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ABSTRACT 

i 

ABSTRACT  

Fracture mechanics plays an important role in the material science, structure design and indus-

trial production due to the failure of materials and structures are paid high attention in human activi-

ties. This dissertation, concentrates on some of the fractural aspects of shaft and composite which 

have being increasingly used in modern structures, consists four chapters within two parts. 

Chapters 1 to 4 are included in part 1. In the first chapter, the basic knowledge about the stress 

and displacement fields in the vicinity of a crack tip is introduced. A review involves the general 

methods of calculating stress intensity factors are presented. In Chapter 2, two simple engineering 

methods for a fast and close approximation of stress intensity factors of cracked or notched beams 

under tension, bending moment, shear force, as well as torque are presented. New formulae for cal-

culating the stress intensity factors are proposed. One of the methods named Section Method is im-

proved and applied to the three dimensional analysis of cracked circular section for calculating 

stress intensity factors. The comparisons between the present results and the solutions calculated by 

ABAQUS for single mode and mixed mode are studied. In chapter 3, fracture criteria for a crack 

subjected to mixed mode loading of two-dimension and three-dimension are reviewed. The crack 

extension angle for single mode and mixed mode, and the critical loading domain obtained by 

SEDF and MTS are compared. The effects of the crack depth and the applied force ratio on the 

crack propagation angle and the critical loading are investigated. Three different methods calculat-

ing the crack initiation angle for three-dimension analysis of various crack depth and crack position 

are compared. It should be noted that the stress intensity factors used in the criteria are calculated in 

section 2.1. In Chapter 4, to reveal the accuracy and effectiveness of the stress intensity factors cal-

culated in section 2.2, a number of numerical examples are given for dynamic characteristics of free 

vibration of Timoshenko beams with transverse non-propagating open cracks. The coupling be-

tween tension and bending is considered for circular cross section beams subjected to bending mo-

ment - axial force - shear force and bending moment - shear force - torque. The non-dimensional 

bending modes, rotational modes, tension modes, as well as torsion modes as functions of crack 

depth ratio and crack location ratio are graphically researched.  

Chapter 5 to 8 included in Part II dealing with the fractural properties of composite materials. 

Chapter 5 focuses on the fractural process connected with a finite central crack along the plane in-

terface between two bonded dissimilar materials under biaxial loading. The analytical solution, 

based upon the complex potential technique, stemmed from the boundary value problem formulated 

for the interfacial crack model subjected to biaxial loading at infinity. Numerical solutions of the in-
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terfacial crack problem, based on a Finite Element Method (FEM) formulation, are worked out with 

reference to external loadings applied at the boundary of a bonded finite plate with the same interfa-

cial crack. The non-linear stress-strain response of this model is investigated. Models of different 

material properties, interface crack lengths, biaxial loading conditions and interfacial fracture 

strengths are investigated. In Chapter 6, the geometry model used in Chapter 5 subjected to the in-

plane general loading is analyzed. The elastic solution is obtained by the application of the complex 

variable technique coupled with the principle of the superposition. The normalized circumferential 

stress, the normalized maximum shear stress, as well as the strain energy density factor near the 

crack tip are described. The influence of the shear-tension force ratio, biaxial factor and the distance 

ahead of the crack tip are investigated. In Chapter 7, two popular and simple fracture criteria for in-

terfacial crack proposed by He and Hutchinson (HH-criterion), Piva and Viola (PV-criterion) are 

introduced. The critical value of applied tensile stress of a function of the biaxial factor, the force 

ratio and material combination according to the PV-criterion is studied. Crack propagation angle in 

several situations of bi-material systems or homogeneous materials are calculated. The main work is 

focused on the improvement of PV-criterion by introducing the interface toughness. In the last 

chapter, the aspects of Extended Finite Element Method (XFEM), such as crack discontinuous en-

richment, crack tip enrichment, level set method, are introduced. Specially, for the interfacial crack, 

a special enrichment function which can be spanned the near-tip displacement field are realized. 

The fracture criterion proposed in section 2.6 is used to track the crack propagation trajectory of in-

terfacial crack. Several numerical examples for stress intensity factor of interface crack and the 

crack extension trajectory are given by MATLAB codes. 
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Chapter 1  

Introduction and basic knowledge 

1.1 Introduction 

Fracture mechanics in the broad sense of this concept includes the part of science of strength of ma-

terial and structures which relates to a study of the carrying capacity of a body with or without con-

sideration of initial cracks and also to a study of various laws governing crack development. 

Omitting a historical review of the subject matter, the present report is concerned with a study of the 

equilibrium and growth of macroscopic cracks within the framework of continuum mechanics. Na-

ture and the practical activity of human permitted of observing various modes of fracture. A special 

case is perfectly brittle or elastic fracture, which is not encountered in practice among metallic ma-

terials. The fracture of such materials is accompanied by plastic deformation. There is simply a pos-

sibility of introducing into consideration a small (compared with the characteristic dimension of a 

crack) plastic zone due to stress concentration at the crack edge. According to Irwin, the size of this 

plastic zone is proportional to the square of the ratio of the stress intensity factor to the yield 

strength [1]. This zone is surrounded by the field of elastic strain whose value is related directly to 

the stress intensity factors calculated from the solution of the elastic problem. If the plastic zone 

must be taken into account, its length artificially increases the extent of the crack. This formal ac-

tion enables an easy analytic transition from the description of elastic fracture to that of elastic-

plastic fracture. Thus, the determination of the stress intensity factor and its critical value includes 

both the above modes of fracture. 

1.2 Stress and displacement fields in the vicinity of a crack tip 

Before proceeding to the solution of the problem indicated in the above section, it’s necessary to re-

capitulate some basic relations of the theory of elasticity which will be needed in what follows. 

Considerable mathematical difficulties involved in solving general equations of elasticity call for 

the construction of solutions for more or less wide classes of special cases. Such as, the class of 

“plane elasticity problems” which incorporates two practically important case: (a) the deformation 

of a long cylinder by force, the same in all planes, applied to its lateral surface and lying in planes 

perpendicular to the generators of the cylinder; (b) the deformation of a plate by force lying in its 

plane and applied to its perimeter. 
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Every elementary course in elasticity gives the derivation of the equilibrium equations for the plane 

elasticity problem (in this case we have three equilibrium equations, with neglect of body forces and 

inertial terms). We present the complete system which is closed by Hooke’s law for an isotropic 

body in plane strain 

   

  
 

    

  
   

   

  
 

    

  
                                                         

                                                                  

   
  

  
    

  

  
     

  

  
 

  

  
                                                

(        
  

  
 

  

  
) 

The relations in eq. (1.3) are obtained on the assumption of “small strains”, i.e., such changes in a 

body when the derivatives of the displacement components with respect to   and   are so small that 

their square and products may be neglected. 

The system of five equations (1.1-1.3) with first-order partial derivatives in five unknown functions 

  ,   ,    ,  ,   is the system of basic equations in plane elasticity. 

By using the set of formulas (1.1-1.3), it is easy to derive both a system of equations containing on-

ly displacements 

     
  

  
            

  

  
                                                     

and equations involving only stresses, for which purpose to the relations of eq. (1.1) and eq. (1.2) 

must be added one more equation 

 (     )                                                                           

If use is made of the representations of stress and displacement components in terms of the stress 

function        introduced in 1862 by the English astronomer G. B. Airy 

   
   

   
    

   

   
      

   

    
                                                    

then from eq. (1.5) it follows that        is a bi-harmonic function 

                                                                                     

Back as far as to 1898, E. Goursat proved that every bi-harmonic function might be expressed in 

terms of analytic functions of a complex variable [1]. In particular, he suggested the following rep-
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resentation of a bi-harmonic function in terms of two analytic functions   and   of a complex vari-

able as 

  
 

 
  ̅    ̅     ̅                                                         

From the foregoing relations and eq. (1.8), one obtains the complex representation of solutions of 

the plane elasticity problem, which underlies the methods of application of complex function theory 

in elasticity developed by G. V. Kolosov and N. I. Muskhelishvili. 

Omitting rather simple computations, we present the expressions for the complex representation of 

displacements and stresses obtained by G. V. Kolosov in 1909 [2] 

       [         ̅̅ ̅̅ ̅̅ ̅]                                                             

             [ ̅          ]                                                    

                ̅̅ ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅                                                          

where 

           ∫            ∫                                           

                                                                                    

and         is for plane strain,               is for plane stress. 

It may be shown that for any values of      and      the functions   ,       ,   and   as deter-

mined from eqs. (1.9-1.11) satisfy the basic equations (1.1-1.3). In other words, eqs. (1.9-1.11) are 

the general solutions of the plane problem eqs. (1.1-1.3) of the theory of elasticity. In solving prac-

tically important problems, however, we have to impose some additional conditions on the quanti-

ties into consideration on the boundary of the region, which leads to the so-called boundary values 

problems, and relations (1.9-1.11), in spite of their generality, are not the specific solution of these 

boundary value problems. 

Two special cases of relations (1.9-1.11) are associated with the name of H. M. Westergaard [1]. 

Assuming, for example, that 

     
 

 
            

 

 
   

                                                        

from relations (1.9-1.11), we obtain 

                                                                                  



University of Bologna   PhD Thesis 

4 

            
                                                                       

          
                                                                          

The solution furnished by these equations possesses the property that when    ,       and 

     . 

By using Hook’s law and expressing the displacements,   from eqs. (1.1-1.3) in terms of the stress-

es determined by relations (1.15-1.17), the following expressions for the case of plane strain 

(    ) are obtained. 
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Let now 

      
 

 
            

 

 
    

                                                   

From the same relations (1.9-1.11), then we have 

                                                                             

                   
                                                         

              
                                                              

This solution possesses the property that      along the line    . 

In a similar way, the displacements can be determined. 

  
   

 
[          

       ] (   
   

 

  
)                                         

  
   

 
[           

       ]                                                         

One of the most important features in the design of structural elements with cracks is the considera-

tion of stress redistribution resulting from the formation of slits and cracks under the action of ex-

ternal loads. The crack tip is then the location of the highest stress concentration and the origin of 

the likeliest further fracture. The analysis of the state of stress at the crack tip therefore assumes a 

special importance. The most general case of strain and stress fields at the crack tip can be obtained 

by superimposing the stresses due to the following three particular modes of deformation (Fig. 1.1). 
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Fig. 1.1. Basic modes of deformation of crack surfaces. 

The first mode is associated with an opening displacement in which the crack surfaces move direct-

ly apart in opposite directions (symmetrically about the xy and xz planes). The second mode corre-

sponds to displacements in which the crack surfaces slide over one another (symmetrically about 

the xy plane, but skew-symmetrically about the xz plane). The third mode is connected with anti-

plane strain (cutting with the scissors) in which one surface slides over the other parallel to the lead-

ing edge of the crack (skew-symmetric strain about the xy and xz planes). 

We now revert to Westergaard’s solutions and choose the function   , analytic in the entire region 

with the exception of some segments of the real axis, in the following form 

   
    

√          
                                                                           

If      is a reasonably smooth function, this expression will furnish the solution of the problem of a 

crack situated along the real axis,      ,    , since          in this interval. From this 

it follows that 

                                                                                

For example, this function giving the solution of the problem of a crack subjected to uniaxial ten-

sion   at infinity and free from stress in the interval       ,     is of the form 

   
  

√     
                                                                             

By making a change of the variable       in expression (1.26), then 

                                                                                

In the vicinity of the crack tip    , i.e., for small value of | |, from (1.26) and (1.27) it follows 

that the function      is sufficiently smooth and then | |    , it may be replaced by a real constant 

  || |   
  

√   
          

| |  
√                                                 

Mode I Mode II Mode III
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Fig. 1.2 Coordinate system and stress components at a crack tip. 

Eq. (1.30) is substituted in eqs. (1.15-1.17) and transformed to polar coordinates        in these 

relations (Fig. 1.2). By rejecting terms of higher order that  , easily, formulas for stress fields are 

obtained giving a good approximation in a region where   is small compared, for example, with the 

crack length 
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The displacements in the vicinity of the crack tip are obtained by substituting eq. (1.30) in eqs. 

(1.18-1.19) and transforming to polar coordinates 
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)                                                   

Relations (1.30), (1.31) and (1.32) represent asymptotic expressions for the stress and displacement 

fields in the vicinity of the crack tip for the first mode of deformation associated with an opening 

displacement. 

We now proceed to the second mode of deformation in which the crack surfaces slide over one an-

other. Similarly from the above it can be concluded that as | |    in the vicinity of the crack tip 



Chapter 1 Introduction and basic knowledge 

7 

  || |   
   

√   
           

| |  
√                                                  

Substituting eq. (1.33) into eqs. (1.21-1.25), it can be obtained that the following asymptotic repre-

sentations in polar coordinates for this case of deformation  
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The last of the above-mentioned special cases is connected with anti-plane strain in which one sur-

face slides over the other parallel to the leading edge of the crack. In this case          is the 

only non-zero displacement component (     ), and the equilibrium equations and Hooke’s 

law assume the following form 

    
  

 
    

  
                                                                     

          
  

  
           

  

  
                                                   

from which it follows that, upon substitution of eq. (1.37) in eq. (1.36), the displacement satisfies 

Laplace’s equation 

                                                                         

If          is chosen in the form 

  
 

 
                                                                    



University of Bologna   PhD Thesis 

8 

then from (1.37) it will be obtained 

        
          

                                                     

In the vicinity of the tip of a crack (       ) with head at the point        , the stress 

function    is of the form  

  || |   
    

√   
            

| |  
√                                            

Substituting eq. (1.41) in eq. (1.39) and eq. (1.40), expressions for displacements and stresses at the 

crack tip in the case of anti-plane strain can be obtained 
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√
  

 
   

 

 
                                                                   

The relations obtained involve three quantities   ,     and     , termed the stress intensity factors 

for the three modes of deformation discussed above. These factors play extremely important roles in 

the mechanics of brittle fracture. 

The stress intensity factors are often designated by the symbol   without a suffix implying that ei-

ther the mode of deformation is clear from the problem or the factor may apply to any mode. 

1.3 Stress intensity factors 

1.3.1 Stress intensity factors 

The design of a body for strength is closely related to the determination of its state of stress. This is 

necessary not only for the purpose of finding a dangerous point and the components of stress at it 

but also for assessing the strength of material at this point since most criteria for the occurrence of a 

dangerous state are expressed in terms of the components of stress. For many practically important 

shapes of bodies and loading conditions the determination of the state of stress concentration fac-

tors. These factors represent the ratio of the maximum value of any component of the stress tensor 
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to the corresponding nominal value and are thus expressed by non-dimensional numbers. The de-

termination of the state of stress and hence of stress concentration is a subject to which entire 

branches of continuum mechanics are devoted, such as elasticity theory and plasticity theory, which 

are presently thoroughly studied.  

 

Fig. 1.3 Distribution of stress     ahead of the tip of a brittle crack. I, Region of non-linear strains and of realization of 

fracture mechanism; II, region of validity of asymptotic formulas,      √    ; III, region of nominal stresses. 

The problem of determining the state of stress near the crack tip differs from the usual problems of 

determining stress concentration in that the geometrically linearized formulation of boundary condi-

tions and the physically linear theory of elasticity lead to infinite stresses and infinite stress gradi-

ents at the end of a thin cut. The concept of the stress concentration factor becomes meaningless. 

However, it is sufficient to know the nature and intensity of the state of stress in a region surround-

ing the end of cut together with a small volume where the fracture mechanism is concentrated (Fig 

1.3). This means a rejection of the stress concentration factor in favor of the asymptotic representa-

tion of the state of stress at the end of the cut. The radial and angular distribution for the asymptotic 

representation of the state of stress is independent of the crack length, the body shape and the load-

ing conditions. The intensity of this distribution, however, is depends only on a single factor   

which, in contrast, is independent from the coordinates of points near the end of the cut. Conse-

quently, all fracture processes in materials are initiated and governed by the intensity of the stress 

field (surrounding the crack end) through the stress intensity factor  . In contrast to the concentra-

tion factor, the stress intensity factor is dimensional quantity (with the dimension kgf/mm
3/2

 in en-

gineering). From the above discussion one can see the dominant role of the stress intensity factor in 

fracture mechanics, a fact which accounts for the consideration of the stress intensity factor as the 

subject of analytic or experimental investigation. 

The concept of stress intensity factor is a result of the bi-dimensional analysis of the stress field at 

the crack tip. This analysis was carried out by Williams [3], taking into account Westergaard’s work 

[4]. Using coordinate system centered in the crack tip and according to Williams’ analysis, the 
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stress field components near the crack tip are proportional to √   , where   is the radial distance 

from the tip. For each node, the stress field in the crack tip region can be expressed using stress in-

tensity factor from eq. (1.31) and eq. (1.34) as 

   
   

   
  

  

√   
   

     

   
   

   
   

   

√   
   

                                                                      

   
   

   
    

    

√   
   

       

where   and   are the polar coordinates in the system of axes having the origin at the crack tip Fig. 

1.4. According to Williams’ analysis, the components of the stress field can be written as a series of 

expressions, from this expansion, the stress intensity factor can be calculated from the stress field in 

the crack tip. 

 

Fig. 1.4 Cracked plate and the local coordinate system. 

1.3.2 Calculating the stress intensity factors 

Generically there are two kinds of methods for evaluating the stress intensity factors: the analytical 

methods and the numerical methods. The analytical methods have been the basis for the develop-

ment of fracture mechanics. They have delivered the basic equations for the crack tip stress and dis-

placement field, which still serve as the starting point for many other solutions. The knowledge that 

these fields for either fracture mode always take the same from offering the possibility to determine 

the stress intensity factor in an indirect way. However, these methods are the least interesting from 

an engineering point of view, because in general they try to satisfy the boundary conditions exactly 

and it is possible in case of infinite plate only. Basically, the analytical solution tries to find an Airy 

stress function that for Mode I stress problems takes the form of Westergaard stress function [4]. 
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Other forms of complex stress functions are developed. One of them is developed by Muskhelish-

vili [5] as mentioned in the Section 1.2. 

If a straightforward solution of the equations is not possible, numerical procedures can be applied to 

obtain approximate figures. Various numerical methods have been developed to derive stress inten-

sity factor. For instance a conformal mapping technique can be used [6] to treat the important tech-

nical problem of a crack emanating from a hole. Boundary collocation method starts off a set of lin-

ear algebraic equations and replaces the elastic differential equations. The series expansion is 

adapted to satisfy the boundary conditions. This method has been used to solve many crack prob-

lems of plate with finite size [7, 8]. The method mentioned above is a combination of conformal 

mapping and boundary collocation method [9]. 

Boundary collocation method starts off a set of linear algebraic equations and replaces the elastic 

differential equations. The series expansion is adapted to satisfy the boundary conditions. This 

method has been used to solve many crack problems of plate with finite size [10, 11].  

1.3.3 Numerical methods 

In this section, some numerical methods for calculating stress intensity factor will be presented. 

1.3.3.1 Compounding method 

The compounding method, proposed by Cartwright and Rooke [12], is used for stress intensity fac-

tor determination in complex structures, starting form available solutions for simper problems. This 

method consists of decomposing a cracked structure with   boundaries into   ancillary configura-

tions, each one containing one boundary and for which stress intensity factor solutions are available. 

The stress intensity factor for a crack tip can be expressed as a function of   ancillary stress intensi-

ty factor values 

       ∑       

 

   

                                                                     

where    is the stress intensity factor for the same body without boundaries and    is the stress in-

tensity factor for the body with the boundary  . When boundaries interact one with another, stresses 

at the location of these boundaries will be different, leading to an increase or decrease of stress in-

tensity factor values. Due to this effect, another term   , corresponding to the boundary-to-

boundary interaction is added in eq. (1.45) 

       ∑       
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If a crack crosses a boundary, a modification in equations (1.45) and (1.46) will be required in order 

to account for the effect of the stress originated by this boundary at the crack tip. This effect is not 

taken into account in the preceding considerations, but must be considered because of the change in 

stress and displacement fields at the crack tip due to the boundary. In these circumstances, the struc-

ture with a crack length   , containing a boundary crossed by the crack, is converted into an equiv-

alent structure without the boundary but with an equivalent crack length    . The stress intensity 

factor calculation takes into account the other boundaries interacting with the crack length    . Tak-

ing into account that         , where    is the stress intensity factor for configuration   con-

taining a crack of length   , the stress intensity factor can be rewritten in non-dimensional form, 

dividing all terms by  √  , obtaining 

      (  ∑      

 

   

)                                                                  

1.3.3.2 Displacement extrapolation method 

The displacement extrapolation method was developed in order to obtain crack tip singular and 

stress intensity factors using only nodal displacements of elements around the crack [13]. The near 

crack tip displacement field may be expressed as a series in function of the stress intensity factors, 

distance to the crack tip and the angle with the propagation directions. For     (along the crack 

line) and using the first term of this series, the displacements are given by 

   
   

  
√

 

  
      

   
  

  
√

 

  
                                                                      

   
     

 
√

 

  
           

where        in plane stress and               in plane strain. From these equations, a 

relationship between displacements and the apparent stress intensity factor    is obtained. Using a 

linear extrapolation to    , the stress intensity factor at the crack tip can be estimated with high 

accuracy. This technique can be more accurate using the quarter node point or collapsed elements, 

when finite elements are used. Furthermore, for these situations modifications are required in the 

equations in [14]. 

1.3.3.3 Force method 
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Fig. 1.5 Definition of the distance    for a generic grid. 

The force method is an alternative to the displacement method, using nodal reactions obtained in a 

finite element model which proposed by Raju and Newman in 1977. A recent publication by Mo-

rais[15] applying this method to isotropic center-cracked infinite plates and orthotropic beam spec-

imens showed good results. 

Considering an orthotropic body subjected to mixed mode loading (Mode I and Mode II) under 

plane stress or plane strain conditions, the crack is assumed to be oriented along one of the material 

symmetry axis. Therefore, stresses along the x-axis and in the vicinity of the crack tip are 

    
   

√   
 

   
  

√   
                                                                           

The total forces over the          ligament can be expressed as 

    ∫     
  

 

   √
   

 
     ∫      

  

 

    √
   

 
                               

where   is the plate’s thickness, and their values can be evaluated from nodal forces in FE models. 

Moreover, as in the displacement extrapolation method, the linear relation between   ,    and √   

allows a similar stress intensity evaluation procedure based on    and     versus    plots. It is worth 

noting that eq. (1.51) demand finite element meshes that contain element faces along the crack 

    plane (see Fig. 1.5). Nevertheless, more general meshes can also be used with appropriate 

force direction corrections [16]. It is also convenient that the element length is kept constant in the 

vicinity of the crack tip. So far the stress intensity factor has been calculated in the following exam-

ples by using an extrapolation technique [15]. 

It is worth notice that definition of    and nodal forces need to be considered. In fact    is taken in 

the middle of the positions of the last grid point of the sub-domain element whose force will be con-
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sidered and the next grid point. As far as the solution which concern a displacement field is ob-

tained from the static analysis and the internal stresses are derived from the plate displacement, the 

stress intensity factor estimation can be done as follows 

  
  √

 

   
∑    

 

   

       
  √

 

   
∑    

 

   

                                                 

and   ,     are subsequently calculated by extrapolating to     , the linear approximation to   
  

versus    and    
  versus    plots, respectively. One advantage over the displacement extrapolation 

method is obvious: there is no need to know the frequently complicated stress intensity factors - 

displacements relations. Secondly, force summations which take over a properly chosen   -

distances are likely to be more accurate than point measurements of displacement jumps. 

1.3.3.4 Singularity subtraction technique 

The Singularity Subtraction Technique (SST) uses a singular solution of the stress field in order to 

calculate the stress intensity factor. From Williams’ series expansion, giving the stress field, and the 

equations from statics, stress tensor components in any location close to the crack tip are known, 

and may be used for calculating stresses in any direction. If a point   close to the crack tip where 

the stress components are known is selected, the stress    calculated in  , at a distance   from the 

crack tip, is related with the new    and     components that are obtained using the following equa-

tions 

     √           √                                                        

where for the stress intensity factor determination the value of   is independent from   and it is cal-

ibrated from known stress intensity factor solutions. 

1.3.3.5 J-integral 

One of the most accurate methods consists in calculating strain energy release rates and using their 

relations with stress intensity factors, which are quite simple for isotropic materials.  

The J-integral is a contour integral characterizing the strain energy release rate for an elastic non-

linear material. The stress field is related to the strain energy density as 

    
  

    
                                                                                

where   is the strain energy. From the definition of potential energy along a contour, work theorem 

and the previous equation, Rice [17] defined an integral independent of integration contour   

around the crack tip as 
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  ∫ (     
  

  
  )

 

                                                              

where   is strain energy density per unit volume,   is the traction vector     ,   is the displace-

ment vector and   is the direction perpendicular to the crack line. For linear or non-linear elastic 

materials, the strain energy release rate is equal to the strain energy release rate along a contour at 

crack tip vicinity      ; this parameter is related to the stress intensity factor as        in 

plane stress or               in plane strain. 

1.3.3.6 Virtual crack closure technique 

 

Fig.1.6. Modified virtual crack closure technique 

The Virtual Crack Closure Technique (VCCT) is based on energy release rate when the crack grows 

with an infinitesimal increment. It is based on the calculation of the strain energy release rate, using 

the energy variation when an extension of crack length is imposed 

  
  

  
 

        

  
                                                                    

This technique was proposed by Rybicki and Kanninen in 1977 [18], however it requires two analy-

sis in order to calculate the strain energy release rate for a specific crack length. Some other reviews 

of VCCT can be found in literature [19, 20]. A modified version is proposed where only one model 

is needed to calculate the energy release rate which is based on the same assumptions as VCCT in 

two steps, but in addition it is assumed that the conditions at the crack tip are significantly altered 

when the crack extends by an increment   , from a crack length      to a length      . This 

implies that the displacements of a region close to the crack tip, when the tip is at specific node  , 

are approximately the same as the displacements at the same location when the tip is at the previous 

node, at which the displacements are computed. 

The energy variation    necessary to close the crack along a distance    is 
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Where    and    are the nodal forces at point  ,    and    are the node displacements at the node 

beside  . Therefore, the information required for the calculation of the energy variation is obtained 

from a single numerical analysis. After obtaining the energy variation, the energy release rate is cal-

culated as 

  
  

  
 

  

    
                                                                          

where    is the surface area created by a crack propagation of   ; in the case of plates with a 

thickness  , this area is     . The calculation of strain energy release rates for each mode is made 

using the displacements and nodal forces corresponding to the strain energy of that mode. Thus, for 

the case of Fig. 1.6, the energy release rate is  
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Chapter 2  

Calculation of stress intensity factors 

2.1 Introduction 

There is an important class of crack problems, involving surface damage in the form of part-through 

cracks in round bars or beams, where a three dimensional analysis becomes necessary. Valiente [1] 

numerically obtained two solutions by the finite element method, firstly, on the basis of the compu-

tation of the sample compliance and the energy release rate on the basis of the former, and second-

ly, using the stiffness derivative technique on the basis of the virtual crack extension to calculate the 

energy release rate. Levan, Royer and Couroneau[2, 3] calculated the SIFs in round bars with trans-

verse circular cracks using the boundary integral equation method. Daoud and Cartwright [4, 5] 

computed SIFs in a circular bar with a straight-fronted crack under tension and bending using finite 

element numerical procedure. Ng and Fenner [6] built a three-dimensional finite element model 

with both straight and circular-arc crack fronts in an edge cracked circular bar to compute SIFs in 

tension and bending. Shin and Cai [7] applied experimental backtracking and finite element method 

on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending. 

Carpinteri [8] computed the dimensionless SIFs for straight-front and semi-elliptical cracks using 

the finite element method and 3D isoperimetric elements of 20 nodes. Si [9] presented normalized 

stress intensity factors as a function of crack depth for round bars under tension and bending based 

on reviews. Naik and Maiti [10] presented the formulation for analyzing the triply coupled free vi-

bration of beams based on compliance approach in the open edge crack in an arbitrary angular ori-

entation. Some reviews of the stress intensity factor solutions for surface cracks in round bars sub-

jected to tension loading are introduced in Ref. [11, 12]. Some of these modeling techniques have 

already been overviewed in this introduction. Because of the complexities of the problems, exact 

solutions for edge cracks in round bars under tension and bending are obtained. For engineering es-

timations of the strength of cracked bodies, the use of procedures involving a smaller amount of 

computational works can be suitable, even if a lower accuracy is involved. 

In this chapter, two simple engineering methods for a fast and close approximation of stress intensi-

ty factors of cracked or notched beams are presented. The first simple and convenient method pro-

posed by Kienzler and Herrmann [13] is to estimate the stress intensity factors of circular section 

beams with notched crack. This method is based on an elementary beam theory assuming that the 
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strain energy release rate   for crack extension is equal to that for crack widening so that the well-

known Irwin’s     relation can be used to determine the stress intensity factors. Bazant [14] sug-

gested that this hypothesis was approximately valid within a correction factor that can be deter-

mined only through optimum fiting of the exact solution as he claimed. Gao and Herrmann [15] 

showed, by contrast, that this correction factor could be obtained through simple asymptotic match-

ing with standard limiting crack solution. Ricci and Viola [16] presented an extension of this meth-

od to T-section cracked beam and addressed the coupled bending-torsion vibration of cracked T-

beams within the context of the dynamic stiffness matrix method of analyzing structures.  

Another method, named section method, proposed by Parton and Morozov [17], and based on equi-

librium condition for internal forces evaluated in the cross-section passing through the crack tip, t 

the stress singularity at the tip of an elastic crack into account. This method has been modified and 

applied by Nobile [18, 19]. An extension of this method has been presented by Ricci and Viola [16] 

to estimate the stress intensity factors of cracked T-beams. 

2.2 Kienzler-Herrmann’s method  

A remarkably simple method for close approximation of    in notched beams was discovered by 

Kienzler and Herrmann (1986, [13]). The method was derived from a certain unproven hypothesis 

(postulate) regarding the energy release when the thickness of the fracture band was increased. A 

different derivation of this method (Bazant, 1988, [14]) is showed, that is simpler and at the same 

time indicating the hypothesis used by Herrmann et al. might not be exact but merely a good ap-

proximation. Also, Herrmann’s method relies on more sophisticated concepts (material forces) that 

seem more complicated than necessary to obtain the results. 

 

Fig.2.1 (a) Line crack advance; (b) crack band widening; (c, d) corresponding stress relief zones; (e) notched beam un-

der constant bending moment 
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Let us estimate the energy release rate   by considering the expansion of the stress relief zone at 

crack extension    and employing the simplified “stress diffusion lines” of empirical slope   (k), 

see Figure 2.1 a, c. Considering now that instead of crack extension    the crack is widened into a 

crack band of width   , see Figure 2.1 b, d. This widens the stress relief zone from area 1231 to ar-

ea 45784 as shown by arrows in Figure 2.1 d. Since the triangular area 56725 in Figure 2.1 c is se-

cond-order small if    was small, the increments of the stress relief zones 123876541 in Figure 

2.1c and d are identical provided that 
  

 
    . Therefore (at fixed boundary displacements, for 

which    ), 

    
  

  
   

  

  
                                                                              

(Bazant, 1990 [14]),   thickness of body. The case     coincides with the hypothesis of 

Kienzler and Herrmann in 1986 [13]. However, there seems no reason to assume that    , and 

numerical results in Bazant, show that more accurate results can be obtained if the empirical con-

stant    is allowed to differ from 1. 

