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Abstract

This dissertation presents the synthesis of a hand exoskeleton (HE)

for the rehabilitation of post-stroke patients. Through the analysis

of state-of-the-art, a topological classification was proposed. Based

on the proposed classification principles, the rehabilitation HEs were

systematically analyzed and classified. This classification is helpful to

both understand the reason of proposing certain solutions for specific

applications and provide some useful guidelines for the design of a

new HE, that was actually the primary motivation of this study.

Further to this classification, a novel rehabilitation HE was designed

to support patients in cylindrical shape grasping tasks with the aim of

recovering the basic functions of manipulation. The proposed device

comprises five planar mechanisms, one per finger, globally actuated by

two electric motors. Indeed, the thumb flexion/extension movement

is controlled by one actuator whereas a second actuator is devoted

to the control of the flexion/extension of the other four fingers. By

focusing on the single finger mechanism, intended as the basic model

of the targeted HE, the feasibility study of three different 1 DOF

mechanisms are analyzed: a 6-link mechanism, that is connected to

the human finger only at its tip, an 8-link and a 12-link mechanisms

where phalanges and articulations are part of the kinematic chain.

The advantages and drawbacks of each mechanism are deeply ana-

lyzed with respect to targeted requirements: the 12-link mechanism

was selected as the most suitable solution. The dimensional synthesis

based on the Burmester theory as well as kinematic and static analy-

ses were separately done for all fingers in order to satisfy the desired

specifications. The results of the kinematic and static analysis con-

firmed the validity of the design.



The HE was finally designed and a prototype was built. The ex-

perimental results of the first tests are promising and demonstrate

the potential for clinical applications of the proposed device in robot-

assisted training of the human hand for grasping functions.



Contents

Contents v

List of Figures viii

List of Tables xii

1 Introduction 1

2 The Classification 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Classification of Hand Exoskeletons . . . . . . . . . . . . . . . . . 11

2.2.1 Number of DOFs . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Number of MCs . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3 Mechanism Architecture . . . . . . . . . . . . . . . . . . . 15

2.2.3.1 External Mechanisms . . . . . . . . . . . . . . . . 16

2.2.3.2 Lateral Mechanisms . . . . . . . . . . . . . . . . 18

2.2.3.3 Internal Mechanisms . . . . . . . . . . . . . . . . 19

2.3 Literature review and Discussion . . . . . . . . . . . . . . . . . . 19

3 The Feasibility Study 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Design Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 High level design choices . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Kinematic architectures . . . . . . . . . . . . . . . . . . . 35

3.3.2 Connection between HE and human fingers . . . . . . . . 36

3.3.3 HE placement relative to the human hand . . . . . . . . . 37

v



CONTENTS

3.3.4 Actuation . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.5 Control and sensor equipment . . . . . . . . . . . . . . . . 39

3.4 Feasibility study of HEs . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 Technical specification . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Feasibility study of different architecture . . . . . . . . . . 45

3.4.2.1 6-linkage mechanism . . . . . . . . . . . . . . . . 46

3.4.2.2 8-linkage mechanism . . . . . . . . . . . . . . . . 52

3.4.2.3 12-linkage mechanism . . . . . . . . . . . . . . . 54

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Synthesis, Analysis and Design of 12-Link mechanism 59

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Synthesis and Synchronization . . . . . . . . . . . . . . . . . . . . 60

4.3 Kinematic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 B.H.O. Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 The Experimental tests 83

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2 An EMG-based robotic hand exoskeleton for bilateral training of

grasp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.2.1 System Description . . . . . . . . . . . . . . . . . . . . . . 84

5.2.1.1 A graspable force sensorized object for rehabilita-

tion applications . . . . . . . . . . . . . . . . . . 84

5.2.1.2 EMG processing subsystem for grasp control . . . 84

5.2.2 The EMG-based robotic-assisted bilateral training . . . . . 86

5.2.2.1 Experiment description . . . . . . . . . . . . . . 88

5.2.2.2 Experimental results . . . . . . . . . . . . . . . . 88

5.3 A Motor Imagery BCI approach to robotic-assisted neuro-motor

rehabilitation of reaching and hand grasping in stroke . . . . . . . 89

5.3.1 System Description . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1.1 The BRAVO Exoskeleton . . . . . . . . . . . . . 90

5.3.1.2 The integrated BCI system . . . . . . . . . . . . 90

vi



CONTENTS

5.3.1.3 Control . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 92

5.3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . 92

5.3.2.2 Procedure and methods . . . . . . . . . . . . . . 92

5.3.3 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions 98

Appdx A 101

References 118

vii



List of Figures

1.1 BRAVO system architecture scheme. . . . . . . . . . . . . . . . . 7

2.1 Schematics of common mechanism architectures with one or three

controlled DOFs and one or three MCs. . . . . . . . . . . . . . . . 14

2.2 Distribution of the rehabilitation HEs found in literature among

the possible solutions identified by the three classification principles. 26

3.1 A planar 3R serial chain is constrained by two RR chains to define

a six-bar linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Watt kinematic chain and schematic of the watt-chain-based mech-

anism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 5 configurations considered as reference for synthesis of 6-link mech-

anism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 A 3R chain connected to the human finger phalanges. . . . . . . . 49

3.5 A 3R chain connected to the human finger phalanges. . . . . . . . 50

3.6 A synthesized 6-link mechanism. . . . . . . . . . . . . . . . . . . . 51

3.7 (a)8-link kinematic chain taken as reference for the synthesis of a

finger mechanism; (b) schematic of the synthesized 8-link mecha-

nism with revolute and prismatic pairs. . . . . . . . . . . . . . . . 53

3.8 Schematic of a configuration of the synthesized 8-link mechanism. 54

3.9 Schematic of a configuration of the synthesized 8-link mechanism. 54

3.10 Schematic of a configuration of the synthesized 8-link mechanism. 55

3.11 (a) 12-link mechanism topology; (b) Schematic of the 12-link mech-

anism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

viii



LIST OF FIGURES

3.12 (a) 8-link mechanism topology; (b) Schematic of the 8-link mech-

anism for the thumb. . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Index finger Configuration for different size hands (with respect

to the height of the person) when grasping cylindrical objects of

diameter 55, 70, 90 and 120 [mm] respectively . . . . . . . . . . . 62

4.2 Joint angle α in different size hands when grasping cylindrical ob-

jects of diameter 55, 70, 90 and 120 [mm] respectively. . . . . . . 63

4.3 Joint angle β in different size hands when grasping cylindrical ob-

jects of diameter 55, 70, 90 and 120 [mm] respectively. . . . . . . 63

4.4 Joint angle γ in different size hands when grasping cylindrical ob-

jects of diameter 55, 70, 90 and 120 [mm] respectively. . . . . . . 64

4.5 The names assigned to each revolute joint. . . . . . . . . . . . . . 66

4.6 The forces between the mechanisms’ links at different kinematic

pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 The forces between the mechanisms’ links at different kinematic

pairs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 The modules and x,y components of the force in the joints Q and M. 69

4.9 The modules and x,y components of the force in the joints K and G. 70

4.10 The forces exerted to the human finger phalanges with respect to

input link angle α [Degree].. . . . . . . . . . . . . . . . . . . . . . 71

4.11 The velocities [m/s] of each joint with respect to input link angle

α [Degree]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 The velocities [m/s] of each joint of the mechanism with respect

to input link angle α [Degree]. . . . . . . . . . . . . . . . . . . . . 73

4.13 The accelerations [m/s 2] of each joint of the mechanism with re-

spect to input link angle α [Degree]. . . . . . . . . . . . . . . . . . 74

4.14 The accelerations [m/s 2] of each joint of the mechanism with re-

spect to input link angle α [Degree]. . . . . . . . . . . . . . . . . . 75

4.15 Schematic CAD model of the B.H.O. hand exoskeleton . . . . . . 77

4.16 Schematic CAD model of the B.H.O. hand exoskeleton . . . . . . 78

4.17 Schematic CAD model of the B.H.O. hand exoskeleton . . . . . . 79

4.18 The manufactured prototype of the B.H.O. hand exoskeleton . . . 80

ix



LIST OF FIGURES

4.19 The manufactured prototype of the B.H.O. hand exoskeleton . . . 81

4.20 The manufactured prototype of the B.H.O. hand exoskeleton . . . 82

5.1 Conceptual scheme of the proposed system, (a) schematic overview

(b) the captured picture. . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 The sensorized cylindrical object (left) showing the correspondance

between each FSR and the fingers (right). . . . . . . . . . . . . . 86

5.3 The sensor location of the EMG electrodes on the arm. Anterior

surface (a.) and posterior surface (b.) of the left arm. . . . . . . . 87

5.4 The setup for the experimental evaluation of the proposed system:

side view (left) and top view (right). . . . . . . . . . . . . . . . . 87

5.5 Global data flow of the system. Dotted lines indicate either train-

ing or evaluation information. . . . . . . . . . . . . . . . . . . . . 88

5.6 Grasping forces acquired by the sensorized objects during the ex-

periment exerted by the left (dominant/healthy) and right (wear-

ing the hand orthosis) hands. . . . . . . . . . . . . . . . . . . . . 89

5.7 The BRAVO hand exoskeleton . . . . . . . . . . . . . . . . . . . . 91

5.8 Conceptual scenario for the reaching and grasping tasks proposed

to the patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 The grasping sequence. . . . . . . . . . . . . . . . . . . . . . . . . 94

5.10 Trajectories executed during the rehabilitation session for one patient 95

5.11 Sequence of movements performed by one patient under BCI con-

trol: a→b reaching, c→d grasping, e return movement, f release . 96

1 A planar 3R serial chain is constrained by two RR chains to define

a six-bar linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2 A schematic of a planar 3R serial chain. The graph of this chain

forms a straight line with a vertex for each link in the manipulator. 102

3 Examples of constrained 3R serial chain. . . . . . . . . . . . . . . 103

4 The Watt and Stephenson six-bar chains, and the different forms

obtained by selecting different links as the base. . . . . . . . . . . 104

5 The linkage graphs show the synthesis sequence for the three con-

strained 3R chains in which the two RR chains are attached inde-

pendently. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x



LIST OF FIGURES

6 The linkage graphs show the synthesis sequence for the four con-

strained 3R chains in which the second RR chain connects to the

first RR chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7 The joint angle and link length parameters for the Watt Ia six-bar

linkage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

xi



List of Tables

2.1 Current rehabilitation HEs classified according the three proposed

principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Current rehabilitation HEs classified according the three proposed

principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Current rehabilitation HEs classified according the three proposed

principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Current rehabilitation HEs classified according the three proposed

principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Current rehabilitation HEs classified according the three proposed

principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Current rehabilitation HEs classified according the three proposed

principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Thumb Joint Flexion (degrees) . . . . . . . . . . . . . . . . . . . 42

3.2 Index finger joint Flexion (degrees) . . . . . . . . . . . . . . . . . 42

3.3 Middle finger joint Flexion (degrees) . . . . . . . . . . . . . . . . 43

3.4 Ring finger joint Flexion (degrees) . . . . . . . . . . . . . . . . . . 43

3.5 Little finger joint Flexion (degrees) . . . . . . . . . . . . . . . . . 43

3.6 Coupling Ratio of DIP and PIP Joints . . . . . . . . . . . . . . . 44

3.7 Topology elements for 1 DOF planar mechanisms. . . . . . . . . . 46

5.1 Results of the rehabilitation session . . . . . . . . . . . . . . . . . 96

xii



Chapter 1

Introduction

The hand is an organ of grasp as well as of sensation, fine discrimination and

exquisite dexterity. Unfortunately hand injuries are very common and the num-

ber of people suffering from that is considerable. These injuries include traumatic

injuries, problems related to the aging (e.g. arthritic conditions), congenital de-

formities and the problems of a weak control of movement and force due to

neurological diseases. The corresponding malfunctioning of the hand results in

limitation in activities of daily living (ADLs). The importance of having a nor-

mally functioning hand for an independent and active life needs no emphasis.

At the rehabilitation phase, well-established rehabilitation techniques rely on

thorough and constant exercise (Diller [2000]). Early initiation of active move-

ments by means of repetitive training proved its efficacy in guaranteeing a good

level of recovery (Bütefisch et al. [1995]). The recovery of hand functioning is

generally assisted by physical therapists that make the patients perform some

exercises. These exercises are mainly concentrated on basic gross mobility skills

such as moving specific joints and strengthening specific muscles. Further exer-

cises, more complicated, can possibly be executed in order to allow the patient

to recover the ability in ADLs. Quite often a few months are required to achieve

acceptable improvement in finger movement and autonomous control. Therefore,

the rehabilitation procedure is generally time consuming and costly. Moreover,

due to the complexity of the neurological aspects involved in the upper-extremity

control, permanent disabilities may unfortunately persist in the chronic phase

(Olsen [1990]).

1



1. Introduction

In the attempt to solve part of these problems, robot-assisted rehabilitation has

known a significant growing in the last two decades. Many studies seem to demon-

strate that robotic-aided therapy is more efficient and effective if compared to

conventional therapy (see e.g. Prange et al. [2006], Brewer et al. [2007], Krebs

et al. [2008], Kwakkel et al. [2008] and Mehrholz et al. [2009]). Although it is not

still completely clear which factors specifically enhance recovery, it is commonly

accepted that the success of robot-assisted therapy likely relies on the possibility

offered by robotic systems to automate training exercises (that can prove ex-

hausting for physical therapists), to deliver them in a highly repeatable way and

to objectively estimate the rehabilitation progress by a number of reliable mea-

surements (e.g. range of motion, strength, responsiveness to stimulation,...).

According to various types of hand problems, different rehabilitation protocols

have been proposed. Obviously, also the design of the robotic systems strictly

depends on the functions to be accomplished and the rehabilitation procedure to

be implemented. Considering the implications on the exoskeleton design issues,

three aspects of the rehabilitation protocols could be pointed out that can lead to

completely different solutions: -global complexity of exercises: basic movements

of the finger joints vs execution of ADLs; -complexity of the hand movements:

gross motion of all the fingers vs single finger dexterity; -Rehabilitation environ-

ment: real environment vs virtual reality. It is worth noting that among the

various strategies that have been clinically tested so far, the paradigm known as

”assist-as-needed” seems to have received the greatest success. In a few words,

the robotic device should provide as much force/movement assistance as needed

to accomplish a given task, whereas, in order to maximize the patient’s voluntary

participation, it should enable the subject who does not need power assistance to

move autonomously.

Since the 80’s, many researchers have been attempting to develop robotic devices

aiming at replicating the functions of the human hand, in the fields of industrial

robotics, tele-manipulation, humanoid robotics, and upper limb prosthetics. A

special kind of robotic hand is the active orthosis, also known as hand exoskeleton

(HE). With respect to other kinds of robotic hands, a HE is an actuated mechan-

ical system that is directly attached to the human hand, so that the movements

of the two systems(HE and human hand) are coupled and forces/moments are

2



1. Introduction

exchanged between them. In practice, a HE can apply forces to the fingers in

order to (i) constrain them to perform a given trajectory, (ii) improve the forces

that would be naturally exerted or (iii) reflect external forces. In the design of

such devices, a number of critical issues related to the human-machine interac-

tion must be considered. For instance, the control of the transmitted forces is

mandatory for safety reasons, the motion of the HE links must be consistent with

that of the human fingers, etc.

Depending on the specific applications, HEs exist that are extremely different, in

both architectures and technological characteristics. For instance, some exoskele-

tons control the motion of each finger or group of linked fingers by coupling the

movement of the anatomical joints together (Takahashi et al. [2005], Loureiro and

Harwin [2007] and Hasegawa et al. [2008]), whereas others achieve the control of 4

DOFs per single finger, and up to 5 fingers (Wege and Hommel [2005] and Kitada

et al. [1997]). A recent survey on the state-of-the-art about HEs is available in

Mozaffari-Foumashi et al. [2011], Balasubramanian et al. [2010] and Mozaffari-

Foumashi et al. [2010], with focus being placed on the kinematic description, the

actuator systems, the transmission components and the control schemes. From

the functional point of view, the HEs can be divided into 3 groups:

• Rehabilitation HEs

• Haptic Devices

• Assistive devices

Rehabilitation HEs (Takahashi et al. [2008], Loureiro and Harwin [2007], Wege

and Hommel [2005], Yamaura et al. [2009], Kawasaki et al. [2007], Worsnopp

et al. [2007], Fu et al. [2008], Mulas et al. [2005], Lucas et al. [2004], Chiri et al.

[2009], Wang et al. [2009], Ertas et al. [2009], Ho et al. [2011], Burton et al.

[2011], Li et al. [2011] and Wolbrecht et al. [2011]) are devices specifically devel-

oped to perform certain exercises for recovering the function lost by the hand.

Haptic devices (Kitada et al. [1997], Choi and Choi [1999], Fontana et al. [2009],

Simoncini et al. [2007], Fang et al. [2009], Nakagawara et al. [2005], Stergiopoulos

et al. [2003], Lelieveld and Maeno [2006], Bouzit et al. [2002], Turki and Coiffet

[1995], Sun et al. [2009] and Lord et al. [2011]) have two main functions: tracking

3



1. Introduction

the wearer’s hand movements for controlling some other device and providing a

force feedback to the user’s hand. These devices can be employed in a number of

applications. Among them, it is worth recalling the use in Virtual Reality (VR)

applications for rehabilitation purposes, where the patient controls a slave virtual

device that can interact with an environment generated by a software simulator

(Jack et al. [2001], and Cardoso et al. [2006]). The forces calculated from the VR

model are reflected to the operator’s human fingers by means of the exoskeleton

actuators, thus causing a realistic human sensation of touch and force sensing.

Assistive devices (Hasegawa et al. [2008], Sasaki et al. [2004], Kline et al. [2005],

Shields et al. [1997], Tadano et al. [2010], and In et al. [2011]) are tools used by

patients with hand diseases in everyday life, in order to perform activities that

would be difficult or impossible to carry out without a supportive aid. Because of

their specific application, they must be particularly lightweight and comfortable

to wear. They may be also used for rehabilitation purposes.

