
Alma Mater Studiorum

Università di Bologna

Dottorato di Ricerca in
Matematica

Ciclo XXV

Settore Concorsuale di afferenza: 01/A2

Settore Scientifico Disciplinare: MAT/02

Permutation classes,

sorting algorithms,

and lattice paths

Tesi di Dottorato presentata da Luca Ferrari

Coordinatore Dottorato

Prof. Alberto Parmeggiani

Relatore

Prof. Marilena Barnabei

Esame Finale anno 2013

Contents

Introduction 3

1 Permutation classes 7

1.1 Permutations and pattern containment 7

1.2 Pattern avoidance and permutation classes 9

1.3 Symmetries . 11

1.4 Cardinality . 14

1.5 Enumerative results . 16

1.6 Asymptotics . 17

2 Data structures and computable permutations 19

2.1 Data structures . 19

2.2 Data structures and X– sequences 21

2.3 The action of X– sequences . 23

2.4 X– sequences and computable permutations 25

2.5 Equivalent X– sequences . 25

2.6 Computable permutations and permutation classes 26

2.6.1 Permutations computed by Q 27

2.6.2 Permutations computed by S 27

2.6.3 Permutations computed by Dir 27

2.6.4 Permutations computed by Dor 28

2.6.5 Permutations computed by D 28

3 Sortable permutations and sorting procedures 30

3.1 Sortable permutations . 30

3.2 Equivalent sorting sequences 32

3.3 Greedy sorting procedures . 33

3.4 Deterministic sorting procedures 34

3.5 X– Procedures . 35

3.6 X– Sorting Procedures . 41

3.7 Inside X: monotonicity and unimodality 43

3.8 Operation choice rules . 44

3.9 X– OperationChoice Procedures 47

3.9.1 The procedure S – OperationChoice 48

3.9.2 The procedure Dir– OperationChoice 50

3.9.3 The procedure Dor– OperationChoice 54

3.9.4 The case of D . 57

4 Sorting algorithms 59

4.1 Sorting procedures and sorting algorithms 59

4.2 The bubblesort procedure . 61

4.3 Dual procedures . 63

4.4 Hybrid algorithms . 65

4.5 Bubblesort, stacksort and their duals 67

4.6 Commutation properties among bubblesort, stacksort and their

duals . 68

4.7 Sorting algorithms and permutation classes 73

5 Lattice paths 76

5.1 Enumeration of X– sortable permutations 76

5.2 Sortable permutations and lattice paths 77

5.3 A bijection between X– sortable permutations and lattice paths 78

5.4 A characterization of X̄ . 81

5.5 The bijection ϕ . 84

5.6 The bijection ψ . 85

5.6.1 Stack . 85

5.6.2 Input-restricted deque 85

5.6.3 Output-restricted deque 86

5.7 A link between the bijections 91

Introduction

A permutation σ is said to avoid a pattern τ if it does not contain any

subsequence which is order-isomorphic to τ . The set AvpT q of permutations

avoiding a set of patterns T is a permutation class, namely, an order ideal of

the poset pΣ,¤q, where Σ is the set of permutations of any length and ¤ is

the pattern containment relation.

Permutation classes are closely related to the action of some sorting pro-

cedures, which are realized by using four particular devices. The deque is a

double-ended linear data structure where the elements are inserted and re-

moved through two gates, placed at both ends of the deque. Four input (I

and Ī) and output (O and Ō) operations are allowed: I and O act on the one

end of the deque, while Ī and Ō act on the other. The other three devices can

be obtained by appropriate restrictions on the four input/output operations.

In the stack, for example, the elements go in and out through only one of the

gates. In the input-restricted deque, all the operations are allowed except for Ī,

while, conversely, in the output-restricted deque the only forbidden operation

is Ō.

Suppose to take the identity permutation id � 12 . . . n as the input per-

mutation of a device X. We say that a permutation σ is computed by X if

there exists a sequence of input/output operations, allowed by X, that tran-

sforms id into σ. For instance, the permutation σ � 312 can be computed by

the sequences IIIOŌO and IĪIOOO, while it is not possible to obtain σ by

making use only of the operations I and O. Therefore, σ is computed by all

the variants of the deque, but not by the stack.

Donald Knuth, in the first volume of his celebrated book The art of Com-

puter Programming [13], observed that the permutations which can be compu-

3

ted by these data structures can be characterized in terms of pattern avoidance.

After Knuth’s results, Tarjan [21] and Pratt [17] studied analogous pro-

blems in more complex contexts. In recent years the topic was reopened sev-

eral times, while often in terms of sortable permutations rather than compu-

table permutations. A permutation σ is sorted by a device X if there exists a

sequence of input/output operations of X that turns σ into the identity per-

mutation. It is not difficult to show that the permutations that can be sorted

by a fixed device are exactly the inverses of those that can be computed.

The idea to sort permutations through such devices suggests to look for

a possible deterministic procedure which decides if there exists a sequence

of input/output operations which is able to convert a given permutation σ

into id. Of course, such a procedure becomes even more interesting if it is

efficient in terms of computational complexity: a brute force approach is of no

interest, and practically inapplicable, in this case. For this reason, we look for

a procedure that decides if a given permutation σ is X– sortable or not without

testing all the possible X– sequences.

In the procedures that we describe in the thesis, we require that the answer

about the sortability of the input permutation σ must be given by just scanning

σ and simultaneously deciding, in constant time, which input/output operation

has to be performed in order to turn σ into the permutation id. Under this

condition, the decision procedures answer the question in time Op|σ|q, and,

what is more, they give a constructive method that finds, for the X– sortable

permutations, one of the possible X– sorting sequences for σ. In this sense, we

are allowed to call them sorting procedures.

Under the previous conditions and other minor rules, we show that there

exists an unique way to implement such a procedure for the stack and the

restricted deques. Moreover, these procedures can be applied not only on

permutations but even on more general input sequences of totally ordered

symbols. The stack sorting procedure is very well-known in literature, and

often taken for granted. Conversely, it is quite difficult to find a detailed

analysis of the procedures for the restricted deques. As regards the deque, we

show that it is not possible to realize a procedure that follows the previous

restrictions and that is able to sort all the D– sortable permutations.

4

In chapter 4 we discuss the use of the sorting procedures in some different

contexts. It is not difficult to show that, for any given input permutation,

we can always obtain the identity permutation through a suitable number

of iterations of a sorting procedure. From this point of view, the sorting

procedures can be used as base steps of new sorting algorithms. We can

also create hybrid algorithms by blending two sorting procedures which are

associated to different devices, or mixing a sorting procedure with the base

step of a sorting algorithm.

In chapter 4 we analyze in detail the joint action of the stack sorting proce-

dure (S) and the base step of the well-known bubblesort algorithm (B), together

with their dual versions. Despite being inefficient and, therefore, poorly at-

tractive for practical purposes, the bubblesort presents some very interesting

features from a more theoretical point of view.

In a single step of bubblesort two consecutive elements of the input permu-

tation are swapped if the smaller follows the greater. Obviously, a single itera-

tion of B is not sufficient, in general, to sort the input permutation. The set of

B – sortable permutations is a permutation class [1], as the set of X– sortable

permutations.

We introduce the dual procedures B̃ and S̃, which are obtained from the

original B and S through the action of the reverse-complement operator ρ:

B̃ � ρ � B � ρ and S̃ � ρ � S � ρ. As one might expect, if we mix together some

steps of an algorithm and some steps of a completely different one, the action

of the resulting hybrid algorithm depends, in general, on the order we use to

perform the different steps. Despite this, we prove that - quite surprisingly

- the output of an algorithm consisting of some steps S and some steps B̃

depends only on the number of steps of each type, and not on their relative

order. Moreover, the same holds for B and B̃, and for B and S̃.

In order to prove these commutation properties, we decompose the proce-

dures B and B̃ into some simpler sub procedures, called local sorting opera-

tors. Furthermore, we show that the permutations that can be sorted by a

fixed number of iterations of B and B̃ can be expressed, once again, in terms

of pattern avoidance. More precisely, the basis of the associated permutation

class consists of patterns which are inflations of the permutation 21.

5

In the final chapter we give an alternative proof of some enumerative results

for the classes of X– sortable permutations, in particular for the two restricted

deques. It is well-known that the number of permutations of length n that can

be sorted through a restricted deque corresponds to the number of Schröder

paths of length 2pn� 1q: we refer to Knuth [13] for an analytical proof of this.

In the thesis, we show how the X– sorting procedures yield a bijection between

sortable permutations and Schröder paths.

6

Chapter 1

Permutation classes

1.1 Permutations and pattern containment

Definition 1.1.1. A permutation of length n is a one-to-one correspondence

from the set t1, 2, . . . , nu to itself.

We will denote by Σn the set of all permutations of length n, and by

Σ �
8¤
n�0

Σn

the set of all permutations of any length.

Permutations will be denoted by making use of the one-line representation

σ � σ1σ2 . . . σn,

where σi stands for σpiq, the image of i P t1, 2, . . . , nu under σ. We will use

the symbol |σ| to denote the length of σ.

By definition, in the one-line representation of a permutation we have all

the natural numbers from 1 to n, without repetitions. These restrictions are

removed when talking about words.

Definition 1.1.2. A word of length n over the alphabet A is a correspondence

from t1, 2, . . . , nu to A.

The one-line representation of a word is analogous to the one already de-

fined for permutations.

7

Definition 1.1.3. We say that α is a subsequence of a permutation σ if there

exist indices 1 ¤ i1 ¤ � � � ¤ it ¤ n such that α � σi1 . . . σit.

In other terms, a subsequence α of a permutation is a word whose one-line

notation can be obtained from the one-line notation of σ by choosing some of

its elements.

Definition 1.1.4. We say that two words α and β, of length n, are order-

isomorphic if, for every 1 ¤ i ¤ n and 1 ¤ j ¤ n, we have

αi αj ðñ βi βj .

Definition 1.1.5. A permutation σ P Σn is said to contain the pattern τ P Σt

if there exist a subsequence α of σ which is order-isomorphic to τ . In this case,

we write τ ¤ σ.

We can represent a permutation σ � σ1σ2 . . . σn by the usual graphical

representation: for every image σi, we draw a circle in the box at position

pi, σiq of a square grid (see figure 1.1).

Figure 1.1. The permutation σ � 513624 has three occur-

rences of the pattern τ � 3142: the subsequences 5162, 5164

and 5364 (circled in red).

Proposition 1.1.6. The pattern containment relation ¤ is a partial order

relation on Σ.

8

Figure 1.2. The Hasse diagram of the poset pΣ,¤q, drawn for

permutations of length n ¤ 4.

1.2 Pattern avoidance and permutation classes

Definition 1.2.1. A permutation σ is said to avoid a pattern τ if σ does not

contain any subsequence that is order-isomorphic to τ (τ ¦ σ).

The set of permutations of Σ which avoid a pattern τ will be denoted by

the symbol

Avpτq.

More generally, if T is a set of patterns, we will denote by

AvpT q �
£
τPT

Avpτq

the set of permutations of Σ that simultaneously avoid all the patterns in T .

In particular, we will use the symbol AvnpT q to denote the set of permutations

of length n of AvpT q. In literature, the symbols SnpT q and ΣnpT q are often

used instead of AvnpT q.

Definition 1.2.2. A permutation class is a set C of permutations such that

@σ P C, τ ¤ σ ñ τ P C.

9

Figure 1.3. The permutation σ � 514236 does not contain

any subsequence which is order-isomorphic to τ � 231. Hence,

σ avoids 231.

In other terms, a set of permutations is a permutation class if it is an order

ideal of the poset pΣ,¤q.

Observe that, if σ avoids a set of patterns T , then the same holds for all

the patterns of σ. This proves the following proposition.

Proposition 1.2.3. For every set of patterns T , the set AvpT q is a permuta-

tion class.

It is not difficult to show that even the converse holds. As we already

observed, a permutation class C is an ideal of Σ, and hence its complementary

F � Σ r C is a filter. Therefore, denoting by T the set of minimal elements

of F , it is immediately proven that C � AvpT q. This allows us to state the

following proposition.

Proposition 1.2.4. Every permutation class C can be represented as

C � AvpT q,

where T is the set of minimal elements of Σ r C. The set T will be called the

basis of C.

From now on, when referring to a permutation class AvpT q we always

suppose that T is the set of minimal elements of the complementary filter

F � Σ r C.

10

Figure 1.4. The first elements of the permutation class C �
Avp231, 312q (in blue) and the elements of the complementary

filter F � Σ r C (in red). All the permutations in F contain at

least one between the patterns 231 and 312.

1.3 Symmetries

There are three fundamental symmetries on permutations: reverse, com-

plement and inverse.

Definition 1.3.1. We call reverse, complement and inverse, respectively, the

transformations

r : Σn ÝÑ Σn c : Σn ÝÑ Σn �1: Σn ÝÑ Σn

σ ÞÝÑ σr σ ÞÝÑ σc σ ÞÝÑ σ�1
,

where σ�1 is the inverse of σ, while σr and σc are the permutations whose i– th

element is defined as

pσrqi � σn�1�i

and

pσcqi � n� 1� σi.

11

Observe that, denoting by id r the reverse of the identity permutation id r �

pnq pn� 1q . . . 21, the permutations σr and σc can be defined as

σr � σ � id r and σc � id r � σ. (1.1)

In the graphical representation, the reverse, complement and inverse act,

respectively, as a horizontal, vertical and diagonal symmetry (see figure 1.5).

Moreover, these transformations generate the group of symmetries of the

square: the dihedral group

D4 � xr, c,�1y � tid, r, c,�1, c � r,�1 � r,�1 � c,�1 � c � ru.

Figure 1.5. The 3 generators of the group D4.

The action of D4 partitions Σ in many equivalence classes, that we call

symmetry classes.

Definition 1.3.2. The symmetry class of a permutation σ, denoted by rσs, is

the set of permutations that can be obtained from σ through the action of D4:

rσs � tσφ |φ P D4u.

Definition 1.3.3. We say that two permutations σ1 and σ2 are symmetry-e-

quivalent (σ1 � σ2) if they belong to the same symmetry class.

Definition 1.3.4. Let T be a set of permutations, and denote by

T φ � tσφ |σ P T u

12

Symmetry class Permutations

[123] 123 321

[132] 132 213 231 312

Table 1.1. The permutations of Σ3 split into 2 symmetry

classes.

the set of permutations obtained through the action of a fixed element φ P D4

on the permutations of T . The symmetry class of T , denoted by rT s, is the

collection of sets of permutations that can be obtained from T through the

action of D4:

rT s � tT φ |φ P D4u.

