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Introduction

This thesis is composed of three rather autonorobapters, linked by the
common interest in spatial econometric techniqtiest, address the topic
from different points of view. The recent advanddst have been
characterizing the subject in recent years are Igpntistoretical and have
not found an extensive empirical application yet.this work we aim at
supplying, as exhaustively as possible, a reviethefmain tools of spatial
econometrics and to show empirical applicationstred most recently
introduced estimators.

Since the late 1970s, spatial econometrics has lgeewing as a
distinct branch of econometrics, originally confinen the domain of
regional sciences, in which the spatial dimensibithe data, in both its
forms of spatial dependence and heterogeneitypie mvident. The rather
young age of the discipline makes spatial econaosett field in which
theoretical advances are numerous and ongoing. Tdrey currently
concentrated on the treatment of spatiotemporal. detis is due, among
other reasons, to the growing availability of datasin which the
informative contents of both the cross-sectionald ate temporal
dimensions of the data can be explored.

Although a quite wide literature has been devotedewviewing the
techniques of spatial econometrics in the last 8&ry (Anselin 1988a;
Getis et al. 2004; Arbia 2006; LeSage and Pace 2008ng others), an
updated dissertation, capable of collecting all nhest recent theoretical
advances in the discipline together with its basesill lacking. With this
purpose, the first chapter contains a review of wilidely known spatial
cross-sectional models and a taxonomy for the dessmon models for
panel data. Together with the description of thedet® also the main
estimation techniques are discussed, highlightihg &advantages and
disadvantages that characterize each one of theenaMyue that, despite

the numerous alternatives that the econometricryhpoovides for the



treatment of spatial (and spatiotemporal) data,iecap analyses are still
limited by the lack of availability of the corregmtent routines in statistical
and econometric software.

In chapter 2 we focus on the estimation of spatigtaral models. We
overcome the lack of readily-available software By autonomous
programming of the routines that, albeit necestaiur analysis, were not
available in any ready-to-use software packages.

Spatiotemporal modeling represents one of the mostent
developments in spatial econometric theory andittiie sample properties
of the estimators that have been proposed arentlyrigeing tested in the
literature (Yu et al. 2008; Kukenova and Monteir@0Q; Jacobs et al.
2009). Our purpose is to provide a comparison betve®me estimators for
a dynamic panel data model under certain conditiopsneans of a Monte
Carlo simulation analysis. Holding the assumptibma@moskedasticity of
the errors, we focus on different settings, which @aracterized either by
fully stable or quasi-unit root series. We alsoeshigate the extent of the
bias that is caused by a non-spatial estimatiammbdel when the data are
characterized by different degrees of spatial dépece. To our
knowledge, although the theoretical consequencesgodring spatial
dependence have been extensively studied, no ealpstudy is available
for the assessment of the effects of such a migg@eion in terms of bias
of the estimates of the model coefficients.

Finally, chapter 3 provides an empirical applicatiof what the
previous chapters only theoretically of fictionaByudy. This is done by
choosing a relevant and prolific field of analysis, which spatial
econometrics has only found limited space so fagrder to fully explore
the value-added of considering the spatial dimensib the data. In
particular, we estimate a spatial dynamic paned davdel that studies the
determinants of cropland value in Midwestern U.SrAthe years 1971-

2009. We adopt the present value model as theetiealr framework, and



therefore focus on the relationship between landievaand cash rents,
expecting to find a positive one. This would be sistent with the present
value model, which considers that the value oframome-producing asset
such as land is the capitalized value of the ctraerd future stream of
earnings from owing that asset. We believe the eygal dataset represents
an improvement with respect to earlier studies bgeat refers to a rather
homogeneous sample of States and only to cropkthdmrthan farmland in
general, thus excluding the value of buildings froine analysis. This
appears to be a favorable situation, because hggdare usually excluded
from the statistics on cash rents. Although thechgions that we present
should only be considered as preliminary results,asgue that they are
already apt to convey the importance of taking iapagffects into

consideration when addressing this field of analysi






1 Spatial econometric models and estimation strategse

1.1 Introduction

The development of spatial econometrics as a distioranch of
econometrics dates back to 1970s. If a year i®tgiten as a conventional
birth date for this rather young discipline, thés1i979, when Paelinck and
Klaassen (1979) published the volume “Spatial Ecoetoics”. As the
authors mention in the introduction of that volurspatial econometrics
was born in the context of regional and urban eowtdac modeling. This
is indeed a context where the spatial (geographitalension of the data is
easily conceivable and this is also the realm incivispatial econometrics
remained confined until more recent years. Stilthet end of the 1980s,
Anselin defined spatial econometrics as closelgteel to the requirements
of modeling in regional sciences:
“I will consider the field of spatial econometrits consist of

those methods and techniques that, based on foemedsentation

of the structure of spatial dependence and sph&tdrogeneity,

provide the means to carry out the proper spetificaestimation,

hypothesis testing, and prediction for models miagral science”.

(Anselin 1988a, page 10)

Only in more recent years and in parallel with ¢inewth of software
availability, spatial econometrics has enteredgieeral toolbox of applied
econometrics. Theoretical econometrics has alstedtto deal with spatial
issues and this has resulted in great advancegriliae last ten years, have
focused on the field of space-time analysis, wilippears to be the current
frontier in spatial econometrics for what it comerboth modeling and
testing. Anselin (2010) provides a thorough, alpeitsonal, analysis of the
development of spatial econometrics in the pastez0s.

This chapter focuses on spatial econometrics vattiqular interest in

the topics of modeling and estimation of spatiabliele whereas only minor



reference is made to the literature about spetibicatesting methods.
Section 1.2 focuses on the definition of the spatiects as the elements
that justify the existence of spatial econometassa distinct discipline
according to Anselin (1988a). The specificatiorihaf spatial weight matrix
as the main econometric tool that allows to mogbatial interactions is
treated in section 1.3. A taxonomy is then provided cross-sectional
spatial models (section 1.4) and the main estimatitategies suggested by
the literature are discussed (section 1.5). Sedti6rfocuses on the testing
methods that have been developed in order to diswate between the
different model specifications in a cross-sectiawltext, before turning to
space-time analysis with a review of the literatarethe specification of
spatial panel data models (section 1.7) and the m@m®mon estimation
techniques (section 1.8). The last section (1.9resbes the topic of
software availability, which appears to be a m&sue in determining the
extent to which spatial econometrics techniquesamgied by empirical

researches.

1.2  Spatial effects

Spatial econometrics techniques are specificalsigied in order to deal
with the spatial dimensions of data, which can t#ke form of spatial
interaction §patial autocorrelation and spatial structure sgatial
heterogeneity which have been described in detail by Anseli@88a;
2001).

1.2.1 Spatial autocorrelation

Spatial dependence is defined as “the existeneefoictional relationship
between what happens at one point in space and velpgiens elsewhere”
and has to do with the concept of relative locabbra spatial unit with

respect to other spatial units (Anselin 1988a, pheAbreu et al. 2005).



Spatial dependence is often called spatial auteladion and, although the
two concepts do not totally overlap, spatial autcalation being a weaker
form of spatial dependence. However, following Ams€2001), we will
use the two terms interchangeably.

Two main sources of spatial dependence can bé Ik Gallo 2002):
the first one is related to the spatial dimensiérihe data originated by
interactions between units. In statistical termsp wefine a spatial
stochastic process, or spatial random field, asoléeation of random
variablesY indexed by location{Y;,i € L}, where the indeX is either a
continuous surface or a finite set of discretetiocs. In this work, we only
take into account the case in whiths a finite set of discrete locations,
L=1{1,2,..,N}, whereN € N. Notice that we identify each spatial unit
with an index inL: for example, ifL = {1,2}, we identify the two spatial
units as unit 1 and unit 2. Spatial autocorrelatgodefined by the moment
condition: Cov[y;y;] #0 for i#j. The second source of spatial
dependence is model misspecification, which carcdugsed by omitted
spatially autocorrelated variables (Fingleton 1998®)wrong functional
form or the presence of measurement errors (Lucelnsl988a). In
particular, a difference in the spatial scope ef phenomenon under study
and the spatial level of observation can easilyltaa spill-overs across
different spatial units and subsequent autocoroglaif the errors.

The magnitude of spatial dependence is not consteatighout all
spatial units. Spatial autocorrelation between umihd;j depends on their
relative location, according to Tobler’s first laak geography: “Everything
is related to everything else, but near thingsraoee related than distant
things” (Tobler 1970, page 236). Therefore posiSpatial autocorrelation
occurs when high/low values of a random variablke ewncentrated in
neighboring spatial units. Differently, negativeasal autocorrelation
occurs when high/low realizations of a random \@edaare surrounded by

low/high values of that random variable in neighbgispatial units.



Differently from temporal autocorrelation, whoseusal direction can
be easily defined as going from past to present f(tore), spatial
autocorrelation has a multidirectional nature whitiakes econometric

modeling more complicated.

1.2.2 Spatial heterogeneity

Spatial heterogeneity is related to the “lack @bdity over space of the
behavioral or other relationships under study” @ms1988a) and is also
called effect of “absolute location” which pertaites being located at a
particular point in space (Abreu et al. 2005).

This type of structural instability can take the rnfo of
heteroskedasticity or parameter instability oveacsp (Anselin 2001).
Given a set of spatial unitls partitioned intoR non overlapping subsets
L., with r =1,2,...,R, heteroskedasticity consists in non-constant error
variances that can be formally expresset@qs;] = o2 wheni € L,; this
problem can be due to different causes, like onhittariables or other
misspecifications and can be addressed by stamtartbmetric tools. The
most popular form of parameter instability is sfiedi as varying
regression coefficients across spatial regimes; f(x;, B,)-

These two forms of spatial heterogeneity can b#lyppresent and can
also be associated to the presence of spatial @uétation. A further
difficulty is represented by the fact that spatmlitocorrelation and
heterogeneity might be “observationally equivale(hselin 2001) and
spatial autocorrelation of the residuals may bevgked by unmodeled

spatial heterogeneity (Ertur et al. 2006).

1.3  The spatial weight matrix and spatial lag variables

The way in which connectedness in space is to berporated in an

econometric model is one of the main issues iniapatconometrics



(Anselin 1988a; Arbia 2006). This is usually done rheans of the so-
called spatial weight matrix. A weight mati# is a squareN x N), non-
stochastic and symmetric matrix, whose elemantsneasure the intensity
of the spatial connection between unitnd; and take on a finite and non-
negative value. By conventiow;; = 0. This is the main econometric tool
for modeling spatial interactions among neighborimgits and taking
spatial dependence into account in econometric fimgdelhe concept of
neighborhood and its several definitions are tloeeefat the basis of the

construction of a spatial weight matrix.

1.3.1 Definitions of neighborhood

The most common definition of neighborhood is tbaicontiguity-based

neighborhood. When spatial units are territoriesaonap, as it is often the
case, contiguity is straightforwardly detected las sharing of common
boundaries. By approximating irregular polygonsamap by a regular
grid, several kinds of contiguity can be defineteathe game of chess
(Figure 1.1): in case of “rook contiguity”, the s#tneighbors of unit A are
those that share a common edge; “bishop contigugiytiires the sharing of
a vertex; finally, according to the “queen conttgui criterion, the

neighbors of unit A are defined as those that sharertex or an edge with

it. Similarly, several orders of contiguity candefined in a recursive way.

Figure 1.1. The definitions of contiguity on a reglar grid

A A A

Rook Bishop Queen

When spatial units are points instead of areagegcitentroids, firms,
etc.) different contiguity criteria can be employedints can be considered

to be neighbors if they are within a maximum diseafrom each other or



boundaries can be generated by various spatiakli@ssns (Anselin
1988a). When neighboring units are to be identiiedthe basis of the
distance that exists between them, a cut-off distazan be defined. Two
spatial units andj are considered to be neighbor9 i€ d;; < D, with d;;
an appropriate distance measure @nthe cut-off distance above which
any interaction is considered to be negligible.

Finally, neighborhood can be defined in terms adrast neighbors. In

this case, two spatial units and j are said to be neighbors df;; =

min, gy (dix).

1.3.2 Spatial weight matrices

The most commonly used kind of spatial weight maisi the contiguity
matrix, which is based on the notion of binary aguity and expresses the

structure of neighbors as:

1 if region 7 is contiguous to region j
= { g g gion j (1.1)

0 otherwise.

Binary spatial weight matrices are therefore comimaonstructed
following the contiguity-based definition of neigtihood. This is also the
simplest structure for a spatial weight matrix;, yetappears to be able to
provide only a restrictive representation of thatsp interactions.

Greater flexibility is possible when consideringngealized sets of
spatial weights. Cliff and Ord (1981) originallygglested the definition of
the elements o as a combination of distance measures and thevesla
length of common borders. Generally, especiallyhi@ regional sciences
literature (Fingleton 1999; Ertur et al. 2006; Lalld and Dall’Erba 2006;
Dall’'Erba and Le Gallo 2008; Ramajo et al. 2008 oamthe others), the

spatial weights are defined as an inverse funafatistance:
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w;=0 if i=j
wij =1/df; if  di;<D (1.2)
wij =0 if otherwise
with a a parameter determined a-priori by the researdaeandD defined
as in the previous section. When considering aspatial units, distance
can measured typically between centroids or capitaés, but other
possibilities are also present in the literatureb(& 2006).

The definition of distance is also crucial. Diffetelistance metrics can
be used in order to model geographical links betwaaits, such as
Euclidean distance, Manhattan distance, Minkows&iadce. Alternative
possible but less used measures that approximatggagghical distance are
travel time or transport costs. Reference to ggugcal localization of
units can also be ignored in favor of other measwfedistance: social
distance (Doreian 1980), cultural distance (Eff @00socio-economic
distance (Case et al. 1993), institutional distaat® combined with
geographical distance as in Arbia et al. (2007).eWlconsidering such
alternative specifications of the weight matrixjgtimportant to preserve
the exogeneity of the weights in order to avoidnideation problems
(Manski 1993): as Anselin (2002) warns, “if the savariables are used to
compute a general distance metric as are includétei model, the weights
are unlikely to remain exogenous” (page 18) ans shiould be taken into
account.

One of the main criticisms that have been movednagaspatial
econometrics is that the choice of the spatial lteigatrix to use is to
some extent arbitrary. It is therefore always recmnded to be driven by
theoretical reasoning and to test the robustnes$iseofesults to the choice
of W.

The spatial weight matrix is often row-standardizegich elemeny;;
is divided by the row-sun};w;;, so as to take values between 0 and 1.

This makes the spatial parameter comparable betdiéierent models, but

11



also implies a different interpretation of the splatveights. In the most
common case of a binary contiguity matrix, for exéanthe strength of the
spatial connection between two units depends omtineber of neighbors
of each unit, the effect of any individual neighli@creases as the number
of neighbors increases all is not symmetric anymore. The main reason
for row-standardizing a spatial weight matrix is émsure that some
assumptions on the parameter space of the most ocommodel

specifications are verified, as we shall see inféllewing sections.

1.3.3 Spatial lag variables

Spatial weight matrices are to be used in the coctsbn of spatially
lagged variables. In the context of time series #traightforward to define
a temporal lag of ordék of a random variablg asLag,(y) = y;—k. It is
more difficult in spatial econometrics to defineetlagged value of a
variable y; in space, because of the multidirectional naturespmatial
proximity.

The spatial lag of theVv x 1 vector of observations of the random
variable Y is defined in the spatial econometric literatuseeWdy. It is
important to notice that, wha’ is row-standardized, the spatial lagyef

is the average of the values of that variable olesem the neighborhood of

i Xjwij Y =Wy

1.4  Cross-sectional models with spatial autocorrelation

When spatial autocorrelation is present in the ,d#ta hypothesis of
independence between the observations is violatddrderence based on
Ordinary Least Squares (OLS) estimation is theeefast reliable. This is
the reason for the need to pay great attentiorhéopresence of spatial
autocorrelation when estimating econometric modelsorder to address

this issue, taxonomy for the most popular crossiseal spatial models is
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given, followed by a discussion of the estimatitiategies that are usually

employed.

1.4.1 A taxonomy for cross-sectional spatial models

Given a classical linear regression model, such as
y=Xp +¢ (1.3)

wherey is theN x 1 vector of the dependent variablg,is the N X K
matrix of observations for th& independent variable® is the K x 1
vector of unknown coefficients ardis the N x 1 vector of errors, OLS
estimation is based on the following assumptiohat tmake it the Best
Linear Unbiased Estimator (BLUE):

OLS_1. Exogeneity of the regressaXs

OLS 2. E(e) =0

OLS 3. E('e) = o°I.

The presence of spatial dependence causes thdiomota# some of
these hypotheses as the following sections will enelear, thus making
OLS estimates inefficient or even biased. Spatepethdence can be
incorporated in the specification of a linear ragien model in different
ways, particularly either in the form of a spayalhgged variable (the
spatial lag of the dependent variabM,y, or the spatial lag of an
exogenous variabld#/x), or in the error structure, so thﬁ(eiej) * 0.
These two forms can also be combined in the moreptex Cliff-Ord

model.

1.4.2 SAR models

The Spatial Autoregressive (SAR) model incorporagstial dependence
through a spatial lag of the dependent variable:

y=4LZWy+Xp+e¢ (1.4)
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where 4, is the so called spatial autoregressive coefficamd the other
notation is unchanged. For the sake of simplichg error terms are
assumed to bei.i.d. although heteroskedasticity can be variously
incorporated (Anselin 1988a).

The introduction of the spatial lag of the deperndemiable allows one
to evaluate the effects of spatial dependence tmeeffects of the other
regressors are controlled for; on the other haralso allows evaluating the
impact of the other regressors once the effectspatial dependence are
wiped out.

It is important to notice that the teriy is correlated with the error
terms in model (1.4), thus resulting in an endogsnegressor that causes
bias and inconsistency in a-spatial OLS estimdatkis becomes clear when

one considers the following rearrangement of equdtl.4):
y=U-1W)"L(XB + 9). (1.5)

Expression (1.5) shows how a shock occurring in uaifects not only
the value ofy in that unit, but also that of the other unitsotigh the
inverse spatial transformation (Anselin 2001). Tatrix (I — A, W)
also determines the parameter space for this mbdeguse it is required to
be a non-singular matrix in order to be invertechéW the spatial weight

matrix is row-standardized, this is always true|fgf < 1.

1.4.3 SARE models

When spatial dependence is incorporated in the &grm,s becomes non-
spherical and the structure of the spatial deperelésn expressed by the
off-diagonal elements of the covariance matrix. TDES estimates are

therefore unbiased but inefficient. This type ofdal the spatial error

! Since the diagonal elements & are equal to 0, the diagonal elements(df— 1, W)
are 1 and, under the conditiphy | < 1, strictly exceed the sum of the other elementkén
row, which equalst,. This makes the matriid — A, W) strictly diagonally dominant and
therefore always invertible.
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model, can be specified in different ways. The mostnmon ones
incorporate spatial dependence in the error tergngldfining them as
spatial moving average or spatial autoregressiver é5ARE) processes.
The latter is probably the most widely used argpiscified as

y=Xp+¢

e=ALWe+v (1.6)

wherev is ani.i.d. error term andl, is a spatial coefficient that measures
spatial dependence between the ergors

The reduced form for model (1.6) is expressed as:
y=XB+ - 1,W) (1.7)

and requires the matrix]I — A,W) to be a non-singular matrix. This
condition is always verified under the assumptity} < 1 when the spatial
weight matrix is row-standardized. It follows that (I — ,W) v and
thereforeE (¢) = 0 andE(e'e) = 2,,), where®,,, depends on the value

of 1,:
Q) = 02 [ = 1,W)' U = 2,W)] ™ (1.8)

An important feature of this kind of models regardspossible
interpretation of the presence of spatial autotatien in the error terms as
the effect of relevant spatially autocorrelated tbaali variables (Fingleton
1999), which will likely result in biased estimatésot properly modeled.
In this perspective the SARE model is capable gtwang the effect of
omitted variables which is a common problem formeenic modeling.

Model (1.6) can also be rewritten in a way such #hspatial lag of the
dependent variable appears, as:

y=MLWy+Xp—1LWXS +v. (2.9)

This is the so-called “Spatial Durbin model” (Angel988a), which
imposes some non-linear constraints on the coeffisi The presence of a

spatial lag of the dependent variable in this dmation complicates the
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testing procedure for spatial autocorrelation, mgkiit difficult to
distinguish between the spatial lag and the speatral alternatives.

1.4.4 Cross-regressive models

When a spatial lag of the exogenous variable(g)dsided into a classical

linear regression, a cross-regressive model isfigbas
y=XB+WZ§ + ¢, (1.10)

whereZ is anN x L matrix of exogenous variables which may correspond
totally or partially, to the variables includedXnandé is a row-vector of.
spatial parameters. This kind of model is partidylaseful for measuring
the effects ory of spatial spill-overs of exogenous variables.

For what it concerns the estimation of a crossaggjve model, it must
be noticed that, ag only contains exogenous variables, model (1.10) ca
be estimated via OLS, as long as assumption OL®IdsHor the matrix
X* = [X WZ] and assumptions OLS 2 and OLS_3 hold for the ¢erans

€. Cross-regressive terms can also be added toomesgpecifications.

1.4.5 Spatial Cliff-Ord model

The CIiff and Ord type models, also known as SARBR) in analogy
with time series literature, contains both a spdag of the dependent
variable and of the error term (Kelejian and Prut88):

y=/11W1y+X,3+£, |/11|<1

&= /12W2€ + v, |Az| <1 (111)

where W; and W, may be the same spatial weight matrix or not. In
particular, the two must be different from eacheoths a requirement for

identification when applying Maximum Likelihood (MLestimator$

% These identification problems that may arise & ML estimation of this kind of model
are such that almost no empirical application exist
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whereas an advantage of Instrumental Variables/(I&neralized Method
of Moments (GMM) estimators is that the same spat&ght matrix can

be used (Elhorst 2010). The model may also comtaiss-regressive terms.

1.5 Estimation of spatial cross-sectional models

As it was made clear in sections 1.4.2 and 1.4.Benw spatial
autocorrelation is present the OLS assumptionsvaskated and OLS
estimators are biased and inconsistent (when #@bjad of the dependent
variable is included) or at least inefficient (imnepence of error spatial
autocorrelation).

The most commonly used efficient, unbiased and istarg estimator
for cross-sectional spatial models is the maximukelihood estimator,
while other possible choices may be instrumentatialddes or the

generalized method of moments.

1.5.1 Maximum likelihood estimation

The main assumption on which ML estimation of SARI &ARE models
relies is that of normality for the error terms.nrany circumstances this is
a quite a strong one.

The loglikelihood for a SARE model as in equati@r6] follows from
e ~MVN(0,2,,)) (Anselin 2001):
InL = — gln(Znaz) Hinll = 1,W| + Gv'( = W) (I — 1, W)e.

(1.12)

Conditional upom,,
Bur = [(X = ,WX)' (X — L,WX)]"' (X — ,WX)'(y — 1,Wy)  (1.13)
and

62y, = (e — 1,We) (e — 1,We) /N (1.14)
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with e = y — XB,,,. The estimator fof, must be obtained from an explicit
maximization of a concentrated likelihood functi@mselin 1988a).
Following Anselin (2001), the loglikelihood for 8AR model is:

InL = —gln(Znaz) + In|l — A,W| + (#)8'8. (1.15)

Estimators for the parameters are obtained from explicit

maximization of the likelihood. Conditional upan,

ﬁML = X'X)7'X'(y - ,Wy) (1.16)
and
62ML = (eo — Ae)'(eg — Aie1)/N (1.17)

with By = (X'X)7X'y, eg =y — XBo, f = (X'’X)"'X'Wy ande, =y —
XB,.

This results in a concentrated likelihood in a Bngarameter that is
optimized by means of direct search techniques.

The classical properties of consistency, asymptoticmality and
asymptotic efficiency of ML estimators do not sgistforwardly hold when
spatial dependence is present, even in the caserofally distributed error
terms (Kelejian and Prucha 1999).

The forms taken by the loglikelihood in equatiodsl®) and (1.15)
also define the parameter spaceApand4,. The main problem raised by
the estimation of spatial models via ML concerne firesence of the
Jacobian matrix in the loglikelihood function, thatequal toI — A, W] in
SAR models and tff — A,W| in SARE models. The maximization of the
function of loglikelihood requires the evaluatiohtbe determinant of the
Jacobian matrix for each value #f or A, and, since in practice spatial
weight matrices are not symmetric (becauge is commonly row-
standardized), the procedure may be computationaty complex with
very large datasets. In order to avoid singulatibie parameter space is

generally restricted to the intervél-1,1). However, it is important to
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notice that, given a generic spatial autoregressoedficientA (which may
be eitherd; for a SAR process ot, for a SARE process), its parameter

space is defined as
1/ wmin < A < 1/0maxs (1.18)

wherew,,;, andw,,,, are respectively the smallest and largest eigeesgal
of the spatial weight matrix. Whdi is row-standardizedy,,,,, = 1 and
Wmin > —1 (Anselin 1988a; 2001; Elhorst 2010).

1.5.2 Other estimators (IV, GMM)

A possible estimation strategy, alternative to NH_that of IV which is
suitable for addressing the endogeneityoy in a SAR model of type
(1.4) (Anselin 1988a). The general principle behtinid approach is based
on the existence of a set Mf instrumentsQ (with M > K + 1), which are
correlated to the regressors of the SAR modél=[Wy X] but
asymptotically uncorrelated with the error term. &M > K + 1 no exact
solution exists. This problem is addressed by dwithe estimator for the

model coefficient® = [1; ] as:
A /; * -1 /!
Oy = (X'PoX*) X"'Py.y (1.19)

with Py = Q(Q'Q)~'Q’ a symmetric idempotent matrix.

Under a set of assumptions discussed by KelejidnRabinson (1993)
and Kelejian and Prucha (1998), the spatial twgestaast squares (2SLS)
estimator can be proved to achieve consistencyaawahptotic normality as
the standard 2SLS.

When it comes to selecting the set of instrumdhtshe exogenous
regressors should always be included. Proper im&mnts for the spatial lag
of the dependent variable are the spatial lagh@feixogenous regressors,
WX (Kelejian and Prucha 1998). This procedure caedstly extended to

more complex models (Anselin 1988a), but it is swtable for estimating
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SARE models (Anselin 2001), unless properly geimgdl as in Kelejian
and Prucha (1998).

Another possible approach that is suitable fornestng a SARE
model (specified as model (1.6)) is the GMM estonapresented in
Kelejian and Prucha (1999). Under the assumptiameerning the error
term £ in model (1.6), the authors specify three momemtddions on

which the GMM estimator is based:
E|sv'v]| = 0% E[zv'W'Wo| = o?N"tr(W'w); E [2v'Wv| = 0(1.20)

By replacingv with ¢ — A,Wv and considering the sample analogue of
€ (the vector of residuals after a consistent estonausually obtained by
OLS: e), a three-equation system is given for parametersl,” ando?,

implied by equations (1.6) and (1.20). Givér= We and ¢ = W¢ (and

consequentlg = We ande = Weé as sample analogues), consider

I[A, 1,% 6% =y =0 (1.21)
Ir ZE(€E)  —E@E9) 1 ]I ~E('s)
whererl™ = [ ZE(Fe)  —E@d) %tr(W’W)‘ andy = |~E(£'9)|
1 1= = -1 = = 1 !
SE(ee+&¢) TE(S@ 0 SE(ED)

Its sample analogue is:

G[A 21,202 — g =v(As0?) (1.22)
Ir ZE(e'e)  TE(Ee) 1] ~E(e'e)
whereG =| =E(&'e) —E(E®) —tr(WW)|andg =|~E(ee)|
~E(e'e+e'e) —E(E?) 0 ~E(e'?)

The GMM estimator forl, andg? is then defined as the nonlinear
least squares estimator corresponding to equati@2), According to this
approachA, is considered a nuisance parameter whose sigmtgcdoes

not need to be tested. Ondg and 6% are obtained, the vector of
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parametersf can be estimated by feasible generalized leasaregu
(FGLYS), as:

R , 1o1-1o, _
BreLs = [X ﬂ(zz) 1X] X 9@2) 1y, (1.23)

whereﬂ(zz) Is the covariance matrix of the errorcorresponding to the

GMM estimate oft, anda?.

Kelejian and Prucha (1998) also propose a comipinaif 2SLS and
GMM that allows obtaining unbiased estimates fer parameter of a Cliff
and Ord type of model (as defined in equation 1.11)

An advantage of IV/GMM estimator is that, differignfrom the ML
estimators, they do not rely on the assumptionasfality of the errors,
although they do assume, just like ML estimatangf the errors arei.d.
with 0 mean. However, a disadvantage of IV/GMM restior is that it is
possible to obtain an estimate of the spatial patanwhich is outside its
parameter spacel{wmin,1/Wmax), SiNCe these estimators ignore the
Jacobian term which restricig (or A, ) to its parameters space in the log-
likelihood function of ML estimators (Elhorst 2010)

1.6  Testing for the presence of spatial effects

Testing for the presence of residual spatial efféestof utmost importance
as statistical inference based on OLS estimation mo& be reliable when

spatial dependence or heterogeneity is presenir(&trtal. 2006).

