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Abstract 

 

Massive parallel robots (MPRs) driven by discrete actuators are force regulated 

robots that undergo continuous motions despite being commanded through a 

finite number of states only. Designing a real-time control of such systems requires 

fast and efficient methods for solving their inverse static analysis (ISA), which is a 

challenging problem and the subject of this thesis. In particular, five Artificial 

intelligence methods are proposed to investigate the on-line computation and the 

generalization error of ISA problem of a class of MPRs featuring three-state force 

actuators and one degree of revolute motion. 

 

Keywords: Massive parallel robots, inverse static analysis, artificial intelligences, 

real-time control 
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Chapter 1 

Introduction 

 

1.1 Rationale of the thesis 

This thesis addresses the efficient way to design the real-time 

control procedure of massive discrete-state manipulators (DSM). The DSM 

is a very special kind of mechanisms whose actuators can only be made 

switching among a finite number of states. The manipulators are introduced 

by Pieper (1968) and Roth (1973), in an effort to conceive sensor-less robots 

as well as to reduce the complexity of computer interfacing and control 

procedure. Currently DSM can be classified into two different groups 

depending on whether their actuators act as discrete displacement 

generators or discrete force generators. Examples of DSM of the first type 

are the binary snake-like robots (SLRs), proposed by Chirikjian et al (1994a, 

1994b, 1995, 1996a, 1996b, 1997, 2001, 2004) and Dubowsky et al (2001, 

2002), which are kinematically constrained mechanisms employing a large 

number of bi-stable actuators whose configuration either fully contracted 

(inactive state) or fully extended (active state) without consideration of the 

arbitrary external forces acting on them. Examples of DSM of the second 
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type are the binary Massively Parallel Robots (MPRs) [Waldron et.al., 2001a, 

2001b; Mukherjee, 2002], which are dynamically constrained robots 

employing a large number of on-off actuators that employ either a constant 

force (active state) or no force (inactive state) irrespective of their arbitrary 

kinematically unconstrained configuration.  

Major advantages of SLRs and MPRs over conventional manipulators 

are the possibilities of:  

1. Increasing system robustness against external disturbances, 

information and power signal noise, actuator and electronics 

aging, as well as actuator failure;  

2. Employing simpler and cheaper actuators, sensors and 

electronics.  

To achieve high position/force capabilities (both in terms of variation 

range and accuracy), the architecture of SLRs/MPRs practically requires a 

large number of actuators (usually 4-10 times larger than the number of 

degrees of freedom desired for the robot) that can be arranged in a hybrid 

series-parallel configuration (prevalently in-series for SLRs [Chirikjian et al., 

1994a, 1994b, 1995, 1996a, 1996b, 1997, 2001; Dubowsky et al., 2001, 

2002] whereas in-parallel for MPRs [Waldron et al., 2001a, 2001b; 

Mukherjee, 2002]. Owing to the large number and the discrete nature of 
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the actuator variables (positions for SLRs and forces for MPRs), the inverse 

kinematic analysis (IKA) of SLRs and the inverse static analysis (ISA) of MPRs 

are usually very difficult problems whose solution practically requires quite 

complicated procedures. In the past, significant research efforts have been 

devoted to address these inverse problems, in particular by resorting to: 

exhaustive brute-force search approaches [Waldron et al., 2001a, 2001b; 

Mukherjee, 2002]; methods of classical differential geometry and variation 

of calculus [Chirikjian, 1995, 1997]; combinatorial heuristics algorithms 

[Lees 1996; Dubowsky et al., 2001, 2002]; genetic algorithms [Dubowsky et 

al., 2001, 2002]; probability theory [Chirikjian et al., 1996a, 2001]; high-gain 

Hopfield networks and Boltzmann machines [Waldron et al., 2001a, 2001b]. 

Even though most of the proposed solution schemes are formally very 

elegant and quite effective in reducing problem complexity from 

exponential time to polynomial time, the resulting algorithms still involve 

too many calculations for real-time manipulator control.  

This thesis deals with the ISA problem of planar MPRs, that is to find 

the states of the actuator variables for a given external (force or moment) 

acting on the MPRs output link. 
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1.2 Hypothesis: ISA solution using Artificial Intelligence 

In this context, we investigate the potentialities of using artificial 

intelligence (AI) methods for the real-time solution of the ISA of planar 

ternary MPRs that feature one revolute degree of freedom actuated by a 

number of in-parallel-placed three-state force generators. In particular, the 

thesis considers five different MPRs mechanisms that are actuated by m 

three state force generators (with the three states being -1, 0 and 1 and 

with m = 2, 4, 6, 8 and 10, hereafter referred to as m-ternary MPRs).  

The proposed AI methods are based on the Neuro-Fuzzy (NF) and 

Neural Network (NN).  The first method is a hybrid intelligent system which 

combines the human-like reasoning style of fuzzy systems with the learning 

ability of neural networks. The main advantages of a neuro-fuzzy system 

are: it interprets IF-THEN rules from input-output relations and focuses on 

accuracy of the output network and an efficient time consumption for on-

line computation [Jang 1993; Palit 2001, 2002b, 2005]. The second method 

is instead inspired by the biological nervous system. This is because the NN 

consists of highly interconnected networks with a large number of 

processing elements (called artificial neurons), which resemble the human 

brain system. The advantages of using NN are: it is an efficient pattern 

recognition system and acts like parallel distributed processing (parallel 



5 
 

computing) which accelerate the computational process [Elman 1990; Juang 

2002; Palit 2002a, 2005; Toha 2008]. 

In general, the practical uses of AI methods have been recognized 

mainly because of such distinguished features: 

 Pattern recognition capability: enables to capture patterns or 

essential relationship among the data (especially when the 

relationship is not known or very difficult to describe 

mathematically, and/or when the observation data is corrupted 

with noise). 

 Universal approximation capability (universal function): enables 

modeling of highly nonlinear functions with good accuracy. 

 Adaptive learning capability: enables to learn from examples 

using data-driven approach by updating the related parameters. 

The first two features above are used here in the ISA solution for 

constructing the relation between the vector of actuator activation states u 

= [u1,…, um], which is a m-ternary number, and the input couple of position 

and moment X =[, M], which are continuum real numbers. The last feature 

is used instead for tuning the parameters that are related to the NF and NN 

architectures.  
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1.3 Contributions: Six ISA solutions 

In this thesis, we proposed six ISA solutions which are: 1. Look-Up 

Table (LUT); 2. Neuro-Fuzzy type Takagi-Sugeno (NFTS); 3. NFTS with Look-

Up Table (NFLUT); 4. Neural Network type Multilayer Perceptron (MLP); 5. 

Recurrent Neural Network type Elman (ERNN); and 6. High-Gain Hopfield 

Network (HN). One of the proposed solutions should overcome the problem 

of ISA of the related MPRs mechanisms (2, 4, 6, 8 and 10- three-state force 

actuator), that is to find the states of the actuator in fast and efficient way 

(concerning the real-time computing and the generalization error terms). 

More detail of all methods including their training algorithms and the real-

time computing performances will be compared in Chapters 3 and 4 

respectively. 

In brief, the main contributions of proposing AI methods for the ISA 

solution of m-ternary MPRs are: 

 They can approximate the output m-ternary with good accuracy. 

 They compute the output m-ternary in real-time. 

 They are adaptive systems and have capability to update their 

parameters via the learning algorithm. 
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The proposed m-ternary mechanism as well as the six ISA solutions 

will be explained in Chapters 2 and 3 respectively. 

 

1.4 The limitation of the proposed thesis 

It is worth to mention that the results of the ISA solutions based on 

Artificial Intelligence (AI) which are shown in this thesis are not the global 

optima. This means that there could be other AI architectures that give 

better results in the terms of generalization error. This limitation is however 

tolerable because we require to derive efficient ISA solutions that have real-

time computation response (i.e. less than 5ms) and also acceptable full 

generalization error (i.e. less than 10%). Suggestion to avoid the limitation 

in this thesis can be done by using multi-objective optimization strategies, 

instead of Random Hill Climbing (HC). The HC is a local search algorithm for 

finding the best parameters in the learning procedure (see Appendix A for 

detailed procedure).  

 

1.5 Thesis outline 

 Chapter 1 introduces the motivation, the problem of ISA of 

ternary MPRs and the six ISA solutions as the main contribution 
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of this thesis, such as: one brute-force algorithm and five AI 

methods. 

 Chapter 2 introduces five ternary MPRs mechanisms which 

respectively employ 2, 4, 6, 8 and 10- ternary actuators as force 

generators. The considered MPRs are planar mechanisms (i.e. 

with three states being -1, 0 and 1) with one degree of revolute 

motion. The five MPRs mechanisms have similar range of 

generated moment so the validation (comparison of the 

performances) can be made using the same data testing. 

 Chapter 3 explains the detailed description of ISA methods. They 

are Look-Up Table (LUT) method, two NF methods based on 

Takagi-Sugeno, two NN methods, including their training 

algorithms which are based on Levenberg-Marquardt Algorithm 

(LMA) and Backpropagation Algorithm (BPA), and one HN 

method. Each of these methods is a computational machine of 

the five ternary MPRs that associates output ternary number u 

with m ternary digits (2, 4, 6, 8 and 10) to the input couple of 

continuum real numbers  X (α,M). 

 Chapter 4 outlines the training and testing results from six ISA 

solutions in the table and figures.  
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 Chapter 5 introduces some methods that suitable also for ISA 

solution, i.e.:  Bolzmann Machine (BM), Radial Basis Function 

Network (RBFN), Jordan Recurrent Neural Network (JRNN), 

Wavelet Neural Network (WNN) and Support Vector Machine 

(SVM).  

 Chapter 6 summarizes the main contributions to the ISA 

solution. Suggestion to use more complicated m-ternary MPRs as 

well as to apply Multi-objective Optimization strategies for 

reducing the generalization error performance will be mentioned 

also in this chapter. 
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Chapter 2 

Five Ternary MPRs Mechanisms 

 

In this chapter, we discuss the five ternary MPRs that are considered 

in this study, as depicted in Figs. 1(a) to 1(e). They feature 2, 4, 6, 8 and 10 

identical Crank and Slotted-Lever (CSL) respectively with 3RP planar 

mechanisms. The terms R and P are for revolute and prismatic joint 

respectively, sharing the same crank at its moving revolute joint, centered 

at point A( ). The common crank is hinged at the frame at point O, the m 

links with variable length  A( )Bi, where i =1, 2, …, m; here m = 2, 4, 6, 8 

and 10, are hinged at the common point A() and at points Bi  respectively, 

symmetrically located with respect to the Y axis along the circular arc with 

radius r = OBi  and with spread angle 2  , where 
m


2


  .  

