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ABSTRACT 
	
  
	
  
	
  
	
  
A successful interaction with objects in the environment requires integrating 

information concerning object-location with the shape, dimension and position of 

body parts in space. The former information is coded in a multisensory representation 

of the space around the body, i.e. peripersonal space (PPS), whereas the latter is 

enabled by an online, constantly updated, action-orientated multisensory 

representation of the body (BR) that is critical for action. One of the critical features 

of these representations is that both PPS and BR are not fixed, but they dynamically 

change depending on different types of experience. In a series of experiment, I studied 

plastic properties of PPS and BR in humans. I have developed a series of methods to 

measure the boundaries of PPS representation (Chapter 4), to study its neural 

correlates (Chapter 3) and to assess BRs. These tasks have been used to study changes 

in PPS and BR following tool-use (Chapter 5), multisensory stimulation (Chapter 6), 

amputation and prosthesis implantation (Chapter 7) or social interaction (Chapter 8). I 

found that changes in the function (tool-use) and the structure (amputation and 

prosthesis implantation) of the physical body elongate or shrink both PPS and BR. 

Social context and social interaction also shape PPS representation. Such high degree 

of plasticity suggests that our sense of body in space is not given at once, but it is 

constantly constructed and adapted through experience.        
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OVERVIEW OF THE THESIS 

 

 
The aim of this dissertation is to investigate functional and plastic properties of body 

and space representation after different types of experience. 

In order to successfully interact with objects in the external world, the brain needs to 

integrate information concerning the object location with the shape, dimension and 

position of body parts in space. Two different representations are thought to support 

this function. On one side, the notion of Peripersonal Space (PPS) captures the idea of 

a specific portion of space where body-objects interactions take place: tactile stimuli 

applied on a part of the body are integrated with visual and acoustic stimuli delivered 

on or near the same body part, taking into account proprioceptive information about 

the position of body parts in space. On the other side, information relative to 

dimension and position of the different body parts is processed by an online, 

constantly updated, action-orientated multisensory representation of the body (BR) 

and its parts. Properties and features of these two representations have been reviewed 

in Chapter 1 and 2. One of the critical features of these representations is that both 

PPS and BR are not fixed, but they can be dynamically modulated by different types 

of experience. In this dissertation, PPS and BR properties in humans, with a particular 

interest on plastic properties of these two representations, have been experimentally 

tested in a series of studies. 

In the first part of this dissertation, properties of a multisensory representation of 

space in humans have been investigated using an audio-tactile interaction task. In 

particular, in Chapter 3 the neural basis of this representation have been studied, while 

in Chapter 4 I presented a new audio-tactile paradigm specifically developed to 
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measure the extent of PPS representation. This task has been used across the thesis to 

measure PPS representation in different contexts and after several kinds of 

experience. In the second part of this work we focused on changes in PPS and BR as a 

function of different types of experiences. Particularly, in Chapter 5 we investigated 

plastic extension effects on PPS and BR after a change in body function, such as after 

a brief training with a tool. I then focused on a possible mechanism explaining 

plasticity in PPS representation after tool-use. As suggested by a neural network 

model, the extension of PPS could depend not on the physical presence of a tool, but 

it raises because of pairing of tactile stimuli at the hand with synchronized 

multisensory stimuli presented in the far space where the tool is used. In Chapter 6 I 

presented an experiment run to test this hypothesis.   

In Chapter 7 we investigated whether PPS and BR change after a sudden change in 

the structure of the physical body, such as after amputation and prosthesis 

implantation. Finally, in Chapter 8, we investigated how our perception of space is 

shaped by social experience. Particularly, we studied whether PPS is shaped both by 

the presence of an unknown individual and by social interactions with other people. 
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“The body is our general medium for having a world.”  

Maurice Merleau-Ponty, Phenomenology of Perception, p169 

 

“Visible and mobile, my body is a thing among things; it's caught in the fabric of the 

world, and its cohesion is that of a thing. But, because it moves itself and sees, it 

holds things in a circle around itself.”  

Maurice Merleau-Ponty, The Visible and the Invisible, 1964, p163 

	
  

CHAPTER ONE: A MULTISENSORY BODY 
	
  
	
  
 
 
Perception has been traditionally described as a modular function, with the different 

sensory modalities operating as independent and separated processes. Accordingly, 

distinct cognitive, sensory and motor functions can be localized in distinct areas of the 

brain. Although different sensory modalities have often been studied in isolation, in 

order to perceive the external and internal environment, our brain uses multiple 

sources of sensory information obtained from several sensory modalities. The 

coexistence of different sensory channels can potentially enhance the detection and 

identification of external stimuli. This property has obviously a high adaptive value, 

since external stimuli could be either potentially dangerous or particularly interesting, 

so they would need to be detected rapidly (Ernst & Bulthoff, 2004; Stein & Meredith, 

1993; Stein, 1998). Since interactions with external stimuli have such an important 

value, it is not difficult to think that stimuli presented in the space close to the body – 

where preferentially any physical interaction with the environment takes place - 

should be specially treated by the brain in comparison to stimuli far from the body. 
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Despite the apparent unitary character of space representation, indeed, evidence from 

neurophysiology, neuropsychology and experimental psychology demonstrated the 

existence of different neuronal representations of space, each built in relation to the 

behavior we can perform. The notion of Peripersonal Space captures the idea of a 

multisensory representation of the space immediately surrounding the body, coding 

for position of external stimuli with respect to the body itself. 

In every successful interaction however the human brain needs to concurrently 

represent not only the position and movements of external stimuli in the near space, 

but also the position and shape of body parts used to perform a successful interaction. 

The latter function is supported by a high-level multisensory representation of the 

body (Body Representation, BR) in the brain. In this chapter I will review evidence 

about the existence of both Peripersonal Space (Paragraph 1.1) and Body 

Representations (Paragraph 1.2). 

1.1 The body in its space 

	
  
The conscious perception we have of the space as a unitary medium surrounding the 

body is quite strong, but simplistic. Indeed, this unified percept of space is the result 

of distinct and modular representations of space. These representations include 

personal, peripersonal and extrapersonal space. The personal space represents the 

space occupied by the body (Vaishnavi, Calhoun, & Chatterjee, 1999; Coslett, 1998; 

Bisiach, Perani, Vallar, & Berti, 1986). The concept of extrapersonal space instead 

refers to the space beyond reaching of our limbs (Previc, 1998; Brain, 1941). Finally, 

the notion of Peripersonal Space captures the idea of a specific portion of space 

where every action take place: tactile stimuli applied on a part of the body are 

integrated with visual and acoustic stimuli delivered on or near the same body part, 
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taking into account proprioceptive information about the position of body parts in 

space (Graziano & Cooke, 2006; Làdavas & Serino, 2008; Rizzolatti, Fadiga, Fogassi, 

& Gallese, 1997). In such space taxonomy, Peripersonal Space representation is 

particularly important, because the body can directly interact with the external world 

within its limits. 

In the next paragraph I will review neurophysiological, neuropsychological and 

behavioral evidence for multiple multisensory space representations. 

1.1.1 Neurophysiological evidence  

	
  
The first support for a distinction between peripersonal and extrapersonal space came 

from neurophysiological studies in monkeys, revealing the existence of a pool of 

multisensory neurons coding specifically for the space immediately surrounding the 

body. The terms “peripersonal” was first introduced by Rizzolatti and colleagues 

(Rizzolatti, Scandolara, Matelli, & Gentilucci, 1981a; 1981b), referring to a “limited 

sector of space around an animal whose spatial boundaries were defined by 

variations in the neuronal firing rate as a function of the proximity between an object 

and a given body part” (see also Haggard, Rossetti, & Kawato, 2008). These cells 

have been described in different brain areas of the macaque, and they will be 

reviewed in the next paragraphs. 
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Figure 1.1 Peripersonal Space. Schematic diagram of visual receptive fields in the polysensory zone 
(PZ). Space near the body is represented by relatively more receptive fields, and space at increasing 
distances from the body is represented by fewer receptive fields. Adapted from Graziano & Cooke, 
2006. 
 
 
 
Premotor neurons 

The precentral gyrus of monkeys contains a restricted zone in which neurons have 

multisensory properties responding to tactile stimuli administered on a given body 

part. These multisensory neurons were first reported at the level of the ventral 

promotor cortex (PMv) in the posterior part, named F4 (Matelli, Luppino, & 

Rizzolatti, 1985). Some authors refer to this multisensory zone as the polysensory 

zone (PZ; Graziano & Cooke, 2006). Many of the neurons studied in this area are 

bimodal neurons, having a tactile receptive field located on the hands, arms, face, 

trunk and shoulders. These neurons have a visual (Duhamel, Colby, & Goldberg, 

1998; Graziano, Hu, & Gross, 1997a; Graziano, Yap, & Gross, 1994; Rizzolatti et al., 

1981b) receptive field overlapping the tactile RF and extending in depth for about 30 

cm. This means that these bimodal neurons respond to visual stimuli presented close 
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to the tactilely stimulated body part. In most of brain visual areas the visual receptive 

fields are organized in retinotopic reference frame, which means that objects are 

represented in relation to their position on the retina. Instead, visual RFs of the 

bimodal neurons in PMv are coded in body-part reference frames that are in spatial 

register with the tactile receptive field: if the body part where the tactile RF is 

anchored moves, the visual RF shifts congruently (see Avillac, Deneve, Olivier, 

Pouget, & Duhamel, 2005, for a model of visual and tactile reference frames 

transformation). For example, some bimodal cells with tactile receptive fields on the 

right arm respond to visual stimuli presented on the right side of space when the arm 

is placed on the right hemi space. When the arm is moved into the centre of the visual 

field, the same neurons responded to visual stimuli presented in the centre, thus from 

the same spatial position of the tactile receptive field. These responses are also 

present in anesthetized monkeys (Graziano & Gandhi, 2000), which suggest that 

premotor neurons perform multisensory integration even when the monkey is not 

planning or performing an action.  

Another characteristic of these bimodal neurons is that they continue to respond to 

visual stimuli also when these stimuli are no longer present, for instance in complete 

darkness (Graziano, Hu & Gross, 1997b). Graziano (1999) specifically tested the 

relative role of vision and proprioception in encoding limb position in the monkey 

brain. He tested the response of PMv multisensory neurons with a tactile receptive 

field on the arm and a visual receptive field anchored to the tactile one. The neurons 

were tested under different configurations, in which both the position on the arm and 

the visual information regarding the arm were manipulated (see Figure 1.2). Results 

demonstrated that both visual and proprioceptive information play an important role 

in building a coherent representation of the space around us. Moreover, results from 
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this study demonstrated that these neurons responded not only to a visual stimulus 

presented close to monkeys’ arm, but also close to a fake but realistic arm placed in a 

realistic posture in front of the monkeys during the testing (Graziano, 1999). 

Interestingly, if the real arm was hidden from view, and the fake arm was moved, the 

movement of that fake arm caused a shift in the visual RF of the bimodal neurons. 

 

Figure 1.2 Visual responses of a typical premotor neuron with a tactile RF (hatched) on the forearm 
and hand, and a visual RF within 10 cm of the tactile RF. (A) On each trial, the arm contralateral to the 
neuron was fixed in one of two positions and the visual stimulus was advanced along one of four 
trajectories (1–4). For this neuron, the two arm positions were chosen to align the visual RF near the 
hand and forearm with trajectories 2 and 3. For other neurons, the arm was moved to different extents 
depending on the location of the visual RF, to better capture the movement of the visual RF with the 
arm. (B) Responses of the neuron to the four stimulus trajectories when the arm was visible to the 
monkey. When the arm was fixed on the right, the response was maximum at position 3. When the arm 
was fixed on the left, the maximum response moved to the left, to position 2. (C) Responses of the 
neuron when the arm was covered. The movement of the visual RF with the arm was reduced but not 
eliminated, indicating that the neuron combined both proprioceptive and visual information about the 
position of the arm. Each point is a mean of 10 trials. Error bars are standard error. Adapted from 
Graziano, 1999. 
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These multisensory neurons are particularly sensitive to moving stimuli. Some 

neurons are directionally selective, that is they code preferentially for neurons moving 

along a specific trajectory. They also code for stimulus velocity (Fogassi, Gallese, 

Fadiga, Luppino, Matelli, & Rizzolatti, 1996). 

Not only bimodal, but also trimodal neurons are located in PMv. These neurons 

respond to a tactile stimulus located on the back and the side of the head and to a 

visual and/or auditory stimulus presented close to the body part where the tactile 

stimulus is administered (Graziano, Reiss & Gross, 1999). In Figure 1.3, a typical 

response of a trimodal neuron is shown: this neuron respond to sounds produced near 

the contralateral side of the head. Specific testing of trimodal neurons properties of an 

awake monkey revealed that the auditory responses in PMv clearly span the entire 

contralateral space, and seem to represent the space behind of the head more densely 

than the space in front of the head (Graziano et al., 1999). 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Responses of bimodal and trimodal neurons in PMv. 
a) Receptive fields of a typical bimodal, visual-tactile neuron. The tactile receptive field (shaded) is on 
the front of the face contralateral to the recording electrode (indicated by the arrowhead). The visual 
receptive field (boxed) is confronted to a region of space within about 10 cm of the tactile receptive 
field. b) Responses of a typical trimodal, visual-tactile-auditory neuron. The tactile receptive field is 
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contralateral to the recording electrode (indicated by the black spot) and includes the ear and back of 
the head. The visual receptive field (not shown) extends about 20 cm into the space near the 
contralateral side of the face. The histograms show the response, summed over ten trials, to a burst of 
white noise presented 10 cm away at the indicated azimuth angles. c) The calculated preferred direction 
of the auditory response for 43 trimodal neurons. Each arrow shows the result for one neuron. Adapted 
from Graziano, Reiss, & Gross, 1999. 
 

Parietal neurons 

Multisensory bimodal and trimodal neurons with similar properties as compared to 

the ones in the PMv were found also in the posterior parietal cortex of monkeys’ 

brain, specifically at the level of the ventral intraparietal sulcus (VIP), and in area 7b. 

VIP area is located in the fundus of the intraparietal sulcus and it receives projections 

from the middle temporal visual areas, as well somatosensory, auditory, and 

vestibular regions (Graziano & Cooke, 2006). Most neurons in area VIP exhibit 

bimodal visuo-tactile properties, in the sense that they respond to stimuli applied in 

either sensory modality (Duhamel et al., 1998). The tactile RFs are equally distributed 

on the top, side, or back of the head, and on the neck, meaning that this area primarily 

describes spatial area around the face, but they can sometimes be on the chest, 

shoulder, or arm (Graziano & Cooke, 2006). Some of these neurons are also selective 

for the distance at which the visual stimulus is presented and they show a strong 

sensitivity to speed and direction of motion of both visual and tactile stimuli 

(Duhamel et al., 1998). Some VIP neurons are sensitive to the three-dimensional 

trajectory of objects. Moreover, some VIP neurons are trimodal, responding to visual, 

tactile and auditory stimuli, with the three receptive fields usually aligned (Schlack, 

Hoffman & Bremmer, 2003). Differentially from multisensory neurons described in 

the PMv, whose RFs are mainly arm centred, bimodal neurons in VIP area have 

tactile receptive fields encoding a head-centered reference frame, whereas visual 

receptive fields are widely distributed between eye-to head-centered coordinates.  
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Figure 1.4 Schematic side view of macaque monkey brain showing approximate location of the ventral 
intraparietal area (VIP) and the polysensory zone (PZ). Intraparietal sulcus is shown opened up, with 
light shaded area indicating buried cortex. Adapted from Graziano & Cooke, 2006. 
 

Area 7b is prevalently a somatic area, with most of its neurons being somatosensory 

or somato-motor (Gross & Graziano, 1995; Hyvarinen, 1981), even if a part of the 

neurons studied in this area is bimodal, responding to both visual and tactile 

stimulation. Here the majority of the neurons have bilateral RFs located on the limbs 

often covering the whole body (Leinonen, Hyvarinen, Nyman, & Linnankoski, 1979). 

