

Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA

Meccanica e Scienze Avanzate dell’Ingegneria

Prog.3 Meccanica Applicata

Ciclo XXIV

Settore Concorsuale di afferenza: 09/A2

Settore Scientifico disciplinare: ING-IND/13

INVERSE STATIC ANALYSIS OF MASSIVE PARALLEL ARRAYS OF THREE-STATE

ACTUATORS VIA ARTIFICIAL INTELLIGENCE

Presentata da:

Ing. Felix Pasila

Coordinatore Dottorato: Relatore:

Prof. Vincenzo Parenti Castelli Prof. Vincenzo Parenti Castelli

 Dr. Rocco Vertechy

 Dr. Giovanni Berselli

Esame finale anno 2013

ii

INVERSE STATIC ANALYSIS OF MASSIVE PARALLEL ARRAYS OF THREE-

STATE ACTUATORS VIA ARTIFICIAL INTELLIGENCE

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy

University of Bologna

Presented by

Felix Pasila

Advisors:

Prof. Vincenzo Parenti Castelli

Dr. Rocco Vertechy

Dr. Giovanni Berselli

2013

i

Abstract

Massive parallel robots (MPRs) driven by discrete actuators are force regulated

robots that undergo continuous motions despite being commanded through a

finite number of states only. Designing a real-time control of such systems requires

fast and efficient methods for solving their inverse static analysis (ISA), which is a

challenging problem and the subject of this thesis. In particular, five Artificial

intelligence methods are proposed to investigate the on-line computation and the

generalization error of ISA problem of a class of MPRs featuring three-state force

actuators and one degree of revolute motion.

Keywords: Massive parallel robots, inverse static analysis, artificial intelligences,

real-time control

ii

Acknowledgement

I would like to sincerely thank my advisers, Professor Parenti-Castelli, Dr. Vertechy

and Dr. Berselli, for their immense help, encouragement and support through my

research work.

I would also like to thank Dr. Carricato, Dr. Conconi, Dr. Carminelli, Dr. Qiaoling

Meng, Dr. Benedetta Baldisserri, Dr. M. Mozaffari and all members of GRAB, for

their constant feedbacks on this research.

Lastly, I would like to thank my wife, Hestiasari Rante and our sons, Amadeo

Constantine Pasila and Egidio Geovanney Pasila, for the inspiration and supports

they provided during my study. Without their companies and encouragement, I

will not be able to go this far. I am also very thankful to my mother and parents-in-

law, brothers and sisters, for their endless prayers.

iii

Table of Contents

Abstract i

Acknowledgement ii

Chapter 1 Introduction 1

1.1 Rationale of the thesis 1

1.2 Hypothesis: ISA solution using Artificial Intelligence 4

1.3 Contributions: Six ISA solutions 6

1.4 The limitation of the proposed thesis 7

1.5 Thesis outline 7

Chapter 2 Five Ternary MPRs Mechanisms 10

Chapter 3 Inverse Static Analysis Models 22

3.1 Introduction to the ISA models 22

3.2 Look-Up Table model (LUT) 23

3.2.1 Introduction 23

3.2.2 Implementation of LUT into the m-ternary MPRs 24

3.3 Neuro-Fuzzy (NF) models 25

3.3.1 Introduction 25

3.3.2 Neuro-Fuzzy architecture 26

3.3.3 LMA Training 29

3.3.4 The optimized results of NF architectures 36

3.4 Neural Network models 38

3.4.1 Introduction 38

3.4.2 RNN architecture 39

iv

3.4.3 Backpropagation Algorithm (BPA) on NN 41

3.4.4 Results of the optimized Neural Network models 47

3.5 Hopfield Network model 48

3.5.1 Introduction 48

3.5.2 Hopfield Network Architecture 49

3.5.3 Results of the Hopfield Network model 52

Chapter 4 Comparison of the Six Inverse Static Analysis Models 54

4.1 Introduction 54

4.2 Results of 2-ternary MPRs 55

4.3 Results of 4-ternary MPRs 57

4.4 Results of 6-ternary MPRs 59

4.5 Results of 8-ternary MPRs 61

4.6 Results of 10-ternary MPRs 63

4.7 Summaries of six models of m-ternary MPRs 65

Chapter 5 Comparison of Proposed AI Methods with Other Methods 69

5.1 Boltzmann Machine (BM) 70

5.2 Radial Basis Function Network (RBFN) 75

5.3 Jordan Recurrent Neural Network (JRNN) 79

5.4 Wavelet Neural Network (WNN) 81

5.5 Support Vector Machines (SVMs) 85

Chapter 6 Conclusion and Future Works 88

v

References 90

APPENDIX A HILL CLIMBING PROCEDURE 96

APPENDIX B EARLY STOPPING PROCEDURE 98

List of Tables

Table 1. Parameters for m-ternary mechanism 11

Table 2. Mass and inertia of the 8-ternary MPRs systems 11

Table 3. Position of point Bi of the 8-ternary MPRs systems 11

Table 4. Intrinsic error of m-ternary MPRs 12

Table 5. LUT Performance of the m-ternary MPRs 24

Table 6. Comparison of the m-ternary MPRs of Deterministic HN 53

Table 7. Performance comparison of the 2-ternary MPRs of the considered

methods 56

Table 8. Performance comparison of the 4-ternary MPRs of the considered

methods 58

Table 9. Performance comparison of the 6-ternary MPRs of the considered

methods 60

Table 10. Performance comparison of the 8-ternary MPRs of the considered

methods 62

Table 11. Performance comparison of the 10-ternary MPRs of the considered

methods 64

vi

List of Figures

Figure 1. Ternary Massively Parallel Robots (MPRs) actuated by m-ternary force

generators: (a) 2-ternary, (b) 4-ternary, (c) 6-ternary, (d) 8-ternary,

 (e) 10-ternary 15

Figure 2. Generable crank torques at 10-different angles: a) 2-Ternary MPRs; b)

4-Ternary MPRs; c) 6-Ternary MPRs; d) 8-Ternary MPRs; e) 10-Ternary MPRs 20

Figure 3. Takagi-Sugeno-type MIMO (with input real and output ternary)

feedforward Neuro-Fuzzy network, no. input = 2, no. output = m, m= 2, 4, 6, 8,

10; No. membership function N, training method: LMA 27

Figure 4. Elmann-Rnn, No. Input = 2, No. Output = M, M = 2, 4, 6, 8,10; No. Context

Layer L = 21, 22, 25, 27, 30, Training Method: BPA 40

Figure 5. Architecture of close-loop Hopfield Network with High-Gain 49

Figure 6. Training performance of 2-ternary MPRs with different ISA methods 56

Figure 7. Testing performance of 2-ternary MPRs with different ISA methods 57

Figure 8. Training performance of 4-ternary MPRs with different ISA methods 58

Figure 9. Testing performance of 4-ternary MPRs with different ISA methods 59

Figure 10. Training performance of 6-ternary MPRs with different ISA methods 60

Figure 11. Testing performance of 6-ternary MPRs with different ISA methods 61

Figure 12. Training performance of 8-ternary MPRs with different ISA methods 62

Figure 13. Testing performance of 8-ternary MPRs with different ISA methods 63

Figure 14. Training performance of 10-ternary MPRs with different ISA

methods 64

Figure 15. Testing performance of 10-ternary MPRs with different ISA methods 65

vii

Figure 16. On-line time computing tc of m-ternary MPRs 66

Figure 17. FGE of m-ternary MPRs 66

Figure 18. Architecture of Boltzmann Machine, with h number of hidden neurons

and i number of visible neurons 70

Figure 19. Graph of different temperature T in ternary probabilistic activation

function 73

Figure 20. RBFN architecture 76

Figure 21. Jordan Network (not all connections are shown) 80

Figure 22. Wavelet Neural Network (not all connections are shown) 84

Figure 23. Mapping from input space into feature space 85

Figure 24. Basic architecture of SVM 87

1

Chapter 1

Introduction

1.1 Rationale of the thesis

This thesis addresses the efficient way to design the real-time

control procedure of massive discrete-state manipulators (DSM). The DSM

is a very special kind of mechanisms whose actuators can only be made

switching among a finite number of states. The manipulators are introduced

by Pieper (1968) and Roth (1973), in an effort to conceive sensor-less robots

as well as to reduce the complexity of computer interfacing and control

procedure. Currently DSM can be classified into two different groups

depending on whether their actuators act as discrete displacement

generators or discrete force generators. Examples of DSM of the first type

are the binary snake-like robots (SLRs), proposed by Chirikjian et al (1994a,

1994b, 1995, 1996a, 1996b, 1997, 2001, 2004) and Dubowsky et al (2001,

2002), which are kinematically constrained mechanisms employing a large

number of bi-stable actuators whose configuration either fully contracted

(inactive state) or fully extended (active state) without consideration of the

arbitrary external forces acting on them. Examples of DSM of the second

2

type are the binary Massively Parallel Robots (MPRs) [Waldron et.al., 2001a,

2001b; Mukherjee, 2002], which are dynamically constrained robots

employing a large number of on-off actuators that employ either a constant

force (active state) or no force (inactive state) irrespective of their arbitrary

kinematically unconstrained configuration.

Major advantages of SLRs and MPRs over conventional manipulators

are the possibilities of:

1. Increasing system robustness against external disturbances,

information and power signal noise, actuator and electronics

aging, as well as actuator failure;

2. Employing simpler and cheaper actuators, sensors and

electronics.

To achieve high position/force capabilities (both in terms of variation

range and accuracy), the architecture of SLRs/MPRs practically requires a

large number of actuators (usually 4-10 times larger than the number of

degrees of freedom desired for the robot) that can be arranged in a hybrid

series-parallel configuration (prevalently in-series for SLRs [Chirikjian et al.,

1994a, 1994b, 1995, 1996a, 1996b, 1997, 2001; Dubowsky et al., 2001,

2002] whereas in-parallel for MPRs [Waldron et al., 2001a, 2001b;

Mukherjee, 2002]. Owing to the large number and the discrete nature of

3

the actuator variables (positions for SLRs and forces for MPRs), the inverse

kinematic analysis (IKA) of SLRs and the inverse static analysis (ISA) of MPRs

are usually very difficult problems whose solution practically requires quite

complicated procedures. In the past, significant research efforts have been

devoted to address these inverse problems, in particular by resorting to:

exhaustive brute-force search approaches [Waldron et al., 2001a, 2001b;

Mukherjee, 2002]; methods of classical differential geometry and variation

of calculus [Chirikjian, 1995, 1997]; combinatorial heuristics algorithms

[Lees 1996; Dubowsky et al., 2001, 2002]; genetic algorithms [Dubowsky et

al., 2001, 2002]; probability theory [Chirikjian et al., 1996a, 2001]; high-gain

Hopfield networks and Boltzmann machines [Waldron et al., 2001a, 2001b].

Even though most of the proposed solution schemes are formally very

elegant and quite effective in reducing problem complexity from

exponential time to polynomial time, the resulting algorithms still involve

too many calculations for real-time manipulator control.

This thesis deals with the ISA problem of planar MPRs, that is to find

the states of the actuator variables for a given external (force or moment)

acting on the MPRs output link.

4

1.2 Hypothesis: ISA solution using Artificial Intelligence

In this context, we investigate the potentialities of using artificial

intelligence (AI) methods for the real-time solution of the ISA of planar

ternary MPRs that feature one revolute degree of freedom actuated by a

number of in-parallel-placed three-state force generators. In particular, the

thesis considers five different MPRs mechanisms that are actuated by m

three state force generators (with the three states being -1, 0 and 1 and

with m = 2, 4, 6, 8 and 10, hereafter referred to as m-ternary MPRs).

The proposed AI methods are based on the Neuro-Fuzzy (NF) and

Neural Network (NN). The first method is a hybrid intelligent system which

combines the human-like reasoning style of fuzzy systems with the learning

ability of neural networks. The main advantages of a neuro-fuzzy system

are: it interprets IF-THEN rules from input-output relations and focuses on

accuracy of the output network and an efficient time consumption for on-

line computation [Jang 1993; Palit 2001, 2002b, 2005]. The second method

is instead inspired by the biological nervous system. This is because the NN

consists of highly interconnected networks with a large number of

processing elements (called artificial neurons), which resemble the human

brain system. The advantages of using NN are: it is an efficient pattern

recognition system and acts like parallel distributed processing (parallel

5

computing) which accelerate the computational process [Elman 1990; Juang

2002; Palit 2002a, 2005; Toha 2008].