So the arc has angular span equal to  2  for all mechanisms and 

the different angular positions between points Bi for all models are always 

equal to 2 . For more information about the m-ternary mechanism, Table 1 

shows the complete variables such as angle  , the different angular position 

between points Bi, and the force amplitude F, which is determined from the 

equivalent force system of five proposed mechanisms. 
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TABLE 1. PARAMETERS FOR M-TERNARY MECHANISM 

Description of  

m-ternary mechanism 

m= 2 m= 4 m= 6 m= 8 m= 10 

Angle   (deg) 45 22.5 15 11.25 9 

Position between points Bi(deg) 90 45 30 22.5 18 

Force Amplitude F (N) 34.24 19.44 13.24 10 8 

Possible Crank Moment each  3
2
 3

4
 3

6
 3

8
 3

10
 

Radius r = OBi  (m) 0.38 

Crank  l = || A() – O || (m) 0.1 

 

For more information, some information (geometry, mass, inertia) 

about the actuator arrays for 8-ternary MPRs are given by Di Canio thesis 

(2011) and can be seen in Table 2 and Table 3. 

 

TABLE 2. MASS AND INERTIA OF THE 8-TERNARY MPRS SYSTEMS 

Variable Rigid Body Cylinder Piston 
Mass (kg) 0.0203 0.0148 0.0320 

Inertia (kg*m
2
) 2.1938e-004 9.6981e-005 1.3892e-004 

 

TABLE 3. POSITION OF POINT BI OF THE 8-TERNARY MPRS SYSTEMS  

Axis                         

X (m) 0.37 0.32 0.21 0.07 -0.07 -0.21 -0.32 -0.37 

Y (m) 0.07 0.21 0.31 0.37 0.37 0.31 0.21 0.07 

  (deg) 11.25 33.75 56.25 78.75 101.25 123.75 146.25 168.75 
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Furthermore, we also define the error intrinsic of the proposed MPRs 

mechanisms due to the discretization. The intrinsic error can be defined as 

the maximum error and the average error in the generation of a given 

desired moment. This error shows the accuracy of the m-ternary MPRs 

mechanisms and it can be compared with the error of proposed methods. 

To determine the intrinsic error, we define first the vector of the ascending 

moment that generated in the proposed MPRs and calculate the average 

error and the maximum error of moment between two closed data, as well 

as normalized of average error and normalized of maximum error with the 

maximum value of generated moment. The results of some information 

mentioned above can be seen in the Table 4. 

TABLE 4. INTRINSIC ERROR OF M-TERNARY MPRS 

Ternary MPRs 
2-

Ternary 

4-

Ternary 

6-

Ternary 

8-

Ternary 

10-

Ternary 

E_avg =0.5*abs[m(i+1)-m(i)]/N 0,074 0,0078 0,0017 0,0005 0,0002 

Max_err= 0.5*abs[max(m(i+1)-

m(i))] 
0,2098 0,0890 0,0629 0,0443 0,0284 

E_average/GM 0,0148 0,0016 0,0004 0,0001 0,00004 

Max_err/GM 0,04196 0,01780 0,0126 0,0089 0,0057 

Note: GM=max Torque of MPRs = 5Nm, N=length of vector moment  m(i+1) 

It can be inferred from Table 4 that increasing the number of ternary MPRs 

will reduce also the intrinsic error and increase the accuracy of the MPRs. 
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(a) 2-ternary MPRs 

 

(b) 4-ternary MPRs 
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(c)   6-ternary MPRs 

 

(d)   8-ternary MPRs 
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(e)   10-ternary MPRs 

FIGURE 1. TERNARY MASSIVELY PARALLEL ROBOTS (MPRS) ACTUATED BY M-TERNARY FORCE 

GENERATORS: (A) 2-TERNARY, (B) 4-TERNARY, (C) 6-TERNARY, (D) 8-TERNARY, (E) 10-TERNARY 

 

Furthermore, the output link of the considered MPRs is the common 

crank (similar to the all MPRs mechanisms). Differently from SLRs, crank 

motion is continuous and here it is limited in the range 0    180°. 

Discrete actuation is provided at the level of the m-P joints through 

identical three-state force generators which, irrespective of the relative 

position of slider and slotted lever, supply the forces (for i = 1, .., m and m = 

2, 4, 6, 8, 10). 

   i i i iF F u A B A B                                       
(2.1) 

with F  being a constant force magnitude that is shown in Table 1, and each 

mechanism has different values of F for creating the equivalent total force 
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acting on them. Here ui is the related activation state (either +1, 0 or 1) of 

the i-th actuator. Practical implementation of the mechanisms, as depicted 

in Figs. 1(a) to 1(e), could be obtained by employing two, four, six, eight and 

ten double-effect pneumatic cylinders with directional control valves in 

place of both slider and slotted-lever links.  

By considering all force contributions for each mechanism, the 

resulting torque M, generated by the actuators on the output crank, can be 

written as follows: 

          



m

i

iiii BABAOAkuFuM
1

,  ,      (2.2) 

where k  is the unit normal to the plane of motion of the mechanism. 

Equation (2.2) represents the static equilibrium condition of the considered 

ternary MPRs (in this case we ignore the link weight and friction). 

Therefore, for any desired continuous value D (that is for any desired 

MPRs configurations), the Direct Static Analysis (DSA) problem amounts to 

find the torque M*, within a range  of discrete values of M*, which 

corresponds to a known combination of the activation states 
D
iu . 

Conversely, for any desired continuous value D, the Inverse Static Analysis 

(ISA) problem amounts to find the best combination of the activation states 
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iu (among a total of 3m possibilities for any D) which enables the 

generation of the moment M* (namely M* = M(D, 

iu  )) that more closely 

matches a desired torque MD; that is, to find the state combination 

iu , i = 

1, …, m, and m = 2, 4, 6, 8 for which the error   MMe D  is 

   iDD
,,u u,MMmine

i
 


101    (2.3) 

Notice that since the desired MD can be any real value, whereas the 

range  is only a discrete subset, in general the minimum error e* is 

different from zero. Moreover, owing to the discrete nature of the m 

variables iu , the ISA described by Eq. (2.3) cannot be solved via standard 

pseudo-inverse methods. 

To give an idea of the range of available torques  that can be 

generated at the output crank of the MPRs described in Figs. 1(a) to 1(e), 

Eq. (2.2), with equal values of crank l and radius r and different force 

amplitude F  like shown in Table 1, is plotted in Fig. 2(a) to 2(e) for 2, 4, 6, 8, 

10-ternary MPRs respectively. Here we used ten different angular positions 

D ranging from 0 to 90° with 10° step. As presented in Figs. 1(a) to 1(e), 

even though with discrete activation, the MPRs are capable to generate 

torques in a range M  having similar amplitude, but with different 
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resolution. The 2 and 4-ternary MPRs produce 32 and 34 generated torques 

for each discrete alpha with less resolution while the 6, 8 and 10-ternary 

MPRs generate 36, 38  and 310 torques with better resolution respectively.  

In particular, each line in the Figs. 2(a) to 2(e) corresponds to a given crank 

position and represents all the torques that can be generated for all 

possible 3m combinations of actuator activation states related to the m-

ternary MPRs. It can be noted that, in all figures, the lines are drawn with 

the available moments sorted in ascending order. As shown in Fig. 2(a), 

despite the discrete behavior of the three-state actuators, the 2-ternary 

MPRs only provide 32 discrete solutions of generated Crank moment (in 

N.m) for every known angle. Unfortunately, these discrete solutions have a 

big gap between the two closed values and they cannot be compared to the 

generated Crank moment produced by the continuous model (the 

continuous model is a standard crank and slotted-lever mechanism with a 

single continuously regulated actuator attached in the common crank). The 

other MPRs mechanisms, as shown in Figs. 2(b) to 2(e), have 34, 36, 38, and 

310 discrete solutions of generated Crank moment for each respectively and 

these solutions might be sufficiently comparable to generated Crank 

moment of the continuous one. 
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(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

FIGURE 2. GENERABLE CRANK TORQUES AT 10-DIFFERENT ANGLES: A) 2-TERNARY MPRS; B) 4-
TERNARY MPRS; C) 6-TERNARY MPRS; D) 8-TERNARY MPRS; E) 10-TERNARY MPRS 

 

Additionally, due to the possibility of spatially distributing the 

partitioned actuation system, the considered MPRs also exhibit a rather 

identical torque generation capability within their full range of motion (0  

  180°). Notice that this latter feature cannot be achieved by a standard 
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CSL mechanism actuated by a single continuously regulated force 

generator. 

Further step is to use the generated moments from Figs. 2(a) to 2(d) 

and their corresponding angle D as input to the AI methods that will be 

explained in Chapter 3. 
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Chapter 3 

Inverse Static Analysis Models 

 

3.1 Introduction to the ISA models 

This chapter presents six different methods for the solution of the 

ISA problem described in the previous chapter. Namely: one Look-Up Table 

model; two Neuro-Fuzzy models; and three Neural Network models. 

Essentially, each of these models is a computational machine of the five 

ternary MPRs, shown in Figs. 1(a) to 1(e), that associates an output ternary 

number u = [u1, …, um]  with m = 2, 4, 6, 8 and 10 to an input couple of 

continuum real numbers X = [X1, X2] = [, M].  

Initial set-up of all these methods requires the knowledge of an 

appropriate input-output (X-u) dataset  with finite dimensions. Here,  

consists of 103m X-u correspondences that are generated via Eq. (2.2) for 

ten different values of  , ranging from 0 to 90° with 10° step, and for all 

possible (3m) combinations of u of each m-ternary MPRs (note that all the X-

u correspondences contained in  satisfy Eq. (2.3) with e*= 0). Given the 

continuity of , is not an exhaustive enumeration of all the possible 

solutions of the ISA problem.  Thus the considered methods are required to 
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provide some generalization ability (that is the ability to find X-u 

correspondences for arbitrary values of  which are not contained within 

).  

To discuss about their suitability in real-time control applications, 

the six ISA solutions are compared in the terms of time of off-line 

preparation tp, time of on-line calculation tc, modeling error em (i.e. the 

error calculated via Eq. (2.3) in predicting X-u correspondences for input 

pairs XD = [ D, MD] contained in ), and generalization error eg (i.e. the 

error calculated via Eq. (2.3) in predicting X-u correspondences for input 

pairs XD not contained in ). 

