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Introduction 

This thesis is composed of three rather autonomous chapters, linked by the 

common interest in spatial econometric techniques, that address the topic 

from different points of view. The recent advances that have been 

characterizing the subject in recent years are mostly theoretical and have 

not found an extensive empirical application yet. In this work we aim at 

supplying, as exhaustively as possible, a review of the main tools of spatial 

econometrics and to show empirical applications of the most recently 

introduced estimators.  

Since the late 1970s, spatial econometrics has been growing as a 

distinct branch of econometrics, originally confined in the domain of 

regional sciences, in which the spatial dimension of the data, in both its 

forms of spatial dependence and heterogeneity, is more evident. The rather 

young age of the discipline makes spatial econometrics a field in which 

theoretical advances are numerous and ongoing. They are currently 

concentrated on the treatment of spatiotemporal data. This is due, among 

other reasons, to the growing availability of datasets in which the 

informative contents of both the cross-sectional and the temporal 

dimensions of the data can be explored.  

Although a quite wide literature has been devoted to reviewing the 

techniques of spatial econometrics in the last 25 years (Anselin 1988a; 

Getis et al. 2004; Arbia 2006; LeSage and Pace 2009 among others), an 

updated dissertation, capable of collecting all the most recent theoretical 

advances in the discipline together with its bases is still lacking. With this 

purpose, the first chapter contains a review of the widely known spatial 

cross-sectional models and a taxonomy for the less common models for 

panel data. Together with the description of the models, also the main 

estimation techniques are discussed, highlighting the advantages and 

disadvantages that characterize each one of them. We argue that, despite 

the numerous alternatives that the econometric theory provides for the 



 

2 
 

treatment of spatial (and spatiotemporal) data, empirical analyses are still 

limited by the lack of availability of the correspondent routines in statistical 

and econometric software.  

In chapter 2 we focus on the estimation of spatiotemporal models. We 

overcome the lack of readily-available software by an autonomous 

programming of the routines that, albeit necessary to our analysis, were not 

available in any ready-to-use software packages.  

Spatiotemporal modeling represents one of the most recent 

developments in spatial econometric theory and the finite sample properties 

of the estimators that have been proposed are currently being tested in the 

literature (Yu et al. 2008; Kukenova and Monteiro 2009; Jacobs et al. 

2009). Our purpose is to provide a comparison between some estimators for 

a dynamic panel data model under certain conditions, by means of a Monte 

Carlo simulation analysis. Holding the assumption of homoskedasticity of 

the errors, we focus on different settings, which are characterized either by 

fully stable or quasi-unit root series. We also investigate the extent of the 

bias that is caused by a non-spatial estimation of a model when the data are 

characterized by different degrees of spatial dependence. To our 

knowledge, although the theoretical consequences of ignoring spatial 

dependence have been extensively studied, no empirical study is available 

for the assessment of the effects of such a misspecification in terms of bias 

of the estimates of the model coefficients.  

Finally, chapter 3 provides an empirical application of what the 

previous chapters only theoretically of fictionally study. This is done by 

choosing a relevant and prolific field of analysis, in which spatial 

econometrics has only found limited space so far, in order to fully explore 

the value-added of considering the spatial dimension of the data. In 

particular, we estimate a spatial dynamic panel data model that studies the 

determinants of cropland value in Midwestern U.S.A. in the years 1971-

2009. We adopt the present value model as the theoretical framework, and 
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therefore focus on the relationship between land value and cash rents, 

expecting to find a positive one. This would be consistent with the present 

value model, which considers that the value of an income-producing asset 

such as land is the capitalized value of the current and future stream of 

earnings from owing that asset. We believe the employed dataset represents 

an improvement with respect to earlier studies because it refers to a rather 

homogeneous sample of States and only to cropland rather than farmland in 

general, thus excluding the value of buildings from the analysis. This 

appears to be a favorable situation, because buildings are usually excluded 

from the statistics on cash rents. Although the conclusions that we present 

should only be considered as preliminary results, we argue that they are 

already apt to convey the importance of taking spatial effects into 

consideration when addressing this field of analysis. 
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 Spatial econometric models and estimation strategies 1

 1.1 Introduction 

The development of spatial econometrics as a distinct branch of 

econometrics dates back to 1970s. If a year is to be given as a conventional 

birth date for this rather young discipline, this is 1979, when Paelinck and 

Klaassen (1979) published the volume “Spatial Econometrics”. As the 

authors mention in the introduction of that volume, spatial econometrics 

was born in the context of regional and urban econometric modeling. This 

is indeed a context where the spatial (geographical) dimension of the data is 

easily conceivable and this is also the realm in which spatial econometrics 

remained confined until more recent years. Still at the end of the 1980s, 

Anselin defined spatial econometrics as closely related to the requirements 

of modeling in regional sciences: 

“I will consider the field of spatial econometrics to consist of 

those methods and techniques that, based on formal representation 

of the structure of spatial dependence and spatial heterogeneity, 

provide the means to carry out the proper specification, estimation, 

hypothesis testing, and prediction for models in regional science”. 

(Anselin 1988a, page 10) 

Only in more recent years and in parallel with the growth of software 

availability, spatial econometrics has entered the general toolbox of applied 

econometrics. Theoretical econometrics has also started to deal with spatial 

issues and this has resulted in great advances that, in the last ten years, have 

focused on the field of space-time analysis, which appears to be the current 

frontier in spatial econometrics for what it concerns both modeling and 

testing. Anselin (2010) provides a thorough, albeit personal, analysis of the 

development of spatial econometrics in the past 30 years. 

This chapter focuses on spatial econometrics with particular interest in 

the topics of modeling and estimation of spatial models whereas only minor 
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reference is made to the literature about specification testing methods. 

Section 1.2 focuses on the definition of the spatial effects as the elements 

that justify the existence of spatial econometrics as a distinct discipline 

according to Anselin (1988a). The specification of the spatial weight matrix 

as the main econometric tool that allows to model spatial interactions is 

treated in section 1.3. A taxonomy is then provided for cross-sectional 

spatial models (section 1.4) and the main estimation strategies suggested by 

the literature are discussed (section 1.5). Section 1.6 focuses on the testing 

methods that have been developed in order to discriminate between the 

different model specifications in a cross-sectional context, before turning to 

space-time analysis with a review of the literature on the specification of 

spatial panel data models (section 1.7) and the most common estimation 

techniques (section 1.8). The last section (1.9) addresses the topic of 

software availability, which appears to be a major issue in determining the 

extent to which spatial econometrics techniques are applied by empirical 

researches. 

 1.2 Spatial effects 

Spatial econometrics techniques are specifically designed in order to deal 

with the spatial dimensions of data, which can take the form of spatial 

interaction (spatial autocorrelation) and spatial structure (spatial 

heterogeneity), which have been described in detail by Anselin (1988a; 

2001). 

 Spatial autocorrelation 1.2.1

Spatial dependence is defined as “the existence of a functional relationship 

between what happens at one point in space and what happens elsewhere” 

and has to do with the concept of relative location of a spatial unit i with 

respect to other spatial units (Anselin 1988a, page 11; Abreu et al. 2005). 
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Spatial dependence is often called spatial autocorrelation and, although the 

two concepts do not totally overlap, spatial autocorrelation being a weaker 

form of spatial dependence. However, following Anselin (2001), we will 

use the two terms interchangeably. 

Two main sources of spatial dependence can be listed (Le Gallo 2002): 

the first one is related to the spatial dimension of the data originated by 

interactions between units. In statistical terms, we define a spatial 

stochastic process, or spatial random field, as a collection of random 

variables � indexed by location: ���, � ∈ ��, where the index � is either a 

continuous surface or a finite set of discrete locations. In this work, we only 

take into account the case in which � is a finite set of discrete locations, 

� � �1,2, … , ��, where � ∈ ℕ. Notice that we identify each spatial unit 

with an index in �: for example, if � = �1,2�, we identify the two spatial 

units as unit 1 and unit 2. Spatial autocorrelation is defined by the moment 

condition: ��� !�!"# ≠ 0 for � ≠ %. The second source of spatial 

dependence is model misspecification, which can be caused by omitted 

spatially autocorrelated variables (Fingleton 1999), a wrong functional 

form or the presence of measurement errors (Luc Anselin 1988a). In 

particular, a difference in the spatial scope of the phenomenon under study 

and the spatial level of observation can easily result in spill-overs across 

different spatial units and subsequent autocorrelation of the errors.  

The magnitude of spatial dependence is not constant throughout all 

spatial units. Spatial autocorrelation between unit � and % depends on their 

relative location, according to Tobler’s first law of geography: “Everything 

is related to everything else, but near things are more related than distant 

things” (Tobler 1970, page 236). Therefore positive spatial autocorrelation 

occurs when high/low values of a random variable are concentrated in 

neighboring spatial units. Differently, negative spatial autocorrelation 

occurs when high/low realizations of a random variable are surrounded by 

low/high values of that random variable in neighboring spatial units.  



 

8 
 

Differently from temporal autocorrelation, whose causal direction can 

be easily defined as going from past to present (to future), spatial 

autocorrelation has a multidirectional nature which makes econometric 

modeling more complicated.  

 Spatial heterogeneity 1.2.2

Spatial heterogeneity is related to the “lack of stability over space of the 

behavioral or other relationships under study” (Anselin 1988a) and is also 

called effect of “absolute location” which pertains to being located at a 

particular point in space (Abreu et al. 2005).  

This type of structural instability can take the form of 

heteroskedasticity or parameter instability over space (Anselin 2001). 

Given a set of spatial units �, partitioned into & non overlapping subsets 

�'	, with ) � 1, 2, … , &, heteroskedasticity consists in non-constant error 

variances that can be formally expressed as *+),-�. � /'0 when � ∈ �'; this 

problem can be due to different causes, like omitted variables or other 

misspecifications and can be addressed by standard econometric tools. The 

most popular form of parameter instability is specified as varying 

regression coefficients across spatial regimes, !� � 123� , 4'5.  
These two forms of spatial heterogeneity can be jointly present and can 

also be associated to the presence of spatial autocorrelation. A further 

difficulty is represented by the fact that spatial autocorrelation and 

heterogeneity might be “observationally equivalent” (Anselin 2001) and 

spatial autocorrelation of the residuals may be provoked by unmodeled 

spatial heterogeneity (Ertur et al. 2006). 

 1.3 The spatial weight matrix and spatial lag variables 

The way in which connectedness in space is to be incorporated in an 

econometric model is one of the main issues in spatial econometrics 
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(Anselin 1988a; Arbia 2006). This is usually done by means of the so-

called spatial weight matrix. A weight matrix 6 is a square (� 7 �), non-

stochastic and symmetric matrix, whose elements 8�" measure the intensity 

of the spatial connection between units � and % and take on a finite and non-

negative value. By convention, 8�� � 0. This is the main econometric tool 

for modeling spatial interactions among neighboring units and taking 

spatial dependence into account in econometric modeling. The concept of 

neighborhood and its several definitions are therefore at the basis of the 

construction of a spatial weight matrix.  

 Definitions of neighborhood 1.3.1

The most common definition of neighborhood is that of contiguity-based 

neighborhood. When spatial units are territories on a map, as it is often the 

case, contiguity is straightforwardly detected as the sharing of common 

boundaries. By approximating irregular polygons on a map by a regular 

grid, several kinds of contiguity can be defined after the game of chess 

(Figure 1.1): in case of “rook contiguity”, the set of neighbors of unit A are 

those that share a common edge; “bishop contiguity” requires the sharing of 

a vertex; finally, according to the “queen contiguity” criterion, the 

neighbors of unit A are defined as those that share a vertex or an edge with 

it. Similarly, several orders of contiguity can be defined in a recursive way. 

Figure 1.1. The definitions of contiguity on a regular grid 

           

 A    A    A  

           

Rook   Bishop  Queen 

When spatial units are points instead of areas (cities, centroids, firms, 

etc.) different contiguity criteria can be employed: points can be considered 

to be neighbors if they are within a maximum distance from each other or 
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boundaries can be generated by various spatial tessellations (Anselin 

1988a). When neighboring units are to be identified on the basis of the 

distance that exists between them, a cut-off distance can be defined. Two 

spatial units � and % are considered to be neighbors if 0 9 :�" 9 ;, with :�" 
an appropriate distance measure and ;	the cut-off distance above which 

any interaction is considered to be negligible.  

Finally, neighborhood can be defined in terms of nearest neighbors. In 

this case, two spatial units � and % are said to be neighbors if :�" �
min?@A@B2:�A5. 

 Spatial weight matrices 1.3.2

The most commonly used kind of spatial weight matrix is the contiguity 

matrix, which is based on the notion of binary contiguity and expresses the 

structure of neighbors as:  

8�" � C10						 if region i  is contiguous to region	%	
otherwise. (1.1) 

Binary spatial weight matrices are therefore commonly constructed 

following the contiguity-based definition of neighborhood. This is also the 

simplest structure for a spatial weight matrix; yet, it appears to be able to 

provide only a restrictive representation of the spatial interactions.  

Greater flexibility is possible when considering generalized sets of 

spatial weights. Cliff and Ord (1981) originally suggested the definition of 

the elements of 6 as a combination of distance measures and the relative 

length of common borders. Generally, especially in the regional sciences 

literature (Fingleton 1999; Ertur et al. 2006; Le Gallo and Dall’Erba 2006; 

Dall’Erba and Le Gallo 2008; Ramajo et al. 2008, among the others), the 

spatial weights are defined as an inverse function of distance:  
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D 8�" � 0 if � = %
8�" = 1/:�"

G if :�" ≤ ;
8�" = 0 if otherwise

		 (1.2) 

with O a parameter determined a-priori by the researcher, :�" and ; defined 

as in the previous section. When considering areal spatial units, distance 

can measured typically between centroids or capital cities, but other 

possibilities are also present in the literature (Arbia 2006).  

The definition of distance is also crucial. Different distance metrics can 

be used in order to model geographical links between units, such as 

Euclidean distance, Manhattan distance, Minkowski distance. Alternative 

possible but less used measures that approximate geographical distance are 

travel time or transport costs. Reference to geographical localization of 

units can also be ignored in favor of other measures of distance: social 

distance (Doreian 1980), cultural distance (Eff 2008), socio-economic 

distance (Case et al. 1993), institutional distance also combined with 

geographical distance as in Arbia et al. (2007). When considering such 

alternative specifications of the weight matrix, it is important to preserve 

the exogeneity of the weights in order to avoid identification problems 

(Manski 1993): as Anselin (2002) warns, “if the same variables are used to 

compute a general distance metric as are included in the model, the weights 

are unlikely to remain exogenous” (page 18) and this should be taken into 

account. 

One of the main criticisms that have been moved against spatial 

econometrics is that the choice of the spatial weight matrix to use is to 

some extent arbitrary. It is therefore always recommended to be driven by 

theoretical reasoning and to test the robustness of the results to the choice 

of 6. 

The spatial weight matrix is often row-standardized: each element 8�" 

is divided by the row-sum ∑ 8�"� , so as to take values between 0 and 1. 

This makes the spatial parameter comparable between different models, but 
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also implies a different interpretation of the spatial weights. In the most 

common case of a binary contiguity matrix, for example, the strength of the 

spatial connection between two units depends on the number of neighbors 

of each unit, the effect of any individual neighbor decreases as the number 

of neighbors increases and 6 is not symmetric anymore. The main reason 

for row-standardizing a spatial weight matrix is to ensure that some 

assumptions on the parameter space of the most common model 

specifications are verified, as we shall see in the following sections.  

 Spatial lag variables 1.3.3

Spatial weight matrices are to be used in the construction of spatially 

lagged variables. In the context of time series, it is straightforward to define 

a temporal lag of order k of a random variable ! as �+QA2!5 � !RSA. It is 

more difficult in spatial econometrics to define the lagged value of a 

variable !� in space, because of the multidirectional nature of spatial 

proximity.  

The spatial lag of the � 7 1 vector of observations of the random 

variable � is defined in the spatial econometric literature as 6!. It is 

important to notice that, when 6 is row-standardized, the spatial lag of !�, 
is the average of the values of that variable observed in the neighborhood of �: ∑ w�" ∙ !" �" 6!�. 

 1.4 Cross-sectional models with spatial autocorrelation 

When spatial autocorrelation is present in the data, the hypothesis of 

independence between the observations is violated and inference based on 

Ordinary Least Squares (OLS) estimation is therefore not reliable. This is 

the reason for the need to pay great attention to the presence of spatial 

autocorrelation when estimating econometric models. In order to address 

this issue, taxonomy for the most popular cross-sectional spatial models is 
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given, followed by a discussion of the estimation strategies that are usually 

employed.  

 A taxonomy for cross-sectional spatial models 1.4.1

Given a classical linear regression model, such as 

! � U4 V - (1.3) 

where ! is the � 7 1 vector of the dependent variable, U is the � 7 W 

matrix of observations for the W independent variables, 4 is the W 7 1 

vector of unknown coefficients and - is the � 7 1 vector of errors, OLS 

estimation is based on the following assumptions, that make it the Best 

Linear Unbiased Estimator (BLUE):  

OLS_1. Exogeneity of the regressors U. 

OLS_2. X2-5 � 0 

OLS_3. X2-′-5 � /0Z. 

The presence of spatial dependence causes the violation of some of 

these hypotheses as the following sections will make clear, thus making 

OLS estimates inefficient or even biased. Spatial dependence can be 

incorporated in the specification of a linear regression model in different 

ways, particularly either in the form of a spatially lagged variable (the 

spatial lag of the dependent variable, 6!, or the spatial lag of an 

exogenous variable, 63), or in the error structure, so that X[-�-"\ $ 0. 

These two forms can also be combined in the more complex Cliff-Ord 

model. 

 SAR models  1.4.2

The Spatial Autoregressive (SAR) model incorporates spatial dependence 

through a spatial lag of the dependent variable:  

! � ]?6! V U4 V - (1.4) 



 

14 
 

where ]? is the so called spatial autoregressive coefficient and the other 

notation is unchanged. For the sake of simplicity the error terms are 

assumed to be �. �. :. although heteroskedasticity can be variously 

incorporated (Anselin 1988a). 

The introduction of the spatial lag of the dependent variable allows one 

to evaluate the effects of spatial dependence once the effects of the other 

regressors are controlled for; on the other hand, it also allows evaluating the 

impact of the other regressors once the effects of spatial dependence are 

wiped out.  

It is important to notice that the term 6! is correlated with the error 

terms in model (1.4), thus resulting in an endogenous regressor that causes 

bias and inconsistency in a-spatial OLS estimates. This becomes clear when 

one considers the following rearrangement of equation (1.4): 

! � 2Z ^ ]?65S?2U4 V -5. (1.5) 

Expression (1.5) shows how a shock occurring in unit � affects not only 

the value of ! in that unit, but also that of the other units through the 

inverse spatial transformation (Anselin 2001). The matrix 2Z ^ ]?65S? 

also determines the parameter space for this model, because it is required to 

be a non-singular matrix in order to be inverted. When the spatial weight 

matrix is row-standardized, this is always true for |]?| ` 11.  

 SARE models 1.4.3

When spatial dependence is incorporated in the error term, - becomes non-

spherical and the structure of the spatial dependence is expressed by the 

off-diagonal elements of the covariance matrix. The OLS estimates are 

therefore unbiased but inefficient. This type of model, the spatial error 

                                                 
1 Since the diagonal elements of  6 are equal to 0, the diagonal elements of  2Z ^ ]?65 
are 1 and, under the condition |]?| ` 1, strictly exceed the sum of the other elements in the 
row, which equals ]?. This makes the matrix 2Z ^ ]?65 strictly diagonally dominant and 
therefore always invertible.  
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model, can be specified in different ways. The most common ones 

incorporate spatial dependence in the error terms by defining them as 

spatial moving average or spatial autoregressive error (SARE) processes. 

The latter is probably the most widely used and is specified as 

! � U4 V -- � ]06- V a , (1.6) 

where a is an i.i.d. error term and ]0 is a spatial coefficient that measures 

spatial dependence between the errors -.  

The reduced form for model (1.6) is expressed as: 

! � U4 V 2Z ^ ]065S?a (1.7) 

and requires the matrix 2Z ^ ]065 to be a non-singular matrix. This 

condition is always verified under the assumption |]0| ` 1 when the spatial 

weight matrix is row-standardized. It follows that - = 2Z − ]065S?a and 

therefore X2-5 = 0 and X2-′-5 = b2cd5, where b2cd5 depends on the value 

of ]0: 

b2cd5 = /0,2Z − ]065e2Z − ]065.S? (1.8) 

An important feature of this kind of models regards a possible 

interpretation of the presence of spatial autocorrelation in the error terms as 

the effect of relevant spatially autocorrelated omitted variables (Fingleton 

1999), which will likely result in biased estimates if not properly modeled. 

In this perspective the SARE model is capable of capturing the effect of 

omitted variables which is a common problem for economic modeling.  

Model (1.6) can also be rewritten in a way such that a spatial lag of the 

dependent variable appears, as: 

! = ]06! + U4 − ]06U4 + a. (1.9) 

This is the so-called “Spatial Durbin model” (Anselin 1988a), which 

imposes some non-linear constraints on the coefficients. The presence of a 

spatial lag of the dependent variable in this specification complicates the 
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testing procedure for spatial autocorrelation, making it difficult to 

distinguish between the spatial lag and the spatial error alternatives. 

 Cross-regressive models 1.4.4

When a spatial lag of the exogenous variable(s) is included into a classical 

linear regression, a cross-regressive model is specified as 

! � U4 V 6fg V -, (1.10) 

where f is an � 7 � matrix of exogenous variables which may correspond, 

totally or partially, to the variables included in U and g is a row-vector of � 

spatial parameters. This kind of model is particularly useful for measuring 

the effects on ! of spatial spill-overs of exogenous variables.  

For what it concerns the estimation of a cross-regressive model, it must 

be noticed that, as f only contains exogenous variables, model (1.10) can 

be estimated via OLS, as long as assumption OLS_1 holds for the matrix U∗ � ,U		6f. and assumptions OLS_2 and OLS_3 hold for the error terms -. Cross-regressive terms can also be added to previous specifications. 

 Spatial Cliff-Ord model 1.4.5

The Cliff and Ord type models, also known as SARAR(1,1) in analogy 

with time series literature, contains both a spatial lag of the dependent 

variable and of the error term (Kelejian and Prucha 1998): 

! � ]?6?! V U4 V -,					|]?| ` 1- � ]060- V a,																|]0| ` 1 (1.11) 

where i? and i0 may be the same spatial weight matrix or not. In 

particular, the two must be different from each other as a requirement for 

identification when applying Maximum Likelihood (ML) estimators2, 

                                                 
2 These identification problems that may arise in the ML estimation of this kind of model 
are such that almost no empirical application exists.  
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whereas an advantage of Instrumental Variables (IV) / Generalized Method 

of Moments (GMM) estimators is that the same spatial weight matrix can 

be used (Elhorst 2010). The model may also contain cross-regressive terms.  

 1.5 Estimation of spatial cross-sectional models 

As it was made clear in sections 1.4.2 and 1.4.3, when spatial 

autocorrelation is present the OLS assumptions are violated and OLS 

estimators are biased and inconsistent (when a spatial lag of the dependent 

variable is included) or at least inefficient (in presence of error spatial 

autocorrelation).  

The most commonly used efficient, unbiased and consistent estimator 

for cross-sectional spatial models is the maximum likelihood estimator, 

while other possible choices may be instrumental variables or the 

generalized method of moments.  

 Maximum likelihood estimation 1.5.1

The main assumption on which ML estimation of SAR and SARE models 

relies is that of normality for the error terms. In many circumstances this is 

a quite a strong one.  

The loglikelihood for a SARE model as in equation (1.6) follows from - ∼ k*�20,b2cd55 (Anselin 2001): 

ln� � ^ m0 ln22π/05Vop|Z ^ ]06| V 2 ?0qd5a ′2Z ^ ]065e2Z ^ ]065-.
(1.12) 

Conditional upon ]0,  

4rst � ,2U ^ ]06U5′2U ^ ]06U5.S?2U ^ ]06U5′2! ^ ]06!5 (1.13) 

and  

/u0st � 2v ^ ]06v5′2v ^ ]06v5/� (1.14) 
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with v � ! ^ U4rst. The estimator for ]0 must be obtained from an explicit 

maximization of a concentrated likelihood function (Anselin 1988a). 

Following Anselin (2001), the loglikelihood for a SAR model is: 

ln� � − m
0 ln22π/

05 + op|Z − ]?6| + 2 ?
0qd5-′-. (1.15) 

Estimators for the parameters are obtained from an explicit 

maximization of the likelihood. Conditional upon ]?, 

4rst � 2U′U5S?U′2! − ]?6!5 (1.16) 

and  

/u0st � 2vw − ]?vt5′2vw − ]?vt5/� (1.17) 

with 4rw � 2U′U5S?U′!, vw � ! − U4rw, 4rt � 2U′U5S?U′6! and vt � ! −
U4rt. 

This results in a concentrated likelihood in a single parameter that is 

optimized by means of direct search techniques.  

The classical properties of consistency, asymptotic normality and 

asymptotic efficiency of ML estimators do not straightforwardly hold when 

spatial dependence is present, even in the case of normally distributed error 

terms (Kelejian and Prucha 1999).  

The forms taken by the loglikelihood in equations (1.12) and (1.15) 

also define the parameter space for ]? and ]0. The main problem raised by 

the estimation of spatial models via ML concerns the presence of the 

Jacobian matrix in the loglikelihood function, that is equal to |Z − ]?6| in 

SAR models and to |Z − ]06| in SARE models. The maximization of the 

function of loglikelihood requires the evaluation of the determinant of the 

Jacobian matrix for each value of ]? or ]0 and, since in practice spatial 

weight matrices are not symmetric (because 6 is commonly row-

standardized), the procedure may be computationally very complex with 

very large datasets. In order to avoid singularity, the parameter space is 

generally restricted to the interval 2−1, 15. However, it is important to 
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notice that, given a generic spatial autoregressive coefficient ] (which may 

be either ]? for a SAR process or ]0 for a SARE process), its parameter 

space is defined as  

1 xy�z⁄ ` ] ` 1/xy|}, (1.18) 

where xy�z and xy|} are respectively the smallest and largest eigenvalues 

of the spatial weight matrix. When 6 is row-standardized, xy|} � 1 and xy�z ~ ^1 (Anselin 1988a; 2001; Elhorst 2010).  

 Other estimators (IV, GMM) 1.5.2

A possible estimation strategy, alternative to ML, is that of IV which is 

suitable for addressing the endogeneity of 6! in a SAR model of type 

(1.4) (Anselin 1988a). The general principle behind this approach is based 

on the existence of a set of k instruments � (with k � W V 1), which are 

correlated to the regressors of the SAR model U∗ � ,iy		�. but 

asymptotically uncorrelated with the error term. When k ~ W V 1 no exact 

solution exists. This problem is addressed by defining the estimator for the 

model coefficients � � ,]?		4. as: 

���� � [U∗′��U∗\S?U∗′��. ! (1.19) 

with �� � �2�e�5S?�′ a symmetric idempotent matrix. 

Under a set of assumptions discussed by Kelejian and Robinson (1993) 

and Kelejian and Prucha (1998), the spatial two-stage least squares (2SLS) 

estimator can be proved to achieve consistency and asymptotic normality as 

the standard 2SLS. 

When it comes to selecting the set of instruments �, the exogenous 

regressors should always be included. Proper instruments for the spatial lag 

of the dependent variable are the spatial lags of the exogenous regressors, i� (Kelejian and Prucha 1998). This procedure can be easily extended to 

more complex models (Anselin 1988a), but it is not suitable for estimating 
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SARE models (Anselin 2001), unless properly generalized as in Kelejian 

and Prucha (1998). 

Another possible approach that is suitable for estimating a SARE 

model (specified as model (1.6)) is the GMM estimator presented in 

Kelejian and Prucha (1999). Under the assumptions concerning the error 

term - in model (1.6), the authors specify three moment conditions on 

which the GMM estimator is based: 

X �?B a′a� � /0;  X �?B a′6′6a� � /0�S?�)26′65;  X �?B a′6a� � 0 (1.20) 

By replacing a with - − ]06a and considering the sample analogue of 

- (the vector of residuals after a consistent estimation, usually obtained by 

OLS: v), a three-equation system is given for parameters ]0, ]0
0 and /0, 

implied by equations (1.6) and (1.20). Given -̅ = 6- and -̿ = 6- ̅ (and 

consequently v̅ = 6v and v̿ = 6v̅ as sample analogues), consider 

� ]0, ]0
0, /0#e − � = 0 (1.21) 

where � =
�
��
�
�

0
B X2-′-5̅ S?

B X2-′̅-5̅ 1
0
B X2-′̿-5̅ S?

B X2-′̿-5̿ ?
B �)26′65

?
B X2-′- ̿ + -′̅-5̅ S?

B X2-′̅-5̿ 0 �
��
�
�
 and � =

�
��
�
�
?
B X2-′-5
?
B X2-′̅-5̅
?
B X2-′-5̅�

��
�
�
. 

Its sample analogue is: 

� ]0, ]0
0, /0#e − Q = �2]0, /05 (1.22) 

where	� =
�
��
�
�

0
B X2v′v̅5 S?

B X2v̅′v̅5 1
0
B X2v̿′v̅5 S?

B X2v̿′v̿5 ?
B �)26′65

?
B X2v′v̿ + v̅′v̅5 S?

B X2v̅′v̿5 0 �
��
�
�
 and Q =

�
��
�
�
?
B X2v′v5
?
B X2v̅′v̅5
?
B X2v′v̅5�

��
�
�
. 

The GMM estimator for ]0 and /0 is then defined as the nonlinear 

least squares estimator corresponding to equation (1.22). According to this 

approach, ]0 is considered a nuisance parameter whose significance does 

not need to be tested. Once ]r0 and /u0 are obtained, the vector of 
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parameters 4 can be estimated by feasible generalized least squares 

(FGLS), as: 

4r��t� �  U′�2c�d5S?U#S?U′�2c�d5S?!, (1.23) 

where �2c�d5 is the covariance matrix of the error - corresponding to the 

GMM estimate of ]0 and /0. 

Kelejian and Prucha (1998) also propose a combination of 2SLS and 

GMM that allows obtaining unbiased estimates for the parameter of a Cliff 

and Ord type of model (as defined in equation 1.11). 

An advantage of IV/GMM estimator is that, differently from the ML 

estimators, they do not rely on the assumption of normality of the errors, 

although they do assume, just like ML estimators, that the errors are i.i.d. 

with 0 mean. However, a disadvantage of IV/GMM estimator is that it is 

possible to obtain an estimate of the spatial parameter which is outside its 

parameter space (1 xy�z⁄ , 1/xy|}), since these estimators ignore the 

Jacobian term which restricts ]? (or ]0 ) to its parameters space in the log-

likelihood function of ML estimators (Elhorst 2010).  