In general, the practical uses of AI methods have been recognized

mainly because of such distinguished features:

 Pattern recognition capability: enables to capture patterns or

essential relationship among the data (especially when the

relationship is not known or very difficult to describe

mathematically, and/or when the observation data is corrupted

with noise).

 Universal approximation capability (universal function): enables

modeling of highly nonlinear functions with good accuracy.

 Adaptive learning capability: enables to learn from examples

using data-driven approach by updating the related parameters.

The first two features above are used here in the ISA solution for

constructing the relation between the vector of actuator activation states u

= [u1,…, um], which is a m-ternary number, and the input couple of position

and moment X =[, M], which are continuum real numbers. The last feature

is used instead for tuning the parameters that are related to the NF and NN

architectures.

6

1.3 Contributions: Six ISA solutions

In this thesis, we proposed six ISA solutions which are: 1. Look-Up

Table (LUT); 2. Neuro-Fuzzy type Takagi-Sugeno (NFTS); 3. NFTS with Look-

Up Table (NFLUT); 4. Neural Network type Multilayer Perceptron (MLP); 5.

Recurrent Neural Network type Elman (ERNN); and 6. High-Gain Hopfield

Network (HN). One of the proposed solutions should overcome the problem

of ISA of the related MPRs mechanisms (2, 4, 6, 8 and 10- three-state force

actuator), that is to find the states of the actuator in fast and efficient way

(concerning the real-time computing and the generalization error terms).

More detail of all methods including their training algorithms and the real-

time computing performances will be compared in Chapters 3 and 4

respectively.

In brief, the main contributions of proposing AI methods for the ISA

solution of m-ternary MPRs are:

 They can approximate the output m-ternary with good accuracy.

 They compute the output m-ternary in real-time.

 They are adaptive systems and have capability to update their

parameters via the learning algorithm.

7

The proposed m-ternary mechanism as well as the six ISA solutions

will be explained in Chapters 2 and 3 respectively.

1.4 The limitation of the proposed thesis

It is worth to mention that the results of the ISA solutions based on

Artificial Intelligence (AI) which are shown in this thesis are not the global

optima. This means that there could be other AI architectures that give

better results in the terms of generalization error. This limitation is however

tolerable because we require to derive efficient ISA solutions that have real-

time computation response (i.e. less than 5ms) and also acceptable full

generalization error (i.e. less than 10%). Suggestion to avoid the limitation

in this thesis can be done by using multi-objective optimization strategies,

instead of Random Hill Climbing (HC). The HC is a local search algorithm for

finding the best parameters in the learning procedure (see Appendix A for

detailed procedure).

1.5 Thesis outline

 Chapter 1 introduces the motivation, the problem of ISA of

ternary MPRs and the six ISA solutions as the main contribution

8

of this thesis, such as: one brute-force algorithm and five AI

methods.

 Chapter 2 introduces five ternary MPRs mechanisms which

respectively employ 2, 4, 6, 8 and 10- ternary actuators as force

generators. The considered MPRs are planar mechanisms (i.e.

with three states being -1, 0 and 1) with one degree of revolute

motion. The five MPRs mechanisms have similar range of

generated moment so the validation (comparison of the

performances) can be made using the same data testing.

 Chapter 3 explains the detailed description of ISA methods. They

are Look-Up Table (LUT) method, two NF methods based on

Takagi-Sugeno, two NN methods, including their training

algorithms which are based on Levenberg-Marquardt Algorithm

(LMA) and Backpropagation Algorithm (BPA), and one HN

method. Each of these methods is a computational machine of

the five ternary MPRs that associates output ternary number u

with m ternary digits (2, 4, 6, 8 and 10) to the input couple of

continuum real numbers X (α,M).

 Chapter 4 outlines the training and testing results from six ISA

solutions in the table and figures.

9

 Chapter 5 introduces some methods that suitable also for ISA

solution, i.e.: Bolzmann Machine (BM), Radial Basis Function

Network (RBFN), Jordan Recurrent Neural Network (JRNN),

Wavelet Neural Network (WNN) and Support Vector Machine

(SVM).

 Chapter 6 summarizes the main contributions to the ISA

solution. Suggestion to use more complicated m-ternary MPRs as

well as to apply Multi-objective Optimization strategies for

reducing the generalization error performance will be mentioned

also in this chapter.

10

Chapter 2

Five Ternary MPRs Mechanisms

In this chapter, we discuss the five ternary MPRs that are considered

in this study, as depicted in Figs. 1(a) to 1(e). They feature 2, 4, 6, 8 and 10

identical Crank and Slotted-Lever (CSL) respectively with 3RP planar

mechanisms. The terms R and P are for revolute and prismatic joint

respectively, sharing the same crank at its moving revolute joint, centered

at point A(). The common crank is hinged at the frame at point O, the m

links with variable length A()Bi, where i =1, 2, …, m; here m = 2, 4, 6, 8

and 10, are hinged at the common point A() and at points Bi respectively,

symmetrically located with respect to the Y axis along the circular arc with

radius r = OBi and with spread angle 2 , where
m


2


 .

So the arc has angular span equal to  2 for all mechanisms and

the different angular positions between points Bi for all models are always

equal to 2 . For more information about the m-ternary mechanism, Table 1

shows the complete variables such as angle  , the different angular position

between points Bi, and the force amplitude F, which is determined from the

equivalent force system of five proposed mechanisms.

11

TABLE 1. PARAMETERS FOR M-TERNARY MECHANISM

Description of

m-ternary mechanism

m= 2 m= 4 m= 6 m= 8 m= 10

Angle  (deg) 45 22.5 15 11.25 9

Position between points Bi(deg) 90 45 30 22.5 18

Force Amplitude F (N) 34.24 19.44 13.24 10 8

Possible Crank Moment each  3
2
 3

4
 3

6
 3

8
 3

10

Radius r = OBi (m) 0.38

Crank l = || A() – O || (m) 0.1

For more information, some information (geometry, mass, inertia)

about the actuator arrays for 8-ternary MPRs are given by Di Canio thesis

(2011) and can be seen in Table 2 and Table 3.

TABLE 2. MASS AND INERTIA OF THE 8-TERNARY MPRS SYSTEMS

Variable Rigid Body Cylinder Piston
Mass (kg) 0.0203 0.0148 0.0320

Inertia (kg*m
2
) 2.1938e-004 9.6981e-005 1.3892e-004

TABLE 3. POSITION OF POINT BI OF THE 8-TERNARY MPRS SYSTEMS

Axis

X (m) 0.37 0.32 0.21 0.07 -0.07 -0.21 -0.32 -0.37

Y (m) 0.07 0.21 0.31 0.37 0.37 0.31 0.21 0.07

 (deg) 11.25 33.75 56.25 78.75 101.25 123.75 146.25 168.75

12

Furthermore, we also define the error intrinsic of the proposed MPRs

mechanisms due to the discretization. The intrinsic error can be defined as

the maximum error and the average error in the generation of a given

desired moment. This error shows the accuracy of the m-ternary MPRs

mechanisms and it can be compared with the error of proposed methods.

To determine the intrinsic error, we define first the vector of the ascending

moment that generated in the proposed MPRs and calculate the average

error and the maximum error of moment between two closed data, as well

as normalized of average error and normalized of maximum error with the

maximum value of generated moment. The results of some information

mentioned above can be seen in the Table 4.

TABLE 4. INTRINSIC ERROR OF M-TERNARY MPRS

Ternary MPRs
2-

Ternary

4-

Ternary

6-

Ternary

8-

Ternary

10-

Ternary

E_avg =0.5*abs[m(i+1)-m(i)]/N 0,074 0,0078 0,0017 0,0005 0,0002

Max_err= 0.5*abs[max(m(i+1)-

m(i))]
0,2098 0,0890 0,0629 0,0443 0,0284

E_average/GM 0,0148 0,0016 0,0004 0,0001 0,00004

Max_err/GM 0,04196 0,01780 0,0126 0,0089 0,0057

Note: GM=max Torque of MPRs = 5Nm, N=length of vector moment m(i+1)

It can be inferred from Table 4 that increasing the number of ternary MPRs

will reduce also the intrinsic error and increase the accuracy of the MPRs.

13

(a) 2-ternary MPRs

(b) 4-ternary MPRs

14

(c) 6-ternary MPRs

(d) 8-ternary MPRs

15

(e) 10-ternary MPRs

FIGURE 1. TERNARY MASSIVELY PARALLEL ROBOTS (MPRS) ACTUATED BY M-TERNARY FORCE

GENERATORS: (A) 2-TERNARY, (B) 4-TERNARY, (C) 6-TERNARY, (D) 8-TERNARY, (E) 10-TERNARY

Furthermore, the output link of the considered MPRs is the common

crank (similar to the all MPRs mechanisms). Differently from SLRs, crank

motion is continuous and here it is limited in the range 0    180°.

Discrete actuation is provided at the level of the m-P joints through

identical three-state force generators which, irrespective of the relative

position of slider and slotted lever, supply the forces (for i = 1, .., m and m =

2, 4, 6, 8, 10).

   i i i iF F u A B A B     
(2.1)

with F being a constant force magnitude that is shown in Table 1, and each

mechanism has different values of F for creating the equivalent total force

16

acting on them. Here ui is the related activation state (either +1, 0 or 1) of

the i-th actuator. Practical implementation of the mechanisms, as depicted

in Figs. 1(a) to 1(e), could be obtained by employing two, four, six, eight and

ten double-effect pneumatic cylinders with directional control valves in

place of both slider and slotted-lever links.

By considering all force contributions for each mechanism, the

resulting torque M, generated by the actuators on the output crank, can be

written as follows:

          



m

i

iiii BABAOAkuFuM
1

,  , (2.2)

where k is the unit normal to the plane of motion of the mechanism.

Equation (2.2) represents the static equilibrium condition of the considered

ternary MPRs (in this case we ignore the link weight and friction).

Therefore, for any desired continuous value D (that is for any desired

MPRs configurations), the Direct Static Analysis (DSA) problem amounts to

find the torque M*, within a range  of discrete values of M*, which

corresponds to a known combination of the activation states
D
iu .

Conversely, for any desired continuous value D, the Inverse Static Analysis

(ISA) problem amounts to find the best combination of the activation states

17


iu (among a total of 3m possibilities for any D) which enables the

generation of the moment M* (namely M* = M(D,

iu)) that more closely

matches a desired torque MD; that is, to find the state combination

iu , i =

1, …, m, and m = 2, 4, 6, 8 for which the error   MMe D is

   iDD
,,u u,MMmine

i
 


101 (2.3)

Notice that since the desired MD can be any real value, whereas the

range  is only a discrete subset, in general the minimum error e* is

different from zero. Moreover, owing to the discrete nature of the m

variables iu , the ISA described by Eq. (2.3) cannot be solved via standard

pseudo-inverse methods.

To give an idea of the range of available torques  that can be

generated at the output crank of the MPRs described in Figs. 1(a) to 1(e),

Eq. (2.2), with equal values of crank l and radius r and different force

amplitude F like shown in Table 1, is plotted in Fig. 2(a) to 2(e) for 2, 4, 6, 8,

10-ternary MPRs respectively. Here we used ten different angular positions

D ranging from 0 to 90° with 10° step. As presented in Figs. 1(a) to 1(e),

even though with discrete activation, the MPRs are capable to generate

torques in a range M having similar amplitude, but with different

18

resolution. The 2 and 4-ternary MPRs produce 32 and 34 generated torques

for each discrete alpha with less resolution while the 6, 8 and 10-ternary

MPRs generate 36, 38 and 310 torques with better resolution respectively.