 

3.2 Look-Up Table model (LUT) 

3.2.1 Introduction 

The Look-Up Table (LUT) model is a brute-force search approach and 

it is the simplest method considered here. LUT model uses a stored data 

structure as a pattern collection of the entire dataset  as described above. 

As such, LUT model does not require any learning algorithm. During model 

preparation, the input values X of  are first normalized between 0 and 1, 

then the modified dataset  is sorted and stored row by-row in an array. 
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During model usage, the desired inputs XD are first normalized, then they 

are compared to the corresponding entries of the LUT using a row-by-row 

similarity procedure, and finally the suitable outputs u*
i  (for i = 1, .., m, here 

m = 2, 4, 6, 8) are chosen from the LUT row which provides the minimum 

error between desired and stored inputs.  

3.2.2 Implementation of LUT into the m-ternary MPRs 

Implementation of brute force using LUT is simple concerning the 

time preparation, but it is not a recommended ISA solution regarding the 

on-line computation and generalization error. The LUT model performances 

of the ISA solution for m-ternary MPRs can be compared in the Table 5 

below: 

TABLE 5. LUT PERFORMANCE OF THE M-TERNARY MPRS 

Description 2-ternary 4-ternary 6-ternary 8-ternary 10-ternary 

used (%) 100 100 33 12 4 

off-line preparation  

tp (s) 
0.1 0.3 3.2 48 2.1e3 

on-line calculation  tc 

(s) 
0.008 0.009 0.013 0.35 2.8 

modeling error em 

(N) 
0 0 0 0 0 

generalization error 

eg (N) 
2.594 1.664 0.891 0.805 0.551 

 

We can see from the Table 5 that on-line calculation of LUT exponentially 

increase from tc =0.008s (m=2) to tc =2.8s (m=10). Moreover, the 
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comparison of tp, tc em and eg of LUT model with other ISA methods will be 

provided later in Chapter 4. 

 

3.3 Neuro-Fuzzy (NF) models 

3.3.1 Introduction 

In the field of artificial intelligence, NF refers to combinations of 

artificial neural networks and fuzzy logic. This idea was proposed first by J. 

S. R. Jang [1993] and later was improved Palit et.al. [2001, 2002a, 2002b]. 

NF is a hybrid intelligent system, which combines the human-like reasoning 

style of fuzzy systems with the learning ability of neural networks. 

Moreover, a number of publications reported on the applications using NF 

network such as: adaptive control of inverted pendulum using NF inference 

by Kumar V. et al [2010]; recurrent NF hybrid-learning approach to accurate 

system modeling by Cheng K.H. et al [2007]; and electrical load forecasting 

using a neural-fuzzy approach by Popovich D. et al [2009].  

In the following section, we proposed two NF models which are 

based on the Neuro-Fuzzy Takagi-Sugeno (NFTS) inference scheme with 

Gaussian membership functions. They are NFTS and the Look-Up Table 

version of NFTS, which is called as NFLUT. Concerning the ISA problem, both 
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proposed models can be applied as solutions because they provide a strong 

connection between input values X of   with their output variables  ternary 

number u = [u1, …, um]. Moreover, they also have advantages such as: it 

interprets IF-THEN rules from input-output relations; and it focuses on 

accuracy of the output network and efficient time consumption for on-line 

computation. 

 

3.3.2 Neuro-Fuzzy architecture 

 In this section, the architecture of two considered models is 

presented. Both models are based on the same overall architecture and 

only differ in the defuzzification operation, like depicted in Fig. 3. The 

architecture is called as feedforward Neuro-Fuzzy type Takagi-Sugeno multi-

input multi output. It uses Gaussian membership function in the 

fuzzyfication phase.  
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FIGURE 3. TAKAGI-SUGENO-TYPE MIMO ( WITH  INPUT REAL AND OUTPUT TERNARY) 

FEEDFORWARD NEURO-FUZZY NETWORK, NO. INPUT = 2, NO. OUTPUT = M, M= 2, 4, 6, 8,10; 
NO. MEMBERSHIP FUNCTION N, TRAINING METHOD: LMA 

 

In particular, introducing the Gaussian membership functions to 

both NF methods Gjn (j = 1, 2; n = 1, …, N), as a fuzzyfication procedure for 

input pairs XD = [ D, MD].   

     









2n
j

n
jjj

n
j cXexpXG    (3.1) 

with characteristic means n
jc  and variance n

j  together with the 

corresponding fuzzy rules Rn can be written as: 

22110

22111:

XwXwwyTHEN

GisXANDGisXIFR

n

i

n

i

n

i

n

i

nnn


  (3.2) 



28 
 

with n
iw0 , n

iw1 and n
iw2 (for i = 1, …, m, and n = 1, …, N, N is the number of 

optimized rules for each m-ternary model, here N = 3, 8, 10, 11 and 17) 

being the Takagi-Sugeno weights [Takagi 1985], the common part of the 

two considered Neuro-Fuzzy models calculates the continuous variables. 

   
2 2

1 11 1

N N

n n n

i i j j j j

n nj j

u y G X G X
  


 
 
 

  
  

(3.3) 

From Eq. (3.3), the two different models, hereafter briefly referred to as 

NFTS and NFLUT, are derived by alternatively estimating the actuator 

activation states iu  through one of the following threshold operations: 

 ii uroundu   or  ii uRLUTu    (3.4) 

where RLUT indicates a properly Reduced Look-Up Table involving iu  as 

only input of the table.  Additionally, the NFLUT requires the generation of 

the RLUT, which is here constructed by storing the most significant -u u  

correspondences that occurred during training with the known dataset. 

Prior to their use, NFTS and NFLUT models require the tuning of the 

parameters n
jc , n

j , n
iw0 ,  n

jiw  (for j = 1, 2; i = 1, …, m; n = 1, …, N; in the 

following N = 3, 8, 10, 11, 17). Here, the number of parameters for the 

considered MPRs are 30, 128, 220, 308 and 578 parameters for m = 2, 4, 6, 

8 and 10 correspondingly. The values of these parameters are found by an 
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optimized learning procedure. The learning procedure employs 100%, 

100%, 33%, 12%  and 4% of the X-u correspondences known fromfor the 

2, 4, 6, 8 and 10-ternary MPRs respectively. Here, consists of 1      X-u 

correspondences that generated from Eq. (2.2). In particular, the learning 

procedure is performed via the Levenberg-Marquardt Algorithm (LMA), 

explained in Section 3.3.3, which is a fast second order training routine for 

NFTS network [Palit 2001, 2005].  

 

3.3.3 LMA Training 

The fuzzy logic system, once represented as the equivalent Multi-

Input Multi-Output feed forward network, can generally be trained using 

any suitable training algorithm, such as standard Backpropagation 

Algorithm (BPA) that is generally used for training of the NN (Palit 2002b). 

Because of its slow speed of convergence, BPA needs to be further 

improved. Alternatively, a second order training algorithm, such as the 

Levenberg-Marquardt Algorithm (LMA), can also be used. It is noted that 

LMA is actually a second order training algorithm that is based on the 

modification of Newton's method and uses Jacobian matrix in order to 

approximate the second-order partial derivatives (called as Hessian Matrix).  
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Recently, LMA has some additional features such as momentum, 

modified error index (MEI) and oscillation control [proposed by Palit et al 

2001, 2002a, 2005; Xiaosong et al 1995]. Briefly, the features mentioned 

above can be put in the updating procedures of LMA and they can be 

described as follows:  

 Momentum version of LMA is proposed by adding a small 

adaptive factor of momentum (mo) into the updated equation, 

so the learning process can be accelerated in the iteration. 

 MEI version of LMA is done by calculating the different between 

the error performance and the average error, multiplying with 

the constant factor that should be chosen properly. 

 By adding both momentum and MEI in the training procedure, 

the speed convergence of the error performance is much faster 

than standard algorithm. To guarantee the every iteration will 

reduce the error performance, oscillation control procedure 

must be applied by a given limit Wildness Factor (WF). By doing 

this way in the NF training, the value of the error performance is 

either decreased steadily or at least stayed within the given limit 

of WF.  
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In this thesis, the error performances are calculated in the terms of 

Root Mean Squared Error (RMSE) and integrated with early stopping 

procedure to stop the iteration when the error requirement is achieved. 

The simple search procedure, called as Hill Climbing (HC), is used for finding 

the best parameters, in which the parameters give a minimum error. The 

HC and the early stopping procedures will be explained later in Appendix A 

and B respectively. 

Moreover, to be applied in the NF methods, we need to overcome 

the complexity of the calculation of second order equations in the LMA. To 

avoid this, Hagan and Menhaj [26] implemented the LMA without direct 

computation of second order term. This is achieved in the following way. If 

a function  ( ) is minimized with respect to the parameter vector   (for 

the NF method as depicted in Figure 3, these parameters are the total 

network parameters, i.e.: n
jc , n

j , n
iw0 , n

jiw ), the next parameter and the 

updated parameter vector  (  1) and    can be defined as: 

  =  [   ( )]     ( )  (3.5a) 

 (  1) =  ( )      (3.5b) 

where   ( ) is the gradient of  ( )  (i.e. the vector containing the 

derivative of   with respect to vector  ) and    ( ) is the Hessian matrix 
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(i.e. the matrix containing the derivative of   ( ) with respect to vector  ). 