Finally at a subcortical level, the putamen has a complete somatotopic map of the 

body, including a large proportion of bimodal neurons with tactile RFs centred on the 

head (Graziano & Gross, 1993). 
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1.1.2 Sensory-to-motor function  

 

These neurons described in the previous paragraph also have a motor function. Most 

of both premotor (Fogassi et al., 1996) and parietal neurons (Leinonen et al., 1979) 

are active during movements of the body part where their visuo-tactile receptive fields 

are anchored. In addition, electrical stimulation of neurons in the ventral premotor 

cortex (Graziano, Taylor & Moore, 2002) evokes movements of the body part 

anchoring the aforementioned tactile, visual or acoustic RFs. Similarly, stimulating 

areas in the fundus of the intraparietal sulcus, corresponding to VIP, evoked different 

types of movement including included eye movements, reaching, bringing the hand to 

the mouth, aggressive displays, and defensive movements (Stepniewska, Fang, & 

Kaas, 2005). Finally, as described before, these neurons encode the location and 

trajectory of objects, with an emphasis on objects that are near or approaching the 

body. This specificity for moving stimuli as compared to static one can be considered 

a hallmark of the clear sensory-to-motor function of peripersonal space 

representation. Indeed looming stimuli are an essential component of threat (Gibson, 

1972; Graziano & Cooke, 2006). For obvious adaptive reason, a stimulus approaching 

the body need to be detected as fast as possible, in order to plan a proper motor 

reaction. The neurons in VIP and PMv could be described as looming detectors in 

general sense (Graziano & Cooke, 2006). 

Taken together, all these properties demonstrate the sensory-motor function of PPS 

representation: coding the spatial position and dynamics of an external stimulus with 

respect to a part of the body potentially interacting with it, in order to plan an 

approach toward an interesting object (Rizzolatti et al., 1997) or evade a potential 

threat (Graziano & Cooke, 2006). 
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1.1.3 Neuropsychological evidence  

	
  
Neglect 

The first evidence for dissociated spatial representations in humans came from 

patients affected by hemi spatial neglect. Neglect has long been recognized as a multi-

component syndrome, usually observed following brain lesions affecting the right 

hemisphere, in particular at the level of the right inferior parietal cortex (inferior 

parietal lobule, angular and supramarginal gyrus) and right temporo-parietal junction 

(Vallar & Perani, 1986). Neglect patients are characterized by a failure to respond, to 

attend or to orient voluntarily to objects placed in the contralesional space. This 

contralesional unawareness may occur selectively for different sectors of space. 

Specifically, a form of neglect, known as personal neglect, has been described, 

characterized by the presence of deficits relative to the side of the body contralateral 

to the lesion. Bisiach and colleagues (1986) investigated the dissociation between 

different forms of neglect for different sectors of space. They first reported evidence 

of a double dissociation between patients selectively affected by neglect for personal 

and extrapersonal space. In addition, Halligan and Marshall (1991) presented a case 

of a patient selectively affected by neglect limited to the peripersonal space. This 

patient showed a typical neglect bias in a bisection line task; when he was asked to 

bisect a horizontal line placed closed to him, in the near space, the patient committed 

rightward errors. Instead, when the line was positioned in the far space (i.e. at two 

meters distance), these rightward errors disappeared (see also Berti & Frassinetti, 

2000 for a similar case).  
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Extinction 
 
The study of crossmodal extinction has brought a considerable contribution in 

investigating how multisensory stimuli are perceived and integrated in order to build 

the representation of the space around us. 

Extinction is a neuropsychological syndrome generally following a right brain lesion, 

most typically in the posterior parietal region. In these patients, the perception of a 

contralesional tactile stimulus is affected by the presentation of a concurrent 

ipsilesional visual stimulus (Bender, 1952), with the almost normal detection of 

contralesional stimuli presented in isolation. Extinction (and neglect as well) could 

affect all sensory modalities, either within a single modality i.e. (unimodal extinction) 

or between different sensory modalities (i.e. crossmodal extinction; Mattingley, 

Driver, Beschin & Robertson, 1997). Crossmodal extinction has been extensively 

studied as a model to study the multisensory neural representation of space. Authors 

initially investigated cases of visuo-tactile extinction. Patients suffering from this 

syndrome were unable to correctly perceive a tactile stimulus administered at the 

controlesional hand, when a concurrent visual stimulus was presented in the 

ipsilesional side of space. Làdavas and colleagues (di Pellegrino, Làdavas, & Farnè, 

1997; Farnè & Làdavas, 2000), in a series of studies, demonstrated that crossmodal 

extinction was also spatially dependent. By using a visuo-tactile stimulation paradigm 

in right brain damaged patients affected by left tactile extinction, they demonstrated 

that tactile detection at that hand was inhibited by a visual stimulus presented in the 

right hemi space. Interestingly, the presence of the visual stimulus produced 

crossmodal extinction at the same extent as an ipsilesional tactile stimulus in case of 

unimodal tactile extinction. Critically, this degree of cross modal extinction occurred 

only when the visual stimulus was presented close to the patient’s hand (i.e. within 
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the peripersonal space), but was much weaker or absent when the visual stimulus was 

placed at a distance (in ‘far’ or ‘extrapersonal’ space). Two stimuli are more likely to 

interact when presented in the same spatial representation: when a visual stimulus is 

presented far from the body, that is in the extrapersonal space, it does not interact with 

tactile stimuli presented close to the hand, because they are presented in two different 

representations. So, crossmodal extinction has been taken as an evidence of the 

existence of separate representations of space. 

A model addresses the competitive dimension of extinction (and neglect as well) by 

proposing that these phenomena result from a breakdown in the dynamic balance that 

normally exists in the reciprocal inhibition between homologous areas of the two 

hemispheres that orient spatial attention in opposing, contralateral directions 

(Kinsbourne, 1977; Kinsbourne & Bruce, 1987; see Jacobs, Brozzoli, Hadi-Bouziane, 

Meunier, & Farnè, 2011, for a review).  

The same extinction effect previously described for the hand has been demonstrated 

with tactile stimuli presented at the face (Farnè & Làdavas, 2002; Làdavas, Zeloni, & 

Farnè, 1998a), suggesting the existence in humans, as in monkeys, of a modular 

representation of space surrounding different body parts. Farnè and colleagues (Farnè, 

Demattè & Làdavas, 2005) tested whether these representations effectively operate in 

a modular way in a group of right brain damaged patients by using cross modal 

extinction paradigm. They measured the level of cross modal extinction when visual 

and tactile stimuli were presented on homologous body part (for instance, tactile 

stimulus at the contralateral hand and visual stimulus near the ipsilesional hand) and 

non-homologous body parts (i.e. tactile stimulus at the hand and visual stimulus near 

the face). Results showed a dissociation between the representation of the 

peripersonal space around the hand and the peripersonal space around the face, 
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revealing that a visual stimulus presented near the face did not interact with tactile 

stimulation at the hand and vice-versa. These results confirmed the hypothesis of an 

organization of space in separated moduli around different body parts. 

Interestingly, in order to examine the spatial coordinates used by this multisensory 

system to code peripersonal space, di Pellegrino and colleagues (di Pellegrino et al., 

1997) tested a patient with tactile extinction by manipulating hands’ position in space. 

They asked the patient to perform the task with the hands crossed; this way, the left 

hand was placed in the right hemi space and the right hand in the left hemi space. 

Results showed that a visual stimulus presented near the right hand (that is in the left 

hemi space) extinguished tactile stimuli at the left hand (that is in the right hemi 

space). Results of the present studies offered interesting insights on the idea the 

representation of peripersonal space (peri-hand space, in this case) was anchored to a 

specific body part, in line with neurophysiological results on monkeys. 

Modulation of tactile extinction not only by visual but also auditory stimuli has been 

investigated in neuropsychological patients (Làdavas, Pavani, & Farnè, 2001; Farnè & 

Làdavas, 2002). Indeed, in a group of right brain damaged patients Làdavas and 

colleagues demonstrated that tactile detection at the neck was influenced by the 

presentation of auditory stimuli presented near, but not far, the patients’ face. 

Interestingly, spatially dependent interactions between audition and touch were 

strongest when the auditory stimuli came from the back, rather than from the front, of 

the patients’ head. This spatial specificity from a particular sector of space, that is the 

back of the head, is particularly relevant in the case of audio-tactile interaction. 

Indeed it makes perfectly sense that the backspace, where vision is not available, is 

more deeply represented through audio-tactile interaction. Moreover, in this study the 

authors investigated whether this spatial modulation of touch by audition was 
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dependent on the complexity of the stimuli used. They found that white noise sound, 

that is a more complex sound, has a stronger effect on tactile perception than pure 

tones. These results are in line with neurophysiological results in monkeys, showing 

that multisensory neurons coding for peripersonal space around the head (Graziano et 

al., 1999) did not respond to pure tones. This specificity could be due to the fact that 

white noise sounds are more similar to ecologic sounds. Thus, the reduced effect 

operated by a pure tone might reflect a sort of impenetrability of the integrated 

auditory – tactile system to a sound that has a little chance to occur in nature (Farnè & 

Làdavas, 2002). 

The near-far modulations of crossmodal extinction here described have been 

considered as the first behavioural demonstrations of the existence of peripersonal 

representation in humans (di Pellegrino et al., 1997; Làdavas et al., 1998a; Làdavas, 

di Pellegrino, Farnè & Zeloni, 1998b). 

 

1.1.4 Behavioural evidence  

 
A series of studies conducted on healthy human subjects confirmed the existence of 

spatially dependent cross-modal interactions. Most of these studies investigated 

specifically visuo-tactile interactions. One of the best-known paradigms used to 

investigate this issue is the cross-modal congruency task. In this task, participants 

receive a vibrotactile stimulus either at the thumb or the index finger of the hands. At 

the same time a visual stimulus (a distractor) is presented at four possible positions, 

corresponding to the four possible locations of the vibrotactile stimuli. Thus, for each 

trial the visual distractor could be either close to the tactilely stimulated hand or to the 

other hand. Moreover, the visual distractor could be ”congruent” or ”incongruent in 

elevation with the tactile target stimuli. Participants are asked to make a speeded 
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up/down discrimination judgement in response to the tactile stimuli, by pressing a 

foot pedal, ignoring the visual distractors. A series of studies (Spence, Pavani, & 

Driver, 2000; Pavani, Spence, & Driver, 2000; Spence, Pavani, Maravita, & Holmes, 

2004; see also Brozzoli, Pavani, Urquizar, Cardinali, & Farnè, 2009) using this 

paradigm revealed that incongruent visual distractors (that is distractors presented at a 

different elevation as compared to the vibrotactile stimuli) slowed down the 

judgements about the tactile stimuli and produced more errors. This effect of visual 

stimuli on tactile one was spatially dependent, since it was stronger from stimuli 

coming from the same side of space (Spence et al., 2004). When the posture of 

participants was manipulated, this cross modal effect changed accordingly: for 

instance, in a crossed hand condition, if the right hand is placed in the left hemi space, 

a visual distractor in the left space affected tactile detection at the right hand. These 

results demonstrated that visuo-tactile interactions take changes of posture into 

account (e.g. Macaluso, Driver, van Velzen, & Eimer, 2005), in agreement with 

neurophysiological properties of neurons in the parietal and premotor cortex. 

Interestingly this spatial modulation appeared to be present also when patients were 

not actually able to see their hand, suggesting the importance of tactile and 

proprioceptive information in building a strong percept of limb position and, 

accordingly, of the representation of the space surrounding it.  

The particular link between vision and touch for the construction of a congruent 

representation peripersonal of space is such that even the image of a fake, but 

spatially congruent, limb can affect tactile perception. Pavani and colleagues (2000) 

investigated the cross-modal effect of visual distractors on tactile judgments using the 

cross modal congruency task previously described. Participants were asked to 

discriminate the location of vibrotactile stimuli administered at the hand (upper, at the 
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index finger, vs. lower, at the thumb), with the hand occluded under a table, while 

ignoring distractor lights that could independently be upper or lower with respect to 

the tactile stimulation. In line with previous results obtained with the same task, an 

incongruent (with respect to the elevation of the tactile stimuli) visual stimulus 

presented close to the hand interfered with tactile detection. Critically, the same 

results was obtained when the visual stimulus was presented close to a fake, realistic 

hand placed on the table in front of the participants, but only when the hand was 

placed in an anatomically plausible posture (see also Farnè, Pavani, Meneghello, & 

Làdavas, 2000, for a similar result on extinction patients). This indicates that, 

although strongly interrelated, tactile and visual spatial representations are also 

flexible, and can change to maintain spatial alignment of multisensory signals arising 

in the peripersonal space. Taken together all these studies support the claim that the 

human brain represents PPS through an integrated visuo-tactile system. 

Cross modal spatially dependent interactions has been described also between 

audition and touch. Auditory peripersonal space has been first described around the 

head, both in monkeys (Graziano et al., 1999) and in humans in brain damaged 

patients (Farné & Làdavas, 2002; see Paragraph 1.1.3). Behavioral studies 

investigated the existence of auditory-somatosensory interaction around the head 

(Tajadura-Jimenez, Kitagawa, Väljamäe, Zampini, Murray, & Spence, 2009), 

particularly in the space behind the head (Kitigawa, Zampini, & Spence, 2005) and 

around the hand (Murray, Molholm, Michel, Heslenfeld, Ritter, et al., 2005; Zampini, 

Torresan, Spence, & Murray, 2007) in healthy subjects using different paradigms.  

In Kitigawa and colleagues’ study (2005) participants performed a temporal order 

judgment (TOJ) task about pairs of auditory and tactile stimuli presented at different 

interstimulus interval. Tactile stimuli were applied at participant’s earlobes, while the 
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auditory stimuli were presented through loudspeakers placed 20 cm behind 

participant’s head, both in left and right hemispaces. Participants were asked to report 

the modality (auditory or somatosensory) of the first stimulus they perceived. Results 

indicated a better performance for stimuli presented from different sides of space. In a 

second experiment, participants performed a tactile left/right discrimination task 

while auditory distractors were presented simultaneously from the same or opposite 

side. Results showed slower (and less accurate) tactile RTs when the auditory 

distractors were presented on the opposite side from the target tactile stimuli. 

Interestingly, in this study, in line with previous results both in monkeys (Graziano et 

al., 1999) and in humans (Farnè & Làdavas, 2000), when bursts of white noise (a 

more ecologic sound) were used, authors found a greater effect of crossmodal 

interference when the auditory stimuli were presented close to participant’s head 

rather then far apart. These results suggested that auditory and tactile stimuli 

interacted preferentially in the space immediately surrounding the head exhibiting 

different responses according to the complexity of the auditory stimuli used. These 

results seem to be in contrast with results obtained by Zampini and colleagues 

(Zampini, Brown, Shore, Maravita, & Roder, 2005) in a similar experiment in which 

audio-tactile interaction were investigated through a TOJ task in the front space. In 

this experiment results showed that participants’ responses to tactile stimuli presented 

at the finger were not affected by the spatial position of auditory stimuli. However 

this experiment was conducted in the front space, while a series of evidence in the 

literature suggested that auditory-tactile interaction are more likely to take place in the 

back space, where vision is not available and where information coming from 

audition are more relevant (see also Occelli, Spence, & Zampini, 2011, for a review). 

Interestingly in a series of experiments, Tajadura-Jimenez and colleagues (2009) 
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further demonstrated a spatial modulation of auditory–somatosensory interactions 

when auditory stimuli were presented in the space close to the head, at different 

distance to the left and the right of the center of participants’ head. 

Audio-tactile interactions have been studied also in the space around the hand. 

Murray and colleagues (2005) investigated the possible interaction between spatially 

aligned and misaligned (across left and right directions) auditory and somatosensory 

pairs of stimuli - using a simple reaction time task - and the electrophysiological 

correlates of this phenomenon - using ERPs. Participants were asked to respond to a 

tactile stimulation at the hands, while auditory stimuli were presented from 

loudspeakers placed either close to the left or to the right hand. Results showed that 

participants’ RTs were facilitated for multisensory stimuli. Additionally, the extent of 

facilitation did not change as a function of the spatial alignment of the stimuli, 

showing that auditory stimuli facilitated tactile RTs independently of the alignment of 

auditory stimuli with respect to the tactile stimuli. Accordingly, ERPs results showed 

a greater response, at 50-90 ms post stimulus onset, for multisensory audio-tactile 

stimuli, as compared to the summation of the constituent unisensory ones, at lateral 

central scalp sites over the hemisphere contralateral to the stimulated hand, for both 

the aligned and misaligned configurations. The source of these interactions were 

localized to unimodal rather then multimodal area, at the level of the auditory 

association cortices in the hemisphere contralateral to the hand being stimulated, 

independently of the location of the auditory stimulus. Taken together, both 

behavioral and electrophysiological results from the present study provided evidence 

for the existence of multisensory auditory-somatosensory interaction across spatial 

separations. One proposition from these results is that the brain regions involved in 

processing auditory–somatosensory stimuli contain large spatial RFs, which allow for 
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the integration of stimuli that happen to be separated by a relatively large distance in 

external space (Murray et al., 2005; see also Zampini et al., 2007). Zampini and 

colleagues (2007) further investigated audio-tactile interaction at the hand both in 

front and rear space. Results confirmed a facilitation for multisensory stimuli as 

compared to unisensory ones, regardless of the spatial location from which the 

auditory stimuli were presented or the specific body posture adopted by participants. 

