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Abstract

The use of guided ultrasonic waves (GUW) has increased considerably in

the fields of non-destructive (NDE) testing and structural health monitor-

ing (SHM) due to their ability to perform long range inspections, to probe

hidden areas as well as to provide a complete monitoring of the entire waveg-

uide. Guided waves can be fully exploited only once their dispersive proper-

ties are known for the given waveguide. In this context, well stated analyt-

ical and numerical methods are represented by the Matrix family methods

and the Semi Analytical Finite Element (SAFE) methods. However, while

the former are limited to simple geometries of finite or infinite extent, the

latter can model arbitrary cross-section waveguides of finite domain only.

This thesis is aimed at developing three different numerical methods for

modelling wave propagation in complex translational invariant systems.

First, a classical SAFE formulation for viscoelastic waveguides is extended

to account for a three dimensional translational invariant static prestress

state. The effect of prestress, residual stress and applied loads on the dis-

persion properties of the guided waves is shown.

Next, a two-and-a-half Boundary Element Method (2.5D BEM) for the dis-

persion analysis of damped guided waves in waveguides and cavities of ar-

bitrary cross-section is proposed. The attenuation dispersive spectrum due

to material damping and geometrical spreading of cavities with arbitrary

shape is shown for the first time.

Finally, a coupled SAFE-2.5D BEM framework is developed to study the

dispersion characteristics of waves in viscoelastic waveguides of arbitrary

geometry embedded in infinite solid or liquid media. Dispersion of leaky

and non- leaky guided waves in terms of speed and attenuation, as well as

the radiated wavefields, can be computed.

The results obtained in this thesis can be helpful for the design of both

actuation and sensing systems in practical application, as well as to tune

experimental setup.
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Chapter 1

Introduction

1.1 Sommario

Nel capitolo introduttivo vengono inizialmente descritte in modo sommario le poten-

zialità dei metodi basati su onde ultrasoniche di tipo guidato (GUW) nei campi delle

indagini non distruttive, del monitoraggio strutturale e della caratterizzazione dei mate-

riali. Poichè tali metodi richiedono un’accurata conoscenza dei parametri di dispersione

per la specifica guida d’onda oggetto dell’indagine, l’attenzione viene in seguito focal-

izzata sulle tecniche analitiche e numeriche utilizzate in letteratura per il calcolo delle

curve di dispersione, mettendone in luce i principali vantaggi e limitazioni.

Sono successivamente descritte le motivazioni che hanno guidato la ricerca ed hanno

condotto alla stesura della presente tesi.

Infine, vengono brevemente illustrati gli aspetti innovativi introdotti e i principali

risultati ottenuti in ogni capitolo.

1.2 Research motivations

Guided Ultrasonics Waves (GUW) are recognized as an effective diagnostic tool in

the fields of nondestructive evaluation (NDE) testing, structural health monitoring

(SHM) and materials characterization. The basic concept behind guided waves is that

a structural component with invariant geometric and mechanical characteristics along

one or more dimensions (waveguide), can be used as support to “drive” the wave

propagation, thus providing a fundamental means for its inspection.

Compared with classical ultrasonic testing techniques, some advantages exist. First,

the energy of the wave is carried for long distances over the waveguide, whereas in
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standard ultrasonic testings only small areas of the structural component can be in-

vestigated at once. As a consequence, operations times are also drastically reduced.

The second advantage is that guided waves can provide a complete inspection of the

entire waveguide cross-section. Additionally, guided waves have inherent potential to

target particular defects. Unlike longitudinal and shear waves used in standard ultra-

sonic techniques, guided waves are multi modal, i.e. many modes can carry energy at

a given frequency. This property allows one to select several modes having the greatest

sensitivity with respect to a specific defect or a mechanical parameter that must be

identified. Another advantage offered by GUW is the possibility to design permanent

monitoring systems with relatively small hardware.

For the reasons above, the importance of GUW in civil, industrial and medical

applications has increased considerably in recent years. For example, guided waves are

widely used in the water and oil transportation industry for the detection of defects

in pipelines. In the railroad industry they are used to monitoring the conditions of

rails, with the aim to prevent failures that can cause disservices or compromise safety.

In the aerospace industry, they are largely employed for the quality assessment of

adhesively-bonded components. In the civil engineering field, guided waves have proven

to be effective in the damage detection of bridge cables, inspections of foundation piles,

weld inspections and characterization of the material constants in composite structural

components.

All these applications require an accurate knowledge of the dispersive characteristics

of guided waves. The concept of dispersion denotes a variation of the behaviour of

guided waves as a function of the frequency, and is a consequence of the interaction of

the wave propagation process with the structural geometry.

The fundamental dispersive parameters are the phase velocity, the attenuation,

group velocity and attenuation. The phase velocity denotes the rate at which the

crests of a particular guided mode propagate along the waveguide at a certain frequency.

The attenuation expresses instead the amplitude decay per unit of distance traveled.

This information is of great importance, especially in leaky systems, where attenuation

mostly affects the length of inspection ranges. The group velocity indicates the rate at

which packets of waves at infinitely close frequencies move along the waveguide. This

feature gives an indication about how much dispersion occurs for a signal generated in

a certain frequency range, i.e. how much the shape of the signal is distorted while it

propagates along the waveguide. The energy velocity represents a generalization of the

energy velocity concept for attenuative systems, and correspond to the rate at which

the energy carried by the wave moves along the propagation direction.
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In order to efficiently exploit guided waves, it is therefore necessary to chose the

guided modes that maximize the inspection ranges with high sensitivity with respect

to the defect or parameter to be identified. From the above considerations it clearly

appears the need of mathematical tools able to extract dispersive data for waveguides

with different geometries and materials, as well as to model the interaction of the

waveguide with the surrounding environment.

To this purpose, different analytical and numerical methods are available in liter-

ature. The Transfer Matrix Method (TMM) [Haskell, 1953; Thomson, 1950] and the

Global Matrix Method (GMM) [Knopoff, 1964; Lowe, 1992; Pavlakovic, 1998] represent

the most widely adopted techniques in the context of analytical methods. These meth-

ods are able to extract the dispersion curves for plate-like and cylindrical waveguides

that are immersed in vacuum or embedded in solid or fluid media. Their capability

to handle multilayered waveguides and to provide very accurate solutions makes them

very appealing for different wave propagation problems involving civil, mechanical and

aerospace structures.

The Finite Element Methods (FEM) [Chen and Wilcox, 2007; Sorohan et al., 2011]

and the Semi-Analytical Finite Element (SAFE) methods [Bartoli et al., 2006; Gavric,

1995; Hayashi et al., 2003; Hladky-Hennion, 1996; Shah et al., 2001] have instead the

unique capability to model waveguides of complex geometries and materials, for which

theoretical solutions are not available. Moreover, they generally lead to well posed

problems, while Matrix Methods may result unstable when the waveguide presents a

large number of layers, as in the case of composite laminates.

Although the above methods can model a large variety of problems, some situations

that are often encountered in practice have not been investigated in the literature.

These are, for example, the cases of prestressed viscoelastic waveguides and waveguides

of complex geometry and materials that are embedded in solids or immersed in fluids.

In this thesis, three different numerical methods are presented for the solution

of the above mentioned problems. The first is an extension of the Semi-Analytical

Finite Element (SAFE) method for the extraction of the waves modal properties in

viscoelastic prestressed waveguides. The main novelty introduced is the derivation of

the wave equation, which is obtained in linearized incremental form within an Updated

Lagrangian framework and by considering the influence of nonconservative loads. A

modal formula for the wave energy velocity calculation is also proposed, which is based

on the linearized incremental form of the Poynting theorem obtained by manipulating

the energy balance principle expressed in material description.

The second numerical method developed is a two-and-a-half (2.5D) Boundary Ele-
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ment Method (BEM) able to predict the dispersion properties of damped guided waves

in waveguides and cavities of arbitrary cross-section. In this formulation, the Cauchy

Principal Value integrals and the boundary coefficients are treated by means of a reg-

ularization procedure. Unlike the SAFE formulations, where the dispersion analysis

consists in solving a linear eigenvalue problem, the dispersive wave equation resulting

from the regularized 2.5D BEM is configured as a nonlinear eigenvalue problem. This

problem is solved by means of a recently developed Contour Integral Method. In rela-

tion to the singular characteristics and the multivalued feature of the Green functions,

the properties of various Riemann sheets are investigated and a contour integration

path is proposed, which takes into account the presence of the Sommerfeld branch cuts

in the complex plane of the axial wavenumbers. By means of some numerical examples,

a comparative analysis between the 2.5D BEM and the SAFE is performed, while some

new results are obtained concerning the dispersive properties of surface guided waves

along cavities of different geometries.

The third method proposed is a coupled SAFE-2.5D BEM approach for the disper-

sion analysis of leaky guided waves in viscoelastic waveguides of arbitrary cross-section

that are embedded in viscoelastic isotropic media. So far, leaky guided waves have

been essentially investigated for waveguides of simple geometries by means of analyti-

cal methods. Few studies have been proposed in literature in which are modeled using

different approaches, such as absorbing regions [Castaings and Lowe, 2008; Fan et al.,

2008], infinite elements [Jia et al., 2011] or Perfectly Matched Layers [Treyssède et al.,

2012]. However, all the numerical methods above present some approximations in the

description of the radiated wavefield, and the problem of how correctly model leaky

guided waves in complex structures is still challenging.

In the proposed formulation, the energy radiation due to leakage of bulk waves

is introduced in the SAFE model by converting the BEM impedance matrix into an

equivalent dynamic stiffness matrix, which is manipulated as a single, wavenumber and

frequency dependent, finite element of infinite extension. Due to singular characteristics

of leaky modes, additional conditions are introduced in the Green functions in order to

satisfy the Snell-Descartes law at the SAFE-BEM interface. The coupled SAFE-2.5D

BEM formulation is also presented for waveguides immersed in fluids, in which the

solution in the fluid region is assumed to satisfy the 2.5D Helmholtz equation.

The results obtained in this thesis and can be helpful for the design of both actuation

and sensing systems in practical application, as well as to tune experimental setup.
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1.3 Outline of the thesis

The thesis is organized as follows.

In Chapter 3, an extension to the Semi-Analytical Finite Element (SAFE) method

is proposed in order to include the effect of a general state of initial stress on the dis-

persive behavior of damped guided waves. The wave equation is derived in linearized

incremental form within an Updated Lagrangian framework. A modal formula for the

wave energy velocity calculation is proposed, which is based on the linearized incre-

mental form of the Poynting theorem in material description. New results not available

in literature are discussed, which can be helpful in guided wave testing of loaded rails

and pressurized pipelines.

In Chapter 3, a 2.5D Boundary Element formulation is developed to predict the

dispersion properties of damped guided waves in waveguides and cavities of arbitrary

cross-section. A regularization procedure is described to treat Cauchy Principal Value

Integrals and boundary coefficients, while the resulting nonlinear eigenvalue problem

is solved by using a recently developed Contour Integral Method. A Riemann surface

analysis is also presented, and a contour integration path is described for the elastic

and viscoelastic cases. The method is first validated against the SAFE method, while

new results are discussed for cavities of different geometries.

Chapter 4 is dedicated to the study of leaky guided waves in viscoelastic waveguides

of arbitrary cross-section embedded in viscoelastic media. The problem is solved by

using a coupled SAFE-2.5D approach, in which the SAFE is used to model the em-

bedded waveguide and the 2.5D BEM to represent the impedance of the surrounding

medium. A single-valued analysis is presented for the resolvent stiffness operator, which

is based on supplementary interface conditions introduced via the Snell-Descartes law.

The proposed method is first validated against some results available in literature for

simple geometries, while some new applications for complex geometries are proposed

for the first time.

Chapter 5 describes a coupled SAFE-2.5D BEM model for the computation of the

dispersion properties of leaky guided waves in waveguides immersed in ideal fluids.

As in Chapter 3, a regularization procedure is adopted for the desingularization of

the boundary integrals. To improve the numerical stability of the external Helmholtz

problem, the so called CHIEF method is also implemented. The results obtained using

the proposed procedure are first compared with those given by the GMM method. New

results not available in literature are finally presented.

Finally, in Chapter 5 some brief conclusions are presented, with emphasis on the
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new contributions given in this study.
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Chapter 2

Wave propagation in prestressed

waveguides: SAFE method

2.1 Sommario

Un’estensione del metodo semi-analitico agli elementi finiti (SAFE method) viene pro-

posta al fine di studiare l’effetto di uno stato pluriassiale di pretensione o prede-

formazione sul comportamento dispersivo di onde guidate che si propagano in guide

d’onda dissipative. L’equazione del moto viene ricavata in un sistema di riferimento

Lagrangiano aggiornato, nel quale la configurazione di pretensione viene assunta come

configurazione di riferimento.

Poichè in applicazioni pratiche le deformazioni indotte nelle guide d’onda risultano

di alcuni ordini di grandezza inferiori a quelle prodotte dai normali carichi di servizio,

lo stato di deformazione iniziale può considerarsi finito in rapporto a quello generato

dall’onda anche se la guida possiede, in questo stato, una riserva elastica.

In conformità a queste ipotesi, le equazioni di congruenza, costitutive e di equilibrio

sono ricavate in forma incrementale linearizzata, includendo l’effetto di carichi di tipo

non conservativo. L’equazione d’onda per il sistema semi-discretizzato conduce ad un

problema polinomiale agli autovalori, dal quale i numeri d’onda e le associate forme

modali vengono estratti per diverse fissate frequenze. Il set di soluzioni calcolato viene

successivamente impiegato nell’estrazione dei parametri di dispersione: velocità di fase,

attenuazione e velocità di gruppo. Mentre i primi due parametri possono essere estratti

direttamente dal set di soluzioni calcolate, la velocità di gruppo richiede un’ulteriore

elaborazione dei risultati. Una formula per il calcolo della velocità di gruppo è stata

presentata e validata in letteratura per soli stati tensionali iniziali di tipo monoas-
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siale. Nel presente studio questa formula viene pertanto estesa a stati di pretensione o

predeformazione di tipo pluriassiale.

Tuttavia, il concetto di velocità di gruppo perde significato fisico nel caso di guide

d’onda dissipative, essendo sostituito dal più generale concetto di velocità dell’energia.

Poichè i modi attenuati sono di notevole interesse in ambito teorico ed applicato, viene

proposta una formula modale per il calcolo della velocità dell’energia. Tale formula

viene derivata in forza al teorema di Umov-Poynting stabilendo una legge di bilancio

dell’energia in forma incrementale linearizzata.

La formulazione proposta viene dapprima validata comparando i risultati ottenuti

con due casi noti in letteratura, una barra a sezione circolare ed un binario soggetto a

variazioni termiche uniformi. Nuovi casi studio vengono proposti, riguardanti l’effetto

delle tensioni residue derivanti dai processi di produzione dei binari e l’effetto di una

pressione iniziale di tipo idrostatico sulla propagazione di onde guidate in condotte in

mezzi fluidi.

In tutti i casi, l’effetto dovuto allo stato di pretensione iniziale risulta maggiormente

evidente alle basse frequenze, dove il fenomeno di propagazione risulta più sensibile alle

variazioni di rigidezza geometrica della guida. Ad alte frequenze il moto risulta quasi

totalmente dominato dalla rigidezza meccanica della guida e l’effetto della pretensione

diventa sostanzialmente trascurabile.
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2.2 Introduction and literature review

A first rigorous mathematical treatment of wave propagation problems in solids with

a predeformation or a prestress state has been provided by Biot [1957, 1940, 1965]

and Hayes [1963]. Through the years, the problem has been subjected to an intensive

research. Williams and Malvern [1969] used the harmonic analysis to get the phase-

velocity dispersion curves for prestressed circular rods, flat plates and unbounded medi-

ums considering both strain-rate-independent and strain-rate-dependent constitutive

equations. The effect of tensile and compressive axial loads on the dispersive char-

acteristic of elastic waves propagating in submerged beams was investigated by Cook

and Holmes [1981]. More recently, Bhaskar [2003] studied the dispersion relations for

propagative and evanescent modes with bending-torsion coupling, while Tanuma and

Man [2006] considered Rayleigh waves propagating along the free surface of a pre-

stressed anisotropic media, deriving a first-order perturbation formula for the phase

velocity shift of Rayleigh waves from its comparative isotropic value. Frikha et al.

[2011] have demonstrated that the effect of a compressive or tensile axial load on the

elastic wave propagation in helical beams is significant for the four propagating modes

in a low-frequency range.

The wave propagation problem in waveguide-like structures has been investigated in

the literature using different mathematical approaches. In their work, Chen and Wilcox

[2007] proposed a three-dimensional finite element based procedure to predict the effect

of axial load on the dispersive properties of guided waves in elastic waveguides of arbi-

trary cross section such rods, plates and rails, validating the method at low frequencies

by using analytical formulae for low order theories. Osetrov et al. [2000] applied the

Transfer Matrix Method (TMM) to study Surface Acoustic Waves (SAW) propagating

in anisotropic and hyperelastic layered systems under residual stress, including also

changes in density, modification of the elastic stiffness tensor by residual strain and

third-order stiffness constants. Lematre et al. [2006] applied matrix methods to predict

Lamb, Shear Horizontal (SH) and SAW propagation in piezoelectric plates subjected

to different stress profiles and to calculate the acoustoelastic effect on Lamb wave prop-

agation in stressed thin-films as well as in multilayered heterostructures under biaxial

residual stresses.

The prediction of dispersive characteristics of waves traveling along waveguides of

arbitrary cross section represents a computationally expensive problem, especially when

dispersive data is required at high frequencies. For waveguides of arbitrary but constant

cross section the Semi Analytical Finite Element (SAFE) technique represents a very
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efficient tool, since it allows to discretize the waveguide cross section only, reducing

drastically the dimension of the problem [Bartoli et al., 2006; Mu and Rose, 2008;

Treyssède, 2008].

To date, Semi Analytical Finite Element (SAFE) formulations were predominantly

exploited for axially-loaded waveguides of linear elastic materials only [Loveday, 2009].

In this work, Loveday included the effect of the axial load, resulting in a additional

geometric stiffness matrix proportional to the mass matrix through the ratio between

the axial stress and mass density. At low frequencies numerical results were shown to

be in good agreement with those predicted by the Euler-Bernoulli beam theory. This

extension has been used subsequently to evaluate the influence of axial load changes in

rails by using sensitivity analysis and phase shift [Loveday and Wilcox, 2010] as well

to support the development of a prototype aimed at predicting incipient buckling in

Continuously Welded Rails (CWR) [Bartoli et al., 2010].

Experimental validations of the various formulations proposed in the literature can

be found in different works. For instance, in their work, Chaki and Bourse [2009] applied

simplified acoustoelastic formulations to calibrate a guided ultrasonic wave procedure

for monitoring the stress level in seven-wire steel strands while Shen et al. [2008] used

guided waves to localize defects in pipes bearing high pressure gases.

Since the use of guided waves for long range inspection applications is increasing, a

further development of the SAFE formulation is necessary to extend it beyond the case

of mono-axial prestress states. To this aim, the study presented in this chapter gener-

alizes the SAFE formulations to viscoelastic waveguides subject to a three-dimensional

state of prestress. The present extension allows thus to predict the effect of prestress

on the guided waves group and energy velocity as well as the wave attenuation. In

this context, Caviglia and Morro [1992, 1998] provided a rigorous mathematical treat-

ment of the energy flux and dissipation of waves traveling in prestressed anisotropic

viscoelastic solids. In their work, Degtyar and Rokhlin [1998] used a energy velocity

formula to investigate the reflection/refraction problem for elastic wave propagation

through a plane interface between two anisotropic stressed solids and between a fluid

and a stressed anisotropic solid with arbitrary propagation directions and arbitrary

incident wave type.

The present Chapter is organized in the following manner: the equilibrium equations

of the incremental linearized theory are first reviewed including the general state of

prestress, the viscoelastic properties of the material and the effect of nonconservative

forces. The discretized system governing the wave propagation problem is then derived

via application of the SAFE method. The group velocity formula proposed by Loveday
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[2009] is updated to account for the new stiffness operators without including the

viscoelastic effect, which is taken into account in the energy velocity formula derived

from the energy balance principle recasted in incremental form. The scheme developed

is sufficiently general to cover also prestressed waveguides of viscoelastic anisotropic

materials.

2.3 Wave equation in linearized incremental form

The incremental equation of motion is derived in the Lagrangian framework depicted

in Fig. 2.1 where C0 is a stress-free initial configuration in which the waveguide is not

subjected to any static or dynamic loading process. The generic material particle is

individuated in C0 by the position vector X0 = [x0, y0, z0]T.

If a static load is applied to the stress free configuration C0, the particle X0 moves

by a quantity u0 (X) =
[
u0x, u

0
y, u

0
z

]T
and takes place in the configuration C, which is

indicated as the prestressed configuration. The volume and the boundary surface of

the waveguide in C configuration are denoted with V and ∂V , respectively. The general

particle at X = X0 + u0 = [x, y, z]T in the prestressed configuration is subjected to

a stress field denoted by the Cauchy stress tensor σ0 (X), which is assumed to satisfy

the static equilibrium conditions with the external applied body and surface forces,

denoted by f0 and t0, respectively.

The final configuration of the waveguide is denoted by Ct and is considered due to a

displacement field resulting from the application of a dynamic pulse to the prestressed

configuration. The current configuration vector at time t is given by Xt (u) = X+u =

[xt, yt, zt]T and results from the superimposition of the (small) incremental time-

dependent displacement field u = [ux, uy, uz]
T due to the mechanical waves on the

prestressed configuration X.

The equilibrium equations in incremental form can be obtained by following differ-

ent approaches. Based on the coordinate systems chosen to describe the behavior of the

body whose motion is under consideration, relevant quantities, such as deformations,

constitutive relations and stresses can be described in terms of where the body was be-

fore any deformation due to externally applied loads or where it is during deformation;

the former is called a material description, and the latter is called a spatial description

[Bonet and Wood, 2008]. Alternatively, these are often referred to as Lagrangian and

Eulerian descriptions respectively. Therefore, a material description refers to the be-

havior of a material particle, whereas a spatial description refers to the behavior at a

spatial position. If the deformation state in the current configuration is described with
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respect to a coordinate system that does not correspond to the stress-free configuration,

one refer in this case to the Updated Lagrangian description.

Although the Total Lagrangian (TL) description is widely used in the context of

nonlinear solid mechanics, for the purpose of this study the Updated Lagrangian (UL)

formulation results more convenient. According to the UL description, the C configura-

tion is taken as reference and it can be computed from C0 considering the initial static

displacement u0, which is assumed to be known, for example, from previous static

analysis. Using this approach, the initial static displacement field u0 is accounted im-

plicitly in the SAFE mesh that is used to discretize the cross-section of the waveguide

in C, thus without the need to include the static terms in the equilibrium equations.

The TL description obviously still remains of general validity although the nonlinear

compatibility relations would include in this case some additional high-order terms in

u0, leading to more complicated equations [Bathe, 1996].

However, when deformations are superimposed on finite strains, the prestressed

state is generally assumed identical or at most slightly deviated from the unstressed

state and the TL and UL formulations can therefore be confused, i.e. one can assume

X0 ≈ X. This simplification cannot be applied when large strains and stresses are

involved since it requires the use of appropriate incremental kinematic and constitutive

relations [Bathe, 1996; Bažant and Cedolin, 1991; Yang and Kuo, 1994]. Such cases

are not considered in this study but are of great importance, especially when the stress

level reaches the same order of magnitude of the incremental tangential moduli or,

if the body is not thin, when the incremental material moduli shows high anisotropy

[Bažant and Cedolin, 1991].

In finite deformation analysis that use FEM formulations, the Updated Lagrangian

description is generally adopted to give a linearization of the equilibrium relations

within a Newton method scheme [Bonet and Wood, 2008; Wriggers, 2008]. Following

this scheme, the equilibrium configuration corresponding to a fixed load increment is

found by subdividing first the load increment into different load steps and proceeding

iteratively by solving a linearized system at each load step until convergence.

In reality, since only small pulses are applied on the waveguide, a fully nonlinear

system of governing equations is not necessary.

In fact, the hypothesis of small incremental loads and small deformations is easily

verified if one observes that in many practical applications waveguides can be treated as

slender structures for which magnitudes of strains arising during their service state are

generally included in the range of 10−4÷10−3, while guided waves generated by means of

ultrasonic equipments generally produce strains in the order of 10−7 [Man, 1998; Rose,
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2004]. This means that typical strains involved in slender structures can be considered

“finite” if compared with ultrasonic strains even if the prestressed configuration posses

an elastic reserve.

2.3.1 Linearized strain-displacement relations

The geometric nonlinearities associated with the initial stress enter the problem via the

kinematic relations in force of the finite strains assumption.

A key quantity in finite deformation analysis is the deformation gradient F (u),

which is involved in all equations relating quantities before deformation to correspond-

ing quantities after (or during) deformation. The deformation gradient tensor enables

the relative spatial position of two neighboring particles after deformation to be de-

scribed in terms of their relative material position before deformation.

Denoting with X and X′ the two position of a material particle in the prestressed

and current configuration, respectively, the deformation gradient associated to the par-

ticle motion is expressed as

F (u) =
∂Xt (u)

∂X

=
∂

∂X
(X+ u (X, t))

= I+∇u,

(2.1)

where I denotes the identity matrix and ∇ (·) denotes the gradient with respect to

the prestressed configuration C. A general measure of the deformation in the material

description is represented by the Green-Lagrange (GL) strain tensor, which can be

expressed in terms of deformation gradient as [Bonet and Wood, 2008; Wriggers, 2008]

E (u) =
1

2

(
FTF− I

)
, (2.2)

or, by using the substitutions in Eq. (2.1), in terms of displacement gradient as

E (u) =
1

2

[
∇u+ (∇u)T + (∇u)T ∇u

]
. (2.3)

The Green-Lagrange can be conveniently decomposed into the sum of two tensors as

E (u) = ε (u) + εNL (u), denoting ε (u) and εNL (u) the tensors of the strain com-

ponents that are linear and nonlinear in the displacements u (X, t), respectively. The

linear strain tensor corresponds to the symmetric part of the GL strain tensor and is

13



2. WAVE PROPAGATION IN PRESTRESSED WAVEGUIDES: SAFE METHOD

given by

ε (u) = sym (E) =
1

2

[
∇u+∇ (u)T

]
, (2.4)

while the tensor of nonlinear strains takes the form

εNL (u) =
1

2
(∇u)T∇ (u) . (2.5)

In view of the Semi-Analytical Finite Element discretization, the independent compo-

nents of the linear and nonlinear strain tensors in Eqs. (2.4) and (2.5) are collected in

the 6× 1 vector

e (u) = ε (u) + εNL (u) , (2.6)

where

ε (u) = [εxx, εyy, εzz, εyz, εxz, εxy]
T

=

[
L x

∂

∂x
+ L y

∂

∂y
+ L z

∂

∂z

]
u

(2.7)

is the vector of linear strain components and

εNL (u) =
1

2

[
∂uT

∂x

∂u

∂x

∂uT

∂y

∂u

∂y

∂uT

∂z

∂u

∂z
2
∂uT

∂y

∂u

∂z
2
∂uT

∂x

∂u

∂z
2
∂uT

∂x

∂u

∂y

]T
(2.8)

is the vector of nonlinear strain components. In Eqs. (2.7) and (2.8) the Voigt notation

has been used, while the 6 × 3 compatibility operators L i appearing in Eq. (2.7) are

defined as [Bartoli et al., 2006]

L x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, L z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.9)

Since the strain quantities defined in Eqs. (2.7) and (2.8) are nonlinear expressions in

the displacement u (X, t), they will lead to nonlinear governing equations. In force of

the assumptions of small applied loads and small displacements, the governing equa-

tions can be recasted in a incremental linearized form. Assuming as incremental those

quantities associated with the difference of motion between the current (Ct) and the

prestressed (C) configurations, the linearized incremental strain-displacement relations
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2.3.2. LINEARIZED STRESS-STRAIN RELATIONS

can be obtained by means a first order Taylor series expansion in the neighborhood of

the prestressed configuration, which reads

f (X+ βu)− f (X) = Duf (X) , (2.10)

where

Duf (X) =
d

dβ

∣∣∣∣
β=0

f (X+ βu) (2.11)

denotes the directional derivative at X in the direction of the incremental displacement

u (X, t). Using Eq. (2.11), the linearizations of Eqs. (2.2) and (2.6) take the form

DuE (u) = ε (u) , (2.12)

Due (u) = ε (u) , (2.13)

while the linearizations of the first variations of Eqs. (2.2) and (2.6) are expressed as

DuδE (u) = δεNL (u) , (2.14)

Duδe (u) = δεNL (u) , (2.15)

in which δ denotes the first variation with respect to u.

2.3.2 Linearized stress-strain relations

The increment of stress related to any strain increment E (u) results to be small as it

depends on the small amplitude waves assumption. From an energetic point of view,

the use of the 2nd Piola-Kirchhoff stress tensor S (u) is required as work-conjugate

of the GL strain tensor [Bažant and Cedolin, 1991; Bonet and Wood, 2008; Wriggers,

2008]. Because of only small amplitude waves are applied on the initial prestressed

configuration, the state of stress in the current configuration will differ slightly from

the prestressed state. As a consequence, the 2nd Piola-Kirchhoff stress tensor can be

confused with the Cauchy stress tensor σ (u). Making use of Eqs. (2.11) and (2.12),

the above statement can be expressed in terms of linearized stress-strain relations as

DuS (u) =
∂S (u)

∂E (u)

∣∣∣∣
u=0

: DuE (u)

= C (X) : ε (u)

= σ (u)

(2.16)
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2. WAVE PROPAGATION IN PRESTRESSED WAVEGUIDES: SAFE METHOD

where Cijkm (X) = ∂Sij (u) /∂Ekm (u) |u=0 is the 6 × 6 fourth order symmetric tensor

of tangential moduli of the material at point X in the prestressed configuration.

Since the linearized 2nd Piola-Kirchhoff stress tensor and the Cauchy stress tensor

coalesce under the hypothesis of small displacements, their independent components

can be uniquely collected in the 6× 1 vector

s (u) = [sxx, syy, szz, syz, sxz, sxy]
T

= [σxx, σyy, σzz, σyz, σxz, σxy]
T .

(2.17)

Using Eqs. (2.7) and (2.17), the stress-strain relation in Eq. (2.16) can be reexpressed

as

s (u) = C (X) ε (u) . (2.18)

If an isotropic material with linear viscoelastic behaviour is considered, the Boltzmann

superposition principle can be used to express the incremental stress in force of the

small amplitude waves. The linearized incremental stress vector in Eq. (2.18) can be

rewritten in terms of convolution integral as [Christensen, 2010; Lee and Oh, 2005]

s (u) =

∫ t

−∞
C (X, t− τ)

∂ε
(
u (X, τ)

)
∂τ

dτ (2.19)

being now C (X, t− τ) the fourth order symmetric tensor of relaxation functions and

t the current time instant.

2.3.3 Linearized incremental equilibrium equations

The equilibrium of the waveguide in incremental form is obtained by subtracting from

the linearized equilibrium equations in the configuration Ct those written in the con-

figuration C. The equilibrium equations for both configurations can be obtained via

application of the Hamilton’s variational principle

δH (u, δu) =

∫ t2

t1

δ
(
K − W + Vc + Vnc

)
dt = 0 (2.20)

where K denotes the kinetic energy of the waveguide, W accounts for the stored

stored elastic energy and the dissipated energy, Vc is the work done by the external

conservative volume and surface forces and δVnc is the nonconservative virtual work

done by external deformation-dependent loads.

The various energetic terms at a generic point Xt in the configuration Ct can be
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2.3.3. LINEARIZED INCREMENTAL EQUILIBRIUM EQUATIONS

expressed with respect to the configuration C as follows

K (u)|Ct =
1

2

∫
V
ρ (X) u̇2dv, (2.21)

W (u)|Ct =
1

2

∫
V
(ε (u))T s (u) dv, (2.22)

Vc (u)|Ct =

∫
V
uT

[
f0c (X) + fc (X, t)

]
dv +

∫
∂V

uT
[
t0c (X) + tc (X, t)

]
da, (2.23)

δVnc (u)|Ct �
∫
∂V

δuT
[
t0nc (u) + tnc (u)

]
da, (2.24)

where f0c (X) and fc (X, t) are the vectors of initial and incremental conservative volume

loads, respectively, t0c (X) and tc (X, t) denote the initial and incremental conservative

traction loads, t0nc (u) is the vector of nonconservative traction loads in the prestressed

configuration and tnc (u) stands for a small displacement-dependent increment of the

nonconservative traction loads. It should be remarked that the nonconservative external

virtual work must be evaluated at the current configuration Xt (u), which is unknown.

Therefore, the spatial description should be used rigorously instead of the material

description. However, if the increment in magnitude of the load is sufficiently small,

the integration of the current load intensity can be performed with good accuracy over

the surface of the prestressed configuration ∂V [Bathe, 1996].

The linearized variations of Eqs. (2.21)-(2.23) take the following representations

DuδK (u, δu) =

∫
V
δu̇Tρ (X) u̇dv, (2.25)

DuδW (u, δu) =

∫
V

[
Du (δe (u))

T s (u) |u=0 + (δe (u))T |u=0Dus (u)
]
dv

=

∫
V

[
(δεNL (u))T s0 (X) + (δε (u))T s (u)

]
dv

=

∫
V
(δεNL (u))T s0 (X) dv

+

∫
V

∫ t

−∞
(δε (u))TC ((X) , t− τ)

∂ε (u (X, τ))

∂τ
dtdv, (2.26)

DuδVc (u, δu) =

∫
V
δuTfc (X, t) dv +

∫
∂V

δuTtc (X, t) da, (2.27)

in which s0 (X) = [s0xx, s
0
yy, s

0
zz, s

0
yz, s

0
xz, s

0
xy]

T is the vector collecting the independent

components of the Cauchy stress tensor σ0 (X) in the prestressed configuration. It is
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2. WAVE PROPAGATION IN PRESTRESSED WAVEGUIDES: SAFE METHOD

noted that Eq. (2.19) for the time-dependent stress-strain relations has been used in

Eq. (2.26). In the rest of this chapter, it is assumed that the nonconservative forces

applied to the system are of pressure type only, with no friction between the solid-fluid

interfaces. In this case one can recognize that

t0nc (u) = −p0n (u) , (2.28)

tnc (u) = −pn (u) , (2.29)

where p0 and p are, respectively, the hydrostatic pressure acting on the waveguide in

the prestressed configuration and the incremental pressures applied at the boundary,

while n (u (X, t)) is the outward normal at the point X of the boundary surface ∂V .

It is noted that, since t0nc (u) and tnc (u) must represent a traction, the notation used

in Eqs. (2.28) and ((2.29)) implies that the pressure is positive in compression. If the

fluid-structure interaction is neglected, then the term tnc (u) on the right hand side of

Eq. (2.24) vanishes, since in this case the magnitude of the pressure does not depend

upon the deformation but only on the load direction pn (u). As a consequence, the

linearized external virtual work can be reexpressed as

DuδVnc (u, δu) = DuδVp (u, δu) =

∫
∂Ωs

−p0δu
T
(
Dun (u)

)
da (2.30)

where Dun (u) = ∂n(u)
∂u u denotes the linearized change of orientation of the outward

normal at X due to the displacement u (X, t) at the same point.

In order to obtain the linearized incremental form of the equation of motion,

Eq. (2.20) can be first substituted into Eq. (2.10) to give

DuδH (u, δu) = 0, (2.31)

which expresses that the directional derivative of the first variation of the Hamilton’s

functional must vanish for any given small displacement u (X, t) applied at point X

on the prestressed configuration must vanish. Making use of Eqs. (2.25), (2.26), (2.27)

and (2.30), after some algebra the first variation of the Hamiltonian action in linearized
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incremental form is obtained

DuδH (u, δu) =

∫ t2

t1

∫
V

(
− (δu)T ρ (X) ü− (

δεNL (u)
)T

s0 (X) + (δu)T fc (X, t)
)
dvdt

−
∫ t2

t1

∫
V

∫ t

−∞

(
δε (u)

)T
C (X, t− τ)

∂ε
(
u (X, τ)

)
∂τ

dτdvdt

+

∫ t2

t1

∫
∂V

(δu)T tc (X, t) dadt

−
∫ t2

t1

∫
∂V

(δu)T p0
∂n (u)

∂u
udadt

= 0

(2.32)

Eq. (2.32) represents the basic system governing the dynamic of small oscillations of a

three dimensional viscoelastic body subjected to an initial generic stress field.

2.4 Equations in the wavenumber-frequency domain

Given the longitudinal invariance, or periodicity, of both material and geometric char-

acteristics of the waveguide in direction z and considering a wavenumber-frequency

dependence of the form

exp [i (κzz − ωt)] (2.33)

where κz denotes the wavenumber in the direction of propagation, ω is the angular

frequency and i is the imaginary unit, any scalar or vectorial field can be contracted

from the space-time domain to the wavenumber-frequency domain using the Fourier

transforms

f (z, ω) = F
[
f (z, t)

]
(ω) =

∫ +∞

−∞
f (z, t) exp (−iωt)dt, (2.34)

f (κz, t) = F
[
f (z, t)

]
(κz) =

∫ +∞

−∞
f (z, t) exp (−iκzz)dz. (2.35)

Important consequences of this transformation convention concern the direction of pos-

itive wave propagation and decay and the location of poles for the dynamic system

under consideration [Kausel, 2006]. These, in turn, relate to the principles of radiation

and boundedness at infinity, which will be addressed in the next chapters. Since the

Fourier transforms act only on the t and z dependent fields, each wavenumber κz (ω)

(or, conversely, each angular frequency ω (κz)) is projected on the x− y plane and the
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2. WAVE PROPAGATION IN PRESTRESSED WAVEGUIDES: SAFE METHOD

corresponding waveform propagating in the z-direction can be captured in the x − y

plane by an in-plane mesh of the waveguide cross section.

The stress-strain relation in Eq. (2.19) can be contracted from the time to the

frequency domain, yielding to the well known relation [Christensen, 2010]

Dus (X, ω) =

∫ +∞

−∞

∫ t

−∞
C (X, t− τ)

∂ε (u (X, t))

∂τ
exp (−iωt) dτdt

= C̃ (X, ω) ε (X, ω) ,

(2.36)

which states that the incremental stress relative to small deformations can be obtained

in the frequency domain as in a linear elastic analysis, providing only the substitution

of the real tensor of elastic moduli with the complex tensor of relaxation functions

C̃ (ω) = Re[C̃ (ω)] + iIm[C̃ (ω)], where Re
(
C̃[ω

)
] is the so-called tensor of storage

moduli and Im[C̃ (ω)] denotes the tensor of loss moduli.

The versatility of the finite element formulation allows considering several types

of visco-elastic rheological models, by simply assuming the opportune complex moduli

matrix C̃ (ω). Generally, two different models are used in the literature to describe

absorbing media. One of them, the Maxwell rheological model, expresses the dynamic

behavior of the hysteretic stress-strain relationship

Re
[
C̃ (ω)

]
= D, Im

[
C̃ (ω)

]
= −iη, (2.37)

where D is the well known tensor of elastic moduli while η is the viscosity tensor.

Compared to a non-absorbing propagation model, the only modification is that the

visco-elastic tensor becomes complex.