Definition 1.3.5. We say that two sets of permutations T1 and T2 are symmetry-

equivalent (T1 � T2) if they belong to the same symmetry class.

Example 1.3.6. If T � t123, 231u, then

rT s � r123, 231s � tt123, 231u, t123, 312u, t132, 321u, t213, 321uu,

where the symmetry-equivalent sets of permutations are T � ppT rqcq�1 �

t123, 231u, T�1 � pT rqc � t123, 312u, T r � pT rq�1 � t132, 321u and T c �

pT cq�1 � t213, 321u. For the other symmetry classes of pairs of permutations

of Σ3, see table 1.2.

Observe that, if φ is any element of D4, then for all σ, τ P Σ

τ ¤ σ ðñ τφ ¤ σφ.

Hence, for any τ, σ P Σ and for any φ P D4,

σ P Avpτq ðñ σφ P Avpτφq.

By this relation, the following proposition is immediately proven.

13

Symmetry class Pairs of permutations

[123,132] {123,132} {123,213} {321,231} {321,312}

[123,231] {123,231} {123,312} {132,321} {213,321}

[123,321] {123,321}

[132,213] {132,213} {231,312}

[132,231] {132,231} {132,312} {213,231} {213,312}

Table 1.2. There are 15 possible pairs of permutations of Σ3,

partitioned into 5 symmetry classes.

Proposition 1.3.7. Let T be a set of patterns. Then, for every φ P D4,

AvpT qφ � AvpT φq.

By the previous proposition we can prove the following one.

Proposition 1.3.8. Two permutation classes AvpT1q and AvpT2q are symme-

try-equivalent if and only if their bases are symmetry-equivalent:

AvpT1q � AvpT2q ðñ T1 � T2.

Proof. By definition, the permutation classes AvpT1q and AvpT2q are symme-

try-equivalent if and only if there exists φ P D4 such that AvpT1q � AvpT2q
φ.

By proposition 1.3.7 we have that AvpT2q
φ � AvpT φ2 q, and hence AvpT1q �

AvpT φ2 q. Since the basis of a permutation class is unique, this is sufficient to

state that T1 � T φ2 , and hence T1 and T2 are symmetry-equivalent. The proof

of the converse is analogous.

1.4 Cardinality

Among the research directions related to permutation classes, one of the

most investigated in literature is the enumeration problem. For a given set of

14

patterns T , the goal is to find the number of permutations of AvpT q of length

n, namely, the distribution of

|AvnpT q|,

for every n P N.

Actually, proposition 1.4.2 guarantees that, in general, it is not necessary

to consider all the possible patterns: without loss of generality, we can focus

only on a subset of them.

Definition 1.4.1. We say that two permutation classes AvpT1q and AvpT2q

are equidistributed if

|AvnpT1q| � |AvnpT2q|, @n P N.

Two equidistributed permutation classes are also called Wilf-equivalent.

Proposition 1.4.2. If two bases of patterns T1 and T2 are symmetry-equivalent,

the associated permutation classes are equidistributed:

T1 � T2 ùñ |AvnpT1q| � |AvnpT2q|, @n P N.

Proof. By proposition 1.3.8, T1 � T2 implies that AvpT1q � AvpT2q and hence

AvpT1q � AvpT2q
φ, for a suitable φ P D4. Therefore, the permutations of

length n of AvpT1q are obtained by the permutations of length n of AvpT2q by

the action of one of the symmetries of D4, and hence they are equinumerous.

The previous proposition implies that it is sufficient to find the cardina-

lity of a permutation class AvnpT q to obtain the cardinality of all the other

symmetry-equivalent permutation classes.

Example 1.4.3. If we want to study all the possible cardinalities |AvnpT q|,

when T is a pair of permutations of Σ3 (see table 1.2), we can focus on the

cardinalities of only 5 permutation classes, chosen so that their bases belong

to pairwise distinct symmetry classes.

We remark that, in general, the converse of proposition 1.4.2 does not hold:

it is not difficult to show that there exist non-symmetry-equivalent permuta-

tion classes which are equidistributed. This is the case, for example, of the

15

permutation classes Avp123q and Avp132q, that we will discuss in the following

section.

1.5 Enumerative results

Several methods have been used in literature to enumerate permutation

classes (see e.g. [12] for an updated overview).

When looking for an explicit formula for the enumeration of |AvnpT q|, the

solution is trivial if T contains at least one pattern of length t ¤ 2.

The first nontrivial result on this topic was found by MacMahon [15], who

proved that the distribution of the permutation class Avp123q is the sequence

pCnqn of Catalan numbers

Cn �
1

n� 1

�
2n

n

. (1.2)

Many years later, Knuth [13] proved that even Avp312q is enumerated by

the Catalan numbers. In his proof, Knuth observed that the permutations

avoiding 312 are exactly those that can be obtained through a stack starting

from the identity permutation. This kind of relation can be extended to other

permutation classes and data structures: we will discuss them in the next

chapters.

The results obtained by MacMahon and Knuth proved that the two per-

mutation classes Avp123q and Avp312q are Wilf-equivalent, although they are

not symmetry equivalent:

|Avnp123q| � |Avnp132q|, @n P N.

Since every other pattern of length 3 is symmetry-equivalent to one between

123 or 312, we can state the following theorem.

Theorem 1.5.1. For all τ P Σ3, the number of permutations of length n

avoiding τ is the n– th Catalan number:

|Avnpτq| � Cn.

16

The equidistribution of the permutation classes Avpτq, τ P Σ3, has been

proved in many other different ways. Several authors used bijections between

two non-symmetry-equivalent permutation classes. Most of these bijections

involve Dyck paths, that we will introduce in chapter 5. We refer to [9] for a

detailed overview on these bijections.

The cardinality of AvpT q, when T is a subset of Σ3 with two or more

patterns, was studied by Simion and Schmidt [20], who completed the enu-

meration of AvnpT q for all T � Σ3.

The situation becomes much more complicated when considering permuta-

tions avoiding patterns of length 4, or more. The permutation classes Avpτq,

τ P Σ4, are partitioned into 7 symmetry classes and 3 Wilf classes: Avp1234q,

Avp1324q and Avp1342q. Gessel [11] and Bóna [4] found the enumeration of

the first and the third class, respectively, while the same problem on Avp1324q

still remains unsolved.

Many other enumerative results have been found for permutation classes

avoiding two patterns τ1 and τ2. When τ1 P Σ3 and τ2 P Σ4, all the Wilf classes

that arise have been enumerated. When both τ1, τ2 P Σ4, many Wilf classes

have been enumerated, but several of them are currently under investigation.

In the following, we will focus in particular on the classes Avp3241, 4231q and

Avp2431, 4231q, which are strictly related to the sorting procedures that we

will present in chapter 3.

1.6 Asymptotics

It is very difficult, in general, to enumerate the sequence pAvnpT qqn when

the basis T contains patterns of length 5, or more.

Rather than finding the explicit enumeration, it is often convenient to look

for some information on the asymptotic behaviour of the sequence pAvnpT qqn.

A very strong result in this direction was found by Marcus and Tardos in 2004

[16], who proved a famous conjecture due to Stanley and Wilf.

17

Theorem 1.6.1. (Marcus-Tardos Theorem, Stanley-Wilf Conjecture)

For any permutation class Avpτq, there exists a constant cτ such that

|Avnpτq| ¤ cτ
n.

Observe that the number of permutations avoiding τ is asymptotically ir-

relevant, if compared to the total number of permutations. In fact, by the

Marcus-Tardos Theorem,

|Avnpτq|

|Σn|
¤

cτ
n

n!
nÑ�8
ÝÝÝÝÑ 0.

The constant cτ found by Marcus and Tardos is

cτ � 152|τ |4p|τ |
2

|τ | q.

In the last years, some sharper bounds have been found by Bóna [7] and

Cibulka [8], but further improvements may be possible.

18

Chapter 2

Data structures and computable

permutations

2.1 Data structures

In the first chapter we showed that each permutation class can be repre-

sented in terms of pattern avoidance. In this chapter we show that permuta-

tion classes are also closely connected with the action of some particular data

structures, that we introduce below.

A deque (D) is a device which is able to store a set of elements, sequentially

arranged. The name, acronym of Double Ended QUEue, is due to the fact that

elements move in and out through two gates, placed at both ends of D.

Figure 2.1. A deque.

At any time, we can decide whether to put an element into the deque, or

to take out another one. In the first case, we take the leftmost element of the

input sequence and we put it into the deque through one of the gates. If we

choose the left gate, the input element becomes the leftmost element of D; if

19

we choose the right gate, it becomes the rightmost element of D. When we

take out an element from D, we can choose either the leftmost or the rightmost

one, and then put it in the rightmost position of the output sequence.

We denote by I the insertion of the input element into D through the left

gate, and by O the extraction from D of the leftmost element. Similarly, we

denote by Ī and Ō the same operations on the right gate (see figure 2.2).

Figure 2.2. The action of the four possible input/output ope-

rations.

If we close one or both gates in the input or output direction, we obtain

four other devices, which are essentially different from the original deque.

Figure 2.3. By restricting the input and output operations we

obtain four variants of the deque.

Here is a short description of each of them.

• Queue (Q): elements enter through one gate and exit through the oppo-

site one; it is a First In, First Out (FIFO) data structure.

20

• Stack (S): elements are obliged to enter and exit through the same gate;

it is a Last In, First Out (LIFO) data structure.

• Input-restricted deque (Dir): elements enter through only one gate, while

the exit is allowed through both ones.

• Output-restricted deque (Dor): elements can enter through both gates,

while the exit is allowed through only one gate.

Device I O Ī Ō

Q Queue • •

S Stack • •

Dir Input-restricted deque • • •

Dor Output-restricted deque • • •

D Deque • • • •

Table 2.1. Gate activation for each type of device.

We use the letter X to generically denote one of the five devices described

in table 2.1. Observe that each one of them allows a dual version X�, obtained

by interchanging I and O with Ī and Ō (see table 2.2). Obviously, these

dual versions are perfectly analogous to their original ones. Hence, when not

mentioned, we will always refer to the first combination of the I/O operations

(table 2.1).

2.2 Data structures and X– sequences

The five devices described in the previous section differ for the gate acti-

vation. The particular combination of the active input and output directions

leads to some very profound differences on the behaviour of the data structures.

When a given sequence of input elements passes through a device X, many

output sequences are possible. The set of all possible output sequences depends

21

Device I O Ī Ō

Q� Queue • •

S� Stack • •

Dir� Input-restricted deque • • •

Dor� Output-restricted deque • • •

D� Deque • • • •

Table 2.2. Dual gate activation

on which input and output operations are performed, and, therefore, on the

particular data structure that is chosen.

Definition 2.2.1. A sequence S of input and output operations (IO– sequence)

is said to be an X– sequence if it can be performed by the device X:

(i) S consists of input/output operations allowed by X;

(ii) S contains as many output operations as input ones;

(iii) every prefix of S has more input than output operations, or an equal

number of them.

We will denote by X the set of all X– sequences and by X` the set of all

X– sequences of fixed length `.

Example 2.2.2. The sequence S1 � IIOIOIOO is an S– sequence (and hence

a Dir, Dor and D– sequence), while S2 � ĪIOIŌĪOO is only a D– sequence.

Conversely, it is not possible to perform the sequence S � IŌOĪĪO by any

device, since condition piiiq does not hold.

Each device X is able to perform many different X– sequences. We enu-

merate them in the following proposition.

22

Proposition 2.2.3. Let Cn be the n– th Catalan number (see (1.2)). The

following relations hold:

|Q2n| � |S2n| � Cn

|Dir2n| � |Dor2n| � 2nCn

|D2n| � 22nCn

Proof. There exists a trivial bijection between the S– sequences and the set

D2n of Dyck paths of length 2n (see chapter 5). The same holds also for the

Q– sequences, and hence |Q2n| � |S2n| � |D2n| � Cn. For the other three de-

vices, we just observe that each S– sequence is associated to 2n Dir– sequences,

each one obtained by swapping some of the O symbols for Ō in all the possible

2n ways. The proof for Dor and D is analogous.

2.3 The action of X– sequences

Let Σn be the set of permutations of length n, and X2n the set of all

X– sequences of length 2n. We define the map

αn : X2n � Σn ÝÑ Σn

pS, σq ÞÝÑ Spσq

where

S : Σn ÝÑ Σn

σ ÞÝÑ Spσq

maps σ onto the permutation Spσq obtained by applying the sequence S on σ.

In order to avoid ambiguity, the input permutation σ is always read from left

to right, and the output permutation is created by writing the output elements

from left to right. See figure 2.4 for a step-by-step description of the action of

an X– sequence.

Every X– sequence can be performed with a generic sequence of input sym-

bols: the final output sequence is, indeed, just a rearrangement of them.

Hence, in order to describe the action of an X– sequence we do not lose gene-

rality if we always take as input the identity permutation.

23

Figure 2.4. The action of the X– sequence S � IIOIIŌĪOŌO

on the input permutation σ � 52143. The final result is the

output permutation Spσq � 25431.

24

Proposition 2.3.1. Let S P X2n and σ P Σn, and let id � 12 . . . n be the iden-

tity permutation. Then, denoting by � the usual composition of permutations,

we have

Spσq � σ � Spidq.

Example 2.3.2. Taking S � IIOIIŌĪOŌO and σ � 52143, as in figure 2.4,

we have Spidq � 21453 and Spσq � σ � Spidq � 25431.

2.4 X– sequences and computable permutations

In the previous section we observed that the action of IO– sequences can

be analyzed, without loss of generality, by studying which permutations can

be obtained starting from the identity permutation.

We can define the map

β : X ÝÑ Σ

S ÞÝÑ Spidq
,

which associates to each X– sequence S the permutation Spidq, where the

length of id is one half the length of S.

Definition 2.4.1. Let S P X2n and let id be the identity permutation of length

n. The permutation Spidq will be called the permutation computed by S. Co-

herently, we will denote by X pidq the set of X– computable permutations:

X pidq � tσ P Σ | DS P X |Spidq � σu.

In particular, we will use the symbol X pidqn when we refer to X– computable

permutations of length n.

2.5 Equivalent X– sequences

It is easy to show that a permutation σ P X pidq can be computed by many

different X– sequences.

Example 2.5.1. If X � D, the permutation σ � 231 is computed by S1 �

ĪIOIOŌ, S2 � ĪIĪOŌŌ, S3 � IĪŌIOO and many others (24 in all).

25

For this reason, it may be convenient to consider the quotient set X̃ � X {�,

where � is the equivalence relation defined below.

Definition 2.5.2. Let S, T P X2n. We say that S and T are equivalent

(S � T) if, for an input permutation σ P Σn, they compute the same output

permutation: Spσq � T pσq.