Considering a training set composed by    samples, for the NF method 

depicted in Figure 3 the function  ( ) is taken to be the following Sum 

Squared Error (SSE) function: 

 ( ) =     ∑ ∑ (  
 ( ))

 
 
 =1

  
   ,  (3.6a) 

  
 
( ) =   

    
 , ,  (3.6b) 

where the term   
 

 is the error between the predicted and the desired i-th 

output of the network for the p-th training sample. Then, the a-th 

component of the gradient   ( ) and the ab-th component of the Hessian 

matrix    ( ) (a being the row index and b being the column index) give 

result as: 

  ( )    ⁄ = ∑ ∑ (  
 ( )     

 ( )    ⁄ ) 
 =1

  
    (3.7a) 

   ( )       ⁄ =

                                   ∑ ∑ (  
 ( )      

 ( )       ⁄ ) 
   

  
 =1  

                                     ∑ ∑ (   
 
( )    ⁄    

 

 
( )    ⁄ ) 

   
  
 =1   (3.7b) 

For the Gauss-Newton method, the first term in (3.7b) is assumed to 

be zero. Then, by condensing all the components of the error   
 ( ) in a 

single vector  ( ) (with dimension (    )) and all the components 
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( )    ⁄  in a single Jacobian matrix  ( ) (with dimension (    )    , 

with    being the number of network parameters), then Equations (3.7a) 

and (3.7b) can be rewritten as 

  ( ) =   ( )   ( )  (3.8a) 

   ( ) =   ( )   ( )  (3.8b) 

Therefore, the updated equations according to (3.5a) will be: 

  =  [  ( )   ( )]     ( )   ( )  (3.9a) 

Now let us see the Levenberg-Marquardt’s modifications of the Gauss-

Newton method, based on Hagan and Menhaj [26]: 

  =  [  ( )   ( )     ]     ( )   ( ) (3.9b) 

where, I is the P PN N  identity matrix, and the damping term   is 

multiplied or divided by some factor whenever the iteration step increases 

or decreases the value of  ( ). This thesis uses adaptive   when training 

algorithm is processed as follows: for large  , the algorithm becomes the 

steepest descent algorithm with step size 1/  (similar to BPA), and for small 

 , it becomes the Gauss-Newton method. 

Here, the updated equation according to (3.5b): 

 (  1) =  ( )  [  ( )   ( )     ]     ( )   ( )  (3.9c) 
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Now, the computation of Jacobian matrix can be performed as follows. If 

the adjustable parameters of neuro-fuzzy networks   are defined as: n
jc , n

j

, n
iw0 , n

jiw , the gradient S
 
can be substituted by corresponding chain rule 

differentiations (see Palit, 2005 for details). Differentiating with respect to 

n
iw0  yields: 

 0 1
/ /TN pn n

p p ii p
S w Z b e


      (3.10) 

With a similar procedure, the component of the gradient with respect to 

the parameter n
jiw of the NF network can be written as: 

 1
/ /TN p pn n

p pji i jp
S w Z b e X


     .  (3.11) 

Now, the computation of the gradient for the remaining parameters n

jc and

n

j  can be written as follows (Palit, 2005): 
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    (3.12) 

and 

     
2 3

1
1

/ 2 /T
nm
pN np p p pn n n

j i i i j j jp
pi

Z
S y u e X c

b
 




  
          

   
  . (3.13)  

To solve (3.12) and (3.13), we need to define the new term  
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 1 1
TN m np p p

n i i ip i
B y u e

 
    .

    

(3.14) 

Let us denote     

 np np p
i i iD y u  . (3.15) 

So that, equation (3.14) reduces as 

1 1
TN m np p

n i ip i
B D e

 
    (3.16) 

The objective of doing (3.16) is to find the terms np
eqvD  such that 

np p
n eqv eqvB D e  ,

 
(3.17) 

where 

     
2 2 2

1 2 ,
p p p p
eqv me e e e   

 
(3.18) 

In the equations reported above (3.15), np
iy is the output Takagi-Sugeno 

from the consequent part of Eq. (3.2), with 0 1 1 2...
np p pn n n
i jii iy w w X w X    ; 

and the vector 1 ,.., ,..., T
T

p N
eqv eqv eqv eqve e e 

 
e  contributes the same amount of 

sum squared error that can be obtained jointly by all the errors p
ie  from the 

MIMO network. 

From (3.17), the components of matrix   np

eqvD  can be determined as: 
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  1
 q

eqv

p

eqv

q

eqvn

np

eqv eeeBD
  

(3.19) 

After defining (3.19), we can rewrite (3.12) and (3.13) as follows: 
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and 
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b
 



 
        

 
 .    (3.21) 

The above procedure describes actually layer by layer computation 

of Jacobian matrices for all parameters of neuro-fuzzy network [Palit 2005]. 

Again, after finishing all computation, then back to the Eq. (3.9c) for 

updating the parameters. This updating procedure stops after achieving the 

maximum iteration or the minimum error function.  

 

3.3.4 The optimized results of NF architectures  

In order to find the best initial parameter vector w  in Eq. (3.5) - 

these parameters are total parameters, i.e.: n
jc , n

j , n
iw0 , n

jiw  - and to be 

updated in the training algorithm, we proposed randomized Hill Climbing 

(HC) procedure in order to find the optimized number of rules N for each m-

ternary models. This procedure is a local search algorithm that tries to find 
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the best local minimum from the large number of iteration procedures by 

permitting the best training parameters that minimize the error model (em) 

and neglecting the others. The optimized N membership function after 

three weeks searching time as the results of HC procedure that explained in 

Appendix A are: N=3, 8, 10, 11 and 17 for the 2, 4, 6, 8 and 10-ternary 

respectively. 

Regarding model performances for the ISA solution for 2-ternary: 

NFTS exhibits tp = 2.2s, tc = 8e-5s, em = 0.871N and eg = 1.051N; NFLUT 

exhibits tp= 2.3s, tc=5e-4s, em = 0 and eg = 1.283N; for the ISA solution for 4-

ternary: NFTS shows tp = 43s, tc = 1e-4s, em = 0.909N and eg = 0.909N; while 

the NFLUT shows tp = 43.5s, tc = 3e-3s, em = 0 and eg = 0.611N; for the ISA 

solution for 6-ternary: NFTS exhibits tp = 185s, tc = 2e-4s, em = 0.917N and eg 

= 0.932N; NFLUT exhibits tp = 186s, tc = 5e-3s, em = 0 and eg = 0.498N; for 

the ISA solution for 8-ternary: NFTS shows tp = 965s, tc=1.4e-3s, em = 0.658N 

and eg = 0.985N; while the NFLUT shows tp = 983s, tc = 1.4e-2s, em = 0 and eg 

= 0.528N; and for the ISA solution for 10-ternary: NFTS shows tp = 7.1e3s, 

tc=1.9e-3s, em = 0.629N and eg = 0.998N; while the NFLUT shows tp = 7.3e3s, 

tc = 3.8e-2s, em = 0 and eg = 0.397N; 

Additionally, the comparisons of NF methods with other ISA 

solutions are provided also in Chapter 4. 
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3.4 Neural Network models 

3.4.1 Introduction 

In general, the Neural Network (NN) is inspired by the human 

biological nervous system whereas the NN consists of highly interconnected 

networks with a large number of processing elements (called artificial 

neurons), which resemble the human brain system The advantages of using 

NN are: a) it is an efficient pattern recognition tool; and b) it acts like a 

parallel distributed processing (parallel computing), which makes it possible 

to accelerate the computational process. 

We introduce the next extended network that improves the process 

of pattern recognition of NN as recurrent network, or mostly called as 

Recurrent Neural Network (RNN) and its similar architecture, a RNN without 

feedback, also known as Multi-Layer Perceptron (MLP). The RNN has short-

term memory features that enable NN to achieve time-dependent 

mappings [Elman 1990, Juang 2002, Palit 2005, Toha 2008]. Besides two 

proposed methods above, some architectures that based on NN, such as 

Boltzmann machine, Radial Basis Function Network (RBFN) and Jordan RNN 

architectures, that well known in engineering practice will be discussed on 
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Chapter 5 briefly as challenged competitors for ISA solutions of ternary 

MPRs. 

 

3.4.2 RNN architecture 

Two Neural Network methods considered here are based on 

Recurrent Neural Networks (RNN) with hyperbolic-tangent activation 

functions. Additionally the third NN method, which is a probabilistic weight 

Hopfield Network (HN), will be explained in Section 3.5 with its 

performance results. Moreover, both RNN that described in this section are 

dynamic models that feature short-term memory and have capability to 

represent time-dependent mappings [Palit 2005]. Both models are based on 

the same overall architecture and only differ in the presence or absence of 

the context layer.  

In particular, for a given input X(t) = [X1(t), X2(t)] = [(t), M(t)] at the 

time step t, both models calculate the actuator states ui(t) (for i = 1, …, m) 

as: 

  ( ) =      [ (    ∑    
   (  ( ))

 
   )]

  
(3.22) 

with   ( ) =  √1    ⁄      (3.23)  
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FIGURE 4. ELMANN-RNN, NO. INPUT = 2, NO. OUTPUT = M, M = 2, 4, 6, 8,10; NO. CONTEXT 

LAYER L = 21, 22, 25, 27, 30, TRAINING METHOD: BPA 

 

  ( ) = ∑    
    ( )

 
 =1       (  1)  1 

   
(3.24) 

with   ( ) =  . 

In the above mentioned equations,   ( ) is the total input of L-hidden 

neuron and lb1 , ib2 , HO
ilw , IH

ljw , and     (for i = 1, …, m; j = 1, 2; l = 1, …, L) 

are model parameters need to be determined. From Eq. (3.22), the two 

different models, hereafter briefly referred to Multi-Layer Perceptron 

Neural Network (MLP) and RNN type Elman (ERNN), are derived by 

respectively selecting     = 0 and     = 1/L. 
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In addition, we need to establish the number of network parameter 

(L) of the m-ternary MPRs which is L = 107, 158, 231, 305 and 420 

parameters for 2, 4, 6, 8 and 10-ternary respectively. These are found by 

the optimized three weeks learning procedure which employs 100% for the 

2 and 4-ternary MPRs, 33% , 12% and 4% for the 6, 8 and 10-ternary MPRs 

of the X-u correspondences known from the dataset . 

In particular, the learning is performed here via an accelerated 

version of the Back-Propagation Algorithm (BPA) [Palit 2005, Pasila 2006], 

which is explained more detailed in Section 3.4.3. 

 

3.4.3 Backpropagation Algorithm (BPA) on NN 

The Multi-Input Multi-Output RNN that is represented in Fig. 4 can 

generally be trained using suitable training algorithms. Some standard 

training algorithms are Backpropagation Algorithm (BPA) and Levenberg-

Marquardt Algorithm (LMA). BPA, the standard algorithm for NN training, is 

a supervised learning technique based on delta rule procedure (a gradient 

descent method). It was first described by P. Werbos in 1974, and further 

developed by D.E. Rumelhart, G.E. Hinton and R.J. Williams in 1986. This 

algorithm is a learning rule for multi-layered Neural Networks. It is not only 

useful for feed-forward networks (networks without feedback, or simply, 
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that have no connections that loop), but also for networks with feedback, 

such as recurrent network. The term BPA is an abbreviation for "backwards 

propagation of errors". The BPA is used to calculate gradient of error of the 

network with respect to the network's modifiable weights. This gradient 

descent method is almost used in a NN learning algorithm because it is a 

simple procedure for finding the suitable parameters that minimized the 

error training. To increase the accelerate learning in BPA, we introduce 

additional momentum and oscillation into the standard version of BPA.  