In contrast, the Kelvin-Voigt model assumes a linear dependence of Im[C̃ (ω)] on

the frequency:

Re
[
C̃ (ω)

]
= D, Im

[
C̃ (ω)

]
= −iωη. (2.38)

In Eqs. (2.37) and (2.38), a negative loss modulus is considered according to the har-

monic definition of the displacement field given in Eq. (2.33). In fact, depending on

the sign of the temporal term (iωt), the sign of the loss modulus can assume positive

or negative value. When used in the equation of motion, the effect of the Kelvin-Voigt

model, bringing out the frequency dependence of the tensor, requires the imaginary

part of the visco-elastic tensor to be recalculated at each frequency. The impact of

both models has been thoroughly investigated in [Neau, 2003] and [Rose, 2004]. It ap-

pears that the attenuation is proportional to the frequency times the imaginary part of
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the viscoelastic tensor and, being the loss per unit distance traveled, is a linear function

of the frequency in the case of the hysteretic model and a quadratic function of the

frequency in the case of the Kelvin-Voigt model. While in the case of hysteretic damp-

ing the complex part of the viscoelastic tensor usually is given without any reference

to the frequency value for which the tensor itself is obtained, it is important to remind

that in the case of Kelvin-Voigt model, such frequency has to be specified. Since the

study of the different behaviours of guided waves under different rheological models is

not the primary topic of this thesis, only hysteretic (Maxwell) rheological models will

be considered.

Using the Fourier transforms in Eq. (2.34) along with the fundamental property

F [dnf (z, t) /dtn] (ω) = (iω)n f (z, ω) and Eq. (2.36), the variational statement in

Eq. (2.32) can be reelaborated from the space-time to the space-frequency domain

as

ω2

∫
V
δuTρ (X)udv −

∫
V

(
δεNL (u)

)T
s0 (X) dv

+

∫
V
δuTfc (X, ω)dv −

∫
V
(δε (u))T C̃ (X, ω) ε (u) dv

+

∫
∂V

δuTtc (X, ω) da−
∫
∂V

δuTp0
∂n (u)

∂u
uda = 0.

(2.39)

The above equation is used as the basic equation for the semi-analytical finite element

discretization procedure, which is exposed in the next section.

2.5 Domain discretization using semi-isoparametric finite

elements

The dimension of the problem represented by Eq. (2.39) can be reduced by one in the

space domain by exploiting the translational invariance (or periodicity) of the geometric

and mechanical properties of the waveguide. The volume and surface integrals are

decomposed as follows

∫
V
f (X, t) dv =

∫ +∞

−∞

∫
Ωs

f (x, z, t) dxdydz (2.40)

∫
∂V

f (X, t) da =

∫ +∞

−∞

∫
∂Ωs

f (x, z, t) dsdz (2.41)
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where Ωs and ∂Ωs denote the area and boundary of the waveguide cross-section, re-

spectively, and x = [x, y]T is the generic in-plane configuration vector for a material

particle in the prestressed configuration. Substituting the positions in Eqs. (2.40) and

(2.41) into Eq. (2.39) yields

ω2

∫ +∞

−∞

∫
Ωs

(δu)T ρ (x, z)udxdydz

−
∫ +∞

−∞

∫
Ωs

(
δεNL (u)

)T
s0 (x, z) dxdydz

+

∫ +∞

−∞

∫
Ωs

(δu)T fc (x, z, ω)dxdydz

−
∫ +∞

−∞

∫
Ωs

(δε (u))T C̃ (x, z, ω) ε (u) dxdydz

+

∫ +∞

−∞

∫
∂Ωs

(δu)T tc (x, z, ω) dsdz

−
∫ +∞

−∞

∫
∂Ωs

(δu)T p0
∂n (u)

∂u
udsdz = 0.

(2.42)

Since Eq. (2.42) holds for any virtual displacement δu, the integrals over the longitu-

dinal coordinate z vanish, and Eq. (2.42) is therefore equivalent to

ω2

∫
Ωs

δuTρ (x, z)udxdy −
∫
Ωs

(
δεNL (u)

)T
s0 (x, z) dxdy

+

∫
Ωs

δuTfc (x, z, ω)dxdy −
∫
Ωs

(δε (u))T C̃ (x, z, ω) ε (u) dxdy

+

∫
∂Ωs

δuTtc (x, z, ω) ds−
∫
∂Ωs

δuTp0
∂n (u)

∂u
uds = 0.

(2.43)

The integral Eq. (2.43) can be solved by a Fourier transform of the longitudinal coordi-

nate z to the axial wavenumber κz. Making use of Eq. (2.35), Eq. (2.43) is transformed

to the wavenumber domain as

ω2

∫
Ωs

δuTρ (x, κz)udxdy −
∫
Ωs

(
δεNL (u)

)T
s0 (x, κz) dxdy

+

∫
Ωs

δuTfc (x, κz, ω)dxdy −
∫
Ωs

(δε (u))T C̃ (x, κz, ω) ε (u) dxdy

+

∫
∂Ωs

δuTtc (x, κz , ω) ds−
∫
∂Ωs

δuTp0
∂n (u)

∂u
uds = 0.

(2.44)

The cross-section of the waveguide is discretized in the prestressed configuration C
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Figure 2.1: Fundamental configurations for the wave propagation problem in pre-
stressed waveguides.

by means of a planar mesh of Nel bidimensional finite elements with area Ωe
s, boundary

∂Ωe
s and 3 degrees of freedom per node associated to the three displacements compo-

nents ui. Assuming an in-plane linear mapping from the reference element identified

by the area Ωref
s and boundary ∂Ωref

s to the corresponding area Ωe
s and boundary ∂Ωe

s

of the generic eth element of the mesh (see Fig. 2.1), the semi-isoparametric represen-

tation results in an uncoupled description of the out-of-plane and in-plane motion. The

displacement vector u (x, z, t) within the eth element is approximated as

u (ξ, z, t) = N (ξ)qe (z, t) on Ωe
s (2.45)

u (η, z, t) = N (η)qe (z, t) on ∂Ωe
s (2.46)

where N (ξ) and N are matrices containing the shape functions in the natural coordi-

nates ξ = (ξ1, ξ2) and η on Ωref
s and ∂Ωref

s , respectively, while qe (z, t) is the vector of
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nodal displacements (see Fig. 2.1).

Using the Fourier transforms in Eq. (2.34) and (2.35), the displacement vectors on

Ωe
s and ∂Ωe

s in the wavenumber-frequency domain are rewritten as

u (ξ, κz, ω) = N (ξ)qe (κz , ω) on Ωe
s (2.47)

u (η, κz , ω) = N (η)qe (κz, ω) on ∂Ωe
s (2.48)

while the Fourier-transformed vectors corresponding to the increments of volume and

surface loads become fc (ξ, κz , ω) and tc (η, κz , ω). The transformed kinematic relation

given in Eq. (2.7) is

ε (ξ, κz, ω) =
[
Bxy (ξ) + iκzBz (ξ)

]
qe (κz, ω) , (2.49)

where

Bxy (ξ) =

[
L x

∂N (ξ)

∂ξi

∂ξi
∂x

+ L y
∂N (ξ)

∂ξi

∂ξi
∂y

]
, (2.50)

Bz (ξ) = L zN (ξ) . (2.51)

Finally, the vector of nonlinear strain components given in Eq. (2.8) transformed in the

wavenumber-frequency domain takes the form

εNL (ξ, κz , ω) =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(qe)T
(
N (ξ)

∂ξi

∂ξi
∂x

)T (
N (ξ)

∂ξi

∂ξi
∂x

)
qe

(qe)T
(
N (ξ)

∂ξi

∂ξi
∂y

)T (
N (ξ)

∂ξi

∂ξi
∂y

)
qe

−κ2z (q
e)T (N (ξ))TN (ξ)qe

2iκz (q
e)T

(
N (ξ)

∂ξi

∂ξi
∂y

)T

N (ξ)qe

2iκz (q
e)T

(
N (ξ)

∂ξi

∂ξi
∂x

)T

N (ξ)qe

2 (qe)T
(
N (ξ)

∂ξi

∂ξi
∂x

)T (
N (ξ)

∂ξi

∂ξi
∂y

)
qe

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.52)

The discretized equations of motion can be derived for the translational invariant waveg-

uide by observing that the relationship between an infinitesimal area dxdy and the

corresponding volume in the reference system dξ1dξ2 is given by dxdy = Je
s (ξ) dξ1dξ2,

with Je
s (ξ) = det[∂x/∂ξ] denoting the Jacobian of the isoparametric mapping in the

x − y plane. Using these relations, one can compute the area integrals over finite
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elements as
∫
Ωe

s
(·) dxdy =

∫
Ωref

s
(·) Je

s (ξ) dξ1dξ2.

Similarly, the relation between an infinitesimal surface area of the waveguide in

the prestressed and reference configurations can be written as ds = Je
s (η) dη, where

the Jacobian of the in-plane transformation is now given by Je
s (η) = ‖(∂x/∂η) × n3‖,

in which n3 denotes the unit vector along the z-direction. Therefore, each boundary

integral can be written at the finite element level as
∫
∂Ωe

s
(·) ds = ∫

∂Ωref
s

(·)Je
s (η) dη.

The linearized change of orientation of the surface normal due to the displacement

u (x, t) can be obtained as the vector product between the tangential displacement at x

in the x− y plane and the unit vector in the z-direction. Introducing the linearization

[Bonet and Wood, 2008; Wriggers, 2008]

Dun (u) =
∂n (u)

∂u
u =

∂u
∂η × n3

‖∂x
∂η × n3‖

, (2.53)

and using the relation Je
s (η) = ‖(∂x/∂η) × n3‖, one obtains

∂n (u)

∂u
u =

1

Je
s (η)

(
∂u

∂η
× n3

)
. (2.54)

which allows to write the last boundary integral in Eq. (2.44) for the eth finite element

as ∫ +∞

−∞

∫
∂Ωref

s

−p0 (δu)
T ∂n (u)

∂u
uJe

s (η) dηdz

=

∫ +∞

−∞

∫
∂Ωref

s

−p0 (δu)
T

(
∂u

∂η
× n3

)
dz.

(2.55)

As it can be noted, the final form of the surface integral in Eq. (2.55) is irrespective of

the actual geometry of the element in the prestressed configuration.

Substituting Eqs. (2.47), (2.48), (2.49), (2.52) and (2.55) into Eq. (2.44), after some

algebra the following linear system of M equations in the (κz, ω) domain is obtained

[
κ2z

(
K3 +Kσ0

zz

)
+ iκz

(
K2 −KT

2 +Kσ0
yz

−KT
σ0
yz

+Kσ0
xz

−KT
σ0
xz

)
+K1 +Kσ0

xx
+Kσ0

yy
+Kσ0

xy
+KT

σ0
xy

−Kp

]
Q (κz, ω)

= Fv (κz , ω) + Fb (κz, ω)

(2.56)

where the dynamic stiffness matrices Ki, the mass matrix M and the global vectors

of nodal displacements Q (κz, ω), volume forces Fv (κz, ω) and surface forces Fb (κz, ω)
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are expressed as

K3 =

Nel⋃
e=1

∫
Ωref

s

BT
z (ξ) C̃e (ξ, ω)Bz (ξ)J

e
s (ξ) dξ1dξ2 (2.57)

K2 =

Nel⋃
e=1

∫
Ωref

s

(Bxy (ξ))
T C̃e (ξ, ω)Bz (ξ)J

e
s (ξ) dξ1dξ2 (2.58)

K1 =

Nel⋃
e=1

∫
Ωref

s

(Bxy (ξ))
T C̃e (ξ, ω)Bxy (ξ) J

e
s (ξ) dξ1dξ2 (2.59)

M =

Nel⋃
e=1

∫
Ωref

s

ρe (N (ξ))T N (ξ)Je
s (ξ) dξ1dξ2 (2.60)

Kσ0
xx

=

Nel⋃
e=1

∫
Ωref

s

σ0
xx (ξ)

(
N (ξ)

∂ξi

∂ξi
∂x

)T (
N (ξ)

∂ξi

∂ξi
∂x

)
Je
s (ξ) dξ1dξ2 (2.61)

Kσ0
yy

=

Nel⋃
e=1

∫
Ωref

s

σ0
yy (ξ)

(
N (ξ)

∂ξi

∂ξi
∂y

)T (
N (ξ)

∂ξi

∂ξi
∂y

)
Je
s (ξ) dξ1dξ2 (2.62)

Kσ0
zz

=

Nel⋃
e=1

∫
Ωref

s

σ0
zz (ξ) (N (ξ))TN (ξ) Je

s (ξ) dξ1dξ2 (2.63)

Kσ0
yz

=

Nel⋃
e=1

∫
Ωref

s

σ0
yz (ξ)

(
N (ξ)

∂ξi

∂ξi
∂y

)T

N (ξ) Je
s (ξ) dξ1dξ2 (2.64)

Kσ0
xz

=

Nel⋃
e=1

∫
Ωref

s

σ0
xz (ξ)

(
N (ξ)

∂ξi

∂ξi
∂x

)T

N (ξ)Je
s (ξ) dξ1dξ2 (2.65)

Kσ0
xy

=

Nel⋃
e=1

∫
Ωref

s

σ0
xy (ξ)

(
N (ξ)

∂ξi

∂ξi
∂x

)T (
N (ξ)

∂ξi

∂ξi
∂y

)
Je
s (ξ) dξ1dξ2 (2.66)

Kp =

Nel⋃
e=1

(e∈∂Ωs)

∫
∂Ωe

s

−p0 (N (η))T

⎡
⎢⎣

0 1 0

−1 0 0

0 0 0

⎤
⎥⎦ ∂N

∂η
dη (2.67)

Q =

Nel⋃
e=1

qe (κz, ω) (2.68)

Fv =

Nel⋃
e=1

∫
Ωe

s

(N (ξ))T fc (κz, ω) J
e
s (ξ) dξ1dξ2 (2.69)

Fb =

Nel⋃
e=1

(e∈∂Ωs)

∫
∂Ωe

s

(N (η))T tc (κz, ω) J
e
s (η) dη. (2.70)
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in which
⋃Nel

e=1 a finite element assembling procedure over the Nel elements of the mesh.

The above integrals can be evaluated numerically using the Gauss-Legendre quadrature

rule [Stroud and Secrest, 1996; Wriggers, 2008].

The algebraic system in Eq. (2.56) does not represents a complete general form

of the possible load conditions since it has been derived making the assumption of

invariant initial stresses and mechanical properties along the z direction, i.e.

σ0 (x, κz) = σ0 (x) , (2.71)

C̃ (x, κz , ω) = C̃ (x, ω) . (2.72)

In some practical situations this statement may not be representative of the actual

stress distribution in the waveguide. In these situations, the various operators defined

in Eqs. (2.61)-(2.66) still remain formally unchanged but their positions inside the final

system of Eq. (2.56) may vary.

Moreover, it can be noted that the particular case of closed boundary ∂Ωs and

constant hydrostatic pressure p0 preserves the symmetry of Kp, that is in general

unsymmetric. In force of this property, one can assume an incremental pressure pseudo

potential DuVp = 1
2Q

TKpQ and DuδVp = δQTKpQ, which is the particular case of

nonconservative work considered in the rest of this chapter.

Considering only the free vibrations, i.e. Fv (κz, ω) = 0 and Fb (κz, ω) = 0, the ap-

plication of the FE-discretized waveguide Eq. (2.56) yields the following M -dimensional

homogeneous wave equation

[
κ2z

(
K3 +Kσ0

zz

)
+ iκz

(
K2 −KT

2 +Kσ0
yz

−KT
σ0
yz

+Kσ0
xz

−KT
σ0
xz

)
+K1 +Kσ0

xx
+Kσ0

yy
+Kσ0

xy
+KT

σ0
xy

−Kp

]
Q (κz, ω) = 0.

(2.73)

Eq. (2.73) represents a twin parameter generalized eigenproblem in κz and ω, where for

dissipative materials the stiffness matrices Ki result to be complex. The eigenvectors

Qm (κz, ω), describe the cross sectional deformation of the wave whereas the wavenum-

bers, κmz , describe the wave propagation and decay (κz = Re (κz) + iRe (κz)). The

frequency ω is assumed real and the frequency range is usually known. Consequently,

complex valued wavenumbers and associated wavestructures are calculated as κz (ω)

and Q (κz (ω)).

For the sake of simplicity, Eq. (2.73) can be rewritten in a more compact form as

[
κ2zK

′
3 + iκzK

′
2 +K′

1 − ω2M
]
Q (κz, ω) = 0, (2.74)
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where

K′
3 = K3 +Kσ0

zz
, (2.75)

K′
2 = K2 − (K2)

T +Kσ0
yz

−
(
Kσ0

yz

)T
+Kσ0

xz
− (

Kσ0
xz

)T
, (2.76)

K′
1 = K1 +Kσ0

xx
+Kσ0

yy
+Kσ0

xy
+KT

σ0
xy

−Kp (2.77)

The second order eigenvalue problem in Eq. (2.74) can be recasted in the following

eigensystem with first-order wavenumber κz by doubling its algebraic size (state-space

solution) [
A− κzB

]
Q̄ (κz , ω) = 0 (2.78)

in which

A =

[
0 K′

1 − ω2M

K′
1 − ω2M −iK′

2

]
, (2.79)

B =

[
K′

1 − ω2M 0

0 −K′
3

]
, (2.80)

are complex matrices of dimension 2M × 2M and

Q̄ =

[
Q

κzQ

]
(2.81)

is a complex vector of dimension 2M × 1.

2.6 Dispersion analysis

2.6.1 General solutions for lossy and lossless materials

The eigenvalue problem in Eq. (2.78) consists in finding the set of generally com-

plex valued scalars κmz = am + ibm and the set of corresponding complex eigenvectors

Q̄m = Φ̄m + iΨ̄m for a given real frequency ω > 0. The number of eigenvalues and

corresponding eigenvectors is equal to 2M . For an attenuating system in vacuum, i.e.

viscoelastic materials are considered and the stress-strain relation is described by the

complex moduli matrix C̃ (ω), all the solutions are complex κmz = Re (κmz ) + iIm (κmz ),

indicating that all the possible guided modes, propagative and evanescent, are atten-

uated. The complex eigenvalues appear in the following two different types of pairs
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κmz = ± (am + ibm) , Q̄m = ± (
Φ̄m + iΨ̄m

)
,

κmz = ± (cm − idm) , Q̄m = ± (
Φ̄m − iΨ̄m

)
,

(2.82)

where a, b, c and d are positive arbitrary values. Substituting Eq. (2.82) into Eq. (2.33)

allows to rewrite the wavenumber-frequency dependence in the form

exp [i (κzz − ωt)] = exp [i ((Re (κz) + iIm (κz)) z − ωt)] (2.83)

= exp [i (Re (κz) z − ωt)] exp [−Im (κz) z] (2.84)

from which it possible to observe that the real part of any scalar or vectorial field

represents the propagative part while the imaginary part is an exponential envelope

of the wave. The propagative harmonic part of the field is described by a constant

phase argument exp [iφ] = exp [i (Re (κz) z − ωt)]. Thus for a given wavenumber and

frequency, while t is increasing the value of z has to change in order to accommodate

the property of constant phase φ. For example, for a wave with positive real part of

the wavevector re (κz) > 0, if the time increases the sign of z has to be positive and its

value has to increase in order to maintain φ = cost.

based on these considerations, a positive Re (κz) indicate a wave traveling in the pos-

itive direction of the z-axis (right propagating wave), while a negative Re (κz) denotes

a wave traveling in the negative direction (left propagating wave). Since the solution

is symmetric, for any wave propagating in the positive direction a corresponding wave

is propagating in the negative direction.

From the analysis of the solutions, one can observe that only the eigenvalues for

which the exponential term exp[−iIm (κz)] < 1 are of interest. In fact, since for ther-

modynamic reasons no energy is added to the system during the free propagation phe-

nomena, all the solutions with exp[−iIm (κz)] > 1 corresponding to waves increasing in

magnitude while propagating are to be discarded because nonphysical. Thus, for waves

propagating in the positive direction (Re (κz)) for which sign(z) = +, an acceptable

physical solution requires Im (κz) ≥ 0, so that exp[−iIm (κz)] ≤ 0 describes a decaying

(Im (κz) > 0) or a non-attenuated (Im (κz) = 0) wave.

In the opposite case, i.e. for a wave that propagates in the negative z-direction, a

physical solution would require Im (κz) ≤ 0 in order to have an attenuated or wave or a

wave with constant amplitude. Thus, among all the possible solutions Eqs. (2.83) and
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(2.84)

κmz = +(am + ibm) → exp [i (amz − ωt)] exp [−bmz] (attenuated wave), (2.85)

κmz = − (am + ibm) → exp [i (−amz − ωt)] exp [+bmz] (attenuated wave),

(2.86)

κmz = +(cm − idm) → exp [i (cmz − ωt)] exp [+dmz] (nonphysical), (2.87)

κmz = − (cm − idm) → exp [i (−cmz − ωt)] exp [+dmz] (nonphysical), (2.88)

(2.89)

only the solutions of type Eq. (2.83) are physical, while the type in Eq. (2.84) have no

physical meaning, since correspond to waves with amplitude that grows while propagat-

ing. Therefore, from the full set of eigensolutions [κmz (ω) , Q̄m (ω)] (m = 1, 2, ..., 2M)

obtained from Eq. (2.78), only those of type κmz (ω) = ±[Re (kmz )+iIm (kmz )] are selected

along with their corresponding eigenvectors.

For the situation in which elastic materials are considered, the stress-strain relation

is governed only by the storage modulus C̃ = Re (C) since the loss moduli becomes

null. In this case the wavenumbers can be real, imaginary or complex.

The real eigenvalues correspond to real eigenvectors. In such a case, the real scalars

are the wavenumbers of propagative elastic waves κmz (ω), while the upper part of the

corresponding eigenvector Q̄m = [Qm, κzQ
m]T describes the propagative modes of the

cross section of the waveguide. The real eigenvalues appear in pairs of opposite sign,

which indicates two waves propagating in opposite directions,

κmz = ±a, Q̄m = ±Φm. (2.90)

The purely imaginary solutions for the wavenumber correspond to the exponentially

decaying near fields, which generally do not transport any appreciable mechanical en-

ergy, unless the length of the waveguide is small. These evanescent modes are also

known as end modes, referring to the fact that their presence is necessary to satisfy

the condition of traction free in a boundary problem or in the study of wave reflection.

They also appear in pairs of opposite sign. The corresponding eigenvectors are purely

imaginary,

κmz = ±ib, Q̄m = ±iΨ̄m. (2.91)

The complex wavenumbers and corresponding complex modes appear in groups of four

and are the evanescent modes. Each of the waves has two components. The real part
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of the solution represents the propagative part of the field while the imaginary part is

an exponential envelope of the wave,

κmz = ± (a∓ ib) , Q̄m = ±Φ̄m ∓ iΨ̄m. (2.92)

Following what stated before in the general case, some of this solutions can be discarded

because physically not acceptable.

2.6.2 Dispersive parameters

The solutions obtained from the eigenvalue problem in Eq. (2.78) are post-processed

to extract the dispersive characteristics of guided modes for the given geometry and

materials of the waveguide. Since the eigenproblem is solved in the axial wavenumbers

and associated wavestructures for any fixed ω > 0, the dispersion spectra are graphically

represented as continuous or discontinuous lines which are plotted as a function of the

frequency.

The dispersion spectra of more practical interest are those of the real wavenumber

(Re [κz (ω)]), phase velocity (cp (ω)), attenuation (α (ω)), group velocity (cg (ω)) and

energy velocity (ce (ω)). The first three do not necessitate post-processing operations

since can be directly obtained from the real and imaginary parts of the computed

wavenumbers. On the other hand, the group and energy velocity require further elab-

orations. In the following sections, each dispersion parameter is described from the

mathematical and physical point of view. The following sections give a description of

each fundamental dispersion parameter from both the mathematical and physical point

of view. In particular, in sec: 2.6.2.5 the derivation of a new modal formula for the

energy velocity extraction is proposed.

2.6.2.1 Real wavenumber

The real part of the axial wavenumber displays the relationship between the tempo-

rary and spatially varying wave characteristics of the guided mode along the direction

of propagation, and is generally given in radians per meter [Pavlakovic, 1998]. The

real wavenumber of the generic mth propagative mode is inversely related to its the

wavelength by the equation

wavelengthm (ω) =
2π

Re [κmz (ω)]
. (2.93)
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As can be noted, the frequency-real wavenumbers spectra can be traced from the full

set of eigensolutions without the need of post-processing operations. Moreover, since

these spectra appear as straight lines, they are generally used along their corresponding

eigenvectors in mode sorting operations. A routine that is able to track the various

modes is particularly useful, especially at high frequencies where an high number of

modes is generally found and it becomes difficult to discriminate between various modes.

To effectively represent dispersion curves, a routine that is based on wavenumbers

sorting and eigenvectors correlations has been used in this thesis to trace continuous

dispersion curves.

2.6.2.2 Phase velocity

The phase velocity of a guided wave describes the rate at which individual crests of the

wave move [Pavlakovic, 1998] and is related to the real part of the axial wavenumber

through the relation

cmp (ω) =
ω

Re [κmz (ω)]
. (2.94)

Since the real part of the axial wavenumber appears in both Eqs. (2.93) and (2.94),

the real wavenumber and phase velocity spectra show the same informations. However,

the phase velocity view is more convenient to use for realistic ultrasonic testing, since

it emphasizes the velocity changes due to the guided nature of the modes [Pavlakovic,

1998].

2.6.2.3 Attenuation

The attenuation parameter is expressed by the relationship

αm (ω) = Im [κz (ω)] (2.95)

and gives an information on the energy lost by the guided mode per unit distance

traveled. This parameter is generally measured in Nepers per meter (Np/m) or, al-

ternatively, in Decibels per meter, being the relation between the two: αm
[dB/m] =

20log10[exp(α
m
[Np/m])].

Since the amplitude of the wave has an harmonic wavenumber-frequency depen-

dence of type exp[i(κzz − ωt)], an attenuation of 1 Np/m denotes that the amplitude

of the guided wave is reduced of exp(−α) after traveling one meter.

The attenuation of guided mode can be related to various phenomena: if the waveg-

uide is elastic and immersed in vacuum, then the attenuation is zero and the amplitude
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of the guided mode is constant along the direction of propagation. In case of dissipative

materials, both the bulk and guided waves are attenuated along their corresponding

propagation directions.

2.6.2.4 Group velocity

As stated in [Rose, 2004], the group velocity corresponds to the propagation velocity

of a group (or packet) of waves having similar frequency. Mathematically, it is defined

as derivative of the frequency-wavenumber dispersion relation

cg (ω) =
∂ω

∂κz (ω)
(2.96)

and it may be numerically calculated by the values of wavenumbers and frequencies of

two adjacent points in the spectra.

The knowledge of the group velocity in practical application is of fundamental im-

portance, since it provides an information on the dispersion of a wave packet generated

in the structure in a certain frequency range. The dispersion of the wave packet is

directly related to the slope of the group velocity in the given frequency range. If

the difference between the group velocity of each frequency component is large, then

the packet is formed by waves that travels at different velocities, causing the signal

to change shape while propagating in the structure. On the other hand, if the group

velocities are similar, the shape of the wave packet is maintained, so that the signal

recorded has the same shape of the signal generated at a certain distance.

A closed formula for the computation of group velocity in lossless media and for

axial loads only (σ0
zz 
= 0) has been already proposed in the literature [Loveday, 2009].

If the geometric stiffness terms related to the nonzero initial stress components σ0
yz and

σ0
xz in Eqs. (2.64) and (2.65) are introduced to take into account for a complete three

dimensional prestress field, the formula proposed by Loveday [2009] becomes

cmg (ω) =
∂ω

∂κmz
=

(Qm)T
[
TH

(
K2 +Kσ0

yz
+Kσ0

xz

)
T+ 2κmz (ω)

(
K3 +Kσ0

zz

) ]
Q

2ω (Qm)TMQ
,

(2.97)

whereas in the original formula only the geometric stiffness operator Kσ0
zz

was taken

into account. Eq. (2.97) is still valid for the case of general initial stress, with the

exception that the operator Ki inglobes also the geometric stiffness terms related to

the nonzero initial stress components σ0
yz and σ0

xz defined in Eqs. (2.64) and (2.65).

In Eq. (2.97) T is an M × M identity matrix with the imaginary unit substituted in
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correspondence of each degree of freedom in the z direction and H denotes the complex

conjugate transpose (Hermitian).

As well stated in the literature [Achenbach, 1973; Brillouin, 1960; Whitam, 1974],

the equivalence between the group velocity cgr and the velocity of energy transportation

ce is guaranteed by the Lighthill theorem [Biot, 1957; Lighthill, 1965] only in the general

case of dispersive uniform lossless media, for which the central wavenumber of the wave

packets traveling at infinitely close frequencies is conserved. On the contrary, the

dissipation mechanism in nonconservative systems leads to complex wavenumbers and,

as a consequence, the group velocity loses significance and the meaningful parameter

becomes the energy velocity [Davidovich, 2010; Gerasik and Stastna, 2010].

2.6.2.5 Energy velocity

The energy velocity is a real scalar that defines the velocity at which the energy carried

by a wave packet at infinitely close frequencies travels down the structure. This concept

correspond to a generalization of the group velocity and therefore the energy velocity

also represents a generalization of the group velocity, being ce (ω) = cg (ω) for non-

attenuated modes [Achenbach, 1973; Davidovich, 2010; Gerasik and Stastna, 2010].

The rate of transfer of the energy is determined as the ratio between the energy

flux density per unit of time and the total energy density of the system, which follows

from the application of the energy conservation law [Chang and Ho, 1995; Holzapfel,

2000]
DK

Dt
+ Pint + PD = Pv

ext + Ps
ext (2.98)

where the stress power Pint, the viscous power loss PD, the power supplied on the

system by the external volume forces Pv
ext and the power supplied by the external

surface forces, Ps
ext, are expressed, in the order, as

Pint + PD =

∫
V
Ξ (u) : Ḟ (u)dxdydz (2.99)

Pv
ext =

∫
V
u̇Tfcdxdydz (2.100)

Ps
ext =

∫
∂V

u̇T (tc − pn)dsdz (2.101)

in which Ξ (u) denotes the 1st Piola-Kirchhoff stress tensor [Bonet and Wood, 2008;

Wriggers, 2008]. Eq. (2.98) can be recasted in linear incremental form by introducing

the positions in Eqs. (2.99)-(2.101) and applying the usual linearization concept. Using
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the power equivalence∫
V
Ξ (u) : Ḟ (u)dxdydy =

∫
V
S (u) : Ė (u)dxdydy (2.102)

and considering a constant pressure p = p0 applied to closed boundary conditions

during the motion (i.e. no fluid-structure interaction), yields to

∂

∂t

(
K +DuW −DuVp

)
=

∫
V
u̇Tfc (x, z, t)dxdydy +

∫
∂V

u̇Ttc (x, z, t)dsdz (2.103)

which represents the incremental form of the balance of energy in material description.

Looking at the second integral on the right hand side of Eq. (2.103) in terms of in-

cremental equilibrium at the boundary surface of the solid, it can be recognized that

DuΞ (u)n = tc (x, z, t) (2.104)

where, in force of the relation [Bonet and Wood, 2008; Wriggers, 2008]

Ξ (u) = F (u)S (u) (2.105)

the linearized incremental 1st Piola-Kirchhoff stress tensor can be computed as

DuΞ (u) = Du [F (u)S (u)]

= (DuF (u)) S (u)|u=0 + F (u)|u=0DuS (u) ,
(2.106)

from which, substituting the following identities

DuF (u) = ∇u,

S (u)|u=0 = σ0 (x, z) ,

F (u)|u=0 = I,

DuS (u) =

∫ t

−∞
C (x, z, t− τ) :

∂e
(
u (x, z, τ)

)
∂τ

dτ,
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one obtains

DuΞ (u) = ∇uσ0 (x, z) +

∫ t

−∞
C (x, z, t− τ) :

∂e
(
u (x, z, τ)

)
∂τ

dτ. (2.107)

Multiplication of Eq. (2.107) by n and substitution inside the boundary integral on

the right hand side of Eq. (2.103) leads finally to the incremental form of the Poynting

theorem in material description

∂

∂t

(
K +DuW −DuVp

)
+

∫
∂V

−(
DuΞ (u)

)T
u̇ · nda = Pv

ext, (2.108)

where −(
DuP (u)

)T
u̇ is the linearized incremental Poynting vector in material descrip-

tion. This entity expresses the energy flux in the current configuration Ct per unit of

area in the prestressed configuration C when a small displacement u (x, z, t) is applied.

Given the harmonic behaviour of the wave process, the time derivative can be

replaced by the average over a time period [t, t+ 2π/ω], leading to

〈
K +DuW −DuVp

〉
+

∫
∂V

〈
DuJ (u) · n

〉
da =

〈
Pv

ext

〉
, (2.109)

where 〈 〉 = ω
2π

∫ t+ 2π
ω

t dt denotes the time average operation and the incremental Poynt-

ing vector DuJ (u) = −[
DuΞ (u)

]T
u̇ in the wavenumber-frequency domain takes the

form

DuJ (u) = −iω
[
σ0 (x, κz)

(∇u
)T

+ C̃ (x, κz, ω) : e (u)
]
u. (2.110)

Once the wave solution is known from the eigenvalue problem of Eq. (2.74) in terms

of κmz (ω) and Qm (ω) for the mth propagating mode, the previous quantities are only

function of the angular frequency ω. Based on the Umov’s definition [Davidovich, 2010],

the energy velocity for the mth propagating mode is then obtained as the ratio between

the average energy flux component projected along the z-direction and the total energy

density of the waveguide at the given angular frequency ω

cme (ω) =

∫
Ωs

〈
DuJ

m (ω) · n3

〉
dΩs〈

K m (ω) +DuW m (ω)
〉∣∣∣

Ωs

−
〈
DuV m

p (ω)
〉∣∣∣

∂Ωs

. (2.111)

As shown in other works [Treyssède, 2008], Eq. (2.111) can be rewritten making use

of the matrix operators previously defined in Eqs. (2.57)-(2.66). For the incremental

energy flux in the z direction, using Eq. (2.110) and the compatibility operator Lz, one
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obtains〈
DuJ

m (ω) · n3

〉
=

ω

2
Im

[(
um

)H (
σ0
13

∂um

∂x
+ σ0

23

∂um

∂y
+ iκmz (ω) σ0

33u
m + L T

z C̃εm
)] (2.112)

Substituting the expressions in Eq. (2.47) and recalling the operators in Eqs. (2.57),

(2.58), (2.63), (2.64) and (2.65), the integral of the energy intensity flux over the waveg-

uide cross section reads∫
Ωs

〈
DuJ

m (ω) · n3

〉
dΩs

=
ω

2
Im

{(
Qm

)H
[
KT

σ0
xz

+KT
σ0
yz

+KT
2 + iκmz (ω)

(
K3 +Kσ0

zz

)]
Qm

} (2.113)

while the time average incremental kinetic energy, stored and dissipated energy, as well

as the average nonconservative work are defined respectively as

〈K m (ω)〉|Ωs
=

ω2

4
Re

[(
Qm

)H
MQm

]
, (2.114)

〈DuW m (ω)〉|Ωs
=

1

4
Re

{(
Qm

)H
[(
κmz (ω)

)2(
K3 +Kσ0

zz

)
+

+ iκmz (ω)
(
K2 −KT

2 + 2Kσ0
yz

+ 2Kσ0
xz

)
+ (2.115)

+K1 +Kσ0
xx

+Kσ0
yy

+ 2Kσ0
xy

]
Qm

}
,

〈
DuV m

p (ω)
〉∣∣

∂Ωs
=

1

4
Re

[(
Qm

)H
KpQ

m

]
. (2.116)

Substituting Eqs. (2.113), (2.114), (2.115) and (2.116) into Eq. (2.111) provides the

energy velocity for the assumed mth guided mode at given frequency ω. This rela-

tion holds for a generic 3D prestress field and linear elastic and viscoelastic materials.

Moreover, it can be verified that Eq. (2.97) is exactly recovered by Eq. (2.111) for the

case of lossless materials.

2.7 Numerical applications

2.7.1 Viscoelastic rail under thermal-induced axial stress

Residual stresses represent a fundamental issue in the railway production and mainte-

nance since they affect negatively the rail resistance, compromise integrity and reduce
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Figure 2.2: Finite element mesh used for the dispersion curves extraction in sections
2.7.1 and 2.7.2.

durability. While the presence of high compressive stresses is generally related to buck-

ling problems, especially under hot temperatures, tensile stresses represent a vehicle for

crack initiation and propagation. Moreover, some geometrical characteristics of the rail

such as straightness and flatness of the running surface can be deteriorated with loss

in comfort. Therefore, it is of great importance for railways companies to monitorize

the state of stress of the generic cross section of the rail.

Some numerical investigations on the effect of a constant axial prestress σ0
zz along

with some proposed techniques based on guided waves for the stress magnitude mea-

surement can be found in [Bartoli et al., 2010; Chen and Wilcox, 2007; Loveday, 2009;

Loveday and Wilcox, 2010]. In these works only perfectly elastic materials are con-

sidered. The purpose of this numerical example is to show the effect of the material

attenuation on the dispersive behaviour of guided waves propagating in the rail sub-

jected to a positive axial elongation ε0zz = 0.1%.

In the following examples a standard A113 rail is considered. The mesh used is

represented in Fig. 2.2, which is composed of 125 nodes and 182 triangular elements

with linear shape functions. The steel in the prestressed configuration is considered as

a hysteretic linear viscoelastic material with mass density ρ = 7800 kg/m3, longitu-

dinal and shear bulk waves equal to cL = 6005 m/s and cS = 3210 m/s respectively,

longitudinal bulk wave attenuation κL = 0.003 Np/λ and shear bulk wave attenuation

κS = 0.043 Np/λ. Following Lowe [1992], the complex bulk velocities, Young’s modulus
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and Poisson’s ratio can be expressed as

c̃L,S = cL,S

(
1 + i

κL,S
2π

)−1

, (2.117)

Ẽ = ρc̃S

(
3c̃2L − 4c̃2S
c̃2L − c̃2S

)
, (2.118)

ν̃ =
1

2

(
c̃2L − 2c̃2S
c̃2L − c̃2S

)
, (2.119)

from which one obtains the complex Lamè constants and the tensor of complex moduli

λ̃ =
Ẽν̃(

1 + ν̃
)(
1− 2ν̃

) , (2.120)

μ̃ =
Ẽ

2
(
1 + ν̃

) , (2.121)

C̃ijkm = λ̃δijδkm + μ̃ (δikδjm + δimδjk) , (2.122)

to be used into the incremental stress-strain relations in Eq. (2.36). It should be noted

that the tensor of complex moduli remains independent from the angular frequency ω,

in agreement with the assumed hysteretic behaviour of the material. Therefore, there

is no need to update it at each frequency step performed in the eigenvalue problem of

Eq. (2.73) and the matrices in Eqs. (2.57)-(2.67) can be computed once at the beginning

of the analysis.

The dispersion results in the 0 ÷ 10 kHz frequency range are depicted in Fig. 2.3

for the first five low order modes. The mode identification assumed here is the same

adopted in [Bartoli et al., 2006], where the flexural-like modes m1 and m4 as well as

the torsional-like mode m2 result to be antisymmetric with respect to the x− z plane

while the flexural-like mode m3 and the extensional-like mode m5 are symmetric. The

three plots represented in the left hand side of Fig. 2.3 show the phase velocity, energy

velocity and attenuation dispersion curves for the elastic and viscoelastic rail without

applied loads. It can be noted that the phase velocity and the energy velocity of the

first five modes are almost unaffected by the presence of the material attenuation. The

three graphs on the right hand side of Fig. 2.3 report the variations of the corresponding

quantities due to the applied axial stress σ0
zz = 0.001Re

(
Ẽ
)
. As it can be seen, the

presence of an axial load leads to an increase in the phase velocity for the two flexural-
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like modes m1 and m3 at very low frequencies, which corresponds to a decrease of

about 40 m/s in the energy velocity. It is interesting nothing that the maximum shift

in the attenuation is located at about 4.5 kHz for the m1 mode and 6.2 kHz for the

m3 mode. This trend is in contrast with the one observed for the shift in phase and

energy velocity of the two modes, which present their maximum for a frequency value

approaching zero. Due to the decrease in attenuation, it follows that mode m3 at

around 6 kHz could be a good candidate for revealing the state of σ0
zz prestress in the

waveguide.

