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Sommario

In questa tesi viene proposta una strategia per modellare il comportamento
dei fluidi e la loro interazione con corpi deformabili. Un approccio classico
a questo tipo di problemi si basa sulla soluzione delle equazioni di Navier-
Stokes, che governano il moto del fluido a scala macroscopica. Qui, in con-
trasto a questo classico approccio, il dominio fluido è modellato utilizzando
il metodo lattice Boltzmann, analizzando conseguentemente la dinamica del
fluido da un punto di vista prettamente mesoscopico. È stato dimostrato
che la soluzione fornita da tale metodo equivale a risolvere le equazioni di
Navier-Stokes per un flusso incomprimibile con un ordine di accuratezza
pari al secondo. Il metodo lattice Boltzmann è stato preferito all’approccio
classico per diversi motivi, come il minor costo computazionale e la mag-
giore modularità nello sviluppo di un software numerico in ambiente C++.
L’efficacia dell’implementazione è stata valutata rispetto a vari problemi di
riferimento che coinvolgono corpi rigidi investiti da un fluido.
La struttura è modellata con elementi finiti di trave snella a comportamento
meccanico elastico lineare. Il regime di grandi spostamenti è descritto uti-
lizzando la formulazione corotazionale. Le equazioni del moto sono risolte
utilizzando il metodo Time Discontinuous Galerkin. La scelta di questo
schema di integrazione nel tempo rispetto agli algoritmi standard alla New-
mark è motivato dalle migliori proprietà in termini di stabilità, convergenza
e accuratezza.
Vengono quindi utilizzate due diverse metodologie di soluzione, una per il
dominio fluido e l’altra per la parte strutturale, che coinvolgono equazioni,
formulazioni e processi risolutivi distinti. Questi due metodi hanno bisogno
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di comunicare e trasferire informazioni l’uno all’altro, come sforzi, velocità e
spostamenti. Al fine di garantire uno scambio continuo, efficace e reciproco
di informazioni, una strategia di accoppiamento, composta da tre differenti
algoritmi, è stata sviluppata. In particolare, l’efficacia dei tre algoritmi è
mostrata in termini di energia dell’interfaccia prodotta artificialmente dal
parziale soddisfacimento delle condizioni di compatibilità e di equilibrio
all’interfaccia fluido-struttura.
Il presente approccio accoppiato viene utilizzato per risolvere diversi pro-
blemi di interazione fluido-struttura, come travi a mensola immerse in un
fluido viscoso, l’impatto degli scafi delle navi sulla superficie libera marina,
il flusso sanguigno in una parete vascolare deformabile e anche il moto di
due ali che simulano il decollo di una farfalla. I buoni risultati ottenuti in
ciascuna applicazione evidenzia l’efficacia della metodologia proposta e del
software sviluppato in ambiente C++ nell’approcciarsi a qualsiasi problema
bidimensionale di interazione fluido-struttura.
Alcuni risultati presenti nella tesi sono stati oggetti di partecipazioni a con-
gressi e pubblicati su riviste internazionali [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13].
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Abstract

In this thesis, a strategy to model the behavior of fluids and their interac-
tion with deformable bodies is proposed. Usually, a classical approach to
such kind of problems is based on the solution of the Navier-Stokes equa-
tions, governing the fluid at a macroscopic scale. Here, in opposition to the
classical approach, the fluid domain is modeled by using the lattice Boltz-
mann method, thus analyzing the fluid dynamics by a mesoscopic point
of view. It has been proved that the solution provided by this method is
equivalent to solve the Navier-Stokes equations for an incompressible flow
with a second-order accuracy. The lattice Boltzmann method has been
preferred to the classical approach for several reasons, such as its extreme
simplicity, the lower computational cost involved and the great attitude to
be implemented in a C++ numerical software. The effectiveness of the im-
plementation is tested against several benchmark problems involving rigid
bodies invested by a fluid.
Slender elastic structures idealized through beam finite elements are used.
Large displacements are accounted for by using the corotational formula-
tion. Structural dynamics is computed by using the Time Discontinuous
Galerkin method. The choice of this time integration scheme over standard
Newmark’s algorithms is motivated by the better properties in terms of
stability, convergence and accuracy.
Therefore, two different solution procedures are used, one for the fluid do-
main and the other for the structural part, respectively. These two solvers
need to communicate and to transfer each other several information, i.e.
stresses, velocities, displacements. In order to guarantee a continuous, ef-
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fective, and mutual exchange of information, a coupling strategy, consisting
of three different algorithms, has been developed and numerically tested.
In particular, the effectiveness of the three algorithms is shown in terms of
interface energy artificially produced by the approximate fulfilling of com-
patibility and equilibrium conditions at the fluid-structure interface.
The proposed coupled approach is used in order to solve different fluid-
structure interaction problems, i.e. cantilever beams immersed in a viscous
fluid, the impact of the hull of the ship on the marine free-surface, blood
flow in a deformable vessels, and even flapping wings simulating the take-
off of a butterfly. The good results achieved in each application highlight
the effectiveness of the proposed methodology and of the C++ developed
software to successfully approach several two-dimensional fluid-structure
interaction problems.
Some results reported in the present thesis have been published in confe-
rence proceedings and international journals, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13].
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Chapter 1

Introduction

Sommario

La fluido-dinamica computazionale è un ambito di ricerca che si prefigge
lo scopo di usare strumenti di calcolo, metodi e algoritmi numerici per ri-
solvere problemi che coinvolgono fluidi e l’eventuale interazione di questi
con solidi. La fluido-dinamica computazionale puó essere studiata e analiz-
zata a vari livelli di osservazione. Un primo livello è detto macroscopico e
si concretizza nel risolvere con classiche tecniche ai volumi o agli elementi
finiti le equazioni di Navier-Stokes. Un secondo approccio impiega il metodo
lattice Boltzmann ed è basato sull’equazione del trasporto di Boltzmann con
il suo particolare punto di vista mesoscopico. Il terzo livello consiste nel
ricondurre un problema di fluido-dinamica a uno di dinamica molecolare.
In questa tesi l’attenzione è stata focalizzata sul metodo lattice Boltzmann
allo scopo di risolvere problemi di interazione fluido-struttura. La strut-
tura, intesa come solido deformabile, viene modellata tramite un approccio
agli elementi finiti, usando elementi di trave piana geometricamente non-
lineare. Il regime di grandi spostamenti viene tenuto in conto tramite la
formulazione corotazionale. L’integrazione dell’equazione del moto della
struttura viene effettuata tramite il metodo Time Discontinuous Galerkin.
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CHAPTER 1. INTRODUCTION

Trattandosi di due metodologie risolutive diverse, una per il dominio flui-
do e l’altra per il dominio solido, ognuna delle quali possiede un proprio
background teorico e diverse modalità implementative, uno dei principali
contributi della tesi è stato lo sviluppo di un algoritmo di accoppiamento
tale da garantire un continuo, efficace, accurato e mutuo scambio di infor-
mazioni tra le due. Il lavoro si è quindi concretizzato nello sviluppo di un
codice in ambiente C++ la cui efficacia e la cui robustezza emergono dalla
disamina di varie applicazioni.

Alessandro De Rosis 10



1.1. THE STATE OF THE ART

1.1 The state of the art

Computational fluid dynamics (CFD) is a branch of the fluid dynamics
aiming to solve problems involving fluids and their interaction with solids
by using numerical algorithms and models. A reliable prediction of the
interaction between fluids and structures is extremely important in seve-
ral industrial, technological, biological and environmental processes. This
great interest promoted a huge research effort in the last two decades. CFD
can be observed and consequently analyzed through three different levels
of view. The first one, also know as classical approach to CFD, consists
in the solution of the Navier-Stokes equations [14], governing the fluid at
a macroscopic scale. A second level employes the lattice Boltzmann (LB)
method [15]; it is based on Boltzmann’s kinetic equation [16], with its cha-
racteristic mesoscopic point of view, and not on Navier-Stokes continuum
assumption. The lowest level approaches the problem from a microscopic
molecular point view, thus the macroscopic behavior arises from the dy-
namics of a system of molecules.
Concerning the classical approach, the solution of the Navier-Stokes equa-
tions in a closed form is possible only in some special cases. In any practical
applications, these equations are solved by using finite element (FE) or finite
volume techniques. Even if such approach is widespread, it presents several
drawbacks. First, each classical CFD solver inevitably needs to treat the
convective term, involving a huge computational effort, since it is non-local
and non-linear. In some cases this term is neglected, that is, for example,
the potential flow theory. As it is known, such theory governs the macro-
scopic behavior of a fluid under the assumptions of irrotational flow and
inviscid fluid, representing an ideal condition, usually far from the practical
applications. In addition, CFD solvers for the incompressible Navier-Stokes
equations need to solve the Poisson equation for the pressure, which is a-
nother expensive operation. Moreover, if the interaction with solid bodies
is studied, moving meshes are needed, thus requiring, again, high compu-
tational costs. These drawbacks suggest to use an alternative approach for
the solution of a CFD problem.

11 Alessandro De Rosis



CHAPTER 1. INTRODUCTION

1.2 The proposed approach

In this thesis, CFD is employed in order to solve two-dimensional fluid-
structure interaction problems and the attention is focused on the meso-
scopic level and, consequently, on the LB method [17, 18, 19, 20]. The
LB method was successfully employed for several complex fluid dynamics
problems, such as large-eddy simulations of turbulent flows [21], multiphase
flows [22, 23, 24, 25, 26], non-Newtonian blood flow [27, 28], and even for
ferrofluids [29], among the others. Complex boundary geometries were
successfully simulated by means of the interpolation scheme described in
[30, 31, 32] and recently the LB method has been also used to solve fluid-
structure interaction problems (FSI), [33, 34, 7, 35, 10]. As well known,
two different approaches, typical of any coupled problem, can be used to
tackle fluid-structure interaction: monolithic approach [36] and partitioned
approach [37]. Here, the partitioned approach is adopted, since it is the
most suited for practical problems, [38]. The basic strategy is to treat sepa-
rately the fluid and the structural domains and to properly discretize each
of them, in order to adopt numerical methods developed and optimized for
both computational fluid dynamics and computational structural dynamics.
To meet the continuity conditions on the common fluid-structure boundary,
an effective procedure should be devised to couple the two solvers.
Structure dynamics is modelled by means of the Finite Element (FE)
method. Specifically, linear elastic slender structures idealized by beam
finite elements are considered. Large displacements are accounted for by
adopting the corotational formulation [39, 40] and time integration is per-
formed by using higher order methods [41]. In particular, the Time Discon-
tinuous Galerkin (TDG) method, implemented according to the two-stage
algorithm recently proposed in [42], is adopted. This choice is motivated
by its good accuracy and stability properties, that are expected to play an
important role in the performance of the whole procedure.
Two different solvers, one for the fluid domain and the other for the solid
one, are used. Each one differs from the other in the theoretical background,
in the discretization method and, consequently, in the solution procedure.
Thus, in order to solve a FSI problem, the two solvers need to communi-
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1.2. THE PROPOSED APPROACH

cate. To this purpose, a proper coupling strategy has been implemented.
In this thesis, three different coupling algorithms for FSI are considered
and their properties in terms of both accuracy and stability are numeri-
cally investigated. The same time discretization is adopted for both fluid
and structure. The fluid is solved on a fixed grid (lattice) and the struc-
ture can move/deform upon the grid, similarly to immersed boundaries
[43], with no restriction on matching between fluid and structure nodes
(non-boundary-fitted method). This is one of the main advantages of this
approach, since no moving meshes are needed that usually require high
computational times. In order to account for the exact position of a solid
not aligned with the grid, two different curved boundary conditions are
used. First, the curved boundary condition [32, 44] represents the so-called
interpolated bounce-back scheme. It has been shown that is second-order
accurate. Upon structure motion, a simple refill procedure is used to ini-
tialize new activated fluid nodes. Secondly, the Immersed Boundary (IB)
method [45] is adopted. This method possesses a lower accuracy compared
to the previous boundary condition, even if it is very flexible, easy to be
implemented and to account for complex geometries. In addition, no re-
fill procedure are needed. To compute the forces acting on the structure,
the stress tensor at lattice sites is computed by the simple and effective
procedure discussed in [46]. The first coupling algorithm considered, called
FELBA Explicit, is very simple and can be classified as standard staggered
algorithm. The second coupling algorithm, called FELBA, is similar to the
previous one apart from the introduction of a structure predictor, based
on the idea proposed in [47, 48]. The third one, called FELBA Implicit
[10], is obtained by the previous algorithm by iterating within each time
step until a convergence criterion on interface conditions is met. It can be
classified as strongly-coupled partitioned algorithm. In the presence of very
light structures, Aitken’s under-relaxation is used to prevent from potential
instability due to added-mass effects [38, 49, 50, 51].
The LB and FE methods, together with proper boundary and initial con-
ditions, and the coupling strategies have been implemented, leading to the
development of a C++ code. In order to develop a performant computa-
tional tool, special attention was paid to the high performance computing.

13 Alessandro De Rosis



CHAPTER 1. INTRODUCTION

Several numerical libraries have been used in order to develop a code able
to exploit hardware resources as much as possible. Such code has been
preliminarly tested on benchmark problems involving rigid bodies in order
to assess the effectiveness of the LB implementation. Then, the interaction
with solid bodies has been investigated in several different contexts, sho-
wing the ability of the present FSI approach to be applied to several CFD
problems.

1.3 The outline of the thesis

The present thesis is organized as follows. In Chapter 2, the LB method
is presented, from the continuum background to the discrete implementa-
tion. Moreover, the attention is focused on the fluid boundary conditions.
Different methods based on Eulerian and Lagrangian descriptions of the
immersed solid are presented and compared each other. In Chapter 3, de-
tails on the FE structure solver are given. The kinematics of a two-node
slender beam element is achieved by using the corotational formulation,
whereas the integration of the equation of the solid motion is performed by
using the non-linear TDG scheme. In Chapter 4, the coupling algorithms
are discussed, focusing on the implementation and on the fulfilling on the
interface continuity conditions, both in terms of compatibility and equili-
brium. Moreover, the added-mass effect is investigated and a strategy to
prevent instabilities is shown. Finally, some numerical tools are presented.
The impact of the high performance computing on the factorization of the
effective matrix of the TDG scheme is discussed, showing the effect of these
tools in the performance of the FSI algorithm. In Chapter 5, in order to
test the robustness of the developed software, first benchmark problems
are investigated, concerning rigid obstacle invested by an incoming flow;
findings in terms of drag coefficients and velocity profiles in several sec-
tions are compared to literature values. The accuracy of the interpolated
bounce-back scheme and of the IB method is evaluated by computing the
aerodynamics coefficients of rigid bodies. Then, the behavior of deformable

Alessandro De Rosis 14



1.3. THE OUTLINE OF THE THESIS

beams clamped to rigid boundaries immersed in a viscous fluid is investi-
gated. Chapter 6 contains several applications of the present approach to
different FSI problems. An industrial/defense application is investigated:
the impact of the hull of a ship on the marine surface, known as hull slam-
ming. Moreover, two applications from biomechanics are considered: the
blood flow in a deformable vessel and the lift generation in a flapping wing
simulating the vertical take off of a butterfly. The achieved good results
show the capability of the present coupled approach to solve very different
FSI problems. In Chapter 7, some concluding remarks on the proposed
strategy are discussed. Some additional details are given in Appendices A
and B.

15 Alessandro De Rosis
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Chapter 2

Fluid modeling

Sommario

Al continuo l’equazione di Boltzmann descrive l’evoluzione nello spazio e
nel tempo di una funzione di distribuzione di particelle le quali si muovono
e collidono l’un l’altra. Dall’evoluzione di questa funzione è possibile ri-
cavare delle quantitá di interesse macroscopico. Per esempio, dalla carica
e dal calore trasportati dalla funzione di distribuzione delle particelle è pos-
sibile risalire alla conducibilitá termina ed elettrica di un mezzo continuo.
Nell’equazione di Boltzmann compare un termine detto operatore di colli-
sione che regola il comportamento delle particelle nel momento in cui colli-
dono. A rigore, esso possiede un’espressione differenziale molto complicata
e, in virtú di ció, se ne adotta un modello semplificato ideato nel 1954, dove
l’operatore di collisione viene espresso in termini di rilassamento a un equi-
librio locale. L’equazione di Boltzmann viene discretizzata e risolta su una
griglia cartesiana. Se il numero di Mach del modello numerico é sufficiente-
mente piccolo, allora é possibile dimostrare che il metodo lattice Boltzmann
approssima la soluzione delle equazioni di Navier-Stokes per flusso incom-
primibile con un’accuratezza al secondo ordine. Dettagli sulla formulazione,
sul metodo e sulle condizioni al contorno verranno discussi.

17



CHAPTER 2. FLUID MODELING

2.1 The kinetic theory and Boltzmann’s equation

The kinetic theory of gases describes a gas as a large number of small parti-
cles (atoms or molecules) in constant random motion, continuously colliding
each other. Kinetic theory explains macroscopic properties of gases, such as
pressure, temperature, and volume, by considering their molecular compo-
sition and motion. For example, this theory is used to compute the electric
or heat capacity of a continuous medium by tracking the electric charge
or the heat that particles carry with them. The cornerstone of the kinetic
theory is Boltzmann’s equation.
Consider a set of N molecules moving in a box of volume V. The proba-
bility distribution function f(x,v, t) to find a particle in the position x at
time t moving with velocity v is predicted by Boltzmann’s equation [16].
Boltzmann’s kinetic equation reads as follows:

ḟ(x,v, t) + v(x, t) · ∇f(x,v, t) = Q(x,v, t), (2.1)

where the superimposed dot indicates differentiation with respect to time,
the left-hand side represents the molecular streaming motion and the ope-
rator Q represents the effect of intermolecular collision. Assuming a dilute
gas of point-like massless molecules interacting via a short-range potential,
intermolecular interactions can be described in terms of localized binary
collisions, with molecules spending most of their life span on independent
free trajectories, i.e. no correlations between particles entering a collision.
In order to facilitate numerical and analytical solutions of Boltzmann’s
equation, the complicated non-linear integral collision operator is replaced
by a simpler expression. In particular, the Bhatnagar-Gross-Krook model
(BGK) is adopted [52], where Q is expressed as a relaxation to a local
equilibrium, that is,

Q =
f − feq

τ
. (2.2)

Mathematically, the local equilibrium is defined as a local distribution func-
tion feq, such that gains and losses are in exact balance so that the collision
term is annihilated, Q(feq, feq) = 0. The relaxation parameter τ is a typi-
cal time-scale associated with collision relaxation to the local equilibrium.

