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ABSTRACT

ABSTRACT

Fracture mechanics plays an important role in the material science, structure design and indus-
trial production due to the failure of materials and structures are paid high attention in human activi-
ties. This dissertation, concentrates on some of the fractural aspects of shaft and composite which

have being increasingly used in modern structures, consists four chapters within two parts.

Chapters 1 to 4 are included in part 1. In the first chapter, the basic knowledge about the stress
and displacement fields in the vicinity of a crack tip is introduced. A review involves the general
methods of calculating stress intensity factors are presented. In Chapter 2, two simple engineering
methods for a fast and close approximation of stress intensity factors of cracked or notched beams
under tension, bending moment, shear force, as well as torque are presented. New formulae for cal-
culating the stress intensity factors are proposed. One of the methods named Section Method is im-
proved and applied to the three dimensional analysis of cracked circular section for calculating
stress intensity factors. The comparisons between the present results and the solutions calculated by
ABAQUS for single mode and mixed mode are studied. In chapter 3, fracture criteria for a crack
subjected to mixed mode loading of two-dimension and three-dimension are reviewed. The crack
extension angle for single mode and mixed mode, and the critical loading domain obtained by
SEDF and MTS are compared. The effects of the crack depth and the applied force ratio on the
crack propagation angle and the critical loading are investigated. Three different methods calculat-
ing the crack initiation angle for three-dimension analysis of various crack depth and crack position
are compared. It should be noted that the stress intensity factors used in the criteria are calculated in
section 2.1. In Chapter 4, to reveal the accuracy and effectiveness of the stress intensity factors cal-
culated in section 2.2, a number of numerical examples are given for dynamic characteristics of free
vibration of Timoshenko beams with transverse non-propagating open cracks. The coupling be-
tween tension and bending is considered for circular cross section beams subjected to bending mo-
ment - axial force - shear force and bending moment - shear force - torque. The non-dimensional
bending modes, rotational modes, tension modes, as well as torsion modes as functions of crack

depth ratio and crack location ratio are graphically researched.

Chapter 5 to 8 included in Part 1l dealing with the fractural properties of composite materials.
Chapter 5 focuses on the fractural process connected with a finite central crack along the plane in-
terface between two bonded dissimilar materials under biaxial loading. The analytical solution,
based upon the complex potential technique, stemmed from the boundary value problem formulated

for the interfacial crack model subjected to biaxial loading at infinity. Numerical solutions of the in-
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terfacial crack problem, based on a Finite Element Method (FEM) formulation, are worked out with
reference to external loadings applied at the boundary of a bonded finite plate with the same interfa-
cial crack. The non-linear stress-strain response of this model is investigated. Models of different
material properties, interface crack lengths, biaxial loading conditions and interfacial fracture
strengths are investigated. In Chapter 6, the geometry model used in Chapter 5 subjected to the in-
plane general loading is analyzed. The elastic solution is obtained by the application of the complex
variable technique coupled with the principle of the superposition. The normalized circumferential
stress, the normalized maximum shear stress, as well as the strain energy density factor near the
crack tip are described. The influence of the shear-tension force ratio, biaxial factor and the distance
ahead of the crack tip are investigated. In Chapter 7, two popular and simple fracture criteria for in-
terfacial crack proposed by He and Hutchinson (HH-criterion), Piva and Viola (PV-criterion) are
introduced. The critical value of applied tensile stress of a function of the biaxial factor, the force
ratio and material combination according to the PV-criterion is studied. Crack propagation angle in
several situations of bi-material systems or homogeneous materials are calculated. The main work is
focused on the improvement of PV-criterion by introducing the interface toughness. In the last
chapter, the aspects of Extended Finite Element Method (XFEM), such as crack discontinuous en-
richment, crack tip enrichment, level set method, are introduced. Specially, for the interfacial crack,
a special enrichment function which can be spanned the near-tip displacement field are realized.
The fracture criterion proposed in section 2.6 is used to track the crack propagation trajectory of in-
terfacial crack. Several numerical examples for stress intensity factor of interface crack and the

crack extension trajectory are given by MATLAB codes.

it
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Chapter 1 Introduction and basic knowledge

Chapter 1

Introduction and basic knowledge

1.1 Introduction

Fracture mechanics in the broad sense of this concept includes the part of science of strength of ma-
terial and structures which relates to a study of the carrying capacity of a body with or without con-
sideration of initial cracks and also to a study of various laws governing crack development.