 1.6 Testing for the presence of spatial effects 

Testing for the presence of residual spatial effects is of utmost importance 

as statistical inference based on OLS estimation may not be reliable when 

spatial dependence or heterogeneity is present (Ertur et al. 2006).  

 Moran’s I test of spatial autocorrelation 1.6.1

Among the tests for the detection of spatial autocorrelation, the one based 

on the computation of Moran’s I statistics (Moran 1950) is the most 

common: 

� � �z�� !′6!2!e!5S? (1.24) 
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where   is the sum of all elements of the spatial weight matrix 6 and !	is 

the vector of the p observations for the considered variable. The null 

hypothesis is the absence of spatial dependence, but the nature of the 

underlying spatial stochastic process is not specified under the alternative 

hypothesis. Inference is based on a normal approximation, using the 

standardized value ¡� � �� ^ X,�.� ¢£*,�.d ¤⁄ , which is obtained from 

expressions for the mean and variance (Cliff and Ord, 1981).  

When testing for residual spatial autocorrelation, ! is substituted by the 

vector of residuals of the OLS-estimated model (v � ! ^ ¥4r) (Cliff and 

Ord 1972), under the assumption of independent and identical normal 

distribution of the errors: 

� � �z�� v′6v2vev5S? (1.25) 

 In this case, the expressions for the moments become more 

complicated (see Anselin 1988a, page 102). 

 The Lagrange Multiplier tests 1.6.2

When spatial regression models are estimated via Maximum Likelihood, 

the Lagrange Multiplier tests are particularly useful when searching for the 

best specification of the model, because they give insight on the form of 

spatial autocorrelation that should be considered in the model and they do 

not require the estimation of a spatial model for testing purposes. Different 

simple null hypothesis are tested through different test specifications 

(Anselin 2001): 

Lagrange Multiplier test for error spatial autocorrelation (�k¦'') 

The �k¦'' test, first introduced by Burridge (1980) and then extensively 

treated in Anselin (2001) and Anselin and Florax (1995), tests the null 

hypothesis §w: ]0 � 0, therefore testing a non-spatial specification of a 
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linear regression model against a SARE model specification. The �k¦'' 

test is written as 

�k¦'' � 2ve6v /u0⁄ 50 ©⁄  (1.26) 

where v is a vector of OLS residuals, /u0 is an estimate of /0 under the null 

hypothesis equal to vev/�, T=	�),6′6+6ª.. Under the null hypothesis, 

�k¦'' → ¬?0. When the null hypothesis is rejected, error spatial correlation 

should be included in the model. However, no clear indication is given 

about whether it should be specified as a spatial autoregressive process 

(- � ]06­ + a) or as a moving average process (- � ]06- + a), the test 

being the same for both cases. 

Lagrange Multiplier test for spatial autocorrelation of the dependent 

variable (�k®|¯) 

The �k®|¯ test for §w: ]? � 0 against a spatial lag alternative takes the 

form 

�k®|¯ = 2ve6! /u0⁄ 50 ,2° /u0⁄ 5 + ©.⁄ (1.27) 

where R=26U45e2Z − U2UeU5S?Ue526U45. This test is also 

asymptotically distributed as a ¬0 with 1 degree of freedom (Anselin 

1988b; Anselin and Florax 1995). 

When performing the LM³´´ or the LMµ¶· test it is important to account 

for possible spatial dependence of the other form (i.e. spatial lag 

dependence when testing for spatial error and vice versa), by means of 

either a joint test, which takes a rather complicated specification (Anselin 

1988b), or tests that are robust to the presence of local misspecification of 

the other form (Anselin et al. 1996).  

LM joint test  

The LM joint test for spatial lag and spatial moving average error (SARMA) 

allows testing the joint null hypothesis §w: ]? = ]0 = 0, by taking the 
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following form in the simplified case in which 6 is the same for both the 

spatial (moving average) error and spatial lag autoregressive processes 

(Anselin 1988b): 

 ¸&k¸ � 2ve6! /u0⁄ ^ ve6v /u0⁄ 50/° V 2ve6v /u0⁄ 50/© (1.28) 

Under the null hypothesis, SARMA → ¬00. The rejection of the null 

hypothesis, however, does not give clear evidence about the nature of the 

spatial dependence which is detected. The SARMA test is identical in its 

formula to a test for a joint spatial lag and spatial autoregressive error, 

except for the fact that such a SARAR process with identical spatial weight 

matrices for the spatial error and the spatial lag is not identified, whereas a 

SARMA process is (Anselin and Florax 1995). 

Robust LM tests  

The robust versions of the �k¦'' and the �k®|¯ tests are adjusted to be 

robust to local misspecifications. The &�k¦''	test is adjusted so as to 

maintain a ¬0 asymptotic distribution even when ]? $ 0; similarly, the &�k®|¯ allows to test §w: ]? � 0 even in presence of ]0 $ 0. The complete 

specifications of these two tests can be found in Anselin et al. (1996). 

 The choice of the correct model specification 1.6.3

Once the presence of spatial dependence is detected by the Moran’s I test 

and/or the SARMA test, it is possible to try to reduce it by including 

additional exogenous variables and/or their spatial lags in the model 

specification. If spatial autocorrelation is still present, proceeding from the 

results of the LM tests, this can be accounted for by means of a spatial 

model. The correct specification can be chosen following the criteria 

indicated by Anselin and Florax (1995) and Anselin (2005):  
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- If the �k¦'' does not reject the null hypothesis and the �k®|¯ 

rejects the null hypothesis, then a spatial lag of the dependent 

variable should be included; 

- If the �k®|¯ does not reject the null hypothesis and the �k¦'' 

rejects the null hypothesis or both tests reject the null hypothesis, 

but the �k¦'' is more significant than the �k®|¯ test, then a spatial 

error model should be preferred; 

If both non-robust LM tests reject the null hypothesis, their robust 

versions should be considered: 

- If &�k®|¯ rejects the null hypothesis whereas &�k¦'' does not or 

the &�k®|¯ is more significant than the &�k¦'' test, then the spatial 

lag of the dependent variable should be included; 

- If &�k¦'' rejects the null hypothesis whereas &�k®|¯ does not or 

the &�k¦'' is more significant than the &�k®|¯ test, then the spatial 

lag of the error term should be included. 

Once a spatial model is estimated, additional conditional LM tests can 

be performed in order to exclude the need to include additional spatial 

autoregressive terms, such as a spatial error term in a spatial lag model or 

vice versa. If uncertainty about the best spatial specification persists, the 

choice can be done according the classical information criteria (AIC, BIC). 

 

 1.7 Spatial panel data models 

The interest of spatial econometrics literature in the estimation of panel 

data models has been growing in recent years.  

The main reason for this, together with the growing availability of 

datasets at micro and macro level, is that using panel data yields a number 

of benefits such as greater variability and less collinearity among the 

variables, more degrees of freedom and efficiency; the possibility of 
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studying the dynamic and the individual heterogeneity at the same time; the 

ability to identify and measure effects that cross-section and time-series 

data cannot detect; a better control over unobservable/unobserved 

heterogeneity (individual or time-invariant characteristics) (Baltagi 2005).  

 A taxonomy for spatial panel data models 1.7.1

Similarly to cross-section models, panel data models can be specified as 

spatial models by controlling for spatial effects. Spatial dependence is the 

most problematic spatial effect to model, since most econometric aspects of 

spatial heterogeneity can be handled by means of non-spatial panel data. 

As a non-purely notational purpose, it must be noted that spatial panel 

data models are stacked by cross-sections, rather than individual time 

series. This means that observations are sorted first by time and then by 

cross-sectional units, so that, for example, the �©31 vector ! is organized 

as !′ � ,!?? !0? … !B? !?R … !BR … !?¼ … !B¼., with � � 1, 2, … , © indexing time periods. Cross-sectional units will be indexed 

by the index �, such that for fixed � and �, element !�R will be the 

observation of variable � in the �-th unit at time �. 
 Static models 1.7.2

Following Anselin et al. (2008), spatial dependence is generally considered 

as a cross-sectional non-zero correlation among different units according to 

certain spatial ordering, so that error autocorrelation only pertains to the 

same time period �. Spatial dependence is modeled by means of a spatial 

weight matrix that is assumed to be constant over time, so that the full �© 7 �© spatial weight matrix (½B¼) is defined as 

6B¼ � Z¼⨂6B � ¿6B … ÀB⋮ ⋱ ⋮ÀB … 6B
Ã
B¼

 (1.29) 
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where Z¼ is a © 7 © identity matrix, 6B is a � 7 � spatial weight matrix 

defined as in section 1.3.2 and ÀB is a � 7 � zero matrix. The particular 

structure of data, stacked by cross-sections, permits to build the spatial lag 

of a variable by multiplying its observations for each time period by the 

spatial weight matrix. 

SAR model 

Similarly to the cross-sectional case, the basic spatial lag model 

specification for panel data is 

! � ]?6B¼! V U4 V - (1.30) 

where the observations are stacked in successive cross-sections for � � 1,… , ©. Therefore ! is a �© × 1 vector, ]? is a spatial autoregressive 

parameter, U is a �© × W matrix with W equal the number of regressors, β 

is a W × 1 vector and ε is a	�© × 1 vector of �. �. :. errors.  

Again similarly to what happens in cross-sectional models, 6B¼! 

appears to be endogenous as the result of the joint determination of the 

values of ! in the spatial system as a function of the explanatory variables 

and the error terms at all locations in the system. The reduced form of 

equation (1.30) makes it clear for each � × 1 cross-section at time �: 

!R = UR 	4 + ]?6B	U	R	4 + ]?06	B	0 	U	R	4 + ⋯+ -	R + ]?6B	-R +
										+]?06	B		0	-R +	… (1.31) 

or equivalently, 

!R = 2ZB − ]?6B5S?2U4 + -5.  .......................................................... (1.32) 

In this simple pooled model, the spatial multiplier effect is only limited 

to each cross-section. 

SARE model 

The spatial error specification is characterized by a non-spherical error 

covariance matrix. In a panel data setting with � < ©, an unconstrained 
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non-spherical error covariance matrix contains � 7 2� ^ 15/2 parameters. 

In order to estimate them when � ≫ ©, a structure must be imposed in 

order to turn the complex structure of the error covariance matrix into a 

function of a set of parameters. Four main approaches have been suggested 

in the literature and reviewed by Anselin et al. (2008): 

- The direct representation approach is rooted in the geostatistical field 

(Cressie 1993) and is based on the specification of the covariance 

between two observations as a direct function of the distance that 

separates them. Given the � × � time-invariant error covariance 

structure bB for each cross-section and σ0 a scalar variance term, the 

overall matrix can be defined as ÈB¼ = /0,Z¼⨂bB.. 
- Spatial error processes are based on a formal relation between a 

location and its neighbors (not between all pairs of observations), 

through a spatial weight matrix. As it was already made clear, 

analogously to time-series analysis, the most common models for 

spatial processes are the autoregressive and the moving average 

specifications. In a panel data setting, a SARE process is specified as:  

! = U4 + -
- = ]06B¼- + a (1.33) 

where a is a �© × 1 vector of i.i.d. errors. The full error covariance 

matrix, again assumed not to vary over time, and then is equal to:  

ÈB¼ = /É0,Z¼⨂,2ZB −	]06B5′2ZB −	]06B5.S?. . (1.34) 

- The spatial error components specification, proposed by Kelejian and 

Robinson (1995), decomposes the error term into a local and a spillover 

effect, which are assumed to be uncorrelated. Each component is 

assumed to be i.i.d., with a specific variance. The time-invariant overall 

error covariance matrix results from the sum of the covariance matrices 

of the two components.  
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- The standard two-way error component model (Baltagi 2005) specifies 

the error terms of the regression model as the sum of an unobserved 

individual component, a time-specific component and an idiosyncratic 

error term. The common time component results in a particular form of 

cross-sectional (hence spatial) correlation. This kind of model 

specification was recently extended into the common factor model 

approach by expressing the time component as an unobserved time-

specific common factor to which all cross-sectional units are exposed 

(each of them having a distinct factor loading on this common factor). 

Therefore, spatial dependence is typically taken into account by 

including the spatial lag of the dependent variable or a spatial 

autoregressive error term into the model (Anselin et al. 2008; Elhorst 

2010), such as in the cross-sectional framework. As described in section 

1.5.1, in both cases, stationarity requires that the value of the spatial 

parameter is included between the smallest and largest eigenvalues of the 

spatial weight matrix (Elhorst 2010).  

 Temporal and spatial heterogeneity 1.7.3

Still following Anselin et al. (2008), the homogeneous specifications of 

spatial panel data model outlined so far can be extended so as to introduce 

heterogeneity both over time and across space. Many different 

specifications can be theoretically introduced. However, most of them 

suffer from identification problems and do not find empirical application; 

therefore they are not described in what follows.  

Temporal heterogeneity can be introduced straightforwardly in spatial 

panel data models by allowing for time-specific parameters. The cross-

sectional error terms can be allowed to be correlated over time periods in 

what is called a spatial Seemingly Unrelated Regression (SUR) model. In a 

spatial lag model, for each cross-section at time � � 1, 2, … , ©, the standard 
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specification is enriched by a time-specific spatial autoregressive 

coefficient (]?R), thus becoming: 

!R � ]?R6B!R V UR4R V -R. (1.35) 

The error covariance matrix for model (1.35) is X,--e. � È¼⨂ZB, with 

ÊË as a © × © temporal covariance matrix with elements σÌÍ (equal to the 

temporal covariance between period Î and �, for Î ≠ �). Spatial error 

autocorrelation can also be introduced in spatial SUR models. If this is 

done by means of a spatial autoregressive error process, for each cross-

section � × 1 at time � = 1, 2, … , © the model is specified as 

!R = UR4 + -R
-R = ]0R6B-R + aR

 . (1.36) 

Spatial heterogeneity is usually unobserved heterogeneity that is included 

in the model specification either as fixed effects or random effects. In a 

spatial econometric framework, both these kinds of models can be extended 

to the SAR and SARE specification. 

The classic specification of a fixed effects model captures unobserved 

heterogeneity through an individual specific, time-constant term (Ï�) that is 

not assumed to be orthogonal to non-stochastic regressors U: ! = U4 +
ÐÑÏ + -, where ÐÑ is a �© × � matrix of individual dummies and Ï is a 

� × 1 vector of fixed parameters (individual effects). The disturbances are 

assumed to be i.i.d.20, /Ò05. The spatial lag extension of this approach is not 

straightforward. A fixed effects spatial lag model in stacked form is 

specified as:  

! = ]?2Z¼⨂6B5! + U4 + 2Ó¼⨂Ï5 + -. (1.37) 

The estimation of model (1.37) requires the use of a demeaned form, in 

order to overcome the incidental parameter problem. The demeaned form is 

obtained by subtracting the average over the time dimension for each cross-

sectional unit, thus wiping out the fixed effects and the constant term. 
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However, the singularity of the demeaning operator is still a problem for 

ML estimation (Anselin et al. 2008). 

The standard specification of the error term for each cross-section in a 

one-way error component model is  

-R � Ï V �R , (1.38) 

where Ï is a � 7 1 vector of individual random components with Ï�~�. �. :. 20, /Ñ05 and ��R~�. �. :. 20, /Õ05. Spatial error autocorrelation can be 

incorporated into the standard random effects model in some different 

ways, which are described in detail in Anselin et al. (2008). One possible 

approach is the specification of a SAR process for the idiosyncratic error 

component of equation (1.38), as Baltagi et al. (2003) do, so that for each 

cross-section,  

�R � ]06B�R V aR . (1.39) 

A second possible specification is the one adopted in Kapoor et al. 

(2007), that first applies a SAR process to the error term - and then 

specifies the vector of innovations a as an error component model: 

-R � ]06B-R V aRaR � Ï V �R  . (1.40) 

 Dynamic models 1.7.4

Dynamic panel data models incorporate dependence both in time and space. 

Dynamics in time is embodied in the model through the inclusion of a 

lagged dependent variable (!�,RS?) among the regressors (Baltagi 2005), 

whereas spatial dynamics can be included in the usual ways in a SAR or 

SARE framework. 

Anselin (2001) distinguishes spatial dynamic models into some broad 

categories. Space-time dependence in the error term is ignored at first and 

the focus is on models where the cross-sectional dimension is bigger than 
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the time-dimension (� ≫ ©). The taxonomy provided for spatial dynamic 

models with lag dependence is the following (for ease of exposition the 

models are expressed as a � 7 1 cross-section at time � = 1, … , ©). 

Pure space-recursive models: 

!R = Ö6B!RS? + UR4 + -R, (1.41) 

where Ö is the space-time autoregressive parameter and 6B!RS? is the 

� × 1 vector of observations of the spatially lagged dependent variable at 

time � − 1. The model can be easily extended so as to include the time or 

spatial lag of the explanatory variables, although their space-time lag 

should not be included in order to avoid identification problems (Anselin et 

al. 2008). In this kind of model, the dependence only pertains to 

neighboring units in a previous period. This means that it takes one period 

for spatial dependence to manifest itself.  

Time-space recursive models:  

!R = �!RS? + Ö6B!RS? + UR4 + -R, (1.42) 

where � is a serial (i.e. time) autoregressive parameter. Spatially lagged 

contemporaneous explanatory variables (6BUR) can also be included, but 

no time or space-time lags of the vector UR should be added because of 

identification problems.  

Time-space simultaneous models: 

!R = �!RS? + ]?6B!R + UR4 + -R, (1.43) 

where, in accordance with previous notation, ]? is the spatial 

autoregressive parameter. In this model, the inclusion of any kind of spatial 

lag of the explanatory variables would be problematic, because the effect of 

it is already included in the combined effect of the spatial multiplier and the 
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space-time multiplier that follows from the presence of !RS? among the 

regressors (Anselin et al. 2008). 

Time-space dynamic models include all three possible lags of the dependent 

variable: 

!R � �!RS? V ]?6B!R V Ö6B!RS? V UR4 V -R. (1.44) 

This is the more general specification, but its estimation may be 

complicated because of identification problems. Nevertheless, this model 

has been extensively studied in recent literature (Yu et al. 2008; Lee and 

Yu 2010a). 

Space-time dependence can also be included in the error terms 

following what is called the “error component approach” (Anselin et al. 

2008). The starting point is the spatial random effects model as specified in 

equations (1.38) and (1.39), in which the idiosyncratic component ×R is 

substituted by a serially correlated term (ØR):  
-R � Ï V �R�R � ]06B�R V ØRØR � ÙØRS? V ×R

  . (1.45) 

 1.8 Estimation of spatial panel data models 

The estimation of spatial panel data models needs to deal with the problems 

caused by autocorrelation in space, already described in section 1.2.1: 

although the panel data framework appears to be more complex than the 

cross-sectional one, the basic reasoning is analogous. When considering a 

spatial lag model, the simultaneity between 6B¼! and - must be taken into 

account. 

When panel data models incorporate dependence both in time and 

space, such as spatial dynamic panel data models do, it is also convenient 

to focus briefly on time dynamics as a second source of autocorrelation. If 

individual (spatial) heterogeneity is present in the model as a one-way error 
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component (also called random effects) and since !�,R is a function of the 

individual-specific term Ï�, it follows that that !�,RS? is also a function of Ï�. 
Therefore one of the regressors is correlated with the error term and the 

OLS estimator is biased and inconsistent and so are the fixed effects 

estimator and the GLS random effects estimator (Baltagi 2005).  

The main ways that have been proposed in order to deal with these two 

sources of autocorrelation are instrumentation-based IV/GMM estimation 

procedures and ML estimation, which specifies a complete distributional 

model. Nevertheless, it should be noted that different model specifications 

have given birth to different estimation strategies in the literature, each one 

dealing with the peculiar econometric problems that the estimation of that 

model presents.  

Recent literature has developed theoretical properties for spatial panel 

data models estimators. Kapoor et al. (2007) contributed to the GMM 

approach deriving a GMM estimator for a spatially autocorrelated error 

static panel data model with individual effects.  

Quasi-maximum likelihood (QML) estimators were also proposed: Yu 

et al. (2008) studied the asymptotic behavior of a QML estimator for a 

dynamic spatial autoregressive panel data model with only individual fixed 

effects when both � and © are large; this was later extended to two-way 

error component models, where both time and individual effects are present 

(Lee and Yu 2010a). A Least-Squares Dummy Variable (LSDV) estimator 

for a “time-space recursive” model with fixed individual effects which also 

allows for endogenous regressors was proposed by Korniotis (2010). Some 

of the main estimators recently proposed in the literature are reviewed in 

the following sections3. 

                                                 
3 The notation used in the following sections might slightly differ from the one in the 
original reviewed papers. This is done for the sake of consistency. 
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 The KKP estimator for a SARE static panel data model 1.8.1

A fundamental contribution to the literature on the estimation of spatial 

panel data model is that by Kapoor et al. (2007), who introduced the so-

called “KKP”  (Kapoor, Kelejian and Prucha’s) estimator. The authors 

consider a static panel data model that allows for the disturbances to be 

correlated both over time and across space. Spatial dependence is modeled 

as a first order spatial autoregressive process in the error term and 

correlation over time is obtained through the � 7 1 vector of individual 

effects Ï, as in equation (1.40). Stacking the observations, the model can 

written as 

! � U4 V -- � ]02Z¼⨂6B5- V aa � 2Ó¼⨂ZB5Ï V � . (1.46) 

In this specification, a corresponds to a classical one-way error 

component (Baltagi 2005); � is an �. �. :. error term with zero mean, 

variance σÕ0 and finite fourth moments; the unit specific error components Ï 

are also �. �. :. with zero mean, variance σÑ0 and finite fourth moments. The 

processes � and Ï are independently distributed. The spatial weight matrix 

is defined as usual with null diagonal elements. Moreover, in order for the 

matrix 2ZB ^ ]06B5 to be non-singular, it is also assumed that |]0| ` 1. 

This model specification implies that the innovations a are 

autocorrelated over time but not across spatial units. Their variance-

covariance matrix is defined as: 

bÉ � X2aae5 � /Ñ02Ú¼⨂ZB5 V /Õ0ZB¼, (1.47) 

Differently, the model disturbances - are correlated both over time and 

across space and are such that X2-5 � 0 and  

 bÒ � X2--′5 � ,Z¼⨂2ZB ^ ]06B5S?.bÉ,Z¼⨂2ZB ^ ]06′B5S?.. (1.48) 
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The KKP procedure is defined for the case in which © is fixed 

and	� → ∞. Three GMM estimators are proposed for ]0, σÑ0 and σÕ0, in 

terms of six moment conditions that generalize the moment conditions 

introduced in Kelejian and Prucha (1998, 1999). The first set of estimators 

provides initial estimates for ]0, and σÕ0 as the unweighted nonlinear least 

squares estimators based on a subset of the moment conditions and the 

residuals calculated after the OLS estimation of model ! � U4 + -. The 

estimates obtained (]Ü0, and σÝÕ0) are then used in order to provide an 

estimate for σ?0 � σÕ0 + ©σÑ0 based on the fourth moment condition.  

Under the assumption of normality of innovations a, the authors derive 

the variance-covariance matrix of the sample moments at the true 

parameter values (Þ, consistently estimated by Þß), whose inverse is to be 

used as the optimal weighting matrix in a GMM estimator. Therefore the 

use of the weighting matrix proposed for this procedure will not be strictly 

optimal when the normality assumption for a does not hold.  

The second GMM estimator is then defined as the nonlinear least 

squares estimator based on the moment conditions weighted by ÞßS?. The 

third GMM estimator is proposed mainly because of computational 

considerations and is based on a simpler weighting matrix, which places the 

same weight on each of the first three moment conditions and the same –

but different from the previous – weight on each of the last three moment 

conditions. This partially weighted GMM estimator is also proved to be a 

consistent estimator for ]0, σÑ0 and σÕ0.  

Finally, the authors provide a Feasible Generalized Least Squares 

(FGLS) estimator for 4 based on the estimates obtained for ]0, σÑ0 and σÕ0, 

which is proved to be consistent, asymptotically normal and to have the 

same asymptotic distribution as the real GLS estimator.  
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 A Quasi-Maximum likelihood estimator for a time-space dynamic 1.8.2
model 

Yu et al. (2008) investigate the asymptotic properties of a QML estimator 

for a time-space dynamic model with fixed individual effects when both the 

cross sectional dimension (�) and the time dimension (©) go to infinity 

(either at a proportional rate or not) and also propose a bias correction. The 

model considered is the most general model proposed in Anselin’s 

taxonomy (2001), therefore the asymptotic results presented in this paper 

are also applicable to the other categories of models as special cases in 

which some of the parameters are equal to zero. 

For each time period � � 1,2, … , ©, the model is  

!R � ]6B!R V �!RS? V Ö6B!RS? V UR4 V Ï V -R, (1.49) 

where !R � 2!?R, !0R, … , !zR5′ and -R � 2-?R, -0R, … , -zR5′ are	� 7 1 vectors 

and -�R is	�. �. :. across � and � with zero mean and variance σ0; 6B is the � 7 � spatial weight matrix, UR is an � 7 W matrix of non-stochastic 

regressors and Ï is the � 7 1 vector of fixed individual effects. The total 

number of parameters in this model is therefore equal to � V W V 4.  

Following Yu et al. (2008), define àB � 2ZB ^ ]6B5 and, assuming 

that àB is invertible, áB � àBS?2�ZB ^ Ö6B5. Model (1.49) can be 

rewritten as  

!R � áB!RS? V àBS?UR4 V àBS?Ï V àBS?-R (1.50) 

and, assuming that the infinite sums are well defined, by continuous 

substitution of (1.50) we obtain 

!R � ∑ áBàBS?2Ï Vâãäw URSã4B V -RSã5. (1.51) 

The likelihood function of model (1.49) is given by 

op�2�, Ï5 � ^ B¼0 op2å ^ B¼0 opσ0 V ©op|àB]| ^ ?0æd ∑ -R′2ç5-R2ç5¼Rä?  ,

(1.52) 



 

38 
 

where � � 2ge, ], σ05′ and ç � 2ge, ], c′5′, g � 2�, Ö,β′5′, -R2ç5 �
àB2]5!R − �!RS? − Ö6B!RS? − UR4 − Ï. The QML estimators for � and Ï 
are the extreme estimators (�� and Ï̂) derived from the maximization of the 

likelihood function (1.52). When the error terms (-R) are normally 

distributed, �� and Ï̂ are ML estimators; when the errors are not normally 

distributed, then we have QML estimators. 

Because the number of the parameters to be estimated goes to infinity 

as the cross-sectional dimension goes to infinity, the authors also propose a 

likelihood function that concentrates Ï	out. Define !êR � !R − !ë¼ and 

!êRS? � !RS? − !ë¼S? for � � 1,2, … , ©, where !ë¼ = ∑ !R ©⁄¼Rä?  and !ë¼S? =
∑ !RS? ©⁄¼Rä? . Similarly, UßR and -R̃ are defined. Finally, fßR = 2!RS? −
!ë¼ ,6B!RS? − 6B!ë¼S?, UR − Uí¼5. The resulting concentrated likelihood 

function is  

op�2�5 = − B¼
0 op2å − B¼

0 opσ0 + ©op|àB]| − ?
0æd ∑ -R̃′2ç5-R̃2ç5¼Rä?  , (1.53) 

where -R̃2ç5 = àB2]5!êR − fßRg. The QML estimator for � maximizes the 

concentrated likelihood function (1.53). By this approach, it is also possible 

to recover the estimated individual effects, which is not the case when other 

ML estimators are considered such as, for example, those proposed by 

Elhorst (2005) for either a SARE or a SAR dynamic panel data model with 

fixed effects. 

The asymptotic properties of the QML estimators are based on the 

following assumptions: 

QML_1. 6B is a constant � × � spatial weight matrix whose 

diagonal elements are equal to 0; 

QML_2. The error terms -�R are �. �. :. across � and � with zero mean, 

variance σ0 and at least one moment of order > 4 which is finite; 

QML_3. àB2]5 is invertible for all ] ∈ Λ. Furthermore Λ is compact 

and ] is in the interior of Λ; 
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QML_4. The elements of UR are non-stochastic and uniformly 

bounded. Also lim¼→â ?B¼ ∑ UßR′UßR¼Rä?  exists and is nonsingular; 

QML_5. 6B is uniformly bounded in row and column sums in 

absolute value. Also àBS?2]5 is uniformly bounded, uniformly in ] ∈ Λ; 

QML_6. ∑ +ïÎ2âãä? áBã 5 is uniformly bounded; 

QML_7. � is a non-decreasing function of © and © goes to infinity. 

For assumption QML_3 to be verified, in empirical applications where 6B is row-normalized, the parameter space for ] is just 2^1, 15. Moreover, 

in order to justify the absolute summability of áB, a sufficient condition is ‖áB‖ ` 1, where the matrix norm is the row sum norm or the column sum 

norm. If 6B is row-normalized, one usually considers the spatial and 

temporal parameters satisfying the constraint |]| V |�| V |Ö| ` 1. 

The proofs provided by the authors show that the concentrated QML 

estimator is consistent and asymptotically normal, but the limit distribution 

is not centered around zero. In order to overcome this, a bias reduction 

procedure is proposed which has a better performance than the standard 

QML estimator especially when � ≫ ©.  

 Least Squares Dummy Variable Estimator 1.8.3

Korniotis (2010) introduces a new bias-corrected estimator which is 

suitable for estimating a dynamic panel data model with fixed effects by 

Least Squares Dummy Variable (LSDV) and allows for spatial effects and 

endogenous regressors. The model to be estimated includes a time-lagged 

and a spatially lagged dependent variable, in a time-space recursive 

framework, and fixed effects (Ï). For each time period � � 1,2, … , ©: 

!R � �!RS? V Ö6B!RS? V UR4 V Ï V -R, (1.54) 
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where -R are �. �. :.	error terms with zero mean, variance /0 and at least one 

moment of order > 2 which is finite. The set of control variables is made of 

endogenous regressors and can include both contemporaneous and time-

lagged regressors. Moreover, � and © are assumed to grow at a finite rate 

and the usual assumptions on the spatial weight matrix, that needs to be 

row-standardized, hold. For details on the model assumptions, please refer 

to the original paper. 

The standard LSDV estimate for � is  

�ut�ñ� = � ?
B¼ ∑ ∑ 2¥ò�,RS?

ó 5′¥ò�,RS?
ó¼Rä?B?ä? �

S?
� ?
B¼ ∑ ∑ 2¥ò�,RS?

ó 5′!ê�,Ró¼Rä?B?ä? �, (1.55) 

where the superscript : denotes that the data are de-meaned to have zero 

mean; ¥ò�,RS? = ,!�,RS?		6�!RS?	¥�R. is a vector of dimensions 1 × 2W + 25 
where ¥�R is a 1 × W vector, 6� is the �-th row of the spatial weight matrix 

and !RS? = ,!?,RS?, !0,RS?, … , !B,RS?.′. However, the LSDV estimator of � 

is biased by the presence of fixed effects and endogenous regressors. 

Therefore a hybrid estimator is proposed which instruments the 

endogenous regressors and transforms equation (1.55) into  

�uô = � ?
B¼ ∑ ∑ 2õò�,RS?