In this study, the main focus is on the rehabilitation devices. Several research

studies focused recently on both the development of novel robotic rehabilitation

HE and the use of Virtual Reality technologies for rehabilitation. The former may

overcome some of the major limitations that manual assisted movement training

suffers from, i.e. lack of repeatability, lack of objective estimation of rehabili-

tation progress, and high dependence on specialized personnel availability. On

the other hand, VR-based rehabilitation protocols may significantly improve the

quality of rehabilitation by offering strong functional motivations to the patient,

who can therefore be more attentive to the movement to be performed. Several

studies (Jack et al. [2001]) have demonstrated positive effects of VR on reha-

bilitation, which enhances cognitive and executive functions of stroke patients

(Cardoso et al. [2006]) by allowing them to receive enhanced feedback on the

outcome of the rehabilitation tasks he/she is performing. Moreover, VR can pro-

vide an even more stimulating video game-like rehabilitation environment when

integrated with force feedback devices and more specifically exoskeletons inter-

faces, thus enhancing the quality of the rehabilitation. However, VR presents

the limit of not being able to guarantee a coherent alignment of visual and pro-

prioceptive sensory stimulation. Stereoscopy, due to issues of patient’s usability,

is still not employed in rehabilitation training, and so the perception of depth

4



1. Introduction

in the visual representation of the task should rely only on visual cues such as

perspective, shadows and occlusions among objects. It has not been studied yet

how this misalignment of sensory modalities can affect the functional recovery in

stroke, since a quick adaptability of patients to such a sensory misalignment is

observed as well.

For this reason and for accelerating the transfer in ADLs, it becomes more and

more interesting being able to propose to the patient rehabilitation tasks in a real

setting, with the active assistance provided by the robot. But in this scenario

how is it possible to actively guide the impaired limb toward the object to be

reached and grasped? In this context, the BRAVO project (”Brain computer

interfaces for Robotic enhanced Action in Visuo-motOr tasks”), a project funded

by IIT(Italian Institute of Technology), and developed by a number of partners,

away which the PERCRO lab(Scuole Supriore S.Anna of Pisa) and GRAB lab-

oratory(Department of Industrial Engineering, University of Bologna), aimed at

enhancing the classical feedback control schemes through a novel neuro-feedback

generated by a model of user’s attention and gaze. Such additional feedbacks are

introduced for predicting the intended action of the patient.

In this context, the BRAVO system proposes a new paradigm shift in the con-

trol of exoskeletons and active orthoses for rehabilitation and assistance in ADLs.

The classical approach to rehabilitation and assistive robotics is based on a robot,

whose action is activated by the user’s movement detected by means of force and

position sensing. This is not a reliable way of controlling the robot when the user

is motor impaired and so can present spasticity, tremor, reduced motor function,

muscle weakness. Current limitations of existing devices rely on the lack or re-

duced capability to predict the intended action of the patient. The innovative

approach of BRAVO makes use of the information arising from the user’s atten-

tion and intention, detected by means of eye-tracking, scene analysis and BCI, to

enhance the motor assist by the prediction of user’s intended movement.

Since sight normally anticipates movement, and movements of the eye are nor-

mally performed directing the gaze on the target before beginning the arm/hand’s

movement (Pfurtscheller and Lopes da Silva [1999]), this information can be used

to enhance, ahead of the real start of movement, the user’s bio-feedback to ob-

tain and adaptable robot to user’s behavior. In this respect, the robotic systems
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developed within BRAVO are extremely innovative compared to already exist-

ing assistive technologies. Indeed, these systems are based on state of the art

robotic technologies, e.g. exoskeletons, where classical feedback control schemes

are adopted based on movement and force detection, but enhanced through a

novel neuro-feedback generated by a model of user’s attention and gaze and guided

by user’s eye-tracking.

The innovative approach proposed in BRAVO consists in using BCI and Eye

Gaze Tracking (input systems) for predicting the user intentions and a robotic

arm exoskeleton and hand orthosis (output systems) for assisting the user in per-

forming the tasks. The final objective is to allow the use of robotic systems also

to patients that suffer from hard neurological injuries that cannot be treated with

traditional controlled robotic devices.

In Fig. 1.1 the architecture of the overall system is presented. The working prin-

ciple is based on a set of input devices: eye tracking and cameras, position and

force sensors and BCI. Such inputs are properly processed in order to recognize

the object that the user has planned to grasp, the position of the object and

the intention of starting the grasp closure. As for output, two output devices are

used for assisting the user movements. The first one is an arm exoskeleton (Frisoli

et al. [2009]) and the second one is a novel hand orthosis(Mozaffari-Foumashi et al.

[2013]).

The system functionalities can be illustrated with reference to Fig. 1.1 through

the following sequence of operations:

1. the user sits on a chair in front of a table with several objects that can be

grasped with one hand

2. the user decides to grasp and move an object

3. the user looks toward the object that he/she is going to grasp

4. the eye tracking system will get the direction of gaze

5. the camera mounted on the user’s head will identify the object

6
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Figure 1.1: BRAVO system architecture scheme.

6. a second camera will detect the object position

7. the arm exoskeleton will be controlled in order to assist the user in reaching

the object and orienting the hand for preparing the grasping phase

8. the user decides to close his hand

9. his intention is detected by the BCI

10. the hand orthosis will assist the user in the grasping movement

Object placing and hand opening will be assisted with analogous procedure.

The development plan for the achievement of the complete system has divided

into the following phases:

• Development of Reaching Control arm exoskeleton based on the eye gaze

tracking

• Development of Grasping Control of the hand orthosis based on BCI

• Development of a novel hand orthosis

7
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• Integration of the control and the robotic devices in a single multipurpose

system

Within this framework, we were involved in the development of a rehabilita-

tion HE. The analysis of the state-of-the-art was the first step of our activity,

preceding the design phase. We therefore, proposed a systematic classification

of the reviewed systems based on three main key issues, namely the number of

controlled Degree of Freedoms (DOFs), the number of mechanical connections

(MCs) with the human phalanges and the mechanism architecture. This classifi-

cation is helpful to understand the reason of proposing certain solutions for the

different applications and the advantages and drawbacks of the different designs

proposed in the literature. In addition to this classification, many other design

issues such as type of connection between HE and human fingers, safety factors,

actuations/motors, control issues, sensor and encoder equipments are deeply dis-

cussed.

Returning to the primary motivation of this study, a novel HE device, called

Bologna Hand Orthosis (B.H.O) was developed for the rehabilitation of the hand

for post-stroke patients to support a cylindrical shape grasping tasks with the

aim of recovering the basic functions of manipulation. Through the design phase,

some preliminary decisions are made among a number of high level design spec-

ifications. Based on these decisions, the rehabilitation HE comprises five planar

mechanisms, one per finger, globally actuated by two motors equipped with in-

cremental encoders for implementing position/velocity control schemes. Indeed,

the thumb flexion/extension movement along a certain plane is controlled by one

actuator (motor and speed reducer) whereas a second actuator is devoted to the

control of the flexion/extension of the other four fingers (being the four corre-

sponding mechanisms connected to the same driving shaft). As for HE’s finger

mechanism, the feasibility study of three different 1 DOF mechanisms, intended

as the basic model of the targeted hand exoskeleton, was developed, namely: a

6-link mechanism based on the Watt chain connected to the human finger only

at his tip, an 8-link mechanism where phalanges and articulations are part of the

kinematic chain (with three MCs points between the exoskeleton and the human

finger, being these necessary to close the chain), and a 12-link mechanism where,

again, all phalanges and finger articulations are part of the kinematic chain. The
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advantages and drawbacks of each mechanism are deeply analyzed and, based on

targeted requirements, the 12-link mechanism was selected as a suitable candi-

date for the single finger exoskeleton. After selecting the mechanism topology,

the dimensional synthesis was done for 5 fingers in order to satisfy the desired

constraints. As the same topology is used for the group of 4 fingers and all four

fingers are actuated by the same 1 DOF actuator, the finger synchronization issue

is taken into account in the synthesis procedure in order to guaranty the correct

grasping. The kinematic and static analyses are also done in order to verify the

kinematic constraints.

Eventually, the mechanical design (CAD model) and the manufactured proto-

type are presented. After designing and manufacturing the hand exoskeleton at

Bologna University, the HE was delivered to PERCRO laboratory of the Scuola

Superiore Sant’Anna in Pisa (Italy) for experimental tests. Two experimental

tests are reported in this dissertation: the first one is testing the application of

HE by using the EMG(Electromyography) signals for bilateral active training of

grasp motion in stroke, and the second test is verifying the application of HE

connecting to the arm exoskeleton for motor rehabilitation of reaching and hand

grasping motion in stroke. The results show how manufactured HE can be suc-

cessfully used, and how patients are able to perform assisted grasping tasks of

simple objects successively.
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Chapter 2

The Classification

2.1 Introduction

The literature proposes a number of rehabilitation HEs, which generally present

some common characteristics and several special peculiarities concerning their

mechanics, electronics (control) and working principles. Understanding the ra-

tionale at the basis of the solutions proposed so far, would help designers of new

devices to take important decisions, even though it could result pretty difficult in

a number of cases. Indeed, depending on the specific applications, HEs exist that

are extremely different in both architectures and technological characteristics. For

instance, from the kinematic point of view, in some exoskeletons only 1 or 2 DOFs

result controllable (Mulas et al. [2005],WaveFlex-Hand [2011],Kinetec-Maestra-

Hand [2011],Iqbal et al. [2010],Schabowsky et al. [2010],Ren et al. [2009],Kutner

et al. [2010],Takahashi et al. [2008],Ertas et al. [2009],Rosati et al. [2009],Wol-

brecht et al. [2011],Wu et al. [2010] and Yamaura et al. [2009]), being some fingers

linked together and/or the movement of the anatomical joints coupled, whereas

other systems achieve the control of 4 DOFs per single finger and for up to 5 fin-

gers (Wege and Hommel [2005]), and still others leave some joints uncontrolled

(resulting in under-actuated mechanisms)(Chiri et al. [2009]). The driving power

is typically generated by electric or pneumatic actuators (Heo et al. [2012]), and

transmitted in several different ways such as by cables and pulleys, linkage with

rigid members, tendon-driven mechanisms, geared systems, etc. Also the control
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strategies and the sensor systems can be extremely different, the most important

issue likely being the sensing method to catch the user’s intention (e.g. from

EMG or EEG signals) as comprehensively illustrated in Heo et al. [2012].

Due to this variability, a methodical analysis of the literature can help to identify

useful guidelines: from this standpoint the surveys presented by Balasubramanian

et al. [2010] and Heo et al. [2012] respectively focus on the technical specifica-

tions and clinical applications of rehabilitation HEs and on actuators and control

strategies of rehabilitation and assistive HEs. Complementary to these works,

the present chapter proposes a systematic classification of the exoskeletons based

on their kinematic characteristics and their coupling with the human hand, i.e.

on those topological aspects that have a major influence on the synthesis of the

exoskeleton mechanisms. This analysis, focused on rehabilitation HEs though

significant also for assistive and haptic devices, is helpful to understand both the

reasons of proposing certain solutions for the different applications and the ad-

vantages and drawbacks of the diverse designs proposed in the literature. The

final purpose of the proposed classification is then to provide guidelines useful for

the design of new HEs on the basis of a systematic analysis.

2.2 Classification of Hand Exoskeletons

From the literature analysis it emerges that the best possible device probably does

not exist, because the complexity of the overall problem prevents unique design

principles to be determined and unambiguous design guidelines to be defined.

Depending on the specific application, the designer of a new HE must face a wide

range of interconnected choices (Troncossi et al. [2012]), such as the number of

DOFs, the mechanism topology, the transmission system, the control strategy

and sensor system, etc. A certain decision on each issue entails both advantages

and drawbacks and also it affects other aspects of the design. Moreover, since

several design specifications and objectives are often in contrast, a trade-off must

be defined, with weighting factors depending on both the specific application and

the designers’ sensitivity and experience. Design choices can be effectively done

if they are supported by a methodical analysis of the main problems and the cor-
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responding solutions, also considering what solutions other designers/researchers

have already proposed. In this perspective, focusing on the kinematics of the

exoskeleton, the authors present a topological classification of the widely hetero-

geneous solutions that can be theoretically proposed (illustrated in this Section)

and review the existent literature based on it. The exoskeleton mechanism of a

single finger is considered as the basic unit to analyze, thus making it possible

to systematically categorize all the possible solutions achievable to form a HE.

In particular, the attention is placed on the index finger mechanism since it is

the only finger present in all the rehabilitation HEs, and the other finger mech-

anisms generally have the same kinematic characteristics. Three main key issues

selected as discriminating characteristics for distinguishing different solutions are

systematically investigated since they correspond to the high-level design choices

that have the major consequences on the topological and dimensional synthesis

of the exoskeleton mechanisms. They are:

• the number of controlled DOFs;

• the number of mechanical connections (MCs) with the human phalanges;

• the mechanism architecture.

2.2.1 Number of DOFs

From the mechanical design viewpoint, the first specification to define concerns

the kinematics of the system. Indeed, the designer must firstly choose:

• how many finger mechanisms will form the overall HE, and how many of

them must be controlled independently;

• the number of active DOFs of the mechanism that guides the functions of

a single finger (that is, from the dual viewpoint, the number of articulation

movements that can be possibly coupled or left free in each finger).

Indeed, according to the human hand anatomy, a HE can fully control a human

hand only if it has 20 actuated DOFs (4 DOFs per finger). On the other side,

it should be taken into account that both the hardware and control procedure
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of the resulting device could be very complex. Alternative solutions can be thus

obtained by accepting a worsening of the system versatility and by controlling

less DOFs of the hand/fingers, thus reducing the global complexity of the sys-

tem. The choice about this fundamental feature depends on the trajectories to

be followed, the force(s) to be applied and/or measured on the human fingers,

the required versatility, and the control strategies to be implemented. The possi-

ble combinations of DOFs are uncountable and the literature offers a wide range

of solutions, ranging from a passive device where no actuator is present Brokaw

et al. [2011] to a HE able to fully control the movements of the five fingers with

its 20 DOFs (Wege and Hommel [2005]). Intermediate solutions foresee to pos-

sibly couple the movements of phalanges and fingers and/or leaving them free

(i.e. uncontrolled). In order to define a systematic criterion of classification, the

attention can be placed on the number of controlled DOFs of the index finger

mechanism, thus providing five different groups of HEs, with 0 (for passive de-

vices) to 4 DOFs per finger.

Figure 2.1 shows some schemes that illustrate the topological differences of finger

exoskeleton mechanisms: from the mobility viewpoint, the reported solutions have

1 or 3 controlled DOFs (the star symbol representing an actuated joint). For the

sake of graphical simplicity, the possibility of actuating the abduction/adduction

movement is not reported among the schemes. It is worth noting that the mecha-

nisms in Fig. 2.1 (e, i, k) are under-actuated, i.e. the number of DOFs controlled

with actuators is smaller than the kinematic DOFs of the mechanism (as counted

e.g. by the Grubler-Kutzbach formula).

2.2.2 Number of MCs

The HEs are connected to the human finger phalanges to control the movement

of fingers and to exert force/moment on them. For safety reasons, the imposed

movements must be consistent with the physiological ones (i.e. the natural range

of motion of the human articulations must be respected) and the loads transmit-

ted to the human finger must be limited. In this respect, the most important

decision concerns the number of connections of the HE with each finger. Based
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1 DOF – 3 MCs

1 DOF – 1 MC

(d)

(c)

3 DOFs – 3 MCs 3 DOFs – 1 MC

(b)(a)

1 DOF – 1 MC

(e)

1 DOF – 1 MC

(f)

3 DOFs – 3 MCs

(h)

3 DOFs – 3 MCs

(g)

1 DOF – 1 MC

(i)

1 DOF – 1 MC

(j)

1 DOF – 1 MC

(k)  

Figure 2.1: Schematics of common mechanism architectures with one or three con-
trolled DOFs and one or three MCs. The star symbols indicated actuated joints.
(a) External/Integrated; (b) External/Stand-Alone; (c) External/Integrated;
(d) External/Stand-Alone; (e) External/Integrated (this mechanism is under-
actuated); (f) External/Integrated; (g, h) Lateral; (i-k) Internal (being the first
case an under-actuated mechanism).
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on the number of MCs, three different groups can be identified, i.e. HEs with 1,

2 or 3 MCs per finger. This classification principle is mainly important for the

topological synthesis of the mechanisms in the design phase as well as for control

issues and for practical aspects, e.g. the easiness of wearability during the initial

fitting. In Fig. 2.1 solutions with 1 or 3 MCs are reported as examples, showing

the variety that can be achieved by differently combining DOFs and MCs.

The exoskeleton can be attached to the finger by different means. The most

common and simple methods are attaching the mechanism to human finger by

using flexible straps or rigid links wrapped around the phalanges, and/or thim-

bles fixed to the human fingertip. Another possible solution is using a glove as an

intermediate mean. In this case, the user wears the glove (possibly instrumented

with sensors) and the HE is connected to the glove (Festo-Company [2012]). It

is worth noting that the stiffness of the connection can be a significant factor

in different perspectives. A flexible strap can slightly move with respect to the

phalanx, thus determining variable contact areas that can negatively affect the

controllability and the accuracy of the system when following certain trajectories.

On the other hand, a flexible strap is easier to fix during the initial fitting with re-

spect to a stiffer solution (e.g. a metal ring), it is inherently safer (the compliance

can play as a mechanical filter of forces) and, due to its intrinsic adaptability, it

lets the HE accommodate slightly different hand sizes without the possible need

to change the HE geometry.

2.2.3 Mechanism Architecture

With ”architecture” we mean the topology and geometry of a mechanism as well

as some main characteristics of the power transmission chain. When observing a

HE, the general impression is dominated by the global features of the mechanism

architecture, that show the main designers’ choices. Reviewing the literature

based on the analysis of the mechanism architecture could be difficult due to the

several variable aspects involved, e.g. the solutions adopted to transmit/reduce

motion, the placement of the actuators, the position of the mechanism links rel-

ative to the human finger 2.1.
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For systematically classifying the extremely different kinds of mechanism that

can be adopted as hand/finger exoskeletons, the placement of the mechanisms

with respect to human fingers is here considered as the most significant issue.

The main reason is the strong impact of this factor (i) on topological and di-

mensional synthesis of the mechanism and (ii) on the solution to transmit power

from the exoskeleton actuators to the human fingers. In addition, the boundary

conditions and the constraints that arise from the placement of the mechanism

(e.g. interference avoidance) play an important role in the design phase. The

HEs can be thus categorized according to the finger mechanism placement with

respect to human finger in three groups, conventionally denoted as (i) External

Mechanisms (placed externally to the hand backside, Fig. 2.1 (a-f)), (ii) Lateral

Mechanisms (located at the side of the finger, Fig. 2.1 (g-h)), and (iii) Internal

Mechanisms (placed in the internal side of the hand palm, Fig. 2.1 (i-k)).