In order to start the BPA procedure, we assume that data pairs 

input-output of five ternary models is the X-u correspondences and already 

known from dataset (  
 
,   
 

). Here, the term j, i and p denote as the 

number of input-output in the networks related to the number of 

correspondence data training from data set . The goal is to find network 

output, so that the performance, Sum Squared Error (SSE) is defined as: 

 
2

1

0.5
TN

p
i i

p

SSE e


 
                                   

(3.25) 

with the total SSE is minimized. 
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Here ,p p D p
i i ie u u   is the error of each output networks with i =1,…,m is 

the number of output networks, p = 1, …, NT is the number of data training 

from dataset , and p
iu  and ,D p

iu  are the predicted and desired outputs. 

The problem of learning is how BPA works to adjust parameters of the RNN 

( lb1 , ib2 , HO
ilw and IH

ljw ), so that SSE  can be minimized. To answer this 

question, we introduce the gradient steepest descent rule for training of 

feed-forward neural network, which is based on the recursive equations 

(note: recursive equation is an equation that is used to determine the next 

term of a sequence using one or more of the preceding terms). By using 

recursive mode, we could determine the updated parameters without using 

the differential calculation [Palit, 2005]:  
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where SSE is the performance function at the thk  iteration step and 

 1IH
ljw k  ,  1HO

ilw k  ,  1 1lb k   and  2 1ib k   are the updated 

parameters on  1k  step. The starting values of those parameters are 

selected randomly in the range of 0 and 1. Moreover, constant learning rate 

  should be chosen properly. For convergence reason, practically a very 

small learning rate 1  is chosen.  

Furthermore, we need to solve the corresponding chain rules of the 

last part in the right side Eqs. (3.27a) to (3.27d) so those equations have no 

differential part: 
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Here,    =  (   ) is the output L-hidden layer after the calculation of 

activation function in (3.23). Moreover, by using chain rule procedure as 

explained by Palit [2005, p.97-98], eqs. (3.28a) to (3.28d) can be written as: 
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After substituting Eqs. (3.29a) to (3.29d) into Eqs.(3.27a) to (3.27d), we 

finally build the updated parameters for the ERNN as: 
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In general, the BPA training needs a large number of training epochs. 

To accelerate the learning algorithm and to avoid the possible oscillation in 

the training phase, a very small learning rate η as well as the momentum 
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version of BPA are presented. Momentum version of BPA is applied by 

adding a small adaptive factor of momentum mo  so the updated 

parameters can be faster than the standard BPA. As seen in equations 

(3.31), the update version of the parameters has a momentum constant 

which is usually less than one ( 1mo  ). In practice, we can propose adaptive 

momentum and adaptive learning rate as well, if we find that learning 

process is too slow  

        11  kvkvmovkvkv  (3.31) 

where v  denotes the parameter vector containing the parameters of ERNN, 

namely il

HO

il

IH

lj bbww 21 ,,, . 

Other issue of accelerating the training algorithm is that the training 

can proceed in the opposite direction and usually produce oscillation. Like 

in LMA, the oscillation must be control by using oscillation control routine 

[16-17] as follows:  

 Two sets of adjustable parameters are stored.  

 If the following iteration reduces the error, then the next 

iteration proceeds with the new parameters must be updated 

and then replacing the old parameters set.  
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 On the other hand, if the next iteration increases the error 

beyond the given limit, say as Wildness Factor (WF) of 

oscillation (WF multiplies with the current error is bigger), then 

the new set of parameters must be discarded and the next 

iteration proceeds with the old parameters set. 

 

3.4.4 Results of the optimized Neural Network models  

Regarding the performances of the proposed Neural Network 

models for the ISA solution, the optimized number of context layer L = 21, 

22, 25, 27, 30 applied to the five ternary models, gives the results: a) 2-

ternary: MLP features tp = 40.1s, tc = 1.3e-3s, em = 0.588N and eg = 2.493N; 

ERNN features tp = 9.3s, tc = 1.3e-3s, em = 0.476N and eg = 2.504N; b) 4-

ternary: MLP features tp = 318s, tc = 1.5e-3s, em = 0.447N and eg = 1.681N; 

ERNN features tp = 75s, tc = 1.5e-3s, em = 0.422N and eg = 1.697N. c) for 6-

ternary: MLP features tp = 2622s, tc = 1.8e-3s, em = 0.448N and eg = 0.963N; 

ERNN features tp = 229s, tc = 1.8e-3s, em = 0.377N and eg = 0.962N. d) for 8-

ternary: MLP features tp = 11358s, tc = 2.6e-3s, em = 0.464N and eg = 0.515N; 

ERNN features tp = 639s, tc = 2.6e-3s, em = 0.377N and eg = 0.389N. e) for 10-

ternary: MLP features tp = 3.1e+4s, tc = 3.3e-3s, em = 0.346N and eg = 

0.379N; ERNN features tp = 7.8e+3s, tc =3.3e-3s, em = 0.300N and eg = 
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0.335N. Comparison of MLP and ERNN model performances with the other 

ISA methods are provided also in Chapter 4.   

 

3.5 Hopfield Network model 

3.5.1 Introduction 

HN is a deterministic local search model which is based on NN and 

proposed by Hopfield and Tank [28-29]. It has a single-layer fully 

interconnected recurrent network with symmetric weight parameters 

without self-connection. The output of each neuron is fed back through a 

delay unit to the inputs of all neurons. This condition gives the network 

auto-associative capabilities, which means the network can store number 

patterns in the weight matrix. By request, the patterns can be recalled to 

the network until it reaches the stable condition (practically, some or even 

all number of patterns of the ternary state can be saved in the updated 

matrix). In the HN method, weight and bias of the network can be updated 

using training algorithm such as BPA. But for on-line implementation, 

updating the learning parameter is not suggested because it is very time-

consuming. Besides updating the weight matrix via BPA, HN can be also 

applied on-line without learning phase. The examples of the proposed HN 
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without learning, which is based on the amount of gain amplifier in the 

network, are High-Gain HN and Low-Gain HN. For example, Waldron et al 

[2001a, 2001b] suggested the Hopfield Network architecture with High Gain 

algorithm for finding the binary output of parallel array. Other case, Low-

Gain HN is proposed for detecting a peak in a neural A/D converter 

application, by Dempsey et al [1995].  

In this thesis, a probabilistic HN with High-Gain closed loop network is 

applied together with a deterministic HN with High-Gain method according 

to the Yang’s thesis(2001b). 

3.5.2 Hopfield Network Architecture 

The proposed model of HN is adapted from a continuous High-Gain 

Hopfield Network that is offered by Waldron et al (2001a, 2001b). The 

architecture of such HN can be seen in the Fig 5. 

 

FIGURE 5. ARCHITECTURE OF CLOSE-LOOP HOPFIELD NETWORK WITH HIGH-GAIN 
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In this scheme, the High-Gain close-loop block diagram is connected to the 

random weight and bias and ternary activation function. The output U is the 

results of HN and is actually clamped with the desired output ternary of 

MPRs. The updated out can be written as: 

 (  1) =       ( )        (3.32) 

where the term   is the output before activation function (using tansig). 

After close-loop of High-Gain is changed to open-loop using [27], the term  

   can be written as follows: 

 = (   

      
)(     ∑     ( ))   (3.33) 

Here     is High Gain that can be selected experimentally (i.e.    = 1000); 

  is the feedback gain, can be set as 1; and the initial  ( ) is starting with a 

null vector. The weight    and bias     are fixed. They are chosen using 

two procedures, as follows: 

1) Probabilistic weight of HN using random procedure  

    = 1       ( , ) (3.34) 

and     =      (1        ( , 1))          (3.35) 

where, N is the number of ternary actuators. By using above procedures, 

we can find the weight of     and the bias     values between -1 to +1. 

2) Deterministic weight of HN using non-random procedure 
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The weight and the bias for the deterministic version are found from the 

performance index equation (see Yang, 2001a for details), and briefly 

can be seen in (3.35) and (3.36) as follows:  

    =

[
 
 
 
 
  1      …  1  
   1      
   

   1      ]
 
 
 
 

 (3.36) 

and     = [
 1
     1    
   

  
         

]          (3.37) 

here,    is calculated from   



N

i

iiip ufuM
1

,  , with N is the 

number of output mechanisms; and    is the vector moment with 

the p samples of component. 

Both procedures follow mathematic model from (3.32) and (3.33). We can 

see that the HN as depicted in Fig. 15 is constructed by the High-Gain closed 

loop amplifier in on-line procedure and it has no learning step. We choose 

the closed loop gain procedure in order to saturate the summing output of 

weight and bias into ternary state. Additionally, the results of probabilistic 

HN are given in the Chapter 4 and shown that the proposed HN is a 

promising model for ISA solution, because it demonstrates the best 

generalization error compared to the deterministic HN. Moreover, the main 
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problem of deterministic version is that the output U from (3.32) is easy to 

trap to the local minima. This is happened because the closed loop equation 

is too simple and the two gains (HG and T) are constant.   To reduce the on-

line error, we proposed adaptive gain (HG and T) in the on-line process. 

  

3.5.3 Results of the Hopfield Network model  

Regarding the performances of the proposed HN model for the ISA solution, 

the high gain number (HG) and the feedback gain    are 1000 and 1 

respectively. The closed loop architecture of HN, connected to the  random-

symmetric weight matrix as well as bias, gives the results: a) 2-ternary: tp = 

0.2s, tc = 1.1e-3s, em = 0 and eg = 0.833N; b) 4-ternary: tp = 0.3s, tc = 5.1e-3s, 

em = 0N and eg = 0.585N; c) for 6-ternary: tp = 1.4s, tc = 0.022s, em = 0N and 

eg = 0.484N; d) for 8-ternary: tp = 24s, tc = 0.121s, em = 0N and eg = 0.329N; 

e) for 10-ternary: tp = 892s, tc = 0.202s, em = 0N and eg = 0.301N.  

