quan-
tities, such as Minj, Mesc, M∗new, M II

inj, the hot and cold gas mass (Mhot, having
T ≥ 106 K and Mc ≤ 104 K), the integrated SNIIe luminosity LII, Lrot, Lσ, Lv,
Lm, Lϕ, the SFR, the mean time of the SFR peak (〈t〉∗), the X-ray emission in the
0.3–8 keV Chandra band LX, and the X-ray emission weighted temperature (TX)
are sampled with a time resolution of 1 Myr. The mean time of the SFR peak is
calculated as

〈t〉∗ =
1

M∗new(t)

∫ t

t0

(t′ − t0)SFR(t′) dt′ dV, (2.47)

while LX and TX are calculated using the thermal emissivity

εX ≡ 10−14neni(ΛX1(T ) + ΛX2(T )) erg s−1 cm−3 (2.48)
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Table 2.2: X-ray emissivity coefficients, see equations (2.49)-(2.50).
Λ1X(T ) Λ2X(T )

a 36.6899× 100 1.42382× 10−8

b 8.19020× 100 7.26800× 100

c 3.69232× 10−8 2.71451× 10−10

d 1.48406× 10−9 3.18379× 100

e 1.13656× 10−11 6.20760× 10−3

f 4.04378× 100 4.51332× 100

g 3.43352× 100 2.12548× 100

h 7.01936× 10−9 5.47970× 10−4

i 5.4211× 10−9 5.00962× 10−3

l 1.51675× 10−9 2.39339× 10−1

m 1.07104× 10−9

n 1.65655× 10−9

o 1.41044× 10−9

p 3.71927× 10−2

q 1.20299× 100

r 1.73516× 100

over 0.3–8 keV emission of a hot, collisionally ionized plasma, using the spectral
fitting package xspec3 (spectral model apec, Smith et al. 2001, see also Figure 2.4),
where ne and ni are the electron and ion number density. The two functions Λ1X(T )
and Λ2X(T ) are expressed (in erg s−1 cm3) by the following equations:

Λ1X(T ) ≡



aT 2 − bT + 1

cT 2 − dT + e
, 0.03 < T < 0.3 keV,

fT 2 − gT + 1

hT 2 − iT + l
, 0.3 < T < 0.7 keV,

mT 2 − nT + o

pT 3 + qT 2 − rT + 1
, 0.7 < T < 16 keV,

(2.49)

Λ2X(T ) ≡



aT b, 0.045 < T < 0.17 keV,

cT d, 0.17 < T < 0.7 keV,

eT 4 + fT − g
hT 4 + iT 2 + lT + 1

10−10, 0.7 < T < 16 keV,

(2.50)

where all the temperatures are expressed in keV and the coefficients are listed in
Table 2.2. Thus:

LX =

∫
εX dV, TX =

1

LX

∫
TεX dV, (2.51)

where the integration extends over the whole computational grid. Finally, in the data

3http://heasarc.nasa.gov/xanadu/xspec/
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Figure 2.4: The 0.3–8 keV specific emissivity ΛX(T ) = 10−14(Λ1X(T ) + Λ2X(T )).

post-processing we generate the angle averaged profile of the density distribution4

ρr(r) =

∫ π

0
ρ(r, θ) sin θ dθ, (2.52)

the X-ray surface brightness and temperature maps for an edge-on5 projection

ΣX(x, z) =

∫ R=∞

R=x
εX(R, z) d

√
R2 − x2, (2.53)

Tp(x, z) =
1

ΣX(x, z)

∫ R=∞

R=x
T (R, z)εX(R, z) d

√
R2 − x2 (2.54)

where we placed the y axis of the Cartesian reference system coincident with the
line-of-sight, so that the x− z plane coincides with the plane of the sky.

2.4.3.1 Software engineering

The code is parallelized via MPI6 domain decomposition and has its roots in the
venerable (and still used) ZEUS 2D (Stone & Norman 1992), written in FORTRAN
77 in the late ’80s. Indeed, ZEUS-MP 2 is the last born of a copious family of hydro
codes, all sharing the same common ancestor, therefore a lot of old (although solid)

4In the case of simulations performed in cylindrical coordinates, the field is pre-interpolated on a
high-resolution spherical grid.

5If necessary, the integrand is pre-interpolated on a high-resolution cylindrical grid.
6http://www.mpi-forum.org/

http://www.mpi-forum.org/
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code is present and many modifications have been done over more that 20 years.
During this time, the entire world of informatics has been changed many times,
especially its High Performance Computing (HPC) branch, on both software and
hardware sides. On one hand, workstations with tens of processors are now common,
and state-of-art supercomputers are made up by ten thousands of cores, everyone
with their dedicated hardware, optimizing compiler and numerical libraries. On
the other hand, now numerical codes are required to be able to run in parallel on
hundred of processors, in order to efficiently exploit the most recent supercomputing
resources.

The public version of the code is written in a mixture of FORTRAN 77, 90
and non-standard extensions, which are no longer supported by many compiler.
A conspicuous part of the coding has been spent in removing such non-standard
features, in order to (1) ensure an high level of portability among every architecture
and (2) employ the new automatic features of the modern compilers, such as auto-
vectorization. As the rest of the code, the new implementation written on purpose for
this work strictly follows latest Fortran standards (the latest, and “modern” standards
are Fortran 95, 2003 and 2008, although the code uses only two specific instruction
of the latter). The code has been compiled and tested on an huge scale of hardware,
from a simple netbook, to workstations, to a BluGene/Q architecture, spanning from
one to thousands of processors, as well as with the Intel, GNU and IBM compilers.
In addition, the code hydrodynamical output has been rewritten from scratch, by
implementing a parallel output library based on the HDF5 file format7 (the de-facto
standard on HPC systems), which allows multiple processors to write directly a
single binary self-describing file with a single collective call, thus minimizing the I/O
overload on HPC systems.

7http://www.hdfgroup.org/

http://www.hdfgroup.org/


Chapter 3

The effects of stellar dynamics on
the X-ray emission of S0 galaxies

Negri A., Ciotti L., Pellegrini S., 2014, MNRAS, 439, 823

In this first exploratory work, we focus on the effects of galactic shape and internal
kinematics on the X-ray emitting haloes of ETGs. In particular, our aim is to
investigate the observed X-ray under-luminosity of flat rotating galaxies with respect
to rounder objects of similar mass (see Chapter 1). The proposed theoretical explana-
tions can be classified in two categories: the energetic ones, and the hydrodynamical
ones. The former can be divided into flattening effects and rotational effects: the first
explains the low LX of flat rotating galaxies with a low binding energy of the gas due
to a shallower potential of such systems, while the latter assumes that the injected
mass maintains the streaming motion of the stars, thus the ISM is less bound and it
lacks the thermalization of the stellar streaming energy (Lv in equation 2.30). In the
hydrodynamical explanations, LX is lower in rotating galaxies since the centrifugal
barrier keeps the galaxy central regions at lower density with respect to non-rotating
systems, where the ISM is free to flow directly towards the centre and a hot, denser
and brighter atmosphere is formed.

In order to investigate which of the above effects determine the under-luminosity
of flat and rotating galaxies, we simulated the evolution of the hot ISM in flat
ETGs, modelled as two-component, self-consistent, axisymmetric realistic S0 galaxies.
Various degrees of rotational support, dark matter and counter-rotation amounts are
considered. The stellar distribution consist of a Miyamoto & Nagai (1975) profile,
whereas the dark matter halo is described by an Einasto (1965) profile. The total
gravitational field, the ordered and random stellar motions are computed by solving
the Poisson and the Jeans equations with the code described in P13. However, in
order to reduce the number of free parameters, we focus only on the effects of rotation
and counter-rotation on the hot halo by keeping constant the shape of the model
galaxy and its stellar mass, leaving the study of galaxy flattening and stellar mass
dependence in the following Chapter.

The Chapter is organized as follows. In Section 3.1 the structural and dynamical
tuning of galaxy models is described, while in Section 3.2 we expose our results,
commenting the hydrodynamical features, the X-ray luminosity LX and the X-ray
luminosity weighted temperature TX. Finally, Section 3.3 summarizes our conclusions.
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3.1 Setting the galaxy models

For reference we adopt a galaxy model tailored to reproduce the main structural
properties of the Sombrero galaxy (M 104, of morphological type Sa), taken as a
representative case of a flat and rotating galaxy; at this stage, though, we are not
concerned with reproducing in detail the properties of the X-ray halo of Sombrero
(but see Section 3.2.4). The adopted stellar distribution consist of a Miyamoto &
Nagai (1975) profile, while the dark matter halo is described by an Einasto (1965)
profile, see equations (2.3)-(2.8), respectively, and Section 2.1 for the galaxies building
procedure. In all models the stellar distribution is kept fixed, as we focus on the
effects of galaxy rotation only.

For a given stellar and DM halo mass model, we consider four different cases of
kinematical support for the stellar component: the isotropic rotator (IS, k = 1), the
fully velocity dispersion supported case (VD, k = 0), the counter-rotating disc (CR),
and a velocity dispersion supported system with an inner rotating disc (RD). In
order to build the CR and RD models, the following functional form for the Satoh
parameter has been adopted

k(R, z) = kext +
ρ∗(R, z)

ρ∗(0, 0)
(kint − kext), (3.1)

to calculate vϕ and σϕ in equations (2.12)-(2.13), where ρ∗ is given by equation (2.3),
but with a = 18 kpc and b = 4 kpc. This choice of the Satoh parameter leads to a very
flattened rotating structure in the central regions of the galaxy, with k(0, 0) = kint,
while k = kext at large radii. In particular, the CR models are obtained for kint = −1
and kext = 1, while for the RD models for kint = 1 and kext = 0. Therefore, the RD
and CR models at large radii are similar to the VD and IS models, respectively.

The stellar mass of Sombrero isM∗ ' 2.3×1011 M� (Tempel & Tenjes 2006). By
adopting Sombrero’s apparent blue magnitude of 8.98 (de Vaucouleurs et al. 1991),
and a distance of 9.8 Mpc (Jardel et al. 2011), the resulting B-band luminosity is
LB ' 3.8× 1010LB,�. In order to reproduce the major photometric and kinematical
features of M 104 as given by Jardel et al. (2011), under the assumption that the
galaxy is an isotropic rotator, we fixed a = b = 1.6 kpc in equation (2.3), and
n = 4 and rh = 52.8 kpc in equations (2.7)-(2.8). The resulting DM mass of
Mh = 2.5× 1012 M� and ρc = 4.96× 10−26 g cm−3. We call this model ISi, where
the subscript “i” stands for “intermediate halo”, for reasons that will be clear in the
following. The rotational velocity and the azimuthal velocity dispersion of ISi model
are given in Figure 3.1 (left panels), superimposed on the isodensity contours of the
stellar distribution. For reference, the maximum stellar streaming velocity, in the
equatorial plane, is vϕ,max ' 396 km s−1 at R ' 3 kpc, and σ = 245 km s−1 at the
centre.

Starting from ISi, we built three more models characterized by a different internal
kinematics, but with the same stellar and DM halo distributions. In model VDi

all the galaxy flattening is supported by azimuthal velocity dispersion [k = 0 in
equations (2.12)-(2.13); Figure 3.1, right panels]; in the equatorial plane σϕ,max ' 401
km s−1 at R ' 12 kpc. In the counter-rotating model CRi (kint = −1 and kext = 1
in equation (3.1)), the equatorial negative and positive rotational velocity peaks are
−155 km s−1 and 377 km s−1, reached at R ' 2 kpc and R ' 24 kpc, respectively,
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Table 3.1: Stellar kinematics of the models.
Name k kint kext Mrot Mcrot vϕ,max σϕ,max Jz

ISi 1 – – 1.00 – 396 245 31.2
VDi 0 – – 0.00 – 0.00 401 0.00
CRi – -1 1 0.72 0.28 378 370 24.4
RDi – 1 0 1.00 0.00 200 400 3.44

ISl 1 – – 1.00 – 332 223 25.5
VDl 0 – – 0.00 – 0.00 340 0.00
CRl – -1 1 0.72 0.28 303 327 19.5
RDl – 1 0 1.00 0.00 178 338 2.99

ISh 1 – – 1.00 – 513 284 40.3
VDh 0 – – 0.00 – 0.00 516 0.00
CRh – -1 1 0.72 0.28 499 445 31.9
RDh – 1 0 1.00 0.00 239 515 4.18

Notes. For each model the columns give: the k Satoh parameter of IS
and VD models, the parameters kint and kext in equation (3.1) for CR and
RD models, the rotating (Mrot) and counter-rotating (Mcrot) stellar mass
normalized to M∗, the maximum values of the stellar streaming velocity
and of the azimuthal velocity dispersion in km s−1, and the total angular
momentum of the stars in 1073 g cm2 s−1.

while the circle of zero rotational velocity is at R ' 4.9 kpc. In practice, CRi is
similar to ISi in the external regions, but has a thin counter-rotating stellar disc in
the inner region (Figure 3.2, left panels). For this model σϕ,max ' 370 km s−1 at
R ' 5.5 kpc. Finally, in the RDi model an inner stellar rotating structure is present
(kint = 1 and kext = 0 in equation (3.1)) with vϕ,max ' 200 km s−1 at R ' 3 kpc,
while at large radii the galaxy flattening is supported by the velocity dispersion,
similarly to what happens for VDi (Figure 3.2, right panels). Note that in all these
models, by construction, the velocity dispersion fields σ = σR = σz are the same as
in model ISi (see Section 2.1), and coincide with the field σϕ of ISi.

In addition to these four models, hereafter referred to as having an intermediate
DM halo mass, we built two more groups of models, where the DM mass is doubled
with respect to the intermediate halo ones (Mh = 5 × 1012 M�; hereafter “heavy
halo” models ISh, VDh, CRh and RDh), and where the dark mass is halved (Mh =
1.25× 1012 M�; hereafter “light halo” models ISl, VDl, CRl and RDl). In the heavy
and light halo models again the stellar distribution is kept fixed, as also n and rh;
in addition the four choices for the k(R, z) field corresponding to the IS, VD, CR
and RD internal kinematic pattern are maintained (see Table 3.1). Summarizing, we
followed the ISM evolution for a set of 12 models; a few more models with “ad hoc”
modifications in the input physics have been also run, in order to test specific issues,
as discussed in the following Sections.

As usual in similar studies, the galaxy structure and dynamics are kept fixed
during the simulations, and the initial conditions assume the galaxy is devoid of gas,
as expected after the period of intense star formation, giving birth to the galaxy, is
ended by the strong feedback from type II supernovae. In this way, simulations do
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not start with an equilibrium ISM configuration, but instead the hot ISM distribution
builds-up from stellar mass losses with time increasing. All the simulations start at
an initial galaxy age of 2 Gyr, and the evolution of the gas flow is followed for 11
Gyr.

The equations of hydrodynamics and the adopted numerical methods reported
in Section 2.4. As we account only for a passively evolving stellar population, the
terms related to star formation in equations (2.36)-(2.38)(ρ̇II, ρ̇SF, ĖII and ĖSF) are
not present. Merging and gas accretion from outside are not considered; black hole
feedback is also ignored.

3.2 Results

We present here the main results of our investigation, focussing on a representative
selection of models. The detailed features of each simulated flow of course depend
on the specific galaxy model and input physics. While the parameter space is too
large for a complete exploration, fortunately, the global behaviour of the gas is quite
robust against minor changes of the input parameters; thus, a reasonable amount
of computational time is sufficient to capture the different behaviour of the flows
resulting from major variations in the structural parameters of the parent galaxy.

3.2.1 Hydrodynamics

All models, independently of their internal dynamics, evolve through two well defined
hydrodynamical phases. Initially, all the ISM properties are characterized by an
almost perfect symmetry with respect to the galaxy equatorial plane (z = 0). As
time increases, the specific heating of the stellar mass losses increases (Section 2.2.1),
and the velocity field becomes increasingly structured, in a way that is related to the
particular internal kinematical support of the stellar component, as described below.
A time arrives when the reflection symmetry is lost, and from this moment on it
is never restored. In the following we present the main characterizing features of
the gas flows in VD, IS, CR and RD models. A summary of the relevant integrated
quantities at the end of the simulations is given in Table 3.2.

3.2.1.1 VD models

We present here the time evolution of the ISM of the non-rotating, fully velocity
dispersion supported models VDi, VDl and VDh. Snapshots of various flow properties
in the meridional plane (R, z) for the VDi model, for a selection of 9 representative
times, are shown in Figs. 3.3 and 3.4. In particular, in Figure 3.3 the colours map
the ratio ∆th/∆tc (equation 2.41), with green and purple corresponding to cooling
and heating regions, respectively, while in Figure 3.4 we show the ISM temperature
field for the same times. In both figures, the arrows represent the ISM meridional
velocity field (uR, uz).

The major feature characterizing the flow of VDi is present from the beginning
of the evolution: this is the degassing along the galaxy equatorial plane, due to
the concentrated heating there, and accretion on the galaxy centre along the z-axis.
Above the plane, on a scale of ' 10 kpc, the flow is characterized by large-scale
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Figure 3.1: Meridional sections of the galaxy rotational field vϕ (top) and of the
stellar azimuthal velocity dispersion σϕ (bottom) for the ISi (left) and VDi (right)
models. Note that, by construction, the velocity dispersion components σR = σz = σ
of the two models coincides with σϕ of ISi. The stellar isodensity contours (solid lines)
correspond to a density of 1 M� pc−3 at the innermost contour, and to a density
value decreasing by a factor of ten on each subsequent contour going outwards.
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Figure 3.2: Analogue of Figure 3.1 for the counter-rotating CRi model (left), and
for the velocity dispersion supported model with an inner rotating stellar disc, RDi

(right). The rotating inner stellar disc is apparent in the top panels.



3.2 Results 29

T
ab

le
3.
2:

M
ai
n
ou

tp
ut
s
at

th
e
en

d
of

th
e
si
m
ul
at
io
ns

(1
3
G
yr
)

N
am

e
M

h
o
t

M
es

c
L
σ

L
ro

t
L

X
T

X

(1
0

9
M
�

)
(1

09
M
�
)

(1
0

4
0

er
g

s−
1
)

(1
04

0
er

g
s−

1
)

(1
04

0
er

g
s−

1
)

(k
eV

)
(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

IS
i

1.
17

2.
21

1.
85

1.
46

0.
58

0.
40

V
D

i
1.
35

2.
40

3.
31

0.
00

3.
38

0.
50

C
R

i
1.
38

2.
53

2.
58

0.
73

1.
03

0.
40

R
D

i
1.
36

2.
50

3.
13

0.
18

1.
99

0.
55

IS
l

1.
27

4.
28

1.
54

1.
06

0.
41

0.
32

V
D

l
1.
17

4.
50

2.
60

0.
00

3.
08

0.
39

C
R

l
1.
01

4.
90

2.
10

0.
50

0.
14

0.
37

R
D

l
1.
05

4.
71

2.
47

0.
14

1.
21

0.
42

IS
h

1.
16

1.
28

2.
46

2.
28

0.
24

0.
55

V
D

h
1.
68

1.
37

4.
74

0.
00

6.
40

0.
70

C
R

h
1.
52

1.
42

3.
55

1.
20

1.
60

0.
55

R
D

h
1.
54

1.
43

4.
48

0.
26

2.
63

0.
77

N
ot

es
.
(1
)
N
am

e
of

th
e
m
od

el
(2
)
H
ot

IS
M

m
as
s
w
it
hi
n
th
e
co
m
pu

ta
ti
on

al
gr
id
.
(3
)
E
sc
ap

ed
m
as
s
fr
om

th
e
gr
id

bo
un

da
ry
.
(4
)–
(5
)
L
σ
(e
qu

at
io
n
2.
29

)
an

d
L

ro
t
(e
qu

at
io
n
2.
32

).
(6
)–
(7
)
X
-r
ay

IS
M

0.
3–
8
ke
V

lu
m
in
os
it
y
L

X
an

d
lu
m
in
os
it
y
w
ei
gh

te
d
te
m
pe

ra
tu
re
T
X
(e
qu

at
io
n
2.
51
).

Fo
r
re
fe
re
nc
e,

at
13

G
yr

th
e

to
ta
l
m
as
s
in
je
ct
ed

in
th
e
ga
la
xy

fr
om

th
e
be

gi
nn

in
g
by

th
e
ev
ol
vi
ng

st
el
la
r
po

pu
la
ti
on

(s
te
lla

r
w
in
ds

pl
us

SN
Ia

ej
ec
ta
)
is
M

in
j
=

2
.2
3
×

1
0
1
0
M
�
,a

nd
th
e
SN

Ia
’s

he
at
in
g
ra
te

is
L

S
N
=

1
.5
×

1
0
4
1
er
g
s−

1
.



30 The effects of stellar dynamics on the X-ray emission of S0 galaxies

regular vortices (a meridional circulation). Due to the lack of centrifugal support,
cold gas accumulates at the centre from the beginning. Loss of reflection symmetry
of the flow occurs at t ' 4.5 Gyrs. After this time little evolution takes place, and
overall the gas velocity field slowly decreases everywhere. The flow remains decoupled
kinematically: the axial inflow-equatorial outflow mode persists in an essentially
time-independent way for the entire run, with heated and outflowing ISM in the disc,
and almost stationary gas above and below the galactic disc.

The ISM temperature, after an initial phase in which the gas is hotter in the
outflowing disc, quickly establishes on a spherically symmetric structure (Figure 3.4).
From the beginning, at the centre (within ' 500 pc), the gas cools and forms a dense
cold core. Outside this region, the temperature is steeply increasing, forming (within
' 1 Gyr) a spherical, hot region (T ' 9× 106 K at the peak), of radius r ' 5 kpc;
at larger radii, the temperature is slowly decreasing outward, keeping a spherical
distribution. Outside the central cool core, the temperature is everywhere slowly
increasing with time, due to the secular increase of the specific ISM heating due to
the adopted SNIa time evolution, see equations (2.14)-(2.16).

The major features described above for the VDi model are qualitatively indepen-
dent of the DM halo mass, although important trends with Mh are clearly detected.
For example, the time of loss of reflection symmetry in the flow properties increases
from ' 4 Gyr (VDl) to ' 4.5 Gyr (VDi) to ' 5.2 Gyr (VDh). In addition, a more
massive DM halo tends to “stabilize” the ISM velocity field, in the sense that in
the light-halo model VDl the meridional vortices are more pronounced, and the
temperature maps (while still showing a spherically symmetric structure on average)
are more structured and less regular. In particular, the average values of the ISM
velocity are higher (at any given time) for lighter DM haloes, and the equatorial
purple region in figures analogous to Figure 3.3 (not shown) is less symmetric. Finally,
at any time the average ISM temperature is larger for increasing Mh.

3.2.1.2 IS models

The evolution of the flow in the family of isotropic rotators is more complicated
than in VD models, as already found in DC98, albeit for different galaxy models and
different input physics. Figures 3.5 and 3.6 show the flow properties of the ISi model,
at the same epochs of Figs. 3.3 and 3.4 for the VDi model. The only similarities
with VDi are the loss of reflection symmetry, that happens at now at ' 3.3 Gyr, and
a systematic decline in the flow velocity for increasing time. Noticeable differences
are instead apparent. First of all, in ISi there is the formation, since the beginning,
of a cold and thin gaseous rotating disc in the inner equatorial galaxy region (with
size ' 5 kpc), due to angular momentum conservation. This cold disc is quite stable,
even though cooling instabilities from time to time lead to the formation of cold
blobs detached from it. In general, the cooling (green) regions are significantly more
rich in substructures than in VDi. In particular, a second major difference with
respect to VDi is given by the presence of a cooling V -shaped region containing
the equatorial plane whose vertex matches the outer edge of the rotating cold disc.
In this region the gas is colder than in the rest of the galaxy (except for the cold
rotating disc; see for example the snapshots at 2.7, 8.6 and 13 Gyr in Figure 3.6).
This V-region becomes cyclically more or less prominent during the evolution; when
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Figure 3.3: Hydrodynamical evolution of the VDi model, for a selection of rep-
resentative times. Arrows show the meridional velocity field (uR, uz) of the ISM;
their lenght is proportional to the modulus of the gas velocity, and is normalized
to the same constant value in each one of the nine panels, and in all panels of the
subsequent Figs. 3.4-3.10; thus, the evolution of the velocity field as a function of
time can be followed for a single model, and compared to that of the other models
in Figs. 3.4-3.10. For reference, the longest arrow in the top left panel corresponds
to 171 km s−1. Colours map the ratio of heating over cooling times, ∆th/∆tc, as
defined in equation (2.41); green and purple colours indicate cooling and heating
regions, respectively.
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Figure 3.4: ISM temperature evolution for model VDi, at the same times as in
Figure 3.3. The arrows indicate the velocity field in the meridional plane, and are
normalized as in Figure 3.3. The colour-bar indicates the temperature values in K.
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it is more prominent, the gas in it is almost at rest in the meridional plane (i.e., it is
fully supported by its rotational velocity uϕ). Inside the V -shaped region, the gas is
outflowing along the equatorial disc, while outside the ISM velocity field is organized
in large meridional vortices. Note how this V -shaped region nicely maps the region
of similar shape in Figure 3.1 (bottom left panel), where it is clear how the heating
contribution from the thermalization of the stellar azimuthal velocity dispersion is
missing with respect to the VDi model.