1.6.1 Moran’s | test of spatial autocorrelation

Among the tests for the detection of spatial autedation, the one based
on the computation of Moran’s | statistics (MoraB5@Q) is the most

common:

1=(3)ywy@'y)™ (1.24)
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whereS is the sum of all elements of the spatial weightrim W andy is
the vector of then observations for the considered variable. The null
hypothesis is the absence of spatial dependendethbunature of the
underlying spatial stochastic process is not sygetifinder the alternative
hypothesis. Inference is based on a normal appetiom using the
standardized valuez; = {I — E[I]}/{3/V[I]}, which is obtained from
expressions for the mean and variance (Cliff andi ©981).

When testing for residual spatial autocorrelatiping substituted by the
vector of residuals of the OLS-estimated modek(y — Xf) (Cliff and

Ord 1972), under the assumption of independent idedtical normal

distribution of the errors:
1= (%) e'We(e'e) ! (1.25)

In this case, the expressions for the moments rbecanore
complicated (see Anselin 1988a, page 102).

1.6.2 The Lagrange Multiplier tests

When spatial regression models are estimated vigirMan Likelihood,
the Lagrange Multiplier tests are particularly usefhen searching for the
best specification of the model, because they ms&ht on the form of
spatial autocorrelation that should be considerethé model and they do
not require the estimation of a spatial model &sting purposes. Different
simple null hypothesis are tested through differéedt specifications
(Anselin 2001):

Lagrange Multiplier test for error spatial autocaiation (LM,,,)
The LM,,., test, first introduced by Burridge (1980) and thettensively
treated in Anselin (2001) and Anselin and Florag93), tests the null

hypothesisH,: 1, = 0, therefore testing a non-spatial specificationaof
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linear regression model against a SARE model spatidn. TheLM,,,

test is written as
LM,,, = (e'We/5%)?)T (1.26)

wheree is a vector of OLS residualé? is an estimate af? under the null
hypothesis equal te’e/N, T=tr[W'W + W?]. Under the null hypothesis,
LM,,,. = x%. When the null hypothesis is rejected, error spatrrelation
should be included in the model. However, no ciedication is given
about whether it should be specified as a spatibragressive process
(e = 1,We+v) or as a moving average process=(1,We + v), the test

being the same for both cases.

Lagrange Multiplier test for spatial autocorrelatioof the dependent
variable CM,,g)
The LM,,, test forHy: A, = 0 against a spatial lag alternative takes the

form
LMy = (e'Wy/6%)?/[(R/6%) +T] (1.27)

where R=(WXB)'(I-XX'X)"1X")(WXB). This test is also
asymptotically distributed as @? with 1 degree of freedom (Anselin
1988b; Anselin and Florax 1995).

When performing th&M,, or theLM,, test it is important to account
for possible spatial dependence of the other foira. (spatial lag
dependence when testing for spatial error and varsa), by means of
either a joint test, which takes a rather compdidaspecification (Anselin
1988b), or tests that are robust to the presendecaf misspecification of
the other form (Anselin et al. 1996).

LM joint test
The LM joint test for spatial lag and spatial mayiaverage erroiSARMA
allows testing the joint null hypothesig,:1; = 1, = 0, by taking the
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following form in the simplified case in whicdW is the same for both the
spatial (moving average) error and spatial lag regi@ssive processes
(Anselin 1988b):

SARMA = (e'Wy /5% —e'We/5%)?/R + (e'We/5%)?)T (1.28)

Under the null hypothesisSARMA — y2. The rejection of the null
hypothesis, however, does not give clear evidehoaitathe nature of the
spatial dependence which is detected. The SARMAiseglentical in its
formula to a test for a joint spatial lag and sgladiutoregressive error,
except for the fact that such a SARAR process wigitical spatial weight
matrices for the spatial error and the spatialisagot identified, whereas a
SARMA process is (Anselin and Florax 1995).

Robust LM tests

The robust versions of theM,,,. and theLM,,, tests are adjusted to be
robust to local misspecifications. ThH&LM,,.. test is adjusted so as to
maintain ay? asymptotic distribution even whet, # 0; similarly, the
RLM,,, allows to tesH,: 4, = 0 even in presence d@f # 0. The complete

specifications of these two tests can be foundneeln et al. (1996).

1.6.3 The choice of the correct model specification

Once the presence of spatial dependence is detegtdte Moran’s | test
and/or the SARMA test, it is possible to try to wed it by including
additional exogenous variables and/or their spdagks in the model
specification. If spatial autocorrelation is splesent, proceeding from the
results of the LM tests, this can be accountedbfpmeans of a spatial
model. The correct specification can be chosenovietlg the criteria
indicated by Anselin and Florax (1995) and Ans€i05):
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- If the LM,,, does not reject the null hypothesis and ti,,
rejects the null hypothesis, then a spatial lagthef dependent
variable should be included,;

- If the LM,,, does not reject the null hypothesis and tié,,,
rejects the null hypothesis or both tests rejeetrihll hypothesis,
but theLM,,., is more significant than thieM,,, test, then a spatial
error model should be preferred,;

If both non-robust LM tests reject the null hypatise their robust

versions should be considered:

- If RLM,,, rejects the null hypothesis whereEM,,, does not or
the RLM,,4 is more significant than thRLM,,. test, then the spatial
lag of the dependent variable should be included;

- If RLM,,, rejects the null hypothesis whereREM,,, does not or
the RLM,,. is more significant than theLM,,, test, then the spatial
lag of the error term should be included.

Once a spatial model is estimated, additional deodil LM tests can
be performed in order to exclude the need to ireladditional spatial
autoregressive terms, such as a spatial error iteanspatial lag model or
vice versa. If uncertainty about the best spatic#ication persists, the

choice can be done according the classical infaomafiteria (AIC, BIC).

1.7  Spatial panel data models

The interest of spatial econometrics literaturetha estimation of panel
data models has been growing in recent years.

The main reason for this, together with the growailability of
datasets at micro and macro level, is that usimglpdata yields a number
of benefits such as greater variability and lesBingarity among the
variables, more degrees of freedom and efficiertbg possibility of
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studying the dynamic and the individual heteroggreti the same time; the
ability to identify and measure effects that cresstion and time-series
data cannot detect; a better control over unobbésitnobserved

heterogeneity (individual or time-invariant chagagdtics) (Baltagi 2005).

1.7.1 A taxonomy for spatial panel data models

Similarly to cross-section models, panel data modelin be specified as
spatial models by controlling for spatial effecipatial dependence is the
most problematic spatial effect to model, since tneesnometric aspects of
spatial heterogeneity can be handled by meansretpatial panel data.

As a non-purely notational purpose, it must be ot spatial panel
data models are stacked by cross-sections, rab@r individual time
series. This means that observations are sorteddyr time and then by
cross-sectional units, so that, for example,Nffer1 vectory is organized
as y'=[Yi1 Y21 - Yn1 Vit - Ynt - Yir - Ynr], with
t =1,2,...,T indexing time periods. Cross-sectional units wél indexed
by the indexi, such that for fixedi and t, elementy;, will be the

observation of variabl¥ in thei-th unit at timet.

1.7.2 Static models

Following Anselin et al. (2008), spatial dependeiscgenerally considered
as a cross-sectional non-zero correlation amorigrdiit units according to
certain spatial ordering, so that error autocoti@aonly pertains to the
same time period. Spatial dependence is modeled by means of aakpati
weight matrix that is assumed to be constant owee,tso that the full

NT x NT spatial weight matrixWy) is defined as

Wy .. Oy
WNT=IT®WN=[ oo ] (1.29)
NT

0y .. Wy
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wherel; is aT x T identity matrix,W, is aN X N spatial weight matrix
defined as in section 1.3.2 afg is aN X N zero matrix. The particular
structure of data, stacked by cross-sections, petmibuild the spatial lag
of a variable by multiplying its observations faach time period by the

spatial weight matrix.

SAR model
Similarly to the cross-sectional case, the basiatiagp lag model

specification for panel data is

where the observations are stacked in successigss-sections for
t=1,..,T. Thereforey is aNT x 1 vector,1, is a spatial autoregressive
parameterX is aNT x K matrix with K equal the number of regressdis,
isaK x 1 vector anct is aNT x 1 vector ofi.i.d. errors.

Again similarly to what happens in cross-sectionadels, W,y
appears to be endogenous as the result of the determination of the
values ofy in the spatial system as a function of the exptamyavariables
and the error terms at all locations in the systé&he reduced form of

equation (1.30) makes it clear for ed¢hx 1 cross-section at time

yt :Xtﬁ+/11WNXtﬁ+/‘1’%W12\]Xtﬁ+"'+gt+/11WN€t+
+A2W e + ... (1.31)

or equivalently,
ye = Uy — L4 Wy)'(XB +¢). (1.32)
In this simple pooled model, the spatial multipkdiect is only limited

to each cross-section.

SARE model
The spatial error specification is characterized dbyon-spherical error

covariance matrix. In a panel data setting With< T, an unconstrained
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non-spherical error covariance matrix contdihg (N — 1)/2 parameters.

In order to estimate them whéw>> T, a structure must be imposed in

order to turn the complex structure of the errovac@mnce matrix into a

function of a set of parameters. Four main appresittave been suggested

in the literature and reviewed by Anselin et a0(@):

- Thedirect representatiorapproach is rooted in the geostatistical field
(Cressie 1993) and is based on the specificatiorthef covariance
between two observations as a direct function @& dmstance that
separates them. Given th®¥ x N time-invariant error covariance
structureR? for each cross-section amd a scalar variance term, the
overall matrix can be defined &g = a?[I;2y].

- Spatial error processesre based on a formal relation between a
location and its neighbors (not between all paifsobservations),
through a spatial weight matrix. As it was alreathade clear,
analogously to time-series analysis, the most commmodels for
spatial processes are the autoregressive and the@ngn@verage
specifications. In a panel data setting, a SAREgsS is specified as:

y=Xp +e¢

E = AZWNTE +v (133)

wherev is aNT x 1 vector ofi.i.d. errors. The full error covariance

matrix, again assumed not to vary over time, aed ik equal to:
Inr = o5 [IrQ[(Iy — L, Wy) (Iy — ;W] . (1.34)

- The spatial error componentspecification, proposed by Kelejian and
Robinson (1995), decomposes the error term intzal land a spillover
effect, which are assumed to be uncorrelated. Eamhponent is
assumed to biei.d., with a specific variance. The time-invariant @tk
error covariance matrix results from the sum ofdbeariance matrices

of the two components.
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- The standard two-way error component model (Bal2@§i5) specifies
the error terms of the regression model as the suan unobserved
individual component, a time-specific component andidiosyncratic
error term. The common time component results paricular form of
cross-sectional (hence spatial) correlation. Thisd k of model
specification was recently extended into tt@mmon factormodel
approach by expressing the time component as absenged time-
specific common factor to which all cross-sectionaits are exposed
(each of them having a distinct factor loading lois tommon factor).
Therefore, spatial dependence is typically taketo iaccount by

including the spatial lag of the dependent varialde a spatial

autoregressive error term into the model (Anselinale 2008; Elhorst

2010), such as in the cross-sectional frameworkdéscribed in section

1.5.1, in both cases, stationarity requires tha&t vhlue of the spatial

parameter is included between the smallest aneédarmgjgenvalues of the

spatial weight matrix (Elhorst 2010).

1.7.3 Temporal and spatial heterogeneity

Still following Anselin et al. (2008), the homogeus specifications of
spatial panel data model outlined so far can beneldd so as to introduce
heterogeneity both over time and across space. Mdifferent
specifications can be theoretically introduced. ldegr, most of them
suffer from identification problems and do not fiachpirical application;
therefore they are not described in what follows.

Temporal heterogeneitgan be introduced straightforwardly in spatial
panel data models by allowing for time-specific gmaeters. The cross-
sectional error terms can be allowed to be coedlatver time periods in
what is called spatial Seemingly Unrelated Regress{8UR) model. In a

spatial lag model, for each cross-section at timel, 2, ..., T, the standard
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specification is enriched by a time-specific spat@utoregressive

coefficient ¢,,), thus becoming:
Ve = MWnYe + X B + €. (1.35)

The error covariance matrix for model (1.35Fige’] = Z;:®I, with
Xr as aT x T temporal covariance matrix with elememwts (equal to the
temporal covariance between periedand t, for s # t). Spatial error
autocorrelation can also be introduced in spatldRSnodels. If this is
done by means of a spatial autoregressive errarepsy for each cross-
sectionN x 1 attimet = 1, 2, ..., T the model is specified as
Et);t Azj’:’f];— j‘tUt ' (1.36)
Spatial heterogeneitis usually unobserved heterogeneity that is inetud
in the model specification either as fixed effeotsrandom effects. In a
spatial econometric framework, both these kindsoflels can be extended
to the SAR and SARE specification.

The classic specification offaxed effectanodel captures unobserved
heterogeneity through an individual specific, tinmistant termc() that is
not assumed to be orthogonal to non-stochasticesegrsX: y = X +
D.c + ¢, whereD, is aNT x N matrix of individual dummies and is a
N x 1 vector of fixed parameters (individual effectsheldisturbances are
assumed to biei.d.(0,02). The spatial lag extension of this approach is not
straightforward. A fixed effects spatial lag modael stacked form is

specified as:
y=4LU;QWy)y + XB + (1:Qc¢) + ¢. (2.37)

The estimation of model (1.37) requires the usa démeaned form, in
order to overcome the incidental parameter probleme.demeaned form is
obtained by subtracting the average over the tinmeision for each cross-

sectional unit, thus wiping out the fixed effectsdathe constant term.
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However, the singularity of the demeaning operaastill a problem for
ML estimation (Anselin et al. 2008).
The standard specification of the error term farheeross-section in a

one-way error componemiodel is
g =c+v, (1.38)

where ¢ is a N x1 vector of individual random components with
c;~i.i.d.(0,02) andv;~i.i.d.(0,c?). Spatial error autocorrelation can be
incorporated into the standard random effects madletome different
ways, which are described in detail in Anselin let(2008). One possible
approach is the specification of a SAR processhteridiosyncratic error
component of equation (1.38), as Baltagi et al0O8@lo, so that for each

cross-section,
Vt = /‘lszVt + Ut . (139)

A second possible specification is the one adojptedapoor et al.
(2007), that first applies a SAR process to thereterm ¢ and then
specifies the vector of innovationsas an error component model:

& = LWye + v

Uy =c+, (1.40)

1.7.4 Dynamic models

Dynamic panel data models incorporate dependeriteifbtime and space.
Dynamics in time is embodied in the model througk tnclusion of a
lagged dependent variablg; {_,) among the regressors (Baltagi 2005),
whereas spatial dynamics can be included in thalusays in a SAR or
SARE framework.

Anselin (2001) distinguishes spatial dynamic modiels some broad
categories. Space-time dependence in the erroritergmored at first and

the focus is on models where the cross-sectiomaésion is bigger than
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the time-dimensionN > T). The taxonomy provided for spatial dynamic
models with lag dependence is the following (fosee@f exposition the

models are expressed al x 1 cross-section at time= 1, ..., T).

Pure space-recursiveodels:
Ve =oWyye 1 + XiB + &, (1.41)

where g is the space-time autoregressive parameter WRg;_, is the
N x 1 vector of observations of the spatially laggedeshelent variable at
time t — 1. The model can be easily extended so as to incheléime or
spatial lag of the explanatory variables, althoufbkir space-time lag
should not be included in order to avoid identifica problems (Anselin et
al. 2008). In this kind of model, the dependencdy opertains to
neighboring units in a previous period. This metnad it takes one period

for spatial dependence to manifest itself.

Time-space recursivaodels:

Ve = VYe-1+ OWnYi1 + XiB + &, (1.42)

wherey is a serial (i.e. time) autoregressive paramedeatially lagged
contemporaneous explanatory variabld,X;) can also be included, but
no time or space-time lags of the vecky should be added because of

identification problems.
Time-space simultaneousodels:
Ve =VYVe-1 + MWyye + X B + &, (1.43)

where, in accordance with previous notatiop; is the spatial
autoregressive parameter. In this model, the immusf any kind of spatial
lag of the explanatory variables would be problecpdétecause the effect of

it is already included in the combined effect af #patial multiplier and the
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space-time multiplier that follows from the preseraf y,_; among the

regressors (Anselin et al. 2008).

Time-space dynaminodels include all three possible lags of the ddpah

variable:
Ve = VYe-1 t MWy + oWy 1 + XS + & (1.44)

This is the more general specification, but itsinestion may be
complicated because of identification problems. éttheless, this model
has been extensively studied in recent literatifie €t al. 2008; Lee and
Yu 2010a).

Space-time dependence can also be included in tter &rms
following what is called the “error component apgbh” (Anselin et al.
2008). The starting point is the spatial randone@&f model as specified in
equations (1.38) and (1.39), in which the idiosgticr componentu; is
substituted by a serially correlated tedy){(

St =C + Vt
Ve =L, Wyve + & . (1.45)
$t = Péeq +uy

1.8  Estimation of spatial panel data models

The estimation of spatial panel data models needeal with the problems
caused by autocorrelation in space, already destrib section 1.2.1:
although the panel data framework appears to be rmomplex than the
cross-sectional one, the basic reasoning is anatogvhen considering a
spatial lag model, the simultaneity betwd#Ry ande must be taken into
account.

When panel data models incorporate dependence ibotime and
space, such as spatial dynamic panel data modeis$ idaalso convenient
to focus briefly on time dynamics as a second soofcautocorrelation. If
individual (spatial) heterogeneity is present ia thodel as a one-way error
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component (also called random effects) and singes a function of the
individual-specific ternt;, it follows that thaty; ,_; is also a function of;.
Therefore one of the regressors is correlated théherror term and the
OLS estimator is biased and inconsistent and sotlaefixed effects
estimator and the GLS random effects estimatortégaP005).

The main ways that have been proposed in ordegdabwith these two
sources of autocorrelation are instrumentation-dd$¢GMM estimation
procedures and ML estimation, which specifies a plete distributional
model. Nevertheless, it should be noted that difftmodel specifications
have given birth to different estimation strategreghe literature, each one
dealing with the peculiar econometric problems that estimation of that
model presents.

Recent literature has developed theoretical pragsefor spatial panel
data models estimators. Kapoor et al. (2007) doumted to the GMM
approach deriving a GMM estimator for a spatiallytogorrelated error
static panel data model with individual effects.

Quasi-maximum likelihood (QML) estimators were afsoposed: Yu
et al. (2008) studied the asymptotic behavior dQML estimator for a
dynamic spatial autoregressive panel data modél evity individual fixed
effects when botlv andT are large; this was later extended to two-way
error component models, where both time and indai@ffects are present
(Lee and Yu 2010a). A Least-Squares Dummy Vari@oBDV) estimator
for a “time-space recursive” model with fixed iniual effects which also
allows for endogenous regressors was proposed byids (2010). Some
of the main estimators recently proposed in therdiure are reviewed in

the following sectiors

% The notation used in the following sections mighghtly differ from the one in the
original reviewed papers. This is done for the safkeonsistency.
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1.8.1 The KKP estimator for a SARE static panel data rhode

A fundamental contribution to the literature on th&timation of spatial
panel data model is that by Kapoor et al. (200%¢ witroduced the so-
called 'KKP” (Kapoor, Kelejian and Prucha’'®stimator. The authors
consider a static panel data model that allowsttier disturbances to be
correlated both over time and across space. SukEndence is modeled
as a first order spatial autoregressive processhen error term and
correlation over time is obtained through tNex 1 vector of individual

effectsc, as in equation (1.40). Stacking the observatitims,model can

written as
y=Xp+¢
E = AZ(IT®WN)E + v. (146)

v=(7®Iy)c+V

In this specification,uv corresponds to a classical one-way error
component (Baltagi 2005)y is ani.i.d. error term with zero mean,
variances? and finite fourth moments; the unit specific ecomponents
are alsai. i.d. with zero mean, variana& and finite fourth moments. The
processey andc are independently distributed. The spatial werghtrix
is defined as usual with null diagonal elementsrédger, in order for the
matrix (Iy — A,W ) to be non-singular, it is also assumed thak < 1.

This model specification implies that the innovatov are
autocorrelated over time but not across spatiatsuntheir variance-

covariance matrix is defined as:
QU = E(UU,) = O—C?(IT®IN) + O-EINTI (147)

Differently, the model disturbancesare correlated both over time and

across space and are such fivat) = 0 and

2, = E(ee") = [I:Q(Iy — ,Wy) ' 2, [I;QUy — ,W'y)~'].  (1.48)
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The KKP procedure is defined for the case in whiEhis fixed
andN — o. Three GMM estimators are proposed fgr % and o2, in
terms of six moment conditions that generalize th@ment conditions
introduced in Kelejian and Prucha (1998, 1999). fitst set of estimators
provides initial estimates fot,, ando? as the unweighted nonlinear least
squares estimators based on a subset of the mamoeditions and the
residuals calculated after the OLS estimation oflehy = XS + ¢. The
estimates obtainedi{, and 53) are then used in order to provide an
estimate fow? = o2 + T'62 based on the fourth moment condition.

Under the assumption of normality of innovatianshe authors derive
the variance-covariance matrix of the sample momesit the true
parameter valuesE( consistently estimated &), whose inverse is to be
used as the optimal weighting matrix in a GMM estion. Therefore the
use of the weighting matrix proposed for this pohee will not be strictly
optimal when the normality assumption fodoes not hold.

The second GMM estimator is then defined as thelimear least
squares estimator based on the moment conditioighted byZ~!. The
third GMM estimator is proposed mainly because oimputational
considerations and is based on a simpler weigimtatix, which places the
same weight on each of the first three moment ¢mmdi and the same —
but different from the previous — weight on eaclthsf last three moment
conditions. This partially weighted GMM estimatsralso proved to be a
consistent estimator fdr,, 0% ando?.

Finally, the authors provide a Feasible Generalitedst Squares
(FGLS) estimator fop based on the estimates obtainedgre? ando?,
which is proved to be consistent, asymptoticallynmal and to have the

same asymptotic distribution as the real GLS edoma
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1.8.2 A Quasi-Maximum likelihood estimator for a time-spaynamic
model
Yu et al. (2008) investigate the asymptotic praperbf a QML estimator
for atime-space dynamimodel with fixed individual effects when both the
cross sectional dimensioN) and the time dimensiorf') go to infinity
(either at a proportional rate or not) and als@ps® a bias correction. The
model considered is the most general model propdsed\nselin’s
taxonomy (2001), therefore the asymptotic resutesgnted in this paper
are also applicable to the other categories of fsodse special cases in
which some of the parameters are equal to zero.

For each time periotl= 1,2, ..., T, the model is
Ve = AWnyYe +vye1 + oWnye 1 + X + ¢+ &, (1.49)

wherey: = Vit Yatr -r Yne) @ande; = (€14, €24, -, Ene)’ @reN x 1 vectors
ande;, isi.i.d. acrossi andt with zero mean and varianeg; W is the
N x N spatial weight matrixX; is an N x K matrix of non-stochastic
regressors and is theN x 1 vector of fixed individual effects. The total
number of parameters in this model is thereforaktpuV + K + 4.

Following Yu et al. (2008), defin§y = (Iy — AW)) and, assuming
that Sy is invertible, Ay = Sy~ *(vIy — oWy). Model (1.49) can be
rewritten as

Ve = AyYeo1 + Sy T X B+ Sy ic+ Sy e (1.50)

and, assuming that the infinite sums are well @efinby continuous

substitution of (1.50) we obtain

Ve = Lo AnSn T (c + Xe_nBy + Et—n)- (1.51)

The likelihood function of model (1.49) is given by

InL(6,¢) = ==~ In2m — = Ino? + Tin|SyA| — - N1 &' (Dee(9) :

(1.52)
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where 8 = (6,4,06%)' and (= (5, Ac), §=w00B), &=
SvDY: —vYie1 — oWy vi—1 — X — c. The QML estimators fof andc
are the extreme estimato® &nd¢) derived from the maximization of the
likelihood function (1.52). When the error terms;)( are normally
distributed,d and¢ are ML estimators; when the errors are not nognall
distributed, then we have QML estimators.

Because the number of the parameters to be estigats to infinity
as the cross-sectional dimension goes to infitlitg,authors also propose a
likelihood function that concentratesout. Define y, =y, —y, and
Jeo1 = Yeo1 — Yr—1 for t = 1,2, ..., T, whereyr = ¥i_, /T andy;_; =
Y ye_1/T. Similarly, X, and & are defined. FinallyZ, = (y,_, —
Vo Waye—1 — Wyyr—1, X — X7). The resulting concentrated likelihood

function is

InL(0) = — =~ In2m — “~ Ino? + Tin|SyA| — — 21, &' (&) , (1.53)

202 &t=1

where §,(0) = Sy()¥, — Z,5. The QML estimator fo® maximizes the
concentrated likelihood function (1.53). By thigapach, it is also possible
to recover the estimated individual effects, wh&hot the case when other
ML estimators are considered such as, for exantplese proposed by
Elhorst (2005) for either a SARE or a SAR dynamaogd data model with
fixed effects.
The asymptotic properties of the QML estimators based on the
following assumptions:
QML_1. Wy is a constantN x N spatial weight matrix whose
diagonal elements are equal to O;
QML_2. The error termg;; arei.i.d. acrossi andt with zero mean,
variances? and at least one moment of orde#d which is finite;
QML_3. Sy (1) is invertible for allA € A. FurthermoreA is compact

andA is in the interior of\;
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QML_4. The elements ofX; are non-stochastic and uniformly
bounded. Alsdim;_,, — ¥T_, X,'X, exists and is nonsingular;
NT

QML_5. Wy is uniformly bounded in row and column sums in
absolute value. Als§,*(1) is uniformly bounded, uniformly in
A EA;

QML_6. X5, abs(A%) is uniformly bounded;

QML_7. N is a non-decreasing function BfandT goes to infinity.

For assumption QML_3 to be verified, in empiricpphcations where
W is row-normalized, the parameter spaceif@ just(—1,1). Moreover,
in order to justify the absolute summability &4, a sufficient condition is
[|[Ay]l < 1, where the matrix norm is the row sum norm orabimn sum
norm. If Wy is row-normalized, one usually considers the spatrad
temporal parameters satisfying the constredht- |y| + |o| < 1.

The proofs provided by the authors show that theceotrated QML
estimator is consistent and asymptotically norrnat,the limit distribution
IS not centered around zero. In order to overconr® & bias reduction
procedure is proposed which has a better perforenéman the standard
QML estimator especially whew > T.

1.8.3 Least Squares Dummy Variable Estimator

Korniotis (2010) introduces a new bias-correctedimegor which is
suitable for estimating a dynamic panel data med#i fixed effects by
Least Squares Dummy Variable (LSDV) and allowsdpatial effects and
endogenous regressors. The model to be estimatkdlas a time-lagged
and a spatially lagged dependent variable, irin@e-space recursive

framework, and fixed effectg). For each time period= 1,2, ..., T:

Yt =VYe-1 t OWpyYe1 + X B + ¢ + &, (1.54)
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whereg, arei.i.d. error terms with zero mean, varianceand at least one
moment of order> 2 which is finite. The set of control variables iade of
endogenous regressors and can include both contangmus and time-
lagged regressors. Moreovéf,andT are assumed to grow at a finite rate
and the usual assumptions on the spatial weightixmahat needs to be
row-standardized, hold. For details on the modsu@ptions, please refer
to the original paper.

The standard LSDV estimate fpiis

N 1 5 . “1rq 5 )
Pisov = [=ENea BT (R 'RE | |20 2 (R ) 78|, (1.59)

where the superscript denotes that the data are de-meaned to have zero
mean;X; . 1 = [vi:—1 W;y:_1 Xi] is a vector of dimensions X (K + 2)
whereX;; is al x K vector,W; is thei-th row of the spatial weight matrix
andy,_y = [V1¢-1,Y2-1, - Ynt—1] - However, the LSDV estimator o¢f

is biased by the presence of fixed effects and gewlous regressors.
Therefore a hybrid estimator is proposed which riments the

endogenous regressors and transforms equation) (@t85

A 1 ~ <7 -1 1 — I~
O T 0 0y 6 I T Y ¥ Y /09 o4 R =15

where Z; ;1 = [Vit—1 WiVe—1 Zir—1] and Z;_, is a 1 x K vector of
instruments foX;;. The instruments are assumed to be contempordgeous
correlated with the error term, but their time-laggralues are taken to be
independent from the errors. This hybrid estim&qgroved to have a finite
asymptotic bias and to converge to a normal distioin. A bias-corrected

estimator is then defined as

_1 ~
s _ |1 N T (5d 15d 1 N T (5d I~d BT
Ye = NT 1=1Zt=1(Zi,t—1 Xi,t—l] [ﬁ 1=1Zt=1(Zi,t—1 Yi,t_m'

(1.57)
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where By is the value of the asymptotic bias under a comisisestimator
of y (see Korniotis (2010) for greater details and timplementation
procedure). The bias-corrected estimator only umsénts the endogenous
regressors whereas a pure IV estimator needs tamsnts also the time
and space-lagged dependent variable, thereforg meare exposed to the
weak instruments biases. It is proved to be asytigptty unbiased and

asymptotically normal and to have good small samppbperties.