2.2.3.1 External Mechanisms

With this expression, exoskeletons placed externally to the hand backside are

intended, i.e. mechanisms whose links remain above the human finger phalanges

for the full range of motion in order to avoid interference with both the hu-

man counterparts and the grasped object. This means that in the synthesis of

the mechanism important geometrical constraints are fixed (e.g. the links must

stay in the finger backside semi-space and avoid interference with the human

phalanges), with obvious consequences and limitations. Two approaches can be

adopted to make the finger follow targeted trajectories, and a corresponding ”sub-

classification” can be thus proposed for this group: (i) Integrated Mechanisms,

where the human finger phalanges and articulations are integrating parts of the

system kinematic scheme, i.e. they serve as links and joints of the resulting mech-

anisms, as for instance the case of Fig. 2.1 (a) and (ii) Stand-Alone Mechanisms,

where the human finger phalanges are attached to some moving links of a mech-

anism that works autonomously, as for instance in Fig. 2.1(b).

• Integrated Mechanisms
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The HE moves the fingers by means of mechanisms which include the hu-

man fingers themselves as integrating parts in the kinematic scheme. The

concept can be easily explained referring to Fig. 2.1 (f), where the control

of the distal phalanx motion is not of interest (i.e. it is kept free) whereas

the movements of the proximal and middle phalanges are coupled, being

part of a four-bar linkage made of the 2 phalanges themselves, 2 artificial

links, 2 artificial revolute joints and 2 human articulations (considered as

revolute joints as well). Many other linkage can be formed in a similar way

(e.g. see Fig. 2.1 (a, c, e, f)), as those proposed for the rehabilitation HEs

presented in Mulas et al. [2005], Schabowsky et al. [2010], Iqbal et al. [2010],

Sarakoglou et al. [2004], Yamaura et al. [2009], Ito et al. [2011], Wege and

Hommel [2005] and Wang et al. [2009].

A special care must be taken in order to respect the natural range of mo-

tion of the human articulations (e.g. hyperextension must be avoided), for

safety reasons. This means that in the mechanism synthesis the phalanx

poses should be checked all along the resulting trajectory.

• Stand-Alone Mechanisms

The kinematic chain of the stand-alone mechanisms is completely deter-

mined without the need of human finger parts. One or more phalanges are

fixed to some link of the mechanism without introducing further DOFs or

further constraints. An example easy to illustrate is reported in Fig. 2.1

(b): the end-effector of a planar four-link serial manipulator with 3 DOFs

controls the pose of the human fingertip that is attached to it. The intro-

duction of the human finger in the kinematic scheme of the mechanism (two

additional links and three revolute joints) does not change the mobility of

the system (see also Fig. 2.1 (d)). From a mechanical point of view, things

are more complex when there are more MCs so that intermediate links of

the mechanism are connected to two or three phalanges (while remaining

always external to the hand backside) and must make them rotate around

their natural motion axis according to given trajectories. In other words,

it is necessary to make the relative rotation axes of the artificial links co-

incide with the relative rotation axes of the corresponding phalanges. The
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so-called remote center of motions mechanisms (RCMs) can be used to solve

the problem. These mechanisms are able to implement the rotation of a

body around a fixed axis that is remotely located from the structure of

the joint while avoiding interference. Different mechanism topologies are

available to achieve this task (Zong et al. [2008]) and are used in several

applications. Existent rehabilitation HEs that include these kind of mecha-

nisms use linkage-based RCMs (Wolbrecht et al. [2011] and Fu et al. [2008]),

geared systems (Wang et al. [2009]) or circular prismatic joints (Ho et al.

[2011]).

It is worth mentioning another -completely different- kind of External Mech-

anisms, namely the devices where deformable bodies are pneumatically actuated

and drive the finger motion. The actuators (artificial muscles) are connected

to the human hand and the deformation of the flexible body provides the hu-

man fingers with movement. Depending on the presence or absence of an artifi-

cial structure connected to the artificial muscles, this architecture can be either

Stand-Alone or Integrated (in the last case the human fingers provide the skeletal

structure). The main characteristics of this solution are a fairly poor accuracy in

spite of a great simplicity and lightness (two aspects particularly important for

assistive devices(Wu et al. [2010])). Currently, no rehabilitation HE presents this

architecture.

2.2.3.2 Lateral Mechanisms

The simplest way to make the rotation axes of the artificial links and human

phalanges coincide is to place the physical revolute joints of the exoskeleton at

the level of the human articulations, beside the finger (as shown in Fig. 2.1 (g,

h), so that no RCM mechanism is required, for the sake of the superior simplicity

of this architecture with respect to the other solutions. The distinction between

Integrated and Stand-Alone Mechanisms would be theoretically possible, but it

makes no practical sense since the good qualities of this architecture are relative

to stand-alone mechanisms only.
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2.2.3.3 Internal Mechanisms

In this kind of architecture, some exoskeleton components are situated in the

user’s palm region. The distinction between Integrated and Stand-Alone Mecha-

nisms would be theoretically possible also in this case, but it not very significant

since the main advantage of this option is the possibility to use cables (or lin-

ear actuators) and pull (and/or push) the fingertips to provide the fingers with

motion in a very simple way (Fig. 2.1 (i-k)): therefore the human segments are

integrating parts of the system.

2.3 Literature review and Discussion

Table 2.1 provides the survey of the existent rehabilitation HEs organized ac-

cording to the three proposed classification principles. Information relative to

the number of finger mechanisms forming the HE and the total number of DOFs

of the overall system are also reported as well as some notable remarks. Fig. 2.2

reports the same data arranged in such a way to appreciate the variability and

the distribution of the numerous combinations of DOFs, MCs and mechanism

architectures present in the literature.

The number of active DOFs is probably the main aspect characterizing a

certain solution. From the literature analysis summarized in table 2.1 and Fig.

2.2 it emerges that:

• index finger mechanism with 1 active DOF is the most widespread adopted

solution. In particular the quantities of rehabilitation HEs classified based

on the number of controlled DOFs are one (Brokaw et al. [2011]), thir-

teen(WaveFlex-Hand [2011], Kinetec-Maestra-Hand [2011], Mulas et al.

[2005], Ho et al. [2011], Iqbal et al. [2010], Schabowsky et al. [2010], Chiri

et al. [2009], Ren et al. [2009], Kutner et al. [2010], Takahashi et al. [2008],

Ertas et al. [2009], Rosati et al. [2009] and Wolbrecht et al. [2011]), seven

(Fu et al. [2008], Sarakoglou et al. [2004], Wu et al. [2010], Yamaura et al.

[2009], Loureiro and Harwin [2007], Burton et al. [2011] and Festo-Company
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Table 2.1: Current rehabilitation HEs classified according the three proposed
principles.

References Index
Finger
active
DOFs

MCs Mechanism
Architec-
ture

Fingers
per HE

HE
ac-
tive
DOFs

Notes

Brokaw et al. [2011]
0 2 Lateral

Mecha-
nisms

2 0 The mech-
anism actu-
ates the flex-
ion/extension
movement of
index MCP
joint and thumb
CMC joint

WaveFlex-Hand
[2011]

1 1 External
Mech-
anisms
- Stand
alone

1 1 The mech-
anism actu-
ates the flex-
ion/extension
movement of
MCP and PIP
joints of all
fingers one
by one (not
simultaneously)

Kinetec-Maestra-
Hand [2011]

1 1 External
Mech-
anisms
- Stand
alone

4 1 The mech-
anism actu-
ates the flex-
ion/extension
movement of 4
fingers simulta-
neously

Mulas et al. [2005]
1 1 External

Mech-
anisms
- Stand
alone

5 2 The mech-
anism actu-
ates the flex-
ion/extension
movement of
4 fingers si-
multaneously
(fingertip of all
fingers are con-
nected rigidly
together)
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Table 2.2: Current rehabilitation HEs classified according the three proposed
principles.

References Index
Finger
active
DOFs

MCs Mechanism
Architec-
ture

Fingers
per HE

HE
ac-
tive
DOFs

Notes

Ho et al. [2011]
1 1 External

Mech-
anisms
- Stand
alone

5 5 The movement
of MCP and
PIP are coupled.

Iqbal et al. [2010]
1 1 External

Mecha-
nisms -
Integrated
Mecha-
nisms

2 2 4 link serial ma-
nipulator

Schabowsky et al.
[2010]

1 2 External
Mecha-
nisms -
Integrated
Mecha-
nisms

5 2 The combina-
tion of 4 fingers
is controlled
with 1 motor,
The movement
of MCP and
PIP joints are
coupled.

Chiri et al. [2009]
1 3 External

Mecha-
nisms -
Integrated
Mech-
anisms
(MCP
joint) and
Lateral
Mech-
anisms
(PIP and
DIP joints)

5 5 The move-
ment of the
finger joints are
coupled and
actuated by 1
motor (elastic
under-actuated
mechanism)
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Table 2.3: Current rehabilitation HEs classified according the three proposed
principles.

References Index
Finger
active
DOFs

MCs Mechanism
Architec-
ture

Fingers
per HE

HE
ac-
tive
DOFs

Notes

Rosenstein et al.
[2008]

1 1 Lateral
Mecha-
nisms

4 1

Takahashi et al.
[2005]

1 1 Lateral
Mecha-
nisms

5 2

Ertas et al. [2009]
1 3 External

Mech-
anisms
- Stand
alone

1 1

Oboe et al. [2010]
1 1 External

Mech-
anisms
- Stand
alone

4 1

Wolbrecht et al.
[2011]

1 2 External
Mech-
anisms
- Stand
alone

1 1

Fu et al. [2008]
2 3 External

Mech-
anisms
- Stand
alone

4 8 -The flex-
ion/extension
movement of
DIP,PIP and
MCP joints
are coupled
-The abduc-
tion/adduction
of MCP joint
is actuated by
another motor
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Table 2.4: Current rehabilitation HEs classified according the three proposed
principles.

References Index
Finger
active
DOFs

MCs Mechanism
Architec-
ture

Fingers
per HE

HE
ac-
tive
DOFs

Notes

Wu et al. [2010]
2 2 External

Mecha-
nisms -
Integrated
Mecha-
nisms

4 2 The flexion
movement
provided by
pneumatic ac-
tuator and the
extension move-
ment provided
by torsion spring

Yamaura et al.
[2009]

2 3 External
Mecha-
nisms -
Integrated
Mecha-
nisms

1 2 The movement
of DIP and
PIP joints are
coupled

Loureiro and Har-
win [2007]

2 2 Lateral
Mecha-
nisms

5 3 2 DOFs (flex-
ion/extension of
MCP and PIP
joints), the DIP
joints of fingers
are kept free

Burton et al. [2011]
2 3 External

Mecha-
nisms -
Integrated
Mech-
anisms
(MCP
joint) and
Lateral
Mech-
anisms
(PIP and
DIP joints)

5 10 The joints that
are actuated
with one motor
and different
pulleys: -MCP
joints of index
and middle -
DIP and PIP
joints of index
and middle
-MCP joints of
ring and little
- DIP and PIP
joints of ring
and little
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Table 2.5: Current rehabilitation HEs classified according the three proposed
principles.

References Index
Finger
active
DOFs

MCs Mechanism
Architec-
ture

Fingers
per HE

HE
ac-
tive
DOFs

Notes

Festo-Company
[2012]

2 3 External
Mech-
anisms
- Stand
alone

5 8 2 DOFs for
thumb, 2 DOFs
for index(1 flex-
ion/extension
and 1 abduc-
tion/adduction),
1 DOF for mid-
dle, 1 DOF for
ring and 1 DOF
for little finger

Ito et al. [2011]
3 3 External

Mecha-
nisms -
Integrated
Mecha-
nisms

5 15 2 DOFs flex-
ion/extension
(MCP and
PIP joints), 1
DOF abduc-
tion/adduction
movement

Worsnopp et al.
[2007]

3 3 Lateral
Mecha-
nisms

1 3 6 motors per
finger, 3 for the
flexion and 3 for
the extension
movement

Wege and Hommel
[2005]

4 3 External
Mecha-
nisms -
Integrated
Mecha-
nisms

5 20
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Table 2.6: Current rehabilitation HEs classified according the three proposed
principles.

References Index
Finger
active
DOFs

MCs Mechanism
Architec-
ture

Fingers
per HE

HE
ac-
tive
DOFs

Notes

Li et al. [2011]
4 3 External

Mecha-
nisms -
Integrated
Mecha-
nisms

2 8

Wang et al. [2009]
4 3 External

Mecha-
nisms -
Integrated
Mecha-
nisms

1 4

Fu et al. [2011]
4 3 External

Mech-
anisms
- Stand
alone

2 8

Sarakoglou et al.
[2004]

2 2 External
Mecha-
nisms -
Integrated
Mecha-
nisms

5 9 2 DOFs for each
finger and 1
DOF for thumb

Ren et al. [2009]
1 1 Lateral

Mecha-
nisms

5 2 The mechanism
of a four-bar
linkage used to
generate hand
opening and
closing motion
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Figure 2.2: Distribution of the rehabilitation HEs found in literature among the
possible solutions identified by the three classification principles.
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[2012]), two (Ito et al. [2011] and Worsnopp et al. [2007]), and four (Wege

and Hommel [2005], Li et al. [2011], Wang et al. [2009] and Fu et al. [2011])

for the five groups ranging from 0 to 4 DOFs respectively;

• apart from the four HEs conceived to fully control the movement of the

human finger (Wege and Hommel [2005], Li et al. [2011], Wang et al. [2009]

and Fu et al. [2011]), the abduction/adduction of the first phalanx is actu-

ated in very few cases (Fu et al. [2008], Festo-Company [2012] and Ito et al.

[2011]);

• the last phalanx is left free (i.e. uncontrolled, as in Fig. 2.1 f) in a significant

number of HEs (Ho et al. [2011], Iqbal et al. [2010], Schabowsky et al. [2010],

Ren et al. [2009], Kutner et al. [2010], Takahashi et al. [2008], Rosati et al.

[2009], Wolbrecht et al. [2011], Fu et al. [2008], Sarakoglou et al. [2004]

and Loureiro and Harwin [2007]). In addition under-actuated mechanisms

are adopted in Chiri et al. [2009] where the number of actuators is smaller

than the DOFs of the mechanisms (as in the schemes of Fig. 2.1(e, i,

k)) so that one or more DOFs are indirectly controlled by the dynamic

behavior of the mechanical system exploiting the natural stiffness of the

human articulations;

• the physical coupling of the four human fingers (excluding the thumb) by

means of rigid links is adopted in nine HEs (Kinetec-Maestra-Hand [2011],

Mulas et al. [2005], Schabowsky et al. [2010], Ren et al. [2009], Kutner

et al. [2010], Takahashi et al. [2008], Rosati et al. [2009], Wu et al. [2010]

and Loureiro and Harwin [2007]);

• active control in a single directions (to actively control the flexion or the

extension movements, (but not both) is a fairly common option. In many

rehabilitation exercises for post-stroke patients the main movement to be

recovered is the finger extension, due to the possible presence of a residual

contracting force that tends to maintain the hand closed. In this situation,

the design of a system with actuators simply devoted to assist patients in

opening the hand only is reasonable (whereas the closing phase is supported

by springs or left uncontrolled at all): a number of solutions leading to
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simple mechanism architectures are available (mostly using cable-driven

transmissions);

• among the commercial solutions, three ones have 1 DOF finger mech-

anism with a very simple architecture (WaveFlex-Hand [2011], Kinetec-

Maestra-Hand [2011] and Kutner et al. [2010]) whereas the Exohand by

Festo-Company [2012] presents index and thumb finger exoskeletons with

2 DOFs each (abduction/adduction of the first phalanx and the coupled

flexion/extension of the three phalanges) and the other three fingers with

1 DOF for the coupled flexion/extension of the phalanges.

The choice of the number of DOFs of a single finger mechanism and the num-

ber of fingers to independently control (i.e. the total number of actuators for

the HE) seems to strictly depend on the target application of HEs, i.e. the kind

of rehabilitation program and training exercises that must be performed. As a

general rule, complex tasks require a good versatility of the finger exoskeletons to

accomplish different movements, so that several active DOFs are required. The

consequence of this option is the weight and the control complexity of the result-

ing HE, increasing with the number of actuators. Most of the solutions found in

the literature seem to reflect the preference for the simplicity of the system, which

is consistent with the movement simplicity needed to perform a cylindrical grasp,

targeted as the main manipulation task in exercises addressed to post-stroke pa-

tients in the acute phase (that is the main population for which the rehabilitation

HEs are developed).

The choice of the number of MCs depends on a number of factors. Generally

speaking, two or three connections offer a higher accuracy and safety with re-

spect to a single MC, since the interaction forces are distributed among multiple

contact areas thus limiting the stresses transmitted to the human hand and avert-

ing the possibility to cause pain. Moreover the finger phalanges are constrained

to follow properly predetermined trajectories, thus avoiding possible unnatural

poses (e.g. hyperextension). Nonetheless, more than one connection per finger

causes a higher difficulty during the initial fitting phase, when the HE links are

attached to the human hand and fingers. It is worth recalling that post-stroke

patients often exhibit a residual spastic force that tend to keep the hand closed:
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in such circumstances the fitting operation performed by therapists is obviously

much more problematic with respect to healthy users. Furthermore, the choice

of many MCs entails the necessity to use many sensors if the interaction forces

between the human finger and the mechanism need to be completely measured

and/or controlled.

It should be noted that there is a close relation between the two before men-

tioned classification principles and selecting a certain combination of DOFs and

MCs should be carefully based on the design specifications dictated by the spe-

cific application of the resulting HE. For instance, if the device is attached to all

the three human finger phalanges and is controlled in one or two active DOFs,

the force exerted to the human phalanges are not controllable separately. In re-

habilitation HEs, the number of MCs is typically equal to or greater than the

number of DOFs: it is evident that the safety of the users plays a crucial role

(the subjects exhibiting some weakness).

The type synthesis and the design of the exoskeleton mechanisms depend also on

the topology chosen. There could be many criteria to distinguish different mecha-

nism topologies: in this work, a high-level classification is adopted to identify the

placement of the mechanism with respect to the human fingers and their natural

workspace (to take into account interference issues and possible functional limi-

tations). The literature analysis reveals that External Mechanisms are the most

widespread (Brokaw et al. [2011], WaveFlex-Hand [2011], Kinetec-Maestra-Hand

[2011], Mulas et al. [2005], Ho et al. [2011], Iqbal et al. [2010], Schabowsky et al.

[2010], Rosati et al. [2009], Wolbrecht et al. [2011], Fu et al. [2008], Sarakoglou

et al. [2004], Wu et al. [2010], Yamaura et al. [2009], Ito et al. [2011], Wege and

Hommel [2005], Li et al. [2011], Wang et al. [2009] and Fu et al. [2011]), with ten

solutions that are here classified as Integrated and seven ones as Stand-Alone.