ó 5′¥ò�,RS?
ó¼Rä?B?ä? �

S?
� ?
B¼ ∑ ∑ 2õò�,RS?

ó 5′!ê�,Ró¼Rä?B?ä? �, (1.56) 

where õò�,RS? = ,!�,RS?		6�!RS?	õ�RS?. and õ�RS? is a 1 × W vector of 

instruments for ¥�R. The instruments are assumed to be contemporaneously 

correlated with the error term, but their time-lagged values are taken to be 

independent from the errors. This hybrid estimator is proved to have a finite 

asymptotic bias and to converge to a normal distribution. A bias-corrected 

estimator is then defined as 

 �uÑ = � ?
B¼ ∑ ∑ 2õò�,RS?

ó 5′¥ò�,RS?
ó¼Rä?B?ä? �

S?
� ?
B¼ ∑ ∑ 2õò�,RS?

ó 5′!ê�,Ró¼Rä?B?ä? − ö�÷ø
√B¼�,

(1.57) 
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where ú�B¼ is the value of the asymptotic bias under a consistent estimator 

of � (see Korniotis (2010) for greater details and the implementation 

procedure). The bias-corrected estimator only instruments the endogenous 

regressors whereas a pure IV estimator needs to instruments also the time 

and space-lagged dependent variable, therefore being more exposed to the 

weak instruments biases. It is proved to be asymptotically unbiased and 

asymptotically normal and to have good small sample properties.  

 1.9 Software availability for the estimation of spatial models 

Theoretical contributions in the field of spatial econometrics are now 

numerous and cover a wide range of models and testing procedures, both 

for cross-sectional models and panel data models, as previous sections 

outlined. Although the subject appears to have reached a phase of maturity 

(Anselin 2010), empirical applications are still limited by the lack of 

software availability, particularly in the field of spatial panel data models. 

 Software availability for the estimation of spatial cross-sectional 1.9.1
models 

The availability of codes for cross-sectional spatial analysis is such that 

applied researchers can enjoy enough flexibility in the choice of the model 

to estimate.  

A Cliff and Ord model of type (1.11) which may also contain 

endogenous regressor and heteroskedastic error terms can be estimated 

either via ML or GMM/IV by the spreg and spivreg Stata functions 

that also flexibly allow the estimation of SAR models of type (1.4) and 

SARE models of type (1.6) (Drukker et al. 2011; 2011a; 2011b).  

The spatial econometrics toolbox for MATLAB provided by LeSage 

(1999) on his website4 contains functions that are suitable for ML 

                                                 
4 http://www.spatial-econometrics.com 
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estimation of Cliff and Ord models (1.11), SAR models (1.4) and SARE 

models (1.6), together with some functions that allow Bayesian estimation 

of spatial models.  

The most appealing software for cross-sectional analysis is R, which 

offers a wide range of estimation choices with the packages spdep and 

sphet (Bivand 2006, 2013; Piras 2010): among others, we recall the ML 

estimation of a SARE model of type (1.6) (function errorsarlm), the 

estimation of a Cliff and Ord model as described in equation (1.11) either 

via ML (function sacsarlm) or GMM (function gstslshet), the 

estimation of a SAR model (1.4) via Spatial Two-Stage Least Squares 

(function stsls) or ML (function lagsarlm). R also provides plenty of 

functions that are suitable for exploratory spatial data analysis and testing.  

 Software availability for the estimation of spatial panel models 1.9.2

Procedures to estimate spatial panel data models are less numerous and this 

is still hindering these models to be applied in empirical studies. Some 

MATLAB routines are available on Paul Elhorst’s website5 for the ML 

estimation of static fixed effects and random effects SAR models, as 

described respectively in equations (1.37) and (1.38), and SARE models 

(Elhorst 2010), extended in order to include the bias correction procedure 

proposed by Lee and Yu (2010b). Some testing procedures are also 

available which can be used to test for a spatially lagged dependent variable 

or spatial error autocorrelation in a spatial static panel data model using 

(robust) LM tests (Elhorst 2010).  

Ingmar Prucha also provides some Stata codes on his website6, one of 

which is suitable for the estimation of a spatial error static panel data model 

as specified in equation (1.40) via the KKP estimator.  

                                                 
5 http://www.regroningen.nl/elhorst/software.shtml 
6 http://econweb.umd.edu/~prucha/Research_Prog.htm 
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As in the cross-sectional case, R is the software that offers the richest 

although not yet comprehensive choice of estimating routines. The R 

package for spatial panel data estimation is splm (Millo and Piras 2012) 

and it allows ML estimation of Cliff and Ord type models (that include 

both a spatially lagged dependent variable and a spatially autocorrelated 

error term) either with spatially uncorrelated individual effects, as in 

equations (1.38) and (1.39), or where spatial correlation is present both in 

the individual and the error component, as in equation (1.40); both the fixed 

and random effects models are implemented. The KKP estimation 

procedure can be applied to a Cliff and Ord type of model with the error 

terms specified according to equation (1.40). Again, both the random and 

fixed effects models are considered. 

The options for estimating spatial static panel data models are now 

numerous and, although no comprehensive packages have been 

implemented yet, empirical researches are offered a good choice. The 

estimation of spatial dynamic panel data models is instead made 

particularly difficult and hence less frequent in empirical analyses by the 

lack of readily available routines implemented in statistical and 

econometric software. To our knowledge, the only available code is the one 

published by Elhorst for the ML estimation of a dynamic panel data model 

including a serially lagged dependent variable, regional fixed effects and 

spatial error autocorrelation (Elhorst 2005), although some more codes are 

in preparation his website for the estimation of a dynamic panel data model 

including a serially lagged dependent variable, a spatially lagged dependent 

variable and individual fixed effects. 
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 A Monte Carlo Investigation 2

 2.1 Introduction 

The literature about GMM estimation of spatial panel data models is still 

limited. As it was reviewed in chapter 1, the KKP estimator was introduced 

in order to estimate SARE static panel data models with random effects 

(Kapoor et al. 2007). A more recent contribution by Kukenova and 

Monteiro (2009) presents a system-GMM estimator for a time-space 

simultaneous model with fixed effects and additional endogenous 

covariates and compares its performance in finite samples against other 

spatial estimators; the authors find that the system-GMM estimator, 

although generally less efficient, tends to exhibit the smallest bias for the 

spatial autoregressive parameter and that it decreases as � and/or © 

increase. To our knowledge, however, no published paper has yet studied 

extensively the finite sample estimation of a space-time dynamic panel data 

model, which also includes a time lag of the spatially lagged dependent 

variable among the regressors, by a GMM-type estimator.  

We therefore perform a Monte Carlo (MC) simulation exercise that 

permits an assessment of the performance of the most common estimators 

for dynamic panel data models for different temporal and cross-sectional 

dimensions and different degrees of spatial, temporal and spatiotemporal 

dependence. 

Moreover, we also aim at studying the bias resulting from a non-spatial 

estimation of a dynamic panel data model that ignores the spatial effects 

that characterize the data, for different degrees of spatial dependence. To 

our knowledge, although the theoretical consequences of ignoring spatial 

dependence have been extensively studied (as described in the previous 

chapter), no empirical study is available for the assessment of the effects of 

such a misspecification in terms of bias of the estimates of the model 

coefficients. 
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The structure of the chapter is as follows. Section 2.2 offers a 

description of the simulation model which includes an introduction to the 

Monte Carlo principle, a description of the objectives of the present 

analysis and how it was implemented. Section 2.3 introduces the GMM-

type estimator whose small sample properties we investigated through the 

MC analysis. The results of our simulation analysis are described in section 

2.4, for various scenarios that differ in terms of degree of spatial, temporal 

and spatiotemporal dependence included in the model. Lastly, we will 

come to our conclusions in section 2.5. 

 2.2 Simulation model 

 The Monte Carlo principle 2.2.1

Monte Carlo simulations are based on the empirical tracking of a statistic’s 

behavior in random samples drawn from known populations of simulated 

data. The strategy is to create an artificial world that resembles the real 

world as much as possible, whose characteristics are known to the 

researcher. This artificial world is called pseudo-population.  

Following Mooney (1997), a basic MC procedure can be described as 

follows. First the Data Generating Process (DGP) is specified such that it 

describes all the characteristics of the pseudo-population. A computer 

algorithm needs to be developed in order to be able to generate data 

according to the specified DGP. Once the DGP is implemented, a pseudo-

sample is generated such that it reflects certain characteristics of the sample 

that we want to put under investigation (e.g. sample size). The statistic(s) 

whose properties are being studied in the pseudo-environment is calculated 

in the pseudo-sample and stored. The sampling and estimating steps are 

repeated for a W number of trials, so that W values for each statistic under 

consideration are calculated and stored in a vector ��. The distribution of the 

resulting W values of the statistics is the MC estimate of the sampling 
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distribution of �� under the conditions specified for the pseudo-population 

and the pseudo-sample.  

The rationale behind MC simulation is therefore quite simple to grasp. 

What is more difficult in practice is the specification of a proper DGP, the 

implementation of a computer code to implement it and the interpretation 

of the estimated sampling distribution.  

 A MC study for investigating the small sample properties of some 2.2.2
estimators for a time-space dynamic model 

The MC methodology is applied in order to investigate the finite sample 

properties of some estimators for a time-space dynamic model (section 

1.7.4) with comparison purposes. The first one is the QML estimator 

developed by Yu et al. (2008), whose asymptotic properties have been 

analytically analyzed in their paper. Secondly, we take into consideration 

some GMM estimators for a dynamic panel data model à la Arellano and 

Bond (1991), extended so as to include a spatial lag of the dependent 

variable among the regressors. In order to deal with some econometric 

issues that arise in relation to the GMM procedure, two different GMM 

estimators are proposed. 

All simulations are performed using Matlab R2011b7. Since the QML 

estimator was already thoroughly described in the previous chapter (section 

1.8.2), no additional details will be provided on that. Differently, although a 

GMM estimators for spatial dynamic panel data models have been 

proposed in a working papers (Yu and Lee 2010), the one we are going to 

analyze has been developed autonomously and autonomously implemented 

in Matlab. A detailed description of this estimator is therefore provided in 

the following sections.  

                                                 
7 The code for the QML estimator was kindly provided by Jihai Yu upon request 
specifically for this project. 
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 Data Generating Process 2.2.3

The first step of the Monte Carlo simulation consists in the definition of the 

DGP. Here we take into consideration a time-space dynamic panel model 

with fixed-effects; hence, following the notation already presented in the 

previous sections, pseudo-samples are generated from: !R � ]6B!R V �!RS? V Ö6B!RS? V 3R4 V Ï V -R (2.1) 3R � 3RS?g V ûR (2.2) 

where !R � 2!?R, !0R, … , !zR5′, -R � 2-?R, -0R, … , -zR5′ and 3R �23?R, 30R, … , 3zR5′ are	� 7 1 vectors and -�R is	�. �. :. across � and � with 

zero mean and variance σÒ0; additionally, Ï ∼ �20, üBσÑ05; -R ∼ �20, üBσÒ05; ûR ∼ �20, üB5, with üB an �-dimensional vector of ones. The spatial weight 

matrix 6B is a � 7 � row-standardized rook matrix. The subscript � is 

dropped from now on for a more compact notation. 

In order to prevent results from being influenced by initial 

observations, initial values for !w are drawn from a random standard 

normal distribution and the vector 3w is initialized as a	� 7 1 vector of 

zeros. Moreover, each variable is generated 60 times and the first 260 ^ ©5 
observations are then discarded.  

The dependent variable is then generated according to the reduced 

form of equation (2.1): !R � 2ZB ^ ]65S?2�!RS? V Ö6!RS? V 3R4 V Ï V -R5. (2.3) 

 MC design 2.2.4

The aim of the present MC simulation is to assess the finite sample 

properties of the considered estimators for different values of � and © and 

to compare their performances since the true model is known. Sample sizes 

and degrees of spatial dependence in the data are varied in order to 

determine the conditions under which one estimator should be preferred to 

the others. Therefore, some different scenarios are simulated, each one 
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described by different values for � and © and different values for the model 

parameters.  

The first scenario is such that stationarity is ensured by the restriction |]| V |�| V |Ö| ` 1 (Yu et al. 2012). The MC experiment for stationary 

data relies on the following designs: 

© ∈ �5, 10, 50�; 					� ∈ �16, 49, 121�;		
� ∈ �0.2, 0.4�; 					Ö ∈ �0.2, 0.4�;	
] = 0.2; 					4 = 1; 					g = 0.5

σÑ0 = 1;					σÒ0 = 1
. (2.4) 

All combination of values for � and © are considered. When 

considering spatial and temporal parameters, not all combinations of the 

values in (2.4) are admitted, but only those that ensure model stationarity. 

Therefore the settings used for our MC simulations in a stationary context, 

with regard to ], � and Ö, are only those summarized in Table 2.1. 

Table 2.1. Setting of spatial and temporal parameters in the simulation model in a 
stationary context 

� 0.2 0.4 0.2 

] 0.2 0.2 0.2 

Ö 0.2 0.2 0.4 

|]| + |�| + |Ö| 0.6 0.8 0.8 
 

A second scenario that is taken into consideration in the MC 

experiment is that of a quasi-unit root context, in which |]| + |�| + |Ö| is 

close to 1. The following designs are adopted: 

© ∈ �5, 10, 50�; 					� ∈ �16, 49, 121�;		
� ∈ �0.2, 0.58�; 					Ö ∈ �0.2, 0.58�;	

] = 0.2; 					4 = 1; 					g = 0.5
σÑ0 = 1;					σÒ0 = 1

. (2.5) 

Again, all combinations of � and © are taken into consideration, but 

only certain combinations of values for the spatial and temporal parameters 

are admitted in the experimental setting, as described in Table 2.2. 
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Table 2.2. Setting of spatial and temporal parameters in the simulation model in a 
quasi-non-stationary context � 0.2 0.58 ] 0.2 0.2 Ö 0.58 0.2 |]| V |�| V |Ö| 0.98 0.98 

 

Finally, a MC simulation was conducted so as to measure the bias that 

a non-spatial estimation of a spatial model would cause, which is in fact 

one of the most important reasons for sponsoring spatial econometrics 

techniques. This is done in a context where the stationarity condition is met 

and spatial dependence is not too strong, according to the following 

designs: © ∈ �5,10, 50�; 					� ∈ �16, 49, 121�;		
Ö ∈ �0.1, 0.3�; 					] ∈ �0.1, 0.3�;	
� = 0.3; 					4 = 1; 					g = 0.5

σÑ0 = 1;					σÒ0 = 1
. (2.6) 

In this third scenario, all parameter combinations are taken into 

consideration. 

For each of the described designs, 999 trials were performed. For each 

set of generated pseudo-observations and each estimator we report some 

statistics which are suitable for assessing the properties of the estimators 

and comparing them: 

- Mean: it is the average point estimates for the coefficients over the 999 

iterations (p��v)). For each generic model coefficient �, it is calculated 

as: �̅� = ?
z�R¦' ∙ ∑ ��Az�R¦'

Aä? ; 

- Standard Deviation (SD), calculated as � ?
z�R¦' ∙ ∑ 2��A − �̅�5z�R¦'

Aä? �
?/0

; 

- Bias, calculated as �̅� − �; 

- Root Mean Square Error (RMSE): it is a measure of consistency and is 

suitable for assessing the quality of an estimator in terms of variability 

and bias, being defined as � ?
z�R¦' ∙ ∑ 2��A − �50z�R¦'

Aä? �
?/0

. 
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 Relevant econometric issues 2.2.5

Having defined the design of the empirical MC simulations, it is important 

to draw the attention on some econometric issues that arise when a time-

space dynamic model with fixed-effects as specified in equation (2.1) is to 

be estimated. The most relevant issues are relative to the presence of the 

spatial, temporal and spatiotemporal lags of the dependent variable. In 

order not to further complicate the model, the error terms are assumed to be 

homoskedastic. 

Specific remedies are needed in order to account for the different 

sources of endogeneity in this kind of model. As we extensively discussed 

in the previous chapter (sections 1.4.2 and 1.7.2), being correlated with the 

error terms, the contemporaneous spatial lags of the dependent variable are 

endogenous regressors. The dynamic specification of the model introduces 

also a different kind of endogeneity: the time lagged dependent variable is 

correlated with the fixed effects and with past values of the error terms. 

Therefore it cannot be considered to be strictly exogenous but only 

sequential exogeneity holds, conditional on the unobserved effect Ï� 
(Wooldridge 2010). For the same reason, the presence of a spatiotemporal 

lag of the dependent variable is also a source of endogeneity. 

The most popular estimator for this kind of space-time dynamic model 

is the QML estimator proposed by Yu et al. (2008), which was previously 

reviewed (section 1.8.2). This is therefore one of the estimators that our 

MC analysis will consider. 

Another possible approach to the estimation of this model consists in a 

GMM approach, which can address the different sources of endogeneity 

included in the model by instrumenting the regressors. Nevertheless, the 

definition of the instruments raises some econometric issues. The first of 

them is the instrument proliferation problem which could cause a bias in 

the GMM estimates (Roodman 2009). In the next section (2.3), the GMM 

estimators that are considered in the MC analysis are thoroughly described 
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together with the strategies that were adopted in order to overcome the 

main econometric problems that we met. 

Another possible source of bias when dealing with the estimation of 

this kind of model is caused by overlooking the spatial dependence that is 

present in the data. In this case, typically, the empirical researcher would 

estimate a non-spatial model such as !R � �!RS? V UR4 V Ï V -R,       |�| ` 1, (2.7) 

where UR is a � 7 W matrix of independent regressors, not serially 

correlated with -R but correlated with the fixed effects Ï. The error terms 

are assumed to have finite moments and in particular X2-�R5 � X2-�R-�þ5 �0 for � $ Î. Since this type of misspecification does not seem to be unlikely 

to be encountered, our MC simulations are also designed for evaluating its 

consequences in terms of bias. There is no need to point out that a first 

drawback of such a model misspecification consists in missing estimates 

for the spatial parameters and therefore missing evaluation of the spatial 

effects. This, however, may not necessarily result in a terrible bias 

associated to the estimates of the other model coefficients and may not 

prevent a meaningful assessment of the effects of the non-spatial 

regressors. If this is the case and the main interest of the researcher focuses 

on the 4 coefficients, the estimation of a simple non spatial model by a 

suitable estimator may not be a bad choice. Empirical evidence, however, is 

still lacking and our MC exercise precisely aims at providing some. 

 2.3 A GMM estimator for spatial dynamic panel data models 

The spatial GMM estimator for model (2.1) that we propose stems from the 

Arellano and Bond difference-GMM estimator for a dynamic panel data 

model with fixed effects, both in the one-step and two-steps versions.  
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 The Arellano and Bond (1991) difference-GMM estimator 2.3.1

When dealing with a model such as model (2.7), Arellano and Bond (1991) 

propose a GMM estimator that estimates the model in first differences, so 

that the time-invariant fixed effects are canceled out. 

The set of moment conditions that can be used in order to define a set 

of instruments depends on whether the covariates are sequentially 

exogenous, so that X2-�R�!�RS?,U�R, Ï�5 � 0 for � � 1,…©, !�RS? �
2!�?, !�0, … , !�RS?5′, and U�R � 2U�?, U�0, … , U�R5′, or strictly exogenous, so 

that X2-�R�!�RS?,U�¼ , Ï�5 � 0 for � � 1,…© and U�¼ � 2U�?, U�0, … , U�¼5′.  
In case of sequential exogeneity of the covariates, X2U�R-�þ5 $ 0 for Î ` � and X2U�R-�þ5 � 0 for Î � �, then only U�?, U�0, … , U�þS? are valid 

instruments in the differenced equation for period Î. With regards to the 

time lag of the dependent variable, only the values of ! lagged two periods 

or more are to be considered as valid instruments, being its time lag an 

endogenous regressor. Following Arellano and Bond (1991, page 280), the 

optimal matrix of instruments is therefore a 2© ^ 25 7 2© ^ 25,2W ^152© V 15 V 2© ^ 15./2 sparse matrix defined as f� � :�+Q2!�? …!�þU�?′ …U�þ�?′5,       Î � 1,… , © ^ 2, (2.8) 

where each row corresponds to a time period for which instruments are 

available (see Annex 1 for the extended notation). The first row includes 

the valid instruments that are available for the first-differenced model for 

period � � 3 , the last row is for period � � ©. 

Differently, if the covariates are all strictly exogenous, which means 

that X2U�R-�þ5 � 0 for all Î and �, then their values in all time periods are 

valid instruments and the sparse matrix of instruments is defined as  f� � :�+Q2!�? …!�þU�?′ …U�¼′5,       Î � 1, … , © ^ 2. (2.9) 

Let us also define	!ê�R � !�R ^ !�RS? and apply the same notation to the 

other variables in the model. Once a proper matrix of instruments has been 

defined, the choice of the weighting matrix to be employed in the GMM 
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estimation procedure distinguishes between the Arellano and Bond one-

step difference-GMM estimator (AB1) and two-step estimator (AB2).  

For the one-step estimator, the chosen weighting matrix is given by 

áB � 2�S? ∑ f�′B�ä? �f�)S? (2.10) 

where � is a (© − 2) × (© − 2) matrix defined as: 

� �
�
��
�

2 −1 0 … 0 0
−1 2 −1 … 0 0
0 −1 2 … 0 0
⋮ ⋮ ⋱ ⋱ ⋮ ⋮
0 0 0 … 2 −1
0 0 0 … −1 2 �

��	. (2.11) 

áB is the optimal weighting matrix when homoscedasticity and 

absence of serial correlation is assumed. The AB1 estimator for the model 

parameters � = 2�, 45	is then defined as 

��
ö? = 2Uß∗′fáBf′Uß∗5S?Uß∗′fáBf′!ê  , (2.12) 

where U∗ = 2!�RS?, U�R′5′ , Uß∗ is a 2© − 25� × W matrix and f is the proper 

matrix of instruments.  

The two-step estimator is given instead by the optimal choice of áB, 

which is �BS?: 

��
ö? = 2Uß∗′f	�BS?f′Uß∗5S?Uß∗′f	�BS?f′!ê (2.13) 

where  

�BS? = 2�S? ∑ f�′B
�ä? ṽ�ṽ�′f�5S? (2.14) 

with ṽ� being the 2© − 25 × 1 vector of residuals of the first step 

estimation. 

The estimator we are considering is consistent for � → ∞ and fixed ©. 

According to the findings in Arellano and Bond (1991), it exhibits only a 

small finite-sample downwards bias, thus not surprisingly outperforming 

OLS and within-group estimators, and represents a gain in efficiency when 

compared to the Anderson and Hsiao (AH) IV estimators. A well-known 

drawback of the AB2 estimator is that it returns downwards biased 
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estimated standard errors, particularly in finite samples and therefore 

requires some correction such as the Windmeijer (2005) correction. 

Nevertheless, the AB estimator has been found to suffer also from a severe 

finite-sample bias when the instruments for the differenced equation are 

weak (Blundell and Bond 1998).  

 The instrument proliferation 2.3.2

The number of moment conditions on which the AB difference-GMM 

estimator is based grows rapidly as © increases, so that the instrument 

count gets quickly very large. In particular, when estimating a model such 

as model (2.7), the number of available instruments is equal to 0.52© ^152© ^ 25 V 0.52© V 152© ^ 25W. Despite the great popularity of the AB 

estimator, instrument proliferation is an often underestimated problem that 

is also shared by the system-GMM estimator introduced by Blundell and 

Bond (1998). The number of instruments increases as © increase and grows 

large relative to �, causing a number of undesirable outcomes. Roodman 

(2009) focuses on this issue and describes the main problems that arise 

from instrument proliferation in small samples. The first failure is 

represented by the overfitting of the endogenous variables, which biases the 

estimates towards the OLS estimates. Unfortunately, no testing procedure 

is available against the overfitting bias, although the problem has been 

studied in a number of contributions (Ziliak 1997, Windmeijer 2005). A 

second problem that is caused by instrument proliferation is the imprecise 

estimation of the optimal weighting matrix (�BS?): the estimates of the 

parameters are still consistent, but efficiency is often affected and the 

already mentioned downward bias of the AB2 estimator is one of the 

consequences (Windmeijer 2005). Finally, but most importantly, the 
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Hansen J-test8 for instrument validity is weakened and its p-value is not 

reliable: a high p-value is considered to be an indication in favor of the 

validity of the GMM results, but instrument proliferation may alter the 

result in the direction of increasing the p-value associated to the test as © 

and the number of instruments increase, because the two-step standard 

errors enter the Hansen test formula (Bowsher 2002).  

Unfortunately, there is no clear guidance on what is a safe number of 

instruments. Although a general rule of thumb is considered to be keeping 

the instrument count lower than �, this cannot be viewed as a completely 

safe solution. A second suggestion comes from Roodman (2009) who 

considers a p-value greater than 0.25 for the Hansen test to be viewed with 

concern. 

Some techniques have been proposed as a solution to the instrument 

proliferation problem, for which a good review can be found in Roodman 

(2009). The first strategy to limit the number of instruments is to use only 

some of them, up to a certain lag, instead of all available lags. The 

instrument count stops being more than proportional with respect to © and 

becomes linear in ©. The strategy of truncating the instruments is quite 

common in empirical applications, although it should be stated that the 

definition of the cut-off lag is often arbitrary and does not follow an 

economic explanation.  

The second approach combines the instruments through addition into 

smaller sets, without dropping any of the lags. It is also known as 

“collapse” after Roodman’s terminology. The collapsed matrix of 

instruments for the equation in first-differences, for predetermined 

covariates, is  

                                                 
8 The Hansen (1982) J-test is also called test for over-identifying restrictions and can be 
thought as a test of instrument validity, as it tests whether all the restrictions imposed by 
the model are jointly satisfied.  
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f� � �!�? U�?′ U�0′ 0 0 … 0 0 … 0!�? !�0 U�?′ U�0′ U�
′ … 0 0 … 0⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋱!�? !�0 … … … … !�¼S0 U�?′ … U�¼S?′�.
(2.15) 

“Collapsing” is also a method that makes the instrument count linear in © and retains more information than the truncation method.  

These two strategies can also be combined: the matrix of instruments 

can be collapsed and lag depth reduced. For example, in case of 

sequentially exogenous covariates and limiting the lag depth to 3, the 

collapsed and truncated matrix of instruments is equal to 

f� � � !�? U�?′ U�0′ 0 0 0!�? !�0 U�?′ U�0′ U�
′ 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮!¼S� !�¼S
 !�¼S0 U�¼S
′ U�¼S0′ U�¼S?′�. (2.16) 

Despite the amount of instrument reduction strategies that have been 

proposed in the literature, no clear indication has been given about what a 

safe way to proceed is and the robustness of the estimates to alternative 

specifications of the GMM estimator has not been tested extensively yet 

(see Bontempi and Mammi, 2012, for a first discussion of this topic). 

 A spatial difference-GMM estimator 2.3.3

Given what was discussed above, we autonomously developed a spatial 

difference-GMM (SAB) estimator which is suitable for estimating a space-

time dynamic model, following the non-spatial estimator developed by 

Arellano and Bond (1991). The instrument proliferation problem has also 

been taken into account by applying both the instrument reduction 

strategies that were discussed. The estimation with the full set of 

instruments was not performed because it was computationally unfeasible 
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given the high instrument count for this kind of model, especially as © 

increased. 

According to the DGP that was adopted for the MC simulation 

exercise, described in section 2.2.3, the definition the proper instruments 

for the differenced equation followed from the literature and autonomous 

thinking, as reported in Table 2.3.  

Table 2.3. Variables and available instruments for a spatial difference-GMM 
estimator 

Variable Moment conditions Instruments !RS? 
 

Endogenous 

X2!�RSþ-�̃R5 � � 3,… , © Î � 2,… , (� − 1) 
(Arellano and Bond 1991) 

�!?, … , !RS0� � � 3,… , © 

6!R 
 

Endogenous 

X(6!�RSþ-�̃R) � � 3,… , © Î � 2,… , (� − 1) 
(Kukenova and Monteiro 2009) 

�6!?, … ,6!RS0� � � 3,… , © 

6!RS? 
 

Endogenous 

X(6!�RSþ-�̃R) � � 3,… , © Î � 2,… , (� − 1) 
�6!?, … ,6!RS0� � � 3,… , © 

3R 
 

Sequentially 
exogenous 

X(3�RSþ-�̃R) � � 3,… , © Î � 1,… , (� − 1) 
(Arellano and Bond 1991) 

�3?, … , 3RS?� � � 3,… , © 

 

Since in empirical applications it is usually unknown whether the 

covariates are strictly exogenous, predetermined or even endogenous, we 

treat the covariate as a sequentially exogenous variable, in order to be 

conservative with respect to the choice of strict exogeneity. 

We consider both the one-step and the two-step SAB estimator, based 

on a collapsed matrix of instruments. We also limit the choice of 

instruments to the third lag, in order to avoid instrument proliferation. The 

matrix of instruments is therefore defined as: 
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f� �
� !�? 6!�? 3�? 3�0 0 0 0 0 0!�? !�0 6!�? 6!�0 3�? 3�0 3�
 0 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮!¼S� !�¼S
 !�¼S0 6!�¼S� 6!�¼S
 6!�¼S0 3�¼S
 3�¼S0 3�¼S?�  

(2.17) 

We also considered a second, extended, specification of a spatial 

GMM estimator (ESAB) which is based on the additional moment 

condition:  

X263�RSþ-�̃R5		for			� � 3, … , ©				and			Î � 1,… , 2� ^ 15	, (2.18) 

that leads to the definition of an additional set of instruments: �63RS
,63RS0,63RS?� for � � 3,… , © that is added to each row of the 

instrument matrix. In this case, the total instrument count is limited to 2© ^ 25 V 4 ∙ po+QÎ ∙ W, where po+QÎ is the reduced lag depth (and it is 

equal to 3 in our case) and W is the number of covariates. 

 2.4 Results  

The MC simulations were performed according to the designs previously 

described (see section 2.2.4). The finite sample performance of the QML 

estimator by Yu et al. (2008), the one-step and two-step SAB and the one-

step and two-step ESAB were tested for various values of � and © and for 

different values of the parameters, according to the different scenarios of 

stationarity and quasi-unit root.  

We also performed a non-spatial estimation of the same spatial data 

(generated according to the described DGP), through a difference-GMM à 

la Arellano and Bond (1991) and compare the results against the QML 

estimator and the ESAB estimator (both one and two-steps), in order to 

assess the bias that the estimates suffer if the spatial dimension of the data 

is not properly empirically modeled. 
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 Stationary scenario 2.4.1

The first scenario that is taken into consideration is that of stationarity of 

the data, in which |�| V |]| V |Ö| ` 1 (Yu et al. 2012). 

When spatiotemporal dependence is limited, for |γ| V |λ| V |ϱ| � 0.6, 

all the estimates obtained in our MC simulation are well centered around 

the true value of the parameters (Figure 2.37 to Figure 2.45 in Annex 2). 