Alessandro De Rosis 18



2.2. THE LATTICE BOLTZMANN METHOD

The major advantage of the BGK model is that the non-linearity is purely
local, while the non-locality is linear.

2.2 The lattice Boltzmann method

Equation 2.1 is discretized in space and time through a finite difference
scheme upon a square grid. The particle distribution function can moves
only along several imposed directions, known as lattice speed directions cj .
In particular, the so called D2Q9 lattice model is used, that is a standard
9-speed (the index j spans these directions) and two-dimensional lattice
grid (see Figure 2.1), [53]. In this formulation the lattice vectors cj are
chosen in such a way that the spatial discretizaion ∆x and the time step
∆t are both equal to 1, leading to a simple implementation. The discretized
lattice BGK equation reads as follows:

fj(x+ ∆t cj , t+ ∆t) = fj(x, t) +
1

τ

[
feqj (x, t)− fj(x, t)

]
, (2.3)

where fj = fj(x, t) and feqj refer to the j-th particle distribution function.
It is worth to notice that Equation (2.3) is linear and explicit. The local
equilibrium is given by a second-order expansion in the Mach number of
the local Maxwell distribution:

feqj = wjρ

[
1 +

cj · v
c2
s

+
(cj · v)2

2c4
s

− ‖v‖
2

2c2
s

]
, (2.4)

where wj is a set of weights depending on the lattice model (w0 = 4/9,
w1 = w2 = w3 = w4 = 1/9, w5 = w6 = w7 = w8 = 1/36) , c2

s = 1/3 is the
lattice sound speed, ρ and v are the macroscopic fluid density and velocity
at the position x, respectively, defined as discussed in the following. Notice
that the relaxation parameter is strictly related to the viscosity ν, that is,

ν =

(
τ − 1

2

)
c2
s. (2.5)

The relaxation parameter τ expresses the time that the particle distribution
function needs to relax to the local equilibrium. The lower the parameter,

19 Alessandro De Rosis
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Figure 2.1: D2Q9 particle speed model.

the faster the relaxation to the equilibrium is, thus corresponding to a less
viscous fluid. The C++ routine which computes feqj is reported in Listing
2.1.
The stress tensor can be determined as a function of the particle distribu-
tion:

σ = −pI−
(

1− 1

2τ

)
Π(1), (2.6)

with

p = ρ c2
s, (2.7)

Π(1) =
∑
j

f
(1)
j cj ⊗ cj , (2.8)

where Π(1) is computed with the non-equilibrium part of the particle distri-

bution function f
(1)
j = fj−feqj and I is the identity tensor. The discretized

Equation (2.3) is conveniently solved by two steps:

Alessandro De Rosis 20



2.2. THE LATTICE BOLTZMANN METHOD

Listing 2.1: Particle equilibrium distribution function.

1 void equili()
{

3 double A, B, C;
for(int i=0; i<nx+2; i++)

5 for(int j=0; j<ny+2; j++)
{

7 C = −1.5∗(u(i,j)∗u(i,j)+v(i,j)∗v(i,j));
for(int k=0; k<np; k++)

9 {
A = u(i,j)∗cx(k)+v(i,j)∗cy(k);

11 B = 4.5∗A∗A;
feq[k][i][j] = w(k)∗rho(i,j)∗(1.+3.∗A+B+C);

13 }
}

15 }

• collision

foutj (x, t) = f inj (x, t)− 1

τ
[f inj (x, t)− feqj (x, t)], (2.9)

• streaming
f inj (x+ ∆t cj , t+ ∆t) = foutj (x, t). (2.10)

Listing 2.2 shows the routines performing Equation (2.9) and (2.10).
Once Equation (2.3) is solved, macroscopic fluid density and velocity fields
are computed as:

ρ =
∑
j

fj , (2.11)

v =

∑
j fjcj

ρ
. (2.12)

This numerical model can be derived not only from continuum Boltzmann’s
equation. In particular, the LB method can be viewed as a continuous ver-
sion of several microscopic models known as cellular automata and lattice
gas cellular automata [15, 54].
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Listing 2.2: Collision and streaming steps.

1 void collision()
{

3 for(int k=0; k<np;k++)
for(int i=1; i<=nx; i++)

5 for(int j=1; j<=ny; j++)
f1[k][i][j] = f1[k][i][j]∗(1.0−omega) + omega∗feq[k][i][j];

7 }
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

9 void streaming()
{

11 int h, l;
for(int k=0; k<np; k++)

13 {
h = (int)cx(k);

15 l = (int)cy(k);
for(int i=1; i<=nx; i++)

17 for(int j=1; j<=ny; j++)
f2[k][i][j] = f1[k][i−h][j−l];

19 }
}

2.3 Chapman-Enskog expansion

In this section, it will be shown that the LB method is suitable for fluid
flow simulations since it recovers the Navier-Stokes equations for an incom-
pressible flow. First, a perturbative expansion of the particle distribution
function is performed, i.e.

f = f0 + εf1, (2.13)

where superscript 0 denotes local equilibrium, while superscript 1 depar-
ture from this equilibrium. The Chapman-Enskog analysis consists of a
double expansion in the smallness parameter ε of both dependent f(x, t)
and independent (x, t) variables. The small perturbation parameter ε is
the Knudsen number Kn, that is a dimensionless number equal to the ratio
between the molecular mean free path length and a representative physical
length scale. The Knudsen number is helpful to identify when statisti-
cal mechanics or the continuum mechanics formulation of fluid dynamics
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should be used: if Kn ≥ 1, the mean free path of a molecule is comparable
to the length scale of the problem, and the continuum assumption of fluid
mechanics is no longer a good approximation. In this case statistical me-
thods must be used. Notice that the Knudsen number can be derived as
the ratio between the Mach number Ma and the Reynolds number Re.
The expansion of space-time variables is the center of a multiscale method,
whose idea is to represent space and time in terms of a hierarchy of scales,
such that each variable is O(1) at its relevant scale. By denoting with x1

and t1 the linear sound wave regime and with t2 the long-term dynamics,
the multiscale representation reads as follows:

x = ε−1x1, t = ε−1t1 + ε−2t2, (2.14)

leading to the differential operators

∂x = ε∂x1, (2.15)

∂t = ε∂t1 + ε2∂t2. (2.16)

Chapman-Enskog assumptions require that

f
(0)
j = feqj , (2.17)

ρ =
∑
j

fj =
∑
j

f
(0)
j , (2.18)

ρv =
∑
j

cjfj =
∑
j

cjf
(0)
j , (2.19)

∑
j

f
(k)
j = 0, if k ≥ 1, (2.20)

∑
j

cjf
(k)
j = 0, if k ≥ 1. (2.21)

The streaming operator can be written in terms of second-order space
derivatives, that is,

ε∂t1 + ε2∂t2 + εvα∂x1α +
1

2
ε2vαvβ∂x1α∂x1β, (2.22)
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where vα and vα denote the Cartesian components of the velocity vector
v. The same Chapman-Enskog procedure can be applied to the collision
operator,

Q ∼ εC ′f1, (2.23)

where the symbol (′) denotes the differentiation with respect to f . Notice
that in the above relation, the zeroth-order term C[f0] is neglected, since
f0 = feq, thus annihilating this term.
These expansions are very important, since macroscopic equations at dif-
ferent scales emerge naturally from the mathematical requirement that the
operatorial coefficients if the expansions must be identically zero term-by-
term. From mass and momentum conservations, it is possible to obtain:

εM̂1 + ε2M̂2 = 0, (2.24)

εĴ1 + ε2Ĵ2 = 0, (2.25)

respectively. At order ε, it is possible to assess

∂t1ρ+ ∂α1Jα = 0, (2.26)

∂t1Jα + ∂β1

∫
vαvβf

0 dv = 0, (2.27)

being Jα = ρvα. Notice that in the above relations the velocity space inte-
gral can be solved analytically leading to ρvαvβ + ρTδαβ with T the fluid
temperature, thus recovering the Euler equations for an inviscid fluid. The
symbol δαβ denotes the Kronecker delta function.
The second-order equations involve the equilibrium and non-equilibrium
levels of the multiscale expansion and, after some algebra, lead to the
Navier-Stokes equations

∂tρ+ ∂αJα = 0, (2.28)

∂tJα + ∂β (ρvαvβ + ρTδαβ) = ∂βταβ. (2.29)

By imposing Tαβ = ρvαvβ + ρTδαβ, it can be shown that the tensors Tαβ
and ταβ represent the equilibrium and non-equilibrium components of the
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2.4. DIMENSIONLESS FORMULATION

momentum flux tensor, respectively,

Tαβ = m

∫
feqvαvβ dv, (2.30)

ταβ = m

∫
(f − feq) vαvβ dv, (2.31)

being m the mass. Notice that the tensor Tαβ is related to the non-
dissipative Newtonian dynamics, whereas the tensor ταβ represents dis-
sipative effects associated with the relaxation to the local equilibrium.

2.4 Dimensionless formulation

In order to simulate a real phenomenon through the LB method, it has to be
converted in the lattice world, where ∆x = ∆t = 1; therefore, the real vari-
ables of the physical problem have to be transferred in lattice dimensionless
units. First, the real units have to be converted in dimensionless units, by
selecting a set of dimensionless parameters which govern the problem it-
self. The Mach number, Ma = V

cs
, and the Reynolds number, Re = V D

ν ,
usually represent two typical parameters of a problem involving a viscous
fluid. Notice that V and D are the characteristic velocity and length of
the problem, respectively. Many other parameters may exist, depending on
the problem itself. For example, if gravity is considered, the Froude num-
ber, Fr = V√

g L
, have to be taken into account. Moreover, for biomedical

engineering involving the pulsatile blood flow in a vessel with radius R, a
very popular dimensionless group is represented by the Womersley number,
α = R

√
ω
ν , being ω the frequency of the pulsatile flow.

2.5 Fluid boundary conditions

In this section, two schemes to account for the position of a solid body
in the grid are discussed. In particular, these methods can successfully
handle obstacle not aligned with the lattice nodes. First, the so called
interpolated bounce back rule is discussed, which consists in computing the
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particle distribution function bouncing back from a solid off-grid node to
a fluid one through an interpolation of the known on-grid fj . Notice that
this boundary condition is strictly related to the Eulerian nature of the LB
method, as it will be discussed in the following. Secondly, the Immersed
Boundary method is presented. It consists in the verification of the zero-
velocity condition on a mesh depicting the immersed solid by only knowing
its position. Thus, the Immersed Boundary condition is characterized by a
Lagrangian point of view.

Interpolated bounce-back

The half-way bounce-back scheme is used to implement the boundary con-
ditions, [55, 56]. Moreover, the procedure proposed in [32] is used to ac-
count for the exact position of an obstacle not aligned to the grid. The
post-collision density function f̃j , which bounces-back from an immersed
boundary node xb located inside the obstacle, is computed by means of the
interpolation scheme proposed in [30]:

f̃j(xb, t) = 2wjρ(xb, t)
cj · v(xw, t)

c2
s

− (1− χ)f̃j(xf , t)− χf∗j (xb, t), (2.32)

where xw denotes the exact position of a wall node in the lattice back-
ground and xf represents fluid nodes surrounding the obstacle (see Figure
2.2). In Equation (2.32), f∗j (xb, t) represents a fictitious equilibrium density
function given by

f∗j (xb, t) = wjρ(xf , t)

[
1 +

cj · v∗
c2
s

+
[cj · v(xf , t)]

2

2c4
s

−
‖v(xf , t)‖2

2c2
s

]
(2.33)

and quantities χ and v∗ are determined as follows:
v∗ =

2δ − 3

2δ
v(xf , t) +

3

2δ
v(xw, t), χ =

2δ − 1

τ + 0.5
if δ ≥ 1/2,

v∗ = v(xf −∆t cj , t), χ =
2δ − 1

τ − 2
if δ < 1/2,

(2.34)
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Figure 2.2: Curved boundary condition.

where δ = ||xf − xw||/||xf − xb||. Equation (2.32) has been implemented
for a cylindrical obstacle as reported in Listing 2.3.
A simpler interpolated bounce-back condition has been proposed in [44]
and is reported in Listing 2.4, where the off-grid particle distribution func-
tion f̃j̄ which bounces-back from a solid node xb to a fluid one xf is ob-
tained performing a quadratic interpolation of the populations located at
the neighbour nodes, that is,

f̃j̄(xf , t) = δ(1 + 2δ)fj(xf + cj , t) + (1− 4δ2)fj(xf , t)+

− δ(1− 2δ)fj(xf − cj , t) + 3wj [cj · v(xw, t)] if δ < 1/2,
(2.35)

f̃j̄(xf , t) =
1

δ(1 + 2δ)
fj(xf + cj , t) +

2δ − 1

δ
fj̄(xf − cj , t)+

− 2δ − 1

2δ + 1
fj̄(xf − 2cj , t) +

3wj
δ(1 + 2δ)

[cj · v(xw, t)] if δ ≥ 1/2,

(2.36)

being cj̄ = −cj . Aiming at using the fluid solver for fluid-structure inter-
action, a proper procedure is needed to tackle moving boundaries due to
structure deformation. In particular, because of the fixed nature of the grid
employed for the fluid computation, new fluid nodes can be activated, as
a consequence of structure deformation. Thus, the newly-activated nodes
must be properly initialized, in terms of particle distribution function: to
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Listing 2.3: Boundary condition in [32] for a cylindrical obstacle.

void mei bc()
2 {

int A, B, O, AO, BO, C;
4 double ubf, vbf, fstar fil, deltax, deltay, delta,

chi, R, U, V, U1, V1, UV1, UV2, U3;
6 for(int k=1; k<np; k++)

for(double i=xc−R−1; i<=xc+R+1; i++)
8 for(double j=yc−R−1; j<=yc+R+1; j++)

if(flag[k][i][j] == 10)
10 {

A = (int)cx[k];
12 B = (int)cy[k];

O = opp[k];
14 AO = (int)cx[opp[k]];

BO = (int)cy[opp[k]];
16 R = rho[i][j];

U = u[i][j];
18 V = v[i][j];

U1 = U∗cx[opp[k]];
20 V1 = V∗cy[opp[k]];

UV1 = U1+V1;
22 UV2 = U∗U+V∗V;

deltax = fabs(xfluid[k][i][j]−xwall[k][i][j]);
24 deltax /= fabs(xfluid[k][i][j]−xbound[k][i+AO][j+BO]);

deltay = fabs(yfluid[k][i][j]−ywall[k][i][j]);
26 deltay /= fabs(yfluid[k][i][j]−ybound[k][i+AO][j+BO]);

delta = sqrt(deltax∗deltax+deltay∗deltay);
28 if(delta >= 0.5)

{
30 chi = (2.∗delta−1.)/(tau+0.5);

ubf = (2.∗delta−3.)/(2.∗delta)∗U;
32 vbf = (2.∗delta−3.)/(2.∗delta)∗V;

}
34 else

{
36 chi = (2.∗delta−1.)/(tau−2.);

ubf = u[i+A][j+B];
38 vbf = v[i+A][j+B];

}
40 U3 = ubf∗cx[opp[k]]+vbf∗cy[opp[k]];

fstar fil = w[O]∗R∗(1.+3.∗U3+4.5∗UV1∗UV1−1.5∗UV2);
42 f fil[k][i][j] = (1.−chi)∗f[O][i][j]+chi∗fstar fil;

}
44 }
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Listing 2.4: Boundary condition in [44] for a cylindrical obstacle.

void lall bc
2 {

for(int k=1; k<np; k++)
4 for(double i=xc−R−1; i<=xc+R+1; i++)

for(double j=yc−R−1; j<=yc+R+1; j++)
6 if(flag[k][i][j] == 10)

{
8 A = opp[k];

B = (int)cx[A];
10 C = (int)cy[A];

deltax = fabs(xfluid[k][i][j]−xwall[k][i][j]);
12 deltax /= fabs(xfluid[k][i][j]−xbound[k][i+AO][j+BO]);

deltay = fabs(yfluid[k][i][j]−ywall[k][i][j]);
14 deltay /= fabs(yfluid[k][i][j]−ybound[k][i+AO][j+BO]);

delta = sqrt(deltax∗deltax+deltay∗deltay);
16 if(delta < 0.5)

f fil[k][i][j] = delta∗(1.+2.∗delta)∗f[A][i+B][j+C]
18 + (1.−4.∗delta∗delta)∗f[A][i][j]

− delta∗(1.−2.∗delta)∗f[A][i−B][j−C];
20 else

f fil[k][i][j] = 1./(delta∗(2.∗delta+1.))∗f[A][i+B][j+C]
22 + (2.∗delta−1.)/delta∗f[k][i−B][j−C]

− (2.∗delta−1.)/(2.∗delta+1.)∗f[k][i−2∗B][j−2∗C];
24 }
}
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assign a proper initial value, a very simple refill procedure has been adopted.
In particular, a linear distribution of fj is assumed close to the new lat-
tice node and a linear interpolation of the values at the surrounding nodes
placed externally to the solid is adopted. On the other hand, upon structure
deformation some nodes may become inactive. In this case, the associated
values are disregarded, leading to a loss of mass. Notice that this refill
procedure does not satisfy the mass conservation law, since it introduces
new nodes, and consequently mass, in the system each time a new fluid
node arises. This issue suggests to use a solid boundary condition which
does not involves any refill procedure.

The Immersed Boundary method

The idea to compute the particle distribution function in an off-grid posi-
tion has been proved to be very effective [30, 31, 32]. On the other hand,
such approach is affected by several drawbacks. It lies in the Eulerian lat-
tice grid, thus it is difficult to handle and implement complex geometries
that cannot be described by a predefined expression. In particular, for the
generic obstacle, the boundary staircase nodes xb must be detected; then,
the exact position of the wall node xw is computed by intersecting each lat-
tice direction with the equation/expression of the solid surface. As it can be
immediately realized, handling a geometry becomes computationally hard,
especially upon solid deformations. In order to avoid this issue, the Im-
mersed Boundary (IB) method proposed by Peskin [57, 45] can be used,
following the approach in [58, 43, 59]. As show in Figure 2.3, the solid
is represented by a Lagrangian mesh for the boundaries, generally non-
stationary and unstructured. Therefore, two different coordinate systems
are used: an Eulerian grid for the lattice BGK equation and a Lagrangian
mesh for the immersed boundary, i.e. a vector containing the nodal coordi-
nates. These two systems communicate through interpolations rules which
satisfy the no-slip condition for the velocity and the momentum conserva-
tion, i.e. Newton’s law. The boundary influences the fluid domain via an
external forcing term, thus there is no direct boundary condition for the
fluid acting on the populations as in the interpolated bounce-back scheme.