Omitting a historical review of the subject matter, the present report is concerned with a study of the
equilibrium and growth of macroscopic cracks within the framework of continuum mechanics. Na-
ture and the practical activity of human permitted of observing various modes of fracture. A special
case is perfectly brittle or elastic fracture, which is not encountered in practice among metallic ma-
terials. The fracture of such materials is accompanied by plastic deformation. There is simply a pos-
sibility of introducing into consideration a small (compared with the characteristic dimension of a
crack) plastic zone due to stress concentration at the crack edge. According to Irwin, the size of this
plastic zone is proportional to the square of the ratio of the stress intensity factor to the yield
strength [1]. This zone is surrounded by the field of elastic strain whose value is related directly to
the stress intensity factors calculated from the solution of the elastic problem. If the plastic zone
must be taken into account, its length artificially increases the extent of the crack. This formal ac-
tion enables an easy analytic transition from the description of elastic fracture to that of elastic-
plastic fracture. Thus, the determination of the stress intensity factor and its critical value includes

both the above modes of fracture.
1.2 Stress and displacement fields in the vicinity of a crack tip

Before proceeding to the solution of the problem indicated in the above section, it’s necessary to re-

capitulate some basic relations of the theory of elasticity which will be needed in what follows.

Considerable mathematical difficulties involved in solving general equations of elasticity call for
the construction of solutions for more or less wide classes of special cases. Such as, the class of
“plane elasticity problems” which incorporates two practically important case: (a) the deformation
of a long cylinder by force, the same in all planes, applied to its lateral surface and lying in planes
perpendicular to the generators of the cylinder; (b) the deformation of a plate by force lying in its

plane and applied to its perimeter.
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Every elementary course in elasticity gives the derivation of the equilibrium equations for the plane
elasticity problem (in this case we have three equilibrium equations, with neglect of body forces and
inertial terms). We present the complete system which is closed by Hooke’s law for an isotropic

body in plane strain

doy O‘L'xyz 6& 6Txy=

— 1.1
ox  dy ’ oy  0x 0 (11)
Oy = A0 + 2us,, oy, = A0 + 2ue,, Ty = Tyx = Uy (1.2)
_Ou _0v _Ou N dv 13
T M Tay T o (13)
(9 e te = ou N 6v)
& TEH T 5 oy

The relations in eq. (1.3) are obtained on the assumption of “small strains”, i.e., such changes in a
body when the derivatives of the displacement components with respect to x and y are so small that

their square and products may be neglected.

The system of five equations (1.1-1.3) with first-order partial derivatives in five unknown functions

Oyx: Oy, Ty, U, U IS the system of basic equations in plane elasticity.

By using the set of formulas (1.1-1.3), it is easy to derive both a system of equations containing on-

ly displacements
1+ )69+A =0 1+ )69+A =0 1.4
W+ ubu =0, W, ubv = (1.4)
and equations involving only stresses, for which purpose to the relations of eq. (1.1) and eq. (1.2)
must be added one more equation
Aoy + ay) =0 (1.5)

If use is made of the representations of stress and displacement components in terms of the stress

function U(x, y) introduced in 1862 by the English astronomer G. B. Airy

02U 02U 02U
Oy = a_yz' Oy =5 Ty = — xdy (1.6)

then from eq. (1.5) it follows that U(x, y) is a bi-harmonic function
A’U =0 (1.7)

Back as far as to 1898, E. Goursat proved that every bi-harmonic function might be expressed in

terms of analytic functions of a complex variable [1]. In particular, he suggested the following rep-

2
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resentation of a bi-harmonic function in terms of two analytic functions ¢ and x of a complex vari-

able as

1
U=§(Z_(p+z<ﬁ+)(+)f) (1.8)

From the foregoing relations and eg. (1.8), one obtains the complex representation of solutions of
the plane elasticity problem, which underlies the methods of application of complex function theory
in elasticity developed by G. V. Kolosov and N. I. Muskhelishvili.