Taken together, these studies revealed the existence of audio-tactile interaction 

mechanisms in humans. However, these studies did not clearly establish whether 

these audio–tactile integrative mechanisms are modulated by the spatial location of 

auditory stimuli. A study of Serino and colleagues (Serino, Bassolino, Farnè, & 

Làdavas, 2007), by using an audio-tactile interaction task, demonstrated a space 

dependent audio-tactile interaction mechanism. In this paradigm participants received 

tactile stimuli at their index finger, while a concurrent sound was presented. The 

sound position in space was manipulated, so that in different trials it was presented 

either close to the participant’s hand (near condition) or far from it, at a distance of 

around 125 cm (far condition). Participants were asked to verbally respond to the 

tactile stimulation as quickly as possible, by saying TAH in a microphone. They were 

also asked to completely ignore the auditory stimuli during the task. Results showed 

that tactile detection was speeded up when the sound was presented close to the body 

as compared to when it was presented far apart, revealing the existence of an 

integrative auditory peri-hand space in humans, in line with studies on visuo-tactile 

interaction.  
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1.1.5 Neural basis of PPS in humans  

 
Human imaging studies suggest that a neural system dedicated to multisensory 

integration in the peripersonal space also exists in the human brain. An increasing 

number of studies in healthy humans using fMRI (Bremmer, Schlack, Shah, Zafiris, 

Kubischik, Hoffmann, et al., 2001; Makin, Holmes, Brozzoli, Rossetti, & Farnè, 

2009; Brozzoli, Gentile, Petkova, & Ehrsson, 2011) and EEG (Sambo & Forster, 

2009) suggested that the multisensory representation of PPS in the human brain is 

implemented in a fronto-parietal network, encompassing premotor and posterior 

parietal areas largely corresponding to PMv and VIP areas in the monkey’s brain.  

Bremmer and colleagues (2001) measured changes in neural activity in healthy 

volunteers using functional magnetic resonance imaging (fMRI) in order to identify a 

set of common areas involved in polymodal information processing. Indeed 

participants were tested in fMRI while presenting moving visual, tactile, or auditory 

stimuli. They demonstrated that portions of the posterior parietal cortex (PPc), around 

the intraparietal sulcus and the ventral premotor cortex (vPMc) were activated by 

tactile and by visual and auditory stimuli moving towards the head (see also Macaluso 

& Driver, 2001; 2005). The homologous of this set of areas in the monkey’s brain is 

extensively activated by moving - rather than stationary - multisensory stimuli, 

preferentially approaching towards the body (Colby, Duhamel & Goldberg, 1993). 

Moreover, Sereno & Huang (2006) described aligned maps of tactile and peri-face 

visual stimuli in the ventral part of the intraparietal sulcus, coding the location of 

visual stimuli with respect to the face, and not with respect to the eye. A different 

fMRI study in healthy participants (Makin, Holmes, & Zohary, 2007) showed that 

activity in PPc and vPMc was selectively modulated by a visual stimulus approaching 

the hand, compared to seeing the same stimulus moving away from the hand. Neural 
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activity in PPc and vPMc was sensitive to the position of the hand relative to the 

visual stimulus, as signalled both by visual and proprioceptive information. 

These results are in line with a recent fMRI study by Brozzoli and colleagues 

(Brozzoli et al., 2011) using an adaptation mechanism. They found a consistent 

adaptation in premotor and parietal areas exclusively for objects near the hand. 

Finally, Gentile and colleagues (Gentile, Petkova, & Ehrsson, 2011) described an 

increased activation in response to visuo-tactile stimulation in a set of cortical 

(premotor and posterior parietal) and subcortical regions matching the 

neurophysiological literature on multisensory areas in monkeys and humans. Taken 

together, these results suggested the existence of common neuronal mechanism in 

humans and nonhuman primates including parietal and premotor cortices for the 

representation of peripersonal space. 
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1.2 From the body to its representation(s) 

In order to interact with objects in space, in either reaching an interesting stimulus or 

avoiding potential harm, the human brain needs to concurrently represent not only the 

position and movements of external stimuli in space, and especially within the PPS, 

but also the different parts of one’s own body potentially interacting with those 

stimuli. In the following section I will focus on high-level multisensory representation 

of the body (Body Representation, BR) in the brain, supporting this function. 

 

Our body represents the centre of our sensations and perceptual experiences and at the 

same time it mediates every physical interaction with the external stimuli. The brain 

contains several representations of the physical body. It is fair to state that body 

representation begins with a tactile map of the body surface, since somatosensation is 

the most basic property that allows every perceptual interaction with the world. One 

key function of somatosensory representation is the ability to localise the location of 

tactile stimuli on the body surface. Indeed, as soon as a fly touches our skin, we 

immediately know where we have been touched in respect to the skin surface. 

Somatosensory receptors located all over the skin project to the well-known sensory 

homunculus of the primary somatosensory cortex (SI, Penfield & Rasmussen, 1950) 

within the post-central sulcus (see Paragraph 1.2.1). Neurons in this area form a 

characteristically distorted map of the contralateral body surface: each part of this 

map selectively responds to mechanical and electrical stimulation of a given part of 

the body, thus supporting perception of where on the skin a sensory stimulus is 

located. The localisation based on skin receptors can only take account of the 

localisation of touch in the receptor field surface. However, in order to perform a 

successful interaction with an external stimulus, for instance to make a motor 
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response towards the source of a tactile stimulation (such as for swatting away an 

insect that might be about to sting) it is important to know different information 

exceeding the spatial location of touch on the body. Indeed, localising tactile inputs 

within the somatotopic map is not sufficient by itself to localise them on the body 

surface. Since our body and, even more prominently, our limbs are constantly moving 

in the environment, the relative position of a body part in the external space with 

respect to the other body parts may vary. So, proprioceptive information about the 

position of a body parts with respect to each other must be taken into account. 

Moreover, the body changes continuously in position and dimensions throughout life, 

so, in order to perform a movement, body representations in the brain need to be 

continuously updated about shape and dimension of the different body parts in each 

moment. Surprisingly, no periphery receptors provide information about the 

dimension of the different body parts in the brain. This body referencing processing is 

especially true for tactile sensation, but not only for that. For instance, in order to 

localize of an insect flying around us just through auditory information, our brain 

needs to compute the distance between the two ears. Similarly, for visual depth 

perception, the spacing between the two eyes must be taken into account (Serino & 

Haggard, 2010). 

So, it is clear that, in order to entirely account for the different aspects of body 

experience involved in interaction with the environment, more complex higher-level 

multimodal representations of the body in the brain must exist, supporting complex 

perceptual, motor and emotional functions, and, ultimately, underling the experience 

of having a body and the ability of using that body to interact with the external world. 

In the next paragraphs I will review main evidence about the existence of low-level 

and high-level body representations. 
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1.2.1 Unimodal low-level body representations 

 
Much is known about unimodal body representations in the primary somatosensory 

cortex (SI; Kaas, Nelson, Sur, Lin, & Merzenich et al., 1979) and in the primary 

motor cortex (MI; Penfield, & Boldrey, 1937), each of which contains a tactile and a 

motor map of the body. 

Penfield and colleagues (Penfield & Rasmussen, 1950), using direct cortical 

stimulation on patients undergoing neurosurgery, first described a somatosensory map 

in the post-central gyrus. The somatosensory cortex is divided in two parts, the 

primary somatosensory (SI) and the secondary somatosensory cortex (SII) at the level 

of the anterior portion of the parietal cortex in the post central gyrus. Somatosensory 

cortical areas receive a wide range of somatosensory inputs from different peripheral 

receptors, such as mechanoreceptors, thermoreceptors, and nociceptors, which 

activation determines an evoked sensation of different nature. And indeed different 

somatosensory functions are processed by distinct neural pathways: tactile 

information are transmissed through the dorsal column medial lemniscal pathway, 

while the anterolateral pathway conveys pain, and temperature information from the 

periphery to the brain. For sake of clarity, here I will focus mainly on tactile 

sensation. 

Tactile processing is somatotopically organized, meaning that tactile stimuli 

administered on a given body part elicit a neural response in a specific portion of the 

somatosensory cortex, matching the same body part. Adjacent neurons on SI surface 

tend to have adjacent receptive fields on the body. In this representation, known as 

“somatosensory homunculus” the legs are represented medially, while the face and 

hands are more laterally.  
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Figure 1.5 Schematic somatosensory (on the left) and motor (on the right) homunculus 

 

In the case of the motor system, as for somatosensory perception, it has been 

demonstrated that movements of a specific body parts depends on neural activity in a 

matched region of the primary motor cortex (MI). Indeed, electrical stimulation of 

specific regions of MI evokes movements of a specific body part (Penfield & 

Boldrey, 1937; Penfield, 1950). As for SI, also MI is organized in a somatotopic way, 

with the trunk and legs represented more medially, while face, hands and arms are 

represented more laterally. Few studies have shown a somatotopic organization also 

at the level of the Supplemental Motor Area (SMA). Recently, Zeharia and colleagues 

(Zeharia, Hertz, Flash & Amedi, 2012) investigated movement encoding both in the 

primary motor cortex and supplementary motor area. Results confirmed that MI and 

SMA are organized in a somatotopic way, and that SMA activity is more associated 

with movement suppression as compared to M1. 
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Finally, functional magnetic resonance imaging (fMRI) studies have identified two 

separate regions, which specifically process body-related visual information: the 

extrastriate body area (EBA; Downing, Jiang, Shuman, & Kanwisher, 2001), and the 

fusiform body area (FBA). These two areas selectively respond to images of the 

whole body (as well as of non facial body parts) compared to other object categories 

(Downing et al., 2001; Peelen & Downing, 2005; Taylor, Wiggett, & Downing, 2007; 

for a review, see Peelen & Downing, 2007). In a recent fMRI study of Orlov and 

colleagues (Orlov, Makin, & Zohary, 2010), participants were scanned when viewing 

images of body parts. Results showed a consistent activation at the level of the 

occipital temporal cortex (OTC), with distinguishable clusters for separate body parts. 

Moreover the authors tested whether the separate clusters of activation within the 

body map for particular body parts could depend only on the particular shape of the 

body parts tested. Results show that separate images of the “hand” and the “elbow”, 

for instance, consistently activated the area that was previously activated for the 

“upper limb”. This suggested that the specificity of activation at the level of OTC for 

different body parts cannot be explained with a difference in shape only. Finally, this 

study showed a partial correspondence in the activation of visual and motor (unseen 

movements or self generated) body parts, suggesting that action related information 

about the body converge in this area. 

Taken together, these low-level unimodal representations process information related 

to a single body part and single modalities, and thus they are not sufficient to entirely 

account for the different aspects of body experience involved in interaction with the 

environment.  

In the next paragraph I will review neuropsychological and behavioral evidence about 

the existence of higher-level body representations in the brain.  
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1.2.2 Neuropsychological evidence 

 
Several alterations of body representations, without any impairment at the level of 

primary somatosensory and motor cortices have been described in neuropsychological 

patients. These deficits result in alteration of body perception, which cannot be 

ascribed to pure sensory or motor deficits. For instance, the studies of patients 

suffering from numbsense, a tactile deficit with preserved tactually guided movements 

(de Vignemont, 2010; see also Dijkermann & de Haan, 2007) were especially relevant. 

Paillard and colleagues (Paillard, Michel, & Stelmach, 1983) reported the case of a 

patient who suffered from deafferentation after a left posterior cortical lesion. 

Deafferentation is a clinical condition characterized by a loss of somatosensory 

information that can affect a portion of the body (Dijkerman & De Haan, 2007). This 

patient was unable to report a tactile stimulus presented at the contralesional hand, but 

critically the ability of pointing to the same tactile target was preserved. Rossetti and 

colleagues (see Rossetti, Rode, & Boisson, 2001) reported a case of a patient, 

suffering from a lesion at the level of the thalamic nucleus VPL, who presented a 

similar dissociation: indeed he was able to point with the left hand directly to a tactile 

target at the impaired right hand, while verbal responses (and pointing responses on a 

drawing of the arm) were affected. The opposite dissociation was revealed by Paillard 

and colleagues (1985) in a patient with, instead, preserved ability to report a tactile 

stimulus, but deficit in pointing to it. These phenomena reviewed above supported the 

idea of two separate somatosensory pathways for action and conscious perception (see 

Dijkerman & De Haan, 2007, for a review). This dissociation supported the idea of 

the existence of different body representations, with a representation of the body that 

is used for action, more precisely for the guidance of movements, while more 

perceptual judgements about the spatial relations of the different body parts are 
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supported by a different body representation, as suggested by several authors (see 

Paragraph 1.2.4 for a discussion on this point). 

Other body representation disorders are more properly defined as distortions, like the 

feeling of having a body of different dimension that its actual size, i.e. 

macrosomatoagnosia, a” distorted awareness of the size of the whole body of body 

parts”, de Vignemont, 2010), or the Alice in Wonderland Syndrome, a “distorted 

awareness of the size, mass, shape of the body or its position in space” (Todd, 1955; 

see also de Vignemont, 2010). 

There are patients exhibiting abnormal belief about their body, not supported by real 

motor or somatosensory deficits (such as finger agnosia, the inability of recognizing 

their own finger). These abnormal beliefs can be associated with somatoparaphrenia 

(Gerstmann, 1942; see also Vallar & Ronchi, 2009), a pathological denial of 

ownership of contralesional limb that is felt as not belonging to oneself (Bottini, 

Bisiach, Sterzi, & Vallar, 2002; Critchley, 1953), sometimes in absence of 

somatosensory deficits. This phenomenon is often associated to hemispatial neglect 

(Vallar & Perani, 1986). Neglect patients are characterized by a failure to respond, to 

attend or to orient voluntarily to objects placed in the contralesional space. Neglect 

can have different manifestations: patients can exhibit a personal neglect, defined as 

“a lack of attention towards one’s side of the body”: in this case the patient do not 

voluntarily attend one side of their body, or also a motor manifestation that is the 

underutilisation of the contralesional side of the body, even in absence of primary 

motor or somatosensory deficits (Vallar, 1998). 

Brain damaged patients with a lesion at the level of the premotor cortices frequently 

exhibited anosognosia for hemiplegia as a symptom. Anosognosia for hemiplegia is 

the denial of the contralesional motor deficits that may follow brain damage (Berti, 
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Bottini, Gandola, Pia, Smania, Stracciari et al., 2005; Carruthers, 2008; Pia, Neppi-

Modona, Ricci, & Berti, 2004). In this case patients have a motor problem, but they 

fail in recognizing the severity of their problem, instead they also claim that they do 

not have any body related problems. These disorders may be accompanied by reports 

of supernumerary limbs (Halligan & Marshall, 1995), that is the strong awareness of 

the existence of non-existent limbs.  

The phantom limb, that is the strong awareness of an amputated limb, represents a 

well-known disorder of body representation (Hunter, Katz, & Davis, 2003; 

Ramachandran & Hirstein, 1998). This strong awareness of the phantom limb 

includes a series of sensory phenomena that are perceived as originating from the 

missing body part. The phantom limb phenomena could include tactile sensations, 

such as the sensation of being touched on the missing body part, as well as more 

generic somatic sensations such as tingling, itching, pressure, warmth, or cold (Hunter 

et al., 2003) or also motor sensations. Indeed amputees can report, generally 

immediately after amputation, being able to move their missing limb voluntarily, with 

this ability decreasing over time. These sensations are frequently accompanied by 

painful sensation originating from the missing limb. Importantly, in this case patient 

are aware of their amputation and that these sensations are not veridical (Serino & 

Haggard, 2010; see also Chapter 2). Interestingly, phantom limb phenomena are not 

limited to a sensory or motor percepts originating from the missing body part (Hunter 

et al., 2003; Kooijman, Dijkstra, Geertzen, Elzinga, & van der Schans, 2000), but are 

often referred by patients as conscious awareness of the presence - implying position, 

shape and size - of the missing limb (Flor, Nikolajsen, & Staehelin Jensen, 2006; 

Hunter et al., 2003). The complexity and richness of these phantom limb phenomena 

is hardly explainable as resulting only from cortical reorganization in unimodal 
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primary cortices. Rather, they suggest an involvement of multisensory body 

representations, which integrate the continuous flow of information from different 

sensory modalities in order to give raise to the experience of the body and its parts 

(Blanke & Metzinger, 2009; Petkova, Bjornsdotter, Gentile, Jonsson, Li, & Ehrsson, 

2011a; Ionta, Gassert, & Blanke, 2011; see Paragraph 7.4). 