The results of deterministic HN are shown in Table 6. These performances 

are established by using high number of iteration (maximum 5000 

iterations) and combined with adaptive gain. The results show that the 

procedure is not optimal and need to be improved. 
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TABLE 6. COMPARISON OF THE M-TERNARY MPRS OF DETERMINISTIC  HN 

Method/Description 

2-

ternary 

4-

ternary 

6-

ternary 

8-

ternary 

10-

ternary 

on-line calculation  tc (s) 
0,0034 0,007 0,015 0,218 0.570 

generalization error eg (N) 
1,4 1,17 1,01 0,854 0,766 

Full-scale generalization error 

FGE (%) 
28,3 23,5 20,3 17,1 15,3 

 

Because of the limitation performance of deterministic HN, we compare the 

performances of probabilistic HN with other ISA methods. 
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Chapter 4 

Comparison of the Six Inverse Static Analysis Models 

 

4.1 Introduction 

This chapter outlines the training and testing results from six ISA 

models in the tables and figures. Performance of the m-ternary MPRs will 

be compared to the proposed ISA models with the following descriptions: 

tp : time for preparing the model, including learning procedure 

(s) 

tc :  time for computing online (s) 

em :  error modeling (N) 

eg :  generalization error(N)  

STD :  generalization standard deviation (N) 

FGE :  full scale generalization error (%) 

Additional description of STD and FGE are explained in the following 

equations: 
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Here NTest is the number of data test equal to 1701 rows of the input couple 

of continuum real numbers X (α,M) and those data are the same for all m-

ternary models. Other term GM is a generated moment with the maximum 

value between ±5Nm as depicted in Fig. 2. The results of each m-ternary 

model can be seen in Sections 4.2 to 4.5. 

 

4.2 Results of 2-ternary MPRs 

The comparison results of the 2-ternary models can be considered in 

Table 7 as well as in the Figs. 6 and 7. The results show that HN is the best 

method concerning online computing time tc and the generalization error 

eg. As additional facts, LUT has the best preparation time tp and the five 

methods have FGE more than 10%;  
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TABLE 7. PERFORMANCE COMPARISON OF THE 2-TERNARY MPRS OF THE CONSIDERED 

METHODS 

Method/Description LUT NFTS NFLUT MLP ERNN HN 

tp (s) 0.1 2.2 2.3 40.1 9.3 0.2 

tc (s) 0.008 8e-5 5e-4 1.3e-3 1.3e-3 1.1e-3 

em (N) 0 0.871 0 0.588 0.476 0 

eg (N) 2.594 1.051 1.283 2.493 2.504 0.833 

STD of eg (N) 1.528 0.579 0.903 1.495 1.483 0.480 

FGE (%) 51.8 21 25.7 49.9 50 16.7 

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB. 

 

 

FIGURE 6. TRAINING PERFORMANCE OF 2-TERNARY MPRS WITH DIFFERENT ISA METHODS 
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FIGURE 7. TESTING PERFORMANCE OF 2-TERNARY MPRS WITH DIFFERENT ISA METHODS 

 

4.3 Results of 4-ternary MPRs 

The comparison results between the 4-ternary models can be 

considered in the Table 8 as well as in the Figs. 8 and 9. The results show 

that HN is the best method concerning the generalization error eg, NFTS 

shows the best online computing time tc, and LUT has the best preparation 

time tp. The six proposed methods have FGE more than about 10%.  
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TABLE 8. PERFORMANCE COMPARISON OF THE 4-TERNARY MPRS OF THE CONSIDERED 

METHODS 

Method/Description LUT NFTS NFLUT MLP ERNN HN 

tp (s) 0.3 43 43.5 318 75 0.3 

tc (s) 0.009 1e-4 3e-3 1.6e-3 1.6e-3 5.1e-3 

em (N) 0 0.909 0 0.447 0.422 0 

eg (N) 1.664 0.909 0.611 1.681 1.697 0.589 

STD of eg (N) 0.985 0.513 0.368 0.991 1.000 0.368 

FGE (%) 33.3 18.2 12.2 33.6 33.9 11.8 

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB. 

 

 

FIGURE 8. TRAINING PERFORMANCE OF 4-TERNARY MPRS WITH DIFFERENT ISA METHODS 
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FIGURE 9. TESTING PERFORMANCE OF 4-TERNARY MPRS WITH DIFFERENT ISA METHODS 

 

4.4 Results of 6-ternary MPRs 

The results of the 6-ternary models can be seen in the Table 9 as 

well as in the Figs. 10 and 11. The results demonstrate that HN and NFTS 

are the best method concerning the best preparation time tp and online 

computing time tc respectively, and the HN has the best generalization error 

eg. Concerning minimum requirements i.e. real-time computing and FGE, 

the NFLUT is the only method recommended for ISA solution.  
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TABLE 9. PERFORMANCE COMPARISON OF THE 6-TERNARY MPRS OF THE CONSIDERED 

METHODS 

Method/Description LUT NFTS NFLUT MLP ERNN HN 

tp (s) 3.2 185 186 2622 229 1.4 

tc (s) 0.013 2.1e-4 5e-3 1.8e-3 1.8e-3 0.022 

em (N) 0 0.917 0 0.448 0.377 0 

eg (N) 0.891 0.932 0.498 0.963 0.962 0.484 

STD of eg (N) 0.533 0.524 0.284 0.569 0.587 0.321 

FGE (%) 17.8 18.6 9.9 19.3 19.2 9.7 

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB. 

 

 

FIGURE 10. TRAINING PERFORMANCE OF 6-TERNARY MPRS WITH DIFFERENT ISA METHODS 
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FIGURE 11. TESTING PERFORMANCE OF 6-TERNARY MPRS WITH DIFFERENT ISA METHODS 

 

4.5 Results of 8-ternary MPRs 

The performance of the 8-ternary models is shown in the Table 10 

and in the Figs. 12 and 13. The results demonstrate that HN and NFTS are 

still the best method concerning the best preparation time tp and online 

computing time tc respectively, and the ERNN has the best generalization 

error eg. Concerning minimum requirements i.e. real-time computing and 

FGE, the ERNN and MLP are the methods that recommended for ISA 

solution.  
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TABLE 10. PERFORMANCE COMPARISON OF THE 8-TERNARY MPRS OF THE CONSIDERED 

METHODS 

Method/Description LUT NFTS NFLUT MLP ERNN HN 

tp (s) 48 965 983 11358 639 24 

tc (s) 0.35 1.4e-3 1.4e-2 2.5e-3 2.5e-3 0.121 

em (N) 0 0.658 0 0.464 0.377 0 

eg (N) 0.805 0.985 0.528 0.515 0.389 0.329 

STD of eg (N) 0.499 0.585 0.328 0.431 0.347 0.262 

FGE (%) 16.1 19.7 10.5 10.3 7.8 6.6 

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB. 

 

FIGURE 12. TRAINING PERFORMANCE OF 8-TERNARY MPRS WITH DIFFERENT ISA METHODS 
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FIGURE 13. TESTING PERFORMANCE OF 8-TERNARY MPRS WITH DIFFERENT ISA METHODS 

 

4.6 Results of 10-ternary MPRs 

The results of using AI methods to the 10-ternary MPRs mechanism 

can be seen in the Table 11 as well as in the Figs. 14 and 15. The results 

demonstrate that HN and NFTS are still the best method concerning the 

best preparation time tp and online computing time tc respectively, and the 

HN has the best generalization error eg. Again, concerning minimum 

requirements of ISA solution i.e. real-time computing and generalization 

error, the ERNN and MLP are the recommended methods.  
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TABLE 11. PERFORMANCE COMPARISON OF THE 10-TERNARY MPRS OF THE CONSIDERED 

METHODS 

Method/Description LUT NFTS NFLUT MLP ERNN HN 

tp (s) 
2.1e3 7.1e3 7.3e3 3.1e4 7.8e3 892 

tc (s) 
2.8 1.9e-3 3.8e-2 3.3e-3 3.3e-3 0.203 

em (N) 
0 0.622 0 0.346 0.300 0 

eg (N) 
0.551 0.998 0.3966 0.379 0.335 0.301 

STD of eg (N) 
0.361 0.567 0.241 0.337 0.303 0.158 

FGE (%) 
11.0 19.9 7.9 7.6 6.7 6.01 

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB. 

 

FIGURE 14. TRAINING PERFORMANCE OF 10-TERNARY MPRS WITH DIFFERENT ISA METHODS 
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FIGURE 15. TESTING PERFORMANCE OF 10-TERNARY MPRS WITH DIFFERENT ISA METHODS 

 

4.7 Summaries of six models of m-ternary MPRs 

Summaries of the proposed methods in this section are based on the 

requirement of ISA solutions which are real-time control (i.e. less than 5ms) 

and generalization error (around 10% of FGE).  
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FIGURE 16. ON-LINE TIME COMPUTING TC OF M-TERNARY MPRS 

 

FIGURE 17. FGE OF M-TERNARY MPRS 

 

According to the facts from the sections 4.2 to 4.5 as well as from 

additional Figs. 16 and 17 (whereas the figures explain a relation between 
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time computing tc vs. m-ternary MPRs and the generalization error FGE vs. 

m-ternary MPRs), the summaries of using six ISA solutions in m-ternary 

MPRs can be concluded as follows: 

1. For 2-ternary MPRs: HN, NFTS and NFLUT methods show better 

performance concerning the real-time computation and 

generalization error, compared to the MLP, ERNN as well as LUT 

methods. In addition, HN demonstrates the lowest generalization 

error (FGE = 16,7%) and NFTS shows the lowest on-line computing 

respectively (tc = 8e-5s). 

2. For 4-ternary MPRs, HN shows the lowest generalization error. 

NFLUT and NFTS perform the second and third position. The MLP, 

ERNN and LUT methods have less accuracy in this generalization 

phase. In addition, only LUT does not fulfill the real time 

requirement.  Other methods (NFTS, MLP, ERNN, NFLUT and HN) 

show their ability to control MPRs in real time.  

3. For 6-ternary MPRs, only NFLUT meets the requirement as ISA 

solution, such as on-line computing and generalization phase. In 

addition, HN fulfills accuracy of generalization phase but in contrast 

other methods i.e. NFTS, ERNN and MLP, fulfill on-line computing 

requirement. 
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4. For 8-ternary MPRs, ERNN is the most accurate method for ISA 

solution, features the best generalization ability and requires a 

rather small computational time during the on-line phase. HN has 

better accuracy than ERNN, but require a larger off-line and on-line 

computational time respectively. NFTS has better on-line 

computational phase but less generalization phase compare to 

ERNN and HN.  

5. For 10-ternary MPRs, ERNN and MLP are the suitable solution for ISA 

problem. They offer not only the accuracy in the generalization 

phase, but also the real-time approximation as shown in their on-

line computing time tc. The HN still shows the highest accuracy 

concerning the generalization error compared to others, but 

requires a larger on-line computing time.  