Alessandro De Rosis 30



2.5. FLUID BOUNDARY CONDITIONS
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Figure 2.3: A Lagrangian solid mesh immersed in the Eulerian lattice fluid domain.

This means that populations can travel through the boundary without see-
ing it, but the macroscopic behavior is affected by its presence. Moreover,
the fluid fills the entire domain, even inside the boundary region, thus no
refill procedure is necessary and the consequent issue related to the mass
conservation law is disregarded. Denoting with Xk and Vk the position and
the velocities, respectively, of the k-th Lagrangian boundary node and with
Tk the force acting on the same node, the discretized IB method equations
read as follows:

Vk =
∑
i

v(xi)W (Xk − xi), (2.37)

t(xi) =
∑
k

TkW (Xk − xi), (2.38)

where t(xi) is the fluid force density at the Eulerian point xi which is
added to the right-hand side of the collision step equation. Notice that
capital letters indicate Lagrangian variables. The interpolation kernel W is
chosen to be short-ranged with a finite cut-off length in order to reduce the
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computational effort. Moreover, momentum and angular momentum have
to be identical when evaluated either in the Eulerian or the Lagrangian
frame. It is convenient to factorize the kernel as W (x1, x2) = w(x1) ·w(x2),
being (x1,x2) the Eulerian vector basis, and

w(xi) =


1

8

(
3− 2|xi|+

√
1 + 4|xi| − 4x2

i

)
for 0 ≤ |xi| ≤ 1,

1

8

(
5− 2|xi| −

√
−7 + 12|xi| − 4x2

i

)
for 1 ≤ |xi| ≤ 2,

0 otherwise,

(2.39)
with i = 1, 2. The one-dimensional kernel is sketched in Figure 2.4. The
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xi 

Figure 2.4: Sketch of the one-dimensional kernel w(xi).

present immersed boundary condition is shown in Listing 2.5.

2.6 LB method vs Navier-Stokes equations

The main features of the LB method versus the classical approach can be
summarized as follows:

• classical CFD solvers inevitably need to treat the non-linear convec-
tive term, v · ∇v; the LB method totally avoids the non-linear con-
vective term, because the convection becomes simple advection, that
is a uniform data shift;

• CFD solvers for the incompressible Navier-Stokes equations need to
solve the Poisson equation for the pressure; in the LB method, the
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Listing 2.5: Immersed boundary method for a cylindrical obstacle.

1 int IB(int mn)
{

3 double rx, ry, ds, eps; int l = 0;
mtl1 Ux(N,0.), Uy(N,0.), ustarx(N,0.), ustary(N,0.), g1x(N,0.), g1y(N,0.);

5 for(int k=0; k<N; k++){
Ux(k) = 0.; Uy(k) = 0.;

7 for(int i=min(X)−5; i<max(X)+5; i++)
for(int j=min(Y)−5; j<max(Y)+5; j++){

9 rx = (double)i−X(k); ry = (double)j−Y(k);
ustarx(k) += u(i,j)∗wIB(rx)∗wIB(ry); ustary(k) += v(i,j)∗wIB(rx)∗wIB(ry);

11 }
}

13 mtl2 ul(nx+2,ny+2), vl(nx+2,ny+2);
set to zero(ul); set to zero(vl); g1x = Ux−ustarx; g1y = Uy−ustary;

15 do
{

17 l++;
set to zero(gx); set to zero(gy);

19 ds = 2.∗M PI∗(max(X)−min(X))/2./((double)N);
for(int i=min(X)−5; i<max(X)+5; i++)

21 for(int j=min(Y)−5; j<max(Y)+5; j++)
for(int h=0; h<N; h++){

23 rx = (double)i−X(h); ry = (double)j−Y(h);
gx(i,j) += g1x(h)∗wIB(rx)∗wIB(ry)∗ds;

25 gy(i,j) += g1y(h)∗wIB(rx)∗wIB(ry)∗ds;
}

27 ul = u+gx; vl = v+gy;
mtl1 ulx(N,0.), uly(N,0.), U(2∗N,0.), ul(2∗N,0.), provv(2∗N,1.);

29 for(int k=0; k<N; k++)
for(int i=min(X)−5; i<max(X)+5; i++)

31 for(int j=min(Y)−5; j<max(Y)+5; j++){
rx = (double)i−X(k); ry = (double)j−Y(k);

33 ulx(k) += ul(i,j)∗wIB(rx)∗wIB(ry);
uly(k) += vl(i,j)∗wIB(rx)∗wIB(ry);

35 }
g1x += Ux−ulx; g1y += Uy−uly;

37 for(int i=0; i<N; i++){
U(i) = Ux(i); U(N+i) = Uy(i);

39 ul(i) = ulx(i); ul(N+i) = uly(i);
}

41 eps = norma(U,ul,2∗N)/norma(U,provv,2∗N);
provv=0; U=0; ul=0; ulx=0; uly=0;

43 }while(eps>0.0001);
g1x=0; g1y=0; ul=0; vl=0; ustarx=0; ustary=0; Ux=0; Uy=0;

45 return l;
}
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pressure field is simply and directly related to the density one by
means of an equation of state, i.e. p = ρ c2

s (Equation 2.7);

• since Boltzmann’s equation is kinetic-based, the physics associated
with the molecular level interaction can be incorporated more easily
in the LB method. Hence, the LB method can be fruitfully applied
to micro-scale fluid flow problems;

• in the LB method, the Courant-Friedrichs-Lewy number is propor-
tional to ∆t/∆x; the grid CFL number is equal to 1 based on the
lattice units of ∆t = ∆x = 1. Consequently, the time dependent LB
method is inefficient for solving steady-state problems;

• the spatial discretization in the LB method is dictated by the di-
scretization of the particle velocity space. This coupling between
discretized velocity space and configuration space leads to regular
square grids. This is a limitation of the LB method, especially for
aerodynamic applications where both the far field boundary condition
and the near wall boundary layer need to be carefully implemented.
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Chapter 3

Structure modeling

Sommario

Il solido è modellato tramite un approccio agli elementi finiti. In partico-
lare, viene utilizzato un modello di trave piana snella in grandi spostamenti
a comportamento meccanico elastico lineare. Il regime di grandi sposta-
menti è valutato tramite l’approccio corotazionale, la cui formulazione viene
discussa. L’equazione del moto del solido deformabile è risolta tramite il
metodo Time Discontinuous Galerkin, i cui dettagli sullo schema di inte-
grazione vengono esposti. È stato scelto questo algoritmo di integrazione
rispetto ai classici schemi alla Newmark o metodo α per le migliori pro-
prietà in termini di convergenza, stabilità e accuratezza. Nell’Appendice A
verranno mostrati i dettagli del modello di Eulero-Bernoulli di trave piana
a comportamento lineare per geometria e per materiale.
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3.1 Geometrically nonlinear beam finite elements

Linear elastic plane structures idealized by beam finite elements are con-
sidered. Large displacements are accounted for through a corotational for-
mulation [39, 40]. Making reference to Figure 3.1, such approach splits the
reference configuration into two configurations: the initial configuration
C0, which is fixed during the overall analysis, and the corotated configura-
tion CR, which is different for each element and evolves together with the
individual element. In this way the element rigid body motion is separa-
ted by the purely deformational one, that is measured with respect to the
corotated configuration. A shear undeformable linear elastic straight beam
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Figure 3.1: Corotational kinematics: initial (C0) and corotated (CR) configurations.

element with two nodes is considered. The corotational configuration is
selected so that the longitudinal axis passes through the current position
of the end nodes. According to Figure 3.1, the orientation of the beam
longitudinal axis is ϕ in the initial configuration and φ = ϕ+ψ in the coro-
tated one. The beam properties are: elastic modulus E, cross section area
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A0, inertia moment about the neutral axis I0 and initial length L0. The
element kinematics is described by the vector of the nodal displacements

u(e) = [d11 d12 θ1 d21 d22 θ2]T . (3.1)

The assumed deformation parameters are the axial elongation e and the
node rotations ω1 and ω2, measured with respect to CR,

e = [e ω1 ω2]T . (3.2)

The resultant compatibility equations are:

e = (d21 − d11)cφ + (d22 − d12)sφ + L0(1− cφ), (3.3)

ω1 = θ1 − ψ, (3.4)

ω2 = θ2 − ψ, (3.5)

being cφ = cosφ and sφ = sinφ.
The first derivatives of the deformation variables with respect to the nodal
parameters can be written as follows:

∇ue =

 −cφ −sφ 0 cφ sφ 0
−sφ/L cφ/L 1 sφ/L −cφ/L 0
−sφ/L cφ/L 0 sφ/L −cφ/L 1

 . (3.6)

The second derivatives of the deformation variables are given by

∇2
ue =

1

L



s2
φ −sφcφ 0 −s2

φ sφcφ 0

−sφcφ c2
φ 0 sφcφ −c2

φ 0

0 0 0 0 0 0
−s2

φ sφcφ 0 s2
φ −sφcφ 0

sφcφ −c2
φ 0 −sφcφ c2

φ 0

0 0 0 0 0 0


, (3.7)
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for the axial deformation, while for the node rotations ω1 and ω2:

∇2
uω1 = ∇2

uω2 =
1

L2



−2sφcφ c2
φ − s2

φ 0 2sφcφ s2
φ − c2

φ 0

c2
φ − s2

φ 2sφcφ 0 s2
φ − c2

φ −2sφcφ 0

0 0 0 0 0 0
2sφcφ s2

φ − c2
φ 0 −2sφcφ c2

φ − s2
φ 0

s2
φ − c2

φ −2sφcφ 0 c2
φ − s2

φ 2sφcφ 0

0 0 0 0 0 0


.

(3.8)
The deformation energy of the beam element can be written as

U = Ua + Ub + Ug, (3.9)

where Ua, Ub and Ug are associated to axial deformation, bending defor-
mation and initial-stress geometric effects, respectively. The following ex-
pressions for the three terms are assumed:

Ua = N0e+
1

2

EA0

L0
e2, (3.10)

Ub = M0
2ω2 −M0

1ω1 +
1

2

EI0

L0

[
ω1

ω2

]T [
4 2
2 4

] [
ω1

ω2

]
, (3.11)

Ug =
1

2

N0L0

30

[
ω1

ω2

]T [
4 −1
−1 4

] [
ω1

ω2

]
, (3.12)

being N0, M0
1 and M0

2 the stress resultants in the initial configuration, as
shown in Figure 3.2. As usual, shear forces can be recovered by equilibrium.
Notice that, due to the assumed kinematics, axial and shear forces are
constant along the beam element, while bending moment varies linearly.

Hence, the internal force vector S(e) and the tangent stiffness matrix K̂
(e)
t

for the element are obtained based on standard arguments by differentiation
with respect to the element degrees of freedom. With some algebra, the
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Figure 3.2: Corotational kinematics: stress resultants.

vector of the internal forces can be written as

S(e) =



−Ncφ + V sφ − 3asφ(ω1 + ω2)/L
−Nsφ − V cφ + 3acφ(ω1 + ω2)/L

−M1 + a(4ω1 − ω2)
Ncφ − V sφ + 3asφ(ω1 + ω2)/L
Nsφ + V cφ − 3acφ(ω1 + ω2)/L

−M2 + a(4ω2 − ω1)

 , (3.13)

where L is the length of the element in such configuration, and a = N0L0
30 .

The stress resultants in the current configuration N , V , M1 and M2 are
defined as

N = N0 +
EA

L0
e, (3.14)

M1 = M0
1 −

2EJ

L0
(2ω1 + ω2) , (3.15)

M2 = M0
2 −

2EJ

L0
(ω1 + 2ω2) , (3.16)

V =
M1 −M2

L
= V 0L0

L
+

2EJ

LL0
(ω1 − ω2) . (3.17)
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The corresponding expression for the tangent stiffness matrix reads as fol-
lows:

K̂
(e)
t = K

(e)
M +K

(e)
G , (3.18)

being K
(e)
M the classical stiffness matrix of the Euler-Bernoulli beam theory

(see Appendix A) and K
(e)
G the geometric stiffness matrix that can be

expressed as

K
(e)
G = K

(e)
GN +K

(e)
GV , (3.19)

where K
(e)
GN is the geometric stiffness for an Hermitian beam element under

axial force

K
(e)
GN =

N0L0

30



0 0 0 0 0 0
0 36 3L 0 −36 3L
0 3L 4L2 0 −3L −L2

0 0 0 0 0 0
0 −36 −3L 0 36 −3L
0 3L −L2 0 −3L 4L2

 (3.20)

and K
(e)
GV takes into account for varying bending moment along the beam

axis:

K
(e)
GV =

V

L



sin2φ −cos2φ 0 −sin2φ cos2φ 0
−cos2φ −sin2φ 0 cos2φ sin2φ 0

0 0 0 0 0 0
−sin2φ cos2φ 0 sin2φ −cos2φ 0
cos2φ sin2φ 0 −cos2φ −sin2φ 0

0 0 0 0 0 0

 . (3.21)

The forces exerted by the fluid on the beam element are computed in
the corotated configuration by means of the stress tensor given in Equa-
tion (2.6). The corresponding equivalent nodal loads are determined using
the standard procedure. Notice that, since the loads depend on the current
configuration, a load contribution should be added to the tangent stiffness
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matrix. However, this contribution is neglected in the spirit of a modified
Newton-Raphson strategy. The inertia forces are accounted for by using the
classical mass matrix of the two-node Euler-Bernoulli beam element. Fi-
nally, the equation of motion of the entire structure is obtained by standard
finite element assembly procedures.

3.2 Time integration scheme

The equation of motion for the structure, discretized using the finite element
method, reads as follows:

Mü+Cu̇+ S(u) = F (u), (3.22)

together with proper initial conditions

u(0) = u0, (3.23)

u̇(0) = u̇0, (3.24)

where u is the vector of the nodal displacements, M and C are the mass
and damping matrices, respectively, S(u) is the internal force vector and
F (u) is the vector of the nodal forces exerted by the fluid. For simpli-
city, no external loads are considered. The Time Discontinuous Galerkin
method is applied to integrate Equation (3.22). Piecewise linear time in-
terpolations are selected for both nodal displacements and nodal velocities,
considered as independent variables [60], and depicted in Figure 3.3. The
resultant algorithm is one step and the predicted values for displacements
and velocities at the end of the current time step are given by:

v−i+1 = ∆tū1, (3.25)

u−i+1 = u−i + (1− µ)ū0 + µū1, (3.26)

where u−i is the displacement at the end of the previous time step, ūk are the
vectors that govern the displacement time interpolation and µ = 1−

√
2/2.

Notice that the superscript − is used to emphasize the discontinuous nature
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Figure 3.3: Piecewise linear approximation.

of the method. In order to advance in time, the non-linear algebraic equa-
tions, providing the time evolution of the structure, are solved by means of
a Newton-Raphson recursive strategy. In particular, the two-stage iterative
scheme proposed in [42] is used:

K?(l)∆ū
(l+1)
0 =

1

µ

(
F
?(l)
0 − P (l)

0 −Mã
(l+1)
0

)
, (3.27)

K?(l)∆ū
(l+1)
1 =

1

µ

(
F
?(l)
1 − P (l)

1 −Mã
(l+1)
1 +

− 1− µ
µ

K̂
(l)
t ∆ū

(l+1)
0

)
, (3.28)

where (l) refers to a quantity evaluated at iteration l and vectors ã
(l+1)
k are

computed as

ã
(l+1)
0 =

1

µ∆t

[
1

∆t
ū

(l)
0 − v

−
i − β

(
v̄

(l)
0 − v̄

(l)
1

)]
, (3.29)

ã
(l+1)
1 =

1

µ∆t

[
1

∆t
ū

(l)
1 − v

−
i − (1− µ)v̄

(l+1)
0

]
, (3.30)

being β =
√

2 − 4/3, v̄j the vectors that govern the velocity time interpo-
lation and v−i the velocity at the end of the previous time step. Velocities
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are updated by

v̄
(l+1)
j = ∆t ã

(l+1)
j +

1

µ∆t
ū

(l)
j , j = 0, 1 (3.31)

and the effective stiffness matrix is defined as

K?(l) =
1

µ2∆t2
M + K̂

(l)
t , (3.32)

being K̂
(l)
t the tangent stiffness matrix at iteration l. Indeed, a modified

tangent stiffness matrix is adopted, since material and geometric contri-
butions are actually computed, but the load contribution is disregarded,
as discussed in the previous section. Notice that all the quantities with
the superscript (l) are known from the previous iteration and (˜) refers to
predictors. Denoting with (•)0 and (•)2/3 the values of (•) at t = ti and
t = ti + (2/3)∆t, respectively, vectors F ?

k and Pk are calculated as

F ?
0 =

1

4

[(
3
√

2− 2
)
F (u0) + 3

(
2−
√

2
)
F (u2/3)

]
, (3.33)

F ?
1 =

1

2

[
3F (u2/3)− F (u0)

]
, (3.34)

P0 =
1

4

[(
3
√

2− 2
)
S(u0) + 3

(
2−
√

2
)
S(u2/3)

]
, (3.35)

P1 =
1

2

[
3S(u2/3)− S(u0)

]
, (3.36)

where u0 and u2/3 are given by

u0 = u−i +

√
2

6
(ū0 − ū1), (3.37)

u2/3 = u−i +
7
√

2

18
ū0 +

12− 7
√

2

18
ū1. (3.38)

At the beginning of each time step, the initial values for ū and v̄ are set
to zero, which implies to select the approximate solution at the end of the
previous time interval as the starting value.
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The proposed scheme is clearly based on two implicit correctors for each
iteration, which are performed using the same iteration matrix K?(l). This
effective matrix has the same form of standard algorithms and retains the
same structure as M and K̂t. To reduce the computational cost, the effec-
tive matrix is formed and factorized only once in a time step.
The outlined algorithm has proved to rapidly converge to the target so-
lution, while preserving the target stability and dissipation properties at
each iteration. Therefore, iterative corrections are performed only to im-
prove accuracy, but in the linear regime no more than two iterations are
needed to obtain the optimal accuracy order. In fact, second-order accu-
racy is achieved after the first iteration and third order accuracy (that is
the order of accuracy of the method) at the second one. It can be demon-
strated that the first iteration leads to a Nørsett algorithm [61]. In addition,
reliable error estimates are readily available [62]. The very good stability
properties of the outlined scheme in non-linear dynamics are discussed in
[63].
An efficient time discontinuous Galerkin procedure for linear regimes has
been developed in [60] and employed by the author in [7].
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Chapter 4

