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Introduction

Introduction

The use of multiphase motors over conventional three-phase motors gives
a series of benefits that can be summarized as follows: possibility of dividing the
power between multiple phases, higher reliability in case of failure of a phase,
use of various harmonic orders of airgap magnetic field to obtain better
performances in terms of electromagnetic torque and possibility to create multi-
motor drives by connecting several machines in series controlled by a single
power converter [1]-[9]. These features are appreciated when high power, high
reliability and low dc bus voltage are requested as it happens in ship propulsion,
electrical vehicles and aerospace applications. In recent years, suitable techniques
have been applied in order to reduce the power losses in multiphase IGBT
iverters [10].

Bearingless motors are spreading because of their capability of producing
rotor suspension force and torque avoiding the use of mechanical bearings and
achieving in this way much higher maximum speed. There are two typologies of
winding configurations: dual set and single set of windings. The first category
comprises two separated groups of three-phase windings, with a difference in
their pole pair numbers equal to one: the main one carries the ‘motor currents’
for driving the rotor, while the other carries the ‘levitation currents’, to suspend
the rotor [11].

The windings belonging to the latter category produce torque and radial
forces by means of injecting different current sequences to give odd and even
harmonic orders of magnetic field, using the properties of multiphase current

systems, which have multiple orthogonal d-q planes. One of them can be used to
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control the torque. The additional degrees of freedom can be used to produce
levitation forces [12].

The main advantages of bearingless motors with a single set of windings
(i.e., the assets of bearingless and multiphase motors together) lead to a simpler
construction process, better performances in control strategy and torque
production with relatively low power losses [13]. This kind of technology is
expected to have very large developments in the future, particularly in the design
of high power density generators, actuators and motors of More Electric Aircraft
(MEA), mainly for the ability of achieving higher speed in comparison to
conventional electrical machines [14]. In addition, it can be supposed that the
cooperation of bearingless control techniques and the adoption of magnetic
bearing could be of large interest in the MEA field.

An important target in the design of electrical machines is the analysis and
comparison of a large number of solutions, spending less time than is possible
but also providing an accurate description of electromagnetic phenomena. The
main problems are related to the calculation of global and local quantities like
linkage fluxes, output torque, flux densities in various areas of the device. The
difficulties increase especially in presence of magnetic saturation, in fact in the
case of non-linear magnetic problems it would be necessary to provide in-depth
analyses by using complex software based on accurate analytical methods, like
Finite Element Analysis (FEA). Simultaneously, it would be useful to save time,
not only in terms of reducing computing time, but mainly for the need of re-
designing the model of the machine in a CAD interface when changing some
electrical or geometrical parameter. In order to solve this problems, some authors
present analyses based on equivalent magnetic or lumped parameter circuit
models [15], [16], [17].

In this thesis, a method for non-linear analysis and design of Surface-

Mounted Permanent Magnet Synchronous Motors (SPMSM) is presented. The
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relevant edge consists in the possibility of defining the machine characteristics in
a simple user interface. Then, by duplicating an elementary cell, it is possible to
construct and analyze whatever typology of windings and ampere-turns
distribution in a pole-pair. Furthermore, it is possible to modify the magnet
width-to-pole pitch ratio analyzing various configurations or simulating the rotor
movement in sinusoidal multiphase drives or in a user-defined current
distribution. Previous papers proposed the analysis of open-slot configurations
with prefixed structure of the motor, with given number of poles and slots, or for
only a particular position of the rotor with respect to the stator. The performances
of the proposed non-linear model of SPMSM have been compared with those
obtained by FEA software in terms of linkage fluxes, co-energy, torque and
radial force. The obtained results for a traditional three-phase machine and for a
5-phase machine with unconventional winding distribution showed that the
values of local and global quantities are practically coinciding, for values of the
stator currents up to rated values. In addition, they are very similar also in the
non-linear behavior even if very large current values are injected.

When developing a new machine design the proposed method is useful not
only for the reduction of computing time, but mainly for the simplicity of
changing the values of the design variables, being the numerical inputs of the
problem obtained by changing some critical parameters, without the need for re-
designing the model. For a given rotor position and for given stator currents, the
output torque as well as the radial forces acting on the moving part of a
multiphase machine can be calculated. The latter feature makes the algorithm
particularly suitable in order to design and analyze bearingless machines. For
these reasons, it constitutes a useful tool for the design of a bearingless
multiphase synchronous PM machines control system.

Another important section of this thesis concerns an analytical model for

radial forces calculation in multiphase bearingless SPMSM. It allows to predict
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amplitude and direction of the force, depending on the values of the torque
current, of the levitation current and of the rotor position. It is based on the space
vectors method, letting the analysis of the machine not only in steady-state
conditions but also during transients.

When designing a control system for bearingless machines, it is usual to
consider only the interaction between the main harmonic orders of the stator and
rotor magnetic fields. In multiphase machines, this can produce mistakes in
determining both the module and the spatial phase of the radial force, due to the
interactions between the higher harmonic orders. The presented algorithm allows
to calculate these errors, taking into account all the possible interactions; by
representing the locus of radial force vector, it allows the appropriate corrections.

In addition, the algorithm permits to study whatever configuration of
SPMSM machine, being parameterized as a function of the electrical and
geometrical quantities, as the coil pitch, the width and length of the magnets, the
rotor position, the amplitude and phase of current space vector, etc.

The design of a control system for bearingless machines constitutes
another contribution of this thesis. It implements the above presented analytical
model, taking into account all the possible interactions between harmonic orders
of the magnetic fields to produce radial force and provides in this way an
accurate electromagnetic model of the machine.

This latter is part of a three-dimensional mechanical model where one end
of the motor shaft is constrained, to simulate the presence of a mechanical
bearing, while the other is free, only supported by the radial forces developed in
the interactions between magnetic fields, to simulate a bearingless system with
three degrees of freedom. The complete model represents the design of the

experimental system to be realized in the laboratory.




Introduction

References

[1]

2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

D. Casadei, D. Dujic, E. Levi, G. Serra, A. Tani, and L. Zarri, “General
Modulation Strategy for Seven-Phase Inverters with Independent Control
of Multiple Voltage Space Vectors”, [EEE Trans. on Industrial
Electronics, Vol. 55, NO. 5, May 2008, pp. 1921-1932.

Fei Yu, Xiaofeng Zhang, Huaishu Li, Zhihao Ye, “The Space Vector PWM
Control Research of a Multi-Phase Permanent Magnet Synchronous Motor
for Electrical Propulsion”, Electrical Machines and Systems (ICEMS), Vol.
2, pp. 604-607, Nov. 2003.

Ruhe Shi, H.A.Toliyat, “Vector Control of Five-phase Synchronous
Reluctance Motor with Space Pulse Width Modulation for Minimum
Switching Losses”, Industry Applications Conference, 36th IAS Annual
Meeting. Vol. 3, pp. 2097-2103, 30 Sept.-4 Oct. 2001.

M. A. Abbas, R.Christen, T.M.Jahns, “Six-phase Voltage Source Inverter
Driven Induction Motor”, IEEE Trans. on IA, Vol.IA-20, No. 5, pp. 1251-
1259, 1984.

E. E. Ward, H. Harer, “Preliminary Investigation of an Inverter fed 5-phase
Induction Motor”, IEE Proc, June 1969, Vol. 116(B), No. 6, pp. 980-984,
1969.

Y. Zhao, T. A. Lipo, “Space Vector PWM Control of Dual Three-phase
Induction Machine Using Vector Space Decompositon”, I[EEE Trans. on
14, Vol. 31, pp. 1177-1184, 1995.

Xue S, Wen X.H, “Simulation Analysis of A Novel Multiphase SVPWM
Strategy”, 2005 I[EEE International Conference on Power Electronics and
Drive Systems (PEDS), pp. 756-760, 2005.

Parsa L, H. A. Toliyat, “Multiphase Permanent Magnet Motor Drives”,
Industry Applications Conference, 38th IAS Annual Meeting. Vol. 1, pp.
401-408, 12.-16 Oct. 2003.

H. Xu, H.A. Toliyat, L.J. Petersen, “Five-Phase Induction Motor Drives
with DSP-based Control System”, IEEE Trans. on 14, Vol. 17, No. 4, pp.
524-533, 2002.

L. Zarri, M. Mengoni, A. Tani, G. Serra, D. Casadei: "Minimization of the
Power Losses in IGBT Multiphase Inverters with Carrier-Based Pulsewidth
Modulation," IEEE Trans. on Industrial Electronics, Vol. 57, No. 11,
November 2010, pp. 3695-3706.

A. Chiba, T. Deido, T. Fukao and et al., "An Analysis of Bearingless AC




Introduction

[12]

[13]

[14]

[15]

[16]

[17]

Motors," IEEE Trans. Energy Conversion, vol. 9, no. 1, Mar. 1994, pp. 61-
68.

M. Kang, J. Huang, H.-b. Jiang, J.-q. Yang, “Principle and Simulation of a
5-Phase Bearingless Permanent Magnet-Type Synchronous Motor”,
International Conference on Electrical Machines and Systems, pp. 1148 —
1152, 17-20 Oct. 2008.

S. W.-K. Khoo, "Bridge Configured Winding for Polyphase Self-Bearing
Machines" IEEE Trans. Magnetics, vol. 41, no. 4, April. 2005, pp. 1289-
1295.

B. B. Choi, “Ultra-High-Power-Density Motor Being Developed for Future
Aircraft”, in NASA TM-—2003-212296, Structural Mechanics and
Dynamics Branch 2002 Annual Report, pp. 21-22, Aug. 2003.

Y. Kano, T. Kosaka, N. Matsui, “Simple Nonlinear Magnetic Analysis for
Permanent-Magnet Motors”, IEEE Trans. Ind. Appl., vol. 41, no. 5, pp.
1205-1214, Sept./Oct. 2005.

B. Sheikh-Ghalavand, S. Vaez-Zadeh and A. Hassanpour Isfahani, “An
Improved Magnetic Equivalent Circuit Model for Iron-Core Linear

Permanent-Magnet Synchronous Motors”, IEEE Trans. on Magnetics, vol.
46, no. 1, pp. 112-120, Jan. 2010.

S. Vaez-Zadeh and A. Hassanpour Isfahani, “Enhanced Modeling of Linear
Permanent-Magnet Synchronous Motors”, IEEE Trans. on Magnetics, vol.
43, no. 1, pp. 33-39, Jan. 2007.










Two-dimensional analysis of magnetic field distributions in the airgap of
electrical machines

Chapter 1

Two-DIMENSIONAL ANALYSIS
oF MAGNETIC FIELD
DISTRIBUTIONS IN THE AIRGAP
OF ELECTRICAL M ACHINES

1.1 Introduction

The aim of this chapter is the development of a method proposed in
literature [1] to study the distributions of the magnetic vector potential, magnetic
field and flux density in the airgap of axial flux permanent magnet electrical
machines by applying a two-dimensional model. With respect to [1], the
contribution of this chapter consists in the execution of the complete calculations,
not reported in the original work, to get the solution of the problem. They were

conducted by using the techniques of mathematical analysis applied to physical
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and engineering problems, with particular reference to [2].

In the origin, the method has been applied to the design of axial flux PM
machines, but it can be generalized to the analysis of any typology of electrical
machine in the case of neglecting slotting effects and with the assumption of

developing the machine linearly in correspondence of the mean airgap radius.

1.2 Analytical methods in literature

The works [3]-[6] represent a series of papers for a complete 2-d analysis
of the magnetic field distribution in brushless PM radial-field machines. In [3] is
presented an analytical method for determining the open-circuit airgap field
distribution in the internal and external rotor typologies. The solution is given by
the governing field equations in polar coordinates applied to the annular magnets
and airgap regions of a multi-pole slotless motor, with an uniform radial
magnetization in the magnets.

In [4] the analysis is conducted to determine the armature reaction field
produced by a 3-phase stator currents and to take into account the effect of
winding current harmonic orders on the airgap field distribution.

In [5], the method developed in [3], [4] is integrated with a model to
predict the effect of stator slotting on the magnetic field distribution, using a 2-d
permeance function which realizes a much higher accuracy than the conventional
1-dimensional models.

Finally, [6] presents a model to analyze the load operating conditions of the
motor, by combining the armature reaction field component with the open-circuit
field component produced by the magnets, studied in [3]. All the cases [3]-[6]
were compared with the results of FE analysis, showing an excellent agreement.

The paper [7] presents an analytical method to study magnetic fields in

permanent-magnet brushless motors, taking into consideration the effect of stator
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slotting, by studying the magnetic field distribution in the situations where the
magnet passes over the slot opening. In such situations it is difficult to interpret
the correct method for determining, with the properly accuracy, the flux density
distribution and, consequently, the magnetic forces and cogging torque.

In [8] the effects of slotting in a brushless dc motor (BLDCM) are
determined by calculating the airgap permeance distribution using the Schwarz-
Christoffel transformation. The analytical calculations of no-load air-gap
magnetic field distribution, armature field distribution, and phase electromotive
force, are implemented. Then, a three-phase circuital model is realized for
determining the phase current waveforms and the instantaneous magnetic field
distribution in load conditions, during the actual operations of the drive. The
computation of electromagnetic torque and the analysis of torque ripple complete
the features of the algorithm.

The paper [9] presents a method for the accurate calculation of magnetic
field distribution in the motors with big airgap, by means of the magnetic
potential superimposed calculation, since in the examined case the computing
error resulting by conventional formulas can’t be neglected as happens in the
small airgap machines.

In [10] a general analytical method to predict the magnetic field
distribution in surface-mounted brushless permanent magnet machines is
presented, considering a two-dimensional model in polar coordinates which
solves the Laplacian equations in the airgap and magnets areas, with no
constraints about the recoil permeability of the magnets. The analysis is
applicable to internal/external rotor typologies, to radial/parallel magnetization of

the magnets, to slotless/slotted motors.

11
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1.3 Main assumptions and case study

In the following, the main assumptions of the case study are presented:
I) The permeability of iron is infinite;

IT) The considered model is a slotless machine, or a slotted one with slot-
openings supposed of infinitesimal width, so that the slotting effects are

negligible;

III) In correspondence of the rotor and stator boundary surfaces, the magnetic

field lines have only normal component;

IV) The mean airgap radius is assumed infinite, so that the airgap path can be

considered as having a linear development, ignoring curvature;
V) Extremity effects are neglected.
VI) The effects of the leakage fluxes are neglected.

The Ampere-turns distributions are analyzed by means of the current sheet
technique; the innovative aspect of the analysis, presented in [1], is the process of
solving the electromagnetic problem depending on a generalized current
distribution, whatever be the generating source, and then applying to the general
solution the current-sheet related to the particular case study (ampere-turns
distribution of the stator, equivalent distribution of the magnets, etc.). Consider

the 2-D model presented in Fig. 1.1:

L L L L L LS
) Y2 Region 2
currentsheet K. (x) £, sin(ux)
N 1%,  Regionl
A A A A A A A A A A e e A
Fig. 1.1

12



Two-dimensional analysis of magnetic field distributions in the airgap of
electrical machines

The lower surface, placed at y =0, represents the rotor iron; the higher one,
placed at y=Y,, represents the stator iron. A generalized current sheet
distribution, given by Kn(x):Kn sin(ux), is placed at y =Y, coordinate: this
parameter can be assumed as a variable height, dividing the airgap in two areas

and determining different solutions of the magnetic vector potential in everyone

of them. In this way, the current sheet K, (x) can be considered in one case the
stator current distribution (in the presented example, by substituting ¥, =7Y,) in

the other case the equivalent ampere-turns distribution produced by rotor
magnets (in the presented example, by substituting Y, =Y, , being this latter the
magnet height). So, it is possible firstly to solve the problem for a generalized

distribution and then to apply it to the particular case to represent.

13
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1.4 Analytical solution of the problem

Consider by assumption that the magnetic vector potential 4 has the only non-

zero component 4., not dependent on z-coordinate (i.e., the analysis is carried
out by operating on xy-planes where all the magnetic and electrical quantities
are supposed invariant with respect to the z-axis). With these assumptions, the

Laplace operator V>4 can be written as:

A :Az(x,y)lg (1.1)

2 2
VA =vid =V (va)=| i+ L i Lp| [ e, O p) O A O A,
ox oy oz ox oy ox oy

(1.2)

The x- and y-components of flux density and magnetic field distributions can

be determined as:

i ]k
Bovxd=|2 2 92 :aAZf{—aAij (1.3)
ox Oy Oz oy ox
0 0 A4
B
Bx:aAZ B :_GAZ, I _ B, _ 104, I :_y:_iéAZ) (1.4)

a7 T T wy owme vy T g pg ox

The equation to be solved in the domain of study (1.5), with its related boundary
conditions (1.6), is the characteristic Laplace’s equation considered in a two-
dimensional domain:

— 0*4, 0’4
= +

V24 =0 Z=( (1.5)

a9
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2)Hx2(y:Y2 =0 (1.6)
3)Hx2(y:Y1)_Hxl(y_Yl)_Kn(x) '
4)Hy2(y:Yl):Hyl(y_Yl)

Since the boundary conditions are homogeneous, it is possible to apply the

method of separation of variables. Let us assume, therefore, that 4. is of the

form:

4=x00) = Va-r()ZX xw@W) )
ox oy

hence, multiplying both sides by 1/[X(x)Y(y)] and rewriting the second

derivatives in a different way for brevity, we obtain:

2 2
1 6X(X)Jr 1 aY(y):O N LXxx(x)JrLYyy(y):O

X(x) a*  Y() 9’ X(x) Y(y)
(1.8)

By isolating in different members the terms respectively dependent on x and y

we obtain:

Yyy(y):_Xxx(x) (19)

ry)  X()

Note that the members of the equation are absolutely independent from each

other, since the first one is a function of the variable x only, the second one of
the y only: having to be equivalent for any value assumed by the two variables,
it is deduced that they have to be both equal to a constant term, which we define

as u’, assumed positive. By further developing the calculations, two separate

differential equations are obtained, each one as a function of a single variable:

_ );( S):uz S X+ u’x(x)=0 (1.10)

15
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%ﬁy))qﬁ = Y7(y)-u’v(y)=0 (1.11)

Are obtained from (1.10), (1.11) the respective characteristic equations and their

solutions:
p2 +u? =0 = D12 =iw/j2u2 =tju (1.12)
g —u>=0 = qu:i\/uz =u (1.13)

Recalling the general expression of the solutions associated with the

characteristic equations (1.12), (1.13):
X(x)=A.e™™ +Be /™ (1.14)
Y(y)=4,e" +B,e™ (1.15)

where A4,, B,, 4,, B,, are constant terms to be evaluated using the boundary

conditions. Recalling (1.7) is possible to write:

A (x,y)=X(x)¥(y)= (Axejux +B e /™ XAye”y + Bye_”y) (1.16)
By introducing the Euler’s formulas, presented in the follows:

o o

= cos(ux)+ j sin(ux), = cos(ux)— j sin(ux) (1.17)

e = cosh(uy)+ sinh(uy), e = cosh(uy)— sinh(uy) (1.18)

and using (1.17) and (1.18) in (1.16), the general solution can be expressed in a

trigonometric form:

A_(x,y)= X(x)Y(y) = [4sin(ux) + Bcos(ux)[C sinh(uy) + Dcosh(uy)] ~ (1.19)

1.4.1 Analysis in the Region 1

Assume for region 1 the following general expression for the magnetic vector

16
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potential:
A (x,v)= X (x)Y(y)=[4, sin(ux)+ B, cos(ux)] 4, sinh(uy)+ B, cosh(uy)|
(1.20)

The value of the x-component of the magnetic field in the lower boundary of the

region 1, leads to the first boundary condition:

H,(y=0)=0 (1.21)
1 04, u . :
H,(x,y)=— = [ 4, sin(ux)+ B, cos(ux)[4, cosh(uy)+ B, sinh(uy)]
Ho O W
(1.22)

By applying the condition (1.21) in (1.22) and considering that the equation has

to be verified for any value of x and y, we obtain (1.23):

H (y = 0) = l[Al sin(ux)—i— B, cos(ux)]A2 =0 = 4,=0 (1.23)
Ko

By substituting the result of (1.23) into (1.20):

A (x,v)= B, cosh(uy)| 4, sin(ux)+ B, cos(ux)] (1.24)
where, defining the constant terms &, = B, 4, and k, = B, B, :

A (x,y) = cosh(uy )k, sin(ux)+ k, cos(ux)] (1.25)

By substituting the result of (1.23) into (1.22):

H (x,y)= IJL sinh(uy )k, sin(ux)+ k, cos(ux)| (1.26)
0

By executing similar calculations is possible to write the H,; component of the

magnetic field as:

104y _u cosh(uy )k, sin(ux)— k; cos(ux)] (1.27)

H (x,y)=-
yl(x y) o Ox o

17
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1.4.2 Analysis in the Region 2
Assume for region 2 the following general expression for the magnetic vector
potential:

A, (x,y)=X(x)Y(y)=[C, sin(ux)+ D, cos(ux)|[C, sinh(uy)+ D, cosh(uy)|
(1.28)

The value of the x-component of the magnetic field in the higher boundary of

the region 2, leads to the second boundary condition:

H,(y=Y,)=0 (1.29)
1 04,, u _ .
H ,(x,y)=—"2% = —[C, sin(ux)+ D, cos(ux)|[C, cosh(uy)+ D, sinh(uy)]
Ho OV Mo
(1.30)

By applying the condition (1.29) in (1.30) and considering that the equation has
to be valid for any value of x and u, we obtain (1.31), (1.32):

H,(y=Y,)= l[Cl sin(ux)+ D, cos(ux)|C, cosh(uY, )+ D, sinh(uY, )] =0

Ho
(1.31)
C, cosh(uY, )+ D, sinh(u¥,)=0 = D, =-C, coth(u,)
(1.32)
By substituting (1.32) in (1.28):
A, (x,y)=C,[C, sin(ux)+ D, cos(ux)|sinh(uy)— cosh(uy)coth(uY, )]
(1.33)

where, in a similar way to what was done for the region 1, by introducing the
constant terms k; = C,C, and k, = D,C,, it gives:
Ay (x, ) = [y sin(ux)+ ky cos(ux)[sinh(uy) - cosh(uy )coth(u, )]

(1.34)

18



Two-dimensional analysis of magnetic field distributions in the airgap of
electrical machines

which can be written, by explicating coz‘h(uY2 ), as:

sinh(uy ) sinh(uY, ) — cosh(uy)cosh(uY,)
sinh(uY, )

Ay (x,y) = [k sin(ux)+ k, cos(ux){

(1.35)
By considering that:
cosh u(Y, — y) = cosh(uY, —uy) = cosh(uY, )cosh(uy)— sinh(uY, ) sinh(uy)
(1.36)

The relationship (1.35) can be simplified as in (1.37):

coshu(Y, — y)

Ay (x,y) = ~[ky sin(ux)+ k cos(ux)] sinh(uY, )

(1.37)

and, by means of (1.38), the related components of the magnetic field in region 2

can be calculated as in (1.39), (1.40):

1 04 1 04
Holwy)=—=—2 Hpny)=-——= (138)
Ho Oy Ho Ox
H,(x,v)= i[k3 sin(ux) + k, cos(ux)] sin}.z ult ~y) (1.39)
[T sinh(uY,)
H,, (x,y)= L [y cos(ux) - ky sin(ux)] cos}_l ull; ~) (1.40)
[T sinh(uY,)

1.4.3 Common boundary conditions

Considering a current sheet described by means of an harmonic distribution

given in the generic form:
Kn(x)zlgn sin(ux) (1.41)

where K, depends on the actual current distribution and has to be evaluated in
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any particular considered case, while u is defined as follows:

u="n (1.42)

The discontinuity between the x-component values of the magnetic field in the

current sheet region, leads to the third boundary condition:
Ho(y=1)-Hy(y=%)=K,(x) (1.43)

which can be expressed by calculating (1.26) and (1.39) in correspondence of the
particular value y =Y;. By substituting them in (1.43) it gives:

i[k3 sin(ux)+ ky COS(ux)] sinh M(Y2 ~Y, ) u

: [k, sin(ux) + k, cos(ux )] sinh(uY; ) =
Ho sinh(u, ) Ho

= I&n Sin(ux)
(1.44)

By collecting the common terms in (1.44):

sin(ux){lg SiZ?nL;((}EY_)K ) —ky sinh(uY; ) - Mof” } +
2

+ cos(ux){két S”Z;;(g}:)yl ) — k, sinh(uY, )} =0
2

(1.45)

Note that (1.45) has to be verified for any value of u and x, so the only

possibility is that both the coefficients of sin(ux) and cos(ux) are equal to zero:

A

k. sinh. u(Y, - ;) ~ K sinh(uY;)— MoK, _ 0 (1.46)
sinh(uY, ) u
sinh u(Y2 - Yl) :
k, -k, smh(qu):O (1.47)

sinh(uY,)

After a few steps (1.46) and (1.47) give, respectively, the relations &y = f (kl)
and k, = f(k,):
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_ sinh(uYz )[uolen +uk, sinh(uY, )]

k 1.48

} usinh u(Y, —Y,) (1.48)
ky = Sinlf(qu)Sinh(uYz)kz (1.49)

sinh u(Y, —Y,)
Putting (1.48) and (1.49) in (1.40):
Ho, ()= ucoshu(Y, — y) “O]%n.-’_ uk, Sinh(qu)cos(ux)+
d Lo usinh u(Y, — ;)
(1.50)
sinh(uY,)

i Sm(ux)}

~ sinh u(Y, - Y,

The continuity between the y-components of the magnetic field in the current

sheet region, leads to the fourth boundary condition:
Hyy(y=%)=H,(y="1) (1.51)

By calculating (1.50) and (1.27) in y =Y it respectively gives (1.52) and (1.53);
by substituting them in (1.51), it gives (1.54):

HyZ(y _¥)- ucosh u(Y, — Yl){uolenf uk; Sinh(qu)cos(ux)+
Lo usinh u(Y2 =
. (1.52)
— sink{u}) ky sin(ux)}
sinh u(Y, —Y,)
H,, (y=Y)= Mlcosh(qu Wiy sin(ux)— k; cos(ux)] (1.53)
0
ucoshu(Y, - Y,) HOI&n.—l_ uky sinh(uY, )cos(ux)— ' sinh(uY;) ke sin(ux) | =
Ko usinh u(Y, —Y;) sinh u(Y, — ;)

=2 cosh(uY, \k, sin(ux)—k; cos(ux)|
Ho

(1.54)

By collecting common terms in (1.54):
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{MOK” +uk, sinh(u,) coth u(Y, — Y, )+ k; icosh(qu )} cos(ux) =
Ho Ho (1.55)
= {uk2 sinh(uY;) cothult, 1) + icosh(qu Y, } sin(ux)
Ho Ho

As seen before, (1.55) has to be verified for any value of # and x, so the only

possibility is that both the coefficients of sin(ux) and cos(ux) are equal to zero.

From (1.55) the equation (1.56):

M(”Yl)coth u(¥, = Y,)+k Lcosh(qu)= 0 (L.56)
Ho Ho

12,, coth u(Y2 ~Y,)+k

which results after a few steps in (1.57):

kl :_MOKn coth u(YZ_Yl) (157)
u  sinh(uY;)coth u(Y, — Y;)+ cosh(uY;)
and also the equation (1.58):
k{u sinh(qu)COth ully _Yl)+icosh(qu) =0 (1.58)
Ho Ho
which results in (1.59):
ky =0 (1.59)

Note that (1.57) can be simplified, by simplifying the term coth u(Y2 - Y1) in the

numerator and denominator. After a few steps, it gives:

kl :_“Olen COSlf u(YZ _Yl) (160)
u sinh(uY,)

By substituting (1.60) in (1.48) and performing some similar calculations, a

simplified form for k; can be obtained:

A

ks =M0—K”cosh (uY;) (1.61)
u
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Finally, using the result of (1.59) in (1.49), it gives:
ky=0 (1.62)
All the coefficients are now known; thus, is possible to determine the expression

of magnetic vector potential and of magnetic field in the regions of the machine.

By substituting (1.59) and (1.60) in (1.25), it immediately gives:

B Hokn cosh u(Y2 - Yl)
u sinh(uY,)

A (x,y)= sin(ux)cosh(uy) (1.63)

Similarly, by substituting (1.61) and (1.62) in (1.37):

1K, coshfun)

» sinh(uYz)Sin(ux)COSh u(Y, - y) (1.64)

AZZ(x’y):

From (1.63) and (1.64) are derived the following relationships (1.65)-(1.68):

H,(x,y)= 1 oAy _ K coshu(t, ~ 1) sin(ux)sinh(uy) (1.65)

Ho Oy " Si”h(uyz)

1 04 ~ coshu(Y, —Y,)
H,(xy)=———2=K 21 h 1.66
yl(x y) o " sinh(uY,) cos(ux)cosh(uy) (1.66)

Ho(xy)= 1 04, _7 cosh(u,)

—Z= ———250 inh ulY, — 1.67
s "sinh(uYz)Sm(ux)Sm u( s y) ( )

1 04, 5 cosh(uY;)
Hyz(x,y) = _M_o 8x2 =K, Sinh(uYZI)COS(ux)COSh u(Y, — ) (1.68)

1.5 Current sheet distribution of the magnets

As a particular example of a current sheet distribution K, (x), will be examined

the equivalent current density distribution of the magnets. Each magnet is

represented by two current pulses at its edges, assuming to flow in a tending to
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zero thickness, having an angular width equal to 29,, .

J(x)= i‘}” Z J, sm(n—x} ZJ sin(ux) (1.69)
n=1,3,5..

n=13,5.. n=1,3,5..

The function is represented by means of the Fourier harmonic series distribution,

the coefficients of which are calculated in the following:

j, -1 j j(0)sin(n0)d0 = %j (0)sin(n0)d0 =

Gmp+6 T=0mp+dm
IJSln n9)d6+— J.Jszn (n0)d6 =
emp m T Omp—dm
21 {[ o+ 7O +Om }
_;;J —cos(ne)] mﬁ +[—cos(n6)] 9mp—5m (1.70)
_2 {2 Sin(nemp )sin(nSm )+ 2sin(n7c —-nb,,, )Sin(n6m )}:
nm

= % {sin(ném )[Sin(nemp )+ sin(mc —nb,, )]} =

2n0,,, —
_4 25in(nd,, )sm(nnjcos mp — 1R
nm 2 2

Considering that » is an odd number, the value of cos(mc/ 2) in (1.71) 1s always

Zero:
2n0, —nn

cos| —L—— | = cos(nemp )cos(nEJ + sin(n@mp )Sin(nﬁj = Sin(nemp )sin(nzj

2 2 2 2
(1.71)

By substituting the result of (1.71) in (1.70), it gives:

~  8J . I AN 8&J . :

J, =—sinnd,, )sin“| n— |sin\nB, )=—sin(nd, )sin\nO 1.72

nm(m)(z)(mp)m(m)(mp) (1.72)

The equivalent surface current density related to the magnets is expressed by

(1.73):
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J= At _Bren T[40 (1.73)
25,t, W, 28,7,

By substituting (1.73) in (1.72), is also necessary to calculate the limit as 9,

tends to zero, considering every edge of the magnet as a current pulse:

J, = lim 8 Bren T Sm(nsm)sin(nemp) (1.74)
Sm—>0T W, 2T, no,

Being

pim S18) 1 (1.75)

3u—0  nod

It results:

J, = 3Been in(n,, ) = 2Brem giyl T T (1.76)

By substituting the relationship (1.76) in (1.69), it gives:

i 45, sm{n—r—}m(ne) (1.77)
21

n=135. HmTp

p

Considering that:

u=""n = n0=|n" |x=ux (1.78)
Tp Tp

By substituting (1.78) in (1.77), it results:

i 45, Sln(n—T—Jsm(ux) (1.79)
21

n=1,3,5.. M’”TP p

To define the function of distribution K, (x), is important to note that the

magnets are constituted by a succession of current sheets, each one of
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infinitesimal width dy, thus characterized by a linear current density given as:
Kn(x):jndysin(ux) [4/m] (1.80)

The expression of magnetic vector potential in the region 2, given by the magnets
distribution (1.80) can be obtained by integrating (1.64) over the magnet
thickness Y,,:

Y g, cosh(uy, )
o u sinh(uY,)
B Hojn sinh(uY,))

= i sinh(uY,) sin(ux)cosh u(Y, — y)

Sin(ux)cosh u(Y2 - y)dy1 =

AZZ(x’y): -
(1.81)

Note that the particular form of equation (1.80), which represents in this case the
magnets distribution, replaces the general function K ; sin(ux) in the equation

(1.64).
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1.6 Conclusion

In this chapter a method proposed in literature was developed to study the
distributions of the magnetic vector potential, magnetic field and flux density in
the airgap of axial flux permanent magnet electrical machines by applying a two-
dimensional model.

The contribution of this chapter with respect to the examined work,
consists in the execution of the complete calculations, which are not presented in
the original paper, to get the solution of the problem. They were conducted by
using the techniques of mathematical analysis applied to physical and
engineering problems.

This method can be generalized to the analysis of any typology of
electrical machine in the case of neglecting slotting effects and with the
assumption of developing the machine linearly in correspondence of the mean

airgap radius.
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Chapter 2

AN ALGORITHM FOR NON-
LINEAR ANALYSIS OF
MULTIPHASE BEARINGLESS
SURFACE-MOUNTED PM
SYNCHRONOUS M ACHINES

2.1 Introduction

In recent years, more and more advanced technologies and an impressive
rise in the use of electronics, both in civil as in the industrial sector, given a
contribution to reduce the cost of the components, allowing the use of complex

technologies which in the past had high costs and therefore of little industrial
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interest. In the field of electrical machines this evolution led not only to the
realization of power drives controlled by an inverter, capable of ensuring
performance significantly better than those obtained with the previous control
systems, but also the advent of a new type of machines with a different number
of phases from the traditional three-phase, usually employed in generation and
distribution of electric energy. This has reawakened the interest in the study of
multi-phase electrical machines.

In [1], a general modulation strategy is presented to be used in multimotor
drives and in multiphase motor drives for improving the torque density.

In [2] a scheme, functional to implement a space vector PWM control of a
twelve-phase permanent magnet synchronous motor is analyzed, to reduce the
switching losses without affecting performances.

A rotor field oriented based on the space vector PWM (SVPWM)
technique for a 5-phase synchronous reluctance motor is developed in [3] and
verified using a dedicated inverter.

In [4] the stator of an induction machine is rewound with two three-phase
winding sets displaced from each other by 30 electrical degrees, showing that this
winding configuration eliminates rotor copper losses and torque harmonics of
particular orders and the sixth harmonic dominant torque ripple.

In [5] an invertor-fed 5-phase induction motor is compared with a
corresponding 3-phase motor, showing that the amplitude of the torque
fluctuation is reduced to approximately one third.

The space vector decomposition technique is presented in [6], where the
analytical modeling and control of the machine are developed in three 2-
dimensional orthogonal subspaces which permits to decouple the variables
related to the control of harmonic contributions.

In [7] a novel multiphase SVPWM strategy is presented, able to synthesize

the d-q subspace voltage vectors to accomplish the control requirements and
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make null the resultant voltage vectors on other subspace, minimizing the
switching losses.

The advantages of multiphase machines are explained and discussed in [8]:
capability of improve the torque production by injecting harmonic of currents in
the motor, a better torque and flux adjustment in DTC control, the fault resilient
current control of multi phase drive under loss of phases and the possibility of
controlling multi motors through a single inverter.

The space vector control and direct torque control (DTC) schemes are
presented in [9], applied to the operation of a 5-phase induction motor and using
a fully digital implementation. Experimental results show that an optimal control
capability is obtained for both methods, further validating the theoretical
concepts. In the last years, various techniques have been applied in order to
reduce the power losses in multiphase IGBT inverters [10].

The multiphase feature results particularly suitable in bearingless
machines, capable of producing rotor suspension force and torque avoiding the
use of mechanical bearings and achieving in this way much higher maximum
speed [11]. There are two typologies of winding configurations: dual set and
single set of windings. The first category comprises two separated groups of
three-phase windings, with a difference in their pole pair numbers equal to one:
the main one carries the ‘motor currents’ for driving the rotor, while the other
carries the ‘levitation currents’, to suspend the rotor [11].

The windings belonging to the latter category produce torque and radial
forces by means of injecting different current sequences to give odd and even
harmonic orders of magnetic field, using the properties of multiphase current
systems, which have multiple orthogonal d-q planes. One of them can be used to
control the torque, the additional degrees of freedom can be used to produce
levitation forces [12], as will be explained in chapter 3. The main advantages of

bearingless motors with a single set of windings (i.e. of multiphase type) consist
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of a simpler construction process, better performances in control strategy and
torque production with relatively low power losses [13]. This kind of technology
1s expected to have very large developments in the future, particularly in the
design of high power density generators, actuators and motors of More Electric
Aircraft (MEA), mainly for the ability of achieving higher speed in comparison
to conventional electrical machines [14].

In addition, it can be supposed that the characteristics of bearingless
control techniques and the use of magnetic bearing could be of large interest in
the MEA field.

The possibility of making quick analyses, with the comparison of a large
number of solutions, nevertheless providing an accurate calculation of
electromagnetic quantities, represents a relevant goal in the design of electrical
machines, by analyzing global and local quantities as output torque, magnetic
energy and co-energy, linkage fluxes, magnetic fields and flux densities in many
parts of the machine. The difficulties increase especially in presence of magnetic
saturation; in order to solve these problems, the equivalent magnetic circuit
method lets fast modifications of the geometrical and electrical parameters
simply by varying numerical inputs and, at the same time, obtaining an high
accuracy in calculations with respect to other software based on more in-depth
analytical methods, as Finite Element Analysis (FEA).

Previous papers proposed the analysis of open-slot configurations with a
prefixed structure of the motor, with a given number of poles and slots [15], or
by studying only particular positions of the rotor with respect to the stator
without relative movement [16], [17]. This chapter presents an algorithm for non-
linear magnetic analysis of multiphase surface-mounted permanent-magnet
machines with semi-closed slots. The relevant edge of the method consists in the
possibility of defining the machine characteristics in a simple user interface.

Then, by duplicating an elementary cell, it is possible to construct and analyze
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whatever typology of windings and ampere-turns distribution in a pole-pair.
Furthermore, it is possible to modify the magnet width-to-pole pitch ratio
analyzing various configurations in order to minimize the cogging torque, or
simulating the rotor movement in sinusoidal multiphase drives or in a user-
defined current distribution.

Finally, the capability of radial forces calculation allows to determine the
optimal ampere-turns distribution in the design of a bearingless control of the
motor. The choice of using a software based on the equivalent magnetic circuit
method allows relevant time saving for this kind of analysis with respect to a
FEA software, not only due to the reduction of computing time, but mainly for
the simple change of electrical and geometrical parameters (i.e. the numerical
inputs of the problem), without the need of re-designing the model in a CAD

interface.
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2.2 The Magnetic Circuit Model

The basic element of the magnetic network is shown in Fig. 2.1, whose the

related reluctances are highlighted.
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Fig. 2.1. The basic element of the magnetic network

It consists of one tooth and the adjacent two semi-slots, being composed of 18
reluctances representing sub-domains of the machine, i.e. volumes of teeth,
sections of the airgap, of the magnets, branches of yokes, semi-slots, etc.
Beside of considering longitudinal components, in the model were provided
transverse components of the magnetic fluxes as, for example, in the slot area
and in the slot-opening to take into account the leakage paths [18], in the tips of
the tooth and in the branches of stator and rotor yokes.

To construct the whole model of a motor, the i-th basic cell 1s connected to

the previous one through four transverse reluctances: N., + i - 1, 2N, + i -1
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(stator and rotor yokes), 3N,, + i - 1 (slot area), 8N,, + i - 1 (slot-opening area).
Furthermore, the i-th basic cell is connected to the following one through the
elements N,, + i, 2N,, + i, 3N,, + i, and 8N,, + i.

Considering one pole pair of the model, that comprises two gaps between the
magnets (each one of them provides 4 additional terms), the whole network
results in a number of reluctances, i.e. unknown terms, equal to 18N, + 8, being

N., the number of slots per pole pair.

2.2.1 Analytical Models of the Reluctances

In this subsection some formulas and criteria used to determine the most relevant

parameters of the magnetic circuit are described.
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Fig. 2.2. Configuration of the network in the case of uniform magnet

Elementsi=1toN,, i =5N,,+1 to 6N,,

To provide a more realistic representation of the flux lines crossing the airgap,
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the total magnetic flux in a slot pitch, passing through the magnet, was divided
into three tubes (Fig. 2.1): the one in the middle presents the tooth surface as
cross-sectional area, depending on the mean radius R,, for the magnet zone (2.1)
and on the mean radius R, for the airgap zone (2.2). The related reluctances are

respectively calculated as:

Rl Im @.1)
Ko RmaLdgL
1 g

R - S 2.2)
Ho RgaLdgL

where the meaning of the symbols is shown in Fig. 4 and in Tab. 1.

Elements i = 7N,,+1 to 8N,,, i = 9N, +1 to 10N,,, elements i = 10N,,+1 to 1IN,,,
i=1IN.+1to I2N,,

The two tubes in left and right sideways positions with respect to the tooth,
develop their paths across the airgap in a succession of a straight line and a
circumferential arc, closing in the tooth tips [14], [18]. The related reluctances

are calculated as:

1 T

= _ o 2.3)
cl
Ly, j B QMOLZ”[zj
g+ /2 g

In the magnet, flux paths are developed in radial direction, using the simple

conventional formula:

R, =— " (2.4)
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Elements i = 12N, +1 to 14N,

Furthermore, a description of the leakage flux in the gap between the magnets is
provided by using transverse reluctances. These create a closed loop including
the magnets, the airgap and the tooth tips. This situation has a not negligible
effect on PM machines [15] and is described in the literature [19]. The reluctance
used to describe a tooth tip is given by the series of two elements, a rectangular-

shaped one and a trapezoidal-shaped one (Fig. 2.3 a):
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Fig. 2.3. Reference systems for calculating the transverse reluctance:

a) tooth tip, b) slot area.

Ly, —L
R, = Lo Ly 1 dg i ln( g J (2.5)
Rig.rr) 2Mal  Wig ) 2(hey =hyg )L Py

Note that the reluctances placed in the iron have a value of the permeability

which depends on the magnetic characteristic of the material, thus characterized

Elements i = 3N,,+1 to 4N,,, i = 8N, +1 to 9N,,

For evaluating the leakage flux produced by the stator currents were used two

transverse reluctances: one through the air of the slot (2.6), calculated as the
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parallel connection of two reluctances (Fig. 2.3 b), the other across the slot

opening (2.7):
1
%, = (2.6)
h L, h,,—h,. L.
HOL avy In tc +MOL( bd d)ll’l( clJ
(Ltc _Lfc) Lfc (Lcl _Ltc) Ltc
L.
oL fa 2.7)
Ko hclL

Other elements

The reluctances related to other elements are not reported because of their simple
form. Note that, in general, the non-linear sub-domains have a value of

permeability that depends on the B-H curve, as in (2.5).

2.3 The Numerical Solving Process

The problem is described through a non-linear system of n equations (n =

18N, + 8) where the unknowns are the values of the magnetic fluxes ¢y, ¢»,... @,
in every sub-domain of the machine.
Two principles of electromagnetism are used to write the equations: Hopkinson’s
law, applied along closed paths identified in the machine, and Gauss’s law, i.e.
conservation of the magnetic fluxes incoming in and outgoing from the nodes of
the network (continuity equations).