The Integrated Mechanisms make it possible to use a limited number of artifi-

cial links and joints and guarantee a humanlike motion of the finger since the

phalanges rotate around their natural relative centers of motion. These features

play in favor of the overall mechanism simplicity, which represents the major ad-

vantage of this option. The main drawback is that the loads transmitted to the

finger parts must be limited to pretty low value in order not to cause pain to

the user. Therefore, once that the mechanism is synthesized, the reaction forces
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must be computed with a kinetostatic analysis and checked. The mechanism is

acceptable only if the forces in the human articulations and the contact forces

of artificial links with human phalanges are below given thresholds. Stand-Alone

Mechanisms do not suffer from this disadvantage (if the mechanism is properly

connected to the human finger, the major loads are transmitted among the artifi-

cial links) typically at the cost of a more complex architecture (above all if some

RCM mechanism is implemented).

Also Lateral Mechanisms represent a quite common solution for rehabilitation

HEs, with ten cases found in the literature (Brokaw et al. [2011], Chiri et al.

[2009], Ren et al. [2009], Kutner et al. [2010], Takahashi et al. [2008], Ertas

et al. [2009], Loureiro and Harwin [2007], Burton et al. [2011], Festo-Company

[2012] and ). A superior simplicity characterizes this architecture with respect

to the External Mechanisms. Another advantage is that the human articulations

are subjected to very low loads (theoretically null) thanks to the presence of the

physical links and joints superimposed to the human parts that should absorb the

most loads. On the other side two significant drawbacks affect this option. When

the HE is formed by more than one finger mechanism (excluding the thumb), the

very likely interference of some mechanism links due to the restricted space avail-

able between the human fingers would require to maintain the fingers significantly

abducted, possibly loosing the natural attitude of the user’s hand. Secondly, the

inherent impossibility to provide the proximal joints of the middle and ring fin-

gers with lateral artificial joints entails the use of some RCM mechanism for these

articulations, as in Chiri et al. [2009], Burton et al. [2011] and Festo-Company

[2012], thus affecting a little the major advantages mentioned for this solution.

As for the last category, the Internal Mechanisms, the main advantage is the pos-

sibility to use cables (or linear actuators) to pull the fingertips and cause motion

in a very simple way. The main disadvantages of this solution are that interfer-

ence occurrence could significantly decrease the range of motion of the fingers and

could make the grasping of an object difficult or impossible. The typical applica-

tions for this architecture are therefore in virtual reality environment, where the

direct contact of the user’s hand with real objects is not required (Bouzit et al.

[2002]). No rehabilitation HE reported in the literature so far exploits this option,

but it is worth mentioning an interesting HE concerned as assistive device that,
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thanks to a compliant-mechanism solution and the use of a glove, is not affected

by the mentioned drawbacks.

As a conclusion, this classification is helpful to understand both the reason of

proposing certain solutions for specific applications and the advantages and draw-

backs of the different designs proposed in the literature. Additionally, this classifi-

cation can provide some useful guidelines for the design of new hand exoskeletons,

that was actually the primary motivation of this study.

31



Chapter 3

The Feasibility Study

3.1 Introduction

The design of rehabilitation hand exoskeletons revealed significantly different so-

lutions, whose rationale could be hardly understandable without a systematic

tool of interpretation. In the last chapter a topological classification that is based

on three main key issues which have a major influence on the synthesis of the

exoskeleton mechanisms has been reported. The proposed key issues was: the

number of actuated degrees of freedom, the number of mechanical connections

between a mechanism and the human finger, and the mechanism architecture.

This classification can provide some useful guideline for the design of new hand

exoskeletons. In addition to the proposed classification, many other design is-

sues such as type of connection between HE and human fingers, safety factors,

actuations/motors, control issues, sensor and encoder equipments will be deeply

discussed in this chapter. In the next step, the feasibility study of 1 DOF mecha-

nisms for one finger, intended as the basic model of the targeted hand exoskeleton,

are outlined. In particular, three kinematic chains having 6, 8 and 12 links re-

spectively will be presented and discussed. Finally, based on the advantages and

the drawbacks of each proposed mechanism, one of them (a 12-link mechanism)

is selected.
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3.2 Design Specification

The literature proposes a large number of HEs, which generally present some

common characteristics and many special peculiarities concerning their mechan-

ics, electronics (control) and working principle. The best possible device probably

does not exist, because the complexity of the overall problem prevents unique de-

sign principles to be determined and unambiguous design guidelines to be defined.

Depending on the specific application, the designer of a new HE must face a wide

range of choices, such as the number of DOFs, the mechanism architecture, the

transmission system, the control scheme, etc. A decision on each issue entails

some advantages and drawbacks and also it affects other aspects of design. Be-

cause several design specifications and objectives are often in contrast, a trade-off

must be defined, with weighting factors depending on both the specific application

and the designers’ sensitivity and experience. The purpose of the next sections

is providing a systematic analysis of the design principles involved in the devel-

opment of a rehabilitation HE, as well as discussing the critical issues.

The most important factor providing technical specifications and guidelines is

obviously the intended application of the device. According to various types of

hand problems, different rehabilitation protocols can be proposed, with a deep

influence on the rehabilitation procedure to be implemented and consequently on

the overall structure of the robotic system. Three aspects of the rehabilitation

protocols may be pointed out that can lead to completely different solutions:

• global complexity of exercises: one may schematically distinguish between

basic movements of the finger joints and the execution of daily-living ac-

tivities (ADLs). The basic movements of the finger joints consist of simple

exercises intended to improve the finger mobility, strengthen muscles and

recover basic motion-planning capabilities. Performing manipulation tasks

related to ADLs (e.g. grasping a bottle and pouring liquid into a glass)

involve cognitive aspects as well and it is intended to restore the ability to

autonomously control hand movements;

• complexity of the hand movements: one may schematically distinguish be-
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tween gross motion of all fingers (e.g. for a cylindrical shape grasp) and

single finger dexterity. Rehabilitation of power grasping (in which all fingers

are actuated simultaneously) is one of the main manipulation ability that

should be recovered for all patients, whereas the rehabilitation of the finger

dexterity is a harder task, requiring the capacity of the brain to move the

fingers independently;

• rehabilitation environment: in this respect, one may distinguish between

a real setting and virtual reality. When performing exercises for ADLs,

manipulation of real objects is closer to what the patient must learn from

the rehabilitation procedure. On the other hand, a virtual-reality simulator

software can create a wealth of different relevant environments and quickly

switch between them with no set-up time. In addition, it can boost patients’

motivation to perform exercises because it looks like playing a game.

The overall structure of the robotic system (mechanics and control, hardware and

software) strictly depends on these categories, so that the specific rehabilitation

protocol must be defined first.

A requirement that is mandatory and independent from the specific application

is related to the user’s safety (especially for patients who suffer from certain dis-

eases and are more vulnerable than healthy subjects). In particular, the forces

transmitted from the machine to the human hand must be limited, in order not to

cause pain, and thus fully controllable (which implies the possibility to measure

or estimate them, with evident consequences on the sensor apparatus). Moreover,

the human like movement of the fingers must be respected, so that the phalanges

should not be hyper extended with respect to the natural range of motion. This

last limitation provides a significant constraint on the workspace of the HE as

well as on the configurations that the mechanism links may assume.

Another mandatory requirement is the HE adaptability to different hand sizes.

The system should be designed to be used by a number of different patients. Ac-

cordingly, in order to avoid constrained motions that could possibly cause pain

if the mechanism were ”rigidly” designed for a specific reference hand, the HE

should accommodate different hand sizes. This can be obtained by introducing

passive joints or compliant connections or by allowing the mechanism geometry
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to be slightly modified (i.e. by adjusting some link lengths). Strictly related to

this issue is the fitting complexity, that is the easiness of connecting the HE links

to the human hand and fingers. On this point it should be noted that post-stroke

patients often exhibit residual contraction forces that tend to make their hand

be a closed fist. The fitting procedure would require to attach the HE to the

patient’s fingers while these last are kept extended by a therapist: many connec-

tions and rigid-type connection components could make the fitting procedure be

very complicated or even impossible if pain is caused to the hand (that is forced

to keep an over-constrained configuration).

Depending on the strategies used to control the HE and the interaction between

the HE and the environment, high backdrivability features could be required,

that would imply low inertia of the mechanism and very low friction forces. An

important consequence of this requirement is in the selection of the actuators and

the power transmission components, which must be as lightweight and efficient

as possible (for instance, in this perspective speed reducers with more than one

or two stages are generally unsuitable). In any case a high speed of response of

the system is generally requested for both the effectiveness of the rehabilitation

procedure implementation and safety reasons.

3.3 High level design choices

3.3.1 Kinematic architectures

Because of the above factors (requirements of the rehabilitation protocol, safety,

fitting on different hand sizes, backdrivability), a number of high-level choices

must be determined. The first one concerns the kinematic architecture of the

system. Indeed, the designer must choose:

• the number of DOFs of the mechanism that guides the functions of a single

finger, namely the number of articulation movements that can be possibly

coupled or left free;

• whether controlling all the DOFs of the finger mechanism or designing an
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under-actuated solution (i.e. one or more DOFs are controlled by the dy-

namical behavior of the mechanical system);

• how many finger mechanisms will form the overall HEs, and how many of

them must be controlled independently.

Coupling between the joints of a single finger can be done by means of different

mechanical solutions such as cables and pulleys or rigid linkages and/or geared

systems. Certain mechanisms are stand-alone devices whereas other solutions in-

clude human phalanges and articulations in the overall system, as links and joints

respectively. The possible coupling among different fingers must be also consid-

ered, by assessing the possibility for a single motor to control more than one finger

mechanism The choice about this fundamental feature depends on the trajectories

to be followed, the force(s) to be applied (and measured) on the human fingers,

the required versatility, and the control strategies to be implemented. Also the

simplicity of the overall system (mechanics and control), sometimes constrained

by external factors, can play a major role in the definition of the HE kinematics.

Active control in a single or in both the directions (to actively control the flexion

or the extension movements or both) is another issue. It should be considered in

fact that the main movement to be recovered is the extension of fingers for post-

stroke patients, due to the possible presence of a residual contracting force that

tends to maintain the hand closed. In this situation, the design of a system with

actuators simply devoted to assist patients in opening the hand only (whereas the

closing phase is supported by springs or left uncontrolled at all) is reasonable:

many solutions leading to simple mechanism architectures are available (espe-

cially if using cable-driven transmissions). On the other side, the machine cannot

completely control the grasping force and this could be not acceptable in some

applications.

3.3.2 Connection between HE and human fingers

The HE can be fixed to the fingers in different ways. Usually it is attached by

looping a strap or a rigid ring around the finger phalanges or using a cap fixed
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to the human fingertip. Alternatively, the user can wear a glove and the HE is

connected to the glove. In this respect, the most important decision concerns

the number of connections of the HE with each finger, which depends on the

number of DOFs of the finger mechanism and the specific application. Generally

speaking, more than one connection per finger causes a higher complexity during

the fitting phase and the necessity to use many sensors if the interaction forces

between the human finger and the mechanism need to be completely measured

and/or controlled. Nonetheless, multiple connections offer a higher accuracy and

safety, since during the motion the finger phalanges are constrained to follow

properly predetermined trajectories, thus avoiding possible unnatural poses (e.g.

hyperextension). In rehabilitation HEs, the number of connections is typically

equal to or greater than the number of DOFs. Also the stiffness of the connection

can be a significant factor in different perspectives. A flexible strap can slightly

move with respect to the phalanx, thus determining variable contact areas that

can negatively affect the controllability and the accuracy of the system when

following certain trajectories. On the other hand, a flexible strap is easier to fix

during the initial fitting with respect to a stiffer solution, it is inherently safer

(the compliance can play as a mechanical filter of forces) and it lets the HE

accommodate different hand sizes due to its intrinsic adaptability.

3.3.3 HE placement relative to the human hand

HEs actuate the movement of fingers by means of a series of links which could

be placed above the human fingers, beside the fingers or inside the palm. Each

solution contains some advantages and drawbacks according to their placement

relative to the human fingers. The most critical problem that must be solved

for those devices that are placed above the fingers is the mechanical interference

between the mechanism links and the anatomical parts. Indeed, finger phalanges

must be guided to rotate about anatomical axes around which no mechanical

parts may be placed, for obvious reasons. Some kind of so-called Remote Center

of Motion mechanisms must be then adopted to make some links have a remote

center of relative motion coinciding with the human joint axes while avoiding

mechanical interference. Feasible solutions can be obtained by properly synthe-
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sized linkages or epyciclic gearings (Kitada et al. [1997], Fontana et al. [2009] and

Nakagawara et al. [2005]) respectively). The exoskeletons that are placed beside

the fingers, as well as those in which the anatomical segments are integrating

parts of the device, do not need Remote Center of Motion mechanisms. This

happens because their centers of rotation can be made easily coincident with the

centers of rotation of the human finger. This appears to be a great benefit, but

this solution needs room beside the fingers that is not always available. The ex-

oskeletons that are placed inside the palm could make without Remote Center of

Motion mechanisms as well (see Bouzit et al. [2002]), and they could be simple

and lightweight. The main disadvantage of this solutions is that the exoskeleton

placement limits the reachable workspace and it makes impossible the complete

grasping of real objects in real settings.

3.3.4 Actuation

Another discriminating characteristic of different HE solutions is the choice of

actuators and transmission systems. Rehabilitation HEs typically use pneumatic

actuators or electric actuators). HEs that use pneumatic actuators may be more

lightweight than those using electric actuators, but they need an external com-

pressor, which is a major drawback. In order to keep the weight of the exoskele-

tons low, actuator parts can be located far from the device (e.g. fixed to the

ground). In this case, power is transmitted to the exoskeleton by means of differ-

ent transmission systems such as wire-driven mechanisms and/or linkages and/or

geared mechanisms. The use of cables (e.g. Bowden cables or cable-and-pulley

systems) is quite common, above all in those mechanisms where only one move-

ment is actively controlled (e.g. finger extension), due to the simple, compact and

lightweight solution that this way may achieve. However, controlling the preload

of cables throughout the device life cycle, as well as the friction losses between

the cables and possible sheaths, may represent a problematic issue. Gear trains

are also effectively used to transmit power. They may both reduce speed and,

if properly arranged, provide Remote-Center-of-Motion mechanisms. However,

their efficiency may be too low in applications that require good backdrivability,

mainly due to difficulties in maintaining a good lubrication. In this case, linkages
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comprising rolling-bearings-equipped joints may be preferred, at the cost of less

compact solutions. The use of actuators directly placed above the fingers is non-

conventional due to the high specific power that is required (ultrasonic motors

could be a promising solution in this perspective (Choi and Choi [1999])).

Active control in a single or both flexion-extension directions is another issue. For

post-stroke patients, in fact, the main movement to be recovered is the extension

of fingers, due to the possible presence of a residual contracting force that tends

to maintain the hand closed. In this situation, the design of a system whose

actuators only assist the patient in opening the hand (whereas the closing phase

is supported by springs or left uncontrolled) is reasonable. On the other side, the

HE cannot completely control the grasping force and this could be unacceptable

in some applications.

3.3.5 Control and sensor equipment

The control of a HE is generally in charge of the patient, who must generate

proper input signals to control the HE finger functions, e.g. EMG-signals gained

from human muscles, or brain signals detected by BCIs, or forces measured on the

HE itself. In addition to the input command sensors, exoskeletons need position

sensors and force sensors in order to implement proper motion control strategies

(typically position control or force control or a combination of both). For position

control, the use of incremental encoders integrated in the electric motors is very

convenient, in order to calculate joint angles by means of the kinematic scheme

of the mechanism. High stiffness and low backlash of the mechanism are required

to obtain accurate data. If these qualities are not met, other sensors (e.g. po-

tentiometers, Hall effect sensors, absolute encoders) directly placed on joints can

measure the relative angular position of the connected links. Force sensors can

also be placed in different parts of the exoskeleton, depending on their charac-

teristics and working principle. The most straightforward way consists in placing

them between the HE and the human fingers, in order to directly measure contact

forces. However, in this arrangement, sensors do not distinguish between forces

exerted by the user and external forces. Thus, during contact with the environ-

ment, it becomes impossible to recognize the user’s intention. Additional force
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sensors located at every possible contact surface in the grasping area could be

used to detect external forces, but this would cause losing direct contact between

human fingers and the object. Alternatively, strain gages can be placed on some

components (e.g. to measure the tension of cables in wire-driven mechanisms)

and the grasping force could be calculated based on the retrieved data. Finally,

for devices whose kinematic scheme and friction models are accurate enough, the

force exerted on the human fingers can be computed and controlled by measur-

ing the current absorbed by the electric motors (whose torque constant must be

known). Unfortunately, modeling and/or measuring the force or the power due to

friction are very difficult tasks, so that systems using this strategy may generally

be not very accurate in force control.

3.4 Feasibility study of HEs

In this section the basic steps for the selection of a feasible architecture for the HE

of the BRAVO project are outlined, with the aim of illustrating a real application

of the design principles provided above.

3.4.1 Technical specification

The focus of the BRAVO rehabilitation protocol is on the training of patients in

the acute phase, with the aim of recovering the basic functions of manipulation.

In this context, two main tasks should be possibly assisted by the HE, namely

the finger extension for correctly pre-shaping the patient’s hand when approach-

ing the target and the control of motion and force of the fingers when grasping

cylindrical objects. A 2 DOFs HE oriented to assist the power grasp was defined

as the target solution for the first prototype to be realized. One actuator will be

devoted to control the thumb flexion/extension whereas a second actuator will

control the flexion/extension of the other four fingers. For a cylindrical shape

grasping, a device with 1 DOF only is theoretically sufficient. However, the in-

dependent action of the thumb with respect to the four fingers is considered as

necessary (or, at least, convenient) to properly control the motion coordination

in order to correctly grasp the object. Moreover, in order to let the human finger
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in direct contact with the grasped object and not to suffer from strict constraints

of room availability to host the exoskeleton links, the location of the mechanism

links above the fingers was decided a priori. The two actuator groups will be

located in the hand backside.

Difficulties were encountered in finding reliable reference trajectories from litera-

ture analysis, since reported data are mutually inconsistent. By considering the

task of grasping middle size cylindrical objects, starting from a configuration with

fingers being fully extended, the trajectory data reported in Gülke et al. [2010]

and relative to the grasping of cylinders with different diameters were considered

as a reference. As reported in Gülke et al. [2010], five cylinder grips using 5

cylindrical objects of different diameters are analyzed: grip size (G1) diameter

was 12 cm; grip size (G2) diameter was 9 cm; grip size (G3) diameter was 7

cm; grip size (G4) diameter was 5.5 cm and grip size (G5) diameter was 4 cm.