The torsional-like mode m2 shows a positive Δcp along the entire frequency range

considered due to the tensile σ0
zz. However, its energy velocity shows both positive

and negative variations. The frequency values in correspondence of the maximum

and minimum shift in the attenuation for the m2 mode are approximatively those with

minimum and maximum shift on the energy velocity. Similar behaviour can be observed

also for the two flexural-like modes m1 and m3. Similarly to the previous modes, the

flexural-like mode m4 presents an increase in the phase velocity for the entire frequency

range, and an alternate trend for both energy velocity and attenuation. It can be

noticed that while the flexural-like modes present their maximum shift in the phase

velocity at very low frequency values (about 0 kHz for the m1 and m3 modes and in

correspondence of the cutoff frequency for the m4 mode), the remaining two modes

do not show this behaviour. This is particularly evident for the m5 extensional-like

mode, which presents its maximum at about 6.7 kHz. Moreover, at the same frequency

value of about 6.5 kHz, the mode shows the maximum increase in the energy velocity

and the maximum decrease in the attenuation with respect to the unloaded case. The

maximum negative shift in the attenuation is not shown in the frequency-Δatt spectra

for representative reasons, and its value is −0.016 Np/m.
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Figure 2.3: Phase velocity, energy velocity and attenuation for the loaded and unloaded
cases. The first five modes m1, m2, m3, m4 and m5 are identified as in [Bartoli et al.,
2006].
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Figure 2.4: Percent variations between the loaded and unloaded cases for the axially
loaded rail. Thin lines denote positive variations while thick lines denote negative
variations.
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Figure 2.5: Reconstructed stress patterns for the roller straightened 113A standard
profile in [Keller et al., 2003].

2.7.2 Guided waves propagation in a new roll-straightened viscoelas-

tic rail

Residual stresses in rails do not depend only on the loads occouring during the ser-

vice life, but also with those arising from welding or manufacturing processes, which

can be very large. A principal source of residual stresses is represented by the roller

straightening, which is generally the last stage of the production cycle of the rail.

The residual stress formation in rails due to roller straightening has been intensively

investigated in the last years [Biempica et al., 2009; Keller et al., 2003; Ringsberg and

Lindbäck, 2003; Schleinzer and Fischer, 2001] and non destructive techniques, such as

guided waves, can be very useful to determine the state of stress. To show the effect

induced by the residual stress on the dispersive behaviour in new roll-straightened

rails, the stress patterns obtained by Keller et al. [Keller et al., 2003] for the standard

113A profile have been considered. In particular, transversal, vertical and longitudinal

contours of the residual stress are shown in Fig. 2.5 along with the finite element mesh.

The nonzero initial stress components σ0
xx, σ

0
yy and σ0

zz are assumed to vary linearly

over the generic finite element as a function of the stress value at each node, σ0
ii (ξ) =∑3

j=1Nj (ξ)
(
σ0
ii

)
j
, with the jth nodal stress value

(
σ0
ii

)
j
depending on the position

of the node itself inside a specific stress region. The remaining stress components are

neglected since of low order of magnitude.

The effect of the stress patterns on the guided waves dispersive characteristics is

presented in Fig. 2.6 in the frequency range 0÷ 10 kHz.

As previously noticed for the axially loaded rail, the dispersive behaviour for the
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first five low order modes is only slightly influenced except for the m2 mode, which

phase and energy velocity tend asymptotically to plus infinity and minus infinity for a

frequency value tending to zero, respectively. At the same time, the mode attenuation

decreases.

This particular behaviour is not observed in the axially loaded rail and is a conse-

quence of the presence of the transverse and vertical stresses σ0
xx and σ0

yy.
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Figure 2.6: Phase velocity, energy velocity and attenuation for the unloaded rail and
the roller straightened rail in [Keller et al., 2003].
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Figure 2.7: Percent variations between the loaded and unloaded case for the roller
straightened rail. Thin lines denote positive variations while thick lines denote negative
variations.
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2.7.3 Pipe under initial pressure loading

In many practical situations the loads applied on the waveguide are dependent upon

the deformation of the solid itself. This is the case, for instance, of a pressure acting

at the inner and outer surfaces of a pipe when it undergoes to stress wave propagation,

which is the case studied in this example.

The pressure fluctuations in the gas phase due to the solid-fluid interaction are

neglected and the pressure is assumed to be constant during the motion. The pipe

is considered sufficiently long to assume the cross-section in plain strain state in the

prestressed configuration C. For different inner and outer pressures pi and pe, the

generic point (xp, yp) of the pipe cross section with center in (x = 0, y = 0) is subjected

to the following nonzero components of initial stress (see Fig. 2.8)

σ0
xx, σ

0
yy =

[
c1

x2p + y2p
− c2

](
x2p, y

2
p

x2p + y2p

)
+

[
− c1

x2p + y2p
− c2

](
y2p, x

2
p

x2p + y2p

)

σ0
zz = Re

(
ν̃
)(

σ0
x + σ0

y

)
= −2Re

(
ν̃
)peR2

e − piR
2
i

R2
e −R2

i

(2.123)

where ν̃ is defined as in Eq. (2.119) and the constants c1 and c2 take the form

c1 =
R2

iR
2
e

(
pe − pi

)
R2

e −R2
i

c2 =
p2eR

2
e − p2iR

2
i

R2
e −R2

i

(2.124)

Positive values for the two pressures pi and pe produce compressive stresses σ0
xx and

σ0
yy, which vary quadratically along the pipe wall thickness, while the axial stress σ0

zz

is constant for each point of the waveguide. The geometric stiffness matrices ke
σ0
xx
, ke

σ0
yy

and ke
σ0
zz

can be calculated by integrating via Gauss quadrature the stresses defined in

Eq. (2.123) over each finite element. The numerical application considers an ASME 1-

1/2 Schedule 160 steel pipe (outside radius Re = 24.15 mm and inside radius Ri = 17.01

mm) subjected to a hydrostatic pressure gradient between the internal and the external

surfaces.

The steel in the prestressed configuration is assumed as isotropic and hysteretic

linear viscoelastic, having mass density ρ = 7800 kg/m3, longitudinal and shear bulk

waves equal to cL = 5963 m/s and cS = 3187 m/s respectively, longitudinal bulk wave

attenuation κL = 0.003 Np/λ and shear bulk wave attenuation κS = 0.008 Np/λ.

The complex bulk velocities as well as the tensor of complex moduli are computed

as in Eq. (2.117) and Eq. (2.122). In Fig. 2.9 solutions relative to five cases are repre-

sented considering the mesh of 112 nodes and 150 linear triangular elements depicted
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Figure 2.8: Finite element mesh of 112 nodes and 150 linear triangular elements for the
ASME 1-1/2 Schedule 160 pipe. The transversal stress contours are relative to an inner
pressure pi = 10 MPa and an outer pressure pe = 5 MPa (case 3). Negative values
denote compressive stresses.

in Fig. 2.8. All the cases are studied by taking a reference pressure pref = 5 MPa.

The continuous thick line denotes the stress free case (case 1), in which the pipe is

not subjected to any pressure gradient. The solutions for the remaining four cases

are obtained by varying the inner and outer pressures. In particular, the dashed line

denotes an internal pressure pi = pref and pe = 0 (case 2); the dotted line denotes that

pi = 2pref and pe = pref (case 3); the dash dotted line refers to pi = 0 and pe = pref

(case 4), and finally, the continuous thin line indicates an internal pressure pi = pref

and an external pressure pe = 2pref (case 5). As it can be seen in Fig. 2.9, the pres-

ence of a pressure gradient mostly affects the low order modes, essentially the torsional

mode T(0,1) and the two flexural modes F(1,1). The most significant effect for this two

modes is essentially related to changes in phase and energy velocities in the frequency

range between 0 and 1000 Hz, which becomes larger if one assumes pref > 5 MPa.

The presence of an internal pressure only (case 2) produces a decrease of the phase

velocity in the frequency range 0÷1000 Hz for the torsional mode T(0,1), which become

dispersive. At the same time, an increase of the phase velocity for the two flexural

modes F(1,1) is observed in the frequency range 0 ÷ 50 Hz, with a corresponding

decrement in the energy velocity. This is principally due to the fact that an internal

pressure produces a traction stress on the orthogonal direction z (see Eq. (2.124)), which

translates into an additional geometric stiffness contribute and, as a consequence, into
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an increased flexural waves velocity (see also [Chen and Wilcox, 2007; Loveday, 2009]).

Moreover, an increase of the wave attenuation is observed for the torsional mode T(0,1)

in the frequency range 0 ÷ 500 Hz, while a further drop in the wave attenuation for

the longitudinal mode L(0,1) is observed in the range 0 ÷ 100 Hz (phase and energy

velocities for this mode result to be substantially unchanged).

Dispersion curves for the cases 3, 4 and 5 show a similar behaviour. In these cases

the presence of an external pressure (lower than the internal pressure in the case 3 and

higher in the cases 4 and 5) produces always a cutoff frequency and an increment in the

phase velocity for the torsional mode T(0,1), which is limited to the frequency range

25÷ 250 Hz for the case 3 and 190÷ 1500 Hz and 240÷ 1500 Hz for the cases 4 and 5,

respectively. The related energy velocity is always increased for these cases.

In the same frequency ranges the wave attenuation of the T(0,1) mode is highly

reduced by the presence of the prestress field and the phase velocity for the two flexural

modes F(1,1) results to be lower than the stress-free case for each of the three cases

considered. An interesting observation can be made by noting the behaviour of the

flexural mode F(1,1) in case 2 and case 3. In fact, even if in both cases the axial stress

σ0
zz is positive, in case 2 the effect of the internal pressure increases the mode phase

velocity as a consequence of an increased geometric stiffness while in case 3 the extra

external pressure reduces the mode phase velocity. As previously noticed for the case

2, only very small changes can be observed for the F(1,1) wave attenuation at very

low frequencies, with a decrease on the attenuation values for the cases 3 and 4 and

an increase for the case 5. However, an increment in the wave attenuation (very small

for the case 3 and much higher for the cases 4 and 5) is observed for the longitudinal

mode L(0,1) while its speed is not substantially affected by the presence of the pressure

gradient.
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Figure 2.9: Phase velocity, energy velocity and attenuation for the ASME 1-1/2 Sched-
ule 160 pipe under different pressure gradients.
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Figure 2.10: Percent variations between the loaded and unloaded cases for the pres-
surized pipe. Thin lines denote positive variations while thick lines denote negative
variations.
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2.8 Conclusions

An extension of the Semi Analytical Finite Element (SAFE) formulation has been pro-

posed to include the effect of a three dimensional prestress field in viscoelastic waveg-

uides. Based on a semi-isoparametric discretization, the formulation of the problem

has been extended by taking into account high order terms in the strain-displacement

relations and complex elastic constants in the incremental stress-strain relations. The

energy velocity formula has been also revisited to include initial stress terms starting

from the balance law of the mechanical energy in material description. Some numeri-

cal investigation have been conducted on a 113A standard rail, considering hysteretic

materials.

The rail has been analyzed in the 0 ÷ 10 kHz frequency range, but knowledge

of high-frequency dispersion data (up to 100 kHz) can be very helpful for axial load

measurement.

For the case of an axial load only, the first flexural modes in the low frequency

range are the most influenced, showing generally an increase in the phase velocity and

a corresponding decrease in the energy velocity when a tensile load is applied. The phase

and energy velocities of the first modes are mostly sensitive in the very low frequency

range, although this does not happen for their corresponding wave attenuation, which

show the highest changes in magnitude for higher frequency values.

In the case of a roller-straightened rail, the simultaneous presence of both longitu-

dinal and transversal stresses modifies significantly the behaviour of the fundamental

torsional mode, while the sensitivity of the first flexural modes to the residual stress re-

sults to be highly mitigated with respect to the constant axial stress case. Although the

analysis have been conducted in a low frequency range, the knowledge of high-frequency

dispersion data (up to 100 kHz) can be very helpful for axial load measurement since

some higher order modes remain considerable sensitive, providing useful informations

in load detection schemes based on the measurement of the shift in phase produced by

the load itself.

The dispersive characteristic of guided waves propagating in a hysteretic ASME

1-1/2 Schedule 160 pipe have been also analyzed by considering the effect of a pressure

gradient between the inner and outer surfaces. Similarly to the roller-straightened

rail, the presence of the transversal (radial and circumferential) initial stresses affects

principally the first torsional modes, which becomes dispersive, while the principal

flexural mode are slightly influenced by the axial load which arise by considering the

pipe in plane stress state.
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Finally, it appears that the influence of the initial stress on the dispersive char-

acteristics of compact sections is large for low order modes at low frequencies while

higher order modes are generally less influenced. The reason is that at high frequencies

the geometric stiffness contribution becomes very small if compared with the elastic

stiffness contribution and therefore the wave propagation behaviour mainly depends

on the waveguide properties and it is slightly affected by the prestress state Chen and

Wilcox [2007].

Based on the proposed numerical examples, the frequency values corresponding to

the highest shift in the attenuation for the principal modes seem generally far to those

at which the highest shift in the phase and energy velocity are observed. This particular

behaviour could be deepened by assuming a different viscoelastic model as, for example,

the Kelvin-Voigt model or the Linear Standard Solid.

The proposed formulation is sufficiently general to cover also prestressed waveg-

uides of viscoelastic anisotropic materials and can be relevant in the design of several

long range non-destructive techniques based on guided waves. In particular, it can be

extremely helpful in the prediction of testing results for ultrasonic guided wave based

screening of roller straightened rails, where the stress state has to be limited to prevent

crack propagations and rail failures, as well as in pressurized pipelines carrying gases,

where the distance of propagation of guided waves is of primary importance.
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Chapter 3

Wave propagation in bounded

and unbounded waveguides: 2.5D

Boundary Element Method

3.1 Sommario

Nel presente capitolo viene descritta una formulazione basata sul metodo degli elementi

di contorno (Boundary Element Method) per il calcolo delle caratteristiche di disper-

sione di onde guidate in guide d’onda con sezione trasversale di estensione finita ed

infinita. La geometria dell’elemento longitudinale o della cavità si considera arbitraria,

mentre il materiale della guida è assunto isotropo e viscoelastico lineare. L’attenuazione

dell’onda guidata viene descritta in maniera spaziale attraverso la componente immagi-

naria del vettore d’onda e si considera dovuta unicamente a meccanismi di dissipazione

interna del materiale.

La formulazione agli elementi di contorno viene ricavata dal caso elastodinamico

tridimensionale mediante trasformate di Fourier nel tempo e nello spazio. La trasfor-

mazione dal dominio spazio-tempo a quello numero d’onda-frequenza consente di rap-

presentare il problema tridimensionale mediante una mesh di elementi al contorno

monodimensionali, utilizzata per modellare il contorno della guida.

Come ben noto, gli integrali di contorno presentano delle singolarità legate alla

natura delle funzioni di Green. Utilizzando una tecnica basata su moti di corpo rigido

e sulla corrispondenza fra le singolarità delle funzioni di Green dinamiche e statiche,

gli integrali non convergenti in senso classico sono regolarizzati, rendendo possibile

l’utilizzo di tecniche convenzionali di quadratura numerica.
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L’equazione d’onda si configura come un problema non lineare agli autovalori, il

quale viene risolto nelle incognite numeri d’onda complessi per ogni fissata frequenza

reale e positiva. Mediante l’utilizzo di un algoritmo basato su integrali di contorno

(Contour Integral Method), il problema in parola viene trasformato in un problema

olomorfico e lineare all’interno di una fissata regione nel piano complesso del numero

d’onda assiale. Basandosi sul principio di radiazione di Sommerfeld e sulla natura del

fenomeno di propagazione, viene dimostrato che le radici corrispondenti ai modi guidati

reali giacciono su tre dei quattro possibili fogli di Riemann.

I risultati ottenuti con il metodo proposto per due differenti guide d’onda di sezione

finita risultano in ottimo accordo con quelli ottenuti con il metodo SAFE. Mediante

studi numerici condotti su cavità di due differenti geometrie, viene infine dimostrato

che l’attenuazione dei modi guidati tende asintoticamente al valore di attenuazione

dell’onda di Rayleigh per interfacce piane.
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3.2 Introduction and literature review

In Guided Waves based nondestructive testing and structural health monitoring, the

computation of the waves dispersion properties is indispensable for the design of both

actuation and sensing systems, as well as to tune experimental set-up. To date, for the

prediction of the dispersion properties several formulations are available.

Widely adopted numerical techniques are represented by analytical methods [Lowe,

1995] and semi-analytical methods [Bartoli et al., 2006; Gavric, 1995; Hayashi et al.,

2003]. The analytical methods generally provide accurate solutions for problems in-

volving energy losses due to both internal damping and leakage, but their application

is generally restricted to waveguides of regular geometry. In addition, while looking for

roots of the dispersive equation they suffer from numerical instabilities, missing roots

and can require large computational time for multilayered waveguides (e.g. composite

laminates). On the other hand, semi-analytical methods hardly handle problems in-

volving unbounded domains. Moreover, at high frequency they become time consuming

due to the large number of degrees of freedom involved to support accurate solutions.

The Boundary Element Method can enter in this context as a possible alternative for

the dispersive data computation in both bounded and unbounded waveguides. Unlike

FE-based formulations, which operate by discretizing the entire domain, the BEM can

achieve a better accuracy by only discretizing the boundary of the waveguide, reducing

the dimension of the problem. At the same time, some features of the analytical

methods are conserved, in particular the potential to deal with problems involving

unbounded mediums.

In the last years a large number of works have been published, in which different

boundary element formulations have been proposed for the wave propagation problem in

waveguide-like structures. This problem is sometimes referred in literature as the two-

and-a-half (2.5D) problem [Costa et al., 2012; François et al., 2010; Godinho et al., 2003;

Lu et al., 2008b; Rieckh et al., 2012; Sheng et al., 2005, 2006; Tadeu and Kausel, 2000],

since the geometric and mechanical translational invariance allows a two dimensional

description of the geometry, while the body motion still completely retains its three

dimensional characteristic.

While most of these studies are focused on wave scattering problems [Cho and Rose,

2000, 1996; Galán and Abascal, 2005, 2004; Godinho et al., 2003; Pedersen et al., 1994;

Wang et al., 2011; Zhao and Rose, 2003], vibrations induced problems [Costa et al.,

2012; François et al., 2010; Rieckh et al., 2012; Sheng et al., 2005, 2006] or dynamic

response problems [Lu et al., 2008b], minor attention has been dedicated to the study of
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dispersive characteristics of guided waves, especially when attenuation is involved. For

such task, FE-based formulations are preferred to BEM due to (i) numerical difficulties

with the treatment of the characteristic singularities of the fundamental solutions and

(ii) complexities related to the solution of a nonlinear eigenvalue problem resulting from

the boundary element modal analysis.

However, these two problems have been successfully tackled in different manners in

recent years. In their work, Tadeu and Santos [2001] used a 2.5D boundary element

formulation to extract the phase and group velocity dispersion curves for both slow

and fast elastic formations by solving an eigenvalue problem in absence of an incident

wavefield. The leaky modes poles have been found using complex frequencies, i.e. by

describing decay in time, and no attenuation dispersion curves were provided. Godinho

et al. [2003] used a similar 2.5D boundary element formulation to extract the phase

velocity dispersion curves in cylindrical shell structures immersed in fluids. The dis-

persion curves were obtained by computing the response of the system for different

values of the axial wavenumber at a given frequency and by considering a source and

receiver line inside the cavity. It is well known that when the wavenumber approaches

a modal wavenumber of the system, a peak in the system response is obtained [Wu,

2000], providing a tool to extract the dispersion curves. Unfortunately, attenuation

information is generally difficult to obtain using this method.

Gunawan and Hirose [2005] proposed a boundary element formulation for waveg-

uides of arbitrary cross-section, using discontinuous quadratic elements and subdividing

the singular integrals into regular and singular parts, which were treated separately. To

extract dispersion curves, they used a Newton’s scheme where the eigensolutions, the

real wavenumbers, were searched at different frequency steps by starting from the high-

est frequency of interest and proceeding backwards, exploiting the relative straightness

of the axial wavenumbers dispersion curves. Moreover, their scheme was made more

robust by using the group velocity extrapolation formula during the iterative search.

The method has demonstrated to work properly for real wavenumbers. However, the

extension of this approach for complex wavenumbers would imply a substantial incre-

ment of operations. In addition, the convergence of the method strongly depends on

the initial guesses, which are difficult to estimate when attenuation is involved.

To account for attenuation, the modified bisection method proposed by Lowe [1995]

represents an excellent variation into the curve tracking algorithms family; this ap-

proach is very robust, although its convergence rate is lower than that of a Newton-like

method. The main limitations in using Newton-like methods and iterative methods

are represented by the risk to follow the wrong curve when the spectrum is densely
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populated and by the fact that the solution at the previous step is needed as starting

point to find the solution at the subsequent step. Therefore, for densely populated

dispersion spectra, very small incremental steps are required. In addition, extraction

of eigenvalues with multiplicity higher than one is generally complicated.

A substantially different method is represented by the Modified Matrix Pencil Al-

gorithm proposed by Ekstrom [1995], who estimated dispersion data from borehole

acoustic arrays. The method estimates dispersion properties by first performing a time

Fourier transform of a space-time array resulting from multiple receivers. Then, at each

temporal frequency, the complex wavenumbers are extracted using a forward/backward

averaging matrix pencil method [Hua and Sarkar, 1990]. The method has been applied

by Zengxi et al. [2007] for the dispersion parameters extraction in fluid-filled boreholes

with irregular shapes using a 2.5D Boundary Element Formulation.

More recently, Badsar et al. [2010] used a half-power bandwidth method for the

determination of the material damping ratio in shallow soil layers. This method uses

computed or measured wavefields to extract the frequency-wavenumber and frequency-

attenuation spectra. In particular, the wavenumber dispersion curves are derived from

the peaks positions of the FFT-transformed wavefield, whereas the attenuation curves

are derived from their width using the half-power bandwidth method.

In this chapter, a 2.5D regularized boundary element formulation [François et al.,

2010; Lu et al., 2008b] is used to extract dispersion curves for homogeneous damped

waveguides. The attenuation is spatially described through the imaginary part of the

axial wavenumber [Bartoli et al., 2006; Lowe, 1995] and the dispersive parameters, i.e.

complex wavenumbers, phase velocity and energy velocity, are computed by solving a

nonlinear eigenvalue problem using a contour integral algorithm [Amako et al., 2008;

Asakura et al., 2009; Beyn, 2012].

This algorithm does not require an initial guess of eigenvalues and eigenvectors.

Moreover, this method is particularly suitable when the number of roots in the complex

region of interest is much smaller than the eigenvalue problem dimension, as it appears

in the dispersion curves extraction of fundamental modes. At low frequencies, in fact,

few fundamental modes generally exist, while eigenvalue problems designed also for

waves computation at high frequencies may be characterized by a large number of

equations. A recent application of a contour integral algorithm in 2D-BEM acoustic

problems can be found in the work of Gao et al. [2011].

The extraction of the energy velocity in post-processing is also discussed, and some

numerical examples are presented, comparing the obtained results with those provided

by the SAFE method [Bartoli et al., 2006].
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The chapter is concluded with a study of the dispersion properties of cavities with

arbitrary cross-section in unbounded linear isotropic viscoelastic mediums. The knowl-

edge of surface waves dispersion properties in the vicinity of cavities can be useful in

some practical applications such as, for example, geophysical and seismic prospecting

techniques or in the study of vibrations in underground tunnels.

3.3 Problem statement

The problem under consideration consists in an isotropic viscoelastic waveguide of

general shape which is interested by a wavefront propagating along its longitudinal

axis (Fig. 3.1). The boundary of the waveguide is considered to be in contact with

vacuum and, as a consequence, no energy losses due to radiation of bulk waves occur,

since the generic bulk wave incident at the solid-vacuum interface is totally reflected

and mode-converted. The wavenumber vector kz = kRe
z +ikIm

z associated to the guided

wave results from the sum of the projections of the bulk wavenumbers kL = kRe
L +ikIm

L

and kS = kRe
S + ikIm

S onto the z-direction, so that the guided wave represents the

wavefront that propagates along the z-axis as a result of the superimposition of the

bulk waves traveling obliquely and continuously reflected and mode-converted at the

boundary of the waveguide.

Since the bulk waves travel at some incidence angle with respect to the z-axis, it can

be recognized the presence of a wavefront in the x− y plane, which wavenumber vector

is intended as the sum of the projections of kL and kS to the generic z=cost plane. The

associated radial components of the longitudinal and shear bulk wavenumber vectors

are denoted with kα = kRe
α + ikIm

α and kβ = kRe
β + ikIm

β respectively.

Given a time-harmonic excitation and the translational invariance of geometric and

mechanical characteristics along the z-axis, the wave propagation process is assumed

with dependence

exp [i (ωt− κzz)], (3.1)

where the angular frequency ω is real and positive while, for a generic dissipative

system, κz = |kRe
z | + i|kIm

z |. The real component of the axial wavenumber represents

the modulus of the harmonic propagation vector kRe
z , while the imaginary component

is the modulus of the spatial attenuation vector kIm
z , which describes the exponential

amplitude decay per unit of distance traveled.

Focusing only on guided waves propagating in the positive z-direction, it can be

noted from Eq. (3.1) that, in order to have an amplitude decay for z > 0, the conditions
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Re (κz) > 0 and Im (κz) < 0 must be satisfied for any fixed real positive frequency.

In such case, and according to the Correspondence Principle [Christensen, 2010], the

complex velocities for the longitudinal and shear bulk waves, c̃L (ω) and c̃S (ω), can be

written in the following form [Luo and Rose, 2007]

c̃L,S (ω) =
ω

Re(κL,S) + iIm(κL,S)
=

cL,S (ω)

1− iαL,S (ω) /2π
, (3.2)

where κL,S = |kRe
L,S |+i|kIm

L,S | are the complex moduli of the longitudinal and shear bulk

wavevectors, while the bulk attenuation coefficients αL,S (ω) = −Im(κL,S)/Re(κL,S)

represent the exponential amplitude decay of the wave after traveling one wavelength.

If a linear viscoelastic Maxwell rheological model is adopted, c̃L,S result to be frequency

independent [Christensen, 2010]. The corresponding complex material constants are

evaluated as [Luo and Rose, 2007]

μ̃ = c̃2Sρ, λ̃ =

[
2μ̃− Ẽ

Ẽ/μ̃ − 3

]
, (3.3)

Ẽ =

[
3− 4 (c̃S/c̃L)

2

1− (c̃S/c̃L)
2

]
μ̃, ν̃ =

λ̃

2
(
λ̃+ μ̃

) , (3.4)

where λ̃ and μ̃ denote the first and second complex Lamé constants, ρ the material

density, Ẽ is the complex Young’s modulus and ν̃ the complex Poisson’s ratio. To be

consistent with Eq. (3.2) and the analysis of Lowe [1995], in the following it is assumed

that the attenuation component of the wavenumber vectors is always parallel to the

propagation component, i.e. the maximum amplitude decay due to material damping

occurs along the propagation direction.

3.4 2.5D integral representation theorem

The integral representation theorem is first recalled in the 3D case for an isotropic

linear viscoelastic body of volume V and external surface ∂V , with mechanical prop-

erties defined by the material density ρ and the complex Lamé constants λ̃ and μ̃ (or,

equivalently, the complex bulk velocities c̃L and c̃S). The body is assumed to be ei-

ther bounded or unbounded and allows for the presence of edges, corners and internal

cavities.

The body is considered to be subjected to a unitary harmonic point load p (X′, t) =
δ (X−X′) exp(iωt) applied at X′ = [x′, y′, z′]T ∈ V , where δ (·) denotes the Dirac
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Figure 3.1: Analytical model of the bounded waveguide.

delta function. The spatial coordinate X = [x, y, z]T ∈ ∂V describes a receiver point

located on the boundary. In this step, no distinctions are made on whether the body

is bounded or unbounded. Denoting with R = |X−X′| the spatial distance between

the receiver point and the source point, the 3D integral representation theorem in the

frequency domain is given by the well known relation [Andersen, 2006; Bonnet, 1999;

Dominguez, 1993]

cij
(
X′)uj (X′) , ω) = ∫

∂V
UD
ij (R,ω) tj (X, ω)da (X)

−
∫
∂V

TD
ij (R,ω) uj (X, ω)da (X) , X′ ∈ V, X ∈ ∂V

(3.5)

which expresses the relation between the displacements uj (X, ω) and tractions tj (X, ω)

at any X located on the boundary ∂V (state of unknown boundary variables) and the

Green’s functions for the displacements UD
ij (R,ω) and tractions TD

ij (R,ω) [Andersen,

2006; Bonnet, 1999; Dominguez, 1993] (known state of fundamental solutions). The

fundamental displacements UD
ij (R,ω) correspond to a second order tensor that satisfies

the differential equation

(
λ̃+ μ̃

) ∂2UD
ij (R,ω)

∂xk∂xi
+ μ̃

∂2UD
ij (R,ω)

∂xi∂xi
+ δkjδ

(
X−X′) = −ρω2UD

kj (R,ω) (3.6)

in the isotropic viscoelastic full space. The corresponding dynamic fundamental trac-

tions TD
ij (R,ω) at point X ∈ ∂V with outward normal n (X) = [nx, ny, nz]

T ∈ ∂V

are obtained from the fundamental displacements via constitutive relations.

The general subscript notation (·)ij, with i, j = 1, 2, 3, stands for the effect in the

jth direction at the receiver point X when the unitary harmonic point load is acting

at the source point X′ in the ith direction. As usual, the subscripts 1, 2, 3 are freely
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interchanged with x, y, z for convenience of representation. The coefficients cij (X
′) in

Eq. (3.5) take the values Cij (X
′) = δij if X′ ∈ V and Cij (X

′) = 0 if X′ /∈ V , while

Eq. (3.5) is not defined for X′ ∈ ∂V .

The derivation of the 2.5D integral representation theorem follows from the work

of François et al. [2010]. To this end, the geometry and mechanical properties of the

body are now assumed to be invariant in the z-direction and the intersections of V

and ∂V with the z = 0 plane are denoted with Ωb and ∂Ωb, respectively. Accordingly,

the projection of the receiver point X and the source point X′ on the z = 0 plane

are denoted respectively with x = [x, y]T and x′ = [x′, y′]T. The point x ∈ ∂Ωb

is understood as the intersection of an observer line infinitely extended along the z-

direction with the z = 0 plane, while x′ ∈ Ωb is intended as the intersection of a unitary

harmonic line load with the same plane. Since the distance between the observer and

source lines is constant throughout z, the spatial vector R is replaced by r = x−x′, with
r = |x− x′| denoting the in-plane source-receiver distance. The line load is assumed

to be harmonic in time and space and assumes the following representation

p
(
x′, y′, z′, t

)
= δ

(
x− x′

)
δ
(
y − y′

)
exp

[
i
(
ωt− κzz

′)] . (3.7)

where z′ denotes the out-of-plane coordinate along the line of projection x on the x−y

plane. Given the longitudinal invariance, the surface integrals in Eq. (3.5) can be

decomposed as ∫
∂V

(·) da (X) =

∫ +∞

−∞

∫
∂Ωb

(·) ds (x) dz (3.8)

leading to the following integral representation

cij
(
x′)uj (x′, z′, ω

)
=

∫ +∞

−∞

∫
∂Ωb

UD
ij

(
r, z′, z, ω

)
tj (x, z, ω)ds (x) dz

−
∫ +∞

−∞

∫
∂Ωb

TD
ij

(
r, z′, z, ω

)
uj (x, z, ω)ds (x) dz,

(3.9)

where cij (x
′) are equal to δij and 0 for x′ ∈ Ωb and x′ /∈ Ωb, respectively. Using

the translational invariance property of the Green’s functions [Andersen, 2006; Bonnet,

1999; Kobayashy, 1987], the source point of in-plane coordinates x′ and out-of-plane
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coordinate z′ can be shifted to the plane z = 0. Eq. (3.9) is then rewritten as

cij
(
x′)uj (x′, z′, ω

)
=

∫ +∞

−∞

∫
∂Ωb

UD
ij

(
r, 0, z − z′, ω

)
tj (x, z, ω)ds (x) dz

−
∫ +∞

−∞

∫
∂Ωb

TD
ij

(
r, 0, z − z′, ω

)
uj (x, z, ω)ds (x) dz.

(3.10)

The spatial harmonic dependence assumed in Eq. (3.7) allows any scalar or vectorial

field to be contracted in the wavenumber domain using the Fourier transform

f (κz) =

∫ +∞

−∞
f (z) exp

(
iκzz

′)dz, (3.11)

which, applied to Eq. (3.10), leads to

cij
(
x′)uj (x′, z′, ω

)
=

∫ +∞

−∞

∫ +∞

−∞

∫
∂Ωb

UD
ij

(
r, 0, z − z′, ω

)
tj (x, z, ω)dz

× exp
(
iκzz

′)dzds (x) dz′
−

∫ +∞

−∞

∫ +∞

−∞

∫
∂Ωb

TD
ij

(
r, 0, z − z′, ω

)
uj (x, z, ω)

× exp
(
iκzz

′)dzds (x) dz′,

(3.12)

Substituting the identity

exp
(
iκzz

′) = exp
[−iκz

(
z − z′

)]
exp (iκzz) (3.13)

inside Eq. (3.12), the following expression is obtained

cij
(
x′)uj (x′, z′, ω

)
=

∫
∂Ωb

∫ +∞

−∞

[ ∫ +∞

−∞
exp

[−iκz
(
z − z′

)]
UD
ij

(
r, 0, z − z′, ω

)
dz′

]

× tj (x, z, ω) exp (iκzz) dzds (x)

−
∫
∂Ωb

∫ +∞

−∞

[ ∫ +∞

−∞
exp

[−iκz
(
z − z′

)]
TD
ij

(
r, 0, z − z′, ω

)
dz′

]

× uj (x, z, ω) exp (iκzz) dzds (x) ,

(3.14)

where the terms inside the square brackets are recognized as the space Fourier trans-

forms of the 3D Green’s functions. These functions represent the fundamental solutions

for the time and spatial harmonic line load problem of Eq. (3.7) in the isotropic linear
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viscoelastic full space. Denoting the 2.5D fundamental displacements with UD
ij (r, κz , ω)

and the corresponding fundamental tractions with TD
ij (r, κz , ω), Eq. (3.53) is reelabo-

rated as follows

cij
(
x′)uj (x′, z′, ω

)
=

∫
∂Ωb

UD
ij (r,−κz, ω)

×
[ ∫ +∞

−∞
tj (x, z, ω) exp (iκzz) dz

]
ds (x)

−
∫
∂Ωb

TD
ij (r,−κz , ω)

×
[ ∫ +∞

−∞
uj (x, z, ω) exp (iκzz) dz

]
ds (x) ,

(3.15)

where the terms in the square brackets represent the space Fourier transforms of the dis-

placements and tractions on the boundary, denoted with uj (x, κz , ω) and tj (x, κz , ω),

respectively. Eq. (3.15) is finally recasted in the following form

cij
(
x′)uj (x′, κz , ω

)
=

∫
∂Ωb

UD
ij (r,−κz, ω) tj (x, κz , ω) ds (x)

−
∫
∂Ωb

TD
ij (r,−κz , ω) uj (x, κz , ω) ds (x) ,

x′ ∈ Ωb, x ∈ ∂Ωb

(3.16)

which corresponds to the 2.5D integral domain representation theorem. This result has

also been found by Sheng et al. [2005] and Lu et al. [2008b] using the 2.5D reciprocal

theorem for the cases of isotropic elastic and poroelastic materials, respectively.

3.5 Green’s functions

The dynamic fundamental solutions for the 2.5D elastodynamic problem have been

presented in recent years by different authors. Pedersen et al. [1994] and Sheng et al.

[2005] derived the 2.5D Green’s functions for an unbounded medium considering an

harmonic load moving along the propagation direction. These functions also recover

the stationary case when the velocity of the moving load is set to zero and can be applied

to both isotropic linear elastic and viscoelastic media. The 2.5D Green’s functions for

a stationary line load in the full space have been derived by Li et al. [1992] and Tadeu

and Kausel [2000] for linear viscoelastic isotropic media and by Tadeu et al. [2001]

for an isotropic linear viscoelastic half space. In their work, Lu et al. [2008a] derived
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the Green’s function for the 2.5D problem involving stationary line loads applied on

poroelastic media. The Green’s functions adopted here are those proposed by Tadeu

and Kausel [2000] for a infinite homogeneous medium by using the method of potentials.

Considering the line load in Eq. (3.7) passing through the point x′ on the x− y plane

and extending along the z-direction, the displacement components at a receiver point

x on the x− y plane are given by [Kausel, 2006; Tadeu and Kausel, 2000]

UD
11 (r, κz , ω) = A

[
κ2SH0β − 1

r
B1 + γ21B2

]

UD
22 (r, κz , ω) = A

[
κ2SH0β − 1

r
B1 + γ22B2

]

UD
33 (r, κz , ω) = A

[
κ2SH0β − κ2zB0

]
UD
12 (r, κz , ω) = UD

21 = γ1γ2AB2

UD
13 (r, κz , ω) = UD

31 = iκzγ1AB1

UD
23 (r, κz , ω) = UD

32 = iκzγ2AB1

(3.17)

where the various terms take the following expressions

r =

√
(x1 − x′1)

2 + (x2 − x′2)
2 source-receiver distance in the x− y plane, (3.18)

A =
1

4iρω2
amplitude, (3.19)

γi =
∂r

∂xi
=

xi − x′i
r

direction cosines in the x− y plane, (3.20)

Bn = κnβHnβ − κnαHnα composition of Hankel functions, (3.21)

Hnα = H(2)
n (καr) nth order Hankel function of the 2nd kind, (3.22)

Hnβ = H(2)
n (κβr) nth order Hankel function of the 2nd kind, (3.23)

κα = ±
√

κ2L − κ2z radial longitudinal wavenumber, (3.24)

κβ = ±
√
κ2S − κ2z radial shear wavenumber, (3.25)

κL =
ω

c̃L
longitudinal bulk wavenumber, (3.26)

κS =
ω

c̃S
shear bulk wavenumber. (3.27)

The solution along the observer line at a coordinate z 
= 0 in the (κz, ω) domain is

obtained by multiplying Eq. (3.17) for Eq. (3.1), while the corresponding solution in

the (z, t) domain can be recovered by means of the inverse Fourier transforms in space

and time. The presence of the double sign ± in Eqs. (3.24) and (3.25) has a precise
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meaning: since the interest is focused on waves with amplitude decay in space due

to both material attenuation and geometric spreading, it is required, coherently with

the assumption in Eq. (3.1), that Im(κα) � 0 and Im(κβ) � 0. This requirement

follows directly from the condition of zero amplitude at infinite distance (r → ∞) from

the origin, which must reflect the fact that no sources are located at infinity. This

condition is also known as the Sommerfeld radiation condition [Bonnet, 1999].

Given the harmonic behaviour in time (exp (iωt)) and space (exp (−iκzz)) the Han-

kel functions H
(2)
n (καr) and H

(2)
n (καr) physically represent wavefronts that propa-

gate away from the origin. Thus, the negativeness of the imaginary part of the ra-

dial wavenumbers ensures that the Hankel function of the second kind H
(2)
n (·) behave

asymptotically as complex exponential (exp (−iκzz)), approaching zero as its argument

approaches infinity.