Overall, the system includes 9N, + 5 equations of the first typology and

ON., + 3 of the second typology, with a matrix form defined as follows:

[Alp=Fu (2.8)
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Matrix [4] in (2.8) can be seen as composed by some blocks depending on the
following characterization: its coefficients a; represent magnetic reluctances in
the rows related to Hopkinson’s law equations, whereas they have the value £1 in
the rows related to Gauss’ law equations, being essentially algebraic sum of

fluxes:

a; =R@.0,,) i=1.5N, +1,12N,, +1.14N_ 16N, +1..
I8N, , I8N, +1,18 N, +2,18N_, + 518N, +6
i=5N, +2.12N,, 14N, +1.16N,,

18N, +3,18N,, +4,18N,, +7,18N_, +8

(2.9)

{
1l
-+
—

The system, divided in groups of equations according to the different areas of the
machine, is specified in detail as follows (2.10 — 2.28). Note that the index i
varies in every group from 1 to N., depending on the basic cell related to the
examined equation, except for group (2.16), where the first equation of the group

1s substituted by (2.15):

Tooth to tooth across the airgap (i=1to N,,)

Reee) = R Pi1) = R(wey+1)P(Nep+) = N2V +i) PNey+) T

+ ER(4NCV+1')(P(4NCV+1') - ER(4ch+i+1)(P(4Nw+i+1) + ER(5ch+1')(|>(5ch+;') +

(2.10)
= R (58 4i+1) P (5N +i+1) T R (6N 4i)P(6Np+i) T
- ER(6ch+i+1)(P(6NCV+i+1) = FM(i)
Higher slot area between two teeth (i =N, +1to 2N CV)
= R(wo i) PN i) ~ RN ) PEN+i) T R(6N,+i)P(6N i) F @.11)

(6N +i+1)P(6 Ny, +i+1) FM(NCV-H')
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Tooth to tooth around the slot area (i=2N,, +1to3N,,)

=R (w i) PNy +i) T R(an,+1)P(aN . +1) ~ R(an, +ie1)P(aN,, +iv1) T
+ R (6N, )P (6N ti) = R (6N +i+1)P(6 Ny +i+1) ~ BNy +1)P(8Npy+i) T (2.12)

- ER(12NCV+i+1)(|)(12ch+i+1) - SR(13ch+i)(l)(131\fcv+i) =F M(2Ngy+i)

Right tooth tip across the airgap (i =3N,, +1t0 4N,,)

RoP) + R(snp41)P (5N +1) ™ KON 41)PONy+) + 2.13)
— R, ) PN, +i) T R3N,,+)P3N,,+) =0
Left tooth tip across the airgap (i =4N,, +1to 5N,,)
~R101) ~ Rsn, )P (5N +) T RN+ PN, +i) T 2.14)
+ R (108, +) PN, +i) + R(12n,+)P2N,+i) =0 .
Closing equation (i =5N,, +1)
NCV
R (Ner 1) (i) =0 - (2.15)
i=1
Nodes (1-2-4-7-9-3-5)
(i=5N,, +2t06N,,)
PNy +i-1) = P(Npyti) = P(6Nuyti) ~ PN y+1) ~ PTN i) =0 (2.16)
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(i=6N,, +1t07N,,)

PN +i-1) ~PENy+) T Plan,y+i) ~ P6N,p+i) T PU4N . +i) T

(2.17)
+ Q15N +1) ~ PU6Ny+i) ~ P17Npp+i) = O
(i=7N,, +1to8N,)
P4N,yti) ~ P(5Npyti) ~ P12Np+i) T P3N i) = O (2.18)
(i=8N,, +1t09N,,)
D) = P(s5Ny+i) = 0 (2.19)
(i=9N,, +1to10N,,)
D) = PN +i1) T PN, +i) T PON+i) T PN +i) =0 (2.20)
(i=10N,, +1to11N,,)
P(IN oy +i) T PENyri1) = P12Ny+i) ~ P(14Np+i) =0 (2.21)
(i=11IN_, +1t012N,)
PN,y +i) ~ PONy+i) = P3N +i) T P15N,y+i) =0 (2.22)
Right semi-slot area (i =12N,, +1to 13N_,)
R4 +1) PN i) T KoM 4i)P (6N +1) ~ RN, +1) P3N, +i) T (2.23)

- ER(151\/CV+1')(P(15ch+i) - SR(17ch+i)(P(17ch+i) = Fyr(1an,,+i)
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Lower tooth area between two slots (i =13N,, +1to 14N,,)

= R (128 +1) P12y +7) ~ B3N+ P3N +) T

(2.24)
+ R (14N 1) PNy +1) ~ RSN +)P(5Nep+i) = FM (13N, +1)
Nodes (6-8)
(i=14N,, +1t015N,,)
PN, +i) ~ P10N+i) =0 (2.25)
(i=15N_, +1to16N,,)
PN,y +i) ~ PN, +i) =0 (2.26)
Higher left semi-slot area (i =16N_, +1t017N,,)
=R (6N, ) P(6Np+i) + R16N+) PN +1) = FM (16N, +1) (2.27)
Higher right semi-slot area (i =17N,, +1to 18N,,)
ER(6NCV+i)(P(6J\/CV+i) - g‘R(17ch+i)(P(17ch+i) = FM(17NCV+1') (2.28)

The form of the remaining eight equations is described in the next sections:
they are used for describing additional branches which are formed during the
movement of the rotor. The known terms Fyy;, i = 1 to n, represent the ampere-
turns linked by the paths related to the Hopkinson’s law equations.

Note that the row 5N, +1 (14) represents the equation which makes the system
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solvable: it can be seen as a boundary condition equation, closing the path along
the branches of the stator yoke.

The solving process is based on the method of Gaussian elimination, for
reducing the matrix of coefficients to a triangular one. It is applied iteratively -
times, being some coefficients dependent on the rotor position (a;x = f(Oxn)),
some other also dependent on the value of magnetic permeability of the i-th sub-
domain (a;k = AWk, 9wm)). For a given rotor position 0,, the length and
thickness for the flux tubes that change dimensions or position are recalculated.
Starting with initial random values of Ry, i = 1 to n, the solution of the system
in the k-th order of iteration is obtained in terms of @, , i = 1 to n, by solving the
system (2.8): it 1s then possible to determine the values of flux densities B
being known the flux tubes cross-sectional areas S;. An interpolation of the
magnetic characteristic H; = f(B;) is implemented for domains occupied by non-
linear magnetic material, while a constant value of ; is used for linear domains.
It is then possible to calculate the k-th value p ) by combining the actual value

;fti(k) and the previous value ;.1 and, for every order of iteration, re-calculating

the magnetic permeabilities L related to non-linear domains, following the

general criterion, to facilitate the convergence process [15]:

B.

p i(k)

Fi(e) = (2.29)
H;q

Hitr) = nik)u}_kd—l) (2.30)

where the value of d, the damping constant, is chosen equal to 0.1. Consequently,
the reluctances R, = A, Own) are updated, leading to a further step for the

Gauss method, until the following condition is satisfied [15]:

<5 (2.31)
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being o the requested accuracy. At this step, all the magnetic quantities related to
each sub-domain of the machine are known: permeabilities p,;, magnetic field H,,

fluxes o,, flux densities B,.

2.4 Simulating the Movement

The analysis in the presence of movement proceeds with an external loop
that sets the rotor angular position 0,,,, representing the N-magnet position in a
generic time instant, with respect to a fixed reference system. The origin of the

reference system lies on the axis of symmetry of a chosen slot.

Fig. 2.4. Configuration of the network in presence of gap between N- and S- magnet.

By varying the value of 0,,, the geometrical parameters of the flux tubes are
modified. Consequently, the related coefficients a;(k) = f{u(k), 0.,) and the
continuity equations in the nodes involved in changes are modified also. The
solution process is then repeated by solving every step in the same way described

in Section 2.3.When the gap between the magnets is comprised under a tooth, as
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shown in Fig. 2.4, the software modifies the configuration of the magnetic
network by adding two new branches and four new reluctances of variable cross
section, depending on the value of 6,, in a generic time instant. Consequently,
there are four new unknowns per gap. Instead of only one flux tube, as in the
case of uniform magnet (Fig. 2.2), in this situation the area under the tooth can be
divided into three flux tubes related, respectively, to N-magnet portion, magnet
gap and S-magnet portion, as shown in Fig. 2.4.The index i, assumes an integer
value to identify the tooth that comprises the gap, so that the reluctances Rz,
Rsnevt idns Rasnevt), Rsnert3y Involved in the movement, change their reference
angles 0, = f(0,,,) and 6, = f(0,,,), that subtend the related cross-sectional area,

according to:

eAl = I_exm - OLsap - (idt _l)ach (232)
AL spm :Spm/Rm (233)
eBl = |_0ch - OLsap - exm - OLspm + (idt _I)G’CVJ (234)

The three flux tubes under the tooth are characterized by six reluctances: two of
them also existing in the case of uniform magnet, Rz and Rsyey+ ian, but in the
present case modified in the cross-sections and four additional reluctances, from

the R1gnevt1) to the Rigneiray.

1 L
S . (2.35)
(ar) My R0 .41 (0,000 )L
. ) L g (2.36)
(SNCV-Hdt) Mo RgeAl (exm’idt )L |
1 L,
ER(18ch+1) = (2.37)

E RmeBl (exm ’ idt )L
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1 g
Rsng,3)=— . (2.38)
( ot ) Ho RgeBl(exm’ldt )L
1 L
R =——" 2.39
(18N¢y+2) o Rmaspm[‘ ( )
1 g
Rgn,,+4) =— n (2.40)
Ho gasme

The cross-sectional areas in the formulas are calculated at the reference radius of
every sub-domain. Four additional equations (2.41)-(2.44) are added to the
system for taking into account the new unknown fluxes with respect to the case
of uniform magnet: the Hopkinson’s law applied to N- and S-magnet, the

continuity equations applied to nodes 7,y and 73):

ER(ialt )(p(idt) + SR(SNCV"'idz‘ )(p(Sch”dt) N SR(18]\/cv"'2)(p(1SNCV"'Z) +

(2.41)
- SR(181\/CV+4)(P(18NCV+4) = FM(ISNCVH)
= R8N, +1)PU8N, 1) F R(18N,,+2)P(18N 4y +2) ~ R (18N +3)P(18 N, +3) F (2.42)
+ SR(18NCV+4)(P(18NCV+4) = FM(ISNCV+2)
—®(13N,,+2) T PN, +4) =0 (2.43)
—®3N,,+1) T Pisn,,+3) =0 - (2.44)

Obviously, other equations already comprised in the system have to be modified
according to the variations in the magnetic circuit, as for example in the node 4,
where the continuity equation written in the presence of gap (2.45) is compared

with the situation of uniform magnet (2.46):

(p(4ch+idt) B (p(Sch“'idt) B (p(IZch"’idt) + (p(13ch+idt) + (2.45)
—®(8N,,+3) ~ P18n,,+4) =0

P4Ny+i) ~ P(5Ny+i) ~ P12y +) T P13, +1) = 0 (2.46)
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The same logic can be applied to the other additional equations (with indexes
from 18N,, + 5 to 18N,, + 8) considering the second gap between the magnets,

depending on the related reference angles and on a new index iy, which
identifies the tooth comprising the gap, with reluctances Ry, Risnewr iar2)

Ragnevt 51, Rasnert 6)r Ragnvevt 7) > Rignevt 8)-

2.5 Co-energy, Torque and Radial Forces

One of the features of the proposed algorithm is the capability of
determining the total magnetic co-energy of the machine in a series of different
rotor positions: this allows calculating the electromagnetic torque acting between
stator and rotor. In order to do this, the volumes t; and flux paths of every sub-
domain are developed in circular shape, based on the average radius of the
related part of the machine [15], [18]. The equation used to determine the

magnetic co-energy W;’ of the i-th sub-domain is [20]:

H
W= I j B.(H )dH dx (2.47)
1; 0
To evaluate (2.47), in case of non-linear sub-domains, the algorithm uses the
numerical integration method of trapezoids by interpolating the magnetic
characteristic of the material in order to find the couples of consequent values

B;;, and B, in m-1 steps, where m depends on the desired accuracy:

Wiy Z[BJH( J+1)+B (1, )]AH]

1

(2.48)

In the case of linear sub-domains, the following relationship is used:
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N (2.49)

The electromagnetic torque 7 is calculated through the finite difference
approximation of the first derivative of the total co-energy W’ obtained as

summation of all the W’ [21]:

T= Ilim AW :aW

A8, —0 AO

(2.50)

rm

i f=const. rm|j f=const.

where A0,,, is the angular rotor displacement between two different steps and the
calculation is done by maintaining constant values of the phase currents.

The radial component F, of the forces was determined by applying the
Maxwell Stress Tensor method (42) on a closed surface enveloping the frontal
cross sections of the teeth in the stator, taking into account the normal and

tangential components of flux density and of magnetic field acting in every tooth.

T= ﬁ(é-ﬁ)—%(ﬁ-ﬁ)ﬁ - Htan+%(Han —H,B, )i (2.51)
Integrating (2.51) on the above described surface and considering the
discretization of the model, the contribution related to the i-th tooth is given, for

radial components acting along the axis of the tooth (normal to the surface), as

1 2 2 2
Frn(i) = 2“0 (SngSNCVJri + SsapB7ch+i + SsapB9ch+i)+
(2.52)
- 1 ( sq, BS2N +i—1 +Ssa BE?N +i)
2“0 p cv p cv

and, for radial components acting perpendicularly to the axis of the tooth

(tangential to the surface), is given as

1
Fai) = H_ (SsapB7ch+iB8ch +i-1 T SsapB9ch+iB8ch+i) (2.53)
0
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Note that, in (2.52) and (2.53), S,, represents the frontal cross-sectional area of
the tooth, Sy, the area related to a semi-slot opening, while the considered flux
densities values are described in Figs. 2.2-2.4. The projections of the normal and
tangential components on a reference system centered on the motor axis are

finally given as
Foiy = Fpu(i) 050 )+ Fragey sinla ) (2.54)
i) = Frate) im0 aiy)= Fragiy cosla ) (2.55)

where og4; represents the angular position of the axis of the i-th tooth with
respect to the x axis; by summing the terms in (2.54), (2.55) for all the teeth, it

gives the components F,, and F), of the resultant radial force applied on the rotor.

2.6 Results and Comparison with FEA Software

The 2D FEA software “FEMM 4.2” [22] was used in order to verify the accuracy
of the proposed analysis. Two different typologies of synchronous PM machine

were considered, as shown in Fig. 2.5, supplied by sinusoidal drives.

Machine A Machine B

Fig. 2.5. The PMSM machines considered in the analysis
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Machine A: 2-pole pairs, 3-phase, 24 slots, traditional winding (only odd mmf
harmonic components), 1 - 6 double layer shortened pitch.
Machine B: 1-pole pair, 5-phase, 30 slots, special winding (odd and even mmf
harmonic components), 6 slots per phase per pole in each layer, one phase
occupying 72° in angular space of the stator.

In order to obtain an accurate electromagnetic analysis, about 108°000
nodes were used for meshing the models in FEMM. In Tab. I the main

geometrical dimensions of the machines are given.

Flux density (1)

0 15 13 225 30 373 43 323 60 673 73 813 90 973 103 1125 120 1273 133
Magnetic field (KA/m)

Fig. 2.6. The B-H characteristic of the material

The non-linear B-H curve of the magnetic material is shown in Fig. 2.6, the same
for Machine A and for Machine B. The initial relative permeability is 4380. In
Tab. I the main data of the two machines are presented.

In the following the results of the comparisons are presented in graphical

form.
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TABLE I. MAIN DATA OF MACHINES A EB

Param. Description A B
Ny number of slots 24 30
p pole pairs of the machine

m number of phases 3 5
I, rated phase current (As) 74.78 59.82
T, rated torque (Nm) 42.41 30.29
g airgap width (mm) 1 1
D, stator outer diameter (mm) 210 230
Dy stator inner diameter (mm) 120 120
D,, mean diameter of the magnet (mm) 116 116
Dey ext diameter at the bottom of the slot (mm) 170 170
Dey ine diameter at the top of the slot (mm) 130.2 126.3
D, rotor outer diameter (mm) 114 114
D, rotor inner diameter (mm) 74 60
Ol g angle underlying the tooth surface 13.1° 10.1°
Olyap semi-angle underlying the slot opening 0.95° 0.95°
Olspm angle underlying the magnet gap 4° 8°
Oley slot pitch angle 15° 12°
aq stator slot height (mm) 25 25
he slot opening height (mm) 1 1

L axial length of the machine (mm) 180 180
L, magnet width (mm) 2 2
Ly tooth-body width (mm) 7.5 8
L slot opening width (mm) 2 2
Ly slot width at the top slot radius (mm) 9.6 5.23
Ly slot width at the bottom slot radius (mm) 14.8 9.7
Ty slot pitch at the inner stator radius (mm) 15.71 12.57

2.6.1 Machine A

With reference to Machine A, Figs. 2.7, 2.8 show the results of the
comparison for the same rotor position. In particular, Fig. 2.7 shows the linkage
fluxes. As can be seen, the linkage fluxes of the three phases calculated using the
proposed method are in very good agreement with those obtained by FEA

analysis.
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-2.5E-01
Stator current (Arms)

Fig. 2.7. Phase linkage fluxes vs stator RMS current (Machine A)

Small discrepancies appears only for very high values of the current
(highly saturated machine). In Fig. 2.8 the torque values (p.u.) and the magnetic
co-energy values, calculated using the proposed method, are compared with

those obtained by FEA.

4 160

35 = proposed method 140
¢ FEA
3 120

-
=
H Torg / / -
© 25 100 =,
=] 1]
= 5
ki 80 £
3 Magnei 8
E 1 agne.zc. 60 .2
- co-energ) =
~ =]
@ =
= 40 2
g =
=]
= 20

0 T T T T T T T T T T 0

05 1 15 2 25 3 35 4 45 5 355 6 65
-0.5 -20

Stator current / rated current (p.u.)

Fig. 2.8. Torque and magnetic co-energy vs stator RMS current (Machine A)

For low values of the currents the two approaches give the same results. For
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higher current values (non-linear behavior) some small differences appear.
However, the torque reduction with respect to the supposed linear behavior is

very well represented.

2.6.2 Machine B

With reference to the 5-phase Machine B, Figs. 2.9 to 2.11 show the results

of the comparison for the same rotor position.

3.0E-01

=—proposed method

¢ FEA

2.0E-01

1.0E-01

0.0E+00

-1.0E-01

Linkage flux (Wb)

-2.0E-01

-3.0E-01

Stator current (Arms)

Fig. 2.9. Phase linkage fluxes vs stator RMS current (Machine B)

In particular, Fig. 2.9 shows the linkage fluxes of the five phases. Also in this
case, the results obtained using the proposed method are in very good agreement
with those obtained by FE analysis. Fig. 2.10 shows the torque (p.u.) and the
magnetic co-energy values of the system calculated using the proposed and the
FEA approach. Referring to the magnetic co-energy, a very good agreement
appears, with only small differences when the machine is highly saturated; about
the torque, is possible to observe a very good agreement for low and medium
(rated) current values. Some small differences appear in the higly saturated

behavior.
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Fig. 2.10. Torque and magnetic co-energy vs stator RMS current (Machine B)

A further comparison has been made by supplying the five phases of Machine B
with a balanced system of sinusoidal currents with a time-phase displacement of
4n/5 (sequence 2). The considered winding arrangement produces an airgap

distribution of the mmf having odd and even harmonic components.

6000
=—proposed method
5000
¢ FEA *
g 4000
)
g
< 3000
]
=
& 2000 /
1000
0 / T T T T T 1

0 60 120 180
Stator current (Arms)

Fig. 2.11. Magnitude of the radial force vs stator RMS current (Machine B)
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Taking the winding arrangement into account and the particular system of
currents, it is possible to align the 4 pole harmonic component of the stator mmf
with the magnet axis. In these conditions a resultant radial force exists acting on
the rotor along the direction of the magnet axis [12]. Fig. 2.11 shows the
calculated magnitude of the radial force compared with that obtained by FEA. As
can be seen, in this case also there is a good agreement between the proposed
method and the results of FEA. In Fig. 2.12 the x- and y-components of the radial
force are shown. The force has been calculated for 9 values, equally spaced of
n/16, of the phase angle of the second harmonic component of the stator mmf
with respect to the magnet axis (y-axis in Fig. 2.12), and for 3 values of the stator

current amplitude: the rated value, two-times and four-times the rated value.

M proposed method

[\
AFEA n
4000
= 41,
% B n D
: 21
; A 2000
e T " I. o B
T‘ (Al
E -10000 -8000 -6000 -4000 E-ZOOO 0 2000
S n
3 a = n
AN n 2006
. - n
n
‘3 4000
(Al

-6000

Radial force - x component (IN)
Fig. 2.12. y-component vs x-component of the radial force (Machine B)

Also in this kind of analysis, the obtained results are very similar to those

obtained by FEA. It is interesting to note that, for the same currents amplitude,
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the magnitude of the radial force is not constant but changes with the phase angle
of the mmf. This behavior is due to the presence of higher harmonic orders in the

magnet and stator mmf distribution.
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2.7 Conclusion

In this chapter an algorithm for the non-linear magnetic analysis of
multiphase surface-mounted PM machines with semi-closed slots has been
presented.

The basic element of the geometry is duplicated allowing to build and
analyze whatever typology of windings and ampere-turns distribution in a pair of
poles.

The performances of the proposed method have been compared with those
of a well known FEA software in terms of linkage fluxes, co-energy, torque and
radial force. The obtained results for a traditional three-phase machine and for a
5-phase machine with unconventional winding distribution showed that the
values of local and global quantities are practically coinciding for values of the
stator currents up to rated values. Furthermore, they are very similar also in the
non-linear behavior even if very large current values are injected.

When developing a new machine design the proposed method is useful not
only for the reduction of computing time, but mainly for the simplicity of
changing the values of the design variables, being the numerical inputs of the
problem obtained by changing some critical parameters, without the need for re-
designing the model in a CAD interface. It can be concluded that the proposed
method provides an accurate description of electromagnetic phenomena taking
magnetic saturation into account. For a given rotor position and for given stator
currents, the output torque as well as the radial forces acting on the moving part
of a multiphase machine can be easily and quickly calculated.

The latter feature makes the algorithm particularly suitable in order to

design and analyze bearingless machines.
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Appendix A2.1

THE PROGRAMMING CODE
Part 1

In the following, the programming code of the algorithm is presented. This is the
VBA version, since there is an advanced variant, implemented in Visual Basic
6.0 and not reported here. Some input files are necessary to run the program:
ordpr.txt, ordsc.txt, which describe respectively the disposition in the stator slots
of the first and second winding layers; aM(pp).txt, which describes the position
of the equivalent ampere-turns distribution of the magnets. The magnetic
characteristic of the material is provided through the .x/s main file and the stator
ampere-turns distribution is created by the program with the subroutine presented

in Appendix A2.2.

A2.1.1 The main program

Const pi = 3.1415927
Const muzero As Double = 1.25664 * 10 "~ -6

Public a, aI, aI p, alp, als, aM, ASP, ainiz, noti, x, x p, y, B, Hdt, Flux dt, deltaBH,
normx As Variant

Public Fluxcs, mu, mu_p, mur dt, Rildt, Rilcs, Bcs, Hcs, changer R, changer C As Variant
Public Fluxcvs, Hg dt, Bg dt, Aspcv, Bdt r, Hdt r, mu dt r As Variant

Public Blam, Hlam, Flux tdt, Flux dsp, dFlux f, Flux f, Ifs As Variant

Public piv_R, piv_C, mem, cv As Variant
Public n, m, z, fault, undteeth 1, zero ctrl As Variant

Public pivot, a logic, b logic As Variant

Public xprec, Bprec, diffx, Flux tcv, Flux tcv_ As Variant
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Public dEnM, EnM, EnM p, deltaEnM, Vol, Ril, Sez As Variant

Public H As Variant

Public Ncv, nc, Ia0O, IbO, IcO, Hc, mu magr, Lm, Ldt, Lcvs, Lcl, hcl, adt, acs, acr, L,
g, havv, tollx, ta, xm, spm, dx, dx cost, ixm max, wm As Variant

Public Taucvs, Taucvs Rs, Taucvs_int, Ldg, Ldg Rs, hbd, alfa tcv, Ltd, mu mag, Taup,
Brm, xm2 As Double

Public ind_dt, ind dt2 As Variant

Public ordpr, ordsc, Ifse, Ifse p As Variant

Public npr, nsc, nfasi, w, fi in, Irms As Variant

Public filepath As String

Public pp, kw, st As Integer

Public LdA 1, LdA 2, LdB 1, LdB 2, Ldsx 1, Ldsx 2, Lddx 1, Lddx 2, LdA 1 Rs, LdA 2 Rs,
LdB_1 Rs, LdB 2 Rs As Double

Public Fxr, Fyr, Fr n, Fr tsx, Fr tdx, Fr mod, alfa dt, alfa dt deg As Variant

Public Fxr , Fyr , Fr As Double

Public pr0l, pr02, pr03 As Double

Public Rcv_ext, Lfc, Ltc, Rcv_int, thcv, Vol setcv, VolH setcv, VolL setcv, Lcvx med,
Re, Rr, Rs, Ralb, alfa cv, Lcs med, Lcr med, Vol cs, Vol cr As Double

Public Rcv_efz, Rcv_ifz, Rcv_mfz, LcvxH, LcvxL As Double

Public VolHcv, VolLcv As Variant

"NUOVI PARAMETRI ***xkkkkkkhhkkhhrdkhhhdhhrhhhrhhhdhhrhhhrdhrdhhrdhhrdhrhhhrdhhrkhhrdhhxkkhrxx
Public Rm, Rme, Rg, alfa sap, alfa Ldg, Vol mLdg, Vol msap, Vol gLdg, Vol gsap,

alfa spm, th xm, th xm2, thA 1, thA 2, thB 1, thB 2 As Double

Public dthr m, C_EM As Double

Public xm Rs, xm2 Rs, spm Rs As Double

L AR A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AR AR AKX KK KK

Private Sub OptionButton2 Click()

If OptionButton2.Value = True Then
MsgBox "Preparare il file ASP TOT.txt premendo" & Chr(13) & "il pulsante nel foglio
successivo", vbOKOnly, "SATSOLVER"

End If

End Sub

Public Sub Triang Click()

Range ("AE5:AG65492") .ClearContents
Range ("AH5") .ClearContents

Range ("AI37:IV65492") .ClearContents
Range ("E5:AB65492") .ClearContents

ReDim Blam(l To 452), Hlam(l To 452), Flux tdt(13 To 15), Flux dsp(13 To 15), dFlux f(1
To 3), Ifs(l To 3) As Double

LI R S S S E S S S S h h E S S S S S S h S S h h b h S E E k3 E E E b b h E b E b E E E b h b b h h E b b b b b b b b b b b b b b b kb b i

'INPUT

'numero di cave per coppia polare
Ncv = Int(Cells (4, 4))
'conduttori in cava
'T strato
npr = Cells (5, 4)
'IT strato
nsc = Cells (6, 4)
'passo polare
Taup = Cells (7, 4)
Taup = Taup * 0.001
'corrente efficace
Irms = Cells (8, 4)
'campo coercitivo intrinseco del magnete (A/m)
Hc = Cells (9, 4)
'permeabilita relativa magnete
mu_magr = Cells (10, 4)
'spessore magnete
ILm = Cells (11, 4)
ILm = Lm * 0.001
'spessore del corpo del dente
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Ldt = Cells (12, 4)

Ldt = Ldt * 0.001

'apertura di cava (reale)

Lcl = Cells (14, 4)

Lcl = Lel * 0.001

'altezza collarino

hcl = Cells (15, 4)

hcl = hel * 0.001

'altezza dente statore

adt = Cells (16, 4)

adt = adt * 0.001

'spessore corona statore

acs = Cells (17, 4)

acs = acs * 0.001

'spessore corona rotore

acr = Cells (18, 4)

acr = acr * 0.001

'profondita di macchina

L = Cells (19, 4)

L =1L * 0.001

'spessore traferro

g = Cells (20, 4)

g =g * 0.001

'altezza dell'avvolgimento

havv = Cells (21, 4)

havv = havv * 0.001

'scarto massimo ammesso fra due soluzioni successive del sistema
tollx = Cells (22, 4)

tollx = tollx * 0.01

'parametro adimensionale che definisce il rapporto fra
'la misura della parte bassa e quella dell'intero dente
ta = Cells (23, 4)

'posizione iniziale del magnete N
xm = Cells (24, 4)

xm = xm * 0.001

'step di sospensione del movimento (<= dx)
dx cost = Cells (25, 4)

dx cost = dx cost * 0.001

'step di spostamento rotore

dx = Cells (26, 4)

dx = dx * 0.001

'numero di step nel movimento

ixm max = Cells (27, 4)

'fase iniziale

fi in = Cells (28, 4)

'ampiezza del magnete

wm = Cells (29, 4)

wm = wm * 0.001

'numero di fasi

nfasi = Cells (30, 4)

R R R S S S b S S b S b E S S h E E S S h h h h h S E E b b E h b 3 b h E b h b b b E JE h h h E b b b b b b b b b b b b b b b b b b b ik

'"INPUT CARATTERISTICA DI MAGNETIZZAZIONE

For i = 1 To 452

Blam(i) = Cells(4 + i, 29)
Hlam (i) = Cells (4 + i, 30)
Next 1

R R R S S S S b S bk kb S S S h E h S S kA h h h S E h b b h b b 3h b h h b b b b b b b 3 h 3h 3h b b b b b b b b b b b b b b E b b b b ik i

'frequenza elettrica

f = 50
kw = 1
st = 2

'raggio al fondo cava
Rcv_ext = 0.085

'coppie polari

pp =1

'larghezza cava al fondo
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Lfc = 0.0097
'larghezza cava in testa
Ltc = 0.00523

filepath = CStr (TextBoxl.Text)

If ta <= 1 - havv / adt Then

MsgBox ("Valore di ta troppo basso!")
Exit Sub

End If

'angolo di cava (rad. mecc.)

alfa cv =2 * pi / pp / Ncv

'raggio esterno statore

Re = Rcv _ext + acs

'raggio rotore alla base del magnete

Rr = Rcv_ext - adt - g - Lm

'raggio rotore interno (raggio albero)
Ralb = Rr - acr

'raggio interno statore

Rs = Rcv_ext - adt

'raggio di cava in testa

Rcv_int = Rcv_ext - havv

'angolo corrispondente alla cava (rad.)
thev = 2 * Atn((Lfc - Ltc) / 2 / havv)
'passo di cava statore

Taucvs = 2 * Taup / Ncv

'passo di cava al raggio interno statore
Taucvs Rs = 2 * pi * Rs / pp / Ncv

'passo di cava al raggio di cava in testa
Taucvs_int = 2 * pi * Rcv_int / pp / Ncv
'larghezza dente al diametro di riferimento
Ldg = Taucvs - Lcl

'larghezza dente al raggio interno statore
Ldg Rs = 2 * pi * Rs / pp / Ncv - Lcl
'larghezza cava statore in testa

Lcvs = Taucvs_int - Ldt

'spazio intermagnetico

spm = Taup - wm

INUOVI PARAMETRI ****xkkhkrkhhhhhhrhrhhhhrhrhbhhrhrhbhbrhrhrhbrhrhrhbrhrhrhbrdrhrhhrkdrhrk

'raggio medio magnete

Rm =Rs - g - Lm / 2

'raggio esterno magnete

Rme = Rs - g

'raggio medio traferro

Rg =Rs - g/ 2

'angolo corrisp. alla semiapertura di cava
alfa sap = Lcl / 2 / Rs

'angolo corrisp. alla testa del dente

alfa Ldg = alfa cv - 2 * alfa_ sap

T kk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

'conduttori in cava

nc = npr + nsc

'pulsazione elettrica

w =2 *pi* f

'altezza della base del dente

hbd = adt - havv - hcl

'angolo testa di cava

alfa tcv = Atn((Lcvs - Lel) / 2 / hbd)
'linea di sezione testa del dente
Ltd = hbd / Cos(alfa tcv) + hcl
'permeabilita assoluta del magnete
mu_mag = mu_magr * muzero
'permeabilita relativa del magnete
Brm = mu mag * Hc

'posizione iniziale del magnete S
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Xm2 = xm + spm + wm

LA AR A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AR AR KA KRR KK

'CONTROLLO DELLA POSIZIONE INIZIALE DEL MAGNETE
'Alla variabile "undteeth 1" viene assegnato valore True
'se la discontinuita N-S si trova sotto un qualsiasi dente

undteeth 1 = 0

For i = 1 To Ncv
a logic = (xm >= (Lcl / 2 + (i - 1) * Taucvs) And xm <= (Lcl / 2 + Ldg + (i - 1) *
Taucvs))
b logic = ((xm + spm) >= (Lcl / 2 + (1 - 1) * Taucvs) And (xm + spm) <= (Lcl / 2 + Ldg
+ (1 - 1) * Taucvs))

If a logic And b logic = True Then
undteeth 1 = 1
GoTo 20
End If
Next i

MsgBox "ATTENZIONE: uno dei due o entrambe i magneti" & Chr(13) & "si trovano sotto
l'apertura di cava", vbCritical, "SATSOLVER"
Exit Sub

20
'Alla variabile "undteeth 2" viene assegnato valore True
'se la discontinuita S-N si trova sotto un qualsiasi dente
undteeth 2 = 0
For 1 = 1 To Ncv

c logic = (xm2 >= (Lcl / 2 + (i - 1) * Taucvs) And xm2 <= (Lcl / 2 + Ldg + (i - 1) *
Taucvs) )
d logic = ((xm2 + spm) >= (Lcl / 2 + (i - 1) * Taucvs) And (xm2 + spm) <= (Lcl / 2 +

Ldg + (i - 1) * Taucvs))
If c logic And d logic = True Then
undteeth 2 = 1
GoTo 30
End If
Next i

MsgBox "ATTENZIONE: uno dei due o entrambe i magneti" & Chr(13) & "si trovano sotto
l'apertura di cava", vbCritical, "SATSOLVER"

Exit Sub

30

IR S S S S S S S S SRS S EEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

If undteeth 1 <> 0 And undteeth 2 <> 0 Then
n =18 * Ncv + 8

Else
n = 18 * Ncv
End If

m = Int(n + 1)

ReDim a(n, m), al(n), al p(n), alp(n), als(n), aM(n), ASP(ixm max * n), ainiz(n, m),
noti(n), x(1 To n), x p(l To n), y(n, m), B(n), Hdt(n), Flux dt(l To Ncv), deltaBH(n),
normx (199) As Double

ReDim Fluxcs(n), mu(n), mu p(n), mur dt(n), Rildt(n), Rilcs(n), Bcs(n), Hcs(n),
changer R(m), changer_ C(n) As Double

ReDim Fluxcvs(n), Hg dt(n), Bg dt(n), Aspcv(n), Bdt r(n), Hdt r(n), mu dt r(n) As
Double

ReDim piv_R(n), piv_C(n), mem(n), cv(l To Ncv) As Integer

ReDim xprec(l To n), Bprec(l To n), diffx(l To n), Flux_tcv(l To Ncv), Flux tcv_(1 To
Ncv) As Double

ReDim dEnM(1 To n), EnM(l1 To n), EnM p(l To n), deltakEnM(l To n), Vol(l To n),
VolHcv (1l To 2 * Ncv), VolLcv(l To 2 * Ncv), Ril(l To n), Sez(l To n) As Double

ReDim H(1 To n) As Double

ReDim ordpr (1 To Ncv), ordsc(l To Ncv) As Integer

ReDim Ifse(l To nfasi), Ifse p(l To nfasi), Flux f(1 To nfasi) As Double
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ReDim Fxr (1 To Ncv), Fyr(l To Ncv), Fr n(l To Ncv), Fr tsx(l To Ncv), Fr_ tdx(l To
Ncv), Fr mod(l To Ncv), alfa dt(l To Ncv), alfa dt deg(l To Ncv) As Double

'"PARAMETRI CIRCOLARI DI MACCHINA KA KKK A KA A A A A A A A A A A A A A A A A A A AR AR A AR AR AKX KK

'CAVA

'NB: i raggi "fittizi" seguono i fianchi della cava,

' NON convergendo al centro del motore (0,0)
'raggio esterno fittizio

Rcv_efz = Lfc / 2 / Tan(thcv / 2)

'raggio interno fittizio

Rcv_ifz = Ltc / 2 / Tan(thcv / 2)

'raggio medio fittizio

Rcv_mfz = Rcv_efz - (1 - ta) * adt

'volumi nella zona alta di cava (H) e bassa (L)

VolH _setcv = thev * L / 2 * (Rcv_efz *~ 2 - Rcv_mfz * 2)
VolL setcv = thcv * L / 2 * (Rcv_mfz ~ 2 - Rcv_ifz * 2)
'volume dell'area di cava tra il raggio TCV e FCV

Vol setcv = thev * L / 2 * (Rcv_efz *~ 2 - Rev_ifz © 2)
'volume cava (escluso il collarino)

Vol cv = (Levs + Lel) / 2 * hbd * L + Vol setcv
'larghezza di cava al raggio medio

Levx _med = thev * Rcv_mfz

If Lecvx med < 0 Then

MsgBox ("Aumentare tal!")