The RMSE error of the estimates for all considered coefficients (�, ], Ö, 4) 

decreases as © increases from 5 to 50 in our simulations and, for each value 

of ©, it also decreases as � increases for all the estimators included in the 

simulation (Figure 2.1 to Figure 2.4). The estimator that appears to have the 

best performance in terms of RMSE for all the © and � under consideration 

is the QML estimator, while the SAB estimator is generally outperformed 

by its extended version which also includes the spatial lag of the covariate 

among the regressors. Only with respect to the estimation of parameter �, 

which is the time-lag parameter for the autoregressive term of order 1, the 

QML estimator is outperformed in terms of RMSE by the GMM estimators 

as � increases. It is worth noting that, with respect to this parameter, even 

if the general performance of the QML estimator improves as the cross-

section dimension grows, it is outperformed by the GMM estimators that, 

in their non-spatial version à la Arellano and Bond, are consistent for � → ∞ and fixed ©. The GMM estimation of the AR(1) parameter � is 

therefore not surprisingly particularly good in terms of bias and RMSE 

with small © and growing � (Table 2.4 to Table 2.6 in Annex 2). 

Differently, particularly when © is small, the spatial GMM estimators 

appear to produce less reliable estimates for the other considered 

parameters (the spatial parameters and the coefficient of the covariate), 

mainly because of a greater variability of the estimates and therefore higher 

standard deviations (see Table 2.4 to Table 2.6 and Figure 2.37 to Figure 

2.45 in Annex 2). 
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With respect to the estimates of the spatial autoregressive parameter ], 

our simulations find that the bias associated to the ESAB estimator (both 

one and two-step) tends to decrease, as © and � increase, up to being 

comparable to the bias associated to the QML estimates when © � 50. 

Nevertheless, the ESAB estimates of ] are always associated to a higher 

variability. This result is in line with what Kukenova and Monteiro (2009) 

find in their simulation exercise for a time-space simultaneous model and a 

spatial system-GMM estimator, relatively to the estimation of the spatial 

autoregressive parameter. 

Growing spatiotemporal dependence, for |�| + |]| + |Ö| = 0.89, does 

not change dramatically the performance of the considered estimators. 

Growing © and � improve the estimates in terms of RMSE for all the 

estimators and all parameters (see Figure 2.5 to Figure 2.8 and Figure 2.9 to 

Figure 2.12). As previously noticed, the QML estimator is still the best 

performing estimator for all © and � and all parameters, with the only 

exception of parameter �. In these settings as in the previous one, as � 

grows, the spatial GMM estimators of � perform better than the QML 

estimator (see Figure 2.5 and Figure 2.9). As for what it concerns the 

estimation of the spatial coefficients (Ö and ]) and of the coefficient of the 

covariate (4), the QML appears to produce more reliable estimates than 

spatial GMM the ESAB and, particularly, the SAB estimators, especially 

when N is small. This is due to both a bigger bias and standard deviation of 

the estimates of these parameters when the GMM approach is adopted (see 

Table 2.7 to Table 2.9 and Table 2.10 to Table 2.12 in Annex 2). 

                                                 
9 In our MC design, this is the case for the following two parameter settings: (a) � = 0.4, 
] = Ö = 0.2, 4 = 1 and (b) Ö = 0.4, ] = � = 0.2, 4 = 1. 
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Figure 2.1. RMSE of � for various spatial estimators, for � � � � � � À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.2. RMSE of � for various spatial estimators, for � = � = � = À. ª, � = � and various � and �, over 999 iterations 
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Figure 2.3. RMSE of � for various spatial estimators, for � � � � � � À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.4. RMSE of � for various spatial estimators, for � = � = � = À. ª, � = � and various � and �, over 999 iterations 
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Figure 2.5. RMSE of � for various spatial estimators, for � � À.�, � = � = À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.6. RMSE of � for various spatial estimators, for � = À. �, � = � = À. ª, � = � and various � and �, over 999 iterations 
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Figure 2.7. RMSE of � for various spatial estimators, for � � À. �, � = � = À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.8. RMSE of � for various spatial estimators, for � = À. �, � = � = À. ª, � = � and various � and �, over 999 iterations 
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Figure 2.9. RMSE of � for various spatial estimators, for � � À. �, � = � = À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.10. RMSE of � for various spatial estimators, for � = À. �, � = � = À. ª, � = � and various � and �, over 999 iterations 
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Figure 2.11. RMSE of � for various spatial estimators, for � � À. �, � = � = À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.12. RMSE of � for various spatial estimators, for � = À. �, � = � = À. ª, � = � and various � and �, over 999 iterations 
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 Quasi-unit root scenario 2.4.2

A quasi-non stationary scenario was also simulated, in which |�| V |]| V|Ö| � 0.9810, thus generating a quasi-unit root panel pseudo-dataset.  

The QML estimator is confirmed to be the one that produces the 

smallest RMSE for all estimated parameters, with the only exception of the 

AR(1) coefficient �, for which the GMM estimates are associated to a 

smaller RMSE for growing values of � and fixed © (see Figure 2.14 and 

Figure 2.18). On the contrary, the spatial GMM estimators return estimates 

for the other coefficients of the model which are generally more biased and 

affected by higher variability than the QML estimates (see Table 2.13 to 

Table 2.18 in Annex 2): it is so for all parameters and all values of © and � 

with the only exceptions of parameters Ö and 4 when © and � get larger 

(© � 50 and � � 121), although the effect of a smaller bias is wiped out 

by a larger variability, that causes the RMSE associated to the GMM 

estimates to be larger than the one associated to the QML estimates (Table 

2.15 and Table 2.18 in Annex 2). 

If compared to the stationary scenario, the RMSE associated to the 

estimates of parameters � and Ö (the parameters that measure time-

dependence) show higher values particularly for smaller values of ©. 

Moreover, it should be noted that the RMSE associated to the parameter 

that is set to take on the value of 0.58 becomes smaller in the quasi-unit 

root setting with respect to the stationary setting as © and � increase. For 

example, let us consider the two alternative settings in which � � ] � Ö �0.2, 4 = 1 and � = 0.58, ] = Ö = 0.2, 4 = 1 and compare the RMSEs 

associated to parameter � for different © and � by subtracting the RMSE 

calculated in the second setting to the one calculated in the first setting 

                                                 
10 The following parameter settings were adopted: (a) � � 0.58, ] = Ö = 0.2, 4 = 1 and 
(b) Ö = 0.58, ] = � = 0.2, 4 = 1. 



 

69 
 

(thus a negative number indicates a higher RMSE associated to the quasi-

unit root scenario). 

Figure 2.13. Difference in RMSE for parameter � in a stationary and a quasi-unit 
root scenario for different values of � and � 

 

It is evident from Figure 2.13 not only that the difference between this 

statistic calculated for the two considered settings becomes smaller as © 

increases, but also that the RMSE for the quasi-unit root scenario becomes 

smaller than that of the stationary scenario for the majority of the 

estimators as © and � increase.  
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Figure 2.14. RMSE of � for various spatial estimators, for � � À.  !, � = � = À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.15. RMSE of � for various spatial estimators, for � = À.  !, � = � = À. ª, � = � and various � and �, over 999 iterations 
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Figure 2.16. RMSE of � for various spatial estimators, for � � À.  !, � = � = À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.17. RMSE of � for various spatial estimators, for � = À.  !, � = � = À. ª, � = � and various � and �, over 999 iterations 
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Figure 2.18. RMSE of � for various spatial estimators, for � � À.  !, � = � = À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.19. RMSE of � for various spatial estimators, for � = À.  !, � = � = À. ª, � = � and various � and �, over 999 iterations 
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Figure 2.20. RMSE of � for various spatial estimators, for � � À.  !, � = � = À. ª, � = � and various � and �, over 999 iterations 

 

Figure 2.21. RMSE of � for various spatial estimators, for � = À.  !, � = � = À. ª, � = � and various � and �, over 999 iterations 
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 Spatial – Non spatial scenario 2.4.3

The performance of non-spatial GMM estimators is compared to that of the 

ESAB and the QML estimators in order to assess the risks that an empirical 

researcher faces when s/he fails to take the spatial dimension of the data 

into account.  

In particular, we imagine that a researcher who is not aware (or not 

convinced) of the need to apply the spatial econometrics tools when spatial 

dependence is present in the data will be only interested in the estimation of 

the coefficient(s) 4 of the model, in order to evaluate the effects of the 

covariate(s) on the dependent variable. In particular, we expect that a model 

specification such as the space-time dynamic model described in equation 

(2.1) might be reduced to a non-spatial dynamic panel data model with 

fixed effects such as !R � �!RS? V 3R4 V Ï V -R,     -R~�20, üBσÒ05. (2.19) 

Given the popularity of the GMM approach for the estimation of 

dynamic panel data models, we suppose that a “non-spatial” researcher will 

often choose a GMM estimation strategy when s/he needs to treat a model 

specified as in equation (2.19): this success is mainly due to the flexibility 

of the estimator, to the availability of internal instruments and to the easy 

implementation of GMM estimation in the most popular econometric and 

statistical software packages, such as R, Stata and Matlab. 

Even if the effects that ignoring spatial dependence may have on the 

estimates in terms of bias and efficiency have been thoroughly identified 

and described in the spatial econometrics literature and reviewed in 

previous sections (chapter 1), to our knowledge no empirical study has 

been published that tries to quantify the bias that may affect the estimated 4 

coefficient(s) when spatial dependence is ignored.  

Our simulations consider different degrees of spatiotemporal 

dependence. The first setting is characterized by the following parameter 
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values: � � 0.3, ] = Ö = 0.1, 4 = 1, that define a situation of little spatial 

and spatiotemporal dependence. Clearly, the non-spatial difference-GMM 

estimation à la Arellano and Bond (1991) does not return any estimated 

value for parameters ] and Ö. Since an empirical researcher is probably 

primarily interested in the value of the coefficient 4, we will focus on the 

performances of the considered estimators relatively to this parameter. 

When © is small (© = 5 and © = 10) and for all values of �, the non-

spatial GMM estimators (both one-step and two-step estimators) (Table 

2.19 and Table 2.20) are those that show the smallest RMSEs associated to 

the estimates of 4. Nevertheless, all estimates appear to be quite well 

centered around the true value (Figure 2.24 and Figure 2.25). Differently, 

when © = 50, the ESAB estimates of 4 are associated to the smallest bias 

for all �, although the results in terms of RMSE are comparable among all 

five estimators considered when © is large (see Figure 2.23, third panel). 

However, the advantage in terms of smaller bias associated to non-spatial 

estimates of 4 is reduced by the effects of higher variability, that result in 

smaller RMSEs for QML estimates for all values of © and �.  

Lastly, it should be noticed that the differences in variability decrease 

as © increases (see Figure 2.24 to Figure 2.26), thus primarily contributing 

to the reduction of the gap between the RMSEs in correspondence of a 

larger time dimension.  
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Figure 2.22. RMSE of � for various spatial estimators, for � � À.", � = � = À. �, � = � and various � and �, over 999 iterations 

 

Figure 2.23. RMSE of � for various spatial estimators, for � = À. ", � = � = À. �, � = � and various � and �, over 999 iterations 
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Figure 2.24. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � À. ", � = � = À. �, � = �, various 
� and � = �# over 999 iterations 
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Figure 2.25. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � À. ", � = � = À. �, � = �, various 
� and � = �$ over 999 iterations 
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Figure 2.26. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � À. ", � = � = À. �, � = �, various 
� and � = �ª� over 999 iterations 
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The degree of spatial dependence is then increased first by setting the 

value of the spatiotemporal parameter to 0.3 and then by doing the same for 

the spatial autoregressive parameter. Our MC simulations therefore 

consider the following two settings: � � Ö � 0.3, ] = 0.1, 4 = 1 or 

� = ] = 0.3, Ö = 0.1, 4 = 1. 

In both cases, there is evidence of higher reliability in the estimates of 

4 obtained via the spatial estimation procedures, which are always 

associated to the smallest bias and variability (Figure 2.31 to Figure 2.36).  

Among the spatial estimators, the ESAB outperforms the QML in 

terms of bias reduction as the time and cross-sectional dimensions increase, 

although its higher variability leads to better RMSE results for the QML 

estimator for all © and � (see Table 2.22 to Table 2.24 in Annex 2). 

Moreover, the QML estimator outperforms the ESAB in the estimation of 

all the other model coefficients in terms of RMSE, except for the estimation 

of � as � increases for all values of ©. Parameter � is therefore confirmed 

to be the most troublesome for the QML estimator. 

When spatial dependence increases, then, the performance of the non-

spatial AB estimator is significantly worse than that considered of the 

spatial procedures, as expected. We also expect that any further increase in 

the degree of spatial dependence in the data would lead to a worsening of 

the relative performance of non-spatial estimators. On the other hand, if the 

reliability of non-spatial estimates was to be assessed according to the 

results just discussed, one should probably conclude that the bias associated 

to non-spatial estimates of 4 (which is in the range of 1.5% to 4% at worst) 

is not tremendous. What is certainly a drawback of estimating a non-spatial 

model when a spatial model should be specified instead is that it prevents 

from estimating the spatial and spatiotemporal effects that are present in the 

data, thus hiding important spatial spillover effects that may take place. 
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Figure 2.27. RMSE of � for various spatial estimators, for � � � � À. ", � = À. �, � = � and various � and �, over 999 iterations 

 

Figure 2.28. RMSE of � for various spatial estimators, for � = � = À. ", � = À. �, � = � and various � and �, over 999 iterations 
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Figure 2.29. RMSE of � for various spatial estimators, for � � � � À.", � = À. �, � = � and various � and �, over 999 iterations 

 

Figure 2.30. RMSE of � for various spatial estimators, for � = � = À. ", � = À. �, � = � and various � and �, over 999 iterations 
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Figure 2.31. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � � � À. ", � = À. �, � = �, various 
� and � = �# over 999 iterations 

 
One-step AB Two-step AB One-step ESAB Two-step ESAB QML 

�=
  

     

�=
�À

 

     

�=
 À

 

     

 
  

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T5 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
N
N

S
P

A
B

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T5 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
N
N

S
P

A
B2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T5 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
A

B
e
xtZ

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T5 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
A

B2
e
xtZ

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T5 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
Q

ML

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T10 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
N

N
S
P

A
B

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T10 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
N
N

S
P

A
B2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T10 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
A

B
e
xtZ

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T10 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
A

B2
e
xtZ

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T10 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
Q

ML

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T50 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
N

N
S
P

A
B

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T50 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
N
N

S
P

A
B2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T50 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
A

B
e
xtZ

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T50 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
A

B2
e
xtZ

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

450

500

T50 N16 beta1 gamma0.3 lambda0.1 rho0.3 Histbeta
Q

ML



  

 
 

84 

Figure 2.32. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � � � À. ", � = À. �, � = �, various 
� and � = �$ over 999 iterations 
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Figure 2.33. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � � � À. ", � = À. �, � = �, various 
� and � = �ª� over 999 iterations 
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Figure 2.34. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � � � À. ", � = À. �, � = �, various 
� and � = �# over 999 iterations 
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Figure 2.35. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � � � À. ", � = À. �, � = �, various 
� and � = �$ over 999 iterations 
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Figure 2.36. Distribution of the estimates of parameter � for various non-spatial and spatial estimators, for � � � � À. ", � = À. �, � = �, various 
� and � = �ª� over 999 iterations 
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 2.5 Concluding remarks 

The empirical researcher who needs to estimate a time-space dynamic 

panel data model is not facing an easy task, both because of a lack of ready-

to-use software routines and because the literature on this kind of models is 

still quite limited. With the present analysis we aim at providing some 

evidence on the small sample properties of a number of estimators for time-

space dynamic panel data models with fixed effects that the empirical 

researcher may decide to apply: the popular QML estimator by Yu et al. 

(2008) and a few spatial and non-spatial difference-GMM estimators. 

Among these, a GMM-type estimator (ESAB) was proposed and its small 

sample performance investigated. We do not aim at setting guidelines for 

the estimation of this kind of models, but nevertheless our analysis can 

suggest some general comments. 

Differently from the artificial world of a MC simulation analysis, 

empirical researchers are usually not aware of the DGP that characterizes 

their data. Therefore an accurate exploratory analysis of the data should 

always be performed in order to identify the more suitable model 

specification. Given the uncertainty that the researcher faces on the nature 

of the DGP underlying his data, it is also useful to have the best knowledge 

possible on the hypothesis on which the consistency of the available 

estimating procedures relies and their virtues and drawbacks depending on 

the time and cross-sectional dimensions of the dataset. 

As a first remark, it should be noticed that the consistency of both the 

estimation approaches that were considered in this chapter does not require 

any assumption on the normality of errors to be verified. Secondly, whether 

the data are characterized by a stationary or a quasi-unit nature, the RMSE 

and bias associated to the estimates of the coefficients not surprisingly 

decrease as the time and cross-sectional dimension of the dataset increase. 

This is particularly evident with respect to the difference-GMM estimators, 
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that are found consistent for fixed © and growing � (Arellano and Bond 

1991). Moreover, the spatial difference-GMM estimator that also includes 

the spatial lag of the covariates among the instruments (ESAB) performs 

significantly better than the SAB estimator. A further step of this analysis 

might therefore concern the testing of the validity of the instruments for the 

different GMM procedures that have been proposed through a J test. 

Focusing on the study of a stationary scenario, presented in section 

2.4.1, the QML estimator showed the best small-sample performance in 

terms of RMSE for all © and � and with respect to almost all the 

considered coefficients, mainly thanks to a considerably lower variability. 

Only the estimation of parameter �, associated to the temporal lag of the 

dependent variable, appears to be more problematic with the QML 

estimator, which is generally outperformed by GMM-type estimators as the 

cross-sectional dimension grows for fixed ©. 

The relative performance of the considered estimators does not change 

if we consider a quasi-unit root scenario instead. Only in comparison to the 

stationary scenario some differences should be highlighted. The parameters 

that measure time-dependence (� and Ö) show higher RMSE in the quasi-

unit root context for smaller values of ©. As © and � increase, however, the 

RMSE associated to the parameter that is set equal to 0.58 in the quasi-unit 

root context becomes smaller than the one observed in the stationary 

scenario.  

The evidence from the present analysis therefore suggests that, QML 

estimation is probably the safest choice in both situations. However, an 

element that should not be overlooked, is the fact that we treated only an 

exogenous covariate in our simulations. A further extension will need to 

consider the performance of these estimators when an endogenous 

covariate is included in the model, which is not such an unlikely situation 

in economics. Some evidence, referred to time-space simultaneous panel 

data model shows a better performance of GMM estimator with respect to 
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the estimation of the parameters of endogenous covariates (Kukenova and 

Monteiro 2009), but to our knowledge no evidence is still available with 

respect to the estimation of time-space dynamic panel data models.  

A final observation concerns the risks implied by ignoring the spatial 

dependence that characterizes the data. In fact, to our knowledge no 

empirical evidence is available that quantifies the bias that may affect the 

estimated 4 coefficient(s) when spatial dependence, although present, is 

ignored. Our analysis suggests that, when spatial dependence is limited, a 

non-spatial difference-GMM provides reliable estimates for 4, particularly 

when © is small. This good performance in terms of limited bias, however, 

is limited by a high variability of the non-spatial estimates. When spatial 

dependence increases, however, the performance of non-spatial estimators 

becomes significantly worse than that of spatial estimators, although the 

bias is not tremendous in absolute terms, especially as © gets larger. In 

conclusion, the probably time-saving choice of the empirical researcher 

who ignores the presence of spatial dependence in the data may not 

necessarily bring to tremendous drawbacks in terms of biased estimates of 

the parameters of the covariates, although the bias tends to increase as the 

extent of spatial dependence increases. Nevertheless, the main failure of 

non-spatial estimation, which should not be neglected is the fact that it 

prevents the identification and estimation of spatial spillover effects when 

present, thus considerably limiting the information that can be drawn from 

the data. 
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Annex 1 

The matrix of instruments described in equation (2.8) is: 

f� � �!�? U�?′ U�0′ 0 0 0 0 0 0 … 0 … 0 0 … 00 0 0 !�? !�0 U�?′ U�0′ U�
′ 0 … 0 … 0 0 … 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0 … 0 0 … 00 0 0 0 0 0 0 0 0 … !�? … !�¼S0 U�?′ … U�¼S?′� (2.20) 

The matrix of instruments described in equation (2.9) is: 

f� � �!�? U�?′ U�0′ U�
′ 0 0 0 0 0 0 0 … 0 … 0 0 … 00 0 0 0 !�? !�0 U�?′ U�0′ U�
′ U��′ 0 … 0 … 0 0 … 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0 … 0 0 … 00 0 0 0 0 0 0 0 0 0 0 … !�? … !�¼S0 U�?′ … U�¼′� (2.21) 

The matrix of instruments when only certain lags (e.g. only lags up to 3 time periods) are used and the covariates are sequentially 

exogenous is equal to: 

f� � �!�? U�?′ U�0′ 0 0 0 0 0 0 … 0 0 0 0 0 00 0 0 !�? !�0 U�?′ U�0′ U�
′ 0 … 0 0 0 0 0 0⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋱ 0 0 0 0 0 00 0 0 0 0 0 0 0 0 … !�¼S� !�¼S
 !�¼S0 U�¼S
′ U�¼S0′ U�¼S?′� (2.22) 
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Annex 2 

Table 2.4. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � �  , � � À. ª, � � À. ª, � � À. ª , � � � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.1119 0.1111 0.0821 0.0729 0.0688 0.1626 0.1623 0.1585 0.1588 0.0762 0.1844 0.1830 0.1745 0.1742 0.0784 

Bias -0.0882 -0.0889 -0.1179 -0.1271 -0.1312 -0.0374 -0.0377 -0.0415 -0.0412 -0.1238 -0.0156 -0.0170 -0.0255 -0.0258 -0.1216 

SD 0.1906 0.2093 0.2354 0.2639 0.0910 0.1130 0.1212 0.1498 0.1644 0.0509 0.0723 0.0757 0.0986 0.1014 0.0317 

RMSE 0.2100 0.2274 0.2633 0.2929 0.1597 0.1190 0.1269 0.1555 0.1695 0.1339 0.0740 0.0776 0.1018 0.1046 0.1256 

La
m

bd
a=

0.
2 Mean 0.2978 0.2923 0.3134 0.3158 0.1908 0.2563 0.2589 0.3086 0.3061 0.1911 0.2323 0.2339 0.3113 0.3146 0.1961 

Bias 0.0978 0.0923 0.1134 0.1158 -0.0092 0.0563 0.0589 0.1086 0.1061 -0.0089 0.0323 0.0339 0.1113 0.1146 -0.0039 

SD 0.3635 0.4058 0.5724 0.6189 0.1148 0.2798 0.3024 0.5698 0.6050 0.0738 0.1993 0.2103 0.5932 0.5966 0.0488 

RMSE 0.3764 0.4162 0.5835 0.6297 0.1151 0.2855 0.3081 0.5801 0.6142 0.0743 0.2019 0.2130 0.6036 0.6075 0.0490 

R
ho

=
0.

2 

Mean 0.1837 0.1857 0.2168 0.2225 0.2052 0.1849 0.1887 0.1611 0.1577 0.2053 0.1914 0.1921 0.1643 0.1627 0.2077 

Bias -0.0163 -0.0143 0.0168 0.0225 0.0052 -0.0151 -0.0113 -0.0389 -0.0423 0.0053 -0.0086 -0.0079 -0.0358 -0.0373 0.0077 

SD 0.2982 0.3314 0.5088 0.5649 0.1446 0.2007 0.2184 0.4319 0.4645 0.0889 0.1285 0.1320 0.3978 0.4102 0.0597 

RMSE 0.2987 0.3317 0.5090 0.5654 0.1447 0.2013 0.2187 0.4337 0.4665 0.0891 0.1288 0.1322 0.3994 0.4119 0.0602 

B
et

a=
1 

Mean 0.9563 0.9556 0.9173 0.9080 1.0131 0.9719 0.9716 0.9676 0.9682 1.0124 0.9853 0.9806 0.9720 0.9698 1.0132 

Bias -0.0437 -0.0444 -0.0828 -0.0920 0.0131 -0.0281 -0.0284 -0.0324 -0.0318 0.0124 -0.0147 -0.0194 -0.0280 -0.0302 0.0132 

SD 0.2823 0.3136 0.4130 0.4644 0.1373 0.1667 0.1796 0.2703 0.2992 0.0787 0.1057 0.1099 0.1757 0.1822 0.0480 

RMSE 0.2857 0.3168 0.4212 0.4735 0.1380 0.1690 0.1818 0.2723 0.3009 0.0797 0.1067 0.1116 0.1779 0.1847 0.0497 
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Table 2.5. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � � �À, � � À. ª, � = À. ª, � = À. ª , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.1778 0.1797 0.1698 0.1727 0.1382 0.1928 0.1953 0.1879 0.1908 0.1425 0.1956 0.1968 0.1909 0.1918 0.1438 

Bias -0.0222 -0.0203 -0.0302 -0.0273 -0.0618 -0.0072 -0.0047 -0.0121 -0.0092 -0.0575 -0.0044 -0.0032 -0.0091 -0.0082 -0.0562 

SD 0.0950 0.1063 0.1176 0.1295 0.0571 0.0525 0.0562 0.0696 0.0740 0.0331 0.0347 0.0356 0.0492 0.0505 0.0204 

RMSE 0.0975 0.1082 0.1214 0.1323 0.0841 0.0530 0.0564 0.0707 0.0746 0.0663 0.0349 0.0357 0.0500 0.0511 0.0598 

La
m

bd
a=

0.
2 Mean 0.2329 0.2338 0.3076 0.2990 0.1951 0.2173 0.2178 0.3161 0.3159 0.1980 0.2093 0.2099 0.2814 0.2863 0.2005 

Bias 0.0329 0.0338 0.1076 0.0990 -0.0049 0.0173 0.0178 0.1161 0.1159 -0.0020 0.0093 0.0099 0.0814 0.0863 0.0005 

SD 0.2139 0.2336 0.5237 0.5796 0.0797 0.1347 0.1435 0.5189 0.5530 0.0485 0.0921 0.0950 0.5147 0.5236 0.0319 

RMSE 0.2164 0.2361 0.5346 0.5880 0.0798 0.1358 0.1446 0.5317 0.5651 0.0486 0.0925 0.0955 0.5211 0.5307 0.0319 

R
ho

=
0.

2 

Mean 0.1913 0.1926 0.1612 0.1580 0.2029 0.1951 0.1925 0.1457 0.1437 0.2030 0.1998 0.1983 0.1664 0.1618 0.2051 

Bias -0.0087 -0.0074 -0.0388 -0.0420 0.0029 -0.0049 -0.0075 -0.0543 -0.0563 0.0030 -0.0002 -0.0017 -0.0336 -0.0382 0.0051 

SD 0.1529 0.1699 0.3655 0.3909 0.0918 0.0981 0.1059 0.2932 0.3149 0.0573 0.0651 0.0677 0.2812 0.2882 0.0386 

RMSE 0.1531 0.1700 0.3676 0.3931 0.0918 0.0982 0.1061 0.2982 0.3199 0.0574 0.0651 0.0677 0.2832 0.2908 0.0389 

B
et

a=
1 

Mean 0.9881 0.9886 0.9784 0.9801 1.0170 0.9950 0.9923 0.9895 0.9913 1.0185 0.9971 0.9966 0.9922 0.9924 1.0185 

Bias -0.0119 -0.0114 -0.0216 -0.0199 0.0170 -0.0050 -0.0077 -0.0105 -0.0087 0.0185 -0.0029 -0.0034 -0.0078 -0.0076 0.0185 

SD 0.1371 0.1499 0.1739 0.1969 0.0826 0.0771 0.0817 0.0996 0.1045 0.0478 0.0491 0.0509 0.0702 0.0720 0.0297 

RMSE 0.1376 0.1504 0.1753 0.1979 0.0844 0.0773 0.0821 0.1002 0.1049 0.0512 0.0492 0.0510 0.0707 0.0724 0.0350 
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Table 2.6. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � �  À, � � À. ª, � = À. ª, � = À. ª , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.1975 0.1984 0.1931 0.1925 0.1881 0.1986 0.1994 0.1946 0.1953 0.1879 0.1996 0.2000 0.1950 0.1953 0.1889 

Bias -0.0025 -0.0016 -0.0069 -0.0075 -0.0119 -0.0014 -0.0006 -0.0054 -0.0047 -0.0121 -0.0004 0.0000 -0.0050 -0.0047 -0.0111 

SD 0.0307 0.0342 0.0457 0.0499 0.0232 0.0180 0.0192 0.0317 0.0332 0.0138 0.0110 0.0114 0.0252 0.0256 0.0085 

RMSE 0.0308 0.0342 0.0462 0.0505 0.0261 0.0180 0.0193 0.0321 0.0335 0.0184 0.0110 0.0114 0.0257 0.0261 0.0139 

La
m

bd
a=

0.
2 Mean 0.2062 0.2046 0.2804 0.2951 0.2013 0.2013 0.2020 0.2662 0.2658 0.2012 0.2012 0.2009 0.2829 0.2831 0.2012 

Bias 0.0062 0.0046 0.0804 0.0951 0.0013 0.0013 0.0020 0.0662 0.0658 0.0012 0.0012 0.0009 0.0829 0.0831 0.0012 

SD 0.0733 0.0811 0.4525 0.4896 0.0343 0.0438 0.0469 0.4588 0.4727 0.0201 0.0303 0.0310 0.4023 0.4088 0.0142 

RMSE 0.0736 0.0812 0.4596 0.4987 0.0344 0.0438 0.0469 0.4635 0.4773 0.0201 0.0303 0.0310 0.4107 0.4171 0.0142 

R
ho

=
0.