Observe that the equivalence � is well-defined. In fact, if Spσq � T pσq for a

fixed σ P Σn, then the same necessarily holds for all τ P Σn. We prove this in

the following proposition.

Proposition 2.5.3. If S and T are two equivalent X– sequences of length 2n,

then, for any fixed input permutation τ P Σn, they compute the same output:

S � T ðñ Spτq � T pτq, @ τ P Σn.

Proof. From the definition of equivalent X– sequences, S � T implies that

Spσq � T pσq for a given σ P Σn. By proposition 2.3.1 we obtain that Spidq �

T pidq and hence, trivially, Spτq � T pτq for every τ P Σn.

In the next chapter, we will describe some procedures that, for each fixed

device X, define a “canonical” representative of each equivalence class of X̃ .

2.6 Computable permutations and permuta-

tion classes

As we might expect, it is not possible to compute all permutations by

making use of one of the devices, even using the deque.

More precisely, the permutations which can be computed by one of the

five devices can be described in terms of pattern-avoiding permutations. For

a detailed proof of this, see [13], [17] and [24].

Theorem 2.6.1. For every device X, the set X pidq is a permutation class.

In the following subsections, we will describe the basis of each class of

X– computable permutations. In the following chapter, we will discuss the

same result by making use of the so called X– sorting procedures.

26

2.6.1 Permutations computed by Q

The set Qpidq consists of the identity permutations of any length:

Qpidq � t1, 12, 123, 1234, . . . u.

In fact, the queue is the only data structure which preserves the relative or-

der of the elements: this is the main reason why the queue, in the frame of

this work, is the less interesting device. Anyhow, we can describe the set of

permutations computed by Q as the permutation class

Qpidq � Avp21q.

2.6.2 Permutations computed by S

In the first volume of The Art of Computer Programming [13], Donald

Knuth observed that the smallest permutation which cannot be obtained using

a stack is 312. In fact, the element 3 goes in the first position of the output

sequence if and only if we already pushed 1 and 2 into the stack; in this

situation, we cannot pop the element 1 before 2, and hence it is impossible to

gain 312.

More generally, Knuth shows that the set of permutations which can be

obtained through S is the set of 312-avoiding permutations

Spidq � Avp312q.

2.6.3 Permutations computed by Dir

As observed in [13], the two smallest permutations which cannot be ob-

tained using an input-restricted deque are 4213 and 4231. The presence of

4 in the first position of the output sequence, in fact, implies that the first

three elements are still into the deque when 4 is pulled out. Moreover, these

elements, read from left to right, must be in decreasing order (since only the

left input gate is open), and hence the element 2 cannot be popped out before

1 or 3. For this reason, the permutations 4213 and 4231 cannot be obtained

using the input-resctricted deque.

27

More generally, as it can be deduced from [13] and [24], the set of Dir– com-

putable permutations is the permutation class

Dirpidq � Avp4213, 4231q.

2.6.4 Permutations computed by Dor

The two smallest permutations which cannot be obtained using an output-

restricted deque are 4132 and 4231. In fact, since only the left output gate

is open, the latter permutations can be obtained if their subsequences 132

and 231 lie into the device in this exact order when the element 4 is pushed.

However, this is not possible since the element 3 arrives when 1 and 2 are

already into the deque, and we cannot push it between them.

More generally, it is known that the set of Dor– computable permutations

is the permutation class

Dorpidq � Avp4132, 4231q.

This result was proved by West [24]. In his proof, West makes use of the

explicit enumeration of Dorpidqn, which was found by Knuth by using the so

called kernel method on the associated generating functions.

2.6.5 Permutations computed by D

Neither the deque is able to compute all permutations, and the set of

D– computable permutations is once again a pattern class. However, the

D– computable permutations must avoid an infinite set of patterns, that we

denote by TD. This result was proved by Pratt [17], who also gave an explicit

description of the set TD, that we show in the next theorem.

Theorem 2.6.2. The set of permutations which can be computed by the deque

is the pattern class

Dpidq � AvpTDq,

where the set TD contains all the patterns of odd length of one of the following

forms (k ¥ 1):

28

(i) the pattern of length 4k � 1

5 2 7 4 . . . p4k � 1q p4k � 2q 3 p4kq 1,

which can be obtained from the identity permutation 12 . . . p4k � 1q by

leaving the even elements fixed, rotating the odd elements cyclically left

two places and interchanging 1 and 3;

(ii) the pattern of length 4k � 3

5 2 7 4 . . . p4k � 3q p4kq 1 p4k � 2q 3,

which can be obtained from the identity permutation 12 . . . p4k � 3q by

leaving the even elements fixed and rotating the odd elements cyclically

left two places;

(iii) the patterns like piq or piiq, with the elements 1 and 2 interchanged;

(iv) the patterns like piq or piiq, with the last two elements interchanged;

(v) the patterns like piq or piiq, with both the elements 1 and 2 and the last

two elements interchanged.

Hence, the shortest forbidden patterns have length 5, and for every odd

length ` ¥ 5 there are four patterns to be avoided. The set of forbidden

patterns is

TD � t52341, 51342, 52314, 51324, 5274163, 5174263, 5274136, 5174236, . . . u.

29

Chapter 3

Sortable permutations and

sorting procedures

3.1 Sortable permutations

In the previous chapter, we considered the five data structures as devices

that are able to rearrange a sequence of input elements. In particular, we took

the identity permutation as input sequence and, for each type of device, we

characterized the set of permutations that can be obtained thereby.

The same problem may be considered from another point of view. Suppose

we have a generic permutation σ as input sequence: which one of the data

structures is able to sort σ? In other words, which IO– sequences are able

to rearrange the elements of σ so that the resulting output sequence is the

identity permutation?

Definition 3.1.1. We say that a permutation σ is sorted by the data structure

X if there exists an X– sequence S P X such that Spσq � id. In this case,

the sequence S will be called an X– sorting sequence for σ, and the set of

permutation which can be sorted by X will be denoted by SortpXq. In particular,

we will denote by SortnpXq the X– sortable permutations of length n.

In the next proposition, we show the profound connection between the two

problems described above.

30

Proposition 3.1.2. A permutation σ is sorted by an X– sequence S if and

only if its inverse σ�1 is computed by S:

Spσq � id ðñ σ�1 � Spidq.

Proof. The relation Spσq � id implies, by proposition 2.3.1, that σ�Spidq � id,

and hence Spidq � σ�1.

The previous proposition implies that

SortpXq � X pidq�1, (3.1)

where X pidq�1, by definition 1.3.4, is the set

X pidq�1 � tσ�1 |σ P X pidqu.

In the previous chapter we proved that

X pidq � AvpTXq,

where TX is the basis of the class of X– computable permutations. Recalling

that AvpT q�1 � AvpT�1q (see proposition 1.3.7), it follows that

SortpXq � AvpTX
�1q.

Hence, for a given device X, the set of X– sortable permutations is a permuta-

tion class, and the patterns of the basis of SortpXq are the inverse patterns of

the basis of X pidq. This allows us to state the following theorem.

Theorem 3.1.3. For every device X, the set of X– sortable permutations is a

permutation class:

SortpQq � Avp21q,

SortpSq � Avp231q,

SortpDirq � Avp3241, 4231q,

SortpDorq � Avp2431, 4231q,

SortpDq � AvpTD
�1q,

where

TD
�1 � t52341, 25341, 42351, 24351, 5274163, 2574163, 5264173, 2564173, . . . u

is the set of the inverse patterns of the set TD, defined in theorem 2.6.2.

31

3.2 Equivalent sorting sequences

If σ is an X– sortable permutation, then, in general, more than one X– se-

quence is able to sort it. The set of X– sorting sequences for σ is an equivalence

class under relation � (see definition 2.5.2): in fact, they produce the same

output permutation id. This class will be denoted by

CXpσq � tS P X |Spσq � idu,

and can be seen as the image of σ under the map

CX : SortpXq ÝÑ X̃
σ ÞÝÑ CXpσq.

Example 3.2.1. Let σ � 312. For each device X, we list below the equivalence

classes of its X– sorting sequences.

CQpσq � ∅
CSpσq � tIIOIOOu

CDirpσq � tIIOIOO, IIOIOŌu

CDorpσq � tIIOIOO, ĪIOIOOu

CDpσq � tIIOIOO, IIOIOŌ, IIOĪŌO, IIOĪŌŌ, IĪŌIOO, IĪŌIOŌ,

IĪŌĪŌO, IIĪOŌO, IIĪOŌŌ, IĪIŌOO, IĪIŌOŌ, IĪŌĪŌŌ,

ĪIĪOŌO, ĪIĪOŌŌ, Ī ĪIŌOO, ĪĪIŌOŌ, ĪIOIOO, ĪIOIOŌ,

ĪIOĪŌO, ĪIOĪŌŌ, Ī ĪŌIOO, ĪĪŌIOŌ, Ī ĪŌĪŌO, ĪĪŌĪŌŌu

Observe that, for the stack, the following result holds.

Proposition 3.2.2. Let σ be a stack sortable permutation. Then, there exists

only one S– sequence that sorts σ. In other terms:

|CSpσq| � 1 @σ P SortpSq.

Proof. Since SortpSq � Avp231q, theorem 1.5.1 and proposition 2.2.3 imply

that |SortnpSq| � |S2n| � Cn. Moreover, different permutations are sorted by

different S– sequences, and this completes the proof.

The proposition can also be proved by using the characterization of the

S– sequences given in proposition 5.4.1. This avoids to involve the preceding

enumerative results.

32

As concerns the queue, we remark that all the possible Q– sequences do not

affect the relative order of the input elements, and hence they can only sort id.

For this reason, from now on, in the discussion of the X– sorting procedures

we will skip the case of Q, which is of no interest for our purposes.

3.3 Greedy sorting procedures

When talking about stack sorting disciplines, the stack sortable permuta-

tions are often defined in literature as permutations that can be sorted by a

definite stack sorting procedure, that we will show in section 3.9.1. In this

procedure, the wanted S– sorting sequence is created by scanning the input

permutation σ and simultaneously deciding, through a precise sorting rule,

which input/output operation must be performed at each step of the process.

The definition of the S– sortable permutations as the ones that can be sor-

ted by the stack sorting procedure is conceptually different from our definition

(3.1.1) of S– sortable permutations: in our definition, we just require that an

S– sorting sequence exists, without any sorting procedure involved.

Actually, it is not difficult to show - as we will prove in the next sections

- that these two definitions are equivalent for S: in fact, the stack sorting

procedure is not restrictive, in the sense that the set of permutations which

are sorted by the procedure coincides with the set of S– sortable permutations

obtained through our definition.

What is often concealed in literature, and that we want to highlight here,

is exactly the difference between these two definitions. This distinction, which

does not appear very important for S, becomes substantial for the devices

which do not allow a non-restrictive sorting procedure.

For these reasons, what we want to do in the following is to determine for

which devices X there exists, as for S, a non-restrictive sorting procedure X

which is able to sort, under certain conditions, all the X– sortable permuta-

tions. This greedy sorting procedure associates to each X– sortable permuta-

tion σ one of its possible X– sorting sequences, that we will denote by Sσ,X.

33

Hence, the action of the procedure X can be described through the map

SX : SortpXq ÝÑ X
σ ÞÝÑ Sσ,X.

The X– sequence Sσ,X can be taken as the canonical representative of the class

CXpσq.
Beyond the theoretical interest on the existence of these non-restrictive

sorting procedures, another relevant aspect concerns their possible use in more

concrete context. We will discuss some of them in the next section.

3.4 Deterministic sorting procedures

Permutations can be seen as a simple description of a more general class of

linear sequences. For instance, the problem of sorting a generic input sequence

can be led back to the same problem on permutations. In fact, a permutation

can be seen as a renormalization of a generic sequence of input symbols, taken

from a totally ordered set.

In the frame of this work, our aim is to find a decision algorithm which

determines if an input sequence of totally ordered symbols is X– sortable or

not. As observed above, it is sufficient to find such a decision algorithm for

permutations.

A brute-force approach suggests to try all the possible X– sequences, stop-

ping when one of the desired sorting sequences is found. Needless to say, such

a method is devoid of any theoretical interest, and definitely unusable for long

input permutations: for instance, for |σ| � 10, in the worst case we have to

try 16796 S– sequences, and over 1010 D– sequences (see proposition 2.2.3).

The problem is solved if we are able, for example, to exhibit a deterministic

sorting procedure X which sorts all the X– sortable permutations. In this case,

the computational efficiency of the decision algorithm depends on the efficiency

of X. Our goal is to define a sorting procedure which works in time Op|σ|q: this

could be done, for example, by scanning the input permutation through the

device and simultaneously deciding, at each state of the process and in time

Op1q, which is the next input/output operation to be performed. This can be

34

realized, for example, by requiring that the choice of the operation to perform

at each step of X must depend on some of the elements which have already

been scanned and some of new input ones. In particular, in the following we

will define an operation choice sub procedure which depends, for each fixed

state of the process, only on the elements which are next to the device gates

and on the first input element (see definition 3.6.1).

As far as we know, only a few authors have considered similar procedures

(see Bóna [6] and, very recently, Denton [10]). In the following sections, we will

show that, under the previous and other minor restrictions, there exist only

one possible sorting procedure for the stack and the two restricted deques.

Conversely, we will also prove that, under the same restrictions, it is not

possible to implement a deque sorting procedure.

Furthermore, the previous sorting procedures can be used to define many

new sorting algorithms. In fact, as we will see in chapter 4, a certain number

of iterations of these procedures is sufficient to sort all the input permutations

of given length.

3.5 X– Procedures

From now on, we will use the following notations for the pseudocode of the

procedures. A procedure P will be declared as follows:

Procedure P : inputÑ output.

When we call the procedure P in the statement of an algorithm, we will

denote by P pxq the output produced by P when x is the input. In particular,

we use the assignment statement

y Ð P pxq,

meaning that the variable y takes the value of the output P pxq.

In the code of the procedures, sequences of elements such as permutations,

X– sequences, or others will be considered as arrays and denoted in bold.

Moreover, is v is an array, then:

35

• vrks is the k– th element of the array v;

• vr`s is the last element of the array v (meaning that the symbol ` denotes

the length of the array);

• vra . . . bs is the array consisting of the elements of v from position a to

position b;

• rv,ws is the array obtained through the concatenation of v and w.

In this section we analyze the procedures which can be executed by a

device X. We will use the following notations to represent the main parts of

X involved in the sorting process:

• input is the array of input elements, and inputr1s is the first element

that will go into the device;

• inside is the array of elements lying inside X; insider1s is the leftmost

element and insider`s is the rightmost element;

• output is the array of output elements, where outputr`s is the last one

that moved to the output.