Stop

End If

LecvxH = thev / 2 * (Rcv_efz + Rcv _mfz)

LevxL = thev / 2 * (Rev_mfz + Rcv _ifz)

For i = 1 To 2 * Ncv

VolHev (1) = VolH setcv / 2

VolLev (i) = ((Lcvs + Lel) * (hbd - hel) / 2 * L + VolL setcv) / 2
Next 1
' CORONE

Vol cs = alfa cv * L / 2 * (Re ~ 2 - Rcv_ext * 2)
Vol cr = alfa cv * L. / 2 * (Rr ~ 2 - Ralb " 2)
Lcs_med = alfa cv / 2 * (Re + Rcv_ext)

Ler_med = alfa cv / 2 * (Rr + Ralb)

INUOVI PARAMETRI ****xkkhkrkhhhhhhrhrhhhhrhrhbhhrhrhbhbrhrhrhbrhrhrhbrhrhrhbrdrhrhhrkdrhrk

'"MAGNETTI

Vol mLdg = alfa Ldg * L / 2 (Rme ~ 2 - Rr © 2)
Vol msap = alfa sap * L / 2 (Rme ~ 2 - Rr ~ 2)
'TRAFERRO

Vol gLdg = alfa ILdg * L. / 2 * (Rs ~ 2 - Rme " 2)
Vol gsap = alfa sap * L / 2 * (Rs ~ 2 - Rme " 2)

T kk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ke ok ok ok ok ok ok ke ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

IPARAMETRI AUSILIARI (per CalCOlO riluttanze) R R R I S b I S S b b b b b b b h b E b E E b b b b b 3k b b bk b 3k 3

pr0l (adt - havv) * L
pr02 = 2 * hbd * L / (Ldg - Ldt)
pr03 = 2 * hbd * L / (Lcvx_med - Lcl)

IR S S S S S S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

'RILUTTANZE COSTANTI

'Riluttanze MAGNETE SOTTO IL DENTE md (i)

For i = 1 To Ncv

Sez (i) = Rm * alfa Ldg * L

Vol (i) = Vol mLdg

Ril(i) = 1 / mu mag * Lm / Sez (i)
Next i

'Riluttanze CORONA STATORICA
For i = Ncv + 1 To 2 * Ncv
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Sez (i) = acs * L
Vol(i) = Vol cs

Ril (i) = Rnd() * 3000
Next i

'Riluttanze CORONA ROTORICA
For i = 2 * Ncv + 1 To 3 * Ncv

Sez (i) = acr * L

Vol (i) = Vol cr
Ril(i) = Rnd() * 3000
Next i

'Riluttanze trasversali CAVE cvx (i)
For i = 3 * Ncv + 1 To 4 * Ncv

Sez (i) = (Rcv_ext - Rcv_int) * L

Vol (i) = Vol cv

Ril(i) = 2 / muzero * 1 / pr03 * Log((adt - hcl) / havv) + 1 / muzero * Lcl /
hecl) / L
Next i

'Riluttanze DENTE LOW
For i = 4 * Ncv + 1 To 5 * Ncv

Sez (i) = Ldt * L

Vol(i) = (adt * (ta - 1) + havv) * Ldt * L
Ril (i) = Rnd() * 3000
Next i

'Riluttanze TRAFERRO SOTTO IL DENTE gd (i)
For i = 5 * Ncv + 1 To 6 * Ncv

Sez (i) = Rg * alfa Ldg * L
Vol(i) = Vol gLdg

Ril(i) = 1 / muzero * g / Sez (i)
Next i

'Riluttanze DENTE HIGH
For i = 6 * Ncv + 1 To 7 * Ncv

Sez (i) = Ldt * L

Vol (i) = adt * (1 - ta) * Ldt * L
Ril (i) = Rnd() * 3000
Next i

'Riluttanze TRAFERRO SOTTO SEMICAVA SX gcs (i)

For i = 7 * Ncv + 1 To 8 * Ncv

Sez (i) = Rg * alfa sap * L

Vol(i) = Vol gsap + pi * hcl ~ 2 / 4 * L

Ril(i) = pi / (2 * muzero * L * Log((2 * g + pi * hcl) / 2 / g))
Next i

'Riluttanze trasversali COLLARINO clx (i)
For i = 8 * Ncv + 1 To 9 * Ncv

Sez (i) = hcl * L

Vol(i) = hcl * Lecl * L

Ril(i) =1 / muzero * Lcl / (hcl * L)
Next 1

'Riluttanze TRAFERRO SOTTO SEMICAVA DX gcd (i)
For i = 9 * Ncv + 1 To 10 * Ncv

Sez (i) = Rg * alfa sap * L

Vol(i) = Vol gsap + pi * hecl ~ 2 / 4 * L

Ril(i) = pi / (2 * muzero * L * Log((2 * g + pi * hcl) / 2 / g))
Next i

'Riluttanze MAGNETE SOTTO SEMICAVA SX mcs (i)
For i = 10 * Ncv + 1 To 11 * Ncv

Sez (i) = Rm * alfa sap * L

Vol (i) = Vol msap

Ril(i) =1 / mu mag * Lm / Sez (i)
Next i

'Riluttanze MAGNETE SOTTO SEMICAVA DX mcd (i)

(adt -
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For i = 11 * Ncv + 1 To 12 * Ncv

Sez (1) Rm * alfa sap * L

Vol (i) = Vol msap

Ril(i) = 1 / mu mag * Lm / Sez (i)
Next i

'Riluttanze nel SEMIDENTE SX e DX
For i = 12 * Ncv + 1 To 14 * Ncv

Sez (i) =1Ldg / 2 / (Ldt / 2 / (adt - havv) / L + 1 / pr02 * Log(pr0l / (pr0l - pr02
* (Ldg - Ldt) / 2)))

Vol(i) = (Ldg / 2 + ILdt / 2) * hbd / 2 * L + IL.dg / 2 * hcl * L

Ril (i) = Rnd() * 3000
Next i

'Riluttanze longitudinali BASSE SEMICAVE Lcvys (i), Lecvyd(i)
For i = 14 * Ncv + 1 To 16 * Ncv

Sez (i) = LevxL / 2 * L
Vol (i) = VolLcv (i - 14 * Ncv)
Ril(i) = 2 / muzero * hcl / (Lcl * L) + 2 / muzero * (hbd - hcl) / (Ltc - Lecl) / L *
Log(Ltc / Lecl) + 2 / muzero * (ta * adt - hbd) / (Lcvx med - Ltc) / L * Log(Lcvx med
/ Ltc)
Next i

'Riluttanze longitudinali ALTE SEMICAVE Hcvys (i), Hcvyd(i)
For i = 16 * Ncv + 1 To 18 * Ncv
Sez (i) = LevxH / 2 * L

Vol (i) = VolHcv (i - 16 * Ncv)
Ril(i) = 2 / muzero * adt * (1 - ta) / (Lfc - Levx med) / L * Log(Lfc / Lcvx med)
Next 1

LI R S S E h S S S I R S S E S S h h S h S I E k3 E Sk I b S E R b h E E b b I b E E b dE E b b b b bk b b b b b b b b i 3

'"ARRAY DEI TERMINI NOTI

Tk %k sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ke ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

For 1 = 1 To n
al(i) =0
aM(i) = 0

Next i

'Lettura del file relativo al I strato dell'avvolgimento statorico
Open filepath & "\ordpr.txt" For Input As #5

For i = 1 To Ncv
Input #5, ordpr (i)
Next i
Close #5

'Lettura del file relativo al II strato dell'avvolgimento statorico
Open filepath & "\ordsc.txt" For Input As #6

For i = 1 To Ncv
Input #6, ordsc(i)
Next i
Close #6

'Lettura del file contenente le amperspire equivalenti del magnete
Open filepath & "\aM(pp) .txt" For Input As #2
For i = 1 To n
Input #2, aM(i)
Next i
Close #2

If OptionButton2.Value = True Then
'Lettura del file contenente le amperspire con andamento SINUSOIDALE
Open filepath & "\ASP TOT.txt" For Input As #1

For i = 1 To (n * ixm max)
Input #1, ASP (i)
Next i
Close #1
Else

'Lettura del file contenente le amperspire COSTANTI
Open filepath & "\ASP_COST.txt" For Input As #8
For i = 1 To n

Input #8, alI(i)
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Next i
Close #8
End If

'Creazione file di output
Open filepath & "\PP_18Ncv FX(l.7st).txt" For Output As #3

Call SUBR 1
End Sub
Public Sub SUBR 1 ()

'Azzeramento coenergia magnetica
EnM tp = 0
For 1 = 1 To n
EnM p(i) =0
Next i
'Inizializzazione variabile di controllo delle soluzioni nulle
zero_ctrl = 0

'"CICLO DI POSIZIONAMENTO DEL MAGNETE
' NB: se le amperspire cambiano di posto nel vettore dei termini noti al variare

' della posizione del magnete, €& necessario inserire 1'input nel ciclo "ixm"

For ixm = 1 To ixm max
Range ("AE5:AG65492") .ClearContents

For i = 1 To Ncv

a logic = (xm >= (Lcl / 2 + (i - 1) * Taucvs) And xm <= (Lcl / 2 + Ldg + (i - 1) *
Taucvs) )
b logic = ((xm + spm) >= (Lcl / 2 + (1 - 1) * Taucvs) And (xm + spm) <= (Lcl / 2 + Ldg

+ (1 - 1) * Taucvs))

If a logic And b logic = False Then

MsgBox "ATTENZIONE: uno dei due o entrambe i magneti" & Chr(13) & "si trovano sotto
l'apertura di cava", vbCritical, "SATSOLVER"

GoTo 50
End If
c logic = (xm2 >= (Lcl / 2 + (i - 1) * Taucvs) And xm2 <= (Lcl / 2 + Ldg + (i - 1) *
Taucvs) )
d logic = ((xm2 + spm) >= (Lcl / 2 + (1 - 1) * Taucvs) And (xm2 + spm) <= (Lcl / 2 +

Ldg + (i - 1) * Taucvs))
If c logic And d logic = False Then
MsgBox "ATTENZIONE: uno dei due o entrambe i magneti" & Chr(13) & "si trovano sotto
l'apertura di cava", vbCritical, "SATSOLVER"
GoTo 50
End If
Next 1

'"INDIVIDUAZIONE POSIZIONE MAGNETE
'Alle variabili ind dt, ind dt2 viene assegnato 1l'indice
'numerico dei denti sotto i quali si trovano i "buchi"

ind dt = 0
ind dt2 = 0
For i = 1 To Ncv

If xm >= (Lecl / 2 + (1 - 1) * Taucvs) And xm <= (Lcl / 2 + Ldg + (i - 1) * Taucvs)
Then

ind dt = i
GoTo 120
End If
Next i
120
For i = 1 To Ncv

If xm2 >= (Lcl / 2 + (i - 1) * Taucvs) And xm2 <= (Lcl / 2 + Ldg + (i - 1) * Taucvs)
Then
ind dt2 = 1
GoTo 130
End If
Next 1
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130

If ind dt = ind dt2 Then

MsgBox "ATTENZIONE: indﬁdt = indﬁdt2 !'" & Chr(13) & "CONDIZIONE IMPOSSIBILE !",
vbCritical, "SATSOLVER"

GoTo 50
End If

IR S S S S S S S S SRS S S S SRS SRS S S S S S S S SRS SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

'PARAMETRI DIPENDENTI DALLA POSIZIONE
'"PARAMETRI GEOMETRICT £ (xm, ind i) %% % %k ook sk ok o ok ok ok ok ok ok ok o ok ok ok ok ok o % ok ok ok ok

LdA 1 = xm - Lcl / 2 - (ind_dt - 1) * Taucvs

LdA 2 xm2 - Lecl / 2 - (ind dt2 - 1) * Taucvs

LdB 1 = Taucvs - Lcl / 2 - xm - spm + (ind dt - 1) * Taucvs
LdB 2 = Taucvs - Lcl / 2 - xm2 - spm + (ind dt2 - 1) * Taucvs

Ldsx 1 = xm - Lcl / 2 + spm / 2 - (ind_dt - 1) * Taucvs
Ldsx 2 = xm2 - Lcl / 2 + spm / 2 - (ind dt2 - 1) * Taucvs
Lddx 1 = Taucvs - Lcl / 2 - xm - spm / 2 + (ind dt - 1) * Taucvs

Lddx 2 = Taucvs - Lcl / 2 - xm2 - spm / 2 + (ind dt2 - 1) * Taucvs

'parametri per il calcolo della forza radiale riferiti
'al diametro interno di statore

xm Rs = Rs / Rm * xm
xm2_Rs = Rs / Rm * xm2
spm_ Rs = Rs / Rm * spm

LdA_ 1 Rs = xm Rs - Lcl / 2 - (ind dt - 1) * Taucvs_Rs

LdA 2 Rs = xm2 Rs - Lcl / 2 - (ind_dt2 - 1) * Taucvs_Rs

LdB 1 Rs = Taucvs Rs - Lcl / 2 - xm Rs - spm Rs + (ind dt - 1) * Taucvs Rs
LdB_2 Rs = Taucvs_Rs - Lcl / 2 - xm2 Rs - spm Rs + (ind dt2 - 1) * Taucvs_Rs

INUOVI PARAMETRI R R R S R I S S S E E S S h E E E E S b b dh b b b b b h E E E E E b 3E E I h b b b b b b E I I 3 b b i

'angolo corrispondente allo spazio intermagnetico

alfa spm = spm / Rm

'angoli corrisp. alle posizioni dei magneti

th xm = xm / Rm

th_xm2 = xm2 / Rm

'angoli corrisp. ai parametri variabili

thA 1 = th xm - alfa sap - (ind dt - 1) * alfa cv

thA 2 = th xm2 - alfa sap - (ind dt2 - 1) * alfa cv

thB 1 = alfa cv - alfa sap - th xm - alfa spm + (ind dt - 1) * alfa cv
thB 2 = alfa cv - alfa sap - th xm2 - alfa spm + (ind dt2 - 1) * alfa cv

L Sk kS b S SE b S S h h S S h h S E S S E I S S h h b b b E E S E E E h E b E kb kb E E b R E h E b b b b E b h b b b b b b b b b b b b b i

Tk ok sk ok ok ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ke ok ok ok ok ok sk ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

'RICALCOLO DI RILUTTANZE, SEZIONI E VOLUMI NELLE ZONE SOGGETTE A MODIFICHE DELLA
GEOMETRIA

If ind dt <> 0 And ind dt2 <> 0 Then

'DISCONTINUITA' N-S

Vol(ind dt) = thA 1 / 2 * L * (Rme ~ 2 - Rr * 2)

Sez(ind dt) = thA 1 * (Rme + Rr) / 2 * L

Ril(ind dt) = 1 / mu mag * Lm / Sez(ind dt)

Vol(5 * Nev + ind dt) = thA 1 / 2 * L * (Rs ~ 2 - Rme " 2)

Sez (5 * Ncv + ind dt) = thA 1 * (Rs + Rme) / 2 * L

Ril(5 * Ncv + ind dt) = 1 / muzero * g / Sez(5 * Ncv + ind dt)
Vol(1l8 * Ncv + 1) = thB 1 / 2 * L * (Rme ~ 2 - Rr * 2)

Sez (18 * Ncv + 1)
Ril (18 * Ncv + 1)

thB 1 * (Rme + Rr) / 2 * L
1 / mu mag * Lm / Sez (18 * Ncv + 1)
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Vol (18 * Ncv + 2) = alfa spm / 2 * L * (Rme ~ 2 - Rr ~ 2)
Sez (18 * Ncv + 2) = alfa spm * (Rme + Rr) / 2 * L

Ril (18 * Ncv + 2) = 1 / muzero * Lm / Sez (18 * Ncv + 2)
Vol(1l8 * Necv + 3) = thB 1 /2 * L * (Rs ~ 2 - Rme " 2)
Sez (18 * Ncv + 3) = thB 1 * (Rs + Rme) / 2 * L

Ril(18 * Ncv + 3) =1 / muzero * g / Sez (18 * Ncv + 3)
Vol (18 * Ncv + 4) = alfa spm / 2 * L * (Rs ~ 2 - Rme "~ 2)
Sez (18 * Ncv + 4) = alfa spm * (Rs + Rme) / 2 * L

Ril(18 * Ncv + 4) =1 / muzero * g / Sez (18 * Ncv + 4)

'DISCONTINUITA' S-N

Vol(ind dt2) = thA 2 / 2 * L * (Rme *~ 2 - Rr * 2)
Sez (ind dt2) = thA 2 * (Rme + Rr) / 2 * L
Ril (ind dt2) 1 / mu_mag * Lm / Sez(ind_dt2)

Vol (5 * Ncv + ind dt2) thA 2 /2 * L * (Rs * 2 - Rme "~ 2)

Sez (5 * Ncv + ind dt2) = thA 2 * (Rs + Rme) / 2 * L
Ril(5 * Ncv + ind dt2) = 1 / muzero * g / Sez(5 * Ncv + ind dt2)
Vol(1l8 * Ncv + 5) = thB 2 / 2 * L * (Rme ~ 2 - Rr * 2)
Sez (18 * Ncv + 5) = thB 2 * (Rme + Rr) / 2 * L

Ril(18 * Ncv + 5) =1 / mu mag * Lm / Sez (18 * Ncv + 5)
Vol(1l8 * Ncv + 6) = alfa spm / 2 * L * (Rme ©~ 2 - Rr ~ 2)
Sez (18 * Ncv + 6) = alfa spm * (Rme + Rr) / 2 * L

Ril (18 * Ncv + 6) = 1 / muzero * Lm / Sez (18 * Ncv + 6)
Vol(1l8 * Ncv + 7) = thB 2 / 2 * L * (Rs ~ 2 - Rme " 2)
Sez (18 * Ncv + 7) = thB 2 * (Rs + Rme) / 2 * L

Ril (18 * Ncv + 7) = 1 / muzero * g / Sez (18 * Ncv + 7)
Vol(1l8 * Ncv + 8) = alfa spm / 2 * L * (Rs ©~ 2 - Rme "~ 2)
Sez (18 * Ncv + 8) = alfa spm * (Rs + Rme) / 2 * L

Ril (18 * Ncv + 8) =1 / muzero * g / Sez (18 * Ncv + 8)
End If

If OptionButton2.Value = True Then
If Int(ixm / 2) <> ixm / 2 Then
'step di spostamento DISPARI: le correnti vengono calcolate
'secondo l'esatto valore istantaneo correlato alla posizione
t =pi* xm / w / Taup
'Memorizzazione del valore delle correnti allo step precedente

For 1 = 1 To nfasi
Ifse p(i) = Ifse(i)
Next 1
For j = 1 To nfasi
'Andamento cosinusoidale delle correnti
Ifse(j) = -Sgr(2) * Irms * Cos(kw * w * t - (j - 1) * kw * st * 2 * pi / nfasi +
fi in)
Next j
Else
For i = 1 To nfasi
Ifse(i) = Ifse p(i)
Next i
End If
End If

IR S S S S S S S S S S S S EEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

'COSTRUZIONE DELLA MATRICE A+B

LI b b bk b b b b b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b bk kb b b b b b b kb b b kb b b b b b b b b b b b kb b b b b b kb b b

For i = 1 To n
For j =1 Tom
a(i, j) =0

Next jJ
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Next i

If OptionButton2.Value = True Then
For i = 1 To n

a(i, m) = ASP((ixm - 1) * n + 1)
Next i
Else

For i = 1 To n

a(i, m) = al(i) + aM(i)

Next i
End If

'PARTE INVARIANTE DELLA MATRICE (A)

'5ch+2 to 6ch Rk ko b b kb gk kb b b b b b b b b b b b b b b bk b b kb b b b b b b bk b b b b b b b b b b b b b b b b b b kb i

'NODO 1: CONTINUITA' DENTE H - COR.STAT.

For i = 2 To Ncv
a(5 * Nev + 1, Ncv + 1 - 1) =1
a(5 * Nev + 1, Ncv + i) = -1
a(5 * Nev + 1, 6 * Ncv + i) = -1
a(5 * Nev + 1, 16 * Ncv + 1) = -1
a(5 * Nev + 1, 17 * Ncv + 1) = -1
Next i

'6NCV+1 to 7NCV AR RS S S S S S S S S S S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS

'NODO 2: CONTINUITA' DENTE L - DENTE H

a(6 * Ncv + 1, 4 * Ncv) =1
a(6 * Necv + 1, 3 * Ncv + 1) = -1
a(6 * Necv + 1, 4 * Ncv + 1) =1
a(6 * Ncv + 1, 6 * Ncv + 1) = -1
a(6 * Ncv + 1, 14 * Ncv + 1) =1
a(6 * Ncv + 1, 15 * Nev + 1) =1
a(6 * Ncv + 1, 16 * Ncv + 1) = -1
a(6 * Necv + 1, 17 * Ncv + 1) = -1
For i = 2 To Ncv
a(6 * Ncv + i, 3 * Ncv + 1 - 1) =1
a(6 * Ncv + 1, 3 * Ncv + i) = -1
a(6 * Necv + 1, 4 * Ncv + 1) =1
a(6 * Ncv + i, 6 * Ncv + 1) = -1
a(6 * Ncv + i, 14 * Necv + i) =1
a(6 * Ncv + 1, 15 * Ncv + 1) =1
a(6 * Ncv + i, 16 * Ncv + i) = -1
a(6 * Ncv + i, 17 * Nev + i) = -1
Next i

17ch+l to 8ch Rk kb ik b bk b ik kb b bk b b b b b b b b bk b b kb bk b b b b b b bk b b b b b b b b bk b b b b b bk b b kb 2

'NODO 4

'Equazioni standard

For i = 1 To Ncv
a(7 * Ncv + i1, 4 * Ncv + 1) =1
a(7 * Nev + i, 5 * Ncv + 1) = -1
a(7 * Necv + 1, 12 * Ncv + 1) = -1
a(7 * Necv + 1, 13 * Ncv + 1) =1
Next 1
'Variazioni
If ind dt <> 0 Then
a(7 * Ncv + ind dt, 18 * Ncv + 3) = -1
a(7 * Ncv + ind dt, 18 * Ncv + 4) = -1
End If
If ind dt2 <> 0 Then
a(7 * Ncv + ind dt2, 18 * Ncv + 7) = -1
a(7 * Ncv + ind dt2, 18 * Ncv + 8) = -1

End If
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'8NCV+1 to 9NCV AR R S S S S S S S S S S S S S S S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRS

'NODO 7 (1)

For i

Next

i

1 To Ncv
a(8 * Ncv + 1,
a(8 * Ncv + i,

i) =1
5 * Nev + i) = -1

'9NCV+1 to 10NCV AR RS S S S S S S S S S S S EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

CONTINUITA' MAGNETE - COR.ROT.

+ + + + o+

>
n

, 1
, 2
, 3
, 1
, 1
Ncv
i/

il

l’
i,
i,

0T
ind

) =1
* Nev + 1) =1
* Ncv) = -1

0 * Ncv + 1) 1

1 * Nev + 1) =1

i)y =1

2 * Ncv + 1) =1
2 * Nev + 1 - 1)
10 * Ncv + i) =
11 * Ncv + i) =

hen

~dt, 18 * Ncv + 1) =1

ind dt, 18 * Ncv + 2) =1

<> 0 Then

'"NODO 9:

a(9 * Ncv +
a(9 * Ncv +
a(9 * Ncv +
a(9 * Ncv +
a(9 * Ncv +
For i =2 T
a(9 * Ncv
a(9 * Ncv
a(9 * Ncv
a(9 * Ncv
a(9 * Ncv

Next i

If ind dt <
a(9 * Ncv
a(9 * Ncv +

End If

If ind dt2

a(9 * Ncv
a(9 * Ncv

+ ind dt2, 18 * Ncv + 5)

|
i

+ ind dt2, 18 * Ncv + 6) =1

llNCV ARk kb b b kb b b b bk bk b b b b b b b b bk b b b b kb b b b bk b b b b b b b b b b b b b b b b b b b

End If

'10Ncv+1 to

'NODO 3

a(l0 * Ncv + 1,
a(l0 * Ncv + 1,
a(l0 * Ncv + 1,
a(l0 * Ncv + 1,
For i = 2 To Ncv
a(l0 * Ncv + 1,
a(l0 * Ncv + 1,
a(l0 * Ncv + 1,
a(l0 * Ncv + 1,

Next i

'11Ncv+1l to 12Ncv

'NODO 5

For i = 1 To Nc
a(ll * Ncv + 1,
a(ll * Nev + i,
a(ll * Nev + 1,
a(ll * Ncv + 1,

Next i

'"14Ncv+1 to 15Ncv

'NODO 6

For i = 1 To Ncv
a(ld * Nev + 1,
a(l4 * Ncv + i,

Next i

'"15Ncv+1 to 16Ncv

'NODO 8

9 * Ncv) =1

7 * Ncv + 1) = 1
12 * Ncv + 1) = -1
14 * Ncv + 1) = -1

8 * Ncv + i - 1) =1
7 * Ncv + i) =1

12 * Ncv + 1) = -1
14 * Ncv + i) = -1

AR R RS S S S E S S SRS SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE RS

8 * Ncv + i) =1

9 * Ncv + i) = -1
13 * Ncv + i) = -1
15 * Ncv + 1) =1

KKK A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AR A A A AR AR AKX KKK

7 * Ncv + i) =1
10 * Ncv + 1) = -1

KKK A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A AR A AR KRR KKK
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For i = 1 To Ncv
a(l5 * Nev + 1, 9 * Ncv + 1) =1
a(l5 * Ncv + i, 11 * Ncv + 1) = -1
Next i

LIk b b b b b b b bk kb b b b b b b b b b b b b b b b b b b b bk b b b b b b bk kb b b b b b b bk kb b b b b b b b b b b b b bk kb b b b b b kb b b

If OptionButton2.Value = False Then

For 1 = 1 To n
a(i, m) = al(i) + aM (i)

Next i

Else

For 1 = 1 To n

a(i, m) = ASP((ixm - 1) * n + 1)
Next i
End If

LIRS bk bk b bk b b bk b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b b bk kb b b b b b kb b b
'Al coefficienti del sistema che dipendono dalle riluttanze magnetiche vengono assegnati
'valori di primo tentativo casuali non nulli per evitare che nello step iniziale della
'soluzione vengano rilevate equazioni linearmente dipendenti

For i = 1 To (5 * Ncv + 1)
For j =1 To n
a(i, j) = Rnd() * 3000
Next j
Next i

For i = (12 * Ncv + 1) To (14 * Ncv)
For 3 =1 To n
a(i, j) = Rnd() * 3000

Next jJ

Next i

For i = (16 * Ncv + 1) To n
For j = 1 To n
a(i, j) = Rnd() * 3000

Next j
Next i

LI S S S E S S S S S S S S S h S S h h b kS E E Sk I h E E kb h A E h E h E E 3E b E b b b E E IE b h b b b b b b b b b b b b kb b 3
'chiamata della subroutine per la soluzione del sistema di equazioni

Call SOLVESYS
LI S S S S E h S S S E S S S S S S h Sk S I h h S E E E k3 E E h kb b h E h E b h E h b E b b b E b b b b b b b b b b b b b b b b kb b 3
'CALCOLO DI FLUSSI NELLE VARIE ZONE DI MACCHINA

'flusso nel passo di cava

For i = 1 To Ncv
Flux tcv_ (i) = x(i + 5 * Ncv) + x(i + 7 * Ncv) + x(1 + 9 * Ncv)
Next i

'flusso per polo al traferro
Flux pg = 0

For i = 1 To Ncv

Flux_pg Flux pg + Flux tcv (i)
Next i
'flusso nel dente basso - alto
Flux _pdL = 0

Flux pdH = 0
For 1 = 1 To Ncv
Flux pdL = Flux pdL + x(4 * Ncv + i)
Flux pdH = Flux pdH + x(6 * Ncv + 1)
Next i
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'flusso all'altezza dei denti
Flux pd = ta * Flux pdL + (1 - ta) * Flux pdH

'flussi nei denti

For i = 1 To Ncv
Flux dt(i) = ta * x(4 * Ncv + i) + (1 - ta) * x(6 * Ncv + 1)
Next i
'flussi nel passo di cava (inteso come semicava sx - dente - semicava dx)
For i = 1 To Ncv
Flux tcv (i) = Flux dt(i) + x(14 * Ncv + i) + x(15 * Ncv + i)
Next i

'"FLUSSI CONCATENATI CON LE FASIT
For i = 1 To nfasi
Flux f(i) =0

Next i

'Flussi concatenati I strato

For j = 1 To nfasi
For i = 1 To Ncv
If ordpr(i) = j Then
Flux f£(j) = Flux f£(j) + npr * x(Ncv + 1)
ElseIf ordpr(i) = -j Then
Flux f(j) = Flux f(j) - npr * x(Ncv + 1)
End If
Next i
Next jJ
'Flussi concatenati II strato
For j = 1 To nfasi
For i = 1 To Ncv
If ordsc(i) = j Then
Flux f(j) = Flux f(j) + nsc * x(Ncv + 1)
ElseIf ordsc(i) = -j Then
Flux f£(j) = Flux f(j) - nsc * x(Ncv + 1)
End If
Next i
Next j

'FORZA RADIALE

For i = 1 To Ncv
Fyr(i) =0
Fxr(i) = 0
Fr n(i) = 0
Fr tsx(i) =0
Fr tdx(i) =0

Next i

Fyr =0

Fxr =0

'NB: il sistema di riferimento considerato nel calcolo delle forze ha gli assi
coincidenti con il sistema di rif.

' x-y standard di FEMM. L'asse della fase 1, secondo l'interpretazione del segno
delle correnti in FEMM (- se

' ENTRANTI nello schermo, + se USCENTI), e ruotato invece di 180 gr.m. in senso
orario rispetto al sistema di

' riferimento in questione. Gli angoli sono valutati rispetto all'asse (x-standard).

'angolo dell'asse del dente (gr.m.)

For i = 1 To Ncv
alfa dt(i) =pi / 2 - (i - 1) * alfa cv
alfa dt deg(i) = 180 / pi * alfa dt(i)
Next i

'Superfici frontali dei DENTI
For i = 1 To Ncv
Select Case i
Case ind dt
'dente ind dt
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If ind dt = 1 Then

'Componente NORMALE della forza radiale

Fr n(i) =1/ 2 / muzero * L * (LdA 1 Rs * B(5 * Ncv + i) ~ 2 + spm Rs * B(1l8 *
Ncv + 4) ~ 2 + LdB 1 Rs * B(18 * Ncv + 3) ~ 2 + Lecl / 2 * B(7 * Necv + 1) ~ 2 + Lcl
/ 2 * B(9 * Ncv + i) "~ 2)

Fr n(i) = Fr n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(9 * Ncv) ~ 2 - 1 / 2 / muzero
* Lel / 2 * L * B(8 * Nev + 1) ~ 2

'Componenti TANGENZIALI della forza radiale

Fr tsx(i) =1 / muzero * Lecl / 2 * L * B(7 * Ncv + 1) * B(9 * Ncv)
Fr tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i)
Else
'Componente NORMALE della forza radiale
Fr n(i) =1/ 2 / muzero * L * (LdA 1 Rs * B(5 * Ncv + i) ~ 2 + spm Rs * B(18 *

Ncv + 4) ~ 2 + LdB_ 1 Rs * B(18 * Nev + 3) ~ 2 + Lecl / 2 * B(7 * Nev + i) ~ 2 + Lcl
/ 2 * B(9 * Ncv + i) ~ 2)

Fr n(i) = Fr n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(8 * Ncv + i - 1) ~ 2 -1/ 2
/ muzero * Lcl / 2 * L * B(8 * Ncv + i) ~ 2

'Componenti TANGENZIALI della forza radiale

Fr tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(8 * Ncv + 1 - 1)
Fr tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i)
End If

Case ind dt2

'dente ind dt2

If ind_dt2 = 1 Then
'Componente NORMALE della forza radiale
Fr n(i) =1/ 2 / muzero * L * (LdA 1 Rs * B(5 * Ncv + i) ~ 2 + spm Rs * B(18 *
Ncv + 8) ~ 2 + LdB 1 Rs * B(18 * Nev + 7) ~ 2 + Lecl / 2 * B(7 * Nev + 1) ~ 2 + Lcl
/ 2 * B(9 * Nev + i) * 2)
Fr n(i) = Fr n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(9 * Ncv) ~ 2 - 1 / 2 / muzero
* Lel / 2 * L * B(8 * Nev + 1) ©~ 2
'Componenti TANGENZIALI della forza radiale

Fr tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(9 * Ncv)
Fr tdx(i) =1 / muzero * Lecl / 2 * L * B(9 * Ncv + 1) * B(8 * Ncv + 1)
Else
'Componente NORMALE della forza radiale
Fr n(i) =1/ 2 / muzero * L * (LdA 1 Rs * B(5 * Ncv + 1) ~ 2 + spm Rs * B(1l8 *

Ncv + 8) ~ 2 + LdB 1 Rs * B(18 * Nev + 7) ~ 2 + Lecl / 2 * B(7 * Nev + i) ~ 2 + Lcl
/ 2 * B(9 * Ncv + i) ~ 2)

Fr n(i) = Fr n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(8 * Nev + i - 1) ~ 2 -1/ 2
/ muzero * Lcl / 2 * L * B(8 * Ncv + 1) ~ 2

'Componenti TANGENZIALI della forza radiale

Fr tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(8 * Ncv + i - 1)
Fr tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i)
End If

Case Else

If 1 = 1 Then
'Componente NORMALE della forza radiale

Fr n(i) =1 / 2 / muzero * L * (Ldg Rs * B(5 * Ncv + i) ~ 2 + Lel / 2 * B(7 * Ncv
+ 1) ~ 2 + Lcl / 2 * B(9 * Ncv + 1) ~ 2)
Fr n(i) = Fr n(i) - 1 / 2 / muzero * Lcl / 2 * L * B(9 * Ncv) ~ 2 - 1 / 2 / muzero

* Lel / 2 * L * B(8 * Ncv + i) ~ 2
'Componenti TANGENZIALI della forza radiale

Fr tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(9 * Ncv)

Fr tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i)
Else

'Componente NORMALE della forza radiale

Fr n(i) = 1 / 2 / muzero * L * (Ldg Rs * B(5 * Ncv + i) ~ 2 + Lcl / 2 * B(7 * Ncv
+ i) ~ 2 4+ Lel / 2 * B(9 * Ncv + 1) © 2)

Fr n(i) = Fr n(i) - 1 / 2 / muzero * Lecl / 2 * L * B(8 * Nev + 1 - 1) ~ 2 -1/ 2

/ muzero * Lcl / 2 * L * B(8 * Ncv + i) ~ 2
'Componenti TANGENZIALI della forza radiale

Fr tsx(i) = 1 / muzero * Lcl / 2 * L * B(7 * Ncv + i) * B(8 * Ncv + 1 - 1)
Fr tdx(i) = 1 / muzero * Lcl / 2 * L * B(9 * Ncv + i) * B(8 * Ncv + i)
End If
End Select
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'Componenti secondo (y) della forza radiale in ogni dente

Fyr(i) = Fr_n(i) * Sin(alfa dt(i)) - Fr_tsx(i) * Cos(alfa dt(i)) - Fr_tdx(i) *
Cos (alfa dt(i))

'Componenti secondo (x) della forza radiale

Fxr(i) = Fr_n(i) * Cos(alfa dt(i)) + Fr_tsx(i) * Sin(alfa dt(i)) + Fr_tdx(i) *
Sin(alfa dt(i))

'Modulo della forza radiale in ogni dente

Fr mod(i) = Sqgr(Fxr(i) ~ 2 + Fyr(i) *~ 2)

Next i

'Calcolo della risultante delle forze RADIALI

For i = 1 To Ncv
Fyr = Fyr + Fyr(i)
Fxr = Fxr + Fxr(i)

Next 1

'RISULTANTE

Fr = Sqr(Fxr_*~ 2 + Fyr_ " 2)
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'CICLO DI CALCOLO COENERGIA MAGNETICA DEL SISTEMA
If OptionButtonl.Value = True Then

'Memorizzazione dei valori step precedente

'Coenergia magnetica complessiva

EnM tp = EnM t

'Memorizzazione dei valori step precedente
'Coenergia magnetica nel singolo volume

For i = 1 To n
EnM p(i) = EnM(1i)

Next i

EnM t = 0

nH = 640

'"MAGNETE (SOTTO IL DENTE)

For i = 1 To Ncv

dEnM(i) =1 / 2 * B(i) ~ 2 / mu(i)
EnM (i) = dEnM(i) * Vol (1)

EnM t = EnM t + EnM(1)

Next i

'"CORONA STAT., CORONA ROT.
For i = Ncv + 1 To 3 * Ncv
dEnM (i) = 0
dH = Abs(H(i)) / nH
For j = 1 To nH
H1 = (J - 1) * dH
H2 = 37 * dH
Bl = Induction(n, H1, Hlam, Blam)

B2 = Induction(n, H2, Hlam, Blam)
dA = (B2 + Bl) * dH / 2
dEnM (i) = dEnM (i) + dA
Next j
EnM (i) = dEnM(i) * Vol (i)
EnM t = EnM_t + EnM(i)
Next i

'"CAVE (Componenti orizzontali CVX)
For i = 3 * Ncv + 1 To 4 * Ncv

dEnM(i) =1 / 2 * B(i) ~ 2 / mu(i)
EnM (i) = dEnM(i) * Vol (i)
EnM t = EnM t + EnM(i)

Next i

'DENTE BASSO
For i = 4 * Ncv + 1 To 5 * Ncv

77



Appendix A2.1

dEnM (1) = 0

dH = Abs(H(i)) / nH

For j = 1 To nH

Hl = (jJ - 1) * dH

H2 = 7 * dH

Bl = Induction(n, H1, Hlam, Blam)

B2 = Induction(n, H2, Hlam, Blam)
dA = (B2 + Bl) * dH / 2

dEnM (i) = dEnM (i) + dA
Next j

EnM (i) = dEnM (i) * Vol(i)
EnM t = EnM t + EnM(i)
Next i

'TRAFERRO sotto il DENTE
For i = 5 * Ncv + 1 To 6 * Ncv

dEnM(i) =1 / 2 * B(i) ~ 2 / mu(i)
EnM(i) = dEnM(i) * Vol(i)
EnM t = EnM t + EnM(i)
Next i
'DENTE ALTO
For i = 6 * Ncv + 1 To 7 * Ncv
dEnM(i) = 0
dH = Abs(H(i)) / nH
For j = 1 To nH
H1I = (j - 1) * dH
H2 = j * dH
Bl = Induction(n, H1, Hlam, Blam)

B2 = Induction(n, H2, Hlam, Blam)
dA = (B2 + Bl) * dH / 2
dEnM (i) = dEnM (i) + dA
Next jJ
EnM (i) = dEnM(i) * Vol (1)
EnM t = EnM t + EnM(1)
Next i

'TRAFERRO sotto la SEMICAVA SX
'COLLARINO (TRASV.)

'TRAFERRO sotto la SEMICAVA DX
'"MAGNETE SOTTO APERTURA CAVA SX e DX
For i = 7 * Ncv + 1 To 12 * Ncv

dEnM(i) =1 / 2 * B(i) ~ 2 / mu(i)
EnM (i) = dEnM (i) * Vol(i)
EnM t = EnM t + EnM(i)

Next i

'TESTA DENTE SX e DX
For i = 12 * Ncv + 1 To 14 * Ncv
dEnM (1) = 0
dH = Abs(H(i)) / nH
For j = 1 To nH
H1 = (j - 1) * dH
H2 j * dH
Bl = Induction(n, H1l, Hlam, Blam)
B2 = Induction(n, H2, Hlam, Blam)

da = (B2 + Bl) * dH / 2

dEnM (i) = dEnM(i) + dA
Next j

EnM (i) = dEnM (i) * Vol(i)
EnM t = EnM t + EnM(1i)
Next i

'SEMICAVE SX e DX
For i = 14 * Ncv + 1 To 16 * Ncv

dEnM(1i) =1 / 2 * B(i) ~ 2 / mu(i)
EnM (i) = dEnM(i) * Vol (i)
EnM t = EnM t + EnM(1)

Next i

78



The programming code - Part 1

'"CONTRIBUTI AGGIUNTIVI
If ind dt <> 0 And ind dt2 <> 0 Then
For i = 1 To 8
dEnM (18 * Ncv + i) =1 / 2 * B(18 * Ncv + i) ~ 2 / mu(l8 * Ncv + 1)
EnM (18 * Ncv + i) = dEnM(18 * Ncv + i) * Vol (18 * Ncv + 1)
EnM t = EnM t + EnM(18 * Ncv + 1)
Next i
End If

'VARIAZIONE COENERGIA MAGNETICA TOTALE
dEnM t = EnM t - EnM tp

'"VARIAZIONE COENERGIA MAGNETICA SINGOLI VOLUMI
If ixm = 1 Then

For i = 1 To n
deltaEnM(i) = 0
Next i
Else
For i = 1 To n
deltakEnM(i) = EnM(i) - EnM p(i)
Next i
End If

Cells (5 + ixm, 13 + 2 * nfasi + 1) = EnM t * pp

End If
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If OptionButtonl.Value = True And Int(ixm / 2) = ixm / 2 Then
Fx EM = dEnM t / dx cost

'Coppia elettromagnetica

dthr m = pi / pp / Taup * dx cost

C EM = dEnM t / dthr m

Cells (5 + ixm, 13 + 2 * nfasi + 2) = C_EM * pp

End If
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'OUTPUT ARRAY

For i = 1 To Ncv

Cells(4 + i, 5) = CStr("md")

Cells(4 + Ncv + i, 5) = CStr("cs")

Cells(4 + 2 * Ncv + 1, 5) = CStr("cr")
Cells(4 + 3 * Ncv + i, 5) = CStr("cvx")
Cells(4 + 4 * Ncv + 1, 5) = CStr("dL")
Cells(4 + 5 * Ncv + i, 5) = CStr("gd")
Cells(4 + 6 * Ncv + i, 5) = CStr("dH")
Cells(4 + 7 * Ncv + i, 5) = CStr("gcs")
Cells(4 + 8 * Ncv + i, 5) = CStr("clx")
Cells(4 + 9 * Ncv + i, 5) = CStr("gcd")
Cells(4 + 10 * Ncv + i, 5) = CStr("mcs")
Cells(4 + 11 * Ncv + i, 5) = CStr("mcd")
Cells(4 + 12 * Ncv + i, 5) = CStr("dsx")
Cells(4 + 13 * Ncv + i, 5) = CStr("ddx")
Cells(4 + 14 * Ncv + i, 5) = CStr("Lcvys")
Cells(4 + 15 * Ncv + i, 5) = CStr("Lcvyd")
Cells(4 + 16 * Ncv + i, 5) = CStr("Hcvys")
Cells(4 + 17 * Ncv + i, 5) = CStr("Hcvyd")
Next i

Cells (5 + 18 * Ncv, 5) = CStr("mdB1l")
Cells(6 + 18 * Ncv, 5) = CStr("spml")
Cells (7 + 18 * Ncv, 5) = CStr("gdBl")
Cells (8 + 18 * Ncv, 5) = CStr("gdOl")
Cells (9 + 18 * Ncv, 5) = CStr("mdB2")
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Cells (10 + 18 * Ncv, 5)
Cells (11 + 18 * Ncv, 5)
Cells (12 + 18 * Ncv, 5)

For i = 1 To n
Cells(4 + i, 6) = H(i)
Cells(4 + i, 7) = B(1)
Cells(4 + i, 8) = mu(i)
Cells(4 + i, 9) = x(i)
Next i

Cells (5 + ixm, 12) = xm
Cells (5 + ixm, 13) = Hc

For i = 1 To nfasi
Cells (5 + ixm, 13 + 1) =
Next i

For i = 1 To nfasi
Cells (5 + ixm, 13 + nfas
Next i

Cells (5 + ixm,
Cells (5 + ixm,
Cells (5 + ixm,

13 + 2 *n
13 + 2 *n
13 + 2 *n

If OptionButtonl.Value = T

Print #3, xm
Print #3,

Print #3, "i VOL (m”3
deltaEnM(J) Ril (H-1)
Print #3,

For i = 1 To 18 * Ncv

val 00 = Format (i, "000"
Val 01 = Format (Vol(i),
Val 02 = Format (dEnM (i),
Val 03 = Format (EnM (i),
Val 04 = Format (H(i), "O
Val 05 = Format(B(i), "O

Val 06 = Format (deltaEnM(i),

Val 07 = Format (Ril (i),
Val 08 = Format(x(i), "O

Print #3, Val 00 & Val 01 & Val 02 & Val 03 & Val 04 & Val 05 & Val 06 & Val 07 &

Val 08

Next i

'"ELEMENTI AGGIUNTIVI

For 1 = 18 * Ncv + 1 To n
Val 00 = Format (i, "000"
Val 01 = Format (Vol(i),
Val 02 = Format (dEnM (i),
Val 03 = Format (EnM(i),
Val 04 = Format (H(i), "O
Val 05 = Format(B(i), "O
Val 06 = Format (deltaEnM
Val 07 = Format (Ril (i),
Val 08 = Format(x(i), "O
Print #3,
Val 08
Next i
Print #3,
Print #3,
Print #3,
Print #3,
For i = 1 To Ncv
Val 09 = Format (Fyr (i),
Val 10 = Format (Fxr (i),

"Fyr (N)

= CStr ("spm2")
= CStr("gdB2")
= CStr("gdo2")

/ muzero

Ifse(i)

i+ i) = Flux f(i) * pp

fasi + 3) = Fxr_
fasi + 4) = Fyr_
fasi + 5) = Fr
rue Then
) dEnM (J/m”3) EnM (J)
x (Wb) "
& " ")
"0.00000E+" & " ")
"0.00000E+"™ & " ")
"0.00000E+" & " ")
000000.00" & " ")
.000" & " ")
"0.00000E+"™ & " ")
"0.00000E+" & " ")
.000E+" & " ")

& " ")

"0.00000E+" & " ")
"0.00000E+" & " ")
"0.00000E+" & " ")
000000.00"™ & " ")

.000" & " ")

(i), "0.00000E+" & " ")
"0.00000E+" & " ")
.000E+" & " ")

Fxr (N) alfa dt(gr.m.)
"0000000.00"™ & ™ ")
"0000000.00" & " ")

Val 11 = Format (alfa dt deg(i),

"0000000.00" & "

Val 12 = Format (Fr mod (i),
Print #3, Val 09 & Val 10

"0000000.00" & " ")
& Val 11 & Val 12

"

H(A/m)

Fr_mod (N)"

Val 00 & Val 01 & Val 02 & val 03 & val 04 & val 05 & Val 06 & val 07 &

80



The programming code - Part 1

Next i

Print #3,
Print #3,
Print #3,

End If
'aggiornamento della posizione dei magneti

If Int(ixm / 2) <> ixm / 2 Then
dxl = dx_cost

Else

dxl = dx

End If

xm = xm + dxl

Xm2 = xm + spm + wm

Cells (5, 34) = zero_ctrl
Next ixm

50

Close #3
OptionButtonl.Value = False
OptionButton2.Value = False

End Sub
Public Sub SOLVESYS ()

For 1 = 1 To n

For j = 1 Tom

'matrice iniziale del sistema
ainiz (i, Jj) a(i, 3)

Next j
Next i
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maxdiffx = 1000000

z =1

For i = 1 To n
mu (i) = muzero
mu p(i) =0
Next i

Do While maxdiffx > tollx
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'TRASFORMAZIONE DELLA MATRICE a(i,j) IN TRIANGOLARE SUPERIORE

pivot = False
fault = 0

iperm = 0

For k=1 Ton -1
'lo scambio avviene con le righe successive a quella considerata (k-esima)
r =%k + 1

Do Until a(k, k) <> 0

'ciclo che scambia la riga k-esima con la r-esima
'nel caso in cui un elemento diagonale sia nullo
pivot = True
For icol 1 Tom
changer R(icol) = a(k, icol)
a(k, icol) = a(r, icol)
a(r, icol) = changer R(icol)
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Next icol

For i = 1 To n
piv R(i) =0
Next i

piv R(k) =r
piv R(r) =k

If r > n Then

MsgBox ("Un elemento A(k,k) rimane nullo dopo aver scorso tutte le righe (r > n)")
Stop
End If

iperm = iperm + 1

Loop

If pivot = True Then

mem (k) = r
Else

mem (k) = k
End If

For i =k + 1 Ton
y(i, k) = -a(i, k) / a(k, k)
a(i, k) = y(i, k)
For j =k + 1 Tom
a(i, j) = a(i, Jj) + a(i, k) * a(k, J)
Next j
Next i

pivot = False

Next k
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'SOLUZIONE DEL SISTEMA DI EQUAZIONI CON IL METODO DIRETTO

For i = 1 To n

noti(i) = a(i, m)
Next i
x(n) = noti(n) / a(n, n)
For i = n -1 To 1 Step -1
sm = 0
For k = n To i + 1 Step -1
sm = sm + a(i, k) * x(k)
Next k
x(i) = (noti(i) - sm) / a(i, 1)
Next i
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'memorizzazione permeabilita allo step precedente
For j =1 To n

mu_p(j) = mu(j)