The advantage of eq. (2.1) is that it can be used even in problems where the initial stress field be-

fore the appearance of the crack is non-uniform. The reason is that, approximately, the widening of 

the crack into a band has merely the effect of shifting the stress field as a rigid body along with the 

shift of the triangular stress relief zones as indicated by arrows in Fig. 2.1d, while the strain energy 

in the band can be easily estimated. 

Following Kienzler and Herrmann, their method is best illustrated by considering a beam with a 

single edge crack subjected to a bending moment   in Fig. 2.1e. Assume that the beam has bending 

stiffness    at the uncracked cross-section and     at the cracked cross-section. Here,   and    de-

note the moments of inertia of uncracked and cracked section and   is the Young’s modulus of the 

material. Then from the elementary beam theory of bending, the widening of the crack by    is ef-

fective to reduce the bending stiffness from    to     along the length   , and the corresponding 

change in energy of the beam is  

   
  

 
(
 

  
 

 

   
)                                                                 

where   is the potential energy available for crack growth. As     , the incremental strain ener-

gy gives  
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)                                                                     
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The argument leading to eq. (2.3) may be extended to beams under axial force, torque and shearing 

force. 

For bars and beams under tensile load  , the incremental strain energy as following is analogous to 

eq. (2.3), 
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)                                                                      

where    denotes the tension stiffness,  ,    being the cross-section area of uncracked and cracked 

beam portions, respectively. 

For beams subject to a torque  , it also can be shown that 
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)                                                                       

where    denotes the torsion rigidity with            the shear modulus, and  ,    being the 

polar moments of inertia of the uncracked and cracked portions, respectively. 

According to the expressions by [15] for the loading conditions presented above, for beams subject-

ed to a shear force  , the following equation can be obtained 
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)                                                                        

where   is the shearing factor. 

The strain energy release rate   is the energy dissipated during fracture per unit of newly created 

fracture surface area. 

   
  

  
                                                                                       

According to the well-known Irwin’s G-K relation 

  
 

  
   

     
   

   

 
     

                                                                

where             is for plane strain,      is for plane stress,   is Young’s modulus, and   

is Poisson’s coefficient. 

Therefore, the energy release rate due to crack extension is as following 

  

  
    

  

  
√                                                                             

http://en.wikipedia.org/wiki/Energy
http://en.wikipedia.org/wiki/Dissipation
http://en.wikipedia.org/wiki/Fracture
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where          is the dimensionless crack depth (crack ratio),   is the crack depth,   is the ra-

dius of the circular section, and   is the stress intensity factor. 

The equations presented above allow one to calculate the stress intensity factors through eq. (2.1) 

once the factor   (slope of the stress diffusion lines) is determined. The stress intensity factors may 

be further evaluated through the following equations 
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where         . In most of cases discussed in the literature, the slope factor   is     . In 

plane stress, set     , one can obtain the following dimensionless formulas of stress intensity fac-

tors. 

2.2.1 Beams under tension   

An axial tensile load   applied to a single-edge-notch circular section leads to a combined tension 

and bending moment, since the neutral axial of the ligament is shifted by   as following 

  
             

   
                                                                              

 

Fig. 2.2. Cracked beam and cracked circular cross-section. 

which gives rise to a bending moment 
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From eqs (2.10) and (2.11), when the circular section is subject to the tensile force  , the following 

relationship for the stress intensity factor     can be obtained 
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where the bending moment    in eq. (16) is derived from eq. (15). Substituting the expressions of 

 ,   ,   and    and setting       in eq. (16), one can obtain 

    
 

    
                                                                                            

where       is the geometric function of crack ratio represented in the following 
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with 
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  √                                                                                                               

2.2.2. Beams under bending moment    

For the circular section beams subjected to the bending moment  , the formula for the stress inten-

sity factors     is given by eq. (2.11). Substituting the expressions of  ,    and setting      , one 

can obtain the following expression 
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where       is the geometric function of crack ratio expressed as 
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with   ,   ,   are already defined in eq. (2.19). 

2.2.3. Beams under torque    
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When a torque   is applied to the cracked circular section beam, substituting the expressions of  ,    

and setting      in eq. (2.13), one can obtain the following expression for the stress intensity fac-

tor  
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where        is the geometric function of dimensionless crack depth expressed as 
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with   ,   are already defined in eq. (2.19). 

2.2.4. Beams under shear force   

For the circular section beam under shear force  , the formula of the stress intensity factors      is 

given by eq. (2.12), setting shearing factor      ,     , Poisson’s coefficient       and sub-

stituting the expressions of the cross-section area of uncracked and cracked beam portion   and   . 

One can obtain the following expression 
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where       is the geometric function of dimensionless crack depth is represented by eq. (2.25) 
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with      are already defined in eq. (2.19). 

2.3 Section method 

In this section we shall show the possibility of applying the method of sections proposed by Parton 

and Morozov [14], a method well known in structural mechanics, to calculate the stress intensity 

factor. Considering a plane crack problem, we isolate a part of the body by an imaginary section 

(which may be a broken one) so that this section passes through the crack tip. We further write 

down the conditions for the equilibrium of external and internal forces exerted on the remaining 

part of the body. In setting up these conditions we take into account the asymptotic expressions for 

stress eq. (1.19). 
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The additional force arising at the crack tip from an increase in stresses is equal to 

∫     
 

 

                                                                                   

where   can be determined from the condition that    at     is equal to the nominal stress. 

Thus, the equilibrium condition expresses the fact that the force not transmitted through the crack 

line is compensated for by an additional force due to the stress concentration at the crack tip. Below 

is given example of the calculation of the intensity factor using the method of sections. 

For example, the Griffith problem: an infinite plate with a single crack of length    is extended by a 

uniformly distributed stress   perpendicular to the crack line. The force not transmitted through the 

crack is    , and the increased stress at the ends of the crack produces an additional force equal to 

 ∫     
 

 
. The value of   is found from the condition 

                                                                                 

i.e., 

 

√   
                                                                               

from which 

  
  

    
                                                                            

The equilibrium condition becomes 

     ∫       
 

 

                                                               

Substituting the value 

   
 

√   
                                                                          

we find the stress intensity factor 

    √                                                                             

which coincides with its exact value. 

The section method was modified by Nobile [7, 8] and applied to T-beams and curved beams. Con-

sider a straight beam of constant circular-cross-section, the z-axis coincides with the geometrical 

axis while the x- and y-axis coincide with the principal axes of the cross-section. Loading involving 
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a couple bending moment , tensile force , shearing force   are considered. Assume that a 

transverse crack of depth  would not alter the stress resultant on the cross-section passing through 

the crack tip, the singular stress distribution at the crack tip takes the form 

   
  

  

√   
                                                                              

with the conditions that    
  acts at a distance  from the crack tip. The nominal stress is evalu-

ated by the well-known stress distribution of the reduced solid cross-section passing through the 

crack tip (ligament). The stress distribution does not take into account the presence of the crack. 

Then, the equivalent condition between singular stress and nominal stress resultant at the crack tip 

determines    approximately. Note that the approximation is better for b < a such that the elastic 

singular stresses are small as compared to geometric dimension of beam or crack length. 

2.3.1. Pure bending  

For pure bending, the normal stress acting on the reduced cross-section is evaluated by the well-

known stress distribution of the reduced solid passing through the crack tip is given by 

   
 

  
                                                                                          

where   is the bending moment and    is the moment of inertia of the crack section.  

The force not transmitted through the crack section is equal to 

                    (2.35) 

The singular stress component is related to the Model I stress intensity factor as 

  
  

   
 

√   
                                                                                        

According to Fig. 2.3, the stress resultant arising at the crack tip is equal to  

                                             (2.37) 

where  is the number of divided strips. 
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                                                   (2.38) 

 

Fig. 2.3 The geometry of calculating stress resultant arising at the crack tip 

The upper limit of integration is determined from the condition that   
  is equal to the normal stress 

at    , which can be expressed as 

   
 

√   
 

 

  
                                                                     

Substituting eq. (2.39) to eq. (2.37), and following the hypothesis that     , the distance   can be 

solved by numerically method. Re-substituting   into eq. (2.39), the approximate stress intensity 

factor for mode I can be obtained as following 

   
  

 

    
  

                                                                               

where   
     is the dimensionless geometric function of crack ratio. 

2.3.2. Pure tension 

Considering pure tension, as described in the foregoing section, a central axial tensile load applied 

to a transverse straight front crack beam gives rise to combined tension and bending since the neu-

tral axis of the reduced crack section passing through the crack is shifted by an amount   as ex-

pressed in eq. (2.14). 

The normal stress on this cross-section can be expressed as 

   
 

  
 

  

  
                                                                                        

The force not transmitted through the crack section is as following 

          (2.42) 
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The singular stress component   
  and the stress resultant arising at the crack tip are the same to 

bending moment. The singular stress component is related to the Mode I stress intensity factors as 

in eq. (2.43).  

   
 

√   
 

 

  
 

  

  
                                                                   

The procedure for determining the approximate stress intensity factor is similar to that used for pure 

bending. The approximate stress intensity factor for mode I of pure tension can be expressed as 

   
  

 

    
  

                                                                               

where   
     is the geometric function of dimensionless crack depth. 

2.3.3. Shear force 

When a shearing force    is applied to cracked beam, the average shearing stress acting on the lig-

ament cross section passing through the crack tip takes the form 

    
   

 

   
                                                                                      

where   is the shearing force,   
  is the first moment of area of the part of the reduced cross section 

bounded by  .    is the moment of inertia of ligament cross section.   is the width of the ligament 

cross section at the current calculation stress point. The shearing stress can be written as 

    
   

 

   √     
                                                                            

where, 

                              (2.47) 

The normal stress is evaluated by the well-known stress distribution of the reduced solid circular 

section passing through the crack tip (ligament). The force of the area before crack tip equals to 

                                     (2.48) 

The singular stress component relating to Mode II stress intensity factor can be written as 
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The stress resultant arising at the crack tip is calculated  

   ∑      
 √

  

 
 (√

   

 
 √

 

 
)

   

   

     

   ∑     
 √

  

 
 (√

   

 
 √

 

 
)

   

   

     

                                             

where  ,    are defined in eq. (2.38). 

The upper limit of integration is determined from the condition that    
  is equal to the normal stress 

at    , and it can be expressed as 

    
 

√   
 

   
 

   √           
                                                               

where  

                       (2.52) 

Substituting eq. (2.51) to eq. (2.52), and following the hypothesis that     , the distance   can be 

solved. Substituting   into eq. (2.51), the approximate stress intensity factor can be obtained as fol-

lowing 

    
  

 

    
  

                                                                               

where   
     is the geometric function of crack ratio. 

The torsion problem of circular bars with a transverse crack is rather complicated. It can be ob-

tained by harmonic function continuation technique. It will be investigated in the near future.  

2.4 Numerical results and comparisons 

The foregoing sections, derived for the geometric function are illustrated for a straight fronted edge 

cracked circular section beam subjected to bending moment, normal stress, shear force and torque. 

It is also considered here for the comparison and the agreement between the present results and 

those previous appear to be satisfactory.  

In reference [1], Valiente proposed an experimental formula of Mode I stress intensity factor of ten-

sion as 
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                            (2.54) 

Ng [6] listed the stress intensity factors of a transverse cracked circular section beam subjected to 

tension and bending moment. The details of the results are listed in Table 1. 

Table.1. Results for the variation of the stress intensity factor along a straight crack front---tension and bending 

a/D 0.1 0.159 0.217 0.257 0.297 0.353 0.407 0.453 0.500 0.547 0.594 

Tension 

Bending 

0.98 

0.87 

1.07 

0.84 

1.17 

0.85 

1.24 

0.87 

1.35 

0.89 

1.57 

0.93 

1.84 

1.00 

2.14 

1.10 

2.54 

1.23 

3.10 

1.40 

3.77 

1.59 

For the straight-edged crack model, James and Mills [12] have concluded literature results and pre-

sented the dimensionless stress intensity factor of Mode I. In the following it is showed that  the 

stress intensity factors versus crack depth (           ) for a straight-edged crack subjected to 

axial loading and bending by using the polynomial approximation, are as follows 

                              (2.55) 

                              (2.56) 

And they claimed that the solutions are only approximate and should be treated as an engineering 

estimate. They are based on other solutions, none of which are exact or rigorous, and engineering 

judgment is employed to synthesize them into a single closed form equation. 

Daoud and Cartwright et al [4, 5] have also formulated the dimensionless stress intensity factors of 

the shaft under tension and bending moment from finite element results and shown as following re-

spectively 

                         (2.57) 

                  (2.58) 

Shih and Chen [7] evaluated stress intensity factors by collapsed singular element with detailed 

mesh on crack front and appropriating adjacent area. The dimensionless formulas of stress intensity 

factors for bars under tension and bending cases as following 

                                            (2.59) 

                                         (2.60) 

432 8446.367849.3435.196364.34408.1/)(  aK
NI

432 911.87481.78421.26771.1926.0/)(  aK
NI

432 002.6406.13336.3035.063.0/)(  aK mIM

7.006.0,23.5739.5387.2459.311.1/)( 432   aK nI N

625.00625.0,41.2859.3286.1664.304.1/)( 432   aK mIM

32 39.7892.547.1364.0/)(  aK
NI

32 55.26266.1913.517.0/)(  aK mIM
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Fig.2.4. Geometric functions for circular section of beam under tension 

 

Fig.2.5. Geometric functions for circular section of beam under bending moment 

From the Fig. 2.4, the great agreement between present works and the literature results can be obvi-

ously observed, except the result by Shih and Chen. Moreover, the geometric functions addressed in 

this paper are adequate and more broadly. Fig. 2.5 plots the geometric functions against non-

dimension crack depth for straight-fronted cracks under bending moment, this plot is that of the 

maximum differences between all the solutions and thus the trend is the same. In the case of Shih 

and Chen, the trend is a little different.  
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Fig.2.6. Geometric Function for circular section of a beam under a shear force 

 

Fig. 2.7. Geometric Function for circular section of a beam under a torque 

Figs. 2.6 and 2.7 show the comparisons of shear force and torque between the present researches 

and Tada’s well-known results [20]. Hereby, the stress intensity factors of Tada are at the crack cen-

tre of straight-fronted cracks (the deepest crack point). The geometric functions given in the present 

investigation in Fig. 2.6 are good agreement with each other and that in the literature. Result of sec-

tion method in Fig.2.6 of this paper shows an increase of stress intensity in the vicinity of the crack 

tip when the crack depth trends to zero. Fig. 2.7 shows that the agreement is good between the re-

sults for values of dimensionless crack depth from 0 to 0.7. However, the difference is obviously af-

ter the dimensionless crack depth exceeds 0.7, and the deeper the crack, the larger the difference. 

The present result is much larger than Tada’s results.  

2.5 Stress intensity factors for three-dimensional problems 
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The problem involving surface damage in the form of part-through cracks in round bars or beams, 

as solved in the last sections, is necessary to use a three dimensional analysis. Section method is ap-

plied again to the three dimensional analysis. The method proposed by Parton and Morozov [17], 

states that the additional force arising at the crack tip from an increase in stresses is equal to 

∫     
 

 
, where   can be determined from the condition that    at     is equal to the nominal 

stress. That is the distance   is the length of DK (or CJ), the force in the area of ABDCA equals to 

the force in the area of CFIKJC in Fig. 2.8 (a).  

Nobile [18, 19] modified the section method that the additional stress due to crack, in the area of 

CFIGC in Fig. 2.8 (a), is equal to the force in the area of CEIGC. The distance b can be determined 

when singular stress equals to normal stress after neutral axis shifted, in the Fig. 2.8 (a) is CG. But 

from Fig.2.8 (a), it’s clearly that, the force in area of CEIGC is less than that in area of CFIGC. 

Therefore, the modified suppose in [18, 19] is not accurate.  

              
(a)                                                                    (b) 

 Fig. 2.8 Section method 

In this work, based on the original section method of Parton and Morozov and the modified method 

by Nobile, we improve the section method again. The additional force due to the stress concentra-

tion at the crack tip, in the area of C’D’E’F’I’H’G’C’ in Fig. 2.8(b) equals to the force not transmit-

ted the crack line, in the area of A’B’D’H’G’C’A’. The distance b can be determined from the con-

dition that   |       |     . in Fig. 2.8(b) is at point I’, where  ̅ is the distance from the neutral 

axis of the reduced cross section to the crack tip. 

As a verified example, considering a rectangular section beam with an straight, opened and through 

transverse crack subjected to a bending moment M, the section is unit thickness and the height is h 

with crack depth a’,  the schematic diagram can be seen in Fig. 2.8(b).  

The distribution of normal stresses on the integrated cross section is 
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The distribution of normal stresses on the reduced cross section passing through the crack tip is 

   
 

  
                                                                                    

where     is the moment of inertia for the reduced part of the cross section,        is the longi-

tudinal axis in the new coordinate, and       is the shift of the neutral center. 

The singular stress component relating to the mode I stress intensity factor is 

   
  

√   
                                                                              

The equation of equilibrium is  

∫  
   

 
 
     

   ∫   

 

 

                                                                  

The value of b is found from the equality  

  

√   
 

 

  
 ̅                                                                               

After some necessary algebraically calculation, the stress intensity factor for mode I can be obtained 

as following 

   
  

  
 
 

                                                                                  

where t is thickness of rectangular section,        is crack depth ratio,      
√   

      
, with 

  
 

 
   

 

      
 √

 

      
 

    

      
 

 

 
   for           

  
 

 
   

 

      
 √

 

      
 

    

      
 

 

 
  for others                                     (2.67) 

The geometric function       can be compared with the expressions given by Nobile [18, 19], Tada 

[21] and Brown [22].  

Brown [22] examined the geometric function using least square fitting method. The formula shows 

the errors ratio less than 0.2% for      .  

     √                                                                  

Tada [21] investigated the geometric function of this situation for any crack depth ratio  , the result 

shows better than 0.5% compared with experimental result. The formula is in Eq. (2.69). 
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     √    
  

 

                 
  
   

   
  
 

                                             

Nobile [18, 19] proposed a formula by modified section method as following 

     
     

√      
                                                                     

For easy comparison, the four different results are graphically showed in Fig. 2.9. The comparison 

in Fig. 2.9 shows the results of Brown and Tada are in accordance very well. The presented result is 

better than that of Nobile, especially for       and agreement very well with the result of Brown 

and Tada.  

 

Fig. 2.9 Geometric function for rectangular section beam 

As the result presented here is in well agreement with the well-known calculation in the literature.  

It is extended into a circular section as follows. Due to the symmetry (for bending and shear) or 

central symmetry (for torque), only the right half section is considered in the next presentation.   

 

Fig. 2.10 Cracked circular section 
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The cracked circular section is considered to be divided into strips of width   that are independence 

from each other, i.e. there are no tractions between two successive strips, see Fig. 2.10. This is not 

true near the ends of the crack tip. In order to apply the method proposed in previews, every strip is 

regarded as a rectangular section.    

For a given radius   and deepest crack depth  , the height   and the crack depth    of each strip  

depending on the location point  , can be expressed as follows 

   √     ,      
 

 
                                                        

2.5.1 Beams subjected to bending moment 

The distribution of normal stresses on the integrated cross section is 

  
 

 
                                                                                   

where    is the moment of inertia for the uncracked circular section. 

The distribution of normal stresses on the reduced cross section passing through the crack tip is 

   
 

  
                                                                                   

where     is the moment of inertia for the reduced part of the circular cross section. 

The singular stress component is related to the mode I stress intensity factor is 

   
  

√   
                                                                                

The equation of equilibrium is  

∫  
   

 
 
    

   ∫   

 

 

                                                                     

The value of   is found from the equilibrium   

  

√   
 

 

  
  |    ̅                                                                    

After some basic algebra calculation, the stress intensity factor can be obtained as following 

   
 

    
                                                                                 

where      is the geometric function of crack depth ratio  , can be expressed as following 
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    √   

  
(
 

 
    )                                                            

with       is crack depth ratio. 

 

Fig. 2.11 Geometric function of bending 

The geometric function of Eq. (2.78) is graphically compared with that in literature in the Fig. 2.11. 

It has been pointed out that the square root singularity does not in general exist at the surface point 

[22]. The usual meaning of stress intensity factor breaks down here. A plot of the geometric func-

tion against the place ratio shows typically that the results at the surface point deviate markedly 

from the trends indicated by the interior points. The stress intensity factors at the surface are de-

duced by extrapolating the trends exhibited by the interior points using a quadratic curve fitting [7].  

2.5.2 Beams subjected to shear force 

Consider the circular cross section in Fig. 2.12. We shall now argue that the direction of the trans-

verse shear stress depends (in general) on the lateral location of interest at distance (R-a) from the 

neutral axis. We can no longer assume that all of the shear stresses act parallel to the y axis. Thus 

the direction of shear stress changes along (R-a). However, it can be easily demonstrated that at a 

point on the boundary of the cross-section, the shear stress   acts tangent to the boundary. This con-

clusion follows from the fact that the outer surface of the beam is free of stress, and therefore the 

shear stress acting on the cross-section can have no component in the radial direction (because shear 

stresses acting on perpendicular planes must be equal in magnitude). This complication can invali-

date the engineering mechanics expression for estimating the magnitude of the transverse shear 

stress. Accordingly, we restrict our analyses to situation where it is clear that the shear stress direc-
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tion is parallel where     for members with circular cross section, and the same with that rectan-

gular cross section. 

 

Fig. 2.12 Transverse shear stress direction and distribution in circular section 

The stress due to shear force can be divided into two components. The vertical shear stress compo-

nent is a constant along of the crack front, as the following  

    
       

    
 

         

    
                                                         

where      
√      

 
,    √     . 

At the neutral axis,    , the vertical shear stress     is maximum and equals to 

         
  

    
                                                                             

The vertical shear stress contributes to mode II. As described in [19], assuming that the average 

shearing stress acting on the reduced cross-section passing through the crack tip may be approxi-

mated with the average shearing stress acting on un-cracked cross section, for the shear condition 

the method of computing stress intensity factor is not different from that of Parton and Morozov 

[17]. 

The singular stress due to crack relates to Mode II SIF as follows 

      
     

√   
                                                                                

The equation of equilibrium is  

∫    

   

 
 
  

   ∫      

 

 

                                                                   

The upset integral limitation   is determined by the condition that 
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     |       |  
 
 
  

                                                                     

i.e., 

      √   
  (    

 
     )

    
                                                         

Substituting Eq. (2.84) into Eq. (2.82) gives the value of  .  

Inserting   into Eq. (2.84) it could be obtained  

      
 

    
                                                                                

where the geometric function is  

     √   

 (   (
 
   )

 

)

      
                                                             

 

Fig. 2.13 Geometric function for     due to shear 

Fig. 2.13 shows the comparison between the presented geometric function and the results in [20]. 

The shear coefficient is 9/10 in Tada’s formulae [20].  

As shown in Fig. 2.12, the shear stress has two components due to the shear stress directs to the in-

tersect of the two tangential lines of the surface points. One is the vertical shear stress     which is 

contributes to Mode II, as described in Eq. (2.81). The other one is parallel shear stress     which is 

contributes to Mode III as follows (KIII due to shear) 
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The singular stress due to crack relates to Mode III SIF as follows 

      
      

√   
                                                                                  

The equation of equilibrium is  

∫    

   

 
 
  

   ∫      

 

 

                                                                   

The upset integral limitation   is determined by the condition that 

     |       |  
 
 
  

                                                                        

i.e., 

       
    

 
    

    
√                                                                        

Substituting Eq. (2.91) into Eq. (2.90) gives the value of  .  

  
      

       
                                                                                

Inserting   into Eq. (2.91), one can obtain  

       
 

    
                                                                               

where the geometric function is  

     
   

 
    

      
√                                                                         

 

Fig. 2.14 Geometric function for      due to shear 
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2.5.3 Beams subjected to torque 

The direction of the normal stresses on the integrated cross section due to torque is vertical to radius 

in circular section. The torsional shear stress component which parallel to the crack tip is related to 

Mode III, as follows 

     
 

 
      

 

 
                                                                          

where   is the polar moment of inertia for circular section.  

 

Fig. 2.15 Torsion stress direction and decomposition in circular section 

Assume that torque distribution in the reduced cross section is like that in integrated circular section 

except the neutral axis shifted a distance e from the coordinate original. Therefore, the distribution 

of normal stresses on the reduced cross section passing through the crack tip is 

       
 

  
                                                                                  

where     is the polar moment of inertia for the reduced part of the circular cross section. 

The singular stress component relating to the mode III stress intensity factor is 

       
      

√   
                                                                                  

The equation of equilibrium is  

      

√   
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    ̅ 
 
 
    

                                                                     

The value of b is found from the equality  
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∫     

   

 
 
    

   ∫       

 

 

                                                                    

According to Eq. (2.98) and Eq. (2.99), the upset value   can be obtained. Instituting   into Eq. 

(2.98), the Mode III stress intensity factor due to torque is as following 

       
 

    
                                                                            

where the geometric function      is in the Eq. (2.101). 

     √   
    

  
(
 

 
    )                                                            

The comparison of the geometric function with Tada’s result is graphically showed in Fig. 2.16.   

 

Fig. 2.16 Geometric function for      due to torque 

The vertical shear stress due to torque is related to Mode II, equals to  

     
 

 
      

 

 
                                                                     

This value is independent on the crack depth. In the middle of crack tip    , it has minimum val-

ue       , the maximum value is at           √     ,          
 

 
√     . 

The same as that described in the foregoing section, the stress of beam under torque has two con-

cepts. The concept relating to Mode II can be expressed as 
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and its singular form is  

       
     

√   
                                                                             

According to the definition of the stress intensity factor 
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 √                                                                                

The upset value   can be determined by the assumption of section method, as following 

∫     

   

 
 
    

   ∫       

 

 

                                                                  

According to Eq. (2.106) and Eq. (2.107), the value   is obtained as 

  
   

     
                                                                              

Substituting Eq. (2.108) to Eq. (2.106), the Mode II stress intensity factor of torque is  

      
 

    
                                                                           

The geometric function      can be expressed as following 

     
    

  
 √                                                                             

 

Fig. 2.17 Geometric function for     due to torque 
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2.6 Three-dimension numerical calculation of mixed mode stress intensity factors  

In order to consider the general loading states, a structure with two perpendicular circular section 

beams subjected a vertical concentration load   at the end of the structure is considered here. The 

lengths of beams are   and    , respectively. The crack is located in the middle of the beam whose 

length is  . The radius of the section is   and the depth of the deepest point location of the crack is 

 . From the structure mechanics, it is easily to know that, on the crack section, the shearing force is 

   ; the bending       ; the torque       . It’s a fracture mechanics problem of mixed-

mode and three-dimensional. 

 

Fig. 2.18 The structure of beams 

In generally, the totally stress intensity factor of each mode can be obtained by algebraically sum-

ming all the components of this mode. According to section 2.5, the geometric functions of the to-

tally stress intensity factors about all the three Modes appear in Fig. 2.18 are calculated as following 

   
 

    
                                                                                

                
 

    
                                                                  

                   
 

    
                                                               

The geometric function of the totally SIF for opening mode is the same as expressed in the section 

2.5 due to only one component contributes to Mode I. Combining the second and the third stress in-

tensity factors produced by shear and torque by algebraically summing, the geometric functions of 

all the stress intensity factors are compared with the results proposed in literature and obtained from 

ABAQUS using XFEM by an interaction integral method [23] in Figs. 2.19-2.21. For the ABAQUS 

result of ‘XFEM (structure)’ means that the model is exactly the same with that the first figure 

showed in Fig. 2.18, only a concentrated force   is applied. The model of ‘XFEM (Single beam)’ is 

like the second figure as showed in Fig. 2.18, a beam with length   and circular section with radius 
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 , a crack with depth   locates in the middle of the beam. For different modes, different forces are 

applied. 

 

(a) 

 

(b) 

 

(c) 

Fig. 2.19 Comparison of Mode I geometric function for different crack depth ratio (a)      , (b)      , (c)       
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(a) 

 

(b) 

 

(c) 

Fig. 2.20 Comparison of Mode II geometric function for different crack depth ratio (a)      , (b)      , (c)       
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(a) 

 

(b) 

 

(c) 

Fig. 2.21 Comparison of Mode III geometric function for different crack depth ratio (a)      , (b)      , (c) 
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Chapter 3  

Mixed mode cracking in transverse cracked shafts 

3.1 Introduction 

Many structural components are under developing and growing cracks during their service life. 

Brittle fracture is one of the major modes of failure in these cracked components and structures. 

Crack growth in brittle materials like ceramics, glasses, rocks, and some polymers often takes place 

very fast and arises serious consequences. Therefore, it is important to define an appropriate proce-

dure for predicting the onset of brittle fracture in cracked specimens. In many practical situations, 

cracked components are subjected to a combination of mode I and mode II loading---mixed mode. 

Under mixed mode loading conditions, fracture of cracked components and structures may grow 

along curvilinear paths and not necessarily along the direction of original crack. Furthermore, when 

an estimate of crack arrest is required, the direction of fracture initiation from existing cracks must 

be determined particularly under mixed mode loading. Therefore, the investigation of the fracture 

initiation angle and the fracture propagation path under mixed mode loading is an interesting and 

important subject for researchers. There are a number of theoretical models and various experi-

mental techniques to investigate mixed mode crack growth of materials. It will be reviewed in the 

following section. 

In this work, a review about fracture criteria of single mode as well as mixed mode is proposed in 

the beginning. Two popular and convenient fracture criteria named maximum tangential stress 

(MTS) criterion and minimum strain energy density factor (SEDF) criterion are studied in detail and 

compared for crack initial angle and critical load domain for mixed mode. The crack initiation and 

direction under mixed mode conditions are studied for a shaft with transverse crack using MTS-

criterion and SEDF-criterion. The crack extension direction is predicted by both of the criteria in 

terms of crack depth ratio and loading ratio. The crack orientation depends on the mixed of the 

modes. Mode I dominants in the crack grow process.  

A criterion proposed by Richard for three-dimension crack propagation is introduced and applied to 

transverse cracked shaft. The results are compared with that obtained by MTS-criterion and SEDF-

criterion as well as ABAQUS results for single mode and mixed mode.  