In particular, each line in the Figs. 2(a) to 2(e) corresponds to a given crank

position and represents all the torques that can be generated for all

possible 3m combinations of actuator activation states related to the m-

ternary MPRs. It can be noted that, in all figures, the lines are drawn with

the available moments sorted in ascending order. As shown in Fig. 2(a),

despite the discrete behavior of the three-state actuators, the 2-ternary

MPRs only provide 32 discrete solutions of generated Crank moment (in

N.m) for every known angle. Unfortunately, these discrete solutions have a

big gap between the two closed values and they cannot be compared to the

generated Crank moment produced by the continuous model (the

continuous model is a standard crank and slotted-lever mechanism with a

single continuously regulated actuator attached in the common crank). The

other MPRs mechanisms, as shown in Figs. 2(b) to 2(e), have 34, 36, 38, and

310 discrete solutions of generated Crank moment for each respectively and

these solutions might be sufficiently comparable to generated Crank

moment of the continuous one.

19

(a)

(b)

(c)

20

(d)

(e)

FIGURE 2. GENERABLE CRANK TORQUES AT 10-DIFFERENT ANGLES: A) 2-TERNARY MPRS; B) 4-
TERNARY MPRS; C) 6-TERNARY MPRS; D) 8-TERNARY MPRS; E) 10-TERNARY MPRS

Additionally, due to the possibility of spatially distributing the

partitioned actuation system, the considered MPRs also exhibit a rather

identical torque generation capability within their full range of motion (0 

  180°). Notice that this latter feature cannot be achieved by a standard

21

CSL mechanism actuated by a single continuously regulated force

generator.

Further step is to use the generated moments from Figs. 2(a) to 2(d)

and their corresponding angle D as input to the AI methods that will be

explained in Chapter 3.

22

Chapter 3

Inverse Static Analysis Models

3.1 Introduction to the ISA models

This chapter presents six different methods for the solution of the

ISA problem described in the previous chapter. Namely: one Look-Up Table

model; two Neuro-Fuzzy models; and three Neural Network models.

Essentially, each of these models is a computational machine of the five

ternary MPRs, shown in Figs. 1(a) to 1(e), that associates an output ternary

number u = [u1, …, um] with m = 2, 4, 6, 8 and 10 to an input couple of

continuum real numbers X = [X1, X2] = [, M].

Initial set-up of all these methods requires the knowledge of an

appropriate input-output (X-u) dataset  with finite dimensions. Here, 

consists of 103m X-u correspondences that are generated via Eq. (2.2) for

ten different values of  , ranging from 0 to 90° with 10° step, and for all

possible (3m) combinations of u of each m-ternary MPRs (note that all the X-

u correspondences contained in  satisfy Eq. (2.3) with e*= 0). Given the

continuity of , is not an exhaustive enumeration of all the possible

solutions of the ISA problem. Thus the considered methods are required to

23

provide some generalization ability (that is the ability to find X-u

correspondences for arbitrary values of  which are not contained within

).

To discuss about their suitability in real-time control applications,

the six ISA solutions are compared in the terms of time of off-line

preparation tp, time of on-line calculation tc, modeling error em (i.e. the

error calculated via Eq. (2.3) in predicting X-u correspondences for input

pairs XD = [ D, MD] contained in ), and generalization error eg (i.e. the

error calculated via Eq. (2.3) in predicting X-u correspondences for input

pairs XD not contained in ).

3.2 Look-Up Table model (LUT)

3.2.1 Introduction

The Look-Up Table (LUT) model is a brute-force search approach and

it is the simplest method considered here. LUT model uses a stored data

structure as a pattern collection of the entire dataset  as described above.

As such, LUT model does not require any learning algorithm. During model

preparation, the input values X of  are first normalized between 0 and 1,

then the modified dataset  is sorted and stored row by-row in an array.

24

During model usage, the desired inputs XD are first normalized, then they

are compared to the corresponding entries of the LUT using a row-by-row

similarity procedure, and finally the suitable outputs u*
i (for i = 1, .., m, here

m = 2, 4, 6, 8) are chosen from the LUT row which provides the minimum

error between desired and stored inputs.

3.2.2 Implementation of LUT into the m-ternary MPRs

Implementation of brute force using LUT is simple concerning the

time preparation, but it is not a recommended ISA solution regarding the

on-line computation and generalization error. The LUT model performances

of the ISA solution for m-ternary MPRs can be compared in the Table 5

below:

TABLE 5. LUT PERFORMANCE OF THE M-TERNARY MPRS

Description 2-ternary 4-ternary 6-ternary 8-ternary 10-ternary

used (%) 100 100 33 12 4

off-line preparation

tp (s)
0.1 0.3 3.2 48 2.1e3

on-line calculation tc

(s)
0.008 0.009 0.013 0.35 2.8

modeling error em

(N)
0 0 0 0 0

generalization error

eg (N)
2.594 1.664 0.891 0.805 0.551

We can see from the Table 5 that on-line calculation of LUT exponentially

increase from tc =0.008s (m=2) to tc =2.8s (m=10). Moreover, the

25

comparison of tp, tc em and eg of LUT model with other ISA methods will be

provided later in Chapter 4.

3.3 Neuro-Fuzzy (NF) models

3.3.1 Introduction

In the field of artificial intelligence, NF refers to combinations of

artificial neural networks and fuzzy logic. This idea was proposed first by J.

S. R. Jang [1993] and later was improved Palit et.al. [2001, 2002a, 2002b].

NF is a hybrid intelligent system, which combines the human-like reasoning

style of fuzzy systems with the learning ability of neural networks.

Moreover, a number of publications reported on the applications using NF

network such as: adaptive control of inverted pendulum using NF inference

by Kumar V. et al [2010]; recurrent NF hybrid-learning approach to accurate

system modeling by Cheng K.H. et al [2007]; and electrical load forecasting

using a neural-fuzzy approach by Popovich D. et al [2009].

In the following section, we proposed two NF models which are

based on the Neuro-Fuzzy Takagi-Sugeno (NFTS) inference scheme with

Gaussian membership functions. They are NFTS and the Look-Up Table

version of NFTS, which is called as NFLUT. Concerning the ISA problem, both

26

proposed models can be applied as solutions because they provide a strong

connection between input values X of  with their output variables ternary

number u = [u1, …, um]. Moreover, they also have advantages such as: it

interprets IF-THEN rules from input-output relations; and it focuses on

accuracy of the output network and efficient time consumption for on-line

computation.

3.3.2 Neuro-Fuzzy architecture

 In this section, the architecture of two considered models is

presented. Both models are based on the same overall architecture and

only differ in the defuzzification operation, like depicted in Fig. 3. The

architecture is called as feedforward Neuro-Fuzzy type Takagi-Sugeno multi-

input multi output. It uses Gaussian membership function in the

fuzzyfication phase.

27

FIGURE 3. TAKAGI-SUGENO-TYPE MIMO (WITH INPUT REAL AND OUTPUT TERNARY)

FEEDFORWARD NEURO-FUZZY NETWORK, NO. INPUT = 2, NO. OUTPUT = M, M= 2, 4, 6, 8,10;
NO. MEMBERSHIP FUNCTION N, TRAINING METHOD: LMA

In particular, introducing the Gaussian membership functions to

both NF methods Gjn (j = 1, 2; n = 1, …, N), as a fuzzyfication procedure for

input pairs XD = [ D, MD].

     









2n
j

n
jjj

n
j cXexpXG  (3.1)

with characteristic means n
jc and variance n

j together with the

corresponding fuzzy rules Rn can be written as:

22110

22111:

XwXwwyTHEN

GisXANDGisXIFR

n

i

n

i

n

i

n

i

nnn


 (3.2)

28

with n
iw0 , n

iw1 and n
iw2 (for i = 1, …, m, and n = 1, …, N, N is the number of

optimized rules for each m-ternary model, here N = 3, 8, 10, 11 and 17)

being the Takagi-Sugeno weights [Takagi 1985], the common part of the

two considered Neuro-Fuzzy models calculates the continuous variables.

   
2 2

1 11 1

N N

n n n

i i j j j j

n nj j

u y G X G X
  


 
 
 

  

(3.3)

From Eq. (3.3), the two different models, hereafter briefly referred to as

NFTS and NFLUT, are derived by alternatively estimating the actuator

activation states iu through one of the following threshold operations:

 ii uroundu  or  ii uRLUTu  (3.4)

where RLUT indicates a properly Reduced Look-Up Table involving iu as

only input of the table. Additionally, the NFLUT requires the generation of

the RLUT, which is here constructed by storing the most significant -u u

correspondences that occurred during training with the known dataset.

Prior to their use, NFTS and NFLUT models require the tuning of the

parameters n
jc , n

j , n
iw0 , n

jiw (for j = 1, 2; i = 1, …, m; n = 1, …, N; in the

following N = 3, 8, 10, 11, 17). Here, the number of parameters for the

considered MPRs are 30, 128, 220, 308 and 578 parameters for m = 2, 4, 6,

8 and 10 correspondingly. The values of these parameters are found by an

29

optimized learning procedure. The learning procedure employs 100%,

100%, 33%, 12% and 4% of the X-u correspondences known fromfor the

2, 4, 6, 8 and 10-ternary MPRs respectively. Here, consists of 1 X-u

correspondences that generated from Eq. (2.2). In particular, the learning

procedure is performed via the Levenberg-Marquardt Algorithm (LMA),

explained in Section 3.3.3, which is a fast second order training routine for

NFTS network [Palit 2001, 2005].

3.3.3 LMA Training

The fuzzy logic system, once represented as the equivalent Multi-

Input Multi-Output feed forward network, can generally be trained using

any suitable training algorithm, such as standard Backpropagation

Algorithm (BPA) that is generally used for training of the NN (Palit 2002b).

Because of its slow speed of convergence, BPA needs to be further

improved. Alternatively, a second order training algorithm, such as the

Levenberg-Marquardt Algorithm (LMA), can also be used. It is noted that

LMA is actually a second order training algorithm that is based on the

modification of Newton's method and uses Jacobian matrix in order to

approximate the second-order partial derivatives (called as Hessian Matrix).

30

Recently, LMA has some additional features such as momentum,

modified error index (MEI) and oscillation control [proposed by Palit et al

2001, 2002a, 2005; Xiaosong et al 1995]. Briefly, the features mentioned

above can be put in the updating procedures of LMA and they can be

described as follows:

 Momentum version of LMA is proposed by adding a small

adaptive factor of momentum (mo) into the updated equation,

so the learning process can be accelerated in the iteration.

 MEI version of LMA is done by calculating the different between

the error performance and the average error, multiplying with

the constant factor that should be chosen properly.

 By adding both momentum and MEI in the training procedure,

the speed convergence of the error performance is much faster

than standard algorithm. To guarantee the every iteration will

reduce the error performance, oscillation control procedure

must be applied by a given limit Wildness Factor (WF). By doing

this way in the NF training, the value of the error performance is

either decreased steadily or at least stayed within the given limit

of WF.

31

In this thesis, the error performances are calculated in the terms of

Root Mean Squared Error (RMSE) and integrated with early stopping

procedure to stop the iteration when the error requirement is achieved.

The simple search procedure, called as Hill Climbing (HC), is used for finding

the best parameters, in which the parameters give a minimum error. The

HC and the early stopping procedures will be explained later in Appendix A

and B respectively.

Moreover, to be applied in the NF methods, we need to overcome

the complexity of the calculation of second order equations in the LMA. To

avoid this, Hagan and Menhaj [26] implemented the LMA without direct

computation of second order term. This is achieved in the following way. If

a function () is minimized with respect to the parameter vector (for

the NF method as depicted in Figure 3, these parameters are the total

network parameters, i.e.: n
jc , n

j , n
iw0 , n

jiw), the next parameter and the

updated parameter vector (1) and can be defined as:

 = [()] () (3.5a)

 (1) = () (3.5b)

where () is the gradient of () (i.e. the vector containing the

derivative of with respect to vector) and () is the Hessian matrix

32

(i.e. the matrix containing the derivative of () with respect to vector).