Next j

'determinazione delle induzioni dai flussi

For i = 1 To n
B(i) = x(i) / Sez (i)
Next i

'richiama la function per il calcolo delle permeabilita magnetiche
For j = 1 Ton

Select Case j

Case 1 To Ncv
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mu(j) = mu_mag
H(j) =1 / mu mag * B(J)
Case Ncv + 1 To 3 * Ncv
H(j) = Magfield(n, B(j), Hlam, Blam)
If B(Jj) < 0 Then H(j) = -H(J)
If B(j) = 0 Then
mu(j) = (Blam(2) - Blam(l)) / (Hlam(2) - Hlam(1l))
zero_ctrl = zero_ctrl + 1
Else
mu(j) = B(J) / H(J)
End If
Case 3 * Ncv + 1 To 4 * Ncv
mu(j) = muzero
H(j) = 1 / muzero * B(J)
Case 4 * Ncv + 1 To 5 * Ncv
H(j) = Magfield(n, B(j), Hlam, Blam)
If B(j) < 0 Then H(j) = -H(J)
If B(j) = 0 Then
mu(j) = (Blam(2) - Blam(l)) / (Hlam(2) - Hlam(1l))
zero_ctrl = zero_ctrl + 1
Else
mu(j) = B(3) / H(J)
End If
Case 5 * Ncv + 1 To 6 * Ncv
mu(j) = muzero
H(j) = 1 / muzero * B(J)
Case 6 * Ncv + 1 To 7 * Ncv
H(j) = Magfield(n, B(j), Hlam, Blam)
If B(j) < 0 Then H(j) = -H(J)
If B(j) = 0 Then
mu(j) = (Blam(2) - Blam(l)) / (Hlam(2) - Hlam(1l))
zero_ctrl = zero_ctrl + 1
Else
mu(j) = B(J) / H(J)
End If
Case 7 * Ncv + 1 To 10 * Ncv
mu(j) = muzero
H(j) = 1 / muzero * B(J)
Case 10 * Ncv + 1 To 12 * Ncv
mu(j) = mu mag
H(j) = 1 / mu mag * B(J)

Case 12 * Ncv + 1 To 14 * Ncv
H(j) = Magfield(n, B(j), Hlam, Blam)

If B(j) < 0 Then H(j) = -H(J)
If B(j) = 0 Then
mu(j) = (Blam(2) - Blam(l)) / (Hlam(2) - Hlam(1l))
zero_ctrl = zero ctrl + 1
Else
mu(j) = B(j) / H(J)
End If
Case 14 * Ncv + 1 To 18 * Ncv
mu(j) = muzero
H(j) = 1 / muzero * B(j)
End Select
Next j

If ind dt <> 0 Then

mu(l8 * Ncv + 1) = mu mag

H(18 * Ncv + 1) =1 / mu mag * B(18 * Ncv + 1)
mu(l8 * Ncv + 2) = muzero

H(18 * Ncv + 2) = 1 / muzero * B(18 * Ncv + 2)
mu(l8 * Ncv + 3) = muzero

H(18 * Ncv + 3) = 1 / muzero * B(18 * Ncv + 3)
mu(l8 * Ncv + 4) = muzero

H(18 * Ncv + 4) = 1 / muzero * B(18 * Ncv + 4)
End If

If ind dt2 <> 0 Then
mu(l8 * Ncv + 5) = mu mag
H(18 * Ncv + 5) = 1 / mu mag * B(18 * Ncv + 5)
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mu(l8 * Ncv + 6) = muzero

H(18 * Ncv + 6) = 1 / muzero * B(18 * Ncv + 6)
mu(l8 * Ncv + 7) = muzero

H(18 * Ncv + 7) = 1 / muzero * B(1l8 * Ncv + 7)
mu(l8 * Ncv + 8) = muzero

H(18 * Ncv + 8) =1 / muzero * B(18 * Ncv + 8)
End If

'Ridefinizione delle permeabilita magnetiche
For 3 = 1 To n

mu(j) = mu(j)
Next jJ

~

0.1 * mu p(j) ~ 0.9
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' e CRITERIO DI CONVERGENZA *RK K
maxdiffx = 0

'Solo elementi NON LINEARI
For j = Ncv + 1 To 3 * Ncv
diffx(j) = Abs((mu(j) / muzero - mu p(j) / muzero) / (mu p(j) / muzero))
If diffx(j) > maxdiffx Then
maxdiffx = diffx(j)
End If
Next jJ
For j = 4 * Ncv + 1 To 5 * Ncv
diffx(j) = Abs((mu(j) / muzero - mu p(j) / muzero) / (mu p(j) / muzero))
If diffx(j) > maxdiffx Then
maxdiffx = diffx(7j)
End If
Next j
For j = 6 * Ncv + 1 To 7 * Ncv
diffx(j) = Abs((mu(j) / muzero - mu p(j) / muzero) / (mu p(j) / muzero))
If diffx(j) > maxdiffx Then
maxdiffx = diffx(j)
End If
Next jJ
For j = 12 * Ncv + 1 To 14 * Ncv
diffx(j) = Abs((mu(j) / muzero - mu p(j) / muzero) / (mu p(j) / muzero))
If diffx(j) > maxdiffx Then
maxdiffx = diffx(3j)
End If
Next j

IR S S S S S S S S SRS S EEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

'RIDEFINIZIONE MATRICE "A" DEL SISTEMA
'vengono aggiornati i coefficienti variabili in cui compaiono i valori di permeabilita
'magnetica delle varie parti di macchina

LI S R S S S h h S S S S S S E S S S S S h h b S I h h S E S h k3 E E E bk b b E b b b h E h b E b b b h E b b h b b b b b b b b b b b b kb b 3

'azzeramento di tutti i coefficienti

For i = 1 To n
For j =1 Tom
a(i, j) =0
Next jJ

Next 1

'RIDEFINIZIONE DELLE RILUTTANZE VARIABILI f (mu)

'corona statore

For i = Ncv + 1 To 2 * Ncv

Ril(i) = 1 / mu(i) * Lecs med / Sez (i)
Next i

'corona rotore
For i = 2 * Ncv + 1 To 3 * Ncv
Ril(i) = 1 / mu(i) * Lecr med / Sez (i)

84



The programming code - Part 1

Next i

'dente LOW

For i = 4 * Ncv + 1 To 5 * Ncv

Ril(i) =1 / mu(i) * (adt * (ta - 1) + havv) / Sez (i)
Next i

'dente HIGH

For i = 6 * Ncv + 1 To 7 * Ncv

Ril(i) =1 / mu(i) * (adt * (1 - ta)) / Sez (i)
Next i

'semidente SX e DX
For i = 12 * Ncv + 1 To 14 * Ncv

Ril(i) = 1 / mu(i) / pr02 * Log(2 * pr0l / (2 * pr0l - pr02 * (Ldg - Ldt))) + 1 /
mu(i) * Ldt / 2 / (adt - havv) / L
Next i

le righe con coefficienti costanti della matrice del sistema vengono ricomposte come
quelle iniziali per ripartire con la soluzione del sistema, aggiornato aggiungendo
'le permeabilita calcolate

For i = 5 * Ncv + 2 To 12 * Ncv
For j = 1 Ton

a(i, j) = ainiz(i, 3J)

Next j
Next 1

For i = 14 * Ncv + 1 To 16 * Ncv
For j = 1 To n

a(i, j) = ainiz (i, 3J)

Next j
Next 1

'l1'ultima colonna della matrice (termini noti)
'riassume 1 valori iniziali
For i = 1 To n
a(i, m) = ainiz (i, m)
Next i

'PARTE VARIABILE DELLA MATRICE (A)
V] £ NQU K H* ok ok kok ok ok ok ok & ok ok & ok ok &k ok & ok ok %k ok & ok ok &k &k k& ok Rk R kR R Rk R R Rk R R R R kR R kR R R R K Rk K Kk K

'CIRCUITAZIONI DENTE - DENTE

For i = 1 To Ncv - 1

a(i, i) = Ril (1)
a(i, i +1) = -Ril(i + 1)
a(i, i + Ncv) = -Ril(i + Ncv)
a(i, i + 2 * Ncv) = -Ril(i + 2 * Ncv)
a(i, i + 4 * Ncv) = Ril(i + 4 * Ncv)
a(i, i + 4 * Ncv + 1) = -Ril(i + 4 * Ncv + 1)
a(i, 1 +5 * Ncv) = Ril(i + 5 * Ncv)
a(i, i + 5 * Ncv + 1) = -Ril(i + 5 * Ncv + 1)
a(i, i + 6 * Ncv) = Ril(i + 6 * Ncv)
a(i, i + 6 * Ncv + 1) = -Ril(i + 6 * Ncv + 1)
Next i
a(Ncv, Ncv) = Ril (Ncv)
a(Ncv, 1) = -Ril (1)
a(Ncv, 2 * Ncv) = —-Ril (2 * Ncv)
a(Ncv, 3 * Ncv) = -Ril (3 * Ncv)
a(Ncv, 5 * Ncv) = Ril(5 * Ncv)
a(Ncv, 4 * Ncv + 1) = -Ril(4 * Ncv + 1)
a(Ncv, 6 * Ncv) = Ril(6 * Ncv)
a(Ncv, 5 * Ncv + 1) = -Ril(5 * Ncv + 1)
a(Ncv, 7 * Ncv) = Ril(7 * Ncv)
a(Ncv, 6 * Ncv + 1) = -Ril(6 * Ncv + 1)

Select Case ind dt
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Case 1
'Circuitaz. precedente
a(Ncv, 1) =0
a(Ncv, 5 * Ncv + 1) =0
a(Ncv, 18 * Ncv + 2) = -Ril(18 * Ncv + 2)
a(Ncv, 18 * Ncv + 4) = -Ril (18 * Ncv + 4)
'Circuitaz. attuale
a(l, 1) =0
a(l, 5 * Nev + 1) =0
a(l, 18 * Ncv + 2) = Ril (18 * Ncv + 2)
a(l, 18 * Ncv + 4) = Ril(18 * Ncv + 4)
Case 2 To (Ncv - 1)
'Circuitaz. precedente
a(ind dt - 1, ind dt) =0
a(ind dt - 1, ind dt + 5 * Ncv) =0
a(ind dt - 1, 18 * Ncv + 2) = -Ril (18 * Ncv + 2)
a(ind dt - 1, 18 * Ncv + 4) = -Ril (18 * Ncv + 4)
'Circuitaz. attuale
a(ind dt, ind dt) = 0
a(ind dt, ind dt + 5 * Ncv) = 0
a(ind dt, 18 * Ncv + 2) = Ril(18 * Ncv + 2)
a(ind dt, 18 * Ncv + 4) = Ril(18 * Ncv + 4)
Case Ncv
'Circuitaz. precedente
a(Ncv - 1, Ncv) =0
a(Ncv - 1, 6 * Ncv) = 0
a(Ncv - 1, 18 * Ncv + 2) = -Ril (18 * Ncv + 2)
a(Ncv - 1, 18 * Ncv + 4) = -Ril1(18 * Ncv + 4)
'Circuitaz. attuale
a(Ncv, Ncv) = 0
a(Ncv, 6 * Ncv) =0
a(Ncv, 18 * Ncv + 2) = Ril (18 * Ncv + 2)
a(Ncv, 18 * Ncv + 4) = Ril (18 * Ncv + 4)
Case Else
Stop
End Select
Select Case ind dt2
Case 1
'"Circuitaz. precedente
a(Ncv, 1) =0
a(Ncv, 5 * Ncv + 1) =0
a(Ncv, 18 * Ncv + 6) = -Ril (18 * Ncv + 6)
a(Ncv, 18 * Ncv + 8) = -Ril (18 * Ncv + 8)
'Circuitaz. attuale
a(l, 1) =0
a(l, 5 * Ncv + 1) =0
a(l, 18 * Ncv + 6) = Ril(18 * Ncv + 6)
a(l, 18 * Ncv + 8) = Ril(18 * Ncv + 8)
Case 2 To (Ncv - 1)
'Circuitaz. precedente
a(ind dt2 - 1, ind dt2) = 0
a(ind dt2 - 1, ind dt2 + 5 * Ncv) = 0
a(ind dt2 - 1, 18 * Ncv + 6) = -Ril(18 * Ncv + 6)
a(ind dt2 - 1, 18 * Ncv + 8) = -Ril(18 * Ncv + 8)
'Circuitaz. attuale
a(ind dt2, ind dt2) = 0
a(ind dt2, ind dt2 + 5 * Ncv) = 0
a(ind dt2, 18 * Ncv + 6) = Ril(18 * Ncv + 6)
a(ind dt2, 18 * Ncv + 8) = Ril(18 * Ncv + 8)
Case Ncv
'Circuitaz. precedente
a(Ncv - 1, Ncv) =0
a(Ncv - 1, 6 * Ncv) = 0
a(Ncv - 1, 18 * Ncv + 6) = -Ril (18 * Ncv + 6)
a(Ncv - 1, 18 * Ncv + 8) = -Ril (18 * Ncv + 8)
'Circuitaz. attuale
a(Ncv, Ncv) = 0
a(Ncv, 6 * Ncv) =0
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a(Ncv, 18 * Ncv + 6) = Ril (18 * Ncv + 6)
a(Ncv, 18 * Ncv + 8) = Ril(1l8 * Ncv + 8)
Case Else
Stop
End Select

'NCV+1 to 2ch R bk b b S b b b bk b b b b b b b b b b b b b b b bk b bk bk b b b b b b b b b bk b b b b b b b b b b b b kb b kb b b b ki

'CIRCUITAZIONI DENTE H

For i = 1 To Ncv - 1

a(Ncv + i, Ncv + i) = -Ril(Ncv + 1)
a(Ncv + i, 3 * Ncv + i) = -Ril(3 * Ncv + i)
a(Ncv + 1, 6 * Ncv + i) = Ril(6 * Ncv + i)
a(Ncv + 1, 6 * Ncv + 1 + 1) = -Ril(6 * Ncv + 1 + 1)
Next i
a(2 * Ncv, 2 * Ncv) = -Ril(2 * Ncv)
a(2 * Ncv, 4 * Ncv) = -Ril(4 * Ncv)
a(2 * Ncv, 7 * Ncv) = Ril(7 * Ncv)
a(2 * Ncv, 6 * Ncv + 1) = -Ril(6 * Ncv + 1)

12ch+l to 3NCV R R R R R S S E S E E E R I E S b E h b I S E E h b E I b E I E b b E b I b I E I h b b b b i

'CIRCUITAZIONI DENTE - DENTE (without AIRGAP)

For i = 1 To Ncv - 1

a(2 * Nev + i1, Ncv + i) = -Ril(Ncv + i)

a(2 * Nev + 1, 4 * Ncv + 1) = Ril(4 * Ncv + 1)

a(2 * Nev + 1, 4 * Ncv + 1 + 1) = -Ril(4 * Ncv + 1 + 1)
a(2 * Ncv + 1, 6 * Ncv + 1) = Ril(6 * Ncv + i)

a(2 * Ncv + i, 6 * Ncv + 1 + i) = -Ril(6 * Ncv + 1 + i)
a(2 * Necv + i, 8 * Ncv + 1) = -Ril(8 * Ncv + 1)

a(2 * Nev + 1, 12 * Ncv + 1 + 1) = -Ril(12 * Ncv + 1 + 1)
a(2 * Ncv + i, 13 * Ncv + i) = -Ri1(13 * Ncv + i)

Next i

a(3 * Ncv, 2 * Ncv) = -Ril (2 * Ncv)

a(3 * Ncv, 5 * Ncv) = Ril(5 * Ncv)

a(3 * Ncv, 4 * Ncv + 1) = -Ril(4 * Ncv + 1)

a(3 * Ncv, 7 * Ncv) = Ril(7 * Ncv)

a(3 * Ncv, 6 * Ncv + 1) = -Ril(6 * Ncv + 1)

a(3 * Ncv, 9 * Ncv) = -Ril(9 * Ncv)

a(3 * Ncv, 12 * Ncv + 1) = -Ril (12 * Ncv + 1)

a(3 * Ncv, 14 * Ncv) = -Ril (14 * Ncv)

T3NCVH]L t0O ANCU **Fxhkhkhkhkhkhk kkhkhkhkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhk k& *

'CIRCUITAZIONI BASE DENTE - TRAFERRO - MAGNETE DX

For 1 = 1 To Ncv
a(3 * Nev + 1, 1) = Ril (i)
a(3 * Nev + i, 11 * Necv + 1) = -Ril(11l * Ncv + 1)
a(3 * Nev + 1, 5 * Ncv + 1) = Ril(5 * Ncv + i)
a(3 * Necv + i, 9 * Ncv + i) = -Ril(9 * Ncv + 1)
a(3 * Nev + 1, 13 * Ncv + 1) = Ril(13 * Ncv + 1)
Next i

If ind dt <> 0 Then
a(3 * Ncv + ind dt, ind dt) = 0
a(3 * Ncev + ind dt, 5 * Ncv + ind dt) = 0
a(3 * Ncv + ind dt, 18 * Ncv + 1) = Ril(18 * Ncv + 1)
a(3 * Ncv + ind dt, 18 * Ncv + 3) = Ril(18 * Ncv + 3)
End If

If ind dt2 <> 0 Then
a(3 * Ncv + ind dt2, ind dt2) =0
a(3 * Ncv + ind dt2, 5 * Ncv + ind dt2) = 0
a(3 * Ncv + ind dt2, 18 * Ncv + 5) = Ril(18 * Ncv + 5)
a(3 * Ncv + ind dt2, 18 * Ncv + 7) = Ril(18 * Ncv + 7)
End If

VANCUH]1 t0O SNQU *rxkkhkhdkkhkkhhkhhkkhk kA k kA Xk h Ak hkh Ak kA Xk h Ak hhkk kA Xk hkkhhkkh Ak khkkhhkkhhx K k%
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'CIRCUITAZIONI BASE DENTE - TRAFERRO - MAGNETE SX

For i = 1 To Ncv
a(4 * Ncv + 1, 1) = -Ril (1)
a(4 * Ncv + 1, 10 * Ncv + i) = Ril (10 * Ncv + 1)
a(4 * Ncv + i, 5 * Ncv + i) = -Ril(5 * Ncv + 1)
a(4 * Necv + 1, 7 * Ncv + i) = Ril(7 * Ncv + 1)
a(4 * Ncv + 1, 12 * Ncv + i) = Ril(1l2 * Ncv + 1)
Next i

'5ch+l Rk bk bk b b b b b b b b b b b b b kb b b b b b b b b b b b b b b b b b bk b kb b bk b b b b b b b bk b b b b b b bk b b b b b i

'CIRCUITAZIONE HcS

For i = 1 To Ncv
a(5 * Ncv + 1, Ncv + i) = Ril(Ncv + 1)
Next i

'12NCV+1 to 13NCV AR RS S S S S S S S S S S S S S S SRS EEE SRR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

'CIRCUITAZIONI DENTE - SEMIDENTE - SEMICAVA DX

For i = 1 To Ncv
a(l2 * Ncv + 1, 4 * Ncv + i) = Ril(4 * Ncv + 1)
a(l2 * Ncv + 1, 6 * Ncv + 1) = Ril(6 * Ncv + 1)
a(l2 * Nev + i, 13 * Ncv + 1) = -Ril (13 * Ncv + 1)
a(l2 * Ncv + i, 15 * Ncv + 1) = -Ril (15 * Ncv + 1)
a(l2 * Ncv + i, 17 * Ncv + 1) = -Ril (17 * Ncv + i)
Next i

713ch+l to 14ch Rk kb b b b b b b b b bk b b b b b g b b b b b b b b bk kb b b b b b kb b b b b b b b b b b b b b b b b b kb i

'"CIRCUITAZIONI SEMICAVA SX LOW

For i = 1 To Ncv
'a(l3 * Nev + i, 4 * Ncv + 1) = -Ril(4 * Ncv + 1)
a(l3 * Ncv + i, 12 * Ncv + 1) = -Ril (12 * Ncv + i)
a(l3 * Ncv + i, 13 * Ncv + 1) = -Ril (13 * Ncv + i)
a(l3 * Necv + i, 14 * Ncv + 1) = Ril(1l4 * Ncv + i)
a(l3 * Ncv + i, 15 * Ncv + 1) = -Ril (15 * Ncv + i)
Next i

'16ch+l to l7NCV R R R kR S E h E E E E S b h E h b b b b E E E b E b h b b I dE b b h E b E E b b b b b i

'"CIRCUITAZIONI ALTA SEMICAVA - ALTO SEMIDENTE SX

For i = 1 To Ncv
a(lée * Ncv + i, 16 * Ncv + i) = Ril(1l6 * Ncv + i)
a(lé * Necv + i, 6 * Ncv + i) = -Ril(6 * Ncv + i)
Next i

'17NCV+1 to 18NCV AR R R RS S S S S S S S S S S SRR EEREEEEEEEREEEEEEEEEEEEEEEEEEEEEE RS

'CIRCUITAZIONI ALTA SEMICAVA - ALTO SEMIDENTE DX

For i = 1 To Ncv
a(l7 * Ncv + 1, 6 * Ncv + i) = Ril(6 * Ncv + 1)
a(l7 * Ncv + 1, 17 * Ncv + 1) = -Ril (17 * Ncv + 1)
Next i

'18NCV+1 to 18NCV+8 AR RS RS E S SS S S S S SRS EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

'"EQUAZIONI AGGIUNTIVE

If ind_dt <> 0 Then
'Circuitazione PRIMA discontinuita del magnete

a(l8 * Ncv + 1, ind dt) = Ril(ind dt)

a(lg * Ncv + 1, 5 * Ncv + ind dt) = Ril(5 * Ncv + ind dt)
a(l8 * Ncv + 1, 18 * Ncv + 4) = -Ril(18 * Ncv + 4)

a(l8 * Ncv + 1, 18 * Ncv + 2) = -Ril(18 * Ncv + 2)

'Circuitazione SECONDA discontinuita del magnete

a(l8 * Ncv + 2, 18 * Ncv + 2) = Ril(18 * Ncv + 2)
a(l8 * Ncv + 2, 18 * Ncv + 1) = -Ril (18 * Ncv + 1)
a(l8 * Ncv + 2, 18 * Ncv + 4) = Ril(18 * Ncv + 4)
a(l8 * Ncv + 2, 18 * Ncv + 3) = -Ril (18 * Ncv + 3)
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'"NODI 7(2)
a(l8 * Ncv + 3, 18 * Ncv + 2) = -1
a(l8 * Ncv + 3, 18 * Ncv + 4) =1

'"NODI 7 (3)
a(l8 * Ncv + 4, 18 * Ncv + 1) = -1
a(l8 * Ncv + 4, 18 * Ncv + 3) =1

End If

If ind dt2 <> 0 Then
'Circuitazione PRIMA discontinuita del magnete

a(l8 * Ncv + 5, ind dt2) = Ril(ind dt2)

a(l8 * Ncv + 5, 5 * Ncv + ind dt2) = Ril(5 * Ncv + ind dt2)
a(l8 * Ncv + 5, 18 * Ncv + 8) = -Ril(18 * Ncv + 8)

a(l8 * Ncv + 5, 18 * Ncv + 6) = -Ril (18 * Ncv + 6)

'Circuitazione SECONDA discontinuita del magnete

a(l8 * Ncv + 6, 18 * Ncv + 6) = Ril (18 * Ncv + 6)
a(l8 * Ncv + 6, 18 * Ncv + 5) = -Ril(18 * Ncv + 5)
a(l8 * Ncv + 6, 18 * Ncv + 8) = Ril(18 * Ncv + 8)
a(l8 * Ncv + 6, 18 * Ncv + 7) = -Ril (18 * Ncv + 7)
"NODI 7(2)
a(l8 * Ncv + 7, 18 * Ncv + 6) = -1
a(l8 * Ncv + 7, 18 * Ncv + 8) =1
'"NODI 7(3)
a(l8 * Ncv + 8, 18 * Ncv + 5) = -1
a(l8 * Ncv + 8, 18 * Ncv + 7) =1
End If
Cells(4 + z, 31) = z

Cells (4 + z, 32) maxdiffx * 100
Loop

End Sub

'NON LINEARE
For i = 1 To 451
If Abs(x_) >= Hlam(i) And Abs(x_) <= Hlam(i + 1) Then

deltaBH = (Blam(i + 1) - Blam(i)) / (Hlam(i + 1) - Hlam(i))
Induction = deltaBH * (Abs(x_ ) - Hlam(i)) + Blam(i)
End If
Next i

If Abs(x ) >= Hlam(452) Then

deltaBH = (Blam(452) - Blam(451)) / (Hlam(452) - Hlam(451))
Induction = deltaBH * (Abs(x_) - Hlam(452)) + Blam(452)
End If

Public Function Magfield(n, x , Hlam, Blam)

'"NON LINEARE
For i = 1 To 451
If Abs(x ) >= Blam(i) And Abs(x_ ) <= Blam(i + 1) Then

deltaHB = (Hlam(i + 1) - Hlam(i)) / (Blam(i + 1) - Blam(i))
Magfield = deltaHB * (Abs(x_) - Blam(i)) + Hlam(i)
End If

Next i
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If Abs(x_) >= Blam(452) Then

deltaHB = (Hlam(452) - Hlam(451)) / (Blam(452) - Blam(451))
Magfield = deltaHB * (Abs(x ) - Blam(452)) + Hlam(452)
End If

End Function
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Appendix A2.2

THE PROGRAMMING CODE
Part 2

In the following, the programming code of the subroutine to determine the array
of the stator ampere-turns distribution, to save in the file ASP TOT.txt combined
with the magnets distribution. Two versions are presented, a simpler one and a

more elaborate one.

A2.2.1 The MMF array (simplified version)

Const pi = 3.1415927
Private Sub CommandButtonl Click()
'INPUT

Ncv = Foglio2.Cells (4, 4)
npr = Foglio2.Cells (5, 4)

nsc Foglio2.Cells (6, 4)
Taup = Foglio2.Cells (7, 4)
Taup = Taup * 0.001

Irms = Foglio2.Cells (8, 4)
adt = Foglio2.Cells(l6, 4)
adt = adt * 0.001

havv = Foglio2.Cells (21, 4)
havv = havv * 0.001

ta = Foglio2.Cells (23, 4)
xm = Foglio2.Cells (24, 4)
xm = xm * 0.001

dx cost = Foglio2.Cells (25, 4)
dx cost = dx cost * 0.001

dx = Foglio2.Cells (26, 4)

dx = dx * 0.001

ixm max = Foglio2.Cells (27, 4)
fi in = Foglio2.Cells (28, 4)
nfasi = Foglio2.Cells (30, 4)
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filepath = CStr(Foglio2.TextBoxl.Text)

If ta <= 1 - havv / adt Then

MsgBox ("Valore di ta troppo basso!")
Stop
End If

f = 50
kw = 1
st = 2

'Grandezze derivate

w =2 *pi* f

n = 18 * Ncv + 8

kcir = adt * (1 - ta) / havv

ReDim ordpr (1 To Ncv), ordsc(l To Ncv) As Integer

ReDim aI(l To n), aIp(l To n), aIs(l To n), aI p(l To n), aM(l To n), ASP(l To n) As
Double

ReDim Ifse(l To nfasi), Ifse p(l To nfasi) As Double

'Lettura del file relativo al I strato dell'avvolgimento statorico
Open filepath & "\ordpr.txt" For Input As #1
For 1 = 1 To Ncv
Input #1, ordpr (i)
Next 1
Close #1
'Lettura del file relativo al II strato dell'avvolgimento statorico
Open filepath & "\ordsc.txt" For Input As #2
For 1 = 1 To Ncv
Input #2, ordsc (i)
Next 1
Close #2
'Lettura del file contenente le amperspire equivalenti del magnete
Open filepath & "\aM(pp) .txt" For Input As #3
For 1 = 1 To n
Input #3, aM(i)
Next i
Close #3

Open filepath & "\ASP TOT.txt" For Output As #4
For ixm = 1 To ixm max
If Int(ixm / 2) <> ixm / 2 Then
'step di spostamento DISPARI: le correnti vengono calcolate
'secondo l'esatto valore istantaneo correlato alla posizione
'inizializzazione dell'array
For i = 1 To n
al(i) =0

Next 1

'Andamento sinusoidale delle correnti
t =pi * xm / w / Taup

'Memorizzazione del valore delle correnti allo step precedente

For i = 1 To nfasi
Ifse p(i) = Ifse(d)

Next i

For j = 1 To nfasi
Ifse(j) = -Sgr(2) * Irms * Cos(kw * w * t - (jJ - 1) * kw * st * 2 * pi / nfasi +
fi in)

Next jJ

'ARRAY AMPERSPIRE STATORICHE

For i = 1 To Ncv
alp(i) = npr * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i)))
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als (i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Next 1

For i = 1 To Ncv

alp(Ncv + i) = 0
aIs(Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Next i
For i = 1 To Ncv
aIp(2 * Ncv + i) = npr * Sgn(ordpr(i)) * Ifse(Abs (ordpr(i)))
aIs(2 * Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Next i
For i = 1 To Ncv
alp(l2 * Ncv + i) = npr / 2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i)))
aIs(l2 * Ncv + 1) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Next i
alp(l3 * Ncv + 1) = npr / 2 * Sgn(ordpr (Ncv)) * Ifse(Abs(ordpr(Ncv))) + npr / 2 *
Sgn (ordpr (1)) * Ifse(Abs (ordpr(l)))
aIs(l3 * Ncv + 1) =0
For i = 2 To Ncv
alp(l3 * Ncv + i) = npr / 2 * Sgn(ordpr(i - 1)) * Ifse(Abs(ordpr(i - 1))) + npr / 2
* Sgn(ordpr(i)) * Ifse(Abs(ordpr(i))
aIs (13 * Ncv + 1) =0
Next i
aIp(l6 * Ncv + 1) =0
aIs(l6 * Ncv + 1) = nsc / 2 * Sgn(ordsc(Ncv)) * Ifse(Abs (ordsc(Ncv)))
For i = 2 To Ncv
alp(l6 * Ncv + 1) =0
als(l6 * Ncv + i) = nsc / 2 * Sgn(ordsc(i - 1)) * Ifse(Abs(ordsc(i - 1)))
Next i
For i = 1 To Ncv
aIp(l7 * Ncv + 1) =0
aIs(l7 * Ncv + 1) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Next i

'composizione dei vettori dei due strati in un unico (ASP TOTALI STATORICHE)

For i = 1 To 3 * Ncv
al(i) = aIp(i) + aIs(i)

Next i

For i = 12 * Ncv + 1 To 14 * Ncv
al(i) = aIp(i) + als(i)

Next i

For i = 16 * Ncv + 1 To 18 * Ncv
al(i) = alp(i) + alIs(i)

Next i

'memorizzazione per lo step successivo
'(nel quale le correnti restano invariate)
For i = 1 To n

al p(i) = al(i)
Next i

dxl = dx cost
Else

'step di spostamento PARI: le correnti vengono
'mantenute costanti per il calcolo della Fx

For i = 1 To n
al(i) = aIl p(i)
Next 1
dxl = dx
End If
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'composizione vettore amperspire totali

For i = 1 To n
ASP (i) = aI(i) + aM(i)
Next i

'scrittura su file
For i = 1 To n
Print #4, ASP (i)
Next i
xm = xm + dxl
Next ixm

Close #4

End Sub

A2.2.2 The MMF array (original version)

Const pi = 3.1415927
Private Sub CommandButtonl Click()

'INPUT

Ncv Foglio2.Cells (4, 4)

npr = Foglio2.Cells (5, 4)

nsc = Foglio2.Cells (6, 4)

Taup = Foglio2.Cells (7, 4)
Taup = Taup * 0.001

Irms = Foglio2.Cells (8, 4)

adt = Foglio2.Cells (16, 4)

adt = adt * 0.001

havv = Foglio2.Cells (21, 4)
havv = havv * 0.001

ta = Foglio2.Cells (23, 4)

xm = Foglio2.Cells (24, 4)

xm = xm * 0.001

dx cost = Foglio2.Cells (25, 4)
dx cost = dx cost * 0.001

dx = Foglio2.Cells (26, 4)

dx = dx * 0.001

ixm max = Foglio2.Cells (27, 4)
fi in = Foglio2.Cells (28, 4)
nfasi = Foglio2.Cells (30, 4)

filepath = CStr(Foglio2.TextBoxl.Text)

If ta <= 1 - havv / adt Then

MsgBox ("Valore di ta troppo basso!")
Stop
End If

f = 50
kw =1
st = 2
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'Grandezze derivate

w =2 *pi * f

n = 18 * Ncv + 8

kcir = adt * (1 - ta) / havv

ReDim ordpr (1 To Ncv), ordsc(l To Ncv) As Integer

ReDim aI(l To n), aIp(l To n), aIs(l To n), aI p(l To n), aM(l To n), ASP(l To n) As
Double

ReDim Ifse(l To nfasi), Ifse p(l To nfasi) As Double

'Lettura del file relativo al I strato dell'avvolgimento statorico
Open filepath & "\ordpr.txt" For Input As #1

For i = 1 To Ncv
Input #1, ordpr (i)
Next i
Close #1

'Lettura del file relativo al II strato dell'avvolgimento statorico
Open filepath & "\ordsc.txt" For Input As #2

For i = 1 To Ncv
Input #2, ordsc (i)

Next i

Close #2

'Lettura del file contenente le amperspire equivalenti del magnete
Open filepath & "\aM(pp) .txt" For Input As #3
For 1 = 1 To n
Input #3, aM(i)
Next i
Close #3

Open filepath & "\ASP_TOT.txt" For Output As #4

For ixm = 1 To ixm max

If Int(ixm / 2) <> ixm / 2 Then
'step di spostamento DISPARI: le correnti vengono calcolate
'secondo l'esatto valore istantaneo correlato alla posizione

'inizializzazione dell'array
For i =1 Ton

ali(i) =0
Next 1

'Andamento sinusoidale delle correnti
t =pi * xm / w / Taup
'Memorizzazione del valore delle correnti allo step precedente

For i = 1 To nfasi
Ifse p(i) = Ifse(d)

Next i

For j = 1 To nfasi
Ifse(j) = -Sgr(2) * Irms * Cos(kw * w * t - (j - 1) * kw * st * 2 * pi / nfasi +
fi in)

Next jJ

'ARRAY AMPERSPIRE STATORICHE

For i = 1 To Ncv
alp(i) = npr * Sgn(ordpr(i)) * Ifse(Abs (ordpr(i)))
als (i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Next i

For i = 1 To Ncv
If (0 <= kcir) And (kcir <= 0.5) Then

aIp(Ncv + i) =0
aIs(Ncv + i) = 2 * nsc * kcir * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
ElseIf (0.5 < kcir) And (kcir < 1) Then
alp(Ncv + i) = (2 * npr * kcir - npr) * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i)))
aIs(Ncv + 1) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Else
alp(Ncv + 1) = npr * Sgn(ordpr(i)) * Ifse(Abs (ordpr(i)))
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als(Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
End If
Next i
For i = 1 To Ncv
alp(2 * Ncv + i) = npr * Sgn(ordpr(i)) * Ifse(Abs (ordpr(i)))
aIs(2 * Ncv + i) = nsc * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Next i
For i = 1 To Ncv
alp(l2 * Ncv + i) = npr / 2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i)))
aIs(l2 * Ncv + 1) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
Next i

If (0 <= kcir) And (kcir <= 0.5) Then
'concatena in ogni caso sempre tutto il (I)

alp(l3 * Ncv + 1) = npr / 2 * Sgn(ordpr (Ncv)) * Ifse(Abs(ordpr(Ncv))) + npr / 2 *

Sgn (ordpr (1)) * Ifse(Abs (ordpr(l)))

'concatena una parte del (II), a seconda del valore di ta

aIs (13 * Ncv + 1) = (nsc - 2 * nsc * kcir) / 2 * Sgn(ordsc(Ncv)) *
Ifse (Abs (ordsc(Ncv))) + (nsc - 2 * nsc * kcir) / 2 * Sgn(ordsc(l)) *
Ifse (Abs (ordsc(1l)))

ElseIf (0.5 < kcir) And (kcir < 1) Then

aIp (13 * Ncv + 1) 2 * npr * (1 - kcir) / 2 * Sgn(ordpr (Ncv)) *
Ifse (Abs (ordpr(Ncv))) + 2 * npr * (1 - kcir) / 2 * Sgn(ordpr(l)) *
Ifse (Abs (ordpr (1)

alIs (13 * Ncv + 1) 0
Else

aIp(l3 * Ncv + 1) =0
aIs(l3 * Ncv + 1) =0
End If

For i = 2 To Ncv

If (0 <= kcir) And (kcir <= 0.5) Then
'concatena in ogni caso sempre tutto il (I)

alp(l3 * Ncv + i) = npr / 2 * Sgn(ordpr(i - 1)) * Ifse(Abs(ordpr(i - 1))) + npr /
2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i)))
'concatena una parte del (II), a seconda del valore di ta
als (13 * Ncv + i) = (nsc - 2 * nsc * kcir) / 2 * Sgn(ordsc(i - 1)) *
Ifse(Abs(ordsc(i - 1))) + (nsc - 2 * nsc * kcir) / 2 * Sgn(ordsc(i)) *
Ifse (Abs (ordsc(i))
ElseIf (0.5 < kcir) And (kcir < 1) Then
alp(l3 * Ncv + i) = 2 * npr * (1 - kcir) / 2 * Sgn(ordpr(i - 1)) *
Ifse(Abs(ordpr(i - 1))) + 2 * npr * (1 - kcir) / 2 * Sgn(ordpr(i)) *
Ifse (Abs (ordpr (i))
als (13 * Ncv + i) =0
Else
alp (13 * Ncv + 1) =0
aIs(1l3 * Ncv + 1) =0
End If
Next i
If (0 <= kcir) And (kcir <= 0.5) Then
aIp(l6 * Ncv + 1) =0
aIs(l6 * Ncv + 1) = 2 * nsc * kcir / 2 * Sgn(ordsc(Ncv)) * Ifse(Abs (ordsc (Ncv)))

ElseIf (0.5 < kcir) And (kcir < 1) Then
alp(l6 * Ncv + 1) = (2 * npr * kcir - npr) / 2 * Sgn(ordpr (Ncv)) *
Ifse (Abs (ordpr (Ncv)))
aIs(l6 * Ncv + 1) = nsc / 2 * Sgn(ordsc(Ncv)) * Ifse(Abs (ordsc(Ncv)))

Else
alp(l6 * Ncv + 1) = npr / 2 * Sgn(ordpr (Ncv)) * Ifse(Abs (ordpr (Ncv)))
als(l6 * Ncv + 1) = nsc / 2 * Sgn(ordsc(Ncv)) * Ifse(Abs(ordsc(Ncv)))
End If
For i = 2 To Ncv
If (0 <= kcir) And (kcir <= 0.5) Then
aIp(l6 * Ncv + 1) =0
aIs(l6 * Ncv + 1) = 2 * nsc * kcir / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))

ElseIf (0.5 < kcir) And (kcir < 1) Then
alp(l6 * Ncv + i) = (2 * npr * kcir - npr) / 2 * Sgn(ordpr(i)) *
Ifse (Abs (ordpr (i))

als(l6 * Ncv + 1) nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
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Else
alp(l6 * Ncv + i) = npr / 2 * Sgn(ordpr(i)) * Ifse(Abs(ordpr(i)))
als(l6 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
End If
Next i
For i = 1 To Ncv
If (0 <= kcir) And (kcir <= 0.5) Then
aIp(l7 * Ncv + 1) =0
als(l7 * Ncv + i) = 2 * nsc * kcir / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))

ElseIf (0.5 < kcir) And (kcir < 1) Then
aIp(l7 * Ncv + 1) = (2 * npr * kcir - npr) / 2 * Sgn(ordpr(i)) *
Ifse (Abs (ordpr(i)))

als (17 * Ncv + 1) nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs (ordsc(i)))
Else
aIp(l7 * Ncv + 1) = npr / 2 * Sgn(ordpr(i)) * Ifse(Abs (ordpr(i)))
als(l7 * Ncv + i) = nsc / 2 * Sgn(ordsc(i)) * Ifse(Abs(ordsc(i)))
End If
Next i

'composizione dei vettori dei due strati in un unico (ASP TOTALI STATORICHE)

For i = 1 To 3 * Ncv

al(i) = alp(i) + alIs(i)

Next i

For i = 12 * Ncv + 1 To 14 * Ncv
al(i) = aIp(i) + aIs(i)

Next i

For i = 16 * Ncv + 1 To 18 * Ncv
al(i) = aIp(i) + als(i)

Next i

'memorizzazione per lo step successivo
'(nel quale le correnti restano invariate)

For i = 1 To n
al p(i) = aI(i)
Next 1

dxl = dx_cost

Else
'step di spostamento PARI: le correnti vengono
'mantenute costanti per il calcolo della Fx

For i = 1 To n
al(i) = al p(i)
Next i
dxl = dx
End If
'composizione vettore amperspire totali
For i = 1 To n
ASP(i) = aI(i) + aM(i)
Next 1
'scrittura su file
For i = 1 To n
Print #4, ASP (i)
Next 1
xm = xm + dxl
Next ixm
Close #4
End Sub
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Fig. A2.2-1. The flow-chart of the algorithm
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Principles of bearingless machines

Chapter 3

PRINCIPLES OF
BEARINGLESS MACHINES

3.1 Introduction

A bearingless motor is an electrical machine where the suspension and the
centering of the rotor is provided by radial forces generated by the interactions
between the magnetic fields acting in the airgap, avoiding the use of mechanical
bearings and achieving in this way much higher maximum speed [1], as in [2]
where is proposed a 60000 rpm motor for compressors and special pumps. In this
way, the rotor is suspended and centered by a radial force distribution, suitably
created by the interactions between different harmonic orders of the magnetic

fields produced by the stator and rotor sources, whatever they are: in fact, the
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principle can be applied to the permanent magnet surface-mounted synchronous
machine [3], [4], [5], internal PM motors, induction motors. An interesting
general method for a comparison of bearingless machines is presented in
literature [6]: PM synchronous motors have the advantage that the control of
rotation and levitation are independent, while the levitation force is weak.
Conversely, induction motors produce a strong levitation force, but their
efficiency is poor and the control of rotation and levitation are coupled. The
internal permanent magnet (IPM) type bearingless motor represents a
compromise, being characterized by strong levitation force and relatively easy
control properties.

The radial force are generated by creating an unbalanced flux density
distribution in the airgap, which results in a magnetic force acting on the rotor. In
fact, in this situation by summing the force vectors related to every pole, they
give a not null resultant. On the contrary, in the electrical machines of
conventional typology, the magnetic poles have equal flux density and hence
equal magnitudes of the attractive forces, with a null vector sum of the radial
forces. An unbalanced magnetic field distribution in a bearingless machine can

be obtained by two different winding distributions:

1) ‘Dual set of windings’, characterized by two systems of three-phase windings
physically separated, one dedicated to the generation of tangential forces which
produce torque, the other to the generation of the radial forces of levitation; a
bearingless motor previously proposed in literature, presents a 2-pole radial force
windings wounded in the stator of a 4-pole motor [1], could be applied to super
high speed motors as well as induction and synchronous reluctance machines, as
theorized in [7], [8]. An analysis and classification of 3-phase separated and
concentrated windings bearingless machines is proposed by [9], which

constitutes a relief in the design of this typology of motors.
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2) ‘Single set of multiphase windings’, in which the two typologies of force are
obtained from a single winding, exploiting the potential of multiphase motors to
produce spatial harmonics of odd and even orders, by injecting different current
space vectors: in this way two stator magnetic fields of different harmonic order,
by acting with the rotor magnetic field, ensure one the suspension of the rotor,
the other the generation of torque. In [10] is proposed a 6-phase induction
machine with one set of windings instead of two sets of 3-phase windings, taking
advantage of the multiple control degrees of freedom given by multiphase
machines; [11] presents a 5-phase bearingless motor, explicating the principle of
generating the torque and suspension forces by feeding two groups of currents
projected into 2 orthogonal d-q planes. In the same paper is also presented a
control system which estimates the parameters of the current levitation system by
means of PID controllers, acquiring the position error of the rotor and estimates
the parameters of the current motor system by means of a PI controller, acquiring

the angular speed error.