Coupling strategy and
numerical tools

Sommario

Nei capitoli precedenti sono state presentate due diverse metodologie. Da
un lato, il metodo lattice Boltzmann per il fluido viene risolto su una griglia
cartesiana a maglia quadrata. Dall’altro lato, il solido è modellato agli ele-
menti finti e la sua soluzione è figlia di una metodologia diversa da quella
usata per il dominio fluido. Pertanto, risolvere un problema di interazione
fluido-struttura consiste, tra l’altro, nello sviluppare una strategia di accop-
piamento tra i due solutori che garantisca un continuo ed efficace scambio
di informazioni tra loro. In particolare, tre diversi algoritmi di accoppi-
amento sono stati sviluppati e le proprietà di ognuno valutate numerica-
mente. La definizione di un’energia di interfaccia è stata funzionale al
computo dell’errore introdotto da questo approccio partizionato sul soddi-
sfacimento delle condizioni di equilibrio e compatibilità all’interfaccia tra
fluido e solido.
Grande attenzione è stata rivolta a sviluppare un software di calcolo presta-
zionale. In questo capitolo, infatti, verrà mostrato come il miglioramento
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delle prestazioni del software numerico sia possibile tramite l’impiego di li-
brerie di algebra lineare (i.e. suite di routines) in grado di attingere risorse
dall’architettura dell’hardware nello svolgimento di operazioni quali prodotti
tra matrici, risoluzione di sistemi lineari. In particolare, ne verrà mostrata
l’efficacia rispetto alla risoluzione di un sistema lineare poichè questa ope-
razione, eseguita per risolvere l’equazione del moto del solido, rappresenta
un collo di bottiglia nel software sviluppato.
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4.1 Fluid-structure interaction

A reliable prediction of the interaction between fluids and structures is
extremely important in several industrial, technological, biological and en-
vironmental processes. This great interest promoted a huge research effort
in the last two decades. As well known, two different approaches, typical
of any coupled problem, can be used to tackle fluid-structure interaction
(FSI): monolithic approach and partitioned approach. Here, the partitioned
approach is adopted, since it is the most suited for practical problems, [38].
The basic strategy is to treat separately the fluid and the structural do-
mains and to properly discretize each of them, in order to adopt numerical
methods developed and optimized for both computational fluid dynamics
and computational structural dynamics.
In Chapter 2 and Chapter 3, two different solvers have been discussed. On
the fluid side, the LB method, based on continuum Boltzmann’s kinetic
equation, is adopted and the discretized lattice BGK equation is solved on
a certain grid. On the other hand, the structure is solved in the framework
of the FE method, based on partial differential equation, mesh and solution
procedure which are different from the LB ones. These two solvers need to
communicate, i.e. an efficient, effective, continuous, and mutual transfer
of informations between the two involved solvers is due. Such information
consists of static variables (stresses) and kinematic variables (displacements
and velocities). Regarding this aim, one of the main goals of the present
thesis has been the development of a coupling algorithm able to guarantee
this exchange of informations.
To meet the continuity conditions on the common fluid-structure boundary,
an effective procedure should be devised to couple the two solvers. On the
fluid-structure interface Γ, compatibility condition should be met, i.e. the
equivalence of the velocities computed by both fluid and solid sides:

v
(f)
i − v

(s)
i = 0. (4.1)
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In addition, the sum of tractions computed on the interface considered as

fluid boundary, t
(f)
i , and as structure boundary, t

(s)
i , should be zero:

t
(f)
i + t

(s)
i = 0. (4.2)

Generally, these conditions are not exactly fulfilled by partitioned solution
procedures. The error in terms of interface energy artificially produced
within the typical time step is given by [34]:

J =

∫ ti+1

ti

∫
Γ

(
t(f) · v(f) + t(s) · v(s)

)
dξ dt. (4.3)

Ideally, the interface energy should be zero. In the following section, some
numerical tests are carried out to evaluate the interface energy for each
coupling algorithm: J , in fact, is expected to reveal the effectiveness of
each algorithm in transferring forces and displacements. For simplicity, J
is computed as

J =
∆t

2

∫
Γ

(
t
(f)
i+1 · v

(f)
i+1 + t

(s)
i+1 · v

(s)
i+1 + t

(f)
i · v

(f)
i + t

(s)
i · v

(s)
i

)
dξ, (4.4)

where subscript i refers to a quantity evaluated at t = ti.

4.2 Coupling algorithms

Three different coupling algorithms are discussed and numerically tested.
As discussed in the previous chapters, the same time step is used for both
fluid and structure solvers. The first algorithm is sketched in Figure 4.1. It
is explicit and corresponds to a standard staggered approach. To advance
in time, five actions are sequentially performed. Firstly, collision step is
performed while keeping the structure frozen. Secondly, forces before col-
lision, F (u0), and after collision are transferred to the structure solver.
Forces after collision are assumed as a good approximation of forces at half
time step, F (u1/2), and F (u2/3) are determined by linear interpolation:

F (u2/3) =
4

3
F (u1/2)− 1

3
F (u0). (4.5)
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Thirdly, structure is moved. Fourthly, the fluid boundary is updated based
on the new configuration of the structure. Fifthly, streaming is done while
keeping the structure frozen. Then, the next time step is performed.
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Figure 4.1: FELBA explicit scheme.

The second algorithm, sketched in Figure 4.2, is called simply FELBA:
it is still explicit but it is characterized by the adoption of a structure
predictor. As the previous algorithm, FELBA is characterized by five steps,
too. Firstly, the configuration of the structure at the end of the current
time step is predicted as follows, [47, 48]:

ũ1 = u−i + α0∆tv−i + α1∆t∆vi−1, (4.6)

being ∆vi−1 the structure velocity change within the previous time step. A
second-order accurate prediction is expected by choosing α0 = 1 and α1 =
0.5. Secondly, the fluid boundary is updated according to the predicted
configuration of the structure ũ1. Thirdly, fluid is solved by performing
both collision and streaming. Fourthly, forces computed before action two,
F (u0), and after action three, F (ũ1), are transferred to the structure solver.
Vector F (u2/3) is taken by a linear interpolation of the two:

F (u2/3) =
2

3
F (ũ1) +

1

3
F (u0). (4.7)

Fifthly, structure is moved. Then, as for the previous version, no iteration
is done and the next time step is performed.
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The last algorithm, called FELBA implicit, is similar to the previous one
apart from the fact that some iterations are performed before advancing in
time. Its flow chart is given in Table 4.1. The configuration of the structure
obtained by action five is used as predictor value for the next iteration.
Iterations stop when a convergence criterion on the final configuration of
the structure is met. This third algorithm corresponds to the strongly-
coupled partitioned approach and is expected to be the most accurate,
although a higher computational cost is involved.!
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Figure 4.2: FELBA scheme.

4.3 Added-mass effect

In order to prevent from poor convergence rate in the case of very light
structures with large Reynolds numbers, due to the well-known added mass
effect [38, 49, 50, 51], Aitken’s under-relaxation scheme is used. The so
called added-mass is the inertia added to a fluid system when an acce-
lerating or decelerating body moves a volume of surrounding fluid. For
simplicity this can be modeled as some volume of fluid moving with the
object, though in reality all the fluid will be accelerated. The dimensionless
added-mass coefficient is the added mass divided by the displaced fluid
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Table 4.1: Flow chart of the implicit algorithm.

1 - the final configuration of the structure is predicted:

ũ1 = u−
i + α0∆tv−

i + α1∆t∆vi−1;

2 - with the updated fluid boundary the LB steps are performed:

- collision foutj (x, t) = f inj (x, t)− 1

τ
[f inj (x, t)− feqj (x, t)];

- streaming f inj (x + ∆t cj , t+ ∆t) = foutj (x, t);

- boundary conditions;

3 - the finite element solution is computed:

- effective stiffness matrix: K?(l) =
1

µ2∆t2
M + K̂

(l)
t ;

- external forces and structural response vectors;

- Mü + Cu̇ + S(u) = F (u);

4 - check the convergence criterion.

mass, i.e. divided by the fluid density times the volume of the body. In
general, the added-mass is a second-order tensor, relating the fluid accele-
ration vector to the resulting force vector on the body.
Due to this effect, instability may arise if very deformable structures are
modeled. To avoid this issue, Aitken’s under-relaxation procedure is used.
This methodology modifies the finite element solution, called non-under-
relaxed solution, by means of a relaxation coefficient. By indicating with

û
(l)
i the (non-under-relaxed) finite element displacements at the l-th itera-

tion, the under-relaxed displacements used to update the fluid boundary
for the next fluid iteration are defined as

ũ
(l)
i = ũ

(l−1)
i − γ(l)∆ũ

(l)
i , (4.8)

where
∆ũ

(l)
i = û

(l)
i − ũ

(l−1)
i , (4.9)

l is the iteration index within the current time step and the relaxation
coefficient is γ(l) = 1− ω(l), with

ω(l) = ω(l−1) + (ω(l) − 1)
(∆ũ

(l−1)
i −∆ũ

(l)
i )T∆ũ

(l)
i

‖∆ũ(l−1)
i −∆ũ

(l)
i ‖2

. (4.10)
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Within the typical time step, such iterative procedures stops when a con-
vergence criterion is satisfied, that is,

ω(l) − ω(l−1)

ω(l−1)
≤ 10−4. (4.11)

The effectiveness of the proposed scheme is tested in Chapter 5.

4.4 High Performance Computing

Here, several computational tools are tested in order to assess the ability
to improve the performance of the developed numerical software. Such
tools are known as linear algebra libraries (i.e. a set of routines performing
matrix-vector computations, the solution of linear systems and eigenvalue
problems) and are optimized to fully exploit hardware resources, that is
expected to play a crucial role in the overall performance of the numerical
software.
One supposes to perform the dot product of two vectors of size n: the
complexity of the problem, in terms of the number of elementary opera-
tions to be computed, amounts to 2n. One would think that on the same
machine this operation, carried out by tools using the identical algorithm,
will be executed showing the identical CPU time, but this is not true. In
contrast to a naive implementation of an algorithm, these libraries are able
to exploit the technology of the computer and then draw resources on the
particular computer architecture, thus saving the duration of the analysis.
Therefore, it is necessary to discuss the technology of modern microproces-
sors equipping computers.
With the advance of technology, it was possible to incorporate a larger
number of transistors in a chip, thus several operations can be performed
parallely by reducing the execution time. The pipeline is the maximum
data parallelization of the work of a microprocessor. A pipelined CPU is
composed of five specialized stages, each able to perform one of the elemen-
tary operations described above. The CPU works as an assembly line and
then each stage should carry out only a specific task. At the same time,

Alessandro De Rosis 52



4.5. SOME RESULTS

each unit develops parallel different subsequent instructions. The progress
in the technology results in the creation of microprocessors faster than the
main memory; thus, the access to the memory represents a real bottleneck
in the overall performance of an application. In 1970, Moore [64] suggested
that the CPU speed would grow very fast, while the RAM speed would be
almost constant in the next thirty years. In particular, Moore stated that
processors speed would be doubled every eighteen months, while memory
speed every seven years. Consequently, an application can waste a lot of
time waiting for data, so involving a negative impact on the overall perfor-
mance, and in addition preventing the exploitation of the high speed of the
CPU by applications. A solution is to insert the cache, a small high-speed
memory between the processor and main memory; therefore, the applica-
tion takes advantage of loading data from the cache rather from the main
memory, [65]. This solution is more efficient if data fit into the cache or
data must be reused multiple times after they have been loaded into the
cache. In addition to cache, other features can improve the performance,
as multi-core and SSE/AVX, which are not explored by a naive implemen-
tation of an algorithm.
In the present context, the continuous differential problem becomes a dis-
cretized algebraic one described by matrices and vectors, simple to handle
numerically by using a class of libraries able to solve matrix-vector opera-
tions and linear systems.

4.5 Some results

A set of computational tools is tested in order to assess their performances
on solving a linear system. Banded and sparse storage techniques are used.
The performance profile is estimated for by using the procedure in [66]. Let
S be a set of solvers whose performances have to be estimated on a set of
problem T by monitoring one or more informations. A parameter sij ≥ 0
is related to the solver i ∈ S when it is applied to the problem j ∈ T.
The lower is sij , the better we can consider the solver i. For all the set T,
the performance of the solver i is compared to the best solver in S. Let
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ŝj = min{sij ; i ∈ S}. Then, for α ≥ 1 and for each i ∈ S it is possible to
define

k(sij , ŝj , α) =

{
1, if sij ≤ αŝj
0, otherwise

. (4.12)

The performance profile of the solver i is given by the expression

pi(α) =

∑
j∈T k(sij , ŝj , α)

|T|
with α ≥ 1. (4.13)

The quantity pi(1) gives the fraction of examples for which the solver i is
the most efficient, in terms of the sij parameter. This parameter is identi-
fied with the involved CPU time.
The solution of the linear system A · x = b is tested, where A is a matrix
of coefficients to be decomposed, x is the vector of the unknowns and the
right-hand side vector b is known, [67, 68]. The coefficient matrix given
by the finite element procedure, A, has a banded structure. Therefore
several ad-hoc solvers are used. The ACML and MKL routines are two
variants of the same algorithm: the former is optimized for AMD proces-
sors, the latter for Intel ones. In addition, a naive implementation of the
Cholesky-Crout decomposition of a banded matrix, which is not optimized
with respect to hardware resources, has been implemented. Moreover, the
following solvers for sparse matrices are used: CHOLMOD, SPOOLES, and
PARDISO. To assess the efficiency of linear algebra libraries in improving
the performance of the code, first it is crucial to understand the employed
mathematical algorithms in the solution process, thus giving an idea of the
number of elementary operations involved in the calculation, [69]. Details
on the Cholesky-Crout decomposition are given in Appendix B. Table 4.2
presents test matrices from the University of Florida sparse matrix col-
lection http://www.cise.ufl.edu/research/sparse/matrices/ and are
sketched in Figure 4.3. Performance profiles are depicted in Figure 4.4,
showing that sparse solvers perform better than banded ones. In parti-
cular PARDISO is the best choice, since it is designed for Intel machine
and compiler, as in this case. For the same reason, among the banded
solvers the MKL library exhibits a more performant behavior. In addi-
tion, the naive implementation is the worst choice, since it doesn’t exploit
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(a) bcsstk14 (b) bcsstk15 (c) bcsstk16

(d) bcsstk17 (e) bcsstk18 (f) bcsstk24

(g) bcsstk25 (h) ct20stif (i) cvxbqp1

(j) Dubcova2 (k) pwtk (l) smt

Figure 4.3: Sketch of test matrices from http://math.nist.gov/MatrixMarket/.
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Table 4.2: Linear system solution: characteristics of test matrices.

file Dimension Non-zeros Band Band/Dimension [%]

bcsstk14 1806 63454 162 8.97

bcsstk15 3948 117816 438 11.09

bcsstk16 4884 290378 141 2.89

bcsstk17 10974 428650 522 4.76

bcsstk18 11948 149090 1244 10.41

bcsstk24 3562 159910 3334 93.60

bcsstk25 15439 2522241 293 1.90

ct20stif 52329 2600295 52329 100

cvxbqp1 50000 349968 46440 92.88

pwtk 217918 11524432 9693200 84.11

smt 25710 3749582 19594 76.22

hardware resources. Consequently, analyzes implementing the naive algo-
rithm involve CPU times which are 10-250 times longer than the analyzes
using the optimized libraries. Since the solution of the linear system is the
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Figure 4.4: Linear system solution: performance profiles of band and sparse solvers (α
in log2 scale).

operation involving the highest computational cost in the proposed FSI so-
lution strategy, two tests are carried out on the decomposition of stiffness
matrices generated by a finite element analysis: a simply supported beam
and a double cantilever beam characterized by different meshes. Regarding
these two beams, Table 4.3 and Table 4.4 show the CPU time expressed
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in seconds. The profiles in Figure 4.5 depict the better performance of

Table 4.3: Beam 1: CPU time [s] for different meshes.

Mesh Chol Pard Spool Acml Mkl Naive Dim band/Dim [%]

100-15 0.72 1.02 0.82 1.67 2.56 16.52 14600 2.06

40-25 0.45 0.48 0.44 3.62 3.61 35.72 9560 5.03

40-30 0.62 0.48 0.55 6.00 5.87 62.57 11390 5.01

40-40 0.93 0.75 0.87 13.64 12.80 152.80 15050 4.99

20-30 0.22 0.20 0.17 2.81 2.89 26.46 5790 9.86

20-40 0.31 0.25 0.25 6.50 6.27 74.60 7650 9.81

Table 4.4: Beam 2: CPU time [s] for different meshes. NaN stands for an involved CPU
time larger than 1800 s.

Mesh Chol Pard Spool Acml Mkl Naive Dim band/Dim [%]

40-25 0.71 0.65 0.72 21.85 21.11 260.13 15826 5.95

40-30 0.95 0.78 0.90 37.81 34.98 1262.85 18876 5.95

40-40 1.41 1.20 1.39 89.60 77.59 NaN 24976 5.94

20-30 0.27 0.31 0.29 12.79 15.88 230.57 9596 11.70

20-40 0.40 0.39 0.40 37.51 37.22 549.23 12696 11.68

sparse solvers over banded ones. The naive implementation of the Cholesky
decomposition is confirmed to be the worst choice. It has been shown that
the new generation of numerical libraries is able to increase significantly
the performance of the present code if compared to a naive implementation
of the algorithm which does not fully exploit the computer architecture. In
some cases, the speed-up was orders of magnitude larger. Such wide diffe-
rence is due to the manner in which, through appropriate implementations,
the CPU accesses the data it needs. Since the linear algebra has a decisive
role, the idea to use optimized numerical libraries to reduce the duration
of analyzes arose.
Usually, the matrix to be decomposed is real, symmetric, positive definite
and shows a band pattern. This is common in the academic examples, but
complex geometries tend to impede band patterns. Solvers developed for
band and sparse storage were employed and results show the most perfor-
mant tool is PARDISO, since it is developed for a computer equipped with
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Figure 4.5: Performance profiles (α in log2 scale).

an Intel processor. Thus, it can be stated that the adoption of such sparse
solver can be taken into consideration even in cases in which the matrix has
a band structure, since it demonstrates superior performance than solvers
designed ad-hoc for a band storage. In addition, the MKL library is the best
choice among the band solvers, if Intel machine and processor are used.