Omitting rather simple computations, we present the expressions for the complex representation of

displacements and stresses obtained by G. V. Kolosov in 1909 [2]

oy + 0y, = 2[®(2) + P(2)] (1.9)
0, — 0y + 20Ty, = 2[Z20'(2) + ¥(2)] (1.10)
2uD = ko(z) — 2¢'(2) — y(2) (1.11)
where
0D =2 @) = [0z, v = [ ¥z (112)
D=u+iv (1.13)

and x = 3 — 4v is for plane strain, k = (3 —v) /(1 + v) is for plane stress.

It may be shown that for any values of ¢(z) and y(z) the functions oy, g, 7y, u and v as deter-
mined from egs. (1.9-1.11) satisfy the basic equations (1.1-1.3). In other words, egs. (1.9-1.11) are
the general solutions of the plane problem egs. (1.1-1.3) of the theory of elasticity. In solving prac-
tically important problems, however, we have to impose some additional conditions on the quanti-
ties into consideration on the boundary of the region, which leads to the so-called boundary values
problems, and relations (1.9-1.11), in spite of their generality, are not the specific solution of these

boundary value problems.

Two special cases of relations (1.9-1.11) are associated with the name of H. M. Westergaard [1].

Assuming, for example, that
1 1,
d(2) = EZl(Z)' Y(z) = _EZZ1(Z) (1.14)

from relations (1.9-1.11), we obtain

ox + 0, = 2ReZ; (1.15)
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0y — Oy = 2yImZi

Tyy = —yReZi

(1.16)

(1.17)

The solution furnished by these equations possesses the property that when y = 0, 7,,, = 0 and

Ox = Oy.

By using Hook’s law and expressing the displacements, v from egs. (1.1-1.3) in terms of the stress-

es determined by relations (1.15-1.17), the following expressions for the case of plane strain

(e, = 0) are obtained.

1+ 4z
u= Tv [(1 = 2v)ReZ) — yImZ,], (Zl - d_Zl)
1+v
v ="—"—[2(1-v)ImZ} - yReZ]

Let now
1 1 7
d(2) = —EiZZ(Z), Y(z) = EizZz(z) +iZ,(2)

From the same relations (1.9-1.11), then we have
oy + 0, = 2ImZ,

o, — 0y, = —2ImZ, — 2yReZ,

y
Toy = ReZ, — yImZ,
This solution possesses the property that o, = 0 along the line y = 0.

In a similar way, the displacements can be determined.

1+ dzl
u=22[2(1 - v)ImZ$ + yReZ,), (Z2 = d—;)

_1+v
VETE

[—(1 = 2v)ReZ? — yImZ,]

(1.18)

(1.19)

(1.20)

(1.21)
(1.22)

(1.23)

(1.24)

(1.25)

One of the most important features in the design of structural elements with cracks is the considera-

tion of stress redistribution resulting from the formation of slits and cracks under the action of ex-

ternal loads. The crack tip is then the location of the highest stress concentration and the origin of

the likeliest further fracture. The analysis of the state of stress at the crack tip therefore assumes a

special importance. The most general case of strain and stress fields at the crack tip can be obtained

by superimposing the stresses due to the following three particular modes of deformation (Fig. 1.1).
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2

Mode | Mode Il Mode 11

Fig. 1.1. Basic modes of deformation of crack surfaces.

The first mode is associated with an opening displacement in which the crack surfaces move direct-
ly apart in opposite directions (symmetrically about the xy and xz planes). The second mode corre-
sponds to displacements in which the crack surfaces slide over one another (symmetrically about
the xy plane, but skew-symmetrically about the xz plane). The third mode is connected with anti-
plane strain (cutting with the scissors) in which one surface slides over the other parallel to the lead-

ing edge of the crack (skew-symmetric strain about the xy and xz planes).