However, this condition is not automatically ensured in a numerical implementa-

tion, but it must be guaranteed by an appropriate choice of the phase of the complex

arguments καr and κβr, which depends on the nature of the wave. This aspect is

discussed in Sec. 3.8.2.

The second set of fundamental solutions, the tractions Green’s functions TD
ij (r, κz , ω),

are obtained as

TD
ij (r, κz , ω) = σD

ijk (r, κz , ω)nk (x) , i, j, k = 1, 2, 3 (3.28)

being nk (x) the kth component of the external normal n (x) = [n1, n2]
T at x ∈ ∂Ωb,

while

σD
ijk (r, κz , ω) = λ̃ (ω) εDivol (r, κz , ω) δjk + 2μ̃ (ω) εDijk (r, κz , ω) , i, j, k = 1, 2, 3 (3.29)

is the third order tensor of fundamental stresses, i.e. the jkth stress component at

x when the line load is acting at x′ in the ith direction. It is noted that the stress-

strain relation in Eq. (3.29) is equivalent to Eq. (2.36) with the substitutions given in

Eq. (2.122) and the replacement of the linearized second order strain tensor εij (x, κz, ω)

with εDijk (r, κz , ω).

Applying the definition in Eq. (2.4), the third order tensor of fundamental linear

strains εDijk (r, κz , ω) can be expressed in terms of fundamental displacements UD
ij (r, κz , ω)
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as follows [Kausel, 2006; Tadeu and Kausel, 2000]

εDijk (r, κz , ω) =
1

2

[
∂UD

ij (r, κz , ω)

∂xk
+

∂UD
ik (r, κz , ω)

∂xj

]

=
1

2
k2SA

(
δjl

H0β

∂xk
+ δkl

H0β

∂xj

)
+A

∂3B0

∂xl∂xj∂xk
. i, j, k = 1, 2, 3

(3.30)

Substituting Eqs. (3.18)-(3.27) into Eq. (3.30) leads to the following fundamental strains

for the harmonic line load acting in the x− y plane [Kausel, 2006; Tadeu and Kausel,

2000]

εDivol (r, κz , ω) = γiA

(
−κ2SκβH1β + κ2zB1 +

4

r
B2 −B3

)

εDi11 (r, κz , ω) = γiA

[(
2

r
B2 − κ2SκβH1β

)
δ1i +

B2

r
− γ21B3

]

εDi22 (r, κz , ω) = γiA

[(
2

r
B2 − κ2SκβH1β

)
δ2i +

B2

r
− γ22B3

]

εDi33 (r, κz , ω) = γiκ
2
zAB1

εDi12 (r, κz , ω) = A

[(
B2

r
− 1

2
κ2SκβH1β

)
(δ1iγ2 − δ2iγ1)− γ1γ2γiB3

]

εDi13 (r, κz , ω) = iκzA

[(
B1

r
− 1

2
κ2SH0β

)
δ1i − γ1γiB2

]

εDi23 (r, κz , ω) = iκzA

[(
B1

r
− 1

2
κ2SH0β

)
δ2i − γ2γiB2

]

i = 1, 2

(3.31)
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while for the line load acting in the z-direction (i = 3) one has

εD3vol (r, κz , ω) = iκzA

(
−κ2SH0β + κ2zB0 +

2

r
B1 −B2

)

εD311 (r, κz , ω) = iκzA

(
B1

r
− γ21B2

)

εD322 (r, κz , ω) = iκzA

(
B1

r
− γ22B2

)

εD333 (r, κz , ω) = iκzA
(−κ2SH0β + κ2zB0

)
εD312 (r, κz , ω) = −iκzγ1γ2AB2

εD313 (r, κz , ω) = γ1A

(
−1

2
κ2SκβH1β + κ2zB1

)

εD323 (r, κz , ω) = γ2A

(
−1

2
κ2SκβH1β + κ2zB1

)
.

(3.32)

Eqs. (3.31) and (3.32) can be finally substituted into Eq. (3.29) and then into Eq. (3.28)

to evaluate the fundamental tractions. Alternatively, the following compact form has

been presented by Castro and Tadeu [2012]

TD
i1 (r, κz , ω) = 2μ̃

[
χUD

i1,1 + (χ− 1)
(
UD
i2,2 + UD

i3,3

)]
n1 + μ̃

(
UD
i2,1 + UD

i1,2

)
n2

TD
i2 (r, κz , ω) = 2μ̃

[
(χ− 1)

(
UD
i1,1 + UD

i3,3

)
+ χUD

i2,2

]
n2 + μ̃

(
UD
i2,1 + UD

i1,2

)
n1

TD
i3 (r, κz , ω) = μ̃

(
UD
i1,3 + UD

i3,1

)
n1 + μ̃

(
UD
i2,3 + UD

i3,2

)
n2, i = 1, 2, 3

(3.33)

where χ = c̃2L/2c̃
2
S .

When the source point approaches the receiver point, Eqs. (3.17) and (3.33) become

singular. In particular, the asymptotic expressions of the Green’s displacements and

tractions for ω 
= 0, κz 
= 0 and r → 0 are

UD
ij (κz, ω)

r→0−−−−−−−−→
(ω �=0, κz �=0)

ln
1

r
, (3.34)

TD
ij (κz, ω)

r→0−−−−−−−−→
(ω �=0, κz �=0)

1

r
. (3.35)

Based on Eqs. (3.34) and (3.35), the first integral on the right hand side of Eq. (3.16)

becomes weakly singular when x′ → x, while the second integral has a strong singular-

ity. This singularity needs a special treatment when the source points are taken on the

boundary ∂Ωb, which is the problem addressed in Sec. 3.6.

For ω 
= 0, r 
= 0 and κz = 0, the Green’s functions in Eqs. (3.17) and (3.33) recover

those of the line load problem in plane-strain. Therefore, these expressions satisfy the
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plane-strain model as special case [Tadeu and Kausel, 2000].

3.6 Regularized 2.5D boundary integral equation

3.6.1 Limiting process

The integral representation theorem in Eq. (3.16) allows to calculate the displace-

ments ui (x
′, κz , ω) at any x′ ∈ Ωb once the displacements uj (x, κz , ω) and tractions

tj (x, κz, ω) are known at any x ∈ ∂Ωb. However, due to the possible unique assign-

ment of either uj (x, κz , ω) (Dirichlet boundary conditions) or tj (x, κz , ω) (Neumann

boundary conditions) at x, the boundary conditions are half-determined. The remain-

ing boundary variables are computed by extending Eq. (3.16) to ∂Ωb, which is usually

accomplished by performing a limiting process x′ ∈ Ωb → x′ ∈ ∂Ωb.

As stated in Sec. 3.5, this operation necessarily introduces singularities into the

boundary integrals when the source point x′ approaches the receiver point x, since

UD
ij (r, κz , ω) ∼ ln (1/r) and TD

ij (r, κz , ω) ∼ 1/r for r → 0. The first singularity is a

weak singularity, and therefore the integrals involving the fundamental displacements

converge in the ordinary sense. The second singularity can be studied by introducing

a circular neighborhood Ωε (x
′) of x′ as shown in Fig. 3.2, and subdividing the integral

involving the fundamental tractions as follows

∫
∂Ωb

TD
ij (r,−κz , ω)uj (x, κz, ω) ds (x)

=

∫
∂Ωb−eε(x′)

TD
ij (r,−κz , ω) uj (x, κz , ω) ds (x)

+

∫
∂Ωε(x′)

TD
ij (r,−κz , ω) uj (x, κz , ω) ds (x) ,

(3.36)

where eε (x
′) = ∂Ωb ∩ Ωε (x

′) and ∂Ωε (x
′) = Ωb ∩ ∂Ωε (x

′). Taking the limit ε → 0 in

the representation formula Eq. (3.16), leads to [Bonnet, 1999]

cij
(
x′)uj (x′, κz , ω

)
=

∫
∂Ωb

UD
ij (r,−κz , ω) tj (x, κz , ω) ds (x)

− C.P.V.

∫
∂Ωb

TD
ij (r,−κz , ω) uj (x, κz , ω) ds (x) ,

(3.37)

where

C.P.V.

∫
∂Ωb

(·) ds (x) = −
∫
∂Ωb

(·) ds (x) = lim
ε→0

∫
∂Ωb−eε(x′)

(·) ds (x) (3.38)
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Figure 3.2: Exclusion neighborhood used for the limiting process ε → 0.

is the Cauchy Principal Value of the integral over ∂Ωb. From the limiting process, the

free term cij (x
′) is also determined, which assumes the following expression

cij
(
x′) = lim

ε→0

∫
∂Ωε(x′)

TD
ij (r,−κz , ω) ds (x) ∈ ∂Ωb. (3.39)

For x′ ∈ ∂Ωb and i = j, the free term represents the ratio between the angle subtended

by ∂Ωε and the angle of a complete circle when ε → 0 [Bonnet, 1999; Brebbia and

Dominguez, 1989; Zimmerman and Stern, 1993]. In the special case for which the

boundary ∂Ωb is smooth at x′, Eq. (3.39) simplifies to cij (x
′) = 1/2δij .

3.6.2 Regularization procedure

The analytical treatment of Cauchy Principal Value integrals in Eqs. (3.37) and (3.39)

may result difficult due to (i) the analytical treatment of the strong singularity in the

fundamental tractions, (ii) the presence of boundary corners, where the external normal

is not uniquely defined and (iii) the shape functions used to interpolate the unknown

boundary displacements.

Lately, researchers have proposed special integration methods to account for singu-

larities in the integral kernels [Sheng et al., 2005] or to simplify the treatment of the

corners at the discretization level by using discontinuous boundary elements [Gunawan

and Hirose, 2005]. To overcome analytical and implementation difficulties, in this study

the singular integrals and free terms are evaluated making use of the so-called rigid body

motion technique [Banerjee, 1981; Brebbia and Dominguez, 1989; Dominguez, 1993].

This technique has been extended to the 2.5D case by [Lu et al., 2008b] for wave propa-

gation problems involving poroelastic materials, and by François et al. [2010] for sound
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radiation problems involving translation invariant structures embedded in elastic and

viscoelastic layered media.

The basic idea is to identify a second boundary value problem which uses simple

fundamental solutions with the same asymptotic behaviour of the original boundary

value problem when r → 0. Then, if the solution of the second problem is adjusted

so that the singular coefficients cij (x
′) have the same value at x = x′, the equations

of the two problems can be subtracted and the singularity removed. For the dynamic

problem under consideration, this can be accomplished by (i) choosing the domain

of the auxiliary problem Ωaux
b as complementary to the original domain to R

2, i.e.

Ωaux
b = R

2 − Ωb and ∂Ωaux
b = ∂Ωb, and (ii) applying a rigid body displacement u0 on

∂Ωaux
b .

Since the auxiliary volume V aux = R
3 − V is translational invariant, a constant

displacement applied on Ωaux
b can be understood as a time and spatial harmonic dis-

placement with infinite wavelength in z-direction (κz = 0), and represents therefore a

constant solution for the entire three dimensional domain. In this case, the original

dynamic problem reduces to a combination of a static plane-strain line load problem

p (x′) = δ (x− x′) with fundamental solutions

US
ij (r) =

1

8πRe (μ̃) (1−Re (ν̃))

[
(3− 4Re (μ̃)) ln

1

r
δij + γiγj

]

T S
ij (r) =− 1

4π (1− Re (μ̃)) r
{γknk [(2Re (μ̃) δij + 2γiγj)

− (1− 2Re (μ̃)) (γinj − γjni)]} , i, j, k = 1, 2

(3.40)

and an anti-plane line load problem p (z′) = δ (z − z′) with fundamental solutions

US
33 (r) =

1

2πRe (μ̃)
ln

1

r

T S
33 (r) = − 1

2πr
γknk. k = 1, 2

(3.41)

The asymptotic expressions of the fundamental displacements and tractions in Eqs. (3.40)

and (3.41) when the source point approaches the receiver point are

US
ij , U

S
33

r→0−−−→ ln
1

r
, i, j = 1, 2 (3.42)

T S
ij , T

S
33

r→0−−−→ 1

r
, i, j = 1, 2 (3.43)

which correspond to those in Eq. (3.34) and Eq. (3.35) for the 2.5D elastodynamic
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Figure 3.3: Auxiliary domain for a bounded waveguide.

problem. The rigid body displacement u0 (x, κz = 0, ω = 0) = u0 (x) is now considered

to be applied at the boundary ∂Ωaux
b of an auxiliary domain Ωaux

b corresponding to an

infinite space bounded by ∂Ω∞ at infinite distance from ∂Ωaux
b (see Fig. 3.3). Observing

that for a rigid body motion tj (x, κz = 0, ω = 0) = 0 and taking into account the

equivalences UD
ij (r, κz = 0, ω = 0) = US (r) and TD

ij (r, κz = 0, ω = 0) = T S (r), the

application of Eq. (3.37) for the auxiliary domain results in the following expression

cauxij

(
x′)u0 (x′) = −u0 (x)

[
−
∫
∂Ωb

T S
ij (r) ds (x) +

∫
∂Ω∞

T S
ij (r) ds (x)

]
, (3.44)

where the boundary integral involving the fundamental displacements is vanished while

the boundary integral involving the fundamental tractions has been extended in order

to include ∂Ω∞. Since the rigid displacement is arbitrary, Eq. (3.44) still holds for the

particular choice u0 (x) = uj (x
′, κz, ω), leading to

cauxij

(
x′)uj (x′, κz , ω

)
=− uj

(
x′, κz, ω

) [−∫
∂Ωb

T S
ij (r) ds (x)

+

∫
∂Ω∞

T S
ij (r) ds (x)

]
.

(3.45)

Considering now that the unitary static force p (x′, z′) = δ (x− x′) δ (z − z′) at the

source point x′ ∈ ∂Ωaux
b must form an equilibrated system with the reaction forces

distributed along ∂Ω∞, it follows from equilibrium considerations that the integral of

the fundamental tractions over ∂Ω∞ results in an opposite force of the same unitary

magnitude [Andersen, 2006; Brebbia and Dominguez, 1989]. The second integral in the
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right hand side of Eq. (3.45) becomes

∫
∂Ω∞

T S
ij (r) ds (x) = −δij (3.46)

Substituting Eq. (3.46) into Eq. (3.45) gives

cauxij

(
x′)uj (x′, κz , ω

)
= −uj

(
x′, κz , ω

) [−∫
∂Ωb

T S
ij (r) ds (x)− δij

]
. (3.47)

Taking into account the opposite sign of the outward normals between the original and

the auxiliary problems at x, i.e. n (x)|∂Ωb
= −n (x)|∂Ωaux

b
, the signs inside the square

brackets in Eq. (3.47) can be reversed, leading to

[
cauxij

(
x′)− δij

]
uj

(
x′, κz, ω

)
= uj

(
x′, κz , ω

)−∫
∂Ωb

T S
ij (r) ds (x) . (3.48)

If Ωb correspond to an unbounded domain, the second integral in the right-hand side

of Eq. (3.44) vanishes since Ωaux
b = R

2 −Ωb is bounded. In this case Eq. (3.49) reduces

to

cauxij

(
x′)uj (x′, κz, ω

)
= uj

(
x′, κz , ω

)−∫
∂Ωb

T S
ij (r) ds (x) . (3.49)

Generalizing the results in Eqs. (3.48) and (3.49) as proposed by Lu et al. [2008b]

results in the following expression

[
cauxij

(
x′)− c∞δij

]
uj

(
x′, κz, ω

)
= uj

(
x′, κz , ω

)−∫
∂Ωb

T S
ij (r) ds (x) , (3.50)

where c∞ is a coefficient equal to 1 if Ωb is bounded and 0 if Ωb is unbounded. Eq. (3.50)

can be added to Eq. (3.37) without altering the original problem, since the rigid body

motion does not involve physical tractions on the auxiliary domain.. As result, the

following relation is obtained

[
cij

(
x′)+ cauxij

(
x′)− c∞δij

]
uj

(
x′, κz, ω

)
=

=

∫
∂Ωb

UD
ij (r,−κz, ω) tj (x, κz , ω) ds (x)+ (3.51)

−
∫
∂Ωb

[
TD
ij (r,−κz , ω) uj (x, κz , ω)− T S

ij (r)uj
(
x′, κz , ω

) ]
ds (x) .

Recalling Eq. (3.39), the sum of the free terms cij (x
′) + cauxij (x′) can be expressed as
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follows [Brebbia and Dominguez, 1989; Zimmerman and Stern, 1993]

cij
(
x′)+ cauxij

(
x′) = lim

ε→0

[ ∫
∂Ωε(x′)

TD
ij (r,−κz, ω) ds (x) ∈ ∂Ωb

+

∫
∂Ωaux

ε (x′)
TD
ij (r,−κz , ω) ds (x) ∈ ∂Ωb

]

= δij ,

(3.52)

where ∂Ωaux
ε (x′) is defined as in Fig. 3.3. Substitution of the fundamental property in

Eq. (3.52) into Eq. (3.51) cancels out the free term, and the regularized 2.5D boundary

integral equation becomes

(1− c∞) ui
(
x′, κz , ω

)
=

∫
∂Ωb

UD
ij (r,−κz , ω) tj (x, κz , ω) ds (x)+

−
∫
∂Ωb

[
TD
ij (r,−κz , ω)uj (x, κz , ω)− T S

ij (r)uj
(
x′, κz, ω

) ]
ds (x) ,

(
x,x′) ∈ ∂Ωb

(3.53)

in which the first integral on the right hand side contains a weak, integrable, singular-

ity of order ln (1/r), while the strong singularity of order 1/r in the second boundary

integral has been removed. The first and second integrals in Eq. (3.53) can there-

fore be evaluated numerically in a boundary element discretization scheme by using

the Gauss-Laguerre and the Gauss-Legendre quadrature formulae, respectively [Stroud

and Secrest, 1996]. However, as pointed out by Lu et al. [2008b], due to the pres-

ence of the Hankel function the Gauss-Laguerre quadrature formula for the integral

involving UD
ij (r,−κz , ω) may result inaccurate. Since the order of the singularities in

both fundamental dynamic and static displacements is the same, Eq. (3.53) can be fur-

ther modified using the addition-subtraction technique proposed by Lu et al. [2008b],

leading to

(1− c∞)ui
(
x′, κz, ω

)
=

∫
∂Ωb

[
UD
ij (r,−κz , ω)− US

ij (r)

]
tj (x, κz , ω) ds (x)

+

∫
∂Ωb

US
ij (r) tj (x, κz , ω) ds (x)

−
∫
∂Ωb

[
TD
ij (r,−κz , ω) uj (x, κz , ω)− T S

ij (r)uj
(
x′, κz , ω

) ]
ds (x) ,

(
x,x′) ∈ ∂Ωb

(3.54)

where the first and third integral can be evaluated using the Gauss-Legendre quadrature
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formula while the second integral can now be evaluated analytically or via the Gauss-

Laguerre quadrature formula.

It is remarked that Eq. (3.54) holds only for source points belonging to the boundary

∂Ωb. Once the solution is found in terms of displacements and tractions at any x ∈ ∂Ωb,

the complete displacement wavefield inside the domain Ωb is readily obtained from

Eq. (3.16) by posing cij (x
′) = δij . The remaining quantities, i.e. strains and stresses,

can be recovered from Eq. (3.16) via compatibility and constitutive relations.

3.7 Boundary discretization using semi-isoparametric bound-

ary elements

The boundary ∂Ωb is subdivided into Nb mono-dimensional boundary elements. The

generic qth element of domain ∂Ωq
b is assumed to be isoparametric in the plane of

the domain Ωb, i.e. the in-plane components of both uj and tj are interpolated with

the same polynomial functions used to interpolate the cross-section geometry of the

boundary.

Assuming an in-plane linear mapping from the two-nodes reference element identi-

fied by ∂Ωref
b to the corresponding two-nodes generic element ∂Ωq

b as shown in Fig. 3.4,

the semi-isoparametric representation of both displacements and tractions at the generic

boundary point x ∈ ∂Ωq
b results in an uncoupled description of the out-of-plane from

the in-plane motion of the form

u (η, κz , ω) = N (η)qq (κz, ω)

t (η, κz , ω) = N (η)hq (κz , ω)

}
at x (η) = N (η)xq ∈ ∂Ωq

b (3.55)

where N (η) is the 3 × 6 matrix containing the linear shape functions in the natural

coordinate η ∈ ∂Ωref
b , while xq, qq (κz, ω) and hq (κz, ω) are the 6 × 1 vectors of nodal

coordinates, displacements and tractions, respectively.

The discretized global system of algebraic equations is constructed from Eq. (3.54)

by applying a point collocation scheme where the collocation points x′ are assumed to

be coincident with the nodes of the boundary element mesh [Brebbia and Dominguez,

1989].

Denoting by xc the cth collocation node of the boundary element mesh and using

Eqs. (3.55), the recursive collocation procedure over the total number of nodes Nn = Nb
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3.7. BOUNDARY DISCRETIZATION USING SEMI-ISOPARAMETRIC BOUNDARY ELEMENTS

Figure 3.4: Semi-isoparametric discretization using mono-dimensional elements with
linear shape functions.

allows to rewrite Eq. (3.54) in the following discrete form

Nn⋃
c=1

(1− c∞)uc (κz, ω)

=
Nn⋃
c=1

{
Nb⋃
q=1

[
Uq

1 (rc (η) , κz , ω)−Uq
2 (rc (η))

]
hq (κz, ω)

−
Nb⋃
q=1

(xc /∈∂Ω
q
b)

[
Tq

1 (rc (η) , κz , ω)q
q (κz , ω)

]

−
Nb⋃
q=1

(xc∈∂Ω
q
b)

[
Tq

2 (rc (η) , κz , ω)q
q (κz , ω)

]

+

Nb⋃
q=1

(xc /∈∂Ω
q
b)

[
Tq

3 (rc (η))uc (κz, ω)

]}

(3.56)

where rc (η) = |x (η)− xc| denotes the in-plane distance between the collocation point

and the integration point, uc (κz, ω) is the 3 × 1 vector of boundary displacements at

point xc and
⋃

stands for the assembling operation over the nodes (subscript c) and
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the elements (subscript q) of the mesh. The operators in Eq. (3.56) are defined as

Ue
1 (rc (η) , κz , ω) =

∫
∂Ωq

b

[
UD (rc (η) ,−κz, ω)−US (rc (η))

]
N (η) Jq

b (η) dη (3.57)

Uq
2 (rc (η)) =

∫
∂Ωq

b

US (rc (η))N (η) Jq
b (η) dη (3.58)

Tq
1 (rc (η) , κz , ω) =

∫
∂Ωq

b

TD (rc (η) ,−κz, ω)N (η) Jq
b (η) dη (3.59)

Tq
2 (rc (η) , κz , ω) =

∫
∂Ωq

b

[
TD (rc (η) ,−κz, ω)N (η)−TS (rc (η))L

]
Jq
b (η) dη (3.60)

Tq
3 (rc (η)) =

∫
∂Ωq

b

TS (rc (η))J
q
b (η) dη (3.61)

where Jq
b (η) = |∂x (η) /∂η| is the Jacobian of the semi-isoparametric transformation.

The 3×3 displacement and traction Green’s tensors in Eq. (3.57)-(3.61) are defined

as

UD =

⎡
⎢⎣

UD
11 UD

12 UD
13

UD
21 UD

22 UD
23

UD
31 UD

32 UD
33

⎤
⎥⎦ TD =

⎡
⎢⎣

TD
11 TD

12 TD
13

TD
21 TD

22 TD
23

TD
31 TD

32 TD
33

⎤
⎥⎦ (3.62)

US =

⎡
⎢⎣

US
11 US

12 0

US
21 US

22 0

0 0 US
33

⎤
⎥⎦ TS =

⎡
⎢⎣

T S
11 T S

12 0

T S
21 T S

22 0

0 0 T S
33

⎤
⎥⎦ . (3.63)

where the entries of the 2 × 2 blocks in the static Green’s tensors (identified by the

first and second rows and columns) correspond to the fundamental solutions of the

two-dimensional plane-strain line load problem given in Eq. (3.40) while the remaining

nonzero terms correspond to the fundamental solutions for the case of the elastic anti-

plane line load given in Eq. (3.41).

The 3× 6 operator L is introduced to collocate the static Green’s tractions tensor

TS (rc (η)) on the 3 × 3 diagonal blocks of the global system, which contain singular

terms. Such operator varies according to the position of the collocation node xc inside

the element and is denoted by

L = [ β1I3×3, β2I3×3 ] , with

{
β1 = 1, β2 = 0 if xc ≡ xq

1

β1 = 0, β2 = 1 if xc ≡ xq
2

, (3.64)

where xq
1 and xq

2 are, respectively, the coordinate vectors for the first and second node
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of the element including the collocation node xc (x = [xq
1, x

q
2]
T).

From Eq. (3.56), by grouping the local displacement and traction operators into the

global influence operators according to the mesh topology

Ub (κz, ω) =
Nn⋃
c=1

Nb⋃
q=1

2∑
i=1

Uq
i (rc, κz , ω) , (3.65)

Tb (κz, ω) =

Nn⋃
c=1

Nb⋃
q=1

2∑
i=3

Tq
i (rc, κz, ω) , (3.66)

and by assembling the local displacement and tractions vectors into the global vectors

Qb (κz, ω) =

Nb⋃
q=1

qq (κz, ω) , (3.67)

Hb (κz, ω) =

Nb⋃
q=1

hq (κz, ω) , (3.68)

the following set of linear algebraic equations is obtained

[Tb (κz, ω) + (1− c∞) I]Qb (κz, ω) = Ub (κz, ω)Hb (κz, ω) (3.69)

where I denotes the identity matrix. If no tractions discontinuities exist at a generic

node, the operators in Eq. (3.69) have dimension N × N , with N = Nn × 3 denoting

the total number of displacement variables, while the global vectors Qb (κz, ω) and

Hb (κz , ω) have dimension N × 1.

Once Eq. (3.69) is formed, the boundary conditions must be imposed in terms of

displacements and tractions on the discretized boundary nodes. Since only one between

the Dirichlet uj (κz , ω) and Neumann tj (κz , ω) boundary conditions can be imposed

at any xc, the effective system takes generally the form of a mixed linear system in

which the rows of the matrix operators corresponding to the unknown variables are

rearranged to form the matrix of coefficients, while the rows of the matrix operators

corresponding to the assigned boundary conditions are selected to form the vector of

constant terms.

After the above system has been solved for all the unknown boundary variables, the

solution over ∂Ωb is fully determined and the wavefield at a generic point x′ ∈ Ωb can

be computed by using Eq. (3.16), with cij (x
′) = δij . Since the integrals in Eq. (3.16)

are not singular, the standard Gauss-Legendre quadrature formula can be used for their
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evaluation. The discretized representation of Eq. (3.16) reads

ud

(
x′, κz, ω

)
= Ud (κz, ω)Hb (κz, ω)−Td (κz, ω)Qb (κz, ω) (3.70)

where

Ud (κz, ω) =

Nb⋃
q=1

∫
∂Ωq

b

UD (r (η) ,−κz, ω)N (η) Jq
b (η) dη (3.71)

Td (κz, ω) =

Nb⋃
q=1

∫
∂Ωq

b

TD (r (η) ,−κz , ω)N (η)Jq
b (η) dη, (3.72)

in which r = |x (η)−x′|, whileQb (κz, ω) andHb (κz, ω) are the vectors of displacements

and tractions for the boundary nodes obtained as solution of Eq. (3.69). It is noted that

the linear system in Eq. (3.70) is valid only for x′ ∈ Ωb and the operators Ud (κz, ω)

and Td (κz, ω) have dimension 3×N .

3.8 Nonlinear eigenvalue problem

The dispersion characteristics for each normal mode are determined from the wave

equation of the external traction-free problem. Thus, by imposing homogeneous Neu-

mann boundary conditions on the system Eq. (3.69), i.e. Hb (κz, ω) = 0, the following

eigenvalue problem is obtained.

Z (κz, ω)Qb (κz , ω) = 0, (3.73)

where

Z (κz, ω) = U−1
b (κz , ω) [Tb (κz, ω) + (1− c∞) I] . (3.74)

corresponds to the dynamic stiffness matrix of the bounded (c∞ = 1) or unbounded

(c∞ = 0) waveguide. For any fixed positive real frequency ω, the nonlinear eigenvalue

problem Eq. (3.73) can be solved in the complex wavenumbers κz (ω) by using algo-

rithms of the contour integral family [Amako et al., 2008; Asakura et al., 2009; Beyn,

2012]. These algorithms can extract the roots of the nonlinear problem Eq. (3.73)

without the need of an initial guess for the eigensolutions, which is a limiting property

of more classical algorithms such those of the Newton-Raphson family.

To solve the eigenvalue problem Eq. (3.73), the contour integral method proposed

by Beyn [2012] is adopted. The method is able to compute all the eigenvalues and
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associated eigenvectors for an holomorphic eigenvalue problem that lies within a given

close contour in the complex plane, including eigenvalues with multiplicity higher than

one.

The algorithm proposed by Beyn [2012], in the form where the sum of the algebraic

multiplicities of the eigenvalues does not exceed the system dimension, is recalled in

Sec. 3.8.1. The singular and multivalued character of the operator Z (κz, ω) are also

discussed. Such properties are of fundamental importance in the definition of the region

in the complex κz-plane where the roots of the fundamental modes must be sought.

3.8.1 Contour integral method

The algorithm is initialized by computing the two moment matrices

A0 =
1

2πi

∮
Γ(κz)

Z−1 (κz, ω)Vdκz ∈ C
N,L (3.75)

A1 =
1

2πi

∮
Γ(κz)

κzZ
−1 (κz, ω)Vdκz ∈ C

N,L (3.76)

over the simple closed curve Γ (κz) (Jordan curve) defined in the complex κz-plane. In

Eqs. (3.75) and (3.76), V ∈ C
N,L is chosen randomly. The positive integer L is chosen

to satisfy the requirement K � L � N , denoting K the supposed number of eigenvalues

inside the contour.

The integrals Eqs. (3.75) and (3.76) are evaluated numerically by discretizing the

complex contour into Np integration points and applying the trapezoidal rule.

Once the two moment matrices in Eqs. (3.75) and (3.76) are formed, a Singular

Value Decomposition (SVD)

A0 = VΣWH (3.77)

is computed, where V is a N × N complex unitary matrix, Σ is N × L is a diagonal

matrix with non-negative entries along the diagonal and WH is a L×L complex unitary

matrix. Since small singular values σl (l = 1, ..., L) of the diagonal matrix Σ determine

a bad conditioning of the eigenvalues computation, a rank test is then performed and

only the first M singular values higher than a fixed tolerance tolrank are retained.

The remaining singular values are eliminated from Σ along with their corresponding

columns in V and W. After the rank test has been performed, the following operator

is constructed

B = VH
0 A1W0Σ

−1
0 ∈ C

M,M (3.78)
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where

Σ0 = diag (σ1, ..., σM ) , (3.79)

V0 = V (1 : N, 1 : M) , (3.80)

W0 = W (1 : L, 1 : M) . (3.81)

The operator B in Eq. (3.78) is diagonalizable and has as eigenvalues the eigenvalues

of Z (κz, ω) inside Γ (κz) [Beyn, 2012]. Solving a standard linear eigenvalue problem

for B leads to a set of eigenvalues κmz (ω) and corresponding eigenvectors ym (ω) (m =

1, 2, ..,M) where, due to the choice of tolrank and Np, generally results K � M � L.

Of the remaining M − K spurious eigensolutions, those lying outside the contour are

directly discarded, while the remaining are filtered out by establish first a suitable

threshold value tolres that is used next to perform the following relative residual test

‖Z (κmz (ω) , ω)Qm
b (ω)‖∞

‖Z (κmz (ω) , ω)‖∞
∥∥Qm

b (ω)
∥∥
∞

� tolres (3.82)

where Qm
b (ω) = V0y

m (ω) is the approximative eigenvector associated to κmz (ω) and

‖·‖∞ denotes the infinity norm. Since the matrix B also retains the complete multi-

plicity structure of eigenvalues inside the contour Γ (κz), some eigenvalues may result

ill-conditioned with the corresponding eigenvectors. In this case, a Schur decomposition

BQ = QR (3.83)

is performed, with R block-diagonalized such that the diagonal blocks belong to dif-

ferent eigenvalues. Then, the eigenvectors ym (ω) are selected from the first column of

each mth diagonal-block in R to compute the associated true eigenvector Qm
b (ω).

The eigenpairs [κmz (ω) ,Qm
b (ω)] that satisfy the inequality Eq. (3.82) are then ac-

cepted as final solution.

3.8.2 Definition of the integral path and permissible Riemann sheets

The procedure proposed by Beyn [2012] and reported in Sec. 3.8.1 allows to extract

all the eigenvalues for the holomorphic problem Z (κz, ω) ∈ H
(
Ω∗,CK,K

)
, where Ω∗

denotes the region of the complex κz-plane enclosed by Γ (κz). From the inspection of
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Eqs. (3.22)-(3.27) it appears that, due to the presence of the radial wavenumbers

κα = ±
√

κ2L − κ2z , κβ = ±
√

κ2S − κ2z. (3.84)

in the arguments of the Hankel functions, the operator Z (κz , ω):

� results to be singular at points κz = ±κL and κz = ±κS , since the Hankel function

is not defined as its argument κα,βr becomes zero;

� is multivalued due to the signs ± of κα and κβ for any fixed couple (κz, ω).

To fulfill the holomorphicity requirement inside Ω∗, the operator Z (κz, ω) must be

made single-valued and the points of the complex plane corresponding to singularities

and discontinuities must be excluded.

Firstly, it is recalled that, in order to have a wave that is attenuated in the direction

of propagation, the imaginary component of its wavenumber must be negative in ac-

cordance with the position in Eq. (3.1). Then, the single valued definition of Z (κz, ω)

follows directly from the the imposition of the Sommerfeld radiation condition

Im(κα) < 0, Im(κβ) < 0, ∀κz ∈ C (Re (κz) > 0, Im (κz) ≤ 0) (3.85)

which ensures that H
(2)
n (κα,βr) → 0 for r → ∞, i.e. the amplitude of the outgoing

radial waves becomes zero at infinite radial distance from the origin. Imposition of

the Sommerfeld radiation condition determines the correct choice of the permissible

Riemann sheets, i.e. the portions of the Riemann surface on which the physical solutions

are located [He and Hu, 2009, 2010; van Dalen et al., 2010; Zhang et al., 2009]. On

the Riemann surface, the operator Z (κz, ω) is analytic and single-valued everywhere,

except in correspondence of the poles of guided modes. Since the Riemann sheets

are defined on the κz-plane by the possible combinations of signs (±,±) for (κα, κβ),

the whole Riemann surface for the isotropic case is composed of four sheets [Ewing

et al., 1957]. However, the poles of the function Z (κz, ω) corresponding to the physical

solutions must be searched only on the permissible sheets, which are selected according

to the requirements in Eq. (3.85).

The choice of the signs for each region of the κz-plane enclosed by the contour is

shown in Fig. 3.5. It can be noted that these assumptions result into a discontinuity

of the operator Z (κz, ω) along two hyperbolic trajectories that depart from κL and

κS and extend to infinity along the negative imaginary axis. These hyperbolas can

be determined by letting vanish the imaginary component of the radial wavenumbers.
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Figure 3.5: Complex κz-plane with branch points, branch cuts and integration path
Γ (κz). The notation (·, ·) stands for the choice of the signs in Eq. (3.84) for κα and κβ
respectively.

From Eq. (3.84), by posing Im (κα) = 0 and Im (κβ) = 0, one obtains

Im (κz) =
Re (κL) Im (κL)

Re (κz)
, Im (κz) =

Re (κS) Im (κS)

Re (κz)
, (3.86)

which delimitate zone of the complex plane in which the phase of the radial wavenum-

bers satisfying at the Sommerfeld radiation condition Eq. (3.85) has a shift in phase of

π radians. In fact, for any fixed Re (κz) ∈ [0,Re (κL,S)] and Im (κz) ∈ [−∞,+∞], the

shift in phase is not a continuous function if the conditions in Eq. (3.85) are imposed,

but shows a jump when it crosses the hyperbolic trajectories in Eq. (3.86). There-

fore, along these line the stiffness operator Z (κz, ω) does not satisfy the requirement

of holomorphicity.

The strategy to remove these discontinuities is to perform two cuts and closing the

contour around the branches as shown in Fig. 3.5 (note that the total number of cuts

is four since there are two other symmetric branches in the second quadrant of the

complex plane, with branch points −κL and −κS). These cuts are generally indicated

as Sommerfeld (or fundamental) branch cuts [Ewing et al., 1957; van Dalen et al., 2010;

Zhang et al., 2009] and vary in the κz-plane with κα (ω) and κβ (ω), which move along
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the lines a and b, respectively, while the frequency ω increases or decreases. Along the

generic qth branch cut (q = α, β), Re(κq) > 0 on the left side and Re(κq) < 0 on the

right side, while Im(κq) < 0 on both sides.

The two signs in each area in Fig. 3.5 represent the chosen Riemann sheet and

correspond to the sign of the real part of the two radial wavenumbers (κα, κβ) necessary

to satisfy the condition in Eq. (3.85). It can be noted that the second Riemann sheet,

denoted by (+,−), is excluded from the search space, since it does not satisfy the

Sommerfeld radiation condition.

If an elastic medium is considered, the bulk wavenumbers become real quantities,

so that a and b rotate around the origin to overlap the real axis. In this case, the

two branch cuts collapse on the negative imaginary axis and the portion of the real

axis between the origin and the two corresponding bulk wavenumbers, becoming in

fact a single branch cut. Since for the elastic case the poles of the normal modes lie

on the real axis, it should be noted that the roots included in the range 0 � κz � κS

are excluded from the contour region. However, due to the conditions in Eq. (3.85),

the elastic case can only be treated by adding a small value of material attenuation

(numerical attenuation) for both the bulk waves, so that the same considerations for

the viscoelastic case can be applied.

As final remark, it is noted that the only other branch cut in the complex plane

is represented by the negative real axis, which is a branch cut of the Hankel function

as it presents a discontinuity along this axis. However, if only wavenumbers with

strictly positive real part (right-propagating waves) are considered, this branch cut is

unnecessary and can be directly avoided by assuming the integration path as in Fig. 3.5.