Alessandro De Rosis 58



Chapter 5

Verification & validation

Sommario

In questo capitolo l’affidabilità della metodologia proposta viene verificata
risolvendo alcuni casi studio tipici della letteratura del settore. Dapprima,
vengono studiati corpi rigidi investiti dal fluido, allo scopo di valutare su
questi i coefficienti aerodinamici di drag e di lift attestanti la corretta va-
lutazione del tensore degli sforzi sia su punti allineati con la griglia che
genericamente posizionati. Si passa quindi a studiare corpi il cui moto è
consentito da molle elastiche, mostrando l’affidabilità dell’algoritmo di ac-
coppiamento esplicito. Successivamente, l’influenza di diverse condizioni
al contorno di parete viene verificata nella valutazione del tensore degli
sforzi su corpi rigidi. Infine, si considerano i solidi come corpi deformabili.
L’attenzione verte su due mensole incastrate a corpi o contorni rigidi e in-
vestite dal fluido. Lo scopo di queste due applicazioni è quello di mettere
in risalto l’efficacia delle diverse strategie di accoppiamento, nonchè delle
metodologie di imposizione delle condizioni al contorno e dello schema di
integrazione dell’equazione del moto. L’effetto di massa aggiunta viene va-
lutato rispetto a un caso studio, mostrando l’efficacia dello schema di Aitken
nello stabilizzare la procedura.
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5.1 Fixed rigid bodies

In the following testes, rigid fixed bodies are considered. For the square
cylinder benchmark, no curved boundary conditions are needed, since it
is aligned with the lattice grid. On the other hand, if solids not aligned
with the grid are involved in the computation, the second-order accurate
condition in [32] is used.

Square cylinder

Herein, a square cylinder is invested by a viscous fluid, [46]. As depicted in
Figure 5.1, a parabolic velocity profile is present at the inlet section, whose
top value is equal to 0.03. Outflow conditions are used at the outlet (i.e.
zero-gradient of velocity), while at both top and bottom wall the no-slip
boundary condition is implemented. The edge of the square cylinder has
length D = 10, the length of the channel is L = 30D and the height is
H = 8D. The distance between the inlet section and the left edge of the
square cylinder is set to L/3. All the above quantities are shown in lattice
units. Various values of the Reynolds number, Re = UD

ν , are achieved

L 

H D 

y 

x 

L 

H D 

 

 

Figure 5.1: Sketch of problem definition.

by modifying the relaxation parameter τ , being U the peak value of the
inlet velocity profile and ν the fluid viscosity. Figure 5.2(a) plots the drag
coefficient Cd against the Reynolds number, showing a perfect agreement
between benchmark and present values. In Figure 5.2(b), velocity profiles,
normalized with respect to the peak value of the inlet velocity profile, in
three different vertical sections are presented: one is located at the middle of
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the obstacle (x = 0); a second is quite near the right edge of the obstacle,
specifically 4D far from (x = 4); the last is 8D far form the right edge
(x = 8). Continuous lines represent benchmark curves, while dots show
present results. A slight difference can be identified between present and
reference values.
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Figure 5.2: Square cylinder benchmark.

Circular cylinder

A cylindrical cylinder is immersed in a viscous fluid, [32]. At the inlet
and outlet sections, boundary conditions are identical to the previous case.
Free-slip boundary conditions are enforced at bottom and top walls. Re-
ferring to Figure 5.3, the cylinder has diameter D = 16.66, the grid is
composed of 350× 220 lattice sites and the distance between the inlet sec-
tion and the center of the cylinder is 117.
The variation of the drag coefficient with the Reynolds number is depicted
in Figure 5.4(a), while Figure 5.4(b) shows the velocity profile in the ver-
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tical section from the top point of the cylinder to the top wall normalized
with respect to the peak value of the inlet velocity profile. Both figures
demonstrate the effectiveness of the numerical procedure.
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x 

Figure 5.3: Sketch of the problem definition.
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Figure 5.4: Circular cylinder benchmark.
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Arrays of cylinders

Here, the test in [70] is proposed. The fluid domain consists of four square
blocks, horizontally aligned, see Figure 5.5(a).
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(a) Sketch of the problem definition.
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(b) Time history of the drag co-
efficient.

Figure 5.5: Arrays of cylinders.

In the second block, a set of four arrays of cylinders, each composed of four
cylinders, is invested by a viscous fluid and the flow is characterized by a
Reynolds number equal to 200. Each block has dimension H = 370. More-
over, the diameter of the cylinders and the distance between the nearest
points of any pair of cylinders are both equal to H/8. In addition, topmost
points of the first horizontal row are far H/16 from the wall (the same for
the bottom wall). In the inlet section, a constant velocity profile U = 0.1
is prescribed; free-slip boundary conditions at bottom and top walls and
outflow conditions at the outlet complete the definition of the problem. All
the previous quantities are expressed in lattice units. The drag force acting
on the red cylinder is tracked. Figure 5.5(b) depicts a slight mismatch (5%)
between present findings and benchmark results in [70] imputable to the
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fact no grid refinements are used. Notice that a low computational cost is
involved in the solution process if compared to the previous test case.

Airfoil

Under the assumptions of inviscid fluid (i.e. Reynolds number → ∞),
incompressible and irrotational flow, a potential theory can be used to
study the aerodynamics of a bar, [71]. In particular, for a bar of length
b and deadrise angle α, as depicted in Figure 5.6(a), the lift coefficient
normalized respect to b and α is equal to 2π. Here, a 1 meter long bar
is represented by 6500 lattice nodes and the deadrise angle is α = 3◦. In
addition, a velocity profile characterized by a top value V=10 m/s (0.1 in
lattice units) is prescribed at the inlet section; outflow boundary conditions
are implemented at the outlet and free-slip conditions characterize top and
bottom walls.
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(a) Sketch of the problem definition.
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(b) Normalized lift coefficient vs
Reynolds number.

Figure 5.6: Airfoil.
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The grid dimensions are 10500×941 and the distance between the inlet
section and the leftmost point of the bar is equal to 2000. As known, the
LB method is a viscous fluid solver. Therefore, in order to achieve a value
of C̄l = 2π, conditions characterized by high Reynolds number have been
simulated. In addition, the viscous component of the stress tensor has been
neglected when computing forces on the bar. Figure 5.6(b) shows that the
higher the Reynolds number, the closer the result of the simulation to the
reference value is. The relaxation parameter τ is varied to achieve different
values of the Reynolds number.

5.2 Moving rigid bodies

The simulated test case is a uniform flow over an oscillating cylinder that
can move only in the direction normal to the inlet velocity. The geometry
of the problem is displayed in Figure 5.7.
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H D 

k 

H 

H 

L 

H 

Figure 5.7: Oscillating cylinder: definition of the problem.

The spring is linear, with stiffness k = 5.79 N/m and damping factor
c = 0.325 g/s. The mass and the diameter of the cylinder are m = 2.979 g
and D = 0.16 cm. The fluid is water with viscosity µ = 0.01 g/(cm s) and
density ρ = 1 g/cm3. Different far-field fluid velocities are considered, such
that the Reynolds number, given by Re = ρUD/µ, varies between 90 and
130. In all numerical experiments, the fluid is started from rest conditions.
At the inlet, a given mainstream speed U is prescribed, while at the outlet,
zero pressure boundary conditions are imposed. At the upper and lower
boundaries, zero-velocity conditions are applied. Zero-velocity conditions
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are also applied at the moving surface of the cylinder.
Figure 5.8(a) shows the vortex shedding frequency fV as a function of the
Reynolds number. The frequency fV is evaluated from the evolution of the
lift coefficient and shown in Figure 5.8(a). The quantity fN is the natural
frequency of the rigid body as a mass-spring system (fN =

√
k/m). Bench-

mark values are taken from the vortex shedding frequencies associated with
the stationary cylinder, as suggested in [72, 73]. Figure 5.8(b) shows the
relative amplitude Y/D as a function of the Reynolds number, where Y is
the displacement along vertical direction induced by the lift force. The fig-
ure clearly shows the onset of a symmetry-breaking instability in the range
95 < Re < 110, in close agreement with the experimental data obtained in
[74]. At the low Reynolds number end of the lock-in region, the oscillations
start with a sudden jump-up. As the Reynolds number increases, the am-
plitude of the oscillations smoothly decreases so that the jump-down at the
upper end of the lock-in region is less significant. Figures 5.8(a) and 5.8(b)
show a good agreement between our results and literature data. In Figures
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Figure 5.8: Oscillating cylinder: a) frequencies vs Reynolds number. The solid line
denotes the vortex shedding frequency associated with a stationary cylinder, [72, 73]; b)
amplitudes of the vertical motion vs the Reynolds number. The figure clearly displays the
onset of a symmetry-breaking instability in the range 95 < Re < 110, in close agreement
with experimental results (solid line), [74].

5.9, the time evolution of the relative amplitude Y/D is plotted at Re = 90
and Re = 120. In a standard PC (Intel I7-920, frequency clock 2.6GHz,
8 cores, 8 MB cache L3, 8 GB RAM), the method takes about 0.05 CPU
seconds per time step, for a LB grid of 350×220 lattice sites, slightly higher
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Figure 5.9: Amplitude of the oscillations: (a) Re = 90 and (b) Re = 120.

(about 10%) than the computational time needed for the flow over a fixed
cylinder. The computational cost is mainly due the fluid-solid boundary
condition. The computational cost due to the fluid solver is negligible, due
to the fact that the rigid body motion is described by a single degree of
freedom.

5.3 Boundary conditions

In this section, the above discussed boundary conditions are tested in or-
der to highlight their different behavior. In particular, these conditions are
used to simulate a cylinder obstacle invested by a viscous fluid for a given
Mach number,Ma = 0.0289, and different values of the Reynolds number,
Re = 10 and Re = 50. At the inlet section, a parabolic velocity profile
is inserted, while at the outlet fixed density and ∂v

∂n = 0 are set. At bot-
tom and top walls, the orthogonal velocity component is null, while on the
cylinder surface the no-slip condition is imposed. The center of the cylinder
is located at (Xc, Y c) = (100, 110) with a diameter D = 20, and the grid
consists of 350× 220 lattice nodes.
The time-history of the average density, together with the time-histories
of the drag and lift coefficients are depicted in Figures 5.10 and 5.11, for
Re = 10 and Re = 50, respectively. As it is possible to observe, a general
agreement between the three boundary conditions is met. In particular,
the Immersed boundary method predicts larger values of average density,
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Figure 5.10: Time histories of average density, drag coefficient and lift coefficient at
Re = 10.
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Figure 5.11: Time histories of average density, drag coefficient and lift coefficient at
Re = 50.
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drag and lift coefficient, than the other two strategies. This slight mismatch
suggests that, for a given grid resolution, the interpolated bounce-back con-
dition is more accurate. On the other hand, the IB implementation is very
flexible, since the only input consists of the set of Lagrangian boundary
coordinates. Thus, the IB method is more general and can be used in situ-
ations involving very complex geometries. In order to use the condition in
[32, 44] to handle complex geometries, where complex stands for geometries
that cannot be easily identified by a mathematical function, this operation
becomes computationally hard, since a lot of Eulerian informations, i.e. xf ,
xw, xb, δ, must be computed and given as input.
In a second test, the obstacle possesses square cross section. The lattice
grid consists of 500 nodes in horizontal direction and 80 in vertical direction
(IB1). The length of the edge of the square cylinder is 10 lattice units and
the distance between the leftmost edge and the inlet section is 125 nodes.
Inflow and outflow conditions are identical to the previous case, while at top
and bottom walls the no-slip condition is adopted. In this case, it is useless
to use the boundary conditions in [32, 44], since the obstacle is aligned to
the grid and Equations (2.33) and (2.35) reduce to the standard bounce-
back and no interpolated scheme is needed. The comparison between the
standard bounce-back on link and the IB method is shown in Table 5.1. In
particular, for a given Reynolds number, the drag coefficient is compared
to results in [46]. The IB method is also used on two more refined grid:
the first consists of 1000 × 160 lattice nodes (IB2), while the second has
dimensions 1500× 240 (IB3). Values which are closer to the reference ones
are shown. Even in this case, the better performance of the bounce-back
scheme are substantially confirmed.
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Table 5.1: Drag coefficient vs Reynolds number: reference values from [46] (Ref), bounce-
back on link (BB), and immersed boundary method on increasingly refined grid (IB1,
IB2, IB3).

Re Ref BB IB1 IB2 IB3

10 3.2 2.96 3.88 3.58 3.47

20 2.2 2.13 2.74 2.51 2.48

30 1.81 1.77 2.29 2.07 2.05

40 1.59 1.57 2.01 1.85 1.83

50 1.52 1.43 1.88 1.69 1.67

5.4 Deformable bodies

Cantilever beam under constant moment

A test is carried out in order to validate the corotational formulation em-
ployed to take in account for large displacements. A constant moment

M =
2πEI

L
(5.1)

is applied to the free tip of a cantilever beam (see Figure 5.12) of length L =
103, elastic modulus E = 105, Poisson ratio equal to zero, cross sectional
area A = 1, and inertia moment I = 1/12. The beam is discretized by
using 10 finite elements. Figure 5.13 show the deformed configurations of

!
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x 

Figure 5.12: Cantilever beam under constant moment.

the cantilever beam due to different values of the dimensionless constant
moment

M? =
ML

2πEI
. (5.2)

As it is possible to observe, large displacements are successfully captured.
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Figure 5.13: Deformed configurations of a cantilever beam under constant moment: A)
M? = 0.25, B) M? = 0.50, C) M? = 0.75, D) M? = 1.00. The dashed line represents
the undeformed configuration.

Deformable flag clamped to a rigid fixed square cylinder

Consider a viscous fluid that flows past a rigid fixed square cylinder, as
depicted in Figure 5.14, [75]. The channel height is H = 12D, while lon-
gitudinal dimensions Ll and Lr are set to 5.5D and 14D, respectively, D
being the length of the edge of the square cylinder. A deformable flag
is clamped to the square cylinder and its length is L = 4D. At the in-
let, a constant velocity profile V = 51.3 m/s is given, while at the outlet
outflow boundary conditions are imposed. At the fluid-solid interface the
boundary condition in [32] is used. The flow is characterized by a Reynolds
number Re = V D

ν = 333. Wall free-slip conditions at bottom and top
walls complete the fluid definition. The cantilever possesses Young modu-
lus E = 2.5 ·106 N/m2, cross sectional area A0 = 0.06×0.06 m2 and density
ρs = 0.1 kg/m3. In Figure 5.15, the time history of the vertical displace-
ment of the end node is depicted together with the solution computed in
[75]. The present solution is obtained in lattice dimensionless units with a
rectangular grid, spanning 1734 × 1068 lattice sites, with an inlet velocity
profile V = 0.05, viscosity set to ν = 0.0133 and characteristic length D
equal to 89. The LB simulation possesses the same Reynolds number of
the physical problem. The characteristic velocity, the characteristic length
and the viscosity are shown in Table 5.2 in both physical and lattice units.
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Figure 5.14: Sketch of problem definition.

The cantilever beam is discretized with 356 elements. As it can be observed

Table 5.2: Physical and lattice units corresponding to Re = 333.

Physical Lattice

Velocity 51.3,m2/s 0.05

Length 1 m 89

Viscosity 0.154 m2/s 0.0133

in Figure 5.15, a close agreement between the reference solution (Ref) and
present numerical results is obtained (Pres). In Figure 5.16, the velocity
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Figure 5.15: Time history of the tip vertical displacement [m].

filed is depicted. The convergence properties of the three proposed cou-
pling strategies, discussed in Chapter 4, are assessed in Figures 5.17 for a
Reynolds number equal to 10. In the following, the explicit algorithm is
indicated by EXPL, the explicit predictor-based algorithm by FELBA,
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Figure 5.16: Evolution of the velocity field. The vortex shedding, characteristic of the
fluid flow conditions of the simulation (Re = 333), is clearly visible. The movie is
available in the pdf version.

and the implicit one by IMPL. Uniform refinements of grid and beam
discretization are adopted. The reference solution is obtained using a very
fine grid with dimensions 2598 × 1600. In the first figure, the percentage
error at t = 1 s in the drag force computation can be observed against the
number of lattice sites in a log-log scale. The red curve corresponds to the
fixed flag case and can be considered as an upper bound on convergence
rate, because it is not affected by any error due to coupling, but it is affected
only by the error due to the fluid solver. In the second figure, the conver-
gence of the tip displacement is shown. Both the figures highlight that all
the algorithms exhibit good convergence properties and that the implicit
coupling algorithm is characterized by an almost optimal convergence rate,
that is equal to the one experienced in the case of rigid beam. As expected,
the lower computational cost involved by the explicit strategy is paid by a
slower convergence rate. Finally, the predictor is proved to actually improve
the convergence properties also in the explicit version. The computational
cost of the explicit version is almost the same of the fluid solution with a
rigid structure. Thus, no appreciable increase of the computational effort
is experienced with respect to the fluid solver alone. Using the predictor
involves a very slight increase of the computational time (about 1%). On
the contrary, the computational effort is almost double using the implicit
algorithm with a convergence tolerance equal to 10−4, since the average
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number of iterations per time step is 2.2. In Figures 5.17(c) and 5.17(d),
the effectiveness of the TDG integration scheme for the structural dynamics
is compared to the backward Euler scheme and to the trapezoidal rule. In
both cases, independently from the coupling strategy, the TDG performs
better than the other two schemes in terms of both accuracy and conver-
gence.
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Figure 5.17: Convergence properties of the three proposed coupling algorithms: (a) drag,
(b) tip displacement, (c) drag using TDG and backward difference (dashed line), (d) drag
using TDG and trapezoidal rule (dashed line). The number of lattice sites is denoted by
N .