Considering a training set composed by samples, for the NF method

depicted in Figure 3 the function () is taken to be the following Sum

Squared Error (SSE) function:

 () = ∑ ∑ (
 ())

 =1

 , (3.6a)

() =

 , , (3.6b)

where the term

 is the error between the predicted and the desired i-th

output of the network for the p-th training sample. Then, the a-th

component of the gradient () and the ab-th component of the Hessian

matrix () (a being the row index and b being the column index) give

result as:

 () ⁄ = ∑ ∑ (
 ()

 () ⁄)
 =1

 (3.7a)

 () ⁄ =

 ∑ ∑ (
 ()

 () ⁄)

 =1

 ∑ ∑ (

() ⁄

() ⁄)

 =1 (3.7b)

For the Gauss-Newton method, the first term in (3.7b) is assumed to

be zero. Then, by condensing all the components of the error
 () in a

single vector () (with dimension ()) and all the components

33

() ⁄ in a single Jacobian matrix () (with dimension () ,

with being the number of network parameters), then Equations (3.7a)

and (3.7b) can be rewritten as

 () = () () (3.8a)

 () = () () (3.8b)

Therefore, the updated equations according to (3.5a) will be:

 = [() ()] () () (3.9a)

Now let us see the Levenberg-Marquardt’s modifications of the Gauss-

Newton method, based on Hagan and Menhaj [26]:

 = [() ()] () () (3.9b)

where, I is the P PN N identity matrix, and the damping term  is

multiplied or divided by some factor whenever the iteration step increases

or decreases the value of (). This thesis uses adaptive  when training

algorithm is processed as follows: for large  , the algorithm becomes the

steepest descent algorithm with step size 1/  (similar to BPA), and for small

 , it becomes the Gauss-Newton method.

Here, the updated equation according to (3.5b):

 (1) = () [() ()] () () (3.9c)

34

Now, the computation of Jacobian matrix can be performed as follows. If

the adjustable parameters of neuro-fuzzy networks are defined as: n
jc , n

j

, n
iw0 , n

jiw , the gradient S

can be substituted by corresponding chain rule

differentiations (see Palit, 2005 for details). Differentiating with respect to

n
iw0 yields:

 0 1
/ /TN pn n

p p ii p
S w Z b e


    (3.10)

With a similar procedure, the component of the gradient with respect to

the parameter n
jiw of the NF network can be written as:

 1
/ /TN p pn n

p pji i jp
S w Z b e X


     . (3.11)

Now, the computation of the gradient for the remaining parameters n

jc and

n

j can be written as follows (Palit, 2005):

     
2

1
1

/ 2 /T
nm
pN np p p pn n n

j i i i j j jp
pi

Z
S c y u e X c

b





  
          

   
  (3.12)

and

     
2 3

1
1

/ 2 /T
nm
pN np p p pn n n

j i i i j j jp
pi

Z
S y u e X c

b
 




  
          

   
  . (3.13)

To solve (3.12) and (3.13), we need to define the new term

35

 1 1
TN m np p p

n i i ip i
B y u e

 
    .

(3.14)

Let us denote

 np np p
i i iD y u  . (3.15)

So that, equation (3.14) reduces as

1 1
TN m np p

n i ip i
B D e

 
   (3.16)

The objective of doing (3.16) is to find the terms np
eqvD such that

np p
n eqv eqvB D e  ,

(3.17)

where

     
2 2 2

1 2 ,
p p p p
eqv me e e e   

(3.18)

In the equations reported above (3.15), np
iy is the output Takagi-Sugeno

from the consequent part of Eq. (3.2), with 0 1 1 2...
np p pn n n
i jii iy w w X w X    ;

and the vector 1 ,.., ,..., T
T

p N
eqv eqv eqv eqve e e 

 
e contributes the same amount of

sum squared error that can be obtained jointly by all the errors p
ie from the

MIMO network.

From (3.17), the components of matrix  np

eqvD can be determined as:

36

  1
 q

eqv

p

eqv

q

eqvn

np

eqv eeeBD

(3.19)

After defining (3.19), we can rewrite (3.12) and (3.13) as follows:

   
2

1
/ 2 /T

n
pN np p pn n n

eqv eqvj j j jp
p

Z
S c D e X c

b




 
        

 
 (3.20)

and

   
2 3

1
/ 2 /T

n
pN np p pn n n

eqv eqvj j j jp
p

Z
S D e X c

b
 



 
        

 
 . (3.21)

The above procedure describes actually layer by layer computation

of Jacobian matrices for all parameters of neuro-fuzzy network [Palit 2005].

Again, after finishing all computation, then back to the Eq. (3.9c) for

updating the parameters. This updating procedure stops after achieving the

maximum iteration or the minimum error function.

3.3.4 The optimized results of NF architectures

In order to find the best initial parameter vector w in Eq. (3.5) -

these parameters are total parameters, i.e.: n
jc , n

j , n
iw0 , n

jiw - and to be

updated in the training algorithm, we proposed randomized Hill Climbing

(HC) procedure in order to find the optimized number of rules N for each m-

ternary models. This procedure is a local search algorithm that tries to find

37

the best local minimum from the large number of iteration procedures by

permitting the best training parameters that minimize the error model (em)

and neglecting the others. The optimized N membership function after

three weeks searching time as the results of HC procedure that explained in

Appendix A are: N=3, 8, 10, 11 and 17 for the 2, 4, 6, 8 and 10-ternary

respectively.

Regarding model performances for the ISA solution for 2-ternary:

NFTS exhibits tp = 2.2s, tc = 8e-5s, em = 0.871N and eg = 1.051N; NFLUT

exhibits tp= 2.3s, tc=5e-4s, em = 0 and eg = 1.283N; for the ISA solution for 4-

ternary: NFTS shows tp = 43s, tc = 1e-4s, em = 0.909N and eg = 0.909N; while

the NFLUT shows tp = 43.5s, tc = 3e-3s, em = 0 and eg = 0.611N; for the ISA

solution for 6-ternary: NFTS exhibits tp = 185s, tc = 2e-4s, em = 0.917N and eg

= 0.932N; NFLUT exhibits tp = 186s, tc = 5e-3s, em = 0 and eg = 0.498N; for

the ISA solution for 8-ternary: NFTS shows tp = 965s, tc=1.4e-3s, em = 0.658N

and eg = 0.985N; while the NFLUT shows tp = 983s, tc = 1.4e-2s, em = 0 and eg

= 0.528N; and for the ISA solution for 10-ternary: NFTS shows tp = 7.1e3s,

tc=1.9e-3s, em = 0.629N and eg = 0.998N; while the NFLUT shows tp = 7.3e3s,

tc = 3.8e-2s, em = 0 and eg = 0.397N;

Additionally, the comparisons of NF methods with other ISA

solutions are provided also in Chapter 4.

38

3.4 Neural Network models

3.4.1 Introduction

In general, the Neural Network (NN) is inspired by the human

biological nervous system whereas the NN consists of highly interconnected

networks with a large number of processing elements (called artificial

neurons), which resemble the human brain system The advantages of using

NN are: a) it is an efficient pattern recognition tool; and b) it acts like a

parallel distributed processing (parallel computing), which makes it possible

to accelerate the computational process.

We introduce the next extended network that improves the process

of pattern recognition of NN as recurrent network, or mostly called as

Recurrent Neural Network (RNN) and its similar architecture, a RNN without

feedback, also known as Multi-Layer Perceptron (MLP). The RNN has short-

term memory features that enable NN to achieve time-dependent

mappings [Elman 1990, Juang 2002, Palit 2005, Toha 2008]. Besides two

proposed methods above, some architectures that based on NN, such as

Boltzmann machine, Radial Basis Function Network (RBFN) and Jordan RNN

architectures, that well known in engineering practice will be discussed on

39

Chapter 5 briefly as challenged competitors for ISA solutions of ternary

MPRs.

3.4.2 RNN architecture

Two Neural Network methods considered here are based on

Recurrent Neural Networks (RNN) with hyperbolic-tangent activation

functions. Additionally the third NN method, which is a probabilistic weight

Hopfield Network (HN), will be explained in Section 3.5 with its

performance results. Moreover, both RNN that described in this section are

dynamic models that feature short-term memory and have capability to

represent time-dependent mappings [Palit 2005]. Both models are based on

the same overall architecture and only differ in the presence or absence of

the context layer.

In particular, for a given input X(t) = [X1(t), X2(t)] = [(t), M(t)] at the

time step t, both models calculate the actuator states ui(t) (for i = 1, …, m)

as:

 () = [(∑
 (())

)]

(3.22)

with () = √1 ⁄ (3.23)

40

FIGURE 4. ELMANN-RNN, NO. INPUT = 2, NO. OUTPUT = M, M = 2, 4, 6, 8,10; NO. CONTEXT

LAYER L = 21, 22, 25, 27, 30, TRAINING METHOD: BPA

 () = ∑
 ()

 =1 (1) 1

(3.24)

with () = .

In the above mentioned equations, () is the total input of L-hidden

neuron and lb1 , ib2 , HO
ilw , IH

ljw , and (for i = 1, …, m; j = 1, 2; l = 1, …, L)

are model parameters need to be determined. From Eq. (3.22), the two

different models, hereafter briefly referred to Multi-Layer Perceptron

Neural Network (MLP) and RNN type Elman (ERNN), are derived by

respectively selecting = 0 and = 1/L.

41

In addition, we need to establish the number of network parameter

(L) of the m-ternary MPRs which is L = 107, 158, 231, 305 and 420

parameters for 2, 4, 6, 8 and 10-ternary respectively. These are found by

the optimized three weeks learning procedure which employs 100% for the

2 and 4-ternary MPRs, 33% , 12% and 4% for the 6, 8 and 10-ternary MPRs

of the X-u correspondences known from the dataset .

In particular, the learning is performed here via an accelerated

version of the Back-Propagation Algorithm (BPA) [Palit 2005, Pasila 2006],

which is explained more detailed in Section 3.4.3.

3.4.3 Backpropagation Algorithm (BPA) on NN

The Multi-Input Multi-Output RNN that is represented in Fig. 4 can

generally be trained using suitable training algorithms. Some standard

training algorithms are Backpropagation Algorithm (BPA) and Levenberg-

Marquardt Algorithm (LMA). BPA, the standard algorithm for NN training, is

a supervised learning technique based on delta rule procedure (a gradient

descent method). It was first described by P. Werbos in 1974, and further

developed by D.E. Rumelhart, G.E. Hinton and R.J. Williams in 1986. This

algorithm is a learning rule for multi-layered Neural Networks. It is not only

useful for feed-forward networks (networks without feedback, or simply,

42

that have no connections that loop), but also for networks with feedback,

such as recurrent network. The term BPA is an abbreviation for "backwards

propagation of errors". The BPA is used to calculate gradient of error of the

network with respect to the network's modifiable weights. This gradient

descent method is almost used in a NN learning algorithm because it is a

simple procedure for finding the suitable parameters that minimized the

error training. To increase the accelerate learning in BPA, we introduce

additional momentum and oscillation into the standard version of BPA.

In order to start the BPA procedure, we assume that data pairs

input-output of five ternary models is the X-u correspondences and already

known from dataset (

,

). Here, the term j, i and p denote as the

number of input-output in the networks related to the number of

correspondence data training from data set . The goal is to find network

output, so that the performance, Sum Squared Error (SSE) is defined as:

 
2

1

0.5
TN

p
i i

p

SSE e


 

(3.25)

with the total SSE is minimized.

 1 2

1

...
m

i m

i

SSE SSE SSE SSE SSE


    

(3.26)

43

Here ,p p D p
i i ie u u  is the error of each output networks with i =1,…,m is

the number of output networks, p = 1, …, NT is the number of data training

from dataset , and p
iu and ,D p

iu are the predicted and desired outputs.

The problem of learning is how BPA works to adjust parameters of the RNN

(lb1 , ib2 , HO
ilw and IH

ljw), so that SSE can be minimized. To answer this

question, we introduce the gradient steepest descent rule for training of

feed-forward neural network, which is based on the recursive equations

(note: recursive equation is an equation that is used to determine the next

term of a sequence using one or more of the preceding terms). By using

recursive mode, we could determine the updated parameters without using

the differential calculation [Palit, 2005]:

   



















IH
lj

IH
lj

IH
lj

w

SSE
kwkw 1

(3.27a)

   



















HO
il

HO
il

HO
il

w

SSE
kwkw 1

(3.27b)

    















l

ll
b

SSE
kbkb

1

11 1 

(3.27c)

    















i
ii

b

SSE
kbkb

2
22 1 

(3.27d)

44

where SSE is the performance function at the thk iteration step and

 1IH
ljw k  ,  1HO

ilw k  ,  1 1lb k  and  2 1ib k  are the updated

parameters on  1k step. The starting values of those parameters are

selected randomly in the range of 0 and 1. Moreover, constant learning rate

 should be chosen properly. For convergence reason, practically a very

small learning rate 1  is chosen.