6. In all m-ternary MPRs, we can also describe the facts that: a) NFTS 

features the shortest on-line computational time. However it is 

more inaccurate compared to NFLUT, MLP, ERNN and HN in 

generalizing phase; and b) HN features the lowest generalizing phase 

but it has bigger on-line computing time. 
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Chapter 5 

Comparison of Proposed AI Methods with Other Methods 

 

In general, most of the artificial intelligence methods with learning 

capability can be applied for general approximator of non-linear control, 

such as ISA problem.  To be practically applied to the ISA of MPRs 

mechanisms, the proposed AI methods must fulfill some requirements of 

ISA, such as real-time control procedure and small full-scale generalization 

error (this is already explained in Section 4.1).   

Additionally, most of the AI methods can provide the solution of the 

ISA of ternary MPRs. From literature, some of them are: Boltzmann 

Machine (BM), Radial Basis Function Network (RBFN), Jordan Recurrent 

Neural Network (JRNN), Wavelet Network (WN) and Support Vector 

Machines (SVMs). The solutions mentioned above are based on learning 

capability, stochastic model, signal analysis as well as statistic approach. 

Brief summaries of those methods are reported in the following sections. 
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5.1 Boltzmann Machine (BM) 

BM method is named in honor of a 19th century Austrian physicist 

Ludwig Boltzmann by its inventors, Geoffrey Hinton and his co-workers. BM 

is a stochastic machine which consists of stochastic neurons. As shown in 

the Fig. 18, the BM has two groups of neurons, i.e.: hidden neurons and 

visible neurons. Both groups are stochastic with probabilistic firing 

algorithm. In this scheme, the output of BM is actually the visible units that 

should be updated in the closed loop network, as shown in the Fig. 18. 

 

FIGURE 18. ARCHITECTURE OF BOLTZMANN MACHINE, WITH H NUMBER OF HIDDEN NEURONS 

AND I NUMBER OF VISIBLE NEURONS 

 

Normally BM has two possible states (-1 and +1 or 0 and 1 for off 

and on condition), but it is possible to adapt BM into ternary mode by 
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modifying its firing algorithm. Moreover, another feature of BM is the use 

of symmetric weight connection between its neurons. This form is 

motivated by statistical physics considerations.  

The visible part of BM provides a direct interface between the 

network and the environment of application (here equivalent with the 

ternary states of proposed MPRs). On the other hand, the hidden neurons 

always operate freely. They are used to figure out a number of constraints 

in the network. Moreover, the hidden part in this network completed the 

task by capturing statistical correlation in the visible neurons. These 

neurons are clamped or connected directly to the output patterns. The 

network represent here is the unsupervised learning procedure that 

performs pattern classification of the states of the MPRs. 

In brief, the goal of BM is to produce a Neural Network that categorizes 

input patterns according to a Boltzmann distribution [31], where the 

assumptions are made as follows: 

• Each environmental vector persists long enough for network to reach 

thermal equilibrium. The thermal equilibrium is the condition where 

the desired visual states are achieved, by cooling/reducing the 

parameter, called as T parameter, slowly until the target is found.  
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• There is no structure in the sequence in which environmental vectors 

are clamped or connected to the visible neurons of the network. 

Because of the simplicity of the network, BM can be developed over the 

deterministic Hopfield model that is explained in Section 3.5, as one of the 

ISA solutions. As on-line algorithm such as HN, BM replaces the activation 

function of HN, which is a deterministic activation function, with a 

probabilistic activation function, that can be written as: 

   = 1 (1     (    ⁄ ))⁄      (5.1) 

This is the stochastic function for binary case. For ternary case, Eq. 5.2 can 

be modified as: 

     =  (1     (    ⁄ ))⁄  1 (5.2) 

where   is the parameter, acts like temperature; and     is the energy gap 

resulted from the flip of the state in the cycle process [30]. 

To explain (5.2), we calculate the output function with different 

temperature T. The results can be seen in Fig. 19 below. 
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FIGURE 19. GRAPH OF DIFFERENT TEMPERATURE T IN TERNARY PROBABILISTIC ACTIVATION 

FUNCTION 

 

In the learning process of BM, T starts with high value and decreases 

to a very small value, the probability of each output node is firmly changed 

from +1, 0 to -1 in ternary case. In other words, the network will move to 

the next state without being able to jump back. This process is called also as 

simulated annealing. 

Recently, many scientists compare the works of HN and BM in the 

same applications. The reason is because the potentialities of both methods 

use the equivalent network and give the comparable results (concerning 

full-scale generalization error FGE and time computing tc). In brief, 

similarities and differences between BM and HN can be described as 

follows: 
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Similarities: 

 Connections between neurons (weights) are symmetric 

 Neuron states are bipolar 

 Weights and biases are selected at random for asynchronous 

update 

 There is no self-feedback 

Differences: 

 Architecture of BM permits the use of hidden layer 

 BM uses probabilistic activation function while HN with a 

deterministic activation function 
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5.2 Radial Basis Function Network (RBFN) 

RBFN, as well as MLP, is an example of nonlinear layered 

feedforward neural networks which is a universal approximator too. The 

name radial basis function is coming from an approach to approximate the 

function based on adaptive function interpolation (Broohead and Lowe 

1988). Similarly, Moody and Darken proposed a fast learning neural 

network structure with locally tuned processing units. 

RBFN was enthusiastically welcome by NNs society, because it 

demonstrated the improved capability of solving classification problems, 

which is not done by a global function (like sigmoid function in MLP). For 

this reason, some locally classified basis function such as Gaussian 

functions,  wavelets or B-spline functions are commonly proposed. Here, 

Moody [32] proposed one activation function like shown in (5.3), 

    =    ( ‖     ‖
   

 ⁄ )         (5.3) 

which is similar to the Gaussian density function centered at     and spread 

around centre   .  
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FIGURE 20. RBFN ARCHITECTURE 

 

Furthermore, the RBFN is a feedforward network with three layers 

and basically it is similar to the MLP with one hidden layer. The common 

configuration of the RBFN can be seen in Fig. 20. The input layer of the 

RBFN is directly connected with the hidden layer with gain one. So the 

weighting parameters (including biases) are only placed to the connection 

between hidden and output layers. In contrary to MLP, the output layer of 

RBFN is a summation of all output functions, which is directly associated to 

the output desired. This makes the learning parameter of RBFN different 
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from the training algorithm on the backpropagation networks (MLP). The 

main important issue here is how to select each neuron in the hidden layer 

(in a Gaussian function: parameters center    and spread around 

centre    ). To select those parameters, we can propose clustering 

algorithm, such as k-means clustering, which is capable to determine the 

optimal position of center and spread parameter. 

Moreover, the output network can be found easily by (5.4a-5.4b) as 

follows:  

     =   ∑       ( ‖     ‖
 
  
 ⁄ )        (5.4a) 

            =      (  ∑       ( ‖     ‖
 
  
 ⁄ ))      (5.4b) 

where    is the vector input of the network;     and   are the weighting 

and bias parameters between hidden and output layers. Here, only     and 

  are tuned in training process. The output           of (5.4b) is exactly the 

3-state outputs of the desired outputs of MPRs.  

Moreover, Haykin [31] explained some differences between RBFN and 

MLP such as: 

 RBFN basically has a single hidden layer, while MLP can have more 

than one hidden layers. 

 In MLP, hidden and output neurons have the same underlying 

function. In RBFN, they are specialized into distinct functions. 

 In RBFN, the output layer is linear, but in MLP, all neurons are 

nonlinear. 



78 
 

 The hidden neurons in RBFN calculate the Euclidean norm of the 

input vector and the center, while in MLP the inner product of the 

input vector and the weight vector are calculated. 

 The MLP constructs global approximations to nonlinear input–

output mappings, while the RBFN constructs a local approximation 

to nonlinear input–output mappings using localized nonlinear 

function (e.g. Gaussians).  

Concerning the structure of RBFN, the training procedure includes two 

phases below: 

 Phase one: Gaussian parameters must be initialized using such as 

unsupervised clustering algorithm, linear vector quantization (LVQ), 

etc. 

 Phase two: Adaptive training algorithm for updating the weighting 

parameters (BPA, LMA). 

By the two-phase explanation above, the RBFN increases the number of 

offline computing time in the learning phase. So this network needs at least 

two steps optimization processes, which are finding the optimal Gaussian 

parameters in the hidden layers and updating the weight parameters in the 

output layers. Once the optimal parameters are found, the RBFN 

performance could be determined easily. In general, for finding better 
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minimum error or better accuracy in the similar application, using MLP is 

more suggested than RBFN [25, 31].   

 

5.3 Jordan Recurrent Neural Network (JRNN) 

In brief, the JRNN is a NN with short-term memory features that 

takes the output network as feedback to the state units. Each output is 

connected to one state unit with the constant weight. When the previous 

output of a network is crucial in determining the next learning, as in the 

design of a robot trajectory, a Jordan network [16], which has similar 

architecture with Elman network as explained in Section 3.4.2, seems more 

appropriate than Elman’s. But, if the past internal neural responses are 

more important as in dynamic control problems, then an Elman network 

may be preferred [15].  
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FIGURE 21. JORDAN NETWORK (NOT ALL CONNECTIONS ARE SHOWN) 

 

If we considered JRNN that shown in Fig. 21 as one of the ISA solution, we 

must derive output network  ( ) by modifying MLP equation (3.3) as 

follows: 

 ( ) =      ( (∑     (∑   
   ( )      (  1)    )    ))

 (5.9) 

where    ( ) and  ( )  are input and output of the network;   1 and    are 

the biases input in the hidden and the output layers;    ,     and     are 

the weighting related to the hidden-output, input-hidden and the constant 
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weighting of the state units respectively; additional  (  1) is the short-

term output, where the typical initial  ( ) =            .  

The activation function of hidden neuron,  as well as the output 

neuron  ( ), uses the sigmoid function tanh. In addition, we can choose 

the constant parameter     as follows: 

    = 1, the network become a fully connected Jordan NNs 

    =
1

            
, the network become a normalized context-fully 

connected Jordan NNs 

    =  , the network become a MLP 

Concerning the comparison between ERNN and JRNN, so far we do not 

know which feedbacks (Elman or Jordan feedback) have better influence to 

the ISA solution. This makes JRNN a potential competitor to ERNN. 