1.9 Software availability for the estimation of spatial models

Theoretical contributions in the field of spatiatoeometrics are now
numerous and cover a wide range of models anchg¢eptiocedures, both
for cross-sectional models and panel data modslspravious sections
outlined. Although the subject appears to havehea@ phase of maturity
(Anselin 2010), empirical applications are stilnlted by the lack of

software availability, particularly in the field spatial panel data models.

1.9.1 Software availability for the estimation of spattabss-sectional
models

The availability of codes for cross-sectional sgla#inalysis is such that
applied researchers can enjoy enough flexibilityhie choice of the model
to estimate.

A Cliff and Ord model of type (1.11) which may alsmntain
endogenous regressor and heteroskedastic erros team be estimated
either via ML or GMM/IV by thespr eg andspi vr eg Stata functions
that also flexibly allow the estimation of SAR mtlef type (1.4) and
SARE models of type (1.6) (Drukker et al. 2011; P&12011b).

The spatial econometrics toolbox for MATLAB provitidy LeSage

(1999) on his websife contains functions that are suitable for ML

* http://www.spatial-econometrics.com
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estimation of Cliff and Ord models (1.11), SAR misd¢€l.4) and SARE
models (1.6), together with some functions thatvalBayesian estimation
of spatial models.

The most appealing software for cross-sectionalyarsais R, which
offers a wide range of estimation choices with paekagespdep and
sphet (Bivand 2006, 2013; Piras 2010): among othersregall the ML
estimation of a SARE model of type (1.6) (functienr or sar | m), the
estimation of a Cliff and Ord model as describeegguation (1.11) either
via ML (function sacsarl nm) or GMM (function gst sl shet), the
estimation of a SAR model (1.4) via Spatial Twog¢std_east Squares
(functionst sl s) or ML (functionl agsar | m). R also provides plenty of

functions that are suitable for exploratory spadeta analysis and testing.

1.9.2 Software availability for the estimation of spafi@nel models

Procedures to estimate spatial panel data modeless numerous and this
is still hindering these models to be applied inpeioal studies. Some
MATLAB routines are available on Paul Elhorst's & for the ML
estimation of static fixed effects and random dHe8AR models, as
described respectively in equations (1.37) and8(1.8nd SARE models
(Elhorst 2010), extended in order to include thaskiorrection procedure
proposed by Lee and Yu (2010b). Some testing proesdare also
available which can be used to test for a spatiatiged dependent variable
or spatial error autocorrelation in a spatial staganel data model using
(robust) LM tests (Elhorst 2010).

Ingmar Prucha also provides some Stata codes oméfisit8, one of
which is suitable for the estimation of a spatrabestatic panel data model

as specified in equation (1.40) via the KKP estonat

® http://www.regroningen.nl/elhorst/software.shtml
® http://econweb.umd.edu/~prucha/Research_Prog.htm
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As in the cross-sectional case, R is the softwlaae dffers the richest
although not yet comprehensive choice of estimatiogtines. The R
package for spatial panel data estimatioapt m (Millo and Piras 2012)
and it allows ML estimation of Cliff and Ord typeontels (that include
both a spatially lagged dependent variable andatiadly autocorrelated
error term) either with spatially uncorrelated widual effects, as in
equations (1.38) and (1.39), or where spatial tatio® is present both in
the individual and the error component, as in @qudtl.40); both the fixed
and random effects models are implemented. The Ké&fmation
procedure can be applied to a Cliff and Ord typenotel with the error
terms specified according to equation (1.40). Agawmth the random and
fixed effects models are considered.

The options for estimating spatial static paneldaiodels are now
numerous and, although no comprehensive packagese Hzeen
implemented yet, empirical researches are offeregob@ad choice. The
estimation of spatial dynamic panel data modelsinstead made
particularly difficult and hence less frequent imgrical analyses by the
lack of readily available routines implemented inatistical and
econometric software. To our knowledge, the onlgilable code is the one
published by Elhorst for the ML estimation of a dymic panel data model
including a serially lagged dependent variablejorg fixed effects and
spatial error autocorrelation (Elhorst 2005), aliffo some more codes are
in preparation his website for the estimation ofyaamic panel data model
including a serially lagged dependent variablepatially lagged dependent

variable and individual fixed effects.
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2 A Monte Carlo Investigation

2.1 Introduction

The literature about GMM estimation of spatial das&ta models is still
limited. As it was reviewed in chapter 1, the KKRimator was introduced
in order to estimate SARE static panel data modatls random effects
(Kapoor et al. 2007). A more recent contribution Kykenova and
Monteiro (2009) presents a system-GMM estimator d#ortime-space
simultaneous model with fixed effects and additlorendogenous
covariates and compares its performance in firli@@es against other
spatial estimators; the authors find that the sysBMM estimator,
although generally less efficient, tends to exhib& smallest bias for the
spatial autoregressive parameter and that it deeseasN and/or T
increase. To our knowledge, however, no publisheggep has yet studied
extensively the finite sample estimation of a spi@oe dynamic panel data
model, which also includes a time lag of the spigtimgged dependent
variable among the regressors, by a GMM-type estima

We therefore perform a Monte Carlo (MC) simulatiexercise that
permits an assessment of the performance of thé¢ coazmon estimators
for dynamic panel data models for different temparad cross-sectional
dimensions and different degrees of spatial, tealpand spatiotemporal
dependence.

Moreover, we also aim at studying the bias resgiffiom a non-spatial
estimation of a dynamic panel data model that igadhe spatial effects
that characterize the data, for different degrefespatial dependence. To
our knowledge, although the theoretical consequetagnoring spatial
dependence have been extensively studied (as loedcn the previous
chapter), no empirical study is available for tisessment of the effects of
such a misspecification in terms of bias of thanestes of the model

coefficients.
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The structure of the chapter is as follows. Sectib@ offers a
description of the simulation model which includes introduction to the
Monte Carlo principle, a description of the objees of the present
analysis and how it was implemented. Section 2t®duces the GMM-
type estimator whose small sample properties wesitigated through the
MC analysis. The results of our simulation analgses described in section
2.4, for various scenarios that differ in termsdefree of spatial, temporal
and spatiotemporal dependence included in the mdgsitly, we will

come to our conclusions in section 2.5.

2.2 Simulation model

2.2.1 The Monte Carlo principle

Monte Carlo simulations are based on the empitregking of a statistic’s
behavior in random samples drawn from known popariatof simulated
data. The strategy is to create an artificial wdHdt resembles the real
world as much as possible, whose characteristies kmown to the
researcher. This artificial world is calledeudo-population

Following Mooney (1997), a basic MC procedure candbscribed as
follows. First the Data Generating Process (DGRypscified such that it
describes all the characteristics of thseudo-population A computer
algorithm needs to be developed in order to be ablgenerate data
according to the specified DGP. Once the DGP idempnted, gpseudo-
sampleis generated such that it reflects certain charestics of the sample
that we want to put under investigation (e.g. s&gite). The statistic(s)
whose properties are being studied in the pseudbeemment is calculated
in the pseudo-sampl@and stored. The sampling and estimating steps are
repeated for & number of trials, so thad values for each statistic under
consideration are calculated and stored in a véct®he distribution of the

resulting K values of the statistics is the MC estimate of saenpling
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distribution of@ under the conditions specified for theeudo-population
and thepseudo-sample

The rationale behind MC simulation is thereforetg@imple to grasp.
What is more difficult in practice is the specificen of a proper DGP, the
implementation of a computer code to implementni #he interpretation

of the estimated sampling distribution.

2.2.2 A MC study for investigating the small sample prape of some
estimators for a time-space dynamic model

The MC methodology is applied in order to invedigthe finite sample
properties of some estimators for a time-space mymnanodel (section
1.7.4) with comparison purposes. The first onehs QML estimator
developed by Yu et al. (2008), whose asymptoticperses have been
analytically analyzed in their paper. Secondly, take into consideration
some GMM estimators for a dynamic panel data madel Arellano and
Bond (1991), extended so as to include a spat@lofathe dependent
variable among the regressors. In order to dedh wiime econometric
issues that arise in relation to the GMM procedin® different GMM

estimators are proposed.

All simulations are performed using Matlab R2011Bince the QML
estimator was already thoroughly described in tie®ipus chapter (section
1.8.2), no additional details will be provided tvat Differently, although a
GMM estimators for spatial dynamic panel data medbBhve been
proposed in a working papers (Yu and Lee 2010)ptleewe are going to
analyze has been developed autonomously and autarstyrimplemented
in Matlab. A detailed description of this estimat®rtherefore provided in

the following sections.

" The code for the QML estimator was kindly providbgl Jihai Yu upon request
specifically for this project.
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2.2.3 Data Generating Process

The first step of the Monte Carlo simulation cotssia the definition of the
DGP. Here we take into consideration a time-spac&mhic panel model
with fixed-effects; hence, following the notatiolremdy presented in the
previous sectiongyseudo-samplesre generated from:

Ve =AWNye + YY1+ oOWyye 1 +xef +c+ & (2.1)
Xe = X106 +1¢ (2.2)
where  y; = (V10 Y2t o Yne)s & = (16 €200 1 Ene)  @NA - xp =
(X1t X2¢) o r Xne)' @reN X 1 vectors andg;; isi.i.d. acrossi andt with
zero mean and varianeg; additionally,c ~ N(0, 1506%); & ~ N(0, 1502);
n: ~ N(0,1y), with 15, anN-dimensional vector of ones. The spatial weight
matrix Wy is aN X N row-standardized rook matrix. The subsciiptis
dropped from now on for a more compact notation.

In order to prevent results from being influencegy mitial
observations, initial values foy, are drawn from a random standard
normal distribution and the vectay, is initialized as & x 1 vector of
zeros. Moreover, each variable is generat@dimes and the first60 — T)
observations are then discarded.

The dependent variable is then generated accordinde reduced
form of equation (2.1):

Ve = Uy = W) (¥yeoq + oWy +xB + ¢ + &). (2.3)

2.2.4 MC design

The aim of the present MC simulation is to asséws finite sample
properties of the considered estimators for difieralues ofN andT and
to compare their performances since the true misdaiown. Sample sizes
and degrees of spatial dependence in the data aredvin order to
determine the conditions under which one estimsiould be preferred to

the others. Therefore, some different scenariossarmilated, each one
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described by different values farandT and different values for the model
parameters.

The first scenario is such that stationarity isueed by the restriction
1] + |yl +le] <1 (Yu et al. 2012). The MC experiment for stationary
data relies on the following designs:

T €{5,10,50}; N € {16,49,121};
y €{02,04}; o €{0.2 04}
A=02, B=1, 6§=05
02=1; o%2=1

(2.4)

All combination of values forN and T are considered. When
considering spatial and temporal parameters, Hotashbinations of the
values in (2.4) are admitted, but only those thmstuee model stationarity.
Therefore the settings used for our MC simulationa stationary context,

with regard tol, y andp, are only those summarized in Table 2.1.

Table 2.1. Setting of spatial and temporal paramets in the simulation model in a
stationary context

¥ 02| 04| 02
2 02| 02| 0.2
0 02| 02| 04

Al + |yl +lol| 0.6 | 0.8] 08|

A second scenario that is taken into considerationthe MC
experiment is that of a quasi-unit root contextwinich |A| + |y| + |o]| is
close to 1. The following designs are adopted:

T € {5,10,50}; N €{16,49,121};
y €{0.2,0.58}; o € {0.2,0.58};

1=02 pf=1 6=05 (2.5)
o2=1, o=

Again, all combinations oN andT are taken into consideration, but
only certain combinations of values for the spaiadl temporal parameters

are admitted in the experimental setting, as desdrin Table 2.2.
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Table 2.2. Setting of spatial and temporal paramets in the simulation model in a
guasi-non-stationary context

y 0.2 | 058
| 02| 0.2
0 0.58| 0.2

|Al + |y + |ol | 0.98] 0.98]

Finally, a MC simulation was conducted so as tosueathe bias that
a non-spatial estimation of a spatial model wowddse, which is in fact
one of the most important reasons for sponsorirgtiapeconometrics
techniques. This is done in a context where thigosrity condition is met
and spatial dependence is not too strong, accortbnghe following
designs:

T €{5,10,50}; N € {16,49,121};
0€{0.1,03} A€{0.1,0.3};
y=03 =1, 6§=05
02=1;, o%2=1

(2.6)

In this third scenario, all parameter combinaticar® taken into
consideration.

For each of the described designs, 999 trials wertormed. For each
set of generated pseudo-observations and eachagstinve report some
statistics which are suitable for assessing th@gut@es of the estimators
and comparing them:

- Mean: it is the average point estimates for thdfments over the 999
iterations fiiter). For each generic model coefficightit is calculated

1 niter 3 .
.Zkzl Hk.

niter

D)

as:

i ~ ~ 11/2
- Standard Deviation (SD), calculated[%sz; L yniterg, — 9)] ;

- Bias, calculated a8 — 6;
- Root Mean Square Error (RMSE): it is a measureoofistency and is

suitable for assessing the quality of an estimatderms of variability

. ~ 1/2
and bias, being defined éﬁ% L yner g, — 9)2] :
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2.2.5 Relevant econometric issues

Having defined the design of the empirical MC siatigns, it is important
to draw the attention on some econometric issuasdtise when a time-
space dynamic model with fixed-effects as specifiedquation (2.1) is to
be estimated. The most relevant issues are reltaditbe presence of the
spatial, temporal and spatiotemporal lags of thpeddent variable. In
order not to further complicate the model, the releoms are assumed to be
homoskedastic.

Specific remedies are needed in order to accounthe different
sources of endogeneity in this kind of model. Asexénsively discussed
in the previous chapter (sections 1.4.2 and 1.B&jg correlated with the
error terms, the contemporaneous spatial lagseotiéipendent variable are
endogenous regressors. The dynamic specificatiaheomodel introduces
also a different kind of endogeneity: the time kedglependent variable is
correlated with the fixed effects and with pastuesl of the error terms.
Therefore it cannot be considered to be strictlpgexous but only
sequential exogeneity holds, conditional on the bgeoved effectc;
(Wooldridge 2010). For the same reason, the preseha spatiotemporal
lag of the dependent variable is also a sourcadbdgeneity.

The most popular estimator for this kind of spaoetdynamic model
is the QML estimator proposed by Yu et al. (200@)jch was previously
reviewed (section 1.8.2). This is therefore ondhaf estimators that our
MC analysis will consider.

Another possible approach to the estimation of tiaglel consists in a
GMM approach, which can address the different sssu@f endogeneity
included in the model by instrumenting the regressblevertheless, the
definition of the instruments raises some econamétsues. The first of
them is the instrument proliferation problem whimbuld cause a bias in
the GMM estimates (Roodman 2009). In the next sed2.3), the GMM

estimators that are considered in the MC analysisteoroughly described
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together with the strategies that were adoptedrderoto overcome the
main econometric problems that we met.

Another possible source of bias when dealing whid éstimation of
this kind of model is caused by overlooking thetspalependence that is
present in the data. In this case, typically, theoieical researcher would
estimate a non-spatial model such as
Ve = VY1 + XeB +c+ &, lyl <1, (2.7)

where X; is a N X K matrix of independent regressors, not serially
correlated withe;, but correlated with the fixed effects The error terms
are assumed to have finite moments and in partidi(g;) = E (&;:&;5) =

0 for t # s. Since this type of misspecification does not séztve unlikely
to be encountered, our MC simulations are alsogdesi for evaluating its
consequences in terms of bias. There is no negubitd out that a first
drawback of such a model misspecification consistmissing estimates
for the spatial parameters and therefore missirguation of the spatial
effects. This, however, may not necessarily resumlta terrible bias
associated to the estimates of the other modefficiesits and may not
prevent a meaningful assessment of the effects hef mon-spatial
regressors. If this is the case and the main istt@fethe researcher focuses
on thep coefficients, the estimation of a simple non spathodel by a
suitable estimator may not be a bad choice. Engbigidence, however, is

still lacking and our MC exercise precisely aimpuaviding some.

2.3 A GMM estimator for spatial dynamic panel data models

The spatial GMM estimator for model (2.1) that wepgmse stems from the
Arellano and Bond difference-GMM estimator for andgnic panel data
model with fixed effects, both in the one-step amd-steps versions.
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2.3.1 The Arellano and Bond (1991) difference-GMM estanat

When dealing with a model such as model (2.7),lanel and Bond (1991)
propose a GMM estimator that estimates the modétshdifferences, so
that the time-invariant fixed effects are cancelad

The set of moment conditions that can be usedderdio define a set
of instruments depends on whether the covariates saquentially
exogenous, so thatE(e.|yf 1XLc)=0 for t=1,.T, y/™'=
Vits Vizs - Vie—1)'» and Xt = (X1, Xiz, ..., Xi¢)', or strictly exogenous, so
thatE (ge|yf X7, ¢) =0fort =1,..T andX? = (X;1, Xiz, -, Xir)'-

In case of sequential exogeneity of the covariafi€X;.c;;) # 0 for
s <t andE (X&) =0 for s > t, then onlyX;;, X;5, ..., X;s_1 are valid
instruments in the differenced equation for persodVith regards to the
time lag of the dependent variable, only the vahieg lagged two periods
or more are to be considered as valid instrumdygs)g its time lag an
endogenous regressor. Following Arellano and BA®®1, page 280), the
optimal matrix of instruments is therefore (& —2) X (T — 2)[(K —
(T + 1)+ (T —1)]/2 sparse matrix defined as
Z;, =diag(yi1 .- VisXi1 - Xis+1), s=1,..,T -2, (2.8)

where each row corresponds to a time period forchvhmstruments are
available (see Annex 1 for the extended notatidhg first row includes
the valid instruments that are available for thst{differenced model for
periodt = 3, the last row is for periotl=T.

Differently, if the covariates are all strictly eyx@nous, which means
that E(X;:€;5) = 0 for all s andt, then their values in all time periods are
valid instruments and the sparse matrix of instmisies defined as
Z, =diag(yi1 .. VisXi1' - Xip), s=1,..,T —2. (2.9

Let us also defing;;, = y;; — yi:—1 and apply the same notation to the
other variables in the model. Once a proper matfixstruments has been
defined, the choice of the weighting matrix to epéoyed in the GMM
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estimation procedure distinguishes between thelareland Bond one-
step difference-GMM estimator (AB1) and two-stepreator (AB2).
For the one-step estimator, the chosen weightirtgixra given by

Ay= (N3N, Z/HZ)™ (2.10)
whereH is a(T — 2) x (T — 2) matrix defined as:
2 -1 0 .. O 0
/—1 2 -1 .. 0 0 \
e I 211
0 0 0o .. 2 —1/
0 0 o .. -1 2

Ay is the optimal weighting matrix when homoscedd#stiand
absence of serial correlation is assumed. The Adiinator for the model
parameter® = (y, ) is then defined as
Oup1 = (X"ZANZ'X)XVZANZ'S | (2.12)

whereX* = (y;;—1,Xit))' , X" is a(T — 2)N x K matrix andZ is the proper
matrix of instruments.
The two-step estimator is given instead by thenogitichoice ofd,,

which isVy!:

Oupr = XV'ZVGZ'X)XZVRZ'Y (2.13)
where
Vit=WN"X.Z6&'Z)7! (2.14)

with é; being the (T —2) x 1 vector of residuals of the first step
estimation.

The estimator we are considering is consisteniNfes co and fixedT.
According to the findings in Arellano and Bond (199it exhibits only a
small finite-sample downwards bias, thus not ssmpgly outperforming
OLS and within-group estimators, and representgim ig efficiency when
compared to the Anderson and Hsiao (AH) IV estimsatéd well-known

drawback of the AB2 estimator is that it returnswdwards biased
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estimated standard errors, particularly in fini@mgles and therefore
requires some correction such as the WindmeijerOgp0correction.
Nevertheless, the AB estimator has been foundftersalso from a severe
finite-sample bias when the instruments for thdeddnced equation are
weak (Blundell and Bond 1998).

2.3.2 The instrument proliferation

The number of moment conditions on which the ABfedé&nce-GMM
estimator is based grows rapidly &sincreases, so that the instrument
count gets quickly very large. In particular, whestimating a model such
as model (2.7), the number of available instrumesntequal t00.5(T —
(T —2)+ 0.5(T + 1)(T — 2)K. Despite the great popularity of the AB
estimator, instrument proliferation is an often erastimated problem that
is also shared by the system-GMM estimator intredulby Blundell and
Bond (1998). The number of instruments increasdsiasrease and grows
large relative taV, causing a number of undesirable outcomes. Roodman
(2009) focuses on this issue and describes the praiblems that arise
from instrument proliferation in small samples. Thiest failure is
represented by the overfitting of the endogenousbkes, which biases the
estimates towards the OLS estimates. Unfortunatelytesting procedure
is available against the overfitting bias, althouglke problem has been
studied in a number of contributions (Ziliak 199¥jndmeijer 2005). A
second problem that is caused by instrument pratifen is the imprecise
estimation of the optimal weighting matri¥§'): the estimates of the
parameters are still consistent, but efficiencyofen affected and the
already mentioned downward bias of the AB2 estimagoone of the
consequences (Windmeijer 2005). Finally, but masfpdrtantly, the
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Hansen J-teStfor instrument validity is weakened and its p-eais not
reliable: a high p-value is considered to be ancattbn in favor of the
validity of the GMM results, but instrument proligion may alter the
result in the direction of increasing the p-valssariated to the test &s
and the number of instruments increase, becausdéwibestep standard
errors enter the Hansen test formula (Bowsher 2002)

Unfortunately, there is no clear guidance on wbkad safe number of
instruments. Although a general rule of thumb isstdered to be keeping
the instrument count lower thaw, this cannot be viewed as a completely
safe solution. A second suggestion comes from Randi(2009) who
considers a p-value greater than 0.25 for the Hatest to be viewed with
concern.

Some techniques have been proposed as a solutithre timstrument
proliferation problem, for which a good review da@ found in Roodman
(2009). The first strategy to limit the number pn$truments is to use only
some of them, up to a certain lag, instead of aHilable lags. The
instrument count stops being more than proportientd respect td@" and
becomes linear iIT. The strategy of truncating the instruments istequi
common in empirical applications, although it slibble stated that the
definition of the cut-off lag is often arbitrary dandoes not follow an
economic explanation.

The second approach combines the instruments thraddition into
smaller sets, without dropping any of the lags.isltalso known as
“collapse” after Roodman’s terminology. The collegs matrix of
instruments for the equation in first-difference®r predetermined

covariates, is

® The Hansen (1982) J-test is also called test Ver-adentifying restrictions and can be
thought as a test of instrument validity, as itdashether all the restrictions imposed by
the model are jointly satisfied.
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Vi1 Xl'll Xi2, 0 0 0 0 0
Zi — Vi1 Vi2 Xi1, Xl'zl Xi3, 0 0 0
Vi1 Vi2 e YiT—2 Xl'll Xl'T_ll
(2.15)

“Collapsing” is also a method that makes the imagnt count linear in
T and retains more information than the truncatiathod.

These two strategies can also be combined: thaxatinstruments
can be collapsed and lag depth reduced. For exaniplecase of
sequentially exogenous covariates and limiting tdee depth to 3, the
collapsed and truncated matrix of instruments isaétp

Vi1 X' X' 0 0 0
Z; = Vi1 Vi2 X' X' X3’ 0 _ (2.16)
Yr-a Yir-3 Yir—2 Xir-s Xir—2' Xir—1

Despite the amount of instrument reduction stratedghat have been
proposed in the literature, no clear indication bhasn given about what a
safe way to proceed is and the robustness of ttimates to alternative

specifications of the GMM estimator has not beeste extensively yet

(see Bontempi and Mammi, 2012, for a first disoussif this topic).

2.3.3 A spatial difference-GMM estimator

Given what was discussed above, we autonomouslglaj@ed a spatial
difference-GMM (SAB) estimator which is suitable festimating a space-
time dynamic model, following the non-spatial estior developed by
Arellano and Bond (1991). The instrument prolifematproblem has also
been taken into account by applying both the imsémnt reduction
strategies that were discussed. The estimation whih full set of

instruments was not performed because it was catipnally unfeasible
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given the high instrument count for this kind of aeg especially a’
increased.

According to the DGP that was adopted for the M@wuation
exercise, described in section 2.2.3, the defimitioe proper instruments
for the differenced equation followed from the gire and autonomous
thinking, as reported in Table 2.3.

Table 2.3. Variables and available instruments fora spatial difference-GMM
estimator

Variable Moment conditions Instruments
y E(Yit—séit)
t-1 t=3,..,T 1y s Ye2}
S s=2,...,(t—1) t=3,..,T
Endogenou (Arellano and Bond 1991)
EWy;:_s&ir)
W it—scit
Yt t = 3,...,T {WYL---;WYt—z}
X s=2,..,(t—-1) t=3,..,T
Endogenou ’(Kukenova and Monteiro 2009)
Wy,_ EWy; &
V-1 t(:)élts r;f) {WYII ---;WYt—z}
Endogenous s=2,..,(t—-1) t=3..T
X¢ E(xit—s€it)
t=3,..,T {x1, i xe—1}
Sequentially s=1,..,(t—1) t=3,..,T
exogenous| (Arellano and Bond 1991)

Since in empirical applications it is usually untum whether the
covariates are strictly exogenous, predeterminedven endogenous, we
treat the covariate as a sequentially exogenoublay in order to be
conservative with respect to the choice of strxtigeneity.

We consider both the one-step and the two-step &hinator, based
on a collapsed matrix of instruments. We also lirthe choice of
instruments to the third lag, in order to avoidtinsent proliferation. The

matrix of instruments is therefore defined as:
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Zi=
Yo Wya xu Xi2 0 0 0 0 0
y§1 3’;2 W}’i1 W}’iz x.il x.iz x§3 0 0
Yr-a4 Yir-3 Yir-2 WYir-a Wyir—3 Wyir—2 Xir-3 Xir—2 Xir—1
(2.17)
We also considered a second, extended, specificaifoa spatial
GMM estimator (ESAB) which is based on the addalomrmoment

condition:
EWx;ji_sé;) for t=3,..,T and s=1,..,(t—1), (2.18)

that leads to the definition of an additional set iostruments:
{Wx,_3,Wx,_,,Wx,_,} for t =3,...,T that is added to each row of the
instrument matrix. In this case, the total instraineount is limited to
(T —2)+4-nlags - K, wherenlags is the reduced lag depth (and it is

equal to 3 in our case) aiidis the number of covariates.

2.4 Results

The MC simulations were performed according to designs previously
described (see section 2.2.4). The finite samptéopreance of the QML
estimator by Yu et al. (2008), the one-step andgtep SAB and the one-
step and two-step ESAB were tested for variousesmabfN andT and for
different values of the parameters, according t dlfferent scenarios of
stationarity and quasi-unit root.

We also performed a non-spatial estimation of #u@es spatial data
(generated according to the described DGP), threudtiference-GMM a
la Arellano and Bond (1991) and compare the resagi@inst the QML
estimator and the ESABstimator (both one and two-steps), in order to
assess the bias that the estimates suffer if tagasplimension of the data
is not properly empirically modeled.
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2.4.1 Stationary scenario

The first scenario that is taken into considerai®that of stationarity of
the data, in whicty| + |A] + |e|] < 1 (Yu et al. 2012).

When spatiotemporal dependence is limited,|for |A| + || = 0.6,
all the estimates obtained in our MC simulation wedl centered around
the true value of the parameters (Figure 2.37 turei 2.45 in Annex 2).
The RMSE error of the estimates for all consideseefficients ¢, 1, o0, )
decreases &b increases from 5 to 50 in our simulations andefch value
of T, it also decreases asincreases for all the estimators included in the
simulation (Figure 2.1 to Figure 2.4). The estimahbat appears to have the
best performance in terms of RMSE for all thandN under consideration
is the QML estimator, while the SAB estimator isigelly outperformed
by its extended version which also includes theialpiag of the covariate
among the regressors. Only with respect to thenesitbn of parametey,
which is the time-lag parameter for the autoregvesterm of order 1, the
QML estimator is outperformed in terms of RMSE bg GMM estimators
asN increases. It is worth noting that, with respecthis parameter, even
if the general performance of the QML estimator riayes as the cross-
section dimension grows, it is outperformed by @M estimators that,
in their non-spatial version a la Arellano and Bomade consistent for
N — oo and fixedT. The GMM estimation of the AR(1) parameteris
therefore not surprisingly particularly good inner of bias and RMSE
with smallT and growingV (Table 2.4 to Table 2.6 in Annex 2).

Differently, particularly wherf" is small, the spatial GMM estimators
appear to produce less reliable estimates for theeroconsidered
parameters (the spatial parameters and the caeffiof the covariate),
mainly because of a greater variability of thereates and therefore higher
standard deviations (see Table 2.4 to Table 2.6Faguke 2.37 to Figure
2.45 in Annex 2).
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With respect to the estimates of the spatial agtessive parametdr,
our simulations find that the bias associated & EH$AB estimator (both
one and two-step) tends to decreaseT aand N increase, up to being
comparable to the bias associated to the QML estBnavhenT = 50.
Nevertheless, the ESAB estimatesioére always associated to a higher
variability. This result is in line with what Kukerma and Monteiro (2009)
find in their simulation exercise for a time-spat®ultaneous model and a
spatial system-GMM estimator, relatively to theiraation of the spatial
autoregressive parameter.