These studies on neuropsychological patients suggested that the experience of the 

body could be affected independently from primary somatosensory or motor deficits. 

The diversity and variety of bodily disorders suggested the existence of multiple and 

more complex body representations that account for a complete body experience. 

	
  

1.2.3 Behavioural evidence  

	
  
Different effects of interaction between multisensory body-related signals support the 

existence of multisensory body representation. For instance, in a study Kennet and 

colleagues (Kennet, Taylor-Clarke, & Haggard, 2001) showed that tactile information 

was improved by viewing the body tactilely stimulated, although visual information 

was totally uninformative about tactile stimulation (tactile stimuli were hidden from 

view). The authors measured tactile acuity by means of the 2-point discrimination 

thresholds on the forearm, while participants were looking either at the arm or at a 

neutral object, presented at the same location of the arm. Results demonstrated that 

spatial resolution of touch was better when participants could view the arm as 

compared to when participants viewed the neutral object. These results clearly show 

that viewing the body boosts tactile processing. The fact that participants did not see 

any information about the tactile stimulation during the task suggests that the visual 

information specifically related to the body offers a special context, that is the body 

itself, to which tactile information is referred to. 
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Tactile and proprioceptive inputs also interact to build and update high-level BRs: this 

is revealed for instance through some spectacular illusions, such as the Pinocchio 

illusion (Lackner, 1988; de Vignemont, Ehrsson & Haggard, 2005). In this illusion, 

participants held the tip of their nose with the thumb and the index finger while the 

tendon of the biceps muscle was vibrated. Vibration of this tendon normally elicited 

the sensation of the arm moving away from the body. When the nose and the finger 

were in direct contact, in order to solve the mismatching information about constant 

tactile sensation and dynamic proprioception, participants felt like their nose was 

elongating. De Vignemont and colleagues (2005) used the Pinocchio illusion to 

experimentally demonstrate that proprioceptive information is used to update body 

representation. In this experiment participants held their right index finger with the 

left index finger while the tendons of either the biceps or the triceps muscles of the 

right arm were vibrated. When the tendon of the biceps was vibrated, the arm was 

perceived as extending and it elicited the sensation that the left index finger was 

elongating. During the vibration participants received a couple of tactile stimuli at the 

finger and at the forehead as a reference body part, and they were asked to judge 

whether the tactile distance felt on the finger or the forehead was longer or shorter. 

Participants perceived the tactile distance as longer when the finger was perceived as 

elongating (that is, in case of the vibration of the tendon of the biceps of the forearm). 

The contrary effect, that is the perception of the tactile distance as shorter when the 

arm was perceived as contracting (so the finger was perceived shortening) was not 

found. These results suggested that proprioceptive information is used to update Body 

Representation: the internal representation of the body, such as the perceived body 

size, affected the perception of an external object. Critically the effect on the 
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perceived tactile distance was evident only in the case of the perceived elongation, but 

not contraction, of the arm. 

In a different study, Taylor-Clarke and colleagues (Taylor-Clarke, Jacobsen & 

Haggard, 2004) demonstrated the relevance of visual information in updating body 

representation. According to an illusion originally provided from Weber (1978), the 

same tactile distance is perceived larger when presented on a zone with higher tactile 

acuity, as compared to a zone with low tactile acuity. This illusion suggested that 

tactile information is processed with reference to tactile receptors density. In the study 

of Taylor Clarke and colleagues, participants performed a tactile distance perception 

task for two tactile stimuli presented simultaneously to the finger or the arm after a 

period of visual experience of these body parts. When subjects viewed an enlarged 

version of their arm (but not of the hand), the tendency to underestimate tactile 

distances on the arm relative to the hand was significantly reduced, while the tactile 

acuity remained unaffected. They demonstrated that perceptual judgements about an 

object touching the skin depend not only on the primary tactile sensations, but also on 

the perceiver’s representation of the body part that the object touches. Indeed, in this 

case the visual size of the body is shown to affect the tactile size of an object touching 

the skin. These results suggest that tactile signals are processed with reference to an 

implicit representation of the body (see also Medina & Coslett, 2010). Finally, in a 

recent study Tajadura-Jimenez and colleagues (Tajadura-Jimenez, Väljamäe, Toshima, 

Kimura, Tsakiris, & Kitagawa, 2012) demonstrated that also auditory information 

contributes to update body representation. In their study participants performed an 

audio-tactile tapping task. They were asked to tap on a surface with the right arm and, 

in synchrony with the tap they produced, they listened to a tapping sound that 

originated at different distances from where they performed the tapping. After the task, 
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in order to assess the perceived arm length, participants underwent a tactile distance 

task on the right arm. Results showed that when the sound originated at double the 

distance at which participants actually tapped, tactile distances on the test right arm, 

as compared to distances on the reference left arm, felt bigger than those before the 

exposure. These results are interpreted as an increase in the perceived arm length. 

Results from the present study provided an evidence of the contribution of self-

produced sounds to body-representation, revealing an auditory-dependent plasticity of 

body-representation (Tajadura-Jimenez et al., 2012). 

Finally, the probably most known and surprising phenomena revealing how 

multisensory inputs provide important inputs to high-level body representation is the 

so-called Rubber Hand Illusion (RHI). In RHI experiments, a realistic fake hand can 

be perceived as a part of one’s own body if concurrent visuo-tactile stimulation is 

seen on the fake hand and felt on one’s own hand, hidden from view (Botvinick & 

Cohen, 1998; see Tsakiris, 2010). This effect has been originally interpreted as vision 

dominating over proprioception and touch under conditions of multisensory conflict. 

If visual and tactile stimuli are presented asynchronously, the illusion does not occur, 

such as the visual and tactile stimuli appear to originate from different objects. 

In order for the RHI to take place, however, the synchronicity between visual and 

tactile inputs is a necessary, but not a sufficient condition: indeed the fake hand needs 

to be lateralized as the real hand (Tsakiris & Haggard, 2005), oriented as the real hand 

(Costantini & Haggard, 2007) and placed in a spatial configuration compatible with 

body structure (Pavani et al., 2000). This means that for the RHI to be effective, 

tactile and visual information should be integrated in a realistic model of the physical 

body. The subjective feeling of ownership for the rubber hand is associated with 

physiological changes in the way bodily-related signals are processed. If participants 
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experiencing the RHI observed a syringe stabbing in, they increased skin conductance 

response, indicating distress, and increased activity in anxiety-related brain areas 

(Ehrsson, Wiech, Weiskopf, Dolan, & Passingham, 2007). These kinds of behavioural, 

physiological and neural responses are usually associated to threat or damage to the 

real body. In addition, experience of ownership for the rubber hand also results in 

dropping of temperature of the real hand, such as that were disembodied (Moseley, 

Olthof, Venema, Don, Wijers, Gallace, & Spence, 2008), and increased immunity 

responses to inflammatory agents, such as an estranger organism has entered one’s 

own body (Barnsley, McAuley, Mohan, Dey, Thomas, & Moseley, 2011). Thus, 

results from these studies suggested that under a condition of synchronous visuo-

tactile stimulation the fake hand was integrated into body representation, inducing a 

change in body ownership: an object that is not part of the body is processed as an 

already existing part.  

Such illusion has been demonstrated not only for the hand, but also per the entire 

body, i.e., the so-called Full Body Illusion (Lenggenhager, Tadi, Metzinger, & Blanke, 

2007). In such illusion, by using a modified version of the RHI in a virtual reality 

context, participants viewed the back of their body from a distance of 2 m and 

projected onto a three-dimensional display. Under a condition of synchronous visuo-

tactile stimulation perceived on their back and seen on their virtual body, participants 

mislocalised themselves toward the virtual body and feel ownership for the virtual 

body (see also the Out-of-body experience illusion, Ehrsson, 2007 and the body-swap 

illusion, Petkova, Khoshnevis, & Ehrsson, 2011b). 

 

In summary, different results from the literature have revealed that, in humans, visual 

(Taylor-Clarke et al., 2004), auditory (Tajadura-Jimenez et al., 2012) somatosensory 
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(Kennet et al., 2001; see Serino & Haggard, 2010 for a review) and proprioceptive 

information (de Vignemont et al., 2005) is integrated in order to represent the 

perceived size of different body parts and of objects touching the skin (see also Longo, 

Azañòn, & Haggard, 2010a) in an high-level multisensory representation of the body 

in the brain.  

1.2.4 Taxonomies of BR 

 
There is little agreement in literature about the number and types of body 

representations in the brain. The first distinction was proposed by Head and Holmes 

(1911), by studying impairments in tactile perception in a brain damaged patient 

suffering from a surgical ablation of part of the precentral gyrus. Head and Holmes 

found that the brain lesion affected patient’s ability to localise the position of his hand 

in space, leaving unaffected the ability to localise, by naming it, a tactile stimulus at 

the hand. Head and Holmes introduced a dyadic distinction between a Postural 

Schema, a representation of the position of the body parts in space, used for action 

execution and updating of postural changes, and Superficial Schema, a model of the 

skin surface used for localising bodily and tactile sensations.  

After this seminal paper, different taxonomies of body representations have been 

proposed, based on the different kinds of body-related information. The currently 

most accepted taxonomy poses a dyadic distinction between Body Schema and Body 

Image. Body Schema is generally defined as a constantly updated representation of 

the position of different body parts in space in relationship with each other, derived 

from multiple sensory (proprioceptive, vestibular, tactile, visual, auditory, 

kinaesthetic) inputs. It is commonly accepted that Body Schema interacts with the 

motor system in the genesis of actions. The Body Image instead is an abstract and 

stable representation of the body for perception, more related to semantic or affective 
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processes, and mainly influenced by visual inputs (de Vignemont, 2010; Gallagher, 

2005; Schwoebel & Coslett, 2005). This action-perception duality reminds that 

originally shown in the visual domain (Goodale & Milner, 1992; Mishkin & 

Ungerleider, 1982), and more recently in the auditory (Belin & Zatorre, 2000) and 

somatosensory domains (Kammers, Longo, Tsakiris, Dijkerman, & Haggard, 2009; 

see Dijkerman & De Haan 2007 for a review).  

Other authors (Schwoebel & Coslett, 2005) extended the original dyadic distinction 

between Body Schema and Body Image, adding a third component. This taxonomy 

maintained the concept of Body Schema as a sensorimotor representation based on 

afferent and efferent information and split the concept of Body Image in two different 

representations: the Body Structural Description and the Body Semantic. With the 

term Body Structural Description, they refer to a static description of the relationship 

between the different body parts in a fixed map of the body as it should normally be 

(e.g. with a head, which is above two arms, which in turn are above two legs). Instead 

with the concept of Body Semantics, authors refer to a more conceptual body 

representation, interfacing with language, aimed at describing the functional purpose 

of the different body parts and a categorical relationship between them (de Vignemont, 

2010). 

Other distinctions have been proposed based on different characteristics of body 

representation, such as the temporal dynamics. Some authors distinguished between 

online and offline body representation (Carruthers, 2008). With the term online 

representation, for instance, Carruthers refers to a representation of the body as it 

currently is, constructed and updated moment by moment by the different incoming 

multisensory inputs. Instead an offline representation refers to a more stable 

representation of what the body is usually like, made of the multiple, everyday life 
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experiences concerning one’s own body and stored in memory. Given the different 

role of Body Schema for action and Body Image for perception, the concept of online 

body representation applies more to the former, whereas that of offline body 

representations applies to the latter.  

More recently, Longo and colleagues (2010a) proposed a general body model that 

distinguishes between two major classes of high-order body representations, named 

somatoperception and somatorepresentation. The first term refers to the process of 

perceiving the body itself, while the second one is more related to abstract knowledge, 

beliefs and attitudes towards one’s own body.  

However, at the moment, the exact number and functions of different body 

representations is matter of debate (see Kammers, Mulder, de Vignemont, & 

Dijkerman, 2010). Different attempts have been made to distinguish between different 

body representations. So far, the problem has not been solved yet. For this reason, 

hereafter I will adopt the neutral term Body Representation to define high-level, 

multisensory representations of the body, supporting perceptual and motor functions 

more complex that those implemented in the unimodal homunculi in the primary 

sensory and motor cortices.  

 

1.2.5 Neural basis  

 
In monkeys, neurons in the superior parietal cortex, particularly in area 5 (Laquiniti, 

Guigon, Bianchi, Ferraina, & Caminiti, 1995; Graziano, Cooke, & Taylor, 2000; 

Sakata, Takaoka, Kawarasaki, & Shibutani, 1973) are thought to encode the position 

and movement of the hand in body-centered coordinates. These neurons have both 

sensory and motor properties, since they receive projections from the primary 

somatosensory cortex and they project to the primary motor and premotor cortex. 
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These neurons vary their responses as function of the seen and felt position of the 

monkey’s arm, with a preference for particular postures of the limb, thus integrating 

visual and proprioceptive information in encoding the spatial location of a limb. 

Neurons of area 5 are also active immediately before and during reaching movements 

and object manipulation (Snyder, Batista, & Andersen, 1997), independently from 

somatosensory stimulation (Mountcastle, Lynch, Georgopoulos, Sakata, & Acuna, 

1975; Seal, Gross, & Bioulac, 1982; see also Graziano & Botvinick, 2002 for a 

review). Finally, neurons in this area also respond to visual information concerning 

arm position, being their firing rate modulated by the vision of a fake monkey arm 

(Graziano et al., 2000). 

 

 

Figure 1.6 Side view of the macaque monkey brain showing some of the cortical areas involved in 
representing the physical configuration of the body. The intraparietal sulcus is shown opened up to 
expose the buried cortex. MIP= medial intraparietal area, AIP=anterior intraparietal area, 5A=anterior 
area, M1=primary motor cortex, SI=primary somatosensory cortex, SII=secondary somatosensory 
cortex. Adapted from Graziano & Botvinick, 2002. 
 

 

In an fMRI study, Lloyd and colleagues (Lloyd, Shore, Spence, & Calvert, 2003) 

identified regions involved in the encoding of limb position in the human brain. 
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Participants received a tactile stimulation at the right hand with the hand either placed 

in the right or in the left hemispaces. In absence of vision, authors found an increased 

activation at the level of the right parietal cortex when the hand was in the right 

hemispaces. This activation shifted to the left parietal cortex when participants 

performed the task with the eyes open and with the left hand across the body midline 

in the left hemispace. They showed also activation at the level of the left ventral 

premotor cortex, left medial intraparietal sulcus and the junction of the left angular 

and supramarginal gyrus. These results are in line with results in non-human primate, 

showing that a parieto frontal circuit has been shown to mediate multisensory 

representation of limb position (Graziano, 1999; Rizzolatti, Fogassi, & Gallese, 2002). 

Bolognini and Maravita (2007) further investigate the role of the posterior parietal 

cortex in the spatial remapping of touch. With the terms we refer to the process of 

converting tactile location from a somatotopic map to an external frame of reference. 

Participants received TMS stimuli at the primary visual cortex for the inducement of 

phosphenes and were asked to verbally report any perceived visual sensation. 