The error introduced by the coupling algorithms at the fluid-structure in-
terface is investigated in Figure 5.18(a). Specifically, the figure shows the
dimensionless interface energy computed from the fluid side against that
computed from the structure side. As assessed in Chapter 4, these two
quantities should be equal if the interface conditions are exactly satisfied.
Thus, the predicted values at the various instants of the simulations should
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lie upon the black line. The larger the deviation from this ideal behavior,
the larger the associated error is. As it can be observed, all the coupling
algorithms exhibit an almost linear relation, but the error tends to increase
passing from implicit to explicit version. Also in this case, a remarkable
improvement is experienced by adopting the predictor. Figures 5.18(b) and
5.18(c) show the same dimensionless interface energies but predicted by u-
sing the trapezoidal and backward schemes instead of the TDG one. Very
similar results are obtained apart from the amplitude. It should be noted
that the maximum values are 10% larger using the trapezoidal scheme and
50% larger using the backward one.
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Figure 5.18: Interface energy for the three coupling algorithms using: (a) TDG scheme,
(b) trapezoidal scheme, (c) backward difference scheme.

Backward facing step

A viscous fluid passing over a backward facing step impacts a flexible can-
tilever, as in [76]. Figure 5.19 depicts the problem setting, where lengths are
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expressed in meters. It is characterized by an inlet constant velocity profile
equal to 1 m/s, outflow boundary condition at the outlet and free-slip con-
ditions elsewhere. The flexible cantilever is treated as a curved boundary
condition immersed into the lattice background by means of the interpola-
tion scheme in [32]. Moreover, fluid and solid densities are set to 1000 kg/m3

and 7800 kg/m3 and the cross sectional area is 0.3× 0.3 m2. The Reynolds
number is set equal to 10 and the Young modulus to 105 N/m2. The grid
has dimensions 6400× 600. In Figure 5.20 the velocity field, normalized to
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Figure 5.19: Sketch of the problem definition. Lengths are expressed in meters.

the peak value (2.6 m/s), is reported for three different time instants. The
implicit version of the coupling algorithm and the TDG time integration
scheme are employed. As in the previous case, a convergence analysis on

(a) Velocity, t = 8.50 s.

(b) Velocity, t = 11.03 s.

(c) Velocity, t = 11.92 s.

Figure 5.20: Velocity magnitude field at three different instants normalized with respect
to the top value (2.6 m/s).

the drag force at t = 20 s acting on the cantilever has been carried out
by uniformly refining the fluid grid and the beam discretization, as shown

77 Alessandro De Rosis



CHAPTER 5. VERIFICATION & VALIDATION

in Figure 5.21. The results obtained in the previous test are substantially
confirmed in terms of convergence properties. Also in this case, the predic-
tor is proved to be very effective. The computational cost of the explicit
algorithm is confirmed to be comparable to that involved by the sole fluid
solver in the case of a rigid obstacle. No significant increase of the compu-
tational cost is experienced using the structure predictor. As expected, the
computational effort increases with the implicit algorithm by a factor 1.8,
using a convergence tolerance equal to 10−4. In fact, the average number
of iterations per time step is 1.8. Then, the fluid-structure interface energy
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Figure 5.21: Drag convergence for the three coupling algorithms. The number of lattice
sites is denoted by N .

is investigated for different Reynolds numbers: Re = 20 and Re = 60,
and different cantilever Young moduli: E = 103 N/m2, E = 105 N/m2 and
E = 107 N/m2. The Reynolds number is defined as Re = V D

ν , where
the characteristic inlet velocity is set to V = 0.01 and the characteristic
length, the one of the cantilever, is D = 400, both in lattice units. Differ-
ent Reynolds numbers are achieved by varying the viscosity ν. For the sake
of brevity, only the results predicted by the implicit coupling algorithm
are reported. Both TDG and trapezoidal schemes are used for structural
dynamics. As Figure 5.22 highlights, the coupling algorithm seems to be
robust and very accurate. The TDG scheme is confirmed to be more accu-
rate than the trapezoidal scheme, as it can be realized by considering the
axes ranges on the graphs in Figure 5.22. Indeed, the superior performance
of TDG affects also stability properties. This is clearly shown by Figure
5.23 that refers to the case of Re = 120 and E = 107 N/m2, with the grid
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Figure 5.22: Interface energy of the implicit coupling algorithm for different Reynolds
numbers, cantilever Young moduli and time integration schemes for structural dynamics:
(a) Re = 20 and TDG scheme, (b) Re = 60 and TDG scheme, (c) Re = 20 and
trapezoidal scheme, (d) Re = 60 and trapezoidal scheme.
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dimensions previously defined. For these values, the algorithm with the
trapezoidal method as structural time integration scheme becomes unsta-
ble and fails. On the contrary, in the same conditions the algorithm with
the TDG is still stable and successfully compute the solution. Summing up,
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Figure 5.23: Implicit coupling algorithm with TDG and trapezoidal scheme in the case
of Re = 120 and E = 107 N/m2: (a) normalized tip displacement, (b) normalized beam
total energy.

the implicit algorithm is the most accurate and exhibits a nearly optimal
convergence rate, that is the same convergence rate experienced in the case
of the fluid with a rigid structure. However, it involves the highest com-
putational cost. In general, three iterations are sufficient and the overall
computational cost is three times that involved by the explicit algorithm.
The explicit algorithm enhanced with structure predictor offers a very good
convergence rate with a computational cost that is comparable to the one
involved by the sole fluid solver in the case of rigid structure. All the nu-
merical tests confirm the superior properties of TDG scheme with respect
to standard integration schemes for structural dynamics, in terms of both
accuracy and stability.

5.5 Added-mass effect

The added-mass effect is tested against the problem sketched in Figure 5.24
and defined in [77]. At inlet west section an incoming pressure is imposed,
while at the outlet east section an outflow boundary condition is set. On the
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bottom wall, free-slip boundary condition is used. On the top wall, a slender
elastic beam is present, whose configuration can be modified by the fluid
flow. At the fluid-solid interface, no-slip condition is imposed. For a given
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Figure 5.24: Sketch of the problem definition.

Reynolds number, the ratio rρ between the fluid density, ρf , and the solid
density, ρs, is varied and the corresponding number of iterations is depicted
in Figure 5.25. As expected, the lower rρ is, the more iterations need
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Figure 5.25: Number of iterations against rρ for Re = 100 and Re = 1900.

in order to achieve convergence, since the structure deformability grows.
Notice that, if the Reynolds number increases, for a given rρ, the number
of iterations increases too. In fact, higher values of the viscosity play an
important role in the coupling algorithm, stabilizing the overall procedure.
In Table 5.3 the number of iterations of the implicit coupling algorithm
are reported for Re = 100 and Re = 1900 and for different values of
rρ. Moreover, the number of iterations in the standard FELBA implicit
algorithm, B, is compared to the usage of Aitken’s scheme in the same
coupling algorithm, A. Notice that, for high values of rρ, the number of
iterations is slightly lower in B. On the other hand, Aitken’s scheme is
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Table 5.3: Number of iterations needed to achieve convergence for rρ ranging from 0.5
to 50 and two different Reynolds numbers, Re = 100 and Re = 1900. Simulations
using Aitken’s scheme correspond to A, otherwise B. The symbol · indicates that no
convergence has been achieved.

rρ
Re = 100 Re = 1900
A B A B

50 2 1 2 1

20 3 2 3 3

10 4 4 12 12

5 7 7 30 30

2 12 12 41 ·
1 18 18 76 ·

0.5 30 · 98 ·

required to achieve convergence if low values rρ are used.
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Chapter 6

Some applications

Sommario

In questo capitolo, viene proposta una serie di applicazioni volutamente in
ambiti diversi. Dapprima, è stato studiato un fenomeno noto come hull
slamming, che consiste nell’impatto degli scafi delle imbarcazioni contro la
superficie marina. Questo fenomeno è caratterizzato da brevisssime du-
rate ed elevati e localizzati picchi di concentrazione di sforzo. Una seconda
applicazione riguarda il flusso sanguigno pulsante in un’arteria. La de-
formabilità del vaso sanguigno è stata considerata tramite una relazione
costitutiva che tenesse conto del comportamento anisotropo, viscoealstico
e irrigidente della stessa. Infine, un’affascinante applicazione riguarda la
simulazione del decollo verticale di una farfalla, le cui ali sono simulate
come due travi incernierate e immerse in un fluido. In particolare, è stata
indagata l’incidenza della forza di gravità, della massa e della deformabilità
delle ali sul librarsi in volo. La scelta di applicazioni afferenti a tematiche
diverse con il comune denominatore dell’interazione fluido-struttura è stata
orientata volutamente a indagare situazioni e fenomenologie molto diverse,
allo scopo di dimostare la versatilità e l’affidabilità della metodologia pro-
posta.

83



CHAPTER 6. SOME APPLICATIONS

6.1 Hull slamming

The proposed method is tested against the simplified 2D hull slamming
problem schematically depicted in Figure 6.1 along with the cartesian co-
ordinates x and y. Specifically, the impact of a wedge composed of two
straight beams clamped at the deadrise angle β on the free surface of
a placid fluid is studied. A simplified and effective free-surface model,
schematically represented in Figure 6.2, is employed here. The air-water
interface is regarded as a boundary condition by assuming that the row of
nodes that lays on the free-surface (red) is traction-free. Furthermore, air
flow is neglected, thus, solving the LB only in the liquid nodes. Therefore,
the stress tensor is computed only on the immersed portions of the wedge.
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Figure 6.1: Sketch of problem geometry.

Results are compared with analytical and experimental findings spanning
a broad set of relevant scenarios. All comparisons refer to a mass density
of 1000 kg/m3. All simulations are conducted on structures whose dimen-
sion is on the order of 1 m. The fluid domain is discretized with a spatial
resolution of ∆x = 2 × 10−5 m and it consists of a grid of 2, 800 lattice
nodes in the vertical y-direction and

(
5 000 + D

∆x

)
nodes in the horizontal

x-direction, where D is a typical characteristic length for the hull corre-
sponding to the largest values attained by the hull wet surface during each
analysis. Therefore, the computational domain has a width which is on
the order of three times the maximum wet surface area of the wedge to
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minimize the boundary effects. On the lateral sides of the domain, periodic
boundary conditions are used; on the bottom, outflow is imposed; and on
the wedge-water interface, no-slip conditions are enforced. The wedge ge-
ometry is symmetric with respect to the y-axis. Constitutive parameters
and boundary conditions are varied across simulations to compare with re-
sults from the literature. The fluid is always initially at rest, that is, the
density is equal to ρf and the speed is zero.

Fluid nodes

Inactive nodes

Free surface nodes

Figure 6.2: Sketch of the fluid-structure interaction model. The hull entering the body
of water is immersed in the lattice, free surface (red nodes) is treated as the fluid top
boundary and air flow is neglected (inactive nodes).

Comparison with analytical solutions

Here, numerical results from our approach are compared with analytical so-
lutions [78, 79, 80, 81]. Specifically, comparison is carried out with the clas-
sical results from [78, 81] for rigid wedges impacting ideal fluids. Therein,
under the hypotheses of inviscid, incompressible, and irrotational flow, the
fluid is described through a velocity potential which satisfies the Laplace
equation. Furthermore, no-penetration conditions are assumed at the hull-
fluid interface, see Figure 6.2. Numerical results are also compared with the
results of [79], based on the approach proposed in [78] to investigate the ef-
fect of compliance, and with those of [80], which account for compressibility
through a tractable model of a compliant hull. Since the employed nume-
rical model refers to a viscous fluid, modeling parameters are set in order
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to guarantee a mesoscopic flow regime comparable with the inviscid-flow
model. Specifically, all simulations are performed with a Reynolds number,
Re = V D

ν , larger than 3 000, where V is a characteristic penetration speed
for the wedge. This minimizes viscous effects consistently with the spatial
resolution.

Rigid wedge at a constant penetration velocity

The impact of a rigid wedge on a free surface with a uniform constant
vertical downward speed V is studied. In this case the position of the
wedge is described at each time step, that is, u(t) is a priori assigned
and Equation (3.22) is discarded. At the beginning of the analysis, the
lowest point of the wedge is considered to touch the free surface. The total
hydrodynamic load acting on the wedge and the pressure distribution along
the wedge for different values of β and V are found.
According to [78], the vertical component of the total force acting on the
wedge can be approximated as

F (t) = ρf

[
π

4
a2(t)ḧ(t) +

π2a(t)ḣ2(t)

4 tanβ

]
. (6.1)

Here, h(t) is the time-dependent penetration depth of the hull, which, in
this case, is h(t) = V t, and a(t) is the semi-length of the wetted hull, which
based on Wagner’s theory is defined as

aW (t) =
π

2 tanβ
h(t) (6.2)

and based on Von Karman’s theory [81] as

aVK (t) =
h(t)

sinβ
. (6.3)

In the present simulations the semi-length of the wetted hull corresponds
to aVK (t).
Simulations are carried out at four deadrise angles, β = 5◦, 10◦, 15◦, 25◦ and
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three different wedge speeds, V = 5 m/s, 7 m/s, 10 m/s. The corresponding
LB simulations are performed by using ∆t = 4×10−7 s, ∆t = 2.86×10−7 s,
and ∆t = 2 × 10−7 s, respectively. The Reynolds number is set to Re =
3.0 × 103, where D is set to 1 m and corresponds to the final value of a(t)
used in the simulation, as in [79].
Figure 6.3 shows simulation results compared to both Wagner’s and Von
Karman’s solution [78]. Numerical findings are reported as a function of
a(t), as defined in Equation (6.2), in terms of the known penetration depth
h(t). In general, the force exerted by the fluid on the structure increases
with time as the wedge penetrates the water column at the selected speed.
The linear dependence on time of F (t) stemming from the potential flow
solution in Equation (6.1) is confirmed by our numerical results. As ex-
pected, F (t) tends to linearly increase with a(t) whereas it decreases as β
increases. In general, the force exerted by the fluid on the structure in-
creases with time as the wedge penetrates the water column at the selected
speed. The linear dependence on time of F (t) stemming from the potential
flow solution is confirmed by numerical results. As expected, F (t) tends
to linearly increase with a(t) whereas it decreases as β increases. For the
same wetted surface area, numerical results from the proposed approach are
bounded above by theoretical predictions from Wagner theory and below
by Von Karman theory [3]. The evolution of the velocity field is depicted
in Figure 6.4. The accuracy of the proposed methodology is assessed by
computing the relative difference in time of the predicted value of F (a) with
respect to Equation (6.1), as shown in Table 6.1. Here and henceforth, for
the sequence of numerical data {ak}Mk=1 such difference is computed as

∆rel =

√√√√ M∑
k=1

|āk − ak|2√√√√ M∑
k=1

|āk|2

, (6.4)

where superimposed bar indicates benchmark values and M is the length
of the sequence. Notably, when assessing the accuracy of F (a), M refers to
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Figure 6.3: Total hydrodynamic load vs wet semi-length a(t) for different values of dead-
rise angle: β = 5◦, β = 10◦, β = 15◦, β = 25◦. Comparison between Wagner’s solution
(continuous line), see Equation (6.1), Von Karman solution (dashed line) [81], and present
simulation (dotted line).
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Figure 6.4: Evolution of the fluid velocity as the wedge penetrates. The movie is available
in the pdf version.

the number of time steps in the whole simulation. The values of ∆rel are
reported in Table 6.1, where the relative difference computed by detracting
the viscous shear and normal stresses from the computation of the overall
force resultant are also presented. It is noted that the numerical results are
close to the analytical ones when the deadrise angle is small, as expected
from the assumptions of Wagner’s theory. In particular, for a deadrise an-
gle β = 5◦, the relative error between Wagner’s results and the present
simulations at a given wetted surface is about 10%. As the deadrise angle
increases, the effect of viscosity becomes important and differences between
the numerical solution and the potential flow theory are substantial.
It is noted that the numerical results are close to analytical predictions
from Wagner’s theory when the deadrise angle is small, as expected from
the assumptions the model. In particular, for a deadrise angle β = 5◦,
the relative error between Wagner’s results and the present simulations
at a given wetted surface is about 10%. As the deadrise angle increases,
differences between the numerical solution and Wagner’s theory are more
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Table 6.1: Relative difference in the total hydrodynamic load between the present ap-
proach with/without accounting for viscous stress in the computation and literature
results, [78, 81], computed for V = 10 m/s.

β ∆rel ∆rel without viscosity

5◦ 0.1138 0.1210

10◦ 0.1378 0.1459

15◦ 0.1922 0.2001

25◦ 0.2450 0.2598

substantial.
To dissect the role of viscosity and compressibility on the predictions of
the proposed approach, variations of Re andMa are investigated. Specifi-
cally, Figure 6.5(a) displays the force per unit depth on the semi-wedge for
a fixed value of the Mach number Ma = 0.0173 as the Reynolds number
is varied. Results reported therein confirm that for Re ≥ 3000, viscosity
is a secondary parameter in the slamming impact. In the same vein, the
effect of compressibility is shown in Figure 6.5(b) where the slamming co-
efficient, Cs = 2F

ρv2D
, is plotted versus the Mach number. The solution for a

certain wetted surface deviates from the analytical one asMa increases, in
agreement with the findings of Carcaterra and his coworkers, [80]. Further
comparison between the proposed numerical approach and Wagner’s theory
[78] is garnered by studying the normal distributed load acting on the wet
part of the hull. In case of potential flow theory, this term corresponds to
the hydrodynamic pressure, whose expression according to [78] is given by:

ps(y, t) = ρf

[
ḧ(t)

√
a2(t)− y2 +

πḣ2(t)

2 tanβ

a(t)√
a2(t)− y2

]
, (6.5)

where ps(y, t) is the pressure on the wedge as a function of y and t. Given
the sharp changes of the pressure profiles in wave slamming problems, these
comparisons are very important to validate the proposed methodology. Fi-
gure 6.6 shows the pressure distribution predicted by the Wagner solution
and the normal stress from the proposed method for β = 5◦, 10◦, 15◦, and
25◦, V = 5 m/s, 7 m/s, and 10 m/s, and t = 1 ms, 2 ms, and 3 ms. In general,
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Figure 6.5: The role of viscosity and compressibility: a) total hydrodynamic load versus
Reynolds number for Von Karman (VK) and Wagner (W) theories and the proposed
approach (Num) for a rigid wedge impacting the fluid surface at a constant speed with
β = 5◦ and V = 10 m/s, Ma = 0.0173 and h = 5× 10−3 m; b) slamming coefficient, Cs
as a function of wedge Mach number for β = 5◦.

the normal stress shows a similar behavior for all wetted surfaces, deadrise
angles, and velocities, wherein slow variations with respect to the horizontal
coordinate in the vicinity of the wedge vertex are followed by steep changes
as approaching the free surface. The difference between the analytical and
numerical solutions is larger at high deadrise angles, consistently with the
prediction of the force resultant as discussed above. Accuracy in estimating
normal stress is assessed by computing the relative difference with respect
to the analytical pressure, as defined in Equation (6.4), at a prescribed
wetted surface and at the vertex point of the wedge. Results summarized
in Table 6.2 show that ∆rel is always below 10%, with a higher deviation
for β = 15◦ and β = 25◦.