Furthermore, we need to solve the corresponding chain rules of the

last part in the right side Eqs. (3.27a) to (3.27d) so those equations have no

differential part:

1

m
lpi

IH IH
lpilj lj

aSSE SSE

w a w

      
               



(3.28a)

ipi

HO HO
ipil il

uSSE SSE

w u w

      
               

(3.28b)

1 11

m
lpi

l lp li

aSSE SSE

b a b

      
             


(3.28c)

















































i

ip

ip

i

i b

u

u

SSE

b

SSE

22

(3.28d)

Here, = () is the output L-hidden layer after the calculation of

activation function in (3.23). Moreover, by using chain rule procedure as

explained by Palit [2005, p.97-98], eqs. (3.28a) to (3.28d) can be written as:

45

 
2

1 1

1
Tm N

p p pHO
i jil lIH

i plj

SSE
e w a X

w  

                   


(3.29a)

1

TN
p p
i lHO

pil

SSE
e a

w 

 
    


(3.29b)

 
2

1 1 1

1
Tm N

p pHO
i il l

l i p

SSE
e w a

b  

              


(3.29c)

2 1

TN
p
i

i p

SSE
e

b 

 
 

 


(3.29d)

After substituting Eqs. (3.29a) to (3.29d) into Eqs.(3.27a) to (3.27d), we

finally build the updated parameters for the ERNN as:

     
2

1 1

1 1
Tm N

p p pHOIH IH
i jlj lj il l

i p

w k w k e w a X
 

                
 (3.30a)

   
1

1
TN

p pHO HO
iil il l

p

w k w k e a


     (3.30b)

     
2

1 1

1 1

1 1
Tm N

p pHO
l l i il l

i p

b k b k e w a
 

            
 (3.30c)

   2 2

1

1
TN

p
i i i

p

b k b k e


    (3.30d)

In general, the BPA training needs a large number of training epochs.

To accelerate the learning algorithm and to avoid the possible oscillation in

the training phase, a very small learning rate η as well as the momentum

46

version of BPA are presented. Momentum version of BPA is applied by

adding a small adaptive factor of momentum mo so the updated

parameters can be faster than the standard BPA. As seen in equations

(3.31), the update version of the parameters has a momentum constant

which is usually less than one (1mo ). In practice, we can propose adaptive

momentum and adaptive learning rate as well, if we find that learning

process is too slow

        11  kvkvmovkvkv (3.31)

where v denotes the parameter vector containing the parameters of ERNN,

namely il

HO

il

IH

lj bbww 21 ,,, .

Other issue of accelerating the training algorithm is that the training

can proceed in the opposite direction and usually produce oscillation. Like

in LMA, the oscillation must be control by using oscillation control routine

[16-17] as follows:

 Two sets of adjustable parameters are stored.

 If the following iteration reduces the error, then the next

iteration proceeds with the new parameters must be updated

and then replacing the old parameters set.

47

 On the other hand, if the next iteration increases the error

beyond the given limit, say as Wildness Factor (WF) of

oscillation (WF multiplies with the current error is bigger), then

the new set of parameters must be discarded and the next

iteration proceeds with the old parameters set.

3.4.4 Results of the optimized Neural Network models

Regarding the performances of the proposed Neural Network

models for the ISA solution, the optimized number of context layer L = 21,

22, 25, 27, 30 applied to the five ternary models, gives the results: a) 2-

ternary: MLP features tp = 40.1s, tc = 1.3e-3s, em = 0.588N and eg = 2.493N;

ERNN features tp = 9.3s, tc = 1.3e-3s, em = 0.476N and eg = 2.504N; b) 4-

ternary: MLP features tp = 318s, tc = 1.5e-3s, em = 0.447N and eg = 1.681N;

ERNN features tp = 75s, tc = 1.5e-3s, em = 0.422N and eg = 1.697N. c) for 6-

ternary: MLP features tp = 2622s, tc = 1.8e-3s, em = 0.448N and eg = 0.963N;

ERNN features tp = 229s, tc = 1.8e-3s, em = 0.377N and eg = 0.962N. d) for 8-

ternary: MLP features tp = 11358s, tc = 2.6e-3s, em = 0.464N and eg = 0.515N;

ERNN features tp = 639s, tc = 2.6e-3s, em = 0.377N and eg = 0.389N. e) for 10-

ternary: MLP features tp = 3.1e+4s, tc = 3.3e-3s, em = 0.346N and eg =

0.379N; ERNN features tp = 7.8e+3s, tc =3.3e-3s, em = 0.300N and eg =

48

0.335N. Comparison of MLP and ERNN model performances with the other

ISA methods are provided also in Chapter 4.

3.5 Hopfield Network model

3.5.1 Introduction

HN is a deterministic local search model which is based on NN and

proposed by Hopfield and Tank [28-29]. It has a single-layer fully

interconnected recurrent network with symmetric weight parameters

without self-connection. The output of each neuron is fed back through a

delay unit to the inputs of all neurons. This condition gives the network

auto-associative capabilities, which means the network can store number

patterns in the weight matrix. By request, the patterns can be recalled to

the network until it reaches the stable condition (practically, some or even

all number of patterns of the ternary state can be saved in the updated

matrix). In the HN method, weight and bias of the network can be updated

using training algorithm such as BPA. But for on-line implementation,

updating the learning parameter is not suggested because it is very time-

consuming. Besides updating the weight matrix via BPA, HN can be also

applied on-line without learning phase. The examples of the proposed HN

49

without learning, which is based on the amount of gain amplifier in the

network, are High-Gain HN and Low-Gain HN. For example, Waldron et al

[2001a, 2001b] suggested the Hopfield Network architecture with High Gain

algorithm for finding the binary output of parallel array. Other case, Low-

Gain HN is proposed for detecting a peak in a neural A/D converter

application, by Dempsey et al [1995].

In this thesis, a probabilistic HN with High-Gain closed loop network is

applied together with a deterministic HN with High-Gain method according

to the Yang’s thesis(2001b).

3.5.2 Hopfield Network Architecture

The proposed model of HN is adapted from a continuous High-Gain

Hopfield Network that is offered by Waldron et al (2001a, 2001b). The

architecture of such HN can be seen in the Fig 5.

FIGURE 5. ARCHITECTURE OF CLOSE-LOOP HOPFIELD NETWORK WITH HIGH-GAIN

50

In this scheme, the High-Gain close-loop block diagram is connected to the

random weight and bias and ternary activation function. The output U is the

results of HN and is actually clamped with the desired output ternary of

MPRs. The updated out can be written as:

 (1) = () (3.32)

where the term is the output before activation function (using tansig).

After close-loop of High-Gain is changed to open-loop using [27], the term

 can be written as follows:

 = (

)(∑ ()) (3.33)

Here is High Gain that can be selected experimentally (i.e. = 1000);

 is the feedback gain, can be set as 1; and the initial () is starting with a

null vector. The weight and bias are fixed. They are chosen using

two procedures, as follows:

1) Probabilistic weight of HN using random procedure

 = 1 (,) (3.34)

and = (1 (, 1)) (3.35)

where, N is the number of ternary actuators. By using above procedures,

we can find the weight of and the bias values between -1 to +1.

2) Deterministic weight of HN using non-random procedure

51

The weight and the bias for the deterministic version are found from the

performance index equation (see Yang, 2001a for details), and briefly

can be seen in (3.35) and (3.36) as follows:

 =

[

 1 … 1
 1

 1]

 (3.36)

and = [
 1
 1

] (3.37)

here, is calculated from   



N

i

iiip ufuM
1

, , with N is the

number of output mechanisms; and is the vector moment with

the p samples of component.

Both procedures follow mathematic model from (3.32) and (3.33). We can

see that the HN as depicted in Fig. 15 is constructed by the High-Gain closed

loop amplifier in on-line procedure and it has no learning step. We choose

the closed loop gain procedure in order to saturate the summing output of

weight and bias into ternary state. Additionally, the results of probabilistic

HN are given in the Chapter 4 and shown that the proposed HN is a

promising model for ISA solution, because it demonstrates the best

generalization error compared to the deterministic HN. Moreover, the main

52

problem of deterministic version is that the output U from (3.32) is easy to

trap to the local minima. This is happened because the closed loop equation

is too simple and the two gains (HG and T) are constant. To reduce the on-

line error, we proposed adaptive gain (HG and T) in the on-line process.

3.5.3 Results of the Hopfield Network model

Regarding the performances of the proposed HN model for the ISA solution,

the high gain number (HG) and the feedback gain are 1000 and 1

respectively. The closed loop architecture of HN, connected to the random-

symmetric weight matrix as well as bias, gives the results: a) 2-ternary: tp =

0.2s, tc = 1.1e-3s, em = 0 and eg = 0.833N; b) 4-ternary: tp = 0.3s, tc = 5.1e-3s,

em = 0N and eg = 0.585N; c) for 6-ternary: tp = 1.4s, tc = 0.022s, em = 0N and

eg = 0.484N; d) for 8-ternary: tp = 24s, tc = 0.121s, em = 0N and eg = 0.329N;

e) for 10-ternary: tp = 892s, tc = 0.202s, em = 0N and eg = 0.301N.

The results of deterministic HN are shown in Table 6. These performances

are established by using high number of iteration (maximum 5000

iterations) and combined with adaptive gain. The results show that the

procedure is not optimal and need to be improved.

53

TABLE 6. COMPARISON OF THE M-TERNARY MPRS OF DETERMINISTIC HN

Method/Description

2-

ternary

4-

ternary

6-

ternary

8-

ternary

10-

ternary

on-line calculation tc (s)
0,0034 0,007 0,015 0,218 0.570

generalization error eg (N)
1,4 1,17 1,01 0,854 0,766

Full-scale generalization error

FGE (%)
28,3 23,5 20,3 17,1 15,3

Because of the limitation performance of deterministic HN, we compare the

performances of probabilistic HN with other ISA methods.

54

Chapter 4

Comparison of the Six Inverse Static Analysis Models

4.1 Introduction

This chapter outlines the training and testing results from six ISA

models in the tables and figures. Performance of the m-ternary MPRs will

be compared to the proposed ISA models with the following descriptions:

tp : time for preparing the model, including learning procedure

(s)

tc : time for computing online (s)

em : error modeling (N)

eg : generalization error(N)

STD : generalization standard deviation (N)

FGE : full scale generalization error (%)

Additional description of STD and FGE are explained in the following

equations:

55

 

Test

N

r

avgr

N

ee

STD

Test






 1

2

, (4.1)

 
%

GMmax

e
FGE

g
100 , (4.2)

where
Test

N

r r

g
N

e
e

Test

  1

2

 (4.3)

Here NTest is the number of data test equal to 1701 rows of the input couple

of continuum real numbers X (α,M) and those data are the same for all m-

ternary models. Other term GM is a generated moment with the maximum

value between ±5Nm as depicted in Fig. 2. The results of each m-ternary

model can be seen in Sections 4.2 to 4.5.

4.2 Results of 2-ternary MPRs

The comparison results of the 2-ternary models can be considered in

Table 7 as well as in the Figs. 6 and 7. The results show that HN is the best

method concerning online computing time tc and the generalization error

eg. As additional facts, LUT has the best preparation time tp and the five

methods have FGE more than 10%;

56

TABLE 7. PERFORMANCE COMPARISON OF THE 2-TERNARY MPRS OF THE CONSIDERED

METHODS

Method/Description LUT NFTS NFLUT MLP ERNN HN

tp (s) 0.1 2.2 2.3 40.1 9.3 0.2

tc (s) 0.008 8e-5 5e-4 1.3e-3 1.3e-3 1.1e-3

em (N) 0 0.871 0 0.588 0.476 0

eg (N) 2.594 1.051 1.283 2.493 2.504 0.833

STD of eg (N) 1.528 0.579 0.903 1.495 1.483 0.480

FGE (%) 51.8 21 25.7 49.9 50 16.7

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB.