A third major difference between ISi and VDi is represented by the long-term time
evolution of the heated (purple) regions in Figure 3.5. In fact, in ISi it is apparent
the fading of the heated equatorial disc region, accompanied by the appearance of
a central heated region. In the VDi model, instead, cooling always prevails over
heating in the centre. This difference is due to the lower gas density in the central
regions of ISi with respect to VDi, which is produced by the angular momentum
barrier of the ISi model, that prevents the gas from falling directly into the central
galactic region. Moreover, in ISi, the infalling gas accumulates on the cold disc, and
this further decreases the hot gas density in the central galactic region with respect
to VDi. Thus, in the central galactic region, the cooling time keeps shorter in VDi

than in ISi, during their secular evolution. This difference in the central gas density
between rotating and non-rotating models, with the consequent secular heating of
the central gas in ISi

1, and the constant cooling of that in VDi, is at the base of
a fourth major difference in the respective gas evolutions: the evolution is quite
smooth in VD models, while it shows a cyclic behaviour in IS ones, as apparent
from the panels relative to 7.3− 8.6 Gyr in Figure 3.5, which describe a full cycle
(a new cycle starts at t = 8.9 Gyr; in Section 3.2.3 we describe the evolution of
other gas properties during a cycle). At the beginning of a cycle (t = 7.3 Gyr in
Figure 3.5), the ISM in a central and almost spherically symmetric region becomes
hotter and hotter, which produces a pressure increase in this region. This pressure
increase causes an outflow from the centre, along the disc; as a consequence, the
gas residing at R ' 10 kpc is compressed, increasing its density and lowering its
temperature (Figure 3.6). The regular shape of the V -region is disrupted: some
of the centrally outflowing gas breaks into its vertex, and succeeds in reaching out
along the disc (t = 7.6 and 7.8 Gyr); some other gas circulates above and below the
disc, in complex meridional vortices, compressing the gas there. In ISi the heating
is not strong enough to establish a full and permanent degassing; the compression
increases the cooling, until a maximum in the extension of the cooling (and of the
low temperature) regions is reached, after which the flow reverts to the “original”
state (e.g., shown by t = 8.9 Gyr in Figs. 3.5 and 3.6). These periodic changes in
the ISM structure are mirrored in the evolution of LX, as discussed in Section 3.2.3.

The ISM temperature distribution of ISi is shown in Figure 3.6. The major
characteristic features of the hydrodynamical evolution are apparent. The cold thin
rotating disc is visible, together with the embedding spherical region of hotter gas:
it is interesting to note how the disc size corresponds to the radial extent of the
hot region. The cold disc is dense (number density n & 10 cm−3) and azimuthally
supported by ordered rotation, with peak values of uϕ = 420 km s−1. The presence
of the hot, spherical region, with radius matching that of the disc, is due to the

1Recall that in all these models the specific heating is increasing with time.
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Figure 3.5: Hydrodynamical evolution of the ISi model at the same representative
times of model VDi.
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efficient way in which gas cools and joins the disc; this depletes the central galactic
region of gas, thus the heating of the remaining gas is more efficient. In fact, within
' 3 kpc from the centre, the average gas density is ≈ 10−2 cm−3 (or less) in the ISi

model, and ≈ 10−1 cm−3 (or more) in the VDi model, at least an order of magnitude
larger. Also, within the same radius, excluding the cold core (for the VDi) and the
cold disc (for the ISi), the average temperature is ' 107 K for the ISi, and lower
(5× 106 K) for the VDi (Figs. 3.4 and 3.6). Outside the central hot sphere, though,
the temperature of ISi is everywhere lower than that of the VDi model, and the ISM
is centrifugally supported by ordered azimuthal velocity.

Maps of the Mach number show that the ISM velocity field is in general subsonic
over the whole galaxy body. As a consequence, the X-ray emission is not associated
with shocks; instead, inhomogeneities in the ISM usually cools more effectively (as
those in the V-shaped region), and contribute to the total X-ray emission2 (see also
Section 3.2.3 where LX and TX of all models are discussed).

As for the VD models, a decrease in DM halo mass causes the ISM temperature
overall to decrease, and the density and velocity fields become more and more rich
in substructures. Due to the lower importance of angular momentum (a consequence
of the reduction of the ordered stellar streaming velocity), the size of the cold disc
decreases from ' 10 kpc (ISh), to ' 5 kpc (ISi), to ' 4 kpc (ISl). Remarkably, the
size of the hot spherical region is always the same as the size of the cold disc. The
ISM rotational velocities in the V -shaped region also decrease for decreasing DM halo
mass; instead, at late times, ISl presents a polar outflow, with velocities of the order
of uz ' 250 km s−1 at ' 10 kpc above the equatorial plane. These polar outflows
are significantly reinforced in test models in all similar to ISi, but with doubled SNIa
rate. A change in DM halo mass has also some complex consequences, coming from
the interplay between heating and binding energies at the galactic centre. The main
characteristics of the global evolution of ISi and ISl are very similar, while the cyclic
behaviour is far less prominent in ISh, and becomes almost absent after a few Gyr of
evolution (see also Section 3.2.3). In fact, being the central potential well deeper in
ISh than in the other models, the outflow velocity of the disc gas is lower, the effect
of compression of the surrounding gas is also lower, and major cooling episodes, with
the associated substructure in the flow density and velocity patterns, are absent.

3.2.1.3 CR models

We now focus on the first of the two special families of rotating galaxy models, namely
the counter-rotating ones (CR). As described in Section 3.1, counter rotation is
introduced in the IS family adopting a convenient functional form for the coordinate-
dependent Satoh parameter; in particular, we constructed the counter rotation so
that vϕ = 0 at R ' 5 kpc, i.e., at the edge of the region where ISi develops the cold
rotating disc. As anticipated in Chapter 1, this choice maximizes the possible effects
of counter rotation, both from the energetic and the angular momentum points of
view. As can be seen from Figure 3.7, the global behaviour of the CRi model is

2 Empirical evidence for the absence of shock-related X-ray emission is given in Section 3.2.3,
where VD models are shown to be the most X-ray luminous, while showing the less structured
velocity pattern. Cooling inhomogeneities instead affect the secular trend of the X-ray emission in IS
models, never being able, though, to make rotating models more X-ray luminous than non-rotating
ones (Section 3.2.3).
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Figure 3.6: ISM temperature evolution of the ISi model, at the same times as in
Figure 3.5.



3.2 Results 37

somewhat intermediate between those of the VDi and ISi models: in fact, although
the V -shaped cooling region is still present, it is quite reduced with respect to that
in ISi (even in regions where counter rotation does not have a direct effect), and a
stronger galactic disc outflow along the equatorial plane takes place. Correspondingly,
the cold gaseous central disc is smaller (with maximum size of ' 3 kpc), a consequence
of the combined effects of a stronger local heating and the decrease of the local
angular momentum of the ISM due to the mass injection of the counter-rotating
stellar structure. Overall, however, the hydrodynamical evolution is similar to that
of ISi, showing that the reservoir of angular momentum at large radii (where CRi

and ISi are identical by construction) is the leading factor in determining the flow
behaviour. In particular, the CRi velocity field is more rich in substructures than in
VDi.

The temperature evolution of CRi is presented in Figure 3.8. Again, as in ISi,
the size of the cold disc strictly matches the size of the spherical region of hotter gas
embedding the cold disc itself. In the azimuthal velocity field of the ISM, counter
rotation is present at early times, when stellar mass losses are more important; this
produces a region of hotter gas that is not present in the ISi model, and which
is apparent at the radius of maximum stellar counter rotation in the first two
temperature maps (t = 2.5 and 2.7 Gyr in Figure 3.8, cfr. with corresponding panels
in Figure 3.6), as a lighter-coloured area along the equatorial plane, starting from
' 2 kpc. As time increases, however, the relative importance of the injected counter-
rotating gas decreases, and the rotational velocity of the ISM becomes dominated by
the angular momentum of the ISM inflowing from the outer regions, and gas counter
rotation is no longer present.

A variation of the DM halo mass leads to the same systematic trends of the
other families: the global ISM temperature decreases for decreasing Mh, the density
and velocity fields become more structured, the linear size of the cold disc decreases
(from 12 to 5 to 3 kpc in radius), and the gas rotational velocity in the V -shaped
region decreases. Remarkably, a sustained polar outflow with uz ' 300 km s−1 at a
height of ' 10 kpc above the equatorial plane develops in CRl by the present epoch,
similarly to what happens for ISl.

3.2.1.4 RD models

We conclude with the family of the RD models, that are similar to the VD ones
except for the presence of a rotating stellar disc in their inner equatorial region.
Note that the rotating disc is the only source of angular momentum in this family.
The hydrodynamical evolution of RDi is summarized in Figure 3.9, where the global
similarities with VDi are apparent. In particular, at variance with ISi and CRi, the
V -shaped region is now missing, while a small (' 2 kpc radius) cold disc is present,
originated “in situ” by the stellar mass losses in the inner rotating stellar disc. The
equatorial outflow is still present as in VDi, and the ISM velocities decrease as time
increases. Also, in analogy with VDi and at variance with ISi and CRi, the central
spherical heating region does not appear at late times. This shows again how the
global evolution of a model is strictly linked to the amount of angular momentum
stored at large radii, more than to the specific rotation in the central galactic regions.

The temperature evolution of RDi is shown in Figure 3.10, where again the
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Figure 3.7: Hydrodynamical evolution of the counter-rotating CRi model, at the
same representative times of VDi.
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Figure 3.8: Temperature evolution of the counter-rotating CRi model, at the same
representative times of Figure 3.7.



40 The effects of stellar dynamics on the X-ray emission of S0 galaxies

Figure 3.9: Hydrodynamical evolution of the velocity dispersion supported model
with rotating inner disc, RDi, at the same representative times ofVDi.
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similarities with VDi are apparent. In particular, the temperature field is much less
structured than in the rotating ISi and CRi models. As expected, almost no ISM
azimuthal rotation is present in RDi, with the exception of some degree of rotation
confined in the inner regions, where the small cold disc resides. The disc is embedded
in a spherically symmetric region of hotter gas, similar to that present on a larger
scale in the ISi model, and due to the same cause.

The variation of the DM halo mass leads to the same overall changes as in the
other families: at any given time, for decreasing Mh, the ISM temperature is lower
and the hydrodynamical fields are systematically less regular, with higher average
outflow velocities in the equatorial plane of the galaxy, while the extension and the
rotational velocities of the small inner cold region decreases.

3.2.2 The thermalization parameter

As discussed in Section 2.3, one of the goals of this work is to measure the thermal-
ization parameter γth, i.e., to estimate how much of the kinetic energy associated
with ordered rotation of the stellar component is converted into internal energy of
the ISM, equation (2.33). In fact, in addition to the obvious physical relevance of the
question, reliable estimates of the value of γth as a function of the galaxy rotational
status are useful in theoretical works (e.g., involving estimates of LX and TX based
on energetic considerations, without simulations; CP96; Pellegrini 2011; Posacki et al.
2013a,b; Posacki 2014).

The summary of the results for the three families IS, CR, and RD is given in
Figure 3.11, where red, black, and green lines give the γth values for high, intermediate,
and light DM haloes, respectively. The VD family is not considered, being the
associated γth undefined (formally infinite, being Lrot = 0 and Lv = 0.5

∫
ρ̇ ‖u‖2 dV ).

Note that in principle γth can be even larger than unity for galaxies with low rotation
and thus low Lrot (as the RD models), or in cases of substantial counter rotation
with high Lv (as for CR models).

From Figure 3.11 a few common trends are apparent, that can be easily explained
when considering the hydrodynamical evolution of the models. The first is that for
all IS, CR and RD models the value of the thermalization parameter decreases for
increasing DM halo mass. As γth = Lv/Lrot, this can be explained by the combination
of two effects: the increase of Lrot with Mh, coupled with the decrease of the ISM
velocity in the meridional plane and the increase of the azimuthal component of the
ISM velocity in Lv = Lm + Lϕ (equation 2.30).

The second common feature of all models is that fluctuations in the values of
γth tend to increase for decreasing Mh, and this is due to the ISM velocity field
becoming more rich in substructure for lighter DM haloes. Consistently with the
hydrodynamical evolution, the fluctuations in the RD family are however smaller
than in CR and IS models, as the complexity of the ISM velocity field is proportional
to the amount of ordered rotation of the stellar component. In particular, the large
fluctuations of γth in the intermediate and light halo models of the IS and CR families
are due to the recurrent degassing events (with an increase of the velocity components
uR and uz) in the equatorial plane, as described in the previous Section.

An important difference between the three classes of models is instead given by
the average value of γth that, for the IS family, is much lower then for the CR and
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Figure 3.10: Temperature evolution of the velocity dispersion supported model with
an inner rotating stellar disc, RDi, at the same times of Figure 3.9.
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Figure 3.11: Time evolution of the thermalization parameter γth for the three families
IS, CR, and RD: heavy, intermediate, and light DM haloes are shown with red,
black, and green lines, respectively.

RD families (for which, for the reasons explained above, γth can reach values larger
than unity). Instead, the IS family is characterized by γth ' 0.1− 0.3, a remarkably
lower degree of thermalization. Being the large-scale kinematical support of the CR
and IS families very similar, their significantly different γth must be explained by
the larger ‖vϕêϕ − u‖2 term that originates in the counter-rotating disc of the CR
family. The range of values of γth for the IS family corresponds to the high-α models
in P13, and it provides part of the explanation for the average lower X-ray luminosity
of rotating models with respect to non-rotating ones of the same mass (a feature
that is found in observed ETGs, see Chapter 1). In Section 3.2.3 and Section 3.3 we
will return to this point for some additional considerations.

3.2.3 The X-ray observables: LX, TX, and ΣX

The time evolution of the observationally important ISM diagnostics LX and TX is
shown for all models in Figure 3.12, and a list of LX and TX values at the end of the
simulations (13 Gyr) is given in Table 3.2.

Important similarities and differences, due to the different internal kinematical
support and to the variable DM amount, are evident. Concerning similarities, in
all models the ISM X-ray luminosity LX decreases with time, broadly reflecting the
decrease of the hot gas content in the galaxies. Another similar behaviour is that, as
already discussed in Section 3.2.1, within each family the X-ray luminosity weighted
temperature TX increases when increasing the DM amount; in addition, TX increases
with time (as more evident in the VDh and RDh models), due to the time evolution
of the specific heating of the injected material (see Section 2.2.1).

A major distinctive property of rotating models (IS and CR) with respect to
non-rotating ones (VD and RD) is instead the presence of well defined oscillations
in LX and TX. These oscillations are the result of the cyclic behaviour of the
hydrodynamical evolution typical of IS and CR models (Sections 3.2.1.2 and 3.2.1.3).
During each oscillation (see for example that corresponding to the large peak in LX

at around 8.2 Gyr for ISi, mapped in Figure 3.5), LX and TX reach respectively a
maximum and a minimum, all due to the onset of a cooling phase. At the beginning
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of each cycle, the X-ray luminosity is low, the galaxy is filled with the gas coming
from stellar evolution, and heated by the energy source terms. As the gas mass
rises, the cooling becomes more and more efficient due to the compressional effect
of the central outflow (Section 3.2.1.2), and LX increases too. This trend continues
until a critical density is reached, such that the radiative losses dominate over the
heating sources, and the gas catastrophically cools; at this point the peak in LX

is produced, with the associated sharp decrement in TX. Finally, after the major
radiative cooling phase has ended, the hot gas density and LX are low, and a new
cycle starts. The global pattern of an oscillation is always the same, and governed by
the mass injection and the radiative cooling rates. With time increasing, oscillations
become more distant in time, since the refilling and the heating times become longer,
due to the temporal decay of both the mass injection rate and the number of SNIa
events (equations (2.14)-(2.16)).

The second distinctive property of rotating models is that their LX and TX are
always lower (for the same DM halo), than those of the models that are non rotating
on the large scale (the VD and RD families). This is an important feature, also for
its observational implications (Chapter 1), and thus deserves some consideration.
This important effect of rotation, as that of causing a cyclic behaviour of the flow,
originates in a different flow evolution that in turn is due not just to the different
energetic input, but also to the different angular momentum of the gas at large radii.
In fact, a first explanation of the X-ray under-luminosity and “coolness” of the IS
family, that seems natural, lies in the lack of the σϕ-term in their Lσ (being σϕ
replaced by the ordered rotational field of the stellar component, see Figure 3.1), and
in the result that γth has low values (< 1, to be inserted in equation 2.18). However,
this energy-based argument does not give the full explanation of the low LX values;
a hint towards this conclusion is provided by the finding that LX is low also for the
CR family, with similar γth values as for the RD one. We established definitively
that the different energy input to the gas is not the sole explanation of the low LX

and TX by performing some “ad hoc” experiments in the IS family. In practice, while
retaining their internal dynamical structure, we modified the thermalization term
in equation (2.18), replacing it with the full thermalization term of the VD family.
Thus, from an hydrodynamical point of view, the ISM of these models still rotates
as dictated by equation (2.37), but its energy injection is equal to that of the VD
family3. The results are interesting: on one side, LX and TX are higher than in the
IS models; however, on the other side, LX and TX are still characterized by large
oscillations (typical of rotating models, and absent in the VD family), and they are
still lower than in the VD family. Having said this, one should also notice that, LX

differs more, by comparing IS and VD models, than the whole of Lrot, which by
itself shows that the energetic argument cannot account for the full gas behaviour
(see Lσ and Lrot in Table 3.2). Therefore, these experiments prove that the X-ray
under-luminosity and coolness of IS and CR models is not just due to a reduction of
the injection energy in them, but -more importantly- to the global evolution of the
ISM induced by ordered rotation.

3In these tests the square brackets in equation (2.18) was substituted with ‖u‖2 + v2ϕ +Tr(σ2),
so that from the virial theorem the sum of the last two terms equals Tr(σ2) of VD models. Actually
the heating in these modified IS models is even larger than in VD ones, because the ISM velocity of
the former contains also a relevant rotational component uϕ.
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A few additional trends are shown by Figure 3.12. Time oscillations in LX and TX,
for the rotating IS and CR models, become more and more important for decreasing
Mh, reflecting the more structured density, velocity and temperature fields of the
ISM for lighter DM haloes (see Sections 3.2.1.2 and 3.2.1.3). Another point is that
the RD models always show the largest TX, for any DM halo; this is due to their
central, small, hot region surrounding the small cold disc at their centres, a region
that is not present in the VD class. Finally, in the rotating families (IS and CR),
LX is systematically lower for increasing DM halo, while the opposite takes place
for the two globally non-rotating families. This trend is due to the global angular
momentum stored at large radii in IS and CR models, and its influence on the global
behaviour of the flow: in rotating models, the increase of Mh corresponds to an
increase of the total angular momentum, such that the galactic central region (where
most of the LX comes from) is less dense of gas for larger Mh, due to the accretion
of the gas on a larger cold disc.

We finally discuss the edge-on appearance of the X-ray surface brightness maps
ΣX at the end of the simulation (for the intermediate halo models; Figure 3.13).
From the figure it is clear how large scale galaxy rotation leads to flatter and “boxy”
X-ray isophotes, and to less concentrated X-ray emission, with respect to what is seen
in non-rotating VD and RD models. Also the ISM density distribution is rounder
in the VD, and more elongated along the equatorial plane in the IS models. In IS
models, this elongation and the consequent “boxiness” (already found in Brighenti
& Mathews 1996, DC98) are due to the rotational support on the equatorial plane,
that prevents the gas from flowing inward. For what concerns a comparison with
the optical surface brightness distribution Σ∗ of the parent galaxy (Figure 3.13), in
non-rotating models ΣX is rounder than Σ∗ at all radii, reflecting the rounder shape
of the total equipotential (mostly due to the DM). On the other side, rotation proves
to be effective in determining a significantly flatter ΣX, that becomes more similar
to Σ∗, especially in the inner galactic region (within ' 10 kpc); however ΣX is never
flatter than Σ∗. ΣX becomes more spherical at large radii, and the boxiness decreases
with radius, but it is still present at R ' 30 kpc.

3.2.4 Comparison with observed X-ray properties

As a general check of the reliability of the gas behaviour obtained from the simulations,
we consider here a broad comparison with the observed X-ray properties of the
Sombrero galaxy (whose structure was taken as reference), and of flat ETGs. In the
Sombrero galaxy, diffuse hot gas has been detected in and around the bulge region
with XMM-Newton and Chandra observations (Li et al. 2007, 2011b), extending to
at least ' 23 kpc from the galactic centre, roughly as obtained here (Figure 3.13).
The X-ray emission is stronger along the major axis than along the minor axis, and
can be characterized by an optically thin thermal plasma with kT ' 0.6 keV, varying
little with radius. The total 0.3–2 keV luminosity is LX = 2 × 1039 erg s−1, and
the hot gas mass is ' 5 × 108 M� (Li et al. 2011b). The gas has a super-solar
metal abundance, not expected for accreted intergalactic medium, thus it must be
mostly of internal origin, as that studied in this work. In a simple spherical model
for the hot gas, originating from internal mass sources heated by SNIa’s, a supersonic
galactic wind develops for a galaxy potential as plausible for Sombrero, with an LX
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far lower than observed (Li et al. 2011b). A flow different from a wind, and as found
by our 2D hydrodynamical simulations, may provide the correct interpretation of
the observed X-ray properties. Among the suite of models run in our work, an LX

value comparable to that observed is reached at the present epoch by the IS models
(Table 3.2); further, the TX of the ISh model is very close to the observed one, while
ISi and ISl have a lower TX (note though that the LX and TX values in Table 3.2
refer to the whole computational grid, corresponding to a physical region larger than
that used for the X-ray observations).

Our work thus shows how it is crucial to account for the proper shape of the
mass distribution (e.g., bulge, disc and dark matter halo), as well as for the angular
momentum of the mass-losing stars, to reproduce the hot gas observed properties. For
example, VD-like models predict LX larger by an order of magnitude, and inconsistent
with those of Sombrero. Another feature clearly requiring angular momentum of the
stars is provided by the observed X-ray isophotes, that show a boxy morphology in
the inner regions (Li et al. 2011b), as obtained by our models only in case of rotation.

Finally, note that the hot gas emission in Sombrero is lower than predicted by
the best fit LX − LK correlation observed for ETGs (e.g. Boroson et al. 2011), as
shown by Pellegrini (1999b, 2005, 2012). The X-ray luminosity could be reduced in
Sombrero by the effects of rotation, as explained in Section 3.2.3.

Moving to X-ray observations of S0 galaxies, a Chandra survey of their X-ray
properties has been recently performed by Li et al. (2011b). They tend to have
significantly lower LX than elliptical galaxies of the same stellar mass. While Li et al.
(2011b) focussed on the possible cold-hot gas interaction to find an explanation (see
also Pellegrini et al. 2012), we can suggest that rotation could have an important
effect. A case S0 study is NGC5866 (Li et al. 2009), where the morphology of the hot
gas emission appears rounder and more extended than that of the stars (the galaxy
is seen edge-on), and again the X-ray isophotes have a boxy appearance in the inner
region (see Fig. 1b in Li et al. 2009). However, the stellar mass is much lower than
for Sombrero (M∗ ' 3 × 1010 M�), so we cannot directly compare LX and TX of
our modelling with the observed hot gas properties of NGC5866 (the latter is just
7× 1038 erg s−1).