Rigid beams connected by a rotational spring with a constant
penetration velocity

In this test, the wedge impacting the free surface is modeled as two rigid
beams connected by a rotational elastic spring of constant k. Each beam
has mass m and e is the distance between the center of mass of the wedge
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Figure 6.6: Hydrodynamic normal stress computed using the proposed approach (points)
and the analytical solution (lines) for: (a) β = 5◦; (b) β = 10◦; (c) β = 15◦; and (d)
β = 25◦; three different velocities are used: V = 5 m/s (red), 7 m/s (green), and 10 m/s
(blue). For each case, the pressure is computed for three different values of time: 1 ms,
2 ms, and 3 ms.
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Table 6.2: Relative difference in the pressure at the vertex point of the wedge between
the present and Wagner’s results.

β t ∆

5◦
1 ms 0.0761
2 ms 0.0997
3 ms 0.0303

10◦
1 ms 0.0400
2 ms 0.0200
3 ms 0.0198

15◦
1 ms 0.0920
2 ms 0.0719
3 ms 0.0701

25◦
1 ms 0.1049
2 ms 0.0774
3 ms 0.0779

and the vertex. The numerical results predicted by the present approach
are compared with the analytical solution from [80], obtained by neglecting
surface tension, air trapping, viscosity, and gravity and by considering a
potential flow with compressible effects and a constant and finite sound
speed c. The vertex of the wedge moves downwards at a constant speed V .
Differently from the previous test case, the wedge and fluid dynamics are
coupled as the structure is modeled as a one degree of freedom elastic
system in terms of the deadrise angle β(t). The beams are assumed to
be initially at rest at the deadrise angle β(0) prior to the impact with
the water surface. Relevant physical parameters are: m = 1 kg, e = 1 m,
c = 1480 m/s, and V = 74 m/s. The corresponding Mach number is equal
to 0.05. The simulation is performed with Re = 105 by taking D = 2 m
which corresponds to 2e, that is, the initial wet surface. In addition, ∆t is
set to 1.89× 10−7 s. Figure 6.7 displays the dimensionless elastic moment,
defined as:

Qe(t) =
√

2
Mw

M0
β(t) (6.6)

for different parameter values, where Mw = e
c

√
k
me2

is the dimensionless

oscillatory speed and M0 = V
c is the dimensionless entry velocity. Four
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Figure 6.7: Time evolution of the dimensionless elastic moment for different values of
Mw computed using the proposed approach (Num) and results from [80] (An). Here,
curve A: Mw = 1, curve B: Mw = 2.5, curve C: Mw = 5; and curve D: Mw = 10.

curves are generated for the values Mw = 1, 2.5, 5, and 10, M0 = 0.05, and
an initial deadrise angle of 1◦. In Figure 6.7, time is normalized with respect
to the oscillation period. The proposed approach is in good agreement
with the analytical solution, as it captures very well the rapid increase in
the hydrodynamic moment experienced by the wedge. A closer comparison
between the findings from the two approaches is obtained by computing the
relative difference in the elastic moment as displayed in Table 6.3. Results
show a good agreement between the analytical solution and the numerical
one, as the relative maximum difference is at most 14.99%.

Table 6.3: Relative difference in the elastic moment between the proposed method and
the analytical solution in [80].

Mw ∆rel

1 0.0244

2.5 0.0261

5 0.1063

10 0.1499
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Deformable wedge with constant penetration velocity

The predictions of the proposed method are compared with analytical re-
sults from [79], where the effect of wedge compliance is taken into conside-
ration. The beams are rigidly clamped with a deadrise angle β = 10◦ at the
vertex and their length is L = 0.5 m. The two extreme nodes of the wedge
moves at a constant vertical downward velocity V = 10 m/s and, prior to
the impact, each beam rigidly translates along the z-axis at the velocity V .
The beam bending stiffness per unit width is Eh3

12 = 1.458 × 106 Nm and
the mass per unit surface is ρsh = 270 kg/m2.
The time step used is ∆t = 2.0 × 10−7 s and the simulation ends when
the 98% of the length of the beam is under the water surface consistently,
with [79]. The LB simulation is performed with Re = 1.5 × 103 by using
D = 1 m, which corresponds to approximately the maximum wet surface
2L.
Figure 6.8 compares the analytical solution with the numerically computed
time history of the mid-span deflection, in order to demonstrate the accu-
racy of the present methodology. The relative difference between the two
solutions is approximatively about 14% at a given wetted surface.
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Figure 6.8: Comparison between the solution in [79] (An) and the numerically computed
time histories of the mid-span deflection (Num).
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Comparison with experimental results

Here, the proposed methodology is validated against experimental data on
both rigid and flexible wedges, comparing to experimental results on rigid
wedges from [82] and flexible wedges from [83]. All comparisons refer to
water with a kinematic viscosity of ν = 1.11× 10−6 m2/s and a mass den-
sity of 1000 kg/m3. In the first test (rigid case), a wedge-shaped mass is
dropped from a given height and impacts the free surface under the effect
of gravity. Differently from the case of a rigid wedge impacting the free
surface with a constant velocity, the position of the wedge is a priori un-
known and is obtained by solving the equations of motion. For comparison
with experimental results from [82], a rigid wedge of 72.5 kg with a deadrise
angle β = 25◦ falling from a height of 0.192 m is considered. The time step
is set to ∆t = 3.44 × 10−5 s. In Figure 6.9, the penetration depth and the
drop velocity are plotted versus time. The relative difference between ex-
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Figure 6.9: Comparison between experimental data (Exp) in [82] and the proposed ap-
proach (Num) for: (a) penetration depth and (b) and drop velocity.

perimental and numerical results is only 7.9% for the drop velocity. These
results substantiate that the proposed coupling algorithm is able to accu-
rately capture the physics of the impact.
In the second test, a steel plate impacts the free surface with a constant
velocity, as if it were a wedge with null deadrise angle [83]. The plate
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is released at a varying height so that different impact velocities V are
obtained. The beam has length L = 0.50 m, width of 0.10 m, thickness
h = 0.008 m, mass per unit surface ρsh = 62 kg/m2, and bending stiffness
Eh3/12 = 8960 Nm. In the experiments, the axial strain ε is measured at
ha = 0.004 m from the neutral axis at the plate’s center and the nondimen-
sional strain and penetration velocity are defined as follows

εd =
ε

haV

√
Eh3/12

ρsL
, Vd = V

√
ρsL3

Eh3/12
. (6.7)

Numerical simulations are carried out for speeds V ranging from 2.2 m/s
to 6.2 m/s. The time step used is ∆t = 1.88 × 10−5 s and 2 500 elements
are used to discretize the beam which is assumed to be free at its ends.
Moreover, the strain at ha is inferred from the curvature using the standard
beam theory. As shown in Figure 6.10, the maximum strain εd obtained
using the proposed approach is close to the experimental results in the
whole observation range.
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Figure 6.10: Comparison of computed (Num) and experimental (Exp) dimensionless
strain as a function of the dimensionless impact velocity.
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6.2 Blood flow

Here, the proposed approach in the explicit version is used to solve the
problem of a non-Newtonian fluid in a channel with the strategy depicted
in Figure 6.11. In particular, in order to simulate a blood flow in an arterial
wall, an appropriate rheological model is used for both fluid and structure.
Differently from the previous cases, here the structure deformation is ana-
lytically predicted. Given the stress tensor, the internal pressure acting on
the wall is determined and, consequently, the inner radius is computed ac-
cording to an analytical approach. In addition, the stress is used to correct
the relaxation time, in order to account for the variation of the viscosity
in the channel. According to such values, the position of the wall in the
lattice background is updated and, finally, the lattice Boltzmann solution
is performed. Then, the solution is advanced in time. For simplicity, a-

!

!

!

!

Compute the stress tensor 

Compute wall deformation 

Update wall position 

Compute viscosity 

Update τ 

Compute fluid solution 
Next 

time step 

Figure 6.11: Sketch of the solution strategy.

xialsymmetric conditions for both the fluid and the wall are assumed; thus,
it results in a two-dimensional problem. Moreover, the tangential stress is
neglected in order to predict the deformation of the artery. In the following
the non-Newtonian feature of the blood is discussed, together with the LB
implementation. In addition, details about the mechanical properties of
the artery are given. Finally, results involving rigid and deformable vessels
are presented.
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Non-Newtonian fluid model

The stress tensor in the fluid can be expressed as

σ = −pI + 2µε̇, (6.8)

where µ is the viscosity and the strain rate tensor is given by

ε̇ =
1

2

(
∇v +∇vT

)
. (6.9)

It can be computed at lattice scale as

ε̇ = − Π

2ρc2
sτ
, (6.10)

with Π given by Equation (2.8).
The most common non-Newtonian models are the power-law model and
Casson’s model. A power-law fluid is governed by the relation:

µ = k(γ̇)n−1, (6.11)

where µ is an apparent effective viscosity depending on the shear strain
rate γ̇, k is a consistency index (the larger k, the larger the viscosity is)
and n is the dimensionless flow behavior index. If n = 1, a Newtonian fluid
is recovered. The shear strain rate is defined as

γ̇ = 2 ‖ε̇‖ = 2
√
ε̇ : ε̇. (6.12)

Casson’s rheological model [84] is based on the following assumptions: small
shear rate, i.e. γ̇ ≤ 10s−1, and hematocrit less than 40%. The resultant
model is: √

η|γ̇| =

{√
σ −√σy if σ > σy,

0 otherwise,
(6.13)

where η is a constant viscosity, σy is a limit stress known as yield stress,
and σ is defined as

σ =
∥∥∥σ̇D∥∥∥ =

√
σD : σD, (6.14)
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being σD the deviatoric stress tensor. If σ < σy, no shear strain is observed;
moreover, if σ � σy, a typical Newtonian behavior is recovered. In fact,
at high shear rate the above model reduces to σ = η|γ̇|. This rheological
model is used to model the non-Newtonian behavior of the blood. Casson’s
equation can be written as

σ = µ|γ̇| where µ = µ(|γ̇|). (6.15)

Thus, Equation (6.13) becomes

µ =


(√

σy +
√
η|γ̇|

)2

|γ̇|
if σ > σy,

∞ otherwise.

(6.16)

To introduce the above behavior in the LB framework, the model proposed
in [27] is used. In particular, the relaxation parameter τ is locally adjusted
at each time step to properly account for the dependence of the effective
viscosity upon the shear strain rate. In fact, based on Equation (6.9) it is
given by

γ̇ =
σ̂

τc2
sρ
, (6.17)

with σ̂ = |Π| =
√

Π : Π. Using Equation (6.13), in the case σ > σy,
Equation (6.15) can be rewritten as

|γ̇| = σy(√
µ−√η

)2 . (6.18)

Equating |γ̇| in Equations (6.17) and (6.18) leads to the following consi-
stency condition √

µ

η
=

1

1− ζ

[
1 +

√
ζ[1 +

ρc2
s

2η
(1− ζ)]

]
, (6.19)

where ζ = σy/σ̂. Thus, at each time step the stress tensor is computed and
solving the above equation the effective viscosity is determined. Then, the
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value of the relaxation parameter τ is updated according to

τ =

(
µ

ρc2
s

+
1

2

)
. (6.20)

The bound values of the relaxation parameter are chosen in order to satisfy
the stability condition of the LB solution. On this regard, notice that Equa-
tion (6.16) assesses that, if the shear stress is less than the yield threshold,
the viscosity µ goes to infinity which is impossible to achieve numerically in
the LB method. Following the approach in [27], thus, a maximum value of
τ = 5 is numerically forced, representing an artificially allowed threshold.
On the other hand, the parameters are scaled in the lattice framework such
that at the boundaries τ = 1 corresponds to a viscosity equal to η.

Model of an arterial wall

An arterial wall can be depicted as a multilayer cylinder where it is pos-
sible to identify three concentric layers: the intima, media, and adventitia
tunics. The intima is a simple layer directly interacting with the blood
and its mechanical role can be neglected. The media is usually the thic-
kest layer of the wall and has different structure in different parts of the
vascular system. In large arteries closest to the heart, the media consists
of elastic plates alternated by connective tissue, collagen fiber and smooth
muscle fibers. One of the major roles is to accumulate blood during systole
and to expel during diastole, thereby damping the pulsation generated by
the heart. In smaller arteries, the media shows smooth muscle cells and a
small part of connective tissue, collagen and elastin immersed in a matrix
of proteoglycans. Muscle cells are wound in a variable pitch propeller and
arranged in a layered structure. The adventitia has a thickness generally
less than that of the media and is composed of collagen fibers hatched lon-
gitudinally and by a reduced percentage of elastin fibers.
In general, biological materials show an increasing stiffness when the stress
grows up, exhibiting a non-linear elastic behavior. Moreover, the vascular
wall possesses an architectural organization which is spatially oriented ac-
cording to privileged directions, thus responding to evolutionary needs to
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adapt the wall to applied stresses. As a result, the stress-strain relation
shows different characteristics depending on the direction of the imposed
stress (radial, longitudinal or circumferential). Therefore, the vascular wall
has an anisotropic mechanical behavior. In addition to the non-linear and
anisotropic features, such tissues have a time-dependent mechanical be-
havior, since the response is mediated by a transient time which leads
progressively to a new state of equilibrium. In particular, such time de-
pendency implies an energy dissipation (due to internal friction), retarding
the response of a tissue to an applied stress. Such property is defined as
viscoelasticity.
Following the approach in [85], each tunic is modeled as a fiber-reinforced
material and fibers are oriented as the principal stress directions of the col-
lagen. The deformation energy is assumed to depend on the isotropic stress
invariant I1 and on the anisotropic stress invariants I4 and I6; thus, two
different energetic components can be identified:

Ψ(I1, I4, I6) = Ψi(I1) + Ψa(I4, I6), (6.21)

being Ψi the strictly isotropic part and Ψa the anisotropic portion. In
particular, the only second term of the right hand side is related to the
principal directions n1 and n2, corresponding to the orientation of collagen
fibers. The three invariants involved are defined as I1 = tr(C), I4 = C :
n1 ⊗ n1 and I6 = C : n2 ⊗ n2, where C is the right Cauchy-Green tensor.
Experimental findings in [86] show an high extensibility for low pressure
values, while an hardening non-linear behavior arises when the pressure
increases. Therefore, it is possible to use a neo-Hookean model for the
isotropic part and exponential functions for the anisotropic one:

Ψi(I1) =
q1

2
(I1 − 3) , (6.22)

Ψa(I4, I6) =
q2

2q3

∑
a=4,6

{
exp

[
q3 (Ia − 1)2

]
− 1
}
. (6.23)

Herein, q1, q2 and q3 are three material parameters. In the following, the
artery is modeled as a two-layers thick wall, as depicted in Figure 6.12.
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Figure 6.12: Sketch of an artery wall model modified from [85].

As previously stated, for simplicity the artery behavior is assumed to be
axisymmetrical. Moreover, the deformation is assumed to be isochoric and
the dependence upon the artery axis is neglected. In this way the rela-
tionship between the internal pressure and the local deformation can be
computed in a closed form and used in the coupling strategy.
Three configurations are considered. First, the configuration Γres corre-
sponds to a load-free configuration in which, if a cut in radial direction is
exerted, the artery tends to open and to assume a stress-free configuration
Γ0, that is a reference undeformed and fixed configuration. The configura-
tion Γ0 is defined in the cylindrical polar coordinate system (R, Θ, Z):

Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π − ϑ, 0 ≤ Z ≤ L, (6.24)

being Ri, Ro, L, and ϑ the inner and outer radii, the length and the opening
angle of the vessel. The isochoric deformation χ transforms the stress-
free configuration into the current one, Γp, described by the cylindrical
coordinate system (r, θ, z):

ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ l, (6.25)

being ri, ro, and l the deformed inner and outer radii and the deformed
length. Imposing the deformation to be isochoric leads to

r(R) =

√
R2 −R2

i

kλz
+ r2

i θ = kΘ, (6.26)
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where λz is the axial stretch that is assumed to be constant. Besides λz,
the principal components of the deformation are:

λr(R) =
∂r

∂R
=

R

rkλz
, (6.27)

λθ(R) =
r

R

∂θ

∂Θ
=
kr

R
, (6.28)

with k = 2π/(2π−ϑ). Notice that the problem is strictly one-dimensional.
As it can be immediately verified, the volume is preserved, i.e. λzλrλθ = 1.
Upon integration of the equilibrium condition

dσr
dr

+
σr − σθ

r
= 0, (6.29)

together with the boundary conditions σr = −pi at r = ri and σr = 0 at
r = ro, the following equation is obtained

pi =

∫ ro

ri

(σr − σθ)
dr

r
, (6.30)

where the radial and circumferential components of the stress tensor are
given by

σr =
∂Ψ

∂λr
, (6.31)

σθ =
∂Ψ

∂λθ
, (6.32)

respectively. Substituting the above relations into Equation (6.30) yields
to an equation in the only unknown ri. Indeed, the integral should be
numerically perfomed, using for example the Gaussian rule. Thus, for a
given λz, it is possible to obtain ri in terms of pi:

ri = ri(pi). (6.33)

This relation is used to predict structure deformation in the coupling stra-
tegy. Given the geometrical and mechanical parameters in Table 6.4, the
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Table 6.4: Material and geometrical data from [85]. The inner radius is Ri = 0.71 mm.

Media Adventizia

q1 3.0000 kPa 0.3000 kPa

q2 2.3632 kPa 0.5620 kPa

q3 0.8393 0.7112

Ri −Ro 0.26 mm 0.13 mm

β 29◦ 62◦
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Figure 6.13: Internal pressure vs inner radius.

internal pressure is plotted against the inner radius in Figure 6.13 for dif-
ferent vaules of the imposed axial deformation λz. It is shown that the
higher the pressure, the wider the cross section of the artery is; this kind
of mechanical behavior is due to the presence of the collagen: the artery
becomes stiffer due to fiber stretch as the pressure increases.