The following sub procedure describes the action of each input/output

operation.

Procedure Perform :

poperation, input, inside,outputq Ñ pinput, inside,outputq

switch operation

case I:

insideÐ rinputr1s, insides

inputÐ inputr2 . . . `s

case Ī:

insideÐ rinside, inputr1ss

inputÐ inputr2 . . . `s

case O:

outputÐ routput, insider1ss

36

insideÐ insider2 . . . `s

case Ō:

outputÐ routput, insider`ss

insideÐ insider1 . . . `� 1s

end switch

Example 3.5.1. In the situation depicted in figure 3.1 we have input � 72,

inside � 314 and output � 65. Table 3.1 shows the new content of

Figure 3.1

input, inside and output after performing one of the possible input/output

operations.

Definition 3.5.2. Let P be a procedure which executes an X– sequence S �

S1S2 . . . S2n onto an input permutation σ P Σn. The procedure P consists of

2n steps: each step coincides with the execution of one of the input/output

operations of S. More precisely, we call step t the execution of the operation

St through the procedure Perform; we call state t the content of the arrays

input, inside and output between step t and step t� 1.

For simplicity, we denote by

xStateyptq � pinputptq, insideptq,outputptqq

37

input inside output

Initial state 72 314 65

After I 2 7314 65

After Ī 2 3147 65

After O 72 14 653

After Ō 72 31 654

Table 3.1. The action of the four input/output operations for

the situation depicted in figure 3.1.

the elements involved at a fixed state t of the procedure. According to this

convention, the initial state is

xStateyp0q � pσ,∅,∅q,

and the final state is

xStateyp2nq � p∅,∅, Spσqq.

We also denote by

xStateyptq ` op

the state obtained by performing the operation op on xStateyptq, and we denote

by

inputptq ` op

insideptq ` op

outputptq ` op

the corresponding parts of the device after the same operation. In particular,

when an X– sequence S � S1S2 . . . S2n is given, we have

xStateypt�1q � xStateyptq ` St .

Example 3.5.3. Take X � D, S � IIOIIŌĪOŌO and σ � 52143, as in figure

2.4. In table 3.2 we list the content of input, inside and output at each

state of the execution of S. We have, for instance, xStateyp2q � p143, 25,∅q
and xStateyp3q � xStateyp2q `O � p143, 5, 2q.

38

input inside output Next step

State 0 52143 I

State 1 2143 5 I

State 2 143 25 O

State 3 143 5 2 I

State 4 43 15 2 I

State 5 3 415 2 Ō

State 6 3 41 25 Ī

State 7 413 25 O

State 8 13 254 Ō

State 9 1 2543 O

State 10 25

Table 3.2. Analysis of ExecutepIIOIIŌĪOŌO, 52143q.

We distinguish between two types of procedures:

• the procedure Execute;

• the procedure X–CreateExecute.

In the procedure Execute, the IO– sequence is already given as input to-

gether with the permutation σ, and hence the procedure does not depend on

the device:

Procedure Execute : pS,σq Ñ τ

inputÐ σ

insideÐ ∅
outputÐ ∅
nÐ lengthpσq

for step from 1 to 2n do

pinput, inside,outputq Ð PerformpSrsteps, input, inside,outputq

39

end for

τ Ð output

In the procedure X– CreateExecute, each operation St of the X– sequence

S � S1S2 . . . S2n is created and immediately executed at the step t of the

process. More precisely, as already mentioned in section 3.4, in order to keep

the constant execution time we require that the choice of the operation to

perform must depend only on the first, second and last elements of insideptq

(or, if possible, only some of them) and on the first input element inputr1sptq.

This will be done by using the sub procedure

Procedure X–OperationChoice :

pinsider1s, insider2s, insider`s, inputr1sq Ñ operation.

at step t of the main procedure X–CreateExecute. Actually, as we will see

in section 3.9.2, if X � Dor it is sufficient to know insider1s, insider`s and

inputr1s. Moreover, if X � S we just require insider1s and inputr1s. In

the following, for simplicity, when referring to the operation choice procedure

for a generic device X we will insert all the four parameters, although some of

them are not necessary for the stack and the output-restricted deque.

The procedure X–OperationChoice will be described in detail, for each

device X, in section 3.9. We give below the pseudocode of the main procedure.

Procedure X–CreateExecute : σ Ñ τ

inputÐ σ

insideÐ ∅
outputÐ ∅
S Ð ∅
stepÐ 0

while inside � ∅_ input � ∅ do

stepÐ step� 1

operationÐ

Ð X– OperationChoicepinsider1s, insider2s, insider`s, inputr1sq

40

Srsteps Ð operation

pinput, inside,outputq Ð

Ð PerformpSrsteps, input, inside,outputq

end while

τ Ð output

3.6 X– Sorting Procedures

Definition 3.6.1. A procedure will be called an X– sorting procedure, and

denoted by X, if:

(i) X is a procedure of type X–CreateExecute: the choice of the operation

to perform at step t � 1 depends only on the first element of the input

sequence and on the first, second and last element which lie inside X at

state t (local operation choice condition);

(ii) X sorts all the possible X– sortable permutations (optimality condition);

more precisely, the set of permutations sorted by X

SortpXq � tσ P Σ |X pσq � idu

coincides with the set of X– sortable permutations:

SortpXq � SortpXq.

Hence, an X– sorting procedure takes a permutation σ, creates and imme-

diately executes an X– sequence Sσ,X and produces as output the permutation

τ � Sσ,Xpσq, obtained by applying the sequence of operations Sσ,X to the

input permutation σ. In particular, by condition piiq, it follows that

σ P SortpXq ðñ Sσ,Xpσq � id. (3.2)

Definition 3.6.2. The X– sequence Sσ,X will be called the X– sorting sequence

associated to σ by the X– sorting procedure X.

41

X– Sorting Procedure X : σ Ñ τ

inputÐ σ

insideÐ ∅
outputÐ ∅
Sσ,X Ð ∅
stepÐ 0

while inside � ∅_ input � ∅ do

stepÐ step� 1

operationÐ

Ð X– OperationChoicepinsider1s, insider2s, insider`s, inputr1sq

Sσ,Xrsteps Ð operation

pinput, inside,outputq Ð

Ð PerformpSσ,Xrsteps, input, inside,outputq

end while

τ Ð output

Example 3.6.3. We analyze the action of the S– sorting procedure S. If we

take σ � 312 as input permutation, we will see in section 3.9 that the procedure

S creates the S– sequence Sσ, S � IIOIOO and produces the permutation

τ � 123 as output (see table 3.3). In fact, σ is S– sortable since it avoids 231

(see theorem 3.1.3), and hence, as stated in (3.2), τ � Sσ, Spσq � id.

input inside output Next step

State 0 312 I

State 1 12 3 I

State 2 2 13 O

State 3 2 3 1 I

State 4 23 1 O

State 5 3 12 O

State 6 123

Table 3.3. Analysis of ExecutepIIOIOO, 312q.

42

Conversely, if we take σ1 � 231 as input permutation, the S– sequence

associated to σ1 is Sσ1, S � IOIIOO and produces the permutation τ 1 �

213 � Sσ1, Spσ
1q as output, which is not the identity permutation since τ 1

is not S– sortable. If our objective is to sort σ1, we can iterate S on τ 1, and,

if necessary, on the subsequent output permutations. In this case just one

iteration is needed, since Sτ 1, Spτ
1q � id.

Up to now, we have defined the structure and the main features of the sor-

ting procedures, but we have not yet described in detail the operation choice

procedures. In order to do this, we will show in the next sections some neces-

sary conditions, that will help us in the definition of the choice procedures.

3.7 Inside X: monotonicity and unimodality

Definition 3.7.1. A sequence τ � τ1τ2 . . . τn is unimodal if there exists p (1 ¤

p ¤ n� 1) such that the subsequences τ1 . . . τp and τp�1 . . . τn are, respectively,

increasing and decreasing:

τi ¤ τj, @ i, j : i ¤ j ¤ p and τi ¥ τj, @ i, j : p ¤ i ¤ j.

We remark that increasing and decreasing sequences are always unimodal

(by setting, respectively, p � n� 1 and p � 1).

Proposition 3.7.2. Suppose that a permutation σ is sorted by an IO– sequence

S, namely, Spσq � id. Hence, at each state t of the sorting process:

(i) if S P Dor, then insideptq is increasing;

(ii) if S P D, then insideptq is unimodal.

Proof. In order to obtain the increasing output permutation id, when an ele-

ment leaves the device it must be the minimum among all the elements of

inside. Hence, at each state of the sorting process, in case piq the minimum

lies always in the leftmost position (which is the closest to the output gate),

and this implies that, for every t, the elements of insideptq must be increa-

sing. In case piiq, the minimum lies at either end of the device, and hence the

sequence of elements of insideptq is always unimodal.

43

We recall that S � Dor and Dir � D. Hence, the following corollary is

straightforward.

Corollary 3.7.3. Let X be the device used to sort an input permutation σ.

Hence, at each state t of the sorting process:

(i) if X � S or X � Dor, then insideptq is increasing;

(ii) if X � Dir or X � D, then insideptq is unimodal.

3.8 Operation choice rules

Before giving the operation choice rules, we recall that we are dealing with

permutations although they should be considered as representations of a more

general input sequence of totally ordered symbols (see section 3.4). Hence,

if we want the choice rules to be used even on generic sequences of symbols,

we cannot use the typical properties of permutations (that a generic sequence

does not have) with the intention of simplifying the final algorithm.

For instance, we cannot use the fact that the element 1 is the smallest

element in order to put it in the ouput as soon as it arrives. This kind of

approach, indeed, implicitly assumes that the operation choices can be made

by knowing a priori all the elements involved in the process: this conflicts with

condition piq of definition 3.6.1, which states that the choice of the operation

to perform is made by knowing at most three elements inside the device (the

first, second and last) and only the first input one.

In other terms, we can state that the choice of the operation to perform is

made depending only on the relative order of the four cited elements.

For the first choice rule, we observe that the output operations are always

dangerous. In fact, whenever we output an element a we are aware that the

output sequence will not be sorted if another element b a will occur later.

For this reason, the first operation choice rule is that we always input elements

whenever possible. In other terms, if we can choose between an input or an

output operation, we must prefer the first. We formally state this in the

following choice rule.

44

Operation Choice Rule 1. Let X be an X– sorting procedure and let Sσ,X

be the X– sorting sequence associated to σ by X. For each state t of X:

(a) if inputptq � ∅ and at least one between

insideptq ` I and insideptq ` Ī

is either increasing (for X � S, Dor) or unimodal (for X � Dir, D) then

the pt� 1q– th operation pSσ,Xqt�1 of Sσ,X is either

pSσ,Xqt�1 � I or pSσ,Xqt�1 � Ī;

(b) otherwise, the pt� 1q– th operation of Sσ,X is either

pSσ,Xqt�1 � O or pSσ,Xqt�1 � Ō.

Now, we discuss separately the input and output operations. The first,

base rule is given below.

Operation Choice Convention. There are three different situations for

which the operation choice is irrelevant:

• when insideptq � ∅ and inputptq � ∅, then only the input operations

I and Ī are allowed and they give the same result: in this situation we

will always perform I;

• when inputptq � ∅ and insideptq contains only one element, then only

the output operations O and Ō are allowed and they give the same result:

in this situation we will always perform O;

• if insider1s � insider`s (this does not occur when the input sequence

is a permutation) and we are obliged, for other reasons, to output one of

these elements, we will always perform O.

This convention guarantees the uniqueness of the choice rules that we are going

to describe.

When an input operation is allowed (case paq of proposition 1), the follo-

wing operation choice rule holds.

45

Operation Choice Rule 2. Let Sσ,X be the X– sorting sequence associated

to σ by the X– sorting procedure X, and suppose that, for a fixed state t of X,

either pSσ,Xqt�1 � I or pSσ,Xqt�1 � Ī. Then:

(i) if X � S or X � Dir then pSσ,Xqt�1 � I;

(ii) if X � Dor and insideptq � ∅ then

(a) pSσ,Xqt�1 � I if inputr1sptq ¤ insider1sptq;

(b) pSσ,Xqt�1 � Ī if inputr1sptq ¥ insider`sptq;

Proof. The proof of case piq is straightforward, since Ī is not allowed for S
and Dir. For case piiq, we first observe that the first input element inputr1sptq

must be smaller than insider1sptq or greater than insider`s, or equal to

one of them (if we consider generic sequences of input symbols): otherwise,

the insertion of inputr1sptq will break the monotonicity of inside, and this

(by corollary 3.7.3) leads to a final unsorted output sequence, which conflicts

with the definition of X– sorting sequence. In the other cases, in order to

preserve the monotonicity of inside, we must perform I when inputr1sptq ¤

insider1sptq and Ī otherwise.

Lemma 3.8.1. Let X be an X– sorting procedure. Hence, at each state t of X

we have

min
�
inputptq Y insideptq

�
¥ maxoutputptq.

Proof. Suppose that there exists a state t and an element a P inputptq Y

insideptq such that a maxoutputptq. Hence, when we put a into output

we break the monotonicity of the final output sequence, and hence we cannot

get id.

When the input operations are not allowed (case pbq of the operation choice

rule 1), the following rule holds.

Operation Choice Rule 3. Let Sσ,X be the X– sorting sequence associated

to σ by the X– sorting procedure X, and suppose that, for a fixed state t of X,

we have either pSσ,Xqt�1 � O or pSσ,Xqt�1 � Ō. Then:

46

(i) if X � S or X � Dor then pSσ,Xqt�1 � O;

(ii) if X � Dir then

(a) if insider1sptq ¤ insider`sptq then pSσ,Xqt�1 � O;

(b) if insider1sptq ¡ insider`sptq then pSσ,Xqt�1 � Ō.

Proof. The proof of case piq is straightforward, since Ī is not allowed for S and

Dor. For case piiq, if we perform O in case pbq we violate the condition of lemma

3.8.1; the same occurs performing Ō in case paq, except when insider1sptq �

insider`sptq: in this case, we perform O according to the third operation choice

convention.

3.9 X– OperationChoice Procedures

The three operation choice rules described in the previous section, together

with the operation choice convention, lead to a unique possible procedure

X– OperationChoice for S, Dir and Dor.

In the following subsections we show the operation choice procedures for

these devices and we will prove that no operation choice procedure is allowed

for the deque. In the graphical description of the procedures we will use bullets

instead of numbers to represent the elements involved, with the convention that

the elements drawn higher up are greater than those depicted lower down.