3.9 Dispersion characteristics extraction

Once the complete set of eigensolutions [κmz (ω) ,Qm
b (ω)] has been determined from

Eq. (3.73) for the frequency of interest, the dispersion characteristics

cmp (ω) =
ω

Re(κmz (ω))
phase velocity, (3.87)

αm (ω) = −Im(κmz (ω)) attenuation, (3.88)

cme (ω) =

∫
Ωb
〈Jm (ω) · n3〉dxdy∫

Ωb
〈K m (ω) + W m (ω)〉dxdy energy velocity, (3.89)

for the mth propagating or evanescent normal mode can be extracted. It can be

noted that the phase velocity and attenuation in Eqs. (3.87) and (3.88) are directly
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Figure 3.6: Subdivision of the domain Ωb by means of integration cells.

derived from the obtained set of eigensolutions, while the energy velocity Eq. (3.89)

is computed in post-processing. The various terms that appear in Eq. (3.89) are the

acoustic Poynting vector Jm (ω), the kinetic energy K m (ω) and the pseudo-potential

energy W m (ω), which includes both the energy stored and dissipated via internal

damping mechanisms. Their definitions have been given in Sec. 2.6.2.5, while their

expressions are

Jm
i (ω) = −iωσm

ji (ω)u
m
j (ω) (3.90)

K m (ω) =
ω2

2
ρumi (ω) conj (umi (ω)) (3.91)

W m (ω) =
1

2
σm
ij (ω) conj

(
εmij (ω)

)
. (3.92)

Since it is generally difficult to obtain a boundary integral representation of these

quantities, the integrals in Eq. (3.89) can be evaluated by partitioning the domain Ωb

into an arbitrary number Ncells of integration cells as shown in Fig. 3.6. The shape of

a single cell is defined as the mapping of a parent cell which is geometrically suitable to

support a Gaussian quadrature scheme. Assuming an internal quadrature rule as shown

in Fig. 3.1, the displacement field can be obtained at any quadrature point xp ∈ Ωb

using Eqs. (3.70) and (3.72), which yield the following 3×N linear system

um
p (ω) = −

⎡
⎣ Nb⋃
q=1

∫
∂Ωq

b

TD (rp (η) ,−κmz (ω) , ω)N (η) Jq
b (η) dη

⎤
⎦Qm

b (ω) , (3.93)

where rp (η) = |x (η) − xp|. It can be noted that in Eq. (3.93) the term involving the

fundamental displacements has dropped since Hm
b (κz, ω) = 0.
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The derived field variables at point xp are denoted with the 6× 1 vectors collecting

the independent components of the Cauchy stress tensor expressed in Voigt notation,

smp (ω) = [σm
11, σ

m
22 σ

m
33, σ

m
23, σ

m
13, σ

m
12]

T, and the corresponding symmetric linear strain

components, εmp (ω) = [εm11, ε
m
22 ε

m
33, ε

m
23, ε

m
13, ε

m
12]

T (cf. Sec. 2.3). The compatibility

and constitutive relations can be rearranged in the general compact form

εmp (ω) = Bm (ω)um
p (ω) , smp (ω) = C̃εmp (ω) , (3.94)

where the 6 × 3 compatibility operator Bm (ω) and the 6 × 6 fourth order tensor of

viscoelastic moduli C̃ijkm are expressed by

Bm (ω) =

[
Lx

∂

∂x
+ Ly

∂

∂y
− iκmz (ω)Lz

]
,

C̃ijkm = λ̃δijδkm + μ̃ (δikδjm + δimδjk) ,

(3.95)

in which the Li operators are defined as in Eq. (2.9). Substituting Eq. (3.93) into

Eq. (3.94), the following 6 × N linear systems are obtained for the strain and stress

vectors at xp

εmp (ω) = −
⎡
⎣ Nb⋃
q=1

∫
∂Ωq

b

Bm (ω)TD (rp (η) ,−κmz (ω) , ω)N (η) Jq
b (η) dη

⎤
⎦Qm

b (ω) (3.96)

smp (ω) = −
⎡
⎣ Nb⋃
q=1

∫
∂Ωq

b

C̃Bm (ω)TD (rp (η) ,−κmz (ω) , ω)N (η) Jq
b (η) dη

⎤
⎦Qm

b (ω)

(3.97)

where the compatibility operator Bm (ω) applies only on the fundamental solutions

TD (rp (η) ,−κmz (ω) , ω), since the derivative is intended as a variation around the point

xp [Dominguez, 1993].

The different operators in Eqs. (3.90)-(3.92) are integrated over the cross-section by

considering the contribute of each cell. The time-averaged Poynting vector polarized in

the z-direction, the pseudo-potential energy and the kinetic energy for the waveguide

cross-section are obtained as follows

∫
Ωb

〈Jm (ω) · n3〉dxdy =
ω

2
Im

⎧⎨
⎩

Ncells∑
s=1

NGp∑
p=1

Js
c (ξp)wp

[
um
p (ω)

]H
L T

z s
m
p (ω)

⎫⎬
⎭ (3.98)
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∫
Ωb

〈K m (ω)〉dxdy = ρ
ω2

4
Re

⎧⎨
⎩

Ncells∑
s=1

NGp∑
p=1

Js
c (ξp)wp

[
um
p (ω)

]H
um
p (ω)

⎫⎬
⎭ (3.99)

∫
Ωb

〈W m (ω)〉dxdy =
1

4
Re

⎧⎨
⎩

Ncells∑
s=1

NGp∑
p=1

Js
c (ξp)wp

[
εmp (ω)

]H
smp (ω)

⎫⎬
⎭ (3.100)

where NGp is the total number of Gauss points for the sth cell, ξp and Js
c (ξp) are the

natural coordinates and the Jacobian of the in-plane mapping for the sth cell at point p,

respectively, wp is the corresponding integration weight and the expressions for um
p (ω),

εmp (ω) and smp (ω) are given by Eqs. (3.93), (3.96) and (3.97), respectively. Substitution

of Eqs. (3.98)-(3.100) into Eq. (3.89) allows to compute the energy velocity for the mth

normal mode.

3.10 Numerical analyses of bounded waveguides

To show the capability of the 2.5D BEM formulation, the dispersion curves obtained

for a standard 113A rail section and a square section are compared with those extracted

using the Semi-Analytical Finite Element (SAFE) method. In both the examples, the

waveguides are considered to be made of steel with mass density ρ = 7800 Kg/m3,

longitudinal and shear bulk wave velocities equal to cL = 5744.7 m/s and cS = 3224.6

m/s, respectively, longitudinal wave attenuation κL = 0.003 Np/wavelength and shear

bulk wave attenuation κS = 0.008 Np/wavelength.

Since the accuracy of the eigensolutions is strongly dependent on the number of

integration points and the extension of the region enclosed by the curve Γ (κz), an

adaptive scheme has been implemented for the contour algorithm. The extension of the

contour region, as well as the number of integration points, can be chosen by observing

that at low frequencies only the first low order modes with small wavenumbers are

expected, which allows to reduce the dimension of the complex contour and the number

of integration points.

When frequency increases, the extension of the spectrum including propagative

modes increases and the contour has to be adjusted in order to capture the complete

set of roots. As the region enlarges, an increased number of integration points is needed,

thus making the algorithm computationally more expensive at high frequencies. The

rank and residual tolerances have been chosen on the bases of convergence tests in

which the number of integration points has been increased until a stable trend was
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observable on the separation of singular values as well as the relative residuals given in

Eq. (3.82).

3.10.1 Standard BS11-113A rail

In the first numerical application, the dispersion curves for a standard 113A rail are

compared with those obtained using the SAFE method. The boundary element mesh

used for the numerical test is illustrated in Fig. 3.7(a). It is composed of 146 semi-

isoparametric linear elements and 146 nodes, corresponding to a total of 438 degrees of

freedom. The numerical integrations have been carried out at the element level using 10

quadrature points, while the internal wavefield and its derivatives have been computed

using a subdivision of the internal area into 1158 cells. Each cell is represented by a

3-nodes triangular element with linear shape functions. The SAFE solution has been

obtained by using a mesh of 1496 semi-isoparametric linear triangular elements and

835 nodes (2505 dof) of Fig. 3.7(b). Both the boundary element mesh and the finite

element mesh have been chosen from a convergence test performed over a frequency

range of 0 ÷ 10 kHz, decreasing the mesh size until a stable dispersion solution was

reached.

The contour Γ (κz) has been defined as in Fig. 3.5, with L = 40, a fixed vertical

range of −3.0 ≤ Im (κz) ≤ +1.0 and a horizontal range varying linearly with frequency,

with constant minimum value of Re (κz) = 0.001 and maximum varying between 20.0

(f = 0 kHz) and 50.0 (f = 10.0 kHz).

The singular values separation after 50 frequency steps can be observed in Fig. 3.8,

where σi denotes the ith singular value and σmax represents the maximum singular

value at the current frequency step. For the first frequency, a total number of 500

integration points was used for the trapezoidal rule, then linearly increased to 1400 for

the maximum frequency.

As it can be noted, the gap is generally included in the range −2.0 ≤ (σi/σmax) ≤
−4.0, although it becomes smaller at around f = 2.0 kHz and in the range 5.0 ÷ 6.0

kHz, where cutoffs of the modes m4, m6, m7 and m8 occur. The term cutoff is used to

indicate the frequency value corresponding to a noticeable increase of real part of the

axial wavenumber, bearing in mind that the concept of cutoff does not have meaning

in the viscoelastic case.

In order to minimize the negative effect of spurious solutions in the computation of

the linear eigenvalue problem Eq. (3.78), the rank tolerance has been chosen equal to

tolrank = −2.0, while the tolerance for the residual test Eq. (3.82) has been assumed
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(a) (b)

Figure 3.7: (a) Boundary element mesh with internal cells subdivision and (b) SAFE
mesh of the BS11-113A rail.

equal to tolres = 1.0 × 10−6.

As observed in Figs. 3.9-3.12, the BEM solution (continuous lines) is in very good

agreement with the SAFE solution (dots). Considerations on the dispersion character-

istics of the various m modes can be found in a number of works (see, for example,

[Bartoli et al., 2006; Gavric, 1995; Hayashi et al., 2003]) and are not repeated here.

The attenuation for all the guided modes are in very good agreement with those

provided by the SAFE method (Fig. 3.11), although the m5 and m7 modes exhibit a

slightly unstable behaviour in the 5.0÷ 5.6 kHz and the 6.0÷ 7.0 kHz frequency range,

respectively. It is noted that, that attenuation curves for the viscoelastic rail have been

found in literature only by means of Finite Element-based analyses.

The comparison between the BEM and the SAFE method for the energy velocity

((Fig. 3.12)) also indicates a good correspondence. The only noticeable differences are

represented by the m3 mode in the 1.0 ÷ 4.0 kHz frequency range and the m8 mode

for its entire frequency range.

3.10.2 Square bar

The second numerical test is performed on a square bar with 20 mm side length. The

dispersion curves have been extracted in the 0÷ 200.0 kHz frequency range. The goal

of this numerical test is to verify the performances of the method when the spectra are

densely populated and in the presence of eigenvalues with multiplicity higher than one.

After a convergence test, a boundary mesh of 148 semi-isoparametric linear elements

and 148 nodes has been chosen, along with an internal subdivision into 4418 triangular
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Figure 3.8: Singular values distribution after 50 frequency steps for the standard 113A
rail in Sec. 3.10.1.

cells with associated linear shape functions (see Fig. 3.13(a)). As comparison, the

square section has been analyzed using the SAFE method with a mesh of 4096 semi-

isoparametric linear triangular elements and 2113 nodes (see Fig. 3.13(b)), which also

gave a convergent solution in the considered frequency range.

The separation of singular values after 50 frequency steps can be observed in

Fig. 3.14. For the eigenvalues computation, a dynamically adaptive contour window

Γ (κz) has been used as previously illustrated for the rail example. The number of inte-

gration point has been linearly increased from a minimum of 500 at the first frequency

step to a maximum of 1500 at the last frequency step. As already noted, the jump in

the singular values is strongly reduced at cutoff frequencies, where the solution appears

more prone to numerical instabilities.

The comparison between the dispersion curves obtained via BEM and those ex-

tracted using the SAFE method is shown in Figs. 3.15-3.18. As can be noted, the

solutions in terms of real part of the axial wavenumbers and energy velocity are in very

good agreement. The solutions in terms of attenuation show some discrepancies for the

91



3. WAVE PROPAGATION IN BOUNDED AND UNBOUNDED WAVEGUIDES: 2.5D BOUNDARY ELEMENT METHOD

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

frequency [kHz]

�
(κ

z
)

[r
a
d
/
m

] m3

m4

m6

m2

m7

m5
m8

m1

BEM

SAFE

Figure 3.9: Real wavenumber dispersion curves for the viscoelastic steel BS11-113A
rail.

flexural mode F2 in the frequency range 85.0 ÷ 105.0 kHz, for the flexural mode F3 in

the 115.0 ÷ 150.0 kHz range and the longitudinal mode L2 in the 150.0 ÷ 165.0 kHz

range. Larger discrepancies are observed for the attenuation of the screw S1
3 mode for

its entire frequency range. Small differences can be observed also in the attenuation

curve for the L3 mode.

It is finally emphasized that the contour algorithm correctly identifies the eigenval-

ues with multiplicity 2, corresponding to the flexural Fi modes.

3.11 Surface waves along cavities of arbitrary cross-section

A first investigation of surface dispersion characteristics for axially symmetric modes

in cylindrical cavities of circular cross-section can be found in the work of Biot [1952],

that demonstrated the existence of a cutoff for all the pseudo-Rayleigh modes with

wavelength corresponding to the bulk shear wavelength. The existence of the first

flexural mode at all frequencies has been proved analytically by Boström and Burden
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Figure 3.10: Phase velocity dispersion curves for the viscoelastic steel BS11-113A rail.

[1982] in cylindrical cavities of circular cross-section and by Burden [1985a,b] for cavities

with circular indented, hyperelliptical and elliptical cross-section. However, in these

works only elastic mediums are considered.

More recently, Tadeu et al. [2002b] used a 2.5D boundary element formulation to

study borehole cavities of different cross-sections in elastic mediums, extracting the

phase velocity spectra from the response of the system to a blast load in the frequency-

wavenumber domain. Degrande et al. [2006] used a coupled boundary element-finite

element formulation for the prediction of vibrations in the free field from excitations

due to metro trains in tunnels, extracting the slowness dispersion curves for a layered

soil medium with a cylindrical cavity.

In this section it is shown that for κz > κS (non radiating region) the attenuation

curves of surface normal modes approach asymptotically the attenuation of the Rayleigh

wave.
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Figure 3.11: Attenuation dispersion curves for the viscoelastic steel BS11-113A rail.

3.11.1 Circular cavity in viscoelastic full-space

In the following numerical example, a cylindrical cavity with circular cross-section of

radius a = 1 m and immersed in a viscoelastic medium is studied. As demonstrated by

Biot [1952] and Boström and Burden [1982], surface waves in cylindrical cavities prop-

agate with phase velocity varying between the shear wave speed cS and the Rayleigh

wave speed cR. Following Biot [1952], the normal modes ranging between these ve-

locities are classified as pseudo-Rayleigh waves, that do not exhibit attenuation if the

medium is elastic. On the other hand, any disturbance propagating at the surface with

wavelength longer than the shear wavelength causes shear waves to be radiated, and

the energy carried by the surface waves is therefore geometrically attenuated [Botter

and van Arkel, 1982]. As a consequence, a cutoff occurs when the axial wavenumbers

of the propagating modes become equal to the shear wavenumber.

Since surface waves are characterized by a displacement amplitude decreasing with

increasing depth, the corresponding axial wavenumbers κz must be larger than the

shear wavenumber κS , so that the second Hankel functions give the typical expo-

nential decay in the radial direction. As the inferior speed limit at which surface
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Figure 3.12: Energy velocity dispersion curves for the viscoelastic steel BS11-113A rail.

waves propagate without geometric attenuation is given by the Rayleigh wave speed

cR [Biot, 1952], the associated dispersion curves can be obtained by choosing the con-

tour Γ (κz) such that the real part of the axial wavenumber is always included in the

range Re (κS) ≤ Re (κz) ≤ Re (κR), where κR ≈ κS (0.87 + 1.12ν̃) / (1 + ν̃) denotes the

Rayleigh wavenumber [Rose, 2004].

Note that, for this particular choice, the only singular point in the κz-plane is given

by the shear wavenumber κS , which can be easily excluded from the complex region

with an appropriate deformation of the contour Γ (κz), while the operator Z (κz, ω)

does not present discontinuities in the included complex region. Moreover, only a small

number of integration points is required, since for Re (κz) > Re (κS) both the real and

imaginary part of the displacement Green’s functions are strongly attenuated with the

amplitude approaching zero, so that in this subregion the matrix Z (κz , ω) is almost

constant, except near the bulk shear wavenumber.

The normalized dispersion curves in Fig. 3.19(a) and 3.19(b) have been extracted

using a mesh of 150 boundary elements and a rectangular contour with a total of 120

integration points and limited by 1.0 ≤ κz/κS ≤ 1.1. The rank and residual tolerances

95



3. WAVE PROPAGATION IN BOUNDED AND UNBOUNDED WAVEGUIDES: 2.5D BOUNDARY ELEMENT METHOD

(a) (b)

Figure 3.13: (a) Boundary element mesh with internal cells subdivision and (b) SAFE
mesh of the square bar.

have been set to tolrank = −4.0 and tolres = 5.0 × 10−5. The viscoelastic medium is

defined through its complex Poisson’s ratio ν̃ = 0.3− i4.5 × 10−4.

As discussed by Boström and Burden [1982], the flexural modem = 1 is the only one

existing in the whole frequency range, while the longitudinal modem = 0 and the flexu-

ral modes m = 2, 3, 4 have a cutoff at κz = κS . From this value, each mode approaches

asymptotically the Rayleigh wavenumber Re (κR) which, for the case Re (ν̃) = 0.3

is Re (κR) /Re (κz) = 1.0779. The dispersion curves for the real part of the axial

wavenumber agree with those presented by Boström and Burden [1982], while the cor-

responding attenuation curves due to material damping are reported in Fig. 3.19(b).

At the best of the authors knowledge, these curves were not previously reported in the

literature. As expected, the attenuations of the various modes approach asymptotically

the attenuation of the Rayleigh wave, which is approximately αR/αS = 1.0178.

It is worth noting that, despite the exclusion of the shear wavenumber from the

contour region, the algorithm is able to extract a root which is very close to the shear

wavenumber itself when Re (κS) a < 1, although it is not shown in Fig. 3.19(a) and

3.19(b). In fact, for these values of the dimensionless frequency, the solution for the

m = 1 is very close to the shear wavenumber and it is correctly detected by the

algorithm. However, since the root lies in proximity of a singular point, its residual

given by Eq. (3.82) is poor, and the root itself is consequently discarded by the residual

test.
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Figure 3.14: Singular values distribution after 50 frequency steps for the square bar in
Sec. 3.10.2.

3.11.2 Square cavity in a viscoelastic full-space

In this numerical example, a square cavity with side length equal to 2a is considered.

The cavity is immersed in a viscoelastic medium with complex Poisson’s ratio ν̃ =

0.3− i4.5× 10−4. The dispersion curves for the real part of the axial wavenumber and

the attenuation are depicted in Fig. 3.20(a) and 3.20(b), respectively. The curves have

been obtained using a mesh of 146 semi-isoparametric linear elements, while the scheme

used for the contour algorithm is the same of Sec. 3.11.1.

As expected, the dispersive behaviour of the guided modes is very similar to that

observed for the circular cavity for both the real part of the axial wavenumber and

the attenuation. Furthermore, all the normal modes approach asymptotically with

their real and imaginary parts the Rayleigh wavenumber. The normal modes appear

as grouped in separate families. The first family is formed by the first flexural mode

F1, which does not have a cutoff, the first longitudinal mode L1 and the first screw

mode S1
1 . The second family is formed by the screw mode S2

1 , the flexural mode F2
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Figure 3.15: Real wavenumber dispersion curves for the viscoelastic steel square bar of
2.0 mm side length.

and the first torsional mode T1. Finally, the third family includes the screw mode S2
2 ,

the flexural mode F3 and the screw mode S2
1 .

As previously observed for the rail and the square bar, the separation reduces at the

cutoff frequencies. In these cases, some eigensolutions may result slightly less accurate

(see mode F3). Finally, a moderate numerical instability in the attenuations can be

observed for the first family of normal modes in the dimensionless frequency range

8.0 ÷ 9.0. Note that this frequency range corresponds in fact to the cutoffs for the

modes S2
2 and F3.

3.12 Conclusions

in this chapter, a 2.5D regularized Boundary Element formulation has been proposed to

compute the dispersion curves for isotropic linear viscoelastic waveguides of arbitrary

cross-section. The attenuation has been taken into account by adding an imaginary

part to the axial wavenumber vector, which has been considered parallel to the real

(propagative) component. The dispersive parameters have been extracted by solving a
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Figure 3.16: Phase velocity dispersion curves for the viscoelastic steel square bar of 2.0
mm side length.

nonlinear eigenvalue problem in absence of external applied tractions using the contour

integral algorithm proposed by Beyn [2012]. The energy velocity has been obtained

in post-processing using the method of the cells. Due to the singular characteristics

and the multivalued nature of the Green’s functions, the Sommerfeld branch cuts have

been introduced and the signs for the real and imaginary parts of the axial wavenumber

have been selected in order to satisfy both the Sommerfeld radiation condition and

the holomorphicity requirement for the resolvent operator inside the complex region

enclosed by the contour. Numerical tests performed on a rail cross-section and a square

cross-section have shown that the real part of the eigensolution always matches the

corresponding solution obtained via the SAFE method, while some larger discrepancies

have been observed for both the attenuation and the energy velocity.

The dispersion data extracted for surface normal modes propagating along cylin-

drical cavities of circular cross-section are in very good agreement with those available

in the literature. As expected with the introduction of the material damping, the

attenuation dispersion curves of the surface normal modes approach the value of the

attenuation of the non-dispersive Rayleigh waves. A similar behaviour has been ob-
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Figure 3.17: Attenuation dispersion curves for the viscoelastic steel square bar of 2.0
mm side length.

tained for a square cavity, where the normal modes appear to be grouped into families.

In line with other works [François et al., 2010; Rieckh et al., 2012], the proposed

method could be equally used in the dispersion analysis of cavities embedded in layered

media, providing that the fundamental solutions for the isotropic elastic full space are

replaced by a numerically computed solution for a layered halfspace.
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Figure 3.18: Energy velocity dispersion curves for the viscoelastic steel square bar of
2.0 mm side length.
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Figure 3.20: Dimensionless (a) real axial wavenumbers and (b) attenuations versus
dimensionless frequency for ν̃ = 0.3− i4.5 × 10−4.
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Chapter 4

Leaky Guided Waves in

waveguides embedded in solid

media: coupled SAFE-2.5D BEM

formulation

4.1 Sommario

In questo capitolo viene presentata una formulazione accoppiata SAFE-2.5D BEM per

il calcolo delle caratteristiche di dispersione di onde guidate che si propagano in guide

d’onda viscoelastiche immerse in mezzi isotropi, viscoelastici ed infinitamente estesi

(leaky guided waves).

La natura dispersiva delle leaky guided waves è stato studiato in letteratura uti-

lizzando metodi analitici [Lowe, 1992; Pavlakovic, 1998; Simmons et al., 1992; Viens

et al., 1994] e metodi semi-analitici agli elementi finiti accoppiati con metodi delle re-

gioni di assorbimento [Castaings and Lowe, 2008], elementi semi-analitici infiniti [Jia

et al., 2011] e Perfectly Matched Layers (PML) [Treyssède et al., 2012]. Tuttavia, men-

tre i metodi analitici sono applicabili solamente a guide d’onda di geometrie semplici, i

metodi semi-analitici presentano delle difficoltà nella modellazione del campo irradiato

a causa di riflessioni spurie (metodo delle regioni di assorbimento), arbitrarietà nella

scelta delle funzioni di forma (elementi infiniti semi-analitici) o scelta delle funzioni di

smorzamento (PML).

La formulazione accoppiata SAFE-2.5D BEM descritta in questo capitolo consente

105



4. LEAKY GUIDED WAVES IN WAVEGUIDES EMBEDDED IN SOLID MEDIA: COUPLED SAFE-2.5D BEM FORMULATION

di superare i problemi dei metodi analitici e di quelli numerici sopra citati. Infatti,

mentre il metodo SAFE consente di rappresentare guide d’onda immerse di geometrie

e caratteristiche meccaniche complesse, mediante il BEM è possibile descrivere accu-

ratamente il campo irradiato nel mezzo solido circostante.

In particolare, la formulazione SAFE differisce da quella descritta nel Capitolo 2

nell’utilizzo di elementi finiti quadratici in luogo di quelli lineari, mentre l’effetto di uno

stato di stress iniziale non viene considerato. Poichè l’accoppiamento delle regioni SAFE

e BEM prevede la compatibilit degli spostamenti e la continuit delle trazioni lungo

all’interfaccia, anche nella formulazione BEM viene fatto uso di elementi quadratici.

Inoltre, le funzioni di Green 2.5D utilizzate nel Capitolo 3 vengono sostituite da un set di

funzioni simili ma che consentono un risparmio in termini di tempi computazionali. Le

singolarità delle funzioni nucleo negli integrali di contorno vengono trattate utilizzando

la procedura di regolarizzazione descritta nel Capitolo 3.

Poichè il numero di gradi di libertà del dominio discretizzato BEM generalmente

inferiore a quello del dominio discretizzato SAFE, l’accoppiamento delle due formu-

lazioni viene eseguito trasformando il dominio BEM in un singolo elemento finito avente

lo stesso numero di gradi di libertà del dominio originale. La matrice di impedenza del

mezzo circostante viene pertanto trasformata in una matrice di rigidezza dinamica

equivalente, la quale è successivamente assemblata nel sistema SAFE.

L’equazione d’onda ottenuta si configura come un problema non lineare agli au-

tovalori. Tale problema viene risolto utilizzando il metodo degli integrali di contorno

proposto da Beyn [2012] e descritto nel Capitolo 3. Date le profonde differenze tra

la natura delle onde guidate di tipo leaky e quelle che si propagano in guide d’onda

immerse nel vuoto, una nuova analisi delle superfici di Riemann viene presentata, nella

quale si tiene conto delle condizioni aggiuntive di interfaccia (legge di Snell generaliz-

zata).

I risultati ottenuti con il metodo proposto vengono dapprima validati con due risul-

tati noti in letteratura, nei quali solamente geometrie cilindriche vengono considerate.

Infine, le potenzialità del metodo proposto vengono dimostrate attraverso tre esempi

numerici di interesse pratico, presentati in letteratura per la prima volta.
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4.2 Introduction and literature review

As discussed in previous chapters, the dispersion properties of guided waves in traction-

free waveguides can be efficiently computed by means of analytical methods [Chaki

and Bourse, 2009; Knopoff, 1964; Lowe, 1995; Pavlakovic et al., 1997; Pavlakovic, 1998;

Shin and Rose, 1999] and finite element-based methods [Bartoli et al., 2006; Chen and

Wilcox, 2007; Gavric, 1995; Hayashi et al., 2003, 2006; Loveday, 2009; Sorohan et al.,

2011; Treyssède, 2008].

The 2.5D BEM formulation described in Chapter 3 also assumes that the boundary

of the waveguide is in contact with vacuum, so that only reflection and mode conversion

of bulk waves occur at the solid-vacuum interface.

However, in several circumstances waveguides are embedded in solid media. These

are, for examples, the cases of tendons, foundation piles, buried pipes, railways or

embedded fibers.

In these cases, guided modes traveling with phase speed greater than the bulk speed

of the surrounding media radiates energy into it. As a consequence, inspection ranges

are generally reduced since the energy radiated in the surrounding media causes high

attenuation rates of the guided modes (leaky modes).

The knowledge of dispersion properties of leaky modes is therefore fundamental

in NDE testing of civil, mechanical and aerospace structures and mathematical tools

able to describe waveguides with different geometric and mechanical characteristics are

needed. In this context, several studies can be found in literature involving simple

geometries, i.e. plate and cylindrical structures, in which analytical methods have been

extensively applied.

A comprehensive study of matrix techniques for the computation of dispersion

curves in free, embedded and immersed plates can be found in the work of Lowe [1995].

The propagation of leaky Lamb waves in plates embedded in solids have been studied

by Dayal and Kinra [1989, 1991] and Lowe [1992].

The propagation of non-leaky guided waves in elastic circular waveguides embedded

in elastic media have been investigated by Parnes [1981, 1982] and Kleczewski and

Parnes [1987]. Dispersion relations for leaky modes in elastic circular rods embedded

in isotropic elastic solids have been extracted by Thurston [1978], Simmons et al. [1992]

and Viens et al. [1994] using analytic dispersive equations. In their work, Nayfeh and

Nagy [1996] have applied the Transfer Matrix Method to investigate the propagation

of axisymmetric waves in coaxial layered anisotropic fibers embedded in solids and

immersed in fluids. General studies on wave propagation in transversely isotropic and
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homogeneous anisotropic circular rods immersed in fluids have been conducted by Dayal

[1993], Nagy [1995], Berliner and Solecki [1996a,b] and Ahmad [2001].

The dispersion properties of leaky guided waves in both embedded and immersed

cylindrical structures have been in depth analyzed by Pavlakovic [1998] using the Global

Matrix Method (GMM). This method has been used next to perform numerical analyses

and support experimental investigations involving free pipes with defects [Lowe et al.,

1998], buried pipes [Long et al., 2003b], embedded circular bars [Pavlakovic et al.,

2001] and embedded tendons and bolts Beard et al. [2003]; Beard and Lowe [2003]. An

analytical method has been proposed by Laguerre et al. [2007] to predict dispersion

curves and to interpret the ultrasonic transient bounded-beam propagation in a solid

cylindrical waveguide embedded in a solid medium.

Although very attractive for simple geometries, analytical approaches are generally

unsuitable to extract dispersion properties for waveguides with irregular cross-section

and, in these cases, one must resort to numerical methods.

Due to the capability to represent domains with different materials and arbitrary ge-

ometries while forming well posed polynomial eigenvalue problems, the SAFE method

has been also extended in recent years to wave propagation problems involving un-

bounded domains. In their work, Castaings and Lowe [2008] have used a SAFE mesh

to discretize both the waveguide and the embedding medium. The material surround-

ing the waveguide was simulated by introducing a finite absorbing region of length

proportional to the largest radial wavelength of the existing leaky waves. The method

eliminates the well known problem of non-physical reflections which would arise using

a finite mesh to model the unbounded surrounding domain. However, this method may

require very large meshes to properly model waves radiating in the surrounding media

and guided modes with high rates of energy confined in the embedded cross-section

need to be selected from a large set of eigensolutions.

A hybrid SAFE formulation has been proposed by Jia et al. [2011] to study double

layer hollow cylinders embedded in infinite media. In this study, the unbounded medium

has been discretized by means of infinite elements, which overcomes the problem of

energy reflection. However, the capability of infinite elements to correctly represent the

physics of leaky waves is strongly related to the choice of the elements shape functions.

Moreover, complicated geometries, such as H shaped beams, may result difficult to

treat.

In their work, Lin et al. [2011] have considered the presence of two isotropic elastic

half spaces at the top and bottom interface of a SAFE-modeled layer by introducing

appropriate analytical boundary conditions. The analytical boundary conditions have
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been adopted in order to satisfy the Snell’s law for radiated longitudinal and shear

waves. Only solutions relative to evanescent wavefields in the surrounding medium

have been considered in this study.

A further numerical technique that allows to model radiated waves without reflec-

tions has been proposed by Treyssède et al. [2012] by coupling the SAFE method with

the Perfectly Matched Layer (PML) method. Using the PML, leaky modes are defined

through analytic extensions in terms of complex spatial coordinates. Although this

method allows to preserve the original dimension of the problem as well as the nature

of the dispersive wave equation, the radiation efficiency strictly depends on the choice of

the complex-valued function used to represent geometric decay inside the PML domain.

A possible alternative is represented by the Boundary Element Method (BEM).

Unlike FE-based formulations, the BEM allows to describe the unbounded surrounding

domain by means of a boundary mesh only. Moreover, since the weight functions are

represented by the fundamental solutions of the dynamic problem (Green’s function),

no approximations are introduced in the definition of the radiated wavefield.

In recent years, different coupled FEM-BEM formulations have been proposed to

investigate the wave propagation in waveguide-like structures. Such formulations are

sometimes referred in literature as the wavenumber finite-boundary element method

[Sheng et al., 2005, 2006], the waveguide finite-boundary element method [Nilsson et al.,

2009] or the 2.5D finite-boundary element method [Costa et al., 2012; François et al.,

2010]. While most of these studies are focused on forced or induced vibrations problems,

minor attention has been dedicated to the study of dispersive characteristics of guided

waves, especially when attenuation is involved.

Some exceptions are represented by the work of Tadeu and Santos [2001] and Zengxi

et al. [2007], which have adopted a 2.5D BEM for the computation of dispersion re-

lations in fluid filled boreholes. However, attenuation information is not provided in

these works. More recently, Nilsson et al. [2009] have proposed a waveguide FEM-BEM

formulation to study the radiation efficiency of open and embedded rails. In such work,

dispersion relations for radiating modes have been obtained by considering complex

wavenumbers, thus taking into account the amplitude decay due to attenuation. How-

ever, since the acoustic impedance mismatch between the rail and the air was very

high, the authors have considered in their model only the influence of the rail on the

fluid vibrations and not the one of the air on the rail (the model is not fully coupled).

In this chapter, the SAFE method is coupled with the regularized 2.5D BEM to

extract dispersion curves for viscoelastic waveguides of arbitrary cross-section embed-

ded in viscoelastic isotropic materials. With respect to the SAFE formulations that

109



4. LEAKY GUIDED WAVES IN WAVEGUIDES EMBEDDED IN SOLID MEDIA: COUPLED SAFE-2.5D BEM FORMULATION

use absorbing regions, infinite elements and PMLs, the proposed SAFE-2.5D BEM for-

mulation represents exactly the radiated wavefield from waveguides of arbitrary cross-

section while preserving the dimension of the SAFE problem and without the need

of special complex functions. The complex axial wavenumbers and the corresponding

wavestructures are computed from a nonlinear eigenvalue problem solved via a contour

the Contour Integral Method proposed by [Beyn, 2012] and described in Sec. 3.8.1. The

complex poles associated to leaky and evanescent modes are obtained by choosing the

arguments of the wavenumbers in the embedding medium consistently with the nature

of the radiated waves and removing points of singularities and discontinuities from the

complex plane of the axial wavenumber.

The method is first validated against available results obtained, for embedded cir-

cular bars, by means of alternative approaches [Castaings and Lowe, 2008; Pavlakovic

et al., 2001]. Next, dispersion curves are extracted for a viscoelastic square steel bar

embedded in viscoelastic grout and for a viscoelastic HP200 steel pile embedded in a

viscoelastic soil. To the best of author’s knowledge, these cases are never been studied

in literature. The proposed method can be useful to understand the physical behaviour

of leaky guided waves as well as to design testing conditions in GUW-based inspections

and experiments involving embedded beams or foundation piles.

4.3 Wave equation

In this section, the guided wave equation is derived for the system with translational

invariant geometric and mechanical properties of Fig. 4.1. The wavenumber-frequency

dependence is assumed in the form

exp [i (κzz − ωt)] , (4.1)

from which, the following conditions

Re (κz) =
∣∣kRe

z

∣∣ > 0, Im (κz) =
∣∣kIm

z

∣∣ > 0, (4.2)

must be satisfied in order to ensure the amplitude decay of guided modes propagating

in the positive direction of the z-axis (cf. Sec. 2.6.1).

As seen in Chapter 2, the longitudinal invariance allows to describe the three-

dimensional wave propagation problem in the x − y plane, while the third dimension

is accounted by contraction of any z-dependent scalar or vectorial field in the axial

wavenumber domain through the spatial Fourier transform in Eq.2.35. In particular,
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the waveguide cross-section of area Ωs is discretized using the SAFE method while

the external medium of infinite extent Ωb is modeled via a 2.5D regularized boundary

integral formulation. The in-plane position vector x = [x, y]T (x ∈ Ωs ∪Ωb) is used to

denote a generic point located at the cross-section of axial coordinate z = 0.

The SAFE and BEM meshes are defined with coincident nodes and matching shape

functions at the coupling interface

∂Ω = ∂Ωs = ∂Ωb,

where compatibility of displacements and equilibrium of tractions are enforced through

the relationships

u (x, z, t)|∂Ωs = u (x, z, t)|∂Ωb
, (4.3)

t (x, z, t)|∂Ωs = −t (x, z, t)|∂Ωb
, (4.4)

denoting with u (x, z, t) = [u1, u2, u3]
T the displacements vector and t (x, z, t) =

[t1, t2, t3]
T the tractions vector. The minus on the right hand side of Eq. (4.4) ac-

counts for the opposite sign of the outward normals of the SAFE and BEM regions at

the boundary point x, i.e. n (x)|∂Ωs = −n (x)|∂Ωb
(see Fig. 4.1).

The equilibrium equation for a waveguide embedded in an infinite medium can be

obtained in the wavenumber-frequency domain by following the same procedure de-

scribed in Chapter 2. Under the hypotheses of (i) translational invariant mechanical

characteristics, (ii) initial stress-free state and (iii), absence of body forces, the equilib-

rium equation (2.44) reduces to

ω2

∫
Ωs

δuTρ (x)udxdy −
∫
Ωs

(δε (u))T C̃ (x, ω) ε (u) dxdy

+

∫
∂Ωs

δuT [ts (x, κz , ω)− tb (x, κz , ω)] ds = 0,

(4.5)

where ρ (x) is the material density at point x ∈ Ωs, ε (u) is the vector of the independent

linear strain components, defined in Eq. (2.7), and C̃ (x, ω) is the fourth order tensor

of complex moduli defined as in Eqs. (2.36) and (2.72). In the derivation of Eq. (4.5),

the vector of surface loads tc (x, κz , ω) appearing in Eq. (2.44) has been replaced by

tc (x, z, ω) = ts (x, ω)− tb (x, z, ω) , (4.6)

where ts (x, κz , ω) is the vector of the external surface loads applied at the interface
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while tb (x, κz , ω) is the vector of the interface tractions resulting from the mutual

interaction of the waveguide with the surrounding medium.

The strategy adopted to solve Eq. (4.5) is based on a SAFE discretization of the em-

bedded waveguide and the computation of the vector of interface tractions tb (x, κz, ω)

by means of a 2.5D BEM formulation. Compared to well stated analytical methods

such as the Transfer Matrix Method (TMM) or the Global matrix Method (GMM),

this approach allows to model embedded waveguides of any geometry and material

through the SAFE. At the same time, the BEM allows to exactly compute the radiated

wavefield, which is the main drawback of FE-based techniques.
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Figure 4.1: Analytical model of the embedded waveguide.
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4.4 SAFE model of the embedded waveguide

The domain Ωs is discretized into a number Nel of quadratic semi-isoparametric finite

elements of area Ωe
s, with 3 degrees of freedom per node associated to the three displace-

ment components ui. The displacement vector at point x ∈ (Ωe
s ∪ ∂Ωe

s) is approximated

as

u (ξ, z, t) = N (ξ)qe (z, t) , (4.7)

whereN (ξ) is the matrix collecting the quadratic shape functions for the parent element

of area Ωref
s in the natural reference system, ξ = [ ξ1, ξ2 ]

T is the vector of the natural

coordinates defined on Ωref
s , and qe (z, t) is the vector of nodal displacements. A list of

various quadratic elements used in this study is given in Table4.1. From Eq. (4.7), using

the space-time Fourier transform in Eq. (2.35) the vector of linear strain components

ε (u) in the (κz, ω) domain is obtained as (cf. Eq.2.49)

ε (ξ, κz , ω) = [Bxy (ξ) + iκzBz (ξ)]q
e (κz, ω) , (4.8)

in which the compatibility operators Bxy (ξ) and Bz (ξ) are expressed as in Eqs. (2.50)

and (2.51).

Following the analysis in Chapter 3, the complex tensor of viscoelastic moduli

C̃e (ξ, ω) is defined so that the material attenuation vectors for both longitudinal and

shear bulk waves in the embedded waveguide and surrounding medium are assumed

perpendicular to their wavefronts. Physically, this means that the directions of propaga-

tion and maximum decay due to material damping are mutually parallel. The complex

Lamé constants can be expressed as

λ̃ (ω) = ρ
[
c̃2L (ω)− 2c̃2S (ω)

]
, μ̃ (ω) = ρc̃2S (ω) ,

c̃L (ω) =
cL

1 + iβL (ω) /2π
, c̃S (ω) =

cS
1 + iβS (ω) /2π

,
(4.9)

from which one derives C̃e
ijkm (ω) = λ̃ (ω) δijδkm + μ̃ (ω) (δikδjm + δimδjk).