FIGURE 6. TRAINING PERFORMANCE OF 2-TERNARY MPRS WITH DIFFERENT ISA METHODS

57

FIGURE 7. TESTING PERFORMANCE OF 2-TERNARY MPRS WITH DIFFERENT ISA METHODS

4.3 Results of 4-ternary MPRs

The comparison results between the 4-ternary models can be

considered in the Table 8 as well as in the Figs. 8 and 9. The results show

that HN is the best method concerning the generalization error eg, NFTS

shows the best online computing time tc, and LUT has the best preparation

time tp. The six proposed methods have FGE more than about 10%.

58

TABLE 8. PERFORMANCE COMPARISON OF THE 4-TERNARY MPRS OF THE CONSIDERED

METHODS

Method/Description LUT NFTS NFLUT MLP ERNN HN

tp (s) 0.3 43 43.5 318 75 0.3

tc (s) 0.009 1e-4 3e-3 1.6e-3 1.6e-3 5.1e-3

em (N) 0 0.909 0 0.447 0.422 0

eg (N) 1.664 0.909 0.611 1.681 1.697 0.589

STD of eg (N) 0.985 0.513 0.368 0.991 1.000 0.368

FGE (%) 33.3 18.2 12.2 33.6 33.9 11.8

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB.

FIGURE 8. TRAINING PERFORMANCE OF 4-TERNARY MPRS WITH DIFFERENT ISA METHODS

59

FIGURE 9. TESTING PERFORMANCE OF 4-TERNARY MPRS WITH DIFFERENT ISA METHODS

4.4 Results of 6-ternary MPRs

The results of the 6-ternary models can be seen in the Table 9 as

well as in the Figs. 10 and 11. The results demonstrate that HN and NFTS

are the best method concerning the best preparation time tp and online

computing time tc respectively, and the HN has the best generalization error

eg. Concerning minimum requirements i.e. real-time computing and FGE,

the NFLUT is the only method recommended for ISA solution.

60

TABLE 9. PERFORMANCE COMPARISON OF THE 6-TERNARY MPRS OF THE CONSIDERED

METHODS

Method/Description LUT NFTS NFLUT MLP ERNN HN

tp (s) 3.2 185 186 2622 229 1.4

tc (s) 0.013 2.1e-4 5e-3 1.8e-3 1.8e-3 0.022

em (N) 0 0.917 0 0.448 0.377 0

eg (N) 0.891 0.932 0.498 0.963 0.962 0.484

STD of eg (N) 0.533 0.524 0.284 0.569 0.587 0.321

FGE (%) 17.8 18.6 9.9 19.3 19.2 9.7

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB.

FIGURE 10. TRAINING PERFORMANCE OF 6-TERNARY MPRS WITH DIFFERENT ISA METHODS

61

FIGURE 11. TESTING PERFORMANCE OF 6-TERNARY MPRS WITH DIFFERENT ISA METHODS

4.5 Results of 8-ternary MPRs

The performance of the 8-ternary models is shown in the Table 10

and in the Figs. 12 and 13. The results demonstrate that HN and NFTS are

still the best method concerning the best preparation time tp and online

computing time tc respectively, and the ERNN has the best generalization

error eg. Concerning minimum requirements i.e. real-time computing and

FGE, the ERNN and MLP are the methods that recommended for ISA

solution.

62

TABLE 10. PERFORMANCE COMPARISON OF THE 8-TERNARY MPRS OF THE CONSIDERED

METHODS

Method/Description LUT NFTS NFLUT MLP ERNN HN

tp (s) 48 965 983 11358 639 24

tc (s) 0.35 1.4e-3 1.4e-2 2.5e-3 2.5e-3 0.121

em (N) 0 0.658 0 0.464 0.377 0

eg (N) 0.805 0.985 0.528 0.515 0.389 0.329

STD of eg (N) 0.499 0.585 0.328 0.431 0.347 0.262

FGE (%) 16.1 19.7 10.5 10.3 7.8 6.6

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB.

FIGURE 12. TRAINING PERFORMANCE OF 8-TERNARY MPRS WITH DIFFERENT ISA METHODS

63

FIGURE 13. TESTING PERFORMANCE OF 8-TERNARY MPRS WITH DIFFERENT ISA METHODS

4.6 Results of 10-ternary MPRs

The results of using AI methods to the 10-ternary MPRs mechanism

can be seen in the Table 11 as well as in the Figs. 14 and 15. The results

demonstrate that HN and NFTS are still the best method concerning the

best preparation time tp and online computing time tc respectively, and the

HN has the best generalization error eg. Again, concerning minimum

requirements of ISA solution i.e. real-time computing and generalization

error, the ERNN and MLP are the recommended methods.

64

TABLE 11. PERFORMANCE COMPARISON OF THE 10-TERNARY MPRS OF THE CONSIDERED

METHODS

Method/Description LUT NFTS NFLUT MLP ERNN HN

tp (s)
2.1e3 7.1e3 7.3e3 3.1e4 7.8e3 892

tc (s)
2.8 1.9e-3 3.8e-2 3.3e-3 3.3e-3 0.203

em (N)
0 0.622 0 0.346 0.300 0

eg (N)
0.551 0.998 0.3966 0.379 0.335 0.301

STD of eg (N)
0.361 0.567 0.241 0.337 0.303 0.158

FGE (%)
11.0 19.9 7.9 7.6 6.7 6.01

Note: the CPU has 32 bit operating system, dual core, 2.6 GHz, RAM 4 GB.

FIGURE 14. TRAINING PERFORMANCE OF 10-TERNARY MPRS WITH DIFFERENT ISA METHODS

65

FIGURE 15. TESTING PERFORMANCE OF 10-TERNARY MPRS WITH DIFFERENT ISA METHODS

4.7 Summaries of six models of m-ternary MPRs

Summaries of the proposed methods in this section are based on the

requirement of ISA solutions which are real-time control (i.e. less than 5ms)

and generalization error (around 10% of FGE).

66

FIGURE 16. ON-LINE TIME COMPUTING TC OF M-TERNARY MPRS

FIGURE 17. FGE OF M-TERNARY MPRS

According to the facts from the sections 4.2 to 4.5 as well as from

additional Figs. 16 and 17 (whereas the figures explain a relation between

5E-05

0,0005

0,005

0,05

0,5

5

2-trits 4-trits 6-trits 8-trits 10-trits

Ti
m

e
 c

o
m

p
u

ti
n

g
in

 S
e

c
(L

o
g)

Time computing vs. m-ternary MPRs

LUT

NFTS

NFLUT

MLP

ERNN

HN

0,0

10,0

20,0

30,0

40,0

50,0

60,0

2-trits 4-trits 6-trits 8-trits 10-trits

Fu
ll-

sc
al

e
 G

e
n

e
ra

liz
at

io
n

 E
rr

o
r

(i
n

 %
)

FGE vs. m-ternary

LUT

NFTS

NFLUT

MLP

ERNN

HN

67

time computing tc vs. m-ternary MPRs and the generalization error FGE vs.

m-ternary MPRs), the summaries of using six ISA solutions in m-ternary

MPRs can be concluded as follows:

1. For 2-ternary MPRs: HN, NFTS and NFLUT methods show better

performance concerning the real-time computation and

generalization error, compared to the MLP, ERNN as well as LUT

methods. In addition, HN demonstrates the lowest generalization

error (FGE = 16,7%) and NFTS shows the lowest on-line computing

respectively (tc = 8e-5s).

2. For 4-ternary MPRs, HN shows the lowest generalization error.

NFLUT and NFTS perform the second and third position. The MLP,

ERNN and LUT methods have less accuracy in this generalization

phase. In addition, only LUT does not fulfill the real time

requirement. Other methods (NFTS, MLP, ERNN, NFLUT and HN)

show their ability to control MPRs in real time.

3. For 6-ternary MPRs, only NFLUT meets the requirement as ISA

solution, such as on-line computing and generalization phase. In

addition, HN fulfills accuracy of generalization phase but in contrast

other methods i.e. NFTS, ERNN and MLP, fulfill on-line computing

requirement.

68

4. For 8-ternary MPRs, ERNN is the most accurate method for ISA

solution, features the best generalization ability and requires a

rather small computational time during the on-line phase. HN has

better accuracy than ERNN, but require a larger off-line and on-line

computational time respectively. NFTS has better on-line

computational phase but less generalization phase compare to

ERNN and HN.

5. For 10-ternary MPRs, ERNN and MLP are the suitable solution for ISA

problem. They offer not only the accuracy in the generalization

phase, but also the real-time approximation as shown in their on-

line computing time tc. The HN still shows the highest accuracy

concerning the generalization error compared to others, but

requires a larger on-line computing time.

6. In all m-ternary MPRs, we can also describe the facts that: a) NFTS

features the shortest on-line computational time. However it is

more inaccurate compared to NFLUT, MLP, ERNN and HN in

generalizing phase; and b) HN features the lowest generalizing phase

but it has bigger on-line computing time.

69

Chapter 5

Comparison of Proposed AI Methods with Other Methods

In general, most of the artificial intelligence methods with learning

capability can be applied for general approximator of non-linear control,

such as ISA problem. To be practically applied to the ISA of MPRs

mechanisms, the proposed AI methods must fulfill some requirements of

ISA, such as real-time control procedure and small full-scale generalization

error (this is already explained in Section 4.1).

Additionally, most of the AI methods can provide the solution of the

ISA of ternary MPRs. From literature, some of them are: Boltzmann

Machine (BM), Radial Basis Function Network (RBFN), Jordan Recurrent

Neural Network (JRNN), Wavelet Network (WN) and Support Vector

Machines (SVMs). The solutions mentioned above are based on learning

capability, stochastic model, signal analysis as well as statistic approach.

Brief summaries of those methods are reported in the following sections.

70

5.1 Boltzmann Machine (BM)

BM method is named in honor of a 19th century Austrian physicist

Ludwig Boltzmann by its inventors, Geoffrey Hinton and his co-workers. BM

is a stochastic machine which consists of stochastic neurons. As shown in

the Fig. 18, the BM has two groups of neurons, i.e.: hidden neurons and

visible neurons. Both groups are stochastic with probabilistic firing

algorithm. In this scheme, the output of BM is actually the visible units that

should be updated in the closed loop network, as shown in the Fig. 18.

FIGURE 18. ARCHITECTURE OF BOLTZMANN MACHINE, WITH H NUMBER OF HIDDEN NEURONS

AND I NUMBER OF VISIBLE NEURONS

Normally BM has two possible states (-1 and +1 or 0 and 1 for off

and on condition), but it is possible to adapt BM into ternary mode by

71

modifying its firing algorithm. Moreover, another feature of BM is the use

of symmetric weight connection between its neurons. This form is

motivated by statistical physics considerations.

The visible part of BM provides a direct interface between the

network and the environment of application (here equivalent with the

ternary states of proposed MPRs). On the other hand, the hidden neurons

always operate freely. They are used to figure out a number of constraints

in the network. Moreover, the hidden part in this network completed the

task by capturing statistical correlation in the visible neurons. These

neurons are clamped or connected directly to the output patterns. The

network represent here is the unsupervised learning procedure that

performs pattern classification of the states of the MPRs.

In brief, the goal of BM is to produce a Neural Network that categorizes

input patterns according to a Boltzmann distribution [31], where the

assumptions are made as follows:

• Each environmental vector persists long enough for network to reach

thermal equilibrium. The thermal equilibrium is the condition where

the desired visual states are achieved, by cooling/reducing the

parameter, called as T parameter, slowly until the target is found.

72

• There is no structure in the sequence in which environmental vectors

are clamped or connected to the visible neurons of the network.

Because of the simplicity of the network, BM can be developed over the

deterministic Hopfield model that is explained in Section 3.5, as one of the

ISA solutions. As on-line algorithm such as HN, BM replaces the activation

function of HN, which is a deterministic activation function, with a

probabilistic activation function, that can be written as:

 = 1 (1 (⁄))⁄ (5.1)

This is the stochastic function for binary case. For ternary case, Eq. 5.2 can

be modified as:

 = (1 (⁄))⁄ 1 (5.2)

where is the parameter, acts like temperature; and is the energy gap

resulted from the flip of the state in the cycle process [30].

To explain (5.2), we calculate the output function with different

temperature T. The results can be seen in Fig. 19 below.