Moreover, we draw the first input element:

• in green, if it can be inserted into the device without affecting the mono-

tonicity, or the unimodality, of the inner elements (according to corollary

3.7.3);

• in yellow, if it can be inserted only after the extraction of some of the

inner elements; as already observed in section 3.8, this operation prevents

the final output sequence to be sorted, if later occurs another element

which is smaller than the ones which have been extracted;

• in red, if its insertion will definitely cause an unsorted final output se-

quence.

47

3.9.1 The procedure S – OperationChoice

The stack sorting rule is very well known in literature (see e.g. [5]), and it

is easy to show that it is the only possible one for S. However, many authors

often omit to show that this rule is an optimal sorting rule, in the sense that

it is able to sort all the possible S– sortable permutations. Here, the rule is

given as the choice rule of the S– sorting procedure, and hence, according to

definition 3.6.1, its optimality is guaranteed.

Procedure S –OperationChoice : pinsider1s, inputr1sq Ñ operation

if insider1s � ∅^ inputr1s � ∅ then

operationÐ I

else

if insider1s � ∅^ inputr1s � ∅ then

operationÐ O

else

if insider1s � ∅^ inputr1s � ∅ then

if inputr1s ¤ insider1s then

operationÐ I

else

operationÐ O

end if

end if

end if

end if

Let us describe the rule for a nontrivial case, namely, when both inside

and input are nonempty. By corollary 3.7.3, the elements inside S must be

increasing; according to the first operation choice rule, the first input element

can be inserted into S if there are no smaller elements inside S (figure 3.2a);

otherwise, we must take out all the smaller elements before inserting the new

one (figure 3.2b).

In these last situations, the first input element is yellow because its inser-

48

(a) The input element is smaller than all the elements inside

the stack, and its insertion does not affect the monotonicity

of the inner sequence. We just perform I.

(b) Before inserting the new input element we must extract

the smaller elements. In the situation depicted above, the

sequence of operations to perform is OI.

Figure 3.2. The two possible situations that arise for the stack.

49

tion might prevent the final output permutation to be sorted. This happens if

and only if, after the insertion of the yellow element, an element smaller than

at least one of the elements that we have extracted will occur in input. For

example, the situation of figure 3.2b and the consequent arrival of a smaller

element correspond to an occurence of a 231 pattern: the element 2 is repre-

sented by the one (blue) which is removed when 3 (yellow) arrives; later, when

1 appears, the element 2 has already been removed, and hence 1 will follow 2

in the final output sequence. This is a further proof of

SortpSq � Avp231q.

3.9.2 The procedure Dir– OperationChoice

Even for the input-restricted deque, the operation choice rules and conven-

tions lead to a unique possible sorting procedure, that we will discuss in the

following.

Procedure Dir–OperationChoice :

pinsider1s, insider2s, insider`s, inputr1sq Ñ operation

if insider1s � ∅^ inputr1s � ∅ then

operationÐ I

else

if insider1s � ∅^ inputr1s � ∅ then

if insider1s ¤ insider`s then

operationÐ O

else

operationÐ Ō

end if

else

if insider1s � ∅^ inputr1s � ∅ then

if inputr1s ¤ insider1s_

_insider1s ¥ insider2s _ insider2s � ∅ then

operationÐ I

else

50

if insider1s ¤ insider`s then

operationÐ O

else

operationÐ Ō

end if

end if

end if

end if

end if

As stated in corollary 3.7.3, the sequence of elements inside Dir must always

be unimodal. Hence, at a fixed (nontrivial) state of the sorting process, one

of the following two cases arises:

• if inside is decreasing, the insertion of a new input element is always

possible, since it does not affect the monotonicity of inside (figure 3.3a)

or turns its monotonicity into unimodality (figure 3.3b);

• if inside is unimodal (but not decreasing), we can insert a new element

without extractions if and only if it is smaller then the first inner element

(figure 3.4a); otherwise, before inserting it is necessary to take out at

least one of the inner elements (figures 3.4b and 3.4c).

We observe that, since the inner sequence is always unimodal, in order to

verify if it is also decreasing it is sufficient to compare its first two elements

(this occurs if and only if insider1s ¥ insider2s). Hence, in the operation

choice procedure we get this information in costant time, without scanning all

the elements of inside.

The situation of the last two figures might lead to a final unsorted sequence.

This occurs if an element smaller than the maximum of the ones that we

have extracted will occur in input after the insertion of the yellow element.

In other terms, the situation of figure 3.4b and the consequent arrival of a

smaller element corresponds to an occurence of a 4231 pattern. In fact, the

51

(a) The maximum of inside is the element closest to the left gate

(i.e. the inner sequence is decreasing), and the new input element

is greater than all the inner ones. Hence, its insertion (I) does not

affect the monotonicity of inside.

(b) The inner sequence is decreasing and the new input element is

smaller than the maximum of inside. Hence, after the insertion

of the new input element, the inner sequence gets unimodal.

Figure 3.3. The two possible situations that arise when the

sequence of elements inside the input-restricted deque is increa-

sing.

52

(a) The insertion of the input element does not affect the

unimodality of the inner sequence. We just perform I.

(b) Before inserting the new input element we must extract

the elements that are smaller than the input one. In this case,

the final inner sequence is still unimodal.

(c) As in the previous case, we must extract the smaller in-

ner elements before inserting the new one. The final inner

sequence becomes decreasing.

Figure 3.4. The three possible situations that arise when the

sequence of elements inside the input-restricted deque is uni-

modal.

53

element 4 is the central (blue) inner element; the element 2 is the element that

is extracted when 3 (yellow) arrives; later, when 1 appears, the element 2 is

already in the output sequence, which will not be sorted. A similar situation

occurs in the case of figure 3.4c, where the depicted state and the consequent

arrival of a smaller element corresponds to an occurence of a 3241 pattern.

In this case, the element 3 is the central inner element; the element 2 is the

element that is extracted when 4 (yellow) arrives; later, when 1 appears, the

element 2 is already in the output sequence, which will not be sorted.

These two considerations show that

SortpDirq � Avp3241, 4231q.

3.9.3 The procedure Dor– OperationChoice

The operation choice rules and conventions lead to the following, unique

possible sorting procedure.

Procedure Dor–OperationChoice :

pinsider1s, insider`s, inputr1sq Ñ operation

if insider1s � ∅^ inputr1s � ∅ then

operationÐ I

else

if insider1s � ∅^ inputr1s � ∅ then

operationÐ O

else

if insider1s � ∅^ inputr1s � ∅ then

if inputr1s ¤ insider1s then

operationÐ I

else

if inputr1s ¥ insider`s then

operationÐ Ī

else

operationÐ O

end if

54

end if

end if

end if

end if

Recall that, by corollary 3.7.3, the elements inside Dor must be increasing.

In the following figures, we consider the possible insertion of the first input

element through both the ends of the deque.

Suppose that the new input element is bigger than all the inner ones (figure

3.5a). In this case, if we insert through the left gate (yellow) we must remove

all the inner elements; therefore, it is preferable to insert the input element

through the right one (green), since this operation (Ī) does not affect the

monotonicity of inside.

If the new input element is smaller than all the inner ones (figure 3.5b),

if we insert it through the right gate (red) we will not be able to get the

final sorted sequence. Hence, we must insert it through the left gate (green),

without taking out any of the inner elements.

If the new input element is greater than the minimum of inside but smaller

than its maximum (figure 3.5c), inserting through the right gate (red) would

definitely cause the output sequence to be unsorted. Hence, we must extract

the smaller elements and then insert the input one (yellow) through the left

gate.

Observe that the situation of figure 3.5c leads to a final unsorted sequence

if and only if either a 2431 or a 4231 pattern occurs. The first elements 2

and 4 correspond to the two elements inside the deque (the minimum and the

maximum, respectively) when the 3 arrives. Their relative arrival order (24 or

42) is irrelevant, since they take place into the deque through different gates.

Since the element 3 pulls out 2, a future element 1 will prevent the final output

permutation to be sorted. This agrees with the permutation class description

of the Dor– sortable permutations:

SortpDorq � Avp2431, 4231q.

55

(a) The new input element is greater than all the inner ones. We

insert it through the right gate (Ī).

(b) The new input element is smaller than all the inner ones. We

can perform I.

(c) The new input element is greater than the minimum and smaller

than the maximum of inside. Hence, we remove the smaller elements

and then we insert the new one through the left gate.

Figure 3.5. The three possible situations that arise for the

output-restricted deque.

56

3.9.4 The case of D

The deque sorting problem is not as famous as the stack sorting one, but

it occasionally appeared in literature, especially since Knuth introduced it in

his book [13].

The most famous deque sorting algorithm is due to Rosenstiehl and Tarjan

[19], who ingeniously solved the problem by using a deque of twin stacks. How-

ever, the algorithm described in their paper is very different from our notion

of D– sorting procedure. In fact, besides using an additional structure which

is not allowed in our sorting procedures, the main difference is that in Rosen-

stiehl and Tarjan’s method we always know that we are sorting a permutation,

and not a generic sequence of input symbols. In fact, the algorithm provides

that, at a generic step, the element k � 1 will be added to the output as soon

as the output sequence is 12 . . . k.

The difference between the above notions of sorting procedures is also ana-

lyzed in a very recent paper by Denton [10], who distinguishes the two previous

notions by calling them with complete and with incomplete information. Our

notion of D– sorting procedure, which is based on the local operation choice

condition (see definition 3.6.1), corresponds to a non-omniscient view of the

entire sequence of input elements, and hence to a deque sorting method with

incomplete information.

By the operation choice rules and conventions discussed in the previous

section, we are now able to show that it is not possible to define a D– sorting

procedure. In fact, observe that, in the operation choice rule 2, nothing is said

when X � D: in this case, it is not possible to decide a priori, according to the

local operation choice condition, which input operation must be performed.

We show this in the proof of the following theorem.

Theorem 3.9.1. Every possible procedure D– OperationChoice defines a pro-

cedure D– CreateExecute which does not sort all the possible D– sortable per-

mutations. Hence, it is not possible to define a D– sorting procedure.

Proof. Suppose that, at a fixed state of the sorting process, the deque contains

two elements. Without loss of generality, we can suppose that these elements

are in increasing order. The arrival of an element smaller than the two inner

57

ones gives rise to a situation for which no insertion choice rule is provided:

we can insert the new input element either through the left or the right gate.

Both cases are possible according to corollary 3.7.3: in the first case the inner

sequence is still increasing, while in the second case it becomes unimodal. We

will call these two possible alternatives option A and option B, respectively

(see figure 3.6).

Figure 3.6. The two equally admissible insertion alternatives.

Unfortunately, no one of these options guarantees to gain the final sorted

sequence, since each one of them fails for particular D– sortable input permu-

tations. Consider, for instance, the permutations σ1 � 541362 and σ2 � 43251,

which can be sorted through D by the sequences S1 � IIĪIŌĪIOOOOO and

S2 � IIIĪIOOOOO, respectively. After the insertion of the first two elements,

both of them lead to the situation described above. If we choose option A the

permutation σ1 will not be sorted: after the insertion of 5 (I), 4 (I) and 1

(I), the element 3 must be inserted through the right gate (Ī) and then the

arrival of 6 forces to pull out 1 and 3 before the arrival of 2. On the other

hand, option B is not able to sort σ2: in fact, after the insertion of 4 (I), 3

(I) and 2 (Ī), the element 5 forces to pull out 2 before the arrival of 1, and

hence, again, the final output sequence will not be sorted.

58

Chapter 4

Sorting algorithms

4.1 Sorting procedures and sorting algorithms

In the previous chapter we described the deterministic procedures which

are able to sort all the X– sortable permutations for a given device X P

tS,Dir,Doru. However, an X– sorting procedure cannot be considered as a

sorting algorithm, since it is not able to sort the permutations belonging to

Σ r SortpXq.
In this section, we will show how to use the X– sorting procedures to define

some new sorting algorithms. As we will show in the following, if we want to

sort any possible input permutation σ we must iterate an X– sorting procedure

a certain number of times, depending on the length of σ. In order to prove this,

we primarily observe that every X– sorting procedure puts the largest element

of the input permutation in the rightmost position of the output. This is

stated in the following lemma.

Lemma 4.1.1. Let σ and X pσq be, respectively, the input and output permu-

tation of an X– sorting procedure X. Then

X pσq � τ n,

where τ P Σn�1.

Moreover, it is not difficult to check that if the last n � k elements (from

the k�1–th to the n–th) of the input permutation are already in the their

59

correct position, after performing X even the k–th entry will be in its correct

position.

Lemma 4.1.2. Let σ � σ1 . . . σn and X pσq be, respectively, the input and

output permutation of an X– sorting procedure X. If σi � i for all i such that

k�1 ¤ i ¤ n, then

X pσ1 σ2 . . . σk k�1 . . . nq � τ k k�1 . . . n,

where τ P Σk�1.

By induction, using the previous lemmas, it is now clear that any input

permutation σ is definitely sorted by |σ| � 1 iterations of an X– sorting proce-

dure.

Proposition 4.1.3. Let X be an X– sorting procedure. Then

Xn�1pσq � id, @σ P Σn.

This allows us to define the following X– sorting algorithm (where, ob-

viously, the final output is σ � id).

X– sorting Algorithm : σ Ñ σ

nÐ lengthpσq

for i from 1 to n� 1

σ Ð X pσq

end for

We remark that n�1 iterations are not necessary for almost all the permu-

tations of Σn. For many input permutations, in fact, it is sufficient to iterate

the procedure a smaller number of times, which is far from n � 1. Hence, it

could be convenient to modify the previous algorithm to the following one.

X– sorting Algorithm : σ Ñ σ

while σ � id

σ Ð X pσq

end while

60

Observe that in this second algorithm the while loop cannot fall into an

infinite loop, as guaranteed by proposition 4.1.3. Moreover, the computational

cost of the while condition can be reduced if we keep trace of the swaps per-

formed: when no swaps occur in a whole iteration of X, the permutation is

sorted.

Another different improvement of the latter algorithm is possible if we are

able to determine the minimum number of iterations that allows to sort all

the permutations of fixed length n.

Definition 4.1.4. The sharp iteration number of a procedure X for input

permutations of length n is the integer kpnq such that

@σ P Σn X kpnqpσq � id ^ D σ̄ P Σn : X kpnq�1pσ̄q � id.

Obviously, by proposition 4.1.3 it is immediately proven that, for every

procedure X, we have kpnq ¤ n� 1. For the stack sorting procedure, it is not

difficult to show that kpnq � n� 1.

Proposition 4.1.5. The sharp iteration number of S is n� 1.

Proof. Take σ � 234 . . . n1 as input permutation. It is easy to check that, at

each iteration of S, the element 1 swaps with the element to its left, while the

others keep their position. Hence, we need exactly n � 1 iterations of S in

order to sort σ.