Substituting Eqs. (4.7), (4.8) into Eq. (4.5) and using Eq. (4.9), algebraic manipulations

lead to the following N -dimensional linear system of equations in the (κz, ω) domain

[
κ2zK3 + iκz

(
K2 −KT

2

)
+K1 − ω2M

]
Q (κz, ω) + Fb (κz , ω) = Fs (κz , ω) , (4.10)

where the different matrix operators, which result from the application of a finite el-

ement assembling procedure for all the Nel elements of the mesh, take the following
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N1 = ζ (2ζ − 1) N1 = 1
4
(1− ξ1) (1− ξ2) (−ξ1 − ξ2 − 1) N1 = 1

4

(
ξ21 − ξ1

) (
ξ22 − ξ2

)

N2 = ξ1 (2ξ1 − 1) N2 = 1
4
(1 + ξ1) (1− ξ2) (ξ1 − ξ2 − 1) N2 = 1

4

(
ξ21 + ξ1

) (
ξ22 − ξ2

)

N3 = ξ2 (2ξ2 − 1) N3 = 1
4
(1 + ξ1) (1 + ξ2) (ξ1 + ξ2 − 1) N3 = 1

4

(
ξ21 + ξ1

) (
ξ22 + ξ2

)

N4 = 4ξ1ζ N4 = 1
4
(1− ξ1) (1 + ξ2) (−ξ1 + ξ2 − 1) N4 = 1

4

(
ξ21 − ξ1

) (
ξ22 + ξ2

)

N5 = 4ξ1ξ2 N5 = 1
2
(1− ξ2) (1 + ξ1) (1− ξ1) N5 = 1

2

(
ξ22 − ξ2

) (
1− ξ21

)

N6 = 4ξ2ζ N6 = 1
2
(1 + ξ1) (1 + ξ2) (1− ξ2) N6 = 1

2

(
ξ21 + ξ1

) (
1− ξ22

)

ζ = 1− ξ − 1− ξ2 N7 = 1
2
(1 + ξ2) (1 + ξ1) (1− ξ1) N7 = 1

2

(
ξ22 + ξ2

) (
1− ξ21

)

N8 = 1
2
(1− ξ1) (1 + ξ2) (1− ξ1) N8 = 1

2

(
ξ21 + ξ1

) (
1− ξ22

)

N9 =
(
1− ξ21

) (
1− ξ22

)

Table 4.1: Shape functions for different quadratic isoparametric finite elements.

representations (cf. Eqs. (2.57)-(2.60))

K3 =

Nel⋃
e=1

∫
Ωref

s

BT
z (ξ) C̃e (ξ, ω)Bz (ξ) J

e
s (ξ) dξ1dξ2 (4.11)

K2 =

Nel⋃
e=1

∫
Ωref

s

(Bxy (ξ))
T C̃e (ξ, ω)Bz (ξ)J

e
s (ξ) dξ1dξ2 (4.12)

K1 =

Nel⋃
e=1

∫
Ωref

s

(Bxy (ξ))
T C̃e (ξ, ω)Bxy (ξ)J

e
s (ξ) dξ1dξ2 (4.13)

M =

Nel⋃
e=1

∫
Ωref

s

ρe (ξ) (N (ξ))TN (ξ)Je
s (ξ) dξ1dξ2 (4.14)

in which Je
s (ξ) = det [∂x (ξ) /∂ξ] represents the Jacobian of the isoparametric mapping

in the x− y plane for the eth semi-isoparametric finite element. The vectors of nodal

displacements on Ωs∪∂Ωs, Q (κz, ω), and nodal forces on ∂Ωs, Fs (κz, ω) and Fb (κz, ω),
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are expressed as

Q (κz, ω) =

Nel⋃
e=1

qe (κz , ω) , (4.15)

Fs (κz, ω) =

Nb⋃
q=1

∫
∂Ωref

s

(N (ξ (η)))T tqs (κz , ω)J
q
s (ξ (η)) dη, (4.16)

Fb (κz, ω) =

Nb⋃
q=1

∫
∂Ωref

s

(N (ξ (η)))T tqb (κz , ω)J
q
s (ξ (η)) dη, (4.17)

where ξ (η) is a coordinate transformation for the in-plane mapping of the edge of an

element which nodes belong to ∂Ωs, J
q
s (ξ (η)) = |(∂x/∂ξ) (∂ξ/∂η)| the corresponding

Jacobian and Nb the total number of edges that discretize ∂Ωs.

It is worth noting that, while the matrix operators K1, K2 and K3 can be either

dependent or independent on the frequency with varying rheological models (see the

description given in Sec. 2.4), the vector Fb (κz, ω) always depends on wavenumber and

frequency since it accounts for the acoustic mechanical and geometric properties of the

external medium. This vector is determined via a 2.5D BEM formulation, which is

described in the next section.

4.5 BEM model of the surrounding medium

4.5.1 Regularized 2.5D boundary integral equation

The surrounding medium of unbounded domain Ωb is assumed to be isotropic and lin-

ear viscoelastic, with mechanical properties defined by mass density ρ and complex

bulk velocities c̃L and c̃S . As shown in Chapter 3, the 2.5D boundary integral for-

mulation is obtained from the corresponding integral representation theorem in which

two different dynamic states are considered. The first state is represented by the un-

known displacements u (x, κz , ω) and tractions t (x, κz , ω) at a receiver point x ∈ ∂Ωb

(see Fig. 4.1). The second state is assumed as the state of fundamental solutions in

the full space for the spatial and time harmonic problem, i.e. the dynamic Green’s

functions in terms of displacements and tractions at x due to a harmonic line load

p (x′, z′, t) = δ (x− x′) exp [i (κzz′ − ωt)] with plane coordinates x′ ∈ Ωb (see Fig. 4.1).

The procedure adopted to extend the boundary integral formulation to source points

x′ belonging to the boundary involves the limiting process x′ ∈ Ωb → x′ ∈ ∂Ωb and

is described in Sec. 3.6.1. As a result, the boundary integrals are convergent in the
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Cauchy Principal Value sense.

In Chapter 3 it has been illustrated how numerical difficulties in treating Cauchy

principal value integrals and boundary corners can be overcome by using the so called

rigid body motion technique [François et al., 2010; Lu et al., 2008b]. From Eq. (3.54), by

posing c∞ = 0, the regularized 2.5D boundary integral equation in the (κz, ω) domain

for a source point x′ ∈ ∂Ωb and in absence of body forces is expressed as

u
(
x′, κz, ω

)
=

∫
∂Ωb

[
UD (r, κz , ω)−US (r)

]
t (x, κz , ω) ds (x)

+

∫
∂Ωb

US (r) t (x, κz , ω) ds (x)

−
∫
∂Ωb

[
TD (r, κz , ω)u (x, κz , ω)−TS (r)u

(
x′, κz, ω

)]
ds (x) ,

(
x,x′) ∈ ∂Ωb,

(4.18)

where r = |x−x′| is the source-receiver distance in the z = 0 plane (see Fig. 4.1). The

different sign for the axial wavenumber κz in the arguments of the dynamic Green’s

functions between Eq. (3.54) and Eq. (4.18) follows directly from the assumptions in

Eqs. (3.1) and (4.1), respectively.

The fundamental dynamic solutions UD
ij (r, κz , ω) in Eq. (4.18) express the jth dis-

placement component at x when the harmonic line load of plane coordinates x′ is acting
in the ith direction.

In this chapter, the dynamic Green’s functions proposed by Li et al. [1992] for a

homogeneous isotropic linear viscoelastic full space are adopted instead of those derived

by Tadeu and Kausel [2000] and used in Chapter 3, since they present an advantage in

terms of computational times. In fact, while the Green’s functions proposed by Tadeu

and Kausel [2000] require the evaluation of a set of four Hankel functions (in this case

from order 0 to order 3), those proposed by Li et al. [1992] need only the evaluation

of the zero and one order Hankel functions. In boundary element codes that operate

with dynamic analyses, the evaluation of the Green’s functions (and therefore of the

Hankel functions) represent a time-consuming operation, especially for large meshes

and large numbers of integration points, since the evaluation must be performed for

several combinations of κα,βr. The fundamental solution derived by Li et al. [1992] for

the harmonic wave motion in time and space reads

UD
ij (r, κz , ω) =

i

4μ̃

{
H

(1)
0 (κβr)δij + Lij

[
H

(1)
0 (κβr)−H

(1)
0 (καr)

]}
,

i, j = 1, 2, 3

(4.19)
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where

κα =
√

κ2L − κ2z , (4.20)

κβ =
√

κ2S − κ2z, (4.21)

are the wavenumbers normal to the interface ∂Ω and

κL =
ω

c̃L
, (4.22)

κS =
ω

c̃L
, (4.23)

denote the complex longitudinal and shear bulk wavenumbers. In Eq. (4.19), H
(1)
0 (·)

is the zero order Hankel function of first kind and

Lij =
1

κ2S

[
δkjδqi

∂2

∂xk∂xq
− iκz (δ3jδki + δ3iδkj)

∂

∂xk
− κ2zδ3jδ3i

]
.

i, j, k, q = 1, 2, 3

(4.24)

Following Gunawan and Hirose [2005], the fundamental displacements in Eq. (4.19) can

be further elaborated to give

UD
ij (r, κz , ω) =

1

4μ̃

[(
Q1 − P2

κSr

)
δij −

(
P3 − 2P2

κSr

)
∂r

∂xi

∂r

∂xj

]
i, j = 1, 2

UD
i3 (r, κz , ω) = UD

3i (r, κz , ω) =
−κz
4μ̃κS

P2
∂r

∂xi
i = 1, 2

UD
33 (r, κz , ω) =

i

4μ̃

(
Q1 − κ2z

κ2S
P1.

) (4.25)

The second set of fundamental solutions, the tractions Green’s functions TD
ij (r, κz , ω),

are obtained as

TD
ij (r, κz , ω) = σD

ijk (r, κz , ω)nk (x) , i, jk = 1, 2, 3 (4.26)

being nk (x) the kth component of the outward normal at x ∈ ∂Ωb and

σD
ijk (r, κz , ω) = λ̃εDill (r, κz , ω) δjk + 2μ̃εDijk (r, κz , ω) , i, j, k,= 1, 2, 3 (4.27)

the jkth component of the Cauchy stress tensor at x when the line load of projection
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x′ is acting in direction i, while

εDijk (r, κz , ω) =
1

2

[
∂UD

ij (r, κz , ω)

∂xk
+

∂UD
ik (r, κz , ω)

∂xj

]
, i, j, k,= 1, 2, 3 (4.28)

is the associated Green’s tensor of linear strains. Substituting Eq. (4.25) into Eqs. (4.28),

(4.27) and (4.26) leads to the following expressions for the fundamental tractions [Gu-

nawan and Hirose, 2005]

TD
ij (r, κz , ω) =

iκS
4

{[
λ̃

μ̃

(
P4 − κβ

κS
Q2 +

κ2z
κ2S

P2

)
+

4P2

(κSr)
2 − 2P3

κSr

∂r

∂xj
ni

]

+

[
− κβ

κS
Q2 +

4P2

(κSr)
2 − 2P3

κSr

](
∂r

∂xi
nj +

∂r

∂xj
ni

)

+

[
− 16P2

(κSr)
2 +

8P3

κSr
+ 2P4

]
∂r

∂xi

∂r

∂xj

∂r

∂n

}
, i, j = 1, 2

TD
i3 (r, κz , ω) =− κz

4

{[
λ̃

μ̃

(
P3 +

κ2z
κ2S

P1 −Q1

)
+

2P2

κSr

]
ni

− 2

(
2P2

κSr
− P3

)
∂r

xi

∂r

∂n

}
, i = 1, 2

TD
3i (r, κz , ω) =− κz

4

[(
2P2

κSr
−Q1

)
ni − 2

(
2P2

κSr
− P3

)
∂r

∂xi

∂r

∂n

]
, i = 1, 2

TD
33 (r, κz , ω) =

iκS
4

(
− κβ

κS
Q2 +

2κ2z
κ2S

P2

)
∂r

∂n
,

(4.29)

in which

Q1 = H
(1)
0 (κβr) , Q2 = H

(1)
1 (κβr) ,

P1 = H
(1)
0 (κβr)−H

(1)
0 (καr) ,

P2 =

(
κβ
κS

)
H

(1)
1 (κβr)−

(
κα
κL

)
H

(1)
1 (καr) ,

P3 =

(
κβ
κS

)2

H
(1)
0 (κβr)−

(
κα
κL

)2

H
(1)
0 (καr) ,

P4 =

(
κβ
κS

)3

H
(1)
1 (κβr)−

(
κα
κL

)3

H
(1)
1 (καr) .

(4.30)

The static fundamental displacements and tractions in Eq. (4.18), US
ij (r) and T S

ij (r),

respectively, correspond to the fundamental solutions for the in-plane line load problem
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in plane strain (cf. Eq. (3.40))

US
ij (r) =

1

8πRe (μ̃) (1− Re (ν̃))

[
(3− 4Re (μ̃)) ln

(
1

r

)
δij +

∂r

∂xi

∂r

∂xj

]
, (4.31)

T S
ij (r) =− 1

4π (1− Re (μ̃)) r

{
∂r

∂xk
nk

[(
2Re (μ̃) δij + 2

∂r

∂xi

∂r

∂xj

)

− (1− 2Re (μ̃))

(
∂r

∂xi
nj − ∂r

∂xj
ni

)]}
, i, j, k = 1, 2

(4.32)

and those for the anti-plane line load problem in plane strain (cf. Eq. (3.41))

US
33 (r) =

1

2πRe (μ̃)
ln

(
1

r

)
, (4.33)

T S
33 (r) = − 1

2πr

∂r

∂xk
nk. k = 1, 2 (4.34)

Since the asymptotic behaviour of the dynamic and static fundamental solutions cor-

respond when r → 0, the dominant singularities of the kernel functions in the first and

last integral of Eq. (4.18) cancel each other out when the source point x′ approaches the
receiver point x. Consequently, these integrals can be evaluated numerically using the

standard Gauss-Legendre quadrature formula [Stroud and Secrest, 1996]. The second

integral in Eq. (4.18) behaves asymptotically as ln (1/r) for r → 0 and can be evaluated

using the Gauss-Laguerre and Gauss-Legendre quadrature formulae (see Sec. 4.5.3).

4.5.2 Boundary element discretization

The boundary ∂Ωb is subdivided into a number Nb of quadratic semi-isoparametric

monodimensional elements with shape functions as indicated in Table4.2. In order

to satisfy the compatibility conditions Eq. (4.3), the nodes of the generic boundary

element ∂Ωq
b are chosen to coincide with those belonging to one edge of an adjacent

semi-analytical finite element Ωe
s. The boundary geometry, displacements and tractions

are interpolated as follows

x (η) = N (η)xq, (4.35)

u (η, κz , ω) = N (η)qq (κz, ω) , (4.36)

t (η, κz , ω) = N (η)hq (κz, ω) , (4.37)

where N (η) is the matrix containing the quadratic shape functions in the natural

coordinate η ∈ ∂Ωref
b (see Table4.2), while xq, qq (κz, ω) and hq (κz, ω) are the vectors
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of nodal coordinates, displacements and tractions, respectively.

The regularized boundary integral formulation Eq. (4.18) is rewritten in discretized

form by applying a point collocation scheme [Brebbia and Dominguez, 1989], where

collocation points x′ are assumed to be coincident with the nodes of the boundary

element mesh. Denoting by xc the cth collocation node and introducing Eqs. (4.36)

and (4.37) into Eq. (4.18), the recursive collocation procedure over the total number of

nodes Nn = Nb × 2 of the boundary element leads to

Nn⋃
c=1

⎧⎨
⎩

Nb⋃
q=1

[Uq
1 (rc (η) , κz, ω) +Uq

2 (rc (η))]h
q (κz, ω)

−
Nb⋃
q=1

(xc /∈∂Ωq)

[Tq
1 (rc (η) , κz, ω)q

q (κz, ω)]−
Nb⋃
q=1

(xc∈∂Ωq)

[Tq
2 (rc (η) , κz, ω)q

q (κz, ω)]

+

Nb⋃
q=1

(xc /∈∂Ωq)

[Tq
3 (rc (η))uc (κz, ω)]

⎫⎪⎬
⎪⎭ =

Nn⋃
c=1

uc (κz , ω) , (x,xc) ∈ ∂Ωb

(4.38)

where uc (κz, ω) is the displacement vector at xc and

Uq
1 (rc (η) , κz , ω) =

∫
∂Ωref

b

[
UD (rc (η) , κz, ω)−US (rc (η))

]
N (η) Jq

b (η) dη, (4.39)

Uq
2 (rc (η)) =

∫
∂Ωref

b

US (rc (η))N (η) Jq
b (η) dη, (4.40)

Tq
1 (rc (η) , κz , ω) =

∫
∂Ωref

b

TD (rc (η) , κz , ω)N (η) Jq
b (η) dη, (4.41)

Tq
2 (rc (η) , κz , ω) =

∫
∂Ωref

b

[
TD (rc (η) , κz , ω)N (η)−TS (rc (η))N (ηc)

]
Jq
b (η) dη,

(4.42)

Tq
3 (rc (η)) =

∫
∂Ωref

b

TS (rc (η))J
q
b (η) dη, (4.43)

are influence operators, in which rc (η) = |x (η) − xc| denotes the in-plane distance

between the integration point x (η) and the collocation point xc, ηc is the adimensional

coordinate evaluated at the element’s node coincident with xc and Jq
b (η) = |∂x (η) /∂η|

is the Jacobian of the semi-isoparametric transformation.
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From Eq. (4.38), by grouping the displacements and tractions operators into the

global influence operators Ub (κz , ω) =
⋃

c

⋃
q

∑2
j=1U

q
j (rc, κz, ω) and Tb (κz, ω) =⋃

c

⋃
q

∑3
j=1T

q
j (rc, κz , ω), and by assembling the displacements and tractions vectors

into the global vectors Qb (κz , ω) =
⋃

q q
q (κz, ω) and Hb (κz, ω) =

⋃
q h

q (κz, ω) ac-

cording to the mesh topology, the following set of linear algebraic equations is obtained

[Tb (κz, ω) + I]Qb (κz , ω) = Ub (κz, ω)Hb (κz, ω) , (x,xc) ∈ ∂Ωb (4.44)

which is defined only for source points xc belonging to the boundary. Once the vectors

of boundary displacements Qb (κz, ω) and tractions Hb (κz , ω) have been determined

from Eq. (4.44), the radiated wavefield ud (x
′, κz, ω) at any x′ ∈ Ωb can be computed

using the 2.5D integral representation theorem in Eq. (3.16). The discretized form of

the 2.5D integral representation theorem is given in Eq. (3.71) and is repeated here for

convenience

ud

(
x′, κz, ω

)
= Ud (κz, ω)Hb (κz , ω)−Td (κz, ω)Qb (κz, ω) , x′ ∈ Ωb, (4.45)

where the influence operators Ud (κz, ω) and Td (κz , ω) result from the following ele-

ment assembling procedure

Ud (κz, ω) =

Nb⋃
q=1

∫
∂Ωref

q

UD
(
r′ (η) , κz , ω

)
N (η) Jq

b (η) dη, (4.46)

Td (κz, ω) =

Nb⋃
q=1

∫
∂Ωref

q

TD
(
r′ (η) , κz, ω

)
N (η) Jq

b (η) dη, (4.47)

in which r′ (η) = |x (η)− x′|. Since the dynamic Green’s functions are nonsingular for

x′ ∈ Ωb, the integrals in Eqs. (4.46) and (4.47) can be evaluated numerically using the

standard Gauss-Legendre quadrature formula.

4.5.3 Evaluation of weakly singular integrals

As can be noted from Eqs. (4.31) and (4.33), the displacement kernels in Eq. (4.40)

are weakly singular of order ln (1/r). Following [Gao and Davies, 2001], the strategy

adopted in this case is to isolate the logarithmic singularity and integrate it using

the Gauss-Laguerre quadrature rule, while the nonsingular residual can be integrated

using the Gauss-Legendre quadrature rule. For the quadratic element of Table4.2 three

cases need to be considered because the source point xc = [xc, yc]
T may be located at
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N1 = 1
2
η (η − 1)

N2 = 1
2
η (η + 1) xc = xq

1 xc = xq
2 xc = xq

3

N3 = 1− η2

Table 4.2: Shape functions for the quadratic monodimensional boundary element and
logarithmic singularities for various configurations of the source point.

the initial node (node 1) of coordinates xq
1 = [x1, y1]

T, at the end node (node 2) of

coordinates xq
2 = [x2, y2]

T or the mid-side node (node 3), of coordinates xq
3 = [x3, y3]

T.

The distance rc (η) between an arbitrary point of coordinates x (η) (see Eq. (4.35)) and

the source xc is obtained from the equation

rc (η) = [x (η)− xc]
2 − [y (η)− yc]

2 . (4.48)

If xc is located at node 1, the substitution of Eq. (4.35) into Eq. (4.48) along with the

quadratic shape functions given in Table4.2 leads to the following expression

r2c =

[
1

2
(1 + η)

]2 {
[− (2− η) xq1 + ηxq2 + 2 (1− η) xq3]

2

+ [− (2− η) yq1 + ηyq2 + 2 (1− η) yq3]
2
} (4.49)

Similarly, if xc is located at node 2, one obtains

r2c =

[
1

2
(1 + η)

]2 {
[− (2 + η) xq1 − ηxq2 + 2 (1 + η) xq3]

2

+ [− (2 + η) yq1 − ηyq2 + 2 (1 + η) yq3]
2
} (4.50)

Eqs. (4.49) and (4.50) can be expressed in the unified form

r2c = ϕ2
[
f2
1 + f2

2

]
(4.51)
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where ϕ is an adimensional coordinate with origin at the same point in which the source

point is located, obtained via the change of variables

ϕ =
1

2
(1− ηcη) (4.52)

in which ηc = −1 if the source point xc is located at node 1 of the element ∂Ωq and

ηc = +1 if it is located at node 2. The functions f1 and f2 in Eq. (4.51) are then

f1 = − (2 + ηcη) xa − ηcηxb + 2 (1 + ηcη) x3,

f2 = − (2 + ηcη) ya − ηcηyb + 2 (1 + ηcη) y3,
(4.53)

where a = 1, b = 2 when the collocation point is located at node 1, and a = 2, b = 1

when it is located at node 2. For the case when the collocation point is located at the

mid-side node xq
3, one obtains

r2c = η2
[
g21 + g22

]
(4.54)

where the functions g1 and g2 take the following representation

g1 =
1

2
[(η − 1) x1 + (η + 1) x2]− ηx3,

g2 =
1

2
[(η − 1) y1 + (η + 1) y2]− ηy3,

(4.55)

Taking the logarithm of Eq. (4.51), the following expression can be obtained

ln

(
1

rc

)
= ln

(
1

ϕ

)
Gauss−Laguerre

− 1

2
ln

[
f2
1 (η) + f2

2 (η)

]2
Gauss−Legendre

(4.56)

The expression for the logarithm given in Eq. (4.56) can be substituted into Eqs. (4.31)

and (4.33), and then into Eq. (4.40). The resulting integral can be subdivided into a

singular part, containing the first term on the right hand side of Eq. (4.56), and the

regular part, containing the second term. The singular and regular integral are evalu-

ated numerically using the Gauss-Laguerre and Gauss-Legendre quadrature formulae,

respectively. An expression equivalent to Eq. (4.56) can be obtained from Eq. (4.54),

valid for the case in which the source point is located in the mid-side node of the

element.

Finally, the boundary integrals in Eqs. (4.39), (4.41), (4.42) and (4.43) are evaluated

by means of the Gauss-Legendre quadrature formula, since they are nonsingular.
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4.6 SAFE-BE coupling

The coupling between the SAFE and the BEM regions is established via the compat-

ibility conditions in Eqs. (4.3) and (4.4), and is carried out in a finite element sense

[Andersen, 2006]. On these bases, the infinite boundary element domain is converted

into a single, wavenumber and frequency dependent, finite element-like domain with

Nn nodes. The dynamic stiffness matrix of this pseudo finite element, relating nodal

tractions to nodal displacements, is obtained by recasting Eq. (4.44) in the following

form

Hb (κz, ω) = Kb (κz, ω)Qb (κz, ω) , (4.57)

where the dynamic stiffness matrix relating the nodal displacements and tractions

Kb (κz, ω) = U−1
b (κz, ω) [Tb (κz, ω) + I] (4.58)

is complex and non symmetric. The nodal tractions are then converted into nodal forces

by following the procedure indicated by Andersen [2006], which uses the equivalence

between the virtual work done by the integral of the surface tractions over the boundary

for the virtual displacements and the virtual work resulting from the application of

the equivalent nodal forces for the same virtual displacements. The work done by

the surface tractions t (x, κz, ω) over the boundary in applying a virtual displacement

δu (x, κz , ω) is given as

δWb =

∫
∂Ωb

[δu (x, κz, ω)]
T t (x, κz, ω) ds (x) . (4.59)

Using the element shape functions to interpolate the displacements and the tractions,

the field quantities at any point x ∈ ∂Ωb remains determined from Eqs. (4.36) and

(4.37), respectively. Substituting these equations into Eq. (4.59) and applying the

discretization procedure lead to

δWb =

Nb⋃
q=1

{
[δqq (κz, ω)]

T
∫
∂Ωref

b

(N (η))TN (η) Jq
b (η) dη hq (κz, ω)

}
. (4.60)

Since the work done by the surface tractions for the qth element is equal to the work

done by the equivalent nodal forces f qb (κz , ω) for the same virtual displacement, the
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following relation holds

δWb =

Nb⋃
q=1

[δqq (κz, ω)]
T f qb (κz , ω) . (4.61)

Combining Eqs. (4.60) and (4.61), the following relationship is derived

Fb (κz, ω) = TbHb (κz, ω) , (4.62)

where

Tb (κz, ω) =

Nb⋃
q=1

∫
∂Ωref

b

(N (η))TN (η) Jq
b (η) dη. (4.63)

is a distribution matrix that relates the nodal tractions to nodal forces on the boundary.

Substituting Eq. (4.57) in Eq. (4.63) leads to the following relation between nodal

displacements and nodal forces

Fb (κz, ω) = TbKb (κz, ω)Qb (κz, ω) . (4.64)

Introduction of Eq. (4.64) in Eq. (4.10) gives the following complex and nonsymmetric

N -dimensional linear system

{
κ2zK3 + iκz

(
K2 −KT

2

)
+K1

+ L T
b [TbKb (κz, ω)]Lb − ω2M

}
Q (κz , ω) = Fs (κz , ω) ,

(4.65)

in which

Qb (κz, ω) = LbQ (κz, ω) (4.66)

is a matrix that collocates the global vector of nodal displacements on the boundary

into the global vector of nodal displacements of the SAFE mesh. The displacement field

at any x ∈ (Ωs ∪ ∂Ωs) can be obtained by solving the N ×N linear system Eq. (4.65)

in the unknown nodal displacements Q (κz, ω) and using the interpolation in Eq. (4.7).

In addition, substituting Eq. (4.57) into Eq. (4.45) leads to the following 3×N linear

system of equations

ud

(
x′, κz , ω

)
= [Ud (κz, ω)Kb (κz , ω)−Td (κz, ω)]LbQ (κz, ω) , x′ ∈ Ωb (4.67)

which allows to compute the radiated displacement wavefield at any source point be-

longing to the surrounding domain.
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4.7 Dispersion analysis

The dispersion properties of guided modes are determined in terms of complex wavenum-

bers κz (ω) for any fixed ω > 0 in absence of external forces applied at the interface ∂Ωs.

Substituting Fs (κz , ω) = 0 in Eq. (4.65), the dispersive equation for the unbounded

waveguide of domain Ωs ∪ Ωb results in the following nonlinear eigenvalue problem in

κz (ω)

Z (κz, ω)Q (κz, ω) = 0, (4.68)

where

Z (κz, ω) =
{
κ2zK3 + iκz

(
K2 −KT

2

)
+K1

+ L T
b [TbKb (κz, ω)]Lb − ω2M

}
, ∈ C

N,N
(4.69)

is the dynamic stiffness matrix of the coupled SAFE-2.5D BEM model. As shown in

Chapter 3 the Contour Integral Method proposed by Beyn [2012] can be applied to

transform the nonlinear eigenvalue problem Eq. (4.68) into a linear one inside a simple

closed curve Γ (κz) ∈ C where poles of the guided modes must be sought.

Since the algorithm described in Sec. 3.8.1 remains unchanged and requires only

the substitution of Z (κz, ) with the expression in Eq. (4.69), the procedure will not be

repeated here. On the other hand, the analysis of Sec. 3.8.2 is no longer valid for the

case of embedded waveguides, and the single-valued definition of the dynamic stiffness

matrix Eq. (4.69) must be revised.

4.7.1 Single-valued definition of the dynamic stiffness matrix

The procedure reported in Sec. 3.8.2 allows to extract all the eigenvalues for a holomor-

phic problem Z (κz, ω) ∈ H(Ω∗,CK,K), where Ω∗ denotes the region of the complex κz-

plane enclosed by Γ (κz). However, this condition is not generally satisfied as Z (κz, ω)

is singular and multivalued due to the properties of the Hankel functions H
(1)
n (·) as

well as the two wavenumbers κα = ±(κ2L − κ2z)
1/2 and κβ = ±(κ2S − κ2z)

1/2. Before

performing the contour integration in Eqs. (3.75) and (3.76), the operator Z (κz, ω)

must be made single valued and analytic everywhere inside Ω∗. This task is accom-

plished by choosing the phase of κα and κβ consistently with the nature of the existing

partial bulk waves in the surrounding medium, and by removing points of singularity

and discontinuity in the κz-plane.

The signs of the wavenumbers normal to the interface, with reference to the more
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Figure 4.2: Complex κz-plane with bulk wavenumbers, vertical branch cuts and inte-
gration path for an external isotropic viscoelastic medium. The signs of κα and κβ
on Ω∗ and along Γ (κz) are determined by imposing the conditions on their imaginary
parts as indicated in the different regions.

general viscoelastic case of Fig. 4.2, are established as in the following:

� for Re(κz) > Re(κS), the Snell-Descartes law [Borcherdt, 2009; Rose, 2004] en-

forces a total reflection, with possible mode conversion at the interface, of the

longitudinal and shear bulk waves traveling inside the waveguide (non-leaky re-

gion). In this case, the particles motion in the surrounding medium remains

confined in proximity of the interface, with amplitude decaying exponentially

in the direction normal to the interface [Auld, 1973; Pavlakovic, 1998]. Since

the propagation process is represented by the Hankel functions H
(1)
n (καr) and

H
(1)
n (κβr) and assumes a dependence exp[i(κzz − ωt)], in order to have outgoing

waves satisfying the radiation condition at infinity, the signs of κα and κβ must

be chosen so that Im(κα) > 0 and Im(κβ) > 0.

� In the range Re(κL) < Re(κz) < Re(κS), the longitudinal bulk waves are still

totally reflected at the interface, and the sign of κα is then selected in order to

preserve the positiveness of its imaginary component, which satisfies the radiation

condition at infinity. On the other hand, shear bulk waves are also refracted at

some leakage angle ϑLeak
S = sin−1

[
Re(κz)
Re(κS)

]
with respect to the normal at the
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Figure 4.3: Wave vectors configurations for the point P3 of Fig. 4.2. The propagation
vector kRe

S is oriented along the radiation direction (dashed gray lines), while the atten-
uation vector kIm

S is perpendicular to equi-amplitude lines (solid gray lines) and oriented
in the direction of maximum decay. Magnitude of displacements is proportional to the
thickness of equi-amplitude lines.

interface [Auld, 1973; Castaings and Lowe, 2008] and therefore, for the properties

of the nth order Hankel function of the first kind, sgn(κβ) must be chosen in order

to satisfy the condition Re(κβ) > 0.

Regarding the imaginary component of κβ, it must be observed that for any fixed

positive Re(κz) ∈ [0,Re(κS)], Im(κβ) changes monotonically as a function of

Im(κz) and vanishes for values of Im(κz) = Re(κS)Im(κS)/Re(κz), which define

a branch of hyperbola passing through the point κS . This branch of hyperbola,

indicated with qβ in Fig. 4.2, determines the transition between an outgoing grow-

ing (Im(κβ) < 0) and an outgoing decaying (Im(κβ) > 0) shear waves wavefield

along the orthogonal direction to the interface. These physical states are repre-

sented by points P1 and P3 in Fig. 4.2, respectively, while the transition state

(Im(κβ) = 0) is represented by point P2 on qβ.

The wavevector configurations for points P1, P2 and P3 for a planar interface,

are shown in Figs. 4.5-4.3 in terms of propagation and attenuation vectors, kRe
S

and kIm
S , respectively, with |kRe

S ||kIm
S |cos(γS) = kRe

S · kIm
S and 0 < γS < π/2

[Carcione et al., 1988; Caviglia et al., 1990]. The attenuation vector is given

by kIm
S = kIm

Sd + kIm
Si , where kIm

Sd is the component due to material damping

(homogeneous component), parallel to kRe according to the material damping
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Figure 4.4: Wave vectors configurations for the point P2 of Fig. 4.2. The propagation
vector kRe

S is oriented along the radiation direction (dashed gray lines), while the atten-
uation vector kIm

S is perpendicular to equi-amplitude lines (solid gray lines) and oriented
in the direction of maximum decay. Magnitude of displacements is proportional to the
thickness of equi-amplitude lines.

model of Eq. (4.9), and kIm
Si is the component associated to energy radiation

(inhomogeneous component), which is normal to kRe
S [Cervený and Pšenćık, 2011].

All the wavenumber vectors lie on the plane containing the z-axis and the outward

normal n at the interface.

For any κz above qβ (point P1), imposition of Re(κβ) > 0 implies that Im(κβ) < 0

and the propagation and attenuation vectors normal to the interface, kRe
β and kIm

β ,

respectively, result in opposite directions (Fig. 4.5). Since kIm is perpendicular

to the lines of constant amplitudes in the z − n plane and is oriented in the

direction of the maximum decay of amplitude [Cervený and Pšenćık, 2011], a well

known characteristic of leaky waves can be observed: while material damping

(homogeneous component) causes the amplitude of the partial shear wave to

decrease along the radiation direction (dashed lines), due to the inhomogeneous

component the wave amplitude increases in direction n. This behaviour can

be observed from the intersections of the equi-amplitude lines (solid lines) with

the normal to the interface and has been already discussed by different authors

[Simmons et al., 1992; Viens et al., 1994; Vogt et al., 2003] in the special case

of isotropic elastic open waveguides, for which kIm
S = 0 and γS = π/2 [Carcione

et al., 1988; Caviglia et al., 1990].
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Figure 4.5: Wave vectors configurations for the point P1 of Fig. 4.2. The propagation
vector kRe

S is oriented along the radiation direction (dashed gray lines), while the atten-
uation vector kIm

S is perpendicular to equi-amplitude lines (solid gray lines) and oriented
in the direction of maximum decay. Magnitude of displacements is proportional to the
thickness of equi-amplitude lines.

If κz lies below qβ (point P3), then Re(κβ) > 0 implies that Im(κβ) > 0, and

H
(1)
n (κβr) is therefore convergent. In this case, the shear wave amplitude de-

creases along both the radiation direction and the direction normal to the inter-

face (Fig. 4.3).

� Analogous considerations apply in the range Re(κz) < Re(κL), where both lon-

gitudinal and shear bulk waves are radiated in the surrounding medium.

Once the signs for κα and κβ have been determined, the operator Z (κz, ω) results single-

valued everywhere on Ω∗. To make it also analytical, it is necessary to remove points

corresponding to singularities and discontinuities. In this study, an approach similar

to the Vertical Branch Cut Integration (VBCI) method [He and Hu, 2010; Kurkjian,

1985; Liu and Chang, 1996; Zhang et al., 2009] has been adopted.

For the given choices of sgn(κα) and sgn(κβ), points of discontinuities are repre-

sented by the two vertical lines departing from κL = ω/c̃L and κS = ω/c̃S and extending

along the positive direction of the imaginary axis (see Fig. 4.2). These lines delimit

zones of Ω∗ where κα and κβ change sign in both their real and imaginary compo-

nents. The two vertical cuts are therefore introduced to remove these discontinuities.

These cuts also include the bulk wavenumbers, since H
(1)
n (κα,βr) are not defined for

κz → κα,β . The last branch cut is represented by the whole negative real axis, which
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Figure 4.6: Complex κz-plane with bulk wavenumbers, vertical branch cuts and inte-
gration path for an external isotropic elastic medium. The signs of κα and κβ on Ω∗

and along Γ (κz) are determined by imposing the conditions on their imaginary parts
as indicated in the different regions.

is a branch cut of the Hankel function, and is easily avoided by restricting the contour

Γ (κz) only to positive real values of the axial wavenumbers (right propagating waves).

The integral path in Fig. 4.6 represents a special case of that in Fig. 4.2 when an

isotropic elastic surrounding medium is considered. In this case, κL and κS are purely

real and the hyperbolic lines qα and qβ collapse on the positive imaginary axis and part

of the real axis. Since in this case kIm
L,S = 0, lines of constant amplitude become parallel

to the radiation direction (γL,S = π/2), causing the displacement field to grow with

distance in the direction normal to the interface [Vogt et al., 2003].

4.7.2 Dispersion characteristics extraction

Once the complete set of eigensolutions [κmz (ω) ,Qm (ω)] has been determined from

Eq. (4.68) for the frequency of interest, the dispersion characteristics for the mth guided

mode are computed as

132



4.8. NUMERICAL APPLICATIONS

cmp (ω) =
ω

Re[κmz (ω)]
, (4.70)

αm (ω) = Im[κmz (ω)], (4.71)

cme (ω) =

ω
2 Im

{∫
Ωs

[um (ω)]H L T
z C̃ (ω) εm (ω) dxdy

}
1
4Re

{∫
Ωs

ω2ρ [um (ω)]H um (ω) + [εm (ω)]H C̃ (ω) εm (ω) dxdy
} , (4.72)

where the displacements um (ω) and strains εm (ω) on Ωs are recovered from Qm (ω)

using the interpolations Eq. (4.7) and the strain-displacement relations Eq. (4.8), re-

spectively. It should be noted that Eq. (4.72) does not represent the exact expression of

the energy velocity for leaky guided modes. In this case, energy flow curves bend away

from the waveguide into the surrounding medium, determining an axial component of

the energy flow on Ωb [Auld, 1973; Castaings and Lowe, 2008; Molz and Beamish, 1996;

Simmons et al., 1992]. In such circumstances, the domain integrals in Eq. (4.72) should

be rigorously evaluated on Ωs ∪ Ωb, which has infinite extension. However, Eq. (4.72)

is commonly accepted as sufficiently accurate in GUW applications [Pavlakovic, 1998;

Pavlakovic and Lowe, 2003] and becomes exact for non-leaky modes (Re(κz) > Re(κS)),

being the wavefield on Ωb constituted by evanescent waves [Auld, 1973]. In this case

there is no energy flux through Ωb, with the total energy remaining confined within Ωs

and flowing parallel to the interface.