3.2 General Principles of Magnetic Force Generation

Fig. 3.1 shows the cross section of a general bearingless motor under
different operative conditions [1], [12]. In Fig. 3.1(a), the flux distribution is a
symmetrical 4-pole, the flux paths around the conductors 4a being shown: the

four pole flux wave y,, produces alternating magnetic poles in the airgap. Since

the flux distribution is symmetrical, the flux density distribution is identical,
apart from the sign, in the airgap sections 1, 2, 3 and 4. There are attractive
magnetic forces between the rotor poles and stator iron, which have identical

amplitudes, but with equally distributed directions, so that the sum of radial force
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acting on the rotor is zero. Fig. 3.1(b) shows the principle of radial force
generation: a 2-pole winding, represented by conductors 2a, produces a magnetic

flux w,, having the same direction than the one generated from the 4-pole

winding in the section 1, but having the opposite direction in section 3. In this
way, the flux density will increase in section 1, while will be reduced in section
3, generating a radial force F' according to the x-axis direction. It follows that
the amplitude of the radial force increases as the current value in conductors 2a
increases. Fig. 3.1(c) shows how a negative radial force in the x-axis direction is
generated. The current in conductors 2a is reversed so that the flux density in
airgap section 1 now decreases while that in airgap section 3 increases. Hence the
magnetic force in airgap section 3 is larger than that in airgap section 1,

producing a radial force in the negative x-axis direction.

Fig. 3.1

Fig. 3.2 shows the radial force generation in the y -axis direction. The conductors
2b, which have an MMF direction along the y-axis, produce a flux through the
airgap sections 2 and 4, thus resulting in a force along the y -axis. The polarity of

the current will dictate the direction of the force. These are the principles of the

radial force generation, being its value almost proportional to the current in the
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windings 2a and 2b (assuming a constant 4-pole current). The vector sum of
these two perpendicular radial forces can produce a radial force in whatever
direction, with any amplitude. As an essential condition to generate radial forces,

the difference of pole pair numbers of the motoring and levitation fields has to be

+1.

Fig. 3.2

3.3 Bearingless Machines with a Dual Set of Windings

In [13] is presented an interesting analysis of a bearingless permanent
magnet motor with a dual set of windings, reported in the following. The 4-pole
magnetic field (produced by the torque current system) and the 2-pole magnetic
field (produced by the levitation current system) are generated by separated,
physically distinct, windings. This method allows to design the two windings
independently, but has the disadvantage of reserving part of the copper surface in
the slot to the levitation winding (Fig. 3.3), used to produce radial forces, causing

in this way higher Joule losses to give the same torque output with respect to the
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conventional electrical machines.

Fig. 3.3

With reference to Fig. 3.4, the additional 2-pole windings N, and Nj are wound

in the stator slots with the conventional 4-pole windings. The radial force is
caused by the unbalanced distribution of the flux density in the airgap, caused by

the existing interaction between the excitation flux yp,, which flows in the 4

poles and in the permanent magnets, and the flux generated by the 2-pole

windings currents i, and ig.

The current i, , with a direction and orientation as in Fig. 3.4, generates the
flux vy, . The flux density increases in the airgap section 2 and decreases in the

airgap section 1, the radial force F is generated in the negative direction of the «
axis. For simplicity, it will analyzed a model of two-phase machine. The current
able to generate a magneto-motive force equal to that of the permanent magnets

is represented as an equivalent current in the motor windings. The currents i,

and i,, in the motor windings N, and N,, are the sum of the actual

components of the motor current with amplitude /, and of the equivalent current
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of permanent magnets with amplitude 7 ,.

Motor windings

Radial force
windings

Permanent
magnet B
core

Fig. 3.4. PM bearingless motor with a dual set of windings
The currents can be written as:
Iy =—1, sin20t + 1, cos 2wt (3.1)
iy, =1, cos20t + 1, sin2ot (3.2)

Where o represents the angular frequency If the bearingless motor is in open-
circuit operating condition /,, is about zero and can be neglected:
Iy =1, cos20t (3.3)

iy, =1, sin20t 3.4)

By defining v ,,, v,,, ¥,, Yy respectively as the 4-pole fluxes related to
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windings N,, N, and the 2-pole fluxes related to windings N,, Ng, the

relationships between them and the currents that flow in the motor and levitation

windings can be written as:

Vo | [ Ly 0 -Maoa MBTi,]
Vip | | 0 Ly M'B Mali, 53
vy | |-M'a M'B L, 0 |i,
v | LMB Mo 0 L, ||

Being L, and L, respectively the self-induction coefficients of motor and
levitation windings, « e f the rotor displacements along the x and y axes, M’

the derivative of the mutual-induction coefficient, related to the coupling
between motor and levitation windings with respect to rotor displacements.

Ly, Lyand M are functions of the airgap lenght, number of turns and rotor

dimension. By assuming a magnetic linear system, M’ can be written as:

M'= HOTU’I2I’Z4Z r _(lm +lg)
8 (1, +1, P

where n,and n, are the real number of turns of the windings, / is the axial

(3.6)

length of the machine, r is the internal stator radius, /, the magnet thickness, /,
the airgap length. Consequently, (lm +Zg) represents the distance between the

internal stator surface and external rotor surface. The stored magnetic energy W,

can be expressed as:

L, 0 -Mo MBJi,
1T o 0 L, M'B Moli

w, :—[zap Iy g g , , 7 (3.7)
2 -M'o M'B L, 0 | iy
 M'B M'a 0 Ly | i

The radial force produced by the interactions between the two windings and the
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rotor magnetic field can be calculated in terms of its components F, and Fj

along the axes direction o e B:

ow
F,=—" 3.8
. 3.8)
op

By executing the calculations is obtained:
F, —cos2wt  sin2ot || i
Yl=M1, * (3.10)
Fg sin2wt  cos2wmt || ig
It can be seen that the radial force is proportional to M’ and to the equivalent
current of the permanent magnets [, ; thus, if the factor M’/ has an high value,

the levitation windings current can be reduced. In order to do this, /, and the

magnet thickness are increased but, consequently, the total gap between rotor and
stator grows causing a decreasing of M'.
So, it results very important to choose the right compromise between the

optimum thickness of the permanent magnets and the motor performances.

Permanent

Permanent

magnet

Stator ron core

- * Rotor iron core

Fig. 3.5(a).
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A'irgap I RE T

Permanent S .
magnet : -

R ’;Permancnt

i2:iix Rotor iron core

SEH _’LF,., | magnet

() o ©

Fig. 3.5(b)-(c).

In order to do this, was defined a performance index which correlates the radial
force-versus-current ratio to the flux density in the airgap. In Fig. 3.5 is shown
the cross-section of the examined permanent magnet bearingless motor, being R

the rotor radius, ¢, and ¢, the angular positions along the stator and rotor

periphery with respect to the a axis, ¢ the rotor angular displacement.

The rotor iron core is made from the laminated silicon steels with the small
projections. Permanent magnets are mounted on the surface of the rotor core as
shown in Fig. 3.5(b). w is the width of permanent magnets. w' is the width
between the small projections. Then, an area S’ between small projections and
an area S of a permanent magnet can be represented as w'/ and wl/,
respectively. Fig. 3.5(c) shows a magnetic equivalent circuit of the permanent

magnet having width w. The magneto-motive force F,, of permanent magnet is

given as
lm

F, :M_Br (3.11)
0

where B, is the remanent flux density of the permanent magnet, p, is the air
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permeability, R, and R, , in Fig. 3.5(c) are the reluctances of mechanical airgap

clearance and permanent magnet, respectively:

lg
lm

R, === (3.13)
Ho

Neglecting magnetic saturation, slot ripples and permeance in the small

projections, the flux linkage v, , caused by permanent magnets can be written as

[
F, B SI
Wy == g, (3.14)
R, +R, g L, ln+l,
HoS  HoS

Therefore, peak values of the flux density B,, in the airgap can be written as

VY LS
S R S

(3.15)

Let us define the terms /,,, and /,,, as 1, /r and [, /r respectively. These

mn > gn»
normalized lengths with respect to the stator inner radius can be used to derive

the general expression of the peak air-gap flux density. Thus, B,, can be

rewritten as

lm
B !
B, =—-" Spotm Sp (3.16)
Ly g8 L+l S
— + ——
r r

Fig. 3.6 shows the relationships between /,,, and B,,, with parameters of /,, .

mn > gp°

The term SB, /S’ in the vertical axis is a constant determined by the remanent
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flux density of permanent magnets and the area density of mounted permanent

magnet. In the case of Sm-Co magnets, B, =1 T. The ratio S/S’ is equal to 1 if

a cylindrical magnet is used, but it is slightly smaller than 1 if small permanent
magnets are mounted on the surface of rotor iron core as shown in Fig. 3.5(b).

The decrease in /,, i.e. a reduction of the ratio of mechanical air-gap width /, to

gn>

radius r of stator inner surface, and the increase in / 1.e. the ratio of

mn >

permanent magnet thickness /,, to » results in an increase in airgap flux density.

The desired value of the peak airgap flux density is generally determined at a

rated rotational speed and heat dissipation.

(XBS/S) 1.=0.010
e 0012 S

0.014 N
—— _*

0.018 4
0.020 |
0.030
0.040
0.050 1

Fig. 3.6.

An important result achieved in [13], is given by analyzing the quantity radial

force for unit current £, /I, as a function of the machine parameters:

i _ nlerS \/Elmn (1 _lmn _lgn)
I, S (L +l,

(3.17)

The first term of (3.17) depends on the number of turns of levitation windings,
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the rotor stack length, the remanent flux density of permanent magnets, and the
area density of mounted permanent magnet. Thus, is not possible to increase it
without an increase in dimension or an improvement in materials. The second
term is determined by ratios of permanent magnet thickness and mechanical
airgap width to the radius of the stator inner surface. Radial force can be
produced most efficiently when the second term has its maximum value. The
question is if the airgap flux density value is to determine at rated motor speed
and rated heat dissipation or for the optimal condition to produce radial forces.

However, by differentiating (3.17) with respect to /., it can be found that

mn >

F, /1, is maximum when /,, =1

an» 1.€. radial forces can be produced most

efficiently when permanent magnet thickness is equal to mechanical airgap width
(Fig. 3.7).

(Xn,/B.S/S)
40 | i ] - 1 T 1 [ I T
34.6}
30

20}
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3.4 Bearingless Machines with a Single Set of
Windings

It is known that a multiphase system of currents can be represented by
using temporal sequences (if in sinusoidal alternating regime) or, more generally,
by using space vectors of different orders (if in non-periodic regime).

By controlling separately and in an appropriate manner various orders of
the current space vectors it is possible, for example, to generate and control the
torque produced by the motor with a certain order and to produce and control the
suspension radial forces with other orders.

The advantage of the single set of winding consists in the possibility of
implementing both the above functions using a single winding, with a simpler
construction process, without designing another one which subtracts a useful
section of copper, with a reduction of power losses. In this type of machines is
however necessary to provide asymmetric shortened pitch windings, in order to
generate even harmonic orders in the magnetic fields that permit to create a radial
forces distribution.

This typology of windings has the disadvantage of reducing the available
torque, so the designer must then find a compromise between the intensity of the
radial force and the motor performances.

In [11] is presented an interesting analysis of a bearingless permanent
magnet motor with a single set of 5-phase windings, reported in the following.
The two needed magnetic fields are produced by feeding two groups of currents
which are projected into 2 orthogonal d-q planes respectively.

The radial force acting on the rotor can be obtained from Maxwell stress

tensor:

Gzi(bf ~p?) (3.18)

112



Principles of bearingless machines

where the contribution of bt2 can be neglected with respect to b,f. By supposing

that there are two revolving magnetic fields in the airgap B, and B»:

b,=B,+B, (3.19)
B,=B,,, cos(o;t — p,0+¢,) (3.20)

where p, and p, are their corresponding numbers of pole pair, ®, and o, are

their corresponding angular frequencies, and 0 is an arbitrary angle in stator

surface. The horizontal and vertical force components are given by:

F, = jscos(e)lrde (3.22)

Fy = j G sin(0 Ird® (3.23)

where / is the length of the stack, and r is the radius of airgap. By combining the
equations (3.19)-(3.21), then substituting in (3.18) and integrating by means of
(3.22), (3.23), the projections of the force on the horizontal a axis and vertical 3

axis are obtained.

Irn

— B, By COS((Dlt —0l+ ¢ — 0, ) p—py =71
F, ={2u, (3.24)
0, P~ Py # £l
Irn .
— By, By, Sln(wzt —O+ Q) — (Pl)’ P —py=-1
21
Irnt )
IBlmBZm Sl"((ﬁlf —0y + @ — (Pz): Py — Py =+l
0

So, it result that a radial force can be obtained when p, = p, £1, and the force is
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stable when o, =, .

The Modified Winding Function Method is applied in order to analyze the

magneto-motive force. In an n-phase symmetric system, the winding functions of

each phase can be written as:

N,=N,cosO+ N, cos20+ N;cos30+..
Ny =N,cos(0-E)+ N, cos(2(0-E))+ Nycos(3(6—-¢)) +..

N.=N,cos(0-2E)+ N, cos(2(6—2E))+ N5 cos(3(0—-2E))+.. (3.26)

N,=N,cos(0—(n—-1)§)+ N, cos(2(0—(n—-1)§))+
+ Nycos(3(0—(n—-1)§))+..

where &=2n/n and N,, N,, Nj are coefficients of the winding function. The

group of currents is defined as 7, :

Lok i cos(ot+ ¢, )
Ik cos(ot + ¢, —kE)

I, =i, |=1,| cos(ot+d, —2kE) (3.27)
| Eak | L cos(ot+ ¢, —(n—1)kE) |

where [, is the amplitude of I, and¢, is the initial phase of i, . The MMF

wave of an n-phase symmetric system fed by I, can be expressed as

F—Zn:{lkm cos[o)t+(|)k —k(i—l)ci]ZNv cosv[e—(i—l)g]}_
i=1 v

:%jzzvv{cos[m 4y 0 (k +v)(i—E]+ (3.28)

=l v

+ cos[ot + ¢, —v0—(k—v)(i—1)E]}

Thus, the v -th harmonic mmf wave results:
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nN I,

Tmcos((ot+(|)k +v0) k+v=mun ,u=04%1,..
F,= 0 JktvEun ,u=041,... (3.29)
N, I
ankmcos((ot+(l)k —v0) Jk—v=un ,u=04%1,..

From (3.29), the resultant MMF of 5-phase symmetrical windings can be shown
in Tab. [. “F” and “B” indicate the harmonic orders of MMF rotating forward and

backward respectively,“+” denotes a pulsating MMF.

TABLE I. SPACE HARMONICS OF A 5-PHASE MOTOR

V= Space harmonics of resultant MMF
k= - 1 2 3 4 5 6
S‘-1\"‘-1 Ilm 5-'\':4}-'. i S.“\-'Féf-_ i
1 2 2 2
LF) (B) (F)
5‘?\"-3 I}m 5"“{3 [_r.'i
I, 2 2
(F) (B)
SNL T, | SN TG,
2 »)
I, > | 2
B) F)
SN SNy, SN L
T >
I, 2 2 2
(B) (F) (B)
I

In a 5-phase winding motor, I, generates 1 pole-pair revolving magnetic field in
the airgap, I, generates 2 pole-pair revolving magnetic field when N, #0.So
the suspension force can be produced by the interaction of I, and I, .

In the analyzed machine, the 5-phase windings are identical and each of
them 1s 72° displaced in angular space around the stator. Fig. 3.8 shows the
windings configuration and the slots where a phase goes in, in capital letter,
where goes out, in lowercase letter. The phases are star-connected, as can be seen

in the same Fig. 3.8.
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Fig. 3.8.

Voltage equations in stationary reference frame are given by
U,=R]I, +p(LI,+P,) (3.30)

where U, I , R , L and ¥ are matrices of voltage, current, resistance,
inductance and flux linkage respectively, subscript s and r represent stator and
rotor respectively, and p is the differential operator.

A transformation has to be applied to equation (3.30) in order to express the
voltages and currents of stator to synchronous reference frame, given by a matrix
C not reported here. The form of the voltage equations in the new reference

frame results:

i Vair
Ust = RstIst + Lstplst + WsLstI + Oy - \l(l)qlr (331)
— 0 -

where .,y are the q- and d-axis flux linkages of rotor respectively. The
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radial force acting on rotor can be calculated with Virtual Displacement Method:

— _T — —_

lqls +lq1r lqls +lq1r
1 igg g1, | dLg |igs Tig
Fy=—| s 7 dir | T Rdls Tl (3.32)
2 [g2s do Iy
Lios _ L laos
r. . 7T r. .
lqls +lq1r lqls +lq1r
1| igs tig, | dLg | 1415 +ig
Fy=—| @0 i T Rl TR (3.33)
2 lq2s dB lq25
Laos _ L ldos

being iy, =V 1, /Liy > igiy =V g1y /L1 » €quivalent rotor currents and Ly, L,,,

leakage winding inductances related to 1 pole pair and 2 pole pair fields. By
developing (3.32), (3.33), the radial force can be seen as composed of two parts.

One part is related to eccentricity:

al m |- . . . ol mo . .

FOL = 12 I:(lqls +lq1r )2 +(ldls +ld1r)2]+—22(lq2s T laos )2 (334)
480 2g,
BL m . . . . BL m . .

FB - 12 [(lqls + lqlr )2 + (ldls + ldlr)2]+—22(lqzs t 1404 )2 (335)
480 28,

while the other results independent of eccentricity, used to control the rotor

suspension:
Fy = 1 (VaomVaim +V g2mV gim ) (3.36)
o Zgom d2m Y dlm q2m Y glm :
1
Fy (3.37)

= (\V mWVWaim —VoomVW m)
2g0 /—leLzm d2 dl q2 ql

where g, is the equivalent radial length of a uniform air gap, o and 3 are the

displacement of rotor center. The fluxes which appear in (3.36), (3.37) are
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defined as:

Vaim = Limiars +Vair

, (3.38)
\Vqlm = lelqls + \Vqlr

Vaiom :LZmid2s (3 39)

\Vqu = L2mlq2s

The rotor displacements in stationary reference frame are given by:

al 1 F,
il

where m and G, are the mass and weight of rotor respectively. The “motor

currents” command i, is generated from speed controller. Suspension force

N

command F; , FB* are generated by rotor displacement controller, after

that,“levitation currents” commands i;2 iZZS are given by (3.41), (3.42), which

N

are derived by (3.36), (3.37). Phase currents are given by the inverse

*

. -* -* -* .
transformation of i,y iy, and 75, iy5,-

. 2g0‘VL1m /LZm

quS = P P (qumFoc +\|la'1mFB) (341)
Vaim TV aim
2g0‘\/L1m /L2m

lazs == 2 (‘I/dlmFa _qumFB) (3.42)
qum VW aim

In the following, the main data of the proposed motor: L;,, =36 mH, L,, = 6.3
mH, Ly, = 1.3 mH, Ly, =1 mH, , = 1.1 Q, y,=1.05 Wb, J=0.012 kgm’,
airgap thickness: 2 mm , magnet thickness 3mm , g, = Smm. The airgap length

between the rotor shaft and the touchdown bearing is 0.6 mm. In Fig. 3.9 is

shown the control diagram of the 5-phase PM bearingless motor.
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B N

y Fy xy Xy xy ¥

Fig. 3.9.

Fig. 3.10 shows angular speed, torque and rotor displacement during the start up
operation. The shaft results successfully suspended and the dynamic of rotor
suspension is stable with radial displacement variations less than 50 um . It is

also obvious that the system has good speed-regulation performance.
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Fig. 3.10.
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3.5 Rotor eccentricity

In bearingless machines, due to the fact that the rotor is not sustained by
mechanical bearings, a rotor eccentricity 1s determined while the motor is
operating and has to be compensated by the control system. This phenomenon
leads to a variation in the values of the airgap flux density, as these resulting
decrease in the areas where the airgap widens, and increase in the areas where the

airgap 1s reduced, causing a similar behavior in the radial force distribution.

y
N Rotor
centre
Stator y sin ¢g
centre ! 0%
o
. y +Y Ps
tator s
centre \ > > X
X
(a) (b)
Fig. 3.11

In Fig. 3.11 is shown the reference system in which a simplified calculation [12]

permits to take into account the eccentricity by writing the airgap width g as a
function of the angle ¢, that the line joining the effective rotor centre with the

origin, describes with the x-axis:

glds)=go —xcosd, — ysin, (3.43)

being x and y the actual coordinates of the rotor centre. With the assumption of

small displacements compared to the nominal airgap length g, is possible to
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write:

1 1 X y .
———=—|14+—cosd, +—sind, (3.44)
glo,) g 2o g

and, consequently, to calculate the permeance F, in the generic angular position

by :

RI
Po(¢s): Fo (l+icos¢s + 2 sin d)s) (3.45)
8o &0 &o

being R the rotor radius and / the axial length. By using properly (3.45) in the
equations of the machine, is possible to take into account the force variation with
respect to rotor position. Two typologies of eccentricity can be defined in

bearingless machines:

e Static eccentricity: it occurs when the rotor is not centred in the stator

bore;

e Dynamic eccentricity: it occurs when the rotor is not rotating on the rotor

axis but is rotating on the centre axis.

Various authors developed models able to interpret and calculate the effects of
eccentricity on the radial forces and on the rotor position. In [14] is presented, by
using the nonlinear FEM and a theoretical analysis, an analytical model for
calculating the levitation force under airgap eccentricity by means of the
interaction between harmonic field components and a simplified modeling for
levitation force control in bearingless induction machines; [15] describes a
method for modeling a bearingless IPM motor, for calculating the forces on the
rotor by using complex winding analysis and rotating field theory and comparing
the results to FEA analysis; the model allows the introduction of levitation and
main windings and rotor eccentricity. In [16] an analytical expression of the

levitation force for an induction-type bearingless motor is proposed, taking into
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account the rotor eccentricity, being its computation accuracy verified by
ANSOFT. A real-time observation of magnetic levitation force can be realized, is
then implemented a closed-loop control of levitation force on the basis of airgap-
flux-oriented decoupling control system of the bearingless motor.

A very interesting work about the analysis of static and dynamic
eccentricity is presented in [17], which refers to an analytical modeling technique
for calculating the radial force on the rotor of a bearingless consequent-pole
permanent magnet motor. The flexibility of the method permits to identify
vibration components and calculate the force in various situations when the rotor
1s not centred in the bore, in case of either dynamic eccentricity, static
eccentricity or when the rotor is vibrating. It also allows a calculations of the
force in presence of a varying load or with load imbalance. The paper also
studies the effects of winding design and gives a validation of the results using
2D finite element analysis.

Another particular work which could be applied also to the force
calculation in bearingless machines is [18], where a general analytical model,
formulated in 2-D polar coordinates, is developed to predict the unbalanced
magnetic force, which results in permanent-magnet brushless ac and dc machines
having a diametrically asymmetric disposition of slots and phase windings. The
unbalanced magnetic force can be significant in machines having a fractional
ratio of slot number to pole number, particularly when the electric loading is
high. The developed model is validated by FE calculations on 9-slot/8-pole and
3-slot/2-pole machines. Finally, [19] proposes a novel approach to control the
rotor radial displacement in bearingless permanent-magnet-type synchronous
motors, based on the relationship between radial displacement and radial
suspension force. The rotor flux orientation is adopted to decouple the
electromagnetic torque and the radial suspension force. This approach, which

directly controls the rotor radial displacement, was applied by designing a
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suitable control system.

3.6 Conclusion

The main features and issues of bearingless machines were presented in
this chapter, highlighting the potential of the multiphase single set of windings
type, which surely represents the most effective design methodology to adopt in
the future. In fact, it permits valid control strategies for suspending the rotor, for
controlling the motor and, at the same time, for generating torque by using the
properties of multiphase current systems, without the need of altering the
physical structure of the machine by designing other groups of windings in
addition to the main one.

Thus, the focus of the activity in the next chapters will be on the analysis

of this typology of bearingless machines.
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Chapter 4

AN ANALYTICAL METHOD FOR
CALCULATING THE
DISTRIBUTION OF FORCES IN A
BEARINGLESS MULTIPHASE
SURFACE-MoOUNTED PM
SYNCHRONOUS M ACHINE

4.1 Introduction

Bearingless motors have the capability to achieve much higher maximum
speed in comparison to conventional electrical machines [1],[2]. The typology
“dual set windings”, has a main one which carries the ‘torque currents’ for

driving the rotor and producing torque, while the other carries the ‘levitation
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currents’, to suspend the rotor [3],[4]. Its advantages consist of a simpler
construction process, higher flexibility in control strategy and relatively low
power losses [5].

The typology “single set windings” produces torque and radial forces by
means of injecting different current space vectors within the same winding to
give odd and even harmonic orders of magnetic field, using the properties of
multiphase current systems with multiple orthogonal d-q planes. One of them can
be used to control the torque, as in [6]. The additional degrees of freedom can be
used to produce levitation forces [7],[8].

An important development of this technology is expected to be in the
design of electromechanical devices for More Electric Aircraft (MEA), mainly
for the possibility of achieving higher speed in comparison to conventional
electrical machines [9]. Also, it would be applicable in the aerospace field, where
the lubricants of mechanical bearings evaporate in the presence of vacuum [10].

The multiphase motors with respect to conventional three-phase motors
gives a series of advantages [11], in particular in the cases of high power, high
reliability, low dc bus voltage and reduction of power losses in IGBT inverters
[12] as it happens in ship propulsion, electrical vehicles and MEA applications.

In the control system of multiphase bearingless motors is necessary to
calculate the levitation current able to compensate the actual error in the rotor
shaft position, thus the analytical function which correlates the applied currents
to the resulting suspension force on the rotor. In order to do this and to simplify
the problem, some authors consider only the interactions between the main
harmonic orders of the stator and rotor magnetic fields, in the particular case of
steady-state AC conditions, with sinusoidal systems of currents, as done in [7];
nevertheless, by proceeding in this way, a relevant error in the prediction of the
force vector can be committed, because the interactions between higher harmonic

orders of the magnetic fields acting on the rotor and the effect of the torque
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current on the radial force are neglected.

The aim of this chapter is to present a model allowing to predict amplitude
and direction of the force for given values of the torque current, of the levitation
current and of the rotor position [13], based on the space vectors method, being
able to include in this way also the analysis of transients.

For this purpose, a generalized analytical model for the calculation of
radial forces in multiphase bearingless Surface-Mounted Permanent Magnet
Synchronous Motors (SPMSM) is presented. The stator magnetic field is
represented as the sum of separated contributions given by the different current
space vectors. In this way it is possible to analyze the interactions between the
torque current system, the levitation current system and the rotor magnetic field.
In fact, in multiphase machines the combined effect of two stator current space
vectors leads to a resulting levitation force which is sensibly different from that,
foreseeable, produced by the currents in the separated windings of traditional
bearingless machines. In Tab. I are shown all the possible interactions between
the harmonic orders of the magnetic fields The results are compared with those

of FE analysis to demonstrate their accuracy.
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4.2

Definition of variables

In the following, is presented a list of the variables used in the equations

and relationships of this chapter:

Os
Ds
Dr
ki)
h

P12
n

m

)
g
L
q

Angular abscissa in the stator reference system
Number of stator pole pairs
Number of rotor pole pairs
Spatial harmonic order of the space vector 1 (2) stator field distribution
Spatial harmonic order of the rotor field distribution
Phase of the current space vector 1 (2)
Half of the number of conductors in a slot
Total airgap height
Airgap height
Magnet height
Number of slots per pole per phase

ka2 k-th harmonic component of the winding distribution factor related to the

Y
Sy1(2)
AB
Brem
K.
Ho
umr
Ol
isv1(2)
r

L

space vector 1 (2)
Half of the coil pitch angle
Order of the space vector 1 (2)
Angular displacement between phase-1 axis and magnet axis
Remanent flux density of the magnets
Karter factor
Magnetic permeability of the air
Relative magnetic permeability of the magnets
Angle underlying the magnet pitch
Amplitude of the current space vector 1 (2)
Mean airgap radius
Axial length of the machine

Bgsii2) peak value of the k-th harmonic order of flux density distribution produced

By

nac
Ny
Noda

by current space vector 1 (2)

peak value of the A-th harmonic order of flux density distribution
produced by rotor magnets
Number of slots forming the coil pitch

Set of natural numbers including zero

Set of odd natural numbers

130



An analytical method for calculating the distribution of forces in a bearingless
multiphase surface-mounted pm synchronous machine

4.3 Analysis of flux density distribution in the airgap

Considering 5 real variables xi,.., x;,.., x5, an associated set of complex
variables X,,X;,X, can be obtained by means of the following symmetrical linear

transformations:

5

X, = %Zx,ﬁp(l_l), (p=0,1,2) (4.1)

=1

where o = exp( j2m/ 5). The inverse transformations of (4.1) are as follows:

X, = %xo + 35w, (1=12..5) (4.2)
p=1,2

where the symbol * - ” represents the scalar product, defined as the real part of

the product between the first operand and the complex conjugate of the second.
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The considered reference system is a cartesian one, whose axes x- (horizontal)
and y- (vertical) have the origin in the motor shaft center, the y-axis coinciding
with phase “1” axis (Fig. 4.1). The assumptions taken into account are: infinite
iron permeability, current distribution concentrated at the slot opening, almost
unitary relative permeability of the magnets.

The method will be applied to SPMSM machine with 5 star-connected
stator phase windings, symmetrically distributed within the stator slots: the
windings are supposed to be shifted by 2n/5 electrical radians, with a single
neutral point. According to (4.1) and (4.2), it is possible in this case to represent
the currents system using 2 space vectors in different o - £ planes, being the zero-

sequence component null because of the star-connection of the phases:

lT =1 (Z)ej(pl (t)’ lTst = isv2 (l)ej(pz (t) (43)

svl svl
By applying (4.3) to (4.2) and by explicating some variables, the /-th phase
current can be written as:

B} Y R B A

il - Zisvp _ap(l—l) = isvl e’ +isv2 e’ ’ (l =1, 2""5) (44)
p=1,2

By developing (4.4), it gives:

i(6)=i. cos[(pl(f)_(z_l)zﬂﬂm cos[(pz(z‘)—(l—l)%} (1=12,.5)
(4.5)

When the sv-th space vector current is flowing in the coils, the /-th phase of the
motor produces a magnetic field distribution whose the radial component is given

by (4.6):

H,0,,t)= iHMk cos[kpses — k(1 - 1)2—571 cos{(p(t)— s,(1- 1)%} (4.6)

k=1,23..

132



An analytical method for calculating the distribution of forces in a bearingless
multiphase surface-mounted pm synchronous machine

with H,;, defined as follows:

4 ni

Hyy = k_nz_squdk Si”(kY) 4.7)

Note that the expanded Fourier harmonic series (4.6) contains odd and even
orders, differently from the representations of the magnetic field distributions in
the usual electrical machines, because of the particular location of the coils in the
stator slots; (4.6) is also a function of the angular abscissa 0; whose origin
coincides with the y-axis, as shown in Fig. 4.1.

By combining the relationship (4.6) considering all the phase currents, the k-th
harmonic order Hy; of the 5-phase stator magnetic field, related to the current

space vector s,, can be expressed as:

2 Mk cos[kpses ¢(p(t)] if k¥ s, eN,
H,(0,,0)=12 3 (4.8)
sk k¥s
0 if s ¢ N,

The total stator magnetic field is the summation of all the existing terms given by
(4.8), depending on the value of k. The rotor magnetic field generated by the

magnets can be written as:

H,(0,,)= > Hy, coslhp,0, — hp,A0] (4.9)
h=135.

where Hp;,, By are defined as follows:

Hyy = Bru sin(h O‘—'"j By ——m g (4.10)
hm u, 2 L,+w,K.g

Two different current space vectors, one for torque production and the other for
levitation (4.5), are injected: respectively s,; and s,,, so that the resulting radial

component of flux density in the airgap can be written by means of the principle
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of superposition:

Bn (es’t) = Z[Bskl(es’t)+ BskZ(es’t)+ Brh (es’t)] = ZBSkl Cos[klpses + Py (l)]+
k1 ko b k1

+ ;BSICZ Cos[kzpses + () (t)]+ ;BRh Cos[hpres - hprAe]
2

4.11)

where the values of &, and k, follow the conditions explained in (4.8), and the

amplitudes of the three distributions are defined as follows:

5 5 4 ni
B =tg—Hyp =1y ———L gk - sin(k 4.12
Skl Hoz Mkl MOZleE 25 qK i1 ( 1Y) ( )
5 4 ni
Bg,=u,—H =g ————2 ok sin(k 4.13
Sk2 Hoz Mk?2 M02k2n 25 LPP) (2Y) ( )
hm 2
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4.4 Calculation of the force acting on the rotor

The resulting force acting on the rotor can be determined by applying the
Maxwell Stress Tensor method on a closed surface enveloping the frontal cross

sections of the teeth in the stator:

= ) . _B* . BB, .
T:l(Han—H,B,)nJrH,an; n_j g (4.15)
2 2 Ho

Taking the normal and tangential components of flux density and of magnetic

field into account and neglecting the term related to the product of tangential

components, the expression of the elementary force dF, acting at the angular

abscissa 0, on the elementary surface dS = Lrd0,, results:

B20,.0) 1. . B,(0,.08,(0,.1

dF(0,,t)=T(8,,t)ds =
2, Ho

dst (4.16)

By substituting the expression of dS in (4.16), it gives:

2
dF(0,,1)="2B0 gp_ji + L BB g ; (4.17)
2 Ho
dF,, dF,

where can be recognized the elementary normal component dF, and the

tangential component dF;.

4.4.1 Normal Components of the Force

With the previous assumptions the resulting force acting on the rotor can

be expressed as:

2n 21
F. = [dF, sine, =L [ B2(0,,1)sin0,d6, (4.18)
0 2p Jo
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27 2n
_ [(aF, cos8, =" [ B2(8,,1)cos 0, db, (4.19)
0

F
‘ 2u, J0

n
Remember that the reference axis for the angle 6; is the y-axis. Considering the
integer values of ky, k; and /& that makes non-zero the related harmonic
components of the flux densities in (4.11), we obtain six terms representing the

square of B,:

B(0,.t)= Bfkl + Bjk2 +B2 +2B, B, +2B B, +2B,,B,, (4.20)

When integrating all the terms in (4.20), taking (4.18)-( 4.19) into account, it is
important to consider that the components of forces have to be added in
summation only for the existing harmonic orders of &y, &k, (k>'), which are related
to the stator magnetic fields respectively given by the current space vectors s,
and s,,, and the existing harmonic orders of /, which are related to the rotor
magnetic field. This fact is expressed by means of the pre-conditions (4.21)-

(4.23):

@ €N, 4.21)

ka¥sa oy FT5a oy (4.22)
5 5

heN,u, (4.23)

In (4.22) it is highlighted the interaction between different harmonic orders of the
same current space vector s,,: in fact, as will be clear later, some components of
the force depend on this phenomenon.

In Tab. I are presented all the possible interactions, in this case until the
18-th order for reasons of brevity, determined by using the equations (4.21),
(4.22), (4.23). By performing the calculations (4.19) and considering term by
term of (4.20):
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TABLE I. INTERACTIONS BETWEEN HARMONIC
ORDERS
k1 i k2

p— T

14 e=—T"
TTie1s
16 *"'"_:-_—--_________‘
S T B 17N
T I
2 2n
F)f,f) _Lr ank (0,,t)cos0,d0, = EJ‘ B, cos*[kp .8, F o(t)|cos 0,46
21 Y0 2u, Y0
(4.24)
By considering that:
2 1+ cos(2a.)
cos*(a) = EEE— (4.25)
Applying (4.25) to (4.24), it gives:
2 62 2 62
Flo) - L5 j cos0,do, + 2Bk j cos[2kp,0. T 2¢(t)]cos 0,d6, (4.26)
4uo Y0 O
By considering that:
cos(at)cos(B) = cos(o+B)+cos(a~p) (4.27)

2

Applying (4.27) to (4.26), it gives:
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Flo) = LrBg j cos|(2kp, +1)0, F 2¢(¢ )10, + LBy jocos[(2kps—l)9 T20(7)l6,

8y Y0 8Ky
(4.28)
o) _ LB :
F)fn) " :7‘ {ka 1 [sm[(2kps +1)9 F 2(p]]2 +
(4.29)
o blin, -0, 7207}
2
Fy(,f) _ LBy { [sm[27:(2kp9 +1)F 20] - sin[F 2¢]]+
8o (2hkp, + 430)

+ 2y 1 [sin[Zn(2kps ~1)F 2(p] — sinF 2(p]]} =0

Note that, being both 2ip,+1 and 2kp,—1 integer numbers, the angular

arguments in (4.30) differ by integer multiples of 2w, thus the sinusoidal
functions assume the same value and their difference is equal to zero.
Hence, the contribution of the terms in the form (4.24) to the y-component of the

force is zero:

271 2n
F)gs) = zL_r B?kl(es’t)cos esdes = ij‘ ngl COS2 [klpses + (pl]COS esdes =0
Ko +0 2 Y0

4.31)

For the same reason, the similar quadratic term related to the space vector s,, and

the one related to the rotor magnetic field give a null result (4.32), (4.33):

27 2n
F)SS) _Lr Bszkz(Gs,t)cos 0,d0, = ﬂj‘ B, cosz[kzpses F (pz]cos 0,d06, =0
2 Y0 2W Y0
(4.32)
27 2n
Fy(;) _Lr B2.(0,,t)cos0,d8, = ﬂj‘ By, cos*[hp, (8, —AB)|cos0,d0, =0
2p Y0 21 Y0

(4.33)
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Now, examine the fourth term of (4.20):

Lr 2n
FJEZ) = E OZBskl(es’t sk2 (Gs,t)cos esdes =
Lr 2n _ _
= _BSleSkZJ-COS[klpses + (pl]COS[kZPSGS + (PZ]COS esdes
Ho 0
(4.34)
By applying (4.27):
21
F)Efcli) = ﬂBSleSId{J‘ lCOS[(klps + k2ps )ev + 1 + ®2 ]COS esdes +
Ko 0 2
) (4.35)
+ I %COS[(klps - k2ps )69 + (O * (o)) ]COS evdev}
0
Repeating the same process (4.27) in both the integrals of (4.35):
Lr 2n ] o
Fy(j) = KBSleSkz {J;) ECOS[(klps +hypg + l)es TO+; ]des +
0
2n ]
+J _COS[(klps + k2ps - l)es + (] + (Pz]des +
0 2 (4.36)

21
+J; %COS[(klps _kzps + l)es + (] T (PZ}ZIGS +

27[1 _
+J;) ECOS[(klps _k2ps _1)es T O + (pz}les}

We make the assumption (4.37), that according to (4.36) gives the relationship
(4.38) and consequently (4.39):

Lr 2n ] _
F)E;l) = _BSleSkZ{j _COS[z(klps + l)es T+, ]des +
21, 0 2

21 1
+ j Ecos[zk1 2.0, T0, T, 10, + (4.38)
0

- 271
+ Jj %COSF 0+ ¢, O, + L %cos[— 20, F 01 £ 0, ]deS}
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L . _ -
Fy(g) = 4_JOBSk1 Sk2 )[Sm[z(klps +1)0, F o, F (Pz]]g +

{2(/(1 p,+1

[sin[ZklpSGS Fo,Fo, ]](2)7E +27 cos(i ot ¢, )— %sin[— 20, F o, + 0, ]Sn}

1Ps
(4.39)

As observed above, the first, second and fourth terms in (4.39) have a null result,

being the difference of sine functions with multiples arguments of 2x. The only

term different from zero is the third, not depending on the integration variable

0, . Finally, the result of the integral (4.34), under the hypothesis (4.37) is:

Ly _ )
Fy(,‘f) = IBSleSkZ COS("‘ ¢t (Pz) if kp,—kyp,=-1 (4.40)
0

We make the assumption (4.41), that according to (4.36) gives the relationship
(4.42):

klps _k2ps -1=0 = k2ps = _1+k1ps (441)

Lr 2n ] —
Fy(le) = _BSleSkz{j —COS[2k1ps9s TO+; ]des
21, 0 2

21
+ IO %cos[z(klps - l)ev + (] + ®; }Zev (442)

o 2n
+J~0 %COS[Zesi(Pli(kaes—l—J.o %Cos[i@li@z]des}

Lr 1 . — — 21
Fy(j) = 4_BSk1BSk2{2k [sin(2k,p,0, F ¢, F 9, )]0 +

Ho 1Ps
+———[sin[2(k; p, —1)0, F @, F 0, [F" + (4.43)
2(klps _1)[ [ ( 1 ) 1 2]]0
2n
+ {%sin(ZGs o, 0, )} +2mncos(Fo, + ¢, )}
0

With very similar conclusions of the other assumption, the result of the integral

(4.34), under the hypothesis (4.41) is:
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nLr _ )
Fy(g) = IBSleSM COS(‘*‘ ¢ * (Pz) it kp,—kp,=1 (4.44)
0

Note that the assumptions regarding the sum of the numbers of pole pairs, shown
in (4.45), (4.46) are not examined because they don’t correspond to real cases,

being impossible to occur.
kp,+k,p,+1=0 = kp,+kp,=-1 (4.46)

So, the final form of the y-projection of the normal component of the force,

related to the d factor of (4.20), is given by:

F(d):n—B Bg., cos|\F @, s y
" S, s1Bsia cos(F @1 £9,) if kp, —kyp, =1
(4.47)
m m

It is very important to observe that the signs of the conditions of existence have
to be accorded to signs of the angular phases in the same order that appears in
(4.47). Performing similar calculations, by integrating the e and f factors in (4.20)
which refer to the interactions between every single stator current space vector

and the rotor field produced by the magnets, the following relationships can be

found:
if kp.—hp =-1
Fy(rez) = HBSleRh COS(hPrAe + (Pl) ) \Ps =P
2, if  kpy—hp, =1
(4.48)
with : i Sy eNy N heN,y
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N if kyp,—hp, =1
F y(r{ ) = uBS/czBRh cos(hp,AOF ¢,) . 2Ps =
21y if kyp,—hp, =1

(4.49)

22 eNy, A heN,y

By adding up all the non-zero terms of the y-projection of the normal component

of the force, is obtained:

1+k
ko :—lpseNO
nLr _ Ps
Fy(y]fl’kZ) = Zz_BSleSkZ cos(Fo;20,) ¥ ek
i “Ho ky =—1Ps ¢ N (4.50)
Ps
k, + k, ¥
with: — SVIGNO A 2—SV26N0
m m
1+k
=P € Noaa
L r
Fy(r]fl’h) = Z;_FBSleRh coslhp,AOF ¢, ] ¥ lp i
k1 0 h:—_ TPy ENodd (451)
Py
k, F
with : 1—SVleNO
m
1+k
h:—szGNodd
L r
Fy(;lfz'h) = Z;_FBSkZBRh coslhp, AOF @, ] ¥ 1pk
6 Mo h=_R2Ps N (4.52)
Py
ky ¥
with: ~22 ¢ 0
m
o 1+k
ks :—ZPSENO
' L —_ S
Fy(rlfz'kz ) = Z;_FBS/CZ B, COS[+ 0p) i(Pz'] v lpk
’ - +
o 2Ho k= "2Ps N (4.53)
ky, ¥ ky ¥
with : 2—SVZGNO A 2—szeNO
m m
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The equations (4.53) represent a typology of interaction not explicated in (4.20):

it is the influence between different harmonic orders belonging to the same
current space vector s,,, denoted with k, and k,. In fact, it happens in the
analyzed bearingless machine that some harmonic orders of s, exist, whose

number of pole pairs differ of +1: in this case, they also give a contribution to

the resultant force. Is important to note that the phase angle ¢, in (4.53)

represents exactly the same phase angle ¢,, being only a formal distinction

which indicates that the sign of ¢, depends on the existing harmonic order ké ,
while the sign of ¢, is obviously related to &, : in this way the argument of the

function cosine in (4.53) has to be understood as the algebraic sum of the same

variable ¢,, resultingina 0, 2¢, or —2¢,. Finally, the resultant y-projection of

the normal component of the force transmitted to the rotor is the sum of the

equations (4.50), (4.51), (4.52), (4.53):