2 

Mean 0.1975 0.1970 0.1571 0.1493 0.2011 0.1985 0.1982 0.1640 0.1638 0.2003 0.2001 0.2001 0.1564 0.1561 0.2006 

Bias -0.0025 -0.0030 -0.0429 -0.0507 0.0011 -0.0015 -0.0018 -0.0360 -0.0362 0.0003 0.0001 0.0001 -0.0436 -0.0439 0.0006 

SD 0.0551 0.0605 0.2472 0.2690 0.0394 0.0332 0.0352 0.2500 0.2579 0.0237 0.0224 0.0231 0.2146 0.2184 0.0159 

RMSE 0.0551 0.0606 0.2509 0.2737 0.0394 0.0332 0.0353 0.2526 0.2605 0.0237 0.0224 0.0231 0.2190 0.2228 0.0159 

B
et

a=
1 

Mean 0.9976 0.9983 0.9922 0.9924 1.0052 1.0001 1.0005 0.9963 0.9965 1.0061 1.0001 1.0000 0.9946 0.9946 1.0053 

Bias -0.0024 -0.0017 -0.0078 -0.0076 0.0052 0.0001 0.0005 -0.0037 -0.0035 0.0061 0.0001 0.0000 -0.0054 -0.0054 0.0053 

SD 0.0454 0.0498 0.0629 0.0697 0.0338 0.0261 0.0277 0.0450 0.0465 0.0200 0.0164 0.0168 0.0328 0.0335 0.0127 

RMSE 0.0455 0.0498 0.0634 0.0701 0.0342 0.0261 0.0277 0.0452 0.0466 0.0209 0.0164 0.0168 0.0333 0.0339 0.0138 

 



  

 
 

96 

Figure 2.37. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �# over 
999 iterations 
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Figure 2.38. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �$ over 
999 iterations 
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Figure 2.39. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �ª� over 
999 iterations 
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Figure 2.40. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �# over 
999 iterations 
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Figure 2.41. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �$ over 
999 iterations 
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Figure 2.42. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �ª� over 
999 iterations 
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Figure 2.43. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �# over 
999 iterations 
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Figure 2.44. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �$ over 
999 iterations 
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Figure 2.45. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �ª� over 
999 iterations 
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Figure 2.46. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �# over 
999 iterations 
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Figure 2.47. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �$ over 
999 iterations 
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Figure 2.48. Distribution of the estimates of parameter � for various spatial estimators, for � � � � � � À. ª, � = �, various � and � = �ª� over 
999 iterations 
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Table 2.7. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � �  , � � À.�, � = À. ª, � = À. ª , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
4 Mean 0.2908 0.2895 0.2512 0.2407 0.2530 0.3528 0.3517 0.3423 0.3414 0.2629 0.3801 0.3780 0.3656 0.3639 0.2654 

Bias -0.1092 -0.1105 -0.1488 -0.1593 -0.1470 -0.0472 -0.0483 -0.0577 -0.0586 -0.1371 -0.0199 -0.0220 -0.0344 -0.0361 -0.1346 

SD 0.2017 0.2233 0.2559 0.2860 0.0913 0.1240 0.1333 0.1671 0.1806 0.0507 0.0760 0.0794 0.1115 0.1156 0.0311 

RMSE 0.2294 0.2491 0.2961 0.3274 0.1730 0.1326 0.1418 0.1768 0.1899 0.1462 0.0785 0.0824 0.1167 0.1211 0.1382 

La
m

bd
a=

0.
2 Mean 0.3179 0.3146 0.3610 0.3644 0.1849 0.2726 0.2767 0.3694 0.3624 0.1854 0.2405 0.2425 0.3480 0.3522 0.1900 

Bias 0.1179 0.1146 0.1610 0.1644 -0.0151 0.0726 0.0767 0.1694 0.1624 -0.0146 0.0405 0.0425 0.1480 0.1522 -0.0100 

SD 0.3691 0.4082 0.5711 0.6067 0.1140 0.3016 0.3201 0.5476 0.5847 0.0741 0.2273 0.2389 0.5758 0.5920 0.0493 

RMSE 0.3874 0.4240 0.5933 0.6285 0.1150 0.3102 0.3292 0.5732 0.6068 0.0755 0.2309 0.2426 0.5945 0.6113 0.0503 

R
ho

=
0.

2 

Mean 0.1586 0.1577 0.1469 0.1539 0.2105 0.1706 0.1703 0.0969 0.0999 0.2117 0.1826 0.1825 0.0916 0.0908 0.2119 

Bias -0.0414 -0.0423 -0.0531 -0.0461 0.0105 -0.0294 -0.0297 -0.1031 -0.1001 0.0117 -0.0174 -0.0175 -0.1084 -0.1092 0.0119 

SD 0.3040 0.3393 0.5371 0.6088 0.1462 0.2040 0.2177 0.4860 0.5190 0.0893 0.1389 0.1430 0.4906 0.5115 0.0596 

RMSE 0.3069 0.3419 0.5397 0.6106 0.1466 0.2061 0.2197 0.4968 0.5285 0.0901 0.1400 0.1441 0.5024 0.5230 0.0608 

B
et

a=
1 

Mean 0.9344 0.9368 0.8781 0.8713 1.0038 0.9590 0.9577 0.9443 0.9438 1.0032 0.9804 0.9760 0.9586 0.9549 1.0045 

Bias -0.0656 -0.0632 -0.1219 -0.1287 0.0038 -0.0410 -0.0423 -0.0557 -0.0562 0.0032 -0.0196 -0.0240 -0.0414 -0.0451 0.0045 

SD 0.3002 0.3319 0.4492 0.4880 0.1370 0.1813 0.1946 0.2835 0.3139 0.0788 0.1141 0.1201 0.1868 0.1915 0.0478 

RMSE 0.3072 0.3379 0.4655 0.5047 0.1370 0.1859 0.1992 0.2889 0.3189 0.0789 0.1158 0.1225 0.1914 0.1968 0.0480 
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Table 2.8. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � � �À, � � À.�, � = À. ª, � = À. ª , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
4 Mean 0.3730 0.3744 0.3597 0.3613 0.3337 0.3910 0.3926 0.3826 0.3846 0.3385 0.3945 0.3954 0.3883 0.3887 0.3397 

Bias -0.0270 -0.0256 -0.0403 -0.0387 -0.0663 -0.0090 -0.0074 -0.0174 -0.0154 -0.0615 -0.0055 -0.0046 -0.0117 -0.0113 -0.0603 

SD 0.1013 0.1126 0.1317 0.1440 0.0530 0.0546 0.0579 0.0770 0.0799 0.0311 0.0357 0.0369 0.0511 0.0526 0.0191 

RMSE 0.1048 0.1154 0.1377 0.1491 0.0849 0.0554 0.0583 0.0790 0.0814 0.0689 0.0361 0.0372 0.0524 0.0538 0.0632 

La
m

bd
a=

0.
2 Mean 0.2431 0.2478 0.3397 0.3403 0.1916 0.2208 0.2232 0.3509 0.3515 0.1951 0.2096 0.2097 0.2895 0.2910 0.1977 

Bias 0.0431 0.0478 0.1397 0.1403 -0.0084 0.0208 0.0232 0.1509 0.1515 -0.0049 0.0096 0.0097 0.0895 0.0910 -0.0023 

SD 0.2289 0.2545 0.5043 0.5506 0.0800 0.1482 0.1559 0.4877 0.5041 0.0487 0.1020 0.1054 0.4704 0.4789 0.0318 

RMSE 0.2329 0.2589 0.5233 0.5682 0.0804 0.1496 0.1576 0.5105 0.5264 0.0490 0.1025 0.1058 0.4788 0.4874 0.0319 

R
ho

=
0.

2 

Mean 0.1839 0.1833 0.1126 0.1066 0.2063 0.1914 0.1887 0.1017 0.1026 0.2057 0.1961 0.1941 0.1387 0.1346 0.2069 

Bias -0.0161 -0.0167 -0.0874 -0.0934 0.0063 -0.0086 -0.0113 -0.0983 -0.0974 0.0057 -0.0039 -0.0059 -0.0613 -0.0654 0.0069 

SD 0.1647 0.1824 0.4417 0.4688 0.0918 0.1012 0.1085 0.3689 0.3828 0.0561 0.0687 0.0710 0.3572 0.3628 0.0375 

RMSE 0.1655 0.1832 0.4502 0.4780 0.0920 0.1015 0.1091 0.3818 0.3950 0.0564 0.0688 0.0713 0.3624 0.3686 0.0381 

B
et

a=
1 

Mean 0.9842 0.9855 0.9653 0.9630 1.0160 0.9935 0.9915 0.9854 0.9871 1.0174 0.9957 0.9952 0.9888 0.9882 1.0176 

Bias -0.0158 -0.0145 -0.0347 -0.0370 0.0160 -0.0065 -0.0085 -0.0146 -0.0129 0.0174 -0.0043 -0.0048 -0.0112 -0.0118 0.0176 

SD 0.1435 0.1592 0.1836 0.2126 0.0821 0.0799 0.0839 0.1044 0.1108 0.0475 0.0517 0.0533 0.0731 0.0743 0.0295 

RMSE 0.1444 0.1599 0.1868 0.2158 0.0837 0.0801 0.0844 0.1054 0.1116 0.0506 0.0519 0.0536 0.0740 0.0753 0.0344 
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Table 2.9. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � �  À, � � À.�, � = À. ª, � = À. ª , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
4 Mean 0.3973 0.3979 0.3957 0.3958 0.3878 0.3988 0.3996 0.3988 0.4000 0.3878 0.3995 0.3998 0.4006 0.4008 0.3886 

Bias -0.0027 -0.0021 -0.0043 -0.0042 -0.0122 -0.0012 -0.0004 -0.0012 0.0000 -0.0122 -0.0005 -0.0002 0.0006 0.0008 -0.0114 

SD 0.0303 0.0334 0.0448 0.0489 0.0209 0.0176 0.0188 0.0286 0.0302 0.0122 0.0108 0.0112 0.0210 0.0213 0.0075 

RMSE 0.0304 0.0335 0.0450 0.0491 0.0242 0.0176 0.0188 0.0286 0.0302 0.0172 0.0108 0.0112 0.0210 0.0213 0.0137 

La
m

bd
a=

0.
2 Mean 0.2056 0.2038 0.2391 0.2496 0.2009 0.2009 0.2019 0.1999 0.1915 0.2009 0.2011 0.2008 0.1792 0.1798 0.2013 

Bias 0.0056 0.0038 0.0391 0.0496 0.0009 0.0009 0.0019 -0.0001 -0.0085 0.0009 0.0011 0.0008 -0.0208 -0.0202 0.0013 

SD 0.0739 0.0814 0.4013 0.4318 0.0340 0.0442 0.0475 0.3549 0.3788 0.0199 0.0304 0.0312 0.2909 0.2961 0.0141 

RMSE 0.0741 0.0814 0.4032 0.4347 0.0340 0.0442 0.0476 0.3549 0.3789 0.0199 0.0304 0.0312 0.2917 0.2968 0.0142 

R
ho

=
0.

2 

Mean 0.1965 0.1959 0.1710 0.1621 0.2014 0.1985 0.1981 0.1996 0.2057 0.2011 0.1998 0.1997 0.2168 0.2163 0.2008 

Bias -0.0035 -0.0041 -0.0290 -0.0379 0.0014 -0.0015 -0.0019 -0.0004 0.0057 0.0011 -0.0002 -0.0003 0.0168 0.0163 0.0008 

SD 0.0596 0.0654 0.3070 0.3335 0.0379 0.0352 0.0377 0.2716 0.2910 0.0230 0.0242 0.0249 0.2182 0.2220 0.0155 

RMSE 0.0597 0.0656 0.3083 0.3357 0.0380 0.0352 0.0377 0.2716 0.2911 0.0230 0.0242 0.0249 0.2189 0.2226 0.0156 

B
et

a=
1 

Mean 0.9974 0.9980 0.9957 0.9955 1.0060 1.0000 1.0007 1.0008 1.0019 1.0067 1.0000 1.0000 1.0018 1.0017 1.0060 

Bias -0.0026 -0.0020 -0.0043 -0.0045 0.0060 0.0000 0.0007 0.0008 0.0019 0.0067 0.0000 0.0000 0.0018 0.0017 0.0060 

SD 0.0453 0.0497 0.0628 0.0687 0.0336 0.0257 0.0271 0.0410 0.0433 0.0198 0.0162 0.0167 0.0280 0.0285 0.0127 

RMSE 0.0453 0.0498 0.0630 0.0689 0.0342 0.0257 0.0271 0.0410 0.0433 0.0209 0.0162 0.0167 0.0281 0.0285 0.0140 
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Table 2.10. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � �  , � � À. ª, � = À. ª, � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.1053 0.1046 0.0648 0.0592 0.0720 0.1594 0.1590 0.1391 0.1389 0.0787 0.1824 0.1809 0.1603 0.1604 0.0802 

Bias -0.0947 -0.0954 -0.1352 -0.1408 -0.1280 -0.0406 -0.0410 -0.0609 -0.0611 -0.1213 -0.0176 -0.0191 -0.0397 -0.0396 -0.1198 

SD 0.1929 0.2141 0.2433 0.2679 0.0898 0.1139 0.1207 0.1615 0.1785 0.0508 0.0732 0.0770 0.1171 0.1200 0.0316 

RMSE 0.2149 0.2344 0.2783 0.3026 0.1564 0.1210 0.1275 0.1726 0.1887 0.1315 0.0753 0.0793 0.1236 0.1263 0.1239 

La
m

bd
a=

0.
2 Mean 0.3059 0.3065 0.3672 0.3663 0.1833 0.2634 0.2639 0.3814 0.3770 0.1844 0.2391 0.2404 0.3656 0.3657 0.1898 

Bias 0.1059 0.1065 0.1672 0.1663 -0.0167 0.0634 0.0639 0.1814 0.1770 -0.0156 0.0391 0.0404 0.1656 0.1657 -0.0102 

SD 0.3605 0.4032 0.5496 0.6101 0.1130 0.2871 0.3114 0.5313 0.5896 0.0736 0.2231 0.2315 0.5688 0.5865 0.0491 

RMSE 0.3758 0.4170 0.5745 0.6324 0.1142 0.2940 0.3179 0.5614 0.6156 0.0752 0.2265 0.2350 0.5925 0.6095 0.0502 

R
ho

=
0.

4 

Mean 0.3496 0.3514 0.3375 0.3413 0.3891 0.3675 0.3673 0.2974 0.2961 0.3933 0.3807 0.3804 0.3061 0.3031 0.3945 

Bias -0.0504 -0.0486 -0.0625 -0.0587 -0.0109 -0.0325 -0.0327 -0.1026 -0.1039 -0.0067 -0.0193 -0.0196 -0.0939 -0.0969 -0.0055 

SD 0.2989 0.3357 0.4931 0.5725 0.1439 0.2073 0.2255 0.4246 0.4584 0.0880 0.1402 0.1450 0.4050 0.4176 0.0586 

RMSE 0.3031 0.3392 0.4970 0.5755 0.1443 0.2098 0.2279 0.4368 0.4700 0.0883 0.1415 0.1464 0.4158 0.4287 0.0589 

B
et

a=
1 

Mean 0.9526 0.9542 0.9021 0.8946 1.0096 0.9700 0.9698 0.9547 0.9523 1.0091 0.9841 0.9799 0.9648 0.9625 1.0101 

Bias -0.0474 -0.0458 -0.0979 -0.1054 0.0096 -0.0300 -0.0302 -0.0453 -0.0477 0.0091 -0.0159 -0.0201 -0.0352 -0.0375 0.0101 

SD 0.2856 0.3222 0.4219 0.4676 0.1375 0.1698 0.1829 0.2666 0.3034 0.0788 0.1091 0.1146 0.1773 0.1818 0.0479 

RMSE 0.2895 0.3254 0.4331 0.4793 0.1379 0.1724 0.1853 0.2704 0.3071 0.0793 0.1102 0.1164 0.1807 0.1857 0.0490 
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Table 2.11. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � � �À, � � À. ª, � = À. ª, � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.1765 0.1784 0.1535 0.1542 0.1400 0.1921 0.1944 0.1756 0.1782 0.1436 0.1949 0.1959 0.1834 0.1836 0.1446 

Bias -0.0235 -0.0216 -0.0465 -0.0458 -0.0600 -0.0079 -0.0056 -0.0244 -0.0218 -0.0564 -0.0051 -0.0041 -0.0166 -0.0164 -0.0554 

SD 0.0961 0.1076 0.1363 0.1494 0.0569 0.0530 0.0563 0.0862 0.0908 0.0328 0.0347 0.0358 0.0684 0.0703 0.0202 

RMSE 0.0989 0.1097 0.1440 0.1563 0.0827 0.0536 0.0566 0.0896 0.0933 0.0653 0.0351 0.0360 0.0704 0.0722 0.0590 

La
m

bd
a=

0.
2 Mean 0.2366 0.2371 0.3547 0.3566 0.1918 0.2190 0.2204 0.3514 0.3505 0.1960 0.2088 0.2093 0.3003 0.3053 0.1988 

Bias 0.0366 0.0371 0.1547 0.1566 -0.0082 0.0190 0.0204 0.1514 0.1505 -0.0040 0.0088 0.0093 0.1003 0.1053 -0.0012 

SD 0.2242 0.2497 0.4951 0.5452 0.0794 0.1467 0.1543 0.4694 0.4966 0.0482 0.1009 0.1041 0.4504 0.4626 0.0316 

RMSE 0.2272 0.2525 0.5187 0.5672 0.0798 0.1480 0.1557 0.4932 0.5189 0.0484 0.1013 0.1045 0.4614 0.4744 0.0316 

R
ho

=
0.

4 

Mean 0.3833 0.3851 0.3196 0.3163 0.3977 0.3919 0.3890 0.3249 0.3243 0.3988 0.3971 0.3950 0.3488 0.3438 0.4006 

Bias -0.0167 -0.0149 -0.0804 -0.0837 -0.0023 -0.0081 -0.0110 -0.0751 -0.0757 -0.0012 -0.0029 -0.0050 -0.0512 -0.0562 0.0006 

SD 0.1613 0.1791 0.3735 0.4091 0.0903 0.1008 0.1081 0.2859 0.3048 0.0560 0.0678 0.0702 0.2683 0.2756 0.0377 

RMSE 0.1621 0.1798 0.3821 0.4175 0.0903 0.1011 0.1087 0.2956 0.3141 0.0560 0.0678 0.0704 0.2732 0.2813 0.0377 

B
et

a=
1 

Mean 0.9878 0.9883 0.9672 0.9667 1.0155 0.9948 0.9922 0.9866 0.9888 1.0171 0.9966 0.9959 0.9896 0.3438 1.0172 

Bias -0.0122 -0.0117 -0.0328 -0.0333 0.0155 -0.0052 -0.0078 -0.0134 -0.0112 0.0171 -0.0034 -0.0041 -0.0104 -0.0562 0.0172 

SD 0.1392 0.1551 0.1785 0.2046 0.0824 0.0783 0.0820 0.1016 0.1076 0.0476 0.0502 0.0518 0.0702 0.2756 0.0296 

RMSE 0.1397 0.1555 0.1815 0.2073 0.0838 0.0785 0.0824 0.1025 0.1082 0.0506 0.0503 0.0520 0.0710 0.2813 0.0343 
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Table 2.12. Mean, bias, standard deviation and root mean square error of various spatial estimators in a stationary scenario, for � �  À, � � À. ª, � = À. ª, � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.1974 0.1979 0.1862 0.1856 0.1884 0.1987 0.1995 0.1914 0.1923 0.1882 0.1996 0.1999 0.1935 0.1937 0.1890 

Bias -0.0026 -0.0021 -0.0138 -0.0144 -0.0116 -0.0013 -0.0005 -0.0086 -0.0077 -0.0118 -0.0004 -0.0001 -0.0065 -0.0063 -0.0110 

SD 0.0315 0.0347 0.0662 0.0709 0.0233 0.0181 0.0193 0.0450 0.0467 0.0136 0.0112 0.0116 0.0314 0.0319 0.0084 

RMSE 0.0316 0.0348 0.0676 0.0723 0.0260 0.0181 0.0193 0.0459 0.0473 0.0180 0.0112 0.0116 0.0321 0.0325 0.0138 

La
m

bd
a=

0.
2 Mean 0.2049 0.2035 0.2863 0.2947 0.2011 0.2006 0.2015 0.2612 0.2586 0.2016 0.2008 0.2005 0.2533 0.2536 0.2015 

Bias 0.0049 0.0035 0.0863 0.0947 0.0011 0.0006 0.0015 0.0612 0.0586 0.0016 0.0008 0.0005 0.0533 0.0536 0.0015 

SD 0.0754 0.0827 0.4052 0.4308 0.0333 0.0452 0.0484 0.3399 0.3496 0.0197 0.0309 0.0318 0.2535 0.2577 0.0138 

RMSE 0.0756 0.0827 0.4142 0.4411 0.0333 0.0452 0.0484 0.3453 0.3544 0.0197 0.0309 0.0318 0.2590 0.2632 0.0139 

R
ho

=
0.

4 

Mean 0.3965 0.3959 0.3461 0.3405 0.4003 0.3984 0.3982 0.3618 0.3631 0.3999 0.3998 0.3997 0.3682 0.3678 0.4001 

Bias -0.0035 -0.0041 -0.0539 -0.0595 0.0003 -0.0016 -0.0018 -0.0382 -0.0369 -0.0001 -0.0002 -0.0003 -0.0318 -0.0322 0.0001 

SD 0.0566 0.0623 0.2448 0.2649 0.0378 0.0338 0.0359 0.2060 0.2134 0.0231 0.0229 0.0236 0.1515 0.1545 0.0154 

RMSE 0.0567 0.0624 0.2506 0.2715 0.0378 0.0338 0.0359 0.2095 0.2166 0.0231 0.0229 0.0236 0.1548 0.1578 0.0154 

B
et

a=
1 

Mean 0.9975 0.9982 0.9905 0.9911 1.0052 1.0000 1.0005 0.9955 0.9961 1.0060 1.0001 1.0000 0.9960 0.9960 1.0053 

Bias -0.0025 -0.0018 -0.0095 -0.0089 0.0052 0.0000 0.0005 -0.0045 -0.0039 0.0060 0.0001 0.0000 -0.0040 -0.0040 0.0053 

SD 0.0457 0.0499 0.0628 0.0683 0.0337 0.0261 0.0277 0.0401 0.0415 0.0198 0.0164 0.0169 0.0266 0.0272 0.0127 

RMSE 0.0457 0.0499 0.0636 0.0689 0.0341 0.0261 0.0277 0.0404 0.0417 0.0207 0.0164 0.0169 0.0269 0.0275 0.0137 
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Table 2.13. Mean, bias, standard deviation and root mean square error of various spatial estimators in a quasi-unit root scenario, for � �  , � � À.  !, � = À. ª, � = À. ª , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
58

 

Mean 0.4433 0.4457 0.3638 0.3623 0.4205 0.5209 0.5199 0.4737 0.4726 0.4332 0.5541 0.5509 0.5130 0.5108 0.4354 

Bias -0.1367 -0.1343 -0.2162 -0.2177 -0.1595 -0.0591 -0.0601 -0.1063 -0.1074 -0.1468 -0.0259 -0.0291 -0.0670 -0.0692 -0.1446 

SD 0.2186 0.2380 0.2876 0.3153 0.0904 0.1405 0.1535 0.2144 0.2257 0.0502 0.0829 0.0859 0.1437 0.1500 0.0304 

RMSE 0.2578 0.2733 0.3598 0.3831 0.1834 0.1524 0.1648 0.2394 0.2500 0.1552 0.0869 0.0907 0.1586 0.1652 0.1477 

La
m

bd
a=

0.
2 Mean 0.3565 0.3667 0.4579 0.4577 0.1764 0.3324 0.3314 0.4707 0.4748 0.1770 0.3033 0.3053 0.4726 0.4621 0.1808 

Bias 0.1565 0.1667 0.2579 0.2577 -0.0236 0.1324 0.1314 0.2707 0.2748 -0.0230 0.1033 0.1053 0.2726 0.2621 -0.0192 

SD 0.3669 0.4072 0.4909 0.5382 0.1142 0.3332 0.3657 0.4866 0.5128 0.0754 0.2845 0.2971 0.4698 0.4927 0.0500 

RMSE 0.3988 0.4400 0.5545 0.5967 0.1166 0.3585 0.3886 0.5569 0.5818 0.0788 0.3026 0.3152 0.5431 0.5580 0.0535 

R
ho

=
0.

2 

Mean 0.1172 0.1195 0.0692 0.0667 0.2198 0.1366 0.1354 -0.0332 -0.0409 0.2222 0.1608 0.1610 -0.0653 -0.0677 0.2197 

Bias -0.0828 -0.0805 -0.1308 -0.1333 0.0198 -0.0634 -0.0646 -0.2332 -0.2409 0.0222 -0.0392 -0.0390 -0.2653 -0.2677 0.0197 

SD 0.3136 0.3520 0.4775 0.5526 0.1519 0.2099 0.2278 0.4656 0.5109 0.0879 0.1476 0.1530 0.4562 0.4745 0.0598 

RMSE 0.3243 0.3611 0.4951 0.5684 0.1532 0.2193 0.2368 0.5207 0.5649 0.0907 0.1527 0.1579 0.5278 0.5448 0.0629 

B
et

a=
1 

Mean 0.8916 0.8895 0.8001 0.7981 0.9858 0.9452 0.9431 0.8714 0.8696 0.9868 0.9815 0.9767 0.9090 0.9041 0.9883 

Bias -0.1084 -0.1105 -0.1999 -0.2019 -0.0142 -0.0548 -0.0569 -0.1286 -0.1304 -0.0132 -0.0185 -0.0233 -0.0910 -0.0959 -0.0117 

SD 0.3291 0.3601 0.4691 0.5135 0.1369 0.2120 0.2329 0.3352 0.3664 0.0788 0.1346 0.1411 0.2353 0.2468 0.0478 

RMSE 0.3465 0.3767 0.5099 0.5518 0.1376 0.2189 0.2397 0.3591 0.3889 0.0799 0.1358 0.1430 0.2523 0.2648 0.0492 
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Table 2.14. Mean, bias, standard deviation and root mean square error of various spatial estimators in a quasi-unit root scenario, for � � �À, � � À.  !, � = À. ª, � = À. ª , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
58

 

Mean 0.5456 0.5435 0.5131 0.5141 0.5117 0.5678 0.5680 0.5447 0.5457 0.5163 0.5734 0.5740 0.5540 0.5549 0.5173 

Bias -0.0344 -0.0365 -0.0669 -0.0659 -0.0683 -0.0122 -0.0120 -0.0353 -0.0343 -0.0637 -0.0066 -0.0060 -0.0260 -0.0251 -0.0627 

SD 0.1077 0.1199 0.1536 0.1737 0.0484 0.0584 0.0634 0.0902 0.0955 0.0286 0.0386 0.0399 0.0631 0.0647 0.0175 

RMSE 0.1130 0.1253 0.1676 0.1858 0.0837 0.0597 0.0645 0.0969 0.1015 0.0698 0.0391 0.0404 0.0682 0.0694 0.0651 

La
m

bd
a=

0.
2 Mean 0.2607 0.2633 0.4291 0.4165 0.1842 0.2425 0.2450 0.4264 0.4241 0.1877 0.2290 0.2322 0.4186 0.4113 0.1909 

Bias 0.0607 0.0633 0.2291 0.2165 -0.0158 0.0425 0.0450 0.2264 0.2241 -0.0123 0.0290 0.0322 0.2186 0.2113 -0.0091 

SD 0.2550 0.2732 0.4580 0.5008 0.0812 0.2146 0.2234 0.4221 0.4487 0.0494 0.1766 0.1843 0.4288 0.4508 0.0318 

RMSE 0.2621 0.2804 0.5121 0.5456 0.0827 0.2188 0.2278 0.4790 0.5016 0.0509 0.1790 0.1871 0.4813 0.4978 0.0331 

R
ho

=
0.

2 

Mean 0.1642 0.1631 0.0125 0.0156 0.2129 0.1819 0.1788 -0.0316 -0.0320 0.2106 0.1894 0.1881 0.0143 0.0158 0.2112 

Bias -0.0358 -0.0369 -0.1875 -0.1844 0.0129 -0.0181 -0.0212 -0.2316 -0.2320 0.0106 -0.0106 -0.0119 -0.1857 -0.1842 0.0112 

SD 0.1746 0.1913 0.4423 0.4788 0.0907 0.1053 0.1148 0.4058 0.4280 0.0557 0.0727 0.0746 0.3739 0.3883 0.0366 

RMSE 0.1782 0.1948 0.4804 0.5131 0.0916 0.1068 0.1168 0.4672 0.4869 0.0567 0.0735 0.0755 0.4175 0.4298 0.0382 

B
et

a=
1 

Mean 0.9748 0.9691 0.9313 0.9277 1.0091 0.9921 0.9909 0.9523 0.9531 1.0111 0.9963 0.9960 0.9711 0.9699 1.0116 

Bias -0.0252 -0.0309 -0.0687 -0.0723 0.0091 -0.0079 -0.0091 -0.0477 -0.0469 0.0111 -0.0037 -0.0040 -0.0289 -0.0301 0.0116 

SD 0.1570 0.1687 0.2226 0.2589 0.0817 0.0954 0.1013 0.1437 0.1530 0.0473 0.0659 0.0691 0.1134 0.1176 0.0294 

RMSE 0.1590 0.1715 0.2329 0.2688 0.0822 0.0957 0.1017 0.1514 0.1601 0.0485 0.0660 0.0692 0.1170 0.1214 0.0316 
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Table 2.15. Mean, bias, standard deviation and root mean square error of various spatial estimators in a quasi-unit root scenario, for � �  À, � � À.  !, � = À. ª, � = À. ª , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
58

 

Mean 0.5775 0.5781 0.5742 0.5743 0.5684 0.5789 0.5794 0.5784 0.5793 0.5684 0.5793 0.5795 0.5794 0.5794 0.5690 

Bias -0.0025 -0.0019 -0.0058 -0.0057 -0.0116 -0.0011 -0.0006 -0.0016 -0.0007 -0.0116 -0.0007 -0.0005 -0.0006 -0.0006 -0.0110 

SD 0.0306 0.0341 0.0468 0.0525 0.0178 0.0173 0.0184 0.0258 0.0272 0.0102 0.0108 0.0112 0.0186 0.0188 0.0064 

RMSE 0.0307 0.0342 0.0471 0.0528 0.0213 0.0173 0.0185 0.0259 0.0272 0.0154 0.0108 0.0112 0.0186 0.0189 0.0128 

La
m

bd
a=

0.
2 Mean 0.2059 0.2079 0.2416 0.2578 0.1998 0.2020 0.2022 0.2076 0.2025 0.2003 0.2016 0.2014 0.2046 0.2027 0.2005 

Bias 0.0059 0.0079 0.0416 0.0578 -0.0002 0.0020 0.0022 0.0076 0.0025 0.0003 0.0016 0.0014 0.0046 0.0027 0.0005 

SD 0.1151 0.1278 0.3602 0.4186 0.0337 0.0857 0.0918 0.2763 0.2997 0.0196 0.0575 0.0592 0.2094 0.2127 0.0137 

RMSE 0.1152 0.1280 0.3626 0.4226 0.0337 0.0857 0.0918 0.2764 0.2997 0.0196 0.0575 0.0593 0.2094 0.2127 0.0137 

R
ho

=
0.