 

5.4 Wavelet Neural Network (WNN) 

Wavelets are a class of function used to localize a given function or 

continuous signal in both position and scaling. The major advantage 

afforded by wavelets is the ability to perform local analysis — that is, to 

analyze a localized area of a larger signal. Compared to other signal analysis 

(i.e. Fourier, etc.), the wavelets have strong capability to reveal the aspects 
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of data such as trends, breakdown points, and self-similarities. More detail 

about wavelets analysis and the comparison with Fourier analysis and other 

mathematical analysis can be seen in Wavelet Toolbox description [40]. 

In general, wavelets form the basis of the wavelet transform (WT) 

(Daubechies I. [34]), whereas a WT is a representation of basis function 

called wavelets where they dilated (or scaled by factor of a) and translated 

(or shifted by factor of b) into a finite-length of prototype wavelet (known 

as mother wavelet  ), that can be written  as 

  ( ) =
 

√  
  (

     

  
) ,        (5.10) 

here   ( ) represents the family of wavelets obtained from the single  

 ( ) and   ,    are the  scale and translate values in the time or frequency 

domain;    is the input wavelet network  = 1,   and parameter 

wavelet   = 1,  ,   ,    respectively, with   hidden unit of the wavelet 

layer.  

In general, WT are classified into continuous WT (CWT) and discrete 

WT (DWT). CWT is designed to work with functions defined over the whole 

real axis, while DWT deals with functions that are defined over a range of 

integers (example: t =0, 1,…, N-2, N−1, where N denotes the number of 

values in the time series).  
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Concerning ISA solution, WT replaces the activation function in the 

neural network. This activation function has similar purpose with the 

sigmoid function in MLP or Gaussian function in RBFN. Furthermore, a 

number of publications reported on the analysis and applications using 

Wavelet Neural Network. Zhang Q. et al (1992) introduced Wavelet 

Network as universal approximator; Rao S.S. et al (1994) proposed feedback 

in Zhang’s work, and known as Recurrent Wavelet Neural Network (RWNN); 

and Abiyev R.H.  (2008, 2011) combined Fuzzy and Wavelet Neural Network 

(FWNN) for the identification, control and time series prediction problems.  

The structure of WNN, as universal approximator, explained in this 

thesis is depicted in Fig. 22.  This is a feed-forward neural network with one 

hidden layer and whose output layer consists of several linear combiners. 

The hidden layer consists of wavelets, whose activation functions are 

constructed from a wavelet basis. 
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FIGURE 22. WAVELET NEURAL NETWORK (NOT ALL CONNECTIONS ARE SHOWN) 

 

From Fig. 22, the ternary state-output of WNN     can be defined as 

  =      (  ̅̅ ̅  ∑       ( )
 
   ), for  = 1, 2, ..., K (5.11) 

where   = 1, 2, ..., m output ternary;      is the weight coefficients between 

wavelet layer and output layer; and the additional value    ̅̅ ̅ is needed to 

deal with the functions whose mean are non-zero. All parameters in Eqs. 

(5.10) and (5.11) (  ,   ,           ̅̅ ̅ ) can be chosen properly in the 

beginning of iteration by some techniques, for instance orthogonal least 

square procedure [35] and clustering method [39]. For updating the 
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parameters, some learning procedures can be used, such as stochastic 

gradient algorithm and genetic algorithm [35, 38]. 

 

5.5 Support Vector Machines (SVMs) 

Originally, SVMs were designed to solve problems in pattern 

recognition, as binary classifier, by determining a hyperplane that separates 

two states or groups (positive and negative groups) and optimizing the 

separated margin between them. This can be done clearly by using the 

theory of statistical learning and the method of structural risk minimization 

(Vapnik, 1971, 1995). The concept of SVM states that the mapping of an 

input space X into a properly high-dimensional space (called as feature 

space), using a non-linear mapping function  ( ) could be more linearly 

separable than in the low dimensional input space. The different between 

input space and feature space can be described in Fig. 23.  

 

FIGURE 23. MAPPING FROM INPUT SPACE INTO FEATURE SPACE 
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A brief description on how to change an input space to the feature 

space of the SVM can be shown on Fig 23. The left figure is a low 

dimensional data (input space) while the right one is the high-dimensional 

data (feature space). A training set  = {  ,   } is given, where the input 

vectors   = (  
( ),   

( ), … ,   
( ))  and the output vectors    { 1, 1}; 

with  = 1,… ,  -dimensional vector. 

Moreover, optimal hyperplane separates the equal distance 

between the data point which are nearest to the boundary of the two 

classes. Such data points must satisfy the classified equations according to 

Vapnik’s formulation: 

               =  1   (5.12a) 

               =  1   (5.12b) 

Nonlinear mapping from input space to feature space is carried out using 

the kernel function family as follows 

 ( ) = {  ( ),   ( ),… ,   ( ) },   (5.13) 

where the linear discriminant function can be defined as 

 ∑   
 
     ( )   =      (5.14) 

The structure of SVM, as universal approximator is depicted in Fig. 24. 

Similar to three layer network, the SVM is a feed-forward network with one 

hidden layer with kernel activation function. The output layers consist of 

several linear combiners   with updated weight    .  
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FIGURE 24. BASIC ARCHITECTURE OF SVM 

 

 The outputs of SVM can be written as: 

  =      (   ∑ ∑       ( )
 
   

 
   ),   (5.15) 

for  = 1, 2;   =1, 2, ..., m ternary output and input   = [  ,    ]. 

 

Moreover, in engineering SVM has been used in several applications 

as universal approximator. For example: Cao et al (2001) proposed SVMs in 

financial time series forecasting of S&P daily index; Mukherjee et al (1997) 

investigated SVM and other predicted method for chaotic time series 

prediction. Both Cao and Mukherjee used several methods as competitors 

of SVMs and they experimentally proved that SVMs perform better 

generalization capabilities than other compared methods. 
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Chapter 6 

Conclusion and Future Works 

 

As conclusion, this thesis presented: 1) five planar massively parallel 

robots (MPRs) with 2, 4, 6, 8 and 10 three-state force actuators and one 

continuous degree of rotational motion; 2) one brute-force method, two 

Neuro-Fuzzy methods, two Neural Network methods and one Hopfield 

Network method for the solution of inverse static analysis of the considered 

MPRs. Thanks to the partitioned and spatially distributed actuator 

architecture, the considered discrete robot (specially for 6, 8 and 10-ternary 

MPRs) features rather sufficient, identical and accurate torque generation 

capabilities, compared to the standard CSL mechanism (actuated by a single 

continuously regulated force generator).  

Comparison among the considered inverse static analysis methods 

highlighted that: 1) Elman type Recurrent Neural Networks and Neuro-Fuzzy 

Takagi-Sugeno methods are both suitable for real-time control applications, 

with the former providing more accurate solutions and generalization 

capabilities while the later involving less on-line computational time; 2) 

Hopfield Network method is the most powerful method for 2, 4, 6, 8 and 

10-ternary MPRs, offers the lowest generalization error but still has a 
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significant on-line computing time. 3) Both ERNN and MLP methods can 

approximate the output of 8 and 10-ternary with good accuracy and in real-

time computing. 4) The brute force method requires less time preparation 

but significant on-line computational time besides featuring rather limited 

generalization capabilities for 2, 4, 6, 8 and 10-ternary MPRs. 

As future works on designing the ternary MPRs, some highlights 

could be proposed for example: 1) increasing the number of m-ternary 

models, such as 12-ternary or more,  will be a good advantage to test both 

NF and RNN methods, as well as proposing a ternary MPRs  with more than 

one DOF; 2) comparing the performances of neural network methods, such 

as: ERNN, MLP and HN, as proposed in this thesis, with Boltzmann machine, 

RBFN, Jordan RNN, WNN and SVM that explained in Chapter 5; 3) replacing 

Hill Climbing as a local search procedure for finding the initial optimized 

parameters, with extended version of global search algorithm such as 

genetic algorithm (GA) or multi-objective optimization (MO) strategy.  
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APPENDIX A 

HILL CLIMBING PROCEDURE 

 

The randomized Hill Climbing procedure (HC) is a local search 

algorithm and tries to find the best local minimum from the huge iteration 

procedure, by permitting the best training parameters that minimize the 

error function (SSE) and neglecting the others.  

LOOP 

HILL CLIMBING 

Search Procedure
If Error min found

Save Parameters

Inputs 

 

ARTIFICIAL 
INTELLIGENCES 

METHODS

BPA/LMA
Training  

Procedure
Oscillation 

Control

Momentum

3-State 
Outputs 

After training STOP, 

Model is ready for 

Testing

Calculate 
Errors

RMSE

STOP 

TRAINING when 

RMSE< RMSE 

desire

Angle 

Moment M

 

The following steps of randomized HC are carried out: 

a. Make the loop : 1) case NN: No of neurons Xhidden in hidden layer from  

5-50; 2) case NF : No. of N rules from 2 – 15. 

b. Make the loop : No of experiments of each initial parameters = 100 . 
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c. Make the loop : No of iteration, each experiment has iteration from 

10 to 1000. 

d. Calculate training output and find the suitable prediction output.  

e. Save the parameters after step d completed. If the next iteration 

produce better result, replace the old parameters, otherwise the new 

parameters are neglected. 

f. Determine the resultant moment prediction and calculate the 

prediction performance error. 

g. Early stopping criteria (see Appendix B): Terminate the program if the 

requirements are satisfied in step f. 

h. Repeat again step a if there is no satisfied results until the loops are 

finished and save the best parameters. 
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APPENDIX B 

EARLY STOPPING PROCEDURE 

 

In practice, the principle of early stopping procedure is that the 

network should be trained until it has learned most of the important 

information for prediction step. This is of course difficult to find out because 

there is no best approach how to do this. In general, a high enough number 

of training steps or epochs are good enough, in the sense that the network 

has learned well in a specific region. Furthermore, reaching the local 

minimum of the objective function is accepted as the training efficiency 

merit [Palit, 2005, p.116; Pasila, 2006, p.15], so that after reaching this 

minimum value, the error function will steadily decrease until the minimum 

is reached. If there is no further decrease of the error function, this would 

then be an indication to stop the training iteration. 
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In our Neuro-Fuzzy or Neural Network simulations, early stopping 

can be done by doing several training with different number of epochs (for 

example in search programming strategy, iteration starts from 10 to 1000). 

In the iteration process, we collect the results of training and testing error 

from the same iteration. The suitable number of iteration which gives 

minimal value of desired error can be easily found by memorized all values 

of training and testing performances. 

 