F,, = Flfk)  plah)  pllah) | pliaky) (4.54)

A similar calculation can be performed to determine the resultant x-projection, by

considering term by term of (4.20) integrating with (4.18):

xn

2n
() J. BZ.(0,,)sin0,d6, Lr J. B3, cos[kp 0, F o(t)]sin6,d6,
2“0 2 Y0

(4.55)
By applying (4.25) to (4.55), it gives:
Flo) = LrBg J' 5in®,do, + LrBg, f cos[2kp 0, F 2¢(t)]sin6,d6, (4.56)
4u, Y0 4o 0
By considering that:
cos(at)sin(B)= sin(o+)~ 5 sin(o.~p) (4.57)
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By applying (4.57) to (4.56), it gives:

Fx(,f) Lr BSk jszn[(kaS + 1)9 + Z(p( )]d@ — LrBSk jsm[(2kps —1)9 + 2(p( )]d@
8“0 8”‘0
(4.58)
2
Fx(:) LrBSk {2kp [— cos[(kaS +1)6 ¥ 2(p]] +
Ho (4.59)
Zsz _1 [— cos[(kas — 1)9 + 2(p]] }
2
Fx(,f) _ LBy 1 [— cos[27t(2kps +1)F 2(p]+ cos[$ 2(p]] +
8uy | 2hp, +1 (4.60)
1 [— cos[2n(2kps - 1)$ 2(p]+ cos[i 2(p]]} =0
2kp, —1

In a very similar way to the equation (4.30), being both 2kp, +1 and 2kp, —1

integer numbers, the arguments of the cosines in (4.60) differ by integer
multiples of 2m, thus they assume the same value and their difference is equal to
zero. Hence, the contribution of the terms in the form (4.55) to the x-component

of the force is zero:

Lr 27

pla)_ L
2 Y0

xn

Bfkl(e t)sme do, ——J. BSklcos [klpses+(p1]sm9 do, =0
(4.61)

For the same reason, the similar quadratic term related to the space vector s,, and

the one related to the rotor magnetic field give a null result (4.62), (4.63):

2n 2n
Fx(rlz)) = i Bssz(es’t)Sin esdes = EJ‘ B§k2 COSZ[kZPSOS + (pZ]Sin esdes =0
2p Y0 21 Y0
(4.62)
) Lr (2* : 2
F)=—="| B’(0,,t)sin0.d0, = I Bz, cos [hpr(G AG)]SlnG do, =0
21 Y0 2u, Y0

(4.63)
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By integrating the fourth term of (4.20):

27
Fx(ril) = zL_r ZBskl(es’t sk2 (es’t)Sin esdes =
0
Ho , i (4.64)
= _rBSleSkZJ-COS[klpses + (pl]cos[k2pses + (PZ]Sin esdes
Ho 0
By applying (4.27) to (4.64):
@) _ Lr 2n ] o .
Fxn = _BSleSkZ J.O ECOS[(klps + kzPs )es + ?y + (0)) ]Sln esdes +
Ho ) (4.65)
+ J‘ %COS[(klps - k2ps )es + (pl * (P2 ]Sln esdes}
0
By applying (4.57) to both the integrals of (4.65):
Lr 2n] | _
Fx(j) =—BgBgio {I _Sln[(klps +hkypg + l)es +0 +¢, ]des +
2p, 0o 2
27 1
_J- _Sin[(klps +kypg — 1)9s 0, +0, ]des +
0 2 (4.66)

27
+J‘0 %Sln[(klps _k2ps +1)es _T_(pl i(pZ}ies +

2n ] ) _
- J; 551”[(k1ps —kypg - l)es +o; ¢, ]des}
We make the assumption (4.67), that according to (4.66) gives the relationship
(4.68) and, consequently, (4.69):

klps _kzps +1=0 = k2ps :1+k1ps (467)

27
Fx(};i) = iBSkIBSkz{J lS"”[z(klps + l)es +0,+0, ]des +
2u, 0 2

2n ]
=[S sinl2kip,0,F 01 F 0, 0, + (4.68)
0

2n] n] —
+Io Esm[+(p1i(p2]d(9s—jo ESln[—zes"‘(Pli%]des}
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L 1 —
Fx(j ) = ﬁBsmBszcz{m [ cos[2(kyp, +1)0, F @, F o, 5™ +

1
2klps

+

[cos[Zklpses +o, 0, ]]f)n + (4.69)
+27 sin(i ¢, to, )+ %COS[— 20, ¥, £, ]f)n}

The first, second and fourth terms in (4.69) have a null result, being differences
between cosines with arguments multiples of 2. The only term different from

zero 1is the third, not depending on the integration variable 0. Finally, the result
of the integral (4.64), under the hypothesis (4.67) is:
nLr

Fx(:zi) ZKBSleSkz sin(Fo, £ ¢,) it kps-kyp,=-1 (4.70)
0

We make the assumption (4.71), that according to (4.66) gives the relationship
(4.72) and, consequently, (4.73):

klps _k2ps -1=0 = k2ps = _1+k1ps (471)

Lr 2n ] _
Fx(j) :KBSleSkz{J.O ESln[zklpses +Q; + 0, ]des +
0

2n
_—[0 %Sln[z(klps _l)es + (] + (00 }Zes (472)

2n ] _ 2L B
+J;) Esm[ZGS +o,t0, ]des_,[o Esm[+ ¢ ¢, ]des}

L 1 _ n

Fx(j) :ﬁBSleSkz{zklps [_cos(zklpses + ¢ "‘(Pz)]g

+———|cos[2(k, p, =100, Fo, Fo, ]I (4.73)
Z(klps _1)[ [ ( 1 ) 1 2]]0

21

—{%cos(ZOs +o, 0, )} —2msin(F @, i(pz)}

0

With very similar conclusions of the other assumption, the result of the integral
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(4.64), under the hypothesis (4.71) is:

nlr Lo )
Fx(j) :_IBSHBSM sin(Fo, £, ) if kips—kyps=1 (4.74)
0

As done before, the assumptions regarding the sum of the numbers of pole pairs,

replicated in (4.75), (4.76) are not examined because they don’t correspond to

real cases.

So, the final form of the x-projection of the normal component of the force,

related to the d factor of (4.20), is given by:

nLr

@) —2H BBz Si”(1 (1 i(Pz) it kp,—kyp,=-1
Fi) =170
o nLr . .
__2“ B Byr Sl”("‘ (O i(Pz) if kps—kyp,=1
0
4.77)
k, ¥ k, ¥
with : 1—SVIENO A 2—SVZENO
m m

As said before, the signs of the conditions of existence have to be accorded to
signs of the angular phases in the same order that appears in (4.77). Note that the
sign of the x-component changes depending on the condition to be verified (4.67)
or (4.71), differently from the y-component (4.47).

By integrating the e and f factors of (4.20) in a very similar way to what
has been done for d, the interactions between every single stator current space

vector and the rotor field produced by the magnets can be expressed as:
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HBSlekh sin[hp,,AG + (Pl] if kypy —hp, =-1
() _ ) 2Ho
FY¥ =
. L :
_ﬂBSleRh sinlhp, AOF @, if kypy —hp, =1
2p,
(4.78)
, ki ¥ 5,
with: ——eN;, A heN_y
m
nLr : - .
~—— B2 By sin[hp, A0 F ¢, ] if kyps —hp, =-1
£ Z )Mo
I Bgya By Si”[hPrAe + (Pz] if kyps —hp, =1
2p,
(4.79)
, ky ¥5,,
with: —~eN, A heN_y
m

By adding up all the non-zero terms of the x-projections of the normal

component of the force, is obtained:

nLr . [— 1+k P
. nLr T -1+ Kk p,
Z_—BSquSkz Sln[+(P1i(P2] VkZZ—IEN
K 2“0 Ps
(4.80)
k, + k, ¥
with: -~V eENy A 2—SVZGNO
m m
L 1+k
Z;I_FBSleRh sinlhp, A0 F ] Vh:—lpSENodd
F(kl;h) _ kl MO pr
o L —1+k
Z_HBSleRh sinlhp,00F ] Vh=—""Psen ,
ky 2“0 Py
(4.81)
, ky s,
with: ———eN, A heN,y

m
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nlLr 1+k Py
22 Bea By sinlhp, AOF @,] Vh=—"2"2e Ny
F(kzyh) _ MO pr
Xn
L -1+k
Z_HBSkZBRh sinlhp, AOF @,] Y h :p—zpse N oda
k, ¥
with : 2—SVZGNO AN heN,y,
m
(4.82)
nLr l+k,p
22 By, Bsiy, sin[F o, £0y] Vhy=—"2"eN
F(kz,kZ') k2 l"l() pS
v nLr 1+ k,p,
Z— By, Bgey sin[F 0y ¢y ] Vhy=—-2""eN
i 2p, Ps
ky, T ky ¥
with: ~2- 2 ¢ 0o A 2—SV26N0
m m
(4.83)

The same considerations done for the equation (4.53), related to the meaning of
k, and ké, are valid for (4.83). So, the resultant x-projection of the normal
component of the force transmitted to the rotor is the sum of the equations (4.80),

(4.81), (4.82), (4.83), taking into account all the presented assumptions:

Py = P01 P )l (450
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4.4.2 Tangential components of the force

An analysis to determine the contribution of the tangential components of
the magnetic field to the radial forces is presented, with reference to the

equivalent surface current density G(xs,t), responsible for the normal component

distribution of the magnetic field:

oH,

Glx,,t)= o

(4.85)

Note that x; 1s the linear abscissa corresponding to the angular one 0,. By

considering the simplified assumption that gives the tangential component of

magnetic field H, equal to the linear current density J, it is possible to find a
correlation between H, and H,:

Hys - Ht;aH”S (4.86)

Ox, ox,

H,(x,,t)=J(x,,t)=G5=

In order to determine the expression of (4.86), based on (4.11), it is possible to

write:

(6,.1) kZHS,d kp,0. .1 JrkZHS,C2 kyp.0,.1 +ZH (hp,0,.1)  (4.87)
1 2

where
P8, =0, =—x, (4.88)
T

Note that as specified in (4.88), p, and p, have the same value, being the pole

pair number of stator and rotor fields for the motoring torque. The derivative of

H, by using (4.87), (4.88) can be expressed as:

aH _ zkﬂt OH (ki 0, )+Zk275 aHskZ(k2ps6s’t)+ hm 0H ,,,(hp, ;1)
klpses) ky T a(kZPSGS) h T a(hpres)

(4.89)
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By substituting (4.89) in (4.86), calculating the derivatives and explicating the

values of the flux densities, H, can be finally expressed as:

Z__BSkl sin klpses + (P1( )]
g Mo T

_Z__BSkZSZn[k2pses+(P2 Z__BRhSln[hpres h rAe]
k> Ho T h Ho T

(4.90)

According to the Maxwell stress tensor expression (4.15), the tangential

component of T is given by H,B, , calculated by multiplying (4.11) and (4.90),

resulting in the sum of the following nine terms:

Z— —BSkl sinlky p,0, F @, (¢)]cos[k, p,0, F ¢,(¢)] (4.91)
kdm : — —
Z_ ~== By By sinkyp,0, F ¢y (¢)|coslk, 0, F ¢,(¢)] (4.92)
ky. o HOT
kdm
Z o —BSleRh Sln[klpses + ¢\ ( )]Cos[hpres o hprAe] (493)
k1,h
kyom _ : —
Z_ =2 Bg1 By coslkyp,0, F ¢y (¢)]sinlk, p,0, F 0, (¢)] (4.94)
ky ko Mo
Z_ e B sinlky p,0, F @, (¢)]coslk, p,0, F 0, (1)] (4.95)
%) 0
k,om
Z_ BSk2BRh Sln[k2pses + (PZ( )]cos[hpre hprAe] (496)
ko h HoT
hom — :
Z T BSleRh Cos[klpses + ¢ (t)]Sln[hpres - hprAe] (4.97)
h.ky HoT

151



Chapter 4

hd
Z— “BSszRh coslky p,, F @, (¢)]sin[lp,0, —hp, A6] (4.98)
hky
hSTC 2 .
> —=— By sin[hp,0, — hp,A0]cos[ip,0, — hp,A0] (4.99)
HoT

As done in section 4.4.1, every summation described in (4.91)-(4.99) has to be
projected along the axes directions and integrated between 0 and 2m in order to
determine the x- and y-components of the resulting tangential force in the

cartesian reference system (4.100), (4.101):

21 21
F, = Iodﬂ cosO, = Lr jo H,(0,,1)B,(0,,t)cos0,d0, (4.100)

21 21
F, = OdFt(— sin®,)=—Lr OHt(OS,t)Bn(OS,t)sin 0,do, (4.101)

As seen in the previous, the result of the integrals is non-zero when the difference
between the pole pairs numbers of two fields in exam is equal to + 1.
Furthermore, the terms in summation are considered for the existing harmonic

orders of k;, k,, h. Let us perform the calculations (4.101), considering the

terms (4.91), (4.95):

21
Fy(f’e) =—Lr jo - "5—“B§k sinlkp 0, F ¢(t)]cos[kp 0, F o(t)]sin0,d6, (4.102)
HoT

By considering that:
sin(ot)cos(o) = %sin(Zoc) (4.103)

Applying (4.103) to (4.102), it gives:

Flae) - 1om kBSkLrIOSln[kaSG T 20(t)]sin6,d0

4.104
vt 2 H()T ( )

N

By assuming that:
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sin(o)sin(p) = <@ ‘B);COS(“ +p) (4.105)

Applying (4.105) to (4.104), it gives:

de 19 27 _ 27 _
Fy(t ) — Zu—;kngLr{Lcos[(kas - I)OS ¥ 2(p]d9s —IOCOS[(kaS + 1)9s ¥ 2(p]d@s}
(4.1006)
a.e 19 . — T
e =L Sl g, 10, 20
0 ‘ (4.107)

- T [Sin[(kas + 1)95 F 2@]]5"} =0

Proceeding by analogy, it can be assumed that:

Fy(f):ls—nhB,%er !
4 pot 2h

[Sln[(thr - 1)99 - 2hprAe]]§n +
' (4.108)

1 , n
- i, 71 [sm[(thr + I)OS - thrAO]](z) } =0

Thus, the integrals related to the terms of the typologies a, e, i, are zero. Let us

calculate the terms of the typology ¢, f, corresponding to equations (4.93),
(4.96):

Fle) = —1r

— == By By, sinlkp 0, F ¢(t)|cos[hp, (6, — AB)]sin6,d0, (4.109)

J‘Zﬂ kom
0 Mot

By considering (4.110) and applying it to (4.109), it gives (4.111):

sin(ot)cos(B) = sinfo + B);—sin(oc ), (4.110)
FenN Lo p pop J'zn' ¥ '
= s BriyLT szn[(kps + hp, )E)S ¥ (p—hprAG]sm 0,d0, +
2 Mot ’ @.111)

n IO Sin[(kp, —p. )0, F 0+ hp, AO]sin esdes}
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By using (4.105) in (4.111):

. 27
Fy(f’f) = %% kBSkBRer{J.Ocos[(kps +hp, —1)0, Fo— hprAG]des +
0

2m
- jcos[(kps +hp, +1)0, Fo— hprAe]des +
0 (4.112)

+ J‘Ozcnos[(kps —hp, —1)0, F o+ hprAO]dOS +

- IOZCTZ)S [(kps —hp, +1)0, F o+ hprAE)]dGS}

Consider, as done above, that the sum of the pole pairs of the stator and rotor
fields cannot be equal to =1, conditions impossible to verify, thus the hypothesis

(4.113), (4.114) aren’t admitted:

kp, +hp, —1=0 = kp, +hp, =1 (4.113)
kp,+hp, +1=0 = kp, +hp, =-1 (4.114)
Let us suppose that (4.115):

kp,—hp,—1=0 = kp, —hp, =1 (4.115)
By using (4.115) in (4.112), it gives (4.116) and consequently (4.117):

27
Fy(f’f) = %%kBSkBRer{J‘Ocosp(kps ~1)0, Fo—hp,ABL0, +
0

27 21
- j cos(2kp 0, F o — hp, AOYO, + Iocos($ 0+ hp,AOYO, + (4.116)
0
21
- Lcos(29s o+ hp,AG)d@s}

ples)_1om kB, By, Lr{ ( [sin[2(kp, —1)0, F @ — hp, ABIL™ +

1
g 4 1ot 2(kp, 1)
1

[sin(2kp,8, F @ — hp,AB)L™ + 21 cos(F @+ hp,A8)+ (4.117)

N

—%[sin(Zes To+ hprAe)]ﬁT‘}

154



An analytical method for calculating the distribution of forces in a bearingless
multiphase surface-mounted pm synchronous machine

For the reasons already mentioned several times, all the integrals dependent on
0, calculated on the interval [0,2n] are zero; so, the third term is the only

contribution to the force:

2
Fles) = k%%BSkBRh cos[hp, ANOF o(t)]  if kp,—hp, =1 (4.118)
0

Let us suppose that (4.119) is verified:
kp,—hp,.+1=0 = kp,—hp, =-1 (4.119)
By using (4.119) in (4.112), it gives:

(c.r) 1 om 2n _
Flor) =2 2% kB By L I cos(2kp 0, F o — hp, AOYO, +

4 pot 0
271 271

- J cos|(2kp, +1)0, F ¢ — hp, 2010, + j cos(~20, T +hp,AOMO, +  (4.120)

0 0

21
- J.Ocos@ o+ hprAO)des}

By executing the integrals in (4.120):

ey 18 1o _ n
1 , _ "
—m[sm[Z(/{ps +1)0, F ¢ —hp, ABJL™ + (4.121)

—%[sin(— 20, Fo+ hprAG)](z)TE -2 cos(i o+ hprAG)}

The only not null contribution to the force is the fourth term of (4.121):

2
Fles) = —k%%BSkBRh coslhp AOF o(t)]  if kp,—hp,=-1  (4.122)
0

So, it can be concluded that the contribution of the terms of the typologies ¢ and

f to the y-component of the tangential force acting on the rotor is given as:
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2
k%%BSkBRh cos[hp, A8 T o(¢)] if kp,—hp, =1
Flef) = i ;L (4.123)
- k%u—: By By, coslhp,A0F o(t)]  if kp,—hp, =—1
0

Obviously, this contribution has to be considered in the interaction between

everyone of the current space vector s,, s,,, and the rotor magnetic field

produced by the magnets:

2
ky %&BSleRh cos[hp, AOF @, (¢)] if kp,—hp, =1
Ho

2
—k % yBSleRh coslhp, AOF @, (1)]  if kyp,—hp, =1
HoT

(4.124)

2
ky %yBSszRh cos[hp,ABF @, (¢)] if kyp,—hp, =1

FU) — Hot (4.125)

2
—kz%SL—FBSszRh cos[hprA9$(p2(t)] if kyps—hp,=-1

HoT

Let us calculate the terms of the typology g, %, corresponding to equations

(4.97), (4.98):

2n
F)gigh) = _Lrjo _%BSkBRh COS[kpses + (P(t)]Sln[hpr (ev —Ae)]Sll’l esdes (4126)
0

By considering (4.127) and applying it to (4.126), it gives (4.128):

cos(a)sin(B) = sin(a i B); Sil’l(OL — B) (4.127)
(gn) 1 Om n — :
Fleh) =~ % o B Lr I sin[(kp, + hp, )0, F ¢ — hp,AO]sin©,d0, +
2 Mot ° (4.128)

27
- Josin [(kp, - hp, B, T @+ hp,A8]sin esdes}
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By using (4.105) in (4.128):

jj

21
y(tg " = %S_RhBSkBRer {.[ cos|(kp, + hp, —=1)0, F ¢ — hp, A0, +
HoT 0

2m
- jcos[(kps +hp, +1)0, Fo— hprAG]des +
0 (4.129)
27
- [ cosllkp, — hp, ~1)0, T 0+ hp, 20K, +

i J?Z)s[(kps —hp, +10, T+ hp,AG]d@s}

As done in the previous, the hypothesis (4.113), (4.114) are to be considered not
valid, so suppose that:
kp, —hp,—1=0 = kp, —hp, =1 (4.130)

By using (4.130) in (4.129), it gives:

27
Flgh = %5—“ hBSkBRer{ I cos[2(kp, —1)0, F ¢ — hp, AOJO, +
Hot 0
27 27
- Icos(kases Fo—hp,AOYO, — J.cos(¢ @+ hp, AOYO, + (4.131)
0 0

2n
+ LCOS(ZOS o+ hprAO)des}

By executing the integrals in (4.131):

16 1 : — n
F)S;gh) = ZM—:; hBSkBRer{m [sm[Z(kpS — l)es + Q- hp},Ae]]é +
- 2kl [sin(kaSBS Fo— hprAO)]éTC —2ncos(F @+ hp,A8)+ (4.132)
Ps

+ %[sin(Z@S o+ hprAG)]gn}

The third term of (4.132) is the only contribution to the force:
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2
FEh = —h%iL—:BSkBRh coslhp,AOF o(t)]  if kp,—hp, =1 (4.133)
0

Let us suppose that (4.134) is verified:
kp,—hp, +1=0 = kp, —hp, =—1 (4.134)
By using (4.134) in (4.129), it gives:

2m
Fy(;g’h) = %%hBSkBRhLI’{J‘OCOS(ZkPSQS Fo—hp,AOXO, +
0

- '[Ozcnos[Z(kps +1)0, To—hp,AOHO, — chfés(— 20, F ¢+ hp,AOMO, +  (4.135)

27
+ J‘Ocos(i o+ hprAG)dGS}

By executing the integrals in (4.135):

FJgig’h) = ls_nhBSkBRer{ 1 [Sln(zkpses + ( hprAe)]éTc +
4 HoT 2 s
1 , _ n
- m[sm[Z(kps +1)0, Fo—hp,AO[L" + (4.136)

+ % [sin(~ 20, F @+ hp, AB)|™ + 2mcos(F o + hp,AG)}

The only not null contribution to the force is the fourth term of (4.136):

2
Flgh = h%%BSkBRh cos[hp,AOF o(t)]  if kp, —hp, =1 (4.137)
0

So, it can be concluded that the contribution of the terms of the typologies g and

h to the y-component of the tangential force acting on the rotor is given as:

2
- h%S—L:BSkBRh coslhp,AOF o(t)]  if kp,—hp, =1
FEh =2 SLHO (4.138)
h%u_:BSkBRh coslhp, A0 F ()] if kp, —hp, =-1
0
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As in the previous, this contribution has to be considered in the interaction

between everyone of the current space vector s,;, s,,, and the rotor magnetic

field produced by the magnets (4.139), (4.140):

n® SLr

- hT_BSleRh coslhp,A0F @i(¢)]  if  kyp,—hp, =1

Fl&) = Hot (4.139)
h%%:BsmBRh cos[hp,AOF ¢, (1)] if kpg—hp,=-1
- h%yBSkZBRh cos|hp, MO F ¢, (1)] if kyp,—hp,. =1

Fy(th) _ HoT (4.140)
h%%:BSszRh cos[hp,AOF ¢, (¢)] if kyps—hp,=-1

The last typologies to analyze are b and d, related to the equations (4.92),
(4.94):

=—Lr j kiom BSleSkz sin[k,p,0, F ¢, |cos|k,p,0, F ¢, ]sin0,d0, (4.141)

By applying (4.110) to (4.141), it gives (4.142):

1 &n 2n _ .
Fy(tb) = 5_TleSleSkzL”{L””[(klps +kypy )es +¢;+ (Pz]sm 0,d0, +
Ho (4.142)

21
+ J‘OSin[(klps - k2ps )ev + (O T (o)) ]Sln evdev}

By using (4.105) in (4.142):
1 om

27
Fy(tb) = Z_M . leSleSker{J.OCOS[(klps +hyps — 1)9s +0,+0, ]des +
0

27
jOCOS[(k1PS+k2Ps+1)9 +(p1+(p2]d(9 +Icos[(k1ps kzps—l)() +(p1+(p2]d(9 +

21
IOCOS[(klpe kops +1)0, F @ £, 16, }

(4.143)
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As done in the previous, the assumptions (4.144), (4.145) are to be considered

not valid:
kip,+k,p,—1=0 = kip,+kyp, =1 (4.144)

So, let us to examine the hypothesis (4.146):
klps_k2ps_1:0 = klps_k2ps =1 (4146)
By using (4.146) in (4.143), it gives:

1 on

21
Fy(tb) = Z_leSleSk2Lr{J. COS[Z(klps - 1)95 T, +¢, ]des +
HoT 0

21 21 21
- IOCOS[%pSOS T F o, H0, + LCOSF 0+ 0, 6, — IOCOS[ZGS F o+, ]des}

(4.147)
By executing the integrals in (4.147):
F(tb) = lS_TCleSleSkZLr ;[Sin[z(klpv - 1)eq T+ cpz]]é“ +
. 4 pot 2(k1Ps - 1) A A
— 2k1 [sin(2k,p,0, F ¢, F ¢, )](Z)TE +2ncos(F @+ ¢, )+ (4.148)
1Ps
~2loin(20, %o, 20,
The third term of (4.148) is the only not null contribution to the force:
(») n* SLr _ .
Fyl =k TEBSHBSM COS[+ 1 (t)i N (t)] if kpy—kyps=1 (4.149)
0
Let us suppose that (4.150) is verified:
kp,—k,p, +1=0 = kp,—k,p, =-1 (4.150)

By using (4.150) in (4.143), it gives:
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27
Fy(tb) = i_&t leSleSk2Lr{j 005[2k1ps9s 0, +0, ]des +
HoT 0
27 21
- jcos[2(k1ps +1)0, T, T ¢, ]d@s + Icos[— 20, F o, o, ]d@s + (4.151)
0 0

27
- LCOSF P10, ]des}

By executing the integrals in (4.151):

1 on
F) = Z_leSleSker{

vt [Sln[zklpcev + (1 + 02 ]](Z)TE +
HoT

1Ps

! ) T T ~ 1. _ .
_ m[sm[z(/qps 10, F 0 7, [§7 ~[sin(-20, % 0 £ 0" + (4.152)

- 2ncos(¢ ¢t 0, )}

The only not null contribution to the force is the fourth term of (4.152):

2 8L _ .
Fy(tb) = _kl%u_:BSleSkz COS["‘ (Pl(t)i (Pz(t)] if kp,—kp,=-1 (4.153)
0

So, it can be concluded that the contribution of the term of the typology b to the

y-component of the tangential force acting on the rotor is given as:

> 3L . -
ky %_:BSleSkz COS["‘ ¢ (t)i ) (t)] if kip,—kyp,=1
F) = ;‘0 (4.154)
oL _ '
—k %M_:BSleSkz cos[F oy (t) £ 9, (1)]  if  kyp—kypy =1
0

Without the need to execute the whole calculation, the contribution of the term of

the typology d can be determined by analogy with respect to (4.154):

* 8L - i
—ky %_:BSkIBSkZ coslt @ (0)F 0, (t)]  if kip—hyp, =1
I Mo (4.155)
dL = ;
ky %M_ZBSleSkZ cos[£ ¢ (1)F ¢, (¢)] it kps—kpy=-1
0
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4.4.3 Projections of the tangential force

The components related to the x-projection were calculated in a very
similar way to that shown in the case of y-projection; only the final results being
reported here. In the following are listed all the contributions to the y-projection
(4.156)-(4.161) and x-projection (4.162)-(4.167) of the tangential component of
the force. Note that the equations (4.160), (4.161) and (4.166), (4.167) related to
the interactions between different harmonic orders of the same current space

vector s,,, were determined by analogy. The resultant tangential force is given

by adding all the terms, respectively along the x and y axis.

2
n° OLr _ —1+kp,
F(kl,kz) A Ho Ps
vt - 2
n” OLr _ 1+ k p,
Z:—kl——BSleSk2 cos[+ (O} i(pz] vV k, - ThPs N
k 2 HoT Ps
with k1+SVIeNO meNO
m m
(4.156)
2
n” OLr _ —1+k p,
F(k2 k) _ k Ho Ps
vt - 2
n” OLr _ 1+ k p,
Zkz T_BSleSkz coslt 9, F9,]  Vh=— e N
Ky HoT Ps
with : 1—i_S”eNO MENO
m m
(4.157)
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n* SLr -1+ kp,
Z(kl ~h)— 5 BSleRh coslhp, AOF @] V¥ h= e Noda
S n* SLr I+kp
Z(h ky )T_BSleRh coslhp,AOF @] Vh=—"1"e N,y
k HoT Py
with : %ENO AN heN,y
(4.158)
n* 8Lr 1+k,p,
Z(kz ~h)— > — By, By coslhp, AOF @,] v h= =2l Noda
F(k2yh) 3 k> HoT Py
" n* SLr l+kp
Z(h ky )T_BSkZBRh coslhp,AOF ¢,] ¥V h=—""e N,
k> HoT Py
with : kz-:nﬁ eNy N heN,y,
(4.159)
n® 8Lr . —1+kyp,
Zkz 2 e BSszSkz cos[Fo,t9,] Vi ZP—ZPEN
Flhako) _ k2 0 *
g n* 8Lr o 1+kp
Z ky— ) — Bg, Bg,, cos ["‘ ¢y T (Pz'] Vk=—>2"¢eN
ko HoT Ps
with Ky ¥ 502 e N, kT, e N,
m m
(4.160)
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Z klzn 6LrBSszSk2 cos|£ ¢, T ¢y ] sz—MEN
(k o ) o 2 HoT D
F YALY)
Zkz — B, By cosl @2 F0y]  Vhy=—T2"eN
T 2 pot Ps
m m
(4.161)
. Vi, = HRPs oy
Ll/' pS
kl k2 Z kl BSleSkz Sli’l[+(P1+(P2] 1+ k
vk, _ TP
Py
. lisvl k2+S
with ENy A € Ny
m m
(4.162)
8 Yk, = 1+k1pS€N
TE Lr pS
Fk2 ) Z ky— BSquSkz sinl+ ¢, F ¢, _l+kp,
Ds
: 1 TS0 ky ¥ s
with —eNy A € N
m m
(4.163)
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-1+ p,

5 Y h= ENodd
. )h TE Lr pl"
HO =3 k) Bsatnlip 207a] |
m Kot v h =p—1ps€Nodd
with : k ;S“ eNy N heN,y,
(4.164)
8 \v/ h :_1+—kZl)s€ Nodd
k )h TE L?‘ p}"
R =S ()5 o sl 0%es) |
kZ }"’0 V h = Zps (S Nodd
b,
with : k2 ¥ ;SVZ eNy A heN,y
(4.165)
v - 1+ k&, p, c N
n® SLr Ps
Fx(fz’kz Z ky = 2 — By Bsiy, sinlF @, % ¢y ] l+k
T HoT Vk,= 2ls e v
Py
with : szrszeNo k2+SVZEN0
m m
(4.166)
Vké _ 1+ k&, p, c N
n 5Lr Ps
Vky = 2Ps o
Ps
with : —k2+SV2€N0 A mENO
m m
(4.167)
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The same considerations done for the equation (4.53), related to the meaning of

k, and ké , are valid for equations (4.160), (4.161), (4.166), (4.167).
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4.5 Simulations and results

An electrical machine suitable for bearingless application (Tab. II) was analyzed
in order to validate the relationships presented in the previous chapters, making a

comparison with the results of the 2D FEA software “FEMM 4.2 [14].

TABLE II. DATA OF THE MACHINE

Param. Description Value
Ny number of slots 30
p pole pairs of the machine 1
m number of phases 5
1, rated phase current (A ) 64.68
T, rated torque (Nm) 30.29
g airgap width (mm) 1
D, stator outer diameter (mm) 230
Dy stator inner diameter (mm) 120
D,, mean diameter of the magnet (mm) 116
Dy ext diameter at the bottom of the slot (mm) 170
Dey i diameter at the top of the slot (mm) 126.3
D, rotor outer diameter (mm) 114
Dy rotor inner diameter (mm) 60
Olzdg angle underlying the tooth surface 10.1°
Olyap semi-angle underlying the slot opening 0.95°
Oy angle underlying the magnet 172°
Oley slot pitch angle 12°
Ay stator slot height (mm) 25
he slot opening height (mm) 1

L axial length of the machine (mm) 180
L, magnet width (mm) 2
Ly tooth-body width (mm) 8
Ly slot opening width (mm) 2
Ly slot width at the top slot radius (mm) 5.23
Ly slot width at the bottom slot radius (mm) 9.7
Toy slot pitch at the inner stator radius (mm) 12.57
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The analysis was carried out considering only the normal components of
the force, after having verified that the contributions of tangential components
are negligible, by applying phase currents given by the sum of the two space

vectors s,;=1 and s,,=2. As a general criterion, the torque current space vector

1s maintained in leading by 90 electrical degrees with respect to the rotor position
in order to reach the maximum torque per ampere behavior of the motor. In the

following, the force is calculated by varying the phase angle ¢, related to the

levitation current space vector. From (4.52), (4.82) it is possible to determine the

relationship between the direction of the force ¢, , measured with respect to y -
axis and positive when clockwise-oriented, the phase ¢, and the angular position

of the rotor AB, obtaining:

F(kzjh)

(k2 ) — gl Lon™ | T _I+kps
(pFrz —atnm —hp,A9+(p2, Y h= b GNO

yn

“ (4.168)

(k2.h) _
(p(kz,h) = atn Fxn - _ hp Ae$¢ Vv h :MEN (4169)
Fr 7 2 odd

2 P,

Considering the effects of the second spatial harmonic component of the stator

magneto-motive force (k,= 2) which interacts with the first spatial harmonic

component of the PM (2= 1), (4.169) allows to calculate the direction of the

force @, by means of the following relationship:

o2 =, — 40 (4.170)

In the equation is considered only the interaction between the main harmonic
orders of the levitation current space vector and the rotor magnetic field: this is
the usual approach when designing a control system for bearingless machines,
following the relationship (4.170). In multiphase machines this can produce

mistakes in determining both the module and the spatial phase of the radial force,
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due to the interactions between the higher harmonic orders. The relationships
(4.50)-(4.53) and (4.80)-(4.83), taking into account all the possible interactions,
allows to calculate these errors in terms of differences, in module and phase of
the radial forces, between the simplified prediction (4.170) and the actual
function, representing the locus of radial force vector and allowing the
appropriate corrections.

Figs. 4.2-4.3 show a comparison between the simplified equation “main
harmonic orders” (4.170) and the actual radial force vector determined by using
both the “proposed method”, both the FEA software. The analysis was conducted
by varying the phase angle of levitation current ¢, by multiple values of 22.5

electrical degrees. Particularly, in the Figs. 4.2-4.3 are shown the x- and y-

components of the calculated radial force and the good agreement with the FE

software results, represented by the red dots.

3]
D
el

—o—proposed method
+ FEA 22.5 0 -337.5
—&—main harm. orders | A N
f/ % \x
-315
L4
> — —3
/22/; 0 3375

/7/ 22.5 \315

67.5 -

,67.5/ 00 292.5 \(292.5
790[ 90 270 \727
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- /2475
11252 I 2475
11hs
b

Radial force - y component (N)

157.5
d 1
\l\_ -180 /i/.‘oz.s

Radial force - x component (N)

Fig. 4.2. y-component vs x-component of the radial force:
i1 = 0 A, Lo = 45.74 Ains, AB = 0 mech. degrees, n,. = 10 (/15)
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\ 270
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202.5
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247)5
90 - -270 fNJ
67.5 4%

-3500 -B'f) -2500 -2Q00 -1300 -1Q00 -5p0 500 1000 1500

] 500 7
-112.5 202.5 247.5

» 1006
0 \ -180 /

Radial force - y component (N)

2000 2600 3000 3500
-225
s

112.5 AL - /’/"/X -
e ‘%——"ﬁszs
1988 \ -180 /402.5

LY-F.1Y
2500

Radial force - x component (N)

Fig. 4.3. y-component vs x-component of the radial force:
g1 = 45.74 Ains, i = 45.74 Ao, AB = 0 mech. degrees, n,. = 10 (/15)

In this case, the magnet axis is aligned to the phase “1” axis, consequently A® =

0 and the phase ¢, of the torque current space vector is 90 electrical degrees. By
comparing Fig. 4.2 to Fig. 4.3, the value of i ,, was changed from 0 to the rated

value of 45.74 A, As it is possible to see, the effect of the torque current space

vector s, determines a counterclockwise rotation of the locus that describes the

position of the resultant radial force vector. In fact, for a null value of the torque
current space vector, the actual direction of the radial force is practically

coinciding with that of the phase angle ¢, related to the space vector s,, given
by (4.170), as shown in Fig. 4.2; the influence of i, determines a significant
change with respect to the actual value of ¢, and the predicted one. The pitch

winding is another important factor which influences the locus of radial force
vector, that is represented by a nearly ellipsoidal shape only in the particular case

of a shortened pitch winding, able to eliminate the third harmonic order
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(corresponding to a n,, value of 10).

ZJuUr
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~ W 135 | 1575000 * "o
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_135 ’ "!:ﬂ(\ i
B | 180 L% D025
715T,‘\T/

Radial force - x component (N)

Fig. 4.4. y-component vs x-component of the radial force:
i1 = 45.74 Avns, B2 = 45.74 Ains, AB = 0 mech. degrees, n,. =9 (/15)

In general, by changing this value, the locus seems to be warped with respect to
this ideal shape, as can be seen in Fig. 4.4 for a n,. value of 9. In the Figs. 4.5-
4.6, modulus and phase of the radial force are presented in terms of differences

with respect to the values of the “main harmonic orders” locus: in this way, they

give the corrections to be made in order to obtain the actual radial force vector.
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Fig. 4.5. Modulus of the difference of the radial force:
i1 = 45.74 Apns, 2 = 45.74 As, AO = 0 mech. Degrees
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Fig. 4.6. Phase difference of the radial force:

i1 = 45.74 A, isn = 45.74 Ains, AB = 0 mech. Degrees
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The influence of the rotor position, for a fixed space vector i, represents

another analysis tool, shown in Figs. 4.7-4.8. In Fig. 4.7 the rms torque current is
null, while in Fig. 4.8 is equal to the rated value of 45.74 A,.,. In every picture
the magnet axis is rotated in three different positions with respect to phase “1”
axis: 0, 45 and 90 mechanical degrees. The analysis shows a clockwise rotation
of the locus by the same mechanical angle than the magnet axis, but is important
to note that the position of the corresponding points, characterized by a same
value of the phase ¢,, changes by the same amount but in a counterclockwise

rotation.

3600
—-AG =0° -270
—~—AG=45° -292.5 4TS
——Af = 007 -337.5
ey

Radialforce - y component (IN)

-112.5

Radial force - x component (N)

Fig. 4.7. y-component vs x-component of the radial force:
i1 =0 Amns, Iy = 45.74 A, AB =0, 45, 90 mech. degrees, n,. = 10 (/15)

173



Chapter 4

Radialforce - y component (N)

-180

-157.5

Radial force - x component (IN)

Fig. 4.8. y-component vs x-component of the radial force:
i1 = 45.74 A, Bso = 45.74 A, AB = 0, 45, 90 mech. degrees, n,. = 10 (/15)

In the next will be shown an in-depth analysis, conducted with the presented
algorithm by varying the main parameters in a large number of possible
combinations, to highlight the influence of the magnet pitch, the rotor position

and the coil pitch (a.,,, AO, n,.); the rms values of the modulus of current space

vectors i, I, are fixed to their maximum value. The results are presented in

terms of modulus and phase differences, showing in this way the corrections
which can be applied to the simplified function “main harmonic orders” to obtain
the absolute values of the modulus and difference of the force. All the quantities

are determined as functions of the levitation current space vector phase angle ¢, .
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4.6 Conclusion

In this chapter an analytical model for radial forces calculation in
multiphase bearingless Surface-Mounted Permanent Magnet Synchronous
Motors (SPMSM) is presented. It allows to predict amplitude and direction of the
force, depending on the values of the torque current, of the levitation current and
of the rotor position. It is based on the space vectors method, letting the analysis
of the machine not only in steady-state conditions but also during transients.

When designing a control system for bearingless machines, it is usual to
consider only the interaction between the main harmonic orders of the stator and
rotor magnetic fields: in multiphase machines this can produce mistakes in
determining both the module and the spatial phase of the radial force, due to the
interactions between the higher harmonic orders. The presented algorithm allows
to calculate these errors, taking into account all the possible interactions; by
representing the locus of radial force vector, it allows the appropriate corrections.

In addition, the algorithm permits to study whatever configuration of
SPMSM machine, being parameterized as a function of the electrical and
geometrical quantities, as the coil pitch, the width and length of the magnets, the
rotor position, the amplitude and phase of current space vector, etc.

Finally, the results of the proposed method have been compared with those
of a most used FEA software, obtaining very similar values of the analyzed

quantities.
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Appendix A4.1

MAGNETIC FIELD DISTRIBUTION
IN THE AIRGAP OF MULTIPHASE
ELECTRICAL MACHINES

A4.1.1 Introduction

In recent years, more and more advanced technologies and an impressive
rise in the use of electronics, both in civil as in the industrial sector, given a
contribution to reduce the cost of the components, allowing the use of complex
technologies which in the past had high costs and therefore of little industrial
interest. In the field of electrical machines this evolution led not only to the
realization of power drives controlled by an inverter, capable of ensuring
performance significantly better than those obtained with the previous control
systems, but also the advent of a new type of machines with a different number
of phases from the traditional three-phase, usually employed in generation and
distribution of electric energy. This has reawakened the interest in the study of

multi-phase electrical machines.
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The field of study of polyphase machines is relatively new and in rapid
evolution, but it is already possible to say that these machines are able to provide
better performances of the classical ones, and precisely for this reason, are
currently a matter of great interest. Indeed, the multiphase machines have several
advantages compared to the traditional three-phase machines, such as the
amplitude reduction and the increase of the frequency of pulsating torque, the
reduction of stator phase current, the increase of the fault tolerance. In addition,
the multiphase machines offer a larger number of degrees of freedom with
respect to the three-phase machines, which can be used to improve the
performances.

Furthermore, the creation of software for analyzing the behavior of
magnetic fields in electromechanical devices, based on numerical methods as the
FEA, has greatly contributed to the improvement in the design of electrical
machines by introducing, in addition to an excellent accuracy of the results, also

a considerable saving of time and money.

A4.1.2 The multiphase rotating magnetic field

For an in-depth understanding on the topic of multi-phase machines,
making a brief reference to the theory of the rotating magnetic field, in steady
state conditions, to better understand the equations that will be proposed in the
following sections.

By supposing to operate in linear regime, with an iron magnetic
permeability of infinite value, it can be concluded that there are no appreciable
drops of magneto-motive force (mmf) in the iron, considering in this region a
null value for the magnetic field.