As concerns the restricted deques, we do not have a definite answer. How-

ever, for small integers n, the values of kpnq obtained through direct compu-

tations are much smaller than n� 1.

4.2 The bubblesort procedure

In the previous section we presented the X– sorting algorithm, which con-

sists of the iteration of the procedure X a suitable number of times.

The same structure can be found in the very well-known bubblesort algo-

rithm. In fact, this algorithm presents some features which are very similar to

61

the X– sorting algorithms: as for these, for example, it consists of the itera-

tion of a procedure, that we will denote by B. It is interesting, as we will do

in section 4.6, to analyze the interaction between the procedure B, the stack

procedure S and their dual versions.

Bubblesort Algorithm : σ Ñ σ

nÐ lengthpσq

for i from 1 to n� 1

σ Ð B pσq

end for

In a single iteration of the procedure B, the permutation is scanned from

left to right, and two consecutive elements are swapped if the smaller follows

the greater.

Procedure B : σ Ñ σ

for j from 1 to n� 1

if σrjs ¡ σrj � 1s then

swap pσrjs, σrj � 1sq

end if

end for

Example 4.2.1. If the input permutation is σ � 51372846, then three itera-

tions of B are needed in order to sort σ. In fact, we have B pσq � 13527468,

B 2pσq � 13254678 and, finally, B 3pσq � 12345678.

Observe that the procedure B acts as the procedure S, with the additional

restriction that at most two elements can be contained into the stack at each

state of the sorting process.

A variant of the classic bubblesort procedure B is the dual bubblesort pro-

cedure B̃. As in B, this dual procedure swaps two consecutive elements if the

smaller follows the greater. The difference is that B̃ scans the permutation

from right to left.

62

Procedure B̃ : σ Ñ σ

for j from n� 1 to 1

if σrjs ¡ σrj � 1s then

swap pσrjs, σrj � 1sq

end if

end for

Knuth [14] introduced B̃ in the definition of a slightly more efficient version

of the bubblesort: the so called cocktail shaker sort. In this algorithm, that

we give below, the procedures B and B̃ are alternated, and this reduces the

average number of comparisons.

Cocktail Shaker Sort Algorithm : σ Ñ σ

nÐ lengthpσq

for i from 1 to n� 1

if i mod 2 � 0 then

σ Ð B pσq

else

σ Ð B̃ pσq

end if

end for

4.3 Dual procedures

The action of the dual bubblesort procedure B̃ can be also described by

making use of the reverse-complement operator ρ � r � c (see definition 1.3.1).

In fact, since

ρpσq i � n� 1� σn�1�i,

it is easy to check that

B̃ � ρ � B � ρ.

By analogy, for every X– sorting procedure X we can define the dual procedure

63

X̃ as

X̃ � ρ � X � ρ.

Hence, by using lemma 4.1.1, we get immediately the following result.

Lemma 4.3.1. Let σ and X̃pσq be, respectively, the input and output permu-

tation of a dual X– sorting procedure X̃. Then

X̃pσq � 1 τ,

where τ is a word, with no repeated letters, over the alphabet t2, 3, . . . , nu.

In this case, if the first k elements of the input permutation are already

in their correct position, after performing X̃ even the pk�1q– th will be in its

correct position.

Lemma 4.3.2. Let σ � σ1 . . . σn and X̃pσq be, respectively, the input and

output permutation of a dual X– sorting procedure X̃. If σi � i for all i such

that 1 ¤ i ¤ k, then

X̃ p1 2 . . . k σk�1 σk�2 . . . σnq � 1 2 . . . k k�1 τ,

where τ is a word, with no repeated letters, over the alphabet tk�2, . . . , nu.

Hence, as for the classical procedures, by induction on the previous lemmas

we can state the following proposition.

Proposition 4.3.3. Let X̃ be a dual X– sorting procedure. Then

X̃
n�1

pσq � id, @σ P Σn.

From now on, we will denote by P the set of procedures that we considered

so far:

P � tB, S,Dir,Dor, B̃, S̃, D̃ir, D̃oru.

64

4.4 Hybrid algorithms

In the previous sections we exhibited some sorting algorithms which are

implemented by iterating a given procedure, or alternating a procedure with

its dual.

More generally, we can define many new hybrid algorithms by blending the

previous procedures and their duals, in all possible ways. In particular, as

guaranteed by lemmas 4.1.1 and 4.1.2 together with their dual versions 4.3.1

and 4.3.2, n�1 iterations of these procedures (in any combination) are able to

sort every permutation of length n. In other terms, a hybrid algorithms can

be used as a sorting algorithm, if we iterate the procedures a sufficient number

of times.

Proposition 4.4.1. Let P1, P2, . . . Pn�1 be a succession of procedures, where

Pi P P. Then

P1 � P2 � � � � � Pn�1pσq � id, @σ P Σn.

It is very interesting to analyze the joint action of the procedures of a hybrid

algorithm even for a small number of iterations, which do not guarantee, in

general, to get the final sorted permutation. In the following, we will focus

mainly on two problems. In the rest of this section and in the subsequent

ones, we will prove some commutation properties among the procedures of P .

After this, in section 4.7 we will found a pattern avoidance description of the

permutations sorted by a fixed number of iterations of B and B̃.

As one might expect, if we mix together some iterations of a procedure

with some iterations of a completely different one, the action of the resulting

hybrid algorithm depends, in general, on the order we have used to perform the

procedures. Despite this, in the following sections we will prove that - quite

surprisingly - the output of some particular combinations of B, S and their

duals depends only on the number of iterations of each procedure, and not on

their relative order. Direct computations suggest that similar commutation

properties may hold even for B combined with D̃ir, and B with D̃or. As far as

we know, these commutation properties have not yet been proved, and hence

they could be an interesting problem to explore.

65

In table 4.1 we summarize the results about the commutativity of each

pair of procedures. In particular, a counterexample is provided for the non-

commutative procedures. Moreover, as can be checked on table 4.1, the follo-

wing proposition is immediately proven.

Proposition 4.4.2. Let P1, P2 P P. Then

P1 � P2 � P2 � P1 ðñ P̃1 � P̃2 � P̃2 � P̃1.

B B̃ S S̃ Dir D̃ir Dor

B̃
Yes

(Theorem 4.6.6)

S
No Yes

(4231) (Theorem 4.6.7)

S̃
Yes No No

(Theorem 4.6.7) (4231) (4312)

Dir No ? No No
(34251) (Open) (43251) (53421)

D̃ir
? No No No No

(Open) (51423) (54231) (51432) (5463271)

Dor No ? No No No No
(53241) (Open) (53241) (53421) (634251) (645132)

D̃or ? No No No No No No
(Open) (52431) (54231) (52431) (546231) (625341) (465231)

Table 4.1. Commutation and non-commutation properties

among the procedures. For the non-commutative pairs of pro-

cedures, one of the smallest counterexamples is given.

66

4.5 Bubblesort, stacksort and their duals

In the previous sections we defined the procedures B and S by their im-

plementation. It is also possible to give a recursive definition of the previous

procedures: if σ � αnβ, where n is the greatest element of σ, then

B pαnβq � B pαq β n and S pαnβq � S pαq S pβqn,

while, for the dual procedures, we have

B̃ pα 1 βq � 1α B̃ pβq and S̃ pα 1 βq � 1 S̃ pαq S̃ pβq.

We can give equivalent definitions of B and S also referring to the local

left-to-right maxima. We recall that an element of a permutation σ is a left-

to-right maximum if it is greater than all the previous elements. Hence, the

set of all left-to-right maxima of σ is

Maxlr pσq � tσi : σi ¡ σj, @ j iu.

We can write σ highlighting its left-to-right maxima M1,M2, . . . ,Mk, where

Mk � n, in the following way:

σ �M1 u1M2 u2 . . .Mk uk � pMα uαqα,

where uα are (possibly empty) words. Hence,

B ppMα uαqαq � puαMαqα and S ppMα uαqαq � pS puαqMαqα. (4.1)

We can give analogous definitions for B̃ and S̃ referring to the local right-

to-left minima. An element of σ is a right-to-left minimum if it is smaller than

all the following elements:

Minrl pσq � tσi : σi σj, @ j ¡ iu.

Observe that

ρ pMaxlr pσqq �Minrl pρpσqq and ρ pMinrl pσqq �Maxlr pρpσqq. (4.2)

Writing σ as

σ � vhmh . . . v2m2 v1m1 � pvβmβqβ,

it follows that

B̃ ppvβmβqβq � pmβ vβqβ and S̃ ppvβmβqβq � pmβ S̃ pvβqqβ. (4.3)

67

4.6 Commutation properties among bubble-

sort, stacksort and their duals

From now on, all inequalities involving sequences are intended to hold for

all the elements belonging to the sequences: for example, α β means that

every element of α is smaller than every element of β.

In order to prove the commutation properties between the previous proce-

dures, we first give some simple results.

Remark 4.6.1. If M is both a left-to-right maximum and a right-to-left mi-

nimum of a permutation σ � αM β (α and β possibly empty), then

(i) α M β ;

(ii) M lies in the M-th position of σ;

(iii) M immediately precedes a left-to-right maximum M ;

(iv) M immediately follows a right-to-left minimum m;

(v) the following relations hold:

B pαM βq � B pαqMB pβq, B̃ pαM βq � B̃ pαqM B̃ pβq

S pαM βq � S pαqM S pβq, S̃ pαM βq � S̃ pαqM S̃ pβq.

Proof. Statements piq, piiq, piiiq and pivq are straightforward. Concerning pvq,

observe that σ can be written as σ � α1mMM β1, and hence the application

of B, S and their duals - see (4.1) and (4.3) - does not affect the relative order

between α, M and β.

Lemma 4.6.2. For every permutation σ the following relations hold:

(i) Maxlr pσq �Maxlr pB pσqq and Minrl pσq �Minrl pB pσqq;

(ii) Maxlr pσq �Maxlr pS pσqq and Minrl pσq �Minrl pS pσqq;

(iii) Maxlr pσq �Maxlr pB̃ pσqq and Minrl pσq �Minrl pB̃ pσqq;

(iv) Maxlr pσq �Maxlr pS̃ pσqq and Minrl pσq �Minrl pS̃ pσqq.

68

Proof. piq Let σ � pMα uαqα, whence B pσq � puαMαqα. Every Mi PMaxlr pσq

is preceded, in B pσq, by the same elements as in σ and by ui Mi: this yields

Mi PMaxlr pB pσqq.

Let now m PMinrl pσq. If m P ui for some i, in B pσq it is followed by the

same elements as in σ and by Mi ¡ m; hence, m P Minrl pσq if and only if

m P Minrl pB pσqq. Otherwise, if m � Mi the elements following m in B pσq

follow m also in σ, and thus m PMinrl pB pσqq.

piiq Let σ � pMα uαqα and S pσq � pS puαqMαqα. Every Mi P Maxlr pσq

is preceded, in S pσq, by the same elements as in σ and by S puiq Mi, and

hence Mi PMaxlr pS pσqq. Now, let m PMinrl pσq. When we push m into the

stack, the smaller elements inside are popped out and, immediately after, also

m is popped out by the following element, which is greater. After this, the

elements in the stack and those that are waiting to enter are all greater than

m, and hence m PMinrl pS pσqq.

The proofs of piiiq and pivq are straightforward by using piq, piiq and rela-

tions (4.2).

When the bubblesort (or the stacksort) acts on σ, some new right-to-left

minima may arise. In the following lemma we prove that each of them lies

immediately to the right of a (new or old) right-to-left minimum; of course, a

similar (reversed) result holds for the dual procedures B̃ and S̃.

Lemma 4.6.3. For every permutation σ the following relations hold:

(i) in B pσq, every m P Minrl pB pσqq r Minrl pσq immediately follows an

element m1 PMinrl pB pσqq;

(ii) in S pσq, every m P Minrl pS pσqq r Minrl pσq immediately follows an

element m1 PMinrl pS pσqq;

(iii) in B̃ pσq, every M P Maxlr pB̃ pσqqrMaxlr pσq immediately precedes an

element M 1 PMaxlr pB̃ pσqq;

(iv) in S̃ pσq, every M P Maxlr pS̃ pσqq rMaxlr pσq immediately precedes an

element M 1 PMaxlr pS̃ pσqq.

69

Proof. piq Let σ � pMα uαqα and B pσq � puαMαqα. The considerations made

in the proof of case piq of 4.6.2 imply that, if m P Minrl pB pσqq rMinrl pσq,

then necessarily m PMaxlr pσq and thus, by lemma 4.6.2, m PMaxlr pB pσqq.

Hence, m is both a left-to-right maximum and a right-to-left minimum of B pσq

and then (see remark 4.6.1) it is preceded by a right-to-left minimum.

piiq We focus on two consecutive right-to-left minima mi�1 and mi of σ,

where mi�1 mi. Thus, we can write σ � umi�1 v miw, where u, v and

w are (possibly empty) words, with v, w ¡ mi. After the stacksort, every

possible “new” right-to-left minimum between mi�1 and mi, i.e. every possible

m P Minrl pS pσqq rMinrl pσq, with mi�1 m mi, must belong to u and

must be popped out of the stack after mi�1 and before mi. This holds if and

only if, into the stack, when mi�1 arrives there is a nonempty set u1 � u,

mi�1 u1 mi. In this case, mi�1 and all the elements of u1 are popped out

in increasing order when the first element of v is pushed (or when mi is, if

v � ∅), and they become all (consecutive) right-to-left minima of S pσq.

The proofs of piiiq and pivq are straightforward by using piq, piiq and rela-

tions (4.2).

We now introduce the notion of local sorting operator, which will be useful

in the proof of the next theorem. Let σ � pMα uαqα � pvβmβqβ, where Mi

and mj are the left-to-right maxima and right-to-left minima of σ, respectively,

and define

BMi
pσq �M1 u1 . . .Mi�1 ui�1 uiMiMi�1 ui�1 . . .Mk uk

and

B̃mjpσq � vhmh . . . vj�1mj�1mj vj vj�1mj�1 . . . v1m1.

Obviously,

B pσq � BM1 � BM2 � � � � � BMk
pσq (4.4)

and

B̃ pσq � B̃m1 � B̃m2 � � � � � B̃mhpσq. (4.5)

Remark 4.6.4. The dependence of (4.4) and (4.5) on the local maxima and

minima might cause a little trouble if we don’t have any information about

70

them. For example, if we want to rewrite B�B̃ pσq with the above notations, we

have to know both the right-to-left minima of σ and the left-to-right maxima of

B̃ pσq. Despite this, every new left-to-right maximum M of B̃ pσq is immediately

to the left of another left-to-right maximum (see lemma 4.6.3), and hence its

corresponding local bubblesort BM does not perform any interchange (BM �

id). More generally:

• M PMaxlr pσq immediately precedes M 1 PMaxlr pσq ùñ BM � id;

• m PMinrl pσq immediately follows m1 PMinrl pσq ùñ B̃m � id.