Unpredictable tactile stimuli were presented at the hands. Results showed that visual 

sensitivity (the number of phosphenes reported) was enhanced when a tactile stimulus 

was spatially aligned with the reported location of the phosphenes in the external 

space. This facilitation was maintained when participants performed the task crossing 

the hands over the body midline, suggesting the existence of spatial remapping of 

these visual-tactile spatial effects across postures. When the activity of PPc was 

disrupted after repetitive TMS, in the hand crossed condition phosphenes detection 

was enhanced by tactile stimuli misaligned in external space, suggesting that the 

disruption of PPC activity has affected the ability of updating body parts position in 

space. Thus, the present study provided evidence for the important role of the 
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posterior parietal cortex in maintaining visual and somatosensory maps in the brain 

updated. These results have been confirmed by a study of Azanon and colleagues 

(Azanon, Longo, Soto-Faraco, & Haggard, 2010). In this study participants were 

asked to compare the elevation of tactile stimuli administered on the arm suspended 

and oriented vertically, lateral to the face, as compared to tactile stimuli presented at 

the forehead, in absence of vision. The arm position (upper or lower) was passively 

manipulated trial by trial. Single pulse TMS stimulation over the PPc was applied 

every trial after every tap at the arm. Results showed that TMS over PPc impaired 

participants’ performance, as compared to a control condition in which TMS was 

applied over the vertex. Authors did not observe any impairment in proprioceptive 

judgements or in tactile localisation per se, suggesting a role of PPc specifically in the 

tactile remapping of space, a process that involves the integration of tactile 

localisation on the skin with proprioceptive localisation of body parts in space. 

Integration of body-related multisensory information that underlies the feeling of 

body ownership, as shown by the so-called Rubber Hand Illusion (see Paragraph 1.2.3) 

is associated with a modulation of neural activity in ventral premotor cortex and in the 

posterior parietal cortex (Ehrsson, Spence, & Passingham, 2004; Ehrsson, Holmes & 

Passingham, 2005; Ehrsson et al., 2007). Interestingly, these areas are thought to play 

an important role in the representation of the peri-hand space, suggesting that the 

multisensory integration of tactile stimuli at the hand and visual stimuli presented 

close to the hand plays an important role in eliciting the RHI. Indeed, according to 

Makin and colleagues (Makin, Holmes, & Ehrsson, 2008), the posterior parietal 

cortex seems to integrate multisensory information with respect to the rubber hand. 

Makin and colleagues suggested that illusory body parts ownership might involve 

trimodal neurons, at the level of the premotor and parietal cortices, which integrate 
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tactile stimuli on a specific body part (head, face neck, trunk or shoulders) with visual 

and/or auditory stimuli close to the same body part (see Paragraph 1.1.1 for a full 

description). It has been proposed that during the Rubber Hand Illusion, but also 

during the Full Body Illusion (see Blanke, 2012, for a review), just seeing the fake 

body being stimulated and experiencing a synchronous tactile stimulation may lead to 

a shift of the receptive field of multisensory neurons towards the fake body parts.  

Taken together these studies suggest that somatosensory, proprioceptive, visual and 

kinaesthetic inputs are integrated in parietal and premotor areas, in order to represent 

the shape and position of different body parts in space (see also Dijkermann & de 

Haan, 2007 and Medina & Coslett, 2010 for reviews), this suggesting that a fronto-

parietal circuit seemed is involved in representing the body in the brain. 
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 “Anything which participates in the conscious movement of our bodies is added to 

the model of ourselves and becomes part of those schemata: a woman’s power of 

localization may extend to the feather of her hat.” 

Head and Holmes, 1911 

 

 

CHAPTER TWO: PLASTIC PROPERTIES OF 

PERIPERSONAL SPACE REPRESENTATION AND 

BODY REPRESENTATIONS 

 

 

2.1 Plastic properties in Peripersonal Space representation 

 
A critical property of Peripersonal Space representation is that it is dynamically 

modified through experience: using a tool to reach objects in far space extends the 

limits of PPS representation. Indeed, near and far space are separately represented, but 

what is near or far is not defined a priori, but functionally depends upon movements 

that allow the body to interact with objects in space. Here I will review 

neurophysiological studies on primates and neuropsychological and behavioural 

studies in humans revealing tool-dependent modifications in PPS representation. 

 

2.1.2 Neurophysiological evidence 

In monkeys, Iriki and colleagues (Iriki, Tanaka, & Iwamura, 1996) showed that hand-
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centred visual RFs of neurons located in the intraparietal sulcus elongated after a 

training period of using a rake to retrieve pieces of food placed at a distance. 

Critically after a period of inactivity the size of the visual RFs came back to the 

normal size. In a different study, Iriki and colleagues (Iriki, Tanaka, Obayashi, & 

Iwamura, 2001; see also Maravita & Iriki, 2004, for a review) trained a monkey to use 

a tool under visual feedback of their hand provided through video-captured images 

projected on a monitor in the far space. After tool-use, the visual receptive field of the 

neuron recorded in the intraparietal sulcus were shown to extend up to the image of 

the hand holding the rake in the monitor. These results suggested that the visual image 

of the hand (and its ‘virtual’ equivalent in the monitor in this case) was treated by the 

monkeys as an extension of their own body. These pioneering studies have been 

usually taken as an evidence of Peripersonal Space extension after tool-use in 

primates. 

 

2.1.2 Neuropsychological evidence 

 
Evidence for corresponding dynamic properties also in humans came from 

neuropsychological studies on brain damaged patients. Berti and Frassinetti (2000) 

examined the effect of tool-use on a brain damaged patient suffering from a form of 

neglect selective for the space close to the body, exhibiting a classic rightward bias in 

a bisection line task only when the task was performed in peripersonal space (see also 

Chapter 1, paragraph 1.1.2), and not in the extrapersonal space. Authors showed that 

when a long stick was used to perform the same bisection task in far space, the 

patients showed a similar rightward bias. These results suggest that when the stick 

made the far space “reachable”, this became automatically coded as it was near space. 
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Further neuropsychological studies on extinction patients demonstrated that after 

using a tool to retrieve distant objects for five minutes, crossmodal extinction for a 

tactile stimulus presented at the contralesional hand increased when a visual stimulus 

was presented at the tip of the tool, as compared to before tool-use (Farnè, Iriki & 

Làdavas, 2005; Farnè & Làdavas, 2000; see also Maravita, Husain, Clarke, & Driver, 

2001 and Làdavas, 2002). Peripersonal space expansion lasted only few minutes after 

tool use: after five minutes of resting period the extent of crossmodal extinction at the 

tip of the tool regained a pre tool-use level, suggesting that patient’s peripersonal 

space contracted backwards, in close similarity with monkeys studies. The peri-hand 

space extension produced by tool-use was not perfectly coincident with the length of 

the tool. Indeed, Farnè and colleagues (Farnè et al., 2005) compared the compared the 

extent of crossmodal extinction after the use of two different tools, one longer (60 cm) 

and the other shorter (30 cm). Cross modal extinction was assessed at two different 

positions of space, specifically at 60 cm and 30 cm. They found that in the case of the 

short tool-use, a weaker – but still present - extension effect was found even at 60 cm 

of distance. These results suggested that the extension area of peripersonal space did 

not perfectly correspond to the tip of the tool, but partially extended beyond it. 

Critically in the same study the effect of a 60 cm long tool, but with the functional 

part located at 30 cm, on peripersonal space representation was tested. By using this 

tool indeed was possible to dissociate the effective length of this tool from its 

functional properties. Results showed the level of crossmodal extinction was more 

severe at 30 cm, at the spatial area corresponding to the functional part of the tool. 

These results are compatible with other studies suggesting that an active experience 

with the tool is critical in promoting an extension effect, since a prolonged but passive 

exposure to the tool failed to elongate the peri-hand space (Maravita et al., 2001). 
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Figure 2.1 Schematic drawings of the experimental set-up in a study to assess the spatial extension of 
peripersonal space. (a). The location of visual (V) and tactile (T) stimulation is indicated by arrows. 
Crossmodal extinction was assessed before (a) and after (c) the patient used a rake to retrieve distant 
fishes (b, open circles) or pointed towards them (d). The patient’s left hand was always occluded from 
view by a cardboard shield (shaded area). The large dotted red hand symbolically represents the 
extension of the reaching space of the patient’s hand. (e) Mean percentage correct detection of the left 
tactile stimulus in each experimental condition. (Modified from Farnè & Làdavas, 2000; adapted 
from Làdavas, 2002). 



	
   55	
  

 

Different studies have focused on whether this plastic modification of peripersonal 

space was more compatible with a proper extension effect encompassing the entire 

length of the tool or rather with a shift of this integrative space to the tip of the tool. 

Farnè and colleagues (Farnè, Serino, & Làdavas, 2007; Bonifazi, Farnè, Rinaldesi, & 

Làdavas, 2007) tested the severity of crossmodal extinction in different positions 

along the tool axis, showing that the level of extinction significantly increased both at 

the middle and the tip of the tool, but with no effect at the tool handle. These results 

strongly supported the idea that tool-use promote an incorporation of the entire tool in 

its representation (see also Holmes, 2012 for a discussion of this hypothesis). 

Taken together these results suggested that using a tool created a connection between 

the hand holding the tool and visual stimuli coming from a portion of space including 

the tip of the tool in the far space. This suggested that, following tool-use, the 

multisensory peri-hand area where visual and tactile stimuli were integrated was 

pushed farther in space up to include the entire tool length, in order to allocate 

processes multisensory stimuli where the goal of the action was. 

 

2.1.3 Behavioural evidence  

Tools 
 
An extension of the limits of tactile, visual and/or acoustic stimulus integration has 

been shown also in healthy subjects after short term (Holmes, Calvert & Spence, 

2004; Maravita, Spence, Kennett and Driver, 2002; but see also Holmes, Calvert, & 

Spence, 2007a; Holmes, 2012) and long term (Bassolino, Serino, Ubaldi, & Làdavas, 

2010; Serino et al., 2007a) tool-use. 

To investigate peripersonal space extension after tool-use in healthy subjects, 
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Maravita and colleagues (Maravita et al., 2002) took advantage from the crossmodal 

congruency task (see Chapter 1 for a detailed description of the task). In this 

experiment participants held two sticks (more precisely two golf clubs) in their hands. 

Their task was to detect a vibrotactile stimulation administered at the two hands while 

visual stimuli were presented at the tips of the tools. Participants performed the task 

either with the two tools crossed or uncrossed. When the tools were uncrossed, the 

visual distractors at the tip of one tool interfered more strongly with vibrotactile 

stimuli administered at the ipsilesional hand as compared to the contralateral hand, 

suggesting that stimuli coming from the same side of space interacted more 

effectively. Instead, in the crossed condition, the visual stimuli presented at the tip of 

the tool in the right hemispace interacted more effectively with the tactile stimulus 

administered at the left hand, because they interacted within the same hemispace. 

These results suggested that the tool created a link between the hand and the far space 

where the tool was used, promoting a remapping of this far space as close to the body.  

In a series of experiment, Holmes and colleagues (Holmes et al., 2007a) further 

investigated the hypothesis that tool use modifies peripersonal space (see also Holmes 

et al., 2004; Holmes, Sanabria, Calvert, & Spence, 2007b; see Holmes, 2012, for a 

review). Authors tested crossmodal interactions in the peri hand space by interleaving 

trials of the crossmodal congruency task with an active tool use task (that is using the 

tool to push a small button located in the far space). This way, the effect of tool-use 

could be studied in moments immediately preceding and following active tool 

movements. In this study participants performed the crossmodal congruency task 

while holding a tool in the left and right hand. Tactile stimulation was administered at 

the hands, while the visual distractors were presented either close to the participants 

hands’, at the middle of the tool or at the tip of the tool. Results showed an increased 
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interaction between tactile stimuli and visual distractors at the hands and at the tip of 

the tool. Interestingly, when participants were asked to shift from the right to the left 

tool in a predictable way (i.e. every 4 trial), multisensory integration increased as a 

function of the number of trial. Instead, in a random condition (where the shift 

between right and left was unpredictable), the level of crossmodal interaction 

remained constant for the entire duration of the task. Results from the present study 

demonstrated an effect of tool-use movement preparation on the extent of crossmodal 

interaction, showing that multisensory interactions change trial-by-trial basis, 

depending on the predictability of the next movement.  

 

The PPS expansion effect has been described mainly after a brief training with a tool, 

resulting in short term expansion of peripersonal space that lasted only for short time 

intervals. Interestingly, two different studies from Serino and colleagues investigated 

whether a daily experience with a tool could promote a long-term extension effect on 

PPS representation. In a first study Serino and colleagues (Serino et al., 2007) 

investigated audio-tactile interaction in blind participants. The paradigm used was an 

audio-tactile interaction task (see Chapter 1, Paragraph 1.1.4). In this paradigm 

participants received tactile stimuli at their index finger, while a concurrent sound was 

presented. The sound position in space was manipulated, so that in different trials it 

was presented either close to the participant’s hand (near condition) or far from it, at a 

distance of around 125 cm (far condition). Participants were asked to verbally respond 

to the tactile stimulation as quickly as possible, by saying TAH in a microphone while 

ignoring the auditory stimuli during the task. By using this paradigm was possible to 

compare audio-tactile interaction at the hand and at the tip of the tool. Participants 

performed the task while holding either their cane or a short handle. Results showed 
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that when holding the handle, participants tactile RTs were faster when the sound was 

presented in the peri-hand space, as compared to the far sound condition. Their 

performance in this condition was totally comparable to the performance of a group of 

blindfolded healthy subjects in the same experimental condition. When healthy 

participants performed the task after a brief training with the long tool, the facilitation 

of tactile stimuli associated with near sound disappeared, revealing an extension of 

auditory peri hand space up to the tip of the tool, as described for visual peri-hand 

space. After a period of inactivity, the extent of peripersonal space came back to the 

pre-training level. Interestingly, when blind participants, selected for a long 

experience of using a cane, performed the task just holding the cane, without any 

previous training, the pattern of response was completely reversed: blind cane users 

were faster in responding to tactile stimuli at the hand associated with far auditory 

stimuli (i.e. coming from the space at the tip of the cane) as compared to near stimuli 

(see also Figure 2.2). Results from the present study suggested that the modulation of 

auditory peri-hand space is highly plastic, varying as a function of experience: a short 

training can result in a limited extension of peripersonal space, while long-term 

experience, as in the case of blind cane users, result in a durably extended 

representation of peripersonal space. 
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Figure 2.2 Schematic drawing of the effects of short-term versus long-term experience of tool use, as 
assessed by Serino and colleagues (Serino et al., 2007). 
Upper panel: audio-tactile integrative space (metaphorically represented by the transparent hand) 
around the hand before and after tool use in sighted participants. Before using a cane, audio-tactile 
integration is limited around the hand, independently from the length of the cane yielded by the 
participants (A1 and A2). After a training with the cane, the auditory peri-hand space expands to 
include the cane (B). Lower panel: audio-tactile integration in the space around the hand in blind cane 
users. When blind participants hold the cane (D), but not a short handle (C), the auditory peri-hand 
space shifts to the tip of the cane. Adapted from Làdavas & Serino, 2008. 
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These results were confirmed and extended by a further work from Bassolino and 

colleagues (2010), where they studied the extent of auditory peripersonal space in 

mouse users in three different conditions: using the mouse to perform a task in the far 

space, passively holding the mouse in the hand, or no mouse condition. They showed 

an extension of peripersonal space while participants performed the audio-tactile 

interaction task both actively using and passively holding the mouse. These extension 

effects was selective for the effector used, since when participants performed the task 

with the left hand, that was rarely used to control the mouse, peripersonal space 

extended only in the active condition, but not in the passive one. 

 

Body mirrors and shadows 

All the studies previously described focused on a remapping of far space as near one 

due the use of a tool that allowed them to reach far object. However, there are other 

situations whereby stimuli presented far from the body could be related to tactile 

stimuli presented on the body surface, as in the case of mirrors and shadows of the 

body. The efficacy of mirrors in binding personal space and extrapersonal space has 

been demonstrated both in right brain damaged patients and in healthy subjects. 

Maravita and colleagues (Maravita, Spence, Clarke, Husain, & Driver, 2000) assessed 

cross-modal extinction for tactile stimuli administered at the contralesional hand of 

patients, when ipsilesional visual stimuli were delivered close to a mirror reflection of 

the patient’s hand. The visual stimuli, even if actually far from the patient’s hand, 

increased tactile extinction at the patients’ hand. Similar results were obtained by 

using the cross modal congruency task in healthy subjects (Maravita et al., 2002). 