2 

Mean 0.1952 0.1947 0.1588 0.1506 0.2034 0.1982 0.1974 0.1936 0.1971 0.2035 0.1992 0.1992 0.2010 0.2007 0.2031 

Bias -0.0048 -0.0053 -0.0412 -0.0494 0.0034 -0.0018 -0.0026 -0.0064 -0.0029 0.0035 -0.0008 -0.0008 0.0010 0.0007 0.0031 

SD 0.0626 0.0694 0.3200 0.3559 0.0361 0.0379 0.0412 0.2356 0.2514 0.0221 0.0261 0.0269 0.1723 0.1748 0.0146 

RMSE 0.0628 0.0696 0.3226 0.3594 0.0362 0.0379 0.0412 0.2357 0.2514 0.0224 0.0262 0.0269 0.1724 0.1748 0.0150 

B
et

a=
1 

Mean 0.9969 0.9977 0.9923 0.9940 1.0056 0.9997 1.0004 0.9997 1.0006 1.0064 0.9998 0.9999 1.0008 1.0003 1.0058 

Bias -0.0031 -0.0023 -0.0077 -0.0060 0.0056 -0.0003 0.0004 -0.0003 0.0006 0.0064 -0.0002 -0.0001 0.0008 0.0003 0.0058 

SD 0.0520 0.0575 0.0840 0.0968 0.0332 0.0310 0.0328 0.0571 0.0585 0.0195 0.0204 0.0212 0.0433 0.0445 0.0125 

RMSE 0.0521 0.0576 0.0843 0.0970 0.0337 0.0310 0.0328 0.0571 0.0585 0.0206 0.0204 0.0212 0.0433 0.0445 0.0138 
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Table 2.16. Mean, bias, standard deviation and root mean square error of various spatial estimators in a quasi-unit root scenario, for � �  , � � À. ª, � = À. ª, � = À.  ! , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.0983 0.0960 0.0254 0.0232 0.0770 0.1551 0.1573 0.0883 0.0898 0.0829 0.1771 0.1756 0.1155 0.1174 0.0835 

Bias -0.1017 -0.1040 -0.1746 -0.1768 -0.1230 -0.0449 -0.0427 -0.1117 -0.1102 -0.1171 -0.0229 -0.0244 -0.0845 -0.0826 -0.1165 

SD 0.1965 0.2185 0.2806 0.3056 0.0887 0.1171 0.1265 0.1771 0.1909 0.0511 0.0765 0.0800 0.1375 0.1401 0.0316 

RMSE 0.2212 0.2420 0.3305 0.3531 0.1516 0.1254 0.1335 0.2094 0.2204 0.1277 0.0799 0.0836 0.1614 0.1627 0.1207 

La
m

bd
a=

0.
2 Mean 0.3149 0.3178 0.4328 0.4304 0.1752 0.2857 0.2827 0.4645 0.4590 0.1777 0.2676 0.2688 0.4732 0.4600 0.1823 

Bias 0.1149 0.1178 0.2328 0.2304 -0.0248 0.0857 0.0827 0.2645 0.2590 -0.0223 0.0676 0.0688 0.2732 0.2600 -0.0177 

SD 0.3442 0.3835 0.4786 0.5243 0.1114 0.3050 0.3364 0.4459 0.4757 0.0734 0.2593 0.2714 0.4758 0.4657 0.0488 

RMSE 0.3629 0.4011 0.5322 0.5727 0.1141 0.3168 0.3464 0.5184 0.5416 0.0767 0.2679 0.2800 0.5486 0.5334 0.0520 

R
ho

=
0.

58
 Mean 0.4938 0.5009 0.4345 0.4420 0.5570 0.5177 0.5168 0.3708 0.3644 0.5650 0.5439 0.5440 0.3600 0.3567 0.5646 

Bias -0.0862 -0.0791 -0.1455 -0.1380 -0.0230 -0.0623 -0.0632 -0.2092 -0.2156 -0.0150 -0.0361 -0.0360 -0.2200 -0.2233 -0.0154 

SD 0.2958 0.3293 0.4394 0.4759 0.1447 0.2198 0.2388 0.3966 0.4412 0.0862 0.1608 0.1653 0.3772 0.3883 0.0571 

RMSE 0.3081 0.3387 0.4629 0.4955 0.1465 0.2284 0.2470 0.4484 0.4911 0.0875 0.1648 0.1692 0.4367 0.4479 0.0591 

B
et

a=
1 

Mean 0.9473 0.9452 0.8645 0.8697 1.0027 0.9657 0.9665 0.9043 0.9005 1.0037 0.9853 0.9822 0.9308 0.9299 1.0047 

Bias -0.0527 -0.0548 -0.1355 -0.1303 0.0027 -0.0343 -0.0335 -0.0957 -0.0995 0.0037 -0.0147 -0.0178 -0.0692 -0.0701 0.0047 

SD 0.2889 0.3199 0.4582 0.4993 0.1374 0.1785 0.1951 0.2980 0.3238 0.0789 0.1181 0.1238 0.1993 0.2048 0.0479 

RMSE 0.2936 0.3246 0.4778 0.5160 0.1374 0.1817 0.1979 0.3130 0.3388 0.0790 0.1191 0.1251 0.2110 0.2165 0.0481 
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Table 2.17. Mean, bias, standard deviation and root mean square error of various spatial estimators in a quasi-unit root scenario, for � � �À, � � À. ª, � = À. ª, � = À.  ! , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.1740 0.1751 0.1128 0.1159 0.1435 0.1898 0.1919 0.1497 0.1509 0.1457 0.1932 0.1939 0.1579 0.1581 0.1463 

Bias -0.0260 -0.0249 -0.0872 -0.0841 -0.0565 -0.0102 -0.0081 -0.0503 -0.0491 -0.0543 -0.0068 -0.0061 -0.0421 -0.0419 -0.0537 

SD 0.0970 0.1079 0.1653 0.1797 0.0567 0.0545 0.0593 0.1026 0.1088 0.0325 0.0361 0.0376 0.0898 0.0921 0.0200 

RMSE 0.1004 0.1107 0.1869 0.1984 0.0800 0.0555 0.0598 0.1143 0.1193 0.0633 0.0368 0.0381 0.0991 0.1012 0.0573 

La
m

bd
a=

0.
2 Mean 0.2403 0.2427 0.4378 0.4333 0.1864 0.2247 0.2239 0.4074 0.4065 0.1917 0.2188 0.2211 0.4024 0.4045 0.1951 

Bias 0.0403 0.0427 0.2378 0.2333 -0.0136 0.0247 0.0239 0.2074 0.2065 -0.0083 0.0188 0.0211 0.2024 0.2045 -0.0049 

SD 0.2343 0.2549 0.4622 0.5100 0.0789 0.1945 0.2082 0.4101 0.4281 0.0478 0.1518 0.1559 0.4239 0.4351 0.0307 

RMSE 0.2378 0.2584 0.5198 0.5608 0.0800 0.1960 0.2095 0.4595 0.4753 0.0485 0.1530 0.1573 0.4697 0.4808 0.0311 

R
ho

=
0.

58
 Mean 0.5465 0.5478 0.4215 0.4148 0.5744 0.5648 0.5608 0.4258 0.4255 0.5756 0.5735 0.5716 0.4702 0.4657 0.5778 

Bias -0.0335 -0.0322 -0.1585 -0.1652 -0.0056 -0.0152 -0.0192 -0.1542 -0.1545 -0.0044 -0.0065 -0.0084 -0.1098 -0.1143 -0.0022 

SD 0.1642 0.1815 0.3487 0.3796 0.0877 0.1107 0.1181 0.3074 0.3271 0.0542 0.0793 0.0829 0.2806 0.2866 0.0360 

RMSE 0.1676 0.1844 0.3830 0.4140 0.0879 0.1117 0.1196 0.3439 0.3618 0.0544 0.0796 0.0833 0.3013 0.3086 0.0361 

B
et

a=
1 

Mean 0.9838 0.9833 0.9402 0.9406 1.0114 0.9933 0.9912 0.9656 0.9650 1.0137 0.9965 0.9956 0.9812 0.9802 1.0142 

Bias -0.0162 -0.0167 -0.0598 -0.0594 0.0114 -0.0067 -0.0088 -0.0344 -0.0350 0.0137 -0.0035 -0.0044 -0.0188 -0.0198 0.0142 

SD 0.1431 0.1537 0.2037 0.2228 0.0822 0.0855 0.0917 0.1197 0.1281 0.0474 0.0572 0.0593 0.0878 0.0904 0.0296 

RMSE 0.1441 0.1546 0.2123 0.2306 0.0830 0.0858 0.0921 0.1245 0.1328 0.0493 0.0573 0.0594 0.0898 0.0925 0.0328 
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Table 2.18. Mean, bias, standard deviation and root mean square error of various spatial estimators in a quasi-unit root scenario, for � �  À, � � À. ª, � = À. ª, � = À.  ! , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 
One-
step 

ESAB 

Two-
step 

ESAB 

One-
step 
SAB 

Two-
step 
SAB 

QML 

G
am

m
a=

0.
2 Mean 0.1975 0.1978 0.1781 0.1775 0.1895 0.1988 0.1994 0.1883 0.1889 0.1888 0.1994 0.1997 0.1935 0.1938 0.1894 

Bias -0.0025 -0.0022 -0.0219 -0.0225 -0.0105 -0.0012 -0.0006 -0.0117 -0.0111 -0.0112 -0.0006 -0.0003 -0.0065 -0.0062 -0.0106 

SD 0.0334 0.0368 0.0774 0.0848 0.0232 0.0187 0.0200 0.0514 0.0529 0.0134 0.0117 0.0120 0.0359 0.0362 0.0084 

RMSE 0.0335 0.0369 0.0804 0.0877 0.0254 0.0187 0.0200 0.0527 0.0540 0.0175 0.0117 0.0120 0.0365 0.0367 0.0135 

La
m

bd
a=

0.
2 Mean 0.2053 0.2055 0.2960 0.3026 0.2004 0.1999 0.2007 0.2601 0.2593 0.2017 0.2013 0.2005 0.2398 0.2380 0.2018 

Bias 0.0053 0.0055 0.0960 0.1026 0.0004 -0.0001 0.0007 0.0601 0.0593 0.0017 0.0013 0.0005 0.0398 0.0380 0.0018 

SD 0.1027 0.1152 0.3408 0.3722 0.0322 0.0717 0.0752 0.2960 0.2957 0.0185 0.0468 0.0482 0.2264 0.2288 0.0133 

RMSE 0.1028 0.1153 0.3541 0.3861 0.0322 0.0717 0.0752 0.3021 0.3016 0.0186 0.0469 0.0482 0.2299 0.2320 0.0134 

R
ho

=
0.

58
 Mean 0.5757 0.5752 0.5112 0.5066 0.5811 0.5777 0.5772 0.5426 0.5416 0.5811 0.5795 0.5794 0.5612 0.5609 0.5809 

Bias -0.0043 -0.0048 -0.0688 -0.0734 0.0011 -0.0023 -0.0028 -0.0374 -0.0384 0.0011 -0.0005 -0.0006 -0.0188 -0.0191 0.0009 

SD 0.0610 0.0682 0.2254 0.2462 0.0348 0.0418 0.0443 0.1585 0.1643 0.0219 0.0275 0.0284 0.1045 0.1061 0.0144 

RMSE 0.0612 0.0683 0.2357 0.2570 0.0348 0.0419 0.0444 0.1628 0.1687 0.0219 0.0275 0.0284 0.1062 0.1078 0.0144 

B
et

a=
1 

Mean 0.9971 0.9978 0.9868 0.9872 1.0044 0.9994 1.0000 0.9960 0.9961 1.0053 1.0001 1.0000 0.9987 0.9986 1.0047 

Bias -0.0029 -0.0022 -0.0132 -0.0128 0.0044 -0.0006 0.0000 -0.0040 -0.0039 0.0053 0.0001 0.0000 -0.0013 -0.0014 0.0047 

SD 0.0496 0.0544 0.0695 0.0769 0.0335 0.0292 0.0308 0.0443 0.0439 0.0196 0.0181 0.0188 0.0265 0.0269 0.0126 

RMSE 0.0497 0.0544 0.0707 0.0780 0.0337 0.0292 0.0308 0.0445 0.0441 0.0203 0.0181 0.0188 0.0266 0.0270 0.0135 
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Table 2.19. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � �  , � � À.", � = À.�, � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.2556 0.2598 0.2072 0.2047 0.1590 0.2917 0.2918 0.2601 0.2597 0.1680 0.3038 0.3033 0.2836 0.2820 0.1710 

Bias -0.0444 -0.0402 -0.0928 -0.0953 -0.1410 -0.0083 -0.0082 -0.0399 -0.0403 -0.1320 0.0038 0.0033 -0.0164 -0.0180 -0.1290 

SD 0.2235 0.2456 0.1932 0.2109 0.0916 0.1241 0.1331 0.1157 0.1257 0.0507 0.0771 0.0795 0.0734 0.0766 0.0313 

RMSE 0.2279 0.2489 0.2143 0.2315 0.1681 0.1244 0.1333 0.1224 0.1320 0.1414 0.0772 0.0795 0.0752 0.0787 0.1328 

La
m

bd
a=

0.
1 Mean     0.1577 0.1480 0.1106     0.1316 0.1346 0.0985     0.1171 0.1186 0.0987 

Bias     0.0577 0.0480 0.0106     0.0316 0.0346 -0.0015     0.0171 0.0186 -0.0013 

SD     0.3886 0.4335 0.1029     0.2945 0.3158 0.0694     0.2024 0.2150 0.0489 

RMSE     0.3928 0.4361 0.1035     0.2962 0.3177 0.0694     0.2031 0.2158 0.0489 

R
ho

=
0.

1 

Mean     0.0930 0.0946 0.1020     0.0914 0.0959 0.1019     0.0948 0.0956 0.1045 

Bias     -0.0070 -0.0054 0.0020     -0.0086 -0.0041 0.0019     -0.0052 -0.0044 0.0045 

SD     0.3049 0.3390 0.1465     0.2004 0.2164 0.0902     0.1294 0.1330 0.0606 

RMSE    0.3050 0.3390 0.1465     0.2006 0.2165 0.0903     0.1295 0.1331 0.0608 

B
et

a=
1 

Mean 0.9904 0.9838 0.9501 0.9482 1.0111 1.0019 0.9999 0.9681 0.9667 1.0101 0.9996 0.9979 0.9844 0.9796 1.0112 

Bias -0.0096 -0.0162 -0.0499 -0.0518 0.0111 0.0019 -0.0001 -0.0319 -0.0333 0.0101 -0.0004 -0.0021 -0.0156 -0.0204 0.0112 

SD 0.4012 0.4444 0.2874 0.3175 0.1366 0.2129 0.2258 0.1702 0.1826 0.0786 0.1342 0.1373 0.1071 0.1115 0.0478 

RMSE 0.4013 0.4447 0.2917 0.3217 0.1370 0.2130 0.2258 0.1731 0.1856 0.0793 0.1342 0.1373 0.1082 0.1133 0.0491 
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Table 2.20. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � � �À, � � À.", � = À.�, � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.3015 0.3016 0.2767 0.2787 0.2347 0.3105 0.3123 0.2925 0.2948 0.2398 0.3108 0.3112 0.2956 0.2967 0.2413 

Bias 0.0015 0.0016 -0.0233 -0.0213 -0.0653 0.0105 0.0123 -0.0075 -0.0052 -0.0602 0.0108 0.0112 -0.0044 -0.0033 -0.0587 

SD 0.1001 0.1101 0.0969 0.1083 0.0550 0.0547 0.0573 0.0530 0.0567 0.0322 0.0360 0.0365 0.0351 0.0360 0.0198 

RMSE 0.1001 0.1101 0.0997 0.1104 0.0854 0.0557 0.0586 0.0535 0.0569 0.0683 0.0376 0.0382 0.0354 0.0362 0.0619 

La
m

bd
a=

0.
1 Mean     0.1177 0.1185 0.1025     0.1113 0.1114 0.0987     0.1066 0.1070 0.1003 

Bias     0.0177 0.0185 0.0025     0.0113 0.0114 -0.0013     0.0066 0.0070 0.0003 

SD     0.2226 0.2437 0.0740     0.1369 0.1459 0.0488     0.0937 0.0967 0.0322 

RMSE     0.2233 0.2444 0.0741     0.1373 0.1464 0.0488     0.0939 0.0970 0.0322 

R
ho

=
0.

1 

Mean     0.0974 0.0988 0.0997     0.0975 0.0952 0.1006     0.1002 0.0990 0.1027 

Bias     -0.0026 -0.0012 -0.0003     -0.0025 -0.0048 0.0006     0.0002 -0.0010 0.0027 

SD     0.1563 0.1736 0.0922     0.0994 0.1074 0.0575     0.0662 0.0687 0.0386 

RMSE    0.1564 0.1736 0.0922     0.0994 0.1075 0.0575     0.0662 0.0687 0.0387 

B
et

a=
1 

Mean 1.0023 1.0018 0.9882 0.9895 1.0176 1.0017 1.0015 0.9952 0.9927 1.0189 1.0002 1.0001 0.9971 0.9967 1.0190 

Bias 0.0023 0.0018 -0.0118 -0.0105 0.0176 0.0017 0.0015 -0.0048 -0.0073 0.0189 0.0002 0.0001 -0.0029 -0.0033 0.0190 

SD 0.1477 0.1604 0.1384 0.1523 0.0825 0.0817 0.0850 0.0771 0.0821 0.0476 0.0521 0.0529 0.0493 0.0511 0.0296 

RMSE 0.1477 0.1604 0.1389 0.1527 0.0844 0.0818 0.0850 0.0772 0.0824 0.0512 0.0521 0.0529 0.0494 0.0512 0.0352 
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Table 2.21. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � �  À, � � À.", � = À.�, � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.3168 0.3170 0.2975 0.2985 0.2878 0.3145 0.3148 0.2987 0.2995 0.2876 0.3144 0.3146 0.2996 0.2999 0.2886 

Bias 0.0168 0.0170 -0.0025 -0.0015 -0.0122 0.0145 0.0148 -0.0013 -0.0005 -0.0124 0.0144 0.0146 -0.0004 -0.0001 -0.0114 

SD 0.0312 0.0331 0.0301 0.0335 0.0219 0.0183 0.0192 0.0177 0.0190 0.0131 0.0111 0.0114 0.0107 0.0112 0.0080 

RMSE 0.0354 0.0372 0.0302 0.0336 0.0251 0.0234 0.0243 0.0178 0.0190 0.0180 0.0182 0.0185 0.0107 0.0112 0.0139 

La
m

bd
a=

0.
1 Mean     0.1044 0.1028 0.1010     0.1007 0.1014 0.1009     0.1010 0.1007 0.1012 

Bias     0.0044 0.0028 0.0010     0.0007 0.0014 0.0009     0.0010 0.0007 0.0012 

SD     0.0743 0.0826 0.0351     0.0443 0.0475 0.0204     0.0306 0.0314 0.0144 

RMSE     0.0744 0.0826 0.0351     0.0443 0.0475 0.0204     0.0306 0.0314 0.0144 

R
ho

=
0.

1 

Mean     0.0987 0.0987 0.1008     0.0988 0.0985 0.0996     0.1003 0.1003 0.0999 

Bias     -0.0013 -0.0013 0.0008     -0.0012 -0.0015 -0.0004     0.0003 0.0003 -0.0001 

SD     0.0565 0.0617 0.0394     0.0336 0.0359 0.0235     0.0228 0.0235 0.0160 

RMSE    0.0565 0.0617 0.0394     0.0336 0.0359 0.0235     0.0228 0.0235 0.0160 

B
et

a=
1 

Mean 1.0016 1.0023 0.9980 0.9986 1.0056 1.0021 1.0024 1.0001 1.0007 1.0065 1.0017 1.0017 1.0001 1.0000 1.0057 

Bias 0.0016 0.0023 -0.0020 -0.0014 0.0056 0.0021 0.0024 0.0001 0.0007 0.0065 0.0017 0.0017 0.0001 0.0000 0.0057 

SD 0.0464 0.0499 0.0451 0.0495 0.0337 0.0257 0.0267 0.0257 0.0271 0.0200 0.0165 0.0167 0.0162 0.0166 0.0127 

RMSE 0.0464 0.0500 0.0451 0.0495 0.0342 0.0258 0.0268 0.0257 0.0271 0.0210 0.0166 0.0168 0.0162 0.0166 0.0140 
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Table 2.22. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � �  , � � À.", � = À.�, � = À. " , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.2787 0.2777 0.2023 0.2010 0.1604 0.3138 0.3133 0.2580 0.2571 0.1695 0.3261 0.3249 0.2824 0.2808 0.1721 

Bias -0.0213 -0.0223 -0.0977 -0.0990 -0.1396 0.0138 0.0133 -0.0420 -0.0429 -0.1305 0.0261 0.0249 -0.0176 -0.0192 -0.1279 

SD 0.2522 0.2738 0.1941 0.2143 0.0906 0.1376 0.1480 0.1170 0.1253 0.0507 0.0848 0.0880 0.0741 0.0778 0.0311 

RMSE 0.2531 0.2747 0.2173 0.2361 0.1664 0.1383 0.1485 0.1243 0.1325 0.1400 0.0887 0.0915 0.0762 0.0801 0.1316 

La
m

bd
a=

0.
1 Mean     0.1685 0.1649 0.1039     0.1344 0.1375 0.0923     0.1211 0.1226 0.0924 

Bias     0.0685 0.0649 0.0039     0.0344 0.0375 -0.0077     0.0211 0.0226 -0.0076 

SD     0.3836 0.4269 0.1006     0.2979 0.3199 0.0682     0.2191 0.2309 0.0489 

RMSE     0.3897 0.4318 0.1007     0.2999 0.3221 0.0686     0.2201 0.2320 0.0495 

R
ho

=
0.

3 

Mean     0.2624 0.2607 0.2854     0.2764 0.2782 0.2895     0.2862 0.2866 0.2916 

Bias     -0.0376 -0.0393 -0.0146     -0.0236 -0.0218 -0.0105     -0.0138 -0.0134 -0.0084 

SD     0.3065 0.3451 0.1465     0.2065 0.2225 0.0897     0.1359 0.1399 0.0599 

RMSE    0.3088 0.3473 0.1472     0.2078 0.2235 0.0903     0.1366 0.1406 0.0605 

B
et

a=
1 

Mean 0.9695 0.9594 0.9490 0.9495 1.0087 0.9772 0.9744 0.9667 0.9654 1.0078 0.9760 0.9733 0.9832 0.9788 1.0089 

Bias -0.0305 -0.0406 -0.0510 -0.0505 0.0087 -0.0228 -0.0256 -0.0333 -0.0346 0.0078 -0.0240 -0.0267 -0.0168 -0.0212 0.0089 

SD 0.4239 0.4609 0.2880 0.3253 0.1368 0.2216 0.2357 0.1721 0.1847 0.0787 0.1404 0.1436 0.1097 0.1147 0.0478 

RMSE 0.4250 0.4627 0.2925 0.3292 0.1371 0.2228 0.2371 0.1753 0.1879 0.0791 0.1424 0.1460 0.1109 0.1166 0.0486 
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Table 2.23. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � � �À, � � À.", � = À.�, � = À. " , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.3305 0.3287 0.2760 0.2780 0.2355 0.3377 0.3380 0.2921 0.2942 0.2405 0.3365 0.3355 0.2951 0.2961 0.2418 

Bias 0.0305 0.0287 -0.0240 -0.0220 -0.0645 0.0377 0.0380 -0.0079 -0.0058 -0.0595 0.0365 0.0355 -0.0049 -0.0039 -0.0582 

SD 0.1166 0.1269 0.0979 0.1098 0.0549 0.0629 0.0661 0.0534 0.0567 0.0320 0.0410 0.0423 0.0351 0.0362 0.0197 

RMSE 0.1205 0.1301 0.1008 0.1120 0.0847 0.0733 0.0762 0.0540 0.0570 0.0676 0.0549 0.0552 0.0355 0.0364 0.0615 

La
m

bd
a=

0.
1 Mean     0.1179 0.1190 0.0998     0.1100 0.1112 0.0969     0.1056 0.1060 0.0989 

Bias     0.0179 0.0190 -0.0002     0.0100 0.0112 -0.0031     0.0056 0.0060 -0.0011 

SD     0.2301 0.2550 0.0731     0.1470 0.1544 0.0487     0.0993 0.1024 0.0322 

RMSE     0.2308 0.2557 0.0731     0.1474 0.1548 0.0488     0.0994 0.1026 0.0323 

R
ho

=
0.

3 

Mean     0.2894 0.2905 0.2945     0.2944 0.2917 0.2966     0.2985 0.2966 0.2986 

Bias     -0.0106 -0.0095 -0.0055     -0.0056 -0.0083 -0.0034     -0.0015 -0.0034 -0.0014 

SD     0.1607 0.1790 0.0910     0.1013 0.1088 0.0568     0.0678 0.0703 0.0383 

RMSE    0.1611 0.1793 0.0912     0.1014 0.1092 0.0569     0.0678 0.0704 0.0383 

B
et

a=
1 

Mean 0.9777 0.9758 0.9873 0.9883 1.0164 0.9801 0.9786 0.9946 0.9922 1.0180 0.9801 0.9792 0.9968 0.9962 1.0181 

Bias -0.0223 -0.0242 -0.0127 -0.0117 0.0164 -0.0199 -0.0214 -0.0054 -0.0078 0.0180 -0.0199 -0.0208 -0.0032 -0.0038 0.0181 

SD 0.1539 0.1679 0.1402 0.1558 0.0823 0.0853 0.0889 0.0788 0.0831 0.0475 0.0540 0.0551 0.0502 0.0518 0.0296 

RMSE 0.1555 0.1697 0.1407 0.1563 0.0839 0.0876 0.0914 0.0790 0.0834 0.0508 0.0575 0.0589 0.0503 0.0520 0.0347 
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Table 2.24. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � �  À, � � À.", � = À.�, � = À. " , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.3580 0.3570 0.2975 0.2982 0.2879 0.3498 0.3485 0.2988 0.2996 0.2878 0.3474 0.3463 0.2996 0.2999 0.2887 

Bias 0.0580 0.0570 -0.0025 -0.0018 -0.0121 0.0498 0.0485 -0.0012 -0.0004 -0.0122 0.0474 0.0463 -0.0004 -0.0001 -0.0113 

SD 0.0362 0.0387 0.0306 0.0338 0.0220 0.0207 0.0221 0.0177 0.0189 0.0130 0.0126 0.0133 0.0109 0.0113 0.0080 

RMSE 0.0683 0.0689 0.0307 0.0339 0.0251 0.0540 0.0533 0.0177 0.0189 0.0178 0.0490 0.0482 0.0109 0.0113 0.0138 

La
m

bd
a=

0.
1 Mean     0.1032 0.1015 0.1009     0.1001 0.1009 0.1011     0.1007 0.1004 0.1013 

Bias     0.0032 0.0015 0.0009     0.0001 0.0009 0.0011     0.0007 0.0004 0.0013 

SD     0.0756 0.0835 0.0346     0.0453 0.0486 0.0202     0.0311 0.0319 0.0141 

RMSE     0.0757 0.0835 0.0346     0.0453 0.0486 0.0203     0.0311 0.0319 0.0142 

R
ho

=
0.

3 

Mean     0.2980 0.2976 0.3002     0.2987 0.2985 0.2994     0.3001 0.3001 0.2995 

Bias     -0.0020 -0.0024 0.0002     -0.0013 -0.0015 -0.0006     0.0001 0.0001 -0.0005 

SD     0.0574 0.0631 0.0386     0.0340 0.0362 0.0232     0.0232 0.0239 0.0156 

RMSE    0.0574 0.0631 0.0386     0.0340 0.0362 0.0233     0.0232 0.0239 0.0156 

B
et

a=
1 

Mean 0.9831 0.9835 0.9979 0.9986 1.0056 0.9854 0.9854 1.0001 1.0007 1.0064 0.9860 0.9858 1.0001 1.0001 1.0057 

Bias -0.0169 -0.0165 -0.0021 -0.0014 0.0056 -0.0146 -0.0146 0.0001 0.0007 0.0064 -0.0140 -0.0142 0.0001 0.0001 0.0057 

SD 0.0474 0.0516 0.0452 0.0495 0.0337 0.0260 0.0281 0.0257 0.0272 0.0199 0.0168 0.0176 0.0162 0.0167 0.0127 

RMSE 0.0503 0.0541 0.0453 0.0495 0.0341 0.0298 0.0317 0.0257 0.0272 0.0209 0.0218 0.0226 0.0162 0.0167 0.0139 
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Table 2.25. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � �  , � � À.", � = À.", � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.2973 0.2988 0.2027 0.2008 0.1604 0.3345 0.3330 0.2582 0.2574 0.1688 0.3449 0.3437 0.2826 0.2810 0.1712 

Bias -0.0027 -0.0012 -0.0973 -0.0992 -0.1396 0.0345 0.0330 -0.0418 -0.0426 -0.1312 0.0449 0.0437 -0.0174 -0.0190 -0.1288 

SD 0.2478 0.2651 0.1973 0.2155 0.0921 0.1395 0.1499 0.1188 0.1285 0.0511 0.0872 0.0898 0.0738 0.0771 0.0317 

RMSE 0.2478 0.2651 0.2200 0.2372 0.1672 0.1437 0.1535 0.1259 0.1354 0.1408 0.0981 0.0999 0.0758 0.0794 0.1326 

La
m

bd
a=

0.
3 Mean     0.4352 0.4316 0.2825     0.3834 0.3871 0.2888     0.3474 0.3493 0.2945 

Bias     0.1352 0.1316 -0.0175     0.0834 0.0871 -0.0112     0.0474 0.0493 -0.0055 

SD     0.3435 0.3778 0.1158     0.2723 0.2929 0.0704     0.1950 0.2058 0.0457 

RMSE     0.3691 0.4001 0.1172     0.2847 0.3056 0.0713     0.2007 0.2116 0.0460 

R
ho

=
0.

1 

Mean     0.0814 0.0833 0.1277     0.0796 0.0816 0.1254     0.0890 0.0897 0.1269 

Bias     -0.0186 -0.0167 0.0277     -0.0204 -0.0184 0.0254     -0.0110 -0.0103 0.0269 

SD     0.2968 0.3280 0.1425     0.1977 0.2147 0.0875     0.1304 0.1337 0.0588 

RMSE    0.2974 0.3285 0.1452     0.1987 0.2155 0.0911     0.1309 0.1341 0.0647 

B
et

a=
1 

Mean 1.0283 1.0152 0.9427 0.9434 1.0108 1.0329 1.0288 0.9636 0.9626 1.0098 1.0283 1.0248 0.9821 0.9775 1.0105 

Bias 0.0283 0.0152 -0.0573 -0.0566 0.0108 0.0329 0.0288 -0.0364 -0.0374 0.0098 0.0283 0.0248 -0.0179 -0.0225 0.0105 

SD 0.4468 0.4857 0.2914 0.3197 0.1373 0.2344 0.2464 0.1725 0.1856 0.0789 0.1486 0.1513 0.1081 0.1127 0.0480 

RMSE 0.4477 0.4859 0.2970 0.3247 0.1378 0.2367 0.2481 0.1763 0.1894 0.0795 0.1513 0.1534 0.1096 0.1149 0.0491 
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Table 2.26. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � � �À, � � À.", � = À.", � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.3553 0.3535 0.2755 0.2774 0.2355 0.3599 0.3607 0.2920 0.2941 0.2402 0.3573 0.3566 0.2952 0.2963 0.2414 

Bias 0.0553 0.0535 -0.0245 -0.0226 -0.0645 0.0599 0.0607 -0.0080 -0.0059 -0.0598 0.0573 0.0566 -0.0048 -0.0037 -0.0586 

SD 0.1163 0.1260 0.0983 0.1096 0.0555 0.0635 0.0659 0.0537 0.0573 0.0325 0.0411 0.0418 0.0353 0.0364 0.0200 

RMSE 0.1287 0.1369 0.1013 0.1119 0.0851 0.0873 0.0895 0.0543 0.0576 0.0680 0.0705 0.0704 0.0356 0.0365 0.0619 

La
m

bd
a=

0.
3 Mean     0.3527 0.3562 0.2922     0.3252 0.3264 0.2964     0.3127 0.3132 0.2989 

Bias     0.0527 0.0562 -0.0078     0.0252 0.0264 -0.0036     0.0127 0.0132 -0.0011 

SD     0.2060 0.2255 0.0762     0.1319 0.1397 0.0455     0.0898 0.0928 0.0292 

RMSE     0.2126 0.2324 0.0766     0.1343 0.1421 0.0456     0.0907 0.0937 0.0292 

R
ho

=
0.