3.3 Discussion and conclusions

In this chapter we studied the effects of the stellar kinematics on the ISM evolution
of flat ETGs, focussing in particular on the effects of stellar rotation, leaving the
study of rotation versus flattening effects in the following Chapter. We considered
four different families of galaxies (based of a representative model tailored on the
Sombrero galaxy), characterized by the same stellar distribution, and by a spherical
DM halo of fixed scale-lenght, with three different total mass values. In the first
family (IS), the galaxy flattening is entirely supported by ordered rotation of the
stellar component, while the velocity-dispersion tensor is everywhere isotropic. In
the second family (VD), the galaxy flattening is all due to stellar azimuthal velocity-
dispersion, i.e, the models are fully velocity-dispersion supported. The other two
families are variants of the first two: in the CR family a thin counter-rotating stellar
disc is placed in the central region of IS models; in the RD family, a rotating thin
stellar disc is placed at the centre of the non-rotating VD models. The standard
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Figure 3.12: Time evolution of LX and X-ray emission weighted temperature TX of the
four families of models. Red, black, and green lines refer to the heavy, intermediate,
and light DM haloes, respectively.
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Figure 3.13: Edge-on 0.3–8 keV surface brightness of the ISM at 13 Gyr, for the
intermediate halo models VDi, ISi, RDi and CRi; the brightness values on the colour-
bar are given in erg s−1 cm−2. Superimposed are the isophotes (Σ∗) obtained by
projecting the galaxy stellar density distribution, starting from 104 M� pc−2 on the
innermost contour, and decreasing by a factor of ten on each subsequent contour
going outwards. Note that the ΣX maps of VDi and RDi are dominated by a bright,
round core, whereas the ISi and CRi maps show a boxy low-luminosity core.
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sources of mass and energy due to a passively evolving stellar population are adopted,
while we neglect star formation (and more in general diffuse mass sinks due to local
thermal instabilities that are taken into account in Chapter 5), and feedback effects
due to a central supermassive black hole. The simulations have been performed in
cylindrical symmetry, and cover the ISM evolution for 11 Gyr. The main results can
be summarized as follows.

In all models, the ISM velocity and density at early times are symmetric with
respect to the equatorial galactic plane, but soon this reflection symmetry is lost, and
the hydrodynamical evolution of rotating models becomes more complicated than that
of non-rotating ones. In VD and RD families the cooling gas tends to flow directly to
the galaxy centre, while conservation of angular momentum leads to the formation
of a cold rotating gaseous disc in IS ones. Moreover, the flow in rotating models is
spatially decoupled (as already found in lower-resolution simulations, DC98), and
shows large-scale meridional circulation outside a V -shaped region containing the
galaxy equatorial plane, while inside this region the ISM is radially supported against
the gravitational field by azimuthal rotation. These features are confirmed by a few
runs with a number of gridpoints increased by a factor of four, reaching a spatial
resolution of 15 pc in the central regions. In general, with increasing time the ISM
velocity tends to decrease. The gas is not outflowing from the galactic outskirts in a
significantly larger amount in rotating than in non-rotating families, as shown by
the similar Mesc values in Table 3.2. Indeed, the major effect of ordered rotation in
our models (that refer to a massive galaxy) is not that of making the gas less bound,
but that of redistributing the ISM throughout the galaxy.

A remarkable difference between globally rotating (IS and CR) and globally
non-rotating (VD and RD) models is represented by large secular oscillations of
LX and TX in the former (see also DC98, Negri et al. 2013). These oscillations are
due to periodic cooling episodes in the V -shaped region of the rotating families,
accompanied with degassing events along their equatorial plane (however limited to
within few tens of kpc). Furthermore, in IS models a central hot region of radius
comparable to that of the disc develops above and below the disc, due to the lower
gas density there with respect to VD models. Outside of this hot sphere, the IS
temperature is lower than that of VD models.

The X-ray luminosity LX is largest for the velocity-dispersion-supported VD and
RD families, and the highest X-ray emission-weighted temperatures are shown by
the RD family, at any given DM halo mass. The strong rotators (IS and CR) are
characterized by LX and TX significantly lower than for non-rotating models; for
example, LX can be more than a factor of ten lower, at the same DM halo mass
(see Table 3.2). In all cases, LX and TX are within the range of observed values
for galaxies of similar optical luminosity and central velocity-dispersion. Sarzi et al.
(2013), following CP96, suggested that the different LX of slow and fast rotators could
be due to fast rotators, being on average flatter, and also more prone to loose their
hot gas; here we find that the different LX is indeed due to a lower hot gas content
of rotating systems, but this is not produced by a larger fraction of escaped gas, but
instead by a larger amount of hot gas that has cooled below X-ray temperatures. In
agreement with CP96 we also find that in low mass galaxies, generally tending to
develop outflows, rotation favours gas escape.

For increasing DM halo mass, the ISM velocity fields become more regular, with
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less substructure; and TX increases, while LX behaves differently: in rotating models,
LX decreases with increasing Mh, while it increases in non-rotating models. Rotating
IS and CR models with light DM haloes at late times develop a polar wind.

The (edge-on) X-ray isophotes are rounder than the stellar isophotes, as expected
due to the round shape of the total gravitational potential. However, in rotating
models the X-ray isophotes tend to be boxy in the inner regions, while in non-rotating
models they are almost spherical.

Note finally how the gas evolution and overall properties of the IS and CR families
on one side, and of the VD and RD on the other, are remarkably similar, i.e., the
presence of centrally rotating stellar discs does not alter significantly the global flow
behaviour.

In order to quantify the amount of galactic ordered rotation which is actually
thermalized, we computed the thermalization parameter γth ≡ Lv/Lrot, that is the
ratio of the heating due to difference between the streaming velocity of the stars and
the ISM velocity, and the heating that would be provided by the stellar streaming if
stars were moving in an ISM at rest. We found that γth is substantially less than
unity in IS models, while it is of the order of unity or more in CR and RD ones; γth

increases for lower DM contents. This shows that the different behaviour of VD and
IS families is not entirely due to the different amount of thermalization of the stellar
motions, but rather to the impact of angular momentum on the flow at large scales.
In fact, despite of their different γth, all the main features of the IS family are still
present in the CR one, including the well defined oscillations in LX and TX that are
absent in VD and RD models.

The parameter γth is used in works involving the global energy balance of the
gas (e.g., CP96; Posacki et al. 2013b). Posacki et al. (2013b) showed that low values
of γth go in the direction of accounting for the relatively low values of LX and TX

in flat (and rotating) galaxies when compared to the values of their non-rotating
counterparts. Also Sarzi et al. (2013) suggested that the kinetic energy associated
with the stellar ordered motions may be thermalized less efficiently to explain why
fast rotators seem confined to lower TX than slow rotators. The fact that γth is
substantially less than unity in IS models could provide support to an energetic
interpretation of the X-ray under-luminosity of flat and rotating galaxies, when
compared to non-rotating ones of similar optical luminosity. The results for CR
models, however, show that the lack of thermalization of ordered rotation cannot
be the only explanation of the low values of LX: for these models γth is in fact of
the order of unity, yet their LX is similar to that of the corresponding IS models, in
which γth ' 0.1− 0.2. Thus, even if the presence of a stellar counter-rotating thin
disc can increase the thermalization of the ordered motions from 10-20 per cent in
the isotropic rotators, up to 100 per cent or more, additional phenomena related to
the global angular momentum (mainly stored at large radii) influence the behaviour
of the flow, and produce a difference in LX and TX. Indeed, the conservation of
angular momentum prevents the ISM to flow directly towards the centre, as in VD
and RD models, so that the galaxy central regions are kept at low density with
respect to the VD and RD models. This difference in the hot gas density distribution
results in a systematic low LX and TX of rotating models, since the contribution to
TX of the very hot gas in the central regions of rotating models is marginal (due
to their low density) and more affected by colder gas located in the outer regions
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(T ' 2× 106 K). An additional glaring evidence for the important role of angular
momentum is provided by the fact that, in rotating models (both IS and CR), LX

decreases for increasing Mh, that is associated with an increase of galactic rotation.
Summarizing the key points of this chapter, LX is significantly decreased not due

to a larger degassing, or to a lower energetic input (due to a “missing” part in Lkin),
but by crucial angular momentum-related effects; pure energetic arguments cannot
fully account for the changes in the overall gas properties (e.g., LX, TX), and thus
cannot solve the problem of the X-ray under-luminosity, and “coolness”, of rotating
galaxies. In the following Chapter we expand our investigation by simulating a large
set of ETGs characterized by variations of stellar mass, intrinsic flattening, dark
matter distribution, in addition to various degree of rotational support.

The present study can be relevant to the topic of black hole fuelling. One of the
most debated aspects of SMBH accretion is how gas is carried to the centre of galaxies,
especially in presence of rotation; another aspect is whether the source of fuel is a
hot, roughly spherical atmosphere, from which accretion is almost steady, or it lies
in cold material that sporadically and chaotically accretes (e.g., Novak et al. 2012;
Russell et al. 2013; Werner et al. 2014). Related to these important issues, the present
investigation shows that in velocity-dispersion-supported systems accretion is more
hot and radial, with a large fraction of the total input from stellar mass losses flowing
straight to the centre; in systems more supported by rotation, instead, the central
density of hot ISM is lower, the mass accreted towards the centre is very small, and
a cold rotating disc provides a large reservoir of cold gas, that can lead occasionally
to clumpy multiphase accretion. Moreover, as anticipated in the Introduction, the
presence of a counter-rotating structure affects the central feeding: the simulations
show that, by reducing the amount of local angular momentum, accretion in the
central grid is favoured with respect to what happens in pure isotropic rotators.





Chapter 4

The effects of galaxy shape and
rotation on the X-ray haloes of
ETGs - Numerical simulations

Negri A., Posacki S., Pellegrini S., Ciotti L., 2014, MNRAS, 445, 1351

In this second work regarding the effects of galaxy shape and rotation on the X-ray
emitting halo of ETGs, we expanded our previous results on the X-ray under-
luminosity of rotating galaxies (presented in Chapter 3). At variance with the
previous investigation, where only variations of galaxies kinematical support have
been considered, in this Chapter we take into account variations of galaxy shape,
rotation and mass, by performing hydrodynamical simulations of a large set of
self-consistent, state-of-the-art galaxy models characterised by different stellar mass,
intrinsic flattening, distribution of dark matter, and rotational support. The dark
matter haloes follow the NFW (Navarro et al. 1997) or the Einasto (1965) profile,
while the stellar profile is a flattened de Vaucouleurs (1948). The galaxy flattening
is supported by ordered rotation (isotropic rotators) or by tangential anisotropy.
This work is a result of a joint research collaboration with Dr. Silvia Posacki, who
built the entire set of axisymmetric galaxy models with the P13 code, and tailored
their structural parameters to reproduce the observed properties and scaling laws of
ETGs.

The Chapter is organized as follows. Section 4.1 presents the procedure to
produce and tune our flattened galaxy models, while in Section 4.2 we expose our
results, commenting both the hydrodynamical features, the X-ray luminosity LX and
the X-ray luminosity weighted temperature TX, in the same fashion as the previous
Chapter. Finally, in Section 4.3 we discuss the results and the main conclusions are
presented.
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4.1 The setting up of representative galaxy models

In this large exploration, we adopted axisymmetric two-component galaxy models,
where the stellar component can have different intrinsic flattening, while for simplicity
the DM halo is kept spherical. In particular, the stellar profile is a flattened de
Vaucouleurs (1948) (see Section 2.1, equations (2.1)-(2.2)), where we restrict the values
of q in equation (2.2) to (1, 0.6, 0.3), corresponding to E0, E4 and E7 galaxies when
seen edge-on. We produced two different sets of models, each of them characterised
by the same DM profile: the Navarro-Frenk-White (Navarro et al. 1997) set and the
Einasto (1965) one (again, see Section 2.1).

In each of the two sets, we consider different families of models, built following
the procedure described in P13 (Sections 3.3 and 3.4) and in Posacki (2014). Here
we just recall the main steps to calculate their fundamental parameters, listed
in Table 4.1. Each family is associated with a spherical galaxy, that we call the
“progenitor”. The progenitor structural parameters are determined by assigning σe8

(the aperture luminosity-weighted velocity dispersion within Re/8), and then deriving
the luminosity and effective radius Re of the galaxy from the Faber–Jackson and the
size–luminosity relations (Desroches et al. 2007). Then, from a chosen stellar mass-to-
light ratio, associated to a 12 Gyr old stellar population with a Kroupa initial mass
function (Maraston 2005), the stellar mass M∗ is derived, and thus the photometric
features of the progenitor are fixed. Finally, the parameters of the DM halo are
determined in order to reproduce the assumed σe8 and fixing Mh/M∗ ' 20 (Behroozi
et al. 2013). In the NFW set, these constraints produce rh ' 2Re, 22 . c . 37, and a
DM fraction fDM within a sphere of radius Re of ' 0.6 for the spherical progenitors.
For the Einasto set we fix n = 6, and we find that rh ' 20Re, and fDM ' 0.56 for
the spherical progenitor.

In each of the two sets we considered three values of σe8 for the spherical
progenitors, i.e., 200, 250 and 300 km s−1. Therefore, each of the two sets is made
of 3 families of models, for a total of 6 spherical progenitors. Table 4.1 lists all the
relevant parameters characterizing the progenitors galaxy models for both sets. The
flattened descendants of each progenitor with intrinsic flattening of E4 (q = 0.6)
and E7 (q = 0.3), are derived as follows. We produce two flattened models for each
value of q. The first flattened model is called “face-on built” (hereafter FO-built),
since, when observed face-on, its Re is the same as that of the spherical progenitor;
this requires FO-built flattened models to be more and more concentrated as q
decreases (ρ∗ ∝ q−1). The second flattened model instead, when seen edge-on,
has the same circularized Re of the spherical progenitor, thus we call it “edge-on
built” (hereafter EO-built); this property makes the EO-built models expand with
decreasing q (ρ∗ ∝

√
q). Therefore, a spherical progenitor with a given value of σe8

produces four flat galaxies: two E4 models (FO and EO built), and two E7 models
(FO and EO built). As a further step, in order to study the effects of galaxy rotation,
we assume two kinematical supports for each flattened system: one corresponding to
a velocity dispersion supported galaxy (VD models, k = 0), and the other one to
an isotropic rotator (IS models, k = 1). In the flattening procedure the DM halo
is maintained fixed to that of the progenitor. Note that our flattened models are
representative of ETGs since they are consistent with their observed properties. We
indeed checked for models lying outside the observed scatter of the scaling laws, but
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our adopted flattening procedure is quite robust in producing acceptable models, so
that we retained all of them.

Summarizing, from each spherical progenitor of given σe8, eight flattened models
are obtained (see Table 4.1), and we refer to this group of nine galaxy models as
to a family. All models belonging to a family can be identified either by the σe8

value of the spherical progenitor, or by their stellar mass M∗ (or B luminosity), or
DM halo mass; note however that while these last three quantities are kept constant
within a family, the σe8 of the descendants varies. Indeed, the modification of stellar
structure involves a change in the stellar kinematics, and so in the value of σe8;
in particular, for our models σe8 decreases for increasing flattening (see P13 for a
comprehensive discussion). Note that σe8 depends on the line-of-sight direction for
non-spherical models; when quoting σe8 for the latter models, in the following, we
refer to the edge-on projection. As in the previous chapter, we account only for a
passively evolving stellar population, leaving the study of star formation effects in
the following chapter.

4.2 Results

Here we present the main results of the simulations, focussing on the hydrodynamical
evolution of a few representative models, and then on the global properties LX and
TX for the two sets of models.

4.2.1 Hydrodynamics

For illustrative purpose, we present the hydrodynamical evolution of some selected
EO-built models belonging to the NFW set. In particular, in the family derived
from the E0 progenitor with σe8 = 250 km s−1, we consider the velocity dispersion
supported E7 model, and the corresponding E7 isotropic rotator. In Section 4.2.1.4
we summarize the main similarities and differences with the other models, as well as
some considerations on the behaviour of the thermalization parameter γth.

In general, as found in Chapter 3, the gas flows are found to evolve through
two well defined hydrodynamical phases. At the beginning, all the ISM quantities
(density, internal energy and velocity) are nearly symmetric with respect to the
galactic equatorial plane. During the evolution, the velocity fields become more and
more structured, until, after a certain time that depends on the specific model, the
reflection symmetry is lost, and it is never restored.

4.2.1.1 The E0250 progenitor

The initial (t = 2.4 Gyr) and final (t = 13 Gyr) configurations of the ISM are shown
in Fig. 4.1, where we show the meridional section of the ISM temperature (top
panels), and the ratio of the heating and cooling time theat/tcool (bottom panels;
green corresponds to a cooling dominated region while violet refers to a heating
region). The arrows show the meridional velocity field.

All the ISM physical quantities are stratified on a spherical shape, as a consequence
of the galaxy spherical symmetry. A decoupled flow is soon established (t ' 2.4 Gyr),
with an inflow in a round central region surrounded by an outflowing atmosphere.
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Table 4.1: Fundamental galaxy parameters for the NFW and Einasto sets of models.

Name LB Re M∗ Mh σNFW
e8 σEIN

e8 fNFW
DM fEIN

DM c

(1011LB,�) (kpc) (1011M�) (1011M�) (km s−1) (km s−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

E0200 0.27 4.09 1.25 25 200 200 0.61 0.57 37

EO4200IS 0.27 4.09 1.25 25 166 166 0.63 0.59 37
EO4200VD 0.27 4.09 1.25 25 179 179 0.63 0.59 37
EO7200IS 0.27 4.09 1.25 25 124 124 0.66 0.62 37
EO7200VD 0.27 4.09 1.25 25 148 149 0.66 0.62 37
FO4200IS 0.27 4.09 1.25 25 178 179 0.59 0.55 37
FO4200VD 0.27 4.09 1.25 25 191 192 0.59 0.55 37
FO7200IS 0.27 4.09 1.25 25 150 151 0.57 0.53 37
FO7200VD 0.27 4.09 1.25 25 178 179 0.57 0.53 37

E0250 0.65 7.04 3.35 67 250 250 0.59 0.55 28

EO4250IS 0.65 7.04 3.35 67 207 208 0.62 0.57 28
EO4250VD 0.65 7.04 3.35 67 223 224 0.62 0.57 28
EO7250IS 0.65 7.04 3.35 67 154 155 0.66 0.61 28
EO7250VD 0.65 7.04 3.35 67 184 185 0.66 0.61 28
FO4250IS 0.65 7.04 3.35 67 223 224 0.57 0.53 28
FO4250VD 0.65 7.04 3.35 67 240 241 0.57 0.53 28
FO7250IS 0.65 7.04 3.35 67 189 190 0.56 0.51 28
FO7250VD 0.65 7.04 3.35 67 223 224 0.56 0.51 28

E0300 1.38 11.79 7.80 160 300 300 0.62 0.57 22

EO4300IS 1.38 11.79 7.80 160 248 249 0.64 0.60 22
EO4300VD 1.38 11.79 7.80 160 267 269 0.64 0.60 22
EO7300IS 1.38 11.79 7.80 160 185 185 0.68 0.64 22
EO7300VD 1.38 11.79 7.80 160 221 223 0.68 0.64 22
FO4300IS 1.38 11.79 7.80 160 266 268 0.60 0.55 22
FO4300VD 1.38 11.79 7.80 160 286 288 0.60 0.55 22
FO7300IS 1.38 11.79 7.80 160 224 225 0.59 0.54 22
FO7300VD 1.38 11.79 7.80 160 265 267 0.59 0.54 22

Notes. (1) Model name: E0 identifies the spherical progenitor, and the superscript is the value of σe8. For
the other models, the nomenclature is as follows: for example, FO4200IS means a face-on flattened E4 galaxy,
obtained from the E0200 progenitor, with isotropic rotation. (2) Luminosities in the B band. (3) Effective
radius (for a FO view for FO-built models, and an EO view for EO-built models). For FO-built models, the
edge-on effective radius is reduced by a factor √q (Sect. 2.1). (4) Total stellar mass. (5) Total DM mass.
(6)− (7) Stellar velocity dispersion, as the luminosity-weighted average within a circular aperture of radius
Re/8, for the NFW and Einasto sets, respectively; for non-spherical models, σe8 is the edge-on viewed value.
(8)− (9) DM fraction enclosed within a sphere of radius Re for the NFW and Einasto sets, respectively. (10)
Concentration parameter for the NFW set.
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Figure 4.1: Meridional section of temperature (in K, top panels) and heating over
cooling time ratio theat/tcool (bottom panels), for the E0250 model with NFW halo
(Table 4.1), at the times specified in the boxes (in Gyr). We define tcool = E/L and
theat as the ratio between E and the source terms in the r.h.s of equation (2.38). In
the bottom plots, green regions refer to cooling gas, while purple indicate heating
dominated regions, as indicated by the colour scale. Arrows show the meridional
velocity field, with the longest arrows corresponding to 127 km s−1.
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Figure 4.2: Time evolution of the X-ray luminosity LX and X-ray emission weighted
temperature TX for the family derived from the E0250 model with the NFW halo.
The red and black lines report the evolution of the VD models (solid), and of the IS
models (dashed). The colours map the flattening: green, red and black correspond
to the E0, E4 and E7 galaxies, respectively.

At the same time cold gas accumulates into the centre, due to the lack of rotational
support. Starting from the time of decoupling, the evolution appears to be nearly
stationary.

The evolution of the ISM temperature reflects the flow evolution: an hot atmo-
sphere approximately isothermal (T ' 5× 106 K) forms at the beginning, containing
a cooling region of radius ' 5 kpc that leads to the formation of a cold core at the
very centre (see the green region in the bottom panels). At the end of the simulation,
a total of ' 2.6× 1010M� of gas are cooled at the centre, while ' 5× 109M� have
been ejected as a galactic outflow. Overall, LX and TX of this model do not present
significant fluctuations (Fig. 4.2, solid green line), with LX steadily decreasing and
TX steadily increasing in pace with the time evolution of mass sources and specific
heating (Section 2.2.1).

4.2.1.2 The EO7250
VD galaxy

The ISM evolution of the velocity dispersion supported EO7250
VD model presents

important similarities with the spherical progenitor. This is not surprising, due to
the absence of angular momentum, and to the fact that in general the gravitational
potential is much rounder than the associated stellar density distribution (in addition,
recall that the DM halo is kept spherical). Therefore, the only major differences
between the E0250 progenitor and the EO7250

VD model are the different spatial regions
where the gas is injected, and the different velocity dispersion field of the stars. A
direct comparison of the evolution of the two models can be obtained by inspection
of Fig. 4.3, analogous of Fig. 4.1. At early times the flow is kinematically decoupled,
with an equatorial outflow due to the concentrated heating on the equatorial plane
(purple region), associated with a polar accretion along the z-axis, evidenced by the
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Figure 4.3: Meridional sections of the temperature (top panels) and heating over
cooling time ratio (bottom panels) for the EO7250

VD model of the NFW set, at the
times specified in the boxes (in Gyr). Arrows are normalized to the same velocity as
in Fig. 4.1.
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green cooling region. As in the spherical progenitor, due to the lack of centrifugal
support, the cooling material falls directly towards the galaxy centre, where a dense,
cold core is formed during the first hundred of Myr. The early flow evolution
is characterised by equatorial symmetry and large scale meridional vortexes. The
symmetry is lost at t ' 3 Gyr, followed by a secular decrease of the velocity field. The
flow velocities are larger that in the E0 progenitor, due to the weaker gravitational
field (consequence of the edge-on flattening). The evolution of LX and TX are shown
in Fig. 4.2 (black solid line). Compared to the E0 progenitor, the EO7250

VD model
has a fainter LX and a lower TX, but a similar lack of significant fluctuations in LX

and TX. At the end of the simulation, the cooled gas at the centre for this model is
' 1.8× 1010M�, while the ejected ISM is ' 7× 109M�. If this model is allowed to
have the accretion physics activated for the central black hole, we expect to recover
the complex AGN feedback phenomena described elsewhere (Ciotti & Ostriker 2012,
see also Section 5.2), with significant reduction of the central accreted mass.