These results suggested that a portion of far space, corresponding to the portion of 

space surrounding the hand’s reflection in the mirror was remapped as the space 
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immediately close to the hand, thus creating a connection between near and far space 

through the mirror. Similar results were obtained in experimental studies on body 

shadows (Pavani & Castiello, 2004). Body shadows represent a body shaped visual 

stimulus that generally follows body movement and adapts to every change of the 

physical body across the entire life. Pavani and Castiello (2004) used a visuo-tactile 

crossmodal congruency task (see above) to investigate possible cross modal 

interaction between tactile stimuli presented at the hand and visual stimuli presented 

close to shadows of the hand, in a far portion of space. Results showed visual stimuli 

presented around the shadow of the hand interacted with tactile stimuli at the hand, 

demonstrating that the hand shadow was able to create a connection between the peri-

hand space and the far space, promoting a remapping of far space as it was near (see 

also Pavani & Galfano, 2007). Critically, this effect was specific for the hand shadow, 

because when a non-body shaped shadow was used (with participants wearing a 

particular glove that projected a polygonal shape), authors did not replicate the same 

effect as for the body shadow. This study suggested that the body shadow could share 

with the tool the possibility to extend peripersonal space to the far space. This 

property would give a small advantage in detecting a potentially harmful stimulus that 

is approaching the body. For instance when we are walking in a sunny day and we see 

the shadow of a potential dangerous stimulus close to our body shadow, it is 

necessary to immediately process information presented close to our shadow as close 

to the body, in order to plan an appropriate motor reaction.  

 

2.1 Plastic properties in Body Representations 

As the body changes continuously in position and dimensions throughout life, its 
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brain representations need to be updated in order to correctly interact with the external 

world. Body representations take in account every perceptual input related to the 

body. So it is reasonable to think that body representation should be plastic enough to 

update accordingly to slow and fast changes the body undergoes with time.  

 

2.1.1 Plastic changes in unimodal Body Representations  

	
  
A series of studies demonstrated a relationship between changes in the physical body 

structure and unimodal body representations. One of the best examples revealing a 

link between primary cortical activity at the level of the primary somatosensory 

cortex and body representation is represented by deafferentation. Deafferentation is a 

clinical condition characterized by a loss of somatosensory information that can affect 

a portion of the body (Dijkerman & De Haan, 2007). A possible cause for 

deafferentation is a nerve resection or anaesthesia. Studies on monkeys (Jenkins, 

Merzenich, & Recanzone, 1990; Pons, Garraghty, Ommaya, Kaas, Taub, & Mishkin, 

1991) demonstrated that the deafferentation of peripheral inputs from a body part 

induces a plastic reorganization at the level of the somatosensory cortex. After 

deafferentation, a part of somatosensory cortex that previously responded to inputs 

coming from the deafferented body part started to respond to afferent stimuli coming 

from adjacent portions of skin. In humans (Rossini, Martino, Narici, Pasquarelli, 

Peresson, Pizzella, et al., 1994a), it has been demonstrated that cortical responses 

coming from unanaesthetized fingers were increased following a relatively brief 

period of anaesthesia of the adjacent finger, providing another example of short term 

plasticity effects in the brain due to the loss of afferent somatosensory information 

(see Serino & Haggard, 2010, for a review). This cortical reorganization follows a 

somatotopic principle, since, for instance, it has been demonstrated that anaesthesia of 
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a foot does not imply a cortical reorganization at the level of the area of the face, 

since these two body parts are not adjacent at the level of the SI. These 

deafferentation effects could be explain with the unmasking of existing synaptic 

connections between adjacent areas of SI (Buonomano & Merzenich, 1998; see 

Serino & Haggard, 2010). 

The phantom limb syndrome represents one of the stronger examples revealing a link 

between unimodal cortex activity and the body experience. The phantom limb 

experience results from limb amputation or deafferentation, and includes a general 

awareness of the existence of the missing body part. Patients, although being aware of 

the fact that the missing limb is not present, report a series of somatic sensations that 

could be also strongly painful originating from the missing limb. One interesting 

feature of phantom limb is represented by referred sensation, i.e., sensation localized 

to a phantom body part after tactile stimulation of another part of the subject’s body 

(Ramachandran, Rogers-Ramachandran, & Stuart, 1992). In amputees patients indeed 

it is frequent that a touch on the face elicited a tactile sensation on the missing body 

part. Critically, at the level of primary somatosensory cortices, the representation of 

face and arm are adjacent. So, these referred sensations have been interpreted as a 

sign of cortical reorganization of primary sensory cortices that dynamically adapt to 

the change in the physical body structure. Indeed, the deprivation of the afferent 

inputs that normally come from the amputate body part leads the neighbouring 

portions of the SI map to ‘‘invade’’ the cortical territory previously representing the 

amputated body part. As a consequence, that part of the cortex that was previously 

responding to the arm now responds to the face, leading to an activation of two 

different percepts. This form of plasticity at the level of SI after amputation has been 

explicitly investigated in humans. Farnè and colleagues, by studying the case of an 
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upper limb amputee who underwent a hand transplant, showed that amputation-

induced remapping, however, reverses after transplantation, as the grafted hand 

regains its sensorimotor representation (Farnè, Roy, Giraux, Dubernard, & Sirigu, 

2002; see also Giraux, Sirigu, Scheneider, & Dubernard, 2001). Borsook and 

colleagues (Borsook, Becerra, Fishman, Edwards, Jennings, Stojanovic, et al., 1998) 

in an fMRI studies experimentally investigated whether these plastic phenomena at 

the level of SI after amputation depend on the unmasking of synaptic connections 

between adjacent areas of SI in an fMRI study. They tested an upper limb amputee 

within 24 hours following an above the elbow amputation of his left arm and they 

observed that tactile stimulation at the ipsilateral face elicited precise sensations at the 

phantom limb. These elicited phantom sensations activated the contralateral posterior 

cingulate gyrus, supplemental motor area and the post central gyrus, in close 

proximity with the part of the primary somatosensory cortex where the hand is 

represented. These activations in the hand area when participant was touched on the 

face 24 hours after amputation suggested that the process of plastic that take place in 

SI followed a somatotopic principle and happened rapidly. 

Di Russo and colleagues (Di Russo, Committeri, Pitzalis, Spitoni, Piccardi, Galati et 

al., 2006) investigated changes in the primary somatosensory cortex in case of 

elongation of a limb in a group of achondroplastic dwarfs. The elongation technique 

offers the possibility to study a change in the physical body structure that usually 

takes place extremely slowly during our life. Two patients, submitted to progressive 

elongation of lower limbs were tested both with somatosensory evoked potentials 

(SEPs), fMRI and behavioral testing. Coherent results from SEPs and fMRI data 

indicated a functional reorganization in SI for foot stimulation immediately after the 

elongation ending. 
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It has been demonstrated that not only the deprivation of afferent inputs from the 

physical body could affect the somatosensory body representation in SI, but also the 

quantity of the tactile inputs. In monkeys, Recanzone and colleagues (Recanzone, 

Merzenich, Jenkins, Grajski, & Dinse, 1992) demonstrated that when the monkey 

underwent a tactile training with one digit, the cortical representation of this digit 

expanded in SI. Braille readers represent a well-known example of the same concept 

in humans. These people have a greater tactile ability, since they have a long-term 

experience in using tactile information to read. Interestingly, it has been demonstrated 

that only the right index finger, that is used to read, but not the left one, had an 

increased representation in SI (Pascual-Leon & Torres, 1993; see also Braun et al., 

2000 for similar results in case of active tactile stimulation and Godde et al., 2000, for 

passive tactile stimulation; see also Serino & Haggard, 2010, for a review). 

Taken together these experiences provided evidence for strong plasticity effects in 

unimodal body representation due to a change in the physical body structure and in 

the amount of afferent information projecting to unimodal somatosensory cortices. 

 

2.1.2 Plastic changes in multisensory Body Representations  

	
  
The representation of the body in the brain is a rather complex phenomenon. As 

previously reviewed in Chapter 1 a complete experience of the body is possible 

because multisensory (proprioceptive, tactile, visual and auditory inputs body related) 

are continuously integrated in order to update body perception. A series of studies, 

extensively reviewed in Chapter 1 (see Paragraph 1.2.3) demonstrated how stimuli 

presented in different sensory modality dynamically update a multisensory high-level 

body representation (see Taylor-Clarke et al., 2004; de Vignemont et al., 2005; 

Tajadura-Jimenez et al., 2012). A further study of Gandevia and Phegan (1999) 
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demonstrated how incoming tactile information affected body size perception. In their 

study, participants were asked to draw the size of their thumb before and after a 

digital anaesthesia following three different interventions: nerve block, cutaneous 

topical application or cooling. Results show that participants reported an increase in 

the perceived size of the anaesthetized thumb. The same effect was found also for the 

lips, which are represented closer to the hand at the level of the somatosensory 

homunculus in SI, while the perceived size of both index fingers was not affected.  

The most striking phenomena of plasticity in high-order BR remains the Rubber Hand 

Illusion: a series of evidence, previously reviewed in Chapter 1, demonstrated that the 

perception of what is part of the body can be dynamically updated under certain 

conditions: the illusory ownership of a fake hand can be induced under a condition of 

synchronous visuo-tactile stimulation. This body-ownership of an object that is not 

part of the body arises as an interaction between current multisensory input and 

internal models of the body (see also Tsakiris, 2010, for a review).  

 

Tool-use 

Since a long time now it has been suggested that body representation is plastic and 

can incorporate external objects that have a systematic relation to the body itself, such 

as clothes, ornaments and tools (Berlucchi & Aglioti, 1997; 2010). Benjamin Beck 

(1980) defined tool-use (and thereby those objects that one could consider as a ‘tool’) 

as follows: 

 

“...tool use is the external employment of an unattached environmental object to alter 

more efficiently the form, position, or condition of another object, another organism, 

or the user itself when the user holds or carries the tool during or just prior to use 
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and is responsible for the proper and effective orientation of the tool.” 

 

Under appropriate circumstances, hand-held tool, for instance, may become so 

familiar that it feels as if it is a natural extension of the hand. Such changes however, 

are usually temporary and contingent to the duration of the relationship between the 

body and the tool used.  

Three recent papers demonstrated a specific change in BR following tool-use. 

Cardinali and colleagues (Cardinali, Frassinetti, Brozzoli, Urquizar, Roy, & Farnè, 

2009a) showed that kinematics of arm movements during hand grasping changed after 

pincers were used to grasp objects. This effect did not depend on a fatigue effect due 

to handling the tool, since a training with a weight identical to the tool weight did not 

change in any of the kinematic parameters. This effect was also associated with a 

change in the localisation of tactile stimuli on the arm. Taken together these results 

showed that tool-use affected arm motor behaviour and at the same time the 

somatosensory representation of the body part used to perform the motor action. 

In a recent study, the same group (Cardinali, Brozzoli, Urquizar, Salemme, Roy, & 

Farnè, 2011) tested whether the effects of tool-use on body representation was 

specific for a representation of the body used for action (i.e., the so-called Body 

Schema) and not for a more perceptual body representation (i.e., the so-called Body 

Image; see paragraph 1.2.4). To this aim, participants were tested after tool-use using 

tasks that required a motor response (pointing to a body part) or a perceptual 

judgement (localising a body part on a ruler). According to their hypothesis, tool use 

should specifically affect only a motor response. Moreover, they also investigated 

whether the incoming information provided to subjects during the task may play a 

role in determining which body representation is used. They found that perception of 
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forearm length increased after tool-use for both tasks, but only when the input for the 

task (which body part was to localise) was given tactilely (by touching the target body 

part) and not verbally (by naming the target body part). Finally, Sposito and 

colleagues (Sposito, Bolognini, Vallar, & Maravita, 2012) demonstrated a change in 

the internal representation of body part size (i.e. the forearm) following a training 

with a functional tool. In a first experiment, participants performed a task with a 60cm 

long tool used in order to retrieve objects placed in the far space. Before and after the 

training, participants were asked to perform a bisection task, in which they had to 

indicate the midpoint of their right upper limb segment, considering the elbow and the 

tip of the middle finger as the two extremities. Results showed that after the training 

participants located the midpoint of their forearm used during the training more 

distally. This result is compatible with an extension of the perceived length of the arm 

after the tool. In a second experiment, participants performed the same training with a 

20cm long tool. In this case, any change in forearm midpoint was observed. Finally, 

in a third experiment, participants performed the task with the 60cm long tool both 

with the dominant and non-dominant arm. Results from this experiment showed an 

increased in the perceived forearm’s length after tool-use, as for the first experiment. 

These results are in line with results from Cardinali and colleagues, showing that 

body-space interactions requiring the use of tools that extend the natural range of 

action resulted in measurable dynamic changes in body perception. 

Summary 

 
A series of evidence, coming from neurophysiological studies on monkeys, 

neuropsychological studies on brain damaged patients and behavioural studies in 

healthy volunteers confirms that the limits of multisensory integration, normally 

occurring in the space around the body, shift to the far space if a tool is used to 
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increase the body action space (see Paragraph 2.1). These studies show that the extent 

of PPS representation can be dynamically shaped as a function of where subjects act 

upon external objects, i.e. their action-space (Gallese & Sinigaglia, 2010). Moreover, 

some studies demonstrated that tool-use affected upper the limb kinematics, the 

somato-motor representation of the arm (Cardinali et al., 2009a; Cardinali et al., 2011; 

Sposito et al., 2012) and the perceived dimension of the arm used to perform the 

training. 

Some authors (i.e. Iriki et al., 1996; Maravita & Iriki 2004) have proposed that the 

extension of PPS after tool-use reflects a plastic modification in BR, such that the tool 

is incorporated as a part of the body (Berlucchi & Aglioti, 1997; Critchley, 1979; 

Head & Holmes, 1911; Holmes & Spence, 2006; Maravita, 2006). Interestingly in the 

majority of these studies, tool incorporation has been only indirectly demonstrated 

through perceptual changes in PPS representations.   



	
   70	
  

CHAPTER THREE: NEURAL BASIS OF 

PERIPERSONAL SPACE REPRESENTATION 

 

[This research has been published in: Serino A, Canzoneri E, Avenanti A. (2011) 

Fronto-parietal areas necessary for a multisensory representation of peripersonal 

space in humans: an rTMS study. Journal of Cognitive Neuroscience, 23(10): 2956-

67] 

 

3.1 Introduction 

 
As previously described in Chapter 1, seminal studies in monkeys have suggested that 

neurons in the ventral premotor cortex (vPMc), specifically in area F4 (Graziano et 

al., 1997a; Fogassi et al., 1996; Graziano et al., 1994; Rizzolatti et al., 1981a, 1981b), 

and in the intraparietal sulcus, specifically in the ventral intraparietal area (VIP; 

Avillac et al., 2005; Duhamel et al., 1998), may underlie multisensory representation 

of PPS.  

Neuroimaging studies have tried to identify brain areas underlying PPS representation 

in the human brain (Bremmer, Duhamel, BenHamed, & Graf, 2002; Sereno & Huang, 

2006; Makin et al., 2007; see also Paragraph 1.2.5), suggesting that in humans, as in 

monkeys, a network of brain areas located in the premotor and parietal cortices might 

underlie a multisensory representation of the PPS. However, imaging studies do not 

reveal a direct causal link between brain structures and function. The aim of the 

present study is to test the necessary role of vPMc and PPc in multisensory 

representation of PPS. To this aim, we applied low-frequency (1 Hz) repetitive TMS 

(rTMS) to transiently interfere with vPMc and PPc processing. When applied to the 
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motor cortex, this rTMS protocol induces a transient suppression of cortical 

excitability (Avenanti, Bolognini, Maravita, & Aglioti, 2007; Boroojerdi, Prager, 

Muellbacher, & Cohen, 2000; Chen, Classen, Gerloff, Celnik, Wassermann, & Hallet, 

1997). Administration of 1-Hz rTMS to other cortical areas also results in behavioral 

effects consistent with transient suppression of cortical excitability (Balslev, 

Christensen, Lee, Law, Paulson, & Miall, 2004; Hilgetag, Théoret, & Pascual-Leone, 

2001). Thus, this rTMS protocol can be used to induce transient “virtual lesions” in 

neurologically intact participants (Ziemann, 2010; O’Shea & Walsh, 2007; Pascual-

Leone, Walsh, & Rothwell, 2000). 

Here we test whether the representation of PPS was altered by rTMS-induced virtual 

lesions to vPMc and PPc in comparison with a baseline condition of no rTMS 

administration. In addition, rTMS was also applied over primary visual cortex (V1), 

serving as a control site, to exclude possible effects due to a generic administration of 

TMS, rather than to a specific inhibition of the target areas. 

The present study comprises two experiments. We first replicate and validate a 

behavioral task previously used (Serino et al., 2007; Bassolino et al., 2010) to 

measure PPS representation around the hand in humans (Experiment 3.1A and 3.1B). 