1 

Mean     0.0863 0.0867 0.1127     0.0923 0.0897 0.1120     0.0979 0.0961 0.1135 

Bias     -0.0137 -0.0133 0.0127     -0.0077 -0.0103 0.0120     -0.0021 -0.0039 0.0135 

SD     0.1540 0.1717 0.0908     0.0977 0.1054 0.0559     0.0656 0.0681 0.0374 

RMSE    0.1546 0.1722 0.0917     0.0980 0.1059 0.0572     0.0656 0.0682 0.0397 

B
et

a=
1 

Mean 1.0343 1.0342 0.9841 0.9848 1.0178 1.0294 1.0283 0.9935 0.9910 1.0190 1.0267 1.0262 0.9961 0.9957 1.0189 

Bias 0.0343 0.0342 -0.0159 -0.0152 0.0178 0.0294 0.0283 -0.0065 -0.0090 0.0190 0.0267 0.0262 -0.0039 -0.0043 0.0189 

SD 0.1658 0.1801 0.1390 0.1528 0.0825 0.0902 0.0943 0.0782 0.0827 0.0478 0.0568 0.0581 0.0500 0.0519 0.0297 

RMSE 0.1693 0.1833 0.1399 0.1535 0.0844 0.0949 0.0984 0.0785 0.0832 0.0514 0.0628 0.0637 0.0502 0.0520 0.0352 
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Table 2.27. Mean, bias, standard deviation and root mean square error of various non-spatial and spatial estimators in a stationary scenario, for � �  À, � � À.", � = À.", � = À. � , � = � and various �, over 999 iterations 

  
N=16 N=49 N=121 

 
  

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

One-
step  
AB 

Two-
step  
AB 

One-
step 

ESAB 

Two-
step 

ESAB 
QML 

G
am

m
a=

0.
3 Mean 0.3824 0.3825 0.2974 0.2983 0.2879 0.3713 0.3704 0.2987 0.2995 0.2878 0.3674 0.3667 0.2996 0.2999 0.2887 

Bias 0.0824 0.0825 -0.0026 -0.0017 -0.0121 0.0713 0.0704 -0.0013 -0.0005 -0.0122 0.0674 0.0667 -0.0004 -0.0001 -0.0113 

SD 0.0370 0.0392 0.0306 0.0339 0.0224 0.0211 0.0222 0.0180 0.0192 0.0132 0.0128 0.0133 0.0109 0.0114 0.0081 

RMSE 0.0903 0.0913 0.0307 0.0340 0.0254 0.0744 0.0738 0.0180 0.0192 0.0180 0.0686 0.0680 0.0110 0.0114 0.0139 

La
m

bd
a=

0.
3 Mean     0.3085 0.3071 0.3001     0.3021 0.3028 0.3004     0.3016 0.3013 0.3006 

Bias     0.0085 0.0071 0.0001     0.0021 0.0028 0.0004     0.0016 0.0013 0.0006 

SD     0.0699 0.0772 0.0317     0.0419 0.0450 0.0185     0.0290 0.0297 0.0132 

RMSE     0.0704 0.0776 0.0317     0.0419 0.0451 0.0185     0.0290 0.0297 0.0132 

R
ho

=
0.

1 

Mean     0.0961 0.0955 0.1031     0.0982 0.0978 0.1023     0.0998 0.0997 0.1022 

Bias     -0.0039 -0.0045 0.0031     -0.0018 -0.0022 0.0023     -0.0002 -0.0003 0.0022 

SD     0.0562 0.0619 0.0379     0.0337 0.0359 0.0228     0.0229 0.0236 0.0154 

RMSE    0.0564 0.0620 0.0381     0.0338 0.0360 0.0230     0.0229 0.0236 0.0155 

B
et

a=
1 

Mean 1.0343 1.0356 0.9971 0.9978 1.0058 1.0303 1.0312 0.9999 1.0005 1.0066 1.0282 1.0287 0.9999 0.9999 1.0057 

Bias 0.0343 0.0356 -0.0029 -0.0022 0.0058 0.0303 0.0312 -0.0001 0.0005 0.0066 0.0282 0.0287 -0.0001 -0.0001 0.0057 

SD 0.0515 0.0559 0.0454 0.0500 0.0338 0.0277 0.0292 0.0261 0.0276 0.0201 0.0178 0.0186 0.0164 0.0169 0.0128 

RMSE 0.0619 0.0663 0.0455 0.0501 0.0343 0.0410 0.0427 0.0261 0.0276 0.0211 0.0333 0.0342 0.0164 0.0169 0.0140 
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 The determinants of cropland values in Midwestern 3
U.S.A. 

 3.1 Introduction 

Farm real estate represents a dominant asset on the farm sector balance 

sheet in the U.S.A. (it accounted for nearly 84% of total U.S. farm assets in 

2009) and is usually the largest investment in the farmers’ portfolio: it is 

therefore considered to be an important indicator of the performance of the 

sector and of the producers’ welfare (Nickerson et al. 2012). The real 

values of agricultural land have been increasing dramatically in recent 

years, particularly starting from the second half of 2000s, raising many 

questions about their macroeconomic determinants and whether the boom 

will turn into a bust (Gloy 2013), especially after the financial crisis that 

invested the U.S.A. and the rest of the world in 2007. The analysis of land 

values also raises a number of policy issues, regarding government support, 

taxation and environmental protection.  

For all these reasons, the empirical literature on the determinants of 

agricultural land values is wide and the economic theory has frequently 

addressed the topic. The relationship between the farmland prices and the 

expected future returns on this asset have been extensively investigated in 

the past (see, for example, Falk 1991; Engsted 1998; Lence and Miller 

1999) and the topic is currently widely addressed. However, despite the 

great amount of economic research efforts, most economic theories have 

only met small empirical evidence (Gutierrez et al. 2007). Among the most 

popular theoretical economic models that have addressed the topic of land 

values behavior in the long-run, one is the Present Value Model (PVM), 

which is reviewed in section 3.2 both from a theoretical and an empirical 

point of view.  

The purpose of this chapter is to investigate the spatial effects that may 

characterize the process of determination of agricultural land values in 
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Midwestern U.S.A., by adopting the PVM as the theoretical framework. In 

order to do so, we choose to conveniently specify and estimate a time-space 

dynamic model that relates land value to its determinants. The employed 

dataset is presented in section 3.3 and the spatial characteristics of the data 

are explored in section 3.4. The model is then estimated by the QML 

estimator that was extensively analyzed in chapters 1 and 2 and the results 

are given and discussed in section 3.5. Section 3.6 presents the necessary 

checks of the stability conditions for the estimated model and the 

computation of long-run elasticities of cropland value with respect to the 

included regressors. Section 3.7 contains the final concluding remarks and 

the discussion of possible future developments. 

 3.2 The present value model 

 The theoretical model 3.2.1

The PVM (Campbell and Shiller 1988; Campbell et al. 1997) is a financial 

model that relates the price of a stock to its expected future returns 

discounted to the present using a constant or time-varying discount rate. It 

is a model that deals with long-horizon asset returns: since dividends in all 

future periods enter the present-value model, the dividend in any single 

period is only a small component of the price and therefore persistent 

movements have much more influence on prices than short-term, temporary 

variations do. When applied to the analysis of land values, we consider the 

price of the stock to be the price of land (in our case, the value of cropland, 

�*); the dividends are measured as cash rents (�&) received by the land 

owners. The value of cropland is therefore related to the capitalized value 

of the current and future stream of cash rents. 

Let the net simple return (&R�?) on a stock be defined as  

&R�? ≡ (�*R�? V �&R�?) �*R⁄ − 1, (3.1) 
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where we assume that the dividend (�&R�?) is paid just before the price 

(�*R�?) is recorded, so that �*R�? is taken to be an ex-dividend price at time 

� V 1, for � � 1,… , ©. The simple gross return is defined as 1 V &R�? and 

this makes clear that an asset’s gross return over the W more recent periods, 

1 V &R�?(W), is defined as the product of the W single period returns from 

� − W V 1 to � (compound returns):  

1 V &R�?(W) � 21 V &R) ∙ (1 V &RS?) ∙ … ∙ (1 V &RS&�?). (3.2) 

Because of the presence of a ratio in equation (3.1), any averaging 

would require a geometric averaging. This motivates the alternative 

definition of continuously compounded returns or log returns of an asset, 

which is defined as the natural logarithm of its gross return: 

)R�? ≡ o�Q(1 V &R�?). (3.3) 

The lowercases letters will denote natural logarithms of the variables 

from now on. 

If we assume constant expected returns, such that ER(&R�?) � &, we 

obtain an equation that relates the current stock prices to the stock price and 

future payoffs in the next period: 

�*R � ER �(�)*+�(,)*+?�, �. (3.4) 

In order to eliminate future-dated expectations, equation (3.4) should 

be solved by repeatedly substituting out future prices and using the Law of 

Iterated Expectations (XR XR�?,¥.# � XR,¥.). After solving for W periods, 

we have: 

�*R � ER -∑ � ??�,�� �&R��&�ä? .V ER -� ?
?�,�& �*R�&., (3.5) 

where the second term on the RHS of equation (3.5) represents the 

discounted value of the stock price, W periods from the present. Assuming 

that, as the time horizon increases, this term shrinks to zero and that W →
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∞,11 we can express the stock price as the expected present value of future 

dividends (�*(,R) out to the infinite future, discounted at a constant rate:  

�*R � �*(,R ≡ ER -∑ � ?
?�,�� �&R��â�ä? .. (3.6) 

The stock price �*R will follow a linear process with a unit root (also 

known as integrated process) if the dividend �&R itself follows a linear 

process with a unit root, which means that shocks would have permanent 

effects on the level of the variable but not on the change in the variable. If 

this is the case, the formula in equation (3.6) can be transformed to a 

relation between two stationary variables by subtracting a multiple of the 

dividend from both sides of the equation: 

�*R − (,)
, � �?,�ER -∑ � ??�,�� ∆�&R�?��â�ä? .. (3.7) 

In this case, even if the dividend and the price processes are not 

stationary, there is a stationary linear combination of prices and dividends 

that makes the two series cointegrated.  

Differently and more realistically, when we assume time-varying 

expected stock returns, the relationship between prices and returns is non-

linear, therefore a log-linear approximation of the model should be 

considered to be more appropriate. According to the model proposed by 

Campbell and Shiller (1988) and equation (3.3), we define the log of the 

gross real rate of return as 

)R�? ≡ o�Q(�*R�? V �&R�?) − o�Q(�*R) (3.8) 

or equivalently 

)R�? ≡ Ï�R�? − Ï�R V o�Q(1 V v30(ÎR�?)), (3.9) 

                                                 
11 This assumption imposes a transversality condition that excludes the presence of a 
rational bubble. The second term on the RHS of equation (3.5) is indeed consistent with 
rational expectations and constant expected returns. Excluding a rational bubble means to 
exclude “financial exuberance episodes in which investors appeared to be betting that 
other investors drive prices even higher in the future, far higher than explained by 
fundamentals” (Gutierrez 2011). 
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where ÎR�? � Ï)R�? − Ï�R�? is the natural logarithm of the dividend-price 

ratio (�&R�?/�*R�?), which is also called spread in financial literature. 

Equation (3.9) can be linearized using a first-order Taylor expansion 

into 

)R�? ≈ 2 V ÎR − 3ÎR�? V ∆Ï)R�?, (3.10) 

where 2 � ^o�Q(3) − (1 − 3) ∙ o�Q(1/3 − 1) and 3 � 1/(1 V �&/�*). 
One should notice that equation (3.10) is a linear difference equation for the 

log stock price analogous to the one that was obtained in (3.4) under the 

assumption of constant expected returns. It can be solved forwardly and, 

under the condition that lim"→â 3" ÎR�" � 0, we obtain 

ÎR ≈ −2/21 − 35 − ∑ 3"â
"äw 2∆Ï)R�?�" − )R�?�"5. (3.11) 

According to equation (3.11), if the stock price is high today, then 

there must be some combination of high dividends and low stock returns in 

the future (Campbell et al. 1997, page 263). This relation holds ex-ante as 

much as ex-post, therefore taking expectations we obtain 

ÎR + 2/21 − 35 ≈ −ER ∑ 3"â
"äw 2∆Ï)R�?�" − )R�?�"5#. (3.12) 

The rationale of the PVM is embodied in equation (3.12) as it 

expresses the current value of the dividend-price ratio in terms of the 

present discounted value of expected future values of ∆Ï)R�? and )R�? 

(Gutierrez et al. 2007, page 164). The log dividend-price ratio is high only 

when dividends are expected to grow slowly or the expected stock returns 

are high and, when the dividend follows a log-linear unit-root process, the 

log dividend-price ratio is stationary provided that the expected stock return 

is stationary (Campbell et al. 1997). According to the PVM, if the agents 

are fully rational, then the asset prices (e.g. farmland values) and the 

dividends generated from that asset (e.g. cash rents) cannot drift 

persistently far apart from each other. 
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Let us also assume that the return to our asset XR,)R. exceeds the 

expected return of another asset XR,QR. by a constant ) that represents the 

risk premium on investments on our asset; the PVM reduces to  

ÎR V 22 ^ )5/21 − 35 ≈ ER ∑ 3"â"äw (QR�?�" − ∆Ï)R�?�")#. (3.13) 

By supposing further that the expected rate of return on the alternative 

asset is stationary and that the logs of dividends and prices are non-

stationary but their differences are, then it should be concluded that the 

RHS of equation (3.13) is stationary too and the constant excess returns 

PVM holds. According to this finding, the PVM has been tested in the 

literature by estimating and then testing for cointegration the following 

equation 

Ï�R � O V 4Ï)R V -R, (3.14) 

where O � ^22 ^ )5/21 − 35 and - is a zero-mean disturbance, or 

equivalently 

ÎR ^ O � 21 − 45Ï)R − -R. (3.15) 

If 4 � 1, intuitively, the log prices move one-to-one with log 

dividends and their unit-root components cancel out thus leaving the spread 

unaffected. On the contrary, if 4 $ 1, then 21 − 45Ï)R does not disappear 

and the spread is non-stationary (Gutierrez et al. 2007). 

 Empirical literature on the PVM and farmland prices 3.2.2

Many empirical studies on the determinants of farmland prices refer to the 

PVM as their theoretical framework. According to it, the value of an 

income-producing asset such as farmland is the capitalized value of the 

current and future stream of earnings from owing that asset (often 

measured, not exclusively, as cash rents). In other words, land values 

should equal the present value of all future expected cash flows stemming 

from a productive use of that land and therefore changes in expected 
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returns to farming should explain changes in farmland prices (Du et al. 

2007).  

The empirical testing of the PVM has consisted in estimating equation 

(3.14) for each cross-sectional unit � and then testing the stationarity of the 

residuals by means of conventional cointegration tests. However, the 

empirical results do not fully support the PVM as the most appropriate for 

explaining farmland values. Among the empirical studies on this topic, we 

recall the analysis on farmland prices in Iowa conducted by Falk (1991), 

that ended up rejecting the PVM because, although highly correlated, 

farmland price and rent movements are not consistent with that. Clark et al. 

(1993) found similar results for Illinois, Tegene and Kuchler (1993) and 

Engsted (1998) for three U.S. regions (the Lake States, the Corn Belt and 

the Northern Plains). The failure to find cointegration is addressed by 

Gutierrez et al. (2007) by allowing structural breaks in the cointegrated 

relationship that represent a shifting risk premium on farmland investments, 

thus finding results in favor of the PVM. 

Moving from the classical literature on PVM, some other trends have 

been gaining popularity in the analysis of farmland value. Some researchers 

concentrated on the influence of urbanization (Hardie et al. 2001; Plantinga 

et al. 2002; Livanis et al. 2006 among others); others focused on the testing 

of the PVM in presence of transaction costs (Lence and Miller 1999; de 

Fontnouvelle and Lence 2001). Important contributions tended to make 

distinctions among the streams of rents, particularly by arguing that 

farmland rents do not only consist in cash rents and that government 

payments should be considered as rent sources, but also distinguishing 

between different types of public subsidies (Clark et al. 1993; Weersink et 

al. 1999; Goodwin et al. 2003 among the others). 



  

136 
 

 3.3 The data 

All the employed data for the agricultural sector are made available by the 

United States Department of Agriculture (USDA), National Agricultural 

Statistics Service12 (NASS) and Economic Research Service13. The 

estimates of land values are based on annual survey data and report the 

market value14 per acre of cropland only (in current dollars), so that 

problems arising from heterogeneity in land quality and use are limited 

(pastureland, for example, is not included). Cropland only includes the land 

used to grow field crops, vegetables or land harvested for hay. This also 

permits to exclude the value of farm buildings and take the value of land 

only into consideration.  

Net cash rents are also estimated only for cropland from data on gross 

cash rents (in current dollars). Net cash rents are used to measure returns 

from land, that is from agricultural production, and can be interpreted as a 

Ricardian land rent. Besides this type of rent, agricultural support programs 

also represent a land return which may capitalize into land value. Direct 

government payments per acre of cropland, as estimated by the USDA-

Economic Research Service, are therefore used as explanatory variables.  

All monetary variables were deflated using the GDP implicit price 

deflator (reference year 2005) from the U.S. Department of Commerce, 

Bureau of Economic Analysis.  

Population density, calculated from the annual estimate of population 

from the U.S. Department of Commerce, Bureau of Census, is included 

among the covariates of the model as a proxy for urban pressure, that 

represents competing demand for land for non-agricultural use (Feichtinger 

and Salhofer 2011).  

                                                 
12 http://www.nass.usda.gov/Quick_Stats/ 
13 We thank Doctor Kenneth Erickson for making the dataset available for this research 
through a patient and thorough collection and check of the data. 
14 The land value is the value at which the land used for agricultural production can be sold 
under current market conditions, if allowed to remain on the market for a reasonable 
amount of time (USDA-NASS 2012). 
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The employed dataset is a panel of annual observations for 12 U.S. 

States and 39 years, between 1971 and 2009. The considered States are part 

of the Midwestern United States (Lake States, Corn Belt States, Northern 

Plains and Delta States) (Figure 3.1), for which more homogeneous data are 

available, less affected by urban influence (like those for Northeaster 

States). Moreover, cropland is mostly found in the Midwest States, while 

the Western States, that have lower shares of cropland to total farmland, are 

less heavily surveyed by NASS for cash rents and the data on cropland per 

acre are either thinner or not available because sometimes limited only to 

either irrigated or non-irrigated cropland.  

The availability of data on cropland value per acre for the selected 

variables turned out to be constraint that led to the exclusion of States such 

as Louisiana, Missouri and Kansas form the original dataset. The 

availability of data on cash rents, only limited to 2009 for South Dakota, 

determined the time-span. 

Figure 3.1. Map of the States included in the regression analysis 
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 3.4 Exploratory Spatial Data Analysis 

Any spatial analysis requires the definition of a spatial weight matrix. As a 

robustness check for all the results, we employed three different definitions 

of neighborhood that led to the specification of some different spatial 

weight matrices, all of them based on geographical proximity between 

States. In particular, the rook, queen and distance criteria of proximity 

where alternatively adopted. All spatial weight matrices are row-

standardized.  

The elements of the distance-based spatial weight matrices before row-

standardization are defined as the inverse of the squared arc distance 

between States � and %: 
D 8�" � 0 if � � %8�" � 1/:�"0 if :�" 9 ;8�" � 0 otherwise. (3.16) 

Different values were taken as cut-off distance (D): the minimum 

distance that allows each State to have at least one neighbor; 300 miles 

(about 400 km); the first quartile of the distance distribution (378.7 miles, 

about 609 km); the second quartile of the distance distribution (524.6 miles, 

about 844 km); the third quartile of the distance distribution (729.6 miles, 

about 1174 km). 

Table 3.1. Connectivity schemes resulting from the specification of different spatial 
weight matrices 

  Number of neighbors 

 Spatial Weight Matrix 1 2 3 4 5 6 7 8 9 10 11 

C
u

t-
o

ff 
 

d
is

ta
n

ce
 Minimum 8 4          

300 miles 6 4 2         

I quartile (379 miles) 2 4 1 4 1       

II quartile (525 miles) 
 

2  4 1 2 2 1 1   

III quartile (730 miles) 
 

   1 1 2 3 2 2 1 

 Rook 2 3 3 3 1       

 Queen 1 5 4 3 1       
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Although the resulting connectivity schemes were quite different 

(Table 3.1), the results of the ESDA proved to be quite robust to the choice 

of i. We therefore choose to present only the results for a distance-based 

spatial weight matrix with a cut-off distance fixed at the 1st quartile of the 

distance distribution, since we believe it represents a good average picture.  

A first step in the ESDA is to determine whether there is overall spatial 

dependence among the observed cropland values. This is assessed through 

the well-known Moran’s I index and scatterplot. The Moran’s I index 

(Table 3.2) shows significant positive values for all considered years thus 

leading to reject the null hypothesis of no spatial dependence in favor of 

positive spatial dependence in the distribution of cropland values. 

Table 3.2. Results for the Moran’s I index for observed cropland value (1971 - 2009) 

Year Moran’s I p-value  Year Moran’s I p-value 

1971 0.439 0.026  1991 0.499 0.014 

1972 0.465 0.019  1992 0.478 0.018 

1973 0.454 0.022  1993 0.539 0.010 

1974 0.441 0.024  1994 0.501 0.010 

1975 0.425 0.030  1995 0.585 0.007 

1976 0.437 0.028  1996 0.568 0.007 

1977 0.519 0.013  1997 0.707 0.002 

1978 0.543 0.010  1998 0.720 0.002 

1979 0.554 0.009  1999 0.748 0.001 

1980 0.539 0.011  2000 0.770 0.001 

1981 0.506 0.015  2001 0.778 0.001 

1982 0.465 0.020  2002 0.783 0.001 

1983 0.440 0.024  2003 0.522 0.012 

1984 0.536 0.010  2004 0.778 0.001 

1985 0.646 0.003  2005 0.762 0.001 

1986 0.669 0.002  2006 0.761 0.001 

1987 0.708 0.001  2007 0.756 0.001 

1988 0.598 0.005  2008 0.733 0.001 

1989 0.477 0.017  2009 0.733 0.001 

1990 0.511 0.013     

 

The same information is displayed by the Moran scatterplots (Figure 

3.2). 
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Figure 3.2. Moran scatterplots for observed cropland value (years 1971 to 2009) 
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Figure 3.2. (continued) 
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Figure 3.2.  (continued) 
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Figure 3.2.  (continued) 
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Figure 3.2.  (continued) 
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Figure 3.2.  (continued) 
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Figure 3.2.  (continued) 
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 3.5 Results and discussion 

The analysis on the determinants of cropland values in 12 U.S. States over 

the period 1971-2009 is conducted by estimating a time-space dynamic 

model. Fixed individual effects are added to the specification in order to 

take into account unobserved time-invariant sources of heterogeneity such 

as climate and land quality (Kirwan 2009). Different sets of covariates were 

included, as described in equations (3.17) and (3.18): 

Ï��R � ]6Ï��R V �Ï��RS? V Ö6Ï��RS? V 4?Ï)�R V 400:�R V Ï� V -�R; (3.17) 

Ï��R � ]6Ï��R V �Ï��RS? V Ö6Ï��RS? V 4?Ï)�R V 400:�R V 4
Q0�R V Ï� V-�R, (3.18) 

where Ï� is the real cropland value, Ï) is the real net cash rent for cropland, 

0: is the population density and Q0 are real direct government payments. 

All variables are included in the model after a natural logarithm 

transformation.  

Given that in our dataset T ~ N and that, according to the MC analysis 

performed in chapter 2, spatial GMM-type estimators perform better for 

N ~ T, models (3.17) and (3.18) are estimated by the QML estimator by 

Yu et al. (2008) for different spatial weight matrices i, showing results 

that appear to be robust to the choice of the weighting scheme.  

 The effects of net cash rents and population density on cropland 3.5.1
values 

According to the PVM, we expect net cash rents to have a positive impact 

on cropland value. The estimation of model (3.17) (Table 3.3) indicates a 

significant, albeit limited, coefficient for the expected net cash rents (0.07-

0.08 depending on the spatial weight matrix). Population density shows a 

higher positive coefficient (0.3). Indeed, increasing population density may 

increase the demand for agricultural goods and therefore agricultural land 
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and, at the same time, it may be sign of increasing urban pressure that 

enhances competing demand for land for non-agricultural use. A stronger 

effect of changes in population than of returns to farmland on farmland 

values has already been found for some U.S. regions by applying an 

entropy-based information approach: Salois et al. (2011) find that, although 

changes in farmland values are more strongly associated with changes in 

returns to farmland at the national level, the relationship appears to change 

over time and region and for some regions (Northeast, Corn Belt, 

Appalachia, Mountain and Pacific) population has become more 

informative. 

Table 3.3. QML estimates for the coefficients of model (3.17) 
Model 
(3.17) Rook matrix  

Distance-based matrix 
(I quartile) 

Coeff. Estimate t-stat  Estimate t-stat ] 0.382 8.899***   0.382 8.986***  � 0.734 19.824***   0.766 21.616***  Ö -0.182 -3.254** *  -0.214 -3.906***  4? (Ï)) 0.079 2.720** *  0.072 2.443** 
40	20:5 0.328 3.426***   0.320 3.370***  

Significance level: *** =1% (�t-stat� > 2.58); ** =5% (�t-stat� > 1.96) ; *=10% (�t-stat� >1.64). 

The reasons for such limited effects of the covariates may be 

numerous. One possible explanation relies in the inclusion of State-specific 

fixed effects; some results in the literature already support the idea that they 

may absorb part of the cross-sectional effect of the expected land rent, thus 

suggesting that structural determinants of the expected rents are more 

effective in determining cropland value than short-run expected 

fluctuations (see Duvivier et al. 2005 for a study on a Belgian case). The 

high and highly significant coefficients obtained for the spatial and 

temporal autoregressive coefficients (] and �) suggest that these may also 

absorb part of the effects of the covariates. The time-space autoregressive 

coefficient is also significant (Ö), albeit negative and smaller in absolute 

value.  
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 The inclusion of government payments  3.5.2

The inclusion of government payments as a covariate into the model does 

not return straightforward results (Table 3.4). First, the coefficient 

associated to direct government payments is significant and negative, 

indicating a negative impact of public subsidies on cropland value. This 

result is unexpected and requires deeper analysis and interpretation. Then, 

when we consider the effects on the other coefficients, it should be noted 

that the spatial and temporal effects are not significantly affected, whereas 

the inclusion of government payments enhances the impact of population 

density (whose coefficient rises from 0.3 to 0.5). Yet the most remarkable 

consequence is that caused on the estimates of β?, that turn to be negative 

and not significant. 

Table 3.4. QML estimates for the coefficients of model (3.18) 
Model 
(3.18) Rook matrix  

Distance-based matrix 
(I quartile) 

Coeff. Estimate t-stat  Estimate t-stat 

] 0.382 9.074***   0.382 9.161***  
� 0.713 20.359***   0.747 22.278***  
Ö -0.187 -3.529***   -0.221 -4.248***  

4? (Ï)) -0.012 -0.415  -0.018 -0.576 
40	20:5 0.548 5.659***   0.538 5.598***  4
	2Q05 -0.048 -6.906***   -0.047 -6.864***  

Significance level: *** =1% (�t-stat� > 2.58); ** =5% (�t-stat� ~ 1.96) ; *=10% (�t-stat� ~
1.64). 

The empirical literature has already addressed the issue in various 

contributions that led to very different conclusions. A central point that 

should be taken into consideration concerns the fact that agricultural 

support policy instruments are thought to be highly correlated with land 

rents, so that part of the literature concentrates on explaining the 

relationship between these two variables rather that their effect on land 

values, trying to assess whether agricultural policy benefits landowners of 

farmers the most (see, for example, Roberts et al. 2003; Lence and Mishra 

2003; Goodwin et al. 2004; Latruffe and Le Mouël 2009; Kirwan 2009). 
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Moreover, different types of subsidies are expected to have different 

impacts on cash rents and land values, therefore a distinction between the 

programs of agricultural support appears to be necessary in order to provide 

more accurate information. Lence and Mishra (2003), for example, found 

that alternative farm programs have different effects on cash rents in Iowa, 

with positive effects of market loss assistance and production flexibility 

contracts, no effects of conservation reserve programs and a negative 

impact of deficiency payments. Similar results are found by Goodwin et al. 

(2003). Feichtinger and Salhofer (2011) also found different capitalization 

rates for particular types of payments, with lower elasticity for agro-

environmental payments, that often cause land rents to decrease.  

The sources of bias when including government payments in the model 

are therefore numerous and the results obtained through model (3.18) can 

only be considered as an indication of the need of further research that 

takes into account the evolutions of agricultural policy in time and the 

differences in types of agricultural subsidies. 

 3.6 Short run and long run land value elasticity 

The coefficients β? and β0 estimated in sub-section 3.5.1 cannot be 

interpreted exactly as the elasticity of land value to, respectively, cash rents 

and population density, because of the presence of the variable Ï� on the 

RHS of model (3.17). Another contribution we make is therefore to provide 

an estimation of the impact and long-run elasticity of cropland values in 

response to changes in net cash rents and population density.  

Before applying long-run value effect analysis, we test the series 

stationarity, in order to be sure that the process we are analyzing is not an 

explosive one. In order to do so, from equation (3.17) we define the � 7 � 

matrix  

á � 2Z ^ ]65S?2�Z V Ö65 (3.19) 
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where Z is an � 7� identity matrix and 6 is an exogenous spatial weight 

matrix of the same dimensions.  

Using á we can re-write model (3.17) as 

Ï��R � áÏ�RS? V 2Z ^ ]65S?24?Ï)�R V 400:�R V Ï� V -�R5 (3.20) 

The stability conditions of the process described in equation (3.20) can 

be now analyzed by computing the eigenvalues of the á matrix.  