Each grip was performed 3 times during each measurement unit. Accordingly,

the mean of the 3 measurements for each joint were calculated. The analysis

included all 14 joints and all 5 cylinder grips. Maximum flexion/extension of the

joints, gauged during the time intermission, displayed constant adaptation to the

object size (as shown in Table 3.1). As expected, the maximum flexion enlarged

with decreasing object size. This hypothesis is supported by the fact that the

mean values of all measured flexion angles had the tendency to increase from ob-

ject G1 to object G5. The following angles showed the average angle of all joints

and all subjects during grip for all 5 objects (G15). G1: 17.9 ◦ (16.6 ◦,19.3 ◦), G2:

21.9 ◦ (20.4 ◦, 23.4 ◦), G3: 27.6 ◦ (26.0 ◦, 29.3 ◦), G4: 32.6 ◦ (30.8 ◦, 34.4 ◦), and G5:

47.8 ◦ (45.7 ◦, 50.1 ◦). The increase of flexion angle with decreasing object size was

more frequently observed at the MCP joint than at the PIP and DIP joints and

was considerably noticeable at the index and small fingers (Table 3.1). From the

largest to the smallest object, the flexion angle at the MCP joint of the index

finger multiplied by 4.1, of the middle and ring finger by 2.1, and of the small

finger by 4 (Gülke et al. [2010]). At the PIP joint, the multiplication measured

2.2 for the index, 2.1 for the middle, 2.1 for the ring, and 2.5 for the small finger.

At the DIP joint, it averaged 3.1 for the index, 2.5 for the middle, and 2.4 for the

ring and small fingers. At the thumb, the distribution of the total ROM showed

significant greater flexion at the IP joint, independent of the size of the object
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Thumb
MCP IP

Mean SD Mean SD
G1 9.4 9.3 20.6 15.6
G2 10.7 7.5 30.7 14.3
G3 15.9 11.1 44.7 17.4
G4 21.3 13.0 50.8 19.3
G5 24.8 11.6 49.7 22.3

Table 3.1: Thumb Joint Flexion (degrees) (taken from Gülke et al. [2010])

Index finger
MCP PIP DIP

Mean SD Mean SD Mean SD
G1 11.5 11.1 27.8 17.5 9.1 8.7
G2 12.3 14.6 35.7 20.5 12.1 6.8
G3 16.1 11.0 45.1 21.6 17.5 7.8
G4 23.0 15.7 53.3 20.9 22.1 9.9
G5 47.4 22.3 62.3 19.8 28.0 15.0

Table 3.2: Index finger joint Flexion (degrees) (taken from Gülke et al. [2010])

(p.001) (Table 3.1). Looking at G1, the MCP joint was flexed 9.4 ◦, whereas the

IP joint was flexed an average of 20.6 ◦. The results for the fingers were different.

There, the PIP joint mainly contributed to the total amount of flexion, followed

by the MCP and DIP joints (p.001). However, there is no significant difference

between the MCP and DIP joints. The motion of the joints of the index finger in

G1 underlined this. There, the PIP joint was flexed 27.8 ◦, the MCP joint 11.5 ◦,

and the DIP joint 9.1 ◦.

The coupling ratio of the DIP and PIP joints is the ratio of their maximum

flexion angles. The greatest ratio was reported for the ring finger. Depending on

the size of the object, it measured between 0.88 and 1.03 for the ring finger and

between 0.44 and 0.54 for the little finger (Table 3.6). This documents that the

coupling ratio varies considerably among the index, middle, ring, and small finger

but presents relative consistency for the individual finger independent of the size
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Middle finger
MCP PIP DIP

Mean SD Mean SD Mean SD
G1 22.0 14.6 32.8 11.5 18.8 9.2
G2 25.4 15.2 39.8 14.9 22.4 9.6
G3 31.3 12.8 48.6 13.8 30.3 11.8
G4 37.3 14.8 58.2 11.1 38.3 12.4
G5 59.6 14.6 68.9 10.9 46.2 13.9

Table 3.3: Middle finger joint Flexion (degrees) (taken from Gülke et al. [2010])

Ring finger
MCP PIP DIP

Mean SD Mean SD Mean SD
G1 18.8 9.7 26.8 10.9 25.5 8.5
G2 22.8 12.0 30.7 10.7 28.9 8.0
G3 27.8 12.4 38.7 10.7 36.3 10.9
G4 31.3 12.7 45.5 13.4 42.1 12.5
G5 50.4 15.1 62.9 11.9 52.8 14.2

Table 3.4: Ring finger joint Flexion (degrees) (taken from Gülke et al. [2010])

Little finger
MCP PIP DIP

Mean SD Mean SD Mean SD
G1 13 8.7 23.3 12.6 11.2 6.7
G2 14.3 11.1 27.3 13 12.5 7.7
G3 17.8 12.9 34.0 12.7 14.7 8.1
G4 20.0 17.1 39.3 15.5 16.9 11.3
G5 52.1 25.4 58.1 14.9 23.6 15.3

Table 3.5: Little finger joint Flexion (degrees) (taken from Gülke et al. [2010])
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Index Middle Ring Little
Mean SD Mean SD Mean SD Mean SD

G1 0.50 0.50 0.63 0.42 1.02 0.36 0.54 0.33
G2 0.69 0.86 0.66 0.47 1.03 0.39 0.53 0.32
G3 0.72 0.86 0.72 0.44 0.99 0.38 0.48 0.30
G4 0.56 0.72 0.70 0.30 1.00 0.38 0.49 0.30
G5 0.59 0.48 0.70 0.25 0.88 0.27 0.44 0.33

Table 3.6: Coupling Ratio of DIP and PIP Joints (taken from Gülke et al. [2010])

of the object. According to this, the only significant variable is the finger itself.

As for the forces, the hardest required task is assisting the finger extension

due to some possible residual contracting force. Also in this case the literature

does not offer definite reference data. The effect of the residual contraction was

thus arbitrarily modeled as an external force of 10 N applied on the fingertip of

each finger, orthogonal to the third phalanx middle line for every configurations

along the finger trajectory. For the opposite movement (i.e. the flexion one),

the maximum grasping force was set at 30 N, which was considered enough to

securely hold small to medium size objects (e.g. a glass full of water). It should

be noted that 30 N is the force acting on the thumb on one side and on the

group of four fingers on the other. These data, defined on the basis of common

sense and practitioners’ advice, prove consistent with the experience retrieved

from the clinical practice. They will provide the reference values in the static and

kinetostatic analyses that shall be performed to select appropriate commercial

components (e.g. the actuators) and properly design the mechanism links. As

far as the human hand geometry is concerned, average data were taken as ref-

erence by combining the anthropometrical proportions retrieved from Buchholz

and Armstrong [1992] and Drillis et al. [1964].
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3.4.2 Feasibility study of different architecture

The basic module of the pursued HE is a mechanism attached to one human

finger, that must couple the flexion/extension movements of the three anatom-

ical phalanges (the abduction/adduction of the first phalanx is inhibited). The

feasibility study of a planar mechanism with 1 DOF, whose topology is conceived

as suitable for all the fingers (though with different geometries due to the diverse

lengths of the five human fingers), is the target of this first design step. The driv-

ing link of the thumb mechanism must be controlled by one actuator, whereas

the driving links of the four mechanisms attached to the opposite fingers will be

connected to the axis of a second actuator.

Some basic considerations for the synthesis of the targeted 1 DOF planar mecha-

nism can be done, starting from the well known Grubler’s formula for the planar

mechanisms:

l = 3n− 3− 2 c1 − c2 (3.1)

where l is the number of DOFs of the mechanism, n is the number of its links, c 1

and c 2 are the number of lower pairs (revolute and prismatic joints) and higher

pairs (cam-follower type joints) respectively. Higher pairs are generally not con-

sidered as suitable for HE mechanisms due to a number of reasons (e.g. design

complexity for obtaining a bilateral constraint, friction forces possibly inaccept-

able, etc) so that the following straightforward relation between the number of

links and the number of lower pairs holds (being l=1 and c 2=0):

c1 = 3/2n− 2 (3.2)

that leads to the results for c 1 and n reported in Table 3.7.

The synthesis problem to solve was to determine the 1 DOF planar mecha-

nism that, placed above the human finger and connected to it, makes the finger

follow - though approximately - the trajectory retrieved from Gülke et al. [2010].
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Table 3.7: Topology elements for 1 DOF planar mechanisms.

n 4 6 8 10 12 ...
c 4 7 10 13 16 ...

The main concern is finding out a mechanism with a suitable architecture (as

simple as possible and with reasonable dimensions) that guarantees the interfer-

ence avoidance between links and phalanges (and between links themselves). To

this aim a number of solutions corresponding to possible combinations retriev-

able from table 3.7 were synthesized for the index finger, taken as reference in

this first step, and then critically analyzed. In this context only three of them

will be outlined and discussed, due to their significant differences that can be a

stimulus for the reader.

3.4.2.1 6-linkage mechanism

By excluding a priori the possibility that a 4-link mechanism could target the de-

sign goals (a designer easily understands that the interference avoidance through

the whole workspace with reasonable link lengths is impossible), the simplest ar-

chitecture to study (and to design and manufacture) is the 6-link linkage with all

revolute joints. Very good qualities were expected from this simple architecture

due to the low number of links and joints, the presence of all revolute joints (eas-

ier to accurately manufacture than the prismatic joints and suffering from less

problems from a functional viewpoint) that would leave the possibility to realize a

compliant mechanism with all the known advantages. The synthesis of the linkage

can be performed in different methods. The synthesis method that is performed

here is the Burmester-theory-based procedure proposed by McCarthy(Soh and

McCarthy [2008]). Accordingly, in order to keep this work self-contained, the

method is extensively explained in the appendix.

The philosophy of the synthesis method can be briefly explained as follows (Mc-

Carthy [2000]): the mechanical constraints is introduced to a planar 3R serial

chain to guide the movement of its end effector through a set of five specified

task positions to obtain a six-bar linkage, as illustrated in Fig. 3.1.
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Figure 3.1: A planar 3R serial chain is constrained by two RR chains to define a
six-bar linkage.

Based on this method, the Watt Ia six-bar was deeply analyzed. The mecha-

nism is attached to human finger phalanges as presented in Fig. 3.2. The result is

the mechanism where link 7 is the driver and link 4, fixed to the third phalange,

is the follower.

Thus the exoskeleton should be able to correctly guide the fingertip through

a number of poses (position and orientation) that entail a natural motion of the

whole finger along the grasping trajectory. As mentioned before, the configura-

tions obtained from Gülke et al. [2010] were considered as reference configurations

(presented in Fig. 3.3). So, the synthesis problem is to find a suitable 6-link

mechanism in which the link 4 (that is fixed to the third phalange) pass through

desired poses(positions and orientations).

As for the first step of the synthesis, the dimension of the 3R: a 1, a 2 and a 3,

and the location of the base and moving pivots of the 3R chain: [G] and [H] are

chosen. We use this data to formulate the inverse kinematic equations of the 3R

chain and solve for the 5 configuration angles q j=(θ 1,θ 2,θ 3), j=1,...,5, that reach

the specified task configurations [T j], j=1,...,5 as shown in Fig. 3.4 and Fig. 3.3.

Notice that for one configuration, the inverse kinematic equations yield two

sets of configuration angles corresponding to a 3R chain with its elbow up and

elbow down. In our synthesis, we choose the elbow up configuration, preventing
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Figure 3.2: Watt kinematic chain and schematic of the watt-chain-based mecha-
nism.
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Figure 3.3: 5 configurations considered as reference for synthesis of 6-link mech-
anism.

 

Figure 3.4: A 3R chain connected to the human finger phalanges.
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the possible interference between human phalanges and the mechanism. The five

configurations of the 3R chain provide the pose for each link relative to the ground

frame. These thirty coordinates(x and y coordinates of 15 points) form the tasks

requirements that can be used to synthesize the planar RR constraints. At the

next step, we will add two RR constraints (first link is G 1W 1 and the second

link is G 2W 2) to the 3R chain to obtain the Watt chain as shown in Fig. 3.5.

 

Figure 3.5: A 3R chain connected to the human finger phalanges.

The synthesis procedure was formulated in a Matlab code to reach the de-

sired trajectory while the 6-link mechanism does not interfere the human finger

phalanges. The inputs of the program are the three lengths of the 3R chain

(a 1,a 2,a 3) and the base pivot (G) of the 3R chain, then the output is a proper

6-link mechanism that satisfies all the given poses. By a trial-and-error proce-

dure, we ran the code many times (hundreds) to reach the desired results. The

main difficulties was keeping the mechanism above the human finger phalanges

not interfering the fingers in the whole range of finger motion. Finally, we found

a proper mechanism which does not interfere with the human hand (as shown in

Fig. 3.6).

Unfortunately, the kinematic analysis performed to simulate a continuous tra-
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Figure 3.6: A synthesized 6-link mechanism; where the blue lines represent the
human finger phalanges, the purple line represents the link with length of a 1, the
yellow link represents a 2 and the red link represents a 3
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jectory extending from full extension to the configuration suitable for grasping the

smallest cylinder (55 mm diameter) revealed that, due to the large link rotations

required to cover the workspace, the linkage would suffers from kinematic singu-

larities (occurring when the centers of joints A, B, C (see Fig. 3.2) are aligned.

The problem could be solved by adding some auxiliary mechanism enabling the

6-link mechanism to move out from the singularity configuration into the desired

one. Some functional solutions were studied but, due to the high forces exchanged

close to the singular configuration and to the increased complexity of the mech-

anism architecture, the resulting system lost most of the good qualities initially

expected. Therefore, this solution was not proposed any longer.

3.4.2.2 8-linkage mechanism

Another mechanism, with a higher number of links was considered as a feasible

solution (the chain with n=8 link arranged as in Fig. 3.7(a). The motivation was

that a slight complication of the architecture (only two more links and three more

joints) could lead to a singularity-free mechanism (in the considered workspace)

able to respect the given design goals. Indeed, the higher freedom in the synthesis

procedure made it possible to choose some design parameters that let the linkage

guide the finger along the reference trajectory while avoiding interference with

the human phalanges. Among the numerous possible combinations, the solution

shown in Fig. 3.7(b) seemed particularly interesting. Four revolute pairs were

replaced by prismatic pairs. The final kinematic chain can be thought of as

composed by three 4-link loops, each one formed by four links, two revolute

and two prismatic joints, connected in series at the level of intermediate links.

The anatomical segments and articulations are considered as integrated parts of

the mechanism, so that all the three phalanges are attached to the exoskeleton.

Link 5, provided with a linear motion with respect to link 1, is the driving link

whereas the phalanges (links 2, 3, and 4) are the three followers that are forced

to assume the poses defined by the reference trajectory (and this could be good

for the patient’s safety, in spite of a possibly limited feedback perception during

grasping). The mechanism synthesis was perfomed, in this case, by following a

trial-and-error procedure, in order to realize the desired trajectory. Based on
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Gülke et al. [2010], the relative angles among the human segments (links 1, 2,

3, and 4) in five different configurations from full extension to the configuration

grasping the smallest cylinder were considered as the reference trajectory.

Figure 3.7: (a)8-link kinematic chain taken as reference for the synthesis of a fin-
ger mechanism; (b) schematic of the synthesized 8-link mechanism with revolute
and prismatic pairs.

Three loops of links (links 1-2-5-6, 2-3-6-7, and 3-4-7-8 respectively) were

sequentially synthesized. After determining the mechanism geometry, the contin-

uous trajectory was analyzed to check the presence of non-natural movements of

the phalanges, the occurrence of singularities, possible interferences among links

and abnormal behaviors of the mechanism (figures 3.8, 3.9 and 3.10). The intro-

duction of the prismatic joints provides a quite simple solution to the problem of

interference avoidance (and it was similarly used in the 4-DOFs finger exoskeleton
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proposed in Kitada et al. [1997]). On the other side, the stroke required to the

sliders is considerable, so that this architecture is less compact than the previous

one. Moreover, preliminary simulations showed the occurrence of high forces in

some joints for the given grasping force required. From the static point of view,

special care must be paid in order to avoid self-locking configurations.

Figure 3.8: Schematic of a configuration of the synthesized 8-link mechanism.

Figure 3.9: Schematic of a configuration of the synthesized 8-link mechanism.

3.4.2.3 12-linkage mechanism

Another mechanism, with a higher number of links was considered as a feasible

solution. It comprises 12 links, also including the three phalanges, interconnected

by 16 revolute joints, thus resulting in a 1-DOF mechanism. It is worth noting

that natural connection between adjacent phalanges is considered as a revolute

joint. The mechanism topology and its geometry are reported in Fig. 3.11(a)
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Figure 3.10: Schematic of a configuration of the synthesized 8-link mechanism.

and Fig. 3.11(b). In particular, the mechanism has the following compositions:

2 quaternary links (links 2 and 3), 4 ternary links (links 6, 8, 9, 11) and 6 binary

links (links 1, 4, 5, 7, 10, 12). The mechanism comprises five loops as shown

in Fig. 3.11(a). By this mechanism all the desired trajectory requirements and

finger interference avoidance with the mechanism links can be satisfied.

The same approach is considered to design a proper mechanism for the thumb.

Although from the anatomical point of view the thumb features the same number

of phalanges and joints as in the other four fingers, it was decided to fix at a given

value the flexion/extension and abduction/adduction movement of the proximal

thumb joint CMC (carpometacar-pal joint). This assumption was done mainly

based on the data obtained from Gülke et al. [2010]. According to this assumption

and based on the same mechanism used for the other four fingers (see Fig. 3.11),

four links (links 4, 5, 6, 7) of the mechanism are dropped in order to control the

lower number of phalanges in the thumb as shown in Fig. 3.12.Figure 3.12(a)

shows the 8-link mechanism topology, while 3.12(b) shows a schematic of the

8-link mechanism adopted for the thumb.