Thus the study is conducted only in the airgap, considering the hypothesis

of the representation along a straight line, as in Fig. A4.1-1, the distribution of
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the current density J (x, y,z) being only by means of z-component (A4.1-6); the

current sources are located in the slots and considered as concentrated in a point.

With reference to the Maxwell’s equations, develop the first of (A4.1-1):

rotH = J
_ (A4.1-1)
divB =0
Ya
—» X
Z /
Fig. A4.1-1. Reference system in the airgap
i J ok
o =] & 9 9 (A4.1-2)
ox oy Oz
H, H, H,

By executing the calculations, the first equation of (A4.1-1) gives three scalar

components:
OH
H. T _j o (A4.1-3)
oy oz
OH, oH, =J, =0 (A4.1-4)
0z ox 4
OH
y OH, _J. (A4.1-5)
ox oy
J=0i+0j+J_(x)k (A4.1-6)

Another very important hypothesis about the magnetic field distribution, gives
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the only component in the y direction, being H = H yj': by applying this to

(A4.1-3)-(A4.1-5), it is obtained:

_8Hy _o
oz
0=0 (A4.1-7)
OH
Yy :Jz
L Ox

From the first equation of (A4.1-7) it results that H, does not depend on z,

varying only as a function of the x coordinate.

L » X
z/

Fig. A4.1-2. Representation of magnetic field distribution in the airgap

Y = (%) (A4.1-8)

In the Figs. A4.1-3 and A4.1-4 are shown the most known typologies of current
density and the related magnetic field distributions, by following the relationship
A4.1-8.
The presented analysis of magnetic field distribution is based on the
following assumptions:
I) The permeability of iron is infinite;
IT) The slots of the machine are semi-closed, having an infinitesimal slot

opening width and height;
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Jz Jz

v

v
A 4

Fig. A4.1-3. Sinusoidal (left) and square wave (right) distributions

Jz Jz

[ ]
v
A
—
A 4
i

Fig. A4.1-4. Rectangular (left) and impulsive (right) distributions

IIT) The magnetic field lines are radial and perpendicular to the rotor and stator
boundary surfaces;

IV) The mean airgap radius of curvature is infinite, so that the airgap path can
be considered as a straight line;

V) Extremity effects are neglected.
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VI) The effects of the leakage fluxes are neglected.
The analysis will be conducted starting from the magnetic field distribution
produced by a one slot-per-pole winding (Fig. A4.1-5). Considering, with no lack
of generality, a 2-pole machine and by applying the second equation of (A4.1-1):

divB=0 = [B-iidS =Byt L+Byr,L=0

(A4.1-9)
= pHt,L+poH,t,L=0 = H,=-H,(=H)

Hn r']i
20

?P ni : -n >

Fig. A4.1-5. Magnetic field distribution (1 slot-per-pole winding)

By applying Ampere’s law on a path crossing the airgap which includes a group

of n conductors, neglecting the x-components of H and taking into account

(A4.1-9) it gives:
}ﬁ-dz':m' — H3-H,5=ni = 2HS=ni (A4.1-10)

where it is understood that H stays for H ,. After a simple step:

ni
=— A4.1-11

20 ( )
As shown in Fig. A4.1-5, the considered reference system has the origin in the
middle of the coil. So, the spatial distribution of the magnetic field is a periodic

function of 0 and can be developed in Fourier harmonic series:

H,(0)= Z.O:Hk cos(k0) (A4.1-12)
k=13,...
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where:
Ho=1 j H(0)cos(k0)do (A4.1-13)
T

Having all the coils the same pitch, equal to 7 electrical radians, it can be easily
prove that the Fourier series has only odd harmonic orders. Furthermore, it
presents only cosine terms due to the choice of the reference system.

The calculation of (A4.1-13) gives:

T /2 T
1 2 / ]
Hy=— _j 1(0)cos(k0)do = ! ;—écos(k())d6+ Jz—g—gcos(ke)de -
2 [ ni T 2 [ " 4wl [ m
:—[—Sin(ke) ——{—Sin(kﬁ)} :———Sil’l(k—j
nk | 28 do  mkL28 x2 W20k 2
(Ad.1-14)
To obtain:
H, =i”—ilsin(kﬁj (A4.1-15)
n 20k 2
By substituting (A4.1-15) in (A4.1-12):
— 4 nil T
H,(0)= T2 sin| k= A4.1-1
.(8) :Z ey ksm(k 2)003(1{6) ( 6)

By assumption the slot opening width and height are considered to be
infinitesimal, without creating leakage fluxes; the coils of one phase are series-

connected with the same current flowing in. The equation (A4.1-16) contains the

following terms: i;—; represents the amplitude of fundamental harmonic order,
VA

1/k sin(kn/2) is the harmonic factor whose value is +1/k, the dependence on the

function cos(k0) represents the spatial harmonic distribution.
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The spatial distribution of the magnetic field is constituted by the superposition
of sinusoidal distributions of decreasing amplitude with the harmonic order 1/k .
For each harmonic the maximum value of the field occurs at the center of the
coil. The amplitude of each harmonic is proportional to the value of the current
flowing in the coil.

Consider a magnetic field distribution generated by a ¢ slots-per-pole

winding, as shown in Fig. A4.1-6:

Hay

Esempio con q =2

Fig. A4.1-6. Magnetic field distribution generated by a ¢ slots-per-pole winding.

The field distribution is formed by the superposition of ¢ contributions,

relatively displaced by an electrical angle o (the angle between two adjacent
slots): the related representation, by means of the Fourier harmonic series,

becomes:
H"(O)zzq: i in—ilsin(kgjcos(k[G—(j—1)(1]) (A4.1-17)
, T

By varying the index ;j from 1 to ¢ it is obtained a summation of cosine
functions which can be calculated as:

cos(k0)+ cos(k[e - oc])+ cos(k[@ — 2a])+ .t cos(k[@ - (q - 1)0(]) =
kqou

Sin
_ 2 _q—l _ _q—] (A41—18)
R cos(/{@ - OLD =qK 4 cos(k{@ - OLD

Sl]’l?
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where the terms K, is defined distribution factor of Blondel (A4.1-19):

k
Sin rqa

Sink—OC
751

Ky = (A4.1-19)

By adopting a suitable winding distribution in the slots, K, allows to reduce,
even remarkably, some harmonic orders. By substituting the relation (A4.1-18) in
the expression (A4.1-17), it gives:
H(0)= i Ak Lsin k™ cos| | 0971 (A4.1-20)

k 2 2

. ™20

Note that the diagram of the magnetic field distribution H9(0) moved in the

original reference system with respect to (A4.1-16) due to the modification of the

distribution, that now is related to g slots-per-pole-per-phase: thus, is necessary

to shift the reference system by an angle (q - l)oc /2, corresponding with the new

peak value of the /7(0) distribution as the centre of the phase.

— 4 ni 1 T
H(0)= ——quk—sin(k—jcos(ke) (A4.1-21)
k; 7 20 k 2

In the comparison between (A4.1-21) and (A4.1-16) the contribution of the ¢

slots-per-pole-per-phase can be recognized in the term gk 4, .

Fig. A4.1-7. A slot with double layer winding
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Consider now the distribution of magnetic field produced by a winding of
q slots-per-pole-per-phase in double-layer. It is shown in Fig. A4.1-7 the
representation of a slot in double layer, while in Fig. A4.1-8 the representation of

a double layer winding.

27T !

Fig. A4.1-8. Double layer winding representation

As can be seen, in a double layer winding it could happen to find, in the same
slot, groups of conductors belonging to different coils. The magnetic field
distributions produced by different layers of the same phase, can be seen as
identical to (A4.1-21) but shifted by a 3 electrical angle. Also, is important to
note that in (A4.1-22) the number of conductors-per-slot 7 is divided by 2 due to

the presence of the layers. Thus, the resultant distribution can be written as:

Z dni K i —Sm(kgj cos(k0)+

w228
b (A4.1-22)
o 4n i 1 n
+ k;??% K i Esm(k 2jcos(k[6 B))

The even harmonic orders cancel each other for the two layers. Both the bottom
layer than the top one, produces a field of g slots-per-pole: being a phase shift
between them, it is necessary to add the two sinusoidal functions taking into
account of it. The result, by applying again an angular shift to the reference
system on the new center of the phase, is equivalent to multiplying by 2 and by

the shortened pitch factor (A4.1-23):
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K, = cos(k—zﬁj (A4.1-23)

The relationship (A4.1-24) represents the magnetic field distribution produced by

a double layer winding of one phase, having ¢ slots-per-pole-per-phase:

o 4 ni 1 T
H(O)= ——qK K, —sin| k— kO A4.1-24
0= 3 255 aKak {5 Jeosio) (A4124

The product of the Blondel’s factor K, and the shortened pitch factor XK,, gives

the winding factor K, related to & -th harmonic order:

Sin(quaj

Kak :deKrk Z—ka
sin| —

! ( 2 j

Consider an instantaneous phase current #(¢) which varies following a sinusoidal

cos(%) (A4.1-25)

law (A4.1-26), being / the rms value and ® the angular frequency:
i(t)=~21 cos(wt) (A4.1-26)

By substituting it in (A4.1-24) it gives:

H(0,t)= 4 ant gk . lSin(k g) cos(kB)cos(wt) (A4.1-27)

LT 20 k

The equation (A4.1-27) can be written as:

H(0,6)= ) Hyy cos(k0)cos(wt) (A4.1-28)
k=13,...

where:

(A4.1-29)

The distribution given by (A4.1-28) represents, for each value of k, a stationary
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wave with kp pole pairs, shown in Fig. A4.1-9 in a succession of time instants.

Fig. A4.1-9. The stationary wave shown in different time instants

The equation (A4.1-28) can be seen also as the sum of two counter-rotating fields
depending on a space-time variable f (ke + oot), each one moving in or opposite
to the 0 axis direction without warping, as shown in Fig. A4.1-10 and in the

relationship (A4.1-31).

H S
N
\ y
Fig. A4.1-10. A traslatin;g_\:vave -
H(0.1)= iHMk%[cos(k@—oat)+c0s(k6+mt)] (A4.1-30)

k=1,3,...
H0.6)= %HMkcos(ke—mm > %HMkcos(k6+oat) (A4.1-31)
k=13,... k=1,3,...

Each distribution in (A4.1-31) represents, for each value of &, a rotating wave

with kp pole pairs: in particular, the first summation is a wave which rotates in
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the same direction of 0, while the second one is a wave which rotates in the
opposite direction of 0. In Fig. A4.1-11 is shown the dual interpretation of this

phenomenon: the concepts of the stationary wave and the counter-rotating fields.

(campo rotante inverso)

Onda stazionaria

Fig. A4.1-11. The stationary and the counter-rotating distributions

The space-time distribution produced by one of the two rotating fields is repeated

identical in the following situations: in a position 0, at the instant of time #, and

in the position 0, at the instant of time ¢, , such that:

After some simple calculations:

>|e

®
k
The electrical angular velocity o, of the distribution, measured in radians per

sec., 1s given by:

(A4.1-34)

The mechanical angular velocity o, of the rotating field, measured in radians
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per sec., is given by:

o, =t (A4.1-35)

ol
kp
From which follows the rpm speed of the & -th order of the magnetic field:

n, = iﬂ (A4.1-36)
kp

Consider a system of currents characterized by a phase difference S,(2n/m): S,

is defined as “sequence of time”. Some examples are presented in the Figs. A4.1-

12 - A4.1-14 (in the following, k,, will be assumed equal to 1):

i;(t)=~21 co{kmm(t -85,(j- 1)5)} (A4.1-37)

m

St=1 1 St=2 1
3 2 2 3

Fig. A4.1-12. Sequences of time with m =3

St=

1 1 St=2 1
4 3 5 2

Fig. A4.1-13. Sequences of time with m = 5
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i
(F5)
]
th

Fig. A4.1-14. Sequences of time with m = 5

The sequence of time must comply with the following constraint:

0<S,<m-1 (A4.1-38)

If the phases are disposed by following different spatial configurations, in this
case one speaks of sequence of space §;. Consider a machine with p pole pairs,
m phases shifted in space by an angle equal to SS(2n/ m), in which flows a
balanced system of currents.

In the reference system centered in the phase 1, the magnetic field

distribution produced by the j-th phase is given by:
c . \2T . \2T
Hj(e,t)z ZHMk cos| k| -5, (; —1); cos| ot — S, (; —1);
k=13,...
(A4.1-39)

The resulting magnetic field produced by all the phases of the machine can be

expressed as:

HO.0=3 Y Hy, cos(k(e -8, l)ﬁj]cos[w -5, - I)E] -

=1 k=13,... m m

: Mg
I\Jlm»—‘

Mk{COS(k@ Tot—(j-1)kS, F5,) 2_7:]}

(A4.1-40)
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Finally is obtained:

HO,)=> > lHMk{cos(keicot—( j—1)kS, ¢S,)2—“j} (A4.1-41)
. 2 m
Jj=1 k=13,...
The resulting magnetic field is given by adding m sinusoidal contributions with
a phase difference equal to (kS S, )2n/m .

There are two possible cases: if all the contributions have the same phase, the

result is m times the contribution; if the contributions are shifted by the same

angle, their resultant is null. This result is explained in (A4.1-42):

Z:%HM,C cos(OF wt) = if K *5 integer
H(0,1)=1{ %=1 " (A4.1-42)
0 = if K, F5, # integer
m

For a fixed value of &, the magnetic field distribution has a direction of rotation:

direct, if RS =5 _ integer
m

s+ 5

m

reverse, if = integer

A symmetrical polyphase winding in which flows a balanced system of currents,
produces a distribution of magnetic field in the airgap described by the following

relation:

N mAn2l o1 _
H(@,t) = k; %; n28 qK i ;sm(k gj cos(k6+ (Dt) (A4.1-43)

The terms in summation (A4.1-43) have to be considered not null only for the

values of k& such that M
m

is integer. This distribution can therefore be

considered formed by the overlap of direct and inverse harmonic rotating

magnetic fields.
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Chapter 5

DESIGN AND DEVELOPMENT OF A
CONTROL SYSTEM FOR
MULTIPHASE SYNCHRONOUS
PERMANENT MAGNET
BEARINGLESS M ACHINES

5.1 Introduction

In this chapter a control system for bearingless multiphase synchronous
PM machines is presented, integrating the electromagnetic model seen in Chapter
4 with a three-dimensional mechanical model developed based on the Euler’s
equations. One end of the motor shaft is constrained, to simulate the presence of
a mechanical bearing, while the other is free, only supported by the radial forces

developed in the interactions between magnetic fields, to simulate a bearingless
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system with three degrees of freedom.
The body in Fig. 5.1 represents the rotor and the shaft of the machine,
rotating around an axis with a fixed point. The interactions between the levitation

current space vector i, and the other sources of magnetic fields, i.e. rotor

magnets and torque current space vector i, provide to generate the levitation

svl»
forces, as seen in the previous chapter by means of the analytical formulation.
The system was implemented on a SIMULINK® model, representing the
conceptual design of the experimental device and related control system that

could be realized in a test bench application.

Fig. 5.1

K k (a) A K (b)

Fig.5.2
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Consider three reference systems in the space:

A

o Absolute (abs), characterized by the unit vectors (z ] k Fig. 5.1;

A

e Relative (rel), characterized by the unit vectors (I J,K

), Fig. 5.2(a);
e Fixed-to-rotor (fir), characterized by the unit vectors (7, ¢, ﬁ), Fig. 5.2(b).

The last two systems have a common unit vector because their first axes

coincide.

5.2 Mechanical equations

The rotor angular speed in the absolute reference system is calculated by

applying the “principle of composition of angular speed”:
D=Q+0,, (5.1

where Q is the angular speed of the relative reference system with respect to the

absolute and ®,,, 1s the angular speed of the rotor with respect to the relative

reference system. They can be expressed as:

Q=vk-¢J (5.2)
®,, =01 (5.3)
By substituting (5.2), (5.3) in (5.1), it gives the rotor angular speed vector:
®=yk—¢J + 601 (5.4)
The equations of the motion are given by:

ar, —

°O - M 5.5
7 0 (5.5)
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Being T,, M, respectively the moment of momentum and the moment of the

external forces evaluated with respect to the point O. T, is given by:

T -3, ® (5.6)

The fixed-to-rotor reference system is obtained by rotation of an angle 6 around

the X-axis, and the relationships between its unit vectors and the ones of the

relative system are (note that the unit vector I is the same because the X-axis is

In common):
J = cos 0& — sin 07 (5.7)
K = sin 08 + cos on (5.8)

In order to write the angular speed vector with respect to the fixed-to-rotor
reference system, is necessary firstly to write it in explicit way, with respect to

the relative system:

k = sin (pf + cos (p]% (5.9
By substituting (5.9) in (5.4):

Ez(\jfsin(p+9)f—(])j+\jjcoscp]% (5.10)
By substituting (5.7) and (5.8) in (5.10):

o= (\jlsin (p+9)i+(\ilCOS(pSin 0—pcos 9)é+(('|)sin 0+ \y cos ¢ cos G)ﬁ (5.11)

which can be expressed in matrix form in the following:

®; sin @ 0 WA
®, |=|cos@sin® —cos® 0| ¢ (5.12)
o, cos@cos® sin® 0] 0

As the system chosen is principal of inertia, the J, is a diagonal matrix thus,
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with reference to (5.6), is possible to write:

I, 0 0 | o,
=100 +1,,0.8+1, 0,0 (5.13)

el
Q

el

I

T, =

o O
(o)
]

Reminding that ® is defined with respect to a stationary observer, the derivative

0

dt

has to be determined with respect to the same observer. It is possible to

write:
(dr"j :(dFOJ +oxT, (5.14)
A )iy \ )y

By considering the equation (5.6) and that the matrix of inertia 50 doesn’t

change, it can be calculated:

%),
at ) )

By substituting (5.6) and (5.15) in (5.14):

0 ® (5.15)

Ll

L,) = . =
[ j =T O+ OXT0 @ (5.16)
dt (abs)
dT rooe
[ d;’j =10, 1+ 1,08+ 1,,0,0+| 0 o, o, (5.17)
(abs) 10[(1)[ Ioame Ionmn

By executing the calculations:

(d;ol ) [1010)1 ( Ioe)(‘)a n][ [Ioawa"_( Ion)ml ]S_'_
abs

[]on (’On + oI )(DIO)S ]n

(5.18)
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Writing the moment of the external forces vector M, with respect to the point

O in the fir reference system:
My =M, I+M,&+M,7 (5.19)

By substituting (5.18) and (5.19) in (5.5) 1s possible to determine the equations of

the motion, also called “Euler equations”:

Iol(bl +(Ion _Ios smn :Mol
Ioa(be_i_(lol _Ion)mlmn :Moa (520)
Ion(bn +([os —[0[)(1)[0)8 :Mon

It is now useful to define the relationship between the moment of the external

forces vector evaluated in the fir reference system and the one evaluated in the

A

abs reference system. Thus, is necessary to write the unit vectors (zjlé) with

A

respect the unit vectors (I JE, ﬁ) Firstly, the equations (5.7), (5.8) are presented in

matrix form:

Il [t o o 7
J =0 cos® —sin6|é (5.21)
K 0 sin® cosO | N

The unit vector 7 is defined as the projection of the unit vector / on the xy

plane:

i = cos oI — sin oK (5.22)
By substituting (5.22) in (5.23), (5.24), the relationships between the unit vectors
(f . lé) and the unit vectors (f J,K ) are found:

[ = cos i — sin wj = CoS \J cos (pf —sin wj —cos \y sin (pl% (5.23)

] = sinyh + cos wj = sin\y cos (pf + cos \pj — siny sin (pl% (5.24)
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k = sin (pf + cos (pl% (5.25)

By expressing (5.23)-(5.25) in the matrix form:

[ cos\ycosQ —sin\y —cosVSin@ I
J|=|sinycosp cosy —sinysing J (5.26)
k Sin @ 0 cos ¢ K

By combining (5.21) and (5.26), are presented the relationships between the unit

vectors (f ., l@) related to absolute reference system and the unit vectors (f ,€, ﬁ)
related to fixed-to-rotor reference system:
[ cosycos® —siny —cosysing || 1 0 0 I
Jl=|sinycosp cosy —sinysing |0 cos® —sin®| ¢ (5.27)
k sin @ 0 cos ¢ 0 sin® cosH | N
By multiplying the matrices in (5.27) it gives:
cos\ycos@ —sinycosO—cosysinesin®  siny sin® — cos y sin ¢ cos 0
sinycos®  cos\ycosO—sinysin@sin®  —cosysin® —siny sin cos 0
Sin @ cos @ sin® cos pcos 0
—1
B (8.0.v)
(5.28)

The matrix obtained in (5.28), called E_l(G, (p,\y), permits to directly convert the
abs unit vectors in the fir unit vectors. It is mentioned as an inverse matrix
because the main matrix E(G @, V) is that one which defines the moment of
external forces vector M, in the fir reference system, being the most used.

In fact, the latter can be immediately substituted in the Euler’s equations (5.20).

By combining (5.29) and (5.30), is obtained (5.31):
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M,y cosycosQ  sinycosp sinQ || M,
M,y |=| -—siny cos 0 | M, (5.29)
M, —cosysin® —sinysing cosQ || M,
M, 10 0 M,y
ve | =10 cosO sinO || M,y (5.30)
(M, | |0 —sin® cosO | M,,
(0)

In (5.31), (5.32) is shown the E(e (p,\|/) matrix, which permits to calculate the

moment of the external forces vector M, in the fixed-to-rotor reference system:

CcoS Y cos @ Sin\y cos @ sin @

—sinycosO—cosysinpsin® cosycos®—sinesinysin® cosesind

siny sin®—cosy sin@cos® —cosysin®—sinosinycos® cos@cosO
B(0.9.v)
(5.31)
M, M,
M, |=|  BO.oy) |M, (5.32)
Mon Moz

The relationship (5.32) is really important because the moments of external
forces are given in the absolute reference system, but is necessary to express

them in the fixed-to-rotor reference system in order to apply equations (5.20).

5.3 General structure of the control system

The external structure of the control system, realized with SIMULINK®, is
composed by four main blocks, the other being “scope blocks” and “integrators”:

Levitation forces block, Euler equations block, Lagrangian variables block,
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Axis coordinates block.

Fig. 5.3. General structure of the control system

1) Levitation forces block: the action of PID controllers is based on the position

error along the y and z axes, by calculating the force, of modulus F, and

spatial phase fi_Fr, requested to maintain the rotor in the centre of the stator
bore. Together with the angular position of the magnets theta, the Force

Controller block determines the modulus and the phase of the i, current

space vector, called as variables Irms_ and fi_In_, to produce the requested
force. This couple of values is necessarily provisional, being the analytic

relationship that gives the i, parameters univocal only considering the main

harmonic orders of stator and rotor magnetic fields.
The next block, Electromagnetic Model, determines the real value of the
force to suspend the rotor, by taking into account all the possible interactions

between harmonic orders of the magnetic fields. Also, this model consider the

respectively torque and

effects of both current space vectors i, i,,,
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levitation. It gives in this way an exact prediction of the radial force and
electromagnetic torque produced by the motor.

The drive maintains constantly the current space vector i ,, in leading by 90

electrical degrees with respect to magnet axis, in order to give the requested
torque in whatever operating condition. The output gives in particular the
components of the force (variables Fy, F,) which are used to calculate the
moments with respect to the absolute reference system, by means of the

“Forces to Moments matrix” block.

Fig. 5.4. Diagram of the Levitation Forces block

2) Euler equations block: the sub-block “Applied Moments” calculates the
moments of external forces with respect to the fixed-to-rotor reference system
and applies them to the Euler’s equations (5.20) in the form (5.33), achievable
after some simple calculations. The output is constituted by the components
of angular speed vector, evaluated in the fixed-to-rotor reference system and
determined by integrating (5.33), as can be seen in the SIMULINK® diagram
of Fig. 5.5.
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iy = Mot —Ion_logoa ®
! 101 ]ol o
M < Iol_lon
o, =—% - ®;O (5.33)
’ 1o 1o "
M, I -1
(Dn — n_ “oe ol ®;0,
L, Lo

Fig. 5.5. Diagram of the Euler equations block

3) Lagrangian variables block: applies the inverse matrix of (5.12), described

in the equation (5.34), to the angular speed vector ® in order to determine the
derivatives with respect to time [\if, o, 9] of the lagrangian variables [\y, o, 9],

which are obtained by means of integration: they constitute the components

of the angular speed vector ® evaluated in the absolute reference system.

V| |0 sin®/cosp cosB/coso | o,
¢|=1]0 —cos sin© o, (5.34)
0

1 —tan@sin® —tangcos | o,
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Fig. 5.6. Diagram of the Lagrangian variables block

4) Axis coordinates block: it converts the lagrangian variables [\y, o, 6],
constituted by angular coordinates, in the linear coordinates [x, y, z] which

describe the position of the motor shaft end point. These are then used in a
closed loop feedback to return as an input in the “Levitation forces block”,

closing in this way the loop of the bearingless machine control system.

?

o

Gain

oD

Gain1

Fen

Fen1

Ba 2
_ z
Fon2 Gain2

Fig. 5.7. Diagram of the “Axis coordinates block”
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5.4 Detailed analysis of the control system

5.4.1 Levitation Forces Block
A) Position Errors

These blocks determines the errors along the y and z axes, calculating the
difference between the actual position, on the y-z plane, of the end shaft point
and the reference values yO and z0, which obviously have to be set to zero

requiring a centered rotor (Fig. 5.8).

vO| ¥0 0| =0
(1w
¥ Add
L
(2 ) g
z Addi

Fig. 5.8. Position errors

B) Pid Controllers

In Fig. 5.9 1s represented the general structure of the PID controller, where is

possible to distinguish the three actions: proportional, integrator, derivative.

—{Int  Cutt f——

FPIC myController

Integrator Gain

——p{int  Outt f——

{2
aTd.s+1

Gain2 Transfer Fcn

PIC myController

Fig. 5.9. Diagram of the PID controllers
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The parameter aTd in the derivative branch is a time constant which permits to
set the duration of the transitional regime. The output of the PIDs gives the y-

and z-components of the force, necessary to stabilize the rotor.
C) Force Controller Block

The input stadium transforms the components of the force from cartesian
representation to polar, providing the modulus Fr and the spatial phase fi_Fr. In
addition, the angular position of the rotor theta is a required input variable. As
said above, the Force Controller determines the modulus and the phase of the

levitation current space vector i, (respectively identified by the output

variables Irms_ and fi_In_), required to generate the input force. These values
result approximate because the analytic relationship that allows the calculation of
the current space vector parameters from the value of the force, is invertible only
considering the interaction between the main harmonic of the stator levitation
field and the main one of the rotor field. In this way, all the higher harmonic
orders are neglected. However, this is not a problem because the consequent
block takes into account all the possible interactions between the magnetic fields,
and the PID controllers provide to stabilize the system with their feedback action;
but, the function of the Force Controller is necessary to give some initial values

of the i, , parameters, in absence of which would not be possible to implement

sv2

the regulation process.

sqri{u[1}*2+u[2]1"2) ‘ {Fr

fen fi_In_|-

J7+ fi_Fr Fi ABF_inv |— | ABF_inv B

theta Subsystemn
fi_Fr
FORCE CONTROLLER

Fig. 5.10. The Force Controller of the model

At
s
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In the following, the programming code of the Force Controller is shown, being

a “Matlab function”.

function ABF inv = fcn(Fr,fi Fr, theta)

%$definizione costanti
Pi = 3.141592654;
muzero = 0.000001256;

TR ARk ik S b b b b b bk b b kb b b b b b b b b b b b b b bk b b b b b b b b b b b b b b b b b b b b b b bk b b b b b b b b bk b b b bk bk b b b b b b

NPUT DATI (begin)

R R T

modulo della forza radiale

Fr = 2620.06;

fase spaziale della forza radiale, misurata rispetto all'asse y (FEMM)
fi Fr = -90 * Pi / 180;

massimo ordine armonico indagato

k max = 2;

Br =zeros(1,1);
Bs_=zeros(1l,1);

Irms =zeros(1l,1);

fi In =zeros(1,1);

k =zeros(1l,1);
hn_=zeros(1,1);

hp =zeros(1,1);
%$dichiarazione array
ctr=zeros (k _max,1);
rot=zeros (k_max,1);
Kd=zeros (k max,1);

Bs hp=zeros(k max,1);
Bs_hn=zeros (k _max,1);
Br_hp=zeros (k_max,1);
Br hn=zeros (k max,1);
fi In_hp=zeros(k_max,1);
fi In hn=zeros(k max,1);
Fg=zeros (k_max,1);
Fd=zeros (k max,1);
$Fr=zeros(k max,1);

sfi Fr=zeros(k max,1);
Irms_hp=zeros (k _max,1);
Irms hn=zeros(k max,1);
hp=zeros (k max,1);
hn=zeros (k max,1);

%angolo meccanico fra asse M ed asse fase 1 (gr.mecc.)
% deltath = 90;

% deltath = deltath * Pi / 180;

$numero di cave sottese dalla bobina

nac = 10;

$numero di fasi

m = 5;

$numero di cave/polo/fase

q=6;

$numero di conduttori in cava

n = 2;

$numero cave statoriche

sNcv = 30;

$coppie polari STATORE (riferite al campo PRINCIPALE)
N =1;

$coppie polari ROTORE

M =1;
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%$angolo descritto dal magnete (rad.mecc.)
alfa mag = 172;

alfa mag = alfa mag * Pi / 180;
$spessore del magnete

ILm = 0.002;
%spessore del traferro

g = 0.001;
$permeabilita relativa magnete
mu mr = 1.045;
$fattore di Carter

kc = 1;
%$induzione residua magnete

Bres = 1.05;

$profondita di macchina

L = 0.18;

$raggio medio al traferro

Rg = 0.0595;

%$angolo di cava (rad.el.)
alfa c = 12;

alfa ¢ = alfa ¢ * Pi / 180;
%alfa ¢ =Pi /m / g

%alfa ¢ =2 * Pi / Ncv * N_
%alfa ¢ =2 * Pi / Ncv * M_
%$sequenza temporale di corrente

st = 2;
%angolo elettrico correnti (pulsazione * tempo - gr.el.)
wt = 0;

wt = wt * Pi / 180;

Qkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkkkk &k %

$INPUT DATI (end)
Ok K ok ok ok ok Kk ok ok ok Kk ok ok ok ok ok ok ok ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok kK ok ok ok ok kK ok

$spessore traferro complessivo

deltag = Lm + g;

$semiampiezza di una bobina (rad.el.)

gamma = nac * alfa ¢ / 2;

%$induzione al traferro generata dal magnete
BgM = Lm / (Lm + mu mr * kc * g) * Bres;
%passo polare (al traferro)

$Taup = Pi * Rg / N_;

$ordine massimo sequenza di corrente
st max =m - 1;
if st > st _max
return
end

for k = 1 : k max

ctr(k) = 0;

rot(k) =" ';

Kd(k) = 0;

$componenti della forza radiale definite rispetto all'asse y (d) (FEMM)
Fg(k) = Fr * sin(fi Fr);

Fd(k) = Fr * cos(fi Fr);
end

for k = 1 : k max

if (k + st) / m == int32((k + st) / m)
ctr(k) = 1;

rot(k) = "I';

elseif (k - st) / == int32((k - st) / m)
ctr (k) = 2;

rot(k) = 'D';

else

ctr(k) = 0;

rot(k) =" ';

end
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if ctr(k) == || ctr(k) == 2

$fattore di distribuzione

Kd(k) = sin(g * k * alfa ¢ / 2) / q / sin(k * alfa ¢ / 2);
$valore h positivo

hp(k) = (1 + k * N_) / M_;

$valore h negativo

hn(k) = (-1 + k * N ) / M ;

%$CASO hp INTERO e DISPARI
% (sovrapponibile con hn INTERO)
if hp(k) == int32(hp(k)) && hp(k) / 2 ~= int32(hp(k) / 2)
Br hp(k) = 4 / hp(k) / Pi * BgM * sin(hp(k) * M * alfa mag / 2);
Bs hp(k)= 2 * muzero / Pi / L / Rg / Br_hp(k) * Fr;
Irms hp(k) = 2 * k * Pi * 2 * deltag / muzero / m / 4 / n / sqrt(2) / q / Kd(k) /
sin(k * gamma) * Bs hp(k);
if ctr(k) ==
fi In hp(k)= hp(k) * M * theta - wt - atan2(Fg(k),Fd(k));
elseif ctr(k) ==
fi In hp(k)= -hp(k) * M * theta - wt + atan2(Fq(k),Fd(k));
end
end

$CASO hn INTERO e DISPARI

3 (sovrapponibile con hp INTERO)

if hn(k) == int32(hn(k)) && hn(k) / 2 ~= int32 (hn(k) / 2)

Br hn(k) = 4 / hn(k) / Pi * BgM * sin(hn(k) * M_ * alfa mag / 2);

Bs_hn(k)= 2 * muzero / Pi / L / Rg / Br_hn(k) * Fr;

Irms hn(k) = 2 * k * Pi * 2 * deltag / muzero / m / 4 / n / sqrt(2) / g / Kd(k) /

sin(k * gamma) * Bs hn(k);
if ctr(k) ==
fi In hn(k)= hn(k) * M_ * theta - wt + atan2(Fg(k),Fd(k));
elseif ctr(k) ==
fi In hn(k)= -hn(k) * M * theta - wt - atan2(Fq(k),Fd(k));
end
end

%1l ciclo si interrompe quando l'ordine armonico di rotore e INTERO, DISPARI ed
%assume 11 valore INFERIORE tra i due: hn, hp (in realta questo & sempre 'hn'
%per definizione)
if (hn(k) == int32(hn(k)) && hn(k) / 2 ~= int32(hn(k) / 2)) && (hn(k) < hp(k))
Br =Br hn(k);
Bs =Bs_hn (k) ;
Irms_=Irms_hn (k) ;
fi In =fi In hn(k);

k =k;

hn_=hn (k) ;

hp =(1 + k_ * N ) / M ;

break
elseif (hp(k) == int32(hp(k)) && hp(k) / 2 ~= int32(hp(k) / 2)) && (hp(k) < hn(k))

Br =Br hp(k);
Bs_=Bs_hp (k) ;
Irms_=Irms_hp (k) ;
fi In =fi In hp(k);

k =k;
hn =(-1 + k_* N ) / M ;
hp_=hp (k) ;
break
else
Br =0;
Bs_=0;
Irms =0;
fi In =0;
k =0;
hn_=0;
hp =0;
end
end
end % (for k = 1 : k max)
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ABF inv = [Br ,Bs_,Irms ,fi In ,k ,hn ,hp ];

Note that the code goes to a “break” when the first value of an existing harmonic
order is found, both for the magnetic field produced by levitation current space

vector i, , both for the magnetic field produced by rotor magnets, taking in this

sv2 2

way into account only the main orders.
D) Electromagnetic Model Block

The Electromagnetic Model block represents a complete model of the
motor, by the electrical point of view. It determines the effective radial force
necessary to support the rotor, in terms of the y- and z-components Fy and Fz,
taking into account all the possible interactions between the harmonic orders of
stator and rotor magnetic fields, according to the conditions of existence already

seen in chapter 4 and revived hereunder (5.35)-(5.39):

f¥sa oy, o¥sa oy BFSa oy pen (5.35)
m

hp, —kp, = %1 (5.36)

hp, —k,p, ==1 (5.37)

kyps —kypg =%1 (5.38)

kypy —kypy = *1 (5.39)

This model also considers the effects of both space vectors i,

isv2
(respectively, torque and levitation), thus provides an accurate prediction of the
radial force and torque generated by the motor. The drive maintains the current

space vector i, in leading by 90 electrical degrees with respect to the magnet

axis, so that the motor produces the requested torque in each operating condition

of the i, space vector: particularly, this task is performed by the block
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represented in the following Fig. 5.11, which adds an angle of 90 electrical
degrees to the electrical angle corresponding to theta, angular position of the
magnet axis. The obtained result, together with the value of Irms1 block,

completely defines the current space vector i, .

59.82

Irms1

ON-OFF_{fi_In1)

Phase of torque current

Fig. 5.11

The input of Electromagnetic model block is given by the i, modulus and

phase Irms1 and fi_In1, the i, modulus and phase Irms2 and fi_In2, the rotor

position deltath (it is the same variable theta used in the Force Controller, its

name changed only because of formal reasons), Fig. 5.12.

Irms2
Fa|—
——p]fi_Int A\ ABF | 2EF
fen Fd|—
Li]fi_In2
Subsystem
deltath
ELECTROMAGHNETIC MODEL
Fig. 5.12

In the following, the programming code of the Electromagnetic Model is

’

shown, being a “Matlab function”.
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ALGORITMO COMPLETO
interazioni stl-rotore, st2-rotore, stl-st2, st2-st2 descritte tramite
sviluppo in serie di Fourier

o o o°

function ABF = fcn(Irmsl,Irms2,fi Inl,fi In2,deltath)

$Irms=zeros(1,1);
$fi In=zeros(1,1);
$st=zeros(1,1);

%$sequenze di corrente
stl=1;
st2=2;

$definizione costanti
Pi = 3.141592654;
muzero = 0.000001256;
$numero di cave sottese dalla bobina
nac = 10;
$numero di fasi
m = 5;
$numero di cave/polo/fase
q = 6;
$numero di conduttori in cava
n=2;
%coppie polari STATORE (riferite al campo PRINCIPALE)
N =1;
$coppie polari ROTORE
M = 1;
%angolo descritto dal magnete (rad.mecc.)
alfa mag = 172;
alfa mag = alfa mag * Pi / 180;
%spessore del magnete

ILm = 0.002;
%spessore del traferro
g = 0.001;

$permeabilita relativa magnete
mu_mr = 1.045;

$fattore di Carter

ke = 1;

$induzione residua magnete
Bres = 1.05;

$profondita di macchina

L = 0.18;

$raggio medio al traferro

Rg = 0.0595;

%$angolo di cava (rad.el.)
alfa c = 12;

alfa ¢ = alfa ¢ * Pi / 180;
$massimo ordine armonico indagato

k max = 30;

kl max = k max;

k2 max = k_max;

%$angolo elettrico correnti (pulsazione - gr.el.)
wt = 0;

wt = wt * Pi / 180;

%***************************************************************************************

$INPUT DATI (end)

Sk hkhhkhhkhhkhhhhhhkhhkhhhhkhhkhhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkx

$spessore traferro complessivo

deltag = Lm + g;

$semiampiezza di una bobina (rad.el.)

gamma = nac * alfa c / 2;

$induzione al traferro generata dal magnete
BgM = Lm / (Lm + mu mr * kc * g) * Bres;
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%passo polare (al traferro)
Taup = Pi * Rg / N _;

ctr=zeros (k max,1);
rot=zeros (k _max,1);
Kd=zeros (k_max,1);
Bs=zeros(k max,1);
Br=zeros (k max,1);

Fq_hpl=zeros (k1 max,1);
Fd hpl=zeros (kl max,1);
Fq hnl=zeros (kl max,1);
Fd _hnl=zeros (kl max,1);
Fng hpl=zeros(kl max,1);
Fnd hpl=zeros(kl max,1);
Fng hnl=zeros(kl max,1);
Fnd hnl=zeros(kl max,1);
fi Frpl=zeros(kl max,1);
fi Frnl=zeros(kl max,1);

Fq_hp2=zeros (k2 max,1);
Fd_hp2=zeros (k2 max,1);
Fq_hn2=zeros (k2 max,1);
Fd hn2=zeros (k2 max,1);
Fng hp2=zeros (k2 max,1);
Fnd hp2=zeros (k2 max,1);
Fng hn2=zeros (k2 max,1);
Fnd hn2=zeros (k2 max,1);
fi Frp2=zeros (k2 max,1);
fi Frn2=zeros (k2 max,1);

Fq sl2=zeros (kl max,1);
Fd sl2=zeros(kl max,1);
Fq s22=zeros (k2 max,1);
Fd_s22=zeros (k2 _max,1);

Torquel=zeros (k max,1);
Torque2=zeros (k_max,1);
Fg=zeros(1l,1);
Fd=zeros (1,1);

Shkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkkhkkhkkhhhkhkhkhhkhkkhkhkhkhkhkhhhkhkhhkhhhhhkhkhkhhkhhkhkhkhhhhhhhhhhhhhhhkhkhkhhhhhhhhkhhkhhhhhhhhhhkhkx*x

% SEQUENZA DI CORRENTE ST1

for i = 1 : k1l max
ctr(i) = 0;
rot(i) = ' ';
Kd(i) = 0;
Bs (i) = 0;
Fg_hpl (i)
Fd_hpl (1)
Fg hnl (i)
Fd _hnl (1) ;
fi Frpl(i) = 0;
fi Frnl (1) 0
end

o
[eNeoNeNe}
RN

for k1 = 1 : kl max

if (k1 + stl) / m == int32((kl + stl) / m)
ctr(kl) = 1;

rot(kl) = '"I';
elseif (k1 - stl) / m == int32((kl - stl) / m)
ctr(kl) = 2;

rot(kl) = 'D';
else

ctr(kl) 0;

rot(kl) = ' ';
end
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if ctr(kl) == |l ctr(kl) ==
$fattore di distribuzione
Kd(kl) = sin(g * k1 * alfa ¢ / 2) / g / sin(kl * alfa c / 2);

$ampiezza della kl-esima armonica di campo

Bs(kl) = muzero *m / 2 * 4 / k1 / Pi * n * sqrt(2) * Irmsl / 2 / deltag * g *
Kd (k1) * sin(kl * gamma);

$valore h positivo

hp = (1 + k1 * N ) / M ;
$valore h negativo
hn = (-1 + k1 * N ) / M ;

%$CASO hp INTERO
% (sovrapponibile con hn INTERO)

if hp == int32(hp) && hp / 2 ~= int32(hp / 2)
Br hp = 4 / hp / Pi * BgM * sin(hp * M_ * alfa mag / 2);
if ctr(kl) ==
Fng hpl(kl) = Pi * L * Rg / 2 / muzero * Bs(kl) * Br hp * sin(hp * M_ * deltath -
wt - fi Inl);
Fg_hpl (k1) = Fng hpl(kl); %+ Ftg hpl(kl) - Fttg hpl(kl);
Fnd hpl(kl) = Pi * L * Rg / 2 / muzero * Bs(kl) * Br hp * cos(hp * M_ * deltath -
wt - fi Inl);
Fd hpl(kl) = Fnd hpl(kl); %+ Ftd hpl (kl);
elseif ctr(kl) ==
Fng hpl(kl) = Pi * L * Rg / 2 / muzero * Bs(kl) * Br hp * sin(hp * M_ * deltath +
wt + fi Inl);
Fq_hpl(kl) = Fng hpl(kl); %+ Ftg hpl(kl) - Fttg hpl(kl);
Fnd hpl(kl) = Pi * L * Rg / 2 / muzero * Bs(kl) * Br hp * cos(hp * M_ * deltath +
wt + fi Inl);
Fd hpl(kl) = Fnd hpl(kl); %+ Ftd hpl (kl);
end
end
%$CASO hn INTERO
% (sovrapponibile con hp INTERO)
if hn == int32(hn) && hn / 2 ~= int32(hn / 2)
Br_ hn = 4 / hn / Pi * BgM * sin(hn * M_ * alfa mag / 2);
if ctr(kl) ==
Fng hnl(kl) = -Pi * L * Rg / 2 / muzero * Bs(kl) * Br hn * sin(hn * M * deltath -
wt - fi Inl);
Fg_hnl(kl) = Fng hnl(kl); %+ Ftg hnl(kl) - Fttg hnl(kl);
Fnd hnl(kl) = Pi * L * Rg / 2 / muzero * Bs(kl) * Br hn * cos(hn * M * deltath -
wt - fi Inl);
Fd hnl(kl) = Fnd hnl(kl); %+ Ftd hnl (kl);
elseif ctr(kl) == 1
Fng hnl(kl) = -Pi * L * Rg / 2 / muzero * Bs(kl) * Br hn * sin(hn * M * deltath +
wt + fi Inl);
Fg _hnl(kl) = Fng hnl(kl); %+ Ftqg hnl(kl) - Fttg hnl(kl);
Fnd hnl(kl) = Pi * L * Rg / 2 / muzero * Bs(kl) * Br hn * cos(hn * M_* deltath +
wt + fi Inl);
Fd hnl(kl) = Fnd hnl(kl); %+ Ftd hnl (kl);
end
end
else
Fg hpl(kl) = 0;
Fd hpl(kl) = 0;
Fg hnl (k1) = 0;
Fd hnl (k1) = 0;
end

end % (next kl)