Depending on the eigenvalues, i.e. the characteristic roots of	á, we 

have three possible cases. When all the roots are less than 1 in absolute 

value, we call it a stable case. When all the roots are equal to 1, we term it a 

pure unit root case, which generalizes the unit root dynamic panel data 

model in the time series literature to include spatial elements. When some 

of the roots (but not all) are equal to 1, we define it as a spatial 

cointegration case, where the unit roots in the process are generated with 

mixed time and spatial dimensions.  

Using the estimates obtained in section 3.5.1 for the autoregressive 

parameters by using a rook spatial weight matrix15 (�u � 0.734;	]r =
0.382;	Öu = −0.182), we find the following eigenvalues of matrix á 

[0.893, 0.850, 0.773, 0.759, 0.735, 0.710, 0.681, 0.696, 0.693, 0.692, 

0.893, 0.663]. Since all the values are less than 1, we can conclude that the 

system is stable. Hence the computation of elasticities for cash rents and 

population density is possible and can be easily done by solving the 

dynamic equation (3.20), i.e. 

Ï��R � 2Z ^ áL5S?2Z ^ ]65S?24?Ï)�R V 400:�R V Ï� V -�R5. (3.21) 

where L is the lag operator, that operates on an element of a time series to 

produce the previous element, such that, given ¥ � �¥?, ¥0, ¥
, … �, 
¥�R� � ¥RS?, for all � > 1. 

                                                 
15 The results lead to the same conclusions when the estimates obtained by using the other 
spatial weight matrices (Table 3.3) are used in the computations.  
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Using the estimates 4r?=0.079 and 4r0=0.328 and � � 0,… , 100, we 

find that the impact elasticity of cropland value (i.e. the elasticity calculated 

at � = 0) is equal to 0.13 with respect to cash rents and 0.53 with respect to 

population density. These values represent the expected immediate 

percentage changes that a 1% percent change in, respectively, cash rents 

and population density would cause on cropland values. 

Figure 3.3. Long-run elasticity of cropland value with respect to net cash rents and 
population density 
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that is usually not verified in empirical analyses. Gutierrez et al. (2007) find 

similar results by allowing for structural breaks in the cointegration 

relationship between the two time series, for a large panel of 31 U.S. States 

for the period 1960-2000. Previous empirical contributions, mainly based 

on time-series analysis, lead to different conclusions and, as previously 

said, end up rejecting the PVM and generally finding evidence of 

divergence between the present value of future cash flows and the market 

price of farmland (Falk 1991; Clark et al. 1993a; Engsted 1998). 

 3.7 Concluding remarks 

The analysis of the determinants of land value in the U.S.A. is a relevant 

field of study given the importance of farm real estate on the farm balance 

sheet and because of the great number of policy issues that it raises. We 

adopted the PVM framework, according to which the value of land is the 

capitalized value of the current and future stream of earnings from owing 

that asset. In order to consider a more homogeneous dataset, only 12 States 

of Midwestern U.S.A., for which more reliable agricultural data are 

available, were included in the analysis and only cropland was taken into 

consideration when collecting data on land value and cash rents. Our model 

also introduced population density among the regressors as a proxy for 

urban pressure, in order to take into account the effects that competing 

alternative land uses might exert. 

Although a fairly large body of literature has been devoted to this 

topic, spatial econometrics has only found limited application in this 

empirical field so far. We believe, as the ESDA confirmed, that data on 

land values are characterized by effects of spatial dependence that should 

be taken into account in estimating an econometric model that aims at 

explaining the factors that contribute to land value formation. In order to do 

so, we chose to estimate a model in which a spatial lag of the dependent 

variable is included. The temporal dynamics is described as an 
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autoregressive process of first order and a spatiotemporal lag was also 

introduced so as to make our model a truly time-space dynamic model. 

The results that we obtained confirm the existence of significant spatial 

and temporal dependence and therefore the need to take them into 

consideration. Our estimate of the long-run elasticity of cropland value with 

respect to net cash rents, which is close to unity, is an element favorable to 

the validity of the PVM assumptions. This is a result that has found only 

limited support in the literature on land values, which generally ends up 

rejecting the PVM. Gutierrez et al. (2007) find similar evidence in favor of 

the theoretical model when allowing for structural breaks in the time series. 

However, further checks on the estimated elasticity of 1.2 are required 

before drawing a conclusion on this.  

The effect of cash rents in determining land values is smaller than that 

of population density, which also has a positive significant effect on 

cropland values. Both variables appear to exert the biggest part of their 

influence on land values in about 20 years, as the computation of long-run 

elasticities revealed, even if about half of that impact is already reached 

after about 6 years. 

The inclusion of government payments among the regressors is 

motivated by the fact that they can also be considered as an expected future 

stream of earnings from owing land, with relevant policy implications. 

However, the results that we have obtained so far do not allow to draw final 

conclusions on the impact of agricultural support programs on cropland 

values. As suggested by the vast literature on this topic, a deeper reasoning 

and more disaggregated data are needed in order to provide a better model 

specification, capable of taking into account the evolution of U.S. 

agricultural policy in time and the differences between different 

instruments of government intervention. 

Future developments of this analysis should therefore follow two main 

paths. On the methodological point of view, the econometric model that 
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was estimated is one that has not been widely employed in empirical 

analyses, because of the complexity of its estimation and the lack of already 

available routines in econometric software. No standard and widely known 

testing procedures are available yet. Nevertheless we consider running 

precise specification testing as a priority in order to complete the present 

analysis. Moreover, following Gutierrez et al. (2007), the model should 

also be tested for structural breaks that may occur in the time series. This is 

not only a methodological extension of the study because detecting and 

allowing for structural breaks may also serve as a means for adding to the 

analysis of government support intervention. This is indeed a second 

direction that a more in-depth analysis should follow in the future. 
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Conclusions 

Since the late 1970s, when spatial econometrics started to grow as an 

autonomous branch of the econometric discipline, it has been characterized 

by important developments both from a theoretical and from an empirical 

point of view. On the one hand, an increasing number of testing procedures 

have been proposed able to detect the presence of spatial effects; the spatial 

econometric modeling, which used to focus mainly on cross-sectional data, 

has turned its interest onto the econometrics of panel data, static and 

dynamic; the estimation procedures have addressed an increasing number 

of issues and by now many different estimators have been developed and 

tested in their large asymptotic properties, each one suitable for a different 

model specification. On the other hand, the empirical field of application of 

these methodologies has extended from regional and urban studies to other 

fields, such as environmental studies or other branches of economics. 

Nevertheless, the gap between theoretical advances and empirical 

applications is still wide. 

The aim of this work, after a comprehensive review of the main tools 

of spatial econometricians, is therefore to provide an empirical application 

of the most recently introduced techniques of spatial analysis to a field of 

study in which the potential of spatial econometrics has not been fully 

explored yet. 

In chapter 1 we provided a review not only of the most widely known 

and applied techniques of analysis of spatial cross-sectional data, but also 

of the most recent improvements that mainly regard the spatial 

econometrics of panel data. We highlighted the difficulties that the 

temporal autocorrelation of data adds to the estimation procedures once the 

spatial autocorrelation has been treated. In order to address the issue of the 

gap that exists between theoretical and empirical advances, we focused on 

software availability, showing that the lack of ready-to-use routines 

contributes to hindering the application of new techniques. For example, 
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we showed that some programming skills are needed in order to be able to 

estimate spatial dynamic panel data models. 

Our contribution to the empirical literature that applies the most recent 

spatial estimators comprised two different approaches.  

Chapter 2 provided an analysis of the small sample properties of some 

estimators (the QML estimator by Yu et al. (2008) and some difference-

GMM estimators) for a time-space dynamic panel data model, for different 

temporal and cross-sectional dimensions and different degrees of spatial, 

temporal and spatiotemporal dependence. The reason for conducting such 

an analysis relies on the fact that the empirical researcher is usually 

unaware of what the correct model specification is for his/her data and, 

although these estimators have been proved to be asymptotically consistent, 

one cannot usually count on datasets of dimensions such that they make 

small sample biases only remote threat. Indeed, the RMSE and bias 

associated to the estimates of the coefficients not surprisingly decrease as 

the time and cross-sectional dimension of the dataset increase; this is 

particularly true for GMM estimators, as expected. The QML estimator was 

found to show the best small-sample performance in terms of RMSE for all 

values of T and N, mainly thanks to a considerably lower variability, both 

in a static and a quasi-unit root scenario.  

We also focused on the assessment of the risks implied by ignoring the 

spatial dependence that characterizes the data. To our knowledge, empirical 

researchers, although fully warned on the theoretical consequences of such 

a misspecification, are not provided with a quantitative estimation of the 

bias that may characterize the estimates of the regression coefficients. Our 

conclusion is that the time-saving choice of ignoring the presence of spatial 

dependence in the data may not necessarily bring to tremendous drawbacks 

in terms of biased estimates of the parameters of the covariates, although 

the bias tends to increase as the extent of spatial dependence increases. 

Nevertheless, the main failure of non-spatial estimation is the fact that it 
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prevents the identification and estimation of spatial spillover effects when 

present, thus limiting the information that can be drawn from the data. 

The final chapter proposes an empirical application of one among the 

most recent estimating procedures proposed in the spatial econometrics 

literature to a field of analysis in which spatial econometrics has only found 

limited application so far. We approached the study of the determinants of 

agricultural land values in 12 Midwestern U.S.A. in the period 1971-2009 

by choosing the PVM as the reference theoretical framework and by 

estimating a time-space dynamic panel data model with fixed effects. After 

having taken into account the spatial dependence evidenced by the ESDA, 

our purpose was therefore to test the assumption at the basis of the PVM, 

according to which land values should equal the present value of all future 

expected cash flows stemming from a productive use of that land. In order 

to do so, we regressed cropland values per acre on the net cash rents per 

acre and population density, all variables expressed in natural logarithms. 

The results that we obtained confirmed the need to take spatial and 

temporal dependence into consideration and the PVM assumptions are 

confirmed by the estimates of the long-elasticity of cropland value with 

respect to this variable close to unity. This is a result that has found only 

limited support in the literature on land values, which generally ends up 

rejecting the PVM and may be at least partially due to the inclusion of 

spatial effects in the model specification. 

Population density, that was included as a proxy for urban pressure, 

proved to be an important determinant of agricultural land values. The 

inclusion of government payments among the regressors, motivated by the 

fact that they can also be considered as an expected future stream of 

earnings from owing land, with relevant policy implications, does not lead 

to final conclusions on the impact of agricultural support programs on 

cropland values: a deeper reasoning and more disaggregated data are 

needed in order to provide a better model specification, capable of taking 
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into account the evolution of U.S. agricultural policy in time and the 

differences between different instruments of government intervention. 

Together with some methodological improvements, this represents a path 

for future developments of our empirical analysis.  

In conclusion, we found that the application of the most recently 

introduced tools of spatial econometrics to new empirical fields of analysis 

is capable of opening new research streams, still very poorly explored. The 

main factors that prevent this are due to the lack of already available 

routines for estimating spatial dynamic panel data models, thus requiring 

the empirical researchers to have some programming skills. Nevertheless, 

the empirical application of this rather recent econometric technique 

appears to be important in order to fully explore their potential contribution 

to a deeper understanding of many economic issues and, at the same time, 

highlight possible unexpected small sample biases that may arise. 

 

  



  

161 
 

References 

Abreu, Maria, Henry L. F. De Groot, and Raymond J. G. M. Florax. 2005. 
“Space and Growth: a Survey of Empirical Evidence and Methods”. 
Région et Développement 21: 13–44. 

Anselin, Luc. 1988a. Spatial Econometrics : Methods and Models. 
Dordrecht; Boston: Kluwer Academic Publishers. 

———. 1988b. “Lagrange Multiplier Test Diagnostics for Spatial 
Dependence and Spatial Heterogeneity.” Geographical Analysis 20 
(1): 1–17. 

———. 1999. “Spatial Econometrics.” (Working Paper) 
https://csiss.ncgia.ucsb.edu/aboutus/presentations/files/baltchap.pdf. 

———. 2001. “Spatial Econometrics.” In A Companion to Theoretical 
Econometrics, edited by Badi H. Baltagi. Blackwell Companions to 
Contemporary Economics. Malden, Mass: Blackwell. 

———. 2002. “Under the Hood Issues in the Specification and 
Interpretation of Spatial Regression Models”. Agricultural 
Economics 27: 247–267. 

———. 2005. “Exploring Spatial Data with GeoDa: A Workbook”. Centre 
for Spatially Integrated Social Sciences. 
https://geodacenter.asu.edu/system/files/geodaworkbook.pdf. 

———. 2010. “Thirty Years of Spatial Econometrics.” Papers in Regional 
Science 89 (1): 3–25.  

Anselin, Luc, Anil K. Bera, Raymond Florax, and Mann J. Yoon. 1996. 
“Simple Diagnostic Tests for Spatial Dependence”. Regional 
Science and Urban Economics 26 (1): 77–104. 

Anselin, Luc, and Raymond J. G. M. Florax. 1995. “Small Sample 
Properties of Tests for Spatial Dependence in Regression Models: 
Some Further Results.” In New Directions in Spatial Econometrics, 
edited by Luc Anselin and Raymond J. G. M. Florax, 21–74. Berlin, 
Heidelberg: Springer Berlin Heidelberg. 

Anselin, Luc, Julie Le Gallo, and Hubert Jayet. 2008. “Spatial Panel 
Econometrics.” In The Econometrics of Panel Data, edited by 
László Mátyás and Patrick Sevestre, 46: 625–660. Berlin, 
Heidelberg: Springer Berlin Heidelberg.  

Arbia, Giuseppe. 2006. Spatial Econometrics Statistical Foundations and 
Applications to Regional Convergence. New York: Springer Berlin 
Heidelberg.  



  

162 
 

Arbia, Giuseppe, Michele Battisti, and Gianfranco Di Vaio. 2007. “Do 
Institutions Matter More Than Geography? Empirical Tests of 
Spatial Growth Regressions for the Regions of Europe.” In . 
http://ricerca.economiaefinanza.luiss.it/dptea/files/llwp57.pdf. 

Arellano, Manuel, and Stephen Bond. 1991. “Some Tests of Specification 
for Panel Data: Monte Carlo Evidence and an Application to 
Employment Equations.” The Review of Economic Studies 58 (2): 
277.  

Baltagi, Badi H. 2005. Econometric Analysis of Panel Data. 3rd ed. 
Chichester ; Hoboken, NJ: J. Wiley & Sons. 

Baltagi, Badi H., Seuck Heun Song, and Won Koh. 2003. “Testing Panel 
Data Regression Models with Spatial Error Correlation.” Journal of 
Econometrics 117 (1): 123–150.  

Bivand, Roger. 2006. “Implementing Spatial Data Analysis Software Tools 
in R.” Geographical Analysis 38 (1): 23–40.  

———. 2013. “‘Spdep’. Spatial Dependence: Weighting Schemes, 
Statistics and Models.” http://cran.r-
project.org/web/packages/spdep/spdep.pdf. 

Blundell, Richard, and Stephen Bond. 1998. “Initial Conditions and 
Moment Restrictions in Dynamic Panel Data Models.” Journal of 
Econometrics 87 (1): 115–143.  

Bontempi, Maria Elena, and Irene Mammi. 2012. “A Strategy to Reduce 
the Count of Moment Conditions in Panel Data GMM.” SSRN 
Electronic Journal.  

Bowsher, Clive G. 2002. “On Testing Overidentifying Restrictions in 
Dynamic Panel Data Models.” Economics Letters 77 (2): 211–220.  

Burridge, Peter. 1980. “On the Cliff-Ord Test for Spatial Autocorrelation.” 
Journal of the Royal Statistical Society B 42: 107–108. 

Campbell, J. Y., and R. J. Shiller. 1988. “The Dividend-price Ratio and 
Expectations of Future Dividends and Discount Factors.” Review of 
Financial Studies 1 (3): 195–228.  

Campbell, John Y, Andrew W Lo, and Archie Craig MacKinlay. 1997. The 
Econometrics of Financial Markets. Princeton, N.J.: Princeton 
University Press. 

Case, Anne C., Harvey S. Rosen, and James R. Hines. 1993. “Budget 
Spillovers and Fiscal Policy Interdependence”. Journal of Public 
Economics 52 (3): 285–307. 

Clark, J. Stephen, Murray Fulton, and John T. Scott. 1993a. “The 
Inconsistency of Land Values, Land Rents, and Capitalization 



  

163 
 

Formulas”. American Journal of Agricultural Economics 75 (1): 
147-155.  

Clark, J. Stephen, K. K. Klein, and Shelley J. Thompson. 1993b. “Are 
Subsidies Capitalized into Land Values? Some Time Series 
Evidence from Saskatchewan.” Canadian Journal of Agricultural 
Economics/Revue Canadienne D’agroeconomie 41 (2): 155–168.  

Cliff, A. D, and J. K Ord. 1981. Spatial Processes : Models & Applications. 
London: Pion. 

Cliff, Andrew, and Keith Ord. 1972. “Testing for Spatial Autocorrelation 
Among Regression Residuals.” Geographical Analysis 4 (3): 267–
284. 

Cressie, Noel A. C. 1993. Statistics for Spatial Data. Rev. ed. Wiley Series 
in Probability and Mathematical Statistics. New York: Wiley. 

Dall’Erba, Sandy, and Julie Le Gallo. 2008. “Regional Convergence and 
the Impact of European Structural Funds over 1989-1999: A Spatial 
Econometric Analysis”. Papers in Regional Science 87 (2): 219–
244. 

De Fontnouvelle, Patrick, and Sergio H. Lence. 2001. “Transaction Costs 
and the Present Value ‘Puzzle’ of Farmland Prices.” Southern 
Economic Journal 68 (3): 549–565. 

Doreian, P. 1980. “Linear Models with Spatially Distributed Data: Spatial 
Disturbances or Spatial Effects?”. Sociological Methods & 
Research 9 (1): 29–60. 

Drukker, David M., Hua Peng, Ingmar R. Prucha, and Rafal Raciborski. 
2011a. “Creating and Managing Spatial-weighting Matrices Using 
the Spmat Command”. Technical report, Stata.  

Drukker, David M., Ingmar R. Prucha, and Rafal Raciborski. 2011b. “A 
Command for Estimating Spatial-autoregressive Models with 
Spatial-autoregressive Disturbances and Additional Endogenous 
Variables.” Technical report, Stata.  

———. 2011c. “Maximum-likelihood and Generalized Spatial Two-stage 
Least-squares Estimators for a Spatial-autoregressive Model with 
Spatial-autoregressive Disturbances”. Technical report, Stata. 

Du, Xiaodong, David A. Hennessy, and William M. Edwards. 2007. 
“Determinants of Iowa Cropland Cash Rental Rates: Testing 
Ricardian Rent Theory”. Center for Agricultural and Rural 
Development Iowa State University, Working Paper 07-WP 454.  

Duvivier, Romain, Frédéric Gaspart, and Bruno Henry de Frahan. 2005. “A 
Panel Data Analysis of the Determinants of Farmland Price: An 
Application to the Effects of the 1992 CAP Reform in Belgium.” In 



  

164 
 

99th Seminar of the EAAE (European Association of Agricultural 
Economists). Copenhagen, Denmark. 

Eff, Anthon E. 2008. “Weight Matrices for Cultural Proximity: Deriving 
Weights from a Language Phylogeny.” Structure and Dynamics, 3 
(2).  

Elhorst, J. Paul. 2005. “Unconditional Maximum Likelihood Estimation of 
Linear and Log-Linear Dynamic Models for Spatial Panels.” 
Geographical Analysis 37 (1): 85–106.  

———. 2010. “Spatial Panel Data Models.” In Handbook of Applied 
Spatial Analysis, edited by Manfred M. Fischer and Arthur Getis, 
377–407. Berlin, Heidelberg: Springer Berlin Heidelberg.  

Engsted, Tom. 1998. “Do Farmland Prices Reflect Rationally Expected 
Future Rents?” Applied Economics Letters 5 (2): 75–79.  

Ertur, Cem, Julie Le Gallo, and Catherine Baumont. 2006. “The European 
Regional Convergence Process, 1980-1995: Do Spatial Regimes 
and Spatial Dependence Matter?” . International Regional Science 
Review 29 (1): 3–34. 

Falk, Barry. 1991. “Formally Testing the Present Value Model of Farmland 
Prices.” American Journal of Agricultural Economics 73 (1): 1.  

Feichtinger, Paul, and Klaus Salhofer. 2011. “The Valuation of 
Agricultural Land and the Influence of Government Payments.” 
Edited by Belgium) Centre for European Policy Studies (Brussels. 
Centre for European Policy Studies (CEPS), Factor Markets project.  

Fingleton, B. 1999. “Estimates of Time to Economic Convergence: An 
Analysis of Regions of the European Union”. International 
Regional Science Review 22 (1): 5–34. 

Getis, Arthur, Jesús Mur, and Henry Zoller, ed. 2004. Spatial Econometrics 
and Spatial Statistics. Applied Econometrics Association Series. 
New York: Palgrave Macmillan. 

Gloy, Brent. 2013. “Farmland Values - Will the Boom Turn Bust?” January 
30, Center for Commercial Agriculture, Purdue University. 
https://www.agecon.purdue.edu/commercialag/resources/finance/far
mlandvalues/Gloy%20Top%20Producer%20Farmland%20ValuesFI
NAL.pdf. 

Goodwin, Barry K., Ashok K. Mishra, and François N. Ortalo-Magné. 
2003. “What’s Wrong with Our Models of Agricultural Land 
Values?” American Journal of Agricultural Economics 85 (3): 744–
752.  

———. 2004. “Landowners’ Riches: The Distribution of Agricultural 
Subsidies”. Working Paper, School of Business, University of 



  

165 
 

Wisconsin, Madison. 
http://ww.bus.wisc.edu/realestate/documents/04LandownersRiches.
pdf. 

Gutierrez, L., J. Westerlund, and K. Erickson. 2007. “Farmland Prices, 
Structural Breaks and Panel Data.” European Review of 
Agricultural Economics 34 (2) : 161–17.  

Gutierrez, Luciano. 2011. “Looking for Rational Bubbles in Agricultural 
Commodity Markets.” In European Association of Agricultural 
Economists, 2011 International Congress (August 3- September 2). 
Zurich, Switzerland. http://purl.umn.edu/120377. 

Hansen, Lars Peter. 1982. “Large Sample Properties of Generalized 
Method of Moments Estimators.” Econometrica 50 (4): 1029–1054. 

Hardie, Ian W., Tulika A. Narayan, and Bruce L. Gardner. 2001. “The Joint 
Influence of Agricultural and Nonfarm Factors on Real Estate 
Values: An Application to the Mid-Atlantic Region.” American 
Journal of Agricultural Economics 83 (1): 120–132.  

Jacobs, Jan P. A. M., Jenny E. Ligthart, and Hendrik Vrijburg. 2009. 
“Dynamic Panel Data Models Featuring Endogenous Interaction 
and Spatially Correlated Errors.” SSRN Electronic Journal. 
http://www.ssrn.com/abstract=1517257. 

Kapoor, Mudit, Harry H. Kelejian, and Ingmar R. Prucha. 2007. “Panel 
Data Models with Spatially Correlated Error Components.” Journal 
of Econometrics 140 (1): 97–130.  

Kelejian, Harry H., and Ingmar R. Prucha. 1998. “A Generalized Spatial 
Two-Stage Least Squares Procedure for Estimating a Spatial 
Autoregressive Model with Autoregressive Disturbances.” Journal 
of Real Estate Finance and Economics 17 (1): 99–121. 

———. 1999a. “A Generalized Moments Estimator for the Autoregressive 
Parameter in a Spatial Model.” International Economic Review 40 
(2): 509–533. 

———. 1999b. “A Generalized Moments Estimator for the Autoregressive 
Parameter in a Spatial Model.” International Economic Review 40 
(2): 509–533. 

Kelejian, Harry H., and Dennis P. Robinson. 1993. “A Suggested Method 
of Estimation for Spatial Interdependent Models with 
Autocorrelated Errors, and an Application to a County Expenditure 
Model.” Papers in Regional Science 72 (3): 297–312.  

———. 1995. “Spatial Correlation: A Suggested Alternative to the 
Autoregressive Model.” In New Directions in Spatial Econometrics, 



  

166 
 

edited by Luc Anselin and Raymond J. G. M. Florax, 75–95. Berlin, 
Heidelberg: Springer Berlin Heidelberg.  

Kirwan, Barrett E. 2009. “The Incidence of U.S. Agricultural Subsidies on 
Farmland Rental Rates.” Journal of Political Economy 117 (1): 
138–164.  

Korniotis, George M. 2010. “Estimating Panel Models With Internal and 
External Habit Formation.” Journal of Business & Economic 
Statistics 28 (1): 145–158.  

Kukenova, Madina, and Jose-Antonio Monteiro. 2009. “Spatial Dynamic 
Panel Model and System GMM: A Monte Carlo Investigation.” 
MPRA Paper No. 14319.  

Le Gallo, Julie. 2002. “Econométrie Spatiale: L’autocorrélation Spatiale 
Dans Les Modèles de Régression Linéaire”. Economie & prévision 
4 (155): 139–157. 

Le Gallo, Julie, and Sandy Dall’Erba. 2006. “Evaluating the Temporal and 
Spatial Heterogeneity of the European Convergence Process, 1980-
1999”. Journal of Regional Science 46 (2): 269–288. 

Lee, Lung-fei, and Jihai Yu. 2010a. “A Spatial Dynamic Panel Data Model 
with Both Time and Individual Fixed Effects.” Econometric Theory 
26 (2): 564–597.  

———. 2010b. “Estimation of Spatial Autoregressive Panel Data Models 
with Fixed Effects.” Journal of Econometrics 154 (2): 165–185.  

Lence, Sergio H., and Douglas J. Miller. 1999. “Transaction Costs and the 
Present Value Model of Farmland: Iowa, 1900-1994.” American 
Journal of Agricultural Economics 81 (2): 257-272.  

Lence, Sergio H., and Ashok K. Mishra. 2003. “The Impacts of Different 
Farm Programs on Cash Rents.” American Journal of Agricultural 
Economics 85 (3): 753–761.  

LeSage, James P, and R. Kelley Pace. 2009. Introduction to Spatial 
Econometrics. Boca Raton: CRC Press. 

LeSage, James P. 1999. “The Theory and Practice of Spatial 
Econometrics.” http://www.spatial-econometrics.com/. 

Livanis, G., C. B. Moss, V. E. Breneman, and R. F. Nehring. 2006. “Urban 
Sprawl and Farmland Prices.” American Journal of Agricultural 
Economics 88 (4): 915–929.  

Manski, Charles F. 1993. “Identification of Endogenous Social Effects: The 
Reflection Problem”. The Review of Economic Studies 60 (3): 531–
542. 



  

167 
 

Millo, Giovanni, and Gianfranco Piras. 2012. “Splm: Spatial Panel Data 
Models in R.” Journal of Statistical Software 47 (1): 1–38. 

Mooney, Christopher Z. 1997. Monte Carlo Simulation. Sage University 
Papers Series no. 07-116. Thousand Oaks, Calif: Sage Publications. 

Moran, P. A. P. 1950. “Notes on Continuous Stochastic Phenomena”. 
Biometrika 37 (1/2): 17-23. 

Nickerson, Cynthia, Morehart Mitchell, Todd Kuethe, Jayson Backman, 
Jennifer Ifft, and Ryan Williams. 2012. “Trends in U.S. Farmland 
Values and Ownership”. Economic Information Bulletin N. 92, U.S. 
Dept. of Agriculture, Economic Research Service. 

Paelinck, Jean H. P., and Leo H. Klaassen. 1979. Spatial Econometrics. 
Studies in Spatial Analysis. Farnborough, Eng: Saxon House. 

Piras, Gianfranco. 2010. “Sphet: Spatial Models with Heteroskedastic 
Innovations in R.” Journal of Statistical Software 35 (1): 1–21. 

Plantinga, Andrew J., Ruben N. Lubowski, and Robert N. Stavins. 2002. 
“The Effects of Potential Land Development on Agricultural Land 
Prices.” SSRN Electronic Journal. 
http://www.ssrn.com/abstract=305498. 

Ramajo, Julián, Miguel A. Márquez, Geoffrey J.D. Hewings, and María M. 
Salinas. 2008. “Spatial Heterogeneity and Interregional Spillovers 
in the European Union: Do Cohesion Policies Encourage 
Convergence Across Regions?”. European Economic review 52 (3): 
551–567. 

Roberts, Michael J., Barrett Kirwan, and Jeffrey Hopkins. 2003. “The 
Incidence of Government Program Payments on Agricultural Land 
Rents: The Challenges of Identification.” American Journal of 
Agricultural Economics 85 (3): 762–769.  

Roodman, David. 2009. “A Note on the Theme of Too Many Instruments.” 
Oxford Bulletin of Economics and Statistics 71 (1): 135–158.  

Salois, M., C. Moss, and K. Erickson. 2011. “Farm Income, Population and 
Farmland Prices: a Relative Information Approach.” European 
Review of Agricultural Economics 39 (2): 289–307.  

Tegene, A., and F. Kuchler. 1993. “A Regression Test of the Present Value 
Model of US Farmland Prices.” Journal of Agricultural Economics 
44 (1): 135–143.  

Tobler, W. R. 1970. “A Computer Movie Simulating Urban Growth in the 
Detroit Region.” Economic Geography 46: 234-240. 

United States Department of Agriculture. National Agricultural Statistics 
Service. 2012. “Land Values, 2012 Summary.”  



  

168 
 

Weersink, Alfons, Stephen J. Clark, Calum G. Turvey, and Rakhal Sarkar. 
1999. “The Effect of Agricultural Policy on Farmland Values.” 
Land Economics 75 (3): 425–439. 

Windmeijer, Frank. 2005. “A Finite Sample Correction for the Variance of 
Linear Efficient Two-step GMM Estimators.” Journal of 
Econometrics 126 (1): 25–51.  

Wooldridge, Jeffrey M. 2010. Econometric Analysis of Cross Section and 
Panel Data. 2nd ed. Cambridge, Mass: MIT Press. 

Yu, Jihai, Robert de Jong, and Lung-fei Lee. 2008. “Quasi-maximum 
Likelihood Estimators for Spatial Dynamic Panel Data with Fixed 
Effects When Both n and T Are Large.” Journal of Econometrics 
146 (1): 118–134.  

———. 2012. “Estimation for Spatial Dynamic Panel Data with Fixed 
Effects: The Case of Spatial Cointegration.” Journal of 
Econometrics 167 (1): 16–37.  

Yu, Jihai, and Lung-fei Lee. 2010. “Efficient GMM Estimation of Spatial 
Dynamic Panel Data Models with Fixed Effects.” In Econometric 
Society 10th World Congress. Shanghai, China.  

Ziliak, James P. 1997. “Efficient Estimation With Panel Data When 
Instruments Are Predetermined: An Empirical Comparison of 
Moment-Condition Estimators.” Journal of Business & Economic 
Statistics 15 (4): 419–431. 

 