4.2.1.3 The EO7250
IS galaxy

Previous explorations (DC98; N14, see also Chapter 3), revealed that the evolution
of gas flows in galaxies with significant ordered rotation of the stellar component
is more complex than in velocity dispersion supported systems of similar structure.
This is confirmed by the present study. The flow evolution of the EO7250

IS is shown
in Fig. 4.4 (where more panels than the previous two models are shown, to better
illustrate the more structured evolution of the ISM).

The first major difference of the present model with respect to its VD counterpart
is the formation, due to angular momentum conservation, of a rotationally supported,
thin and dense cold disc, with a size of ' 5 kpc. The cold disc grows during galaxy
evolution, reaching a final size of ' 10 kpc. A hot and rarefied zone that secularly
increases in size surrounds the cold disc. At early times (t ' 2.1 Gyr), the ISM in
the central regions cools and collapses, producing a low-density region that cannot
be replenished by the inflowing gas, which is supported by angular momentum. As
time increases, the combination of the centrifugal barrier, that keeps the centre at
low density, and the secular increase of the specific heating produce the growth of
the heating region (purple zone in Fig. 4.4, roughly extending as the cold thin disc).
We stress that the time and spatial evolution of the theat/tcool ratio is more affected
by cooling time variations than by the secular decrease of the heating time. Being
the cooling time very sensitive to the ISM density, theat/tcool is strongly related to
the density distribution evolution.

Another important difference between EO7250
IS and EO7250

VD concerns the ISM
kinematics outside the equatorial plane. As apparent in Fig. 4.4, starting from
t ' 8 Gyr the meridional velocity field develops a very complex pattern of vortexes
above and below the equatorial plane. This behaviour is associated with the formation
of a large cooling region (in green), and corresponds respectively to a peak and a
drop in the evolution of LX and TX (Fig. 4.2, black dashed line). Note also that
LX and TX are the lowest of the three models E0250, EO7250

VD and EO7250
IS . The cold

mass accreted at the centre is now much smaller (' 2.9× 103M�), while the mass
in the cold disc is ' 1.5 × 1010M�, and the mass ejected in the galactic wind is
' 1.1×1010M�. Note that a central black hole in this rotating model would produce
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Figure 4.4: Meridional sections of the temperature in K (six top panels) and heating
over cooling time ratio (six bottom panels) for the EO7250

IS model of the NFW set, at
the times specified in the boxes (in Gyr). Arrows are normalized to the same velocity
as in Fig. 4.1.
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a significantly weaker AGN activity than in the EO7250
VD model.

Even if the models are structurally quite different from the S0/Sa models in
N14, they show a similar ISM evolution, with a lower LX and TX in rotating models.
However, the number of oscillations in the present set of models is much lower.

4.2.1.4 The thermalization parameter and an overview of all models

A useful global parameter that helps to quantify the heating of the ISM due to stellar
ordered motions is the thermalization parameter γth (Section 2.3). For the EO7250

IS

galaxy, and in general for medium-high mass models, we found that γth remains at
low values (' 0.08 − 0.28, see Tables 4.2 and 4.3) over the evolution; this means
that 1) the ISM almost co-rotates with the stellar population everywhere, and 2)
there are not significant ISM velocities in the meridional plane. As a consequence,
in the medium-high mass models Lkin ' Lσ (see equation 2.30). Note that γth can
attain large values, even larger than unity (see the examples described later in this
Section). This happens in general in low-rotation, low-mass systems, where γth is
fully dominated by high velocity galactic winds (see equation (2.30)), so that Lm

is large due to the thermalization of the strong meridional motions, even though
Lϕ remains low. Remarkably enough, also in these high-γth cases, the azimuthal
thermalization parameter γϕth ≡ Lϕ/Lrot (equation 2.30) remains low (see Tables 4.2
and 4.3), indicating that the ISM rotates almost as fast as the stellar population.
One could be tempted to interpret the lack of thermalization of a significant fraction
of ordered motions in all the IS models as the reason for the lower TX of the IS
models with respect to their VD counterparts (Fig. 4.2, black and red dashed lines
versus. the solid lines). However, even if this effect certainly contributes, it is
not the main reason for the lower TX in rotating models. Indeed, we found that
artificially adding the “missing” thermalization to the equations of hydrodynamics
in dedicated test simulations of rotating models leads only to a negligible increase
in TX (see also Chapter 3), showing that also other effects contribute to the low TX

(see Section 4.2.3).
We now discuss similarities and differences of the hydrodynamical evolution in

galaxy models of different mass (i.e., derived from progenitors with different σe8).
The main features of the family with the spherical progenitor of σe8 = 250 km s−1 are
maintained in the σe8 = 300 km s−1 family. In particular, independently of the DM
halo profile, increasing σe8, both LX and TX increase. This is expected because more
massive models can retain more and hotter gas independently of the flattening and
kinematical support. In more massive models the LX and TX are less fluctuating with
time, the outflow velocities of the galaxy outskirts are lower, and the complicated
meridional circulation in the rotating models is reduced (as also found by N14). The
final properties of all models are given in Tables 4.2 and 4.3. A full discussion of LX

and TX is given in Sections 3.2 and 3.3. In general, the ISM temperature, luminosity,
radius of the central cooling region, and inflow velocity are directly proportional to
σe8. In massive (σe8 ≥ 250 km s−1) models, at fixed galaxy mass, pure flattening
does not affect significantly LX and TX, while a major reduction in LX and TX is
obtained for the isotropic rotators.

The situation is quite different for the families with low mass progenitors (σe8 =
200 km s−1). These are the only cases where a transition to a global wind can be



4.2 Results 63

Figure 4.5: Meridional sections of the temperature in K (six top panels) and heating
over cooling time ratio (six bottom panels) for the low mass EO7200

VD model of the
NFW set, at the times specified in the boxes (in Gyr). Arrows are normalized to the
same velocity ad Fig. 4.1. Note the strong equatorial degassing established at late
times.
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Figure 4.6: ISM X-ray luminosity LX in the 0.3–8 keV band at 13 Gyr for all models
in the NFW (top panels) and in the Einasto (bottom panels) sets, as a function of
σe8, of the hot (T > 106 K) ISM mass, and of the galaxy blue optical luminosity;
spherical progenitors (green circles) with σe8 = (200, 250, 300) have been considered.
The green, red and black colours refer to the E0, E4 and E7 models respectively.
Filled and empty symbols indicate the fully velocity dispersion supported VD models,
and the isotropic rotators IS models, respectively. Models in wind for the NFW set
are labelled in the top left panel.
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induced by a change of shape or by rotation, in accordance with the energetic analysis
of CP96. This is especially true for the less concentrated Einasto models. In these
global wind cases, LX drops to very low values, due to the very low ISM density,
and TX keeps larger than expected from the trend defined by non-wind models (see
Section 4.2.3), due to the reduced cooling, and to thermalization of the meridional
motions (see Sections 4.2.2 and 4.2.3 for a detailed discussion). The sensitivity of
the flow phase for low-mass models near the transition to the outflow is shown for
example by the EO7200

VD model with the NFW halo, that experiences two quite distinct
evolutionary phases (Fig. 4.5). At the beginning, a significant equatorial degassing
is apparent, coincident with the strong heating in that region. As time increases,
the velocity field in the outflow region decreases and gas cooling becomes more and
more important outside the V-shaped region around the equator. However, after ' 9
Gyr, the secular increase of the specific heating, coupled with the shallow potential
well, induces again higher and higher velocities. The gas temperature increases again
while LX decreases. The associated EO7200

IS model is in a permanent wind phase from
the beginning, thus showing the additional effect of rotation in flattened, low-mass
galaxies. The differences between the EO7200

VD and EO7200
IS models are quantified

by the associated values of the global quantities at the end of the simulation (see
Table 4.2): Mhot = 0.66 × 109 M� and 0.24 × 109 M� in the VD and IS cases,
respectively, where Mhot is the ISM mass having T > 106 K. Little accretion at the
centre is present in the VD but not in the IS, and this shows how different AGN
activity may be expected in rotating versus non rotating galaxies, also at low galaxy
masses.

4.2.2 The X-ray ISM luminosity LX

We now move to describe the properties of LX for the whole set of galaxy models, as
they would be observed at an age of 13 Gyr. The results are summarized in Fig. 4.6,
where the top panels refer to the NFW set and the bottom panels to the Einasto
set. LX is shown versus 3 different galaxy properties, i.e., σe8 (left panels), Mhot

(central panels), and LB (right panels). Remarkably, the range of LX values spanned
by the models matches the observed one (see for example the observed LX − LK
and LX − σe8 trends in Figs. 2 and 5 in Boroson et al. 2011). The most interesting
feature of Fig. 4.6 is the clear LX difference between flattened rotating models and
models of similar σe8 but velocity dispersion supported. As described in the previous
Section, the hydrodynamical simulations show that the under-luminosity of rotating
galaxies with medium to large σe8 is due to a different flow evolution driven by the
presence of angular momentum, which prevents the gas from accumulating in the
central regions, leading to the creation of a very hot, low density atmosphere in the
centre, and eventually resulting in a lower total LX. Instead, in VD models the ISM
flows directly toward the central galactic regions, where a steep density profile is
created. This difference in the hot gas density distribution is a major reason for
the systematic difference of LX (see also Fig. 4.7). It nicely explains the lower LX

observed for fast rotators than for slow rotators in the ATLAS sample (Sarzi et al.
2013). ETGs with the lowest σe8, behave differently (see below).

In the central panels of Fig. 4.6 LX is plotted against the hot gas content Mhot;
each rotating model is shifted to the left of the corresponding VD model, thus
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Figure 4.7: Angle-averaged profile of the hot ISM density at t = 13 Gyr for the same
models as in Fig. 4.2. Solid lines refer to VD models, dashed lines refer to IS models.

IS models have also a lower Mhot than VD models. This is due to the presence
of recurrent cooling episodes driven by rotation, that further contribute to the
lowering of LX. With the exception of the models with the lowest LB , the systematic
differences in Mhot are not due to escaping ISM (Fig. 4.8).

Finally, the right panels of Fig. 4.6 show how LX on average increases with the
galaxy optical luminosity, however presenting at each LB a significant spread in LX,
consistent with observations (Boroson et al. 2011). At fixed LB, round progenitors
are found at high LX, while the dispersion is associated to a mix of flattening and
rotation effects. At each LB , LX of the VD models is higher than that of IS ones by
up to a factor of ' 40. The largest difference occurs for the more massive and flatter
models, and it is much larger than the LX variation between a spherical progenitor
and its most flattened VD version. Indeed, LX of VD models of identical LB with
different flattening lies in a narrow range, with a weak trend for the X-ray luminosity
to increase as the galaxy model gets rounder. The same behaviour occurs also among
IS models with the same LB. This indicates that, at fixed LB and fixed internal
kinematics, LX is only marginally sensitive to even large variations of the flattening
degree of the stellar component.

In Figure 4.6 it is apparent how the models with the σe8 = 200 km s−1 progenitor
behave differently from the rest of the models; this is more evident for the EO
flattening, when the galaxy potential well becomes shallower, and thus energetic
effects of flattening and rotation are larger than for the FO flattening. For example,
the EO7200

VD model drops to low LX, at variance with the FO7200
VD model; this drop

happens also for the Einasto EO4200
VD model. This sharp LX difference is due to
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Figure 8. Top panels: fraction of escaped ISM mass (Mesc) with respect to the total injected mass (Minj, see Tables A1 and A2) at t = 13 Gyr, as a function of
σe8, for the whole NFW and Einasto sets. The notation for the symbols is the same as in Fig. 6. Bottom panels: X-ray luminosity LX with respect to X-ray
luminosity weighted temperature TX at t = 13 Gyr for the same models in the top panels.

of the flow phase to (even small) changes in the mass profile (e.g.,
flattening or mass concentration) and in the stellar kinematics (e.g.,
rotation) is very high, and it is very difficult to predict systematic
trends in LX. We stress that the VD and IS models in each panel are
characterized by construction by the same gravitational potential, so
that the difference in LX is only due to galactic rotation. These cases
point out the high sensitivity of the gas flow to the galaxy structure
and kinematics at low galaxy mass, where galactic winds are hosted.

3.3 The X-ray emission weighted temperature

The second important diagnostic explored in this work is the lumi-
nosity weighted ISM temperature in the band 0.3–8 keV. In analogy
with Fig. 6, the TX distribution of the whole set of models (both
NFW and Einasto) at the end of the simulations, as a function of
σe8, Mhot and LB, is given in Fig. 10.

From the left panels it is apparent how in general TX increases

with σe8 for the bulk of the models, a natural consequence of the
deeper potential well associated with larger σe8. This leads to faster
stellar (random and ordered) velocities, with the consequent larger
energy input due to thermalization of the stellar velocity fields. In
addition, a deeper potential is more effective in retaining the hot
gas, that in turn can be further heated by SNIa explosions. The
temperature range spanned by the models agrees well with that
of real galaxies; moreover, the observed trend of higher TX for
increasing σe8 is reproduced (e.g., see Fig. 6 in Boroson et al. 2011).
An interesting trend can be noticed at low σe8, marginally visible
in the NFW set but clearly discernible in the Einasto set, i.e. the
increase of TX for decreasing σe8, and this even more in rotating
galaxies. This is the temperature analogous of the LX behaviour
described in Fig. 6. In fact the transition to global winds in flattened
and rotating low-mass galaxies leads to a reduction in the LX but an
increase of TX, due to the thermalization of the resulting meridional
flows (while the thermalization of galaxy rotation remains negligible,
see Sect. 3.1.4). A closer inspection of the TX−σe8 panels shows that
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Figure 4.8: Fraction of escaped ISM mass (Mesc) with respect to the total injected
mass (Minj, see Tables 4.2 and 4.3) at t = 13 Gyr, as a function of σe8, for the whole
NFW and Einasto sets. The notation for the symbols is the same as in Fig. 4.6.
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Figure 4.9: ISM emission weighted temperature TX in the 0.3–8 keV band at 13 Gyr
for all the models in the NFW (top panels) and in the Einasto (bottom panels) sets
as a function of σe8, of the hot (T > 106 K) ISM mass, and of the galaxy blue optical
luminosity. Symbols and colours are as in Fig. 4.6.
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Figure 8. Top panels: fraction of escaped ISM mass (Mesc) with respect to the total injected mass (Minj, see Tables A1 and A2) at t = 13 Gyr, as a function of
σe8, for the whole NFW and Einasto sets. The notation for the symbols is the same as in Fig. 6. Bottom panels: X-ray luminosity LX with respect to X-ray
luminosity weighted temperature TX at t = 13 Gyr for the same models in the top panels.

of the flow phase to (even small) changes in the mass profile (e.g.,
flattening or mass concentration) and in the stellar kinematics (e.g.,
rotation) is very high, and it is very difficult to predict systematic
trends in LX. We stress that the VD and IS models in each panel are
characterized by construction by the same gravitational potential, so
that the difference in LX is only due to galactic rotation. These cases
point out the high sensitivity of the gas flow to the galaxy structure
and kinematics at low galaxy mass, where galactic winds are hosted.

3.3 The X-ray emission weighted temperature

The second important diagnostic explored in this work is the lumi-
nosity weighted ISM temperature in the band 0.3–8 keV. In analogy
with Fig. 6, the TX distribution of the whole set of models (both
NFW and Einasto) at the end of the simulations, as a function of
σe8, Mhot and LB, is given in Fig. 10.

From the left panels it is apparent how in general TX increases

with σe8 for the bulk of the models, a natural consequence of the
deeper potential well associated with larger σe8. This leads to faster
stellar (random and ordered) velocities, with the consequent larger
energy input due to thermalization of the stellar velocity fields. In
addition, a deeper potential is more effective in retaining the hot
gas, that in turn can be further heated by SNIa explosions. The
temperature range spanned by the models agrees well with that
of real galaxies; moreover, the observed trend of higher TX for
increasing σe8 is reproduced (e.g., see Fig. 6 in Boroson et al. 2011).
An interesting trend can be noticed at low σe8, marginally visible
in the NFW set but clearly discernible in the Einasto set, i.e. the
increase of TX for decreasing σe8, and this even more in rotating
galaxies. This is the temperature analogous of the LX behaviour
described in Fig. 6. In fact the transition to global winds in flattened
and rotating low-mass galaxies leads to a reduction in the LX but an
increase of TX, due to the thermalization of the resulting meridional
flows (while the thermalization of galaxy rotation remains negligible,
see Sect. 3.1.4). A closer inspection of the TX−σe8 panels shows that
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Figure 4.10: X-ray luminosity LX with respect to X-ray luminosity weighted temper-
ature TX at t = 13 Gyr for the whole NFW and Einasto sets. The notation for the
symbols is the same as in Fig. 4.6.

the fact that flattening produces a flow transition to a global wind, in accordance
with the CP96 analysis, as described in Section 4.2.1.4. In the NFW case, a further
reduction in LX is attained when introducing rotation in the EO7200

IS model, again in
accordance with CP96 and P13, where thermalization of ordered motions does not
take place. Note how a transition to a very low LX value is also obtained for the NFW
EO4200

IS model, just by adding rotation. These findings point out the high sensitivity
of the flow phase to (even small) changes in the mass profile (e.g., flattening or mass
concentration) and in the stellar kinematics (e.g., rotation) at low galactic masses,
for which then it is difficult to predict systematic trends in LX. We stress that the
VD and IS models in each family are characterized, by construction, by the same
gravitational potential, so that the difference in LX is only due to galactic rotation.

4.2.3 The X-ray emission weighted temperature TX

The second important diagnostic explored is the 0.3–8 keV luminosity weighted ISM
temperature TX. The distribution of the TX values for the whole set of models at
the end of the simulations is given in Fig. 4.9, as a function of σe8, Mhot and LB.

In general TX increases with σe8, a natural consequence of the deeper potential
well associated with larger σe8. This leads to faster stellar (random and ordered)
velocities, with the consequent larger energy input from thermalization of the stellar
motions. In addition, in a deeper potential the hot gas is retained at a larger TX.
The temperature range spanned by the models agrees well with that of real ETGs,
and the observed trend of TX with σe8 is reproduced (e.g., see Fig. 6 in Boroson
et al. 2011, who measured TX of the pure gaseous component for a sample of 30
ETGs). At high σe8, the observed TX values span a narrower range than in our
models, likely because the models include very flat and highly rotating ETGs that
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are missing in the observed sample. Interestingly, instead, the low-σe8 end of the
observed TX − σe8 relation shows an increase of dispersion in the TX values, and a
hint for a flattening of the relation with respect to the trend shown at larger σe8.
These features are shown also by our models: at low σe8 the trend of TX flattens
for NFW models, and the scatter around it increases considerably for the Einasto
models. This is explained as the temperature counterpart of the LX behaviour at
low σe8 in Fig. 4.6: the transition to global winds in flattened and rotating low-mass
galaxies leads to a reduction in LX and an increase of TX with respect to the trend
defined by more massive ETGs, or ETGs of similar mass but not in wind. The
change in the relationship is due to the thermalization of the resulting meridional
flows (while the thermalization of galaxy rotation remains negligible), and to the
lower cooling (see Section 4.2.1.4). For example, the EO4200

VD and EO4200
IS models in

the Einasto set, have high TX as a consequence of the transition to the wind phase.
The middle panels of Fig. 4.9 show the TX distribution as a function of Mhot. In

the NFW set, there is a sequence of TX values clearly visible at Mhot > 2× 109M�,
with VD models hotter than the corresponding IS models. However, the three models
with the smallest amount of hot ISM (Mhot < 109M�) have higher temperatures
than one would expect extrapolating the TX sequence to very low values ofMhot, as a
consequence of the transition to the wind phase. A change in the trend is even more
visible in the low mass Einasto models, where the stronger tendency to establish a
global wind leads to an increase of TX at very low Mhot, reaching values even higher
than in VD models with large X-ray haloes. In conclusion, at medium-high σe8, TX

of VD models tends to remain above that of rotating models; at low σe8, in addition
to the cooler branch of rotating models, another hotter branch of IS and VD models
appears, made by models in wind.

Finally, the right panels of Fig. 4.9 show again how TX of IS models is systemati-
cally lower with respect to that of VD ones of same LB, with the exception of those
in the wind phase. As for LX, TX of VD models is dominated by the dense central
luminous regions. In IS models, instead, the central region is hotter than in VD
models, but it is also at a lower density, so that its contribution to TX is marginal,
and TX is more affected by colder (T ' 2× 106 K) gas located in the outer regions.
Thus, the main reason of the lower TX in IS models of medium-high mass is not
galaxy shape, but the importance of galaxy rotation, that drives the hydrodynamical
evolution (Section 4.2.1.3). From the Jeans equations, the more a galaxy is flat, the
more it can be rotating; thus the E7 IS models are cooler than their VD counterparts,
and by a larger amount than for the analogous E4 pair, due to the stronger rotation
in the E7 models.

The trend of LX with TX for all models is shown in the lower panels of Fig. 4.10.
Also in this figure the models behaviour is strikingly similar to that observed in the
Boroson et al. (2011) sample, where a narrow correlation at high TX & 0.5 keV is
broken into an almost vertical band of LX values spanning a large range (from 1038

to few 1041 erg s−1) for kT covering a small range (from 0.2 to 0.5 keV). This trend
in the models is explained as the product of the effects described above, resulting in
a high sensitivity of the flow phase to small variations in the galaxy structure at the
lowest galaxy masses, that on average also have TX < 0.5 keV.

The considerations on the thermalization parameter presented in the previous
Section can be directly translated on the temperatures. Indeed, due the low values of
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Figure 4.11: Edge-on 0.3–8 keV surface brightness of the ISM (ΣX) at 13 Gyr,
for E0250, EO7250

VD and EO7250
IS models, respectively; the brightness values on the

colour-bar are given in erg s−1 cm−2. Superimposed are the isophotes (Σ?) obtained
by projecting the galaxy stellar density distribution, with the innermost contour
corresponding to 104 M� pc−2, and decreasing by a factor of ten on each subsequent
contour going outwards. Note that the ΣX map of the EO7250

VD model shows a round
shape and a luminous core very similar to the E0250 map, whereas EO7250

IS map
presents a boxy shape and a low-luminosity core.

γth, the simulations show that Tkin is almost coincident with Tσ in the medium-high
σe8 models (i.e., models in a slow inflow, see Tables 4.2 and 4.3), where Tσ depend
only on the galaxy structure, and do not contain contributions from gas cooling and
SNIa heating (equation (2.35)). The low-σe8 wind models, instead, have Tkin > Tσ,
and the temperature difference is due to thermalization of the strong meridional
motions developed in the wind phase (Tkin ' Tσ + Tm, while Tϕ remains very small
due to low values of γϕth). Thus Tσ, except for wind cases, is a good proxy for Tkin.
As a final comment, we note that, in general, at fixed σe8, Einasto models tend to be
slightly colder than the NFW models, both in TX and Tσ, due to the different dark
matter profile. Relevant considerations on the global trend of Tσ with galaxy shape
and kinematics are presented in Posacki (2014).

4.3 Discussion and conclusions

In this chapter, in a follow-up of a series of preliminary studies, we performed a
large suite of high-resolution 2D hydrodynamical simulations, to study the effects of
galaxy shape and stellar kinematics on the evolution of the X-ray emitting gaseous
haloes of ETGs. Realistic galaxy models are built with a Jeans code, that allows
for a full generality in the choice of axisymmetric galaxy shape and of the stellar
and dark matter profiles, that can be tailored to reproduce observational constraints.
The dynamical structure of the models obeys the implicit assumption of a 2-integrals
phase-space distribution function. Stellar motions in the azimuthal direction are
split among velocity dispersion and ordered rotation by using the Satoh (1980)
decomposition. In particular, we explored two extreme kinematical configurations,
the fully velocity dispersion supported system (VD) and the isotropic rotator (IS),
in order to encompass all the possible behaviours occurring in nature. Of course,
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the VD configuration applies only to a minor fraction of the flat galaxy population
(e.g., Emsellem et al. 2011). Moreover, IS models approximate only to some extent
the dynamical structure of flat and fast rotating galaxies, since the latter are more
generally characterized by a varying degree of anisotropy in the meridional plane
with intrinsic flattening (Cappellari et al. 2007).

The source of gas is provided by secular evolution of the stellar population (stellar
winds from ageing stars and SNIa ejecta). Heating terms account for SNIa events
and thermalization of stellar motions.