3.2 Fracture criteria 



University of Bologna   PhD Thesis 

52 

Various fracture criteria for crack subjected to mixed mode loading have been introduced for the 

determination of the propagation direction and the critical stress. Griffith [1] introduced a criterion 

to determine the conditions to initiate the propagation of a crack. The maximum energy release rate 

criterion (MERR) [2, 3] followed the Griffith condition and stated that crack growth followed the 

orientation of maximum energy release rate. Erdogan and Sih [4] developed the maximum tangen-

tial stress criterion (MTS) which was one of the first conditions predicted critical stress and crack 

growth orientation. MTS criterion stated that the crack growth would occur in the direction of the 

maximum tangential stress and would take place when the maximum tangential stress reached a 

critical value, which only contained the first Mode strength toughness. Due to the simply formula 

and easily calculation, MTS became one of the popular criteria in the fracture mechanics. Pal-

aniswamy and Knauss [5] introduced the G-criterion which dealt with a criterion of maximum ener-

gy release to determine both the initial crack propagation direction as well as the conditions of crack 

instability in terms of fracture stress , crack orientation angle , and crack length . Sih [6] 

proposed the minimum elastic strain energy density criterion (S-criterion) based directly on the total 

strain energy density, that was, the sum of its distortional and dilatational components. Hellen and 

Blackburn [7] presented J-criterion in an attempt to use path-independent line integrals to study the 

problem of crack growth under mixed Mode loading. Theocaris and Andrianopoulos [8] proposed 

the named T-criterion which stated that a crack started to propagate when the dilatational strain en-

ergy  at a point in the vicinity of its tip reached a critical value  and the curve of evaluation of 

 around crack tip the elastic-plastic boundary was used as it was obtained from the Mises yield 

condition. Papadopoulos [9-11] invented Det.-criterion which was based on the determinant of the 

stress tensor, and it was used to study crack extension angle and the critical stress of fracture under 

biaxial loading. The local symmetry conditions (LS) proposed by Gol’dstein and Salganik [12] in 

1974 required that crack propagation occured along with the path of vanishing .  

Many modifications on those criteria have been done by a lot of researchers. Both critical load val-

ue and crack path or surface growth have been predicted by different criteria in terms of elastic sin-

gular stress states and T-stress component. Ramulu and Kobayashi [13] extended SED criterion to 

dynamic mixed Mode crack propagation. Chen, Adams and Silva [14] proposed a more suitable 

failure criterion based on a specific strain energy criterion which had been used to Model the crack 

initiation and propagation in a single lap joint with a brittle adhesive and a ductile adhesive. Nobile 

et al. [15, 16] applied the strain energy density theory to determine crack initiation and direction in 

orthotropic solids, cracked T-beams and circumferentially cracked pipes. Bian and Kim [17] and 

Bian and Taheri [18] investigated two criteria based on the relative minimum plastic zone radius 

c 0 a

VT VcrT

VT

IIK
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(MPZR) and maximum ratio defined for prediction of fatigue crack initiation angles which could be 

applied to inclined surface crack specimens and through-crack specimens under mixed Mode load-

ing. Kidane et al. [19] evaluated the crack growth direction as a function of temperature, non-

homogeneity parameter and crack-tip velocity for functionally graded materials using both maxi-

mum tangential stress and minimum strain energy density criteria. Ayatollahi et al. [20], Maccagno 

and Knott [21] investigated the brittle fracture behavior of composites under mixed Mode I/II load-

ing where the experimental results were used to evaluate the minimum strain energy density (SED), 

maximum tangential stress (MTS) and maximum energy release rate ( ) criteria, with the first cri-

terion showing the best agreement. Fatigue crack propagation was investigated under non-

proportional mixed Mode loading by Plank and Kuhn [22], and the deviation angle was well pre-

dicted via the MTS criterion. The crack propagation problems in orthotropic and piezoelectric me-

dia were studied in [23-28]. A modified maximum tensile stress criterion had been proposed by Vi-

ola and Piva [29] and Piva and Viola [30] to predict the crack paths in sheets of brittle materials un-

der biaxial loading. The Modes of crack growth in mixed Mode conditions were reviewed for the 

plane and three-dimensional in reference [31]. Some other aspects relating to the present investiga-

tion can be found in [32-36]. 

3.2.1 Strain energy density factor criterion (SEDF) 

Within the framework of brittle fracture, the well-known strain energy density theory provides a 

more general treatment of fracture mechanics problems by virtue of its ability in describing the mul-

ti-scale feature of material damage and in dealing with mixed Mode crack propagation problem. 

The strain energy density factor theory is allowed to predicting unstable crack growth in mixed 

Mode. The main advantages of this criterion lie in its ease and simplicity, as well as its ability to 

handle various combined loading situations.  

From the linear theory of isotropic and homogeneous elasticity, the strain energy density faction is 

found to possess a singularity of the order     near the crack front and can be expressed in terms of 

three stress intensity factors            . 

  

  
 

 

 
                                                                               

where   is the strain energy, and   is the volume.  

The core of the S-criterion is the parameter of stain energy density factor  , which is a function of 

the stress intensity factors for linear elasticity, can be defined as 

       
 

        
      

                
       

                                   

G
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where     are auxiliary functions depending on the elastic properties of the material, modulus of 

elasticity  , shear modulus of elasticity   and Poisson’s rate  , and an polar angle measured from 

the crack tip , as following 

    [                   ]                                                            (3.3) 

           [           ]                                                                              

    [                                ]                                     

                                                                                                                                   

and    are stress intensity factors for Modes I, II and III, respectively.  

Briefly the application of the S-factor to predict the crack initiation and direction is based on two 

hypothesizes which are given as following 

(1) Crack initiation occurs when the strain energy density factor S reaches a critical factor value i.e. 

                                                                                 

The parameter    is , in fact, directly related to     by the relation 

   
           

   
                                                                      

 (2) The initial crack growth takes place in the direction of minimum strain energy density. A mini-

mum of        is searched on a sphere centered at each point on the crack front [10]. The continu-

ous formulation        exhibits a local minimum at        in the region       ,      

     , provided                 [11]. It should be noted that             , so 

      attains a local minimum always in the normal plane to the crack front, therefore     in 

our case and direction of the crack growth does not depend on   . So, a minimum of   is searched 

on a circle centered at each point on the crack front i.e. 

       

  
       

        

   
                                                            

Substituting the values of     and    from Eqs. (3.2-3.6) into Eq. (3.9) and after differentiation, set-

ting      , the result is as following 

  

  
                 

  [                    ]                         
    

(3.10) 

with 


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3.2.2 Maximum tangential stress criterion (MTS) 

The maximum tangential stress criterion (MTS) formulated by Erdogan and Sih [4], is one of the 

first conditions predicting critical stress and crack growth orientation. It requires that the crack 

branching angle    at a very short distance from the crack tip satisfies the following fracture condi-

tions 

   

  
|                                                                                      

              
   

√    
                                                                  

The stress series of the mixed Mode are represented as 

   
 

 √   
   

 

 
[                   ] 

   
 

 √   
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]                    

    
 

 √   
   

 

 
[                   ] 

Substituting the first equation in Eq. (3.14) to the first equation in Eq. (3.12), one gets 

                                                                                    

Solving Eq. (3.15), the crack propagation angle is obtained as 

        
    

  √  
     

    
 

  
      

                                                            

where the crack propagation angle    is measured with respect to the crack plane and      repre-

sents the crack propagation in the straight-ahead direction.      if       ,      if      .  

3.2.3 Comparison between SEDF and MTS 
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The crack extension angles as functions of stress intensity factors predicted by SEDF criterion (Sc-

theory) and MTS criterion (Kc-theory) are shown in Fig. 3.1. For pure Mode I loading (       

 ), the crack propagates along its own plane      as mentioned before, for both crack criteria. 

For pure Mode II loading (        ), the crack extension angles of Kc-theory and Sc-theory are -

70.5
o
 and -80.34

o
, respectively. When the value of Mode I stress intensity factor equals to the value 

of Mode II, the crack extension angles are -53.13
o
 and -51.91

o
 according to the Kc-theory and the 

Sc-theory, respectively. For both criteria the crack extension angle increases monotonically with the 

value of        increases from 0 to 1 and from 1 to  .  

 

Fig. 3.1. Crack propagation angle    as a function of stress intensity factor ratio. 

The critical condition only contains the first Mode toughness    . Substituting the first equation in 

Eq. (3.14) to the second equation in Eq. (3.13), one gets 

   
  

 
[     

 
  

 
 

 

 
        ]                                                           

In order to apply the crisis curves to each material, the non-dimensional stress-intensity factors are 

introduced as follows 

  
  

  

   
    

  
   

   
                                                                            

In Fig. 3.2, the analysis of crack growth direction based on Eq. (3.17) and Eq. (3.18) incorporates 

only when     is presented. In the surface, the same color (the plane of z-axis) constitutes a curve. 

It means for a fixed crack extension angle that there are different combinations of non-dimensional 

stress intensity factors of Mode I and Mode II.  
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Fig. 3.2. Crack extension angle    versus non-dimensional stress intensity factors   
  and    

 

 

The curves in Fig. 3.3 represent the relationship between   
  and    

  in the various crack propaga-

tion direction according to SEDF criterion and MTS criterion expressed by Eq. (3.10) and Eq. 

(3.17). Those two curves of Kc-theory are the intersection between the crack propagation angle sur-

face and the coordinate surface in Fig. 3.2, and the same way occurs for Sc-theory curves. They are 

valid for all materials and are symmetrical with respect to   
 . In the present figure, they are only 

traced in the quadrant   
       

   , for Sc-theory with      . In other words, Fig. 3.3 indi-

cates the possible combinations of Mode I and Mode II stress intensity factors for different crack 

extension.  

 

Fig. 3.3. Relation between   
  and    

  

For mixed mode crack, which bending moment   and shearing force   are involved, the mixed 

loading ratio   is introduced as       . The crack propagation angle versus the crack depth ra-

tio        for several mixed loading ratios according to Eq. (3.16) is presented in Fig.3.4. It 
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shows that the crack propagation angle decreases with the increase of crack depth ratio at different 

loading ratios under mixed loading, due to the difference in the increase ratio of the stress intensity 

factor for Mode I and Mode II. The same trend can be obtained with S-criterion, when the beam is 

subjected to single loading, e.g. loading ratio      (Pure mode II) and      (Pure mode I), 

the crack propagation angle doesn’t change with the crack depth ratio. When      and      

the crack propagates on its own plane       and          , respectively. 

 

Fig. 3.4 Initial crack propagation angle    for crack depth ratio   according to MTS-criterion. 

The effect of loading ratio on non-dimensional stress intensity factors are shown in Fig. 3.5 and Fig. 

3.6. The Mode I non-dimensional stress intensity factor is much bigger than Mode II even if    . 

Particularly when crack depth ratio tends to be close to 1, Mode I is predominant in the crack prop-

agation. For the SEDF criterion, the non-dimensional stress intensity factors have the same trend as 

predicted by MTS criterion that is not listed here, for the sake of brevity.  

 

Fig. 3.5 Non-dimensional stress intensity factor   
  versus crack depth ratio  . 
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Fig. 3.6 Non-dimensional stress intensity factor    
  versus crack depth ratio  . 

3.2.4 The criterion proposed by Richard ---- Three-dimensional crack extension 

Though there are numerous fracture criteria proposed for 2D stress under Mode I, Mode II and their 

mixed Mode conditions, such as the maximum tangential stress criterion (MTS), the minimum 

strain energy density factor criterion (SEDF), the maximum energy release rate criterion (MERR) 

and the local symmetry criterion (LS), but only several 3D fracture criteria have been proposed, 

within which the related experimental work is limited. And it is well known that under Mode II 

loading the crack kinks with a kink angle  , that under Mode III loading the crack front grows into 

a new plane which twisted about the angle   referred to the pre-crack plane, see Fig. 3.7. Both the 

wellknown criteria to 3D cases extended by Sih and Cha [37] and the extension of stress triaxiality 

condition (Mt-criterion) presented by Kong et al [38] can only predict tilt angle  , not depend on 

twist angle  .   

 

Fig. 3.7 Schematic illustration of the negative tilt   and subsequent twist   angles 

In order to investigate the initiation of crack front, a recently developed 3D fracture criterion pro-

posed by Schollmann and Richard [39] is utilized, which can be taken into account all three basic 

fracture Modes I, II and III. This is so called maximum principle stress               (which the 

    is the maximum principle stress on a virtual cylindrical surface around the crack front) reduces 

to the well-known MTS criterion, in case of plane mixed Mode I and Mode II loading conditions 
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According to the criterion, the kink tilt angle    can be determined by the following equation 
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The comparisons of the crack initial angle along the three criteria (The maximum tangential stress 

criterion, Strain energy density factor criterion and Schollmann and Richard’s criterion) and the re-

sults obtained by ABAQUS for different crack depth ratio are shown in Fig. 3.8. The stress intensity 

factors used in the three figures are the same, which obtained from ABAQUS. It should be noted 

that the angle from ABAQUS exported from “History output---Crack propagation direction” is the 

same with that obtained by the maximum tangential stress criterion, due to both of them using the 

same criterion. As described in the preview section, the first two criteria only consider Mode I and 

Mode II. In other words, those two criteria suppose that the twist angle is zero. Therefore, in order 

to compare the same crack propagation direction values along the three criteria, only tilt angle in the 

third criterion is drawn in the following figures. It’s easy to see that the three criteria have very 

good agreement with each other. Some other comparisons about different criteria can be found in 

literatures [39, 40]. 
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(a) 

 

(b) 

 

(c) 

Fig. 3.8 Comparison of the crack initial angle according to those three criteria for different crack depth ratio (a) 

       , (b)        , (c)        . 
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3.3 Crack initial propagation of single modes 

It is obvious that the direction of the crack initiation is only determined by stress intensity factors 

according to the fracture criteria mentioned in section 3.2. It is well known that the knowledge of 

the stress intensity factors plays an important role in fracture control. In structural applications, the 

combination of standard loading conditions often involves   ,     and      simultaneously. Stress 

intensity factors (SIFs) for many configurations are available [41-43]. In the present section, the de-

rived simple formulae of stress intensity factors calculated by Herrmann’s method are combined to 

SEDF criterion to predict crack growth direction and initiation for single loading modes. The details 

of the stress intensity factor calculation can be seen in section 2.2, Chapter 2. The results are dis-

cussed comparing with those obtained by MTS criterion. 

3.3.1 Initial angle for beams under tension N 

About the direction of crack initiation, it can be obtained from SEDF criterion. Setting         

and             in Eq. (3.10), considering          , the crack propagation direction corre-

sponds to      which implies that the crack runs in its own plane. A graphic presentation of nor-

malized strain energy density factor   
              as a function of angle   is shown in Fig 

3.9.  

 

Fig. 3.9. Normalized strain energy density factor   
             versus angle   under tension. 

3.3.2 Initial angle for beams under bending moment M 

Information on the direction of crack initiation can be calculated by setting       and     

       in Eq. (3.10), and considering the condition that          , the propagation angle of 

the crack is      which means the crack runs in its own plane. This corresponds to the direction 
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where the dilatational effect dominates. A plot of normalized strain energy density factor   
  

            as a function of angle   is shown in Fig.3.10. 

 

Fig.3.10 Normalized strain energy density factor   
             versus angle   under bending moment. 

It is worth to note that     corresponds to location of yielding, in the present case          . 

Crack instability is then assumed to take place when      equals to critical value    which only 
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3.3.3 Initial angle for beams under shear force Q 

Considering that a cracked beam is subjected to shear force, setting         and           in 

Eq. (3.10) and paying attention to          , the crack runs following the angle           . 

A plot of normalized strain energy density factor   
             as a function of angle   is 

shown in Fig.3.11.  
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Fig.3.11. Normalized strain energy density factor   
             versus angle   under shear loading. 

From Figs. (3.9-3.11), it can be obviously seen that the crack propagation direction of shafts sub-

jected to single loading is independent from crack depth ratio. 

3.4 Crack initial propagation of mixed modes 

Considering the case of a shaft with a transverse straight front crack is subjected to a bending mo-

ment and a shear force, the cracked section is in a mixed Mode I and Mode II condition. Setting that 

       in Eq. (3.2) and substituting the stress intensity factors into Eq. (3.2), the strain energy 

density factor S becomes 

                                (3.24) 

where        is the mixed loading ratio of bending moment and shear loading. 

Based on the SEDF criterion that assuming the crack could initiate on the direction of      i.e., 

        and          , the expressions can be reported bellow 

                              (3.25) 

                            (3.26) 

The normalized strain energy densities    of mixed Mode as functions of crack depth ratio and an-

gle for different mixed loading ratios of mixed mode are graphically presented in Figs. 3.12-3.14. 
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According to S-criterion, crack instability is assumed to take place when      equals to the critical 

value    that depends only on the material and crack propagation directions. For different condi-

tions, the crack initial angle is plotted in the Figs. 3.12-3.14according to SEDF criterion. Obviously 

it could be seen from those graphs that the strain energy density gets bigger value when the depth of 

the crack increases. The same trend of strain energy density occurs to mixed loading ratio from 

      to     .  

Fig. 3.15, and Fig. 3.16 illustrate the normalized strain energy density as a function of the angle for 

different mixed loading ratios considering crack depth ratios       and      . The normalized 

strain energy density factor increases when crack depth ratio and mixed loading ratio increases. 

However, the crack initiation angle increases when mixed loading ratio decreases. Fig. 3.17 demon-

strates the initiate propagation direction angle as a function of mixed loading ratio for different 

crack depth ratios. As it is illustrated in Fig. 3.17, when mixed loading ratio is    , the directions 

of crack growth for different crack depth are the same, in fact     means only shear loading acts 

on the beam. It can be seen when the mixed loading ratio    , the crack initiation direction gets 

close to zero, which means that the cracked beam is only subjected to bending moment. Those two 

results are the same as in the foregoing section. It can be observed that the crack propagation direc-

tion angle decreases quickly when the mixed loading ratio increases. For the same mixed loading 

ratio, the bigger crack depth, the smaller crack growth angle reaches.   

 

Fig.3.12 Normalized strain energy density factor                
  versus angle   for mixed Mode bending mo-

ment and shear force      . 
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Fig.3.13 Normalized strain energy density factor                
   versus angle   for mixed Mode bending mo-

ment and shear force    . 

 

Fig.3.14 Normalized strain energy density factor                
  versus angle   for mixed mode bending mo-

ment and shear force     . 

 

Fig.3.15 Normalized strain energy density factor                
  versus angle   for mixed mode bending mo-

ment and shear force       . 
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Fig.3.16 Normalized strain energy density factor                
   versus angle   for mixed Mode bending mo-

ment and shear force       . 

 

Fig.3.17 Initial crack propagation angle    versus mixed loading ratio   according to SEDF criterion. 

 

Fig. 3.18 Comparison of initial crack propagation angle    using Sc- and Kc-theories as a function of force ratio. 

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

50

100

150

200

250

300

350

400

 (rad)

S
*

 

 

=0.5

=1.5

=2.5

=3.5

=4.5

0 2 4 6 8 10

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

=M/(QR)


0
 (

°)

 

 

a/2R=0.2

a/2R=0.4

a/2R=0.6

a/2R=0.8

82.34

0 0.5 1 1.5 2 2.5 3

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

=M/QR


0
 (

o
)

 

 

a/2R=0.2

a/2R=0.4

a/2R=0.6

a/2R=0.8

Sc-theory

Kc-theory



University of Bologna   PhD Thesis 

68 

The comparison of initial propagation angles as functions of crack depth using SEDF criterion and 

MTS criterion is shown in Fig 3.18. The extension angle, derived from the two theories mentioned 

above, is different when the loading ratio is      . It means that the shearing mode is in charge of 

the difference between the two criteria. 

As shown in section 3.3 and section 3.4, the derived simple formulas of stress intensity factors in 

section 2.2 Chapter 2 are used to predict the crack initiation and propagation angle in both uniaxial 

and mixed loading by strain energy density factor criterion. The crack runs in its own plane under 

the loading of tension or bending, 82.34 degrees for shear loading. The strain energy density gets 

bigger value when the depth of the crack and/or the loading ratio increase under mixed loading. 

However, the crack initiation angle decreases when the crack depth increases for a fixed loading ra-

tio. The comparison between the strain energy density criterion and maximum tangential criterion is 

presented graphically. 

3.5 Mixed mode crack propagation in three-dimensional 

As mentioned in section 2.5 Chapter 2, the stress intensity factors of a beam with a transverse crack 

have to be calculated in the three-dimensional mode. The crack propagation angles calculated by 

SEDF criterion and Richard’s criterion are investigated in the present section. The stress intensity 

factors involved in the two criteria come from Tada’s hand book [42], the results are in section 2.5 

Chapter 2, and ABAQUS, respectively. It should be noted that, the direction of crack initiation pre-

sented in ABAQUS results is calculated by the maximum tangential stress criterion. 

According to Tada’s results, It should be noted that, the crack propagation angles, on the surface 

where the place ratio equal to 1 are missing due to the stress intensity factors getting close to zero. It 

has been pointed out before that parameters, such as stress intensities, at the surface point are differ-

ent or out of trend from that of the points inside. Therefore, the crack propagation angles of the sur-

face in the above figures, representing in the ABAQUS element including crack line and cylindrical 

surface, are singularity. However, the surface point doesn’t influence the good agreements of the re-

sults with each other. 
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(a) 

 
(b) 

 
(c) 

Fig. 3.19 Crack initial angle calculated by SEDF criterion for different crack depth ratio (a)        , (b)        , 

(c)        . 
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(a) 

 

(b) 

 

(c) 

Fig. 3.20 Crack initial angle calculated by Richard’s criterion for different crack depth ratio (a)        , (b)     

   , (c)        . 
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Fig. 3.20 shows the crack initial angle comparison according to the fracture criterion of Richard 

[39] for different crack depth ratios. Same with Fig. 3.19, the stress intensity factors used in those 

three different criteria come from ABAQUS calculation in Tada’s hand book [42], and the “Pre-

sent” means calculated in Chapter 2 and the crack propagation angles at the surface points of Tada’s 

results are missed. The good agreements of those results are shown in this figure. 
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Chapter 4 

Dynamic behavior of cracked shafts 

4.1 Introduction 

Many engineering structures may have structural defects such as cracks due to long-term service, 

mechanical vibrations, applied cyclic loads etc. Numerous techniques, such as non-destructive mon-

itoring tests, can be used to screen the condition of a structure. Novel techniques to inspect structur-

al defects should be explored. Crack occurring in structural elements such as shafts, beams and 

plates, leads to local changes in the stiffness of these elements, and consequently their static, dy-

namic characteristic (changes in natural frequencies, modes of vibration, amplitudes of forced vi-

bration, etc.) of structures has been the subjects of many investigations. In view of that, the natural 

frequencies and mode shapes of the structure hold information relating to the place and dimension 

of the damage. Vibration analysis allowing online inspection is an attractive method to detect cracks 

in structures. Investigation of dynamic behavior of crack structures has attracted the attention of 

several researchers in recent years. The vibration analysis of cracked beam with circular cross sec-

tion and shafts is one of the most important branches. Dimarogonas and Papadopoulos [1], by using 

the theory of cracked shafts with dissimilar moments of inertia, investigated the vibration of 

cracked shafts in bending. Papadopoulos and Dimarogonas [2] studied the free vibration of shafts 

and presented the influence of the crack on the vibration behavior of the shafts. Kikidis and Papa-

dopoulos [3] analyzed the influence of the slenderness ratio of a non-rotating cracked shaft on the 

dynamic characteristics of the structure. Zheng and Fan [4] studied the vibration and stability of 

cracked hollow-sectional beams. Dong et al. [5] presented a continuous model for vibration analysis 

and parameter identification of a non-rotating rotor with an open crack. They assumed that the 

cracked rotor was an Euler–Bernoulli beam with circular cross section. Kisa et al [6] presented a 

novel numerical technique applicable to analyze the free vibration analysis of uniform and stepped 

cracked beams with circular cross section in which the finite element and component mode synthe-

sis methods were used together.  

One of the goals of this chapter is to determine the vibration characteristics of circular cross section 

beams with a single edge crack, under axial force, bending moment, shear forces and torque, by 

employing Euler-Bernoulli and Timoshenko theories and by using the line-spring model. The line-

spring mode has the features of having two nodes and zero length. A general method for extending 
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fracture mechanics through the compliance concept to the analysis of a structure containing cracked 

members is considered in Okamura et al [7]. The beam is detached into parts from the crack section. 

These substructures are joined by using line-spring model in which the flexibility matrices taking 

into account the interaction forces derived by virtue of fracture mechanics theory as the inverse of 

the compliance matrix found with the appropriate stress intensity factors and strain energy release 

rate expressions. The stiffness matrix is derived from an integration of stress intensity factors. As 

the line-spring element includes the three degrees of freedom commonly associated with nodes in 

beam element, the governing matrix equation of the cracked structures is derived by assembly of the 

conventional beam element in conjunction with line-spring model. The resulting eigenvalue prob-

lems are solved to find the natural frequencies and the associated mode shapes. The influences of 

the crack depth and position on the natural frequencies and corresponding mode shapes are exam-

ined for structures graphically represented. The variations of the natural frequencies with the crack 

depth can be used to estimate the crack size in the structures. Furthermore, the sudden changes in 

the higher mode shapes of vibration may be used to accurately determine the crack position in the 

structures. The stiffness matrix is derived starting from an integration of stress intensity factors. 

Since the line-spring element includes three degree of freedoms commonly associated with nodes in 

beam-elements, the governing matrix equation of the cracked structures is derived by assembly of 

the conventional beam elements in conjunction with the line-spring model. Numerical and graphical 

results for the conventional Euler-Bernoulli and Timoshenko plane structures are presented and 

compared. The equation of motion of the Timoshenko model includes translational and rotatory 

mass matrices.  

Two examples of a transverse open crack have been carried out for various crack depths and crack 

locations. The first study is about a beam of uniform circular cross section with transverse crack 

subjected to axial force, bending moment and shearing force. The coupling effect of tension and 

bending is considered. The crack is represented by a line-spring element. The Castigliano’s theorem 

is used here to compute the coupling compliances of the cracked beam section. A cantilever cracked 

beam subjected to bending moment  , shearing force   and torque   is the second example. The 

line-spring model is featured with two nodes and zero length, therefore the shearing force S does 

not interact with the bending moment. The compliance matrix for the line-spring model can be de-

rived according to Okamura et al [7] and Carpinteri et al [8]  theory which is based on the relation-

ship between load and deflection. As with simple beams, the bending and torsional motions are un-

coupled. The natural bending mode, tension mode and rotation mode shaping as a function of crack 

depth ratio and crack locations are studied.   



Chapter 4 Dynamic behavior of cracked shafts 

75 

To reveal the accuracy and effectiveness of the offered method, a number of numerical examples 

are given for free vibration analysis of beams with transverse non-propagating open cracks. Numer-

ical results showing good agreement with the results of other available studies, has addressed the 

effects of the location and depth of the cracks on the natural frequencies and mode shapes of the 

cracked beams.  

4.2 Differential equations of motion for the cracked system 

The net ligament effect of a cracked beam can be replaced by an elastic hinge connecting both the 

cross-sections of the beam separated by an ideal plane containing the crack. About the elastic line-

hinge assume that the crack is a through-crack and the crack represents the net ligament effect by 

certain axial force, bending moment, shear force and torque acting directly on the faces of this 

through-crack. The spring has the features of having two nodes and zero length. The expressions of 

the stress intensity factors evaluated above can be used for determining the stiffness matrix of a 

line-spring with which the cracked section of a beam can be modeled. Consider that two undamped 

components A and B join together by means of springs capable of carrying axial, bending, shearing 

and torsional effects are shown in Fig. 4.1.  

 

Fig.4.1. Model of the components connected by spring 

By applying the standard finite element method to this system, the differential equation of motion 

for free vibration is given as 

                                                                (4.1) 

where   ∑   
  and   ∑   

  are global consistent mass matrix and the stiffness matrix for the 

entire structure without crack, respectively, with    and    are the extend forms of mass matrix 

   and stiffness matrix    for the finite beam element without crack,   is the number of the finite 

element.    is the stiffness matrix for the line spring model expressed in the extended form in order 

to incorporate the line-spring stiffness matrix    into the assembly procedure of the global stiffness 

A B
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matrix for the entire structure.  is the generalized dis-

placement vector. 

After imposing the appropriate end conditions, if the global nodal displacement vector   is assumed 

to be harmonic in time with circular frequency             , the equation will become an ei-

genvalue problem of the standard form  

                                                                    (4.2) 

where    is a vector of displacement amplitudes of vibration. 

The solution of the above eigenvalue problem yields the natural frequencies and the corresponding 

mode shapes of the cracked structure which depends on the crack position, crack size, geometric 

dimensions of the structure, the boundary conditions and mechanical parameters of the material. 

4.3 Cracked cantilever beams subjected to tension, bending moment and shear force  

As an application example of the stress intensity factors obtained by section method, a beam of uni-

form circular cross section with transverse crack of depth   subjected to axial force, bending mo-

ment and shearing force, see Fig.4.2, is investigated. The coupling effect of tension and bending is 

considered. The Castigliano’s theorem is used here to compute the coupling compliances of the 

cracked beam section.  

 

Fig. 4.2. Cracked beam under tension, bending and shearing force 

4.3.1 Stiffness matrix of the cracked section 

According to Castigliano's second theorem, if the strain energy of a linearly elastic structure could 

be expressed as a function of force   , then the partial derivative of the strain energy with respect to 

force gives the displacement    in the direction of   . As could be seen from above this can also be 

expressed as 

   
  

   
                                                                                        

 Tnnnniiii hrhrhrx ,,,,,,,,,,,,,, 1111  
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Combining the strain energy release rate   proposed by Irwin [9], represents the elastic energy in 

relation to a unit increase in length ahead of the crack front, 

  
 

  
   

     
   

   

 
    

                                                               

where             is for plane strain,      is for plane stress,   is Young’s modulus,   is 

Poisson’s coefficient.   ,     and       are stress intensity factors for Mode I, Mode II and Mode III, 

respectively, calculated by section method in the present application. The details of the stress inten-

sity factors can be found in section 2.3, Chapter 2. 

Eq. (4.3) gives the expression between displacement and strain energy release rate as 

                                               (4.5) 

In the present application, the flexibility coefficients as the function of the crack shape and the 

stress intensity factors for involved Mode I and Mode II can be introduced as following 

                                        (4.6) 

The flexibility coefficients     are obtained from the fracture mechanics method proposed by Di-

marogonas and Paipetis [10].  

 

Fig. 4.3. The geometry of the cracked circular cross section 

For the crack of maximum depth  , the crack is bounded in the   direction by     
and   , and in 

the   direction by 0 and  . The boundary width of the crack at each  , can be calculated using Py-

thagorean Theorem from Fig. 4.3.  

                                                      (4.7) 
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Substituting the forces and stress intensity factors into Eq. (4.6), the flexibility coefficients are ob-

tained as following and plotted in Fig.4.4.  

        

     

                                                     (4.8) 

    

   ,  

where   ,   ,   and   
  are functions of coordinate variable  ,    and    are the values under bend-

ing and tension, respectively. All the constants can be found in section 2.3 in Chapter 2. 

 

Fig. 4.4. Non-dimensional flexibilities coefficients (Cmsn, Section method) 

Since the shearing force does not contribute to the opening mode of the crack, the compliance ma-

trix, in relation to displacement vector, can be written as 

                                                              (4.9) 
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The inverse of the compliance matrix     as the stiffness matrix of the nodal point can be used to 

further analysis and given as 

                                                                                   (4.10) 

4.3.2 Stiffness matrix for a beam finite element 

For general loading, a local stiffness matrix relates forces to displacements. According to Okamura 

et al [7], cracked element can be separated at the cracked section and both portions may be connect-

ed by a spring with spring constants   ,   ,   , corresponding to bending moment  , shear force 

   and axial force  , respectively. As an extension version of stiffness matrices of Nobile and Viola 

[11], for a beam finite element subjected to general plane loading, including bending moment M, 

shearing force S and axial force N, the strain energy of a beam element without crack is  

                                      (4.11) 

where   is the Young’s modulus,   is the shear modulus,   is the length of the beam element,   is 

the area of the cross section and       , a coefficient depends on the shear coefficient   which  

       is for circular section. [12] 

The flexibility matrices of uncracked element with constrains Fig.4.1 may be calculated by means 

of Castigliano’s theorem 

                                               (4.12) 

                                                   (4.13) 

The stiffness matrix for the uncracked element can be derived as 

       
                                                                             (4.14) 
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                                    (4.15) 

where  is for Timoshenko beams. If setting  is the stiffness matrix reduced to ele-

ments of the classical Euler-Bernoulli beam model.  