SRISULTANTE
for i = 1 : kl max
Fq = Fq + Fq hpl(i);
Fq = Fq + Fg_hnl(i);
Fd = Fd + Fd_hpl(i);
Fd = Fd + Fd hnl(i);
end

Sk hkhkhkhkhkhkhhkhkhk Ak hk ok hk ko hhk kb ko hhk ok hk ko hhkhkhk ko hkhkh ko hkhk ok hk ko hkhk ok h ko kkhhkhkhhkhkhhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkdkhkhhkhkkhkkkkkkkkk

SEQUENZA DI CORRENTE ST2

o
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for 1 =1 : k2 max
ctr(i) = 0;
rot(i) = "' ';
Kd(i) = 0;
Bs(i) = 0;
Fg hp2 (1)
Fd hp2 (i)
Fg_hn2 (1)
Fd_hn2 (i) =
fi Frp2(i) =
fi Frn2(i) =
end

I
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for k2 = 1 : k2 max

if (k2 4+ st2) / m == int32((k2 + st2) / m)
ctr(k2) = 1;

rot(k2) = '1';
elseif (k2 - st2) / m == int32((k2 - st2) / m)
ctr(k2) = 2;

rot(k2) = 'D';

else

ctr (k2) 0;

rot(k2) = "' ';

end

if ctr(k2) == || ctr(k2) == 2
$fattore di distribuzione

Kd(k2) = sin(g * k2 * alfa ¢ / 2) / q / sin(k2 * alfa ¢ / 2);

sampiezza della k2-esima armonica di campo

Bs(k2) = muzero *m / 2 * 4 / k2 / Pi * n * sqrt(2)
Kd(k2) * sin(k2 * gamma) ;

$valore h positivo

hp = (1 + k2 * N ) / M ;
$valore h negativo
hn = (-1 + k2 * N ) / M ;

%$CASO hp INTERO
% (sovrapponibile con hn INTERO)

* Irms2 / 2 / deltag * g *

+

if hp == int32(hp) && hp / 2 ~= int32(hp / 2)
Br hp = 4 / hp / Pi * BgM * sin(hp * M_ * alfa mag / 2);
if ctr(k2) ==
Fng hp2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br hp * sin(hp * deltath
wt - fi In2);
Fq_hp2(k2) = Fng hp2(k2); %+ Ftg hp2(k2) - Fttg hp2(k2);
Fnd hp2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br hp * cos (hp * deltath
wt - fi In2);
Fd_hp2(k2) = Fnd hp2(k2); %+ Ftd hp2 (k2);
elseif ctr(k2) ==
Fng hp2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br hp * sin(hp * deltath
wt + fi In2);
Fqg hp2(k2) = Fng hp2(k2); %+ Ftg hp2(k2) - Fttg hp2(k2);
Fnd hp2(k2) = P1 * L * Rg / 2 / muzero * Bs(k2) * Br hp * cos(hp * deltath
wt + fi In2);
Fd_hp2(k2) = Fnd_hp2(k2); %+ Ftd hp2(k2);
end
end
$CASO hn INTERO
% (sovrapponibile con hp INTERO)
if hn == int32(hn) && hn / 2 ~= int32(hn / 2)
Br_ hn = 4 / hn / Pi * BgM * sin(hn * M_ * alfa mag / 2);
if ctr(k2) ==
Fng hn2(k2) = -Pi * L * Rg / 2 / muzero * Bs(k2) * Br hn * sin(hn * M * deltath -
wt - fi In2);
Fg_hn2(k2) = Fng_hn2(k2); %+ Ftqg hn2(k2) - Fttg hn2(k2);
Fnd hn2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br hn * cos(hn * M_ * deltath -
wt - fi In2);
Fd hn2(k2) = Fnd_hn2(k2); %+ Ftd hn2(k2);
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elseif ctr(k2) == 1

Fng hn2(k2) = -Pi * L * Rg / 2 / muzero * Bs(k2) * Br _hn * sin(hn * M_ * deltath +
wt + fi In2);

Fg hn2 (k2) = Fng_hn2 (k2); %+ Ftg hn2(k2) - Fttg hn2 (k2);

wt + fi In2
Fd hn2(k2) = Fnd hn2(k2);
end
end
else
Fg_hp2 (k2) =
Fd hp2(k2) =
Fq_hn2 (k2) =
Fd_hn2 (k2) =

Fnd hn2(k2) = Pi * L * Rg / 2 / muzero * Bs(k2) * Br hn * cos(hn * M_ * deltath +
)

+ Ftd hn2(k2);

. o~

~.

o O O o
~

SRISULTANTE

for i = 1 : k2 max
Fq = Fq + Fq _hp2(i);
Fq = Fq + Fg _hn2(i);
Fd = Fd + Fd hp2(i);
Fd = Fd + Fd hn2(i);
end

PRAR R R R S b S R S I E E I S E E E E E b E E S E h h h b b E E S I IE 3E b b b b b b S b b b b b I b b b b i

$INTERAZIONE fra i due campi STATORICI di sequenza ST1, ST2

for k1 = 1 : kl max
%campo k1l INVERSO
if (k1 + stl) / m == int32((kl + stl) / m)
%Sampiezza della kl-esima armonica di campo
Kd k1 = sin(g * k1 * alfa ¢ / 2) / q / sin(kl * alfa ¢ / 2);
Bs k1 = muzero *m / 2 * 4 / k1 / Pi * n * sqrt(2) * Irmsl / 2 / deltag * g * Kd kil
* sin(kl * gamma) ;
k2p = (1 + k1 * N ) / N_;
k2n = (-1 + k1 * N ) / N ;
if (k2p + st2) / m == int32((k2p + st2) / m)
Kd k2p = sin(g * k2p * alfa ¢ / 2) / q / sin(k2p * alfa c / 2);
Bs k2p = muzero *m / 2 * 4 / k2p / P1 * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd k2p * sin(k2p * gamma) ;

Fg sl2 (k1) = pPi * L * Rg / 2 / muzero * Bs kl * Bs k2p * sin((wt + fi Inl) - (wt +
fi In2));

Fd sl2(kl) = Pi * L * Rg / 2 / muzero * Bs kl * Bs k2p * cos((wt + fi Inl) - (wt +
fi In2));

Fq = Fq + Fq _sl12(kl);
Fd = Fd + Fd_s12(k1);
end
if (k2p - st2) / m == int32((k2p - st2) / m)
Kd k2p = sin(g * k2p * alfa ¢ / 2) / q / sin(k2p * alfa c / 2);
Bs_k2p = muzero *m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd k2p * sin(k2p * gamma) ;

Fg sl2(kl) = Pi * L * Rg / 2 / muzero * Bs kl * Bs k2p * sin((wt + fi Inl) + (wt +
fi In2));

Fd s12(kl) = Pi * L * Rg / 2 / muzero * Bs_kl * Bs k2p * cos((wt + fi Inl) + (wt +
fi In2));

Fq = Fq + Fg _sl12(kl);

Fd = Fd + Fd_s12(kl);

end

if (k2n + st2) / m == int32((k2n + st2) / m)
Kd k2n = sin(g * k2n * alfa ¢ / 2) / q / sin(k2n * alfa ¢ / 2);
Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd k2n * sin(k2n * gamma) ;

Fg sl2(kl) = -P1 * L * Rg / 2 / muzero * Bs kl * Bs k2n * sin((wt + fi Inl) - (wt +
fi In2));

Fd s12(kl) = Pi * L * Rg / 2 / muzero * Bs_kl * Bs k2n * cos((wt + fi Inl) - (wt +
fi In2));

Fq = Fq + Fq _sl12(kl);
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Fd = Fd + Fd_sl12(kl);
end
if (k2n - st2) / m == int32((k2n - st2) / m)
Kd _k2n = sin(g * k2n * alfa ¢ / 2) / g / sin(k2n * alfa c / 2);
Bs _k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd k2n * sin(k2n * gamma) ;

Fg sl12(kl) = -P1 * L * Rg / 2 / muzero * Bs kl * Bs k2n * sin((wt + fi Inl) + (wt +
fi_In2));

Fd sl12(kl) = Pi * L * Rg / 2 / muzero * Bs _kl * Bs k2n * cos((wt + fi Inl) + (wt +
fi In2));

Fq = Fq + Fq sl2(kl);
Fd = Fd + Fd sl12(kl);
end
end
%campo k1l DIRETTO
if (k1 - stl) / m == int32((kl - stl) / m)
$ampiezza della kl-esima armonica di campo
Kd k1 = sin(g * k1 * alfa ¢ / 2) / g / sin(kl * alfa c / 2);
Bs kl = muzero *m / 2 * 4 / k1l / Pi * n * sqrt(2) * Irmsl / 2 / deltag * g * Kd kl
* sin(kl * gamma) ;
k2p = (1 + k1l * N ) / N_;
k2n = (-1 + k1l * N ) / N _;
if (k2p + st2) / m == int32((k2p + st2) / m)
Kd k2p = sin(g * k2p * alfa ¢ / 2) / q / sin(k2p * alfa c / 2);
Bs k2p = muzero *m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * gq *
Kd_k2p * sin(k2p * gamma) ;

Fq s12(kl) = Pi * L * Rg / 2 / muzero * Bs_kl * Bs k2p * sin(-(wt + fi Inl) - (wt +
fi In2));

Fd sl2(kl) = Pi * L * Rg / 2 / muzero * Bs kl * Bs k2p * cos(-(wt + fi Inl) - (wt +
fi In2));

Fq = Fq + Fg sl12(kl);
Fd Fd + Fd _sl12(kl);
end
if (k2p - st2) / m == int32((k2p - st2) / m)
Kd k2p = sin(g * k2p * alfa ¢ / 2) / g / sin(k2p * alfa c / 2);
Bs k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * gq *
Kd k2p * sin(k2p * gamma) ;

Fg sl2(kl) = Pi * L * Rg / 2 / muzero * Bs kl * Bs k2p * sin(-(wt + f£i Inl) + (wt +
fi In2));

Fd sl12(kl) = Pi * L * Rg / 2 / muzero * Bs kl * Bs k2p * cos(-(wt + fi Inl) + (wt +
fi_In2));

Fq = Fq + Fq _sl12(kl);
Fd = Fd + Fd_sl12(kl);
end

if (k2n + st2) / m == int32((k2n + st2) / m)
Kd k2n = sin(g * k2n * alfa ¢ / 2) / q / sin(k2n * alfa ¢ / 2);
Bs _k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd k2n * sin(k2n * gamma) ;

Fg sl2(kl) = -P1 * L * Rg / 2 / muzero * Bs kl * Bs k2n * sin(-(wt + fi Inl) - (wt
+ fi_In2));
Fd s12(kl) = Pi * L * Rg / 2 / muzero * Bs_kl * Bs_k2n * cos(-(wt + fi Inl) - (wt +
fi In2));
Fq = Fq + Fq_sl2(kl);
Fd = Fd + Fd_sl12(kl);
end
if (k2n - st2) / m == int32((k2n - st2) / m)

Kd_k2n = sin(g * k2n * alfa c / 2) / g / sin(k2n * alfa c / 2);

Bs_k2n muzero *m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd_k2n * sin(k2n * gamma) ;
Fg sl2(kl) = -Pi * L * Rg / 2 / muzero * Bs kl * Bs k2n * sin(-(wt + fi Inl) + (wt
+ fi In2));
Fd sl2(kl) = Pi * L * Rg / 2 / muzero * Bs k1 * Bs_k2n * cos(-(wt + fi Inl) + (wt +
fi In2));
Fq = Fq + Fq sl2(kl);
Fd = Fd + Fd sl12(kl);
end
end

end %$Next k1l
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$INTERAZIONE fra diversi ordini armonici della sequenza ST2

for k2 = 1 : k2 _max
$campo k2 INVERSO
if (k2 + st2) / m == int32((k2 + st2) / m)
$ampiezza della k2-esima armonica di campo
Kd_k2 = sin(gq * k2 * alfa ¢ / 2) / q / sin(k2 * alfa c / 2);

o R R T R

Bs k2 = muzero *m / 2 * 4 / k2 / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g * Kd k2

* sin (k2 * gamma) ;
k2p = (1 + k2 * N ) / N_;
k2n = (-1 + k2 * N ) / N_;
if (k2p + st2) / m == int32((k2p + st2) / m)
Kd k2p = sin(g * k2p * alfa ¢ / 2) / g / sin(k2p * alfa c / 2);
Bs k2p = muzero * m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * gq *
Kd k2p * sin(k2p * gamma) ;

Fg s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2p * sin((wt + fi In2) - (wt +

fi In2));

Fd s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2p * cos((wt + fi In2) - (wt +

fi_In2));
Fq = Fq + Fq_s22(k2);
Fd = Fd + Fd_s22 (k2);
end
if (k2p - st2) / m == int32((k2p - st2) / m)
Kd k2p = sin(g * k2p * alfa ¢ / 2) / q / sin(k2p * alfa c / 2);
Bs k2p = muzero *m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd _k2p * sin(k2p * gamma) ;

Fg s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2p * sin((wt + fi In2) + (wt +

fi In2));

Fd s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2p * cos((wt + fi In2) + (wt +
fi In2));

Fq = Fq + Fq s22(k2);

Fd = Fd + Fd_s22(k2);

end

if (k2n + st2) / m == int32((k2n + st2) / m)

Kd _k2n = sin(g * k2n * alfa ¢ / 2) / q / sin(k2n * alfa c / 2);

Bs k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd _k2n * sin(k2n * gamma) ;

Fg s22(k2) = -P1 * L * Rg / 2 / muzero * Bs k2 * Bs k2n * sin((wt + fi In2) - (wt +
fi_In2));

Fd s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2n * cos((wt + fi In2) - (wt +
fi In2));

Fq = Fq + Fq s22(k2);

Fd = Fd + Fd_s22(k2);

end

if (k2n - st2) / m == int32((k2n - st2) / m)

Kd k2n = sin(g * k2n * alfa ¢ / 2) / g / sin(k2n * alfa ¢ / 2);

Bs k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * gq *
Kd _k2n * sin(k2n * gamma) ;

Fq s22(k2) = -Pi * L * Rg / 2 / muzero * Bs_k2 * Bs_k2n * sin((wt + fi In2) + (wt +

fi In2));

Fd s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2n * cos((wt + fi In2) + (wt +

fi In2));

Fq = Fq + Fq_s22(k2);

Fd = Fd + Fd s22(k2);
end
end

$campo k2 DIRETTO
if (k2 - st2) / m == int32((k2 - st2) / m)
%Sampiezza della k2-esima armonica di campo
Kd k2 = sin(g * k2 * alfa ¢ / 2) / q / sin(k2 * alfa ¢ / 2);

Bs_k2 = muzero *m / 2 * 4 / k2 / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g * Kd k2

* sin (k2 * gamma) ;
k2p = (1 + k2 * N) / N_;
k2n = (-1 + k2 * N) / N_;
if (k2p + st2) / m == int32((k2p + st2) / m)
Kd k2p = sin(g * k2p * alfa ¢ / 2) / q / sin(k2p * alfa c / 2);

224



Design and development of a control system for multiphase synchronous PM
bearingless machines

Bs k2p = muzero *m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd _k2p * sin(k2p * gamma) ;

Fg s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2p * sin(-(wt + fi In2) - (wt +
fi_In2));

Fd s22(k2) = Pi * L * Rg / 2 / muzero * Bs_k2 * Bs k2p * cos(-(wt + fi In2) - (wt +
fi In2));

Fq = Fq + Fq s22(k2);

Fd = Fd + Fd_s22(k2);

end

if (k2p - st2) / m == int32((k2p - st2) / m)

Kd k2p = sin(g * k2p * alfa ¢ / 2) / q / sin(k2p * alfa c / 2);

Bs k2p = muzero *m / 2 * 4 / k2p / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd k2p * sin(k2p * gamma) ;

Fg s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2p * sin(-(wt + fi In2) + (wt +
fi_In2));

Fd s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2p * cos(-(wt + fi In2) + (wt +
fi In2));

Fq = Fq + Fq s22(k2);

Fd = Fd + Fd_s22 (k2);

end

if (k2n + st2) / m == int32((k2n + st2) / m)

Kd k2n = sin(g * k2n * alfa ¢ / 2) / g / sin(k2n * alfa ¢ / 2);
Bs k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * gq *
Kd k2n * sin(k2n * gamma) ;

Fg s22(k2) = -Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2n * sin(-(wt + fi In2) - (wt
+ fi In2));

Fd s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2n * cos(-(wt + fi In2) - (wt +
fi_In2));

Fq = Fq + Fq_s22(k2);

Fd = Fd + Fd_s22 (k2);

end

if (k2n - st2) / m == int32((k2n - st2) / m)

Kd k2n = sin(g * k2n * alfa ¢ / 2) / q / sin(k2n * alfa ¢ / 2);

Bs_k2n = muzero * m / 2 * 4 / k2n / Pi * n * sqrt(2) * Irms2 / 2 / deltag * g *
Kd k2n * sin(k2n * gamma) ;

Fg s22(k2) = -P1 * L * Rg / 2 / muzero * Bs k2 * Bs k2n * sin(-(wt + fi In2) + (wt
+ fi In2));
Fd s22(k2) = Pi * L * Rg / 2 / muzero * Bs k2 * Bs k2n * cos(-(wt + fi In2) + (wt +
fi In2));
Fq = Fq + Fq s22(k2);
Fd = Fd + Fd s22(k2);
end
end

end %Next k2

$CALCOLO RISULTANTI

$modulo della forza radiale

Frl = sqgrt(Fd ~ 2 + Fg "~ 2);

%angolo misurato rispetto all'asse y (FEMM)
fi Fr = atan2(Fq, Fd);

PR R R S S S b S S bk S S b S E S E E S S S h h h S h h dh E h h b E h S E b b h b b E h S b 3E E b b b b b b 3 b b b bk b h b b b b b i

% sequenza ST1l: CALCOLO COPPIA Torquel (k)

for k = 1 : k max

if (k + stl) / m == int32((k + stl) / m)
ctr(k) = 1;
rot(k) = '1';

elseif (k - stl) / m == int32((k - stl) / m)
ctr(k) = 2;
rot(k) = 'D';

else
ctr(k) = 0;
rot(k) =" ';

end
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if ctr(k) == || ctr(k) ==
$fattore di distribuzione
Kd(k) = sin(g * k * alfa ¢ / 2)

$ampiezza della k-esima armonica di campo

Bs(k) = muzero *m / 2 * 4 / k / Pi * n * sqgrt(2)

sin(k * gamma) ;
if k / 2 ~= int32(k / 2)

/ q / sin(k * alfa c / 2);

* Irmsl / 2 / deltag

Br(k) =4 / k / Pi * BgM * sin(k * M_ * alfa mag / 2);
if ctr(k) ==
Torquel(k) = 1 / muzero * deltag * L * N~ 2 * Taup * Bs(k) * Br(k)
* deltath + wt + fi Inl);
elseif ctr(k) == 2
Torquel (k) = 1 / muzero * deltag * L * N_ "~ 2 * Taup * Bs(k) * Br (k)
* deltath - wt - fi Inl);
else
Torquel (k) = 0;
end
else
Br(k) = 0;
Torquel (k) = 0;
end
else
Kd(k) = 0;
Bs (k) = 0;
end
end

$CALCOLO RISULTANTE

Torquelsum = 0;

for k =1 k max

Torquelsum = Torquelsum + Torquel (k) ;
end

% sequenza ST2: CALCOLO COPPIA TorqueZ2 (k)

for k =1 k max
if (k + st2) / m == int32((k + st2) / m)
ctr(k) = 1;
rot(k) = '1';
elseif (k - st2) / m == int32((k - st2) / m)
ctr(k) = 2;
rot(k) = 'D';
else
ctr(k) = 0;
rot(k) = " ';
end
if ctr(k) == || ctr(k) ==
$fattore di distribuzione
Kd(k) = sin(g * k * alfa ¢ / 2) / q / sin(k * alfa ¢ / 2);
$ampiezza della k-esima armonica di campo
Bs(k) = muzero *m / 2 * 4 / k / Pi * n * sqrt(2)

sin(k * gamma) ;
if k / 2 ~= int32(k / 2)

* g * Kd(k) *

* sin(k * M_

* sin(k * M_

* Irms2 / 2 / deltag * g * Kd(k)

Br(k) =4/ k / Pi * BgM * sin(k * M_ * alfa mag / 2);
if ctr(k) ==
Torque2 (k) = 1 / muzero * deltag * L * N~ 2 * Taup * Bs(k) * Br (k)
* deltath + wt + fi In2);
elseif ctr(k) ==
Torque2 (k) = 1 / muzero * deltag * L * N ~ 2 * Taup * Bs(k) * Br(k)
* deltath - wt - fi In2);
else
Torque2 (k) = 0;
end
else
Br(k) = 0;
Torque2 (k) = 0;

* sin(k * M_

* sin(k * M_

*
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end
else
Kd (k)
Bs (k)
end

0;
0;

end % (for k = 1 : k max)

$CALCOLO RISULTANTE
Torque2sum = 0;
for k = 1 : k max
Torque2sum = TorqueZsum + Torque2 (k) ;
end

ABF = [Fq,Fd,Frl,fi Fr,Torquelsum,Torque2sum,Irmsl,fi Inl,Irms2,fi In2,deltath];

Note that the variables Fq, Fd, restituted as output arguments of the “Matlab

function”, correspond to the searched Fy, Fz components of the radial force.
E) Forces To Moments Matrix Block

This block simply provides to calculate the moments given by the resultant radial
force in the absolute reference system, by means of the contributions of its

components (5.40)-(5.41):

_ L . L .
_ sh o : sh
MFy = —FyTSm ol + F, 5 cos ¢ cos \yk (5.40)
— L . a L 4
M, =F2%hcosq)sm\|n —FZ%}ZCOS([)COS\V] (5.41)
D
Fy
Fz MFy_(k)
P Fy MFy( » !
«
I Fz MFy(k be psi -
MFz_{i)
i MFz(i 2 MFyz
I psi MFz(j »
Forces to Moments matrix
(Absolute ref. system)

Fig. 5.13
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The relationships were implemented in SIMULINK® by describing every single

term, as shown in Fig. 5.13.

5.4.2 Euler’s Equations Block
A) Applied Moments Block

In the Applied Moments block, the moments of the resultant radial forces are
recalculated from the abs to the fir reference system. The important feature in
this block, is the “4BSOLUTE to FTR” function which provides to realize the

above action; other blocks are used for auxiliary functions, as the signals scope.

Fig. 5.14

The array MFyz represents the moments already calculated in the Levitation
Forces block, which are added in summation to the moment produced by the

weight force, given in (5.42) with respect to the abs reference system.

A A A

i ] k
s Lsh Lsh . Lsh .
=|—cosQcos\y ——cosQsiny ——sinQ =
& 2 2 2
0 0 " g (5.42)
Lsh

=mg 5 (— cos Q Sin i +cos ¢ cos wj)
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Consider the mass m of the rotor and the shaft, the center of gravity located on

the axis with a fixed point at the origin O of the system at a distance L/2 from

the latter. The total moment is then expressed, by means of the Z=3(6 (p,\y) matrix

(5.31), with respect to the fir reference system and passed to the next block.

B) Euler’s Equations Block

)
i

wl®

Fig. 5.15

This part of the system implements the Euler’s equations, seen in (5.20) as
rearranged in (5.33): the output of the block is constituted by the angular speed
vector with respect to the fir reference system (Fig. 5.15). The variables marked
with a capital letter which compare in Fig. 5.15 correspond to the moments of

inertia seen in (5.33).
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5.5 The setting of PID controllers

To set up the PID controllers, firstly the system was analyzed by disabling
the Force Controller and Electromagnetic model blocks, because of the high
complexity of these Matlab functions which introduce the Fourier harmonic
series distribution of the various magnetic fields: in fact, considering the whole
harmonic contributions, it would be very difficult to define the corresponding
transfer function. On the contrary, in this way the PID controllers output gives
directly the F,, F, components of the resultant force. Obviously, this represents
only an intermediate step to produce some provisional values of the PID
coefficients K;, K, and K, being not the original system, but it permitted to
obtain the actual values in an easier way. In fact, after having calibrated the
values of the PID coefficients by means of this simplified analysis, the two
functions were reintroduced to set up and recalculate the coefficients in the
actual, original configuration.

The analytical approach to the problem was formulated by expressing the force,
resultant of the interactions between magnetic fields by means of its y- and z-
components, as the direct result of the PID controllers regulation, thus as a
combination of proportional, integral and derivative actions (5.43), (5.51). Also,
the rotor is considered subject to the weight force, obviously acting along the z-

axis:

A) Equilibrium along the y-axis:

d[ay(0)] (5.43)

£,0= K, 00)+ K, [ ay(apie + K, S

Where Ay represents the error with respect to y coordinate, as defined in (5.45).

Applying the Laplace transformation, it gives:
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Fy(s)=K ,AY(s)+ Iil’ AY(s)+ K 4 [sAY(s)— Ay(0)] (5.44)
A0)=30-5(0) = ar(s)=7(s)- (5.45)

By substituting (5.45) in (5.44) it gives:

20) + &Y(s) - 52 y(0)+ K sY(s)- K,1(0) (5.46)

Fy(s)=K,Y(s)-K ot

p

By applying the second law of motion along the y axis:

mi(t)- £, (6)=0 = mL{%}L[fy (0)] (5.47)

By substituting the respective L-transforms in the equation (5.47) it gives:

m|s?¥(s) - sy(0) - $(0)|=
K

0) K, K; (5.48)
:KpY(s)— » %)+TY(S)—S—2)/(O)+ deY(s)—Kdy(O)
Considering that y(O) = )'/(0) =0, by substituting into (5.48) it gives:
2 K;
ms’Y(s)=K,Y(s)+—2Y(s)+ K 4sY(s) (5.49)

s
By collecting the common terms in (5.49), it gives the trivial solution (5.50):
Y(s)=0 (5.50)

Similarly, proceed to writing the equation along the z- axis:

B) Equilibrium along the z-axis:

£.(6)=K ,Az(1) + K, JZAZ(I)dt +K, d[az(o) (5.51)
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F.(s)=K,AZ(s)+ Iif AZ(s)+ K 4[sAZ(s) - Az(0)] (5.52)
Az(t)=z(t)-2(0) = AZ(s)=2(s)- @ (5.53)

F(9)=K,2()- K, 20 Ki 700 - Kl 0)1 ky52(5)- K,=(0)  (5.59)

This time the equation includes the weight force, as said above:

2
)= 10 me = il 2|07 559
t s
mls®Z(s) - s2(0) - 2(0)|=
0) K; K; meo (5.56)
K, 2(s)-K, ¥ 2 205)- Ko 200)+ K y5200)- K 700)- "2
2 K; mg
ms*Z(s)=K ,Z(s)+ =" Z(s)+ K ysZ(s) - == (5.57)
s s
By collecting the common terms in (5.57), it gives (5.58), (5.59):
Z(s)[ms3 _dez —Kps—KiJ:—mg (5.58)
Z(s)= — e = —& (5.59)
ms> — K ys° -K,s-K, 3 —&sz _&S_&
m m m

The L-transform of the z coordinate (5.59) describes the height of the shaft

ending point with respect to the centre of the motor. By studying the stability of

the equation (5.59) is possible to obtain the order of magnitude of the PID

coefficients. It 1s not the exact solution because, as mentioned before, a

simplified system configuration is examined. To find the correlation between the

three poles and the coefficients of the polynomial equation in s, given by putting

the denominator of (5.59) equal to zero, a generic expression of a third degree
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polynomial is written:

(S_Pl)(s_]?z)(s_p3):

(5.60)
=5 —(p+ Py + p3)s> +(D10s + PiD3 + Pap3)S — Pipap3 =0

By equating the coefficients of the polynomial (5.60) to those of the denominator
in the equation (5.59), it gives:

K,
PrtpPry+p3=—1"
m
K,
PPy T P1P3+ PoP3 :__m (5.61)
K;
Pi1PrP3y =—
m

To solve the problem, the easiest way is to choose only one pole of multiplicity
equal to three and of negative value if real or, if complex, having a real part of

negative value (5.62), to assure the stability of the system:

p<0 if peR

5.62
iRe{p}<O if peC (562)

Pir=Pr=P3=P {
Finally, by substituting (5.62) in (5.61) and developing the equations, it’s
possible to obtain the relationships between the PID coefficients and the pole;

choosing suitably its value, are determined K, K, and K,;:

3p:& = K, =3mp

m
2 K, 2
3pf =——"=— = K,=-3mp (5.63)
m

K.

P3:_l = Ki:mp3
m

In the next, p is chosen as a real number: the general criterion is to vary the value

of p until the maximum excursion of the motor shaft ending point falls within the
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desired tolerance, which can be reasonably fixed in one-tenth of the amplitude of

the airgap, or less if necessary.
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5.6 Simulations and results

The software SIMULINK® was used in order to complete the simulations; the

analyzed machine is characterized by the following parameters (Tab. I):

TABLE I. DATA OF THE MACHINE

Param. Description Value
Ny number of slots 30

D pole pairs of the machine 1

m number of phases 5

1, rated phase current (Ay;) 59.82
T, rated torque (Nm) 30.29
g airgap width (mm) 1
D, stator outer diameter (mm) 230
Dy stator inner diameter (mm) 120
D,, mean diameter of the magnet (mm) 116
Dy ox diameter at the bottom of the slot (mm) 170
Dy ine diameter at the top of the slot (mm) 126.3
D, rotor outer diameter (mm) 114
D,; rotor inner diameter (mm) 60
Oley slot pitch angle 12°
ags stator slot height (mm) 25
he slot opening height (mm) 1

L axial length of the machine (mm) 180
Ly, total length of the shaft (mm) 320
Dy, shaft diameter (mm) 40
L, magnet width (mm) 2
Ly tooth-body width (mm) 8
L, slot opening width (mm) 2
L, slot width at the top slot radius (mm) 5.23
Ly slot width at the bottom slot radius (mm) 9.7
Tey slot pitch at the inner stator radius (mm) 12.57
m rotor and shaft mass (kg) 16.75
Iy moment of inertia, / axis (kg mz) 2.7-10°
Iy, moment of inertia, € axis (kg m?) 50.6-10
1y, moment of inertia, 7 axis (kg m?) 50.6-107
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Using the method described in the previous section, a list of values for K;, K, and

K, is obtained, shown in Tab. II. By applying these values in the simulation, it

can be seen that by increasing the absolute value of p, the maximum excursion of

the motor shaft ending point is progressively reduced.

TABLE II. VALUES OF PID COEFFICIENTS

-20|-1.005E+03 | -2.01E+04 | -1.34E+05
-40| -2.01E+03| -8.04E+04 |-1.072E+06
-80| -4.02E+03 | -3.216E+05 | -8.576E+06

In the following, will be analyzed the simulation results for p = -80 by

representing in the Figs. 5.17, 5.18, the positions of the shaft ending point and of

the axis point corresponding to the rotor stack length in the y, z coordinates of the

absolute reference system (Fig. 5.1). It is important to note that, with reference to

the constrained extremity of the shaft, the rotor stack length extends up to 250

mm and its corresponding axis point position represents the parameter to be

verified. The shaft ending point extends up to 320 mm, thus its excursion will be

obviously greater than the latter (Fig. 5.16).

180
Shaft ending point
4N
70 0
— (o8]
N
Rotor stack length
axis point
Fig. 5.16
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The simulations were performed at a rotor angular speed ®; = 1004.8 rad/s,

corresponding to 9595.13 rpm and the torque current has the rated value of 59.82
Arms-
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As explained above, all the possible interactions between magnetic fields acting
in the airgap are considered, by means of the “Electromagnetic model”. Thus, the
analyzed situation can be considered as a complete and realistic operating
condition of the bearingless machine. In addition, the locus occupied by the same
points on the y-z plane, represented in Fig. 5.19, provides a clearer representation
of the rotor axis position. It is also interesting to observe the behavior of the

torque and levitation current space vectors, i,,, and i

and phase, Figs. 5.20-5.21:

-2.0

Z[m]

sv2 o

43}

D
m
D
431

[y

u
m
an]
1=y

shaft ending point
rotor stack length
0.0E+00
F-04 -1.5E-04  -1.0E-04 -5.0E-05 +00 5.0B
;\,E 05
-((' 106,64
/!

i~

|
P

Ma

Q
m
as)
iy

42l
m
aw]
e

45}

o=
m
an]
ey

y [m]

Fig. 5.19

in terms of rms value

-05

238



Design and development of a control system for multiphase synchronous PM
bearingless machines

0 840
60 - 720
- 600
50
- 480
- - 360
S A A =
10 :::?:ude o
’ ' 240
0 001 002 003 004 005 006 007 008 009 01
T [s]
Fig. 5.20
° 960
3 amplitude [ 840
phase - 720
= ! M 600
iE 3 I Wﬂnﬁ_@ﬁm_ﬂmﬂﬁﬁ_wﬁﬁ AAAAN 80
- 360
S A AAANANANNNAAA

/

/

|/
[V

N/

WY

e

-120

0

0.01 0.02

0.06e 0.07 0.08 0.09

v /
T T T T
0.03 0.04 0.05
1 [s]
Fig. 5.21

0.1

¢y [el. deg.]

@, [el. deg.]

239



Chapter 5

The current space vector 1 has an imposed constant rms value (59.82) to generate
continuously the requested torque, its phase which varies remaining in leading by
90 electrical degrees with respect to magnet axis.

The modulus of current space vector 2, after having reached a maximum
value of almost 4.5 Amps rms in the early instants of time, oscillates between 3
and 3.3 Amps, while the phase continuously changes its value in the whole range
(0 to 360 electrical degrees), having to follow the spatial phase of the required
force necessary to counterbalance the weight and the other forces generated by
the interactions between harmonic orders of the magnetic fields. To give a more
realistic idea, the resultant force vector acting on the rotor, in the time interval

from 0 ms to 100 ms, changes its position on the yz plane as shown in Fig. 5.22.

*
‘ A00
t .

F,IN]
L
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o e

faTalal
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Fig. 5.22

As can be seen by comparing the Figs. 5.17-5.19, the maximum value of the

excursion of the rotor stack length axis point is about 2 tenth of millimeter in the
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negative z-axis direction and 1.5 tenth of millimeter in the negative y-axis
direction, over the prefixed value of 1 tenth, which represents 1 tenth of the
airgap width. So, it 1s necessary to set a different calibration of the PID
controllers. The first attempt, based on the values of Tab. II corresponding to p =
-80, is made by varying the coefficients K;, K,, K; and verifying the result.
Proceeding in this way there is no more correlation with general criterion (5.63),
but lower absolute values for parameters could be found with, consequently, an
easier way to practically realize the controller. A good compromise is found by
acting only on K, multiplying by three its value in Tab. II. Thus, the values of

Tab. III were used and the simulation results are shown in the following:

TABLE III. VALUES OF PID COEFFICIENTS

-4.02E+03 | -9.648E+5 | -8.576E+06
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The modulus of current space vector 2 has an oscillating behavior with a
progressive reduction tending to the regime, standing in the range of 3 to 3.4
Amps, as can be noted in Fig. 5.27 and, clearly, in Fig. 5.28 where the same

function is represented with an extended time axis.

JII::5'1'2 [ Arlm ]
L

D T T T T T T T T T 1
0 0.05 0.1 015 0.2 025 0.3 0.35 0.4 045 0.5

£[s]

Fig. 5.28

As can be seen by comparing the Figs. 5.23-5.25, now the maximum excursion
of the rotor stack length axis point is about 1 tenth of millimeter in the negative
z-axis direction and about 0.75 tenth of millimeter in the negative y-axis
direction. Thus, it is possible to say that the target has been achieved. As done
before, in Fig. 5.29 is shown the succession of the different positions occupied by

the resultant force vector on the yz plane in the time interval from 0 ms to 100

ms. In the Figs. 5.30, 5.31 the time axis has been scaled up to the value of 1
second with respect to Figs. 5.23-5.24, to highlight the stable state achieved by

the system.
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The second way to proceed is by continuing to use the general criterion (5.63),
which would probably permits a finest regulation of the PID coefficients. Finally,
the values in Tab. IV were found with p = -120:

TABLE IV. VALUES OF PID COEFFICIENTS

-120 -6.03E+03 | -7.236E+05 | -2.8944E+07

The results of the simulation are shown in the following, from Fig. 5.32 to Fig.
5.37.
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As can be seen by comparing the obtained results with the previous, a sensible
reduction of the overshoot and a faster attainment of regime condition are
achieved, even if the absolute values of the PID coefficients are in general greater

than in the previous attempt. It can be noted that the system behaves as if in the
instant =0 the rotor would be perfectly centered and the motor is off; in the

instant # =0" the weight force and the other forces, produced by the interactions
between stator and rotor magnetic fields, begin their action on the rotor, with the
control system trying to bring it in the requested position. In the Figs. 5.38, 5.39

1s shown the analyzed 5-phase bearingless motor.

" #120.00
% B1L4.00

Fig. 5.38
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Fig. 5.39
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5.7 Conclusion

In this chapter a control system for bearingless multiphase synchronous
PM machines is presented, integrated by a three-dimensional mechanical model
based on the Euler’s equations.

The electromagnetic model of the machine, seen in Chapter 4, takes into
account all the possible interactions between harmonic orders of the magnetic

fields produced by the current space vector i, which gives the torque, produced

svl»

by the current space vector i,,, which gives the levitation forces, and produced

sv2
by rotor magnets.

Differently from other authors, which propose models that take into
account only the main harmonic orders interactions between magnetic fields, the
developed system is a complete one, giving in this way a more accurate modeling
of the mechanical and electromagnetic phenomena.

For these reasons, it constitutes an important tool for the design of a
bearingless multiphase synchronous PM machines control system and represents
the design of the experimental device with related control system to realize in a

test bench application.
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Conclusion

The main scope of this Ph.D thesis is constituted by the non linear analysis
and design of bearingless multiphase machines and drives.

The thesis work began with the development of a method to analyze the
distributions of the magnetic vector potential, magnetic field and flux density in
the airgap of a permanent magnet electrical machines by applying a two-
dimensional model. The original contribution of the approach, inspired by a
literature paper, consisted in the complete calculations to get the solution of the
problem, conducted by using the techniques of mathematical analysis applied to
physical and engineering problems. This model is characterized by a linear
analysis.

The previous constraint of magnetic linearity is overcome by the second
chapter of this Thesis, where an algorithm for the non-linear magnetic analysis of
multiphase surface-mounted PM machines with semi-closed slots has been
presented. Previous papers proposed the analysis of open-slot configurations with
a prefixed structure of the motor, with a given number of poles and slots, or by
studying only a particular position of the rotor with respect to the stator. In this
work, the PM machine is represented by using a modular structure geometry. The
basic element of the geometry is duplicated allowing to build up and analyze
whatever typology of windings and ampere-turns distribution in a pair of poles.

In the third chapter the theme of the bearingless machines has been
introduced, analyzing and describing the main concepts and ideas developed in
the literature.

The fourth chapter presents an analytical model for radial forces
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calculation in multiphase bearingless Surface-Mounted Permanent Magnet
Synchronous Motors (SPMSM). The model allows to predict amplitude and
direction of the force, depending on the values of the torque current, of the
levitation current and of the rotor position. It is based on the space vectors
method, letting the analysis of the machine not only in steady-state conditions but
also during transients. The calculations are conducted by developing the
analytical functions in Fourier series, taking all the possible interactions between
stator and rotor mmf harmonic components into account. The proposed method
allowed to emphasize the effects of electrical and geometrical quantities like the
coil pitch, the width and length of the magnets, the rotor position, the amplitude
and phase of current space vector, etc.

In the last chapter a three-dimensional mechanical model model of a
bearingless multiphase synchronous PM machines has been analized. The
mechanical model is based on the Euler’s equations, while the electromagnetic
model of the machine, developed in the previous chapter, takes into account all
the possible interactions between harmonic orders of the magnetic fields
produced by the current space vector mainly responsible for the torque, and by
the current space vector injected for producing levitation forces. In the control
model, implementd in MATLAB SIMULINK, the errors in the rotor position are
used in order to calculate the components of the radial forces necessary to control
the rotor axis position of the machine.

The performances of the proposed non linear model of SPMSM have been
compared with those obtained by FEA software in terms of linkage fluxes, co-
energy, torque and radial force. The obtained results for a traditional three-phase
machine and for a 5-phase machine with unconventional winding distribution
showed that the values of local and global quantities are practically coinciding,
for values of the stator currents up to rated values. In addition, they are very

similar also in the non-linear behavior even if very large current values are
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injected. The relevant edge of the method consists in the possibility of defining
the machine characteristics in a simple user interface. Then, by duplicating an
elementary cell, it is possible to construct and analyze whatever typology of
windings and ampere-turns distribution in a pole-pair. Furthermore, it is possible
to modify the magnet width-to-pole pitch ratio analyzing various configurations
in order to minimize the cogging torque, or simulating the rotor movement in
sinusoidal multiphase drives or in a user-defined current distribution.

When developing a new machine design the proposed method is useful not
only for the reduction of computing time, but mainly for the simplicity of
changing the values of the design variables, being the numerical inputs of the
problem obtained by changing some critical parameters, without the need for re-
designing the model in a CAD interface. For a given rotor position and for given
stator currents, the output torque as well as the radial forces acting on the moving
part of a multiphase machine can be calculated. The latter feature makes the
algorithm particularly suitable in order to design and analyze bearingless
machines. For these reasons, it constitutes a useful tool for the design of a
bearingless multiphase synchronous PM machines control system.

With reference to the control system for bearingless machines the
presented model allows to calculate the radial force avoiding the errors
introduced by the use of only the basic mmf harmonic components. In fact, when
designing a control system for bearingless machines, many authors considered
only the interaction between the main harmonic orders of the stator and rotor
mmfs. In multiphase machines this can produce mistakes in determining both the
module and the spatial phase of the radial force, due to the interactions between
the higher harmonic orders. In addition, the proposed algorithm permits to study
whatever configuration of SPMSM machine, being parameterized as a function
of the electrical and geometrical quantities, like the coil pitch, the width and

length of the magnets, the rotor position, the amplitude and phase of current
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space vector, etc. Finally, the results of the proposed method have been
compared with those of a most used FEA software, obtaining very similar values
of the analyzed quantities.

In conclusion, this thesis aims to be a complete reference for the design
methodologies of multiphase bearingless machines and drives, in the linear and

non-linear fields of application.
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