3.5 Discussion

The synthesis of three 1-DOF planar mechanisms to be used as a finger exoskele-

ton were presented in the previous chapters. The Watt-chain-based linkage is
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Figure 3.11: (a) 12-link mechanism topology; (b) Schematic of the 12-link mech-
anism.
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Figure 3.12: (a) 8-link mechanism topology; (b) Schematic of the 8-link mecha-
nism for the thumb.
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extremely simple and it leaves the human finger free to directly come in contact

in a wide area with the grasped object, but it suffers from a serious singularity

configuration within the workspace. The problem could be solved by complicat-

ing the architecture and introducing auxiliary links and joints to form an internal

sub-mechanism, however it was not presented. The second linkage is free from

singularities in the considered workspace and its architecture is still not very

complicated, so that it could be a good candidate solution. However, further

studies show that for the given grasping force these could raise to unacceptable

forces both in the prismatic joints and, above all, in the connections between

the links and the human phalanges. The third linkage (12-link mechanism) con-

tains a higher number of links: 12 (in comparison with 6 and 8 of the other two

mechanisms) but it contains a number of advantages such as: reaching of the

desired trajectory without interfere with the phalanges; high range of motion;

maintaining the forces within an acceptable range. Based on the advantages and

the drawbacks of the three above-mentioned mechanisms, the 12-link mechanism

was selected as the basic model of the targeted HE.
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Chapter 4

Synthesis, Analysis and Design of

12-Link mechanism

4.1 Introduction

As for the design phase, the decision was made through a number of high level

design specifications. The hand orthosis features five planar 12-link mechanisms,

one per finger (8-link for the thumb), globally actuated by two motors equipped

with incremental encoders for implementing position/velocity control schemes.

Indeed, the thumb flexion/extension movement along a selected plane is controlled

by one actuator (motor and speed reducer), whereas a second actuator is devoted

to the control of the flexion/extension of the other four fingers (being the four

corresponding mechanisms connected to the same driving shaft). In order to

satisfy the desired constraints, the dimensional synthesis should be done for 5

fingers so that all fingers pass through desired configurations. Another important

factor in dimensional synthesis is the finger synchronization issue. Since the same

topology is used for the group of 4 fingers and all four fingers are actuated by one

motor, the synchronization issues should be also taken into account to garantee

the correct grasping. The kinematic and static analyses should be also done in

order to verify the kinematic constraints.
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4.2 Synthesis and Synchronization

After selecting the mechanism topology, the dimensional synthesis was done in

order to satisfy the desired configurations (trajectories). In particular, the finger

has to pass through some (five) given configurations. By a trial and error pro-

cedure, a first acceptable solution was obtained, therefore leaving the adoption

of more advanced (sophisticated) techniques (Erdman [1981], Konak et al. [2006]

and Datta and Deb [2011]) to a further design. In order to reach the desired

trajectory, based on Gülke et al. [2010] the angles α, β and γ (Fig. 3.11) in five

different configurations from full extension to the minimum grasped cylinder was

taken as reference trajectory. Therefore, for each finger mechanism, the synthesis

was performed to reach these sets of angles in five configurations. The synthesis

was done by considering different groups of the mechanism loops in sequence.

Namely (see Fig. 3.11): the first group contains loop 1 (links 1, 2, 11, 12); the

second group contains loops 2 (links 2, 3, 8, 9) and 3 (links 2, 9, 10, 11); and

the third group contains loops 4 (links 5, 6, 3, 4) and 5 (links 6, 7, 8, 3). The

synthesis started by focusing on the first group (loop 1). The input of loop 1

(four-bar mechanism) is the orientation of link 12 with respect to link 1 (ground)

and the outputs are the position and orientation of link 2 (proximal phalange)

and link 11. The dimensional synthesis was done sequentially for each group in

order to reach five desired output angles (α) in five configurations. These con-

figurations started from full extension of the finger and continued to flexion that

pass through 4 decreasing diameters of a cylindrical object.

The next step is to design the second group which contains two coupled four bar

linkages (loops 2 and 3). The inputs of the second group are the positions and

the orientations of links 2 and 11, and the outputs are the positions and orienta-

tions of link 3 (middle phalange) and 8. The synthesis of the second part (two

coupled 4-bar chains) has been done by inspection to reach five desired values for

the angle β (the proper angle to grasp the desired cylindrical object). It is worth

mentioning that the length of the binary link number 7 plays an important role

in controlling the orientation of link 3 (angle β). Finally, the same procedure

was done to synthesize the third group (loop 4 and 5) which contains the distal

phalange.
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The allowed range of motion for the flexion/extension angle of the metacarpopha-

langeal (MCP) (α), the proximal interphalangeal (PIP) (β) and the distal inter-

phalangeal (DIP) (γ) joints are kept in a proper range: (5÷80), (0÷90) and

(0÷20) respectively. Additionally, the link size (mainly the distances between

two adjacent joints in one link) are kept in a proper range (10÷52 mm).

The same dimensional synthesis was done for the other finger mechanism. The

synthesis was done based on the lengths of each phalanges of the selected fingers

and the proper grasping angles of each joint. It is worth deepening both the

”adaptability” of the mechanism and the ”sensitivity” of the human hand con-

figuration with respect to different hand sizes. With reference to each one of the

four-finger mechanisms, three artificial links are connected to the three phalanges

by means of 5 mm wide Velcro strips (the thumb has only two connections for the

two moving phalanges). The intrinsic compliance of these couplings and the pos-

sibility to tight the strip in variable positions along the phalanges allow the finger

exoskeleton to adapt to human hands with different sizes. As mentioned before,

the average configuration data reported in Gülke et al. [2010] were assumed as the

finger configurations considered as reference for the mechanism design. The data

(mean value and standard deviation) are expressed in terms of joint angles (α,

β and γ in Fig. 3.11) experimentally retrieved from subjects grasping cylinders

with diameters of 55, 70, 90 and 120 mm. Being the human segment and joints

integrating parts of the mechanism, the different geometry of the resulting four

1-DOF mechanisms entails a variation in the actual configurations, in terms of

relationships among the joint rotations as shown in Fig. 4.1. By calculating the

variations of α,β and γ for grasping the cylindrical object among the different

hand sizes (Figures 4.2, 4.3 and 4.4), the results show small and acceptable vari-

ations with respect to the standard deviation reported in Gülke et al. [2010]. In

other word, the mechanisms’ configuration has not shown a great sensitivity to

different hand sizes.

Apart from the configurations of each single finger, the motion of all fin-

gers should be synchronous. It means that when grasping a cylindrical object,

phalanges should have a trajectory consistent with the requirement to have all

phalanges that come into contact with the cylindrical object to be grasped at the

same time (this would avoid to change the pose of the cylinder once it has been
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Figure 4.1: Index finger Configuration for different size hands (with respect to
the height of the person) when grasping cylindrical objects of diameter 55, 70, 90
and 120 [mm] respectively
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Figure 4.2: Joint angle α in different size hands when grasping cylindrical objects
of diameter 55, 70, 90 and 120 [mm] respectively.
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Figure 4.3: Joint angle β in different size hands when grasping cylindrical objects
of diameter 55, 70, 90 and 120 [mm] respectively.
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Figure 4.4: Joint angle γ in different size hands when grasping cylindrical objects
of diameter 55, 70, 90 and 120 [mm] respectively.

grasped). The problem of finger synchronization was satisfactorily achieved by

minimizing the errors when the group of four fingers grasp a cylindrical object

of diameter 60 mm, taken as a reference diameter for the selected range (50÷70

[mm]).

Another constraint to be taken into account is the placement of the links and

joints with respect to finger phalanges. In the whole range of motion, the links

and joints of the mechanism should be kept above the human finger phalanges

(above the links 1, 2, 3, 4) not to disturb the movement of the fingers. Of course

interference among the links of the mechanism and the phalanges must be avoided

in all configurations. Moreover, if two links or joints interfere in their workspace,

they have to be manufactured in order to operate in two different planes. The

total number of planes for each finger should be as lower as possible.
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4.3 Kinematic Analysis

Once the mechanism geometry was defined, the static analysis was performed to

both calculate the forces exerted by the mechanism links at the interface with the

phalanges and the required driving torque for grasping an object or to balance

the possible residual contracting forces.

In order to reach this purpose, the static analysis was done to find out the am-

plitude and the direction of the forces exerted at each joint. These forces were

computed as a resultant of a residual contraction modeled as an external force of

10 N applied at the fingertip. The maximum force exerted at joints is about 150

N which occurs in the full extension mode in the joints of the binary link 7(see

Fig 3.11b). Other forces that should be taken into account are the forces exerted

at each connection between the mechanism links and the human phalanges. In

order to calculate these forces, the internal forces in the links 2, 3 and 4 of each

fingers are calculated. Figure 4.5 shows the names assigned to each revolute joint

and figures 4.6 and 4.7 show the forces between the mechanisms’ links at these

joints. The diagrams of Figures 4.6 and 4.7 show the modules of the force [N] in

the revolute joints with respect to input link angle α [Degree] (see Fig. 3.11b).

The last diagram in Fig. 4.7 shows the moduls of the required torque [N.mm] for

grasping an object with respect to input link angle α [Degree] (see Fig. 3.11b).

Further, the first diagram of each row in Fig. 4.8 and 4.9 show the modules of

the force [N] with respect to input link angle α [Degree] in joints Q, M, K and

G, while the next two diagrams in each row present the moduls of each force[N]

in the ”X” and ”Y” directions with respect to input link angle α [Degree] (the

”X” and ”Y” components allow definig the direction and modul of each force in

reference system). Figure 4.10 shows the forces exerted at the mechanism link-

finger phalange interface. The maximum force exerted at the finger is about 150

[N]. It is possible to find the required amount of torque to actuate link (link 5) to

balance the force of 10 N in the fingertip. The required torque from full exten-

sion to full flexion is increasing from 0.750 Nm to 2 Nm, so the global maximum

torque required for the group of four fingers would be approximately about 8

Nm(as shown in figures 4.7). The same static analysis was done for the thumb.

In comparison with the other four fingers, the maximum required torque takes

65



4. Synthesis, Analysis and Design of 12-Link mechanism

place in a flexed mode (when grasping an object with a force of 30N) as shown

in Fig. 4.6. The maximum calculated torque was about 3.5 Nm (Fig. 4.7). The

velocity and acceleration analysis were done as well. Figures 4.11 and 4.12 show

the velocities [m/s] of each joint and figures 4.13 and 4.14 show the accelerations

[m/s 2] of each joint with respect to input link angle α [Degree]. So, the results

of the kinematic and static analysis confirmed the validity of the design.

Figure 4.5: The names assigned to each revolute joint, where the joints A, B and
C are human MCP, PIP and DIP joints respectively.

4.4 Mechanical Design

The hand orthosis is formed by five planar 12-link mechanisms, one per finger,

globally actuated by two motors equipped with incremental encoders for imple-

menting position/velocity control schemes. Indeed, as shown in figures 4.15, 4.16

and 4.17, the thumb flexion/extension movement along a certain plane is con-

trolled by one actuator (motor and speed reducer), whereas a second actuator is

devoted to the control of the flexion/extension of the other four fingers (being

the four corresponding mechanisms connected to the same driving shaft). The
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Figure 4.6: The forces between the mechanisms’ links at different kinematic pairs.
The diagrams show the modules of the force [N] in the revolute joints with respect
to input link angle α [Degree].
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Figure 4.7: The forces between the mechanisms’ links at different kinematic pairs.
The diagrams show the modules of the force [N] in the revolute joints with respect
to input link angle α [Degree]. The last diagram presents the moduls of the
required torque [N.mm] for grasping an object with respect to input angle α
[Degree].
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Figure 4.8: The modules and x,y components of the force in the joints Q and M.
The first diagram of each row show the modules of the force [N] with respect to
input angle α [Degree] in joints Q and M, while the next two diagrams in each
row present the modules of each force[N] in the ”X” and ”Y” directions with
respect to input link angle α [Degree].
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Figure 4.9: The modules and x,y components of the force in the joints K and G.
The first diagram of each row show the modules of the force [N] with respect to
input angle α [Degree] in joints Q and M, while the next two diagrams in each
row present the modules of each force[N] in the ”X” and ”Y” directions with
respect to input link angle α [Degree].
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Figure 4.10: The forces exerted to the human finger phalanges with respect to
input link angle α [Degree]..
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Figure 4.11: The velocities [m/s] of each joint with respect to input link angle α
[Degree].
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Figure 4.12: The velocities [m/s] of each joint of the mechanism with respect to
input link angle α [Degree].
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Figure 4.13: The accelerations [m/s 2] of each joint of the mechanism with respect
to input link angle α [Degree].
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Figure 4.14: The accelerations [m/s 2] of each joint of the mechanism with respect
to input link angle α [Degree].
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abduction/adduction of the first phalanx of all the fingers is thus inhibited. For

a cylindrical grasp, a device with one degree of freedom (DOF) only would be

theoretically sufficient. However, the independent action of the thumb with re-

spect to the four fingers was preferred to properly control the motion coordination

in order to correctly grasp the object. All links of the mechanisms are located

above the fingers not to disturb the finger movements and the grasping of ob-

jects, whereas the two actuators are placed on a frame fixed to the hand backside

(see Fig. 4.15). The frame and the mechanisms are respectively connected to

the hand and fingers by means of Velcro strips. The same topology is kept for

the index, middle, ring, and little finger mechanisms(see Fig. 3.11), being the

geometry resized to fit the specific finger size it is coupled with and to perform

the corresponding trajectories. As already mentioned, the driving links of the

four mechanisms are connected to the same driving shaft that receives power

from one single actuator, so that the resulting group of fingers has 1-DOF. The

same approach was considered for the design of the thumb mechanism. However,

although the human thumb has the same number of phalanges, joints, and DOFs

of the other four fingers, it was decided to keep the first phalanx fixed at a given

pose, being this assumption based on the data taken from Gülke et al. [2010].

The fixed pose of the first thumb phalanx with respect to the mechanism frame

can be adjusted (by means of an internal 6 DOFs mechanism whose configuration

can be passively regulated and fixed during the orthosis fitting) in order to select

a proper plane of the thumb flexion/extension (being the optimal plane of motion

variable from patient to patient). The thumb motor axis is generally skew with

respect to the plane of motion: a spatial four-bar linkage (made of four links, two

revolute joints and two spherical joints) is used as the transmission chain that

connects the actuator axis to the axis of the mechanism driving link (see Fig.

4.15). The connecting rode between two spherical joints of the mentioned RSSR

mechanism is adjustable, that can provide us the optimal force transmisibility for

different patient hands.
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Figure 4.15: Schematic CAD model of the B.H.O. hand exoskeleton

4.5 B.H.O. Prototype

After designing the CAD model, the prototype was manufactured at Bologna

University (see figures 4.18, 4.19 and 4.20). All machining process of each single

part such as drilling and cutting (which is done by a CNC metalworking lathe)

were done at the workshop of Bologna University. The Assembly process was also

done in the same labratory.

As a conclusion, an original solution for a hand exoskeleton conceived to

support post-stroke patients in cylindrical shape grasping tasks with the aim

of recovering the basic functions of manipulation was proposed. The device is

formed by five planar mechanisms, one per finger, globally actuated by two elec-

tric motors. Indeed, the thumb flexion/extension movement along a certain plane

is controlled by one actuator whereas a second actuator is devoted to the control

of the flexion/extension of the other four fingers (being the four corresponding

mechanisms connected to the same driving shaft). All links of the mechanisms

are located above the fingers not to disturb the finger movements and the grasp-
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Figure 4.16: Schematic CAD model of the B.H.O. hand exoskeleton

ing of objects, whereas the two actuators are placed on a frame fixed to the hand

backside. The mechanisms are connected to the fingers at the level of all the

three phalanges by means of Velcro straps. All the finger mechanisms are based

on the same kinematic architecture: with reference to Fig. 3.11, the mechanism

comprises 12 links, also including the three phalanges that are fixed to three

artificial moving links, interconnected by 16 revolute joints (three of which are

provided by the anatomical articulations). The same approach was considered

for the design of the thumb mechanism. However, although the human thumb

has the same number of phalanges, joints, and DOFs of the other four fingers,

it was decided to keep the first phalanx fixed at a given pose. The fixed pose of

the first thumb phalanx with respect to the mechanism frame can be adjusted as

mentioned in the last part (by means of an internal 6 DOFs mechanism whose

configuration can be passively regulated and fixed during the orthosis fitting) in

order to select a proper plane of the thumb flexion/extension (being the optimal

plane of motion variable from patient to patient).
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Figure 4.17: Schematic CAD model of the B.H.O. hand exoskeleton

In order to satisfy the desired constraints, the dimensional synthesis was done for

5 fingers so that the fingers pass through desired configurations. Another factor

that was taken into account in dimensional synthesis was the synchronization

problem. As already mentioned, the driving links of the four finger mechanisms

are connected to the same driving shaft that receives power from one single ac-

tuator. Because of this single actuator, the motion of all fingers should be syn-

chronous, so that when grasping a cylindrical object, phalanges should have a

trajectory consistent with the requirement to have all phalanges that come into

contact with the cylindrical object to be grasped at the same time (this would

avoid to change the pose of the cylinder where it is grasped). The problem of

finger synchronization was satisfactorily achieved by minimizing the errors when

the group of four fingers grasps a cylindrical object of diameter 60 [mm], taken

as a reference diameter for the selected range (50÷70 [mm]).

After the dimensional synthesis, as already reported in previous sections, the

static analysis was performed to both calculate the forces exerted by the mech-
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Figure 4.18: The manufactured prototype of the B.H.O. hand exoskeleton

anism links at the interface with the phalanges and the required driving torque

for grasping an object or to balance the possible residual contracting forces.

After designing the CAD model, the prototype was manufactured at the work-

shop of the department of Industrial Engineering (DIN) of Bologna University.
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Figure 4.19: The manufactured prototype of the B.H.O. hand exoskeleton
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Figure 4.20: The manufactured prototype of the B.H.O. hand exoskeleton
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Chapter 5

The Experimental tests

5.1 Introduction

After designing and manufacturing the HE, the prototype was delivered to PER-

CRO laboratory of the Scuola Superiore Sant’Anna in Pisa (Italy) for some exper-

imental tests. Two tests are reported here: the fisrt one is testing the application

of HE by using the Electromyography (EMG) signals for bilateral active training

of grasp motion in stroke patients, and the second test is testing the application

of HE connecting to the arm exoskeleton for motor rehabilitation of reaching and

hand grasping motion in stroke patients.

5.2 An EMG-based robotic hand exoskeleton for

bilateral training of grasp

This section presents the development and the preliminary experimental assess-

ment of a novel EMG-driven robotic hand exoskeleton (B.H.O.) for bilateral ac-

tive training of grasp motion in stroke. The system allows to control the grasping

force required to lift a real object with an impaired hand, through the active

guidance provided by a hand active exoskeleton, whose force is modulated by

the EMG readings acquired on the opposite unimpaired arm. To estimate the

grasping force, the system makes use of surface EMG recordings during grasping,

developed on the opposite unimpaired arm. The design, integration and experi-
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mental characterization of the system during the grasp of two cylindrical objects

is presented. The experimental results show that the B.H.O. prototype can reach

the desired configurations for grasping an objects while an optimal force tracking

of the interaction force with the object can be achieved.