4.3.3 Mass matrix for a beam finite element 

The mass matrices can be derived by using the Kinetic energy of the beam element of length  

                                    (4.16) 

where   is the mass density of the material,   is the area of cross section,   is the area moment of 

inertia and  ,   and   are the translational displacement of axial and shearing force and rotation of 

bending, respectively. The total mass matrix of the finite element is  

                                                                               (4.17) 

The consistent translational    and    and rotational    mass matrices are assumed the same both 

for cracked and uncracked elements. Letting  

                                                                                               

where    is the total translational mass matrix, Eq. (4.17) yields 

                                                                               (4.19) 
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     (4.20) 

                         (4.21) 

The above mass matrices depend upon   and both these matrices reduce to the Euler-Bernoulli 

model by setting    . 

4.3.4 Numerical studies 

Considering a Timoshenko cantilever beam with circular cross section, the geometrical properties 

of the beam are length     , slenderness ratio        , Young’s modulus       

       , Poisson’s ratio        and mass density               , shear coefficient 

      . The cantilever beam discretized into 40 finite elements and the numerical results are ex-

pressed in terms of the following dimensionless parameters:   
    

     
 

 
is the displacement am-

plitude ratio, where   
  is the     computed displacement amplitude of the cracked structure, and 

   
  is the     exact displacement amplitude of the corresponding uncracked structure,        

            is the dimensionless crack position parameter and                   is the crack 

depth ratio. 

 

Fig.4.5. Cantilever beam with a transverse crack 
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The results obtained by the present work for slenderness ratio 0.1, crack depth ratio 0.4 and crack 

position 0.4 are compared with uncracked beam, and those of Kisa and Gurel [6], and as is noticed 

from Fig.4.6, an excellent concurrence has been found to belong the results. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.6. Comparisons of non-dimensional natural bending modes for crack depth ratio        , crack slenderness 

ratio        , crack location         , (a) the first  mode, (b) the second mode, (c) the third mode 
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Figs.4.7-4.11 illustrating the first fifth natural bending mode shapes as a function of crack depth ra-

tio for crack locations                  and slenderness ratio        . The deeper the crack 

and higher the mode number, the clearer the position of crack, as is expected. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.7 First natural bending mode as a function of depth, for slenderness ratio        , and different crack position 

(a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig. 4.8 The second natural bending mode as a function of depth, for slenderness ratio        , and different crack 

position (a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig. 4.9 Third natural bending mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig. 4.10 Fourth natural bending mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig. 4.11 Fifth natural bending mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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served that as the crack progresses, the discontinuities show progressively large difference which 

can be used to identify the depth of the crack. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4.12. First natural rotational mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig.4.13. Second natural rotational mode as a function of depth, for slenderness ratio        , and different crack 

position (a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig. 4.14. Third natural rotational mode as a function of depth, for slenderness ratio        , and different crack po-

sition (a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig. 4.15. First natural tension mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig. 4.16. Second natural tension mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 
(b) 

 
(c) 

Fig. 4.17. Third natural tension mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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4.4.1 Stiffness matrix of the line-spring 

As mentioned in section 4.2, a schematic illustration of the line-spring model for edge-cracked 

beam is given in Fig. 4.1. The line-spring model features with two nodes and zero length, therefore 

the shearing force S does not interact with the bending moment. The compliance matrix for the line-

spring model can be derived according to the theory presented by Okamura et al [7] and Carpinteri 

et al [8] which based on the relationship between load and deflection. The static equilibrium of a 

cantilever cracked beam subjected to bending moment  , shearing force   and torque   requires 

that 

 

Fig.4.18. End conditions for forces and displacement of the beam element. 

, ,                                                         (4.22)  

in which the rotations   and   and the deflection   across the line-spring are expressed in terms of 

the nodal displacements        ,         and         (see Fig.4.18).    ,     and 

    are compliances for bending moment, shear force and torque, respectively.  

Moreover, compliances are related to the connection between energy release rates   and stress in-

tensity factors given by Irwin and Kies [13]. Compliances for the cracked beam element are derived 

by the following equations 

                                                              (4.23) 

                                                               (4.24) 

                                                                (4.25) 

After integrating, the compliance components of line-spring are obtained by the following relations 

                                                             (4.26) 
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                                                              (4.27) 

                                                              (4.28) 

where   is Young’s modulus,   equals Poisson’s ratio for plane-strain and zero for plane-stress,    

is an infinitesimal incremental of crack area,     is the Mode I stress intensity factor caused by 

bending moment  ,      is the Mode II stress intensity factor caused by shear force  , and       is 

Mode III stress intensity factor caused by the torque  . The details of the stress intensity factors can 

be found in section 2.2, Chapter 2. 

Substituting the stress intensity factors into Eqs (4.26) to (4.28), the local flexibility due to the crack 

can be obtained as the same geometrical boundary limit in the foregoing section, and can be written 

as 

                                                       (4.29) 

                                                        (4.30) 

                                                           (4.31) 

The numerical integration methods are adopted here. Dimensionless flexibility coefficients are cal-

culated numerically along with the subsequent expressions and drawn in Fig.4.19. 

 

Fig. 4.19. Non-dimensional compliance coefficients as a function of the crack depth ratio a/D. 

                                                                       (4.32) 
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                                                                         (4.33) 

                                                                         (4.34) 

The matrix of rigidity of the cracked element puts the vector of the nodal displacements 

in relation with the vector of the nodal forces . The 

stiffness matrix of a line-spring    is given as follows 

                                 (4.35) 

4.4.2 Mass matrix and stiffness matrix of an uncracked beam element 

The beam element will be assumed to be straight bar of uniform cross section capable of bending 

moment and shearing force in the plane of its cross section, and twisting moments about its cen-

troidal axis. The stiffness matrix of such a beam element is of order     if all the forces are con-

sidered independently of each other. The stiffness properties for a uniform beam element will be de-

rived directly from the differential equations for beam displacements used in the general engineer-

ing theory of beams subjected to loads. The derivation details of the stiffness can be found in the 

literature [14]. 

                                    (4.36) 

where   is the length of the beam element,   is the Young’s modulus,   is the moment of inertia of 

the cross section,   is the polar moment of inertia of the cross section,   represents shear defor-

mation parameter.              is for Timoshenko beams.   can be taken as zero for

 

the classi-

cal Euler-Bernoulli beam which leads to a force-displacement relationship in which the effects of 
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For the uncracked elements, the mass matrices can be derived by using the Kinetic energy of the 

beam element of length  

                                 (4.37) 

where   is the mass density of the material,   is the area of cross section,   is the area moment of 

inertia,    is the polar moment of inertia, and  ,   and   are the translational displacement of shear-

ing force, rotation of bending and torque, respectively. 

Let          denotes the total mass matrix of the finite element with    the total mass ma-

trix of translational mass inertia and torsional mass inertia,    represents the rotatory inertia of the 

beam. They are firstly derived independently by Archer and by McCalley. 

   (4.38) 

                              (4.39) 

4.4.3 Numerical studies 

The example geometrical and material parameters are the same with those in section 4.3. Figs.4.20-

4.24 showing the first five natural bending mode as a function of crack depth ratio for slenderness 

ratio R/D=0.1 and crack position L1/L=0.2, 0.4 and 0.6.  
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(a) 

 

(b) 

 

(c) 

Fig. 4.20. First natural bending mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 

(b) 

 

(c) 

Fig. 4.21. Second natural bending mode as a function of depth, for slenderness ratio        , and different crack po-

sition (a)         , (b)         , (c)         . 
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(a) 

 

(b) 

 

(c) 

Fig. 4.22. Third natural bending mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 

(b) 

 

(c) 

Fig. 4.23. Fourth natural bending mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 

(b) 

 

(c) 

Fig. 4.24. Fifth natural bending mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 

The first three flexural vibration modes are shown in Figs. 4.25-4.27, respectively. Those plots 

show the same discontinuities characteristics as described in the section 4.3.  
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(a) 

 

(b) 

 

(c) 

Fig. 4.25. First natural rotational mode as a function of depth, for slenderness ratio        , and different crack posi-

tion (a)         , (b)         , (c)         . 
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(a) 

 

(b) 

 

(c) 

Fig. 4.26. Second dimensionless natural rotational mode as a function of depth, for slenderness ratio        , and 

different crack position (a)         , (b)         , (c)         . 
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(a) 

 

(b) 

 

(c) 

Fig. 4.27. Third dimensionless natural rotational mode as a function of depth, for slenderness ratio        , and dif-

ferent crack position (a)         , (b)         , (c)         . 
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Chapter 5  

Numerical analysis and comparison for an interfacial 

crack under biaxial loading 

5.1 Introduction 

As it is well known, the fracture property of composite materials can be strongly affected by the 

toughness of the interface between constituents. Therefore, the problem of a crack lying along the 

interface of two dissimilar materials has become very important in describing the fracture mechan-

ics behavior. Such a problem was first studied by Williams [1], who discovered for the first time the 

stress and displacement oscillatory character in proximity to the crack tip. England [2] showed that 

the upper and lower crack faces would wrinkle and overlap near the crack tips. Erdogan [3] and 

Rice and Sih [4] derived the expressions of the stress field near the crack tip and introduced the 

complex stress intensity factor. The framework of fracture mechanics analysis for interface cracks 

was outlined by Willis [5].  

In order to avoid the oscillatory singularity of stress and strain near the crack tip, various attempts 

have been made over the past decades. Comninou [6] introduced the contact zone model that al-

lowed the crack faces to come into contact near the crack. Piva and Viola [7],  and Viola and Piva 

[8] reported the analytical elastic solution of the in-plane biaxial loading of two dissimilar materials 

with a crack along their common interface. The complex variable technique coupled with the prin-

ciple of superposition of effects was applied to compressible as well as incompressible materials. 

Rice [9] re-examined the elastic fracture mechanics concepts for the isotropic interface crack in-

cluding stress field near tip, complex stress intensity factor, contact zone, plastic zone as well as 

some possible definitions of stress intensity factor of classical type. Leguillon [10] numerically in-

vestigated the interface crack tip singularity under the assumption that there would be a contact 

zone along the crack front; the friction contact case and Coulomb’s friction law were examined. 

Comninou [11] presented an overview of the interface crack problem and described some prelimi-

nary experimental results in the fatigue and fracture of interface crack. Mykhailova et al. [12] de-

voted to the application of boundary integral equations for solving the problem of a linear crack lo-

cated on the dissimilar interface under time-harmonic loading. Cornetti et al. [13] provided a meth-

od to determine the load causing delamination along an interface in a composite structure. Hills and 

Barber [14] discussed the properties of elastic solutions to interface crack problems in both open 
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and unilateral formulations. They showed that if the contact zone was sufficiently small compared 

with the other dimensions in the problem, the unilateral solution can be approximated by embed-

ding a universal contact field within the surrounding asymptotic field of the open solution. In this 

case, the open solution containing all the information could be relevant in determining fracture us-

ing a Linear Elastic Fracture Mechanics (LEFM) criterion. Shi et al. [15] used the eigenvalue prob-

lem to determine asymptotic stress and displacement fields near the interface corner. A path inde-

pendent conservative line integral was used to obtain the stress intensities. 

Another important problem in fracture mechanics is the prediction of crack growth path under im-

posed loading and of its rate of growth. The most popular and simplest criteria are the maximum 

tangential stress criterion (MTS) [16], the strain energy density factor criterion (SEDF) [17] and the 

maximum energy release rate criterion (MERR) [18, 19]. There are also other criteria proposed in 

the course of years by different authors. The T-criterion proposed by Theocaris and Andrianopouls 

[20]. Papadopoulos [21] introduced the Det.-criterion which was based on the determinant of the 

stress tensor. Goldstein and Salganik [22] established a condition requiring that crack propagation 

occured along the path of vanishing the Mode II stress intensity factor. Yang and Qin [23] proposed 

a numerical method capable of modeling interfacial cracking of bi-materials and damage in compo-

sites with either weak or strong interfaces. Corneti et al [24] introduced a failure criterion in the 

framework of finite fracture mechanics. The models of crack growth in mixed mode conditions 

were reviewed for the plane and three-dimensional states of stress in reference [25]. 

As regards the fracture criteria for a crack at interface between dissimilar materials, Piva and Viola 

[7] proposed a fracture criterion based on the MTS criterion, that could be used to assess whether an 

interface crack would extend along the interface or into one of the two adjacent materials in the 

plane perpendicular to the direction of maximum circumferential stress evaluated at a small distance 

from the crack tip. He, along with Hutchinson [26] suggested a criterion based on the energy release 

rate for predicting the kinking angle. They showed that the competition between crack advance 

within the interface and kinking depended on relative toughness of the interface to that of the join-

ing material. Moreover, the kinking occured in the direction where the energy release rate was max-

imum. Yuuki and Xu [27] and Yuuki et al. [28] carried out fracture tests of aluminum epoxy dis-

similar materials with an interface crack under comprehensive mixed mode conditions. Using the 

brazil-nut-sandwich compression tests, they showed that the fracture angles were well predicted by 

the criterion proposed by the authors themselves. Ayatollahi and Mirsayar [29] developed a fracture 

criterion, referred to as the modified maximum tangential stress criterion, which took into account 

the effect of T-stress in addition to the stress intensity factors for predicting the kinking angle in the 

interface cracks. Rudraraju et al. [30] presented a variational multiscale approach to predict mixed 



Chapter 5 Numerical analysis and comparison for an interfacial crack under biaxial loading 

109 

mode in-plane cohesive crack propagation. A comparative study of numerical results with the corre-

sponding experimental observations of crack propagation in laminate fiber reinforced composite 

panel was also presented. 

Furthermore, there are some experimental and special researches that deserve to be mentioned. 

Theocaris and Andrianopoulos [31] introduced the Mises elastic-plastic boundary to define the core 

region. They used the minimum value of the radium of the elastic-plastic boundary for defining the 

direction of crack propagation. Spyropoulos [32] constructed the zone of yield initiation for the in-

terface crack problem using the Mieses yield criterion according to the two-term stress solution re-

ported in [7]. In [33] the strain energy density criterion was applied to determine the direction of 

crack initiation for various biaxial load factors and material combinations. Buyukozturk and Hear-

ing [34] investigated fracture of two-phase composites in terms of parameters that influence the 

cracking scenarios in the interfacial regions and affect the fracture behavior of the concrete. Numer-

ical and physical model tests were performed to study the influence of constituent fracture proper-

ties on the behavior of concrete composites. A series of interfacial crack experiments were conduct-

ed by Choi and Chai [35] using biaxial loading device for various mixed modes. Lee et al. [36] re-

visited the criterion to prevent kink of a crack out of a bi-material interface under the presence of in-

plane residual stresses. They predicted that in-plane residual stresses control the energetic condi-

tions to prevent crack kinking out of the interface. The change in the stress state near the crack tip 

due to its own contribution to the singular stress field like globally applied loadings was required. In 

other words, the problem at issue cannot be handled in purely local terms, but a global approach 

should be adopted. Kayupov and Dzenis [37] modeled the crack propagating under quasi-static 

loading and in fatigue life by nonlinear finite element analysis. Goyal et al. [38] proposed a new 

strength-fracture model for decohesion elements including the geometric nonlinearity of the adher-

ent and adhesive. The initiation and progression of interfacial cracks and/or cohesive cracks was 

simulated by positioning decohesion elements at the adherent-adhesive interface and between bulk 

adhesive element. At an earlier date, the authors had postulated an irreversible cohesive-decohesive 

constitutive law for modeling the delamination process using interfacial surface discontinuities [39]. 

Yang et al. [40] calculated the critical stresses, taking into account the influence of the adjacent ply 

angle and the crack size, for the initiation of crack propagation in the transverse direction and in the 

tunneling direction of a crack embedded in the central layer of a composite laminate. They showed 

that transverse cracking was a more possible fracture mode in composite laminates with initial 

crack-like defects. Kaminski [41] pointed a mathematical model and its numerical realization of the 

composite materials with stochastic interface defects. The composite was discretized using the 

Boundary Element Method.  
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Although great progress has been made in solving elasticity problems involving lines of disconti-

nuities, the mathematical formulation of the problem of interfacial cracks remains inadequately 

treated. Recently, several authors [42, 43] have attempted to solve the interface problem by using 

the dislocation method, which can remove the oscillation singularity. For engineering estimations of 

the strength of cracked composite, the use of numerical method involving a simpler calculation pro-

cedure can be suitable, even if a little bit lower accuracy is involved. The geometries of the investi-

gation cracked models are different. In the present paper, the comparison between numerical results 

and analytical solutions of an interfacial crack is presented. The influences of size effect, biaxial 

loading factor and radius distance on the stresses components distribution, damages zone and the 

crack extension angle are studied. The conclusion shows an excellent agreement between the nu-

merical results and the analytical calculations.  

This paper focuses on the fracture process connected with a finite central crack along the plane in-

terface between two bonded dissimilar materials, subjected to biaxial loading at infinity. The local 

fracture criterion, for the damaged composite elastic system, involves a suitable defined radial dis-

tance from the crack tip, a biaxial loading condition, as well as singular and non-singular stress 

terms. The analytical solution, based upon the complex potential, stems from the boundary value 

problem formulated for the two bonded media model subjected to biaxial loading at infinity. Using 

the proposed Finite Element Method, numerical solutions to the interfacial crack problems are 

worked out with reference to external loading conditions applied at finite distances from the interfa-

cial crack. Models of different materials properties, interface crack lengths, biaxial loading condi-

tions and interfacial fracture strengths have been investigated. The analytical and numerical results 

of this study are also examined to see their similarity and differences. As far as the crack initiation 

angle is concerned, the present results are compared with the ones reported in literature. The effects 

of the model dimension, the radial distance from the crack tip and the biaxial factor on the stress 

distribution are studied. Particular attention is paid to the size of oscillatory area, as well as the plas-

tic zone. Then the crack propagation angle obtained from the global fracture criterion and the nu-

merical method is represented graphically. The conclusion shows an excellent agreement between 

the numerical results and the analytical calculations. 

The main novelty of this study consists of finding the ratio of finite distances of loading and crack 

lengths for which the above analytical and numerical solutions, involving models of damaged com-

posite bi-material systems, which are comparable. The finite critical distance from the crack tip 

should be specified to provide stress and stain states, as well as to apply criteria of crack extension 

at the interface, or its extension into one of the two dissimilar media. 
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5.2 Theoretical background 

A central line crack of length    lies on the interface between two bonded dissimilar isotropic ho-

mogeneous materials showing in Fig. 5.1.   ,    and    (i = 1, 2) are the Young’s modulus, the Pois-

son’s ratios and the shear modulus of material 1 and material 2, respectively. Without loss of any 

generality, the length of the crack is assumed to be unity or, in other words, all the length parame-

ters are normalized by the crack length 2a.  

 

Fig. 5.1. Geometric model and loading contribution for analysis. 

The solution of the plane elastic problem is reduced to the calculation of the potential functions 

      and             of the complex variable        is related to stresses and displacements 

by the well-known equation of Kolosov-Muskhelishvili [44]: 
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In eqs. (5.1-5.4),    
   

,    
   

 and    
   

 are the stress tensor components with respect to a Cartesian co-

ordinate system centered in the crack,          for plane strain and    (    ) (    ) for 

plane stress,             is the complex displacement,       refer to the material 1 and 2, re-

spectively. The four potential functions    and    can be determined by the boundary conditions 
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and the conditions at infinity [7]. The crack surfaces are free of traction and the two bounded mate-

rials are subjected to biaxial load at infinity. It’s worthy to note that the horizontal stress compo-

nent, which is discontinuous across the bond line can be expressed as 
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  is relate to one of Dundurs parameters   [45]. 

    
   

   
        

                 

                 
                                                                           

The solution of the elastic problem is obtained by the application of the principle of superposition as  

is already presented in a preview paper [7].  
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where   
    

  
 is the well-known bi-elastic constant. 

It appears that the displacement field verifies the continuity condition on the bond line and over the 

crack surface gives rise to the dislocation 

       
  √            

        
√        [     |

   

   
|]                                  

From the expressions of displacement eqs. (5.8-5.10), it notes that the biaxial load parameter has the 

same effect on the displacements in the two media, but does not affect the dislocation over the crack 

surface. As pointed out in [2-4], the relative displacement described above oscillates rapidly near 

the tips of the crack and is thus physically unreasonable because the interpenetration of the material 

on either side of the crack is predicted at such points. The extent of contact zone proposed by 

Comninous [6] is unknown, but can be obtained from the oscillatory solution computing the largest 
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distance    from the crack tip at which the crack opening displacement becomes zero [9]. In the pre-

sent investigation, it is expressed as  

                                                                                       

Then, the contact zone size    is estimated by the transcendental equation    (    |
   

   
|)   , or 

normalized with the crack length 2a as 

  
  

 
 

       
                                                                       

For example, when                                      . From Abaqus mod-

el, the interpenetration is shown in Fig.5.2.  The dislocation of the two crack faces on the crack tip 

is infinite according to eq. (5.10), but it also can be considered on the bonded interface line. So the 

value is set to zero here, see Fig 5.2, at      . The dashed line means material 1 interpenetrates 

into material 2, the crack face of more compliant material interpenetrates into the crack face of stiff 

material. The ratio of interpenetration distance    to crack length    is                  , the 

same with the value obtained from eq.(5.12). These results have good agreement with England’s es-

timation [2]. For the interface crack in tension the contact zone model provides a contact zone of the 

order of 10
-4

 of the crack length for      , diminishing to zero as   approaches to zero.  

  

Fig. 5.2. The interpenetration displacement.  

Confining our attention to the right tip region, by considering the transformation: 

                                                                               

and expressing the eqs. (5.1-5.4) as power series expansions, one can obtain the following approxi-

mate expressions for the complex stress distributions 
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where                  ,   
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The explicit expressions of the Cartesian stress components in terms of the polar variables       

can be obtained. Moreover, the distribution of the local circumferential stress     can be evaluated 

as following 
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Fig. 5.3.    
    Oscillatory front of the crack tip. 

Those stress components as the analytical solutions will be compared with finite element computa-

tions presented in the next section. Fig. 5.3 graphically presents the oscillatory of the vertical stress 

front of the crack tip. However, Hutchinson et al. [46] tabulated strain values on   and   for six rep-

resentative material combinations and found that   was quite small for most of the combinations. 

Therefore, the oscillation zone ignored here is reasonable. 

5.3 The non-linear stress-strain response 
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It is possible by a simple procedure, to obtain the component   of the strain corresponding to the 

component   of the applied load for some cracks configuration. In fact, from the Castigliano’s theo-

rem we have 

  
  

  
|                                                                                     

where      is a typical limit point stress for crack length  ,    is the average strain energy per unit 

volume corresponding to the model of Fig.5.1 with fixed bond cracks of length   loaded to the level 

    . We can write  

          
   

   
   

                                                                 

where   
           are the average strain energies of material   without crack and    is the aver-

age strain energy contribution due to crack.  

The stain energy density in model without crack can be evaluated by the usual method using results 

from the theoretical analysis in section 5.2.  
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in which V is the volume of the model.  

For the bimaterial system without crack on the interface, the stress components in the above equa-

tion can be obtained by substituted the solutions   
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 to the eq. (5.1) and eq. (5.2). 
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The stresses can be calculated as 
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therefore 
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The strain energy due to the presence of crack    is evaluated using the stress intensity factors (en-

ergy release rate). The leading terms of stress components         along interface     in the vi-

cinity of the crack can be expressed as [3, 9] 
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where   denotes the imaginary unit,       are the stress intensity factors,   is the radial distance 

from the crack tip,   is a reference length, and   is the bielastic constant.  
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The strain energy release rate for the actual field, which is the loading condition for the crack prob-

lem under consideration, can be related to the stress intensity factors as follows 
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where  ̅ is the complex conjugate of  , and 
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The stain energy due to presence of crack is  
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Hereby, the dimensionless average strain energy for crack presence is defined as 
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Fig. 5.4 Dimensionless crack average strain energy against crack length ratio. 

Fig. 5.4 shows the dimensionless crack average strain energy which independent on biaxial factor   

against crack length ratio for various values of the Young’s moduli ratio. It’s worthy to note that 

this relationship is the same for switching the Young’s moduli of the two materials. Moreover, 

those curves are the same when 
  

  
 

  

  
. 

 

Fig. 5.5 Dimensionless strain energy for various biaxial loading factors. 

Fig. 5.5 shows the dimensionless stain energy of the biomaterial system           against 

crack length ratio for different biaxial loading factor and the same material combination       

   . It’s worth noting that the impact of biaxial loading factor on the strain energy is much greater 

than crack length.  

By calculating eqs. (5.26), (5.27) and (5.33), it could be obtained from eq. (5.17) a stress-strain law 

in the following form 
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The stress-strain law is linear, for fixed value of the crack length, it must be terminate at the critical 

value    of   which causes the crack extension. 

It follows that a non-linear response, due to progressive bond separation, can be obtained by con-

sidering the sequence of critical points         on the linear response curves corresponding to suc-

cessively larger values    of  . 

From the debonding criterion described in [7], the dimensionless critical loading    and strain    

can be expressed in the following forms 
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 √    

 

  
                                                                                         

For a bimaterial system with dimension     ,         and unit thickness,          , 

         , the stress-strain responses for varies biaxial loading factor are showed in Fig. 5.6. 

Fig. 5.7 shows the effects of material combination on the stress-strain response for     and   

 . The characteristic of non-linear stress-strain response of biaxial loading factor     is more ob-

vious than that of     for the same material combination. 

 

Fig. 5.6 Influence of the biaxial loading factor on the stress-strain response.   

 

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

*

T
*

 

 

k = -1

k = 0

k = 1

a = 0



Chapter 5 Numerical analysis and comparison for an interfacial crack under biaxial loading 

119 

 

(a) 

 

(b) 

Fig. 5.7 Material combination effect on the stress-strain response for (a)    , (b)    . 

5.4 Numerical model 

The two-dimensional interfacial crack system shown in Fig. 5.8 is used for the mechanical analysis. 

Dissimilar linear elastic material combination, with Young’s modulus            for material 

1,             for material 2 and Poisson’s ratios          , constitutes the domain of 

the model. An interfacial crack with sharp crack tip is embedded at the center of bond line.  

In order to investigate the effect of the model dimension on the mechanical parameters, different 

scale models are involved. Keeping the crack length     , but changing the model dimension 

                  respectively, the following ratios between model dimension and half crack 

length                     can be considered. The analysis is carried out using finite element 

code Abaqus [47]. The whole cracked system is modeled as is shown in Fig. 5.9 where the finite el-

ement mesh is also illustrated. 8-nodes isoparametric quadrilateral generalized plane stress elements 
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are used for this analysis. The ring zone completely surrounding the crack tip, from one crack face 

to the opposite crack face, for creating collapsed 8-node isoparametric elements and calculating the 

J integral will be illustrated in details in the following. 

 

Fig.5.8. Two-dimensional model of interfacial crack in dissimilar media. 

 

                   (a)                                                                                          (b) 

Fig. 5.9. Finite element mesh of the cracked system when L=5 (a) Model for the whole system, (b) Mesh near the inter-

face crack. 

Sharp cracks are usually modeled using small-strain assumptions when geometric nonlinearities are 

ignored. It is noted that for a sharp crack the strain field becomes singular at the crack tip. However 

the large-strain zone is very localized. The accuracy of the J-integral and the stress intensity factors 

can be improved when the singularity is included in the stress and strain calculations. If   is the dis-

tance from the crack tip, the strain singularity in small-strain analysis for linear elasticity is 

             . For interface crack, the singularity of the crack tip is         . As intro-

duced in [48], for the present particular case        , the singularity of          can be well 

approximated by the singularity of       . The crack tip is modeled with a ring of collapsed 
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quadrilateral elements, as shows in Fig.5.10, generally second-order elements are used and the ele-

ments are collapsed as follows 

 

Fig. 5.10. Collapsed two-dimensional element. 

Collapse one side of an 8-node isoparametric element (CPE8R, for example) so that all three nodes-

--3, 6 and 2---have the same geometric location (on the crack tip). Move the mid-side nodes on the 

sides connected to the crack tip to the    -point nearest the crack tip. One can create “quarter 

point” spacing with second-order isoparametric elements when you generate nodes for a region of a 

mesh. This procedure is able to create the stain singularity 

    
 

 
 

 

    
                                                                            

Abaqus/Standard offers the evaluation of several parameters for fracture mechanics studies based 

on either the conventional finite element method or the extended finite element method, such as the 

stress intensity factors, the contour integral, the direction of cracking initiation and so on.  

The stress intensity factors of two dimensions    and     in homogeneous material are related to the 

energy release rate (J-integral, calculated directly in Abaqus/Standard) through 

  
 

 ̅
   

     
                                                                                                                                          

where  ̅    is for plane stress and  ̅           is for plane stain.  

5.5 Results comparison 

5.5.1 Circumferential stress 

In order to simplify the comparison, the loading     is used in both analytical and numerical cal-

culation. Therefore, the circumferential stress and Mises stress can be considered as dimensionless. 

In the numerical calculations of the present paper,                        and   

           are assumed. According to eq. (5.12),                   , the oscillatory zone is 

so small that can be omitted. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 5.11. Comparisons of circumferential stresses     for various biaxial factors   and the ratios      when       
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(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 5.12. Comparisons of circumferential stresses     for various biaxial factors   and the ratios      when        
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(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 5.13. Comparisons of circumferential stresses     for various biaxial factors   and the ratios      when        

 

-180 -120 -60 0   60  120 180 
0 

2 

4 

6 

8 

10

12

 

 Material 1Material 2






r
0
/a = 0.005

r
0
/a = 0.01

r
0
/a = 0.05

r
0
/a = 0.1

k = 3

L/a = 40
Numerical Analysis

-180 -120 -60 0   60  120 180 

-3

0 

3 

6 

9 

12

 

 Material 1Material 2






k = -1

r
0
/a = 0.005

r
0
/a = 0.01

r
0
/a = 0.05

r
0
/a = 0.1

-180 -120 -60 0   60  120 180 

-2

0 

2 

4 

6 

8 

10

12

 

 Material 1Material 2






r
0
/a = 0.005

r
0
/a = 0.01

r
0
/a = 0.05

r
0
/a = 0.1

k = 0

-180 -120 -60 0   60  120 180 
0 

2 

4 

6 

8 

10

12

 

 Material 1Material 2






r
0
/a = 0.005

r
0
/a = 0.01

r
0
/a = 0.05

r
0
/a = 0.1

k = 1

-180 -120 -60 0   60  120 180 
0 

2 

4 

6 

8 

10

12

 

 Material 1Material 2






k = 2

r
0
/a = 0.005

r
0
/a = 0.01

r
0
/a = 0.05

r
0
/a = 0.1

-180 -120 -60 0   60  120 180 
0 

2 

4 

6 

8 

10

12

 

 Material 1Material 2






k = 3
r
0
/a = 0.005

r
0
/a = 0.01

r
0
/a = 0.05

r
0
/a = 0.1



Chapter 5 Numerical analysis and comparison for an interfacial crack under biaxial loading 

125 

 

  

(a) (b) 

  

(c) (d) 

 

(e) 

Fig. 5.14. Comparisons of circumferential stresses     for various biaxial factors   and the ratios      when        
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Comparisons of circumferential stress     at the front of the crack tip under varies biaxial factors in 

terms of polar angle   are shown in Figs. 5.11-5.14 for different dimension sizes. It’s easy to see 

that the circumferential stresses on the crack surface (          ) are zero as assumed in the 

boundary condition, and the circumferential stress continue across the bonded line,    ,     

   . The analytical results are always smaller than the numerical results. Obviously, the dimension 

of the model effects on the accuracy of the numerical results. The bigger the dimension factor is, the 

closer the numerical results to the analytical results, no matter how close to the crack tip and the bi-

axial factor. However, when the dimension ratio exceeds one threshold value, the numerical results 

tend to become the same of the analytical ones. For the sake of saving the computation expense, the 

dimension ratio approximately equals to 20 according to the presented results. The closer to the 

crack tip, the greater of the circumferential stress, due to the stress concentration of the linear elastic 

theory.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 5.15. Comparisons of circumferential stresses     for various dimensions     and the ratios      when     . 
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(a) (b) 

  

(c) (d) 

Fig. 5.16. Comparisons of circumferential stresses     for various dimensions     and the ratios      when    . 
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(a) (b) 

  

(c) (d) 

Fig. 5.17. Comparisons of circumferential stresses     for various dimensions     and the ratios      when    . 