Growing spatiotemporal dependence, fpt + |1] + |o| = 0.8°, does
not change dramatically the performance of the idened estimators.
Growing T and N improve the estimates in terms of RMSE for all the
estimators and all parameters (see Figure 2.5gur&i2.8 and Figure 2.9 to
Figure 2.12). As previously noticed, the QML estianais still the best
performing estimator for all and N and all parameters, with the only
exception of parameter. In these settings as in the previous oneNas
grows, the spatial GMM estimators @f perform better than the QML
estimator (see Figure 2.5 and Figure 2.9). As ftiatwit concerns the
estimation of the spatial coefficientgs &ndA1) and of the coefficient of the
covariate ), the QML appears to produce more reliable esgsdhan
spatial GMM the ESAB and, particularly, the SABiesttors, especially
whenN is small. This is due to both a bigger bias amddard deviation of
the estimates of these parameters when the GMMbaphpris adopted (see
Table 2.7 to Table 2.9 and Table 2.10 to Table thl&nex 2).

® In our MC design, this is the case for the follogiiwo parameter settings: ¢a)= 0.4,
A=p0=02,=1and (b)e=04,A=y=02,8=1.
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Figure 2.1. RMSE ofy for various spatial estimators, fory = 4= = 0.2, # = 1 and variousT and N, over 999 iterations
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Figure 2.2. RMSE of4 for various spatial estimators, fory =41 =9 = 0.2, 8 = 1 and variousT and N, over 999 iterations
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Figure 2.3. RMSE ofp for various spatial estimators, fory =4 = = 0.2, # = 1 and variousT and N, over 999 iterations
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Figure 2.4. RMSE ofp for various spatial estimators, fory = 14 =9 = 0.2, B = 1 and variousT and N, over 999 iterations
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Figure 2.5. RMSE ofy for various spatial estimators, fory = 0.4,4 =9 = 0.2, 8 = 1 and variousT and N, over 999 iterations
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Figure 2.6. RMSE of4 for various spatial estimators, fory = 0.4,4 =9 = 0.2, B = 1 and variousT and N, over 999 iterations
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Figure 2.7. RMSE ofp for various spatial estimators, fory = 0.4,4 =9 = 0.2, f# = 1 and variousT and N, over 999 iterations
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Figure 2.8. RMSE ofp for various spatial estimators, fory = 0.4,4 =9 = 0.2, # = 1 and variousT and N, over 999 iterations
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Figure 2.9. RMSE ofy for various spatial estimators, foro = 0.4,4 =y = 0.2, 8 = 1 and variousT and N, over 999 iterations
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Figure 2.10. RMSE of2 for various spatial estimators, foro = 0.4,4 =y = 0.2, # = 1 and variousT and N, over 999 iterations
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Figure 2.11. RMSE ofp for various spatial estimators, foro = 0.4,4 =y = 0.2, 8 = 1 and variousT and N, over 999 iterations
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Figure 2.12. RMSE off3 for various spatial estimators, foro = 0.4,A =y = 0.2, 8 = 1 and variousT and N, over 999 iterations
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2.4.2 Quasi-unit root scenario

A guasi-non stationary scenario was also simulateavhich |y| + || +
lo| = 0.98° thus generating a quasi-unit root panel pseudasda

The QML estimator is confirmed to be the one theidpces the
smallest RMSE for all estimated parameters, withdhly exception of the
AR(1) coefficienty, for which the GMM estimates are associated to a
smaller RMSE for growing values of and fixedT (see Figure 2.14 and
Figure 2.18). On the contrary, the spatial GMMrastors return estimates
for the other coefficients of the model which aemerally more biased and
affected by higher variability than the QML estiemt(see Table 2.13 to
Table 2.18 in Annex 2): it is so for all parametansl all values of andN
with the only exceptions of parametersand 8 whenT andN get larger
(T =50 andN = 121), although the effect of a smaller bias is wiped o
by a larger variability, that causes the RMSE as$ed to the GMM
estimates to be larger than the one associatdtetQML estimates (Table
2.15 and Table 2.18 in Annex 2).

If compared to the stationary scenario, the RMS&o@ated to the
estimates of parametens and o (the parameters that measure time-
dependence) show higher values particularly for llemavalues of T.
Moreover, it should be noted that the RMSE assediab the parameter
that is set to take on the value of 0.58 becomealemin the quasi-unit
root setting with respect to the stationary settsd andN increase. For
example, let us consider the two alternative sgitin whichy =1 =90 =
0.2, =1andy =058, A =90 =0.2, =1 and compare the RMSEs
associated to parameterfor differentT andN by subtracting the RMSE

calculated in the second setting to the one caledlan the first setting

1% The following parameter settings were adoptedy (&)0.58, 1 = ¢ = 0.2, 8 = 1 and
(b)o=058,1=y=02,8=1.

68



(thus a negative number indicates a higher RMSEceésed to the quasi-

unit root scenario).

Figure 2.13. Difference in RMSE for parametery in a

root scenario for different values ofN and T
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It is evident from Figure 2.13 not only that thé&felience between this
statistic calculated for the two considered setstibgcomes smaller &5
increases, but also that the RMSE for the quadivoot scenario becomes
smaller than that of the stationary scenario foe tmajority of the

estimators a% andN increase.
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Figure 2.14. RMSE ofy for various spatial estimators, fory = 0.58,4 = ¢ = 0.2, B = 1 and variousT and N, over 999 iterations
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Figure 2.15. RMSE ofA for various spatial estimators, fory = 0.58,4 = ¢ = 0.2, 8 = 1 and variousT and N, over 999 iterations

0.70 e 070 RMSE lambda o 070 e
0.60 —_————— 0.60 = 0.60 -
0.50 0.50 R — 0.50
0.40 e 0.40 0.40 e
. - -......\

0.30 — TR 0.30 — 0.30 T
0.20 0.20 S e 0.20 e P
0.10 — 0.10 010 —  Sm————
0.00 0.00 0.00 —

N=16 N=49 N=121 N=16 N=49 N=121 N=16 N=49 N=121

- « One-step ESAB === Two-step ESAB ceecee One-step SAB = = Two-step SAB e— QML



T.

Figure 2.16. RMSE ofp for various spatial estimators, fory = 0.58,4 = ¢ = 0.2, B = 1 and variousT and N, over 999 iterations
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Figure 2.17. RMSE off for various spatial estimators, fory = 0.58,4 = ¢ = 0.2, B = 1 and variousT and N, over 999 iterations
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Figure 2.18. RMSE ofy for various spatial estimators, foro = 0.58,4A =y = 0.2, g = 1 and variousT and N, over 999 iterations
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Figure 2.19. RMSE of2 for various spatial estimators, foro = 0.58,4 =y = 0.2, # = 1 and variousT and N, over 999 iterations
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Figure 2.20. RMSE ofp for various spatial estimators, foro = 0.58,4A =y = 0.2, B = 1 and variousT and N, over 999 iterations
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Figure 2.21. RMSE of for various spatial estimators, fore = 0.58, A =y = 0.2, 8 = 1 and variousT and N, over 999 iterations
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2.4.3 Spatial — Non spatial scenario

The performance of non-spatial GMM estimators ispared to that of the
ESAB and the QML estimators in order to assessisike that an empirical
researcher faces when s/he fails to take the $mhitreension of the data
into account.

In particular, we imagine that a researcher whods aware (or not
convinced) of the need to apply the spatial ecorinosetools when spatial
dependence is present in the data will be onlyasted in the estimation of
the coefficient(s)g of the model, in order to evaluate the effectshaf
covariate(s) on the dependent variable. In padicuVe expect that a model
specification such as the space-time dynamic mdestribed in equation
(2.1) might be reduced to a non-spatial dynamicepaata model with
fixed effects such as
Ve = VY1t xf +c+e, &~N(0,1y07). (2.19)

Given the popularity of the GMM approach for theiraation of
dynamic panel data models, we suppose that a “patia$’ researcher will
often choose a GMM estimation strategy when s/leglsi¢o treat a model
specified as in equation (2.19): this success imlgndue to the flexibility
of the estimator, to the availability of internaktruments and to the easy
implementation of GMM estimation in the most poputgonometric and
statistical software packages, such as R, Staté/atidb.

Even if the effects that ignoring spatial depen@éemay have on the
estimates in terms of bias and efficiency have kbeeroughly identified
and described in the spatial econometrics liteeatand reviewed in
previous sections (chapter 1), to our knowledgeempirical study has
been published that tries to quantify the bias thay affect the estimateti
coefficient(s) when spatial dependence is ignored.

Our simulations consider different degrees of sgpamporal
dependence. The first setting is characterizedhleyfollowing parameter
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values:)y = 0.3, 1 = o = 0.1, § = 1, that define a situation of little spatial
and spatiotemporal dependence. Clearly, the notasgifference-GMM
estimation a la Arellano and Bond (1991) does mtdrn any estimated
value for parameterd and . Since an empirical researcher is probably
primarily interested in the value of the coeffidigh we will focus on the
performances of the considered estimators relgtieethis parameter.

WhenT is small =5 andT = 10) and for all values oN, the non-
spatial GMM estimators (both one-step and two-stepmators) (Table
2.19 and Table 2.20) are those that show the ssn&IISEs associated to
the estimates ofs. Nevertheless, all estimates appear to be quitek we
centered around the true value (Figure 2.24 andr€ig.25). Differently,
whenT = 50, the ESAB estimates ¢f are associated to the smallest bias
for all N, although the results in terms of RMSE are congaramong all
five estimators considered whéhis large (see Figure 2.23, third panel).
However, the advantage in terms of smaller bias@a®ed to non-spatial
estimates ofs is reduced by the effects of higher variabilityatt result in
smaller RMSEs for QML estimates for all values'adndN.

Lastly, it should be noticed that the differences/ariability decrease
asT increases (see Figure 2.24 to Figure 2.26), thinsaply contributing
to the reduction of the gap between the RMSEs mespondence of a

larger time dimension.
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Figure 2.22. RMSE ofy for various spatial estimators, fory =0.3,4 =90 = 0.1, = 1 and variousT and N, over 999 iterations
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Figure 2.23. RMSE off for various spatial estimators, fory =0.3,4 =90 = 0.1, 8 = 1 and variousT and N, over 999 iterations
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Figure 2.24. Distribution of the estimates of paramter g for various non-spatial and spatial estimators, foy =0.3,4 =90 = 0.1, 8 = 1, various
T and N = 16 over 999 iterations
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Figure 2.25. Distribution of the estimates of paramter g for various non-spatial and spatial estimators, foy =0.3,4 =90 = 0.1, 8 = 1, various
T and N = 49 over 999 iterations

T=10

=50

One-step AB

TS N9 betal gamma0 3 lamba. 1 ho0.1 Hstbeta, NP, 8

TI0 N4S betat gamiman 3 lambda0 1 o0 1 Histbeta, NP, B

50 N16 betat gamma.3 lambda0 1 hod. 1 Histbeta, NP ,B

15 1 s 0 05 1 1s 2

Two-step AB

TS N9 betal gamman 3 lambda0 1 hod.1 Histbeta, N P, B2

One-step ESAB

TS 49 betal garma 3 lambida0 1 0.1 Histbeta, B x1Z

Two-step ESAB

5 N9 betal gammad.3 lambia. 1 hod.1 Hstbeta, 82,12

QML

TS 49 betal gamiman 3 lamba0 1 o1 Histbeta ML

as0) as0) as0) as0)

0) 400 400 0]

350) 350f 350f 350)

a00) a00f a00f a00)

250) 250 250 250)

0] 200f 200f 0]

150 150f 150f 150

100) 100f 100f 100)

50 sof sof 5
15 1 s o o5 1 15 2 25 15 1 05 o0 05 1 15 2 2 15 1 05 o0 05 1 15 2 2 a5 1 05 0 05 1 15 2 25
10 N4 betat gamma0.3 lambad 1 100.1 Hitbeta, NP, B2 L0 N4 betat gamma0.3 lambxad.1 100.1 Histbeta, B 112 10 119 betat gamma.3 amba. 1 hod 1 Histbeta, 82,2 10 149 betal gamma0 3 lamia.1 0.1 Histbeta ML

as0) as0) as0) as0)

0) 400 400 0]

350) 350f 350f 350)

a00) a00f a00f a00)

250) 250 250 250)

0] 200f 200f 0]

150 150f 150f 150

100) 100f 100f 100)

5 sof sof 5

2 a5 1 05 0 05 1 15 2 25 2 15 1 05 0 05 1 15 2 2 15 1 05 o0 05 1 15 2 2 a5 1 05 0 05 1 15 2z 25
50 N1 beta gamma0.3 lamixiad.1 100.1 Histbeta, NP, B2 50 N16 beta gamma0.3 lambxiad.1 100.1 Histbeta, B 112 50 NI betat gamma0.3 ambiad. 001 Histoeta, 82,52 50 NIB betal Gamma0.3 lambxa. o0.1 Histbeta ML

450) as0) 450 450)

a00) 400 a00) a00)

as0) as0f as0f a50)

0) a00f a00f 0)

250) 250f 250f 250)

200) 200 200 200)

150) 150f 150f 150)

100 100f 100f 100

5 sof sof 5
15 1 95 0 05 1 15 2 25 15 1 05 0 05 1 15 2 25 15 1 05 0 05 1 15 2 25 15 1 95 0 05 1 15 2 25




6.

Figure 2.26. Distribution of the estimates of paramter B for various non-spatial and spatial estimators, foy =0.3,4 =90 = 0.1, 8 = 1, various
T and N = 121 over 999 iterations
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The degree of spatial dependence is then incrdasedty setting the
value of the spatiotemporal parameter to 0.3 aed by doing the same for
the spatial autoregressive parameter. Our MC stionk therefore
consider the following two settinggzr =0=0.3, A=0.1, =1 or
y=1=03,0=0.1,8=1.

In both cases, there is evidence of higher religaih the estimates of
p obtained via the spatial estimation proceduresjchvhare always
associated to the smallest bias and variabilitgfé 2.31 to Figure 2.36).

Among the spatial estimators, the ESAB outperfotims QML in
terms of bias reduction as the time and crosses®dtdimensions increase,
although its higher variability leads to better REIgsults for the QML
estimator for allT and N (see Table 2.22 to Table 2.24 in Annex 2).
Moreover, the QML estimator outperforms the ESABhe estimation of
all the other model coefficients in terms of RM®&cept for the estimation
of y asN increases for all values @&f Parametey is therefore confirmed
to be the most troublesome for the QML estimator.

When spatial dependence increases, then, the perfice of the non-
spatial AB estimator is significantly worse thamattbconsidered of the
spatial procedures, as expected. We also expdcanlyaurther increase in
the degree of spatial dependence in the data weattito a worsening of
the relative performance of non-spatial estimatorsthe other hand, if the
reliability of non-spatial estimates was to be assd according to the
results just discussed, one should probably coedidt the bias associated
to non-spatial estimates gf(which is in the range of 1.5% to 4% at worst)
is not tremendous. What is certainly a drawback&stimating a non-spatial
model when a spatial model should be specifieceatsis that it prevents
from estimating the spatial and spatiotemporalotfféhat are present in the
data, thus hiding important spatial spillover ef$ethat may take place.
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Figure 2.27. RMSE ofy for various spatial estimators, foro =y = 0.3,4 = 0.1, B = 1 and variousT and N, over 999 iterations
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Figure 2.28. RMSE ofp for various spatial estimators, foro =y = 0.3, 4= 0.1, 8 = 1 and variousT and N, over 999 iterations
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Figure 2.29. RMSE ofy for various spatial estimators, fory =4 =0.3,0 = 0.1, B = 1 and variousT and N, over 999 iterations
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Figure 2.30. RMSE of for various spatial estimators, fory =4 =0.3,9 = 0.1, = 1 and variousT and N, over 999 iterations
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Figure 2.31. Distribution of the estimates of paramter g for various non-spatial and spatial estimators, foy =0 =0.3,4= 0.1, 8 = 1, various
T and N = 16 over 999 iterations
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Figure 2.32. Distribution of the estimates of paramter g for various non-spatial and spatial estimators, foy =0 =0.3,4= 0.1, 8 = 1, various
T and N = 49 over 999 iterations
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Figure 2.33. Distribution of the estimates of paramter g for various non-spatial and spatial estimators, foy =0 =0.3,4= 0.1, 8 = 1, various
T and N = 121 over 999 iterations
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Figure 2.34. Distribution of the estimates of paramter g for various non-spatial and spatial
T and N = 16 over 999 iterations
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Figure 2.35. Distribution of the estimates of paramter g for various non-spatial and spatial estimators, foy =4 =0.3, 0 = 0.1, 8 = 1, various
T and N = 49 over 999 iterations
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Figure 2.36. Distribution of the estimates of paramter g for various non-spatial and spatial estimators, foy =4 =0.3, 0 = 0.1, 8 = 1, various
T and N = 121 over 999 iterations
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2.5 Concluding remarks

The empirical researcher who needs to estimatana-space dynamic
panel data model is not facing an easy task, bethuse of a lack of ready-
to-use software routines and because the literatutéis kind of models is
still quite limited. With the present analysis wenaat providing some
evidence on the small sample properties of a numbestimators for time-
space dynamic panel data models with fixed effelctg the empirical
researcher may decide to apply: the popular QMlmesbr by Yu et al.
(2008) and a few spatial and non-spatial differeBd&M estimators.
Among these, a GMM-type estimator (ESAB) was preploand its small
sample performance investigated. We do not ainetling guidelines for
the estimation of this kind of models, but neveghe our analysis can
suggest some general comments.

Differently from the artificial world of a MC simation analysis,
empirical researchers are usually not aware ofx@® that characterizes
their data. Therefore an accurate exploratory amalgf the data should
always be performed in order to identify the mongtable model
specification. Given the uncertainty that the redear faces on the nature
of the DGP underlying his data, it is also useduhave the best knowledge
possible on the hypothesis on which the consistenicyhe available
estimating procedures relies and their virtues @nasvbacks depending on
the time and cross-sectional dimensions of thesdata

As a first remark, it should be noticed that thesistency of both the
estimation approaches that were considered irctiapter does not require
any assumption on the normality of errors to béfieel. Secondly, whether
the data are characterized by a stationary or ai-quét nature, the RMSE
and bias associated to the estimates of the cumeffec not surprisingly
decrease as the time and cross-sectional dimep§itthve dataset increase.

This is particularly evident with respect to théfelence-GMM estimators,
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that are found consistent for fixddand growingN (Arellano and Bond
1991). Moreover, the spatial difference-GMM estionahat also includes
the spatial lag of the covariates among the instnisn (ESAB) performs
significantly better than the SAB estimator. A het step of this analysis
might therefore concern the testing of the validityhe instruments for the
different GMM procedures that have been proposexuitih a J test.

Focusing on the study of a stationary scenariosgmied in section
2.4.1, the QML estimator showed the best small-$ampprformance in
terms of RMSE for allT and N and with respect to almost all the
considered coefficients, mainly thanks to a cormsiblky lower variability.
Only the estimation of parametgr associated to the temporal lag of the
dependent variable, appears to be more problemaitic the QML
estimator, which is generally outperformed by GMyp& estimators as the
cross-sectional dimension grows for fixéd

The relative performance of the considered estirsatoes not change
if we consider a quasi-unit root scenario instéaly in comparison to the
stationary scenario some differences should bdiglgked. The parameters
that measure time-dependengeafido) show higher RMSE in the quasi-
unit root context for smaller values Bf AST andN increase, however, the
RMSE associated to the parameter that is set ¢égueb8 in the quasi-unit
root context becomes smaller than the one obsenvethe stationary
scenario.

The evidence from the present analysis therefoggests that, QML
estimation is probably the safest choice in bothasions. However, an
element that should not be overlooked, is the tiaat we treated only an
exogenous covariate in our simulations. A furthetession will need to
consider the performance of these estimators whenemadogenous
covariate is included in the model, which is nottsan unlikely situation
in economics. Some evidence, referred to time-sgaveltaneous panel

data model shows a better performance of GMM estimaith respect to

90



the estimation of the parameters of endogenousried®s (Kukenova and
Monteiro 2009), but to our knowledge no evidenceti available with
respect to the estimation of time-space dynamielpdata models.

A final observation concerns the risks implied ggparing the spatial
dependence that characterizes the data. In fachutoknowledge no
empirical evidence is available that quantifies Ibiees that may affect the
estimatedf coefficient(s) when spatial dependence, althougdsgnt, is
ignored. Our analysis suggests that, when spagipémdence is limited, a
non-spatial difference-GMM provides reliable estiesafor, particularly
whenT is small. This good performance in terms of liditeas, however,
is limited by a high variability of the non-spatiestimates. When spatial
dependence increases, however, the performancens$patial estimators
becomes significantly worse than that of spatidinmestors, although the
bias is not tremendous in absolute terms, espgcalll’ gets larger. In
conclusion, the probably time-saving choice of #rapirical researcher
who ignores the presence of spatial dependencénendata may not
necessarily bring to tremendous drawbacks in teyiisased estimates of
the parameters of the covariates, although thetbiads to increase as the
extent of spatial dependence increases. Nevertheles main failure of
non-spatial estimation, which should not be neglads the fact that it
prevents the identification and estimation of sgapillover effects when
present, thus considerably limiting the informattbat can be drawn from
the data.
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Annex 1

The matrix of instruments described in equatioB)(&:

yii X' X' 0 0 0 0 o o0 .. 0 .. 0 0o .. 0
0 0 0 v vz Xi' X3 X530 0 .. 0 .. 0 0o .. 0
7. = i1 2 i1 2 i3 2.2
' : : : : : : : oo 0 .. 0 0o .. 0 (2.20)
0 0 0 0 o0 0 0 0 0 .. Vi1 o Yir—o Xi' o Xig_{
The matrix of instruments described in equatioA)(i:
yii X' X' Xi3' 00 0 0 0 0 0 0 0 o .. 0
0 0 0 0 v vz Xii' Xiu' Xi3' X' 0 ... 0 .. 0 0o .. 0
7. = i1 i2 i1 i2 i3 4 221
' : : : : : : : : : oo w0 .. 0 0 .. O (2.21)
0 0 0 0 0 0 0 0 0 0 0 .. Y1 . Yir— Xi' . X

The matrix of instruments when only certain lagg.(enly lags up to 3 time periods) are used aecttivariates are sequentially

exogenous is equal to:

yin Xi' X' 00 0 0 0o 0 .. 0 0 0 0 0 0
T e S S S S S S 2.22)

0 0 0 0 0 0 0 0 0 .. Yir-a Yir-z Yir—2 Xir—3' Xir—2' Xy
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Annex 2

Table 2.4. Mean, bias, standard deviation and roatnean square error of various spatial estimators ira stationary scenario, forT =5,y = 0.2,
A1=0.2,0=0.2,B =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

~ | Mean | 0.1119| 0.1111) 0.0821 0.0729 0.068 0.1426 0.1p231586.| 0.1588 0.0764 0.1844 0.1830 0.1745 0.1f42 8a.47
?('5 Bias | -0.0882| -0.0889 -0.117 -0.1241 -0.13p2 -0.0374 0307 | -0.0415 -0.041%2 -0.1238 -0.01p6 -0.0170 -(OR50.0258| -0.1214
g SD 0.1906 | 0.2093| 0.2354 0.2639 0.0910 0.1330 0.1p121498.| 0.1644| 0.0504 0.072B 0.07%7 0.0986 0.1014 10@.43
8 RMSE| 0.2100 | 0.2274] 0.2633 0.2929 0.1597 | 0.1190] 0.1269 | 0.1555] 0.1699 0.13390.0740 | 0.0776 | 0.1018| 0.1044 0.1256
~ | Mean | 0.2978 | 0.2923] 0.3134 0.3158 0.1998 0.2963 0.2p893086. 0.3061 0.1913 0.2328 0.2339 0.31f13 0.3]46 60.19
?“'5 Bias | 0.0978 | 0.0923] 0.1134 0.1158 -0.00p2 0.0963 0.0p891086 | 0.1061| -0.0089p 0.0328 0.0339 0.12f13 0.1146.003®
é SD | 0.3635| 0.4058] 0.5724 0.6189 0.1148 0.27198 0.3p245698.| 0.6050| 0.073§ 0.199B 0.2103 0.5932 0.5¢66 88.04
3 RMSE| 0.3764 | 0.4162| 0.5839 0.6297 0.1151| 0.2855| 0.3081] 0.5801 0.614 0.0743 | 0.2019 | 0.2130f 0.6034 0.607p 0.0490

Mean | 0.1837 | 0.1857| 0.2164 0.2225 0.20%2 0.1449 0.1887161Q.| 0.1577| 0.2053 0.1914  0.1921 0.1643 0.1627 7@.40
% Bias | -0.0163| -0.0143 0.0164 0.0225 0.00p2 -0.0151 -(B(110.0389| -0.0423 0.0053 -0.00%6 -0.0079 -0.0858.03MW| 0.0077
.é SD | 0.2982| 0.3314| 0.508% 0.5649 0.1446 0.2J07 0.2[1844319.| 0.4645| 0.0889 0.1285 0.1320 0.3978 0.4102 9@.45

RMSE| 0.2987 0.3317[ 0.509¢ 0.5654 0.1447| 0.2013 | 0.2187| 0.433]1 0.46650.0891| 0.1288 | 0.1322 0.3994 0.4119 0.0602

Mean | 0.9563 | 0.9556] 0.9173 0.9080 1.01B1 0.9419 0.9Y169676.| 0.9682| 1.0124 0.9858 0.9806 0.9720 0.9698 32.41
E Bias | -0.0437| -0.0444 -0.0828 -0.0920 0.01p1 -0.0281 2&1(J -0.0324| -0.031 0.012ft -0.0147 -0.0194 -0.0p80.0302( 0.0132
S| sb | 0.2823| 0.3136] 0.413Q 0.4644 0.13y3 0.1467 0.1f962708.( 0.2992| 0.0789 0.105f 0.1099 0.1757 0.1322 80.¢4

RMSE| 0.2857( 0.3168( 0.4212 0.47350.1380| 0.1690( 0.1818( 0.2723 0.30090.0797| 0.1067 [ 0.1116( 0.1779 0.1847 0.0497
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Table 2.5. Mean, bias, standard deviation and roanean square error of various spatial estimators ira stationary scenario, forT = 10,y = 0.2,
A=0.2,0=0.2,B =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

o~ | Mean | 0.1778 | 0.1797] 0.1699 0.1727 0.1382 0.1928 0.1p531870.| 0.1908( 0.1425 0.1956 0.19¢8 0.1909 0.1918 38.1
(':'3 Bias | -0.0222] -0.0203 -0.030 -0.0213 -0.0GES -0.0072 0047 | -0.0121f -0.0092 -0.0575 -0.0044 -0.0032 -(0L0090.0082| -0.0564
% SD | 0.0950| 0.1063] 0.117¢ 0.1295 0.05f1 0.0925 0.0p620696.| 0.0740| 0.033] 0.034F 0.03%6 0.0492 0.0505 0a.(
O [RMSE| 0.0975| 0.1082[ 0.1214 0.13280.0841| 0.0530| 0.0564 | 0.0707| 0.074¢ 0.06630.0349 | 0.0357 | 0.0500| 0.0511 0.059
~ | Mean | 0.2329 0.2338/ 0.307¢ 0.2990 0.19p1 0.21473 0.2[178316Q.| 0.3159| 0.198Q 0.2098 0.2099 0.2814 0.2863 06.1
(':', Bias | 0.0329( 0.0338| 0.107¢ 0.0990 -0.0049 0.0173 0.0L78116a | 0.1159| -0.002¢ 0.009B 0.0099 0.0814 0.08630008.
é SD 0.2139 | 0.2336f 0.5237% 0.5796 0.0797 0.1347 0.14355180.| 0.5530( 0.0485 0.092fL 0.09%0 0.5147 0.5P36 10.0
3 RMSE| 0.2164 | 0.2361| 0.5344 0.58800.0798 | 0.1358 | 0.1446| 0.531}% 0.56510.0486 | 0.0925| 0.0955| 0.521] 0.5307 0.0319

Mean | 0.1913| 0.1926/ 0.1612 0.1580 0.20p9 0.1951 0.1p25145@.| 0.1437| 0.203¢ 0.199B 0.1983 0.16864 0.1618 50.1
% Bias | -0.0087| -0.0074 -0.0388 -0.04320 0.00p9 -0.0049 O1BQ -0.0543| -0.0563 0.003p -0.00p2 -0.0917 -0.0336.0382| 0.0051
Dso: SD 0.1529 | 0.1699( 0.3654 0.3909 0.0948 0.0981 0.1p59293a.| 0.3149( 0.05743 0.065[L 0.0677 0.2812 0.2882 86.(