We applied this paradigm to test the effects rTMS over vPMc, PPc, and V1 on PPS 

representation (Experiment 3.2). 

3.2 Experiment 3.1A 

 
To assess PPS representation around the hand, we used an audio–tactile task 

developed by our own group (see Bassolino et al., 2010; Serino et al., 2007). 

Participants were asked to verbally respond as fast as they could to either a weak 

electrical stimulus or strong electrical stimulus on their right index finger. Tactile 
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stimuli were either administered unimodally or together with concurrent task- 

irrelevant auditory stimuli. Auditory stimuli were to be ignored and were presented 

either near the stimulated hand (NEAR sound) or at a distance of about 100 cm from 

the hand (FAR sound). The rationale of the task is that stimuli from different sensory 

modalities interact more effectively with one another when presented within the same 

spatial representation (Stein & Meredith, 1993). This implies that, in normal 

conditions, the response to tactile stimuli administered on the hand should be more 

strongly affected by sounds presented near the hand (i.e., within the PPS) than by 

sounds presented far from the hand. Hence, we predict that the presentation of sounds 

should speed up tactile RTs in comparison with the unimodal tactile condition. More 

importantly, tactile stimuli associated with near sounds should be processed faster 

than tactile stimuli associated with far sounds, in line with previous results (Serino et 

al., 2007). 

We also tested whether the intensity of the tactile stimulus is critical for audio–tactile 

interaction. Because stimuli from different sensory modalities interact more strongly 

when unimodal information is weak (i.e., inverse effectiveness law of multisensory 

integration; Stein & Meredith, 1993), stronger audio–tactile effects can be predicted 

in response to a weaker rather than a stronger tactile stimulus. For this reason, we 

compared RTs for three stimulation conditions when subjects were asked to respond 

either to a weak or strong tactile target. 

3.2.1 Methods 

	
  
Participants 

Twelve healthy subjects (all women, mean age=26 years) participated in the study. 

All participants were right-handed and had normal hearing and touch. All subjects 

were students at the University of Bologna and gave their informed consent to 
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participate in the study, which was approved by the local ethics committee in 

accordance with the Declaration of Helsinki. 

 

Procedure and Materials 

Tactile stimuli were delivered from two constant-current electrical stimulators 

(DS7A, Digitimer, Hertfordshire, U.K.) via two pairs of neurological electrodes 

(Neuroline, Ambu, Ballerup, Denmark) placed on the dorsal surface of the index 

finger. The electrical stimulus was a single, constant voltage, rectangular monophasic 

pulse (duration = 100 sec). One pair of electrodes delivered weak stimuli, and the 

other pair delivered strong stimuli. Stimulus intensity was calibrated for each subject 

in a pretest session as follows: the experimenter began by administering a very low 

intensity stimulus (10 mA) and progressively increased the stimulus intensity until the 

subject reported detection. Normally, the weak stimulus was perceived around 50–80 

mA, but this value was highly variable between subjects, seemingly dependent upon 

the placement of electrodes, the subject’s skin, and individual sensitivity. After the 

initial detection report, the intensity was further increased by 10 mA. At that point, to 

ensure that the weak stimulus was actually perceived, 10 weak stimuli interspersed 

with 10 catch trials were administered. If the subject correctly reported the weak 

stimulus at least in 9 of 10 stimulations (90% of the time), the intensity of the weak 

stimulus was set at that value. Otherwise, the intensity of the weak stimulus was 

further increased and the procedure repeated. The intensity of the strong stimulus was 

then set at a factor of 1.5 of the intensity of the weak stimulus. The experimenter then 

administered 10 strong stimuli interspersed with 10 catch trials, ensuring that the 

strong stimulus was perceived 100% of the time. At the end of this procedure, the 

experimenter administered a series of five weak and five strong stimuli, in random 
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order, and asked the subject to indicate, after presentation of each stimulus, whether it 

was strong or weak. If the discrimination was not perfect, the intensity setting 

procedure was repeated. 

Auditory stimuli were 100-msec bursts of white noise. The intensity of the near and 

far sounds was set to be equal (≈70 dB) as measured by a sound meter above the 

subject’s head (over the vertex). Sounds were generated by two identical 

loudspeakers, placed either near the subject’s hand (NEAR sound, i.e., at ≈5 cm from 

the hand, at ≈50 cm from the subject’s torso, and at ≈60 cm from the subject head) or 

in a far position (FAR sound, i.e., at 100 cm away from the near position, at ≈150 cm 

from the subject’s torso, and ≈160 cm from the subject’s head). Inspection of phonon 

spectral waves (recorded by a computer) from the two loudspeakers ensured that the 

sounds were equal at their origin for emitted frequencies. 

The experimental setup is illustrated in Figure 3.1A. On each trial, participants 

received either a weak or a strong electrical stimulus on their right index finger. 

Tactile stimuli were presented alone (NO sound) or together with a concurrent task-

irrelevant sound, arising from either the near (NEAR sound) or the far loudspeaker 

(FAR sound). The tactile and near acoustic stimuli were delivered simultaneously. Far 

sound onset preceded tactile stimulus onset by 5 msec to compensate for the delayed 

arrival of the far sound relative to the near sound because of the difference in 

distance. A total of 128 trials were administered: 20 weak tactile stimuli with no 

sound, 20 strong tactile stimuli with no sound, 20 weak tactile stimuli with near 

sounds, 20 weak tactile stimuli with far sounds, 20 strong tactile stimuli with near 

sounds, 20 strong tactile stimuli with far sounds, and 8 catch trials (i.e., trials on 

which only sounds, 4 near and 4 far, were presented). Each trial lasted about 3 sec. 

The task was performed in two experimental conditions, run in separate blocks, 
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whose order was counterbalanced between subjects. In the weak target condition, 

subjects were asked to respond as fast as possible (saying “TAH”) only to the weak 

electrical stimulus and to refrain from responding to the strong electrical stimuli; vice 

versa, in the strong target condition, they were asked to respond to the strong and not 

to the weak electrical stimulus. 

Subjects were explicitly instructed to ignore the sounds when present. RT was 

measured by means of a voice-activated relay. A computer running XGen 

(www.sph.sc.edu/comd/rorden/xgen.html) software was used to control the 

presentation of the stimuli and record responses. Before the experiment, 30 trials were 

administered to familiarize subjects with the task. Subjects performed the task 

blindfolded. 

 

Figure 3.1 Experimental setup. (A) Experimental setup for Experiment 3.1A and Experiment 3.1B in 
the hand forward condition. (B) Experimental setup for Experiment 3.1B in the hand backward 
condition. 
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Data analysis 

Mean RT to weak and strong tactile targets presented unimodally, with task-irrelevant 

near and far sounds, were calculated. RTs exceeding more than 2 standard deviations 

from the mean RT were considered outliers and trimmed from the analyses (4% of 

trials). Raw RTs in the different conditions were analyzed using a Sound (no sound, 

near sound, and far sound) by Target (weak and strong) ANOVA. 

3.2.2 Results 

	
  
The Sound by Target ANOVA on mean RT revealed a main effect of target 

[F(1,11)=7.67, p<0.05; η2=.41] with faster RTs to strong relative to weak tactile 

targets and a main effect of sound [F(2,22)=15.07, p<0.0000; η2=.58]. Newman–

Keuls post hoc comparisons indicate that RTs to tactile targets were faster when a 

near or a far sound was presented, in comparison with when no sound was presented 

(p<0.01). Moreover, RT-to-tactile targets associated with near sounds were faster than 

those associated to far sounds (p<0.05; Table 3.1). The differences due to sound 

presentation were comparable for the weak and the strong target, as indicated by the 

lack of a significant two-way interaction (p=0.92). 

Percentage of omissions (no response to the target stimulus) and false alarms (wrong 

response to the non target stimulus) were very low and comparable across all 

conditions (omissions are 2%, 3%, and 2% for near sound, far sound and no sound 

conditions, and for both weak and strong target conditions, respectively; false alarms 

are <1% in all conditions). These results demonstrated that sounds boost the 

processing of tactile stimuli presented to the hand. Critically, the audio–tactile 

interaction effect is stronger when sounds are presented in the space around the hand 

rather than in the far space. The same effect occurs for processing both relatively 

weaker and relatively stronger tactile stimuli. 
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Table 3.1 Experiment 3.1A results 

 

3.3 Experiment 3.1B 

 
To ensure that the audio-tactile interaction effect of Experiment 3.1A is related to a 

hand-centered representation of the PPS and not to a general proximity of the sound 

to the body, in Experiment 3.1B we manipulated the relative distance between the 

hand and the sound sources. The task was performed in two within-subject conditions: 

in the hand forward condition, the subjects’ right hands were placed next to the near 

loudspeaker, as in Experiment 3.1A; in the hand backward condition, subjects rotated 

their arms so that it was off to their side, pointing slightly backward. This way, sound-

to-head spatial distance was kept constant, but both near and far sounds were in far 

space with respect to subjects’ hands. If audio–tactile interaction is coded in a hand-

centered reference frame, no difference between RTs associated with near and far 

sounds is expected in this condition. 

 

3.3.1 Methods 

	
  
Participants 

Eighteen new healthy subjects (13 women, mean age=26 years) participated in 

Experiment 3.1B. All participants were right-handed and had normal hearing and 



	
   78	
  

touch. All subjects were students at the University of Bologna and gave their 

informed consent to participate in the study, which was approved by the local ethics 

committee in accordance with the Declaration of Helsinki. 

 

Procedure and Materials 

The experiment was conducted with the same materials as for Experiment 3.1A, with 

the following exceptions: (a) only near and far sounds conditions were administered 

and (b) the tactile target was always the weak stimulus. 

The experimental setup is illustrated in Figure 3.1A and B. The task was performed in 

two experimental conditions and run in separate blocks, with order counterbalanced 

between subjects. Arm position was manipulated across conditions. In the hand 

forward condition, the subject’s right hand was placed close to the near loudspeaker; 

therefore, the distance between the hand and the sound sources was ≈5 cm for the 

near loudspeaker and ≈100 cm for the far loudspeaker. In the hand backward 

condition, the subject’s right arm was rotated and pointed slightly backward; 

therefore, the subject’s right hand was placed at ≈80 cm from the near loudspeaker 

and ≈180 cm from the far loudspeaker. A total of 140 trials were administered: 30 

target trials with the near sound, 30 target trials with the far sound, 30 non target trials 

with the near sound, 30 non target trials with the far sound, and 20 catch trials (i.e., 

trials on which only a sound, 10 near and 10 far, was presented). Each trial lasted 

about 3 sec. 

Data analysis 

Mean RT-to-tactile targets presented with task-irrelevant near and far sounds were 

calculated for the two experimental conditions of arm position. RTs exceeding more 

than 2 standard deviations from the mean RT were considered outliers and trimmed 
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from the analyses (3.9% of trials). Raw RTs in the different conditions were analyzed 

using a Sound by Hand position ANOVA. 

3.3.2 Results 

The Sound by Hand position ANOVA on mean RTs showed both a main effect of 

sound [F(1,17)=28.42, p<0.0001, η2=.30] and, most importantly, a two-way 

interaction [F(1,17)=20.75, p<0.0005, η2=.18]. In the hand forward condition, RTs to 

tactile targets were significantly shorter when task-irrelevant sounds were presented 

near the hand in comparison with when sounds were presented far from the hand 

(p<0.0005). No similar advantage was found in the hand backward condition (p=0.40; 

Table 3.2). 

Percentage of omissions and false alarms were very low and comparable across all 

conditions (omissions are 2% and 3% for near sound and 2% and 2% for far sound for 

hand forward and hand backward conditions, respectively; false alarms are 1% and 

2% for near sound and 1% and 3% for far sound for hand forward and hand backward 

conditions, respectively). 

 

Table 3.2 Experiment 3.1B results 

 

3.3.3 Discussion 

Results from Experiment 3.1A and 3.1B confirm that, in normal conditions, the 

processing of tactile stimuli on the hand interacts with the processing of sounds 

presented in the environment: RT-to-tactile targets associated to sounds were faster 

than RT-to-unimodal tactile stimuli. Importantly, this effect is modulated by sound 
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position in space: RTs were shortened by a concurrent sound presented near the hand 

compared with far from the hand (Bassolino et al., 2010; Serino et al., 2007). The 

audio–tactile temporal advantage was sensitive to the hand’s location: when subjects 

placed their arm backward, thus moving the hand away from the source of near 

sounds, while keeping the distance between the sounds and the rest of their body 

constant, RTs associated to near and far sounds were comparable. Hence, the sound’s 

proximity to the hand (and the tactile stimulus), not to the subject in general, was 

critical for modulating tactile processing. We propose that this behavioral effect arises 

from the summation of multisensory inputs within the same spatial representation, 

that is, within representation of PPS around the hand. This effect is reminiscent of the 

functional properties of multimodal neurons in vPMc and PPc, as also formalized in a 

neural network model for PPS representation (see Magosso, Serino, di Pellegrino, & 

Ursino, 2010a; Magosso, Ursino, di Pellegrino, Làdavas, & Serino, 2010b; Magosso, 

Zavaglia, Serino, di Pellegrino, & Ursino, 2010c). 

 

3.4 Experiment 3.2 

 
In Experiment 3.1, we showed a specific form of audio–tactile interaction near the 

hand as a sign of a multisensory representation of the PPS around the hand. A second 

experiment was conducted to investigate the neural basis of such representation in the 

human brain. We tested whether the audio–tactile interaction effect around the hand 

was affected by suppression of neural activity in fronto-parietal regions by means of 

rTMS. To this aim, the same auditory–tactile interaction task was delivered in four 

experimental blocks performed either within the inhibitory window created by 15 min 

of 1-Hz rTMS (post-rTMS blocks) or outside the influence of rTMS (baseline block). 
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In two critical post- rTMS blocks, rTMS was applied to vPMc or PPc to test their role 

in PPS representation. In another post-rTMS block, rTMS was also administered on 

V1, serving as an active control site. As for Experiment 3.1, during the task, subjects 

received either a weak or a strong tactile stimulus on the right hand, presented 

concurrently with task-irrelevant sounds presented either near the hand or in far space. 

Subjects were instructed to respond as fast as possible to weak tactile stimuli, 

ignoring sounds. Because we measured the spatial modulation of audio–tactile 

interaction around the right hand, rTMS was delivered to critical and control areas of 

the contralateral left hemisphere. The choice of the left hemisphere as a target for 

TMS interference is also in keeping with the finding that motor excitability in the left 

hemisphere shows a space-dependent modulation because of auditory (Serino et al., 

2009) or visual (Makin et al., 2009) stimuli presented either near or far from the right 

hand. 

The following predictions were tested. In the baseline condition with no rTMS, PPS 

representation should be intact, and therefore, subjects are expected to respond faster 

to tactile targets associated with near sounds than to those associated with far sounds. 

In contrast, rTMS over vPMc and PPc should interfere with brain processes 

representing the PPS, resulting in a reduction of the speeding effect due to near 

sounds when the task was administered after these two critical post-rTMS conditions. 

If the reduction of the speeding effect was specifically because of interfering with two 

putative nodes of the network underlying the PPS and not to a generic effect of rTMS, 

then suppression of V1 should not affect multisensory interaction within the PPS, and 

thus, decreased RT associated with near sounds is expected, as for the baseline 

condition. 

To test these critical predictions, we used the same task as in Experiment 3.1B, but 
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with participants’ arms always placed close to the near loudspeaker. This ensured the 

entire task lasted for about 7–8 min, so that in each post- rTMS block all the 

responses were collected well within the inhibitory effect created by 1-Hz rTMS. 

3.4.1 Methods 

	
  
Participants 

Ten new subjects, all students from University of Bologna, participated in Experiment 

3.2. All participants were right- handed and had normal hearing and touch. They gave 

their informed consent to participate in the study, which was approved by the local 

ethics committee in accordance with the Declaration of Helsinki. 

Procedure and Materials 

The experiment was conducted with the same method as for Experiment 3.1A, with 

the exception that only forward arm position was included in the present design. 

Therefore, subjects received a two (tactile, weak, and strong) by two (auditory, near, 

and far) combination of stimuli. A total of 140 trials were administered: 30 target 

trials with the near sound, 30 target trials with the far sound, 30 non target trials with 

the near sound, 30 non target trials with the far sound, and 20 catch trials (i.e., trials 

on which only a sound was presented and no response was required). Each trial lasted 

about 3 sec; thus, each block lasted about 7 min in total. 