 

 

 

 

 

 

 

 

 

 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Infinity L/a = 20 L/a = 10 L/a = 5

-180 -120 -60 0   60  120 180 
0 

2 

4 

6 

8 

10

12

14

 

 Material 1Material 2






k = 1

r
0
/a = 0.005

-180 -120 -60 0   60  120 180 
0

1

2

3

4

5

6

7

8

9

 

 Material 1Material 2






k = 1

r
0
/a = 0.01

-180 -120 -60 0   60  120 180 
0

1

2

3

4

 

 Material 1Material 2






k = 1

r
0
/a = 0.05

-180 -120 -60 0   60  120 180 
0

1

2

3

 

 Material 1Material 2






k = 1

r
0
/a = 0.1



Chapter 5 Numerical analysis and comparison for an interfacial crack under biaxial loading 

129 

 

  

(a) (b) 

 

  

(c) (d) 

Fig. 5.18. Comparisons of circumferential stresses     for various dimensions     and the ratios      when    . 
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(a) (b) 

  

(c) (d) 

 

Fig. 5.19. Comparisons of circumferential stresses     for various dimensions     and the ratios      when    . 
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The effects of biaxial factors and distances before the crack tip to the circumferential stresses are 

studied. From Figs. 15-19, the circumferential stress law against the polar angle seriously depends 

on the biaxial factor  . However, according to the expressions of the stress components, the influ-

ence of the biaxial load is only on the normal stress     as reported in [7]. For a crack embedded in 

a homogeneous, isotropic and linearly elastic material, when the effect of the normal stress collinear 

to the plane of the crack is discarded, any failure condition is evaluated at a very small, but un-

known, radial distance    from the crack tip [16]. The importance of the distance    has been exten-

sively discussed in the literatures [7],  and for the uniaxial loading conditions it is found that all the 

experimental results considered except one are in the area between two curves corresponding to 

 
  

 
          

  

 
                                                                    

For a better comparison of the influence of the dimension size, biaxial factor and the distance from 

the crack tip on the difference between analytical and numerical results, the relative errors of cir-

cumferential stress between those two results are calculated from the following formula for various 

dimension ratios, biaxial factors and distances from crack tip and are shown in Fig. 5.20. 

   
       

   
        

   

 
      

   
                                                     

where the superscript j is the index of materials, the subscripts     and     are analytical and nu-

merical results, respectively. 

Fig. 5.20 (a) and (b) correspond to Fig. 5.19 (b) and Fig. 5.13 (e), respectively. Fig. 5.20 (c) is a 

comprehensive graph of Fig. 5.13 (a-e). It clearly shows from Fig. 5.20 (a) that the relative errors 

expressed as the different between the analytical and numerical solutions are getting smaller as the 

dimension size ratio     increase. For        the error is up to the maximum 20%. When 

      , the errors are very close to each other and less than 2 except the positions where circum-

ferential get close to zero due to the character of the relative error definition. This character should 

be considered also in all the following analysis. For           , the circumferential stress curves 

have two intersections with horizontal axis, respectively, there are four singular points due to the 

reasons mentioned before. Ignoring the singular points in Fig. 5.20 (c), the relative errors tend to be 

close to zero for different biaxial factors. It means the numerical calculation can be used for various 

biaxial factors. The difference of analytical and numerical solutions among the various distances 

from crack tip is compared in Fig. 5.20 (b). All the errors are less than 10, especially for 
  

 
 

              , the numerical and analytical results are very close to each other.  



University of Bologna   PhD Thesis 

132 

 

(a) 

 

(b) 

  

(c) 

Fig. 5.20 Angular variation of the relative errors between analytical and numerical solutions for circumferential stress  

(a) various dimensions, (b) various biaxial factors, (c) various distances from crack tip. 
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5.5.2 Mises stress 

For plane stress condition, the Mises equivalent stress can be written in the following form 

  
 
 [   

    
    

    
    

   
   
   

     
    

]
   

                                                   

where    
   

,    
   

 and    
   

  are the normal and shear stresses at points close to the tip of the crack, and 

  is the usual material index. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 5.21. Angular variation of the equivalent Mises stress for various values of the ratio       and dimensions     

when     . 
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Fig. 5.22. Angular variation of the equivalent Mises stress for various values of the ratio       and dimensions     

when    . 
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(c) (d) 

 

Fig. 5.23. Angular variation of the equivalent Mises stress for various values of the ratio       and dimensions     

when    . 
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Fig. 5.24. Angular variation of the equivalent Mises stress for various values of the ratio       and dimensions     

when    . 
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Fig. 5.25. Angular variation of the equivalent Mises stress for various values of the ratio       and dimensions     

when    . 
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The Mises stresses around the crack tip for different dimension models against to polar angle for bi-

axial factor             , respectively, are shown in Figs. 21-25. The dashed curves refer the 

infinity dimension models which come from the analytical results. The Mises stresses are obtained 

from eq. (5.43). From every single picture, the numerical results for dimension parameter        

are the most approximate to the analytical results for all the values of distance    and biaxial factor 

 . It’s worthy noting that, different from circumferential stresses, the Mises stresses are not continue 

at both crack interface and bonded line. It can be noted that, the Mises stresses have the same shape 

(the curves haven’t intersect) in both of the media when biaxial loading parameter exceeds zero and 

the bigger the biaxial loading parameter, the bigger the Mises stresses.  

 

Fig. 5.26. Effect of biaxial factor k on the Mises equivalent stresses for         and          . 

The influence of biaxial factor   on the Mises stress distribution for        and           is 

shown in Fig. 5.26. It shows that the biaxial factor effects on Mises stresses for stronger material 

more than weaker one.  

Similar to analysis of circumferential stress, the relative error of Mises stress is defined as  

   
      
   

       
   

      
   

                                                           

where the superscript j is the index of materials, the subscripts     and     are analytical and nu-

merical results, respectively. 

The Mises stress differences between numerical and analytical solutions are plotted in Fig. 5.27, 

they also indicate use of the numerical solution which will be in the desired accuracy as testified in 

circumference stress. 
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(a) 

 

(b) 

 

(c) 

Fig. 5.27 Angular variation of the relative errors between analytical and numerical solutions for Mises stress (a) various 

dimension, (b) various biaxial factor, (c) various distance from crack tip. 
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5.5.3 Small plastic zone 

The tendency of real materials, especially metals, which exhibiting a yield stress should be taken in-

to account. In fact, there is always a region, although very small, around the crack tip, where plastic 

deformation occurs and stress singularities are not allowed. The crack tip distance    of which the 

stress has to be evolution should exceed the fracture core zone for insuring the linear elastic theories 

are suitable. Therefore, the crisis distance of the external border of the elastic-plastic zone is very 

important. The characteristic dimension of the plastic zone, when one or both of the joined solids 

deforms plastically, depending on the material properties, including the yield strength    of the 

weaker of the two materials, the ratios of yield strengths, and dimensionless properties describe 

strain hardening and ratios of elastic constants. To investigate the effect of the biaxial load and di-

mension size on the size of plastic zone near the tip of a crack at the interface, Mises yield condi-

tions can be applied  

  
   

   
   

                                                                            

where   
   

 are the Mises equivalent stresses and    
   

 are the uniaxial yielding stresses. 

According to Mises criterion, the solid semicircles in Fig. 5.28 refer to the values of load levels 

  
   

     in material 1 and   
   

     in material 2, respectively. It may be observed that, for the 

fixed loading conditions, up to some distances    from the crack tip and in almost the whole angular 

range, the equivalent stress   
   

 will exceeds the yield stress   
   

, i.e. plastic deformation occurs. But 

the above elastic analysis allows only a rough estimate of the plastic behavior of the two dissimilar 

media in a small neighborhood of the interface crack tip due to the Mises stress obtained from linear 

elastic theory. It’s a simplified version of method introduced by Theocaris and Andrianopoulos 

[20]. 

From Fig. 5.28 (a)-(c), it verifies again that when dimension ratio       , the numerical studies 

can be taken the place of analytical investigate, in other words, for some research objects that ana-

lytical results are impossible or difficult to be obtained, especially the practical objects, researchers 

can use numerical approaches to create and calculate the model.  

The Mises stresses on the interface front of the crack tip calculated in dissimilar media against to 

the ratio of the distance from crack tip to crack length are graphically shown in Fig 5.29. It is 

worthwhile saying that for varies biaxial factors the plastic lengths on the bonded line in both media 

are different. In the present case, the bigger the biaxial factor is, the larger the plastic region is. 
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(e) 

Fig. 5.28. Plastic zone according to Mises criterion for varies distance    and different biaxial factors  . 
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(a) 

 

(b) 

Fig. 5.29. Mises stresses on the interface front of crack tip (a) Material 1, (b) Material 2. Dashed lines refer to the values 

of load levels   
   

    ,   
   

    , respectively.        

It must be emphasized that although    
   

 means uniaxial yielding stresses, the material constant 

which shown in Fig. 5.28 the two semicircles in both media, the Mises stress is not a circular distri-

bution around the crack tip. Therefore, according to Mises criterion, the plastic zone is not a circular 

region around the crack tip, but depends on the polar angle, as shown in Fig. 5.30 for load levels 

  
   

     and   
   

     and Fig. 5.31 are for different load levels. Note that for      the 

compressive loading parallelling to the crack axis gives increased maximum distances to the zones 
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created as indicated in [32]. It also illustrated that the plastic zone in the weaker material is bigger 

than that in the stronger one. Fig. 5.31 (a) and (b) demonstrate the influence of the various yield 

stress levels on the zones of plastic for biaxial load factor     and     , respectively. It can be 

seen that the smaller the yield stress level is, the bigger the plastic zone is. For    , the plastic 

zones wider but lower than    . On the bonded line, the Mises yielding initiation boundaries are 

much smaller in weaker material for listed yield load levels for    , but inversely for     . 

 

Fig. 5.30 Mises yield initiation boundary for different values of biaxial factor for load levels   
   

    ,   
   

    . 

       

                                                   (a)                                                                                      (b) 

Fig. 5.31 Mises yield initiation boundary for different values load levels (a)     and (b)    . 
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In this paper, analytical and numerical solutions concerning the fracture process of an interfacial 

crack between dissimilar materials under biaxial loading are compared and discussed. The effect of 

several parameters on the model response is investigated. The examined parameters are: the dimen-

sions of the finite geometrical model, material combinations, the biaxial loading factor, strength at 

interface and the characteristic distance at which critical conditions must be evaluated. The model 

response includes the circumferential stress, the Mises equivalent stress, shape and extension of the 

plastic zone, the crack extension angle of the damaged system. The study of the stress field around 

the singular points is of particular interest, since the stress state affects the behavior of the cracked 

composite system. It appears that the fracture propagation takes place into one of the two bonded 

media or along the bond line, depending on the fracture properties of the two materials, the kind of 

bond and the biaxial loading factor. One of the aims of this study consists in finding the dimension 

of the finite interfacial crack system for which the analytical and numerical solutions are compara-

ble. In this way, the analytical solution can be used for assessing displacements, stresses and strains 

of damaged systems of finite dimensions.  

In order to point out some aspects connected with the proposed approach, in the following a number 

of general observations are reported.  

a) As far as a crack embedded in a homogeneous, isotropic and linearly elastic material is con-

cerned, any failure condition is evaluated at a very small, but unknown, radial distance    from the 

crack tip, when the effect of the normal stress collinear to the plane of the crack is discarded. How-

ever, the analysis involving only singular terms in the stress and displacement expressions may not 

be adequate [52-56]. The omission of the second term of the series representation for the stresses is 

arbitrary and equivalent to ignore the biaxiality of the applied load. When the nonsingular term in 

hand is considered, the critical conditions of related stress quantities must be evaluated at a small 

and specified radial distance from the crack tip. Such a distance, which generally include the core 

region affected by damage and nonlinear deformation, is known as characteristic distance and rep-

resents an unknown parameter to be specified experimentally or analytically [7, 25, 54, 55]. The 

characteristic distance under discussion can be considered as a material property. In conclusion, to 

make possible the application of criteria of crack extension at the interface, or its deviation into one 

of the two dissimilar bonded media, a small distance from the crack tip has to be specified. 

b) Regarding the application of fracture mechanics to investigate the static behavior of composite 

structures, in this study the mathematical model of the interfacial crack between two dissimilar ma-

terials is reviewed. The use of such a model in the analysis of adhesive joints has been the subject of 

debate for at least five decades, since Malyshev and Salganik [51] proposed the energy release rate 
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G as the fracture parameter for a crack propagating on the interface. However, the G parameter can-

not represent the inflection of the mixed mode ratio, therefore the use of stress intensity factors   , 

    as the fracture parameters have been introduced [7-9, 46, 48-50]. In analyzing interface crack 

problems in composite structures, the crack advancing process and the failure mechanisms affecting 

the interface and the bonded dissimilar materials need to be determined. The knowledge of the 

toughness parameter, which is a function of the radial direction starting from the crack tip, allows 

the calculation of the applied critical load for the cracking process in heterogeneous media [2, 7-8, 

53].  

c) Damaged regions at the interface between two dissimilar media can be modeled as line cracks 

which tend to enhance the initiation of failure by fracture [57-62]. The stress and displacement 

fields near the crack tip have to account for the influence of the load parallel to the crack direction. 

The finite critical distance from the crack tip should be specified to provide stress and strain states, 

as well as to apply criteria of crack extension at the interface, or its extension into one of the two 

dissimilar materials. In fact, the interfacial crack model has three possible paths when the loading is 

increased. The most possible path is along the interface when the bonding strength of the interface 

is weaker than the strength of the adherent materials. However, the interface crack kinks into one of 

the bonded media when the fracture parameter at a certain distance from the crack tip assumes its 

maximum value along a radial direction different from the interface itself. In bonded composite 

structures, the prediction of the growth of an interface crack between two dissimilar materials, or its 

deviation into one of the two adherent media, constitutes the most important problem involving the 

fracture process of composite structures. Such a problem is generally solved on the assumption of 

Linear Elastic Fracture Mechanics (LEFM). However, the experimental evidence for the problem 

under discussion suggests that the effects of nonlinear deformation and damage accumulation at 

crack tip should also be included. As a matter of fact, the fracture process should be based upon 

physical models accounting for damage processes in front of the crack tip. However, the exact de-

scriptions of these processes need further investigations.  

d) The interfacial crack model in a composite structure can also be described by assuming that the 

adherents are joined along the common part of their boundary by a continuous distribution of linear 

springs of proper stiffness, which simulate the presence of the adhesive. Such an interface model is 

able to represent the behavior of a thin, soft, elastic layer. It is usually referred to as “elastic inter-

face”, “week interface” or “imperfect interface”. When the layer thickness approaches to zero, the 

stiffness of the springs vanishes. Moreover, if the two adherents of the interface model are made of 

the same material, the strong interface case corresponds to a crack in a homogeneous material. 
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In this paper two kinds of interface have been considered. For strong interfaces, cracks sometimes 

kink out of the interface itself and then extended into one of two adjacent materials. In addition, a 

fracture criterion is used for predicting the kinking angle of interface crack between two dissimilar 

isotropic elastic media. As said above, for the prediction of the initial crack extension the fracture 

criterion takes the effect of the non-singular stress terms into account. It is worth noting that the 

prediction of crack propagation, coupled with the evaluation of the corresponding critical external 

loading, is a valuable resource for ensuring structural integrity and damage tolerance of structures 

of relevant interest. 

e) When a fracture criteria is applied, at a constant distance    from the crack tip, to predict crack 

propagation the circle with radius    centered at the crack tip is referred to as the “core region”. It is 

important to emphasize that, from the physical point of view, crack propagation is a process involv-

ing the configuration change of a body, since new surfaces are created. In order to reflect the evolv-

ing domain boundaries, the grid of the numerical discretization have to be changed. An incremental 

grid refinement and remeshing is required. As a matter of fact, cracks can also be represented as 

displacement discontinuities in the continuum domain. The magnitude of the displacement disconti-

nuity is physically represented by the magnitude of the crack opening. 

The concept of discontinuous displacement fields have to be mathematically treated to develop a 

numerical framework for the problem of strong discontinuities due to strain localization [30]. The 

formation of new surfaces is controlled by surfaces laws, which are different from the constitutive 

laws of continuum. 

f) The general interface fracture problem is of paramount importance for many micromechanics 

models and numerical problems of fracture mechanics. It has been shown that there is the oscillato-

ry singularity near the interface crack tip, which is physically unreasonable since it leads to over-

lapping near the ends of the crack. In order to correct such unsatisfactory feature, a number of pro-

posals of interfacial crack models have been put forward over the past decades. Initial studies on 

crack problems with interfaces revealed that the stress singularities exhibited an inverse square-root 

and the size of contact zone was very small in comparison with the crack length in a tensile field [1-

4, 7, 9]. In order to calculate the critical interfacial fracture mechanics parameters, such as stress in-

tensity factors and energy release rates for particular materials groups, the insertion of a thin, iso-

tropic, homogeneous layer at the interface and the location of the crack within the interlayer have 

also been performed. This technique converts the interface crack problem into a homogeneous crack 

problem. Even if the interlayer is not physically present, it was artificially introduced for calculating 

the interfacial fracture parameters.  
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The interface fracture problem addressed by the present paper arises in numerous engineering ap-

plications and is anything but closed. Recently, a study upon the problem at issue presents a modi-

fied interface dislocation model to remove the oscillation singularity for interface fracture [43]. The 

critical interfacial fracture mechanics parameters, such as the stress intensity factor, the mode mix-

ity and the energy release rates can be calculated. It is noticed that the Dirac delta function can be 

approached by a locally-distributed continuous function. 

When fracture mechanics problems are analyzed, fracture processes are often assumed to occur 

within the boundary of the local singular stress field of the crack of concern. The assumption under 

discussion, referred to as K-dominant field, enables the use of infinite geometry, which eliminates 

the necessity of the consideration of geometrical shape. In this approach, only local properties and 

information around the primary crack tip are taken into account [36]. 

g) In this study, nonlinear phenomena connected with crack initiation and propagation, damage or 

large deformations are not considered. Within the framework of LEFM, the fracture itself and oth-

ers non-linear phenomena that precede it are assumed to take place only within local regions which 

are small compared to the dimensions of cracks. As a matter of fact, composite materials, because 

of their intrinsic heterogeneities, are often affected by several nonlinear phenomena causing micro-

structural evolution, such as void growth, micro-cracking and interfacial debonding. These damage 

mechanisms, in conjunction with eventual contact interaction between crack faces, strongly affect 

the behavior of composites. As a result, it is essential to analyze the effects of micro-structural phe-

nomena on the macroscopic failure behavior of composite materials and structures. The analysis of 

the mechanical behavior of composite taking into account nonlinear phenomena, such as crack initi-

ation and propagation, requires a computational effort. In [37], a nonlinear finite element model for 

a cracked single-lap adhesive joint with laminate adherents was developed. It was also shown that 

stresses, energy release rates, and stress intensity factors vary nonlinearly with the crack length. It 

should be emphasized that crack initiation analysis can be developed by using a coupled stress-

energy approach, in order to study fracture onset in proximity of singularity and stress concentra-

tion. 
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Appendix 

The Cartesian components of the stress tensor near the right tip of the interface crack are 

readily obtained from [7]. We have in the medium 1, for         and      , the fol-

lowing expressions 
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and in the medium 2 for         and       , 
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The biaxial parameter k affects the stress     alone through a term which independent of the 

radial distance from crack tip, as in the homogeneous.  

As far as the stress region is concerned, we shall assume that the quantity controlling the frac-

ture initiation is the circumferential stress evaluated at a small radial distance    from the 

crack tip. 

We have in the medium 1, for         and    , the following expressions 
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and in the medium 2 for         and    , 
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Chapter 6  

Explicit solution for an interfacial crack under general 

loading 

6.1 Introduction 

Many structures are composed of different materials formed in layers for both man-made and natu-

ral origin. The layers are bonded together along interfaces. Since the last two decades, the im-

portance of composite materials has increased very rapidly in engineering applications because of 

their high strength and light weight. However, there are flaws at the interfaces of composite bodies 

because improper adhesion may lead to serious danger, thus a better understanding of interface frac-

ture mechanics is needed.  

The asymptotic elastic field of a semi-infinite crack lying along an interface between dissimilar iso-

tropic materials subjected to static loading was first considered by Williams [1] for plane strain 

condition. A number of solutions for the stress and the displacement field near the crack tip were 

obtained by England [2], Erdogan [3] and Rice and Sih [4]. Extensions to anisotropic elasticity for 

the near tip field have been made by Gotoh [5], Bogy [6], and Kuo and Bogy [7], as well as Ting [8, 

9]. The elasticity solutions for a variety of such crack problems involve oscillatory singularities 

have been worked out. Some progress have been reported from this point of view by Atkinson [10] 

who has resolved the anomalies of the elastic fields near the tip of an interfacial crack by introduc-

ing a realistic model of the interface, and subsequently by Comninou [11-13] who has shown that 

the stress singularities lose the oscillatory behavior near the tip of an interfacial crack, by assuming 

that the crack is not completely open and that its surfaces are in contact near the crack tip. The exact 

full field solutions of interface cracks in anisotropic dissimilar media are obtained by Ma and Luo 

[14].  

The boundary value problem of an interfacial crack under biaxial loading is solved on the basis of 

the well-known complex variable technique and the superposition principle by Piva and Viola [15]. 

The stress and displacement fields near the crack tip are completely determined, and the effects of 

the biaxial load parameter are pointed out. In a later article [16], the method mentioned above is ap-

plied to incompressible materials. For the model with a crack lies on the interface between two iso-

tropic materials subjected to tension and shear, Salganik [17] presented the exact solution of the 

stress distribution on the x-axis in the vicinity of the crack tip. 
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In this work, we describe the process of fracture induced by a central line crack initially in equilib-

rium at the interface of two dissimilar media, which is subjected at infinity to a system of general 

loading. Each medium is assumed to be homogeneous, isotropic and linear elastic. The explicit so-

lutions of stresses around the crack tip are obtained by complex variable technique of Muskhelish-

vili and the superposition principle.  

6.2 Theoretical analyses 

Fig. 6.1 shows the general configuration near the crack tip on the interface bonded by two dissimilar 

isotropic homogeneous materials. Material 1 with the subscript 1 is above the interface, while mate-

rial 2 with the subscript 2 is below.   ,    and    (i = 1, 2) are the Young’s modulus, the Poisson’s 

ratios and the shear modulus of the respective materials are shown below. 

 

Fig. 6.1. Crack between dissimilar media under general loading 

The solution of plane elastic problem is reached through the well-known complex equilibrium equa-

tions of Kolosov-Muskhelishvili 
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where    
   

,    
   

 and    
   

 are the stress tensor components with respect to a Cartesian coordinate 

system centered in the crack, elastic parameter          is for plane strain and    

(    ) (    ) is for plane stress,             is the complex displacement,       refers to 
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the medium 1 and 2, respectively. The four potential functions    and    will be determined by the 

boundary conditions and the conditions at infinity.  

By assuming the following conditions at infinity for medium 1    

   
    

       
    

      
    

    
    

                                                                 

where k is the biaxial load parameter and   denotes the rotation, the conditions at medium 2    in-

finity for will be expressed in the following form 
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If the traction free conditions on the crack surfaces and the traction and displacement continuity 

conditions along the bond line are assumed, the potential functions corresponding to the conditions 

eqs. (6.2) and (6.3) can be written as 
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where            ,      
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These solutions can be obtained by a slightly different method developed by Sih and Rice [4, 18] 

which involves combining the method of eigenfunction expansions with complex function theory. 

From eq. (6.1) and eq. (6.5) the stresses and displacements at any point of the two media can be 

computed.  

Viola and Piva [16] have reported the behavior of a crack between two dissimilar media under plane 

strain conditions and biaxial and shear loading at infinity. They assumed that the two bonded media 

are incompressible, therefore, the oscillatory behavior of the elastic fields disappears and the simpli-

fied stress expressions are obtained.  
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It is well known that, the stresses ahead of an interface crack remains proportional to   √  as in the 

case of a homogeneous material, but they possess an oscillatory character of stress and displace-

ment fields near the tips of the interfacial crack.  

In particular, confining our attention to the crack tip region, taking  

                                                                                                                                  

and expressing      as power series expansions, we obtain the following approximate expressions 

for the complex stress distributions 
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Rewriting      and obtaining the expresses of  ̅   ̅,  ̅   ,  ̅, √  and √  ̅as following 
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√ ̅  √                                                                                                                                                    

Substituting eqs. (6.8) and (6.9) to eq. (6.7), the Cartesian coordinate stress components in medium 

1 and medium 2 can be obtained as showing in Appendix I. 

For the polar stress components which are of relevance for the following, these complex relations 

can be written as 
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Therefore, the corresponding approximate polar stress expressions are obtained by substituting Car-

tesian coordinate stress components to eq. (6.10) as showing in Appendix I. 

For the same model in Fig. 1, Salganik [17] presented an exact solution of the stress distribution on 

the x-axis in the vicinity of the crack tip as 
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The solutions in eq. (6.11) are the same with the solutions in the present eqs. (AI.2) and (AI.3), 

which can be simply written as 
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It can be easily seen that, the same with the solution of bi-material system under biaxial loading, the 

circumferential stress coincides with the stress     along the interface bonded line (   ), i.e. it is 

continuous across the interface, and because of this property it shows a suitable quantity in view of 

the interfacial fracture analysis.  
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The load parallelling to the crack affects the circumferential stresses though the non-singular terms. 

In the next section it will be shown that the role-played by these terms in the correct description of 

stress related quantities and fracture interpretation. 

The biaxial parameter   only affects the stress     along through a term which is independent of the 

radial distance from the tip, as in the homogeneous case and in the bi-material system under the bi-

axial loading. As pointed out by Piva and Viola [15], the arbitrary omission of this term leads to 

significant errors in the calculation of the quantities related to     such as the tensile stress, the 

maximum shear stress, etc. and limits severely the prevision of the angle of incipient crack exten-

sion. The shear loading   only produces the singular stresses among    ,     and    . The influ-

ence of the loading ratio between tensile   and shear   on the circumferential stress, maximum 

shear stress and strain energy density will be investigated in the next section. 

The SIFs of an interface crack according to the originally definition proposed by Erdogan [3] are 

related with the stresses along the x-axis near the right crack tip as 

(        )   
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where    and     are the mode I and mode II SIFs of an interface crack respectively. 

        √                                                                                                     

where the     and the     correspond to the right and left crack tips, respectively. The Young’s 

moduli and Poisson’s ratios are set to be            ,             and          , 

respectively. The corresponding biomaterial constant is           . 

Using the definition by Erdogan [3], the relationship between the energy release rate   and the SIFs 

is expressed as the following equations by Malyshev and Salganik [19] 
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6.3 Numerical results 

In the previous analysis the local fields of elastic stresses in the immediate neighborhood of the in-

terfacial crack tip is obtained. This knowledge is essential in the application of fracture theories to 
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cracked materials. The aim of this section is to point out the effect of the biaxial load factor and 

loading ratio on the circumferential stress, the maximum shear stress and the strain energy density.  

6.3.1 Circumferential stress 

The dimensionless circumferential stresses 
   

   

 
       evaluated at 

  

 
      are represented in 

Fig. 2 for differently value of the biaxial load parameter   for the same material combinations, i.e. 

  

  
    ,          . Each curve corresponds to a fixed value of the ratio between shear loading 

and tensile loading. It appears that, according to expressions (circumferential stresses),     
       

   
 

at    , the circumferential stresses are continuous across the bonding interface and are depending 

on the both ratios of shear loading and tensile loading, the radial distance from the crack tip and 

crack length either on the loading effect parameter  . Moreover, the circumferential stress is absent 

at the crack surfaces of both the materials.  
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(c) 

 

(d) 

 

(e) 

Fig. 6.2. Dimensionless circumferential stresses for different loading ratio of (a)    ; (b)    ; (c)     ; (d) 

    ; (e)      . 
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In special case when the two bonded media are assumed to be incompressible and plane strain, i.e. 

                     , the expressions of stresses and the foregoing results reduce to those 

reported in the literature [16]. When       and       the crack is embedded into a homoge-

nous medium and the foregoing results reduce to those presented in the literature [20, 21]. 

The following figures in Fig. 6.3 show the effect of biaxial loading parameter   on dimensionless 

circumferential stress for different loading ratio of shearing load and tensile load    , i.e. 0, 0.1, 1, 

3 and 10, respectively, and the same material combinations, i.e.          ,           at the 

same location before crack tip         . It is noted that, the maximum value of       is, general-

ly, a function of biaxial loading parameter   in both materials. In the next section, this dependence 

of       on the load biaxiality will enter into use for the purpose of formulating a fracture criterion 

and the influence of the loading ratio on the prevision angle of initial crack extension will be dis-

cussed. Further, the effect of location before crack tip which calculate the stress components on the 

circumferential stress is comparing in Fig. 6.4 and Fig. 6.3(c). 
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(c) 

 

(d) 

 

(e) 

Fig. 6.3. Dimensionless circumferential stresses for different biaxial load parameter and loading ratio (a)      ; (b) 

       ; (c)      ; (d)      ; (e)       . 
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Fig. 6.4. Dimensionless circumferential stresses for different biaxial load parameter and 
  

 
      and      . 

6.3.2 Maximum shear stress 

The maximum shear stress    at points close to the tip of the crack can be expressed as follows 
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where    
   

,    
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 are the Cartesian components of stress.  

In Fig. 6.5, the angular variation of the dimensionless maximum shear stress evaluated at 
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illustrated for media combination 
  

  
     and           under various loading conditions 

 

 
     

 

 
        and loading ratio                   , respectively.  