4.8 Numerical applications

In this section, five numerical applications are presented. The first two, which have

been studied in literature using the Global Matrix Method and the SAFE method

with absorbing regions, are used as validation cases, while the remaining three appli-

cations are proposed to show the unique capabilities of the coupled SAFE-2.5D BEM

formulation to compute dispersive properties of leaky waves in embedded waveguides

of arbitrary cross-section. The material properties used in the analyses are listed in

Tab. 4.3. Since only the Maxwell rheological model is considered in this study, the

material constants are independent from frequency [Bartoli et al., 2006]. The settings

of the contour algorithm have been defined on the basis of single analysis performed at

few frequencies, by changing the parameters (Np, tolrank and tolres) until a stable trend

was observable in the separation of the singular values as well as the relative residuals

of eigensolutions.
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material i ρi ci
L ci

S βi
L βi

S

(Kg/m3) (m/s) (m/s) (Np/wavelength) (Np/wavelength)

steel 1 st 7932 5960 3260 0.003 0.008

concrete 2 co 2300 4222.1 2637.5 - -

grout 1 gr 1600 2810 1700 0.043 0.100

soil 3 so 1750 1000 577 0.126 0.349

1 Pavlakovic et al. [2001]
2 Castaings and Lowe [2008]
3 Ketcham et al. [2001]

Table 4.3: Materials constants used for the numerical analyses in Sec. 4.8

4.8.1 Elastic steel bar of circular cross section embedded in elastic

concrete

In the first example, the coupled SAFE-BEM formulation is validated with respect to

the FEM solution proposed by Castaings and Lowe [2008] for a 20 mm diameter elastic

steel (st) bar embedded in elastic concrete (co). The SAFE mesh used in the analysis is

composed of 48 six-node triangular elements and 32 nine-node quadrilateral elements,

as shown in Fig. 4.7. The BEM mesh matches the SAFE mesh at the interface and is

composed of 32 three-node monodimensional elements. The steel longitudinal and shear

bulk wave attenuations listed in Tab. 4.3, βst
L and βst

S , respectively, are neglected. The

dispersion curves, represented in Figs. 4.8-4.10 in terms of phase velocity, attenuation

and energy velocity, have been obtained by considering the upper limit of the integration

path in Fig. 4.6 equal to 200 Np/m (1737.18 dB/m), while the horizontal extension

has been limited to Re(κcoS ) at each frequency step. The attenuation value has been

added to the phase and energy velocity curves filling the circular markers with different

blue levels. Light and dark levels denote higher and lower values of the attenuations,

respectively.

The results for the L(0, 1), F (1, 1) and F (1, 2) modes are in very good agreement

with those in Ref. [Castaings and Lowe, 2008]. Of the remaining modes, it is interesting

to observe the global behaviour of the F (2, 1), which experiences three discontinuities

in the range 0 − 200 kHz. The first discontinuity is located at about 40 kHz, where

the mode becomes leaky (c
F (2,1)
p > ccoS ). Moreover, the energy velocity in the frequency
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Figure 4.7: SAFE-BEM mesh of the elastic steel bar of circular cross section embedded
in elastic concrete.

range corresponding to ccoS < c
F (2,1)
p < ccoL is negative. The second discontinuity occurs

when the mode crosses the longitudinal bulk velocity of the concrete. In the frequency

range 82−130 kHz, where the mode is indicated as F (2, 1)′, both longitudinal and shear

bulk waves are leaked in the concrete. The third discontinuity occurs in the frequency

range 130 − 136 kHz, where the phase velocity becomes lower than the longitudinal

bulk velocity of the concrete, thus corresponding to radiation of shear bulk waves only.
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Figure 4.8: Phase velocity dispersion curves for the elastic steel bar of circular cross sec-
tion embedded in elastic concrete of Fig. 4.7. Modes are indicated as in Ref. [Castaings
and Lowe, 2008].
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Figure 4.9: Attenuation dispersion curves for the elastic steel bar of circular cross sec-
tion embedded in elastic concrete of Fig. 4.7. Modes are indicated as in Ref. [Castaings
and Lowe, 2008].
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Figure 4.10: Energy velocity dispersion curves for the elastic steel bar of circular cross
section embedded in elastic concrete of Fig. 4.7. Modes are indicated as in Ref. [Cas-
taings and Lowe, 2008].
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4.8.2 Viscoelastic steel bar of circular cross section embedded in vis-

coelastic grout

In the second example, a 20 mm diameter viscoelastic steel bar (st) embedded in

viscoelastic grout (gr) is considered. This example is used to validate the proposed

SAFE-BEM formulation for a case in which all the materials are viscoelastic. The cross

section is discretized with the same type and number of elements used in Sec. 4.8.1.

The obtained dispersion curves, shown in Figs. 4.12-4.13, are very similar to those in

Ref. [Pavlakovic et al., 2001], in which the same problem has been solved by using the

software DISPERSE [Pavlakovic et al., 1997]. In the analysis, the imaginary part of the

integral path in Fig. 4.2 has been limited to 200 Np/m (1737.18 dB/m). The dispersion

curves for the fundamental longitudinal mode, L(0, 1), and fundamental flexural mode,

F (1, 1), are in very good agreement with those in the Ref. [Pavlakovic et al., 2001]. It

is also worth noting that the contour integral method is able to detect the portion of

the F (1, 1) mode in the frequency range 0−15 kHz, although the non-leaky poles lie in

this case very close to κgrS . As indicated by Beyn [2012], the contour integral method

is indeed able to detect the roots if they lie outside but close to the contour, although

the accuracy becomes strongly dependent on the number of integration points used in

proximity of the same roots. Since Z (κz , ω) is not defined for κz → κgrS , the solutions

provided by the contour integral method can be inaccurate. In fact, some of these

solutions have been found to lie in the non-leaky region, while Pavlakovic et al. [2001]

have excluded the existence of the F (1, 1) mode in this region. Therefore, to get precise

and reliable solutions for κz → κgrS , the roots obtained by the contour integral method

were improved by using them as initial guesses in the Muller’s root finding algorithm

[Press et al., 1992].

As in the elastic case of Sec. 4.8.1, discontinuities occur when the modes cross the

bulk velocities of the external medium. The discontinuities for the F (1, 1) mode in

the phase velocity spectra are mild compared with those of the F (2, 1) mode. The

corresponding jumps in attenuation are clearly observable. As for the F (2, 1) mode in

Sec. 4.8.1, the branch of the mode that satisfies the condition cgrS < c
F (2,1)
p < cgrL shows

a negative energy velocity.
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Figure 4.11: SAFE-BEM mesh of the viscoelastic steel bar of circular cross section
embedded in viscoelastic grout.
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Figure 4.12: Phase velocity dispersion curves for the viscoelastic steel circular bar
embedded in viscoelastic grout of Fig. 4.11. Modes are indicated as in Ref. [Pavlakovic
et al., 2001].
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Figure 4.13: Attenuation dispersion curves for the viscoelastic steel circular bar em-
bedded in viscoelastic grout of Fig. 4.11. Modes are indicated as in Ref. [Pavlakovic
et al., 2001].
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Figure 4.14: Energy velocity dispersion curves for the viscoelastic steel circular bar
embedded in viscoelastic grout of Fig. 4.11. Modes are indicated as in Ref. [Pavlakovic
et al., 2001].
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4.8.3 Viscoelastic steel bar of square cross section embedded in vis-

coelastic grout

The third example considers a square viscoelastic steel bar (st), of 20 mm side length,

embedded in viscoelastic grout (gr) (see Fig. 4.15). Actually, in the considered fre-

quency range the steel does not generally exhibit material damping, thus, to test the

presented method a small damping was artificially added by considering the material

as viscoelastic. The bar is discretized with 100 eight-node quadrilateral elements, while

a boundary mesh of 40 three-node monodimensional elements is adopted to model the

surrounding space. A maximum attenuation of 200 Np/m (1737.18 dB/m) has been

considered in the analysis. The modes in the dispersion spectra of Fig. 4.16-4.18 have

been labeled as in Ref. [Gunawan and Hirose, 2005], where a square waveguide in

vacuum was considered. It can be observed that, in the frequency range 0 − 13 kHz,

the first flexural mode, F1, behaves similarly to the F (1, 1) mode for the circular bar

in Sec. 4.8.2. Also in this case the Muller’s method has been applied to improve the

accuracy of these solutions. It is also interesting noting the existence of a non-leaky

section for the two skew modes S1
1 and S2

1 . Similarly to the F (2, 1) mode in both the

examples of Secs. 4.8.1 and 4.8.2, the energy velocity of these modes becomes positive

for values of c
S1
1

p > cgrL and c
S2
1

p > cgrL .
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Figure 4.15: SAFE-BEM mesh of the viscoelastic steel bar of square cross-section
embedded in viscoelastic grout.
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Figure 4.16: Phase velocity dispersion curves for the viscoelastic steel square bar em-
bedded in viscoelastic grout of Fig. 4.15. Modes are indicated as in Ref. [Gunawan
and Hirose, 2005], where a square bar in vacuum was considered.
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Figure 4.17: Attenuation dispersion curves for the viscoelastic steel square bar embed-
ded in viscoelastic grout of Fig. 4.15. Modes are indicated as in Ref. [Gunawan and
Hirose, 2005], where a square bar in vacuum was considered.
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Figure 4.18: Energy velocity dispersion curves for the viscoelastic steel square bar
embedded in viscoelastic grout of Fig. 4.15. Modes are indicated as in Ref. [Gunawan
and Hirose, 2005], where a square bar in vacuum was considered.
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4.8.4 Viscoelastic steel HP200 beam embedded in viscoelastic soil

Despite the fact that non-destructive evaluation of pile-integrity is an important topic

in geotechnical engineering [Ding et al., 2011; Liu, 2012; Ni et al., 2008], dispersion

analyses of guided waves propagating in foundation piles seem to be limited in literature

to simple geometries [Finno and Chao, 2005; Finno et al., 2001]. In this example,

the proposed formulation is exploited to predict the dispersion curves for an HP200

steel (st) pile embedded in soil (so). Both steel and surrounding soil are treated as

linear viscoelastic materials. The attenuations of L and S waves in soils have been

investigated by Ketcham et al. [2001] and are reported in Tab. 4.3 for a surface soil

layer. The pile is discretized with 52 eight-node quadrilateral elements and 2 six-node

triangular elements, as shown in Fig. 4.19. The BEM mesh is composed of 108 three-

node monodimensional elements. Since only the first low order modes are of interest

in practical applications, the analysis has been carried out by considering a maximum

attenuation of 9.2 Np/m (80.86 dB/m), where these modes have been found to exist

in the frequency range 0− 1000 Hz. The low order modes are indicated with m1, m2,

m3 and m4. It can be noted that all these modes are discontinuous in correspondence

of the soil bulk velocities. The flexural-like mode m4, which is indicated with m4′ for
cm4′
p > csoS and with m4′′ for cm4′′

p > csoL , exists in both the two leaky zones of the

spectra in the frequency range 600 − 870 Hz. The longitudinal-like mode m1 becomes

almost non-dispersive in the frequency range 700 − 1000 Hz, while its attenuation

remains almost constant in the frequency range corresponding to cm1
p > csoL . Since this

mode also shows the highest energy velocity combined with the minimum attenuation if

compared to the remaining low order modes, it can be particularly suitable in practical

inspection applications.

The behaviour of the radiated wavefield for the flexo-torsional m2 mode is examined

with reference to the analysis of Sec. 4.7.1. From Fig. 4.21, it can be noted that the

attenuation of this mode is always greater than the attenuations of both longitudinal

and shear bulk waves, αso
L (ω) = Im[κsoL (ω)] and αso

S (ω) = Im[κsoS (ω)], respectively. It is

therefore expected that the amplitudes of both longitudinal and shear waves in their

corresponding leaky zones must increase with distance along the direction normal to

the boundary. On the other hand, for cm2
p < csoS , the radiated wavefield must decay with

distance from the pile-soil interface. These behaviours can be observed in Fig. 4.23,

where the wavestructures Qm2 (ω) of the m2 mode at various frequencies have been

substituted in Eq. (4.67) to compute the radiated wavefield at the nodes x′ of an

external mesh. As can be noted, the wavefield in soil for the m2 mode at 88.38 Hz
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Figure 4.19: SAFE-BEM mesh of the HP200 viscoelastic steel beam embedded in
viscoelastic soil.

decays rapidly away from the interface, while the wavefield amplitudes for the m2′

mode at 616.16 Hz (radiated S waves) and the m2′′ mode at 952.02 Hz (radiated S and

L waves) increase with distance from the interface.

It should be kept in mind that the modes attenuations resulting from the present

analysis are probably overestimated due to the assumptions in Eq. (4.3). Lower and

more realistic attenuations could be predicted by inserting an appropriate thin layer

between the two media as previously done by Nayfeh and Nagy [Nayfeh and Nagy,

1996] and by Pavlakovic [Pavlakovic, 1998].
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Figure 4.20: Phase velocity velocity dispersion curves for the viscoelastic steel HP200
beam embedded in viscoelastic soil of Fig. 4.19.
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Figure 4.21: Attenuation dispersion curves for the viscoelastic steel HP200 beam em-
bedded in viscoelastic soil of Fig. 4.19.
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Figure 4.22: Energy velocity dispersion curves for the viscoelastic steel HP200 beam
embedded in viscoelastic soil of Fig. 4.19.
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(a)

(b)

(c)

Figure 4.23: Mode shapes and wavefield in soil for (a) mode m2 at 88.38 Hz, (b) mode
m2′ at 616.16 Hz and (c) mode m2′′ at 952.02 Hz.
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4.8.5 Rectangular HSS40�20�2 viscoelastic steel tube embedded in

viscoelastic grout

The last numerical example considers the rectangular HSS40�20�2 viscoelastic steel

tube embedded in viscoelastic grout of Fig. 4.24.

The cross-section is discretized using a mesh of 36 eight-nodes quadratic elements

for the steel section and a boundary element mesh of 36 three-nodes monodimensional

elements for the surrounding grout.

The dispersion curves, represented in Fig. 4.25 in terms of real wavenumber, phase

velocity, attenuation and energy velocity, are extracted in the frequency range 0 ÷ 35

kHz by considering modes with attenuation lower than 903.33 dB/m, i.e. by limiting

the contour Γ (κz) to values of κz with imaginary component Im (κz) ≤ 104 Np/m at

each frequency step.

The first four fundamental modes are identified with m1 (longitudinal-like mode),

m2 (torsional-like mode), m3 (first flexural-like mode) and m4 (second flexural-like

mode). From the inspection of the dispersive spectra of real wavenumbers (Fig. 4.25(a))

it can be noted that when the real part of a guided mode crosses the lines Re[κgrL,S (ω)] =

ω/Re(c̃grL,S) a jump in both the real and imaginary part of the mode is observed, which

reflects into a jump in the phase velocity, attenuation and energy velocity. The existence

of such jumps has been explained by Pavlakovic [1998] and it’s essentially due to the

different amount of energy radiated while passing from the non-leaky to the leaky

regime or between two leaky regimes.

From a physical point of view, their existence may indicate the presence of some

modes with different wavenumbers at the same frequency (backward jumps) or that the

phase velocity of the mode correspond to the bulk phase velocity of the surrounding

material. However, as noted by Pavlakovic [1998], sections of curves corresponding to

jumps are unsuitable in non-destructive testing because of the unstable characteristics

of the corresponding guided modes. Moreover, a mathematical link between different

branches of the same mode is generally difficult to obtain, since the dynamic stiff-

ness matrix Kb (κz, ω) is numerically unstable for values of κz close to the two bulk

wavenumbers of the surrounding medium. Besides the fact that the bulk wavenumbers

of the surrounding medium are excluded by the integration path of Fig. 4.2, the contour

integral method has however the additional capability to extract roots located outside

the contour but close to it [Beyn, 2012]. The accuracy depends in this case on the num-

ber of integration points used to discretize the contour near the bulk wavenumbers. An

example is given by the second flexural mode m4 in the frequency range 0÷ 8 kHz. In
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Figure 4.24: SAFE-BEM mesh of the embedded HSS40�20�2 rectangular steel tube
.

this range, the phase velocity of the mode is almost equal to the shear bulk velocity

in the cement grout and therefore the Hankel function H
(1)
n (κβr) is divergent, lead-

ing to the numerical instability. A root searching analysis has been performed in this

frequency range by comparing the performances of the contour integral method with

those of the Muller’s algorithm [Press et al., 1992], which uses a quadratic interpolation

to find the minimum of det [Z (κz, ω)]. Both the algorithms are able to extract complex

roots, but the Muller’s algorithm leads to more inaccurate results due to the numerical

instabilities in the computation of the determinant. On the other hand, the contour

integral method can extract the roots more accurately by performing the integration

along the non-singular path around the bulk wavenumbers. However, from the energy

velocity spectra of Fig. 4.25(d) it can be noted that the computation of eigenvectors

for the mode m4 in the frequency range 0 ÷ 8 kHz should be further improved in or-

der to obtain acceptable results. This can be achieved by increasing the number of

integration points along the integration path in proximity of the bulk wavenumbers.

The frequency range 8 ÷ 24 kHz corresponds to a gap in the mode m4, while in the

frequency range 24 ÷ 35 kHz the phase velocity of the mode decreases and the mode

becomes non-leaky. The first fundamental pseudo-flexural mode m3 shows a phase

velocity always bounded between the two bulk velocities of the grout in the frequency

range 11÷35 kHz. Although not shown in the dispersion spectra, the behaviour of this

mode in the frequency range 0 ÷ 11 kHz is expected to be similar to that of the m4

mode, with the phase velocity almost equal to the shear bulk velocity of the grout.

The fundamental pseudo-torsional mode m2 behaves similarly to the mode m3, al-
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though it can be noted that in the frequency range 20÷ 35 kHz both its phase velocity

and attenuation are almost constant, thus showing a nearly-nondispersive character-

istic. This mode, represents therefore a particularly suitable guided mode for nonde-

structive testing, along with the pseudo-longitudinal mode m1.

The latter shows in fact the highest phase velocity and is weakly dispersive in the

frequency range 30÷35 kHz, where it also shows the highest energy velocity. However,

from the attenuation spectra of Fig. 4.25(c) it can be noted that in the above frequency

range the mode m2 has a lower attenuation.

The remaining modes of the spectra correspond to higher order modes, some of

which are not shown in Figs. 4.25(b) and 4.25(c) for representative reasons. As can

be noted, higher order modes generally present several jumps and are characterized by

higher attenuation values compared with the fundamental modes.
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Figure 4.25: Dispersion curves for the viscoelastic HSS40�20�2 steel section embedded
in viscoelastic grout of Fig. 4.24.
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4.9 Conclusions

In this chapter, a Semi-Analytical Finite Element (SAFE) method coupled with a

regularized 2.5D Boundary Element Method (BEM) has been applied to derive the

dispersive equation for a viscoelastic waveguide of arbitrary cross-section embedded in

a viscoelastic isotropic unbounded medium. The coupling between the SAFE and BEM

domains has been established in a finite element sense, by converting the infinite BEM

domain into a single, wavenumber and frequency dependent, SAFE-like element. The

discretized wave equation, which is configured as a nonlinear eigenvalue problem in the

complex axial wavenumber, has been solved using a Contour Integral Method. In order

to fulfill the requirement of holomorphicity of the dynamic stiffness matrix Z (κz, ω)

inside the complex contour, the phase of the wavenumbers normal to the interface

have been chosen consistently with the nature of the waves existing in the surrounding

medium.

The method has been first validated against literature results for an elastic circular

steel bar embedded in elastic concrete and a viscoelastic circular steel bar embedded

in viscoelastic grout, for which results relative to some modes were available. In both

cases, a very good agreement between the solutions has been observed.

Next, four new cases have been investigated. The dispersion curves obtained for a

viscoelastic steel bar of square cross section embedded in viscoelastic grout show some

analogies with those of the viscoelastic steel bar of circular cross section embedded in

viscoelastic grout, especially for the longitudinal, torsional and flexural modes. The

dispersion analysis performed for a HP200 viscoelastic steel beam embedded in vis-

coelastic soil show that the first longitudinal mode is the most suitable in practical

guided waves-based inspections. The dispersion curves for a rectangular HSS40�20�2

viscoelastic steel tube embedded in viscoelastic grout have been extracted in the 0÷35

kHz frequency range. The results show that the fundamental torsional mode is almost

nondispersive in the frequency range 25 ÷ 35 kHz and can be therefore suitable for

nondestructive testings. The fundamental longitudinal mode presents similar charac-

teristics in the same frequency range, with similar values of attenuation and higher

values of energy velocity, but with a more pronounced dispersive behavior compared to

the torsional guided mode. The coupled SAFE-2.5D BEM formulation can be further

extended to problems with embedded thin walled sections [Shah et al., 2001], immersed

waveguides [Godinho et al., 2003], poroelastic surrounding media Lu et al. [2008a,b]

and waveguides embedded in both isotropic and layered half spaces [François et al.,

2010; Rieckh et al., 2012].
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Chapter 5

Leaky Guided Waves in

waveguides immersed in perfect

fluids: coupled SAFE-2.5D BEM

formulation

5.1 Sommario

Una formulazione accoppiata SAFE-2.5D BEM viene proposta per lo studio delle carat-

teristiche di dispersione di guide d’onda viscoelastiche immerse in fluidi ideali. Il metodo

semi-analitico agli elementi finiti è utilizzato per modellare la guida d’onda immersa,

mentre la formulazione spettrale agli elementi di contorno, impiegata per modellare il

fluido circostante di estensione infinita, consente di superare il problema delle riflessioni

spurie tipico di altre tecniche basate sulla discretizzazione del dominio [Fan et al., 2008].

Contrariamente al caso elastodinamico descritto nei Capitoli 3 e 4, le singolarità

asintotiche delle soluzioni fondamentali per il problema di Helmholtz non corrispondono

quando i punti sorgente e ricevente risultano infinitamente vicini sul contorno. Tuttavia,

una formulazione regolarizzata risulta comunque possibile e gli integrali di contorno

possono pertanto essere valutati con tecniche di quadratura numerica convenzionali.

In maniera simile a quanto fatto nel Capitolo 4, l’accoppiamento delle regioni SAFE

e BEM viene eseguito nel senso degli elementi finiti trasformando le matrici di impe-

denza della regione BEM in una matrice di rigidezza dinamica equivalente, la quale

risulta dipendente dal numero d’onda e dalla frequenza.
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Pur ammettendo soluzione unica in linea teorica, risulta ben noto dalla letteratura

[Bonnet, 1999; Schenck, 1968] che il problema esterno di Helmholtz modellato con gli

elementi di contorno soffre di non unicità della soluzione per specifici autovalori di un

corrispondente problema interno. Questo problema, di tipo puramente numerico, si

manifesta in maniera maggiore alle alte frequenze, dove lo spettro di dispersione risulta

più popolato. L’effetto delle frequenze fittizie viene mitigato usando il metodo CHIEF

proposto da [Schenck, 1968], il quale consiste nella scrittura di un sistema di equazioni

sovradeterminato che viene in seguito risolto nel senso dei minimi quadrati.

L’equazione d’onda ottenuta dal sistema accoppiato SAFE-2.5D BEM si configura

come un problema non lineare agli autovalori, dal quale i numeri d’onda complessi sono

per diverse fissate frequenze utilizzando il metodo degli integrali di contorno. Un’analisi

delle superfici di Riemann viene descritta in maniera analoga a quella del Capitolo 4,

nella quale si tiene conto della legge di Snell-Descartes all’interfaccia solido-fluido.

La formulazione proposta viene dapprima validata confrontando i risultati ottenuti

con quelli generati dal software DISPERSE [Pavlakovic and Lowe, 2011] per una barra

circolare di titanio immersa nell’olio. Infine, vengono mostrati i risultati relativi ad una

barra quadrata di ed una barra ad L di acciaio immerse nell’acqua.
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5.2 Introduction and literature review

Guided Ultrasonic Waves (GUW) are widely used as an efficient tool for the non-

destructive diagnostic and ultrasonic characterization of fluid-loaded waveguides [Aristégui

et al., 2001; Fan et al., 2008; Fan, 2010; Kažys et al., 2010; Long et al., 2003a,c; Lowe,

1992; Ma, 2007; Pavlakovic, 1998; Siqueira et al., 2004; Zernov et al., 2011]. As in the

embedded case discussed in Chapter 4, guided waves propagating in immersed waveg-

uides are referred as trapped or leaky. If the phase velocity of the guided wave is

lower than the bulk velocity of the surrounding fluid, its energy is totally reflected and

mode-converted at the interface and the wave remains trapped within the waveguide.

Therefore, the attenuation of such a wave is due only to material damping mecha-

nisms. On the other hand, if the phase velocity of the guided wave exceeds the bulk

velocity of the surrounding fluid, its mechanical energy is only partially reflected and

mode-converted at the interface. The remaining part is refracted and travels away in

the fluid medium in form of bulk waves. Such mechanism, also known as energy leak-

age, causes the leaky guided waves to be generally highly attenuated, with significant

reduction of inspection ranges.

The knowledge of the attenuation of guided waves, as well as their phase and en-

ergy velocity, is of paramount importance in guided ultrasonic applications. To this

end, dispersion characteristics of immersed waveguides of regular cross-section (plates,

rods, cylinders) have been investigated in depth in recent years by means of analytical

methods. The behaviour of immersed plate-like structures has been analyzed using

analytical expressions by Nayfeh and Chimenti [1988] for the case of fiber-reinforced

composite immersed plates and by Ahmad et al. [2002] in the case of fluid-loaded trans-

versely isotropic plates. In their studies, Belloncle et al. [2003, 2004] have extracted

the dispersion properties of poroelastic plates immersed in fluids. Guided waves in cir-

cular rods immersed in fluids have been studied by several researchers [Ahmad, 2001;

Berliner and Solecki, 1996a,b; Dayal, 1993; Honarvar et al., 2011; Nagy, 1995; Nagy

and Nayfeh, 1996].

For multilayered cylindrical and plate-like systems, the matrix family methods have

been widely applied in the literature for the dispersion analysis of both embedded and

immersed waveguides. A comparison between the Transfer Matrix Method (TMM)

[Haskell, 1953; Thomson, 1950] and the Global Matrix Method (GMM) [Knopoff, 1964;

Randall, 1967] applied to free, embedded and immersed plates can be found in the

work of Lowe [1995]. Using the Transfer Matrix Method, Nayfeh and Nagy [1996] have

investigated the propagation of axisymmetric waves in coaxial layered anisotropic fibers
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embedded in solids and immersed in fluids. The Global Matrix Method for plate-like

structures has been used by Lowe [1992] for the detection of a brittle layer in diffusion

bonded titanium and by Bernard et al. [2001] to study the energy velocity in non-

absorbing plates immersed fluids. In his work, Pavlakovic [1998] has applied the GMM

to study free, embedded and immersed multilayered cylindrical systems. This method

has also been used for the numerical analyses and experimental investigations of fluid-

filled pipes surrounded by fluids [Aristégui et al., 2001] and buried water pipes [Long

et al., 2003a,c].

In the context of numerical methods, and in particular spectral Finite Element

Methods, Hladky-Hennion et al. [1997, 1998] have proposed a finite element formula-

tion enriched with a non-reflective boundary condition applied on the perimeter of the

fluid domain. More recently, Fan et al. [2008] have proposed a SAFE formulation in

which absorbing regions are used to simulate the unbounded surrounding fluid. The

absorbing region has been modeled considering the same mass density of the fluid, but

increasing damping properties with increasing distance from the central axis of the

waveguide. The two methods above present the advantages that only small changes

are required in existing FEM/SAFE codes, while the discrete dispersive equation re-

mains formulated as a polynomial eigenvalue problem, which can be solved by standard

routines. However, due to the large number of elements required, the dimension of the

problem increases considerably, thus leading to a large set of eigensolutions from which

only meaningful guided modes with energy concentrated in the waveguide must be fil-

tered. Other hybrid SAFE formulations have been proposed in literature for waveguides

embedded in solid media, which use infinite elements [Jia et al., 2011] and Perfectly

Matched Layers (PML) [Treyssède et al., 2012]. Although these formulations could be

equally extended to the case of infinite surrounding fluids, they suffer of some draw-

backs. For instance the wave attenuation is described by user-defined shape functions

in infinite elements, while in the PML is defined by analytical continuation of the

equilibrium equations into the complex spatial coordinates, which is introduced by an

arbitrary complex function.

On the contrary, a Boundary Element Method (BEM) approach allows for a more

natural description of the radiation problem.

The 2.5D BEM has been used by different authors for the extraction of dispersion

curves of fluid-filled boreholes in solid formations [Tadeu et al., 2002a; Tadeu and

Santos, 2001; Zengxi et al., 2007] and submerged cylindrical solids with irregular cross-

section geometry [Godinho et al., 2003; Pereira et al., 2002]. However, attenuation

spectra are not obtained in these works.
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In this chapter, a coupled SAFE-2.5D BEM formulation to model guided waves

in immersed waveguides is proposed, in which the SAFE method is used to model

the viscoelastic waveguide while the BEM is used to account for surrounding infinite

inviscid fluids. The formulation described in this chapter is the natural extension of

that proposed in Chapter 4.

In the case of sourronding fluids, the well known problem of spurious solutions

due to the non-uniqueness of the external Helmholtz boundary integrals is addressed

by means of the CHIEF method [Schenck, 1968]. Numerical results obtained for a

titanium bar immersed in oil are in perfect agreement with those obtained using the

GMM [Pavlakovic and Lowe, 2011], while new results are presented for viscoelastic steel

bars with square and L-shaped cross-section immersed in water.

5.3 Discretized wave equation

5.3.1 Problem statement

The equation governing the wave propagation problem under consideration is obtained

for the translational invariant system of Fig. 5.1, in which Ωs denotes the cross-section of

the immersed waveguide in the x−y plane, while Ωf is used to indicate the cross-section

of the infinite surrounding fluid. The in-plane fluid-structure interface is denoted by

∂Ω = ∂Ωs = ∂Ωf .

The geometric an and mechanical parameters used to describe the waveguide are

assumed as in Sec. 4.3, and will not be repeated here. Since only non-viscous ideal

fluids are considered, the acoustic properties of the surrounding liquid are identified by

the mass density ρf and the phase speed of the longitudinal bulk wave, cfL.

Finally, the wave propagation process is assumed with a wavenumber-frequency

dependence of any scalar and vectorial field of the form exp [i (κzz − ωt)].

5.3.2 SAFE model of the waveguide

The equilibrium equation of the fluid-loaded waveguide can be obtained from Eq. (4.5)

in absence of externally applied surface loads. By letting ts (x, κz , ω, ) = 0, the following

integral equation is obtained

ω2

∫
Ωs

δuTρ (x)udxdy −
∫
Ωs

(δε (u))T C̃ (x, ω) ε (u) dxdy

−
∫
∂Ωs

δuTtb (x, κz , ω) ds = 0,

(5.1)
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where the various terms are defined as in Sec. 4.3. Following the procedure described in

Sec. 4.4, the discretization of the immersed waveguide is carried out at the cross-section

level by using semi-isoparametric quadratic finite elements. The displacement within

the eth SAFE element is interpolated as

ue (x, z, t) = N (ξ)qe (z, t) (5.2)

which can be substituted in the compatibility relations Eq. (4.8) and then in Eq. (5.1).

After applying the usual standard finite element assembling procedure, the wave equa-

tion results in the following expression

{
κ2zK3 + iκz

[
K2 −KT

2

]
+K1 − ω2M

}
Q (κz, ω) + Fb (κz, ω) = 0, (5.3)

where the operators inside the braces are defined as in Eqs. (4.11)-(4.14). In Eq. (5.3),

Q (κz, ω) represents the global vector of nodal displacements while Fb (κz, ω) is the

vector of nodal forces at the fluid-structure interface, which is derived in the following

sections via a boundary element formulation.
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5.3.2. SAFE MODEL OF THE WAVEGUIDE

Figure 5.1: Analytical model of the immersed waveguide.
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5.3.3 2.5D BEM model of the fluid domain

The linear acoustic problem in the translational invariant fluid domain is governed by

the 2.5D Helmholtz equation. As shown in other works [Nilsson et al., 2009; Tadeu

et al., 2012], this equation can be readily obtained from the three-dimensional case by

applying the space Fourier transform along the longitudinal coordinate (z-coordinate).

The resulting espression is formally indentical to the Helmholtz equation in three di-

mensions, providing that the 3D Laplace operator is substituded by the corresponding

2D one and the bulk wavenumber of the fluid is substituted by the wavenumber normal

to the interface. The 2.5D Helmholtz equation then becomes

(
∂2

∂x2
+

∂2

∂y2

)
p (x, κz , ω) + κ2αp (x, κz , ω) = 0, x ∈ Ωf (5.4)

where p (x, κz , ω) is the acoustic pressure in the fluid and κα = ±[(κfL)
2−κ2z]

1/2 denotes

the wavenumber in the x−y plane, being κfL = ω/cfL the real wavenumber of the longi-

tudinal wave in the fluid medium. The equilibrium of normal tractions and continuity

of normal displacements are prescribed via the boundary conditions [Fan et al., 2008]

−p (x, κz , ω)n (x) = tb (x, κz , ω) , (5.5)

∂p

∂n
(x, κz , ω) = ρfω2un (x, κz , ω) , x ∈ ∂Ω (5.6)

where ∂(·)/∂n denotes the directional derivative along the outward pointing normal to

the fluid domain n (x) and

un (x, κz, ω) = u (x, κz , ω) · n (x) (5.7)

is the normal displacement component at the same point.

The boundary integral equation can be derived from the Green’s second identity

applied to an unknown physical state

[
p (x, κz, ω) ,

∂p (x, κz , ω)

∂n

]

and the state of the fundamental solutions[
PD (r, κz , ω) ,

∂PD (r, κz , ω)

∂n

]

that satisfy the 2.5D Helmholtz equation in the full space when a unitary line load
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p (x′, y′, z′, t) = δ (x− x′) exp [i (κzz′ − ωt)] is acting at a fixed point x′ [Bonnet, 1999].
Using the Green’s second identity and Eq. (5.6), the integral representation theorem

for source points x′ ∈ Ωf results [Zengxi et al., 2007]

c
(
x′) p (x′, κz , ω

)
=ρfω2

∫
∂Ω

PD (r, κz , ω)un (x, κz , ω) ds (x)

−
∫
∂Ω

∂PD (r, κz , ω)

∂n
p (x, κz , ω) ds (x) ,

x′ ∈ Ωf , x ∈ ∂Ω

(5.8)

where r = |x− x′| is the usual in-plane source-receiver distance while c (x′) is equal

to 1 when x′ ∈ Ωf and 0 otherwise. The dynamic fundamental solutions PD (r, κz , ω)

and ∂PD (r, κz , ω) /∂n represent, respectively, the pressure and flux at x when the

harmonic line source passes through x′. These solutions can be recovered from the

corresponding 3D solutions (see, for example, [Bonnet, 1999; Brebbia and Dominguez,

1989]) by applying the space Fourier transform in the z-coordinate. The resulting

expressions are formally identical to those of the 3D case, but require the substitution

of the bulk wavenumber κfL with the radial wavenumber κα, leading to

PD (r, κz , ω) =
i

4
H

(1)
0 (καr) , (5.9)

∂PD (r, κz , ω)

∂n
= − i

4
καH

(1)
1 (καr)

∂r

∂xk
nk. k = 1, 2 (5.10)

In order to extend Eq. (5.8) to source points x′ located on the boundary ∂Ω, the limiting

process x′ ∈ Ωf → x′ ∈ ∂Ω can be followed, in which boundary integrals involving the

fundamental fluxes are convergent in the Cauchy Principal Value sense [Bonnet, 1999;

Chen et al., 2005].

A regularized boundary integral equation can be obtained by applying the so called

equi-potential condition for external domains, which reads [Brebbia and Dominguez,

1989; Tomioka and Nishiyama, 2010]

c
(
x′) = −

∫
∂Ω

PS (r)

∂n
ds (x) + 1 (5.11)

where

PS (r) = PD (r, κz = 0, ω = 0) , (5.12)

is the fundamental solution of the 2D Laplace equation.

Substituting Eq. (5.11) into Eq. (5.8) and making use of the subtraction-addition
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technique proposed by Lu et al. [2008b] for weakly singular integrals, the following

boundary integral equation is obtained

p
(
x′, κz , ω

)
=ρfω2

∫
∂Ω

[
PD (r, κz , ω)− PS (r)

]
un (x, κz , ω) ds (x)

+ ρfω2

∫
∂Ω

PS (r)un (x, κz, ω) ds (x)

−
∫
∂Ω

[
∂PD (r, κz , ω)

∂n
p (x, κz , ω)− ∂PS (r)

∂n
p
(
x′, κz , ω

)]
ds (x) ,

(
x′,x

) ∈ ∂Ω

(5.13)

where the fundamental solutions of the 2D potential problem are defined as [Brebbia

and Dominguez, 1989]

PS (r) =
1

2π
ln

1

r
, (5.14)

∂PS (r)

∂n
= − 1

2πr

∂r

∂xk
nk. k = 1, 2 (5.15)

Since PD (r, κz , ω) and PS (r) behave asymptotically as ln 1/r for r → 0, the kernel

in the first boundary integral of Eq. (5.13) is nonsingular with the highest order term

of O (1), while the kernel in the second boundary integral has a weak singularity of

order ln 1/r. Therefore, the first and second boundary integrals in Eq. (5.13) can

be evaluated numerically using the Gauss-Legendre and Gauss-Laguerre quadrature

formulas, respectively [Gao and Davies, 2001; Stroud and Secrest, 1996].

From the inspection of Eqs. (5.10) and (5.15) it can be noted that the asymptotic

singularities of the dynamic and static fundamental solutions do not correspond when

the source point approaches the receiver point. This is in contrast with the 2.5D

elastodynamic case of Chapters 3 and 4.

However, Eq. (5.13) still represents a regular boundary integral equation [Tomioka

and Nishiyama, 2010]. In fact, the kernels in the last boundary integral can be rewritten

as (superscripts D and S omitted)

∂P

∂n
=

∂P

∂r
er · n, (5.16)

in which

er =
x− x′

|x− x′| . (5.17)

is the unit vector between the receiver and source points. Since er ⊥ n for r → 0,
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the inner vector product becomes zero and the strong singularities in Eqs. (5.10) and

(5.15) vanish. Therefore, the last boundary integral in Eq. (5.13) is nonsingular and

can be evaluated by means of the Gauss-Legendre quadrature formula.

5.3.4 Boundary element discretization

The fluid-structure interface ∂Ω is discretized with Nb quadratic monodimensional el-

ements with nodes coincident to the boundary nodes of the SAFE mesh. Pressures

and normal displacements are interpolated within the generic qth boundary element of

domain ∂Ωq
b as follows

pq (η, κz, ω) = N (η)pq (κz, ω) (5.18)

uqn (η, κz, ω) = N (η)qq
n (κz, ω) (5.19)

whereN (η) is the matrix of shape functions in the natural coordinate η, while pq (κz, ω)

and qq
n (κz, ω) are vectors of nodal pressures and normal displacements, respectively.

Applying a point collocation scheme in which collocation points are assumed coincident

with the nodes of the boundary element mesh and making use of Eqs. (5.18) and (5.19),

the boundary integral Eq. (5.13) is recasted in the following discretized form

Wb (κz, ω)Pb (κz, ω) = ρfω2Gb (κz, ω)Q
⊥
b (κz, ω) , (5.20)

where Gb (κz, ω) and Wb (κz, ω) are influence operators involving the fundamental

pressures and fluxes, respectively, Pb (κz, ω) denotes the global vector of nodal pressures

and Q⊥
b (κz, ω) represents the global vector of normal displacements at the boundary

nodes. The acoustic pressure at any x′ ∈ Ωf can be computed from the discrete

representation of Eq. (5.8)

c
(
x′) pd (x′, κz , ω

)
= ρfω2Gd (κz, ω)Q

⊥
b (κz, ω)−Wd (κz, ω)Pb (κz, ω) , (5.21)

where Gd (κz, ω) and Wd (κz, ω) are influence operators that are built on a element-

by-element basis for the given source point x′ ∈ Ωf .

5.3.5 Non-uniqueness problem

As well known [Schenck, 1968], the operator Wb (κz, ω) in Eq. (5.20) may become ill-

conditioned for wavenumbers close to the resonance wavenumbers of the corresponding

internal problem, thus leading to an inaccurate representation of the impedance of the
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surrounding fluid.