The main focus of this work is the explanation of long-standing and more
recently observed trends of LX and TX with galaxy shape and rotation (as well
as, of course, with fundamental galaxy properties as stellar velocity dispersion and
optical luminosity). Evidences from previous exploratory theoretical (CP96; P13) and
numerical works (DC98, Chapter 3) seem to point toward a cooperation of flattening
and rotation in establishing the final X-ray luminosity and temperature of the ISM.
However which of the two is the driving parameter, and what is the involved physical
mechanism, had not been clarified yet. From the present investigation, we conclude
that more than one physical effect is at play, and that the relative importance of
flattening and rotation changes as a function of galaxy mass. We summarize the
results discussing first the X-ray luminosity and then the emission-weighted ISM
temperature.

1) In low mass galaxy models with a progenitor hosting a global wind, the effects
of flattening and rotation are just to make the wind stronger, and all systems are
found at the lowest values of LX.

2) In case of galaxies energetically near to the onset of a galactic wind, i.e., for
ETGs with σe8 ≈ 200 km s−1, flattening and rotation contribute significantly to
induce a wind, in agreement with the energetic expectations discussed in CP96, with
the consequent sharp decrease of LX. The transition to a global wind is favoured
respectively by the facts that flattening can reduce the depth of the potential well,
and that in rotating systems the ISM and the stellar component almost corotate;
this reduces (in absolute value) the effective potential experienced by the ISM.

3) In models with σe8 > 200 km s−1, galaxy shape variations, in absence of
rotation, have only a minor impact on the values of LX, in the sense that fully
velocity dispersion supported flattened models have LX similar to or just lower than
that of their spherical progenitors.

4) In flat galaxies with σe8 > 200 km s−1, rotation reduces significantly LX. Not
only the thermalization parameter is low and part of the heating due to stellar
motions is missing with respect to the corresponding VD models, but rotation acts
also on the hydrodynamics of the gas flow: conservation of angular momentum of
the ISM injected at large radii favours gas cooling through the formation of rotating
discs of cold gas, reducing the amount of hot gas in the central regions and then
LX. The effects of angular momentum are clearly visible in Figure 4.11, where we
show the edge-on projected X-ray surface brightness maps. In conclusion, galaxy
flattening has an important, though indirect effect for medium-to-high mass galaxies,
in the sense that only flattened systems can host significant rotation of the stellar
component.

5) The luminosity evolution and the luminosity values at the end of the simulations
are similar for the NFW or Einasto dark matter haloes (at fixed stellar structure
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and similar values of the dark matter halo mass).
The main results concerning the emission-weighted temperature TX can be

summarized as follows:
6) As for LX, also for TX the response to a variation of shape and internal

kinematics is different for low and high mass galaxies. TX does not change appreciably
adding flattening and rotation to low mass progenitors that are in the global wind
phase. Due to their low density and high meridional velocities, global winds are
generally hotter than what expected by extrapolation of the TX of more massive
systems. As described at point 2) above, adding flattening and rotation to ETGs
energetically near to host a global wind leads to a transition to a wind phase, with
the consequent increase of TX.

7) In the medium-high mass galaxies a change of shape produces small changes
in TX. Adding rotation, instead, results in a much lower TX. This is because angular
momentum conservation leads to the formation of a massive centrifugally supported
cold disc and to a lower density of the hot ISM in the central regions above and
below the equatorial plane, with respect to VD models. Then, the external colder
regions weight more in the computation of TX.

8) Overall, for medium-high mass galaxies, TX increases with galaxy mass,
independently of the specific dark matter halo profile. In general, in the Einasto
haloes the hot gas is systematically cooler and with a larger scatter in TX, than in
the NFW dark matter haloes of comparable mass.

9) In rotating models the ISM almost corotates with the stars, and so there is
a corresponding reduction of the thermalization of the galaxy streaming velocity.
At the same time the rotating ISM is less bound, due to the centrifugal support.
With the exception of low mass galaxies in the wind phase, Tσ (the temperature
associated with the thermalization of the stellar velocity dispersion) is a good proxy
for Tkin, the true thermalization temperature of stellar motions, as computed from
the simulations; for wind models instead Tkin > Tσ.

A few important physical phenomena are still missing from the simulations. First,
it is obvious that in rotationally supported models the massive and rotating cold
discs are natural places for star formation. For observational studies it would be
interesting to estimate age and mass of the new stars. From the point of view of the
present investigation, the formation of stars, by reducing the amount of cold gas in
the equatorial plane, could in principle also modify the evolution of the ISM.

A second aspect missing here is the self-gravity of the gaseous cold disc. It
is expected that self-gravity acts not only to promote star formation, but also to
develop non axisymmetric instabilities, that lead to non-conservation of angular
momentum of the gas. Phenomenologically, the effects of self-gravity can be viewed
as a “gravitational viscosity” (e.g. Bertin & Lodato 2001), that favours accretion of
cold gas toward the centre. Such a gas flow toward the centre is of great importance
for feedback effects from a central massive black hole in rotating galaxies (Novak
et al. 2011; Gan et al. 2014).

In the next chapter we present our ongoing work of star formation in ETGs,
by simulating a sub-group of the NFW set of galaxies shown in this chapter, with
star formation activated. Moreover, we present also an improved numerical code,
result of a joint collaboration with G.S. Novak, accounting for BH accretion and
state-of-the-art AGN feedback in realistic ETGs, along with the the first simulations
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in velocity supported galaxies.
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Table 4.2: Simulations results for the NFW set at t = 13 Gyr.

name Minj Mesc Mgas Mhot LX TX LSN Tkin Tσ Tv Tm γth γϕth

(109M�) (109M�) (109M�) (109M�) (1040 erg s−1) (keV) (1040 erg s−1) (keV) (keV) (keV) (keV)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

E0200 12.0 3.2 8.9 2.91 2.06 0.48 10.2 0.26 0.26 1.7E-3 1.7E-3 – –
EO4200IS 11.9 9.8 2.4 0.15 8.29E-4 0.50 10.2 0.40 0.17 0.24 0.21 2.62 0.25
EO4200VD 11.9 4.5 7.5 2.84 1.99 0.46 10.2 0.26 0.26 1.5E-3 1.5E-3 – –
EO7200IS 11.9 10.3 1.8 0.24 1.95E-3 0.49 10.2 0.29 0.08 0.22 0.18 1.24 0.22
EO7200VD 11.9 9.4 2.8 0.66 1.89E-2 0.50 10.2 0.33 0.25 7.8E-2 7.8E-2 – –
FO4200IS 12.0 3.3 8.8 1.73 0.45 0.37 10.3 0.21 0.18 2.9E-2 9.0E-3 0.31 0.21
FO4200VD 12.0 2.9 9.2 2.46 2.21 0.48 10.3 0.27 0.27 3.7E-3 3.7E-3 – –
FO7200IS 12.0 3.4 8.7 1.36 0.25 0.32 10.2 0.12 0.09 2.9E-2 1.1E-2 0.15 0.10
FO7200VD 12.0 4.0 8.1 1.51 1.82 0.49 10.2 0.28 0.28 2.0E-3 2.0E-3 – –

E0250 32.2 5.1 27.5 6.43 11.1 0.69 24.3 0.42 0.42 1.2E-3 1.2E-3 – –
EO4250IS 31.7 8.3 23.8 4.02 0.76 0.55 23.9 0.29 0.27 1.8E-2 3.1E-3 0.13 0.10
EO4250VD 31.7 6.9 25.2 6.17 9.50 0.67 23.9 0.42 0.41 1.5E-3 1.5E-3 – –
EO7250IS 30.6 11.4 19.7 3.42 0.33 0.55 23.1 0.18 0.13 5.5E-2 4.9E-3 0.20 0.18
EO7250VD 30.6 12.5 18.7 3.83 4.87 0.62 23.1 0.41 0.40 1.8E-3 1.8E-3 – –
FO4250IS 32.2 6.5 26.2 3.80 0.87 0.56 24.3 0.30 0.29 1.9E-2 3.9E-3 0.13 0.10
FO4250VD 32.2 5.2 27.4 5.62 11.1 0.72 24.3 0.43 0.43 1.6E-3 1.6E-3 – –
FO7250IS 32.2 6.4 26.0 2.91 0.43 0.50 24.2 0.19 0.15 3.7E-2 7.9E-3 0.13 0.10
FO7250VD 32.2 7.4 25.3 3.82 10.3 0.72 24.2 0.45 0.45 1.7E-3 1.7E-3 – –

E0300 71.3 7.6 64.7 14.70 43.3 0.94 49.1 0.65 0.65 1.0E-3 1.0E-3 – –
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Table 4.2– continued

name Minj Mesc Mgas Mhot LX TX LSN Tkin Tσ Tv Tm γth γϕth

(109M�) (109M�) (109M�) (109M�) (1040 erg s−1) (keV) (1040 erg s−1) (keV) (keV) (keV) (keV)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

EO4300IS 69.4 14.1 56.0 6.52 1.34 0.68 47.7 0.43 0.42 1.5E-2 1.9E-3 0.07 0.06
EO4300VD 69.4 10.5 59.9 13.61 37.7 0.90 47.7 0.63 0.63 1.2E-3 1.2E-3 – –
EO7300IS 65.5 15.9 50.2 6.13 1.04 0.56 45.0 0.23 0.20 2.3E-2 1.5E-3 0.06 0.05
EO7300VD 65.5 17.8 48.8 9.92 25.0 0.83 45.0 0.62 0.62 1.2E-3 1.2E-3 – –
FO4300IS 71.8 11.9 60.9 6.11 1.35 0.68 49.4 0.45 0.43 1.7E-2 4.0E-3 0.08 0.06
FO4300VD 71.8 8.5 64.3 12.91 41.7 0.99 49.4 0.65 0.65 1.5E-3 1.5E-3 – –
FO7300IS 71.9 11.1 61.8 5.07 0.90 0.59 49.5 0.25 0.23 2.7E-2 4.0E-3 0.06 0.05
FO7300VD 71.9 12.7 60.4 9.19 36.7 1.02 49.5 0.67 0.67 1.6E-3 1.6E-3 – –

Notes. (1) Name of the model. (2)− (3) Total ISM mass injected into and escaped from the numerical grid, respectively. Differences in Minj for models of
same LB are accounted for different sampling of ρ∗ over the numerical grid. (4) Total ISM mass retained within the galaxy at the end of the simulation.
(5)− (7) ISM mass with T > 106 K, ISM X-ray luminosity in the 0.3–8 keV band, and ISM X-ray emission weighted temperature in the same band, at
the end of the simulation. (8) SNIa heating rate at the end of the simulation. (9)− (12) Thermalization temperatures of stellar motions at the end of the
simulation, defined accordingly to equations (2.35)-(2.34). By construction, Tkin = Tσ +Tv; for rotating models Tv = γthTrot and Tϕ = Tv−Tm = γϕthTrot,
while for velocity dispersion supported models Tv = Tm (see Chapter 1 and Section 2.4.3). (13)− (14) Thermalization parameter, and its azimuthal
component γϕth = Lϕ/Lrot (see equation (2.30)), at the end of the simulation.



76
T

h
e

effects
o
f

g
a
la

x
y

sh
a
pe

a
n
d

ro
tatio

n
o
n

th
e

X
-r

ay
h
a
lo

es
o
f

E
T

G
s

-
N

u
m
er

ica
l

sim
u
latio

n
s

Table 4.3: Simulations results for the Einasto set at t = 13 Gyr.

name Minj Mesc Mgas Mhot LX TX LSN Tkin Tσ Tv Tm γth γϕth

(109M�) (109M�) (109M�) (109M�) (1040 erg s−1) (keV) (1040 erg s−1) (keV) (keV) (keV) (keV)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

E0200 12.0 3.9 8.2 2.67 1.89 0.41 10.2 0.24 0.24 3.7E-3 3.7E-3 – –
EO4200IS 11.9 12.1 0.1 0.09 5.25E-4 0.74 10.2 0.49 0.15 0.34 0.31 4.34 0.28
EO4200VD 11.9 12.1 0.1 0.09 5.51E-4 0.73 10.2 0.54 0.23 0.31 0.31 – –
EO7200IS 11.9 12.0 0.2 0.19 1.25E-3 0.45 10.2 0.34 0.07 0.27 0.24 1.79 0.14
EO7200VD 11.9 11.3 0.9 0.20 1.56E-3 0.45 10.2 0.42 0.22 0.20 0.20 – –
FO4200IS 12.0 6.0 5.7 1.52 0.97 0.21 10.3 0.21 0.16 5.2E-2 2.1E-2 0.63 0.37
FO4200VD 12.0 3.6 8.5 2.31 1.94 0.45 10.3 0.25 0.25 2.1E-3 2.1E-3 – –
FO7200IS 12.0 3.9 8.2 1.69 0.16 0.25 10.2 0.14 0.09 4.8E-2 3.0E-2 0.28 0.11
FO7200VD 12.0 4.9 7.3 1.60 2.10 0.44 10.2 0.26 0.26 2.8E-3 2.8E-3 – –

E0250 32.2 6.6 26.0 6.47 10.1 0.63 24.3 0.37 0.37 1.4E-3 1.4E-3 – –
EO4250IS 31.7 10.3 21.8 4.03 1.01 0.49 23.9 0.26 0.24 1.8E-2 3.4E-3 0.15 0.12
EO4250VD 31.7 9.2 22.9 5.81 7.90 0.59 23.9 0.36 0.36 1.9E-3 1.9E-3 – –
EO7250IS 30.6 14.2 16.9 2.77 0.25 0.48 23.1 0.18 0.11 6.2E-2 9.4E-3 0.27 0.26
EO7250VD 30.6 16.0 15.2 3.29 2.86 0.57 23.1 0.35 0.34 3.2E-3 3.2E-3 – –
FO4250IS 32.2 8.1 24.5 3.93 1.46 0.43 24.3 0.27 0.26 1.7E-2 3.8E-3 0.13 0.10
FO4250VD 32.2 6.9 25.8 5.38 9.79 0.66 24.3 0.38 0.38 2.0E-3 2.0E-3 – –
FO7250IS 32.2 8.0 24.4 4.99 4.64 0.26 24.2 0.17 0.14 2.9E-2 1.1E-2 0.11 0.07
FO7250VD 32.2 9.5 23.3 3.45 7.95 0.65 24.2 0.40 0.40 2.0E-3 2.0E-3 – –

E0300 71.3 9.6 62.7 13.97 39.9 0.85 49.1 0.56 0.56 1.0E-3 1.0E-3 – –
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Table 4.3– continued

name Minj Mesc Mgas Mhot LX TX LSN Tkin Tσ Tv Tm γth γϕth

(109M�) (109M�) (109M�) (109M�) (1040 erg s−1) (keV) (1040 erg s−1) (keV) (keV) (keV) (keV)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

EO4300IS 69.4 17.2 53.2 7.10 1.57 0.63 47.7 0.38 0.36 1.5E-2 1.6E-3 0.09 0.08
EO4300VD 69.4 13.0 57.5 12.71 33.2 0.81 47.7 0.54 0.54 1.4E-3 1.4E-3 – –
EO7300IS 65.5 20.3 45.6 6.47 1.27 0.51 45.0 0.20 0.18 2.6E-2 2.2E-3 0.08 0.07
EO7300VD 65.5 23.5 43.2 7.58 18.3 0.73 45.0 0.52 0.52 1.8E-3 1.8E-3 – –
FO4300IS 71.8 14.5 58.0 6.50 1.45 0.63 49.4 0.40 0.38 1.8E-2 3.6E-3 0.10 0.08
FO4300VD 71.8 11.1 61.8 11.70 37.8 0.90 49.4 0.57 0.57 1.7E-3 1.7E-3 – –
FO7300IS 71.9 14.1 56.6 5.79 1.35 0.48 49.5 0.23 0.21 2.5E-2 3.5E-3 0.07 0.06
FO7300VD 71.9 16.9 56.3 7.43 31.1 0.95 49.5 0.60 0.59 1.8E-3 1.8E-3 – –

Notes. All quantities are as in Table 4.2.





Chapter 5

Ongoing and future developments

In the previous studies on the effects of shape and rotation on the X-ray emitting
halo of ETGs, we found that the ISM angular momentum plays a crucial role in
determining the ETGs X-ray properties. A direct consequence of angular momentum
conservation is the formation, in rotationally supported galaxies, of a massive, dense
cold disc. These discs are the natural place for star formation that, in principle, can
alter the ISM evolution, by removing cold gas in the equatorial plane. In addition,
when a new stellar population is formed, SNII events take place on a short time-scale,
injecting mass and energy via core-collapse stellar explosions. Thus, the X-ray
features behaviour of the rotating models, studied in the previous Chapter, may
be affected by the missing physics of star formation. Moreover, an interesting link
between our finding of an ubiquitous formation of a cold disc in rotating systems
and observed galaxy properties is given by the fact that, among ETGs, it is only
in fast rotators that some degree of star formation is observed (Davis et al. 2011;
Young et al. 2011; Sarzi et al. 2013; Davis et al. 2014). Motivated by the above
considerations and observational results, we re-simulated a sub-group of the previous
investigation NFW set of models, with the star formation physics activated, in order
to study its effects on the ETGs hot haloes, and test the robustness of our previous
results.

The additional important physical phenomena currently missing in our simulations
are the cold disc self-gravity and the AGN feedback, the latter widely studied in
1D and 2D numerical simulations with simple spherical galaxy models. Given the
ubiquitous presence of BH at the centre of massive galaxies, we started a joint
collaboration with Dr. Novak, with main goal to simulate the evolution of realistic,
flat and rotating state-of-the-art galaxies in presence of AGN feedback, by including
our galaxy models and the self-consistent feedback from the passive stellar population
in the Novak et al. (2012) code. We present here the implementation details and
test runs, along with the preliminary results of AGN feedback in both round and
flattened E4 galaxies, supported either by rotation or tangential velocity-dispersion.
As expected, the cold disc formation due to the centrifugal barrier inhibits the
mass accretion onto the central BH, since the disc self-gravity is not considered.
In order to mimic the angular momentum transport due to the three dimensional
gravitational instabilities, we present here a numerical scheme based on the fluid
viscosity formalism.
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5.1 Star formation in ETGs

5.1.1 Star formation input physics and galaxy models selection

In the present work we employed two different schemes for star formation (SF), in
order to isolate and better study the effects of the cold disc in the previous simulations
of rotating models. In the first scheme, only cold gas removal from the numerical
mesh is allowed, following the Kennicutt (1998) recipe, see equations (2.19)-(2.21).
In the second case, also the later injection of mass, momentum and energy from the
new stellar population and SNIIe explosions is considered. In other words the former,
labelled as “passive” SF, allows only for the terms ρ̇SF and ĖSF in equations (2.36)-
(2.38) in addition to the passive stellar population terms, while the latter, labelled
“active” SF, solves the complete form of equations (2.36)-(2.38). This approach allows
to investigate how much the massive cold discs of the previous study trigger (or
reduce) the cooling episodes (CEs) observed in all rotating models.

In order to explore the parameter space, each galaxy model is simulated both
with passive and active SF schemes, where we adopted two different values of
the star formation efficiency ηSF, respectively equal to 10−1 and 10−2; thus every
model is re-simulated four times. Since a complete re-simulation of the two sets
of galaxies analysed in the previous study would require an unaffordable cost in
terms of computational time, we selected a sub-group of the NFW set of models,
presented in Section 4.1. In order to explore the effects of SF on both the high and
low galaxy mass models of the previous investigation, we focussed on the rotating
models with the most massive and extended cold discs (the σe8 = 300 km s−1 family),
and on the galaxies near to the transition from an inflow to a galactic wind (the
σe8 = 200 km s−1 family). In addition, we simulated also the VD models of the
σe8 = 200 km s−1 family so as to verify how much the removing of the cold gas
collapsed in the central grid modifies the evolution of the X-ray halo.

5.1.2 Results

We present here the results of our simulations by focussing on LX, TX and the
hydrodynamical evolution of a few representative models. All the models discussed
here are gathered in groups of three, consisting of the “parent” model (i.e. without
star formation), whose simulation results are presented in Table 4.2, and its passive
and active SF counterparts, both with ηSN = 10−1. For each group we describe the
hydrodynamical evolution of each model, in order to describe the effects of SF on
the hot gaseous halo.

All the global quantities of the simulations at 13 Gyr are reported in Tables 5.2-5.5.
As already found in the previous Chapters, at the beginning all the hydrodynamical
quantities are nearly symmetric with respect the equatorial plane. During the
evolution, the equatorial symmetry is lost, at a time that depends on the specific
model, and it is never restored. In addition, the results of the previous study are
confirmed, especially the low LX of the hot haloes in IS galaxies with respect the
VD models at the same mass. Finally, as expected, the LX and TX time evolution
of a given star forming model is more and more different with respect to its parent
model at increasing ηSF.
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5.1.2.1 The EO7200
IS models

The hydrodynamical evolution of the EO7200
IS models is presented in Figure 5.1.

The early configuration of the parent model reflects the main characteristics of
the σe8 = 250 km s−1 IS models presented in Section 4.2.1.3: a cold, rotationally
supported disc is formed by the cooling of the hot gas injected in-situ, an extended
cooling V -shaped region and an external equatorial degassing (green and purple
regions in Figure 5.1) are also present. However, due to the combined effects of the
secular increase of the specific heating and the shallower potential well of the EO7200

IS

model, the very central purple region is more and more heated at time increasing, as
a consequence it expands until it breaks the cooling V-shaped region at 3.5 Gyr (top
second panel in Figure 5.1). After this moment, a galactic wind is established and
it lasts until the end of the simulation (last panel of Figure 5.1), with the resulting
decrease in LX and increase in TX, as shown in Figure 5.2 (see Sections 4.2.2 and
4.2.3 for a complete discussion of the effects of the galactic wind on LX and TX, and
Section 3.2.1.2 for a complete hydro description of a cooling cycle). From Section 4.3,
we remind that the σe8 = 200 km s−1 models lie on the onset of a galactic wind, i.e.
a little variation of the flattening and/or rotational support may produce a significant
difference in the flow evolution (e.g. the VD counterpart of the present model shown
in Figure 4.5 switches to a global wind at 9 Gyr). At 13 Gyr the model presents
1.6× 109 M� of cold mass (i.e. gas having T < 2× 104 K) confined in the disc (see
Table 5.3).

The introduction of passive star formation (i.e. of a gas sink in cold, dense
regions) modifies the hydrodynamical evolution of the ISM, as it can be seen in the
middle row of Figure 5.1. At 3 Gyr, the ISM configuration is extremely similar to
that of the parent model, except for a reduced dimension of the cold disc from 2.5
to 1.3 kpc due to the SF sink. Nevertheless, instead of an early set up of a galactic
wind, the V -shaped region strengthens, the radiative cooling becomes catastrophic
and cold gas accretes onto the disc (dark green region in the middle second panel),
prompting the LX peak and TX drop at ' 3.8 Gyr (Figure 5.2). The CE produces a
central hot low density atmosphere where the radiative cooling is inefficient. This
region is kept at low density by the centrifugal barrier, thus the central purple region
is heated and it extends until a galactic wind is finally established (third panel,
middle row of Figure 5.1), as in the parent model. The final configuration shows
no cold disc, being the entire cold mass of the parent model converted into stars
(M∗new ' 1.7× 109 M�), while ' 1010 M� of ISM has escaped due to the galactic
winds.

The bottom row of Figure 5.1 shows the hydrodynamical evolution of the active
SF run. As in the passive SF case, at early times the ISM configuration is similar to
that of the parent model, except for an additional heating due to the formation of a
new stellar population in the cold disc (t = 3 Gyr in Figure 5.1). At variance of the
passive SF run, where the SF sink prompts a major CE at 3.8 Gyr, the additional
mass and energy returns due to SNIIe explosions produce a low velocity equatorial
degassing. However, the energy injection rate is not sufficient to establish a wind,
thus, the ISM density increases due to the mass injected from the initial stellar
population (1 M� yr−1 at 6 Gyr, while SNII injects ' 2× 10−2 M� yr−1), until the
tcool becomes shorter than theat. At 8.2 Gyr a CE occurs, as evidenced by the dark
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Figure 5.2: Time evolution of the X-ray luminosity LX and X-ray emission weighted
temperature TX for the EO7200

IS (top panels), FO7200
IS (middle panels), FO7300

IS (bottom
panels) models. The blue, orange and magenta lines refer to the parent model (without
SF), passive and active star formation simulations, respectively, with ηSF = 10−1.
The EO7300

IS model is not shown since it is almost identical to FO7300
IS model.
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green region in Figure 5.1, expanding the gaseous disc in size and mass. After this
moment, following the same dynamics of the passive SF model, a global wind takes
place. Thus, due to this last CE, the active SF run has a larger cold disc (R ' 5 kpc
and Mc ' 5.7× 107 M�) with respect to the passive SF simulation, but again the
cold disc present in the parent run has been consumed by SF processes, and a stellar
disc of 3.8× 109 M� has been produced (visible in the top left panel of Figure 5.5),
which is more massive than the parent model gaseous cold disc thanks to the low
total mass escaped via galactic winds in the active SF simulation.