Some results

First, results are compared to [27], where a Casson’s flow develops in a
cylindrical rigid channel of width D. Figure 6.14 depicts the problem defi-
nition. At the inlet section, a velocity profile is given, while at the outlet
section the outflow boundary condition is imposed. At top and bottom
walls no-slip boundary condition is enforced. The inlet velocity profile is
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Figure 6.14: Sketch of the problem definition.

given by the expression:

v(r) = − dp

4ηdx

D
2 − r2 + 8

3

√
rc

3
√

(D2 − r2) + 2rc(D − r), if r ≥ rc
D2 − 8

3

√
rc

3
√
D2 + 2rcD −

1

3
r2
c , if r ≤ rc,

(6.34)
being dp/dx the pressure gradient. The characteristic critical radius rc is
defined so that no shear stress is observed when r < rc.
Here, the fluid domain consists of 41 and 128 lattice nodes in vertical and
horizontal direction, respectively; the threshold stress is σy = 10−6, the
critical radius is rc = 0.01 · 41. In addition, the flow is driven by a force
equal to 0.0001. All these quantities are given in lattice units. In Figure
6.15(a) the velocity profile is plotted against the channel width in the cen-
tral cross section, since the solution is uniform and steady-state. Then,
the variation of the relaxation parameter τ in the central cross section is
depicted in 6.15(b). Finally, Figure 6.15(c) presents the effective viscosity
for different values of the shear stress normalized with respect to the yield
threshold. As it can be observed, very close agreement between present
and benchmark values in [27] is obtained. In the following, the influence
of deformability is investigated. Equations (6.22) and (6.23) are different
for the media and the adventitia tunics, since coefficients q1, q2 and q3 de-
pend on material properties. Thus, six parameters govern the model. Unit
vectors in cylindrical components are defined as

n1 =

 0
cosβ
sinβ

 , n2 =

 0
cosβ
− sinβ

 , (6.35)
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(a) Velocity in a cross section.

 0

 1

 2

 3

 4

 5

 0  10  20  30  40

τ

Channel width

Ref

Pres

(b) Relaxation time in a cross
section.

 0

 25

 50

 75

 100

 0  0.2  0.4  0.6  0.8  1

µ
/η

1
/2

ζ

Ref

Pres

(c) Effective viscosity vs normal-
ized shear stress.

Figure 6.15: Rigid vessel: comparison between benchmark (Ref) and present (Pres)
values.
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where the first component refers to the artery axis. Details about coeffi-
cients and geometry are given in Table 6.4. Moreover, the value λz is set to
1.5. The computational domain consists of a grid of dimensions 352× 100.
An incoming pulsatile overpressure is applied at the inlet section and it
is characterized by a frequency of 250 pulses/minute. The corresponding
Womersley number is α = Rim

√
ω
ν = 0.9318, being ω = 26.1799 and

ν = 3.8 × 10−6 m2/s. For an imposed Reynolds number Re = 2RimV/ν,
the corresponding velocity is computed; then, by using the Poiseuille law,
the overpressure is computed and, consequently, applied at the inlet sec-
tion. For different values of the Reynolds number, the overpressure and
velocity profiles along the artery axis are depicted in Figures 6.16 and 6.17,
respectively. Moreover, the evolution of the velocity field is reported in
Figure 6.18. As it is possible to observe, the deformability takes an im-
portant role in the behavior of a pulsatile blood flow. In particular, when
a deformable vessel is considered, the velocity and pressure profiles com-
puted at the artery axis are quite different from the rigid case if Re = 374
is considered.
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(a) Rigid vessel, Re = 374.
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(b) Rigid vessel, Re = 526.
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(c) Deformable vessel, Re = 374.
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(d) Deformable vessel, Re = 526.

Figure 6.16: Dimensionless pressure profiles in the central horizontal section for different
values of the Reynolds number at different time steps. Rigid and deformable vessels are
compared.
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(a) Rigid vessel, Re = 374.
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(b) Rigid vessel, Re = 526.
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(c) Deformable vessel, Re = 374.
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(d) Deformable vessel, Re = 526.

Figure 6.17: Dimensionless velocity profiles in the central horizontal section for different
values of the Reynolds number at different time steps. Rigid and deformable vessels are
conmpared.

Figure 6.18: Velocity field. The movie is available in the pdf version.

Alessandro De Rosis 110



6.3. FLAPPING WINGS

6.3 Flapping wings

A two-dimensional symmetric flapping wing is immersed in a viscous, in-
compressible fluid characterized by density ρ and viscosity ν [12]. Wings
can travel only in vertical direction. Two different scenarios are investi-
gated: rigid and flexible wings. The wings are represented by two beams
with length L connected to a hinge where the mass of the whole set is con-
centrated, as shown in Figure 6.19. At the time t, the angular position θ(t)

            

x 

y 

θ(t) 
L 

M 

g 

MMM

ggg

θ(t( )

2∆θ 

θ
O 

12 L 

24 L 

Figure 6.19: Sketch of the problem definition.

is given by

θ(t) = ∆θ cos(2πt/T ), (6.36)

where ∆θ is the amplitude, T is the period of the harmonic oscillation, and
the time-averaged tip velocity is defined as:

vtip = 4L∆θ/T. (6.37)

According to [87], the following parameters corresponding to a butterfly
are used: wing mass 3.5 × 10−6 kg, body mass 5.0 × 10−5 kg, hinge-wing
distance 5.0×10−3 m, wing length 3.0×10−2 m two-dimensional air density
ρ0 = 7.0× 10−3 kg/m2. Notice that the total mass is equal to 5.7× 10−5 kg
and the total length of the wing is L = 3.5× 10−2 m.
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The dimensionless parameters of the problem are: the Reynolds number
Re =

vtipL
ν , the dimensionless mass m, the dimensionless bending stiffness

EJ and the Froude number, Fr = 1/g, where g is the gravity acceleration.
The mass is normalized by ρ0L

2 and the bending stiffness by ρ0L
3v2
tip.

Moreover, in the following the wings position is normalized by L. In order
to avoid high velocities in the flow field due to the motion of the wings,
the grid dimensions are chosen in such a way that the maximum tangential
velocity is less than cs/3. In particular, for Re = 40 the grid consists of
1440× 720 lattice nodes and the wings are modeled by using 60 elements,
while at Re = 200 the dimensions are 1920 × 960 and 80 beam elements
are used.
First, the effect of the Reynolds number is discussed with rigid wings. As
it is possible to observe in Figure 6.20, a very close agreement between the
present solution and the results obtained in [59] is achieved. Notice that
at Re = 200 the wings successfully go upward, while at Re = 40 they
tend to oscillate about a fixed position. The take-off is depicted in Figure
6.21. Then, the effect of wings flexibility is investigated. Figure 6.22
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Figure 6.20: Effect of the Reynolds number.

shows the dimensionless trajectory for different values of the dimensionless
bending stiffness EJ . Gravity is neglected and the dimensionless mass
is m = 9.05. Various amplitudes are considered: ∆θ = 15◦, ∆θ = 30◦,
∆θ = 46.8◦. As it is possible to observe, the larger the amplitude, the
faster the take-off is. Moreover, the bending stiffness plays an important
role, since the bird goes upward faster for large values of EJ . For a certain
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(a) Re = 40. (b) Re = 200.

Figure 6.21: Velocity field during the evolution of the trajectory. The movie is available
in the PDF version.
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Figure 6.22: Influence of the dimensionless bending stiffness on the dimensionless position
y/L of the center of wings for different amplitudes and masses: a)∆θ = 15◦, b) ∆θ = 30◦,
c) ∆θ = 46.8◦ with m = 9.05, and d) m = 4.53, e) m = 9.05, f) m = 36.2 with
∆θ = 46.8◦.
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flapping amplitude, ∆θ = 46.8◦, three different values of the dimensionless
mass are used: m = 4.53, m = 9.05 and m = 36.2. Also in this case,
gravity is neglected and the influence of the mass is shown. In particular,
at m = 4.53 and m = 9.05 the wings go successfully upward, whereas at
m = 36.2 the trajectory moves in downward direction. Finally, the effect
of the gravity is investigated by varying the Froude number in Figure 6.23.
The dimensionless mass is m = 9.05 and the maximum amplitude is set to
∆θ = 45◦. As expected, when the gravitational force increases, the take off
becomes arduous.
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Figure 6.23: Influence of the dimensionless bending stiffness on the dimensionless position
y/L of the center of wings for different Froude numbers: a) Fr = 8, b) Fr = 7, c) Fr = 6.
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Chapter 7

Concluding remarks

Sommario

In questa tesi, il metodo lattice Boltzmann e il metodo agli elementi finiti
sono stati accoppiati allo scopo di risolvere problemi di interazione fluido-
struttura. Allo scopo di permettere un efficace, accurato, continuo e mutuo
scambio di informazioni tra i due solutori, un’opportuna strategia di accop-
piamento è stata implementata. Dopo una fase di validazione svolta con
ostacoli rigidi, l’attenzione si è focalizzata sui solidi deformabili. In due
test riguardanti il comportamento di mensole deformabili immerse in un
fluido viscoso sono state discusse le diverse proprietà di accuratezza e sta-
bilità degli algoritmi di accoppiamento ed è stata confermata la scelta effet-
tuata sullo schema di integrazione dell’equazione del moto del solido. Una
volta validato, l’approccio sviluppato è stato applicato in tre diversi contesti.
Dapprima, è stato studiato l’impatto degli scafi delle navi sulla superficie
marina libera, confrontando i risultati numerici con previsioni analitiche
e dati sperimentali. Successivamente, l’approccio si è dimostrato efficace
anche nei confronti della simulazione di un flusso non-Newtoniano, come
il moto del sangue in una parete vascolare. In particolare, la parete è stata
modellata tramite un’opportuna relazione costitutiva tale da tener conto del
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comportamento anisotropo e irrigidente della stessa. Infine, l’attenzione è
stata rivolta alla simulazione del decollo verticale di una farfalla, studiando
l’influenza della deformabilità delle sue ali, della massa e della forza di
gravità.
La presente strategia accoppiata è stata volutamente applicata a contesti e
situazioni diverse, allo scopo di saggiarne l’affidabilità e la versatilità. I
risultati ottenuti mostrano che la strategia è molto promettente come stru-
mento per la simulazione di problemi di interazione fluido-struttura.
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In the present thesis, a partitioned solution strategy for fluid-structure in-
teraction has been developed by properly coupling the lattice Boltzmann
method and the Finite Element method. Special attention has been de-
voted to the procedure to enforce fluid boundary conditions, on one side,
and to the time integration scheme for structural dynamics, on the other
side. A proper coupling strategy has been developed and three algorithms
have been numerically tested. After the validation of the solution procedure
for rigid fixed and moving bodies, the attention is focused on fluid-structure
interaction involving deformable solids. In two tests concerning the behav-
ior of a cantilever beam immersed in a viscous fluid, the main properties
of the three algorithms are discussed. All of them have been proved to
be robust and effective. The implicit algorithm is the most accurate and
exhibits a nearly optimal convergence rate, that is the same convergence
rate experienced in the case of the fluid with a rigid structure. However,
it involves the highest computational cost. In general, three iterations are
sufficient and the overall computational cost is three times that involved
by the explicit algorithm. The explicit algorithm enhanced with structure
predictor offers a very good convergence rate with a computational cost
that is comparable to the one involved by the sole fluid solver in the case
of rigid structure. Indeed, an implicit-explicit strategy could be used by
coupling the proposed algorithms with an adaptive procedure. All the nu-
merical tests confirm the superior properties of TDG scheme with respect
to standard integration schemes for structural dynamics, in terms of both
accuracy and stability.
The present approach has been used in three applications. First, the re-
sponse of a compliant structure as it impacts on the surface of a weakly
compressible viscous fluid has been investigated. The free-surface is re-
garded as a traction-free boundary condition, neglecting gravity and sur-
face tension effects. The proposed method is first compared to analytical
findings based on potential flow theory for wedges penetrating the fluid
at a constant velocity in the following three scenarios: a rigid wedge, a
wedge composed of rigid beams connected by a rotational spring, and a de-
formable wedge. Validation of the method is obtained by comparison with
experimental data found in literature: a rigid wedge-shaped mass falling
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from rest and impacting the free surface and a straight steel beam pene-
trating the free surface at constant velocity. A good agreement is observed
in both cases, demonstrating the feasibility of the proposed approach for
hull slamming analyzes.
Moreover, the LB method has been proved to be able to model the blood
flow in an arterial wall. First, non-Newtonian features have been explored,
since blood exhibits such kind of behavior. In particular, Casson’s rheolog-
ical model has been used and the anisotropic, hardening, and viscoelastic
mechanical behavior of the arterial wall has been accounted for by using
a proper constitutive relation. Values of internal pressure from the LB
simulations have been employed to compute the deformed inner radius of
the artery. The good results show that the proposed method is able to
represent the non-Newtonian behavior of blood and to take in account for
arterial wall deformation successfully.
Finally, the behavior of two symmetric flapping wings immersed in a vis-
cous fluid has been investigated. First, assuming the wings to be rigid, the
effect of the Reynolds number has been shown. In particular, at Re = 200
the wings move upward from the original position. Then, the assumption
of rigid wings has been removed. The effect of the bending stiffness has
been shown for different conditions, i.e. various values of amplitude, mass
and Froude numbers. Results show that the lower the bending stiffness,
the more difficult the take off is. Such behavior is due to the fact that the
energy generated by the motion is partially absorbed by the deformation
of the wings, which increases if the bending stiffness decreases.
The fluid-structure interaction approach developed in this thesis has been
tested against very different applications. The good results achieved lead
to affirm that the proposed coupled strategy is very effective and promising
for fluid-structure interaction.
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Appendix A

Euler-Bernoulli beam finite element

Here, the classical linear elastic Euler-Bernoulli beam theory is discussed.
The beam is discretized by using two-node elements, as shown in Figure
7.1, and each possesses three degrees of freedom: two translations, u and
v, and a rotation θ. Such beam is characterized by cross-section area A
and inertia moment J , length L and mass per unit length ρ. The vector
of the nodal displacements for the generic beam element can be written as
follows:

u = [ui vi θi uj vj θj ]
T , (7.1)

being i and j the two nodes of the beam. In order to represent the axial
displacement, linear shape functions are adopted. The matrix Nu of the
shape functions is

Nu =
[
1− x

L
0 0

x

L
0 0

]
, (7.2)

!

!

L 

y 

x i j 

Figure 7.1: Euler-Bernoulli beam element.

121



CHAPTER 7. CONCLUDING REMARKS

being x the abscissa corresponding to the geometric axis of the element.
Axial deformation is related to the nodal displacements by means of the
equation

ε = Buu, (7.3)

where the compatibility operator Bu is defined as

Bu =

[
− 1

L
0 0

1

L
0 0

]
. (7.4)

The transversal displacements are represented by using cubic shape func-
tions. In this case, the matrix Nv of the shape functions is

Nv =

[
Nv1

Nv2

]
,

where

NT
v1 =



0

1− 3 x
2

L2 + 2 x
3

L3

x− 2x
2

L + x3

L2

0

3 x
2

L2 − 2 x
3

L2

−x2

L + x3

L2


, NT

v2 =



0

−6 x
L2 + 6 x

2

L3

1− 4 xL + 3 x
2

L2

0

6 x
L2 − 6 x

2

L3

−2 xL + 3 x
2

L2


. (7.5)

Here, the compatibility operator Bv is defined as

Bv =

[
0 − 6

L2
+

12x

L3
− 4

L
+

6x

L2
0

6

L2
− 12x

L3
− 2

L
+

6x

L2

]
. (7.6)

Thus, the material stiffness element matrix K
(e)
M is defined as

K
(e)
M =

∫
L

(BT
uEABu + BT

v EJBv) dx =

=



EA
L 0 0 −EA

L 0 0

0 12EJ
L3

6EJ
L2 0 −12EJ

L3
6EJ
L2

0 6EJ
L2

4EJ
L 0 −6EJ

L2
2EJ
L

−EA
L 0 0 EA

L 0 0

0 −12EJ
L3 −6EJ

L2 0 12EJ
L3 −6EJ

L2

0 6EJ
L2

4EJ
L 0 −6EJ

L2
2EJ
L

 .
(7.7)
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Denoting by N the whole set of shape functions, the elemental mass matrix
M (e) is defined as

M (e) =

∫
L

NTρAN dx =

= ρAL



1
3 0 0 1

6 0 0
0 13

35
11
210L 0 9

70
13
420L

0 11
210L

1
105L

2 0 13
420L − 1

140L
2

1
6 0 0 1

3 0 0
0 9

70
13
420L 0 13

35 − 11
210L

0 − 13
420L − 1

140L
2 0 − 11

210L
1

105L
2

 .
(7.8)
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Appendix B

The Cholesky decomposition

The Cholesky decomposition is the factorization of a Hermitian, positive-
definite matrix A into the product of a lower triangular matrix L and its
conjugate transpose L+:

A = LL+, A ∈ Km×m. (7.9)

If A is real and symmetric, the conjugate transpose is equal to the transpose
LT:

A = LLT, A ∈ Rn×n. (7.10)

This algorithm starts with
A(1) = A, (7.11)

A(i) =

(
Ai,i b∗i
bi B(i)

)
, (7.12)

Li =

( 1√
Ai,i

0

− 1
Ai,i

bi I

)
, (7.13)

A(i) = L−1
i

(
1 0

0 B(i) − 1
Ai,i

bib
∗
i

)
(L−1

i )∗. (7.14)

Then, in the next steps:

A(i+1) = B(i) − 1

Ai,i
bib

∗
i , (7.15)
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A(i) = L−1
i

(
1 0

0 A(i+1)

)
(L−1

i )∗. (7.16)

Iterations stop after n steps when A(n) = 1. The lower triangular matrix
L is calculated as

L = L1L2 . . .Ln. (7.17)

The Cholesky-Crout algorithm starts from the upper left corner of the
matrix L and proceeds to calculate the matrix column by column:

Li,i =

√√√√Ai,i −
i−1∑
k=1

L2
i,k, i = 1, ...,m (7.18)

Lj,i =
1

Li,i

(
Aj,i −

i−1∑
ι=1

Lj,ιLi,ι

)
, j = i+ 1, ...,m. (7.19)
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