As shown by Nilsson et al. [2009], this numerical problem can be overcome by

means of the so-called CHIEF method [Schenck, 1968]. The method uses Eq. (5.8)

with x′ ∈ Ωs as additional constraint that must be satisfied along with the surface

Helmholtz integral in Eq. (5.13). Since c (x′) = 0 for source points located outside

Ωf , an additional zero-pressure condition is obtained from Eq. (5.21) and added to

Eq. (5.20) to form an over-determined system. A unique solution can then be obtained

in a least square sense, providing that the CHIEF points are not distributed over modal

lines of the internal eigenstructures.

5.4 Fluid-structure coupling

The coupling between the SAFE and BEM regions is established in a finite element

sense [Andersen, 2006], i.e. by transforming the discretized BEM domain into an equiv-

alent single finite element that relates nodal forces to nodal displacements at the fluid-

structure interface. The pressure values at the boundary nodes can be obtained in

terms of normal displacements by inverting Eq. (5.20) as follows

Pb (κz , ω) = ρfω2W−1
b (κz , ω)Gb (κz , ω)Q

⊥
b (κz , ω) . (5.22)

in which a least square procedure can be used when CHIEF points are adopted.

The relation between nodal pressuresPb (κz, ω) in the fluid and nodal forces Fb (κz, ω)

on the waveguide is obtained by using Eq. (5.5) and the Principle of Virtual Displace-

ments over the fluid-structure interface [Schneider, 2008]

∫
∂Ω

δuT (x, κz , ω)
[
tb (x, κz , ω) + p (x, κz , ω)n (x)

]
ds (x) = 0. (5.23)

Eq. (5.23) is rewritten in discretized form using the interpolations in Eqs. (5.2) and

(5.18), leading to

Fb (κz, ω) = −RPPb (κz, ω) , (5.24)

where RP is a distribution matrix deriving from the following finite element assembling

procedure

RP =

Nb⋃
q=1

∫
∂Ωq

b

NT (ξ (η))n (η)N (η) Jq
b (η) dη, (5.25)

in which Jq
b (η) is the Jacobian of the in-plane mapping for the qth semi-isoparametric
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boundary element.

The relation between nodal displacements Qb (κz, ω) and their normal components

Q⊥
b (κz, ω) can be obtained from the energy balance of the fluxes at the fluid-structure

interface

ρfω2

∫
∂Ω

δp (x, κz , ω)
[
un (x, κz, ω)− u (x, κz, ω) · n (x)

]
ds (x) = 0. (5.26)

Using Eqs. (5.2), (5.18) and (5.19), the discretized form of Eq. (5.26) is derived as

Q⊥
b (κz, ω) = T−1

b RT
PQb (κz, ω) (5.27)

where the matrix Tb is obtained from the following finite element assembling procedure

(cf. Eq. (4.63))

Tb =

Nb⋃
q=1

∫
∂Ωq

b

NT (η)N (η) Jq
b (η) dη. (5.28)

Substituting Eq. (5.24) into Eq. (5.22) and introducing the resulting expression into

Eq. (5.27) lead to the following equivalent dynamic stiffness matrix for the fluid domain

Fb (κz, ω) = −ρfω2Kb (κz, ω)Qb (κz, ω) (5.29)

where

Kb (κz, ω) = RPW
−1
b (κz , ω)Gb (κz , ω)T

−1
b RT

P (5.30)

Eq. (5.29) is finally substituted into Eq. (5.3) to form the following homogeneous system

{
κ2zK3 + iκz

[
K2 −KT

2

]
+K1 − ω2

[
M+ ρfL T

b Kb (κz, ω)Lb

]}
Q (κz, ω) = 0 (5.31)

where Lb is a collocation matrix so that Qb (κz , ω) = LbQ (κz, ω). The operator inside

the braces in Eq. (5.31) represents the wavenumber and frequency dependent dynamic

stiffness matrix for a waveguide that is immersed in an infinite inviscid fluid.

The nodal displacementsQ (κz, ω) that represent the nontrivial solution of Eq. (5.31)

for a fixed couple (κz, ω) can be used to extract the pressure at any point x′ ∈ Ωf .

Recalling Eqs. (5.22) and (5.30), Eq. (5.21) can be rewritten as follows

pd
(
x′, κz , ω

)
= ρfω2

[
Gd (κz, ω)−Wd (κz, ω)R

−1
p Kb (κz, ω)

]
LbQ (κz, ω) , (5.32)

which is valid only for x′ ∈ Ωf .
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5.5 Single valued definition of the dynamic stiffness ma-

trix

The dynamic stiffness matrix in Eq. (5.31) is multivalued due to the possible signs of the

radial wavenumber κα = ±[(κfL)
2 − κ2z]

1/2. Poles corresponding to leaky and trapped

modes can be determined by imposing the Snell-Descartes law at the fluid-structure

interface, i.e. by imposing the continuity of Re (κz) and Im (κz), and by choosing the

sign of κα according to the characteristics of the partial wave in the fluid medium.

For Re (κz) > κfL (non-leaky region) the angle of incidence formed by the longitudi-

nal bulk wave in the immersed waveguide with the normal at the interface is larger than

the critical angle, resulting into a total internal energy reflection [Rose, 2004]. The par-

tial wave in the fluid medium is thus evanescent and its amplitude decays exponentially

in the x−y plane. Being the wave propagation process in the fluid medium represented

by the Hankel function of the first kind, the sign of κα is chosen to satisfy Im (κα) > 0.

Since all the energy remains confined within the waveguide, the attenuation of guided

modes in the non-leaky region is due only to the material damping of the waveguide.

In the wavenumber range 0 ≤ Re (κz) < κfL (leaky region) the angle of incidence

of the longitudinal bulk wave is lower than the critical angle and the wave is partially

reflected and mode-converted at the interface, while a longitudinal bulk wave is also

refracted in the fluid medium. Therefore, part of the wave energy leaks from the waveg-

uide into the fluid, which causes the guided wave that exhibit an in-plane displacement

component to be attenuated even in the case of non-dissipative materials.

In absence of external sources, the propagation process in the fluid field corresponds

to a longitudinal wave that propagates away at a leakage angle ϑLeak
L = sin−1[Re(κz)/κ

f
L]

with respect to the x− y plane. In order for H
(1)
n (καr) to represent such a process, the

sign of κα must be chosen so that Re (κα) > 0. This implies in turn Im(κα) ≤ 0 for

any Re (κz) ∈ [0, κfL] and Im (κz) > 0, i.e. the far field amplitude of the radial wave

increases with distance from the interface.

The corresponding configuration of the wavenumber vectors in the z − r plane

is shown in Fig. 5.1, where kRe
L and kIm

Li represent the propagation vector and the

inhomogeneous attenuation vector, respectively, while l denotes the intersection line of

the x− y plane with the z− r plane. Since the fluid is non dissipative, kRe
L and kIm

Li are

orthogonal and the partial longitudinal wave propagates along leaky rays (dashed lines

in Fig. 5.1) without attenuation [Hladky-Hennion et al., 2000]. As it can be observed,

in order to have a guided mode that is attenuated in the propagation direction and

that satisfies the Snell-Descartes law at the fluid-structure interface, the attenuation
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component of the radial wavenumber in the fluid medium (kIm
α ) must be necessarily

oriented in the opposite direction of the propagation component (kRe
α ).

Due to the continuous energy loss along the positive z-direction, the wave amplitude

along a generic internal leaky ray, e.g. the line B-B′, is always lower than the amplitude

along an external leaky ray, for example A-A′; consequently, an increasing amplitude

along the line l can be observed. Similar considerations can also be found in different

journal articles Hladky-Hennion et al. [1998, 2000]; Mozhaev and Weihnacht [2002];

Simmons et al. [1992]; Vogt et al. [2003] and textbooks [Caviglia and Morro, 1992].

It can be noted that the radial wavefield obtained from the modal analysis keeps

growing to infinity while moving along the line l, which would imply that leaky bulk

waves with infinite amplitude are radiated at z = −∞. This unphysical behaviour

derives from the assumption of translational invariance in the mathematical model. In

reality, the phenomenon starts at a precise location, e.g. section A, where a leaky wave

with the largest but finite amplitude φA is radiated in the surrounding fluid. Therefore,

for any considered distance r > A′ along the line l, no leaky bulk waves with amplitude

greater than φA can be found.

From the energetic point of view, the presence of a radial wavefield that grows

while propagating away from the interface does not violate thermodynamics. In fact,

the total energy carried through the fluid domain Ωf at a generic distance z from the

origin is given by the sum of the energy previously radiated through the lateral surface

∂Ω× [−∞, z], so that the energy balance is preserved.

5.6 Eigenvalue analysis

Once the admissible signs of the radial wavenumber κα have been determined for

the non-leaky and leaky regions, the N -dimensional nonlinear eigenvalue problem in

Eq. (5.31) can be solved in terms of complex wavenumbers and associated wavestruc-

tures for any fixed real positive frequency.

As in Chapters 3 and 4, also in this case the Contour Integral Method proposed by

Beyn [2012] is adopted. The requirement of holomorphicity for the dynamic stiffness

matrix in Eq. (5.31) is fulfilled by deforming the contour in the complex plane in

order to avoid points of singularity or discontinuity that do not correspond to poles

of guided modes. If the contour is limited only to the first and fourth quadrants of

the complex κz-plane, these points are represented by the longitudinal wavenumber

κfL, in correspondence of which H
(1)
n (καr) is not defined, and the vertical branch cut

κfL + iIm(κz) (Im(κz) > 0), along which the dynamic Green’s functions show a jump
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material i ρi ci
L ci

S βi
L βi

S

(Kg/m3) (m/s) (m/s) (Np/wavelength) (Np/wavelength)

titanium ti 4460 6060 3230 - -

steel st 7932 5960 3260 0.003 0.008

oil oi 870 1740 - - -

water wt 998.2 1478 - - -

Table 5.1: Materials constants used in Sec. 5.7 (from Pavlakovic and Lowe [2003]).

related to the abrupt change of phase in κα. After the contour integration has been

carried out numerically, the SVD decomposition followed by the rank test is performed

to separate physical from spurious eigensolutions. The accuracy of the eigenvalues

computation is finally checked by means of the residual test.

Once the full set of eigensolutions [κmz (ω),Qm
b (ω)] (m = 1, ..,M) has been obtained

for the frequency of interest, the phase velocity (cp), attenuation (α) and energy velocity

(ce) for the mth guided mode can be obtained as described in Sec. 4.7.2.

5.7 Numerical examples

In this section, some numerical applications are performed on waveguides with ge-

ometries typically encountered in NDE tests. The different materials considered are

reported in Table 5.1, where only the Maxwell rheological model is considered.

The optimal set of parameters of the contour integral algorithm, i.e. the number of

integration points, the rank test tolerance and the residual test tolerance Beyn [2012],

have been determined on the basis of single analyses performed at few frequencies.

At the same frequencies, the complex contour Γ (κz) has been designed to include

only guided modes with moderate attenuations. Both the contour integral method

parameters and the extension of the complex contour have been assumed to vary with

frequency.

Due to the low frequency ranges and number of modes considered in the differ-

ent examples, the eigenvalues computation has always proved to be numerically stable

even without the use of CHIEF points. However, if dispersion data are needed at

higher frequencies, the use of CHIEF points can substantially improve the condition

number of the boundary element matrices, which in turn results into a better separa-
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tion of the singular values and facilitate the distinction between physical and spurious

eigensolutions.

5.7.1 Validation case: elastic titanium bar of circular cross-section

immersed in oil

The SAFE-2.5D BEM formulation is first validated for the case of a 10 mm diameter

titanium (ti) bar immersed in oil (oi), for which the obtained solution is compared with

that given by the software DISPERSE (evaluation copy) [Pavlakovic and Lowe, 2011].

The SAFE mesh used in the analysis, shown in Fig. 5.2, is composed of 48 six-nodes

triangular elements plus 32 nine-node quadrilateral elements for the embedded (SAFE)

section and 32 three-nodes monodimensional elements for the external fluid domain

(BEM).

The real wavenumber, phase velocity, attenuation and energy velocity dispersion

curves in the frequency range 0−500 kHz are shown in Figs. 5.2-5.5. For the comparison

with DISPERSE, only the modes L(0, 1), L(0, 2), F (1, 1), F (1, 2) and F (1, 3) have been

considered (dashed lines). As can be noted, the SAFE-2.5D BEM solutions (continuous

lines) are in good agreement with the DISPERSE predictions.

The behaviour of immersed circular bars has been analyzed by different authors

[Ahmad, 2001; Fan et al., 2008; Pavlakovic et al., 1997; Pavlakovic, 1998] and it is not

reexamined here. However, it is worth mentioning that some high order modes with

phase velocity greater than the oil bulk velocity experience zero attenuation values at

certain frequencies. These are the cases of the F (1, 3) and L(0, 2) modes at about

330 kHz and 465 kHz, respectively, for which the radial displacements at the interface

vanish. An analogous behaviour of the same modes in a elastic steel bar embedded in

water has been previously observed by Pavlakovic et al. [1997].
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Figure 5.2: Real wavenumber dispersion curves for the elastic steel bar of circular cross
section immersed in oil.
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Figure 5.3: Phase velocity dispersion curves for the elastic steel bar of circular cross
section immersed in oil.
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Figure 5.4: Attenuation dispersion curves for the elastic steel bar of circular cross
section immersed in oil.
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Figure 5.5: Energy velocity dispersion curves for the elastic steel bar of circular cross
section immersed in oil.
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5.7.2 Viscoelastic steel bar of square cross-section immersed in water

The following example considers a 10mm wide square bar immersed in water (wt).

The bar is assumed to be made of steel (st) and small material damping component

is considered (see Table 5.1). The mesh used for the solid region is composed of 100

eight-nodes quadrilateral elements, while the fluid region has been modeled by means

of 40 three-nodes monodimensional boundary elements (see Fig. 5.6).

The dispersion spectra of the bar in the 0− 400 kHz frequency range are reported

in Figs. 5.6-5.9, where the comparison between the immersed case (continuous blue

lines) and the in-vacuum case (continuous gray lines) is also shown. The low order

modes have been named as in Ref. [Gunawan and Hirose, 2005]. The second main

difference with respect to the immersed circular bar is that the first torsional mode

T1 becomes slightly dispersive w.r.t. the in-vacuum case, whereas the T (0, 1) mode of

the circular bar in both the immersed and in-vacuum cases remains non-dispersive. In

particular, it can be observed that the phase velocity of the T1 mode in the 0−200 kHz

frequency range is in the order of 50 − 150 m/s lower with respect to the in-vacuum

case (non-dispersive), while in the 200− 400 kHz the two phase velocities correspond.

Another distinction between the different behaviour of the fundamental torsional

mode in the square and circular bars is that, while in the circular bar the torsional

displacements are always orthogonal to the normal at the interface, in the square bar

this condition is no longer verified. Since the displacement component along the normal

causes the displacement of the fluid, the square (and, more generally, the non-circular

sections) experiences attenuation due to leakage of bulk waves in the fluid.

Concerning the remaining low order modes, the first flexural (F1) mode presents,

similarly to the F (1, 1) in the circular bar, a non-leaky section in the frequency range

0−30 kHz, in which the mode is non-attenuated. The phase velocity of the longitudinal

mode L1 is similar to the phase velocity of the corresponding in-vacuum mode, while

in the 0− 100 kHz frequency range it also shows the lower attenuation and the highest

energy velocity. Therefore, in this frequency range the L1 mode is particularly suitable

for guided ultrasonic applications.
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Figure 5.6: Real wavenumber dispersion curves for the viscoelastic steel square bar
immersed in water. Guided modes are named as in Ref. [Gunawan and Hirose, 2005].
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Figure 5.7: Phase velocity dispersion curves for the viscoelastic steel square bar im-
mersed in water. Guided modes are named as in Ref. [Gunawan and Hirose, 2005].
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Figure 5.8: Attenuation dispersion curves for the viscoelastic steel square bar immersed
in water. Guided modes are named as in Ref. [Gunawan and Hirose, 2005].
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Figure 5.9: Energy velocity dispersion curves for the viscoelastic steel square bar im-
mersed in water. Guided modes are named as in Ref. [Gunawan and Hirose, 2005].
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5.7.3 L-shaped viscoelastic steel bar immersed in water

In the third example, a L-shaped bar with dimensions 30�20�4 mm is considered. The

bar is assumed to be made of viscoelastic steel and immersed in water. The bar cross-

section is discretized by means of 32 eight-nodes quadrilateral elements and 2 six-nodes

triangular elements, while the surrounding water is represented through a boundary

element mesh of 36 three-nodes monodimensional elements (see Fig. 5.10).

The dispersion curves for the in-vacuum case (continuous gray lines) and the im-

mersed case (continuous blue lines) are shown in Figs. 5.10-5.13. The first four fun-

damental modes are indicated in the spectra with m1 (longitudinal mode), m2 (first

pseudo-flexural mode), m3 (second pseudo-flexural mode) and m4 (pseudo-torsional

mode).

In this case, a substantial modification of the dispersion curves for the immersed

configuration with respect to the in-vacuum case is observed. The m1 no longer shows

the jump at about 29.5 kHz, but couples with the high order modes h2 and h3 at

26.7 kHz and 51.2 kHz, respectively. A similar phenomenon has been observed in plate

waves due to the addition of material damping [Bartoli et al., 2006; Bernard et al., 2001;

Ma, 2007; Simonetti and Cawley, 2004]. As it can be noted from Fig. 5.13, at such

frequencies the m1 mode shows local minima of energy velocity as well as local maxima

of attenuation. The normalized in-plane displacement and pressure fields for the m1

and m3 modes at 51.2 kHz are depicted in Figs. 5.14(a) and 5.14(b), respectively,

showing that the mode shapes and pressure fields of the two modes are very similar at

this frequency. In the frequency range 51.2− 57 kHz, the attenuation of the m1 mode

increases rapidly whereas its phase and energy velocities decreases. The maximum

peak of attenuation occurs at about 77.0 kHz, which corresponds to the minimum

value of the energy velocity and therefore to the frequency of maximum radiation for

this mode. The normalized in-plane displacement and pressure at this frequency are

shown in Fig. 5.15. Since the entity of the in-plane displacements decreases in the

frequency range 77 − 120 kHz, the attenuation of the mode drops while its energy

velocity increases. The m1 mode appears as the most suitable for NDT applications,

in particular in the 0− 48 kHz frequency range, where it is almost non-dispersive and

characterized by high values of the energy velocity and low values of attenuation.
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Figure 5.10: Real wavenumber dispersion curves for the L-shaped viscoelastic steel bar
immersed in water.
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Figure 5.12: Attenuation dispersion curves for the L-shaped viscoelastic steel bar im-
mersed in water.
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Figure 5.13: Energy velocity dispersion curves for the L-shaped viscoelastic steel bar
immersed in water.
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Due to their complexity, the m2, m3 and m4 modes may be of less interest for

ultrasonic applications. However, they show some noteworthy features. The m2 mode

shows alternate frequency intervals with radiating and non-radiating properties. The

mode is first non-leaky (0− 8.5 kHz), with attenuation only due to the small material

damping of the steel. Then it becomes leaky in the frequency range 8.5− 11 kHz.

In Fig. 5.16, the normalized in-plane displacements and pressure wavefields for the

m2 mode at 9.7 kHz are represented on the x− y plane at different scales (the normal-

ization is the same in both figures). From Fig. 5.16(a) it can be noted that, near the

interface, the partial wave behaves similarly to an evanescent wave, i.e. the amplitude

decreases almost exponentially away from the interface. However, in Fig. 5.16(b) it can

be observed that at about 10.0 m the radial wave reaches an amplitude comparable to

the maximum amplitude in Fig. 5.16(a) (near field). An explanation of this behaviour

can be given by observing first that cm2
p (9.7 kHz) = 1520 m/s, from which a leakage

angle of ϑm2
L (9.7 kHz) � 80 deg is defined with respect to the x− y plane. Therefore,

the propagation vector of the partial wave in the fluid medium lies close to the interface,

which correspond to a configuration similar to that of an evanescent wave. Moreover,

from the computed axial wavenumber κm2
z (9.7 kHz) = 40.09 rad/m+ i0.047 Np/m, the

radial bulk wavenumber in the water results κwt
α (9.7 kHz) = 6.62 rad/m− i0.28 Np/m.

The small propagation component in the radial direction and the large angle of radia-

tion determine a radial wavelength approximately equal to 0.95 m, which can be directly

observed in Fig. 5.16(b), while the small negative attenuation component determines

a slow increasing amplitude with the distance from the waveguide. Other than the

leaky section discussed above, the m2 mode becomes non-leaky in the frequency range

11− 20 kHz and then again leaky in the frequency range 20− 120, in which is weakly

dispersive with attenuation increasing monotonically to reach the value of about 168

dB/m at 120 kHz.

The second pseudo-flexural mode m3 and the flexo-torsional mode m4 show similar

characteristics. Both modes have large non-leaky branches characterized by a strongly

evanescent wavefield in the fluid. For example, in Figs. 5.17(a) and 5.17(b) the nor-

malized in-plane displacement and pressure fields are reported for the two modes at 40

kHz. The mode m3 crosses the phase bulk velocity of the water at about 84 kHz, from

which its attenuation increases drastically (see Fig. 5.12) since leakage of longitudinal

bulk waves occurs. In the 84−120 kHz range (cm3
p � cwt

L ), the imaginary component of

κm4
z shows a slight numerical instability. Physically, such mode branch corresponds to

a transition zone, which would not be suitable for experimental or application purposes

due to its unstable behaviour.
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(a)

(b)

Figure 5.14: Normalized in-plane displacement and pressure fields for (a) the m1 mode
and (b) the h3 mode at 51.2 kHz.
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Figure 5.15: Normalized in-plane displacement and pressure fields for the m1 mode at
77.0 kHz.
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(a)

(b)

Figure 5.16: Normalized in-plane displacement and pressure fields for the m2 mode at
9.7 kHz in (a) the near field and (b) the far field (the normalized scale is the same in
(a) and (b)).
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(a)

(b)

Figure 5.17: Normalized in-plane displacement and evanescent pressure fields for (a)
the m3 and (b) the m4 mode at 40 kHz.
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5.8 Conclusions

In this Chapter, a fully coupled SAFE-2.5D BEM formulation has been proposed for

the computation of dispersion curves for viscoelastic waveguides immersed in inviscid

fluids. The solid region has been modeled via a standard SAFE procedure, while a

regularized 2.5D BEM formulation has been used for the fluid region, which allows to

treat implicitly boundary corners as well as singular integrals. The dispersive equation

is configured as a nonlinear eigenvalue problem, which has been solved by means of

a contour integral algorithm. Complex poles for leaky and trapped modes can be

obtained by imposing the correct phase of the radial wavenumber in the fluid medium,

which must represent a radially decaying field in the non-leaky region (κz > κfL) and a

radially growing field in the leaky region (κz < κfL).

Numerical experiments have been performed for waveguides of different geometries,

for which the BEM matrices involving fundamental fluxes have proven to be numerically

stable even without the use of CHIEF points. However, for computations in frequency

ranges higher than those used in the numerical examples, the use of CHIEF points

could improve the numerical stability and the separation of the singular values for the

reduced linear problem inside the complex contour.

The comparison between the dispersion curves obtained using software DISPERSE

(evaluation copy) [Pavlakovic and Lowe, 2011] and the SAFE-2.5D BEM formulation for

a circular titanium bar immersed in oil are in excellent agreement. The dispersion curves

for a square steel bar immersed in water show that the first torsional mode becomes

slightly dispersive, while for the in-vacuum case the same mode is non-dispersive. This

behaviour is not observed in the immersed circular bar and is mainly due to the square

geometry, which allows for the coupling of the in-plane displacements with the fluid

medium. Therefore, the first torsional mode in the square bar is also attenuated,

whereas it is not in the immersed circular bar. The dispersion curves of a L-shaped

viscoelastic steel bar immersed in water show a more noticeable shift in the phase

velocity of the different modes. In particular, the longitudinal mode does not present a

clear jump as in the in-vacuum case and also shows a nearly non-dispersive behaviour

in a wider frequency range compared to the in-vacuum case.

As shown in other works Fan et al. [2008]; Fan [2010], the proposed method can be

extended to the case of surrounding viscous fluids.
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Chapter 6

Conclusions

6.1 Sommario

In questa tesi sono stati presentati tre differenti metodi numerici per lo studio delle

caratteristiche di dispersione di onde guidate ultrasoniche che si propagano in guide

d’onda di geometria complessa.

Lo scopo principale della ricerca svolta è stato quello di sviluppare delle formulazioni

in grado di superare i problemi classici dei metodi utilizzati in letteratura per lo studio

dei fenomeni di propagazione e il calcolo delle curve di dispersione. Come descritto nel

Capitolo 1, i metodi analitici [Haskell, 1953; Knopoff, 1964; Lowe, 1992; Pavlakovic,

1998; Simmons et al., 1992; Thomson, 1950], a fronte di risultati tipicamente molto ac-

curati, non consento lo studio di guide d’onda aventi geometrie complesse. Quest’ultime

sono generalmente studiate in letteratura utilizzando tecniche basate su elementi finiti

di tipo spettrale [Bartoli et al., 2006; Gavric, 1995; Hayashi et al., 2006; Sorohan et al.,

2011], le quali tuttavia non sono in grado di rappresentare correttamente fenomeni di

propagazione che coinvolgono domini illimitati [Castaings and Lowe, 2008; Fan et al.,

2008; Jia et al., 2011; Treyssède et al., 2012].

Pertanto, si rende necessaria la disponibilità di modelli in grado di rappresentare

accuratamente alcune situazioni d’interesse pratico e scientifico, come ad esempio i

fenomeni di propagazione in guide d’onda complesse soggette a stati di stress iniziale

non nulli ed i fenomeni di radiazione dell’energia in guide d’onda immerse in mezzi

solidi o fluidi.

Nel Capitolo 2, l’effetto di uno stato di stress iniziale è stato studiato mediante

un’estensione del metodo Semi-Analitico agli Elementi Finiti (SAFE) in descrizione

Lagrangiana aggiornata, È stata inoltre derivata una nuova formula modale per il cal-
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colo della velocità dell’energia e nuovi risultati di interesse pratico sono stati proposti.

Il Capitolo 3 è stato dedicato all’applicazione di un metodo spettrale (2.5D) agli

elementi di contorno (BEM) come alternativa al metodo SAFE e per lo studio delle

caratteristiche di dispersione in domini illimitati.

Nei Capitoli 4 e 5 due formulazioni accoppiate SAFE-2.5D BEM sono state proposte

per lo studio delle leaky guided waves in guide d’onda generiche immerse in mezzi solidi

e fluidi.

I risultati ottenuti in questa tesi possono risultare utili nella comprensione della

natura dei fenomeni propagativi ed in molte applicazioni reali basate sull’utilizzo di

onde guidate, per le quali la conoscenza dei parametri di dispersione risulta di fonda-

mentale importanza.

6.2 Conclusions and future works

This thesis focuses on the development of numerical tools for the dispersion analysis of

guided waves in complex translational invariant systems. As discussed in Chapter 1,

the knowledge of the dispersion curves in terms of phase velocity, attenuation and

group/energy velocity, is of crucial importance in nondestructive evaluation testing

and structural health monitoring strategies based on guided waves.

In particular, the phase velocity spectra shows the changes in velocity of existing

modes at various frequencies, thus revealing the dispersive nature of the wave propa-

gation process.

The attenuation spectra gives an information on the amplitude decay per unit

distance traveled. In Chapters 4 and 5 it has been shown that the attenuation can

increase of one or more orders of magnitude if the waveguide is surrounded by solid or

fluid media, depending on the interface conditions and the specific mode considered.

Since the energy losses cause the signal to be attenuated while propagating, it is easily

argued the importance of the attenuation information in practical applications.

The third dispersive parameter, the group velocity, describes the rate at which

packets of waves at infinitely close frequency propagates along the waveguide. Although

this parameter has been discussed in Chapter 2 for elastic prestressed waveguides, it

as not been considered in the rest of the thesis, being replaced by the more general

energy velocity concept. The energy velocity expresses the rate at which the energy

carried by a wave moves along the propagation direction. A generalized formula for

the energy velocity computation has been given in Chapter 2. However, as shown

in Chapters 4 and 5, such formula is approximated for leaky modes in embedded or

188



6.2. CONCLUSIONS AND FUTURE WORKS

immersed waveguides, while still retains its general validity for trapped modes.

At the beginning of each chapter, the advantages and drawbacks of available ana-

lytical and numerical tools have been discussed in relation to specific problems. The

basic characteristics of these methods can be summarized as follows: analytical meth-

ods, although very accurate, are limited to simple geometries, whereas numerical finite

element-based techniques, in particular the SAFE method, fail in the description of

unbounded domains.

In order to overcome such problems, three different numerical tools have been de-

scribed throughout Chapters 2-5. The major novelties and results of each chapter

are summarized in the following, along with some suggestions and purposes for future

works.

In Chapter 2 a classical SAFE formulation for viscoelastic waveguide has been

extended to include the effect of a three-dimensional initial stress with translational

invariant properties along the propagation direction. SAFE formulations proposed in

literature [Loveday, 2009] account for initial axial stresses only and consider elastic

materials. The effect of pressure-type nonconservative loads have also been taken into

account, which was never been treated in literature. Since stresses due to ultrasonic

pulses are orders of magnitude lower than those commonly produced by service loads,

the wave equation has been derived in linearized incremental form within an Updated

Lagrangian framework. Given the dissipative properties of the materials considered,

an energy velocity formula based on the Umov’s definition and the balance of energy

in material description has been proposed. Changes in the dispersion curves have

been shown for residual stresses in rails due to roller-straightening processes and initial

stresses in pipelines due to the presence of gradients of pressure along the pipe walls.

The study proposed in this chapter can be further extended to plasticized waveguides,

for which a fully-nonlinear Lagrangian framework is needed.

In Chapter 3 the drawback of finite element-based techniques in representing infi-

nite domains has been addressed by using a 2.5D BEM formulation. The well known

analytical and numerical difficulties presented by the BEM in treating singular inte-

grals and non-smooth boundary geometries have been overcome using a regularization

procedure. The main novelty introduced with respect to other works proposed in liter-

ature [Gunawan and Hirose, 2005] is the introduction of material damping and the use

of the Contour Integral Method [Beyn, 2012] to solve the resulting nonlinear eigenvalue

problem. It has been shown how the presence of the material damping influences the

choice of appropriate Riemann sheets as well as the contour integration path. The

method, validated against a reliable SAFE formulation, has been used to compute for
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the first time the dispersion curves for surface guided waves along cavity of arbitrary

cross-section. The method proposed in this chapter can be further extended to the

cases of cavities embedded in layered media, in which a numerically computed solution

for a half space can be used [François et al., 2010], and poroelastic materials [Lu et al.,

2008a,b].

Chapter 4 has been dedicated to the study of leaky guided waves in viscoelastic

waveguides of arbitrary cross-section embedded in viscoelastic media. To this end, a

coupled SAFE-2.5D BEM formulation has been proposed, exploits the capability of the

SAFE to model geometrically and mechanically complex waveguides and the unique

capability of the BEM to correctly model the radiated wavefield. The major novelty

introduced is in the definition of the interface conditions for the complex wavevectors,

which must satisfy the Snell-Descartes law. This in turn leads to the definition of the

proper phases of the wavenumbers normal to the interface, which are fundamental in

the extraction of leaky poles. The integration path used in the Contour Integral Method

has been defined as generally assumed in the Vertical Branch Cut Integration (VBCI)

method [Kurkjian, 1985]. The obtained results for waveguides of simple geometry have

been validated against those obtained in literature using the Global Matrix Method

(GMM) Pavlakovic [1998]; Pavlakovic and Lowe [2003] and the SAFE method with

absorbing regions Castaings and Lowe [2008], while new results have been proposed for

a square, an H-shaped and a hollow rectangular beams. As suggested for the method

in Chapter 3, also the SAFE-2.5D BEM formulation can be extended to the case of

surrounding layered media. Moreover, the effect of an initial stress can be included

by exploiting the method proposed in Chapter 2 and defining appropriate interface

conditions. Such a method could be particularly useful for the dispersion analysis of

pre-tensioned or post-tensioned embedded cables and strands.

Finally, in Chapter 5 attention has been focused on the dispersion properties of

guided waves in immersed viscoelastic waveguides, for which a SAFE formulation cou-

pled with a regularized 2.5D BEM formulation, used to represent the exterior 2.5D

Helmholtz problem, has been proposed. In addition to the analysis of Chapter 4, the

CHIEF method has been implemented to avoid numerical instabilities due to the non-

uniqueness problem [Schenck, 1968]. The complex leaky poles have been found by

means of the Contour Integral Method after the imposition of the correct phase of the

wavenumbers normal to the interface. The numerical results for immersed waveguides

of circular cross-section have been compared with those obtained using well-stated soft-

wares [Pavlakovic and Lowe, 2011], while new results have been presented for a square

and a L-shaped bar. The method proposed in this chapter can be further extended to
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the case of viscous fluids. Moreover, the effect of the initial pressure could be added

following the analysis of Chapter 2, which can be useful for the design of guided waves-

based inspections of subsea transportation pipelines.
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M. Mazzotti, A. Marzani, I. Bartoli, ”Dispersion analysis of leaky guided waves in fluid-loaded waveg-

uides of generic shape”, submitted to Ultrasonics, 2013.

M. Mazzotti, I. Bartoli, A. Marzani, E. Viola, ”A 2.5D Boundary Element formulation for modeling

damped waves in arbitrary cross-section waveguides and cavities”, Journal of Computational Physics,

2013.

M. Mazzotti, I. Bartoli, A. Marzani, E. Viola, ”A coupled SAFE-2.5D BEM approach for the dis-

persion analysis of damped leaky guided waves in embedded waveguides of arbitrary cross-section”,

Ultrasonics, accepted for publication, 2013.

C. Gentilini, A. Marzani, M. Mazzotti, ”Nondestructive characterization of tie-rods by means of dy-

namic testing, added masses and genetic algorithms”, Journal of Sound and Vibration, 332(1), 2012,

pp. 76-101

M. Mazzotti, A. Marzani, I. Bartoli, E. Viola, ”Guided waves dispersion analysis for prestressed vis-

coelastic waveguides by means of the SAFE method”, International Journal of Solids and Structures,

49(18), 2012, pp. 2359-2372

A. Marzani, M. Mazzotti, E. Viola, P. Vittori, I. Elishakoff, ”FEM formulation for dynamic instability
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Machines, 40(1), 2012, pp. 83-95

Conference proceedings
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José M. Carcione, Dan Kosloff, and Ronnie Kosloff. Wave propagation simulation in a linear viscoelastic

medium. Geophysical Journal, 95(3):597–611, 1988. 129, 130

Michel Castaings and Michael Lowe. Finite element model for waves guided along solid systems of

arbitrary section coupled to infinite solid media. The Journal of the Acoustical Society of America,

123(2):696–708, 2008. xi, xii, 4, 105, 108, 110, 129, 133, 134, 136, 137, 187, 190

Igor Castro and António Tadeu. Coupling of the bem with the mfs for the numerical simulation

of frequency domain 2-d elastic wave propagation in the presence of elastic inclusions and cracks.

Engineering Analysis with Boundary Elements, 36(2):169 – 180, 2012. 69

G. Caviglia and A. Morro. Inhomogeneous Waves in Solids and Fluids. World Scientific Publishing

Co. Pte. Ltd., Farrer Road, Singapore, 1992. 10, 169

G. Caviglia and A. Morro. Energy flux and dissipation in pre-stressed solids. Acta Mechanica, 128:209

– 216, 1998. ISSN 0001-5970. 10

Giacomo Caviglia, Angelo Morro, and Enrico Pagani. Inhomogeneous waves in viscoelastic media.

Wave Motion, 12(2):143 – 159, 1990. 129, 130

197



BIBLIOGRAPHY
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P. Alves Costa, R. Calçada, and A. Silva Cardoso. Trackground vibrations induced by railway traffic:

In-situ measurements and validation of a 2.5d fem-bem model. Soil Dynamics and Earthquake

Engineering, 32(1):111 – 128, 2012. 57, 109

M. Davidovich. On the electromagnetic energy density and energy transfer rate in a medium with

dispersion due to conduction. Technical Physics, 55:630 – 635, 2010. 34, 36

Vinay Dayal. Longitudinal waves in homogeneous anisotropic cylindrical bars immersed in fluid. The

Journal of the Acoustical Society of America, 93(3):1249–1255, 1993. 108, 157

Vinay Dayal and Vikram K. Kinra. Leaky lamb waves in an anisotropic plate. i: An exact solution and

experiments. The Journal of the Acoustical Society of America, 85(6):2268–2276, 1989. 107

Vinay Dayal and Vikram K. Kinra. Leaky lamb waves in an anisotropic plate. ii: Nondestructive

evaluation of matrix cracks in fiber-reinforced composites. The Journal of the Acoustical Society of

America, 89(4):1590–1598, 1991. 107

198



BIBLIOGRAPHY

G. Degrande, D. Clouteau, R. Othman, M. Arnst, H. Chebli, R. Klein, P. Chatterjee, and B. Janssens.

A numerical model for ground-borne vibrations from underground railway traffic based on a periodic

finite elementboundary element formulation. Journal of Sound and Vibration, 293(35):645 – 666,

2006. 93

A. D. Degtyar and S. I. Rokhlin. Stress effect on boundary conditions and elastic wave propagation

through an interface between anisotropic media. Journal of Acoustical Society of America, 104(4):

1992 – 2003, 1998. 10

X. Ding, H. Liu, J. Liu, and Y. Chen. Wave propagation in a pipe pile for low-strain integrity testing.

Journal of Engineering Mechanics, 137(9):598–609, 2011. 144

J. Dominguez. Boundary Elements in Dynamics. Computational Mechanics Publications and Elsevier

Applied Science, Southampton, United Kingdom, 1993. 62, 71, 87

M.P. Ekstrom. Dispersion estimation from borehole acoustic arrays using a modified matrix pencil

algorithm. In Signals, Systems and Computers, 1995. 1995 Conference Record of the Twenty-Ninth

Asilomar Conference on, volume 1, pages 449 –453, 1995. 59

W. M. Ewing, W. S. Jardetzky, and F. Press. Elastic Waves in Layered Media. McGraw-Hill Book

Company, Inc., New York, 1957. 83, 84

Z. Fan, M. J. S. Lowe, M. Castaings, and C. Bacon. Torsional waves propagation along a waveguide of

arbitrary cross section immersed in a perfect fluid. The Journal of the Acoustical Society of America,

124(4):2002–2010, 2008. 4, 155, 157, 158, 162, 171, 185, 187

Zheng Fan. Applications of guided Waves propagation on waveguides with arbitrary cross-section. PhD

thesis, Imperial College, London, UK, 2010. 157, 185

R. Finno and H. Chao. Guided waves in embedded concrete piles. Journal of Geotechnical and Geoen-

vironmental Engineering, 131(1):11–19, 2005. 144

R.J. Finno, J.S. Popovics, A.A. Hanifah, W.L. Kath, H.-C. Chao, and Y.-H. Hu. Guided wave inter-

pretation of surface reflection techniques for deep foundations. Rivista Italiana di Geotecnica, (1):

76–91, 2001. 144

S. François, M. Schevenels, P. Galv́ın, G. Lombaert, and G. Degrande. A 2.5d coupled fe-be methodol-

ogy for the dynamic interaction between longitudinally invariant structures and a layered halfspace.

Computer Methods in Applied Mechanics and Engineering, 199(2324):1536 – 1548, 2010. 57, 59, 63,

71, 100, 109, 117, 153, 190
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