73

FIGURE 19. GRAPH OF DIFFERENT TEMPERATURE T IN TERNARY PROBABILISTIC ACTIVATION

FUNCTION

In the learning process of BM, T starts with high value and decreases

to a very small value, the probability of each output node is firmly changed

from +1, 0 to -1 in ternary case. In other words, the network will move to

the next state without being able to jump back. This process is called also as

simulated annealing.

Recently, many scientists compare the works of HN and BM in the

same applications. The reason is because the potentialities of both methods

use the equivalent network and give the comparable results (concerning

full-scale generalization error FGE and time computing tc). In brief,

similarities and differences between BM and HN can be described as

follows:

74

Similarities:

 Connections between neurons (weights) are symmetric

 Neuron states are bipolar

 Weights and biases are selected at random for asynchronous

update

 There is no self-feedback

Differences:

 Architecture of BM permits the use of hidden layer

 BM uses probabilistic activation function while HN with a

deterministic activation function

75

5.2 Radial Basis Function Network (RBFN)

RBFN, as well as MLP, is an example of nonlinear layered

feedforward neural networks which is a universal approximator too. The

name radial basis function is coming from an approach to approximate the

function based on adaptive function interpolation (Broohead and Lowe

1988). Similarly, Moody and Darken proposed a fast learning neural

network structure with locally tuned processing units.

RBFN was enthusiastically welcome by NNs society, because it

demonstrated the improved capability of solving classification problems,

which is not done by a global function (like sigmoid function in MLP). For

this reason, some locally classified basis function such as Gaussian

functions, wavelets or B-spline functions are commonly proposed. Here,

Moody [32] proposed one activation function like shown in (5.3),

 = (‖ ‖

 ⁄) (5.3)

which is similar to the Gaussian density function centered at and spread

around centre .

76

FIGURE 20. RBFN ARCHITECTURE

Furthermore, the RBFN is a feedforward network with three layers

and basically it is similar to the MLP with one hidden layer. The common

configuration of the RBFN can be seen in Fig. 20. The input layer of the

RBFN is directly connected with the hidden layer with gain one. So the

weighting parameters (including biases) are only placed to the connection

between hidden and output layers. In contrary to MLP, the output layer of

RBFN is a summation of all output functions, which is directly associated to

the output desired. This makes the learning parameter of RBFN different

77

from the training algorithm on the backpropagation networks (MLP). The

main important issue here is how to select each neuron in the hidden layer

(in a Gaussian function: parameters center and spread around

centre). To select those parameters, we can propose clustering

algorithm, such as k-means clustering, which is capable to determine the

optimal position of center and spread parameter.

Moreover, the output network can be found easily by (5.4a-5.4b) as

follows:

 = ∑ (‖ ‖

 ⁄) (5.4a)

 = (∑ (‖ ‖

 ⁄)) (5.4b)

where is the vector input of the network; and are the weighting

and bias parameters between hidden and output layers. Here, only and

 are tuned in training process. The output of (5.4b) is exactly the

3-state outputs of the desired outputs of MPRs.

Moreover, Haykin [31] explained some differences between RBFN and

MLP such as:

 RBFN basically has a single hidden layer, while MLP can have more

than one hidden layers.

 In MLP, hidden and output neurons have the same underlying

function. In RBFN, they are specialized into distinct functions.

 In RBFN, the output layer is linear, but in MLP, all neurons are

nonlinear.

78

 The hidden neurons in RBFN calculate the Euclidean norm of the

input vector and the center, while in MLP the inner product of the

input vector and the weight vector are calculated.

 The MLP constructs global approximations to nonlinear input–

output mappings, while the RBFN constructs a local approximation

to nonlinear input–output mappings using localized nonlinear

function (e.g. Gaussians).

Concerning the structure of RBFN, the training procedure includes two

phases below:

 Phase one: Gaussian parameters must be initialized using such as

unsupervised clustering algorithm, linear vector quantization (LVQ),

etc.

 Phase two: Adaptive training algorithm for updating the weighting

parameters (BPA, LMA).

By the two-phase explanation above, the RBFN increases the number of

offline computing time in the learning phase. So this network needs at least

two steps optimization processes, which are finding the optimal Gaussian

parameters in the hidden layers and updating the weight parameters in the

output layers. Once the optimal parameters are found, the RBFN

performance could be determined easily. In general, for finding better

79

minimum error or better accuracy in the similar application, using MLP is

more suggested than RBFN [25, 31].

5.3 Jordan Recurrent Neural Network (JRNN)

In brief, the JRNN is a NN with short-term memory features that

takes the output network as feedback to the state units. Each output is

connected to one state unit with the constant weight. When the previous

output of a network is crucial in determining the next learning, as in the

design of a robot trajectory, a Jordan network [16], which has similar

architecture with Elman network as explained in Section 3.4.2, seems more

appropriate than Elman’s. But, if the past internal neural responses are

more important as in dynamic control problems, then an Elman network

may be preferred [15].

80

FIGURE 21. JORDAN NETWORK (NOT ALL CONNECTIONS ARE SHOWN)

If we considered JRNN that shown in Fig. 21 as one of the ISA solution, we

must derive output network () by modifying MLP equation (3.3) as

follows:

 () = ((∑ (∑
 () (1))))

 (5.9)

where () and () are input and output of the network; 1 and are

the biases input in the hidden and the output layers; , and are

the weighting related to the hidden-output, input-hidden and the constant

81

weighting of the state units respectively; additional (1) is the short-

term output, where the typical initial () = .

The activation function of hidden neuron, as well as the output

neuron (), uses the sigmoid function tanh. In addition, we can choose

the constant parameter as follows:

 = 1, the network become a fully connected Jordan NNs

 =
1

, the network become a normalized context-fully

connected Jordan NNs

 = , the network become a MLP

Concerning the comparison between ERNN and JRNN, so far we do not

know which feedbacks (Elman or Jordan feedback) have better influence to

the ISA solution. This makes JRNN a potential competitor to ERNN.

5.4 Wavelet Neural Network (WNN)

Wavelets are a class of function used to localize a given function or

continuous signal in both position and scaling. The major advantage

afforded by wavelets is the ability to perform local analysis — that is, to

analyze a localized area of a larger signal. Compared to other signal analysis

(i.e. Fourier, etc.), the wavelets have strong capability to reveal the aspects

82

of data such as trends, breakdown points, and self-similarities. More detail

about wavelets analysis and the comparison with Fourier analysis and other

mathematical analysis can be seen in Wavelet Toolbox description [40].

In general, wavelets form the basis of the wavelet transform (WT)

(Daubechies I. [34]), whereas a WT is a representation of basis function

called wavelets where they dilated (or scaled by factor of a) and translated

(or shifted by factor of b) into a finite-length of prototype wavelet (known

as mother wavelet), that can be written as

 () =

√
 (

) , (5.10)

here () represents the family of wavelets obtained from the single

 () and , are the scale and translate values in the time or frequency

domain; is the input wavelet network = 1, and parameter

wavelet = 1, , , respectively, with hidden unit of the wavelet

layer.

In general, WT are classified into continuous WT (CWT) and discrete

WT (DWT). CWT is designed to work with functions defined over the whole

real axis, while DWT deals with functions that are defined over a range of

integers (example: t =0, 1,…, N-2, N−1, where N denotes the number of

values in the time series).

83

Concerning ISA solution, WT replaces the activation function in the

neural network. This activation function has similar purpose with the

sigmoid function in MLP or Gaussian function in RBFN. Furthermore, a

number of publications reported on the analysis and applications using

Wavelet Neural Network. Zhang Q. et al (1992) introduced Wavelet

Network as universal approximator; Rao S.S. et al (1994) proposed feedback

in Zhang’s work, and known as Recurrent Wavelet Neural Network (RWNN);

and Abiyev R.H. (2008, 2011) combined Fuzzy and Wavelet Neural Network

(FWNN) for the identification, control and time series prediction problems.

The structure of WNN, as universal approximator, explained in this

thesis is depicted in Fig. 22. This is a feed-forward neural network with one

hidden layer and whose output layer consists of several linear combiners.

The hidden layer consists of wavelets, whose activation functions are

constructed from a wavelet basis.

84

FIGURE 22. WAVELET NEURAL NETWORK (NOT ALL CONNECTIONS ARE SHOWN)

From Fig. 22, the ternary state-output of WNN can be defined as

 = (̅̅ ̅ ∑ ()

), for = 1, 2, ..., K (5.11)

where = 1, 2, ..., m output ternary; is the weight coefficients between

wavelet layer and output layer; and the additional value ̅̅ ̅ is needed to

deal with the functions whose mean are non-zero. All parameters in Eqs.

(5.10) and (5.11) (, , ̅̅ ̅) can be chosen properly in the

beginning of iteration by some techniques, for instance orthogonal least

square procedure [35] and clustering method [39]. For updating the

85

parameters, some learning procedures can be used, such as stochastic

gradient algorithm and genetic algorithm [35, 38].

5.5 Support Vector Machines (SVMs)

Originally, SVMs were designed to solve problems in pattern

recognition, as binary classifier, by determining a hyperplane that separates

two states or groups (positive and negative groups) and optimizing the

separated margin between them. This can be done clearly by using the

theory of statistical learning and the method of structural risk minimization

(Vapnik, 1971, 1995). The concept of SVM states that the mapping of an

input space X into a properly high-dimensional space (called as feature

space), using a non-linear mapping function () could be more linearly

separable than in the low dimensional input space. The different between

input space and feature space can be described in Fig. 23.

FIGURE 23. MAPPING FROM INPUT SPACE INTO FEATURE SPACE

86

A brief description on how to change an input space to the feature

space of the SVM can be shown on Fig 23. The left figure is a low

dimensional data (input space) while the right one is the high-dimensional

data (feature space). A training set = { , } is given, where the input

vectors = (
(),

(), … ,
()) and the output vectors { 1, 1};

with = 1,… , -dimensional vector.

Moreover, optimal hyperplane separates the equal distance

between the data point which are nearest to the boundary of the two

classes. Such data points must satisfy the classified equations according to

Vapnik’s formulation:

 = 1 (5.12a)

 = 1 (5.12b)

Nonlinear mapping from input space to feature space is carried out using

the kernel function family as follows

 () = { (), (),… , () }, (5.13)

where the linear discriminant function can be defined as

 ∑

 () = (5.14)

The structure of SVM, as universal approximator is depicted in Fig. 24.

Similar to three layer network, the SVM is a feed-forward network with one

hidden layer with kernel activation function. The output layers consist of

several linear combiners with updated weight .

87

FIGURE 24. BASIC ARCHITECTURE OF SVM

 The outputs of SVM can be written as:

 = (∑ ∑ ()

), (5.15)

for = 1, 2; =1, 2, ..., m ternary output and input = [,].

Moreover, in engineering SVM has been used in several applications

as universal approximator. For example: Cao et al (2001) proposed SVMs in

financial time series forecasting of S&P daily index; Mukherjee et al (1997)

investigated SVM and other predicted method for chaotic time series

prediction. Both Cao and Mukherjee used several methods as competitors

of SVMs and they experimentally proved that SVMs perform better

generalization capabilities than other compared methods.

88

Chapter 6

Conclusion and Future Works

As conclusion, this thesis presented: 1) five planar massively parallel

robots (MPRs) with 2, 4, 6, 8 and 10 three-state force actuators and one

continuous degree of rotational motion; 2) one brute-force method, two

Neuro-Fuzzy methods, two Neural Network methods and one Hopfield

Network method for the solution of inverse static analysis of the considered

MPRs. Thanks to the partitioned and spatially distributed actuator

architecture, the considered discrete robot (specially for 6, 8 and 10-ternary

MPRs) features rather sufficient, identical and accurate torque generation

capabilities, compared to the standard CSL mechanism (actuated by a single

continuously regulated force generator).

Comparison among the considered inverse static analysis methods

highlighted that: 1) Elman type Recurrent Neural Networks and Neuro-Fuzzy

Takagi-Sugeno methods are both suitable for real-time control applications,

with the former providing more accurate solutions and generalization

capabilities while the later involving less on-line computational time; 2)

Hopfield Network method is the most powerful method for 2, 4, 6, 8 and

10-ternary MPRs, offers the lowest generalization error but still has a

89

significant on-line computing time. 3) Both ERNN and MLP methods can

approximate the output of 8 and 10-ternary with good accuracy and in real-

time computing. 4) The brute force method requires less time preparation

but significant on-line computational time besides featuring rather limited

generalization capabilities for 2, 4, 6, 8 and 10-ternary MPRs.