Therefore, in order to rewrite B � B̃ or B̃ �B via the local sorting operators, we

only need to know Maxlr pσq and Minrl pσq. This yields the following lemma.

Lemma 4.6.5. Let σ � pMα uαqα � pvβmβqβ. Then

B � B̃ � B̃ � B ðñ BMi
� B̃mj � B̃mj � BMi

@ i, j ;

S � B̃ � B̃ � S ðñ S � B̃mj � B̃mj � S @ j.

Theorem 4.6.6. The following commutation property holds:

B � B̃ � B̃ � B.

Proof. Let σ � pMα uαqα � pvβmβqβ, and choose Mi and mj. By lemma 4.6.5,

it is sufficient to prove the commutativity of the local sorting operators BMi

and B̃mj .

If Mi � mj, Mi � mj�1 or Mi�1 � mj, then at least one of Mi and mj

is simultaneously a left-to-right maximum and a right-to-left minimum, and

then (see remarks (4.6.1) and (4.6.4)) either BMi
or B̃mj is the identity map.

Now, suppose that Mi � mj, Mi � mj�1 and Mi�1 � mj. If Mi ui X

vjmj � ∅, or Mi ui � vj, or even vjmj � ui, the commutative prop-

erty follows immediately from the fact that the interchanges operated by BMi

and B̃mj do not cross each other. In the only two remaining cases, namely,

Miw1mj�1w2Mi�1w3mj and mj�1w1Miw2mj w3Mi�1, where the wk are

(possibly empty) words, the commutativity can be directly checked.

71

Theorem 4.6.7. The following commutation property holds:

S � B̃ � B̃ � S.

Hence, as a direct consequence, S̃ � B � B � S̃.

Proof. Choosing a right-to-left minimum mj, by lemma 4.6.5 it is sufficient to

prove that S and B̃mj commute.

In order to describe the action of S in progress we can use the notation

output xinsides input,

where x is the open gate of the stack. For instance,

S p26314875q � x2s 6314875 � 2 x6s 314875 � 2 x36s 14875 � 2 x136s 4875 �

� 213 x46s 875 � 21346 x8s 75 � 21346 x78s 5 � 21346 x578s � 21346578.

When we write x xys (with empty input) we refer unambiguously to the last

passage of S, just before the final emptying of the stack.

Now, let σ � u vjmj w, where u and w are, respectively, the words u �

vhmh . . . vj�1mj�1 and w � vj�1mj�1 . . . v1m1. Obviously, vj ¡ mj and w ¡

mj. Let S puq � u1 xu2 u3s, where u2 mj and u3 ¡ mj, and let t1, t2 and q

be the sequences such that xu3s vj � t1 xt2s and xt2sw � q. Now, we have

S � B̃mjpσq � S � B̃mjpu vjmj wq � S pumj vj wq � u1 xu2 u3smj vj w �

� u1u2 xmj u
3s vj w � u1u2mj t

1 xt2sw � u1u2mj t
1 q

and

B̃mj � S pσq � B̃mj � S pu vjmj wq � B̃mjpu
1 xu2 u3s vjmj wq �

� B̃mjpu
1u2 t1 xt2smj wq � B̃mjpu

1u2 t1 xmj t
2swq �

� B̃mjpu
1u2 t1mj qq � u1u2mj t

1 q.

Hence, S � B̃ � B̃ � S, and then, by proposition 4.4.2, we get S̃ � B � B � S̃.

Remark 4.6.8. We can rewrite the commutation properties stated in the pre-

vious theorems by using ρ:

(i) pB � ρq2 � pρ � Bq2;

(ii) S � ρ � B � ρ � ρ � B � ρ � S (and hence ρ � S � ρ � B � B � ρ � S � ρ).

72

4.7 Sorting algorithms and permutation classes

If A is any algorithm, we denote by

SortpAq � tσ |Apσq � 12 . . . nu

the set of permutations sorted by A. Obviously, when A consists of only one

iteration of an X– sorting procedure X, it immediately follows that

SortpXq � SortpXq.

In section 3.1 we showed that, for every procedure X, the set SortpXq is a

permutation class. This property holds even for the set of permutations which

can be sorted by one iteration of the bubblesort: this was proved recently by

Albert et al. [1], who showed that

SortpBq � Avp231, 321q. (4.6)

Moreover, the same authors proved that

SortpS � Bq � Avp2341, 2431, 3241, 4231q,

and, as a generalization of (4.6), that

SortpBhq � AvpΓh�2q, (4.7)

where

Γh�2 � tτ P Σh�2 | τh�2 � 1u.

In other terms, the permutations sorted by h iterations of B are exactly those

that avoid all the patterns of length h� 2 whose final term is 1.

Very recently, Barnabei et al. [3] showed that

SortpB̃ � Bq � Avp3412, 3421, 4312, 4321q.

The problem of determining whether a set of sortable permutations is a

permutation class is nowadays widely investigated (see e.g. [2]). One of the

most well-known results that involves an X– sorting procedure was found by

73

West [23] for S 2; more recently, Úlfarsson [22] analyzed the S 3– sortable per-

mutations. However, the problem remains open for the other stack cases (Sh,

h ¥ 4), for the restricted deques procedures and for all the possible combina-

tions of different procedures of P .

Regarding this, we remark that it is not true, in general, that the permu-

tations sorted by an algorithm A are exactly those that avoid all the smallest

A – unsortable permutations. More precisely, if

`A � mint|τ | : A pτq � idu and ΠA � tπ : A pπq � id^ |π| � `Au,

it is not true, in general, that

SortpAq � AvpΠAq.

West’s results [23] are an evident counterexample to the previous relation.

In fact, West proves that the permutations sorted by two iterations of stacksort

are Avp2341, 35̄241), where 35̄241 denotes the patterns 3241 which are not part

of a pattern 35241. Since ΠS 2 � t2341, 3241u, this implies that SortpS 2q �

Avp2341, 3241q.

In the following, we solve the previous problem for the hybrid algorithm

Bh�B̃
k
. More precisely, by making use of the commutation properties proved in

theorem 4.6.6, we prove that the set of permutations sorted by some iterations

of B and some of its dual B̃ can be expressed in terms of pattern avoidance.

In order to describe the patterns involved we need the following definition.

Definition 4.7.1. Given a permutation σ � σ1σ2 . . . σn and n permutations

α1, α2, . . . , αn, the inflation of σ by α1, α2, . . . , αn (denoted by σ rα1, α2, . . . , αns)

is the permutation of length ` �
°n
i�1 |αi| which is obtained by replacing each

element σi with a permutation τi such that:

• τi is order isomorphic to αi;

• τi τj ðñ σi σj, @ i, j � 1, . . . , n.

Example 4.7.2. The inflation of σ � 312 by α1 � 21, α2 � 213 and α3 � 132

is 312 r21, 213, 132s � 87213465.

74

We denote by

σ J`1, . . . , `nK � tσ rα1, . . . , αns : |αi| � `i, @ i � 1, . . . , nu

the set of all possible inflations of σ by n permutations α1, α2, . . . , αn of fixed

lengths `1, `2, . . . , `n. For instance, 231 J2, 1, 2K � t34512, 34521, 43512, 43521u.

Observe that (4.7) can be described in terms of inflations as follows:

SortpBhq � Avp21 Jh� 1, 1Kq.

Lemma 4.7.3. For every h, k ¥ 1 the following equivalences hold:

σ P Avp21 Jh� 1, k � 1Kq
3;

p1q

s{

ck
p2q

#+

B pσq P Avp21 Jh, k � 1Kq ks
p3q

+3 B̃ pσq P Avp21 Jh� 1, kKq

Proof. We prove only equivalence p1q, since p2q can be proved analogously

and p3q follows from p1q and p2q. For convenience, we will equivalently show

that σ contains a pattern τ P 21 Jh � 1, k � 1K if and only if B pσq contains

τ 1 P 21 Jh, k � 1K.
Let σ � pMα uαqα contain τ P 21 Jh� 1, k� 1K. Observe that the last k� 1

elements of τ are not left-to-right maxima of σ, and thus they belong to some

of the uα. Hence, in B pσq � puαMαqα their relative order is preserved, and

the first of them (i.e. τh�2 P ui) follows the same elements than in σ, except

for Mi. This implies that B pσq contains a subsequence τ 1 P 21 Jh, k � 1K. The

proof of the converse is analogous.

Theorem 4.7.4. The set of permutations sorted by h iterations of B and k

iterations of B̃ (h, k ¥ 0), performed in any order, is the set

SortpBh � B̃
k
q � Avp21 Jh� 1, k � 1Kq.

Proof. Applying lemma 4.7.3 h times for B and k for B̃, we obtain that

σ P Avp21 Jh� 1, k � 1Kq ðñ Bh � B̃
k
pσq P Avp21q � tidu.

75

Chapter 5

Lattice paths

5.1 Enumeration of X– sortable permutations

The first enumeration of X– computable permutations was given by Knuth

[13], who showed that the stack computable permutations are counted by the

Catalan numbers (see section 1.5)

Cn �
1

n� 1

�
2n

n

.

Moreover, Knuth showed that the permutations computed by the restricted

deques are counted by the Schröder numbers pSnqn (sometimes called large

Schröder numbers), which are defined by the following recurrence relation:

$'&
'%

Sn � Sn�1 �
n�1̧

i�0

Si Sn�1�i

S0 � 1

To get this result, Knuth enumerated some particular sequences of Dor

(he called them admissible sequences) and defined a bijection between these

sequences and the permutations that can be computed through a restricted

deque. We remark that the set of Knuth’s admissible sequences coincides (up

to slight modifications) with the set of representatives given by our X– sorting

procedures, that we describe in section 5.4.

76

Obviously, the enumeration of X– computable permutations immediately

gives the number of X– sortable ones. In fact, by relation (3.1), the sets X pidqn
and SortnpXq are equipotent, and hence

|SortnpSq| � Cn, |SortnpDirq| � |SortnpDorq| � Sn.

n 0 1 2 3 4 5 6 7 8

Cn 1 1 2 5 14 42 132 429 1430

Sn 1 2 6 22 90 394 1806 8558 41586

Table 5.1. The first Catalan and Schröder numbers.

Up to now, nothing is known on the enumeration of the set SortnpDq of

deque sortable permutations.

In the following sections we propose a bijective enumeration of the permu-

tations sorted by the stack and the restricted deques. In particular, we will

present a bijection that associates a lattice path to each permutation sorted

by a given device.

5.2 Sortable permutations and lattice paths

In literature, many combinatorial objects have been enumerated by using

bijections with lattice paths.

Definition 5.2.1. A lattice path is any succession of consecutive steps in the

Z2 lattice, where a step V � pvx, vyq connects a point A � pax, ayq with the

point B � pax � vx, ay � vyq.

The first lattice paths that we consider, which are strictly related to the

stack sortable permutations, are Dyck paths.

Definition 5.2.2. A Dyck path of length 2n is a lattice path from p0, 0q to

p2n, 0q that consists of steps U � p1, 1q and D � p1,�1q and never goes below

the x�axis.

77

It is not difficult to show that the Catalan numbers enumerate the set D2n

of Dyck paths of length 2n:

Cn � |D2n|.

Rogers and Shapiro [18] showed that the Schröder numbers count another

class of lattice path, called Schröder paths.

Definition 5.2.3. A Schröder path of length 2n is a lattice path from p0, 0q

to p2n, 0q that consists of steps U � p1, 1q, D � p1,�1q, and HH � p2, 0q and

never goes below the x�axis.

Denoting by S2n the set of Schröder paths of length 2n, we have

Sn � |S2n|.

In their work, Rogers and Shapiro also give a bijection between Knuth’s

admissible sequences and Schröder paths. In the following, we will use this

bijection and the X– sorting procedures to define a bijection between the re-

stricted deque sortable permutations and the Schröder paths.

5.3 A bijection between X– sortable permuta-

tions and lattice paths

The bijections we want to describe associate each X– sortable permutation

with a lattice path:

SortpXq ÐÑ L .

In particular, we will show that it is possible to define a bijection between

stack sortable permutations of length n and Dyck paths of length 2n

SortnpSq ÐÑ D2n,

and two bijections between the restricted deque sortable permutations of length

n and the Schröder paths of length 2pn� 1q:

SortnpDirq ÐÑ S2pn�1q and SortnpDorq ÐÑ S2pn�1q.

78

(a) n � 1

(b) n � 2

(c) n � 3

(d) n � 4

Figure 5.1. Dyck paths D2n.

79

(a) n � 1

(b) n � 2

(c) n � 3

Figure 5.2. Schröder paths S2n.

80

Recall that an X– sorting procedure associates to a given X– sortable per-

mutation σ one of its possible X– sorting sequences. In section 3.3 we described

this action through the map SX, and we denoted by Sσ,X the representative

chosen by the X– sorting procedure.

Definition 5.3.1. We denote by X̄ the set of representatives of the X– sequen-

ces of any length, which are chosen by the X– sorting procedures. In particular,

we denote by X̄2n the set of representatives of length 2n.

It is convenient to describe the bijection between SortpXq and L by split-

ting it into two bijections ϕX and ψX , one between SortpXq and X̄ , the other

one between X̄ and L :

SortpXq
ϕX // X̄

ψX //

ϕ�1
X

oo L
ψ�1
X

oo

5.4 A characterization of X̄
In this section, we give a characterization of the set of representatives S̄,

D̄ir and D̄or.

Proposition 5.4.1. The set S̄ coincides with the set S.

Proof. To prove the proposition it is sufficient to show that distinct S– sequen-

ces compute distinct permutations. Let S, T P S, S � T , and let k be the

first integer such that Sk � Tk: hence, Sk � I and Tk � O, or conversely.

Obviously, before performing the k–th operation the output sequence is the

same in both cases. Now, if we perform O the next element to be added to the

output is the leftmost element i1 of the inner sequence i1 . . . i`; conversely, if

we perform I we insert a new element in the inner sequence which will precede

i1, and then the next element to be added to the output cannot be i1.

Proposition 5.4.2. If S P D̄ir Y D̄or, then every prefix of S has more input

operations than output ones (except when it coincides with the whole sequence

S). In other terms, executing S never empties the device during the sorting

process.