We now revert to Westergaard’s solutions and choose the function Z;, analytic in the entire region

with the exception of some segments of the real axis, in the following form

_ 9(2)
\/(z —a)(z—»b)

(1.26)

1

If g(z) is a reasonably smooth function, this expression will furnish the solution of the problem of a
crack situated along the real axis, a < x < b, y = 0, since ,, = 7,,, = 0 in this interval. From this
it follows that

Img(z) =0 (a<x<b) (1.27)
For example, this function giving the solution of the problem of a crack subjected to uniaxial ten-

sion p at infinity and free from stress in the interval -l < x < [, y = 0 is of the form

__ bz
N (1.28)

By making a change of the variable { = z — b in expression (1.26), then
Zy = (2 (1.29)

In the vicinity of the crack tip x = b, i.e., for small value of |¢|, from (1.26) and (1.27) it follows

that the function f (&) is sufficiently smooth and then [¢] — 0, it may be replaced by a real constant

K;
Z1ilie150 = or K; = lim +/2néZ 1.30
1|IEI 0 \/2_715 I €150 A ( )
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Z

Fig. 1.2 Coordinate system and stress components at a crack tip.

Eq. (1.30) is substituted in egs. (1.15-1.17) and transformed to polar coordinates & = re'® in these
relations (Fig. 1.2). By rejecting terms of higher order that r, easily, formulas for stress fields are
obtained giving a good approximation in a region where r is small compared, for example, with the
crack length

— cosE 1-— sinzsinT

K; 9( 0 39)
Oy =

K; 9(1+ 0 36)
oy = cos— sin—sin—
Y \2mr 2 22

0, = v(ax + O'y) (1.31)
K 6 6 30
Tyy = msmz cos - oS —

Tyz = Ty; =0

The displacements in the vicinity of the crack tip are obtained by substituting eqg. (1.30) in egs.

(1.18-1.19) and transforming to polar coordinates

K [T 9(1 v + i 20)
u=-— |70 v +sin®g
.y 9(2 2 29) 1.32
v—G 2nsmz v —cos® (1.32)

Relations (1.30), (1.31) and (1.32) represent asymptotic expressions for the stress and displacement
fields in the vicinity of the crack tip for the first mode of deformation associated with an opening

displacement.

We now proceed to the second mode of deformation in which the crack surfaces slide over one an-

other. Similarly from the above it can be concluded that as |¢| — 0 in the vicinity of the crack tip

6
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Ky
Z 0 =——or K;; = lim /2né Z 1.33
2||EI 0 \/ﬁ = 5% $Z, ( )

Substituting eq. (1.33) into egs. (1.21-1.25), it can be obtained that the following asymptotic repre-

sentations in polar coordinates for this case of deformation

_ Ky, 6 (2 4 0 39)
Oy = Wsm > cos > cos >
K;; 0 0 36
oy, = COS = Sin—cos—
Yoo \2mr 272 2
0, = v(ax + ay) (1.34)
Ky 0 (1 .0 39)
Ty = — cos 5 sin > sin >

Tyz = Ty; =0

Ky [T 9(2 v+ 29)

=< 775105 v+ cos” 7

_Ku [T 9(1 2v + i 29) 135
V= C 27Tcosz v + sin > (1.35)
w=0

The last of the above-mentioned special cases is connected with anti-plane strain in which one sur-
face slides over the other parallel to the leading edge of the crack. In this case w = w(x,y) is the
only non-zero displacement component (u = v = 0), and the equilibrium equations and Hooke’s

law assume the following form

Y2 _ (1.36)

)
Tag = GYyy = G—x,TyZ =GYy, =G (1.37)

from which it follows that, upon substitution of eq. (1.37) in eq. (1.36), the displacement satisfies

Laplace’s equation
Aw =0 (1.38)

If w = w(x,y) is chosen in the form

1
w = ElmZ3 (1.39)
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then from (1.37) it will be obtained
Ty = IMZ3,7,, = ReZy (1.40)

In the vicinity of the tip of a crack (y = 0,x < 0) with head at the pointy = 0,x = 0, the stress
function Z5 is of the form