RMSE| 0.1531( 0.1700f 0.3674 0.3931 0.0918 | 0.0982 | 0.1061| 0.298% 0.31990.0574 | 0.0651| 0.0677] 0.2834% 0.2908 0.0389

Mean | 0.9881| 0.9886 0.9784 0.9801 1.01y0 0.9950 0.9p239896.| 0.9913| 1.0184 0.997L 0.9966 0.9922 0.9924 85.¢
E Bias | -0.0119| -0.0114 -0.021¢ -0.0199 0.01y0 -0.0050 OOrQ -0.0105] -0.0087T 0.018p -0.0029 -0.0034 -0.0p78.0076| 0.0185
21| sb | 01371] 0.1499| 0.1739 0.1969 0.08p6 0.0971 0.0B170996. 0.1045| 0.0474 0.0491 0.05¢9 0.0702 0.0720 9@.(

RMSE| 0.1376 ( 0.1504( 0.1753 0.19790.0844 | 0.0773 | 0.0821| 0.1004 0.1049 0.0512 | 0.0492 | 0.0510] 0.0707% 0.0724 0.0350

o O



G6

Table 2.6. Mean, bias, standard deviation and roanean square error of various spatial estimators ira stationary scenario, forT = 50,y = 0.2,
A=0.2,0=0.2,B =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

o~ | Mean | 0.1975 | 0.1984| 0.1931 0.1925 0.1881 0.1986 0.1p941946.| 0.1953( 0.1874 0.1996 0.2000 0.1950 0.1953 80.1
(':'3 Bias | -0.0025( -0.0014 -0.0069 -0.00Y5 -0.01j19 -0.0014 0006 | -0.0054] -0.004f -0.0141 -0.00p4 0.0000 -0.0050.0047| -0.0111
% SD | 0.0307 | 0.0342] 0.0451 0.0499 0.0282 0.0380 0.0[L92031@.| 0.0332( 0.0134 0.011p 0.0114 0.0252 0.0256 86.
O [RMSE| 0.0308| 0.0342[ 0.0462 0.05060.0261| 0.0180[ 0.0193| 0.0321] 0.0335 0.01840.0110 | 0.0114 | 0.0257| 0.0261 0.013
~ | Mean | 0.2062  0.2046] 0.2804 0.2951 0.20]3 0.2q13 0.2p20266Q.| 0.2658| 0.2014 0.201p 0.2009 0.2829 0.2831 1.1
(':'; Bias | 0.0062| 0.0046] 0.0804 0.0951 0.0043 0.0q13 0.0p20066Q@.( 0.0658| 0.0014 0.001p 0.0009 0.0829 0.0831 1.0
é SD 0.0733 | 0.0811 0.4524 0.4896 0.0343 0.0438 0.04694588.| 0.4727( 0.0201 0.030B 0.0310 0.4023 0.4088 4a.d
g RMSE| 0.0736 | 0.0812] 0.459¢ 0.49870.0344 | 0.0438 | 0.0469| 0.4633 0.477830.0201| 0.0303| 0.0310 0.4107 0.417[10.0142

Mean | 0.1975| 0.1970f 0.1571 0.1493 0.20}1 0.1985 0.1p821640.| 0.1638| 0.2003 0.200L 0.2001 0.1564 0.1%61 06.3
% Bias | -0.0025| -0.0030 -0.042p -0.0507 0.0031 -0.0015 OIBQ -0.0360| -0.0362 0.000B 0.0091 0.0001 -0.0§36.043®| 0.0006
Dso: SD 0.0551 | 0.0605( 0.2474% 0.2690 0.0394 0.0332 0.0B522500.| 0.2579( 0.0237% 0.0224 0.0231 0.2146 0.2184 50.0

RMSE| 0.0551( 0.0606( 0.2504 0.2737 0.0394 | 0.0332| 0.0353| 0.2524 0.2605 0.0237 | 0.0224 | 0.0231] 0.219( 0.2228 0.0159

Mean | 0.9976 | 0.9983] 0.9922 0.9924 1.00%2 1.0J01 1.0p05996@.| 0.9965| 1.0063 1.000L 1.0000 0.9946 0.9946 53.0
E Bias | -0.0024| -0.0017 -0.0078 -0.00946 0.00%2 0.0q01 (&OpPE0O.0037| -0.003§ 0.006fF 0.00g1 0.00p0 -0.0p54 081Q 0.0053
2| sb | 0.0454| 0.0498] 0.0629 0.0697 0.03p8 0.0461 0.0R770450. 0.0465| 0.020¢ 0.0164 0.01¢8 0.0328 0.0835 20.(

RMSE | 0.0455( 0.0498( 0.0634 0.0701 0.0342 | 0.0261 | 0.0277| 0.0454 0.0466 0.0209 | 0.0164 | 0.0168] 0.033] 0.03390.0138
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Figure 2.37. Distribution of the estimates of paramter y for various spatial estimators, fory =4 =90 =0.2, 8 =1, variousT and N = 16 over

999 iterations

T=10

T =50

One-step ESAB

75 NIG betat gamma0 2 ambap 2 ho0 2 Hsigamma, B, xiZ

2 T o T 2 3

TI0 NI betat gammap.2 ambda.2 thod 2 Hisigamma, B iz

2 T o T 2 3

50 N16 betat gamma.2 lambaa0 2 thod.2 Histgamma, B xZ

Two-step ESAB

5 NIG betat gamma 2 lambca02 hod 2 Hisigamma, B2 112

One-step SAB

5 NI betal gammad.2 lambda.2 ho0.2 Histgamma, B

Two-step\B

75 N16 betal gamma.2 lambida0.2 hod.2 Histgamma, B2

QML

5 N16 beat gamma.2 lambcad.2 oD 2 Hsigamma L

as0) as0) as0) as0)

0) 400 400 0]

350) 350f 350f 350)

a00) a00f a00f a00)

250) 250 250 250)

0] 200f 200f 0]

150 150f 150f 150

100) 100f 100f 100)

5 sof sof 5

o o o

2 Y o T 2 3 T o T 2 2 T o T 2 Y o T 2
10 N1 betat gamma0.2 lambxad 2 100.2 Hstgamma, £2,xZ TL0 1S betat gamma 2 lamibdaD 2 ho0 2 Histgamma, & TL0 N1 betat gammad.2 lambxa0 2 ho0 2 Histgamma, B2 O N6 betal gamma 2 lambdad 2 hed.2 Hsigamma L

as0) as0) as0) as0)

0) 400 400 0]

350) 350f 350f 350)

a00) a00f a00f a00)

250) 250 250 250)

0] 200f 200f 0]

150 150f 150f 150

100) 100f 100f 100)

5 sof sof 50
2 Y o T 2 3 T o T 2 2 T o T 2 Y o T 2
50 N1 beta. gamma0.2 lambxiad.2 100.2 Histgamma, 82,12 TS0 N16 bea, gammad.2 lambad.2 ho0.2 Histgamma, 8 T50 N1 betal gammad.2 lambxia0.2 100.2 Histgamma, 82 TS0 N16 betal Gamma 2 ambide0.2 0.2 HstgammahlL

450) 450 450 450)

a00) a00) a00) a00)

a50) as0f as0f a50)

0) a00f a00f 0)

250) 250f 250f 250)

200) 200 200 200)

150) 150f 150f 150)

100 100f 100f 100

5 sof sof 50




L6

Figure 2.38. Distribution of the estimates of paramter y for various spatial estimators, fory =4 =90 =0.2, 8 =1, various T and N = 49 over

999 iterations
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Figure 2.39. Distribution of the estimates of paramater y for various spatial estimators, fory =4=9 =0.2, 8 =1, variousT and N = 121 over

999 iterations
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Figure 2.40. Distribution of the estimates of paramter 4 for various spatial estimators, fory =4=90=0.2, 8 =1,

999 iterations
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Figure 2.41. Distribution of the estimates of paramter 4 for various spatial estimators, fory =4=90=0.2, 8 =1,

999 iterations
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Figure 2.42. Distribution of the estimates of pararmter A for various spatial estimators, fory =4=9=0.2, 8 =1, variousT and N = 121 over

999 iterations
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Figure 2.43. Distribution of the estimates of paramter ¢ for various spatial estimators, fory =4=90=0.2, 8 =1, variousT and N = 16 over

999 iterations
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Figure 2.44. Distribution of the estimates of paramter g for various spatial estimators, fory =4=9 =0.2, =1, various T and N = 49 over

999 iterations
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Figure 2.45. Distribution of the estimates of pararater g for various spatial estimators, fory =4=9 = 0.2, 8 =1, variousT and N = 121 over

999 iterations
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Figure 2.46. Distribution of the estimates of paramater g for various spatial estimators, fory =4=9=0.2, 8 =1, variousT and N = 16 over

999 iterations

T=10

T =50

One-step ESAB

TS N16 betal garman 2 lambida0 2 0.2 Histbeta, B x1Z

T o 1 2

IO NI6 beta1 gamima0 2 lamixda0 2 100.2 Hitbeta, B .2

T o 1 2

TS0 NIG betal gamma0.2 lamixia0 2 0.2 Histbeta, B2

Two-step ESAB

TS NI6 betal garmman 2 a0 2 0.2 Hitbeta, 82,32

One-step SAB

5 N1G beta1 gamima 2 lambia. 2 ho0.2 Histbeta, 8

Two-step\B

5 N1 betal gamma0 2 lambead 2 0.2 Hstbeta, B2

QML

TS NIG betat gamman 2 amba0 2 o0 2 Histbeta ML

as0) as0) as0) as0)
0) 400 400 0]
350) 350f 350f 350)
a00) a00f a00f a00)
250) 250 250 250)
0] 200f 200f 0]
150 150f 150f 150
100) 100f 100f 100)
5 sof sof 5
o o o
2 Y o 1 2 T o 1 2 T o 1 2 Y o 1 2
TL0 N6 beat gamma.2 lamba0 2 ho0 2 Histbeta, B2, 10 NI6 betat gammap.2 ambda0 2 hod 2 Hstoeta, & TLO N1 betat gamma2 lamibdaD 2 ho0 2 Histbeta, 52 10 N6 betal gamma0 2 lamia0.2 0.2 Histbeta ML
as0) as0) as0) as0)
0) 400 400 0]
350) 350f 350f 350)
a00) a00f a00f a00)
250) 250 250 250)
0] 200f 200f 0]
150 150f 150f 150
100) 100f 100f 100)
5 sof sof 50
o o
2 Y o 1 2 T o 1 2 T o 1 z Y o 1 2
T50 N16 beta gammad.2 lambad.2 ho0.2 Histbeta, 62,12 50 NI6 beta gamma0.2 amba0 2 o0 2 Hstbeta, 8 TS0 N16 bea gamma0.2 lambdad.2 o0.2 Histbeta, 52 50 NIB betal gamma0. lamxa0 2 002 Histbeta ML
450) 450 450 450)
a00) a00) a00) a00)
a50) as0f as0f a50)
0) a00f a00f 0)
250) 250f 250f 250)
200) 200 200 200)
150) 150f 150f 150)
100 100f 100f 100
5 sof sof 50




90T

Figure 2.47. Distribution of the estimates of paramater g for various spatial estimators, fory =4 =9 =10.2, 8 =1, various T and N = 49 over

999 iterations
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Figure 2.48. Distribution of the estimates of paramter g for various spatial estimators, fory =4 =90 =0.2, 8 =1, variousT and N = 121 over

999 iterations
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Table 2.7. Mean, bias, standard deviation and roatean square error of various spatial estimators ira stationary scenario, forT =5,y = 0.4,
A2=0.2,0=0.2,8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

< | Mean | 0.2908 | 0.2895| 0.2511 0.2407 0.2530 0.3928 0.3p173423.| 0.3414( 0.2624 0.380L 0.3780 0.3¢56 0.3639 5a@.2
(':'3 Bias | -0.1092( -0.110§ -0.1488 -0.1593 -0.14f/0 -0.0472 0483 | -0.0577 -0.058¢ -0.1371 -0.01p9 -0.0320 -010B340.0361| -0.1344
% SD | 0.2017| 0.2233] 0.2559 0.2860 0.09}3 0.1340 0.1p331672.| 0.1806| 0.0504 0.076p 0.0794 0.115 0.1156 10.(
O [RMSE| 0.2294 | 0.2491| 0.296]1 0.32740.1730| 0.1326| 0.1418 | 0.1768| 0.1899 0.14620.0785 | 0.0824 | 0.1167| 0.1211 0.139
~ | Mean | 0.3179| 0.3146| 0.361¢ 0.3644 0.1849 0.2926 0.2[67369@.( 0.3624| 0.1854 0.240p 0.2425 0.3480 0.3522 00.]
(':', Bias | 0.1179( 0.1146| 0.161¢ 0.1644 -0.01p1 0.0426 0.0fy67169@ | 0.1624| -0.014¢ 0.040b 0.0425 0.1480 0.1522.0160
é SD 0.3691 | 0.4082 0.5711 0.6067 0.1140 0.3q16 0.3p015476.| 0.5847( 0.0741 0.227B 0.2339 0.5758 0.5920 94.0
g RMSE| 0.3874| 0.4240] 0.5933 0.62850.1150| 0.3102 | 0.3292 0.5732 0.60680.0755| 0.2309 | 0.2426] 0.594% 0.6113 0.0503

Mean | 0.1586 | 0.1577[ 0.1469 0.1539 0.21¢5 0.1406 0.1f030960.| 0.0999| 0.2117 0.182p 0.1825 0.0916 0.0908 10.3
% Bias | -0.0414| -0.0423 -0.0531L -0.0461 0.01¢5 -0.0294 29rQ -0.1031| -0.1001 0.011fF -0.0174 -0.0375 -0.1p84a.1092| 0.0119
Dso: SD 0.3040 | 0.3393( 0.5371 0.6088 0.1462 0.2q40 0.20L774860.| 0.5190( 0.0893 0.138p 0.1430 0.4906 0.5115 96.0

RMSE| 0.3069 ( 0.3419( 0.539}% 0.6106 0.1466 | 0.2061 | 0.2197| 0.4964 0.52850.0901 | 0.1400 | 0.1441] 0.5024 0.523D 0.0608

Mean | 0.9344| 0.9368| 0.8781 0.8713 1.00p8 0.9990 0.9p779448.| 0.9438| 1.0034 0.9804 0.9760 0.9586 0.9549 45.(
E Bias | -0.0656| -0.06324 -0.1219 -0.12§7 0.0038 -0.0410 42BQ -0.0557| -0.0562 0.003p -0.0196 -0.0340 -0.041@.0451| 0.0045
21| sb | 0.3002| 0.3319] 0.4492 0.4880 0.13f0 0.1§13 0.1p462836.( 0.3139| 0.0784 0.1141 0.12¢01 0.1868 0.1915 78.(

RMSE| 0.3072( 0.3379( 0.4654 0.5047 0.1370| 0.1859 | 0.1992| 0.2884 0.31890.0789 | 0.1158 | 0.1225] 0.1914 0.1968 0.0480

N w
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Table 2.8. Mean, bias, standard deviation and roanean square error of various spatial estimators ira stationary scenario, forT = 10,y = 0.4,
A=0.2,0=0.2,B =1 and variousN, over 999 iterations

N

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

< | Mean | 0.3730 | 0.3744| 0.3591 0.3613 0.3337 0.3910 0.3p263826.| 0.3846( 0.3385 0.394p 0.39%4 0.3883 0.3887 90@.3
(':'3 Bias | -0.0270( -0.025¢9 -0.0408 -0.03§7 -0.06p3 -0.0090 00?4 | -0.0174] -0.0154 -0.06)5 -0.00p5 -0.0046 -0r0110.0113| -0.0609
% SD | 0.1013] 0.1126] 0.1317 0.1440 0.0580 0.0946 0.0p790770.| 0.0799| 0.0313 0.035¢ 0.03¢9 0.0511 0.0526 90.(
O [RMSE| 0.1048| 0.1154| 0.1377 0.14910.0849 | 0.0554| 0.0583 | 0.0790| 0.0814 0.06800.0361 | 0.0372| 0.0524| 0.053¢ 0.063
~ | Mean | 0.2431| 0.2478] 0.339] 0.3408 0.19]6 0.2408 0.2p323500.( 0.3515| 0.195] 0.2096 0.20$7 0.2895 0.2910 70.]
(':', Bias | 0.0431( 0.0478| 0.1399 0.14083 -0.00B4 0.0408 0.0p321509 [ 0.1515| -0.0049 0.0096 0.00$7 0.0895 0.0910.0023
é SD 0.2289 | 0.2545( 0.5043 0.5506 0.0890 0.1482 0.1p594870@.| 0.5041( 0.0487% 0.102p 0.10%4 0.4704 0.4Y89 18.(
g RMSE| 0.2329| 0.2589] 0.5233 0.56820.0804 | 0.1496 | 0.1576| 0.510% 0.5264 0.0490| 0.1025| 0.1058| 0.478% 0.4874 0.0319

Mean | 0.1839| 0.1833| 0.112¢ 0.1066 0.20¢3 0.1914 0.1B87101@.| 0.1026| 0.2059 0.196f 0.1941 0.1387 0.18346 60.1
% Bias | -0.0161| -0.0167 -0.0874# -0.0934 0.0063 -0.0086 11BQ -0.0983| -0.0974 0.005fF -0.0089 -0.0959 -0.0p13.0654| 0.0069
Dso: SD 0.1647 | 0.1824 0.441}% 0.4688 0.0948 0.1q12 0.1p853680.| 0.3828( 0.0561 0.068f 0.0710 0.3972 0.3628 76.0

RMSE| 0.1655( 0.1832 0.4504 0.47800.0920 | 0.1015| 0.1091| 0.381§ 0.39500.0564 | 0.0688 | 0.0713] 0.3624 0.3686 0.0381

Mean | 0.9842| 0.9855[ 0.9653 0.9630 1.01¢0 0.9935 0.9p15985@.| 0.9871| 1.0174 0.995f 0.99%2 0.9888 0.9882 76.(
E Bias | -0.0158| -0.0145 -0.034y -0.0370 0.0160 -0.0065 0&bQ -0.0146| -0.012% 0.0174 -0.0043 -0.0948 -0.0[L12.0118| 0.0176
21| sb | 0.1435] 0.1592| 0.183¢ 0.2126 0.08p1 0.0999 0.0B39104@.( 0.1108| 0.0474 0.051F 0.0533 0.0731 0.0743 96.4

RMSE| 0.1444( 0.1599( 0.1869 0.2158 0.0837 | 0.0801 | 0.0844| 0.1054 0.1116 0.0506 | 0.0519 | 0.0536] 0.074 0.0753 0.0344

©
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Table 2.9. Mean, bias, standard deviation and roanean square error of various spatial estimators ira stationary scenario, forT = 50,y = 0.4,
A=0.2,0=0.2,B =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB
< | Mean | 0.3973 | 0.3979] 0.3951 0.3958 0.38f8 0.3988 0.3p963988.| 0.4000( 0.3879 0.399p 0.3998 0.4006 0.4008 86.3
(':'3 Bias | -0.0027]| -0.00213] -0.0048 -0.0042 -0.01p2 -0.0012 004 | -0.0012 0.000Q¢ -0.0142 -0.00p5 -0.0g02 0.0p0B.0008 | -0.0114
% SD | 0.0303| 0.0334] 0.044% 0.0489 0.02¢9 0.0376 0.0[L880286.| 0.0302( 0.0124 0.010B 0.0112 0.0210 0.0213 76.4
O [RMSE| 0.0304 | 0.0335( 0.045¢ 0.04910.0242 | 0.0176 [ 0.0188| 0.028¢ 0.03020.0172| 0.0108| 0.0112| 0.0210| 0.0213 0.013
~ | Mean | 0.2056 | 0.2038] 0.239]1 0.2496 0.20¢9 0.2Q09 0.2p191990. 0.1915] 0.2004 0.201fL 0.20¢8 0.1792 0.1y98 16.4
(':'; Bias | 0.0056 | 0.0038] 0.0391 0.0496 0.00¢9 0.0q09 0.0p19.0060a | -0.0085 0.0004 0.001f 0.0018 -0.0208 -0.02@20013
é SD 0.0739 | 0.0814 0.4013 0.4318 0.0340 0.0442 0.04753540. 0.3788( 0.01994 0.0304 0.0312 0.2909 0.2961 4a.d
g RMSE| 0.0741| 0.0814| 0.4032 0.43470.0340| 0.0442| 0.0476| 0.3549 0.37890.0199| 0.0304| 0.0312| 0.2917 0.29680.0142
Mean | 0.1965| 0.1959( 0.171¢ 0.1621 0.20}4 0.1985 0.1p811996.| 0.2057| 0.2013 0.199B 0.1997 0.2168 0.2163 08.1
% Bias | -0.0035| -0.0041 -0.0299 -0.0379 0.00§4 -0.0015 OIBQ -0.0004| 0.0054 0.001p -0.00902 -0.0q03 0.0168016R | 0.0008
Dso: SD 0.0596 | 0.0654( 0.307( 0.3335 0.03f9 0.0352 0.0B772716.| 0.2910( 0.023d 0.024p 0.0249 0.21§82 0.2P20 58.(
RMSE | 0.0597( 0.0656( 0.3083 0.33570.0380 | 0.0352 | 0.0377| 0.2714 0.29111 0.0230 | 0.0242 | 0.0249] 0.2184 0.2226 0.0156
Mean | 0.9974| 0.9980[ 0.995f 0.995 1.00¢0 1.0J00 1.0p070008.| 1.0019| 1.0064 1.000p 1.0000 1.0018 1.0017 60.¢
E Bias | -0.0026| -0.0020 -0.0048 -0.0045 0.0060 0.000 (0Op00.0008| 0.0019] 0.006F7 0.00g0 0.00p0 0.0018 0.0p1XO060
2| sb | 0.0453| 0.0497| 0.0624 0.0687 0.03p6 0.0457 0.0R710410.( 0.0433| 0.0194 0.016p 0.01¢7 0.0280 0.0285 20.(
RMSE| 0.0453( 0.0498( 0.063( 0.0689 0.0342 | 0.0257 | 0.0271| 0.041( 0.04330.0209 | 0.0162 | 0.0167] 0.028] 0.0285 0.0140
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Table 2.10. Mean, bias, standard deviation and roanean square error of various spatial estimators ira stationary scenario, forT =5,y = 0.2,
A=0.2,0=0.4,pB =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

o~ | Mean | 0.1053 | 0.1046] 0.0644 0.0592 0.0720 0.1994 0.1p901390.| 0.1389( 0.0787% 0.1824 0.18¢09 0.103 0.1604 0Q.C
(':'3 Bias | -0.0947( -0.0954 -0.135f -0.1408 -0.12BO -0.0406 0400 | -0.0609| -0.061]1 -0.1233 -0.01f6 -0.0191 -0r0B90.0396| -0.119§
% SD | 0.1929| 0.2141] 0.2433 0.2679 0.08p8 0.1139 0.1p071618.| 0.1785| 0.0504 0.073 0.0770 0.13f71 0.1200 16.(
O [RMSE| 0.2149 | 0.2344] 0.2783 0.30260.1564 | 0.1210 0.1275| 0.1726] 0.1887 0.13160.0753 | 0.0793 | 0.1236| 0.1263 0.123
~ | Mean | 0.3059 | 0.3065| 0.3672 0.3663 0.183 0.2434 0.2p393814@.( 0.3770| 0.1844 0.2391 0.2404 0.3¢56 0.3657 986.]
(':', Bias | 0.1059 | 0.1065( 0.1673 0.1668 -0.017 0.0434 0.0639181@ | 0.1770| -0.015¢ 0.0391L 0.0404 0.1656 0.1$57.0162
é SD 0.3605 | 0.4032| 0.5494 0.6101 0.1130 0.2471 0.3[L1453138.| 0.5896( 0.0736 0.223fL 0.2315 0.5688 0.5865 90.C
g RMSE| 0.3758 | 0.4170| 0.574% 0.63240.1142| 0.2940| 0.3179| 0.5614 0.61560.0752| 0.2265| 0.2350| 0.592% 0.6095 0.0502

Mean | 0.3496 | 0.3514 0.337% 0.34183 0.3891 0.3q75 0.3p73297@.| 0.2961| 0.3933 0.380f 0.3804 0.3061 0.3031 46.3
Tof Bias | -0.0504| -0.0484 -0.062% -0.0587 -0.01p9 -0.0325 0327 | -0.1026] -0.1039 -0.0047 -0.01p3 -0.03196 -(BOP30.0969| -0.005%5
Dso: SD 0.2989 | 0.3357| 0.4931 0.5725 0.1439 0.2q73 0.2p554246.| 0.4584( 0.088d 0.140p 0.14%0 0.4050 0.4176 86.C

RMSE| 0.3031( 0.3392 0.497( 0.57550.1443 | 0.2098 | 0.2279| 0.4364 0.47000.0883 | 0.1415| 0.1464] 0.415§ 0.4287 0.0589

Mean | 0.9526 | 0.9542| 0.9021 0.8946 1.0096 0.9100 0.9598954@.| 0.9523| 1.00931 0.984L 0.9799 0.9648 0.9625 01.4
E Bias | -0.0474| -0.0458 -0.0979 -0.1034 0.0096 -0.0800 3@eQ -0.0453| -0.0477 0.009L -0.01%9 -0.0401 -0.0B52.0375| 0.0101
21| sb | 0.2856| 0.3222| 0.4219 0.4676 0.13f5 0.1498 0.1B292666.( 0.3034| 0.0784 0.1091 0.1146 0.1773 0.1818 70.(

RMSE| 0.2895( 0.3254 0.433] 0.47930.1379| 0.1724 | 0.1853| 0.2704 0.3071 0.0793 | 0.1102| 0.1164] 0.180} 0.1857 0.0490
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Table 2.11. Mean, bias, standard deviation and roahean square error of various spatial estimators ira stationary scenario, forT = 10,y = 0.2,
A=0.2,0=0.4,pB =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

o~ | Mean | 0.1765| 0.1784| 0.153% 0.1542  0.1490 0.1921 0.1p441756.| 0.1782( 0.143€ 0.194p 0.19%9 0.1834 0.1836 46.]
(':'3 Bias | -0.0235( -0.0214 -0.046b5 -0.0438 -0.06pP0 -0.0079 00®6 | -0.0244] -0.0213 -0.0544 -0.00p1 -0.0041 -(BOL60.0164| -0.0554
% SD | 0.0961| 0.1076] 0.1363 0.1494 0.0569 0.0530 0.0p63086Q.| 0.0908( 0.0324 0.034fF 0.03%8 0.0684 0.0703 0Q.G
O [RMSE| 0.0989 | 0.1097| 0.144¢ 0.15680.0827 | 0.0536| 0.0566 | 0.0896] 0.0933 0.06530.0351 | 0.0360 | 0.0704| 0.0722  0.059
~ | Mean | 0.2366 | 0.2371| 0.354] 0.3566 0.19]18 0.2190 0.2p04351@.( 0.3505| 0.1960 0.2088 0.209$3 0.3003 0.3953 886.]
(':', Bias | 0.0366 | 0.0371f 0.154f 0.1566 -0.00B2 0.0190 0.0p04151@ | 0.1505| -0.004¢ 0.0088 0.00$3 0.1003 0.1p53.0012
é SD 0.2242 | 0.2497( 0.495] 0.5452 0.0794 0.1467 0.1p43469@.| 0.4966( 0.0482 0.100p 0.1041 0.4904 0.4626 16.C
3 RMSE| 0.2272| 0.2525( 0.5187% 0.5672 0.0798 | 0.1480 | 0.1557| 0.4933% 0.51890.0484 | 0.1013| 0.1045| 0.4614 0.4744 0.0316

Mean | 0.3833| 0.3851] 0.319¢ 0.3163 0.39f7 0.3919 0.3B903249. 0.3243| 0.3984 0.397L 0.39%0 0.3488 0.3438 06.4
Tof Bias | -0.0167| -0.0149 -0.0804# -0.0837 -0.00p3 -0.0081 01:-00| -0.0751] -0.0757 -0.003J2 -0.00p9 -0.0Q50 -(®0OH10.0562| 0.0006
Dso: SD 0.1613| 0.1791f 0.3734 0.4091 0.09¢3 0.1q08 0.1p812850.| 0.3048( 0.056d 0.067B 0.07¢02 0.2683 0.2f56 7@.0

RMSE| 0.1621( 0.1798| 0.3821 0.41750.0903 | 0.1011| 0.1087| 0.2954 0.314{1 0.0560 | 0.0678 | 0.0704] 0.2734% 0.2813 0.0377

Mean | 0.9878 | 0.9883] 0.9672 0.9667 1.01p5 0.9948 0.9p229866. 0.9888| 1.0174 0.996p 0.99%9 0.9896 0.3438 72.(
E Bias | -0.0122| -0.0117 -0.0328 -0.0333 0.01%5 -0.0052 0O1BQ -0.0134| -0.0112 0.017L -0.00834 -0.0941 -0.0[L64@.0562| 0.0172
21| sb | 0.1392| 0.1551] 0.1783 0.2046 0.08p4 0.0983 0.0B201016.( 0.1076] 0.047¢ 0.050p 0.0518 0.0702 0.2756 96.(