81

Proof. As stated in the first operation choice rule (see section 3.8), the X– sor-

ting procedures always perform the input operations whenever this does not

affect the monotonicity, or the unimodality, of the inner sequence (see corollary

3.7.3). Now, suppose that a device X contains only one element at a fixed state

of the sorting process. If X � Dir we can always perform I since this does not

affect the unimodality. Otherwise, if X � Dor we can always perform either I

or Ī, depending on the new input element, without affecting the monotonicity

of the inner sequence.

Proposition 5.4.3. The set D̄ir is the set of Dir– sequences that satisfy the

following conditions:

(i) the last operation is O;

(ii) no Ō is followed by I;

(iii) every prefix has strictly more input than output operations, except for the

whole sequence.

Proof. Let D̂ir be the set of Dir– sequences that satisfy conditions piq, piiq and

piiiq. If S P D̄ir, then piq follows from the operation choice convention, piiq

from the first operation choice rule (ŌI has the same effect than IŌ) and piiiq

from proposition 5.4.2. Hence, D̄ir � D̂ir.
To prove the converse, we show that distinct sequences of D̂ir compute

distinct permutations. Let S, T P D̂ir, S � T , and let k be the first integer

such that Sk � Tk (by condition piq, Sk and Tk cannot be the final operations

of the sequences). Then, up to symmetries, three cases arise:

paq Sk � I and Tk � O;

pbq Sk � I and Tk � Ō;

pcq Sk � O and Tk � Ō.

Observe that, in all cases, at least one of the sequences has an output operation;

hence, by condition piiiq, before performing the k– th operation the device

contains at least two elements. Case paq coincides with the situation described

for the stack in the proof of proposition 5.4.1, and hence the two sequences

compute different permutations. In case pbq, by condition piiq the sequence

82

T cannot have Tk�1 � I. This implies that, after Tk � Ō, the sequence T

may have a (possible empty) sequence of Ō, which must be followed by an

operation O. Hence, the permutation computed by S cannot coincide with

the one computed by T , since S inserts a new element into the device. Finally,

in case pcq the computed permutations may coincide if and only if there is only

one element inside the device: but, as observed before, this is not the case.

Proposition 5.4.4. The set D̄or is the set of Dor– sequences that satisfy the

following conditions:

(i) the first operation is I;

(ii) no O is followed by Ī;

(iii) every prefix has strictly more input than output operations, except for the

whole sequence.

Proof. Let D̂or be the set of Dor– sequences that satisfy conditions piq, piiq and

piiiq. If S P D̄or, then piq follows from the operation choice convention, piiq

from the first operation choice rule (OĪ has the same effect than ĪO) and piiiq

from proposition 5.4.2. Hence, D̄or � D̂or.
To prove the converse, we show that distinct sequences of D̂or compute

distinct permutations. Let S, T P D̂or, S � T , and let k be the first integer

such that Sk � Tk. Observe that, by condition piq, Sk and Tk cannot be the

first operations of the sequences, and hence, by condition piiiq, the device

contains at least one element when the k– th operation is performed. Then,

up to symmetries, three cases arise:

paq Sk � I and Tk � O;

pbq Sk � Ī and Tk � O;

pcq Sk � I and Tk � Ī.

Case paq coincides with the situation described for the stack in the proof of

proposition 5.4.1, and hence the two sequences compute different permuta-

tions. In case pbq observe that, after Tk � O, the sequence T may have a

(possible empty) sequence of O, which must be followed (by condition piiq)

by an operation I. Hence, the sequences S and T cannot compute the same

83

permutation, because S inserts the new input element through the right gate,

while T inserts the same element through the left one. Since the deque has

only one output gate, if we perform I the new inserted element will be added

to the output before all the elements inside the device; conversely, if we per-

form Ī the new inserted element will be added to the output after the inner

ones. The same holds for case pcq, where the choice between I or Ī affects the

computed permutation.

5.5 The bijection ϕ

The map ϕX

The map

ϕX : SortnpXq ÝÑ X̄2n

σ ÞÝÑ Sσ,X

is completely described by the action of the X– sorting procedures. In fact,

it simply associates each X– sortable permutation to the X– sorting sequence

given by the X– sorting procedure X.

The map ϕ�1
X

Observe that each X– sorting procedure can also be used as X– computing

procedure. In fact, as showed in proposition 3.1.2, the X– sortable permutations

are strictly related to the X– computable ones: a permutation σ is sorted

by an X– sequence S if and only if its inverse σ�1 is computed by the same

X– sequence:

Spσq � id ðñ σ�1 � Spidq.

Hence, in order to describe the map

ϕ�1
X

: X̄2n ÝÑ SortnpXq
S ÞÝÑ σS,X

,

it is sufficient to perform S on the identity permutation, and then apply the

inverse operator to get σS,X.

84

5.6 The bijection ψ

In this section, for each device X we describe the bijection ψX and its inverse

ψ�1
X

. An example of the whole bijection ψX �ϕX is given in figures 5.3, 5.4 and

5.5.

5.6.1 Stack

The maps ψS and ψ�1
S

ψS : S̄2n ÝÑ D2n

S ÞÝÑ ∆S, S.

ψ�1
S

: D2n ÝÑ S̄2n

∆ ÞÝÑ S∆, S.

It is sufficient to replace each input/output operation with a path step (for

ψS), or each path step with an input/output operation (for ψ�1
S

), through the

following rule:

Iú U, Oú D.

5.6.2 Input-restricted deque

The map ψ
Dir

ψ
Dir

: D̄ir2n ÝÑ S2pn�1q

S ÞÝÑ ∆S,Dir .

The path ∆S,Dir is obtained through the following steps.

1 Delete the first (I) and last (O) operations of S.

2 Link each input operation I with an output operation O or Ō (placed to

the right of I), so that the resulting matching is a noncrossing partition

of S.

3 Rename by I1 each input operation matched with O, and with I2 each

input operation matched with Ō.

85

4 Replace each entry of the new sequence according to the following rule:

I1ù U, I2ù HH, Où D, Ōù ∅.

5 The resulting sequence gives the path ∆S,Dir .

The map ψ�1

Dir

ψ�1

Dir
: S2pn�1q ÝÑ D̄ir2n

∆ ÞÝÑ S∆,Dir

The following steps describe how to obtain the sequence S∆,Dir .

1 Replace each step of the path ∆ according to the following rule:

Uù I1, HHù I2, Dù O.

2 Cover the I2 entries, and match each I1 with an O (placed to the right

of I1) in order to obtain a noncrossing partition.

3 Unveil the I2 entries, and add to the string an equal number of Ō (never

before I1 or I2) so that the noncrossing matching can be completed.

4 Rename I1 and I2 by I, and add one I and one O, respectively, at the

left and right end of the sequence.

5 The resulting sequence is S∆,Dir .

5.6.3 Output-restricted deque

The map ψDor

ψDor : D̄or2n ÝÑ S2pn�1q

S ÞÝÑ ∆S,Dor .

The path ∆S,Dor is obtained through the following steps.

86

1 Delete the first (I) and last (O) operations of S.

2 Link each input operation I or Ī with an output operation O (placed

to the right of I or Ī), so that the resulting matching is a noncrossing

partition of S.

3 Rename by O1 each output operation matched with I, and with O2 each

output operation matched with Ī.

4 Replace each entry of the new sequence through the following rule:

Iù U, Īù ∅, O1ù D, O2ù HH.

5 The resulting sequence gives the path ∆S,Dor .

The map ψ�1
Dor

ψ�1
Dor

: S2pn�1q ÝÑ D̄or2n

∆ ÞÝÑ S∆,Dor

The following steps describe how to obtain the sequence S∆,Dor .

1 Replace each step of the path ∆ through the following rule:

Uù I, Dù O1, HHù O2.

2 Cover the O2 entries, and match each I with an O1 (placed to the right

of I) in order to obtain a noncrossing partition.

3 Unveil the O2 entries, and add to the string an equal number of Ī (never

after O1 or O2) so that the noncrossing matching can be completed.

4 Rename O1 and O2 by O, and add one I and one O, respectively, at the

left and right end of the sequence.

5 The resulting sequence is S∆,Dor .

87

Figure 5.3. The bijection for the stack.

88

Figure 5.4. The bijection for the input-restricted deque.

89

Figure 5.5. The bijection for the output-restricted deque.

90

5.7 A link between the bijections

In this last section, we describe the duality between the two bijections given

for the restricted deques.

Definition 5.7.1. Let S P X . We denote by S� the sequence obtained by

reversing S and swapping I for O and Ī for Ō.

Example 5.7.2. If S � IIOĪOIŌIOŌIO, then S� � IOĪIOĪOIŌIOO.

Observe that S� corresponds to the sequence that operates backwards. In

other terms, if we obtain τ by applying S on σ, then we can reobtain σ if we

apply S� on the reverse of τ , and then we reverse again.

Proposition 5.7.3. Let σ, τ P Σ and let S P X . Then

Spσq � τ ðñ S�pτ rq � σr.

Suppose that a sequence S sorts a permutation σ. Then, from the previous

proposition it is not difficult to show that S� sorts the permutation
�
pσrq�1

�r
.

Proposition 5.7.4. Let σ P Σ and let S P X . Then

Spσq � id ðñ S�
��
pσrq�1

�r	
� id.

Proof. By proposition 5.7.3, Spσq � id if and only if S�pid rq � σr, which yields

pσrq�1 �S�pid rq � id. Hence, proposition 2.3.1 implies that S�
�
pσrq�1 � id r

�
�

id, and then, applying relation (1.1), we get S�
��
pσrq�1

�r	
� id.

If we denote by

X � � tS� |S P X u

the set of all sequences obtained from the set X through the operator �, then

obviously S� � S andD� � D, whileDir� � Dor andDor� � Dir. In fact, when

we operate backward, an input-restricted deque turns into an output-restricted

deque, and conversely. Observe that the same holds for the associated sets of

representatives: D̄ir� � D̄or and D̄or� � D̄ir. This can be easily proven through

the characterization given in section 5.4.

91

Hence, as observed by Knuth [13], every Dir– computable permutation is

the reverse of the inverse of the reverse of a Dor– computable one, and con-

versely. The same result can be given in terms of sortable permutations instead

of computable ones: every Dir– sortable permutation is the reverse of the in-

verse of the reverse of a Dor– sortable one.

The sorting sequences S and S� associated to σ and
�
pσrq�1

�r
through

ϕ
Dir

and ϕDor are transformed into each other by the operator �, as stated in

proposition 5.7.4. Moreover, it is immediately checked that the Schröder path

associated to S by ψ
Dir

is the reversal of the path associated to S� by ψDor .

SortnpDirq
ϕ
Dir //

OO

r ��1 � r

��

D̄irn
ψ
Dir //

OO

�

��

ϕ�1

Dir

oo S2pn�1qOO

r

��

ψ�1

Dir

oo

SortnpDorq
ϕDor // D̄orn

ψDor //

ϕ�1
Dor

oo S2pn�1q
ψ�1
Dor

oo

92

Bibliography

[1] M. H. Albert, M. D. Atkinson, M. Bouvel, A. Claesson and

M. Dukes, On the inverse image of pattern classes under bubble sort,

Journal of Combinatorics, 2:231-243, 2011.

[2] M. Atkinson, Permuting machines and permutation patterns, Procee-

dings of Permutation Patterns 2007, in London Mathematical Society

Lecture Note Series, 376:67-88, 2010.

[3] M. Barnabei, F. Bonetti and M. Silimbani, Two permutation

classes related to the Bubble Sort operator, The Electronic Journal of

Combinatorics, 19(3):P25, 2012.

[4] M. Bóna, Exact enumeration of 1342-avoiding permutaions: a close link

with labeled trees and planar maps, Journal of Combinatorial Theory Se-

ries A, 80(2):257-272, 1997.

[5] M. Bóna, A survey of stack-sorting disciplines, The Electronic Journal

of Combinatorics, 9(2):A1, 2003.

[6] M. Bóna, Combinatorics of permutations, Chapman & Hall/CRC, 2004.

[7] M. Bóna, Sharper estimates for the number of permutations avoiding a

layered or decomposable pattern, Proceedings of Formal Power Series and

Algebraic Combinatorics, 2004.

[8] J. Cibulka, On constants in the Furedi-Hajnal and the Stanley-Wilf con-

jecture, Journal of Combinatorial Theory Series A, 116(2):290-302, 2009.

93

[9] A. Claesson and S. Kitaev, Classification of bijections between 321�

and 132�avoiding permutations, Séminaire Lotharingien de Combina-

toire, 60:B60d, 2008.

[10] D. Denton, Methods of computing deque sortable permutations given

complete and incomplete information, arXiv:1208.1532v1 [math.CO],

2012.

[11] I. M. Gessel, Symmetric functions and P-recursiveness, Journal of Com-

binatorial Theory Series A, 53(2):257-285, 1990.

[12] S. Kitaev, Patterns in permutations and words, Springer, 2011.

[13] D. E. Knuth, The Art of Computer Programming – Volume 1: Funda-

mental Algorithms, Addison-Wesley, 1968.

[14] D. E. Knuth, The Art of Computer Programming - Volume 3: Sorting

and Searching, Addison-Wesley, 1973.

[15] P. A. MacMahon, Combinatory Analysis, Cambridge University Press,

1915-1916.

[16] A. Marcus and G. Tardos, Excluded permutation matrices and the

Stanley-Wilf conjecture, Journal of Combinatorial Theory Series A,

107(1):153-160, 2004.

[17] V. R. Pratt, Computing permutations with double-ended queues, paral-

lel stacks and parallel queues, Fifth Annual ACM Symposium on Theory

of Computing, 268-277, 1973.

[18] D. G. Rogers and L. W. Shapiro, Deques, trees and lattice paths,

Proceedings of the Eighth Australian Conference on Combinatorial Ma-

thematics, in Combinatorial Mathematics VIII, 293-303, Springer-Verlag,

1981.

[19] P. Rosenstiehl and R. Tarjan, Gauss codes, planar hamiltonian

graphs, and stack-sortable permutations, Journal of Algorithms, 5:375-

390, 1984.

94

[20] R. Simion and F.W. Schmidt, Restricted permutations, European Jour-

nal of Combinatorics, 6:383-406, 1985.

[21] R. Tarjan, Sorting using networks of queues and stacks, Journal of the

ACM, 19:341-346, 1972.

[22] H. Úlfarsson, Describing West-3-stack-sortable permutations with per-

mutation patterns, arXiv:1110.1219v1.

[23] J. West, Sorting twice through a stack, Theoretical Computer Science,

117:303-313, 1993.

[24] J. West, Generating trees and the Catalan and Schröder numbers, Di-

screte Mathematics, 146(1-3):247-262, 1995.

95