The different evolution of LX and TX due to the introduction of SF can be
appreciated from Figure 5.2. It is clear that the introduction of the cold gas removal
induces an additional CE at early times (cf. blue and orange lines). Interestingly, the
active SF run does not behave as one may expect on the ground of simple energetic
considerations: the additional heating due to SNIIe explosions avoids an early CE,
thus allows the refilling of the galaxy halo mainly with mass losses of the old stars,
after which a major cooling occurs at later times.

5.1.2.2 The FO7200
IS models

We now consider the FO7200
IS models, whose hydrodynamical evolution is presented in

Figure 5.3. The hot gas flow evolution is much more complicated with respect to the
previous cases, due to recurring CEs in every models. This is not surprising, since
the FO flattening produces a deeper potential well than the EO one (Section 4.1).
Thus, the increased capacity of retaining the hot gas produces in the parent model
an inflow initial configuration that evolves in three major cooling events at t = 2.8,
3.8 and 10.2 Gyr (the last two shown in the first and fourth panels of Figure 5.3, top
row), unlike the EO7200

IS parent model, with the associated oscillations in LX and
TX (Figure 5.2); the hydrodynamical features of every CE is the same as the ones
occurring in the precedent models. Additional differences include the presence of a
larger cold disc (Mc ' 7.2× 109 M� and radius 8.5 kpc at 13 Gyr, due higher stellar
streaming velocity than the EO counterpart), and the final kinematical configuration
of the hot gas, which is in a partial inflow state.

In the passive SF run, the hydrodynamical evolution changes substantially. In the
initial stages, the flow kinematical configuration is almost the same as for the parent
model: they both experiment a major CE at t = 3.8 Gyr (dark green regions in both
first and second row of Figure 5.3). However, the reduction of cold gas due to the
passive SF reduces the pressure support in the central regions, and thus another CE
develops at t = 5.8 Gyr (second panel). After this moment, the halo is emptied of
hot ISM to a point such that a global wind is established at 7.5 Gyr and it lasts until
13 Gyr, with the consequent reduction in LX (orange line in Figure 5.2), while the
parent model exhibits a long refilling phase of the hot gas (cf. the last three panels
of Figure 5.3). At 13 Gyr the disc, which is not subjected to the galaxy wind but
consumed by the passive SF, has a radius of ' 2.5 kpc and contains ' 2× 107 M�
of cold gas, while 5.8× 109 M� of hot gas has escaped and 5.8× 109 M� has been
converted into stars.

The presence of the SNIIe explosions further modifies this picture, as displayed
by the last row in Figure 5.3. Indeed, the active SF run does not suffer major CEs as
in the previous models, due to the additional injection of energy. After the formation
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of the cold disc at early times by the cooling of the in-situ ISM (a feature common
to all the rotating models), a new stellar disc forms and SNIIe began to explode,
injecting additional energy with respect to the passive SF run. As a consequence, a
global cooling of the hot ISM is prevented and a decoupled flow is then established,
as shown in the last three panels of Figure 5.3, with the purple region extending
due to the time increasing specific heating (Section 2.2.1). However, a galactic wind
does not take place, instead until the end of the simulation the halo is filled by
the stellar mass losses, presenting a reduced heating central zone and an increased
cooling region. Presumably, if the run had continued, the ISM would have irradiated
its internal energy and then fallen towards the centre to form a new cold disc. Thus,
as in the EO7200

IS models, the active SF delays the CE but in this case it does not
prompt a wind. This is reflected in the evolution of LX and TX in Figure 5.2, where
they do not present strong oscillations, instead LX steadily increases during the last
4 Gyr.

The different evolution of the cold gaseous disc in this group of simulations
deserves some considerations. Indeed, a major difference between the parent model
and the active SF one is the outstanding reduction of the cold disc, from 8.5 to
' 0.5 kpc in radius and from ' 7.2× 109 M� to ' 2.6× 106 M� in mass (see also
Figure 5.5). This is due both to the SF processes, which completely consume the
cold disc formed at early times, and to the fact that no major CEs develop thanks to
the additional heating of SNIIe. On the contrary, in the parent simulation a CE take
place at 10.2 Gyr, thus doubling the cold disc size (cf. the fourth and fifth panels of
Figure 5.1, first row).

From Figure 5.2 it is clear that the enhanced cooling of the passive SF produces
a strong deviation from the parent model history, while the active SF, although
without ample oscillations and with a higher final luminosity, produces a LX and TX

evolution less divergent from that of the parent one.

5.1.2.3 The EO7300
IS models

Finally, the hydrodynamical evolution of the EO7300
IS models are presented in Fig-

ure 5.4; note the different scale of each panel, in order to show the large cold disc in
their entirety. As it is clear from the figure, the ISM behaviour is fairly independent
from the adopted scheme for the SF. After the initial formation of the cold disc, the
green cooling region expands and moves outwards, as more and more ISM cools onto
the disc, while the central heating region (in purple) grows in size and intensity. The
entire process is almost stationary, without the CEs that characterise the lighter
models, and the mass loss via galactic wind is nearly independent of SF. The parent
model disc is massive (' 4.5 × 1010 M�) and it extends until a radius of 28 kpc.
The passive and active SF models behave in the same way, although the intense star
formation in the disc reduces its size and mass to 25 kpc and ' 1.3× 109 M� in the
case of passive SF, and to 23 kpc and ' 1.5× 109 M� for the active SF run (note
the deep purple regions at R = 12 kpc in the last bottom panel of Figure 5.4, a clear
sign of a new stellar population).

The bottom panels of Figure 5.2 show an evolution of LX and TX almost inde-
pendent of SF, where the blue, orange and magenta lines nearly overlap each other.
Indeed, due to both the strong gravitational potential well and the large galaxy mass,
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LX is completely dominated by the secular decrease of the passive stellar population
heating term, without presenting any sign of CEs.

5.1.2.4 Star formation rates

In analogy with Figure 5.2, in Figure 5.6 we present the evolution of both the SFR
and the hot mass content for the EO7200

IS , FO7200
IS and EO7300

IS models. It is evident
the different evolution of the SFR at low and high galaxy masses. The EO7200

IS and
FO7200

IS models present recurrent increases of the SFR (with maximum values of 1.34
and 1.77 M� yr−1), followed by a secular decline due to the cold gas depletion. The
peaks are correlated with drops in the hot gas mass, thanks to the CEs that, in this
case, fuel the SF. Instead, the EO7300

IS model shows a smooth declining evolution of
both the SFR and Mhot. Therefore, in high-mass models SF is sustained by the large
cold gas reservoir in the disc, formed at early times, while in low-mass galaxies it is
almost consumed on a time-scale of few Gyr (see the discussion of the EO7200

IS model),
and then the SF process is fuelled mainly by the cooling of the X-ray emitting halo.

5.1.2.5 A review of all the models

We discuss here similarities and differences between the effects of star formation on
the hydrodynamics, LX and TX for the entire set of simulations. As a general trend,
all the models evolution are more and more similar to the respective parent galaxy at
decreasing ηSF, due to the reduced capacity of transforming the cold, dense ISM into
stars. Moreover, the new stellar population mean formation time 〈t〉∗ (equation 2.47)
for the entire set of models lies in the range ' 2.8–6.6 Gyr (Tables 5.1 and 5.5),
thus the global stellar component (passive stellar population plus stellar disc) at
t = 13 Gyr is old, being the stellar disc dominated by giant stars.

The main features of the EO7300
IS model are maintained in the hydrodynamical

evolution of the entire σe8 = 300 km s−1 IS family, whose models present a smooth
evolution and form at early times a cold, massive gaseous disc that is consumed
by the SF. In particular, for high star formation efficiencies the cold disc is almost
entirely consumed at 13 Gyr (only ' 109 M� of cold gas remains), whereas a gaseous
disc of ' 1010 M� is still present for low ηSF (see Tables 5.1 and 5.2). The today rate
of SF is ' 1.7–3 M� yr−1, well above the mean SFR of 0.14 M� yr−1 found in Davis
et al. (2014) for the ATLAS3D sample of ETGs; however we point out that this family
poorly represents real ETGs due to the high stellar and DM mass content. The time
evolution of LX and TX is not modified by star formation processes, although a large
stellar disc is formed with a mass ranging from 50 to 90 percent of the total mass
losses of the initial stellar population.

The situation is different in the low galaxy mass family having σe8 = 200 km s−1.
The common trend for all the models is the lack of the cold central disc (or core
for non-rotating models) at 13 Gyr, being consumed by SF during the entire time
evolution. In addition, the final SFR ranges from 0.01 to 0.69 M� yr−1 (with a
mean of 0.14 M� yr−1 for the IS models, see Tables 5.3-5.6), well in accordance with
similar galaxies in the Davis et al. (2014) sample.

The VD models behave as their respective parent models: the almost radial
accretion allowed by the lack of angular momentum forms a cold dense core at early
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Figure 5.4: Meridional sections of the heating over cooling time ratio for the EO7300
IS

models. From top to bottom, each row refers to the run without SF, passive and
active SF simulations (ηSF = 10−1), respectively. Note the different scale adopted
with respect to Figures 5.1 and 5.3, in order to show the large cold discs in their
entirety.
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Figure 5.5: Meridional sections of the time integrated density distribution of the
new stars formed up to 13 Gyr (in units of M� pc−3), for the EO7200

IS (left panels),
FO7200

IS (middle panels), and EO7300
IS models (right panels). Top and bottom panels

refers to passive and active SF simulations (ηSF = 10−1), respectively. Note the
different scale adopted with respect to Figures 5.1 and 5.3, in order to show the large
cold discs in their entirety.

times, which is entirely converted into stars1, with a final SFR mean and maximum
value of 0.27 and 0.45 M� yr−1. Despite the early intense SF at the centre of
VD galaxies, LX and TX evolutions do not show any variation in presence of star
formation. On contrary, the evolution of the IS counterparts can be substantially
altered. This is not surprising, since the rotating models in this range of galaxy
masses are known to be extremely sensible to variation of shape and rotation (see
Section 4.3). However, although the hydrodynamical evolution of the IS models can
be modified, in general the final galactic wind configuration of the parent EO-built IS
models2 is maintained, while for the more gravitationally bound FO-built models the
final status of the hot corona is altered, switching from inflow to a wind configuration.

The effects of SF on the final value of the X-ray luminosity are even clearer
from Figure 5.7, where we report LX at 13 Gyr for the parent models and for all
the simulations with SF. In the most massive galaxies, along with the lighter VD

1Note that if the black hole had been activated in these simulations, only a part of the cold mass
would have been converted into stars, and a part accreted onto the BH.

2At exception of the EO4200IS galaxies in presence of passive SF, in which a global wind is
establishing at 13 Gyr.
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Figure 5.6: Time evolution of the SFR and hot mass contained in the numerical grid
for the EO7200

IS (top panels), FO7200
IS (middle panels), FO7300

IS (bottom panels) models.
The blue, orange and magenta lines refer to the parent model (without SF), passive
and active star formation schemes, respectively, with ηSF = 10−1. As a reference, the
black dotted line represent the mass injection (in M� yr−1) of the passively evolving
stellar population (note that each model in a given row shares the same initial stellar
population).
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Figure 5.7: ISM X-ray luminosity LX in the 0.3–8 keV band at 13 Gyr for the selected
sub-group of the NFW set (see Section 5.1.1), as a function of σe8. The same colour
and symbol scheme of Figure 4.6 is adopted. For reference, the top panel refers to
the original models (i.e. without star formation), while middle and bottom rows
concern the passive and active SF simulations, respectively. Left and right panels
correspond to low (10−2) and high (10−1) star formation efficiencies.
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ones, LX is only marginally sensible to the presence of SF processes, while for the IS
models the variation of the X-ray luminosity can be remarkable, thus increasing the
LX spread at low galaxy masses.

5.1.3 Conclusions

In this chapter, we employed numerical hydrodynamical simulations to study the
star formation in ETGs, in particular to test the robustness of our previous results
regarding their the X-ray properties. The previous exploration of a large set of
galaxies revealed the crucial role of the angular momentum in determining the X-ray
under-luminosity of rotating ETGs. In addition, a major consequence of angular
momentum conservation is the creation of massive, cold and rotationally supported
discs. These dense discs are the ideal place for star formation processes that, in
principle, can alter the hot ISM evolution, by acting as a sink of cold gas in the
equatorial plane. Moreover, an eventual new stellar population will inject mass and
energy into the ISM via SNII explosions, thus adding a new heating term to those
associated with a passively evolving stellar population. As a consequence, the entire
evolution of our sample of ETGs may be altered, and our previous conclusions may
be dependent from the over-simplistic assumptions of no star formation made in
Chapters 3 and 4.

In order to investigate the effects of star formation on the X-ray halo of ETGs,
we re-simulated a sub-group of the previous study NFW set of models, with two
different SF schemes, the first consisting in a cold gas removal from the numerical
grid (passive SF), while the second accounts also for the mass and energy injection by
SNIIe explosions (active SF). Two different SF efficiencies has been also adopted to
better explore the parameter space. We selected two different families of galaxies for
this study: the high mass σe8 = 300 km s−1 family of isotropic rotators, which hosts
the most massive rotating cold discs, and the low mass σe8 = 200 km s−1 family,
consisting of both IS and VD galaxies, due to its sensitivity to variation of shape and
kinematics, and to the fact that rotating models in this mass range present major
recurring cooling episodes that can fuel SF processes. We summarize the results by
discussing first the SFR and then the SF effects on the X-ray emission.

1) In low mass (σe8 = 200 km s−1) VD galaxies, the cold central core formed at
early times is the only reservoir of cold material, due to the lack of CEs, and it is
completely converted into stars, with a rate at 13 Gyr between 0.3–0.5 M� yr−1.
The hot halo hydrodynamical evolution is not affected by the SF.

2) In low mass IS models, the hot atmosphere evolution can be substantially
altered by the introduction of the SF. Cold discs are formed at early times, and
completely converted into stars on a time-scale of few Gyr. Afterwards, SF is mainly
fuelled by CEs of the X-ray halo, which prompt peaks of the SFR followed by a a
secular decline, with a final value of 0.01–0.69 M� yr−1, with a mean of 0.14 M� yr−1.
Overall, the hot halo final configuration is very susceptible to the action of the SF
that, in general, contributes to induce a galactic wind, thus confirming the sensitivity
of the σe8 = 200 km s−1 galaxies to small variations of structural and physical
parameters.

3) In the case of high mass (σe8 = 300 km s−1) isotropic rotators, the X-ray
corona do not present major CEs and its global evolution is only marginally sensible
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to SF. The massive, cold discs formed at early times represent the only source of
material for the star formation processes: they are partially or totally consumed
during an Hubble time, depending of the star formation efficiency, presenting a
smooth decline of the SFR with time, with a final value up to 3 M� yr−1.

4) The SFRs are well in accordance with the observed range of ≈ 0.01−3 M� yr−1

(Davis et al. 2014) for the ATLAS3D sample of ETGs, where galaxies similar to our
low mass family present SFRs in the 0.02–0.14 M� yr−1 range. In addition, all
the simulations suggest that the mean formation time for new stellar population is
relatively short, ranging from 2.8 to 6.6 Gyr. Therefore, this excludes the possibility
that young stellar discs are detected at the present epoch.

5) The effects of SF on the hydrodynamical evolution of the hot ISM are reflected
on the ISM X-ray luminosity LX and luminosity weighted temperature TX. For
VD models of low galactic mass, the evolution of LX and TX is not affected by the
presence of SF, due to the fact that the cold ISM is accumulated in the central region
and the SNIIe released energy is irradiated outside the X-ray band. In the case of
IS models of the same mass, the additional CEs induced by the SF produce large
oscillations in LX and TX, thus increasing the LX spread at low σe8.

6) Overall, for high mass rotating models, LX and TX are only marginally sensible
to the effects of SF. Their evolution is smooth as the respective parent model, since
every system in this mass range is energetically dominated by the heating from the
massive initial stellar population.
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5.2 AGN feedback in ETGs

In Chapters 3 and 4 we showed the effects of the stellar dynamics on the evolution
of the X-ray coronae of ETGs by means of 2D hydrodynamical simulation with
realistic galaxy models. In particular, we found that the angular momentum plays a
fundamental role in determining the hydrodynamical evolution of the hot rotating
haloes and their X-ray under-luminosity. However, the massive rotationally supported
cold discs that forms due to angular momentum conservation are not observed in
ETGs. By including the fundamental physics of star formation, we showed in the
last Section how the massive cold discs present in our simulated rotating galaxies are
almost completely consumed by star formation processes, producing realistic values
of the SFR.

At this point of our investigation, the missing natural ingredient is the AGN
feedback, given the ubiquitous presence of black holes (BHs) at the centre of massive
galaxies (Gebhardt et al. 2000; Ferrarese & Merritt 2000; Tremaine et al. 2002; Novak
et al. 2006; Gültekin et al. 2009; Fabian 2012; Kormendy & Ho 2013). Simulations
of feedback in ETGs has been carried in a sequence of papers by means of 1D
hydrodynamical simulations (Ciotti & Ostriker 1997, 2001, 2007; Ciotti et al. 2009,
2010; Ostriker et al. 2010; Shin et al. 2010; Jiang et al. 2010). Despite their spherical
symmetry, the implemented micro-physics is extremely accurate, accounting for
the radiation pressure due to the accretion luminosity, Compton heating, radiative
transport and a physically motivated model of AGN mechanical feedback. Recently,
an extension to bi-dimensional, axisymmetric simulations has been performed by
Novak et al. (2011), and further developed in Novak et al. (2012) and Gan et al.
(2014). The transition from 1D to 2D simulations of an axisymmetric galaxy is a
crucial step to include galaxy flattening and rotation, and capture a wide spectrum
of physical phenomena, e.g. the breaking of a cold, falling gas shell by means of the
Kelvin-Helmholtz instability, which cannot be simulated in a spherically symmetric
code. Although the great accuracy of the implemented micro-physics, in these 2D
codes the galaxy is a spherically symmetric idealised model and galaxy rotation is
not self-consistent. Moreover, the stellar streaming velocity is kept at low values and
artificially tuned in order to allow the gas produced by the ageing stellar population
to flow inside the first computational grid, without the formation of a rotationally
supported disc due to the centrifugal barrier, as it occurs with realistic velocity fields;
even specific studies on rotating accretion flows such as Li et al. (2013) adopt a
constant specific angular momentum distribution built ad-hoc to allow accretion
inside the Bondi radius.

We started a joint scientific collaboration with Dr. Novak, with the principal goal
to simulate the evolution of realistic, flat and rotating state-of-the-art galaxies in
presence of AGN feedback. In order to reach this aim, we implemented our realistic
galaxy models and passive stellar population feedback into the spherical code of
Novak et al. (2012). The main reason relies in the fact that the entire treatment
of the micro-physics is by far more technically and physically complicated than the
stellar population feedback, therefore we adopted as a base the very robust Novak’s
code. Preliminary results of flattened velocity dispersion supported galaxies with
AGN feedback are presented in Section 5.2.2.

By implementing galaxy models with realistic rotation curves, the formation of a
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Figure 5.8: Toomre Q parameter and surface density Σ for the cold gaseous disc of
EO7300

IS at 13 Gyr.

massive, cold rotating gaseous disc hosting star formation is expected, due to the
angular momentum conservation of the non-viscous ISM. As a consequence, the BH
accretion is strongly inhibited, and the cold material is completely consumed by
star formation. However, the above argument does not take into account the ISM
self-gravity: when such a rotating disc reaches the self-gravitating regime, it becomes
prone to gravitational instabilities, which transport angular momentum from the disc
inner regions to the outer edge, thus allowing the accretion of the rotating material.
The local stability of a self-gravitating disc can be expressed with the aid of the
Toomre (1964) Q parameter, defined as

Q ≡ csκ

πGΣ
, κ2 =

∂2Φ

∂R2
+ 3Ω2, (5.1)

where cs is the sound crossing time, κ the epicyclic frequency, Σ the disc surface
density, and Ω the circular angular velocity. For illustrative purposes, in Figure 5.8
we calculated the Q parameter of the cold disc for the EO7300

IS simulation without
star formation, at t = 13 Gyr. It is apparent that in the disc denser region, the
Toomre stability criterion Q > 1 is violated. Of course this is an extremely simplified
picture, since we are implicitly assuming that the rotationally supported gaseous
disc is completely dominated by its own gravity field. The actual stability criterion
is more complicated, since also the external gravitational fields of stars and DM
halo should be taken into account (e.g. see Jog 1996; Romeo & Falstad 2013; Jog
2014). In addition, Figure 5.8 refers to one of the most massive disc at the end of
the simulation, when almost all the ISM has cooled down to the central regions.
However, it is reasonable to expect that the cold disc would develop gravitationally
unstable regions during its evolution.

Unfortunately, a 2D axisymmetric code is intrinsically unable to capture the
three-dimensional break of a rotating disc. Various methods has been proposed over
the years in order to transport angular momentum in a gaseous disc (for a review,
see Blaes 2014), each with their pros and cons. In particular, we adopted a numerical



102 Ongoing and future developments

scheme that mimics a gravitational instability via the inclusion of a “gravitational
viscosity”, employing the same mathematical formalism of the fluid viscosity (already
applied in studies with non-public versions of the ZEUS code in spherical coordinates,
see Stone et al. 1999; Li et al. 2013). We are implementing a coordinate independent
version of the gravitational viscosity formalism in order to include it in both the
ZEUS-MP 2 code (i.e. the code described in Section 2.4, which can handle both
cylindrical and spherical coordinates), and in the spherical customized AGN code
presented in this Section.

The Section is organized as follows. In Section 5.2.1 a series of runs built on
purpose to test the new implemented physics is presented. Section 5.2.3 shows
the detailed viscosity formalism and its coordinate independent implementation are
shown. Finally, in Section 5.2.2 the preliminary simulations of flattened velocity
dispersion supported galaxies are presented.

5.2.1 Code implementation and testing

In order to implement our realistic galaxy models and passive stellar population
feedback into the spherical code of Novak et al. (2012), we split the implementation
phase in two different steps: first, we interfaced the realistic galaxy models produced
by the Jeans code of P13 with the hydro code. We took advantage of the numerical
interpolation code presented in Section 2.1, which can handle both spherical and
cylindrical staggered hydro meshes. Thus, the interface between the galaxy models
and the hydrodynamical code is the same of our version of ZEUS-MP2. The porting
of the routines that actually load the interpolated galaxy model did non present
any particular problem, since it were already designed in a coordinate independent
fashion. Afterwards, the passive stellar population mass (taken from Ciotti & Ostriker
2007), energy and momentum original injections terms has been replaced with the
corresponding up-to-date self-consistent terms present in Section 2.4.1.

We present here a set of tests performed with the purpose of reproducing the
simulations of Novak et al. (2012) with the same physics, in order to track down
implementation errors in the up-to-date feedback from the passive stellar population.
In particular, we tested each of the mass, momentum and energy injection terms
separately, by activating the new implementation for one of them, and leaving the
remaining ones unaltered. In Table 5.7, simulations 1-8 test the stellar winds injecting
terms without the AGN feedback (but having the central BH sink activated), since
the large energy injections due to AGN and SNIa can mask errors in the stellar winds
thermalization. In the same way, we performed the four additional runs 25-28 to
exclude the effects of the AGN feedback over the SNIa energy injection.

As initial conditions, we adopted the galaxy model of Novak et al. (2012),
consisting of a Jaffe profile with a total mass of 3× 1011 M� and a projected half-
mass radius of 6.9 kpc, while the total gravitational potential is a singular isothermal
sphere plus the point-mass potential of the central BH. The stellar population is
assumed to rotate as a solid body inside the first 10 pc, whereas a constant specific
angular momentum is assumed at large radii.