Klll

Z3|ig|s0 =
311€1-0 \/ﬁ

Substituting eq. (1.41) in eq. (1.39) and eq. (1.40), expressions for displacements and stresses at the

or KIII == |%1|r_1;10\/ ZTEE Z3 (14‘1)

crack tip in the case of anti-plane strain can be obtained

KIII 0
Tyz = — - sin—
T K cosg
. 2nr
Oy =0y =0, =Ty, =0 (1.42)
u=v=20
w = |7 sin > (1.43)

The relations obtained involve three quantities K;, K;; and K;;;, termed the stress intensity factors
for the three modes of deformation discussed above. These factors play extremely important roles in

the mechanics of brittle fracture.

The stress intensity factors are often designated by the symbol K without a suffix implying that ei-

ther the mode of deformation is clear from the problem or the factor may apply to any mode.
1.3 Stress intensity factors
1.3.1 Stress intensity factors

The design of a body for strength is closely related to the determination of its state of stress. This is
necessary not only for the purpose of finding a dangerous point and the components of stress at it
but also for assessing the strength of material at this point since most criteria for the occurrence of a
dangerous state are expressed in terms of the components of stress. For many practically important
shapes of bodies and loading conditions the determination of the state of stress concentration fac-

tors. These factors represent the ratio of the maximum value of any component of the stress tensor
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to the corresponding nominal value and are thus expressed by non-dimensional numbers. The de-
termination of the state of stress and hence of stress concentration is a subject to which entire
branches of continuum mechanics are devoted, such as elasticity theory and plasticity theory, which

are presently thoroughly studied.

¥

Fig. 1.3 Distribution of stress g, ahead of the tip of a brittle crack. I, Region of non-linear strains and of realization of

fracture mechanism; |1, region of validity of asymptotic formulas, o, = K /v/2mx ; I11, region of nominal stresses.

The problem of determining the state of stress near the crack tip differs from the usual problems of
determining stress concentration in that the geometrically linearized formulation of boundary condi-
tions and the physically linear theory of elasticity lead to infinite stresses and infinite stress gradi-
ents at the end of a thin cut. The concept of the stress concentration factor becomes meaningless.
However, it is sufficient to know the nature and intensity of the state of stress in a region surround-
ing the end of cut together with a small volume where the fracture mechanism is concentrated (Fig
1.3). This means a rejection of the stress concentration factor in favor of the asymptotic representa-
tion of the state of stress at the end of the cut. The radial and angular distribution for the asymptotic
representation of the state of stress is independent of the crack length, the body shape and the load-
ing conditions. The intensity of this distribution, however, is depends only on a single factor K
which, in contrast, is independent from the coordinates of points near the end of the cut. Conse-
quently, all fracture processes in materials are initiated and governed by the intensity of the stress
field (surrounding the crack end) through the stress intensity factor K. In contrast to the concentra-
tion factor, the stress intensity factor is dimensional quantity (with the dimension kgf/mm®? in en-
gineering). From the above discussion one can see the dominant role of the stress intensity factor in
fracture mechanics, a fact which accounts for the consideration of the stress intensity factor as the

subject of analytic or experimental investigation.

The concept of stress intensity factor is a result of the bi-dimensional analysis of the stress field at
the crack tip. This analysis was carried out by Williams [3], taking into account Westergaard’s work

[4]. Using coordinate system centered in the crack tip and according to Williams’ analysis, the

9
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stress field components near the crack tip are proportional to vK /r, where r is the radial distance
from the tip. For each node, the stress field in the crack tip region can be expressed using stress in-
tensity factor from eq. (1.31) and eq. (1.34) as

ll_r)réa \/_ L(6)
lim o/f = \/% 1) (1.44)
limg/{! = alll fi11(6)

0 U~ oy

where r and 6 are the polar coordinates in the system of axes having the origin at the crack tip Fig.
1.4. According to Williams’ analysis, the components of the stress field can be written as a series of

expressions, from this expansion, the stress intensity factor can be calculated from the stress field in
the crack tip.

Fig. 1.4 Cracked plate and the local coordinate system.

1