It can be noted from those figures that the maximum shear stresses are not continuous across the 

bonding line owing to the discontinuity of    . The maximum shear stress can be used to determine 

the plastic zone according to Tresca criterion. The contents about plastic zone will be discussed in 

the future. 
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(d) 

  

(e) 

Fig. 6.5. The angular variation of the dimensionless maximum shear stress for different biaxial parameter and loading 

ratio (a)        ; (b)        ; (c)      ; (d)      ; (e)       . 

 

6.3.3 Stain energy density factor 

The energy density field 
  

  
 in the vicinity of the crack border may be expressed in the well-known 

form 

  

  
 

 

 
                                                                                                                         

The coefficient of  
 

 
  in the above equation is referred to as the strain energy density factor. Since 

the strain energy density 
  

  
 approaches infinity as   tends to zero, a finite 

  

  
 is evaluated at a criti-

-180 -120 -60 0 60 120 180
0

2

4

6

8

10

12



 m
 /

 T

k = 3

k = 1

k = 5

k = 0

k = -1

k = -3

k = -5

k = 3

k = 5

k = 0

k = 1

k = -1

k = -3

k = -5

Medium 2 Medium 1 r
0
 / a = 0.1

E
1
 / E

2
 = 0.5


1
 = 

2
 = 0.3

S / T = 3

-180 -120 -60 0 60 120 180
5

10

15

20

25

30



 m
 /

 T

k = 0

k = 5

k = -5

Medium 2 Medium 1 r
0
 / a = 0.1

E
1
 / E

2
 = 0.5


1
 = 

2
 = 0.3

S / T = 10k = 0

k = 5

k = -5



University of Bologna   PhD Thesis 

166 

cal distance   . The region inside    where the material is expected to be nonlinear elastic and plas-

tic is called the core region. 

The intensity of the strain energy density for the state of plane stress at a critical distance    can be 

written as 

     (
  

  
)
 

                                                                                                                                         

or 

     
 

  
[   

     
                    

 ]                                                                        

where the non-singular terms and higher order terms in    have been dropped. S is a      energy 

singularity function near the crack tip. It also can be rewritten as a dimensionless formula as follows 

  
  

    

   
                                                                                                                                                   

where 
 

   
 

  
 

 

  
. 

By substituting the stress components eqs AI.(1-6) of interfacial crack to the relation eq. (6.21), we 

can obtain a generalized form of the strain energy density factor for bi-material body in general 

loading, which contrary to the strain energy density factor of homogenous isotropic fractural mate-

rial, depending on the radial distance from the crack tip. 

The following figures in Figs 6.6-6.11 show the dimensionless strain energy density factor   
  

against polar angle   around the crack tip with          for different biaxial factor   and traction 

ratio     in homogeneous material and dissimilar material combination.  

Neither as the maximum circumferential stress continues across bonded interface in both homoge-

nous material and dissimilar material, nor as the maximum shear stress discontinues across bonded 

interface in both homogenous material and dissimilar material, the strain energy density factor con-

tinues across bonded interface in homogenous material but discontinues in dissimilar materials 

combination. It is well known that, the crack propagation angle in homogenous material can be de-

termined according to strain energy density factor criterion [22]. Unlike the circumferential stress, 

continuing across the interface, which can be used as a fracture criterion according to maximum 

tangential criterion, the strain energy density discontinues across the interfacial bonded line. The 

strain energy density factor fracture criterion only can be used in material 1 and material 2 separate-

ly. In order to apply the SEDF-criterion to all the range of the model including the interface be-
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tween dissimilar media, an extension of SEDF-criterion or the criterion of crack extents along the 

interface based on SEDF-criterion should be created.  

  
(a) 

 
(b) 

 
(c) 

Fig. 6.6. Dimensionless strain energy density factor versus polar angle in homogenous material under loading ratio of  

                       for (a)    ; (b)    ; (c)     . 
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(d) 

 

(e) 

Fig. 6.7. Dimensionless strain energy density factor versus polar angle in dissimilar media under loading ratio of  

                       for (a)    ; (b)    ; (c)     ; (d)     ; (e)      . 

 

Fig 6.7 shows the dimensionless strain energy density factor against polar angle centered on the 

crack tip of dissimilar materials combination           for various biaxial load parameter 

                and force ratio                   . As mentioned above, the strain energy 

density factor curves are continuous in both material 1 and material 2, but discontinuous across the 

interface. This characteristic of strain energy density factor curves also appears in the next figures 

6.8-6.11 for different variables. In Fig 6.8-6.10, it can be found that only when the materials in the 

both sides are the same, the strain energy density factor is continuous across the bond line. This 

characteristic corresponds to Fig 6.6.  
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(a) 

 

(b) 

 

(c) 

Fig. 6.8. Dimensionless strain energy density factor versus polar angle in different material combination 

                            , under loading ratio of        for biaxial loading parameter  

(a)    ; (b)    ; (c)     . 
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(a) 

 

(b) 

 

(c) 

Fig. 6.9. Dimensionless strain energy density factor versus polar angle in different material combination 

                            , under loading ratio of          for biaxial loading parameter  

(a)    ; (b)    ; (c)     . 
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(d) 

Fig. 6.10. Dimensionless strain energy density factor versus polar angle in different material combination       
                     , under loading ratio of         for biaxial loading parameter  

 a     ; (b)     ; (c)     ; (c)      . 

 

(a) 

 

(b) 

Fig. 6.11. Dimensionless strain energy density factor versus polar angle in the same material combination 

                 at different distance from crack tip      under loading ratio of        for biaxial loading pa-

rameter (a)    ; (b)     . 
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6.4 Conclusions 

As the widely application of the composite, the strength quantity of composite has became more 

and more important, especially the strength of composite with flaws. The cohesion failure is the 

most possible damage of composite. In this chapter, an interfacial crack along the bond line be-

tween two dissimilar materials subjected to general loading is investigated. The explicit solutions of 

stresses around the interfacial crack tip are obtained by complex variable technique of Muskhelish-

vili and the superposition principle. The circumferential stress, maximum shear stress and the di-

mensionless strain energy density factor around the crack tip are presented graphically.  
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Appendix 

Substituting eqs. (6.8) and (6.9) to eq. (6.7a) and (6.7b), the Cartesian coordinate stress components 

in medium 1 are obtained as following 
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Substituting eqs. (6.8) and (6.9) to eqs. (6.7c) and (6.7d), the stress components in medium 2 are 

obtained as following 
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The polar stress components can be obtained by substituting eqs. AI(1-6) to eq. (6.10) as following 

   
     (

   

 
 

 

   
)           

 √      

     √   
[          (    

 

 
 

  

 
)       

     (    
 

 
 

  

 
)]  

√     

     √   
{       [    (    

 

 
 

 

 
)     (    

 

 
 

  

 
)]  

       [    (    
 

 
 

 

 
)     (    

 

 
 

  

 
)]}  

√     (     )

      √   
{ [   (    

 

 
 

 

 
)  

   (    
 

 
 

  

 
)]   [   (    

 

 
 

 

 
)     (    

 

 
 

  

 
)]}  (AI.7) 

   
      [

   

 
 

 

   
]       

√     

     √   
[          (    

 

 
 

  

 
)            (    

 

 
 

  

 
)]  

 √      

     √   
[          (    

 

 
 

  

 
)            (    

 

 
 

  

 
)]  

√     (     )

     √   
    [    (    

 

 
 

 

 
)      (    

 

 
 

 

 
)] (AI.8) 

for medium 1. 
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for medium 2. 
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Chapter 7 

Fracture criteria and crack propagation of the interfa-

cial crack 

7.1 Introduction 

In chapter 3, most criteria are introduced for crack propagation in isotropic homogenous elastic ma-

terial. Among those criteria, strain energy density factor criterion (SEDF) [1], maximum tangential 

stress criterion (MTS) [2] and the maximum energy release rate criterion (MERR) [3, 4] are most 

popular due to these simple formulae and easy use. However, the difficulties always arise in the in-

terfacial crack propagation. Due to asymmetry in loading and elastic properties across the interface, 

many interfacial fracture problems are inherently mixed mode. In mixed mode, both normal and 

shear stresses act across the interface ahead of the tip of the interfacial crack, and both opening and 

shearing displacements occur on the crack faces behind the tip. Thus interfacial fracture in two-

dimensional geometries involves mode 1 (opening) and mode 2 (shearing) stress intensity factors, 

and one must allow for a toughness characterization which, in general, is a function of the relative 

amounts of mode 1 and mode 2. This is one of the main differences between interfacial fracture me-

chanics and fracture mechanics for isotropic homogenous materials in which mode I toughness re-

ceives predominant emphasis. As regards the fracture criteria for a crack at interface between dis-

similar materials, Piva and Viola [5] proposed a fracture criterion based on the MTS criterion, that 

can be used to assess whether an interface crack will extend along the interface or into one of the 

two adjacent materials in the plane perpendicular to the direction of maximum circumferential 

stress evaluated at a small distance from the crack tip. A slight different version, to take account of 

the shear loading was proposed by Viola and Piva [6]. He and Hutchinson [7] suggested a criterion 

based on the energy release rate for predicting the kinking angle. They showed that the competition 

between crack advance within the interface and kinking depended on relative toughness of the inter-

face to that of the joining material. Moreover, the kinking occured in the direction where the energy 

release rate was maximum. Yuuki and Xu [8] and Yuuki et al [9] carried out fracture tests of alumi-

num epoxy dissimilar materials with an interface crack under comprehensive mixed mode condi-

tions. Using the brazil-nut-sandwich compression tests, they showed that the fracture angles were 

well predicted by the criterion proposed by the authors themselves. Ayatollahi and Mirsayar [10] 

developed a fracture criterion, referred to as the modified maximum tangential stress criterion, 

which took into account the effect of T-stress in addition to the stress intensity factors for predicting 
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the kinking angle in the interface cracks. Rudraraju et al. [11] presented a variational multi-scale 

approach to predict mixed mode in-plane cohesive crack propagation. A comparative study of nu-

merical results with the corresponding experimental observations of crack propagation in laminate 

fiber reinforced composite panel was also presented. A criterion based on the relative minimum 

plastic zone radius (MPZR) was investigated for prediction of fatigue crack initiation angles of 

mixed mode by Bian and Kim [12]. Based on the complex stress state at the crack tip, a maximum 

ratio criterion was developed to determine the crack propagation for a given inclination angle by 

means of an opening mode theory by Bian and Taheri [13]. It assumed that the crack began to prop-

agate then the maximum value of ratio approached its critical value, and the direction of crack 

propagation coinciding with the direction of maximum ratio was defined.  

Furthermore, there are some experimental and special researches that deserve to be mentioned. 

Theocaris and Andrianopoulos [14] introduced the Mises elastic-plastic boundary to define the core 

region. They used the minimum value of the radium of the elastic-plastic boundary for defining the 

direction of crack propagation. Spyropoulos [15] constructed the zone of yield initiation for the in-

terface crack problem using the Mieses yield criterion according to the two-term stress solution re-

ported in [5]. In [16] the strain energy density criterion was applied to determine the direction of 

crack initiation for various biaxial load factors and material combinations. Buyukozturk and Hear-

ing [17] investigated fracture of two-phase composites in terms of parameters that influence the 

cracking scenarios in the interfacial regions and affect the fracture behavior of the concrete. Numer-

ical and physical model tests were performed to study the influence of constituent fracture proper-

ties on the behavior of concrete composites. A series of interfacial crack experiments were conduct-

ed by Choi and Chai [18] using biaxial loading device for various mixed modes. Lee et al. [19] re-

visited the criterion to prevent kink of a crack out of a bi-material interface under the presence of in-

plane residual stresses. They predicted that in-plane residual stresses control the energetic condi-

tions to prevent crack kinking out of the interface. The change in the stress state near the crack tip 

due to its own contribution to the singular stress field like globally applied loadings was required. In 

other words, the problem at issue cannot be handled in purely local terms, but a global approach 

should be adopted. Kayupov and Dzenis [20] modeled the crack propagating under quasi-static 

loading and in fatigue life by nonlinear finite element analysis. Goyal et al. [21] proposed a new 

strength-fracture model for decohesion elements, which includes the geometric nonlinearity of the 

adherends and adhesive. The initiation and progression of interfacial cracks and/or cohesive cracks 

were simulated by positioning decohesion elements, at the adherent-adhesive interface and between 

bulk adhesive element. At an earlier date, the authors had postulated an irreversible cohesive-

decohesive constitutive law for modeling the delamination process using interfacial surface discon-
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tinuities [22]. Yang et al. [23] calculated the critical stresses, taking into account the influence of 

the adjacent ply angle and the crack size, for the initiation of crack propagation in the transverse di-

rection and in the tunneling direction of a crack embedded in the central layer of a composite lami-

nate. They showed that transverse cracking was a more possible fracture mode in composite lami-

nates with initial crack-like defects. Kaminski [24] pointed a mathematical model and its numerical 

realization of the composite materials with stochastic interface defects. The composite was discre-

tized using the Boundary Element Method.  

For each material pair, a universal singular crack tip field exists at the crack tip according to linear 

elasticity theory for a traction-free line crack. For the plane problems, the normal and shear stresses 

of the singular field acting on the interface is distance   ahead of the tip, and it can be written in the 

compact “complex” form [25] 

         
         

  

√   
                                                            

where   √   and the oscillation index   is the bi-material constant depending on   according to 
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From the above equation, we note that the dimension of complex stress intensity factor      

    is  [      ][      ]      , whereas that of its amplitude | | is the familiar [      ][      ]   . 

In plane condition, the crack face displacements a distance   behind the tip are given by 
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The amplitude factors,    and   , depending linearly on the applied loads and on the details of the 

full geometry of the body, will be illustrated below. These stress intensity factors are defined to be 

consistent with corresponding stress intensity factors for cracks in homogeneous problems. The en-

ergy release rate per unit length of extension of the crack in the interface is related to the stress in-

tensity factors by 
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which is the generalization of Irwin’s famous result for a homogeneous isotropic material. 

When    ,      , and then    and    are conventionally interpreted as mode 1 and mode 2 

stress intensity factors measuring the singularity of normal and shear stresses, respectively, on the 

interface ahead of the tip.  

When    , the relative proportion of normal and shear stresses on the interface in the singular 

field varies slowly according to                         , and this feature complicates the 

implementation of interfacial mechanics in several respects. When    , the traction-free line 

crack solution is not fully consistent since the solution of displacement implies that the crack faces 

interpenetrate behind the tip. Although seemingly troublesome, this inconsistency will usually be 

inconsequential since the distance of the contact region behind the tip is generally exceedingly 

small compared to the zone of nonlinear deformation or fracture processes. More problematic is the 

fact that    and    cannot be interpreted in a straightforward way as mode 1 and mode 2 intensity 

factors directly linked to normal and shear stresses.  

In the following sections, two fracture criteria about interfacial crack are introduced in detail. The 

first criterion is proposed by He and Hutchinson [7] (for simplicity, hereafter designated by HH-

criterion) which based on the competition between the ratios of the energy release rate of interface 

cracking, substrate cracking, the interface and substrate toughness. The second failure criterion is 

proposed by Piva and Viola [5] (for simplicity, hereafter designated by PV-criterion) combining the 

maximum normal stress criterion with the phenomenological criterion. It can be considered as an 

extension of MTS criterion for interfacial crack propagation.  

7.2 HH-criterion [7] 

Analyzed by He and Hutchinson [7], a plane strain crack is kinked out of the interface between two 

dissimilar isotropic elastic solids. The focus is on the initiation of kinking and thus the segment of 

the crack leaving the interface is imagined to be short compared to the segment in the interface. Ac-

cordingly, the analysis provides the stress intensity factors and energy release rate of the kinked 

crack in terms of the corresponding quantities for the interface crack prior to kinking. Roughly 

speaking, the energy release rate is enhanced if the crack heads into the more compliant material 

and is diminished if it kinks into the stiff material. The results suggest a tendency for a crack to be 

trapped in the interface irrespective of the loading when the compliant material is tough and the stiff 

material is at least as tough as the interface.  

A fracture mechanics of interfacial separation is starting to emerge, although there are still concep-

tual difficulties to be overcomed associated with the nonstandard oscillatory square root singularity 
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of some interface cracks. He and Hutchinson analyzed a crack kinking out of an interface which is 

carried out with the aim of providing the crack mechanics needed to assess whether an interface 

crack will tend to propagation in the interface or whether it will advance by kinking out of the inter-

face. The geometry analyzed is shown in Fig. 7.1. The parent interface crack lies on the interface 

between two semi-infinite blocks of isotropic elastic solids with differing elastic moduli. A straight 

crack segment of length   and angle   (positive clockwise) kinks downward into material 2. The 

length   is assumed to be small compared to the length of the parent interface segment of the crack, 

and thus the asymptotic problem for the semi-infinite parent crack is analyzed. The stress field prior 

to kinking (   ) is therefore the singularity field of an interface crack characterized by a complex 

intensity factor,         , to be specified precisely. The crack tip field at the end of the kinked 

crack is characterized by a combination of standard mode I and mode II stress intensity factors,    

and    . The analysis provides the relationship among    and     for the kinked crack and    and 

   for the interface crack as dependent on the kink angle   and the material moduli. The energy re-

lease rate of the kinked crack is also related to the energy release rate of the interface crack.  

 

Fig. 7.1 Geometry of kinked crack 

The stress field for the semi-infinite interface crack (   ) has the form 

      {              ̅     }                                                    

where   √  ,   and   are planar-polar coordinates centered at the origin,          is the 

complex interface stress intensity factors, and oscillation index   is in eq. (7.2). The angular de-

pendence  ̅      is complex in general, but universal for a given material pair. On the interface 

ahead of the tip the tractions are reduced as eq. (7.1). 

The results for the kinked crack proposed by He and Hutchinson can be used to assess whether an 

interface crack will propagate in the interface or whether it will kink out of the interface. The sim-

plest approach is to assume that the condition for propagation in the interface is        and that 

for propagation in material 2 is      . If     is sufficiently large, compared to    , the crack will 
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never kink into material 2. When     is comparable to     there will still be a loading range, i.e., 

        , (  is the phase angle will be defined in next section) such that the crack stays in the 

interface, while for       , the interface crack will kink into material 2. The interface toughness 

will be discussed in the next section. 

In plane strain, the energy release rate eq. (7.4) can be written as 

   
[                 ]  ̅

          
                                                      

in the new normalization. The energy release rate   of the kinked crack     is given by 

  [            ]   
     

                                                              

A similar analysis can be carried out when     depends on  . This can be expected when the frac-

tured interface has some roughness, as     increasing with  . The important point is that the level 

of     required to prevent kinking out of the interface will depend on the interface toughness     at 

the loading angle   applied. When there is no dissimilarity in the elastic properties of the materials 

across the interface, the directions of kinking associated with the maximum energy release rate and 

with       are virtually the same.  

This criterion is modified simplify the analysis for effective simulation using the finite element 

method by Yang [26], thus making the simulation acceptable engineering purposes. The modifica-

tion is described as: if           , the crack is assumed to remain at the interface for an arbi-

trary phase angle of loading, as the flaw meets the condition for continuing advance in the interface 

at an applied load lower than that necessary to advance the crack into the substrate. On the other 

hand, if         and      , the crack is assumed to remain at the interface for    ; the 

crack will kink out of the interface and propagate in material 2 for     and               . 

The function      can be expressed approximately as 

     {

      [     ]     

      [       ]

      [       ]
                                                                        

The value of interface toughness,     , depending on the phase angle of loading and will be dis-

cussed later. The definition of      doesn’t have any physical meaning or experimental support. 

It’s just for making numerical analysis conveniently.  

7.3 PV-criterion [5] 
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Generally, for a crack in a planar anisotropic medium the crack extension conditions are established 

by comparison of the elastic stress vector  ̅ and the strength vector  ̅ [27]. It is assumed that crack 

extension occurs when the stress vector, calculated at a small radial distance from the crack tip as a 

function of external loading, coincides with or exceeds the strength vector which is a function of 

material of material properties. Referring to Fig. 7.2(a), where the polar contours   and   of the 

strength and stress vectors respectively are represented, we observe that failure will occur along 

with the direction    which does not coincide with the direction of the maximum stress vector. 

     

(a)                                                   (b) 

Fig. 7.2 (a) Fracture criterion for an anisotropic material; (b) Strength regions for an interfacial crack between dissimilar 

materials. 

For a fixed system of applied loads, it has been observed that the stress distribution around the tip of 

the interfacial crack depends on the elastic properties of the two media through the Young’s moduli 

   and Poisson’s ratios   . Now, for a known tensional state, fracture initiation and propagation de-

pend on the critical stress intensity factors    
   

 and    
   

 of the two media and on the adhesive 

strength of the bond through the critical parameter    which is associated with the propagation of 

tensile bond cracks. 

Owing to the fact that both materials are assumed, separately, linearly elastic, homogeneous and 

isotropic, the critical stress intensity factors    
   

 and    
   

 are independent of the radial direction 

from the crack tip. Consequently, the strength region assumes the appearance shown in Fig. 7.2(b), 

if, for example,       
   

    
   

. The boundary         is discontinuous along the axis of 

the crack where the point   is representative of the interfacial strength strictly connected with   . 

Moreover, as far as the stress region is connected, we shall assume that the quantity controlling the 

fracture initiation is the circumferential stress evaluated at a small radial distance from the crack tip. 

In view of the particular anisotropy involved in the interfacial crack problem, a failure criterion is 

proposed combining the maximum normal stress criterion with the phenomenological criterion 
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mentioned above. The following assumptions are made referring to a right polar coordinate system 

with the origin at the crack tip: 

(1) The crack extension occurs along the maximum tangential stress direction or in to one of the 

two adjacent materials in the plane perpendicular to the direction of maximum circumferential 

stress evaluated at a small distance    from the crack tip. (2) The initiation of the crack extension 

occurs as soon as one of the following conditions is satisfied: 

√       
   

|
  
   

   
    

   
     

   
                                                                 

√       
   

|
  
   

   
    

   
      

   
                                                            

√       |     
                                                                                             

where   
   

,   
   

 are the angles corresponding to the crack initial propagation direction in the two 

media, and    
   

,    
   

 and    are the critical stress intensity factors of the two media and the bond-

ing face, respectively. 

The first assumption states the possibilities of the crack to extend into one material or the other or 

along the interface for any system of external loading. The second assumption stating which of the 

above possibilities is chosen by the crack and the corresponding values of the critical load and of 

the biaxial parameter   allowing the initiation of the extension. As soon as one of the conditions of 

eqs. (7.9-7.11) is satisfied among the others, the crack extension initiates along the direction   
   

 or 

  
   

 in the corresponding medium, or along     at the interface. These various possibilities are 

indicated, for example, in Fig.7.3 where the failure criterion is shown in a plane polar representa-

tion. 

     
(a)                                                            (b)                                                           (c) 

Fig. 7.3 Representation of the fracture criterion 

The polar expression of    , calculated at the radial distance     , is proportionally influenced by 

the applied loads. Then, an increase of   at a fixed value of  , and vice versa, causes a proportional 

increase of the stress region up to some point of the boundary of the strength region and at this point 

fracture initiation occurs. 
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The configuration of Fig. 7.3(a) corresponds to the interfacial crack propagation, whereas the con-

figurations of Figs. 7.3(b) and (c) correspond to the crack extension into the medium 1 or 2 with di-

rections of extension   
   

,   
   

, respectively. 

According to the analysis above, it is possible to know whether the crack extension occurs along the 

interface or into one material, and, in the second case, the angle of incipient fracture. The procedure 

for obtaining the crack extension previsions can be illustrated by the following schematic represen-

tation. Let   ,  ̅ ,  ̅  
   

,       be known quantities, then, the curves corresponding to the ratios  

  
   

 
 ̅  

   

  
    

 ̅ 

 ̅ 

                                                                      

can be drawn, for example, as is show in Fig. 7.4. 

                

                                                           (a)                                                                             (b) 

Fig. 7.4 Explanation of the procedure to obtain the previsions of the fracture criterion. 

From Fig. 7.4 (a) it follows that when      the condition eq. (7.10) is satisfied before all the oth-

ers and the crack extension occurs along the interface. When      with         , the verti-

cal line      meets first the curve   
   

, then the condition eq. (7.8) is satisfied before all the oth-

ers and crack extends in the medium 1 along the direction    obtained from Fig. 7.4(b). In the same 

way, when     , for example, the crack extension occurs in the medium 2 along the direction   . 

When      the two conditions eq. (7.9) and eq. (7.11) are contemporaneously satisfied, but it 

seems that the crack will not grow along the interface. In fact, for the extension of the crack along 

the interface a constant  ̅ is needed while the extension of the crack in the medium 1 requires a de-

creasing tension. In the same way, when      the extension occurs in the medium 2. 

Two other cases in addition to those shown in Fig. 7.4 may occur. It is possible that for any value of 

  and for a fixed ratio   
   

       the corresponding curve is above or below the debonding line. 

In these cases the extension occurs along the interface and the medium  , respectively. In the fore-
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going description the particular importance of the contribution due to the non-singular terms de-

pending on the biaxial parameter has been shown in order to explain the deviation of the crack into 

one material or the other. The singular solution alone is generally insufficient to account for the be-

havior of the crack tip. In fact, in the case which is shown in Fig. 7.4(a), for example, we can see 

that, if the effect due to the biaxial parameter is neglected, the crack should extend only at the inter-

face. 

In order to summarize the main results concerned with the above criterion we reiterate the following 

points. Principally, it is important to note that for a fixed state of stress the behavior of the crack tip 

is strictly dependent on the ratio  ̅  
   

     and  ̅  
   

   . If the adhesive strength of the bond is not 

sufficiently strong, i.e.  ̅  
   

    are very high, it is possible that the crack extension takes place at 

the interface even though the angle corresponding to the maximum value    , for a fixed     , does 

not occur at the bond line    . In addition, if the bonding strength of the interface is great 

enough, depending on the fracture properties of the adjacent materials, the fracture propagation can 

occur into one of the two media, even though the circumferential stress has its maximum in the oth-

er medium. Practically, the availability of the foregoing method is submitted to the knowledge of 

the quantities   ,   ,    
   

         and     

A slightly different version is, to take account of the shear loading, the PV-criterion modified by the 

authors [6] by only changing eq. (7.11) to 

√    [   
           

       ]
                                                                 

   is the critical parameter taking account of the adhesive strength of the bond and associated with 

the co-planar crack propagation. It should be pointed out that the debonding condition eq. (7.13) is 

valid in the absence of frictional effects, i.e. when      . 

7.4 Interface toughness 

One common characteristic in the two criteria is the strength of the interface, specifically in HH-

criterion is the energy release rate of the interface and in PV-criterion is the critical stress intensity 

factor of the interface. For a crack between two dissimilar materials difficulty always arises, i.e. the 

interface toughness. Efforts to measure interfacial toughness under mixed mode conditions, as re-

viewed by Liechti and Hanson [28] and Volinsky et al [29]. Parallel efforts have also been under 

way to develop mixed mode fracture specimens designed to measure the delamination toughness 

associated with ply separation in polymermatrix composites [30]. A series of experiments [31-33] 

have focused on the interface between epoxy and glasses, metals and plastics. Thouless [34] has 
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carried out mixed mode toughness experiments for crack propagation in the interface between a 

brittle wax and glass. In all these systems, the interface toughness is not a single material parameter 

rather it is a function of the relative amount of mode 2 to mode 1 acting on the interface.  

The toughness      of the interface can be thought of as an effective surface energy that depends 

on the mode of loading. An overview of various mechanisms responsible for the strong dependence 

of interfaced toughness on mixed mode is given by Evans et al. [35]. Two primary mechanisms are 

asperity contact and plasticity. Asperities on the fracture surfaces will tend to make contact for 

some distance behind the tip when mode 2 is present along with mode 1. A micro-mechanics model 

of shielding of the tip due to asperity interaction was presented by Evans and Hutchinson [36]. That 

model led to a prediction of      in terms of a non-dimensional measure of fracture surface tough-

ness. Crack tip plasticity also depends on  , with the plastic zone in plane strain increasing in size 

as | | increases, with   held fixed [37]. The approach for the time being is that the interface has ze-

ro thickness and is modeled by the toughness function      which, in general, must be determined 

by experiment. 

A simple, one parameter family of mixed mode fracture criteria is 

  
     

     
     

                                                                         

The parameter   adjusts the influence of the mode 2 contribution in the criterion. The limit     is 

the “ideally brittle” interface with initiation occurring when     
  for all mode combinations. This 

limit coincides with the classical surface energy criterion. When    , crack advance only depends 

on the mode 1 component.   is equal to 0.3 for the plexiglas/epoxy system [32]. For any value of  , 

  
  is the pure mode 1 interface fracture toughness. The strain energy release rate criterion can be 

cast in the form where the mixed mode toughness function is  

       
 [            ]                                                               

The toughness is plotted as a function of   for various values of   in Ref [25]. 

Other phenomenological criteria have been proposed to characterize mixed mode toughness data for 

interlaminate fracture, e.g., Kinloch [30]. Two alternatives to eq. (7.15) are given which have quali-

tative features that may more realistically reproduce data trends for interfacial fracture 

       
 {      [      ]}                                                              

and 

       
 {            }                                                                
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Both coincide with eq. (7.15) in the limit    , i.e., they reduce to a criterion based on a critical 

value of   , independent of   . Both are ideally brittle with    . According to eq. (7.16), the 

toughness increases sharply as      . Eq. (7.17) models the toughness leveling off as       

for all    . While this feature should not be taken literally, it did emerge in the simple model of 

mixed mode interface toughness due to asperity contact of Evans and Hutchinson [36]. Of the three 

formulas for     , eq. (7.17) reflects the trends of that model most accurately. 

Eqs. (7.15) and (7.17) are two-parameter criteria for non-oscillatory materials. But since these crite-

ria assuming that the toughness has a minimum at    , these criteria should be modified in oscil-

latory bi-materials as [38] 

       
 [                 ]

                                                    

and 

       
 {                 }                                                     

where    is a phase shift. These are three-parameter models [39]   
 ,   and    must be determined 

from experimental data. Charalambides et al. [40] has proposed a similar model with three parame-

ters. 

When    , the notion of a mode 1 or a mode 2 crack tip field must be defined precisely, and the 

possibility of contact of the crack face within the region dominated by the near tip K-fields must be 

considered. As noted by Rice [41], a generalized interpretation of the mode measure is the most im-

portant complication raised by the oscillatory singularity. First, a definition of a measure of the 

combination of modes is made that generalizes eq. (7.16). 

The phase angle   is a measure of the relative proportion of shear to normal tractions at a character-

istic distance   ahead of the crack tip. The phase angle   is an important parameter in the character-

ization of interfacial fracture toughness. Let   be a reference length whose choice will be discussed 

later. Noting the stress distribution on the interface from the K-field, define   through the relation 

[41] as 

       [
  (    )

        
]                                                                         

where          is the complex stress intensity factor. For a choice of   within the zone of 

dominance of the K-field, eq. (7.20) is equivalent to  

       [(
   

   
)
   

]                                                                         
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Moreover, the definition reduces to                when    , since       when    . 