A trend common to every group of simulations is the lack of difference between
the old and new momentum injection terms, due to the very low galaxy rotational
velocity. We focussed on the evolution of three different quantities: the SFR, and the
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Table 5.7: Test simulations of the mass, momentum and energy injection terms.
Name θSN AGN ρ̇ Ė v̇ϕ
(1) (2) (3) (4) (5) (6)

1 10−2 × old old old
2 10−2 × new old old
3 10−2 × old new old
4 10−2 × new new old
5 10−2 × old old new
6 10−2 × new old new
7 10−2 × old new new
8 10−2 × new new new

9 10−2 X old old old
10 10−2 X new old old
11 10−2 X old new old
12 10−2 X new new old
13 10−2 X old old new
14 10−2 X new old new
15 10−2 X old new new
16 10−2 X new new new

17 1 X old old old
18 1 X new old old
19 1 X old new old
20 1 X new new old
21 1 X old old new
22 1 X new old new
23 1 X old new new
24 1 X new new new

25 1 × old old new
26 1 × new old new
27 1 × old new new
28 1 × new new new

Notes. (1) Test name. (2) present day SNIa ex-
plosion rate. (3) AGN feedback presence (X =
present, × = not present). (4)-(6) Implementation
of mass, energy and momentum injection terms,
respectively (old/new).
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BH accretion rate and mass. Figure 5.9 reports the most relevant tests: it is evident
that the new injection mass and energy terms do not change the BH accretion and
the SFR in simulations 5-8 (first row in Figure 5.9). In the case of a significant
energy input from SNIa (last row in Figure 5.9), a burst of SF occurs with a SFR
more peaked than the old SNIa rate, although the final gas mass converted in stars is
the same. The action of the AGN feedback produce a noisy evolution, but in general
all the tests show that the newly implemented passive population feedback is correct.

5.2.2 Preliminary results

We simulated three different models: the E0250, EO4250
VD and EO4250

IS of the Einasto
set (Table 4.1). The input physics is described in Novak et al. (2011), except for our
upgrade of the mass, momentum and energy return of the passive stellar population.

Figures 5.10-5.12 report the BH Eddington ratio, hot and cold gas mass, SFR,
stellar mass and AGN duty cycle. We do not present here a complete description
of their time evolutions, however the difference between the velocity dispersion
supported models (both E0 and E4) and the rotating one is apparent: E0 and E4 VD
galaxies show little difference, while rotation strongly affects the IS model. Indeed,
the BH accretes at a rate up to the Eddington limit in the case of VD models,
while in the IS model the BH luminosity ratio is very sub-Eddington (Figure 5.10).
This is due to the cold disc formation, where all the cooled mass of the IS model
is confined (Mc ' 8× 109 M�) and slowly consumed by star formation during the
whole evolution (Figure 5.11). On the contrary, the E0 and E4 VD models present no
cold gas, since it is directly accreted on the BH, and recurrent star formation bursts,
coincident with the peaks of AGN activity. The difference between the VD and IS
models is even more evident from Figure 5.12, where the AGN duty cycle is reported:
all the simulations spent most of their time at very sub-Eddington accretion rates
(the median in Figure 5.12 left panel is ' 10−8), but an half of the AGN energy has
been emitted with an Eddigton ratio greater that 0.1 in the case of VD models, while
the IS one emits almost all its energy below 10−3.

To sum up, for VD models the vast majority of the energy is emitted at high
Eddington ratio (as observed in Kollmeier et al. 2006), while the angular momentum
conservation inhibits the BH accretion in rotating models. As a consequence, a
mechanism of angular momentum transport is needed in order to induce the accretion
of the cold disc on the central BH. To this end, in the next Section we present an
angular momentum transport algorithm based on the inclusion of a “gravitational
viscosity” in the equations of hydrodynamics.

5.2.3 Gravitational viscosity

We present here the adopted angular momentum algorithm, based on the viscosity
formalism (presented in Section A.1.5). The aim of this method is to induce a
non-conservation of the specific angular momentum Jz ≡ Ruϕ, so as to mimic the
effects of gravitational instabilities. Following Stone et al. (1999), we assumed that
the only non-zero components of the viscous stress tensor are the azimuthal ones,
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Figure 5.9: SFR, BH mass and accretion rate as a function of time from the begin
of the simulation, for few representative tests (see Table 5.7). From top to bottom,
each line refers to the group of four simulations listed in the legend.
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Figure 5.10: Black hole bolometric luminosity and Eddington ratio evolution with
time. From top to bottom, each row refers to E0250, EO4250

VD and EO4250
IS of the

Einasto set (Table 4.1). The low accretion rate of the EO4250
IS model is apparent.
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Figure 5.12: AGN duty cycle as a function of Eddigton ratio for the models of
Figure 5.11 (the adopted colours are the same). The solid/dashed line show the cu-
mulative time (left panel) and energy (right panel) above/below the given Eddington
ratio.

thus from equation (A.31) the components of T in spherical coordinates are

Trϕ = ηr
∂

∂r

(uϕ
r

)
, Tθϕ = η

sin θ

r

∂

∂θ

( uϕ
sin θ

)
, (5.2)

whereas in cylindrical coordinates assume the form

TRϕ = ηR
∂

∂R

(uϕ
R

)
, Tzϕ = η

∂uϕ
∂z

, (5.3)

where we used the differential operators listed in Appendix B, and we imposed
Trr = Trθ = Tθθ = TRR = TRz = Tzz = 0. Equation (A.16) reports the force on
the fluid due to the viscosity as ∇·T ; given the assumed form of the viscous stress
tensor, its non-vanishing component is the azimuthal one:

(∇·T )(ϕ) =
1

r

∂

∂r

[
ηr2 ∂

∂r

(uϕ
r

)]
+

1

r

∂

∂θ

[
η

sin θ

r

∂

∂θ

( uϕ
sin θ

)]

+ 2η
∂

∂r

(uϕ
r

)
+ 2η

cos θ

r2

∂

∂θ

( uϕ
sin θ

)
, (5.4)

(∇·T )(ϕ) =
∂

∂z

(
η
∂uϕ
∂z

)
+
∂

∂R

[
ηR

∂

∂R

(uϕ
R

)]
+ 2η

∂

∂R

(uϕ
R

)
; (5.5)

where the two equations express the force in spherical and cylindrical coordinates,
respectively, and η is assumed to be a function of the position on the meridional
plane only, i.e. it does not depends on the azimuthal angle ϕ. The effect of the
viscosity is to reduce the fluid velocity gradients by transforming kinetic energy
into internal. From equation (A.21), the viscosity internal energy input is T :∇u
that, under the above assumptions, becomes T :T /η. A complete description of the
coordinate independent implementation is given in Appendix C.

As a future development, we will employ the presented formalism to simulate
rotating ETGs in presence of AGN feedback.



Chapter 6

Conclusions

In this Thesis we studied the effects of galaxy shape, stellar kinematics and star
formation on the evolution of the hot, X-ray emitting gaseous haloes of ETGs by
means of high-resolution, axisymmetric hydrodynamical simulations of state-of-the-
art galaxy models, tuned to reproduce real galaxies. In particular, we focused our
efforts on two different problems.

The first main goal is to investigate the observed trend of LX and TX with
galaxy shape and stellar kinematics, in particular the X-ray under-luminosity and
coolness of flat and rotating galaxies. Precedent analytical studies (CP96; P13)
proposed two different explanations based on energetic considerations. In both
cases, the ISM in flat and/or rotating galaxies is less bound than in rounder and
non-rotating objects of the same mass due to (1) the assumed shallower potential of
flat galaxies (independently of the kinematical support), and (2) to the assumption
that the injected mass in rotating galaxies retains the streaming motion of the stellar
population, with the consequent minor heating due to the lack of thermalization of
the stellar global rotation. Thus, flat and rotating galaxies are more prone to develop
a global wind, with the consequent reduction of LX and hot mass content. Instead,
the numerical study of DC98 seems to indicate the redistribution of the hot ISM
due to angular momentum conservation as the main actor in determining the ETGs
hot halo evolution. Furthermore, these simulations found a generalized coolness of
rotating models, where cold filaments are formed.

In order to understand the main physical mechanism governing the X-ray haloes
evolution, their LX and TX, we performed two different investigations based on
hydrodynamical simulations. Firstly we focussed on the sole effects of rotation and
counter-rotation in S0 galaxies; subsequently, we explored variations of galaxy mass,
shape, kinematical support and dark matter halo in a large set of realistic, state-
of-the-art elliptical galaxy models, built with a dedicated Jeans code (P13; Posacki
2014). The hot haloes are formed by the mass losses of ageing stellar population
(stellar winds from giant stars and SNIa ejecta), while ISM heating is provided by
SNIa explosions and by thermalization of stellar motions.

From the results of our investigations, whose numerical simulations reproduce the
LX and TX of observed ETGs (Boroson et al. 2011; Sarzi et al. 2013), we conclude
that the above explanations and the relative importance of flattening and rotation
are functions of the galaxy mass. Indeed, at varying with galaxy mass, different
physical mechanisms dominates in determining the hot halo evolution:

109
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(1) At low galaxy masses (σe8 < 200 km s−1), spherical galaxies are in a permanent
wind state, presenting low LX and high values of TX, due to the thermalization of
the strong meridional motions; adding flattening and rotation has a minor impact on
the halo evolution.

(2) The value of σe8 ≈ 200 km s−1 represents a sort of threshold where galaxies are
extremely sensitive to variations of shape and kinematics. In this mass range, where
galaxies are energetically near to the onset of a wind, adding flattening or rotation
contributes to induce a global wind, in agreement with the energetic explanations of
CP96, with the consequent reduction of LX and increase of TX.

(3) In galaxies having σe8 > 200 km s−1, the angular momentum conservation
becomes the main actor in determining the evolution of the X-ray coronae. Pure shape
variations in velocity dispersion supported galaxies produce only a marginal effect; on
the contrary, flat rotating galaxies shows low LX and TX. This is not a consequence
of the missing thermalization of stellar streaming motions, due to the fact that ISM
and stars co-rotate, but instead to the hydrodynamical configurations induced by
angular momentum conservation. In fact, a cold disc forms and the centrifugal
barrier keeps low the hot gas density in the central regions, thus producing a lower
LX with respect to non-rotating galaxies, where a denser and brighter atmosphere
forms. For the same reason, the ISM redistribution in rotating galaxies induces also
recurring cooling episodes and a generalized lower TX than in non-rotating models.
In this regime of mass, flattening is an indirect effect in the sense that only flattened
systems can host significant rotation of the stellar component.

The second main goal of this Thesis is to probe star formation in ETGs and its
effects on the X-ray halo evolution. The previous explorations revealed the crucial
role of the angular momentum in determining the halo evolution, with the creation
of massive (up to 5× 1010 M�), cold and rotationally supported discs by recurring
cooling episodes. Such dense discs are the ideal place for star formation processes
that, in principle, can alter the hot ISM evolution, by acting as a sink of cold gas
and re-injecting mass and energy into the ISM via SNII explosions. Moreover, on
the observational side, molecular discs and star formation regions are observed in
fast rotators only (Davis et al. 2013, 2014): although the origin of this molecular gas
has not been clarified yet, we investigated its link with the formation of cold discs
due to instability of rotating X-ray coronae.

We employed a sub-group of galaxy models of the previous studies to perform
hydrodynamical simulations with different star formation schemes and efficiencies,
in order to investigate its effects on the X-ray halo of ETGs. Feedback from SNII
explosions and thermalization of ordered and random motions of the new stellar
population was also considered.

Simulations results quite agree with the observed present-day SFR in ETGs, which
ranges from ' 0.02 to 0.14 M� yr−1 (Davis et al. 2014), and show that star formation
effects are a function of galaxy mass and stellar kinematics. Depending on galaxy
mass, the entire reservoir of cold gas is partially or completely consumed by star
formation: in the case of rotating low-medium mass galaxies, cold discs are formed
and completely converted into stars in few Gyr, then star formation is sustained by
the recurring cooling episodes of the rotating X-ray halo. In this mass range, the
hot halo evolution in rotating galaxies is very susceptible to the action of the star
formation that, in general, contributes to induce a galactic wind, thus increasing the
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LX spread at low σe8 and confirming the sensitivity of the σe8 ≈ 200 km s−1 galaxies
to small variations of structural and physical parameters. On the contrary, the halo
evolution in velocity-dispersion-supported systems of similar mass is only marginally
affected by star formation. In more massive rotating galaxies, star formation is fuelled
entirely by massive cold discs, which have been partially or completely consumed at
the present epoch, depending of the star formation efficiency. We conclude that the
hot halo instabilities induced by angular momentum conservation, and thus present
only in rotating galaxies, can explain both the origin of the molecular discs observed
in fast rotators and their present-day SFRs.

Finally, we dealt with the inclusion of AGN feedback in the presented set of
numerical simulations. We implemented the realistic galaxy models of this Thesis
and the self-consistent feedback from the passive stellar population in the numerical
code of Novak et al. (2011, 2012), used to simulate AGN feedback with an accurate
micro-physics but with simple spherical galaxy models. Preliminary results of non-
rotating spherical and flattened galaxies present an AGN luminosity and duty cycle
in good agreement with observations, where the majority of the AGN energy is
emitted at high Eddington ratios. However, BH accretion is strongly inhibited in
rotating models due to the formation of massive, cold, star forming discs. Cold disc
fragmentation and bar instabilities cannot be captured by an axisymmetric code,
thus we implemented a numerical scheme, based on the fluid viscosity formalism,
that allows for angular momentum transport from the inner parts of the disc to the
outer edge. As a future development, we will simulate the evolution of realistic state-
of-the-art galaxy models in presence of AGN feedback, by means of the presented
novel implementation.





Appendix A

Basic concepts of fluid mechanics

In this Chapter we present the mathematical foundation of our work, leaving all the
physical characterization in the following chapter.

Starting from the first principles of mass, momentum and energy conservation, we
derive the fluid mechanics fundamental equations in presence of an arbitrary number
of sources and sinks in full generality. We then examine the total angular momentum
conservation, its link with the momentum conservation and its implications on
the symmetry of the stress tensor. Afterwards, a treatment of the viscosity for a
Newtonian fluid is presented. Finally, we derive the general source and sink terms in
the case of an elliptical galaxy.
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A.1 From the first principles of conservation to the basic
equations of fluid mechanics

In this Section we derive the continuity, the momentum and energy equations from
the first principles of mass, momentum and energy conservation, applied in their
integral form. We also examine the total angular momentum conservation, its links
with the momentum equation and its implication on the symmetry of the stress
tensor of a fluid. To derive these basic equations of fluid dynamics we will employ
the fundamental theorem of continuum mechanics, the Reynolds Transport Theorem,
which describes the time evolution of a fluid quantity integrated on a material volume.
The latter is a volume formed by the same fluid particles, so it is comoving with the
fluid and at the same time is dragged and deformed by the fluid flow.

Let V (t) be a material volume; integrating a quantity F (x, t) over V (t), the
Reynolds Transport Theorem states that the time variation of this volume integral is
equal to the net flux over the closed surface bounding V (t), plus the Eulerian change
of F integrated over the material volume V (t). The quantity F can be a scalar,
vector or tensor field, so that this is a kinematical result of wide application.

In this circumstance we only enunciate the theorem, the proof is presented in
Aris (1989).

Theorem A.1 (Reynolds Transport Theorem). Let F (x, t) be a general scalar,
vector or tensor field; V (t) a material volume, S(t) the close surface bounding it and
n̂ the outward normal to S(t). The theorem states that:

d

dt

∫
V (t)

F (x, t) dV =

∫
V (t)

[
DF

Dt
+ F (∇·u)

]
dV

=

∫
V (t)

∂F

∂t
dV +

∮
S(t)

Fu · n̂dS.

(A.1)

Note the use of the d/dt sign (instead of ∂/∂t or D/Dt), since an integration in
space gives a function of time only. From this fundamental theorem we will derive
the basic equation of fluid dynamics.

A.1.1 Mass conservation

Starting from the conservation of mass for a material volume V (t), we derive now
the continuity equation. Denoting with ρ(x, t) the fluid density field, the total mass
M of a general volume V is:

M =

∫
V
ρ(x, t) dV. (A.2)

If V is a material volume (usually denoted as V (t)), the mass rate of change of this
volume is equal to

dM

dt
=

d

dt

∫
V (t)

ρ(x, t) dV. (A.3)

Applying the Reynolds Theorem with F = ρ, we have

dM

dt
=

∫
V (t)

[
Dρ

Dt
+ ρ(∇·u)

]
dV. (A.4)
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We assume now the presence of n sources or sinks of mass, each of them denoted
with the term ρ̇l, with l ranging from 1 to n. Of course, if the l-th field is a source
(sink) of mass, ρ̇l is defined positive (negative). With this additional assumption,
equation (A.4) becomes:∫

V (t)

[
Dρ

Dt
+ ρ(∇·u)

]
dV =

∫
V (t)

n∑
l=1

ρ̇l dV, (A.5)

and since this equality is true for any choice of the material volume V (t), the integrand
itself must vanish1. As a consequence, we can write the continuity equation:

Dρ

Dt
+ ρ∇·u =

∂ρ

∂t
+∇·(ρu) =

∑
ρ̇l, (A.6)

where we omitted the index l from the summation symbol for the sake of notation
simplicity. Combining the continuity equation with the Reynolds Theorem, we obtain
a useful corollary:

d

dt

∫
V (t)

ρF dV =

∫
V (t)

(
ρ

DF

Dt
+ F

∑
ρ̇l

)
dV. (A.7)

A.1.2 Linear momentum conservation

Here we derive the momentum equation from another first principle: the linear
momentum conservation. The procedure is quite similar to the one adopted in the
previous Section to derive the continuity equation.

We start considering the Newton II law for the usual material volume V (t):

d

dt

∫
V (t)

ρudV = F , (A.8)

where the l.h.s. is the total pulse rate of change which, using the Reynolds Transport
Theorem and the continuity equation can be expressed as:

d

dt

∫
V (t)

ρu dV =

∫
V (t)

(
ρ

Du

Dt
+ u

∑
ρ̇l

)
dV. (A.9)

The term F present in the r.h.s. of equation (A.8) represents the sum of the forces
acting on the material volume plus the net momentum injections. There are three
type of forces acting on a fluid: body forces, surface forces and line forces. We shortly
describe them here:

1The continuity equation expresses the mass conservation in its strong form. Indeed, the weak
and the strong form of a conservation law are respectively the integral and the differential form. This
nomenclature arises from the fact that integral form admits the existence of solutions represented by
discontinuous functions, whose derivatives do not exist in the classical sense of the term, but only
in the sense of distribution theory. Therefore a derivative of one of these solutions is a distribution
rather than a function. For this reason, a solution represented by a function whose derivative is a
distribution is called a weak solution; since only the integral form admits this kind of solutions,
the integral form is also denoted as the weak form. On the other hand, the differential form does
not admit solutions other than the differentiable ones. This is a stronger condition compared to
the integrability requested by the weak form, therefore the differential form is also denoted as the
strong form.
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• Body forces: they arise from the immersion of the fluid into a force field (e.g.
the gravitational field). They are distributed throughout the entire fluid and
they are proportional to its mass. Since the body forces are generated by the
interaction between the fluid and the force field (which is not a material object),
no physical contact is needed in order to apply a body force on the fluid.

We will denote a generic body force with the vector field g, having the dimen-
sions of a specific force. Body forces can be conservative; in this case g = −∇Φ,
and we call Φ the force potential. The total force applied by the field g on a
generic volume V can be formulated as:∫

V
ρg dV, (A.10)

where V might not be a material volume.

• Surfaces forces: they act on a surface through direct contact. They are
proportional to the extent of the area and the resulting force on a generic
surface S can be expressed as: ∫

S
t(n) dS, (A.11)

where t(n) is the surface stress vector (force per unit area). This field can be
represent in terms of the stress tensor σij in this way2:

t(n)i = σijnj , (A.12)

where nj is the j-th component of the outward normal to the surface (denoted
as n̂), therefore this component lie on the ej direction3.

The stress tensor is a second order tensor, it depends only on the physical
features of the fluid and it can be symmetric or antisymmetric, it depends on
the evolution of the moment of linear momentum. In Section A.1.4 a detailed
description of the link between the symmetry of σij and the conservation of
angular momentum is given.

Now we look for a moment at the product σijnj (here considered without the
Einstein convention), present in equation (A.12). This term represents the
force per unit area in the ei direction acting on a surface normal to the ej
direction. When i = j, the force acts perpendicularly to the surface, while
if i 6= j the force acts parallel to the surface. A force acting parallel to any
surface is called a shear force.

Inserting the stress tensor in equation (A.11), we have the net force produced
by surface forces, expressed as a tensorial flux across the surface S4:∫

S
t(n)i dS =

∫
S
σijnj dS. (A.13)

2Herefter, when not explicitly declared, the Einstein convention is present.
3In the entire Thesis we will often switch between the vector and the indicial notation of a physical

quantity. The former is of course valid for every coordinate system, while for the latter we explicitly
use Cartesian coordinates. Since our space of work is the standard Euclidean three-dimensional
space, we can work in Cartesian coordinates without loss of generality, as long as the final expression
is writable in vector notation.

4Hereafter, where not specified, the Einstein summation convention is present.
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If the surface S is closed, through the Gauss’ theorem5 we can express the r.h.s.
of the last equation as the divergence of the stress tensor, integrated over the
volume V enclosed by S, obtaining:∮

S
t(n)i dS =

∮
S
σijnj dS =

∫
V

∂σij
∂xj

dV. (A.14)

• Line forces: they are generated by surface tension forces, they act along a line
and have an intensity proportional to the extent of the line. These forces are
present between two immiscible liquids, or between a gas and a liquid. They
do not appear directly in the equation of momentum, but only in its boundary
conditions.

Inserting the Equations A.9, A.10 and A.14 in the momentum conservation A.8,
considering the net injection (sink) of momentum, and imposing the resulting relation
holds for any arbitrary material volume V (t), we obtain (in vector notation)

ρ
Du

Dt
= ρg +∇·σ +

∑(
Ṗ l − ρ̇lu

)
, (A.15)

where Ṗ l is the momentum of the fluid when it is injected (subtracted) by the l-th
source (sink); it is defined with the same sign of ρ̇l.

At this stage of the discussion, we must specify the nature of the fluid we want
to treat and what kind of physics we want to consider (e.g. viscosity, presence of
magnetic fields). In this work we deal with a Newtonian, perfect, viscous fluid, in
the presence of a conservative body force field represented by a potential Φ. We
neglect the effects of magnetic field and thermal conduction. For such a fluid, the
stress tensor reduces to σ = −pI+T , where p is the thermal pressure of the classical
thermodynamics, I is the identity tensor and T is the viscous stress tensor. In
addition, the assumption of a Newtonian fluid implies for the viscous stress tensor a
very specific analytic form, as a function of the velocity field. This specific relation
will be presented in Section A.1.5; until then we will denote the viscous stress tensor
simply as T .

Then, putting the above assumptions into equation (A.15), the latter reduces
to the well-known form of the momentum equation in presence of source and sink
terms:

ρ
Du

Dt
= −∇p− ρ∇Φ +∇·T +

∑(
Ṗ l − ρ̇lu

)
. (A.16)

fluid.