RMSE| 0.1397( 0.1555( 0.1814 0.2073 0.0838 | 0.0785| 0.0824| 0.102j 0.1082 0.0506 | 0.0503 | 0.0520] 0.071 0.2813 0.0343
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Table 2.12. Mean, bias, standard deviation and roahean square error of various spatial estimators ira stationary scenario, forT = 50,y = 0.2,
A=0.2,0=0.4,pB =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

o~ | Mean | 0.1974 | 0.1979] 0.1863 0.185% 0.1884 0.1987 0.1p95191@.| 0.1923( 0.1883 0.1996 0.1999 0.1935 0.1937 90.1
(':'3 Bias | -0.0026]| -0.0021 -0.0138 -0.0144 -0.01f16 -0.0013 00@5 | -0.0086( -0.007f -0.0138 -0.00p4 -0.0g01 -(50060.0063| -0.011d
% SD | 0.0315| 0.0347] 0.0662 0.0709 0.02$3 0.0381 0.0[L930450.| 0.0467| 0.013q 0.011p 0.0116 0.0314 0.0p19 8a.(
O [RMSE| 0.0316 | 0.0348[ 0.067¢ 0.07280.0260 | 0.0181 | 0.0193| 0.0459 0.04780.0180| 0.0112| 0.0116 | 0.0321| 0.032§ 0.013
~ | Mean | 0.2049 | 0.2035| 0.2863 0.2947 0.20]1 0.2Q06  0.2p15261@. 0.2586] 0.2014 0.200B 0.2005 0.2533 0.2536 16.4
(':'; Bias | 0.0049| 0.0035] 0.0863 0.0947 0.0041 0.0qo6 0.0p15061@.( 0.0586| 0.0014 0.000B 0.0005 0.0533 0.0$36 16.(
é SD 0.0754 | 0.0827( 0.4054% 0.4308 0.0333 0.0452 0.04843390.| 0.3496( 0.0197% 0.030p 0.0318 0.2935 0.2p77 38.0
g RMSE| 0.0756 | 0.0827] 0.4142 0.441]10.0333| 0.0452 | 0.0484| 0.3453 0.35440.0197| 0.0309 | 0.0318] 0.259¢0 0.26320.0139

Mean | 0.3965| 0.3959] 0.3461 0.3406 0.40¢3 0.3984 0.3p823618.| 0.3631| 0.3999 0.399B 0.39%7 0.3682 0.3678 00.4
Tof Bias | -0.0035| -0.0041 -0.053p -0.0595 0.00¢3 -0.0016 0OIBQ -0.0382] -0.036% -0.0001 -0.00p2 -0.0q03 -0.0B18.0322( 0.0001
Dso: SD 0.0566 | 0.0623| 0.244% 0.2649 0.03f8 0.0338 0.0B592060.| 0.2134( 0.0231 0.022p 0.0236 0.1915 0.1p45 5a.(

RMSE | 0.0567 ( 0.0624( 0.2504 0.2715 0.0378 | 0.0338 | 0.0359| 0.2094 0.2166 0.0231 | 0.0229 | 0.0236] 0.1544 0.1578 0.0154

Mean | 0.9975| 0.9982 0.990% 0.9911 1.00%2 1.0J00 1.0p059956.| 0.9961| 1.006¢ 1.000L 1.0000 0.9960 0.9960 53.4
E Bias | -0.0025| -0.001 -0.009% -0.00849 0.00%2 0.0q00 (&OpPG0O.0045| -0.0039 0.0064 0.00q1 0.00p0 -0.0p40 04mQ 0.0053
2| sb | 0.0457| 0.0499| 0.0624 0.0683 0.03p7 0.0461 0.0R77040Q.( 0.0415| 0.0194 0.0164 0.01¢9 0.0266 0.0272 20.(

RMSE| 0.0457( 0.0499( 0.0634 0.06890.0341 | 0.0261 | 0.0277| 0.0404 0.0417 0.0207 | 0.0164 | 0.0169] 0.0264 0.027p 0.0137
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Table 2.13. Mean, bias, standard deviation and roomean square error of various spatial estimators ira quasi-unit root scenario, forT = 5,
¥y=0.58,1=0.2,0=0.2,8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

% | Mean | 0.4433 | 0.4457( 0.3634 0.3623 0.4295 0.5409 0.5[1994730@.| 0.4726( 0.4332 0.554fL 0.55¢9 0.5230 0.5108 5@.4
?é; Bias | -0.1367( -0.1343 -0.216p -0.2147 -0.15p5 -0.0%91 06@1 | -0.1063| -0.1074 -0.14¢48 -0.02p9 -0.0291 -M0670.0692| -0.1444
E SD | 0.2186| 0.2380] 0.287¢ 0.3153 0.0994 0.1405 0.1p35214@.| 0.2257| 0.0504 0.082p 0.08%9 0.1437 0.1500 0a.(
8 RMSE| 0.2578 | 0.2733] 0.359§ 0.38310.1834| 0.1524| 0.1648  0.2394 0.2500 0.15520.0869 | 0.0907 | 0.1586| 0.1652 0.147
~ | Mean | 0.3565| 0.3667| 0.4579 0.4577 0.174 0.3324 0.3B144700.( 0.4748| 0.177¢ 0.3038 0.30%43 0.4726 0.4621 08.]
(':', Bias | 0.1565| 0.1667| 0.2579 0.2577 -0.02B6 0.1324 0.1B142700 | 0.2748| -0.023¢ 0.1038 0.10%3 0.2726 0.2621.0192
é SD 0.3669 | 0.4072( 0.4904 0.5382 0.1142 0.3332 0.3p574866.| 0.5128( 0.0754 0.284p 0.2971 0.4698 0.4927 00.C
g RMSE| 0.3988 | 0.4400] 0.554% 0.59670.1166 | 0.3585| 0.3886| 0.5569 0.58180.0788| 0.3026 | 0.3152| 0.5431 0.5580 0.0535

Mean | 0.1172| 0.1195/ 0.0692 0.0667 0.21$8 0.1366 0.1B54.0332| -0.0409 0.2223 0.1608 0.16]0 -0.0653 -0.06772197
% Bias | -0.0828| -0.080§ -0.1308 -0.1333 0.0198 -0.0634 6460 -0.2332| -0.2409 0.022p -0.0392 -0.0390 -0.2p53.2677| 0.0197
Dso: SD 0.3136 | 0.3520{ 0.4774 0.5526 0.15]9 0.2q99 0.2p784656.| 0.5109( 0.0874 0.147p 0.1530 0.4962 0.4Y45 98.0

RMSE| 0.3243( 0.3611 0.495] 0.5684 0.1532 | 0.2193 | 0.2368| 0.5207% 0.5649 0.0907 | 0.1527 | 0.1579] 0.527§ 0.5448 0.0629

Mean | 0.8916 | 0.8895 0.8001 0.7981 0.98%8 0.9452 0.9431871@.| 0.8696| 0.98694 0.981p 0.9767 0.9090 0.9041 88.9
E Bias | -0.1084| -0.110§ -0.1999 -0.2019 -0.01p2 -0.0%48 0569 | -0.1286] -0.1304 -0.0132 -0.0185 -0.0333 -(D0P10.0959| -0.0117%
21| sb | 0.3291| 0.3601] 0.469]1 05135 0.139 0.2120 0.2B29335@.( 0.3664| 0.0784 0.1345 0.1411 0.2353 0.2468 78.(

RMSE| 0.3465( 0.3767[ 0.5094 0.55180.1376 | 0.2189 | 0.2397| 0.359] 0.38890.0799 | 0.1358 | 0.1430] 0.2523 0.2648 0.0492
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Table 2.14. Mean, bias, standard deviation and roomean square error of various spatial estimators ira quasi-unit root scenario, forT = 10,
¥y=0.58,1=0.2,0=0.2,8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

% | Mean | 0.5456 | 0.5435( 0.5131 0.5141 0.51}7 0.578 0.5p805440.| 0.5457( 0.5163 0.573p 05740 0.5540 0.5p49 706.5
?g; Bias | -0.0344| -0.0369 -0.0669 -0.0699 -0.06B3 -0.0}22 0120 -0.0353| -0.0343 -0.0637 -0.00p6 -0.0060 -(MORE0.0251| -0.0621
E SD | 0.1077] 0.1199] 0.153¢ 0.1737 0.0484 0.0984 0.0p34090Q.| 0.0955| 0.0284 0.0386 0.0399 0.0631 0.0647 76.(
8 RMSE| 0.1130| 0.1253| 0.167¢ 0.18580.0837 | 0.0597| 0.0645( 0.0969( 0.101% 0.06980.0391 | 0.0404 | 0.0682| 0.0694 0.065
~ | Mean | 0.2607 | 0.2633] 0.429]1 0.4165 0.1842 0.2425 0.2450426@. 0.4241] 0.1874 0.229p 0.2322 0.41f86 0.4113 00.]
(':', Bias | 0.0607 ( 0.0633| 0.2291 0.2165 -0.01p8 0.0425 0.0450226@ | 0.2241| -0.012 0.029p 0.0322 0.2186 0.2113.0090
é SD 0.2550 | 0.2732| 0.458( 0.5008 0.08}2 0.2146 0.2p344220.| 0.4487( 0.0494 0.176p 0.1843 0.4288 0.4508 18.0
g RMSE| 0.2621| 0.2804] 0.5121 0.54560.0827| 0.2188 | 0.2278| 0.4799 0.50160.0509 | 0.1790 | 0.1871] 0.4813 0.497B80.0331

Mean | 0.1642| 0.1631f 0.012% 0.0156 0.21p9 0.1419 0.1y88.0316| -0.03200 0.2104 0.1894 0.1831 0.0143 0.0158211Q.
% Bias | -0.0358| -0.0369 -0.187 -0.1844 0.01p9 -0.0181 21pQ -0.2316| -0.2320 0.010p -0.01¢p6 -0.0319 -0.1850.1842| 0.0112
Dso: SD 0.1746 | 0.1913( 0.4423 0.4788 0.09¢7 0.1053 0.1[1484058.| 0.4280( 0.0557% 0.072y 0.0746 0.3739 0.3883 66.(

RMSE| 0.1782( 0.1948( 0.4804 0.5131 0.0916 | 0.1068 | 0.1168| 0.4674 0.48609 0.0567 | 0.0735 | 0.0755] 0.4174 0.4298 0.0382

Mean | 0.9748 | 0.9691| 0.9313 0.9277 1.0091 0.9921 0.9p099528.| 0.9531| 1.0113 0.996B 0.9960 0.9711 0.9699 16.¢
E Bias | -0.0252| -0.0309 -0.068y -0.0723 0.0091 -0.0079 0@1Q -0.0477] -0.046% 0.011]p -0.0087 -0.0g40 -0.0R89.0301| 0.0116
21| sb | 01570| 0.1687| 0.222¢ 0.2589 0.0817 0.0954 0.1p131430@.( 0.1530| 0.0474 0.065p 0.0691 0.11f34 0.1176 9a.(

RMSE| 0.1590( 0.1715f 0.2324 0.2688 0.0822 | 0.0957 | 0.1017| 0.1514 0.1601 0.0485| 0.0660 | 0.0692] 0.117( 0.1214 0.0316

[
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Table 2.15. Mean, bias, standard deviation and rootean square error of various spatial estimators ira quasi-unit root scenario, forT = 50,
¥y=0.58,1=0.2,0=0.2,8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

% | Mean | 0.5775( 0.5781 0.5744 0.5743 0.5684 0.5489 0.5f94578a.| 0.5793( 0.5684 0.579B 0.5795 0.5794 0.5f94 90.5
?é; Bias | -0.0025( -0.0019 -0.0058 -0.0037 -0.01j16 -0.0011 00W6| -0.0016| -0.000f -0.013)6 -0.00p7 -0.0005 -GBOPGO.0006| -0.011(
E SD | 0.0306| 0.0341] 0.046§ 0.05256 0.01y8 0.03473 0.0[L840258.| 0.0272| 0.0104 0.010B 0.0112 0.0186 0.0188 64.(
8 RMSE| 0.0307 | 0.0342] 0.0471 0.05280.0213] 0.0173| 0.0185( 0.0259 0.02720.0154| 0.0108| 0.0112| 0.0186| 0.0189 0.012
~ | Mean | 0.2059  0.2079] 0.241¢ 0.2578 0.1998 0.2020 0.2p222076.| 0.2025| 0.2003 0.201p 0.2014 0.2046 0.2027 06.
(':'; Bias | 0.0059| 0.0079] 0.041¢ 0.0578 -0.00p2 0.0q20 0.0p220076 | 0.0025| 0.0003§ 0.001p 0.00}14 0.0046 0.0p27 0086.(
é SD 0.1151 | 0.1278| 0.3604 0.4186 0.0337 0.0457 0.0p182763.| 0.2997( 0.0196 0.057p 0.0592 0.2094 0.2127 30@.0
g RMSE| 0.1152| 0.1280] 0.362¢ 0.42260.0337 | 0.0857 | 0.0918| 0.2764 0.29970.0196 | 0.0575| 0.0593| 0.2094 0.21270.0137

Mean | 0.1952| 0.1947[ 0.1588 0.1506 0.20p4 0.1982 0.1p741936.| 0.1971| 0.2034 0.199p 0.1992 0.2010 0.2007 3Q.3
% Bias | -0.0048| -0.0053 -0.041p -0.0494 0.0034 -0.0018 0OFBQ -0.0064| -0.002% 0.003p -0.0008 -0.0q08 0.0010.00a¥ | 0.0031
Dso: SD 0.0626 | 0.0694 0.320( 0.3559 0.0361 0.0379 0.04122356.| 0.2514( 0.0221 0.026fL 0.02¢9 0.1723 0.1y48 46.(

RMSE| 0.0628 ( 0.0696( 0.3224 0.359%4 0.0362 | 0.0379 | 0.0412| 0.235} 0.2514 0.0224 | 0.0262 | 0.0269] 0.1724 0.1748 0.0150

Mean | 0.9969 | 0.9977] 0.9923 0.9940 1.00%6 0.9997 1.0p049990@.( 1.0006| 1.0064 0.999B 0.9999 1.0008 1.0003 58.(
E Bias | -0.0031| -0.0023 -0.007y -0.0040 0.00%6 -0.0003 @Op -0.0003] 0.0004 0.0064 -0.0002 -0.0q01 0.0008 0CB(J 0.0058
21| sb | 0.0520| 0.0575| 0.084¢9 0.0968 0.03p2 0.0310 0.0B28057@. 0.0585| 0.0194 0.0204 0.0212 0.0433 0.0445 26.(

RMSE| 0.0521( 0.0576( 0.0843 0.09700.0337 | 0.0310| 0.0328] 0.0571 0.05850.0206 | 0.0204 | 0.0212] 0.043 0.0445 0.0138

o W o
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Table 2.16. Mean, bias, standard deviation and roomean square error of various spatial estimators ira quasi-unit root scenario, forT = 5,
¥y=0.2,1=0.2,0=0.58, 8 =1 and various N, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

o~ | Mean | 0.0983 | 0.0960] 0.0254 0.0232 0.07f0 0.1451 0.1p730883.| 0.0898( 0.0824 0.177 0.17%6 0.1255 0.1174 36.0
(':'3 Bias | -0.1017( -0.1040 -0.1746 -0.1768 -0.12B0 -0.0449 0427 | -0.1117 -0.1102 -0.11741 -0.02p9 -0.0344 -(B0B40.0826| -0.1164
% SD | 0.1965| 0.2185] 0.2804 0.3056 0.0887 0.13171 0.1p651772.| 0.1909| 0.0513 0.076p 0.0800 0.1375 0.1401 16.(
O [RMSE| 0.2212| 0.2420[ 0.330§ 0.35310.1516 | 0.1254| 0.1335| 0.2094| 0.2204 0.12770.0799 | 0.0836 | 0.1614| 0.1627 0.120
~ | Mean | 0.3149| 0.3178| 0.4328 0.4304 0.17%2 0.2857 0.2B274646.( 0.4590| 0.1774 0.267p 0.2688 0.4732 0.4600 2G.]
(':'; Bias | 0.1149| 0.1178] 0.232§ 0.2304 -0.0248 0.0457 0.0B272646 | 0.2590| -0.022 0.067p 0.0618 0.2732  0.2600.0177
é SD 0.3442 | 0.3835| 0.4784 0.5243 0.11}4 0.3050 0.3B644450.| 0.4757( 0.0734 0.259B 0.2714 0.4758 0.4657 88.(
g RMSE| 0.3629 | 0.4011] 0.5322 0.572j70.1141| 0.3168 | 0.3464| 0.5184 0.54160.0767 | 0.2679 | 0.2800| 0.548¢ 0.5334 0.0520
© | Mean 0.4938| 0.5009| 0.434% 0.4420 0.55y0 0.5177 0.51683708.| 0.3644| 0.5650 0.543p 0.5440 0.3600 0.3%567 46.9
2 Bias | -0.0862| -0.0791] -0.145% -0.1380 -0.02B0 -0.0¢23 0682 | -0.2092] -0.215¢ -0.0190 -0.03p1 -0.0360 -(D2P60.2233| -0.0154
é SD 0.2958 | 0.3293 0.4394 0.4799 0.1447 0.2198 0.2B883966.| 0.4412( 0.0862 0.160B 0.16%3 0.3772 0.3883 70.C
« RMSE| 0.3081( 0.3387 0.4624 0.49550.1465 | 0.2284 | 0.2470] 0.4484 0.49111 0.0875| 0.1648 | 0.1692] 0.436} 0.447P 0.0591

Mean | 0.9473| 0.9452| 0.864% 0.8697 1.00p7 0.9457 0.9p659048.| 0.9005| 1.0039 0.9858 0.98%22 0.9308 0.9299 47I1.4
E Bias | -0.0527| -0.0548 -0.135% -0.1303 0.00p7 -0.0343 3&b(Q -0.0957] -0.099% 0.003F -0.0147 -0.0178 -0.0p92.0701| 0.0047
21| sb | 0.2889| 0.3199| 0.4582 0.4993 0.13f4 0.1985 0.1p512980.( 0.3238] 0.0784 0.1181 0.1238 0.1993 0.2048 70.(

RMSE| 0.2936 0.3246( 0.477§ 0.51600.1374 | 0.1817 | 0.1979| 0.313( 0.33880.0790 | 0.1191 | 0.1251] 0.211( 0.216b 0.0481

w



8TT

Table 2.17. Mean, bias, standard deviation and roomean square error of various spatial estimators ira quasi-unit root scenario, forT = 10,
¥y=0.2,1=0.2,0=0.58, 8 =1 and various N, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

o~ | Mean | 0.1740 | 0.1751| 0.1123 0.11599 0.1435 0.1498 0.1p191490.| 0.1509( 0.1457% 0.193p 0.1939 0.1979 0.1$81 6G.1
(':'3 Bias | -0.0260( -0.0249 -0.087f -0.0841 -0.05p5 -0.0102 00&1| -0.0503 -0.049]1 -0.0543 -0.00p8 -0.0061 -QL0420.0419| -0.0537
% SD | 0.0970| 0.1079] 0.1653 0.1797 0.0567 0.0945 0.0p931026.| 0.1088| 0.0324 0.036fL 0.0376 0.0898 0.0921 00.(
O [RMSE| 0.1004 | 0.1107| 0.1869 0.19840.0800 | 0.0555| 0.0598 | 0.1143| 0.1193 0.06330.0368 | 0.0381 | 0.0991| 0.1012 0.057
~ | Mean | 0.2403 | 0.2427| 0.4374 0.4333 0.18p4 0.2347 0.2p39407@.( 0.4065| 0.1919 0.2188 0.2211 0.4024 0.4p45 5Q.]
(':'; Bias | 0.0403| 0.0427] 0.237§ 0.2333 -0.01B6 0.0447 0.0p39207@ [ 0.2065| -0.008 0.0188 0.0211 0.2024 0.2p45.0049
é SD 0.2343 | 0.2549( 0.4621% 0.5100 0.0789 0.1945 0.2p82410a.| 0.4281( 0.0479 0.151B 0.15%9 0.4239 0.4851 00.C
g RMSE| 0.2378| 0.2584] 0.5198 0.56080.0800| 0.1960 ( 0.2095( 0.459% 0.47530.0485| 0.1530| 0.1573| 0.4697 0.48080.0311
© Mean | 0.5465| 0.5478| 0.421% 0.4148 0.5744 0.5948 0.5p084258.| 0.4255( 0.5756 0.573p 0.5716 0.4702 0.4657 78.5
2 Bias | -0.0335| -0.03221 -0.158% -0.16%2 -0.00p6 -0.0152 0192 | -0.1542] -0.154% -0.0044 -0.00p5 -0.0Q84 -(B1090.1143| -0.0022
é SD 0.1642 | 0.1815| 0.3487% 0.3796 0.08f7 0.1307 0.1181307@.| 0.3271| 0.0542 0.079B 0.0829 0.2806 0.2866 60.0
« RMSE| 0.1676 ( 0.1844( 0.383( 0.41400.0879 | 0.1117| 0.1196f 0.3434 0.3618 0.0544 | 0.0796 | 0.0833] 0.3014 0.3086 0.0361

Mean | 0.9838 | 0.9833| 0.9402 0.9406 1.01}4 0.9933 0.9p129656.| 0.9650| 1.0139 0.996p 0.99%6 0.9812 0.9802 42.4
E Bias | -0.0162| -0.0167 -0.0598 -0.0594 0.01}14 -0.0067 0&BQ -0.0344| -0.035¢0 0.013F -0.0085 -0.0944 -0.0[L88.0198| 0.0142
21| sb | 0.1431] 0.1537| 0.203] 0.2228 0.08p2 0.0455 0.0p17119G.( 0.1281| 0.0474 0.057¢ 0.0593 0.0§78 0.0904 96.(

RMSE| 0.1441( 0.1546( 0.2123 0.2306 0.0830 | 0.0858 | 0.0921| 0.1244 0.1328 0.0493 | 0.0573 | 0.0594] 0.089 0.0925 0.0328

© W N
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Table 2.18. Mean, bias, standard deviation and roomean square error of various spatial estimators ira quasi-unit root scenario, forT = 50,
¥y=0.2,1=0.2,0=0.58, 8 =1 and various N, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB ESAB | ESAB SAB SAB

o~ | Mean | 0.1975( 0.1978] 0.1781 0.1775 0.1895 0.1988 0.1p941883.| 0.1889( 0.1884 0.199% 0.1997 0.1935 0.1938 9a.18
(':'3 Bias | -0.0025]| -0.0023 -0.0219 -0.0235 -0.01p5 -0.0012 0006 | -0.0117 -0.011] -0.0132 -0.00p6 -0.0903 -(500E0.0062| -0.0106
% SD | 0.0334| 0.0368] 0.0774 0.0848 0.022 0.0187 0.0p0O0051@.| 0.0529( 0.0134 0.011f 0.0120 0.0359 0.0862 8a@.40
O [RMSE| 0.0335| 0.0369] 0.0804 0.08770.0254 | 0.0187 [ 0.0200| 0.0527 0.05400.0175| 0.0117| 0.0120 | 0.0365| 0.0367 0.0136
~ | Mean | 0.2053  0.2055] 0.2960 0.3026 0.20p4 0.1999 0.2p07260Q.| 0.2593| 0.2014 0.201p 0.2005 0.2398 0.2880 18.40
(':'; Bias | 0.0053| 0.0055] 0.096¢ 0.1026 0.0094 -0.0001 0.0p07060Q [ 0.0593| 0.0014 0.0013 0.0005 0.0398 0.0880 018.(
é SD 0.1027 | 0.1152( 0.340§ 0.3722 0.032 0.0417 0.0f522960.| 0.2957( 0.0185 0.046B 0.04I2 0.2264 0.2288 3G6.Q1
g RMSE| 0.1028 | 0.1153] 0.3541 0.38610.0322| 0.0717 | 0.0752| 0.3021 0.30160.0186| 0.0469 | 0.0482] 0.2299 0.23200.0134
© Mean | 0.5757 | 0.5752| 0.5112 0.5066 0.5811 0.5977 0.5F725426.| 0.5416( 0.5811] 0.579p 0.5794 0.5612 0.5609 00.38
2 Bias | -0.0043| -0.0048 -0.068 -0.0734 0.0011 -0.0023 0#8BQ -0.0374 -0.0384 0.001p -0.00p5 -0.00q06 -0.0L88.0191| 0.0009
é SD 0.0610 | 0.0682| 0.2254 0.2462 0.0348 0.0418 0.04431586.| 0.1643( 0.0214 0.027p 0.0234 0.1045 0.1061 4a.Q1
« RMSE| 0.0612( 0.0683| 0.235}% 0.25700.0348 | 0.0419 | 0.0444| 0.162§ 0.1687 0.0219 | 0.0275| 0.0284] 0.1064 0.107B8 0.0144

Mean | 0.9971| 0.9978| 0.9868 0.9872 1.0044 0.9994 1.0p009960.| 0.9961| 1.005§ 1.000L 1.0000 0.9987 0.9986 471.40
E Bias | -0.0029| -0.00224 -0.013 -0.0128 0.0044 -0.0006 @NOp -0.0040( -0.0039 0.005 0.000d1 0.00p0 -0.0p13004%| 0.0047
2| sb | 0.0496| 0.0544| 0.0693 0.0769 0.03p5 0.0492 0.0B080448.| 0.0439| 0.0194 0.0181 0.018 0.0265 0.0269 26.01