When    , a mode 1 crack is one with zero shear traction on the interface a distance   ahead of 

the tip, and a mode 2 crack has zero normal traction at that point. The measure of the proportion of 

“mode 2” to “mode 1” in the vicinity of the crack tip requires the specification of some length quan-

tity since the ratio of the shear traction to normal traction varies (very slowly) with distance to the 

tip when    . 

The choice of reference length   is somewhat arbitrary. It is useful to distinguish between a choice 

based on an in-plane length   of the specimen geometry, such as crack length, and a choice based 

on a material length scale, such as the size of the fracture process zone or a plastic zone at fracture. 

The former is useful for discussing the mixed mode character of a bi-material crack solution, inde-

pendent of material fracture behavior, while the latter is advantageous in interpreting mixed mode 

fracture data. 

7.5 Crack propagation of interfacial cracks 

A crack lying in the interface between two brittle elastic solids can advance either by continued 

growth in the interface, see Fig. 7.5 (b), or by kinking out of the interface into one of the adjoining 

materials, see Fig. 7.5 (c) and (d). The competition can be assessed by comparing the ratio of the 

energy release rates for interface cracking and for kinking out of the interface to the ratio of inter-

face toughness to substrate toughness [7], or depending on the ratios of substrate toughness to the 

interfacial toughness    
   

    [5]. 

The most likely path is along the interface because the bonding strength of the interface is weaker 

than the strength of the homogeneous material, in general. However, the crack sometimes kinks into 

either material out of the interface: (i) if the bonding strength of the interface is strong enough and 

the crack is subjected to shear stresses [6], and (ii) depending on the state of stress near the crack tip 

i.e. even though the interface bond is weak, the crack may kink into the adjoining material under 

mixed mode loading [5]. 
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(a)                                                                               (b) 

     

(c)                                                                              (d) 

Fig. 7.5 (a) Three distinct possibilities for the interface crack between two bonded dissimilar materials, (b) extension 

along the interface, (c) deviation into material 1, (d) penetration into material 2.    

7.5.1 Interfacial crack under biaxial loading 

In the first situation, the interface assumed very well bonded. In another word, the crack will not ex-

tend along the interface. PV-criterion is used here and the angles at the maximum values of the cir-

cumferential stresses are obtained in both media, as a function of the biaxial loading factor   for 

various values of the dimensionless radial distance      from the right-hand tip of the crack are 

showed in Fig. 7.6. As mentioned in [5] the angle of maximum circumferential stress in the weaker 

of the two bonded materials can be well above the value of zero also for negative values of biaxial 

force factor  . For the stronger material the angle at the maximum circumferential stress occurs is, 

on the other hand, zero when biaxial force factor   is negative and can be greater than zero for posi-

tive value of  . We note that the angular position of the maximum circumferential stress is in gen-

eral highly influenced by the small distance    from the crack tip at which the circumferential 

stresses are evaluated. The shorter the radium distance, the smaller the crack extension angle in ma-

terial 2, as well as in material 1 for      as shown in Fig. 7.6.    is a threshold, in Fig. 7.6 it is 

about 2. Moreover, as    , the angle of maximum circumferential stress occurs for       . 

The different shapes pointed in Fig 7.6 are obtained from Chapter 5 by ABAQUS of the mode 
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       and the same material combination with the analysis mode. An excellent agreement be-

tween the numerical results and the analytical calculations is observed for the different biaxial force 

factor and distance from the crack tip in both materials. 

 

Fig. 7.6 Comparisons of crack propagation angles in both media for       . Solid curves are analytical results.    

Moreover, as the crack propagation angle is strongly depended on the value of      , which is a 

very small distance from the crack tip but is unknown, also some researchers declared that the dis-

tance is not a circular curve but can be improved by the bounds of the plastic zone. But most of the 

criteria have been proposed [42] are calculated from the linear elastic theory based on continuum 

mechanics analysis. 

Moreover, there are numerous studies [43, 44] demonstrating that including the nonsingular terms 

T-stress effect into the fracture criterion can improve the accuracy of the proposed crack growth 

orientation. As shown in the Cartesian coordinate stress components, the T-stress is   

    [      
 

   
]                                                                         

From the circumferential stress expression, the biaxial factor effects on the crack initiation angle 

just and only according to T-stress and the span approximating to 90 degrees can’t be ignored. 

For the most popular material combination aluminum-epoxy [45, 46], the mechanical properties are 

presented in Table 7.1. 

Table. 7.1 Material properties for epoxy and aluminum 

Materials Young’s modulus (GPa) Poisson’s ratio 

Material 1 : Epoxy 1.52 0.33 

Material 2 : Aluminum 68.9 0.33 
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Fig. 7.7 Circumferential stresses and crack extension angles for A-E combination 

Table. 7.2 Crack initiation angles in epoxy    for various dimensionless radial distances 

     
Wang et al. [46] 

Experimental 

Spyropoulos 

[45] MTS 

Spyropoulos [45] 

SED 

Present 

Analytical 

Present 

Numerical 

0.001 35
O
 29

O
 36

O
 35.5

O
 34.5

O
 

0.005 --- 19
 O

 27
 O

 24
 O

 24
 O

 

0.01 --- 15
 O

 23
 O

 19
 O

 19.5
 O

 

0.03 --- 9
 O

 17
 O

 10.5
 O

 11.5
 O

 

0.05 --- 6
 O

 14.5
 O

 6.5
 O

 7.5
 O

 

 

Table. 7.3 Crack initiation angles in epoxy    for various   
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Fig. 7.7 shows the circumferential stresses obtained by analytical and numerical methods and the 

crack extension angles according to the criterion are mentioned above. In Table 7.2 the results are 

presented for different methods of the dissimilar materials in Table 7.1, uniaxial loading (   ), 

various radium distances and        for numerical method. It shows the Spyropoulos [45] SED 

method and the present results have very good agreement with experimental result for          . 

Furthermore, the present results are very similar to Spyropoulos [45] SED results for          , 

but to Spyropoulos [45] MTS results for          . The crack extension angles in epoxy com-

puted by different methods for various biaxial factors   are presented in Table 7.3. This table shows 

that the present crack initiation angles are yield to Spyropoulos [45] SED only for | |   . From 

Table 7.2 and 7.3, the crack initiation angles increase, as radium distance decreased and biaxial fac-

tor increased. The present analytical and numerical results always have excellent agreement with 

each other. 
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In the previous analysis, the interface between the two substrates is supposed perfect bonded in any 

material combinations and loading conditions. In fact, for bi-material system or composite materi-

als, the damage generally occurs in the interface firstly due to the interface is always weaker than 

any other substrates. Therefore, the interface debonding can’t be omitted in the fracture criterion 

and in the crack propagation analysis.   

The PV-criterion is used to obtain the crack extension angle for the perfect bonded interface crack 

penetrating into one of the two substrates. When the criterion is applied to the interface crack that 

the interface could be debonded, the limitation of the PV-criterion is the interface critical stress in-

tensity factor    which is unknown. For the mode for the time being is that the interface has zero 

thickness even the interface between a bi-material system is actually a very thin layer of a third 

phase and is difficult to define and measure the critical intensity factor. Fortunately, the global frac-

ture criteria are essentially based on the energy balance, i.e., HH-criterion, and are generally appli-

cable under the conditions that crack propagates along an interface. Even more, some extensions of 

the energy balance criterion have been reported to study the mixed mode crack problems. The HH-

criterion is used here for the crack extends along the interface. However, the assumption of constant 

interface toughness    does not seem to be realistic in the mode for the crack onset, specially mixed 

effects obviously, the fracture mode mixity at the tip of the crack situated along the interface signif-

icantly depends on the phase angle. It is well known that such variations of fracture mode mixity in 

an interface crack are usually associated to relevant variations of interface fracture toughness.  

As described in HH-criterion, the initiation of crack advance in the interface when the crack tip is 

loaded in mixed mode characterized by  , the critical condition is  

                                                                                           

The toughness of the interface,     , can be thought of as an effective surface energy that depends 

on the mode of loading. The condition eq. (7.23) is also assumed to hold for quasi-static crack ad-

vance when crack growth resistance effects can disregarded. 

The energy release rate of the crack advance in the interface is defined by Malyshev and Salganik 

as [47]  

  
    

  
   

    
                                                                         

where 
 

   
 

 
(

 

  ̅̅̅̅
 

 

  ̅̅̅̅
), as    ̅ is defined in eq. (7.3). Eq. (7.24) will reduce to classical Irwin’s rela-

tionship in the absence of mismatch. Eq. (7.24) and eq. (7.4) can be re-expressed using the connec-

tion                 . 
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The toughness of interface is discussed in section 7.4, eq. (7.18) will be used here as the critical 

crack onset value. Special attention should be paid to several material parameters in the interface 

toughness definition. Firstly, the phase angle    is defined as 

       (
  

  
)                                                                              

Secondly, the pure mode 1 interface toughness   
  , in general, must be determined by experiment. 

Actually, DCB (double cantilever beam) test specimen is usually used to determine the pure mode 1 

toughness as in Fig 7.8. There is a crack lies on one side of interface of DCB specimen. The load 

applied to the cracked side according to the two rigid blocks attached in the substrates. The corre-

sponding curve between the applied load and the displacement in several iterations is recorded, as 

that shown in Fig. 7.9. The corresponding crack extension length with the applied loading is also 

needed to record.  

 

Fig. 7.8 Double cantilever beam (DCB) test specimen. 

 

Fig. 7.9 Typical     curve of the interfacial mode I fracture toughness test. 

Based on LEFM, the pure mode I interfacial toughness of DCB specimen can be calculated as [25]: 

  
  

  
  

  

  
                                                                               

DCB specimen

Apply force here
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where    is the critical loading of the interface;   is the crack length;   is the width of the DBC 

specimen; and   is the flexibility of the DBC specimen, which can be determined to use the follow-

ing formula 

  
 

 
                                                                                   

where   is the displacement corresponding to load  . 

Here we introduce three methods for calculating the pure mode I toughness.  

Beam theory method, the DCB, considered as two cantilever beam together with crack tips are co-

incide. Basing on beam theory,    

  
   

   
 

   

    
                                                                          

where   is bending modulus,         is the second moment of inertia,   is the half thickness 

of DCB. According to eqs. (7.26) and (7.28),  

  
  

     

   
                                                                                

where    is the displacement corresponding to the critical loading   .  

But for the situations of big displacement, shear deformation and the crack tip rotation, the eq. 

(7.29) should be modified by changing the crack length as     [48].   can be determined by the 

approximate line of √ 
 

  . The value is the same with the intercept of the approximate line on the 

a-axis, therefore, the pure mode I interface toughness changes as  

  
  

     

       
                                                                          

The second method is flexibility method proposed by Berry [49], supposing the flexibility can be 

expressed as  

                                                                                      

Eq. (7.26) can be determined as 

  
  

     

   
                                                                               

where    and   can be determined by fitting     relationship.  

The third method is area method, which the pure mode I toughness is determined by area of the 

load-displacement curve.  After one iteration, a crack length changes from    to     , the stain 
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energy decrease due to crack propagation can be expressed by the area of the load-displacement 

curve   , so the critical strain energy release rate can be calculated as 

  
  

  

   
                                                                                

So the new interface fracture criterion is produced, the crack propagation will take place along the 

interface or into one of the two adjacent materials along the direction   
   

       , for which the 

normal stress, evaluated at a small distance    from the crack tip, is maximum. And the crack prop-

agation along the interface will occur when the following condition satisfied 

                                                                                    

If the condition eq. (7.34) is not satisfied, the crack will kink out of the interface as soon as one of 

the following conditions is satisfied: 

√       
   

|
  
   

   
    

   
     

   
                                                 

√       
   

|
  
   

   
    

   
      

   
                                               

where    
   

,    
   

 are the critical stress intensity factors of the material 1 and material 2. Therefore, 

the crack propagation angle can be determined once the stress state and material toughness, i.e.  

   
   

,    
   

 and     , are obtained. It is important to note that, the critical distance    is small com-

pared to crack size but exceeds oscillatory zone and/or contact zone and for different materials the 

   is different. Rice [41] claimed that the critical distance was given by finding the largest   for 

which the opening gap of crack surface behind the crack tip vanishes. On the other side, for the uni-

axial loading conditions, on comparing the crack extension angle with experimental results, a good 

agreement was found for                [50]. This new criterion will be used in the next 

chapter in numerical modeling of an interfacial crack propagation after a little bit of modification 

for simplifying the numerical analysis. 

7.5.2 Interfacial crack under general loading 

According to PV- criterion, furtherly we suppose the interface is perfectly bonded too, the crack ex-

tension angle of different material combinations against to biaxial loading factor under general 

loading but shear loading     is illustrated in Fig. 7.10. The results illustrated here are the same 

with that in a published paper by authors previous [5]. 

As the material combinations change the crack extension angles in both media are changed. How-

ever, comparing Fig. 7.10 (a) to (b), it’s easy to find that the effect of biaxial loading parameter to 
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the crack extension angle in the soft material is much prominent than in the stiff one, especially in 

the rage of     . In the stiff material, the crack extension angle increases as the biaxial loading 

parameter increase for every fixed material combination       and trends to    , the normal direc-

tion of interface. The value of crack extension angle is very close to each other for different material 

combination       at all the value of biaxial loading parameter except   [   ]. The most differ-

ent focus on the rage of      . It is named process zone of biaxial parameter for stiff material.  

 

(a) 

 

(b) 

Fig. 7.10 Crack extension angle of different material combinations against to biaxial loading factor for shear loading 

    of (a) medium 1, (b) medium 2 

In the side of the soft material, the relationship among crack extension angle and material combina-

tion and biaxial parameter is showed in Fig. 7.10 (b). The crack extension angles increase as the bi-
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axial loading parameter increase for all the material combinations. The additions are very gradual in 

the rage of     and obvious in    . Furthermore, different with that in stiff material, there is a 

process zone of biaxial parameter for soft material only in the material combination        . The 

influence of material combination to the crack propagation angle is obvious, the bigger the material 

combinations       are, the more gradual the crack propagation angle curves. 

It’s worth to note that the absolute values of all the crack extension angles in both materials are not 

exceed    . This character will change if the shearing loading   is considered, and that will be dis-

cussed in the following.  

For the dissimilar material combination        , the model degenerates to homogeneous materi-

al. Fig.7.11 shows the shear loading and biaxial loading factor effect on the crack propagation angle 

in a homogenous material and dissimilar material. Comparing Fig. 7.11(a) with Fig. 7.11(c), the 

crack propagation angle curves are symmetric in both sides in homogenous material, but not in dis-

similar material, if only change the shear loading to opposite direction. From Fig. 7.11(b), it’s clear 

to see that when  
 

 
   the crack extension angle curves in both media are symmetric due to the 

model is in the symmetric material and loading. Further, the crack extends along the interface when 

   , but kinks into the injected materials as soon as    . This is also can be found in Fig. 7.10.  

Different from the interface crack propagation in bi-material system under biaxial loading, when 

force ratio     exceeds one and biaxial factor   exceeds a threshold value, the crack propagation 

angles are exceed    . This is because when biaxial factor   reaches to the threshold value, the 

load parallels to interface crack transfers to the dominating force in the biaxial loading, and the 

phase angle of the bi-material system has been changed by    .  

The interface debonding can’t be ignored in the bi-material interface fracture process. For the crack 

extending along the interface, the circumferential stresses are 
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(a) 

 

(b) 

 

(c) 

Fig. 7.11. Crack extension angle against to biaxial loading factor for loading ratio                           of 

dissimilar material                            . 
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Substituting the stress above into extension condition eq. (7.13), the criterion can be written as 

 √    
  

 √
 

                    
  
 
                                                

This condition represents a global criterion and its dependence on the process zone size is only ficti-

tious. In fact, it also can be written as 

[                 ]   √                                                                     

Because the critical stress intensity factor of the interface crack is unknown, a dimensionless ap-

plied critical force is defined as     √       . The dimensionless applied critical tension is 

represented as a function of the biaxial parameter   and various material combinations based on the 

assumption that    
       

      ,       and           in Fig. 7.12. The solid line in Fig. 

7.12 corresponds to the value    √             of the dimensionless force allowing the bond 

failure for the material combination         . The debonding dimensionless critical tension is 

depending on the crack length, the distance from the crack tip    and the bi-material oscillatory in-

dex  . This value is the same with that in [6] for incompressible material if the oscillatory index   is 

neglected. The other curves corresponding to the initiation condition that the crack extends into the 

medium    or   , respectively. The dashed line refers to two media are the same, the combination 

       , the bi-material system degenerated as an isotropic homogenous material. The coinci-

dence of the curves with the solid line up to some positive value    of   means that the maximum 

value of     occurs at     just up to the value     , which increases with the ratio      . 

 

Fig. 7.12 Critical values of the applied tension vs   for various material combination and       

In Fig. 7.13, the critical values of applied tension as a function of biaxial force factor   for       

and       are presented for         . The critical stress intensity factor of two media is as-
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sumed as    
   

       and    
   

      , due to that the interface toughness generally smaller 

than the toughness of media. It clearly to see, that the applied dimensionless critical value for inter-

face debonding of       is bigger than the value of      , this situation also happens in mate-

rial 2. The critical dimensionless applied load that the interface crack kinking into material 1 of 

      is smaller than the value of      . Comparing the two figures in Fig. 7.13, the easiest 

initiation of the interface crack for biaxial factor   less than a threshold value    (     for 

     ,       for      ) is extending along the interface. After biaxial factor exceeding the 

threshold value, the crack will kink into material 1 due to the critical dimensionless applied force is 

the smallest value.  

 

 

(a) 

 

(b) 

Fig. 7.13 Critical values of the applied tension for          and (a)      , (b)       
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Fig. 7.14 Critical values of the applied tension vs k for various stress ratios with         ,    
         ,    

    

    

In Fig 7.14, the critical values of the applied tension    against biaxial factor  , for various stress 

ratios      are represented. As far as the critical load level is concerned, it can be seen that the 

stress ratio     affects the two media in different ways. The critical values of applied tension are 

increased with the increase of stress ratios     in medium1. The situations are opposite in medium 

2 and for interface debonding. It also can be inferred that when the loading factor     and biaxial 

force ratio   arrive to a threshold, the interface crack will be kinked into material 2 first.  
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Chapter 8  

Crack propagation trajectory using XFEM 

8.1 Introduction 

The extended finite element method (XFEM) is a numerical method that enables a local enrichment 

of approximation spaces. The method is useful for the approximation of solutions with pronounced 

non-smooth characteristics in small parts of the computational domain, for example near disconti-

nuities and singularities. In these cases, standard numerical methods such as the FEM or FVM often 

exhibit poor accuracy. The main advantage is that XFEM offers significant advantages by enabling 

optimal convergence rates for these applications. 

The basic idea and the mathematical foundation of XFEM are the partition of unity finite element 

method (PUFEM) which was discussed by Melenk and Babuska [1] and Duarte and Oden [2]. Later 

Belytschko and Black [3] presented a minima remeshing finite element method by adding discon-

tinuous enrichment functions to the finite element approximation to account for the presence of a 

crack. The method was then improved by Moes et al. [4] and Dolbow [5] and called the eXtended 

Finite Element Method (XFEM). The new methodology allowed for the entire crack to be repre-

sented independently of the mesh and constructed the enriched approximation from the interaction 

of the crack geometry with the mesh. More contributions from Dolbow et al. [6-8], Daux et al. [9] 

and Sukumar et al. [10] extended the method for three-dimensional crack modeling and arbitrary 

branched and intersecting cracks. The use of level set methods to represent the crack location was 

studied by Stolarska et al. [11], Belyschko et al. [12], Sukumar et al. [13], Moes et al. [14].  

Fracture of composite structures constitutes a major part of recent studies related to LEFM and 

EPFM. Dolbow and Nadeau [15] employed the extended finite element method to simulate behav-

iour of micro-structured materials with a focus on functionally graded materials. Then Dolbow and 

Gosz [16] described a new interaction energy integral method for the computation of mixed mode 

stress intensity factors at the tip of arbitrarily oriented cracks in functionally graded materials. In a 

related contribution, Remmers et al. [17] presented a new formulation for the simulation of delami-

nation growth in thin-layered composite structures. 

Interface crack propagation is rapidly gaining wide attention. Such a crack growth is exceedingly 

important for delamination and debonding analysis in composite materials, and can be extended to 

other brittle and semi-brittle materials such as concrete and rock crack interfaces. Study of bi-
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material interface cracks was performed by Sukumar et al. [18] by developing partition of unity en-

richment techniques. Nagashima et al. [19] and Nagashima and Suemasu [20] described the appli-

cation of XFEM to stress analysis of structures containing interface cracks between dissimilar mate-

rials. This chapter is dedicated to describing the applications of the XFEM in bi-material interface 

crack. Fundamental aspects of the extended finite element method were reviewed mainly for crack 

propagation problems. Then it was further extended to simulate other localization problems in solid 

mechanics, especially in bi-material and composite applications.  

8.2 Basic theory  

8.2.1 Standard finite element method 

Isoparametric finite elements are the mostly used element in standard finite element method. In this 

section the basic knowledge of isoparametric finite elements is reviewed. Consider a domain in the 

state of equilibrium discretized by a four-node quadrilateral finite element mesh, as depicted in Fig. 

8.1. According to the finite element methodology, the coordinates          are interpolated from 

the nodal values  ̅    ̅  ̅  

  ∑   ̅ 

 

   

                                                                             

where   is the matrix of finite element shape functions. 

   [
   

   
]                                                                           

                    

                                                   (a)                                                                          (b) 

Fig. 8.1 An isoparametric finite element (a) Bilinear element in the Natural Coordinate; (b) Bilinear element in the 

Physical Coordinate 

In an isoparameteric finite element representation, displacement fields    (     )are similarly 

interpolated from the nodal displacements values  ̅  ( ̅   ̅ ): 
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  ∑   ̅                                                                             

 

   

 

The strain field is computed directly from above equation 

  ∑   ̅                                                                              

 

   

 

where the matrix   is defined in terms of derivatives of the shape functions    
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And the chain rule is invoked to determine the coefficients of    
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where   is the Jacobian matrix 
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Finally, the following discrete system of linear equations is obtained: 

                                                                                   

where   is the vector of nodal unknows, and   and   are the global stiffness matrix and external 

force vector, respectively. The stiffness matrix and the force vector are computed on an element-by-

element basis and assembled into their global counterparts through the usual assembly procedure. 

 The stiffness matrix    of an element    can be determined from 
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   ∫       
  

                                                                          

where   is the material stress-strain or constitutive matrix (     ̅ ). Eq. (8.10) can be rewritten 

in local curvilinear coordinates    : 

  ∫ ∫                     
 

  

 

  

                                                       

8.2.2 Partition of unity finite element method 

As mentioned before, the global solution of partition of unity finite element method (PUFEM) has 

been the theoretical basis of the extended finite element method (XFEM). The basic mathematical 

foundation of the PUFEM was discussed by Melenk and Babuska [1]. A partition of unity is defined 

as a set of   functions       within a domain     such that  

∑     

 

   

                                                                               

It can easily be shown that by selection of any arbitrary function     , the following property is au-

tomatically satisfied: 

∑         

 

   

                                                                         

This is equivalent to the definition of the reproducing condition or completeness. The set of isopar-

ametric finite element shape functions    also satisfy the condition of partition of unity 

∑     

 

   

                                                                                

where   is the number of nodes for each finite element. The concept of partition of unity provides a 

mathematical framework for the development of an enriched solution. 

8.2.3 Interaction integral method 

The stress intensity factor plays a very important role in fracture mechanics. The most accurate 

method for calculating SIFs of mixed mode is interaction integral method. In the interaction integral 

method, auxiliary fields are introduced and superimposed onto the actual fields satisfying the 

boundary value problem [21]. Stresses and strains for the auxiliary state should be chosen so as to 

satisfy both the equilibrium equation and the traction free boundary condition on the crack surface 
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in the    area. These auxiliary fields are suitable selected in order to find a relationship between the 

mixed mode stress intensity factors and the interaction integrals. The contour   integral for the sum 

of the two states can be defined as 

                                                                                        

where      and      are associated with the actual and auxiliary states, respectively, and   is the in-

teraction integral 

     ∫ [   

   

   
      ]

  

     

                                                                     

     ∫ [   
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  ∫ [   

   
   

   
    

      

   
      ]

  

     

                                                      

with the actual, auxiliary and interaction works defined as 

                                                                                                  

        
      

                                                                                     

   
 

 
(      

       
      )                                                                         

One of the choices for the auxiliary state is the displacement and stress fields in the vicinity of the 

crack tip. From the relation of the   integral and mode I and II stress intensity factors, 

  
 

  
   

     
                                                                                   

The following relationship is obtained 

  
 

  
     

          
                                                                           

Therefore, the mode I and II stress intensity factors can be obtained from 

  
  

 
                                                                                           

by choosing   
     ,    

      for mode I and   
     ,    

      for mode II. 

Finally, application of the finite element method for evaluation of the    integral by the interaction 

integral method is 
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   ∫ [   

   
   

   
    

      

   
       

      ]
  

     

                                               

or in a discretized form is obtained through a Gauss integration scheme 

   ∑(∑{[(   

   
   

   
    

      

   
       

      )
  

   
]     }

 

  

   

  )

  

                        

where    is the Gauss weighting factor,    is the order of integration. 

8.3 Extended finite element method (XFEM) 

8.3.1 Governing equations 

Considering  , a point in an elastic finite element body   shown in Fig. 8.2. The boundary   is 

composed of the segments   ,    and   .    is the force boundary which is imposed tractions   ,    

is displacement boundary which is imposed displacements  ̅, while    is the traction free crack sur-

face.  

 

Fig. 8.2. A cracked body subjected to prescribed boundary tractions and displacements. 

We consider small deformation elastostatics, which is governed by the equation of equilibrium 

        in                                                                            

accompanying with the constitutive law       and the geometry equation      , where   is 

the Cauchy stress tensor,   is the small strain tensor,   is the body force,   denotes the elastic mate-

rial moduli matrix,   is the displacement.   is the gradient operator and     is the symmetry gradi-

ent operator. 

   ̅  on                                                                                

        on                                                                         

       on                                                                         
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       on                                                                         

  is the unit normal vector,     and     are the surfaces of the crack   , respectively. 

The variational formulation of the boundary value problem can be defined as 

                                                                                   

The virtual work equation without body forces is given by 

∫     
 

       ∫  
  

                                                            

8.3.2 Discretization 

Assume the arbitrary domain   discretized into some   node finite elements. In the extended finite 

element method, the following approximation is utilized to calculate the displacement for the point 

  locating within the domain [22] 

               ∑       

 

   

 ∑           

 

   

                                     

where    is the vector of regular degrees of nodal freedom in the standard finite element method,    

is the added set of degrees of freedom to the standard finite element model and      is the discon-

tinuous enrichment function defined for the set of nodes that the discontinuity has in its influence 

(support) domain. 

 

Fig. 8.3 Support domains of an edge node and an interior node in a finite element mesh. 

The support domain associated to a node, located on an edge, consists of the elements containing 

that node, whereas for an interior node (in higher order elements) it is the element surrounding the 

node. Fig 8.3 illustrates definitions of the influence domain for a node located on edges of elements 

as well as an internal node. 
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The enrichment function      can be chosen by applying appropriate analytical solutions according 

to the type of enrichment functions within an XFEM procedure can be expressed as the following: 

1. Reproducing the singular field around a crack tip. 

2. Continuity in displacement between adjacent finite elements. 

3. Independent strain fields in two different sides of a crack surface. 

4. Other features according to the specific discontinuity problem. 

The first term on the right-hand side of eq. (8.31) is the classical finite element approximation to de-

termine the displacement field, while the second term is the enrichment approximation which takes 

into account the existence of any discontinuities. The second term utilizes additional degrees of 

freedom to facilitate modeling the existence of any discontinuous field, such as a crack, without 

modeling it explicitly in the finite element mesh. 

Moes et al. [4] proposed that eq. (8.31) be rearranged in order to model crack surfaces and tips in 

the extended finite element method as below 

               ∑       

 

   

 ∑           

 

   

 ∑           

 

   

                    

where   is the set of nodes that have the crack face (but not the crack tip) in their support domain, 

while   is the sets of nodes associated with crack tip in their influence domain;    are the nodal dis-

placements (standard degrees of freedom).    and   are vectors of additional degrees of nodal 

freedom for modeling crack faces and crack tip, respectively; and      represent crack tip enrich-

ment functions. 

Discretization of eq. (8.30) using the XFEM procedure eq. (8.32), results in a discrete system of lin-

ear equilibrium equations:  

                                                                                  

where   is the stiffness matrix,    is the vector of degrees of nodal freedom (for both classical and 

enrichment ones) and   is the vector external force. The global matrix and vectors are calculated by 

assembling the matrix and vectors of each element.   and   for each element   are defined as 
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and    is the vector of nodal parameters 

   {          }
                                                     

with 

   
   ∫    

    (  
 )  

  

                                                           

  
  ∫    

   
  

 ∫    
   

  

                                                          

  
  ∫        

  

 ∫        
  

                                                   

  
   ∫      

   
  

 ∫      
   

  

                                                

In the stiffness matrix,   is the matrix of shape function derivatives, 
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]                                                                 
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]                                                   

The rest of the computation depends on the definition of the enrichment function.  

8.3.3 Discontinuous enrichment 

We now describe the construction of the discontinuous function      in two dimensions. The 

Heaviside function      is the mostly used in the literatures.   

The distance   from a point   to an interface   is defined as 

  ‖    ‖                                                                          

where    is the normal projection of   on  , as shown in Fig. 8.4.  

The signed distance function      can be defined as 
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‖    ‖                                                              

where   is the unit normal vector. 

 

Fig. 8.4. Difinition of the signed distance function. 

The Heaviside enrichment function is assumed to be the signed function 

             {
           
         

                                                        

Approximation of the discontinuous which is the second term in eq. (8.32), the displacement rewrit-

ten as 

      ∑       

 

   

 ∑           

 

   

 ∑           

 

   

                     

A simple one-dimensional representation of the step function is depicted in Fig. 8.5(a). Fig. 8.5(b) 

illustrates the way the step function simulations the discontinuity. 

It’s easily found that, suppose the crack tip enrichment is accurate enough, the approximation eq. 

(8.32) is no longer an interpolation and the value of the field variable       on an enriched node   

is not equal to the nodal value    

  (  )      (  )                                                                

A simple shifting procedure guarantees the interpolation  

      ∑       

 

   

 ∑     (          )  

 

   

 ∑           

 

   

                  

Fig. 8.5(c) illustrates the effect of the modified approximation on the one-dimensional crack prob-

lem. The overall jump in the displacement field can be obtained from 

〈     〉                   ∑       
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(a) 

 

(b) 

 

(c) 

Fig. 8.5 (a) Sign function; (b) Effect of the sign function on shape functions; (c) Effect of shifting on shape functions 

Derivative of the Heaviside function is the Dirac delta function: 

                                                                                   

which vanishes except at the position of the crack interface: 

       {
              
             

                                                               

As a result eq. (8.42) can be rewritten as 

  
  [

      

      

          
]                                                                  

To include the effects of interpolation,      should be replaced by [          ], the following 

shifting amendments are required 

  
  [

   [          ]    

    [          ]   
   [          ]      [          ]   

]                              

8.3.4 Crack tip enrichment functions 
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8.3.4.1 Crack in isotropic 

The near tip enrichment functions have already been defined in terms of the local crack tip coordi-

nation system      , The crack-tip enrichment functions in isotropic elasticity are [23] 

        {√    
 

 
 √    

 

 
 √        

 

 
 √        

 

 
 }                          

where   and   are polar coordinates in the local crack-tip coordinate system. Note that the first 

function in the above equation is discontinuous across the crack.  