As future works on designing the ternary MPRs, some highlights

could be proposed for example: 1) increasing the number of m-ternary

models, such as 12-ternary or more, will be a good advantage to test both

NF and RNN methods, as well as proposing a ternary MPRs with more than

one DOF; 2) comparing the performances of neural network methods, such

as: ERNN, MLP and HN, as proposed in this thesis, with Boltzmann machine,

RBFN, Jordan RNN, WNN and SVM that explained in Chapter 5; 3) replacing

Hill Climbing as a local search procedure for finding the initial optimized

parameters, with extended version of global search algorithm such as

genetic algorithm (GA) or multi-objective optimization (MO) strategy.

90

References

[1] Pieper D.L., “The Kinematics of Manipulators under Computer Control”, PhD

Thesis, Stanford University, Stanford, CA, 1968.

[2] Roth B., Rastegar J. and Sheinman V., “On the Design of Computer Controlled

Manipulators”, First CISM-IFTMM Symposium on Theory and Practice of

Robots and Manipulators, pp. 93-113, 1973.

[3] Chirikjian G. S.,”A Binary Paradigm for Robotic Manipulators”, Proceedings of

the 1994 IEEE International Conference on Robotics and Automation, pp.

3063-3069, 1994.

[4] Chirikjian G.S., Lees D.S., “Inverse Kinematics of Binary Manipulators with

Applications to Service Robotics”, Proceedings of the 1995 IEEE International

Conference on Intelligent Robots and Systems, pp. 65-71, 1995.

[5] Lees D.S., Chirikjian G.S., “A Combinatorial Approach to Trajectory Planning

for Binary Manipulators”, Proceedings of the 1996 IEEE International

Conference on Robotics and Automation, pp. 2749-2754, 1996.

[6] Chirikjian G. S.,”Inverse Kinematics of Binary Manipulators Using a Continuum

Model”, Journal of Intelligent and Robotic Systems, vol.19, pp.5-22, 1997.

[7] Ebert-Uphoff I., Chirikjian G.S., “Inverse Kinematics of Discretely Actuated

Hyper-Redundant Manipulators Using Workspace Densities”, Proceedings of

91

the 1996 IEEE International Conference on Robotics and Automation, pp. 139-

145, 1996.

[8] Suthakorn J. and Chirikjian G. S.,”A New Inverse Kinematic Algorithm for

Binary Manipulators with Many Actuators”, Advanced Robotics, vol. 15, n. 2,

pp. 225-244, 2001.

[9] Sujan V.A., Lichter D., Dubowsky S., “Lightweight Hyper-Redundant Binary

Elements for planetary Exploration Robots”, 2001 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, pp. 1273-1278, 2001.

[10] Lichter D., Sujan V.A., Dubowsky S., “Computational Issues in the Planning

and Kinematics of Binary Robots”, Proceedings of the 2002 IEEE International

Conference on Robotics and Automation, pp. 341-346, 2002.

[11] Yang, P., “Design and Control of Bundles of Binary Actuators for Manipulator

Actuation,” PhD Dissertation, The Ohio State University, 2001a.

[12] Yang P., Waldron K.J., “Massively Parallel Actuation”, 2001 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, pp. 868-873,

2001b.

[13] Mukherjee S. et Murlidhar S., “Massively parallel binary manipulators”,

Journal of Mechanical Design, vol. 123, n. 1, pp. 68-73, 2002.

 [14] Elman J.L., “Finding structure in time”, Cognitive Science 14, pp. 179-211,

1990.

92

[15] Jordan M.I., “Serial order: A parallel distributet processing approach”, Neural-

Networks Models of Cognition, Elsevier, pp. 471-495, 1997.

[16] Palit AK, Babuška R, “Efficient training algorithm for Takagi-Sugeno type

Neuro-Fuzzy network,” Proc. of FUZZ-IEEE, Melbourne, Australia, vol. 3: 1538-

1543, 2001.

[17] Palit AK., Popovic D., “Nonlinear combination of forecasts using ANN, FL and

NF approaches,” FUZZ-IEEE, 2:566-571, 2002a.

[18] Palit AK, Doeding, Anheier, Popovic, “Backpropagation based training

algorithm for Takagi-Sugeno-type MIMO neuro-fuzzy network to forecast

electrical load time series,” Proc. Of Fuzz-IEEE, Honolulu, Hawai, vol. 1:86-91,

2002b.

[19] Palit AK., D. Popovic, “Computational Intelligence in Time Series Forecasting,

Theory and Engineering Applications”, Springer, 2005.

[20] Toha S.F., Tokhi, M.O., “MLP and Elman Recurrent Neural Network modeling

for the TRMS”,IEEE, Cybernetic Intelligent Systems, 2008.

[21] Xiaosong D, Popovic D, Schulz-Ekloff, Oscillation resisting in the learning of

Backpropagation neural networks, Proc. of 3rd IFAC/IFIP, Ostend, Belgium,

1995.

[22] Takagi, Sugeno, “Fuzzy identification of systems and its applications to

modeling and control,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, pp. 116–

132, Jan. 1985.

93

[23] Juang C.F., “A TSK-Type Recurrent Fuzzy Network for Dynamic Systems

Processing by Neural Network and Genetic Algorithms”, IEEE Transactions on

fuzzy systems, Vol. 10, No. 2, 2002.

[24] Pasila F., “Forecasting of Electrical Load using Takagi-Sugeno type MIMO

Neuro-Fuzzy network”, Master thesis, Bremen, 2006.

[25] Flake, G.W., “Square Unit Augmented, Radially Extended, Multilayer

Perceptrons” , Lecture Notes In Computer Science; Vol. 1524, Neural

Networks: Tricks of the Trade", pages: 145 - 163,Springer-Verlag London,

1998.

[26] Hagan, M.T., Menhaj, M.B., “Training Feedforward Networks with the

Marquardt Algorithm”, IEEE Transactions on Neural Networks, Vol. 5, No. 6,

November 1994.

[27] Ogata, K., “Modern Control Engineering, Fifth Edition”, Prentice Hall, 2010

[28] Hopfield, J.J., Tank, D.W., ‘Neural Computation of Decisions in Optimization

Problems’, Biol. Cybern: 52, 141-152, Springer-Verlag, 1985

[29] Hopfield, J.J., ‘Neurons with graded response have collective computational

properties like those of two-state neurons’, Proc. Natl. Acad. Sci. USA 81,

3088-3092, 1984

[30] Ackley D.H., Hinton G.E., ‘A Learning Algorithm for Boltzmann Machines’ ,

Cognitive Science 9, p. 147-169, 1985

94

[31] Haykin S., ‘Neural Network: A Comprehensive Foundation’, Prentice Hall,

1999

[32] Broomhead, D.S. and Lowe D., ‘Multivariate functional interpolation and

adaptive networks’, Complex Systems 2:321-355, 1988

[33] Jang J.S.R., “ANFIS: Adaptive network Based Fuzzy Inference System,” IEEE

Trans. On SMC., 23(3):665-685, 1993.

[34] Daubechies I., Ten Lectures on Wavelets, SIAM, 1992.

[35] Zhang Q. and Benveniste A., “Wavelet Networks”,IEEE Trans on Neural

Networks, Vol. 3, No. 6, 1992

[36] Rao SS. and Kumthekar B., “Recurrent Wavelet Networks”, IEEE, 1994

[37] Abiyev RH. and Kaynak O., “Identification and Control of Dynamic Plants Using

Fuzzy Wavelet Neural Networks”, IEEE International Symposium on Intelligent

Control, USA, 2008

[38] Abiyev RH., “Fuzzy wavelet neural network based on fuzzy clustering and

gradient techniques for time series prediction”, Neural Comput & Applic,

20:249–259, 2011

[39] Khao T.Q.D. et al, “Application of Wavelet and Neural network to Long-Term

Load Forecasting”, POWERCON, Singapore, pp.840-844, 2004

[40] Poggi J.M. et al, “Wavelet Toolbox, for use with Matlab”, User’s Guide,

MathWorks, 1996

95

[41] Kumar V. et al, “Adaptive control of Inverted Pendulum using Neuro-Fuzzy

Inference”, ICWET 2010 – TCET, Mumbai, India, 2010

[42] Cheng K.H. et al, “Recurrent neuro-fuzzy hybrid-learning approach to accurate

system modeling”, Fuzzy Sets and Systems 158 (2007) 194 – 212, Elsevier,

2007

[43] Popovich D. et al, “Electrical Load Forecasting Using a Neural-Fuzzy

Approach”, Nat. Intel. for Sched., Plan. and Pack. Prob., SCI 250, pp. 145–173,

Springer-Verlag Berlin, 2009

[44] Vapnik V., “On the uniform convergence of relative frequencies of events to

their probabilities”, Theory of Probability, Vol. 16, No.2, 1971

[45] Vapnik V., “The Nature of Statistical Learning Theory”, Springer-Verlag, New

York, 1995

[46] Mukherjee S. et al, “Nonlinear Prediction of Chaotic Time Series Using Support

Vector Machines”, Proc. Of IEEE NNSP, Florida, 1997

[47] Cao L. et al, “Financial forecasting using Support Vector Machines”, Neural

Computation & Application, 10:184-192, 2001

[48] Di Canio, “Analisi di un sistema di attuazione iper-ridondante e a regolazione

discreta”, Laurea Thesis, University of Bologna, 2011

[49] Yunfeng W, Chirikjian G.S., “Workspace Generation of Hyper-Redundant

Manipulators as a Diffusion Process on SE(N)”, IEEE Transaction on Robotics

and Automation, 2004

96

APPENDIX A

HILL CLIMBING PROCEDURE

The randomized Hill Climbing procedure (HC) is a local search

algorithm and tries to find the best local minimum from the huge iteration

procedure, by permitting the best training parameters that minimize the

error function (SSE) and neglecting the others.

LOOP

HILL CLIMBING

Search Procedure
If Error min found

Save Parameters

Inputs

ARTIFICIAL
INTELLIGENCES

METHODS

BPA/LMA
Training

Procedure
Oscillation

Control

Momentum

3-State
Outputs

After training STOP,

Model is ready for

Testing

Calculate
Errors

RMSE

STOP

TRAINING when

RMSE< RMSE

desire

Angle 

Moment M

The following steps of randomized HC are carried out:

a. Make the loop : 1) case NN: No of neurons Xhidden in hidden layer from

5-50; 2) case NF : No. of N rules from 2 – 15.

b. Make the loop : No of experiments of each initial parameters = 100 .

97

c. Make the loop : No of iteration, each experiment has iteration from

10 to 1000.

d. Calculate training output and find the suitable prediction output.

e. Save the parameters after step d completed. If the next iteration

produce better result, replace the old parameters, otherwise the new

parameters are neglected.

f. Determine the resultant moment prediction and calculate the

prediction performance error.

g. Early stopping criteria (see Appendix B): Terminate the program if the

requirements are satisfied in step f.

h. Repeat again step a if there is no satisfied results until the loops are

finished and save the best parameters.

98

APPENDIX B

EARLY STOPPING PROCEDURE

In practice, the principle of early stopping procedure is that the

network should be trained until it has learned most of the important

information for prediction step. This is of course difficult to find out because

there is no best approach how to do this. In general, a high enough number

of training steps or epochs are good enough, in the sense that the network

has learned well in a specific region. Furthermore, reaching the local

minimum of the objective function is accepted as the training efficiency

merit [Palit, 2005, p.116; Pasila, 2006, p.15], so that after reaching this

minimum value, the error function will steadily decrease until the minimum

is reached. If there is no further decrease of the error function, this would

then be an indication to stop the training iteration.

99

0

Iteration

E
rr

o
r

Early Stopping

Training Performance

Testing Performance

In our Neuro-Fuzzy or Neural Network simulations, early stopping

can be done by doing several training with different number of epochs (for

example in search programming strategy, iteration starts from 10 to 1000).

In the iteration process, we collect the results of training and testing error

from the same iteration. The suitable number of iteration which gives

minimal value of desired error can be easily found by memorized all values

of training and testing performances.