5.2.1 System Description

The proposed system allows users to bilaterally train the impaired hand move-

ments for grasping purposes. The system, shown in Fig. 5.1, is composed of an

EMG processing subsystem, that allow measuring the electromyographic mus-

cle activity, combined with the B.H.O. Hand exoskeleton system, that assists

the hand during grasping movements. Moreover in order to perform the tuning

and performance evaluation of the system, it has been completed with two Force

Sensing Resistors (FSR) sensorized objects, used to measure the interaction forces

between the hands and the grasped objects.

5.2.1.1 A graspable force sensorized object for rehabilitation applica-

tions

In order to measure the interaction forces between the hands and the cylindrical

grasped objects, each object (an aluminum can) was equipped with four FSR

sensors, as shown in Fig. 5.2. Given the limited number of four sensors per

object, we identified the most suitable positions on the objects to estimate the

grasping force, locating the FSRs in various positions corresponding to the contact

points of the phalanxes and palm. The more efficient positions on the cans, for a

grasping diameter of 65 mm, were chosen as the contact points of the proximal

interphalangeal joint of the thumb and the intermediate phalanxes of the index,

medium and ring fingers.

5.2.1.2 EMG processing subsystem for grasp control

Surface EMG signals can be correlated with the force produced by muscles and the

resulting torque at the joint level. It follows that they can be used to provide com-

mand in human machine interaction (De [1997], Buchanan et al. [2004],Muzumdar

[2004]). In this study, in order to measure the electromyographic activity during
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Figure 5.1: Conceptual scheme of the proposed system, (a) schematic overview
(b) the captured picture.
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Figure 5.2: The sensorized cylindrical object (left) showing the correspondance
between each FSR and the fingers (right).

grasping tasks, three pairs of electrodes were placed on three main forearm mus-

cles, the extensor digitorum longus (EDL), the flexor digitorum longus (FDL)

and the adductor pollicis brevis (APB). The EDL and the FDL are relative long

muscles positioned respectively on the posterior and anterior forearm, whereas

the APB is a superficial muscle located on the posterior side of the hand. The

map of the EMG sensor locations is shown in Fig. 5.3.

5.2.2 The EMG-based robotic-assisted bilateral training

The setup of the proposed bilateral control architecture is shown in Fig. 5.4. The

control architecture diagram with indication of information flow and processing

among all different module is shown in Fig. 5.5. More in detail, the output

signal of the sensorized object in the Hand (first block) is used to estimate the

grasping force from EMG recordings. During the validation phase, outputs of

the sensorized objects were used to calculate the interaction force error exerted

by the hand wearing the hand orthosis with respect to the one exerted by the

dominant/healthy hand.
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Figure 5.3: The sensor location of the EMG electrodes on the arm. Anterior
surface (a.) and posterior surface (b.) of the left arm.

 

Figure 5.4: The setup for the experimental evaluation of the proposed system:
side view (left) and top view (right).
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Figure 5.5: Global data flow of the system. Dotted lines indicate either training
or evaluation information.

5.2.2.1 Experiment description

The two sensorized objects are used to measure the grasping force exerted by

the hands with respect to time. From the difference between the grasping force

exerted by the dominant/healthy hand and that exerted by the hand wearing the

hand orthosis, it is possible to easily calculate the bilateral error. The conducted

experiment consisted in five repetitions of the grasping task by a healthy subject

(male, 25 yrs old). It was conventionally decided to use the left hand as domi-

nant/healthy and the right one as the impaired one. To simulate this condition,

we asked the subject to keep his own right hand completely passive.

5.2.2.2 Experimental results

Figure 5.6 reports the results of the quantitative experimental evaluation. More

in detail, the plots of the grasping forces acquired by the sensorized objects are

reported (left hand is the dominant/healthy hand). As it is possible to see, the

user is able to control the grasping force achieving an optimal tracking of the

force reference. The subject was able to grasp and lift up the object in his hand

with a good grasp control.
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Figure 5.6: Grasping forces acquired by the sensorized objects during the ex-
periment exerted by the left (dominant/healthy) and right (wearing the hand
orthosis) hands.

As a conclusion, the results provided by both analysis of the conducted exper-

iment are promising and demonstrate the usability of the proposed EMG-based

robotic-assisted system for the bilateral hand training of grasping. This myo-

electrically controlled robotic hand exoskeleton system is promising and appears

particularly indicated for the rehabilitation of hand function for people with hemi-

paresis (i.e. after stroke).

5.3 A Motor Imagery BCI approach to robotic-

assisted neuro-motor rehabilitation of reach-

ing and hand grasping in stroke

This part proposes a novel approach to motor rehabilitation of reaching and hand

grasping in stroke affected patients. Patients are allowed to perform goal directed

manipulation activities with the intentional control of an upper limb exoskeleton

triggered by mental activity through a self-paced asynchronous BCI. Patients are

instructed to plan only mentally movement execution, and only when sufficient

Event-Related-Desynchronization (ERD) activity is detected at contralateral mo-
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tor areas, motion is triggered with the assistance of the combined action of an

arm and hand exoskeleton. The assistance to both reaching and grasping move-

ments, taking into account pre-shaping of hand for object affordability, combines

uniquely rehabilitation training to grasping of both distal and proximal upper ex-

tremity segments. In this preliminary study, we show how this approach can be

successfully used in chronic stroke, by analyzing the performance of four chronic

stroke patients specifically enrolled to this aim. Results show how BCI control

can be successfully used, and how patients are able to perform assisted reaching

and grasping tasks of simple objects.

5.3.1 System Description

5.3.1.1 The BRAVO Exoskeleton

The BRAVO exoskeleton was explicitly conceived to provide assistance to patients

in the execution of functional tasks of reaching and grasping with the impaired

arm, see Fig. 5.7. To this purpose the L-Exos, an active robotic exoskeleton

with four degrees of freedom (Frisoli et al. [2009]) supporting elbow and shoulder

movements, was integrated with an active wrist with two degrees of freedom,

and one hand exoskeleton(B.H.O)(Mozaffari-Foumashi et al. [2013] and Loconsole

et al. [2013a]) for thumb and fingers (two dofs).

5.3.1.2 The integrated BCI system

The motor imagery Brain Computer Interface system is based on the analysis

of the patients µ (8-12Hz) and β (12-24Hz) EEG rhythms recorded through a

pattern of 13 electrodes placed over the motor-cortex (here β in italic has not to

be confused with the angle of PIP joint in Fig. 3.11).

5.3.1.3 Control

L-Exos control was based on bounded-jerk trajectory planning described in Frisoli

et al. [2012]: the shoulder, the forearm, and the wrist (handpalm) were involved

in the exoskeleton trajectory planning to allow on-line generation of motion prim-

itives mimicking human movements in reaching tasks.The Hand-Exos (B.H.O.),
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Figure 5.7: The BRAVO hand exoskeleton
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instead, was controlled through a torque reference as described in Loconsole et al.

[2013b], in order to control opening and closure hand movements. Due to the al-

most isometric nature of the task, requiring small velocities of fingers in the grasp-

ing phase, the voltage applied to the actuators was estimated in feedforward from

the electrical parameters of the motor, according to the supply voltage provided

to each actuator.

5.3.2 Experimental Evaluation

5.3.2.1 Participants

Four chronic stroke survivors (age 58±9, 2 males/2 females) with right arm hemi-

paresis were enrolled in the study. They were instructed about the study finality

and given their written consensus. A clinical assessment was performed to eval-

uate the baseline at the enrollment with upper extremity scales. Furthermore a

preliminary test session to ensure their ability of usage of the BCI was performed.

5.3.2.2 Procedure and methods

The rehabilitation session consisted of two phases: a first training phase lasting 10

minutes and a second robot-aided therapy phase lasting 30 minutes. The training

session was executed in order to train the BCI parameters, and to let the subject

become familiar with the execution of the rest and mental activity. The training

session was composed of a sequence of 40 tasks randomly sorted between rest

and mental activity classes, each one lasting 5 seconds and spaced with a random

relaxation period of 4 s. During each task, the subject was asked through visual

cues either to perform mental activity involving the impaired limb, or to hold a

mental rest state. The rehabilitation phase consisted in a reaching and grasping

scenario composed of three main tasks, as illustrated in Fig. 5.8.

• from home position (H), move to target A (or B), grasp the target object,

then move to H and release grasp;

• from H, move to target A, grasp the target object, then move to B position,

release grasp, then go to H.
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Figure 5.8: Conceptual scenario for the reaching and grasping tasks proposed to
the patients; from home position (H), move to target A (or B), grasp the target
object, then move to H and release grasp; from H, move to target A, grasp the
target object, then move to B position, release grasp, then go to H.

The tasks were designed with the intent of replicating typical daily tasks of ob-

ject manipulation on a desktop. Common objects with shape well suited for hand

affordability were employed, such as fruits (apples, pears) or daily object, such

as glasses and cans. Each grasping task was composed of four subsequent phases:

Preparation of movement, Reaching, Grasping, Bringing back and Releasing. Fig-

ure 5.9 illustrates the general procedure, with the indication of preshaping, grasp

and release movements, and BCI feedback monitoring. During the Preparation

of movement phase, the patient was asked to perform mental activity involving

the reaching and grasping of the target object with the impaired limb. The pa-

tients mental state was monitored through the BCI, and as soon as a cumulative

period of 2 s of mental activity was collected, the system was triggered for the

next Reaching phase (yellow background color in Fig. 5.9). A timeout of 9 s

was implemented for triggering the next phase independently of the patient brain

activity.

In the following Reaching, Grasping and Bringing back phases the patient

motion was assisted and guided by the BRAVO Exoskeleton. In the Reaching

phase, the exoskeleton approached the target object through a task-oriented pre-
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Figure 5.9: The grasping sequence.

computed trajectory, and applied a reference opening force to fingers for executing

the hand pre-shaping. The Grasping phase lasted 5 s, during which the exoskele-

ton applied a constant force to fingers in order to grasp the target object. In the

following Bringing back phase, the exoskeleton brought the patients arm to the

home position, holding fingers closed onto the grasped object. During the last

phase (Releasing), the patient was asked to recover a rest mental state in order to

release the object. Similarly to the Preparation of movement phase, a cumulative

period of 2 s of Rest mental state had to be collected, with a timeout of 9 s, in

order to trigger the opening of the Hand Exos (green background color in Fig.

5.9). The global time required for completing one grasping sequence was 30 s for

the best performance, while 44 s were required for the worst case (in case the

processed mental activity never matched the requested mental state). Patient 4

performed the rehabilitation phase with a timeout of 2 s for the Releasing phase.

5.3.3 Preliminary Results

Figure 5.10 shows the actual trajectory performed by one of the patients dur-

ing the reaching task, corresponding to a task such as the one shown in Fig.

5.11. Performance evaluation of the rehabilitation session was based on the time
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required for accomplishing each reaching-grasping task and on the correct clas-

sification rate of the BCI output. Table 5.1 reports the following parameters:

in the first column the BCI classification performance (correct rate), expressed

as the percentage of time during which mental activity was correctly classified

(mental activity for the Preparation phase and Rest for the Releasing phase),

in the second and third columns respectively the elapsed time for accomplishing

each of the Preparation and Releasing phases expressed in second and in time

percentage, normalized between the minimum (0%, 2 sec) and maximum (100%,

9 sec) required time.

 

Figure 5.10: Trajectories executed during the rehabilitation session for one patient

As a conclusion, a novel approach for rehabilitation of both reaching and hand

grasping in stroke was proposed. Robotic assistance triggered by a motor imagery

BCI system was integrated into a more ecologic rehabilitation scenario involv-

ing the whole sequence of phases (preparation of movement, reaching, grasping,

bringing back and releasing) occurring during natural execution of a reaching-

grasping task. The BRAVO exoskeleton, featuring shoulder and elbow assistance

and adaptive kinematics for the hand, allowed patients to accomplish goal di-
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Figure 5.11: Sequence of movements performed by one patient under BCI control:
a→b reaching, c→d grasping, e return movement, f release

Mental Activity
Feedback[%] Time[S] Time[S]
Mean SD Mean SD Mean SD

Subject 1 59.5 24.04 4.18 2.30 31.10 32.82
Subject 2 66.62 29.22 3.83 2.02 26.04 28.81
Subject 3 88.60 15.16 2.35 0.49 4.98 7.00
Subject 4 70.76 38.58

Rest
Subject 1 65.00 17.07 3.35 1.06 19.27 15.15
Subject 2 83.29 20.60 2.60 0.77 8.56 10.99
Subject 3 51.31 28.53 4.77 2.20 39.52 31.44
Subject 4 82.86 25.56
Average 70.94 27.39 3.52 1.82 21.58 25.95

Table 5.1: Results of the rehabilitation session
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rected activities of manipulation. The BCI system, triggering the task execution

through mental activity, represents a key-factor of the rehabilitation paradigm for

closing the feedback loop between the patients mental activity and the proprio-

ception of the robotic-assisted task execution. Moreover, the proposed paradigm

introduced the rest mental state as a required activity for the task accomplish-

ment, thus balancing the mental effort of the patient, and focusing his attention

also onto hand relaxation controlled through brain activity. The feasibility of

the proposed rehabilitation scenario was assessed by performance results shown

in table 5.1. All subjects were able to successfully complete the rehabilitation

session, reporting an average correct classification rate of the mental activity vs

rest brain activity of 70.9%, and with an averaged time of 3.52 s for accomplish-

ing each of the BCI triggered phases (Preparation of movement and Releasing).

It was shown that motor imagery BCI can be profitably implemented for trig-

gering robotic assistance, allowing patient to conduct the whole rehabilitation

session with reasonable mental effort. Results are thus promising for assessing

the efficacy of the proposed approach in a larger clinical study.
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Conclusions

The synthesis of hand exoskeleton for the rehabilitation of post-stroke patients

was presented in this dissertation. As for the first step, the analysis of state-of-

the-art was reported. Based on this, a topological classification focused on three

main key issues that have a major influence on the synthesis of the exoskeleton

mechanisms was proposed, namely on the number of actuated degrees of freedom,

on the number of mechanical connections between the mechanism and the human

finger, and on the mechanism architecture. There is a close relation among the

different key factors, and selecting a given specific solution can solve a group of

problems related to one aspect of the design, but it could trigger other kinds of

problems or limitations in other aspects. Based on these three principles, the re-

habilitation hand exoskeletons were systematically analyzed and classified. This

classification is helpful to understand both the reason of proposing certain solu-

tions for specific applications and the advantages and drawbacks of the different

designs proposed in the literature. Additionally, this classification can provide

some useful guidelines for the design of new hand exoskeletons, that was actually

the primary motivation of this study.

In addition to the proposed classification, many other general design issues emerged

from the literature analysis such as type of connection between the exoskeleton

and the human fingers, safety factors, actuations/motors, control issues, sensor

and encoder equipments were deeply discussed and some common principles were

offered to researchers who are approaching this design problem. After that, the

feasibility study of three different 1-DOF mechanisms for a single finger, intended
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as the basic model of the targeted hand exoskeleton, were also presented: one is

a 6-link mechanism based on the Watt chain connected to the human finger only

at his tip; another one is an 8-link mechanism with four prismatic and nine rev-

olute joints, where phalanges and articulations are part of the kinematic chain

(with three connection points between the exoskeleton and the human finger be-

ing necessary to close the chain), and the third one is a 12-link mechanism with

all revolute joints where still the human phalanges and articulations are part of

the kinematic chain. The Watt-chain-based linkage is extremely simple and it

leaves the human finger free to directly get in contact in a wide area with the

grasped object, but it suffers from a serious singularity configuration within the

workspace. The problem can be solved by complicating the architecture and

introducing auxiliary links and joints to form an internal sub-mechanism. The

second linkage is free from singularities in the considered workspace and its archi-

tecture is yet not very complicated, so that it could be a good candidate solution.

However further studies, show that these could raise to unacceptable high forces

both in the prismatic joints and, above all, in the connections between the links

and the human phalanges. The third linkage contains higher number of links but

it contains many good advantages such as: reaching the desired trajectory with-

out interference with the human phalanges, high range of motion, maintaining

the forces in acceptable range. Based on the advantages and drawbacks of the

proposed three planar mechanisms, the 12-link mechanism was selected as a suit-

able candidate for the single finger exoskeleton. After selecting the mechanism,

the dimensional synthesis, kinematic and static analyses were done for all fingers

separately in order to satisfy the desired constraints. The proposed solution suc-

cessfully provides the desired trajectory for the specified grasping motion, while

the forces exerted on human phalanges at the interface with the mechanism links

are in a proper range.

As for the primary motivation of this study, a novel hand exoskeleton device was

designed for the rehabilitation of the hand of post-stroke patients to enable the

cylindrical shape grasping tasks with the aim of recovering the basic functions of

manipulation. The proposed device features five proposed planar 12-link mecha-

nisms, one per finger, globally actuated by two electric motors. In particular, the

thumb flexion/extension movement, in a plane, ... selected within a certain range,
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is controlled by one actuator, whereas a second actuator is devoted to the control

of the flexion/extension of the other four fingers (being the four corresponding

mechanisms connected to the same driving shaft). As the same topology is used

for the group of four fingers and all four fingers are actuated by one unique motor,

the synchronization issue is taken into account in the final synthesis procedure

in order to guarantee a correct grasping. The problem of finger synchronization

was satisfactorily achieved by minimizing the errors when the group of the four

fingers grasp a cylindrical object of diameter 60 [mm].

After manufacturing the device at the DIN workshop of the University of Bologna,

the prototype was delivered to ”PERCRO laboratory” of the Scuola Superiore

Sant’Anna in Pisa (Italy) for experimental tests. Two experimental tests were

done: the first one is testing the application of the hand exoskeleton by using

the EMG signals for bilateral active training of grasp motion in stroke patients,

and the second one is testing the application of hand exoskeleton integrated to

the arm exoskeleton for motor rehabilitation of reaching and grasping tasks in

stroke patients. The results obtained by both experiments are promising and

demonstrate the usability of the proposed robotic-assisted system for the hand

training in grasping tasks.
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Appdx A

The synthesis method that was applied in this dissertation was the Burmester-

theory-based procedure proposed by McCarthy(Soh and McCarthy [2008]). The

philosophy of the synthesis method can be briefly explained as follows (McCarthy

[2000]): the mechanical constraints is introduced to a planar 3R serial chain to

guide the movement of its end effector through a set of five specified task positions

to obtain a six-bar linkage, as illustrated in Fig. 1.