RMSE| 0.0497 ( 0.0544( 0.070}% 0.07800.0337 | 0.0292 | 0.0308] 0.0444 0.04411 0.0203 | 0.0181 | 0.0188] 0.0264 0.027p 0.0135
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Table 2.19. Mean, bias, standard deviation and roaihean square error of various non-spatial and spadl estimators in a stationary scenario, for
T=5y=0.3,2=0.1,0=0.1, 8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.2556  0.2598| 0.2071 0.2047 0.1590 0.29127 0.2p18260a.| 0.2597( 0.168d 0.303B 0.303%3 0.2836 0.2820 10.1
('Dﬂ's Bias | -0.0444( -0.0403 -0.0928 -0.0933 -0.14{10 -0.0083 0082 | -0.0399| -0.0403 -0.1330 0.0038 0.0033 -0.01162.0180| -0.129¢
% SD | 0.2235] 0.2456] 0.1932 0.2109 0.09}6 0.1341 0.1p31115@.| 0.1257| 0.0504 0.077L 0.0795 0.0734 0.0f66 18.(
O [RMSE| 0.2279| 0.2489 0.2143 0.23160.1681 | 0.1244 | 0.1333| 0.1224 | 0.1320| 0.1414] 0.0772 0.07960.0752 | 0.0787 [ 0.1328
— | Mean 0.1577 | 0.1480[ 0.110¢4 0.1316 0.1336  0.0985 1174 | 0.1186( 0.0987%
(':', Bias 0.0577| 0.0480 0.010¢ 0.0316 0.0346 -0.0p15 0.0171| 0.0186 -0.001
é SD 0.3886 | 0.4335| 0.1024 0.2945 0.31p8 0.0494 .20 | 0.2150( 0.0484
g RMSE 0.3928| 0.4361 0.1035 0.2962| 0.3177] 0.0694 0.2031| 0.2158 0.0489
Mean 0.0930 | 0.0946| 0.102 0.0934 0.09p9 0.1419 .094B | 0.0956| 0.1044
%! Bias -0.0070] -0.0054 0.0024 -0.0086 -0.0941 1oO{ -0.0052] -0.0044 0.004
é SD 0.3049 | 0.3390[ 0.1464 0.2004 0.21p4 0.0902 1292 | 0.1330f 0.0606
RMSE 0.3050| 0.3390| 0.1465 0.2006 | 0.2165 0.0903 0.1295| 0.1331 0.0608
Mean | 0.9904 | 0.9838| 0.9501 0.9482 1.01}1 1.0419 0.9p99968a.| 0.9667| 1.0103 0.9996 0.9979 0.9844 0.9Y96 12.4
E Bias | -0.0096| -0.01624 -0.0499 -0.0538 0.0111 0.0d19 @u1Q0-0.0319| -0.0333 0.010f -0.0004 -0.021 -0.0[L56.0204| 0.0112
2| sb | 0.4012| 0.4444] 0.2874 03176 0.136 0.2129 0.2p58170Q.( 0.1826] 0.078¢ 0.134p 0.1373 0.1g71 0.1115 78.(
RMSE| 0.4013( 0.4447( 0.291}% 0.321§7 0.1370 | 0.2130| 0.2258] 0.1731 0.1856 0.0793 | 0.1342| 0.1373] 0.108% 0.1133 0.0491
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Table 2.20. Mean, bias, standard deviation and roaihean square error of various non-spatial and spaal estimators in a stationary scenario, for
T=10,y=0.3,A=0.1,0=0.1, 8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.3015( 0.3016] 0.2761 0.2787 0.2347 0.3105 0.3[L232926.| 0.2948( 0.2399 0.310B 0.3112 0.2956 0.2967 106.2
('i Bias | 0.0015( 0.0016( -0.0238 -0.0213 -0.06p3 O.OjIOS 0.0[L28.0075| -0.0054 -0.060p 0.0108 0.01}2 -0.0044 038J -0.0587
% SD | 0.1001| 0.1101] 0.0969 0.1083 0.05p0 0.0947 0.0p730530.| 0.0567| 0.0324 0.036p 0.03¢5 0.0351 0.0B60 98.(
O [rRMSE| 0.1001| 0.1101f 0.0997 0.11040.0854 | 0.0557 | 0.0586| 0.0535| 0.0569 | 0.0683| 0.037¢ 0.03820.0354 | 0.0362 [ 0.0619
— | Mean 0.1177| 0.1185| 0.1024 0.1133 0.11p4 0.0987 .1068® | 0.1070f 0.1003
(':', Bias 0.0177| 0.0185 0.002% 0.0113 0.0114 -0.0p13 0.0066| 0.0070f 0.000
é SD 0.2226 | 0.2437| 0.074( 0.1349 0.14p9 0.0488 .093r | 0.0967| 0.0322
g RMSE 0.2233| 0.2444 0.0741 0.1373| 0.1464) 0.0488 0.0939| 0.0970] 0.0322
Mean 0.0974 | 0.0988| 0.099] 0.0995 0.09p2 0.1¢06 .1002 | 0.0990| 0.1021
%! Bias -0.0026] -0.0013 -0.000B -0.00p5 -0.0Q48 0080 0.0002| -0.0010 0.002
é SD 0.1563 | 0.1736| 0.0924 0.0994 0.10y4 0.0%75 .0682 | 0.0687| 0.038¢
RMSE 0.1564 | 0.1736| 0.0922 0.0994| 0.107H 0.0575 0.0662| 0.0687| 0.0387
Mean | 1.0023 | 1.0018| 0.9882 0.98% 1.01y6 1.04q17 1.0p15995@.| 0.9927| 1.0189 1.000p 1.0001 0.9971 0.9967 90.¢
E Bias | 0.0023 | 0.0018| -0.0118 -0.0105 0.01y6 0.0q17 0.0p16.0048| -0.0073 0.0184 0.0002 0.0001 -0.0029 -RJ0D.0190
21| sb | 0.1477] 0.1604| 0.1384 0.1523 0.08p5 0.0§17 0.0B50077Q. 0.0821| 0.047¢ 0.052 0.0529 0.0493 0.0%11 96.(
RMSE| 0.1477( 0.1604( 0.1384 0.152)7 0.0844 | 0.0818 | 0.0850f 0.0774 0.0824 0.0512 | 0.0521 | 0.0529] 0.0494 0.051 0.0352
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Table 2.21. Mean, bias, standard deviation and roaihean square error of various non-spatial and spadi estimators in a stationary scenario, for
T=50,y=0.3,A=0.1,0=0.1, 8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.3168 | 0.3170] 0.297% 0.2985 0.28f8 0.3145 0.3[L1482980.| 0.2995( 0.2876 0.3144 0.3146 0.2996 0.2999 86.38
('i Bias | 0.0168 | 0.0170[ -0.0026 -0.0015 -0.01p2 0.0145 0.0146.0013| -0.000§ -0.012§ 0.0144 0.0146 -0.0004 oaLd -0.0114
% SD | 0.0312| 0.0331] 0.0301§ 0.0335 0.02}9 0.0183 O.OII1920170. 0.0190f 0.0133 o0.011p 0.0114 0.0307 0.0412 80.q0
O [RMSE| 0.0354| 0.0372| 0.0302 0.03360.0251 | 0.0234 | 0.0243| 0.0178 | 0.0190 | 0.0180| 0.0182 0.018650.0107 | 0.0112 [ 0.0139
— | Mean 0.1044 | 0.1028| 0.1014 0.10Qq7 0.10p4  0.1409 .101® | 0.1007 0.1012
(':', Bias 0.0044| 0.0028 0.0014 0.0007 0.0014 0.0909 0.0010( 0.0007 0.001%
é SD 0.0743 | 0.0826f 0.035] 0.0443 0.04f5 0.0204 .030® | 0.0314| 0.0144
g RMSE 0.0744| 0.0826 0.0351 0.0443| 0.0475 0.0204 0.0306| 0.0314] 0.0144
Mean 0.0987 | 0.0987| 0.100% 0.0948 0.09B5 0.0996 .100B | 0.1003| 0.0994
%! Bias -0.0013| -0.0013 0.000% -0.0012 -0.0Q15 0040 0.0003| 0.0003 -0.0041
é SD 0.0565| 0.0617| 0.0394 0.0336 0.03p9 0.0235 .0228 | 0.0235 0.016(
RMSE 0.0565| 0.0617] 0.0394 0.0336| 0.0359 0.0235 0.0228| 0.0235 0.0160
Mean | 1.0016 | 1.0023| 0.9980) 0.9986 1.00%6 1.0q21 1.0p240001.| 1.0007| 1.0064 1.001f 1.0037 1.0001 1.0p00 57.40
E Bias | 0.0016 | 0.0023| -0.00290 -0.0034 0.00%6 0.021 0.0p2A0001 | 0.0007] 0.0064 0.003# 0.0017 0.0q01 0.0p0O00OOS5G.
2| sb | 0.0464| 0.0499| 0.0451 0.0495 0.03p7 0.0357 0.0R67025@.| 0.0271| 0.0204q 0.016p 0.01¢7 0.0462 0.0166 20.1
RMSE| 0.0464 ( 0.0500( 0.0451 0.0495 0.0342 | 0.0258 | 0.0268| 0.025}% 0.0271 0.0210 | 0.0166 | 0.0168] 0.0164 0.0166 0.0140
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Table 2.22. Mean, bias, standard deviation and roaihean square error of various non-spatial and spadl estimators in a stationary scenario, for
T=5y=0.3,2=0.1,0=0.3,8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.2787 | 0.2777] 0.2023 0.2010 0.16904 0.3138 0.3[L332580.| 0.2571| 0.1691 0.326fL 0.3249 0.2824 0.2808 20.17
('i Bias | -0.0213| -0.0223 -0.097f -0.0990 -0.13p6 0.0138 3BO[L -0.0420| -0.0429 -0.130b 0.0241 0.0249 -0.0[L76.0192| -0.1279
% SD | 0.2522| 0.2738] 0.1941 0.2143 0.09¢6 0.1376 0.14801170.| 0.1253( 0.0504 0.084B 0.0830 0.0741 0.0f78 1Q.43
O [RMSE| 0.2531| 0.2747| 0.2173 0.23610.1664 | 0.1383 [ 0.1485| 0.1243 | 0.1325| 0.1400] 0.0887 0.09160.0762 | 0.0801 [ 0.1316
— | Mean 0.1685| 0.1649( 0.1034 0.1344 0.13f5 0.0923 1210 | 0.1226( 0.0924
(':', Bias 0.0685| 0.0649 0.003% 0.0344 0.0375 -0.0p77 0.0211| 0.0226 -0.007p
é SD 0.3836 | 0.4269| 0.100¢ 0.2979 0.31p9 0.0482 2191 | 0.2309( 0.0484
3 RMSE 0.3897| 0.4318 0.1007 0.2999| 0.3221 0.0686 0.2201| 0.2320| 0.0495
Mean 0.2624 | 0.2607| 0.2854 0.27¢4 0.27B2 0.2495 .2862 | 0.2866| 0.2916
% Bias -0.0376] -0.0393 -0.014p -0.0286 -0.0418 0t05 -0.0139 -0.013#4 -0.00%4
é SD 0.3065| 0.3451| 0.1464 0.2065 0.22p5 0.0§97 1359 | 0.1399( 0.0594
RMSE 0.3088| 0.3473 0.1472 0.2078| 0.2235 0.0903 0.1366| 0.1406/ 0.0605
Mean | 0.9695| 0.9594 0.9490 0.949% 1.007 0.9972 0.9f449660.| 0.9654| 1.0074 0.976p 0.9733 0.9832 0.9Y88 89.40
E Bias | -0.0305| -0.0404 -0.0519 -0.0505 0.0087 -0.0228 2&6Q -0.0333| -0.034¢ 0.007B -0.0240 -0.0467 -0.0[L68.0212| 0.0089
21 sb | 0.4239] 0.4609| 0.288¢ 0.3253 0.13¢8 0.2416 0.2B57172Q.| 0.1847| 0.0784 0.1404 0.1436 0.1097 0.1147 76.04
RMSE| 0.4250( 0.4627( 0.2924 0.3292 0.1371| 0.2228 | 0.2371| 0.1753 0.18790.0791 | 0.1424 | 0.1460] 0.110 0.1166 0.0486
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Table 2.23. Mean, bias, standard deviation and roaihean square error of various non-spatial and spadl estimators in a stationary scenario, for
T=10,y=0.3,A=0.1,0=0.3,p =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.3305| 0.3287] 0.276( 0.2780 0.23p5 0.3377 0.3B80292a.| 0.2942( 0.2401 0.336p 0.33%5 0.2951 0.2961 18.2
('i Bias | 0.0305| 0.0287| -0.024p -0.0220 -0.06p5 0.0377 0.0B80.0079| -0.0054 -0.059p 0.0365 0.03%5 -0.0049 03FpJ -0.0582
% SD | 0.1166| 0.1269] 0.0979 0.1098 0.0549 0.0429 0.0p61053@.| 0.0567| 0.032q 0.041p 0.0423 0.0351 0.0B62 90@.(
O [RMSE| 0.1205| 0.1301f 0.1004 0.11200.0847 | 0.0733 | 0.0762| 0.0540 | 0.0570| 0.0676] 0.0549 0.05520.0355 | 0.0364 [ 0.0615
— | Mean 0.1179 | 0.1190f 0.099% 0.1190 0.11p2 0.0969 .1056 | 0.1060f( 0.0984
(':', Bias 0.0179| 0.0190 -0.000p 0.0100 0.0112 -0.0p31 0.0056| 0.0060 -0.001fL
é SD 0.2301| 0.2550{ 0.073] 0.1470 0.1534  0.0487 .0993 | 0.1024| 0.0322
3 RMSE 0.2308| 0.2557 0.0731 0.1474( 0.1548 0.0488 0.0994( 0.1026| 0.0323
Mean 0.2894 | 0.2905| 0.2941 0.2944 0.291L7 0.2966 .298% | 0.2966| 0.2986
% Bias -0.0106] -0.0093 -0.005p -0.0066 -0.0Q83 0084 -0.001§ -0.003# -0.001
é SD 0.1607 | 0.1790( 0.0914 0.1033 0.10B8 0.0368 .0678 | 0.0703| 0.0383
RMSE 0.1611| 0.1793 0.0912 0.1014| 0.10921 0.0569 0.0678| 0.0704 0.0383
Mean | 0.9777 | 0.9758| 0.9873 0.9883 1.01¢4 0.9901 0.9(869946.| 0.9922| 1.018¢0 0.980L 0.9792 0.9968 0.9962 81.4
E Bias | -0.0223| -0.0242 -0.012y -0.0117 0.0164 -0.0199 214(Q -0.0054| -0.007 0.018p -0.0199 -0.0408 -0.0Pp32.0038| 0.0181
21| sb | 01539| 0.1679] 0.1402 0.1558 0.08p3 0.0453 0.0B890788.( 0.0831| 0.0474 0.054p 0.05%1 0.0502 0.0518 96.(
RMSE| 0.1555( 0.1697( 0.140} 0.1563 0.0839 | 0.0876 | 0.0914| 0.079( 0.0834 0.0508 | 0.0575| 0.0589] 0.0509 0.0520 0.0347
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Table 2.24. Mean, bias, standard deviation and roaihean square error of various non-spatial and spadl estimators in a stationary scenario, for
T=50,y=0.3,A=0.1,0=0.3,8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.3580 | 0.3570] 0.297% 0.2982 0.28f9 0.3498 0.31852988.| 0.2996( 0.2879 0.3474 0.34¢3 0.2996 0.2999 80@.2
('i Bias | 0.0580 | 0.0570[ -0.0026 -0.0018 -0.01p1 0.0498 0.0486.0012( -0.0004 -0.012p 0.0474 0.0463 -0.0004 o@und -0.0113
% SD | 0.0362| 0.0387] 0.030¢ 0.0338 0.02p0 0.0307 0.0p21017@.| 0.0189| 0.013q 0.012p 0.0133 0.0409 0.0413 80.(
O [RMSE| 0.0683| 0.0689] 0.0307 0.03390.0251 | 0.0540 [ 0.0533| 0.0177 | 0.0189 | 0.0178] 0.049¢ 0.04820.0109 | 0.0113 [ 0.0138
— | Mean 0.1032| 0.1015( 0.1004 0.1001 0.10p9 0.1011 .10 | 0.1004| 0.1013
(':', Bias 0.0032| 0.0015 0.000% 0.0001 0.0009 0.0911 0.0007 [ 0.0004f 0.001
é SD 0.0756 | 0.0835| 0.0344 0.0453 0.04B6 0.0202 .031a | 0.0319( 0.0141
3 RMSE 0.0757| 0.0835 0.0346 0.0453( 0.0486 0.0203 0.0311| 0.0319 0.0142
Mean 0.2980 | 0.2976| 0.300] 0.2947 0.29B5 0.2994 .3000 | 0.3001| 0.2991
% Bias -0.0020| -0.0024 0.000% -0.00113 -0.0015 00&) 0.0001| 0.0001 -0.00(
é SD 0.0574 | 0.0631] 0.038¢4 0.0340 0.03p2 0.0232 .0232 | 0.0239| 0.015¢
RMSE 0.0574| 0.0631 0.0386 0.0340| 0.0362 0.0233 0.0232| 0.0239 0.0156
Mean | 0.9831| 0.9835[ 0.9979 0.9986 1.00%6 0.9954 0.9B540001.| 1.0007| 1.0064 0.986p 0.98%8 1.0001 1.0001 57.¢
E Bias | -0.0169| -0.0165 -0.002L -0.0034 0.00%6 -0.0146 14650 0.0001| 0.0004 0.006§ -0.0140 -0.0342 0.0001 00Q(g 0.0057
2| sb | 0.0474| 0.0516| 0.0452 0.0495 0.03p7 0.0460 0.0p81025@. 0.0272| 0.0199 0.016B 0.0176 0.01f62 0.0167 20.(
RMSE| 0.0503( 0.0541 0.0453 0.04950.0341 | 0.0298 | 0.0317| 0.025}% 0.0272 0.0209 | 0.0218 | 0.0226] 0.0164 0.0167 0.0139
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Table 2.25. Mean, bias, standard deviation and roaihean square error of various non-spatial and spaal estimators in a stationary scenario, for
T=5y=0.3,2=0.3,0=0.1,8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.2973 | 0.2988] 0.2021 0.2008 0.16904 0.3345 0.3B30258Q.| 0.2574( 0.1684 0.344p 0.3437 0.2826 0.2810 1@.1
('i Bias | -0.0027( -0.0013 -0.0978 -0.0992 -0.13p6 0.0345 3DOPB -0.0418| -0.042¢ -0.131p 0.0449 0.04B7 -0.0[L74.019D| -0.1288
% SD | 0.2478| 0.2651] 0.1973 0.2155 0.09p1 0.1395 0.14991188.| 0.1285| 0.0513 0.087 0.0898 0.0738 0.0f71 10@.(
O [RMSE| 0.2478| 0.2651| 0.220¢0 0.23720.1672 | 0.1437 | 0.1535| 0.1259 | 0.1354 | 0.1408| 0.0981 0.09990.0758 | 0.0794 [ 0.1326
™ | Mean 0.4352 | 0.4316| 0.2824 0.3834 0.38/1 0.2488 3470 | 0.3493| 0.2944
(':', Bias 0.1352| 0.1316 -0.017p 0.0834 0.0871 -0.0fL12 0.0474] 0.0493 -0.005
é SD 0.3435| 0.3778| 0.115% 0.2743 0.29p9 0.0704 195D | 0.2058| 0.0457%
g RMSE 0.3691| 0.4001 0.1172 0.2847| 0.3056 0.0713 0.2007| 0.2116 0.0460
Mean 0.0814 | 0.0833| 0.127] 0.0796 0.0816 0.1254 .089D | 0.0897| 0.1264
%! Bias -0.0186] -0.0164 0.027f -0.02p4 -0.0184 ©B40%p -0.0110 -0.010 0.026
é SD 0.2968 | 0.3280[ 0.1424% 0.1997 0.2147 0.0875 1302 | 0.1337| 0.0588
RMSE 0.2974| 0.3285 0.1452 0.1987| 0.2154 0.0911 0.1309| 0.1341 0.0647
Mean | 1.0283 | 1.0152 0.9427 0.9434 1.01¢8 1.0329 1.0p889636.| 0.9626| 1.0099 1.0288 1.0248 0.9821 0.9Y75 05.4
E Bias | 0.0283 | 0.0152| -0.0578 -0.0546 0.01¢8 0.0329 0.0p88.0364| -0.0374 0.0094 0.0283 0.0248 -0.0179 -G&(J22.0105
2| sb | 0.4468| 0.4857| 0.2914 0.3197 0.13f3 0.2344 0.24641726.( 0.1856] 0.0784 0.1486 0.1513 0.1081 0.1127 80.(
RMSE| 0.4477( 0.4859 0.297( 0.3247 0.1378 | 0.2367 | 0.2481| 0.1769 0.1894 0.0795| 0.1513 | 0.1534] 0.109¢ 0.1149 0.0491
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Table 2.26. Mean, bias, standard deviation and roaihean square error of various non-spatial and spadl estimators in a stationary scenario, for
T=10,y=0.3,A=0.3,0=0.1, 8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.3553 | 0.3535] 0.275% 0.2774  0.23p5 0.3999 0.3p072920. 0.2941( 0.2402 0.357B 0.35¢6 0.2952 0.2963 1@.2
('i Bias | 0.0553 | 0.0535| -0.0245 -0.0226 -0.06p5 0.0499 0.0p6@.0080( -0.0059 -0.059B 0.0573 0.0566 -0.0048 03x(J -0.0586
% SD | 0.1163| 0.1260] 0.0983 0.1096 0.05p5 0.0435 0.0p59053@.| 0.0573| 0.0324 0.041L 0.0418 0.0353 0.0864 00.(
O [rRMSE| 0.1287| 0.1369| 0.1013 0.11190.0851 | 0.0873 | 0.0895| 0.0543 | 0.0576 | 0.0680| 0.0703 0.07040.0356 | 0.0365 [ 0.0619
™ | Mean 0.3527 | 0.3562| 0.2924 0.3292 0.32p4 0.2964 .31y | 0.3132f 0.2984
(':', Bias 0.0527| 0.0562 -0.007B 0.0282 0.0264 -0.0p36 0.0127| 0.0132 -0.00Y
é SD 0.2060 | 0.2255( 0.0764 0.1319 0.13p7 0.0455 .0898 | 0.0928 0.0292
g RMSE 0.2126| 0.2324 0.0766 0.1343| 0.1421 0.0456 0.0907| 0.0937 0.0292
Mean 0.0863 | 0.0867| 0.112] 0.0923 0.08p7 0.13120 .097® | 0.0961| 0.1134
%! Bias -0.0137] -0.0133 0.012}f -0.00y7 -0.0103 200} -0.0021 -0.0039% 0.013
é SD 0.1540| 0.1717] 0.090% 0.0997 0.10p4 0.0%59 0.0656 | 0.0681] 0.0374
RMSE 0.1546| 0.1722] 0.0917 0.0980| 0.1059 0.0572 0.0656| 0.0682 0.0397
Mean | 1.0343| 1.0342 0.9841 0.9848 1.01y8 1.0494 1.0P839936.| 0.9910| 1.019¢ 1.026f 1.02¢2 0.9961 0.9957 89.¢
E Bias | 0.0343| 0.0342| -0.0159p -0.0132 0.01y8 0.0294 0.0p83.0065| -0.0090 0.019(¢ 0.026/ 0.0262 -0.0039 -(BJ04.0189
21| sb | 0.1658| 0.1801] 0.139¢ 0.1528 0.08p5 0.0902 0.0p43078@. 0.0827| 0.0474 0.056B 0.0581 0.0500 0.0%19 90.(
RMSE| 0.1693( 0.1833| 0.1394 0.15350.0844 | 0.0949 | 0.0984| 0.0784 0.08320.0514 | 0.0628 | 0.0637] 0.0504 0.0520 0.0352
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Table 2.27. Mean, bias, standard deviation and roaihean square error of various non-spatial and spadl estimators in a stationary scenario, for
T=50,y=0.3,A=0.3,0=0.1,8 =1 and variousN, over 999 iterations

N=16 N=49 N=121
One- Two- One- Two- One- Two- One- Two- One- Two- One- Two-
step step step step QML step step step step QML step step step step QML
AB AB ESAB | ESAB AB AB ESAB | ESAB AB AB ESAB | ESAB
o | Mean | 0.3824 | 0.3825| 0.2974 0.2983 0.28f9 0.3413 0.3[042980.| 0.2995( 0.2879 0.3674 0.367 0.2996 0.2999 80@.2
('i Bias | 0.0824 | 0.0825| -0.0026 -0.0017 -0.01p1 0.0413 0.0f6@.0013| -0.000§ -0.012p 0.0674 0.0667 -0.0004 o@1nd -0.0113
% SD | 0.0370| 0.0392] 0.0306 0.0339 0.02p4 0.0311 0.0p220180.| 0.0192| 0.0133 0.012B 0.0133 0.0409 0.0114 80.(
O [RMSE| 0.0903| 0.0913[ 0.0307 0.03400.0254 | 0.0744 [ 0.0738| 0.0180 0.01920.0180 | 0.0686 | 0.0680| 0.0110| 0.0114 [ 0.0139
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3 The determinants of cropland values in Midwestern
U.S.A.

3.1 Introduction

Farm real estate represents a dominant asset ofartesector balance
sheet in the U.S.A. (it accounted for nearly 84%otdl U.S. farm assets in
2009) and is usually the largest investment infdmeners’ portfolio: it is
therefore considered to be an important indicatadhe performance of the
sector and of the producers’ welfare (Nickersonalet2012). The real
values of agricultural land have been increasingmdtically in recent
years, particularly starting from the second hdlf2000s, raising many
guestions about their macroeconomic determinardswarether the boom
will turn into a bust (Gloy 2013), especially aftiwe financial crisis that
invested the U.S.A. and the rest of the world i0220The analysis of land
values also raises a number of policy issues, daggigovernment support,
taxation and environmental protection.

For all these reasons, the empirical literaturetien determinants of
agricultural land values is wide and the econorhieoty has frequently
addressed the topic. The relationship betweendalénd prices and the
expected future returns on this asset have beem&xely investigated in
the past (see, for example, Falk 19€hgsted 1998 ence and Miller
1999) and the topic is currently widely addresgddwever, despite the
great amount of economic research efforts, mosheoa theories have
only met small empirical evidence (Gutierrez et28l07). Among the most
popular theoretical economic models that have adékthe topic of land
values behavior in the long-run, one is the PreS@hie Model (PVM),
which is reviewed in section 3.2 both from a théoet and an empirical
point of view.

The purpose of this chapter is to investigate tiagial effects that may

characterize the process of determination of afjual land values in
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Midwestern U.S.A., by adopting the PVM as the tleioal framework. In
order to do so, we choose to conveniently specityestimate a time-space
dynamic model that relates land value to its detgants. The employed
dataset is presented in section 3.3 and the spat@bcteristics of the data
are explored in section 3.4. The model is thenmedged by the QML
estimator that was extensively analyzed in chapteasd 2 and the results
are given and discussed in section 3.5. Sectiorp@séents the necessary
checks of the stability conditions for the estindatenodel and the
computation of long-run elasticities of croplandueawith respect to the
included regressors. Section 3.7 contains the finatluding remarks and

the discussion of possible future developments.

3.2  The present value model

3.2.1 The theoretical model

The PVM (Campbell and Shiller 1988; Campbell et1&97) is a financial

model that relates the price of a stock to its etgm future returns

discounted to the present using a constant or ianging discount rate. It

is a model that deals with long-horizon asset nstusince dividends in all
future periods enter the present-value model, th@lehd in any single

period is only a small component of the price ahdreafore persistent
movements have much more influence on prices thart-serm, temporary

variations do. When applied to the analysis of laallies, we consider the
price of the stock to be the price of land (in oase, the value of cropland,
CV); the dividends are measured as cash rem$ (eceived by the land
owners. The value of cropland is therefore relatethe capitalized value
of the current and future stream of cash rents.

Let thenet simple returrfR;,,) on a stock be defined as

Riy1 = (CVepr + CRi41)/CVe — 1, (3.1)
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where we assume that the dividertR{,,) is paid just before the price
(CV:41) is recorded, so thal/,, ; is taken to be aex-dividendprice at time
t+1, fort=1,..,T. The simple gross return is defined1a$ R;,, and
this makes clear that an asset’s gross returntbedf more recent periods,
1+ R:41(K), is defined as the product of tiesingle period returns from

t — K+ 1tot (compound returns
14+ R a(K)=(A+R) (1 +Re—1) " on (1 + Re—g1)- (3.2)

Because of the presence of a ratio in equation),(3dy averaging
would require a geometric averaging. This motivatee alternative
definition of continuously compounded returos log returnsof an asset,

which is defined as the natural logarithm of itegg return:
Ter1 = log(1 + Reyq). (3.3)

The lowercases letters will denote natural logarghof the variables
from now on.

If we assume constant expected returns, suchEf{®&.,,) = R, we
obtain an equation that relates the current stoclepto the stock price and

future payoffs in the next period:

CV¢41+CR

In order to eliminate future-dated expectationgjadigpn (3.4) should
be solved by repeatedly substituting out futuregmiand using the Law of
lterated ExpectationsE([E;,,[X]] = E.[X]). After solving forK periods,

we have:

eV = B[S () o] + B () Vern] 35

1+R

where the second term on the RHS of equation (Bpyesents the
discounted value of the stock pridé,periods from the present. Assuming

that, as the time horizon increases, this terrmkbBrio zero and thdt —
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o, we can express the stock price as the expectsémirealue of future
dividends (V.g,) out to the infinite future, discounted at a canstrate:

w (1)
OV, = CVope = B |52 () CRes (36)

1+R

The stock priceCV, will follow a linear process with a unit root (als
known asintegratedprocess) if the dividend'R; itself follows a linear
process with a unit root, which means that shoc&slevhave permanent
effects on the level of the variable but not on¢hange in the variable. If
this is the case, the formula in equation (3.6) bantransformed to a
relation between two stationary variables by suibtng a multiple of the
dividend from both sides of the equation:

V= = (2) B 5220 (25) ACRewrd] 37)

In this case, even if the dividend and the pricecpsses are not
stationary, there is a stationary linear combimatd prices and dividends
that makes the two seriesintegrated

Differently and more realistically, when we assuiime-varying
expected stock returns, the relationship betweeeprand returns is non-
linear, therefore a log-linear approximation of theodel should be
considered to be more appropriate. According torntoelel proposed by
Campbell and Shiller (1988) and equation (3.3),deéne the log of the

gross real rate of return as
Tt41 = 10g(CVeyq + CReyq) — log(CV) (3.8)
or equivalently

Ter1 = CVpyq — VU + log (1 + exp(Se11)), (3.9)

' This assumption imposes teansversality conditiorthat excludes the presence of a
rational bubble. The second term on the RHS of gqud3.5) is indeed consistent with

rational expectations and constant expected retéxduding a rational bubble means to
exclude “financial exuberance episodes in whichestors appeared to be betting that
other investors drive prices even higher in theurkit far higher than explained by

fundamentals” (Gutierrez 2011).
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wheres; ., = cryy1 — cVs4q 1S the natural logarithm of the dividend-price
ratio (CR:+1/CV:4+1), Which is also calledpreadin financial literature.
Equation (3.9) can be linearized using a first-orfiaylor expansion

into
Ter1 =k +S¢ — pSeeq + AcTyq, (3.10)

where k = —log(p) — (1 —p)-log(1/p—1) and p =1/(1 + CR/CV).