A.1.3 Energy conservation

We begin considering the usual material volume V (t), and let e(x, t) and E(x, t) = ρe
be the internal energy per unit mass and the internal energy per unit volume. The

5Let V be a volume, S the close surface bounding it and F a scalar, vector or tensor field; the
Gauss’ theorem states: ∫

V

∇·F dV =

∮
S

F dS.
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Second Law of Thermodynamics states that the rate of change of the fluid kinetic
and internal energy is equal to the net work rate done by volume and surface forces
on V (t), plus every source or sink of energy:

d

dt

∫
V (t)

(
E +

ρ ‖u‖2

2

)
dV =

∫
V (t)

ρg · udV +

∫
S(t)

t(n) · u dS

+
∑∫

V (t)
(El + Kl) dV −

∫
V (t)

L dV, (A.17)

where El and Kl are the sources (sinks) of internal and kinetic energy, respectively,
and L is the bolometric radiative losses per unit time and volume. By means of the
Reynolds Transport Theorem, the l.h.s. can be expressed as∫

V (t)

[
DE

Dt
+ E∇·u+

ρ ‖u‖2

2
∇·u+

D(ρ ‖u‖2)

2 Dt

]
dV, (A.18)

and by inserting equations A.6-A.15 in it, the integrand can be recasted as

DE

Dt
+ E∇·u+ u ·

[
ρg +∇·σ +

∑(
Ṗ l −

ρ̇l
2
u

)]
. (A.19)

The r.h.s. of equation (A.17) requires a little of math. By applying the Gauss’ Theo-
rem on the second term and expressing it in indicial notation, as in equation (A.14),
we have ∮

S
t(n)iui dS =

∮
S
σijuinj dS =

∫
V (t)

∂(σijui)

∂xj
dV

=

∫
V (t)

(
ui
∂σij
∂xj

+ σij
∂ui
∂xj

)
,

(A.20)

which can be represented in vector notation6 as the integral of u · (∇·σ) + σ :∇u.
We can now express the energy conservation by collecting equation (A.19), the

r.h.s. of equation (A.17) and equation (A.20), obtaining:

DE

Dt
+ (E + p)∇·u = T :∇u+ u ·

∑(
ρ̇l
2
u− Ṗ l

)
+
∑

(El + Kl)−L ,

(A.21)
where we performed the substitution σ = −pI + T .

A.1.4 Angular momentum conservation

In the previous Section we introduced the stress tensor σij , and we pointed out that
it can be symmetric or antisymmetric. This feature of the stress tensor basically
depends on two factors: the conservation of total angular momentum and the type
of source of angular momentum we want to treat.

6Hereafter we use the double dot product A :B between two tensors A, B to denote the scalar
quantity AijBij .
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If a fluid is such that the torques arise only from macroscopic forces (i.e. they
are moments of body and surface forces), it is denoted as nonpolar. For this class of
fluids we will prove that the conservation of the moment of linear momentum per
unit mass, x×u, implies the symmetry of the stress tensor.

On the other hand, a fluid having intrinsic body torques and stress couples in
addition to the moments of body and surface forces is called a polar fluid. The
total angular momentum of this kind of fluid is composed by the moment of linear
momentum per unit mass, x×u, plus an intrinsic angular momentum per unit mass,
l. We will not treat here the case of a polar fluid.

We examine now the conservation of total angular momentum for a nonpolar
fluid. In this case the total angular momentum per unit mass reduces to x×u (the
moment of linear momentum per unit mass), thus its conservation is expressed by
the following equation:

d

dt

∫
V (t)

ρx×u dV =

∫
V (t)

x×
(
ρg +

∑
ρ̇lwl

)
dV +

∮
S(t)

x× t(n) dS. (A.22)

The l.h.s. can be written as:∫
V (t)

x×
(
ρ

Du

Dt
+ u

∑
ρ̇l

)
dV, (A.23)

where we have used corollary A.7 and the identity u = Dx/Dt. Equation of angular
momentum conservation can be written in indicial notation as:∫

V (t)
εijkxj

(
ρ

Duk
Dt

+ uk
∑

ρ̇l

)
dV =

∫
V (t)

εijkxj

(
ρgk +

∑
ρ̇lwk,l

)
dV

+

∮
S(t)

εijkxjσklnl dS, (A.24)

where, as usual, V (t) is a material volume, S(t) is the close surface bounding it, σkl
is the stress tensor and εijk is the Levi-Civita symbol. Through Gauss’ theorem, the
last term of equation (A.24) is:∮

S(t)
εijkxjσklnl dS =

∫
V (t)

∂

∂xl
(εijkxjσkl) dV

=

∫
V (t)

εijk

[
xj
∂σkl
∂xl

+ σkj

]
dV.

(A.25)

Substituting the previous term in equation (A.24) and rearranging it, the conservation
of angular momentum assumes this form:

εijkxj

[
ρ

Duk
Dt
− ρgk −

∂σkl
∂xl
−
∑

ρ̇l (wk,l − uk)
]

= εijkσkj . (A.26)

The l.h.s. of this equation vanishes by means of equation (A.15): this implies that
εijkσkj = 0. Noting that the components of εijkσkj are (σ23 − σ32), (σ31 − σ13),
(σ12 − σ21), thus εijkσkj = 0 implies that σkj = σjk, therefore the stress tensor must
be symmetric.
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At this point, we can make some considerations regarding the link between the
symmetry of the stress tensor and the conservation of angular momentum for a
nonpolar fluid. If the stress tensor is general (i.e. it is not specified by the physics
of the problem), the conservation of angular momentum states that it must be
symmetric. On the other hand, if σ is known and it is symmetric (e.g. σ = −pI),
the equation of angular momentum conservation is reduced to the moment of the
Cauchy’s equation. As a consequence, for a nonpolar fluid the symmetry of σ is a
necessary and sufficient condition for the conservation of angular momentum.

A.1.5 Viscosity

In this Section we deal with the mathematical formulation of the viscosity in the case
of a Newtonian fluid, especially for what concerns the links between the viscous stress
tensor and the kinematical quantities of a fluid. Indeed, in the last Section A.1.2
we made specific assumption on the nature of the fluid we want to treat, without
specify the form of the viscous stress tensor T .

In this kind of analysis, it is useful to examine the velocity gradient of a fluid
∇u, which can decomposed in two different parts as

∂ui
∂xj

=
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
+

1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (A.27)

where the first term is second order symmetric tensor named strain tensor e, while
the second term is clearly antisymmetric, and it is equal to (∇×u) · êk with i 6= k 6= j.

A necessary and sufficient condition for the conservation of the angular momentum
is the symmetry of stress tensor (see Section A.1.4). The hypothesis of a Newtonian
fluid implies a much stronger condition: the viscous stress tensor must be directly
proportional to the strain e: Tij = Aijklekl and the fluid must be isotropic, i.e. the
fluid properties are the same in all directions (Aris 1989). As a consequence the Aijkl
must be symmetric in i and j, and must be an isotropic fourth order tensor. The
most general form that satisfies these requirements is

Aijkl = ηδikδjl + αδilδjk + βδijδlk, (A.28)

as a consequence the viscous stress tensor becomes

Tij = ηeij + αeij + βδijekk = 2ηeij + βδijekk

= 2η
(
eij −

ekk
3
δij

)
+ ζekkδij ,

(A.29)

where in the second equality we take advantage of the symmetry of T by imposing
α = η. The last expression shows the viscous stress tensor decomposed in a traceless
tensor, called the shear tensor, and a spherical tensor having as a trace the divergence
of the velocity field (where we defined ζ ≡ β + 2η/3). The shear tensor describes
the rate at which the fluid is deformed by shearing, ignoring any changes of volume,
while the last tensor describes the stress (i.e. dissipation) when a fluid is expanded
or compressed. By explicitly showing the dependence of the strain tensor from the
velocity we obtain

T = η
[
∇u+ (∇u)T

]
+

(
ζ − 2

3
η

)
(∇·u) I, (A.30)
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where η is called (shear or kinematical) viscosity, while ζ is usually denoted as bulk
viscosity (or second viscosity, see Aris 1989).

The importance and the value of the bulk viscosity is still debated today, since
direct measurements are difficult to carry out, however it has been verified that
for a common gas the bulk viscosity is negligible, although important in some
physical processes as the sound absorption in fluids (Landau & Lifshitz 1959). On
the theoretical ground, Stokes claimed that for a generic Newtonian fluid ζ = 0
(Stokes’ hypothesis), and this assumption has been proved to be true for a low
density monoatomic gas (for a review on the importance of the bulk viscosity, see
Gad-el-Hak 1995). In the case of this work, the viscosity is not directly related to
the fluid micro-physics, but instead we aim to use its formalism to create a sort
of “gravitational viscosity”, that will mimic a three-dimensional disc instability (see
Section 5.2.3). For simplicity, we therefore accept the Stokes’ hypothesis, and we
treat the viscous stress tensor as

T = η
[
∇u+ (∇u)T

]
− 2

3
η (∇·u) I. (A.31)

A.2 Source and sink terms inside an elliptical galaxy

In the previous Section we derived the fundamental equations for a viscous Newtonian
fluid with an arbitrary number of general source and sink terms, without specify
neither the nature of the source/sink fields, nor their physical parametrization.

However, the goal of this Thesis is to simulate the evolution of an elliptical
galaxy over cosmic times, so as to we have to derive appropriate macroscopic source
and sink terms to account for various physical phenomena, e.g. the shed of mass,
momentum and energy from an ageing stellar population. This task is far from being
simple, even if we simply consider the mass injection process only. Indeed, consider
a single star, i.e. point-like source, moving through the ISM, which in turns has a
non-vanishing velocity field. The way this source injects mass, by shedding material
in every direction, is complex and can be anisotropic7, for example in fast-rotating
massive O and B stars. In addition, the single star ejects also momentum, internal
(due to the non-vanishing temperature of the ejected mass) and kinetic energy (the
stellar ejecta pushes away the in-situ ISM) that will be thermalized in part. To sum
up, since an elliptical galaxies contains one hundred billion stars, it is not immediate
to write a macroscopic, continuous field ρ̇ that accounts for all this phenomena.

Luckily, we are in possession of a powerful tool that is the distribution function
f(x,w, t), which describes at any time the dynamical state of every star in a stellar
population. Indeed, it provides the number of stars dN with a position in volume
d3x centred on x and with a velocity included the range w + d3w and w:

dN = f(x,w, t) d3xd3w. (A.32)

The basic idea of this procedure is to take the microscopic source terms (valid for every
stars) and averaging them of the velocity space, thus obtaining their macroscopic
counterparts, i.e. associated not to a single star but to the entire stellar population.

7Even if this injection was isotropic with respect to the star itself, its effects would be anisotropic
in the ISM, due to the relative velocity between the stars and the ISM.
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We treat here the the simple case of an ageing single stellar population that injects
mass, momentum and energy by means of processes as Type Ia supernovae and
stellar winds from red giant stars. In fact, in this case the distribution function is the
same for every source terms, and the number of microscopic sources does not change
with time. On the other hand, in the case of source fields related to a forming stellar
population, e.g. Type II supernovae, the number of sources varies continuously (and
so the distribution function) due to the continuous formation and death of high-mass
stars. We treat such a special case in Section 2.2.

The detailed calculation is presented in Posacki (2011), here we briefly recall the
main points.

A.2.1 From microscopic to macroscopic source terms

From the definition of the distribution function it follows that the number density of
the stellar sources is:

n(x, t) =

∫
R3

f(x,w, t) d3w. (A.33)

We introduce now a set of functions, represented by

m = m(x,w, t,n), (A.34)
p = m [w + us(x,w, t,n)n] , (A.35)

einj = einj(x,w, t,n), (A.36)

k =
1

2
m ‖w + us(x,w, t,n)n‖2 , (A.37)

that parametrize the return in the ISM of mass, momentum, specific internal and
kinetic energy rates per unit solid angle, respectively, where n is a unit vector and
us is the velocity of the ejected material. Note that every function depends not only
on the position in the phase-space, but also on the direction towards the material
is ejected, since in general the ejection process is not isotropic. We can write the
macroscopic source terms as:

ρ̇(x, t) =

∫
Ω

∫
R3

mf d3w d2n, (A.38)

Ṗ (x, t) =

∫
Ω

∫
R3

pf d3w d2n, (A.39)

E (x, t) =

∫
Ω

∫
R3

meinjf d3w d2n, (A.40)

K (x, t) =

∫
Ω

∫
R3

kf d3w d2n, (A.41)

where we performed the integration over the velocity space and the whole solid angle.
Equations (A.38)-(A.41) exhibit the macroscopic mass, momentum, internal and

kinetic energy source terms for a general source field, so that they can be inserted
directly in the equations of fluid dynamics. However, these terms are still quite
general. Indeed, they represent a non-isotropic source field, whose injection functions
(m, p, us, e, k) depend on the star velocity v. By consider the special case in which
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the injection functions are isotropic and do not depend on the source velocity, the
above equations can be written8 as

ρ̇(x, t) = 4πmn, (A.42)

Ṗ (x, t) = ρ̇v, (A.43)
E (x, t) = ρ̇einj, (A.44)

K (x, t) =
1

2
ρ̇
[
‖v‖2 + Tr(σ2) + u2

s

]
, (A.45)

where v and σ2 are the source streaming velocity and is the velocity dispersion
tensor, defined as

v(x, t) =
1

n(x, t)

∫
R3

wf d3w, σ2
ij =

1

n(x, t)

∫
R3

(wi−vi)(wj−vi)f d3w; (A.46)

and it follows that

Tr(σ2) + ‖v‖2 =
1

n(x, t)

∫
R3

‖w‖2 f d3w. (A.47)

Finally, we can insert equations (A.42)-(A.45) into eqs. A.6, A.16 and A.21, recovering:

Dρ

Dt
+ ρ∇·u =

∑
ρ̇l,

ρ
Du

Dt
= −∇p− ρ∇Φ +∇·T +

∑
ρ̇l (vl − u) ,

DE

Dt
+ (E + p)∇·u =T :∇u+

∑
(ρ̇leinj,l)−L

+
∑ ρ̇l

2

[
‖vl − u‖2 + Tr(σ2

l ) + u2
sl

]
.

(A.48)

(A.49)

(A.50)

Equations (A.48)-(A.50) are the governing equations of a Newtonian viscous fluid in
presence of an arbitrary number of isotropic source/sink terms. It is apparent that
every source (or sink) must be physically characterized, by specifying the rate of
injection or subtraction of mass (ρ̇l) as a function of position and time.

8Note that the integral of n over the whole solid angle vanishes.





Appendix B

Vector operators in cylindrical and
spherical coordinates

In this Appendix we present the vector basis of the cylindrical and spherical reference
system and its relations with the standard Cartesian basis. Afterwards, we recall the
general form of the most common differential vector operators expressed in cylindrical
coordinates.
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B.1 The Cartesian, cylindrical and spherical coordinate
systems

In this Appendix we illustrate three types of coordinate systems, the Cartesian,
the cylindrical and the spherical ones, distinguishing between the coordinates of a
particular coordinate system and its vector basis (which is composed by the unit
vectors).

In the case of the Cartesian system the coordinates are indicated by (x, y, z),
while the unit vectors constituting the Cartesian basis are usually denoted as êx,
êy, êz. As a consequence the position vector is expressed as x = xêx + yêy + zêz.
The main feature of the Cartesian reference system is the independence of its unit
vectors from the position in space, therefore any spatial derivative of the Cartesian
unit vectors vanishes.

On the other hand, in the cylindrical coordinate system the vector basis is
formed by êR, êϕ, êz, while the coordinates are denoted as (R,ϕ, z), respectively
the cylindrical radius, the azimuth and the vertical coordinate. The position vector
in this coordinate system is x = RêR + zêz.

Finally, in the vector basis of the spherical coordinate system is denoted as êr,
êθ, êϕ, whereas the coordinates are indicated as (r, θ, ϕ), called the spherical radius,
the polar angle and the azimuth (note that the azimuth in cylindrical and spherical
systems is the same).

The cylindrical and spherical systems are called curvilinear systems because their
vector bases depend on the position, unlike the Cartesian one. In fact, if we express
the unit vectors of the cylindrical and spherical reference system as a function of the
Cartesian one, we have: 

êR = êx cosϕ+ êy sinϕ,

êϕ = −êx sinϕ+ êy cosϕ,

êz = êz,

(B.1)


êr = êx sin θ cosϕ+ êy sin θ sinϕ+ êz cos θ,

êθ = êx cos θ cosϕ+ êy cos θ sinϕ− êz sin θ,

êϕ = −êx sinϕ+ êy cosϕ.

(B.2)

It is clear that the unit vectors depend on the azimuthal angle ϕ and on the polar
angle θ (for the spherical basis only), so their derivatives are:

∂êR
∂ϕ

= êϕ,

∂êϕ
∂ϕ

= −êR.
(B.3)



∂êr
∂ϕ

= êϕ sin θ,

∂êθ
∂ϕ

= −êϕ cos θ,

êθ
∂θ

= êr.

(B.4)
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Of course the cylindrical and the spherical coordinate system are right-handed, so
that the external product between the unit vectors gives:

êR × êϕ = êz,

êϕ × êz = êR,

êz × êR = êϕ.

(B.5)


êr × êθ = êϕ,

êϕ × êr = êθ,

êθ × êϕ = êr.

(B.6)

A general treatise of the curvilinear coordinate systems can be found in Aris (1989),
whereas Arfken & Weber (2005) present a lot of examples of curvilinear coordinate
systems, among which the cylindrical and the spherical ones.

B.1.1 Coordinates and vector transformations

It is useful deriving the coordinates and vector transformations between the cylindrical
and the spherical basis. We treat here the case of vector expressed in terms of the
spherical basis but with cylindrical components. Indeed, let A be a generic vector,
and by defining Ai ≡ A · êi (where i can be every coordinate of any coordinate
system) it can be expressed in the cylindrical and spherical system as

A = ARêR +Aϕêϕ +Azêz = Arêr +Aθêθ +Aϕêϕ. (B.7)

In order to express Ar and Aθ in terms of the cylindrical components AR and Az,
we multiply equation B.7 by êr and êθ, obtaining:{

Ar = AR sin θ +Az cos θ,

Aθ = AR cos θ −Az sin θ;
(B.8)

while the coordinates transformations formulae are:{
R = r sin θ,

z = r cos θ,

{
r =

√
R2 + z2,

θ = atan2(R, z),
(B.9)

where atan2 is the arctangent function with two arguments.

B.2 Differential operators in cylindrical and spherical co-
ordinates

We present now a list of the most common differential operators, expressed in
the cylindrical and spherical coordinate system. The operators listed below are,
respectively, the gradient, the divergence, the laplacian of a scalar and the curl
operators.
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Here, f indicates a generic scalar field while A represents a generic vector field.
We first present the operators in the cylindrical system:

∇f = êR
∂f

∂R
+ êϕ

1

R

∂f

∂ϕ
+ êz

∂f

∂z
, (B.10)

∇·A =
1

R

∂(RAR)

∂R
+

1

R

∂Aϕ
∂ϕ

+
∂Az
∂z

, (B.11)

∆f =
1

R

∂

∂R

(
R
∂f

∂R

)
+

1

R2

∂2f

∂ϕ2
+
∂2f

∂z2
, (B.12)

∇×A =

(
∂Az
∂ϕ
− ∂Aϕ
∂z

)
êR +

(
∂AR
∂z
− ∂Az
∂R

)
êϕ

+

(
1

R

∂(RAϕ)

∂R
− 1

R

∂AR
∂ϕ

)
êz, (B.13)

whereas in the spherical system the assume the following form:

∇f =
∂f

∂r
êr +

1

r

∂f

∂θ
êθ +

1

r sin θ

∂f

∂ϕ
êϕ, (B.14)

∇·A =
1

r2

∂(r2Ar)

∂r
+

1

r sin θ

∂(sin θAθ)

∂θ
+

1

r sin θ

∂Aϕ
∂ϕ

, (B.15)

∆f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂2f

∂θ
+
∂2f

∂z2
, (B.16)

∇×A =
1

r sin θ

[
∂(Aθ sin θ)

∂θ
− ∂Aθ
∂ϕ

]
êr +

1

r

[
1

sin θ

∂Ar
∂ϕ
− ∂(rAϕ)

∂r

]
êθ

+
1

r

[
∂(rAθ)

∂r
− ∂Ar
∂θ

]
êϕ. (B.17)



Appendix C

Viscosity module implementation

In this Appendix we describe the implementation details of the viscosity terms
presented in Section 5.2.3.
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C.1 Discretized viscosity equations

The new viscosity module has been implemented as a separate sub-step of the
momentum and energy equations. While equations (5.4)-(5.5) show the explicit
analytical formulae in the case of spherical and cylindrical coordinates, in the code
the equations are implemented following the covariant formalism, so that a single
equation can handle different coordinate systems (Stone & Norman 1992; Hayes et al.
2006). We present here the covariant version of equations (5.4)-(5.5), discretized on
the ZEUS numerical grid (see Figure 2.2).

From Stone & Norman (1992) and the physical assumptions above, we have

T13 = η [(∇u)13 + (∇u)31] , T23 = η [(∇u)23 + (∇u)32] , (C.1)

T :∇u = η [(∇u)13 + (∇u)31]2 + η [(∇u)23 + (∇u)32]2 , (C.2)

(∇·T )(ϕ) = g31
∂ (g2T31)

∂V1
+
g32

g2

∂T32

∂V2
+

2T31

g31

∂g31

∂x1
+

2T32

g2g32

∂g32

∂x2
, (C.3)

where we indicated with index numbers the components of a tensor with respect to
the ZEUS coordinates, see Table 2.1. By writing the necessary ∇u components in
the ZEUS covariant formalism, we obtain

(∇u)13 = g2g31
∂u3

∂V1
, (∇u)31 = − u3

g31

∂g31

∂x1
, (C.4)

(∇u)23 =
g32

g2

∂u3

∂V2
, (∇u)31 = − u3

g2g32

∂g32

∂x2
. (C.5)

By indicating the centring of a variable on the (x1, x2) grid as a superscript, e.g.
(∇u)ab32i,j,k

is centred on (x1ai, x2bj), we discretize the viscous stress tensor, given by
equation (C.1), on the numerical grid1:

T bb31i,j,k
= ηi,j,k

[
(∇u)bb31i,j,k

+ (∇u)bb13i,j,k

]
, (C.6)

T ab31i,j,k
=
ηi,j,k + ηi−1,j,k

2

[
(∇u)ab31i,j,k

+ (∇u)ab13i,j,k

]
, (C.7)

T bb32i,j,k
= ηi,j,k

[
(∇u)bb32i,j,k

+ (∇u)bb23i,j,k

]
, (C.8)

T ba32i,j,k
=
ηi,j,k + ηi,j−1,k

2

[
(∇u)ba32i,j,k

+ (∇u)ba23i,j,k

]
. (C.9)

Equation (C.2) can be immediately written as

(T :∇u)bbi,j,k = ηi,j,k

[
(∇u)bb13i,j,k

+ (∇u)bb31i,j,k

]2
+ ηi,j,k

[
(∇u)bb23i,j,k

+ (∇u)bb32i,j,k

]2
,

(C.10)

1As every scalar field, η is centred on (x1bi, x2bj).
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whereas equation (C.3) becomes

(∇·T )bb(ϕ)i,j,k
= g31bi

g2ai+1T
ab
31i+1,j,k

− g2aiT
ab
31i,j,k

dV 1ai
+
g32bj
g2bi

T ba32i,j+1,k
− T ba32i,j,k

dV 2aj

+
2T bb31i,j,k

g31bi
dg31bd1i +

2T bb32i,j,k

g2big32bj
dg32bd2j .

(C.11)

In the expressions above we used the following quantities:

(∇u)bb31i,j,k
= −

u3i,j,k
g31bi

dg31bd1i, (C.12)

(∇u)bb32i,j,k
= −

u3i,j,k
g2big32bj

dg32bd2j , (C.13)

(∇u)bb13i,j,k
=
g2big31bi

2

(
u3i,j,k − u3i−1,j,k

dV 1bi
+
u3i+1,j,k − u3i,j,k

dV 1bi+1

)
, (C.14)

(∇u)bb23i,j,k
=
g32bj
2g2bi

(
u3i,j,k − u3i,j−1,k

dV 2bj
+
u3i,j+1,k − u3i,j,k

dV 1bj+1

)
, (C.15)

(∇u)ab31i,j,k
= −dg31ad1i

u3i,j,k + u3i−1,j,k

2g31ai
, (C.16)

(∇u)ab13i,j,k
= g2aig31ai

u3i,j,k − u3i−1,j,k

dV 1bi
, (C.17)

(∇u)ba32i,j,k
= −dg32ad2j

u3i,j,k + u3i,j−1,k

2g2big32aj
, (C.18)

(∇u)ba23i,j,k
=
g32aj
g2bi

u3i,j,k − u3i,j−1,k

dV 2bj
. (C.19)

Given the explicit nature of the ZEUS code, the inclusion of the fluid viscosity sub-
step requires the additional time-scale ∆tv = ρη−1 min(dV1, dV2)2 in equation (2.43),
where the volume elements are listed in Table 2.1.
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