Figure 1: A planar 3R serial chain is constrained by two RR chains to define a
six-bar linkage.

A planar 3R chain includes four links and three revolute joints C i, i = 1,2,3

as shown in Fig. 2. We assume that this chain has full mobility in the plane with

its configuration defined joint angles θ 1, θ 2 and θ 3, and can reach a set of task

positions.
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Figure 2: A schematic of a planar 3R serial chain. The graph of this chain forms
a straight line with a vertex for each link in the manipulator.

102



. Appendix

The goal is to add constraints consistent with the task positions. While any

of the constraints PR, RP, and RR can be used, our focus is on RR constraints,

Fig. 3.

Figure 3: Examples of constrained 3R serial chain.

A planar six-bar linkage consists of six links and seven joints and has two

topologically distinct structures. These are called the Watt and Stephenson six-

bar chains, Fig. 4. Inversions of these chains yield the Watt I, Watt II, Stephenson

I, Stephenson II, and Stephenson III linkages.

In order to identify the ways to add RR constraints to a 3R serial chain, we

denote links of the 3R chain, as B i, i = 0, 1, 2 and 3. An RR chain cannot

constrain consecutive links, therefore the two links that can be connected by

the first RR constraint are (i) B 0B 2, (ii) B 0B 3, or (iii) B 1B 3. Once the first

constraint is attached, the second RR constraint can be connected either to one

of the original links, or to the link created by the first RR constraint. Figure 5

shows the various systems that result from independent RR constraints applied

to a 3R chain. Notice that while two RR chains can connect B 3 to ground, there

are no other cases in which the two RR cranks are connected to the same bodies.

The result is three six-bar linkages, the Stephenson IIb, Stephenson IIIa, and

Stephenson IIIb. The notation a and b is used to distinguish the input crank,

which we consider to be the first link of the 3R chain.
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Figure 4: The Watt and Stephenson six-bar chains, and the different forms ob-
tained by selecting different links as the base.
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Figure 5: The linkage graphs show the synthesis sequence for the three con-
strained 3R chains in which the two RR chains are attached independently.
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We now consider the case in which the second RR chain is connected to the

new link B 4 of the first RR chain. Figure 6 shows that we obtain the follow-

ing four topologies, which can be identified as (i) (B 0B 2;B 3B 4) known as a

Watt Ia linkage, (ii) (B 0B 3;B 1B 4), the Stephenson I, (iii) (B 0B 3;B 2B 4), the

Stephenson IIa, and (iv) (B 1B 3;B 0B 4), the Watt Ib linkage.

 

Figure 6: The linkage graphs show the synthesis sequence for the four constrained
3R chains in which the second RR chain connects to the first RR chain.

In order to size the two RR constraints for the 3R backbone chain, we general-

ize the RR synthesis equations. Let [B l,j], j = 1, ..., 5, be the five positions of the

l-th moving link, and [B k,j], j = 1; ..., 5, the five positions of the k-th moving link

measured in a world frame F. Let g be the coordinates of the R joint attached to

the l-th link measured in the link frame B l . Similarly, let w be the coordinates

of the other R joint measured in the link frame B k. The five positions assumed

by these points of the moving frame as the two bodies move relative to each other

are given by:
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Gj = [Bl,j]g, W j = [Bk,j]w (1)

Where [B l,j] is the position of the l-th moving link and [B k,j] is the position of

the k-th moving link. Now introduce the relative displacements([R l,j] ans [S l,j]):

[R1j] = [Bl,j][Bl,1]
−1, [S1j] = [Bk,j][Bk,1]

−1 (2)

then these equations become:

Gj = [R1j]G
1,W j = [S1j]W

1 (3)

where [R 11] = [S 11] = [I] are the identity transformations. The points G j

and W j define the ends of a binary rigid link of length R; therefore we have the

constraint equations:

([S1j]W
1 − [R1j]G

1)([S1j]W
1 − [R1j]G

1) = R2 (4)

These five equations 4 can be solved to determine the five design parameters

of the RR constraint, G 1 = (u, v, 1) T , W 1 = (x, y, 1) T , and R. We will refer to

these equations as the general synthesis equations for the planar RR link. To solve

the general synthesis equations, it is convenient to introduce the displacements:

[D1j] = [R1j]
−1[S1j] = [Bl1][Blj]

−1[Bkj][Bk1]
−1 (5)

then we obtain
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([D1j]W
1 −G1)([D1j]W

1 −G1) = R2, j = 1, 2, 3, 4, 5 (6)

Subtract the first of these equations from the remaining ones to cancel R 2

and the square terms in the variables u,v and x,y. The resulting four bi-linear

equations can be solved algebraically to obtain the desired pivots. The general

synthesis equations 6 can be solved using an algebraic elimination procedure.

Recall that this consists of constructing four bi-linear equations and extracting

four 3×3 minors M j to obtain four cubic polynomials in x and y, given by:

Λj : dj0y
3 + dj1y

2 + dj2y
1 + dj3y

0 = 0, j = 1, 2, 3, 4 (7)

where the coefficient d kj is a polynomial in x of degree k. The four polynomials

Λ j are assembled into the matrix equation:

Λ = [D(x)]m = 0 (8)

where:

[D(x)] =


d10(x) d11(x) d12(x) d13(x)

...
...

...
...

d40(x) d41(x) d42(x) d43(x)

 ,m =


y3

y2

y

1

 (9)

This equation can be solved for a non-zero m = (y 3;y 2;y;1), only if the resul-

tant matrix [D(x)] has a determinant equal to zero. Here we present a method

to compute the roots of det[D(x)] = 0 using the eigenvalue technique described

in Manocha and Krishnan [1996]. For convenience, rename x as λ, and expand
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[D(λ)] in matrix polynomial form as:

[D(λ)] = [D0] + [D1]λ+ [D2]λ
2 + [D3]λ

3 (10)

where D 0, D 1, D 2, and D 3 are 4×4 matrices. The roots of detD(λ)=0 are

the finite eigenvalues of the generalized system:

[B]x = λ[A]x (11)

where A, B, and x are given by:

[A] =


I4 0 0

0 I4 0

0 0 D3

 , [B] =


0 I4 0

0 0 I4

−D0 −D1 −D2

 , x =


m

λm

λ2m

 (12)

where I 4 is the 4×4 identity matrix and 0 is a 4×4 matrix of zeros. The

solution of this eigenvalue problem yields four finite solutions. For each real

value of λ we compute its eigenvector and obtain a value for y. Notice that each

eigenvector x is defined up to a constant multiple µ, therefore, it is convenient to

determine the coordinate of y by computing the ratio of elements of x, such as:

y =
x3
x4

=
µy

µ
(13)

The remaining variables u and v are obtained by solving two of the four bi-

linear synthesis equations formulated from equation 6. The synthesis of an RR

constraint yields as many as four different geometries, therefore two constraints

can yield 16 different geometries. However, our process always has one link of

the 3R chain as one of the solutions, so there are at most 12 different geometries.
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The Stephenson I structure has all 12 different geometries. The Stephenson II has

two different sets of different geometries that differ in the workpiece link, and so

yields 24 different geometries. The Stephenson III also has two ways to connect

to the end effector, one of which yields 12 different geometries and the other six,

a total of 18. The Watt I has two different sets of different geometries that differ

in the input crank, and both sets include a link on the 3R chain for both RR

constraints, so there are 2×9 candidates. The result is as many as 72 different

six-bar linkage geometries obtained using this process (McCarthy [2000]).

Given any six-bar linkage, we can perform closed-form kinematic analysis to sim-

ulate its movement using complex vectors and the Dixon determinant(see Mc-

Carthy [2000]). Our focus in this section is on the Watt Ia six-bar, but the

approach can be applied to all of the six-bar linkages obtained from our synthesis

methodology. All that is needed are the loop equations for the linkage. Consider

the general Watt Ia linkage shown in Fig. 7. Introduce a Cartesian frame such

that the base pivot of the 3R chain, C 1, is the origin with its x-axis directed

toward G 1. Let the configuration angles θ i, i = 1,2,3,4,5 be as shown in Fig.

7. Using the notation in Fig. 7, we formulate the vector equations of the loops

formed by C 1C 2W 1G 1 and C 1C 2C 3W 2G 2G 1, that is:

F1 : l1 cos(θ1) + b1 cos(θ2 − γ)− b2 cos(θ4 − η)− l0 = 0 (14)

F2 : l1 sin(θ1) + b1 sin(θ2 − γ)− b2 sin(θ4 − η) = 0 (15)

F3 : l1 cos(θ1) + l2 cos(θ2)− l3 cos(θ3)− l4 cos(θ4)− l5 cos(θ5)− l0 = 0 (16)

F4 : l1 sin(θ1) + l2 sin(θ2)− l3 sin(θ3)− l4 sin(θ4)− l5 sin(θ5) = 0 (17)

Select the angle θ 1 as the input to the six-bar linkage, then these four equa-
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Figure 7: The joint angle and link length parameters for the Watt Ia six-bar
linkage.

tions F i determine the joint angles θ j; j = 2,3,4,5. Now introduce the complex

numbers Θ j = e iθ j , so the four loop equations 14, 15, 16 and 17 become two

complex loop equations:

`1 : l1Θ1 + b1Θ2e
−iγ − b2Θ4e

iη − l0 = 0 (18)

`2 : l1Θ1 + l2Θ2 + l3Θ3 − l4Θ4 − l5Θ5 − l0 = 0 (19)

Take the complex conjugate of these two equations:

`1
∗ : l1Θ1

−1 + b1Θ2
−1eiγ − b2Θ4

−1e−iη − l0 = 0 (20)
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`2
∗ : l1Θ1

−1 + l2Θ2
−1 + l3Θ3

−1 − l4Θ4
−1 − l5Θ5

−1 − l0 = 0 (21)

We now solve the four complex loop equations (18), (19), (20) and (21) for

the complex configuration angles Θ j, j = 2,3,4,5 by using the Dixon determinant.

Suppress Θ 3, so we have four complex equations in the three variables Θ 2, Θ 4

and Θ 5. We formulate the Dixon determinant by inserting each of the four

functions ` 1,`
∗
1, ` 2 and ` ∗

2 as the first row, and then sequentially replacing the

three variables by α j (j=2,4 and 5 respectively) in the remaining rows, to obtain:

∆(`1, `1
∗, `2, `2

∗) =


`1(Θ2,Θ4,Θ5) `1

∗(Θ2,Θ4,Θ5) `2(Θ2,Θ4,Θ5) `2
∗(Θ2,Θ4,Θ5)

`1(α2,Θ4,Θ5) `1
∗(α2,Θ4,Θ5) `2(α2,Θ4,Θ5) `2

∗(α2,Θ4,Θ5)

`1(α2, α4,Θ5) `1
∗(α2, α4,Θ5) `2(α2, α4,Θ5) `2

∗(α2, α4,Θ5)

`1(α2, α4, α5) `1
∗(α2, α4, α5) `2(α2, α4, α5) `2

∗(α2, α4, α5)

(22)

This determinant is zero when Θ j, j =2,4,5, satisfy the loop equations, because

the elements of the first row become zero. Notice that each complex loop equation

has the form:

`k : ck0 + ck3x+
∑
j=2,4,5

ck,jΘj (23)

`1
∗ : ck0

∗ + ck0
∗x−1 +

∑
j=2,4,5

ck,j
∗Θj

−1 (24)

where x denotes the suppressed variable Θ 3. Clearly, the equations maintain

this form when α j replaces Θ j. Now row reduce ∆ by subtracting the second

row from the first row, then the third from the second, and the fourth from the
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third, to obtain:


c12(Θ2 − α2) c12

∗(Θ2
−1 − α2

−1) c22(Θ2 − α2) c22
∗(Θ2

−1 − α2
−1)

c14(Θ4 − α4) c14
∗(Θ4

−1 − α4
−1) c24(Θ4 − α4) c24

∗(Θ4
−1 − α4

−1)

c15(Θ5 − α5) c15
∗(Θ5

−1 − α5
−1) c25(Θ5 − α5) c25

∗(Θ5
−1 − α5

−1)

`1(α2, α4, α5) `1
∗(α2, α4, α5) `2(α2, α4, α5) `2

∗(α2, α4, α5)

 (25)

This determinant contains extraneous roots of the form Θ j = α j, which we

can remove by dividing out the factor (Θ j
−1-α j

−1) using Θ j-α j=-Θ jα j(Θ j
−1-

α j
−1), in order to define the determinant:

δ =
∆(`1, `1

∗, `2, `2
∗)

(Θ2
−1 − α2

−1)(Θ4
−1 − α4

−1)(Θ5
−1 − α5

−1)
(26)

that is:

δ =


−c12Θ2α2 c12

∗ −c22Θ2α2 c22
∗

−c14Θ4α4 c14
∗ −c24Θ4α4 c24

∗

−c15Θ5α5 c15
∗ −c25Θ5α5 c25

∗

`1(α2, α4, α5) `1
∗(α2, α4, α5) `2(α2, α4, α5) `2

∗(α2, α4, α5)

 (27)

This determinant expands to form a polynomial of the form:

δ = aT [W ]t = 0 (28)

where a and t are vectors of monomials:
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a =



α2

α4

α5

α4α5

α2α5

α2α4


, t =



Θ2

Θ4

Θ5

Θ4Θ5

Θ2Θ5

Θ2Θ4


(29)

the 6×6 matrix [W] is given by:

[W ] =

 D1x +D2 AT

A −(D1
∗x−1 +D2

∗)

 (30)

and the matrices [D 1] and [D 2] are 3×3 diagonal matrices, given by:

[D1 ] =


b1b2l3l5e

−i(γ+η) 0 0

0 −b1b2l3l5ei(γ+η) 0

0 0 0

 , [D2 ] =


d1 0 0

0 d2 0

0 0 d3

 (31)

Where:

d1 = (l1Θ1 − l0)(b1b2l5e
−i(γ+η) − b2l2l5e−i(η)) (32)

d2 = (−l1Θ1 + l0)(b1b2l5e
i(γ+η) − b2l2l5ei(γ)) (33)
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d3 = (l1Θ1 − l0)(b2l2l5e
−i(η) − b1l4l5ei(γ)) (34)

and the 3×3 matrix [A] is given by:

[A] =


0 b1b2l5

2ei(γ+η) −b22l2l5 + b1b2l4l5e
i(γ+η)

−b1b2l52e−i(γ+η) 0 −b12l4l5 + b1b2l2l5e
−i(γ+η)

b2
2l2l5 − b1b2l4l5e−i(γ+η) b1

2l4l5 − b1b2l2l5ei(γ+η) 0

(35)

A set of values Θ j that satisfy the loop equations (18), 19, 20 and 21 will also

yield δ j = 0, which will be true for arbitrary values of the auxiliary variables α j.

Thus, solutions for these loop equations must also satisfy the matrix equation:

[W ]t = 0 (36)

The matrix [W] has the structure:

[W ]t = [Mx−N ]t = 0 (37)

where:

M =

 D1 0

A D2
∗

, N =

 −D2 −AT

0 D1
∗

 (38)

Because [W] is a square matrix, this equation has non-zero solutions only

if det[W]= 0. Expanding this determinant, we obtain a polynomial in x=Θ 3.
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Notice that the values of x=Θ 3 that satisfy det[W] = 0 are also eigenvalues

of the characteristic polynomial p(x)=det(Mx-N) of the generalized eigenvalue

problem:

[N ]t = x[M ]t (39)

Each value of x=Θ 3 has an associated eigenvector t, which yields the values of

the remaining joint angles Θ j; j=2,4,5. It is useful to notice that an eigenvector

t = (t 1,t 2,t 3,t 4,t 5,t 6)
T is defined only up to a constant multiple, µ . Therefore,

it is convenient to determine the values Θ j by the computing the ratios,

Θ2 =
t5
t3

=
µΘ2Θ5

µΘ5

,Θ4 =
t6
t1

=
µΘ2Θ4

µΘ2

,Θ5 =
t4
t2

=
µΘ4Θ5

µΘ4

(40)

For a given input angle, a six-bar linkage can have as many as six roots for the

configuration variables Θ j, j=2,3,4,5. Each of these roots defines an assembly of

the six-bar linkage. As we analyze a six-bar linkage for a sequence of input angles

Θ 1
k, there are as many as six sets of configuration angles ~Θ =(Θ 2,Θ 3,Θ 4,Θ 5) i,

i=1,...,6 that define the assemblies of the linkage associated with each input angle.

In order to sort the roots among the assemblies, we use the Jacobian of the loop

equations. Compute the derivative of the loop equations (18), (19), (20) and (21)

to obtain:

∆`1 : l1Θ̇1 + b1Θ̇2e
−iγ − b2Θ̇4e

iη = 0 (41)

∆`2 : l1Θ̇1 + l2Θ̇2 + l3Θ̇3 − l4Θ̇4 − l5Θ̇5 = 0 (42)
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∆`1
∗ : l1Θ̇1Θ1

−2
+ b1Θ̇2Θ2

−2
eiγ − b2Θ̇4Θ4

−2
e−iη = 0 (43)

∆`2
∗ : l1Θ̇1Θ1

−2
+ l2Θ̇2Θ2

−2
+ l3Θ̇3Θ3

−2 − l4Θ̇4Θ4
−2 − l5Θ̇5Θ5

−2
= 0 (44)

Factor out the derivative vector Θ̇ = (Θ̇ 1,Θ̇ 2,Θ̇ 3,Θ̇ 4,Θ̇ 5), and obtain the

Jacobian matrix:

[∆`(Θk)] =


`1 b1e

−iγ 0 −b2eiη 0

`1 `2 `3 −`4 −`5

−`1Θ1
−2 −b1eiγΘ2

−2 0 b2e
−iηΘ4

−2 0

−`1Θ1
−2 −`2Θ2

−2 −`3Θ3
−2 `4Θ4

−2 `5Θ5
−2

 (45)

In order to sort the roots among the assemblies of the six-bar linkage, we

approximate the complex loop equations using the Jacobian, and obtain:

[∆`(Θi
k)](Ψ−Θi

k) = 0 (46)

where Ψ approximates the value Θ i
k+1 associated with the input angle Θ 1

k+1

and is near to the assembly defined by Θ i
k. It is then a matter of identifying

which of the root Θ i
k+1 is closest to Ψ on the i-th circuit, in order to match the

assemblies. This provides a rapid and exact method to determine a sequence of

configuration angles for each assembly in order to animate the six-bar linkage.
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