    

(a)                                      (b)                                        (c)                                         (d)    

Fig. 8.6 Crack tip enriched functions in isotropic 

Similar to the discontinuous enrichment function, to include the effects of interpolation, the follow-

ing shifting amendments are required, 

  
  [

   [      ]    

    [      ]   
   [      ]      [      ]   

]                                        

The shifting amendments will be required in all the enrichment. To keep it simple, we will not men-

tioned again in the following description. 

Derivatives of         with respect to the crack tip polar coordinates       become 
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and the derivatives of         with respect to the local crack coordinate system         can then be 

defined as 
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Finally, the derivatives in the global coordinates system are obtained, 

                                                                             

                                                                             

where   is the angle of crack path with respect to the   axis. 

8.3.4.2 Interfacial crack in bi-material 

To model interfacial cracks as shown in Fig. 8.7 within the X-FEM setting, Sukumar et al. [18] use 

the generalized Heaviside functions      to model the crack interior   , and the asymptotic crack-

tip function [            ] to model the crack tip for an interface crack. According to the dis-

placement solution of an interface crack, the near-tip crack enrichment functions are written as 

[            ]  
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where   and   are polar coordinates in the local crack-tip coordinate system,   is the bi-material in-

dex.  
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Fig. 8.7 Interfacial crack 

If the bi-material constant     (isotropic material), the span of the enrichment functions given 

above is degenerated as that for a crack in isotropic material, eq. (8.56). 

    

                                                                                                                                                                

    

                                                                                                                                                               

    

                                                                                                                                                               

Fig. 8.8 Enrichment functions for interfacial crack 

The enrichment functions are graphically shown in Fig 8.8. It’s very clearly that the functions    

and    are not continue across the crack. Derivatives of         with respect to the crack tip polar 

coordinates       and local coordinate can be found in reference [18]. 

8.3.4.3 Interfacial crack perpendicular to the interface 
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Consider a bi-material with a crack perpendicular to the interface and the crack terminates at the in-

terface. The near-tip asymptotic field for this problem has been studied by many researchers [24-26]. 

The elastic mismatch between the two elastic materials is characterized by Dundurs parameters [27] 

  and  . The asymptotic displacement field near the tip of a plane crack in a bi-material takes the 

form [26] 

            {                                       }               

where         , which is the stress singularity exponent, is a function of the Dundurs parame-

ters and is given by the root of the transcendental equation [24]. 

         
   

   
       

    

    
                                         

The value   as a function of   and   is tabulated in Beuth [28]. In the case of no mismatch (  

   ) the stress singularity reduces to the classical inverse √  stress singularity       for ho-

mogeneous linear elastic materials. When material 2 is stiffer than material 1      , the singulari-

ty is weaker        , and if material 2 is more compliant that material 1      , the singularity 

is stronger        . 

 

Fig. 8.9 Bi-material with a crack perpendicular to the interface 

The crack tip enrichment functions for the bi-material crack problem are [29] 

[           ]      [                                 ]                     

where the above functions span the asymptotic crack-tip displacement expansion given in eq.(8.62). 

Note that in this instance the first function and the third function in the above equation are discon-

tinuous across the crack     .  

8.3.4.4 Interfacial crack terminates to the interface [30] 

For a crack terminates at the interface, the order of the stress singularity is characterized by the so-

lution of the equation 

Material 2

Material 1
Crack
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[                          
                        ]

  

                   [                  ]                             

where   and   are the Dundurs bi-material parameters;     is the arbitrary angle between crack and 

interface. 

The enrichment functions are considered separately the case where the characteristic exponent   is 

real and the case where it is complex. 

Real characteristic exponent: 

                   {                                            }              

where   is the number of the characteristic exponents:     in case where      is real single, 

and     in case where           is real double. 

Imaginary characteristic exponent: 

In case of imaginary characteristic exponents, both          and its conjugate  ̅         are 

solutions of the eq. (8.65). The enrichment functions in case of a complex characteristic exponent 

for a crack tip terminating at a bi-material interface are given by: 

               

{
 
 
 
 

 
 
 
 

       [                                              

                                                              

                                                              

                                                             ] 

        [                                              

                                                              

                                                              

                                                             ] }
 
 
 
 

 
 
 
 

          

8.4 Level set method 

8.4.1 Level set functions 

The level set method is a versatile method for computing and analyzing the evolution of an interface 

   in two or three dimensions, which was introduced by Osher and Sethian [31, 32], and investigat-

ed by many researchers [11, 13, 33]. The interface bounds an open region  . The velocity of the 

evolving interface can depend on position, time, interface geometry and the physics of the underly-

ing problem. The level set function will be used for representing the material interface between the 

fiber and matrix as well as the geometry of a crack. The level set function        is a continuous 

function, where   is a point in the domain  . The level set function has the following properties 
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Therefore, the boundary of interest at any given time t can be located by finding x that satisfies the 

following equation 

                                                                                    

the boundary is commonly referred to as the zero level set of   which can be abbreviated as   . 

Equation is commonly referred to the level set equation. The typical approach to using the level set 

equation to propagate a moving front over time is to differentiate with respect to time which yields 

  

  
 

  

  

  

  
                                                                         

The equation can be rewritten as 

     ⃗                                                                             

where  ⃗  is the velocity field. This partial differential equation can then be solved numerically by 

discretizing and using a finite difference approach to approximate the gradient of  . The derivative 

of   with respect to the time t can be approximated using the forward difference method as 

       

  
  ⃗                                                                 

Which can be rewritten into a more convenient form for updating   in two-dimensions are 

          (      
        

 )                                                  

where u and v are the x and y components of the evolving interface velocity. The time step    is 

governed by the Courant-Friedrichs-Lewy (CFL) condition. The CFL condition ensures that the ap-

proximation of the solution to the partial differential equation given in eq. (8.70) is convergent. The 

limiting parameter for the time step in two-dimensions can be written as 

   
           

         
                                                                  

where         represent the grid spacing in the x and y-directions. 

For modeling a composite material, a fiber in matrix will be considered. The level set function asso-

ciated with a cylindrical fiber in the composite is denoted as     and calculated as  
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     √       
         

                                                      

where    and    are the coordinates of the    node in the domain,    and    are the coordinates of 

the center of the fiber and    is the fiber radius. 

The analytical form of the level set function as in eq. (8.73) is limited for simple geometries. In ad-

dition, when the interface moves according to         , the new interface will not have a simple 

analytical expression. Stolarska et al. [11] introduced an extension of the level set method for mod-

eling the evolution of one-dimensional curve in a piecewise linear fashion with a particular focus on 

representing the evolution of a crack. Instead of having analytical expression of the level set func-

tion, a discrete value is assigned at each node of finite elements, and the location of zero level set is 

found using interpolation. Sukumar [13] proposed additional enrichment via the level set method 

for the modeling of holes and inclusions.  Two level set functions   and   are needed to track the 

growth of an open curve in this case, one for the crack path and the other for the crack tip. In this 

extension the crack path is represented as the zero level set of       . The   level set is oriented 

such that its zero level set passes through the current crack tip and is oriented in the direction of the 

crack tip speed function. The zero level set of        is then given by the line intersecting the cur-

rent crack tip and orthogonal to the zero level set of  . 

For the level functions   and  , each grid point is assigned a distance from that point to the nearest 

point of function’s zero level set. The sign of the distance for the   level set function is positive on 

the side counter-clockwise from the direction of the crack tip speed function and negative on the 

clockwise side. The sign of the distance function for the   function is positive on the side in the di-

rection of crack growth and negative on the opposite side. The crack is defined to the locations 

where the following conditions are true 

                                                                                    

                                                                                   

8.4.2 Level set algorithm for modeling crack growth 

Modeling one-dimensional crack growth in a level set framework by representing the crack as the 

zero level set function       . An endpoint of the crack is represented as the intersection of the zero 

level set of   with an orthogonal zero level set of the function        , where   is the number of tips 

on a given crack. For cracks that are entirely in the interior of the bulk of a material, two functions 

are used    and   , one for each crack tip. For edge cracks only on function   is necessary. The 

values of the level set functions are stored only at the nodes. The functions are interpolated over the 

mesh by the same shape functions as the displacement. Thus, 
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        ∑           

   

                                                             

       ∑          

   

                                                               

Since the shape functions are   , the crack representation is also   . 

The level set function representing the initial crack is constructed by computing the signed distance 

function for the crack. A difficulty in doing this arises from the fact that, although the crack tip lies 

within the domain, the level set function representing the crack must initially be constructed on the 

entire domain. To circumvent this problem, the initial crack is extended tangentially from its tip and 

the signed distance function                   
‖    ‖  is constructed from this extended 

crack. 

The level set functions that represent the crack tip are initially defined by 

                ̂                                                              

where  ̂ is a unit vector tangent to the crack at its tip and    is the location of the ith crack tip. Given 

the construction described by above eq. the planar function    has a zero level set which is orthogo-

nal to   at the crack tip. The initial level set function,   and   , and the representation of the crack 

are shown in Fig. 8.10. 

 

Fig. 8.10 Construction of initial level set functions 

An important consideration is that, although the actual crack is embedded inside a domain, the zero 

level set of   cuts through the entire domain. In the level set framework, the crack is considered to 

be the zero level set of  , where both      and      in the case of an interior crack. In the 
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case of an edge crack     . This is consistent with the initial conditions and will continue to be 

so as the level set functions are updated. 

For the case of more than one crack tip, it is convenient to define a single function        for the 

crack tip level set representation by  

          
 

                                                                         

The function   allows us to define the location of the crack using only one function whether a crack 

has one or two tips. In other words, a crack is defined as the set 

{                       }                                                         

 

Fig. 8.11 Level set function update. Gray region is           . Non-gray region is        . 

Since only considering one-dimensional curve crack, we can confine the level set representation to 

a narrow band of elements around the crack. In addition we assume that once a part of a crack has 

formed, that part will no longer change shape or move. Therefore, the  ,    and    functions need 

only be updated on a small region of elements surrounding each crack tip. This narrow band is built 

by surrounding the crack tip by a predetermined layer of elements. The number of surrounding ele-

ments is chosen so that it is larger than the incremental growth length of the crack. 

Crack growth is modeled by appropriately updating the    and   functions, then reconstructing the 

updated   function. A crack is extended at each tip in the same manner, regardless of the number of 

cracks and the number of crack tips on a given crack. The evolution of    and   is determined by 

the crack growth direction,   . In each step, the displacement of the crack tip is given by the pre-

scribed vector          . The magnitude of crack extension ‖ ‖ depends on the crack growth 

law. The current location of the crack tip,            is also used in the equations of evolution. 
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Let the current values of    and   at step n be   
 
 and   . The algorithm for evolution of the level 

set functions    and   is as follows: 

1.   
 
 is updated using Equation     ‖  ‖   .   is always the speed normal to the interface. 

However,   is not necessarily orthogonal to the zero level set of    
 
. For this reason, we must first 

rotate    
 
 so that   is orthogonal.   

 
 after rotation is referred to as  ̂  and given by 

 ̂        
  

‖ ‖
       

  

‖ ‖
                                                     

2. The crack is extended by computing new values of      only where  ̂   , which is referred to 

as        . Let the region where  ̂    be            

                                                                                 

      |      |  
 

‖ ‖
  |      

  

‖ ‖
       

  

‖ ‖
|                             

The sign of      in         is chosen so that it is consistent with the current sign on a given side of 

the crack in           . 

3.   
   

 is computed using     ‖  ‖    so that is represents the updated location of the crack 

tip. 

  
     ̂    ‖ ‖                                                           

where by construction,  ‖ ‖    at all times. The rotated level set function  ̂  is calculated exactly 

in eq( ̂        
  

‖ ‖
       

  

‖ ‖
). Since   

   
 is calculated from  ̂ , it is important to note 

that   
   

 is also recalculated in each step rather than updated from the previous values of   . the 

recalculate of   
 
 and   

   
 is illustrated in Fig 8.11. 

4. Once all   
   

’s corresponding to a crack are updated,   
   

 is updated using 

          
 

                                                                        

The location of the new crack tip i can now be determined by finding the intersection of the zero 

level set of   
   

 and the newly extended     . The updated tip is used to determine a new region 

of elements over which the level set computation will take place. 

8.4.3 Coupling the level set method and the extended finite element method 
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The LSM and XFEM couple naturally to model crack growth. The value of  ,    and   are stored 

at nodes. Any information needed for crack growth, such as the location of the crack tip, can be ob-

tained from these nodal values, making it unnecessary to store any other information pertaining to 

the crack. The XFEM algorithm is an efficient finite element scheme that solves the elliptical prob-

lem which determines the evolution of a crack on a mesh. The mesh is unchanged throughout the 

computation of the evolution of the crack. For these reasons, the LSM and XFEM work quite well 

together. 

Moreover, the level set representation of the work facilitates the computation of the enrichment. 

The enrichment function is defined so that the discontinuity is coincident with the crack. Because 

the crack is represented as the zero level set of  , all values above or below the crack are either pos-

itive or negative. From Heaviside function 

                {
              

               
                                                      

Therefore, to determine the location of a point relative to the crack, one merely has to determine the 

sign of   as that point. 

The crack tip enrichment functions are defined in coordinates local to the crack tip. These coordi-

nates can be determined by the level set function representing the tip. The function associated with 

the tips   is always planar with ‖  ‖   , and its zero level sets makes a natural coordinate sys-

tem. The direction of the local x-axis is determined by   . The direction of the local y-axis is then 

simply      . In this local coordinate system, the arguments of the branch function can be ex-

pressed by the level set functions. That is, at point x, the radius from the crack tip and the angle of 

the deviation from the tangent to the crack tip is given by 

  √                      
      

      
                                                      

The nodes chosen for enrichment can be determined from the nodal values of   and  . In a given 

element, let      and     , respectively, be the minimum and maximum nodal values of   on the 

nodes of that element. If      and           , then the crack cuts through the element and 

the nodes of the element are to be enriched with Heaviside function. Similarly, let      and     , 

respectively, be the minimum and maximum nodal values of   on the nodes of that element. If in 

that element            and            then the crack tip lies within that element, and its 

nodes are to be enriched with crack tip function. 

The coupling of the LSM and XFEM is illustrated in next figure. For a given crack, each iteration 

begins by examining the level set functions at each node of each element in the narrow band and 
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choosing the nodes which require enrichment from the nodal values of these functions. These nodes 

are then enriched by the appropriate function and the stress field is determined by XFEM. Once the 

stress field is determined, the stress intensity factors are computed, and from these factors the direc-

tion of crack growth    is computed. The angle    is then used in updating the level set functions. 

Once the level set functions are updated, the process is repeated. 

8.5 Interfacial crack growth 

8.5.1 Fatigue crack growth criteria 

Three essential factors should be carefully considered for the successful simulation of mixed crack 

growth in composite relate to the criteria. First factor is the initiation of the crack growth. The se-

cond factor is the rate of crack growth. Paris’s law [34] must be extended to the mixed-mode case, 

usually by replacing the Mode I stress intensity factor range     with an effective stress intensity 

factor range       [35]. The third factor is the direction of crack growth. The maximum principal 

stress criterion [36, 37] and the minimum strain energy density criterion [38-40] are commonly 

used. However, it was reported [41] that the difference between these two criteria is negligible. 

The Paris’ Law is expressed as 

  

  
       

                                                                       

where   is the crack length,   is the number of fatigue loading cycles. The two constants   and   

are material parameters.     is the Mode I stress intensity factor range. For extension to the mixed-

mode case, it is replaced by      .  

The equivalent Mode I stress intensity factor is calculated using the growth angle    in the expres-

sion for the circumferential stress. We write 

          
    

√   
                                                                          

which after a few manipulations yields 

          
 (

  

 
)        (

  

 
)                                                     

Tanaka [35] derived the following formula for evaluating       in 3D case 

      (   
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where      and      are the SIFs corresponding to a maximum (    ) and minimum (    ) ap-

plied loads, respectively. For static elastic crack propagation, researchers used to suppose a constant 

crack growth rate.  

After setting the crack growth angle and rate, at each stage the equivalent stress intensity factor 

     is calculated. This can then be compared to the critical value for the material (if available), and 

crack growth is said to occur if  

                                                                                   

where    is the critical stress intensity factor, or fracture toughness of the material. 

Stable fracture is characterized by a decreasing      with increasing crack length, in which eventu-

al crack arrest in expected. (for unstable fracture, in which either the equivalent stress intensity fac-

tor remains above the critical value with increasing crack length or increasing applied load.) 

8.5.2 Improved PV-criterion 

For sake of clearly, the improved PV-criterion proposed in Chapter 7 is reintroduced here. The 

crack propagation will take place along the interface or into one of the two adjacent materials along 

the direction   
   

        for which the normal stress, evaluated at a small distance    from the 

crack tip, is maximum. Preferentially, the crack propagation along the interface will occur when the 

following condition satisfied 

                                                                                    

If the condition eq. (8.93) is not satisfied, the crack will kink out of the interface as soon as one of 

the following conditions is satisfied: 

√       
   

|
  
   

   
    

   
     

   
                                                 

√       
   

|
  
   

   
    

   
      

                                                  

where    
   

,    
   

 are the critical stress intensity factors of the material 1 and material 2. Therefore, 

the crack propagation angle can be determined once the stress state and material toughness, i.e.  

   
   

,    
   

 and     , are obtained.  
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8.6 Test in homogenous material 

8.6.1 Test 1 Edge-cracked plate under shear 

Consider an edge-cracked plate, as shown in Fig. 8.12(a), fixed at the bottom and subjected to a uni-

form shear stress       applied at the top. The plate has the length      units, width     

units, and the crack length is       units. Plane strain conditions are assumed. Poisson’s ratio is 

taken as 0.3 and Young’s modulus is chosen as 100 units. [42] Four kinds of the FE discretization 

are chosen: Mesh 1 as 99×199 elements, Mesh 2 as 47×95 elements, Mesh 3 as 35×81 elements and 

Mesh 4 as 23×47 elements, as shown in Fig 8.12(b). The tip enrich range is               , using 

branch enrichment. The deformed geometry is shown in Fig. 8.12(c). The mixed mode SIFs    and 

    are investigated. The analytical stress intensity factors of the plane strain solution solved by 

Wilson [43] are         and         . Comparison between analytical SIFs and XFEM numer-

ical solutions is listed in Table 1.  

   

                   (a)                                          (b)                                                                        (c) 

Fig. 8.12. Edge-cracked plate under shear: (a) Geometry and load; (b) FE Mesh; (c) Deformed geometry 

 

 

  Table 1. SIFs for different meshes.   

 
Analytical 

Mesh 1 /    Mesh 2 /    Mesh 3 /    Mesh 4 /    

 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0 0.2 0.6 1.0 

   34.0 33.966 33.991 33.990 33.662 33.820 33.806 33.316 33.687 33.674 34.150 33.166 33.081 

    4.55 4.519 4.534 4.534 4.429 4.526 4.525 4.373 4.519 4.517 4.630 4.486 4.493 
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8.6.2 Test 2 Central-cracked plate under uniaxial tension 

A crack lying on the center of a homogenous and isotropic infinite plate subjected to a remote uni-

axial tension is considered. Only a half of the plate is modeled due to the symmetry. The geometry 

model with boundary condition and loading condition is shown in Fig. 8.13(a), which the plane 

strain condition is used and the width is     , the length is       , the half crack length is 

   . The left edge is symmetry boundary that is fixed in the x-direction, the right-hand edge is 

fixed in the x-direction and the right-bottom corner is fixed also y-direction the edge singularity. 

The uniaxial loading is applied in the top and bottom edges with the magnitude is      . The 

model is divided into         elements with the element size        as shown in Fig. 8.13(b). 

The material constants include Young’s module       and Poisson’s ratio       .  

The calculated stress intensity factor of the crack is            and                  . 

     
(a)                                         (b)                                                             (c) 

Fig. 8.13. (a) Geometry; (b) Mesh of the whole model; (c) Crack enrichment nodes (circle nodes), crack tip enrichment 

nodes (square nodes) and the J-integral (orange circle). 
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   (a)                                                                                  (b) 

       

 (c)                                                                                   (d) 

       

(e)                                                                                   (f) 

Fig. 8.14. (a) Heaviside level set function; (b) Level set function for crack tip; (c) Horizontal stress    ; (d) Vertical 

stress    ; (e) Shear stress    ; (f) Mises stress    . 



University of Bologna   PhD Thesis 

234 

8.6.3 Test 3 Crack extension of test 2 

In order to investigate the process of crack extension, the model of test 1 is analyzed con MTS crite-

rion. The crack increment is assumed one element length and the extensional steps are assumed 10. 

In Fig 8.15, the crack trajectory and enriched nodes are shown. It is clearly seen that the crack ex-

tends straight along ahead due to only Mode I appears. Fig. 8.15(b) and Fig .8.16 show the de-

formed geometry,    and   level set functions, stress distributions of the plate. 

    
(a)                                                                                       (b) 

Fig. 8.15. (a) Finite element mesh and enriched nodes; (b) Deformed geometry near crack tip 

     
                                                           (a)                                                              (b)                              (c) 

Fig. 8.16. (a) Deformed geometry; (b) Level set function  ; (c) Level set function   
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(a)                                                                                 (b) 

   
(c)                                                                                (d) 

Fig. 817. The stresses distribution (a) Horizontal stress    ; (b) Vertical stress    ; (c) Shear stress    ; (d) Mises stress 

   . 

8.6.4 Test 4 Crack extension of edge-cracked plate 

This model is almost the same with that in Test 1. Only the dimension of the plate is changed as 

height     , width     , and the crack length is    . The plate is divided into 100×200 el-

ements. The crack extension parameters assumed as: the crack increment is half of element length 

(    ) and the increased steps are 20. The Maximum Tangential Stress (MTS) criterion is used. 

The crack trajectory,   level set function and deformed geometry are graphically shown in Fig. 

8.18. The stress distributions of the plate after crack extension terminates are shown in Fig. 8.19.  
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                                     (a)                                                     (b)                                                 (c) 

Fig. 8.18. (a) Crack trajectory and enriched nodes; (b) Level set function  ; (c) Deformed geometry 

   
(a)                                                                                 (b) 

   
(c)                                                                                (d) 

Fig. 8.19. The stresses distribution (a) Horizontal stress    ; (b) Vertical stress    ; (c) Shear stress    ; (d) Mises 

stress     



Chapter 8 Crack propagation trajectory using XFEM 

237 

8.6.5 Test 5 Edge crack propagation under compress-shear loading 

In many experiments, a specimen under compress-shear force, as shown in Fig. 8..20(a) which the 

top and bottom edge is fixed in y-direction and the lower half of right-edge is fixed in the x-

direction under a pressure on the upper half of left-edge, is always applied.  

   
                                                  (a)                                                                                  (b) 

Fig. 8.20. (a) Model geometry; (b) Crack trajectory and enriched nodes. 

   
                                                (a)                                                                        (b) 

Fig. 8.21. (a) Level set function  ; (b) Deformed geometry 

The plate is a square with the length       and crack length     and divided into 200×200 el-

ements of plane strain condition. The material properties are       and      . The crack ex-

tension parameters assumed as: the crack increment is half of element length (    ) and the in-

creased steps are 40. The Maximum Tangential Stress (MTS) criterion is used. The crack trajectory, 

enriched nodes and J-integral are shown in Fig.20 (b). Dissimilar to the trajectory in Test 3 and Test 

4, the trajectory in this model is not smoothly but roughly. The crack extension angles are different 

from step by step, but the extension tendency is continue and clear. The   level set function and de-

S

2W

2W

a
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formed geometry are graphically shown in Fig. 8.21. The stress distributions of the plate after crack 

extension terminates are shown in Fig. 8.22. From Fig. 8.22, it can be seen that there are two stress 

concentration in this plate, one is the crack tip undoubtedly, and another one lies to the middle of 

right edge due to the singularity of the boundary condition.  

   
(a)                                                                                 (b) 

   
(c)                                                                                (d) 

Fig. 8.22. The stresses distribution (a) Horizontal stress    ; (b) Vertical stress    ; (c) Shear stress    ; (d) Mises 

stress     
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8.7 Numerical results of an interfacial crack in bi-material plate 

8.7.1 Stress intensity factors of a central crack in an infinite bi-material plate 

An isolated crack of length    lying on the interface in a bi-material solid subjected to the remote 

traction   
     

  is considered. The exact solution for the mixed-mode SIFs at the right crack tip 

is given by [44-46] as  

                        √                                                      

Only the case of pure tension loading is considered. In the numerical model, the symmetry and only 

half of the specimen is used with the boundary condition as Fig. 8.23. The plane strain condition is 

assumed in the model. The material constants used in the numerical computations are:         , 

          and       . According to eq. (5.7), the second Dundurs parameter          and 

the bi-material constant          . To obtain an in-depth numerical investigation of the number 

of elements effects the accuracy and the location of crack, there are four sample sizes and element 

length chosen as  

1)           ,     and element length is       , the total element is        ; 

2)           ,     and element length is       , the total element is       ; 

3)             ,     and element length is       , the total element is        ; 

4)             ,     and element length is       , the total element is      . 

 
Fig. 8.23 Interfacial crack under uniaxial tension 

According to eq. (8.96) and considering the material parameters used in the present model, the theo-

retical solution of stress intensity factors for central crack in an bi-material plate are          , 

          . The stress intensity factors of the four meshes are obtained as shown in Table 2. 
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The excellent agreement between the numerical results and the exact solutions is observed. The 

maximum relative errors of    and    are only 1.33% and 2.88%, respectively. 

 
Table 2. The stress intensity factors of exact solutions and numerical results. 

 
Analytical 

Mesh 1 Mesh 2 Mesh 3 Mesh 4 

 value error value error value error value error 

   1.7868 1.7783 0.48% 1.7710 0.88% 1.8105 1.33% 1.8045 0.99% 

   -0.1945 -0.1944 0.00% -0.1921 1.23% -0.1986 2.11% -0.2001 2.88% 

 
To obtain the stress intensity factors of various crack length and estimate the accuracy of the numer-

ical solution, the comparison between numerical solutions and analytical results for different crack 

length are presented in Table 3 and Fig. 8.24, the mode of mesh 1 is used.  

Table 3. Stress intensity factors for various crack length. 

 a=0.5 a=0.8 a=1.1 a=1.4 a=1.7 a=2.0 

 Ans Num Ans Num Ans Num Ans Num Ans Num Ans Num 

   1.2533 1.2349 1.5946 1.6071 1.8756 1.8965 2.1199 2.1568 2.3387 2.3963 2.5387 2.6229 

   -0.2110 -0.1980 -0.2039 -0.1947 -0.1890 -0.1843 -0.1702 -0.1734 -0.1493 -0.1523 -0.1273 -0.1287 

 

 

Fig. 8.24 Stress intensity factors of central interface crack 

 

8.7.2 Crack trajectory of an interfacial crack 

8.7.2.1 Example 1:  

In the first example, the model of mesh 1 is used. The crack extension parameters assumed as: the 

crack increment is half element length (    ) and the increased 20 steps. The Maximum Tangential 

Stress (MTS) criterion is used for both of the interfacial crack extension and crack tip in isotropic 

material. For the main aim of this example which is the trajectory of interface crack propagation, 

the initial condition of crack extending in MTS-criterion is assumed to be satisfied in all the steps.  
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                                        (a)                                                   (b)                                                 (c) 

Fig. 8.25. (a) Crack trajectory; (b) The crack enrichment level set function  ; (c) The mode deformation. 

  
(a)                                                                           (b) 

  
(c)                                                                         (d) 

Fig. 8.26. The stresses (a) horizontal stress    ; (b) vertical stress    ; (c) shear stress     ; (d) Mises stress    . 
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In Fig 8.25, the crack trajectory, the crack enrichment level set function and geometry deformation 

are shown. The numerical stress distributions near the crack are shown in Fig 8.26. Simply applica-

tion of MTS-criterion without considering the effect of interface, the interfacial crack kinks out of 

the interface and extends into material 1 which is the stiff material. But the interface does affect the 

stress distribution in both of the materials. As the evidence, all the stress distributions and concen-

tration around crack tip are not symmetry and the crack trajectory in material 1 is not horizontal.  

8.7.2.2 Example 2:  

Considering the interface affects crack propagation, the improved PV-criterion proposed in Chapter 

7 is used in this example. The numerical mode is the same with that used in example 1 except the 

crack criterion improved and the crack extension step increased to 40.  

In the improved PV-criterion,       , the energy release rate calculated by eq. (7.4), the interface 

toughness is given in eq. (7.15) in which the phase angle defined in eq. (7.20),       is used. The 

other two parameters   
  and   must be determined from experimental data. As an analytical inves-

tigation, in the present example assumed 

                                                                                      

  
  

  
 

            
                                                                    

where    is Mode 1 stress intensity factor,   is the bi-material index, 
 

   
 

 
(

 

  
 

 

  
). 

After the interfacial crack kinking into one of the substrate materials, the general MTS-criterion is 

used as the failure criterion as usually.  

Crack trajectory,   level set function and the model deformation are shown in Fig. 8.27. Though the 

simulated model is the same with example one, the crack trajectories are quite different. The crack 

extends along the interface in the first 22 steps, but kinks into material 2 (the complaint one) at the 

23th step. 
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                                        (a)                                                   (b)                                                 (c) 

Fig. 8.27. (a) Crack trajectory; (b) The crack enrichment level set function  ; (c) The model deformation. 

   
(a)                                                                           (b) 

   
(c)                                                                         (d) 

Fig. 8.28. The stresses (a) horizontal stress    ; (b) vertical stress    ; (c) shear stress     ; (d) Mises stress    . 

 Level Set

 

 

-0.1 0 0.1
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(a)                                                                           (b) 

   
(c)                                                                         (d) 

Fig. 8.29. The stresses concentration (a) horizontal stress    ; (b) vertical stress    ; (c) shear stress     ; (d) Mises 

stress    . 

8.7.2.3 Example 3:  

The last example is an edged-interfacial-crack in a plate subjected shear traction on the top edge and 

fixed the bottom edge, as shown in Fig. 8.30(a). The material constants, the model dimension, crack 

length and crack propagation parameters and criterion are the same with that in example 2. 

The deformation of the plate and the stress concentration can be found in Fig. 8.30(b) and Fig. 8.32. 

The crack trajectory is the most important result shown in Fig. 8.31(a). It can be seen that the inter-

facial crack extends along the interface in the first four steps and then kinks into material 2. 
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                                   (a)                                                                                    (b) 

Fig. 8.30. (a) Geometry model; (b) The mode deformation. 

 

             
                                                                            (a)                                                                    (b) 

Fig. 8.31. (a) Crack trajectory and enrichment nodes; (b) The crack enrichment level set function   

 Level Set

 

 

-0.1 0 0.1
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(a)                                                                           (b) 

 
(c)                                                                         (d) 

Fig. 8.32. The stresses concentration (a) horizontal stress    ; (b) vertical stress    ; (c) shear stress     ; (d) Mises 

stress    . 
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