One should notice that equation (3.10) is a linkerence equation for the
log stock price analogous to the one that was oétain (3.4) under the
assumption of constant expected returns. It casdbeed forwardly and,

under the condition thaim,;_,, p’ Se+j = 0, we obtain

se=—k/(1—p)— Z;'ozo p’ (ACTpi14j = Tea14))- (3.11)

According to equation (3.11), if the stock pricehigh today, then
there must be some combination of high dividendklaw stock returns in
the future (Campbell et al. 1997, page 263). Thiation holds ex-ante as
much as ex-post, therefore taking expectationsbtaim

Se+k/(1—-p) = _Et[Z(])’io p’ (AcTiyi+j — 7"t+1+j)]- (3.12)

The rationale of the PVM is embodied in equationl?3 as it
expresses the current value of the dividend-prateo rin terms of the
present discounted value of expected future vabfeAcr;,, and r; .,
(Gutierrez et al. 2007, page 164). The log dividpride ratio is high only
when dividends are expected to grow slowly or tkigeeted stock returns
are high and, when the dividend follows a log-lmeait-root process, the
log dividend-price ratio is stationary providedttttze expected stock return
is stationary (Campbell et al. 1997). Accordingtie PVM, if the agents
are fully rational, then the asset prices (e.gmfand values) and the
dividends generated from that asset (e.g. cashs)recannot drift

persistently far apart from each other.
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Let us also assume that the return to our aBglet] exceeds the
expected return of another as&gfg;] by a constant that represents the

risk premium on investments on our asset; the P¥tlices to
se+(k—7r)/(1—p) = Et[Z;‘;O p’ (Gt+14+j — AC7’t+1+j)]- (3.13)

By supposing further that the expected rate ofrretun the alternative
asset is stationary and that the logs of divideadd prices are non-
stationary but their differences are, then it stdook concluded that the
RHS of equation (3.13) is stationary too and thestant excess returns
PVM holds. According to this finding, the PVM hasdn tested in the
literature by estimating and then testing for cegmation the following

equation
vy = a+ fery + &, (3.14)

where a = —(k—1r)/(1—p) and € is a zero-mean disturbance, or

equivalently
st —a=(1—pB)cr; — &. (3.15)

If g =1, intuitively, the log prices move one-to-one withg
dividends and their unit-root components canceltous leaving the spread
unaffected. On the contrary, #f # 1, then(1 — B)cr; does not disappear

and the spread is non-stationary (Gutierrez é1Gl7).

3.2.2 Empirical literature on the PVM and farmland prices

Many empirical studies on the determinants of famdl prices refer to the
PVM as their theoretical framework. According to ihe value of an
income-producing asset such as farmland is thetaleqeid value of the
current and future stream of earnings from owingt tlasset (often
measured, not exclusively, as cash rents). In othends, land values
should equal the present value of all future exgabctash flows stemming

from a productive use of that land and thereforanges in expected
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returns to farming should explain changes in fanul@rices (Du et al.
2007).

The empirical testing of the PVM has consistedstineating equation
(3.14) for each cross-sectional uhand then testing the stationarity of the
residuals by means of conventional cointegratiostste However, the
empirical results do not fully support the PVM &g tnost appropriate for
explaining farmland values. Among the empiricaldgts on this topic, we
recall the analysis on farmland prices in lowa caned by Falk (1991),
that ended up rejecting the PVM because, althoughlyh correlated,
farmland price and rent movements are not congistgh that. Clark et al.
(1993) found similar results for lllinois, TegenadaKuchler (1993) and
Engsted (1998) for three U.S. regions (the LakéeStahe Corn Belt and
the Northern Plains). The failure to find cointdgra is addressed by
Gutierrez et al. (2007) by allowing structural kgan the cointegrated
relationship that represent a shifting risk premimfarmland investments,
thus finding results in favor of the PVM.

Moving from the classical literature on PVM, sontbey trends have
been gaining popularity in the analysis of farmlamatlie. Some researchers
concentrated on the influence of urbanization (kaed al. 2001; Plantinga
et al. 2002; Livanis et al. 2006 among others)ergtiocused on the testing
of the PVM in presence of transaction costs (Lemcd Miller 1999; de
Fontnouvelle and Lence 2001). Important contrimgidended to make
distinctions among the streams of rents, partibuldny arguing that
farmland rents do not only consist in cash rentd #rmat government
payments should be considered as rent sourcesalboitdistinguishing
between different types of public subsidies (Clarlal. 1993; Weersink et
al. 1999; Goodwin et al. 2003 among the others).
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3.3 The data

All the employed data for the agricultural sectoe made available by the
United States Department of Agriculture (USDA), iNaal Agricultural
Statistics Servicé (NASS) and Economic Research SerliceThe
estimates of land values are based on annual sul@eyand report the
market valu&' per acre of cropland only (in current dollars), that
problems arising from heterogeneity in land quaétyd use are limited
(pastureland, for example, is not included). Croglanly includes the land
used to grow field crops, vegetables or land haedefor hay. This also
permits to exclude the value of farm buildings aakke the value of land
only into consideration.

Net cash rents are also estimated only for cropfeord data on gross
cash rents (in current dollars). Net cash rentsuassl to measure returns
from land, that is from agricultural production,dacan be interpreted as a
Ricardian land rent. Besides this type of rentjcagural support programs
also represent a land return which may capitalie land value. Direct
government payments per acre of cropland, as estimay the USDA-
Economic Research Service, are therefore usedpdanaxory variables.

All monetary variables were deflated using the GiDilicit price
deflator (reference year 2005) from the U.S. Deparnt of Commerce,
Bureau of Economic Analysis.

Population density, calculated from the annualnestz of population
from the U.S. Department of Commerce, Bureau ofsisnis included
among the covariates of the model as a proxy fbamrpressure, that
represents competing demand for land for non-aljuial use (Feichtinger
and Salhofer 2011).

12 http://www.nass.usda.gov/Quick_Stats/

13 We thank Doctor Kenneth Erickson for making théadat available for this research
through a patient and thorough collection and cleddke data.

The land value is the value at which the land dsedgricultural production can be sold
under current market conditions, if allowed to ré@man the market for a reasonable
amount of time (USDA-NASS 2012).
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The employed dataset is a panel of annual obsengafior 12 U.S.
States and 39 years, between 1971 and 2009. Tisaleoed States are part
of the Midwestern United States (Lake States, (Beh States, Northern
Plains and Delta States) (Figure 3.1), for whichrerttomogeneous data are
available, less affected by urban influence (likese for Northeaster
States). Moreover, cropland is mostly found in kiewest States, while
the Western States, that have lower shares ofamdgb total farmland, are
less heavily surveyed by NASS for cash rents apditita on cropland per
acre are either thinner or not available becausgesmes limited only to
either irrigated or non-irrigated cropland.

The availability of data on cropland value per afoe the selected
variables turned out to be constraint that lech&éxclusion of States such
as Louisiana, Missouri and Kansas form the origidataset. The
availability of data on cash rents, only limited2009 for South Dakota,

determined the time-span.

Figure 3.1. Map of the States included in the regssion analysis

North Dakota

South Dakota

Nebraska

600 0 600 1200 Miles
e e —
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3.4  Exploratory Spatial Data Analysis

Any spatial analysis requires the definition ofpatsal weight matrix. As a
robustness check for all the results, we emplolieekt different definitions
of neighborhood that led to the specification omsodifferent spatial
weight matrices, all of them based on geographprakimity between
States. In particular, the rook, queen and distasrgeria of proximity
where alternatively adopted. All spatial weight ntas are row-
standardized.

The elements of the distance-based spatial weiglricas before row-
standardization are defined as the inverse of tiwared arc distance
between Statesand;:

w;; =0 if i=j
Wi = 1/di2j if dijj<D (3.16)
wij =0 otherwise.

Different values were taken as cut-off distan®g: (the minimum
distance that allows each State to have at leastneighbor; 300 miles
(about 400 km); the first quartile of the distarastribution (378.7 miles,
about 609 km); the second quartile of the distahisiibution (524.6 miles,
about 844 km); the third quartile of the distancgribution (729.6 miles,
about 1174 km).

Table 3.1. Connectivity schemes resulting from thspecification of different spatial
weight matrices

Number of neighbors

Spatial Weight Matrix 3 4 5 6 7 8 9 10 11

1 2

Minimum 8 4

%§ 300 miles 6 4 2

ngU | quartile (379 miles)] 2 4 1 4 1

O3 || quartile (525 miles) 2 4 1 2 2 1 1

[l quartile (730 miles 1 1 2 3 2 2 1

Rook 3 3 3 1
Queen 1 5 4 3 1
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Although the resulting connectivity schemes weratequifferent
(Table 3.1), the results of the ESDA proved to bigegrobust to the choice
of W. We therefore choose to present only the resatta fdistance-based
spatial weight matrix with a cut-off distance fixatithe ' quartile of the
distance distribution, since we believe it représ@ngood average picture.

A first step in the ESDA is to determine whetheaarthis overall spatial
dependence among the observed cropland valuesisTassessed through
the well-known Moran’s | index and scatterplot. TN®ran’s | index
(Table 3.2) shows significant positive values fbrcansidered years thus
leading to reject the null hypothesis of no spati@bendence in favor of

positive spatial dependence in the distributiooropland values.

Table 3.2. Results for the Moran’s | index for obseved cropland value (1971 - 2009)

Year Moran's| p-value Year Moran's| p-value
1971 0.439 0.026 1991 0.499 0.014
1972 0.465 0.019 1992 0.478 0.018
1973 0.454 0.022 1993 0.539 0.010
1974 0.441 0.024 1994 0.501 0.010
1975 0.425 0.030 1995 0.585 0.007
1976 0.437 0.028 1996 0.568 0.007
1977 0.519 0.013 1997 0.707 0.002
1978 0.543 0.010 1998 0.720 0.002
1979 0.554 0.009 1999 0.748 0.001
1980 0.539 0.011 2000 0.770 0.001
1981 0.506 0.015 2001 0.778 0.001
1982 0.465 0.020 2002 0.783 0.001
1983 0.440 0.024 2003 0.522 0.012
1984 0.536 0.010 2004 0.778 0.001
1985 0.646 0.003 2005 0.762 0.001
1986 0.669 0.002 2006 0.761 0.001
1987 0.708 0.001 2007 0.756 0.001
1988 0.598 0.005 2008 0.733 0.001
1989 0.477 0.017 2009 0.733 0.001

1990 0.511 0.013

The same information is displayed by the Morantegalbts (Figure
3.2).
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Figure 3.2. Moran scatterplots for observed croplad value (years 1971 to 2009)
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Figure 3.2. (continued)
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Figure 3.2. (continued)
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Figure 3.2. (continued)

Spatially lagged Cropland value 1¢ Spatially lagged Cropland value 1¢

Spatially lagged Cropland value 1¢

800 1000 1200 1400 1600 1800

600

1000 1200 1400 1600 1800

800

1000 1200 1400 1600 1800

800

Year 1989
1= 0.477 , p-value= 0.017

500

T
1000

T T
1500 2000

Cropland Value 1989

Year 1991
1=0.499 , p-value= 0.014

T T
1000 1500

Cropland Value 1991

Year 1993
1=0.539 , p-value= 0.01

2000

500

T
1000

T T
1500 2000

Cropland Value 1993

Spatially lagged Cropland value 1¢ Spatially lagged Cropland value 1¢

Spatially lagged Cropland value 1¢

1000 1200 1400 1600 1800

800

1000 1200 1400 1600 1800

800

2500

2000

1500

1000

143

Year 1990
1=0.511 , p-value= 0.013

500

T
1000

T
1500

Cropland Value 1990

Year 1992
1=0.478 , p-value= 0.018

2000

500

T T
1000 1500

Cropland Value 1992

Year 1994
1=0.501 , p-value= 0.01

2000

T T
1000 1500

T T
2000 2500

Cropland Value 1994

3000



Figure 3.2. (continued)
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Figure 3.2. (continued)
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Figure 3.2.

(continued)
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2000s.
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3.5 Results and discussion

The analysis on the determinants of cropland valud® U.S. States over
the period 1971-2009 is conducted by estimatingree-space dynamic
model. Fixed individual effects are added to thecsfjration in order to

take into account unobserved time-invariant souatdseterogeneity such
as climate and land quality (Kirwan 2009). Differeets of covariates were
included, as described in equations (3.17) andj}3.1

Vi = AWcvy + yevi_1 + oWevi_q + Bicrie + Bapdis + ¢ + €5 (3.17)

vy = AWcevy + yevie—q + oWevy_q + Bicrie + Bopdie + B3gpic + ¢ +
Eits (318)

wherecv is the real cropland valuer is the real net cash rent for cropland,
pd is the population density argp are real direct government payments.
All variables are included in the model after a unat logarithm
transformation.

Given that in our datas&t> N and that, according to the MC analysis
performed in chapter 2, spatial GMM-type estimatpesform better for
N > T, models (3.17) and (3.18) are estimated by the (@diimator by
Yu et al. (2008) for different spatial weight ma&gs W, showing results
that appear to be robust to the choice of the wigiglscheme.

3.5.1 The effects of net cash rents and population deositcropland
values

According to the PVM, we expect net cash rentsaeeha positive impact
on cropland value. The estimation of model (3.I@ble 3.3) indicates a
significant, albeit limited, coefficient for the pacted net cash rents (0.07-
0.08 depending on the spatial weight matrix). Patoih density shows a
higher positive coefficient (0.3). Indeed, increaspopulation density may

increase the demand for agricultural goods ancetbes agricultural land

147



and, at the same time, it may be sign of increasirgn pressure that
enhances competing demand for land for non-agu@lltuse. A stronger
effect of changes in population than of returndaonland on farmland
values has already been found for some U.S. regmnspplying an
entropy-based information approach: Salois e8l1{) find that, although
changes in farmland values are more strongly aastsatiwith changes in
returns to farmland at the national level, thetreteship appears to change
over time and region and for some regions (Northe&orn Belt,
Appalachia, Mountain and Pacific) population hascdmee more

informative.

Table 3.3. QML estimates for the coefficients of nmael (3.17)

Model Rook matrix Distance-based matrix
(3.17) (I quartile)
Coeff. Estimate t-stat Estimate t-stat
A 0.382 8.895 0.382 8.986
Y 0.734 19.82% 0.766 21.616
0 -0.182 -3.254" -0.214 -3.906
B, (cr) 0.079 2.720" 0.072 2.443
B, (pd) 0.328 3.426 0.320 3.370

Significance level:” =1% (t-stat| > 2.58); " =5% (t-stat| > 1.96) ; '=10% (t-stat| >
1.64).

The reasons for such limited effects of the covesiamay be
numerous. One possible explanation relies in thkigon of State-specific
fixed effects; some results in the literature alseaupport the idea that they
may absorb part of the cross-sectional effect efekpected land rent, thus
suggesting that structural determinants of the ebgoerents are more
effective in determining cropland value than shar- expected
fluctuations (see Duvivier et al. 2005 for a stuay a Belgian case). The
high and highly significant coefficients obtainedr fthe spatial and
temporal autoregressive coefficientsgndy) suggest that these may also
absorb part of the effects of the covariates. Time-space autoregressive
coefficient is also significanto], albeit negative and smaller in absolute

value.
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3.5.2 The inclusion of government payments

The inclusion of government payments as a covanutethe model does
not return straightforward results (Table 3.4).sEirthe coefficient
associated to direct government payments is sggmfi and negative,
indicating a negative impact of public subsidiesavapland value. This
result is unexpected and requires deeper analgsisr@erpretation. Then,
when we consider the effects on the other coeffisieit should be noted
that the spatial and temporal effects are not aamtly affected, whereas
the inclusion of government payments enhancesmipacat of population
density (whose coefficient rises from 0.3 to 0@t the most remarkable
consequence is that caused on the estimat@sg, dhat turn to be negative
and not significant.

Table 3.4. QML estimates for the coefficients of natel (3.18)

Model Rook matrix Distance-baged matrix
(3.18) (I quartile)
Coeff. Estimate t-stat Estimate t-stat
y) 0.382 9.074 0.382 9.161"
Y 0.713 20.359 0.747 22.278
0 -0.187 -3.529" -0.221 -4.248
B, (cr) -0.012 -0.415 -0.018 -0.576
B, (pd) 0.548 5.659" 0.538 5.508"
Bz (gp) -0.048 -6.906 -0.047 -6.864"

Significance level™ =1% (t-stat| > 2.58); "=5% (t-stat| > 1.96) ; '=10% (t-stat| >
1.64).

The empirical literature has already addressedigbee in various
contributions that led to very different conclussorA central point that
should be taken into consideration concerns thé fiaat agricultural
support policy instruments are thought to be higtdyrelated with land
rents, so that part of the literature concentrates explaining the
relationship between these two variables rather tthar effect on land
values, trying to assess whether agricultural gdhenefits landowners of
farmers the most (see, for example, Roberts &0fI3; Lence and Mishra
2003; Goodwin et al. 2004, Latruffe and Le Moué&020Kirwan 2009).
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Moreover, different types of subsidies are expedtetiave different
impacts on cash rents and land values, therefalistimction between the
programs of agricultural support appears to besszrg in order to provide
more accurate information. Lence and Mishra (2068)example, found
that alternative farm programs have different éffean cash rents in lowa,
with positive effects of market loss assistance prmtluction flexibility
contracts, no effects of conservation reserve @mgrand a negative
impact of deficiency payments. Similar results fanend by Goodwin et al.
(2003). Feichtinger and Salhofer (2011) also fodiiitrent capitalization
rates for particular types of payments, with lowsasticity for agro-
environmental payments, that often cause land terdscrease.

The sources of bias when including government paysne the model
are therefore numerous and the results obtainedighrmodel (3.18) can
only be considered as an indication of the needudher research that
takes into account the evolutions of agriculturaliqy in time and the

differences in types of agricultural subsidies.

3.6  Short run and long run land value elasticity

The coefficientsp; and (8, estimated in sub-section 3.5.1 cannot be
interpreted exactly as the elasticity of land valyerespectively, cash rents
and population density, because of the presendkeofariablecv on the
RHS of model (3.17). Another contribution we mageherefore to provide
an estimation of the impact and long-run elastiatycropland values in
response to changes in net cash rents and poputitsity.

Before applying long-run value effect analysis, vest the series
stationarity, in order to be sure that the prosessare analyzing is not an
explosive one. In order to do so, from equatiod{Bwe define th&v x N

matrix

A= (I—-W) Lyl + oW) (3.19)
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wherel is anN X N identity matrix and# is an exogenous spatial weight
matrix of the same dimensions.

Using A we can re-write model (3.17) as
vy = Acve_q + (I — AW) " (Bicrye + Bopde + ¢ + &5¢) (3.20)

The stability conditions of the process describedquation (3.20) can
be now analyzed by computing the eigenvalues ofitheatrix.

Depending on the eigenvalues, i.e. the charadtenisbts of4, we
have three possible cases. When all the rootseaethan 1 in absolute
value, we call it a stable case. When all the rao¢sequal to 1, we term it a
pure unit root case, which generalizes the unit shmamic panel data
model in the time series literature to include spalements. When some
of the roots (but not all) are equal to 1, we defih as a spatial
cointegration case, where the unit roots in thecgge are generated with
mixed time and spatial dimensions.

Using the estimates obtained in section 3.5.1 ler autoregressive
parameters by using a rook spatial weight matrigg = 0.734; 1 =
0.382; p = —0.182), we find the following eigenvalues of matriA
[0.893, 0.850, 0.773, 0.759, 0.735, 0.710, 0.681, 0.696, 0.693, 0.692,
0.893, 0.663]. Since all the values are less thHarmwe can conclude that the
system is stable. Hence the computation of elaéiscfor cash rents and
population density is possible and can be easilgedby solving the

dynamic equation (3.20), i.e.
cve = (I = ALY (I — AW) ™1 (Bycrye + Bopdie + ¢; + £5¢). (3.21)

wherel is the lag operator, thaperates on an element of a time series to
produce the previous element, such that, givers {X;, X3 X3,...},
XL = X,_q, forallt > 1.

5 The results lead to the same conclusions wheedtimates obtained by using the other
spatial weight matrices (Table 3.3) are used ircthaputations.
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Using the estimate$;=0.079 andf,=0.328 andt = 0, ...,100, we
find that the impact elasticity of cropland value (the elasticity calculated
att = 0) is equal to 0.13 with respect to cash rents ahd @ith respect to
population density. These values represent the otsgeimmediate
percentage changes that a 1% percent change pecte®ly, cash rents

and population density would cause on croplandeslu

Figure 3.3. Long-run elasticity of cropland value \ith respect to net cash rents and
population density
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Considering long-run impacts instead, the calcdl&eag-run elasticity
of cropland value with respect to a 1% increaseash rents is equal to 1.2,
while the long-run elasticity of cropland value hvitespect to a 1%
increase in population density is equal to 4.99yFe 3.3). About 50% of
the long-run impact of both cash rents and poputatiensity on cropland
value is already reached after 6 years and theep&ge increases up to
90% after 21 years. Therefore in the long-run, éffect of population
density (hence, according to our assumptions, tmrpressure and
competing land uses) is significantly higher th&mattof cash rents in
determining cropland values.

Such a close-to-unity estimated long-run elastioitycropland values
to cash rents is close to what one would expeatrdoty to the PVM and
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that is usually not verified in empirical analys€sltierrez et al. (2007) find
similar results by allowing for structural breaks the cointegration
relationship between the two time series, for gdgranel of 31 U.S. States
for the period 1960-2000. Previous empirical cdmitions, mainly based
on time-series analysis, lead to different condnsiand, as previously
said, end up rejecting the PVM and generally figdiavidence of
divergence between the present value of future iasls and the market
price of farmland (Falk 1991; Clark et al. 1993apgkted 1998).

3.7  Concluding remarks

The analysis of the determinants of land valueha W.S.A. is a relevant
field of study given the importance of farm reala¢s on the farm balance
sheet and because of the great number of policiessthat it raises. We
adopted the PVM framework, according to which tlaéug of land is the

capitalized value of the current and future strednearnings from owing

that asset. In order to consider a more homogendataset, only 12 States
of Midwestern U.S.A., for which more reliable agiittral data are

available, were included in the analysis and ombpland was taken into
consideration when collecting data on land valug @sh rents. Our model
also introduced population density among the regmssas a proxy for

urban pressure, in order to take into account ffects that competing

alternative land uses might exert.

Although a fairly large body of literature has bedevoted to this
topic, spatial econometrics has only found limitagplication in this
empirical field so far. We believe, as the ESDA foomed, that data on
land values are characterized by effects of spdgakendence that should
be taken into account in estimating an econometriclel that aims at
explaining the factors that contribute to land ealarmation. In order to do
so, we chose to estimate a model in which a spiatipbf the dependent

variable is included. The temporal dynamics is dbsed as an
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autoregressive process of first order and a spatijporal lag was also
introduced so as to make our model a truly timesshynamic model.

The results that we obtained confirm the existefc@gnificant spatial
and temporal dependence and therefore the neediki® them into
consideration. Our estimate of the long-run el@gtmf cropland value with
respect to net cash rents, which is close to uistgn element favorable to
the validity of the PVM assumptions. This is a tesmat has found only
limited support in the literature on land valuediahh generally ends up
rejecting the PVM. Gutierrez et al. (2007) find danevidence in favor of
the theoretical model when allowing for structusegaks in the time series.
However, further checks on the estimated elastioityl.2 are required
before drawing a conclusion on this.

The effect of cash rents in determining land valisesmaller than that
of population density, which also has a positivgngicant effect on
cropland values. Both variables appear to exertbilggest part of their
influence on land values in abaz@ years, as the computation of long-run
elasticities revealed, even if about half of thapact is already reached
after aboub years.

The inclusion of government payments among the essgrs is
motivated by the fact that they can also be coms@tlas an expected future
stream of earnings from owing land, with relevaoliqy implications.
However, the results that we have obtained sodarad allow to draw final
conclusions on the impact of agricultural suppaxgpams on cropland
values. As suggested by the vast literature onttipie, a deeper reasoning
and more disaggregated data are needed in orgeovale a better model
specification, capable of taking into account theolation of U.S.
agricultural policy in time and the differences voeén different
instruments of government intervention.

Future developments of this analysis should theeefimlow two main

paths. On the methodological point of view, therecoetric model that
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was estimated is one that has not been widely graglon empirical

analyses, because of the complexity of its estonaind the lack of already
available routines in econometric software. No déaid and widely known
testing procedures are available yet. Neverthelessconsider running
precise specification testing as a priority in ortte complete the present
analysis. Moreover, following Gutierrez et al. (ZpOthe model should
also be tested for structural breaks that may oicctive time series. This is
not only a methodological extension of the studgdose detecting and
allowing for structural breaks may also serve aseans for adding to the
analysis of government support intervention. Tlisindeed a second

direction that a more in-depth analysis shouldfelin the future.
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Conclusions

Since the late 1970s, when spatial econometriagedtdo grow as an
autonomous branch of the econometric disciplinea# been characterized
by important developments both from a theoretical #om an empirical
point of view. On the one hand, an increasing nurobéesting procedures
have been proposed able to detect the presenpatidieffects; the spatial
econometric modeling, which used to focus mainlycorss-sectional data,
has turned its interest onto the econometrics ofepalata, static and
dynamic; the estimation procedures have addressedcaeasing number
of issues and by now many different estimators Hzeen developed and
tested in their large asymptotic properties, eauoh suitable for a different
model specification. On the other hand, the emglifield of application of
these methodologies has extended from regionaldreh studies to other
fields, such as environmental studies or other dires of economics.
Nevertheless, the gap between theoretical advarares empirical
applications is still wide.

The aim of this work, after a comprehensive revavihe main tools
of spatial econometricians, is therefore to proadeempirical application
of the most recently introduced techniques of gpainalysis to a field of
study in which the potential of spatial economstrias not been fully
explored yet.

In chapter 1 we provided a review not only of thestnwidely known
and applied techniques of analysis of spatial esessional data, but also
of the most recent improvements that mainly regdn@ spatial
econometrics of panel data. We highlighted theialiffies that the
temporal autocorrelation of data adds to the esimarocedures once the
spatial autocorrelation has been treated. In aeddress the issue of the
gap that exists between theoretical and empiridah@aces, we focused on
software availability, showing that the lack of dgdo-use routines

contributes to hindering the application of newhtgques. For example,
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we showed that some programming skills are neededder to be able to
estimate spatial dynamic panel data models.

Our contribution to the empirical literature thgipdes the most recent
spatial estimators comprised two different appreach

Chapter 2 provided an analysis of the small sarppperties of some
estimators (the QML estimator by Yu et al. (2008) asome difference-
GMM estimators) for a time-space dynamic panel davael, for different
temporal and cross-sectional dimensions and diffedegrees of spatial,
temporal and spatiotemporal dependence. The rdasaonducting such
an analysis relies on the fact that the empiriesearcher is usually
unaware of what the correct model specificatioriois his/her data and,
although these estimators have been proved toyimepastically consistent,
one cannot usually count on datasets of dimenssoch that they make
small sample biases only remote threat. Indeed, RMSE and bias
associated to the estimates of the coefficientssogtrisingly decrease as
the time and cross-sectional dimension of the datascrease; this is
particularly true for GMM estimators, as expecf€de QML estimator was
found to show the best small-sample performanderms of RMSE for all
values ofT andN, mainly thanks to a considerably lower variabjlibypth
in a static and a quasi-unit root scenario.

We also focused on the assessment of the riskseidhby ignoring the
spatial dependence that characterizes the dateuiknowledge, empirical
researchers, although fully warned on the theaktonsequences of such
a misspecification, are not provided with a quaititre estimation of the
bias that may characterize the estimates of theessmpn coefficients. Our
conclusion is that the time-saving choice of igngrihe presence of spatial
dependence in the data may not necessarily britrgteendous drawbacks
in terms of biased estimates of the parametertefcovariates, although
the bias tends to increase as the extent of spdgjndence increases.
Nevertheless, the main failure of non-spatial estiom is the fact that it
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prevents the identification and estimation of sgdatpillover effects when
present, thus limiting the information that candbawn from the data.

The final chapter proposes an empirical applicabbone among the
most recent estimating procedures proposed in piatias econometrics
literature to a field of analysis in which spagalbnometrics has only found
limited application so far. We approached the stofithe determinants of
agricultural land values in 12 Midwestern U.S.Atle period 1971-2009
by choosing the PVM as the reference theoreticaméwork and by
estimating a time-space dynamic panel data modél fixied effects. After
having taken into account the spatial dependenceeved by the ESDA,
our purpose was therefore to test the assumptidimeabasis of the PVM,
according to which land values should equal thegmevalue of all future
expected cash flows stemming from a productiveaigbat land. In order
to do so, we regressed cropland values per actbeonet cash rents per
acre and population density, all variables expikgs@atural logarithms.

The results that we obtained confirmed the neethke spatial and
temporal dependence into consideration and the RAgSLmptions are
confirmed by the estimates of the long-elasticifycmpland value with
respect to this variable close to unity. This ieesult that has found only
limited support in the literature on land valuediiathh generally ends up
rejecting the PVM and may be at least partially doehe inclusion of
spatial effects in the model specification.

Population density, that was included as a proxyuftban pressure,
proved to be an important determinant of agricaltdand values. The
inclusion of government payments among the regresswotivated by the
fact that they can also be considered as an expduatere stream of
earnings from owing land, with relevant policy ingpktions, does not lead
to final conclusions on the impact of agricultusalpport programs on
cropland values: a deeper reasoning and more d=gafgd data are

needed in order to provide a better model spetificacapable of taking
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into account the evolution of U.S. agricultural ipglin time and the
differences between different instruments of gowent intervention.
Together with some methodological improvementss tepresents a path
for future developments of our empirical analysis.

In conclusion, we found that the application of th@st recently
introduced tools of spatial econometrics to new iecgl fields of analysis
is capable of opening new research streams, stijl poorly explored. The
main factors that prevent this are due to the latlalready available
routines for estimating spatial dynamic panel datadels, thus requiring
the empirical researchers to have some programskitig. Nevertheless,
the empirical application of this rather recent remoetric technique
appears to be important in order to fully expldreit potential contribution
to a deeper understanding of many economic issugsah the same time,

highlight possible unexpected small sample biasaisrhay arise.
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