Participants performed the audio–tactile task in four blocks, run over 2 days. Three of 

four blocks were performed immediately after 15 min of 1-Hz rTMS (post-rTMS 

blocks) over a target area (vPMc, PPc, and V1). Studies suggest that this low-

frequency rTMS protocol disrupts functions related to the targeted area for at least 

half the stimulation time (Pascual-Leone et al., 2000; Chen et al., 1997). Thus, all the 

post-rTMS blocks were performed under the interfering influence of 1-Hz rTMS. To 

minimize carryover effect of rTMS, in each session the interblock interval was at least 



	
   83	
  

1 hr. This way, we ensured that all interferential effects of one rTMS train had faded 

away at the time of the following block. The very same interblock interval was used 

when a post-rTMS block was preceded by a baseline block (no rTMS 

preconditioning). Baseline blocks were performed either as the very first (in six 

participants) or as the last block (in the remaining subjects). The order of the post-

rTMS blocks was counterbalanced. 

 

Transcranial Magnetic Stimulation 

In the preliminary part of the experiment, single-pulse TMS was used to set the 

intensity of low-frequency rTMS. To this aim, motor-evoked potentials (MEPs) to left 

motor cortex stimulation were recorded in the right first dorsal interosseous (FDI) 

with MP-150 Biopac EMG equipment (Biopac Corp., Goletta, CA). Pairs of Ag-AgCl 

surface electrodes were placed in a belly–tendon montage on the FDI muscle, with 

further ground electrodes on the wrist. EMG signals were band-pass filtered (30–500 

Hz) and sampled at 5 kHz. A figure-of-8 coil connected to a Magstim Rapid2 

Transcranial Magnetic Stimulator (Magstim, Whitland, U.K.) was placed over the left 

motor cortex with the handle pointing backward at 45° from the midline. In this way, 

the current induced in the neural tissue was directed approximately perpendicular to 

the line of the central sulcus, optimal for trans synaptic activation of the cortico- 

spinal pathways (Brasil-Neto, Cohen, Panizza, Nilsson, Roth, & Hallet, 1992; Mills, 

Boniface, & Schubert, 1992). By using a slightly suprathreshold stimulus intensity, 

the coil was moved over the left hemisphere to determine the optimal position from 

which maximal amplitude MEPs were elicited in the FDI muscle. 

In the three post-rTMS blocks, the behavioral audio–tactile task was preceded by 15 

min of continuous low- frequency 1-Hz rTMS over a target area (900 stimuli in total). 
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Stimulation intensity was set at 90% of the resting motor threshold, defined as the 

lowest level of stimulation able to induce MEPs of at least 50 µV in the right FDI 

with 50% probability (Rossini, Barker, Berardelli, Caramia, Caruso, Cracco, et al., 

1994b). In the 5 min preceding rTMS, subjects were asked to rest quietly with eyes 

closed. Moreover, they were asked to keep this state throughout the rTMS train, as 

muscle contraction may reduce the effect of rTMS (Touge, Gerschlager, Brown, & 

Rothwell, 2001). 

Coil position was identified on each participant’s scalp with the SofTaxic Navigator 

system (Electro Medical Systems, Bologna, Italy) as in previous studies (Bertini, Leo, 

Avenanti, & Làdavas, 2010; Bolognini, Miniussi, Savazzi, Bricolo, & Maravita, 2009; 

Avenanti et al., 2007; Bolognini & Maravita, 2007). Skull landmarks (nasion, inion, 

and two preauricular points) and about 100 points providing a uniform representation 

of the scalp were digitized by means of a Polaris Vicra digitizer (Northern Digital, 

Inc., Ontario, Canada). Coordinates in Talairach space (Talairach & Tournoux, 1988) 

were automatically estimated by the SofTaxic Navigator from an MRI-constructed 

stereotaxic template. Figure 3.2 illustrates site reconstructions displayed on a standard 

template from MRIcro (v1.40; www.mricro.com). 

The vPMc was targeted in the ventral aspect of the pre- central gyrus bordering the 

posterior part of the inferior frontal gyrus (coordinates: x=-52, y=8, z=25, 

corresponding to Brodmann’s area 6/44). The PPc was targeted within the anterior 

part of the intraparietal sulcus (x=-39, y=-40, z=43, corresponding to Brodmann’s 

area 40). These locations were chosen by averaging the coordinates of vPMc and PPc 

sites found in previous neuroimaging studies on PPS in humans (Makin et al., 2007; 

Bremmer et al., 2001). In the active control block, we identified the scalp location that 

corresponded best to the visual cortex (x=19, y =-98, z=1, Brodmann’s area 17, in the 
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middle occipital gyrus; Figure 3.2). 

Data Analysis 

Mean RT-to-tactile targets presented concurrently with near and far sounds was 

calculated for the four experimental blocks. Similar to Experiment 3.1, RTs exceeding 

more than 2 standard deviations from the mean RT were considered outliers and, thus, 

trimmed from the analyses (2.7% of trials). Raw RTs were analyzed using a mixed 

model ANOVA with the within-subjects factors “stimulation” (no-TMS, vPMc, PPc, 

V1) and “sound” (NEAR and FAR); moreover, because half the subjects performed 

the no-TMS baseline condition at the beginning of the experiment and half at the end, 

we included the between-subjects factor “time of baseline” (initial and final) in the 

ANOVA to control for potential effects of order of baseline presentation (see Table 

3.3). 

 

 

Figure 3.2 Brain locations and mean Talairach coordinates of the coil position to induce virtual lesion 
by means of rTMS. 

 

3.4.2 Results 

The Stimulation by Sound by Time of Baseline ANOVA on RTs revealed only a 

significant Stimulation by Sound interaction [F(3,24)=6.18, p<0.01; η2=.44). 

Newman–Keuls post hoc comparisons showed that, in normal physiological 
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conditions (baseline block), we replicated the integrative effect found in Experiment 

3.1: RTs were significantly shorter when task-irrelevant sounds were presented near 

the hand in comparison with when sounds were presented far from the hand (p<0.01). 

A similar speeding effect due to near sounds was also found after the inhibition of V1 

(p<0.05). In contrast, the speeding effect completely disappeared after the suppression 

of vPMc or PPc (p>0.29; see Table 3.3 and Figure 3.3). 

 

 

Table 3.3 Experiment 3. 2 results 

 

These findings indicate that temporal advantage of tactile processing due to the 

presentation of near sounds typically found in normal physiological condition 

(baseline block) was disrupted by suppression of vPMc and PPc, but not by 

suppression of V1. 
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Figure 3.3 Experiment 3.2 results. The graph shows the far–near RT difference (RT for far sounds − 
RT for near sound) in the baseline condition (no rTMS) and after rTMS over the vPMc (post-rTMS 
vPMc), the PPc (post-rTMS PPc), or the primary visual cortex (post-rTMS V1). Error bars denote 
S.E.M. 
 

Percentage of omissions and false alarms were infrequent and comparable across 

conditions (omissions are 4%, 5%, 4%, and 4% for near sound and 4%, 2%, 3%, and 

3% for far sound for baseline, post-rTMS vPMc, post-rTMS PPc, and post-rTMS V1, 

respectively; false alarms are <1% in all conditions). 

 

3.5 Discussion 

In the present study, we directly tested whether vPMc and PPc play a necessary role 

in audio–tactile representation of the PPS around the hand. Subjects performed a rapid 

response discrimination task to tactile stimuli administered on their right hand while 

concurrent task-irrelevant sounds were presented either close to the hand or in far 

space. When no TMS was applied, as in Experiment 3.1 and in the baseline condition 

of Experiment 3.2, RT-to-tactile targets were reduced if the auditory stimulus was 
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presented near the hand rather than in far space. This audio–tactile effect, anchored by 

hand-centered reference frames is indicative of a specific multi- sensory interaction 

within the boundaries of PPS. 

Critically, the speeding effect associated to near sounds disappeared when the same 

task was performed after transient suppression of neural activity in vPMc or PPc: in 

these conditions, RT-to-tactile targets were not different when near and far sounds 

were administered. The absence of any difference between the effect induced by near 

and far sounds was not an unspecific consequence of rTMS. For when stimulation 

was administered over V1, RT-to-tactile target was again faster when near instead of 

far sounds were presented, thus showing an intact audio–tactile interaction within the 

space around the hand. These findings suggest that virtual lesions to vPMc and PPc, 

but not to V1, disrupt PPS representation mechanisms around the hand. 

The vPMc and PPc regions targeted in the present experiment were found to be active 

in two recent imaging studies during processing of tactile, visual, or auditory stimuli 

close to the head (Bremmer et al., 2001) or the hand (Makin et al., 2007). In addition, 

interference with PPc activity impairs the integration of proprioceptive information, 

defining upper limbs postures, with visual information presented near (Bolognini & 

Maravita, 2007) or tactile information presented on (Azanon et al., 2010) the arm. 

These results suggest that PPc plays a critical role in discerning whether external 

stimuli are near or far from a part of the body, depending on the position of body 

parts. However, no previous studies have tested the critical role of PPc or vPMc in 

audio–tactile interaction near and far from the body. Bremmer and colleagues (2001) 

proposed a strong homology for vPMc and PPc areas of the human brain and 

multisensory regions in the vPMc and in the VIP of the macaque brain (see also 

Sereno & Huang, 2006; Grefkes & Fink, 2005). According to this view in humans as 
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in monkeys, populations of cells within vPMc and PPc constitute two critical nodes of 

a fronto-parietal network underlying a multisensory representation of the space 

around the body. Our study expands on this by showing that interference of vPMc and 

PPc processing disrupts audio–tactile interactions in the peri hand space, thus 

suggesting that fronto-parietal networks are necessary for PPS representation in 

humans. 

Another line of evidence indicates that vPMc and PPc also play a critical role in 

action representation. These areas are highly interconnected (Lewis & Van Essen, 

2000) and send projections to the motor cortex (Davare, Lemon, & Olivier, 2008; 

Koch, Fernandez Del Olmo, Cheeran, Schippling, Caltagirone, Driver, et al., 2008; 

He, Dum, & Strick, 1995). Several studies indicate that vPMc and PPc are involved in 

action execution, observation, and imagery (Avenanti et al., 2007; Grèzes & Decety, 

2001; Binkofski, Dohle, Posse, Stephan, Hefter, Seitz, et al., 1998). The role of vPMc 

and PPc in action representation is well in keeping with the present evidence that 

these areas are involved in multisensory PPS representation. Studies suggest that 

sensory representations of space and motor representations of actions coexist within 

the same fronto-parietal network, which provides multimodal representation of the 

PPS for action (Gallese & Sinigaglia, 2010). Indeed, in monkeys, multimodal cells in 

F4 and VIP, beside sensory responses, also discharge during movements of the body 

part where their tactile receptive fields are allocated (Rizzolatti et al., 1981a). 

Moreover, prolonged electrical stimulation of F4 and VIP results in complex 

movements of the monkeys’ head and arm, resembling defensive motor responses to 

threatening stimuli approaching the body (Cooke & Graziano, 2004; Cooke, Taylor, 

Moore, & Graziano, 2003; Graziano et al., 2002; see also Stepniewska et al., 2005). 

The strong link between action and PPS representations in humans was supported by 
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recent single-pulse TMS studies showing that auditory (Serino, Annella, & Avenanti, 

2009) or visual (Makin et al., 2009) stimuli presented either near the hand or in far 

space differentially activate hand representation in the motor cortex. Taken together, 

these data suggest that vPMc and PPc represent multisensory stimuli in the space 

around the hand for the purpose of planning appropriate motor responses. 

Finally, also their role in space and action representation, an apparently alternative 

view, conceives of the PPc and vPMc as two key regions in controlling spatial 

attention. Extensive investigations have revealed that these areas interact in shifting 

the focus of spatial attention both endogenously (Yantis, Schwarzbach, Serences, 

Carlson, Steinmetz, Pekar, et al., 2002; Hopfinger, Buonocore, & Mangun, 2000) and 

exogenously (Arrington, Carr, Mayer, & Rao, 2000; Corbetta, Kincade, Ollinger, 

McAvoy, & Shulman, 2000). Such attentional control mechanisms in vPMc and PPc 

act cross-modally, because both endogenous and exogenous orienting in one sensory 

modality affects information processing in other sensory modalities (see Macaluso & 

Maravita, 2010; Macaluso & Driver, 2005, for reviews). On this view, the role of 

vPMc and PPc in the present experimental paradigm might be that of shifting spatial 

attention toward or away from the hand, depending on the location of the auditory 

stimulation, respectively, accelerating or slowing tactile processing at the hand. 

However, in contrast to classic cue-to-target experimental designs normally used to 

study exogenous cross-modal attention, in the present study, auditory stimulation was 

actually administered simultaneously to the tactile stimulation. Thus, it is unlikely that 

auditory stimulation acted as an attentional cue. To make a more general argument, 

the fact that nearly identical fronto-parietal areas are considered critical by studies 

both on cross-modal spatial attention and on multisensory integration within the PPS 

does not appear to be contradictory. In fact, it is in line with the view that vPMc and 
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PPc might participate in representing PPS for action. According to the premotor 

theory of attention (Rizzolatti, Riggio, Dascola, & Umiltá, 1987), attentional control 

is conceived as implicit shifts of spatial representations to prepare actions. In keeping 

with this view, Andersen and colleagues (see Andersen & Buneo, 2002, for a review) 

propose a central role for the PPc in representing intentional maps, defined as 

cognitive plans for movements (see also Hu, Bu, Song, Zhen, & Liu, 2009), 

suggesting that pure attentional effects possibly found in PPc would be related to 

planning movements. A multisensory representation of the space where actions can be 

immediately implemented is necessary for motor intention and action planning. 

Therefore, it is not surprising to find overlapping spatial, motor, and attentional 

functions in a unique fronto-parietal network, encompassing PPc and vPMc. 

In conclusion, results from the present study provide the first empirical evidence for a 

necessary role for vPMc and PPc in representing multisensory PPS around the hand.  
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CHAPTER FOUR: DYNAMIC SOUNDS CAPTURE THE 

BOUNDARIES OF PERIPERSONAL SPACE 

REPRESENTATION 

[This research has been published in: Canzoneri, E., Magosso, E., Serino, A. (2012). 

Dynamic sounds capture the boundaries of peripersonal space representation in 

humans. PLoS One, 7(9): e44306] 

 

4.1 Introduction 

 
Previous studies both on neuropsychological patients and healthy subjects, as 

described in Chapter 1, have revealed spatial constraints of multisensory interaction 

between visual/auditory and tactile stimuli. Results from Study 1 of the present work 

(see Chapter 3, Experiment 3.1) specifically confirmed that in healthy subjects audio-

tactile information are strongly integrated when stimuli occurred in the space close to 

the body, i.e. within the PPS. 

The vast majority of the previously cited behavioural studies on PPS representation 

(see Chapter 1) compared the effects of visual or auditory stimuli, presented at two 

fixed locations – far or close to the body - on tactile perception. Interestingly, neural 

systems representing PPS both in humans and in monkeys show response preference 

for moving stimuli, over static stimuli. Indeed, neurophysiological studies in monkeys 

showed that bimodal and trimodal neurons, both in the premotor cortex (Graziano et 

al., 1994; 1997a; 1999; Fogassi et al., 1996) and in the ventral intraparietal area 

(Duhamel, Bremmer, BenHamed, & Graf, 1997; Colby et al., 1993), are more 

effectively activated by presenting three dimensional objects approaching toward and 
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receding from the animal’s body, compared to static stimuli. Some of these neurons 

also show direction-selective and velocity dependent response patterns, as firing rates 

in certain cells increase as a function of the velocity of approaching stimuli (Fogassi 

et al., 1996). Finally, in humans, Bremmer and colleagues (2001) demonstrated an 

increased neural activity in the depth of the intraparietal sulcus and in the ventral 

premotor cortex evoked by approaching visual, auditory and tactile stimuli (see also 

Makin et al., 2007).  

Given the high relevance of moving objects to the PPS system, we propose that using 

dynamic, instead of static stimuli could be a more powerful way to study PPS 

representation in humans. Moreover, this approach more directly resembles ecological 

contexts, where external stimuli continuously move in the environment. Finally, this 

approach is closer to the experimental conditions used in monkeys’ neurophysiology, 

thus allowing a more direct comparison across species. For these reasons, in the 

present study we presented a new paradigm, which involves carrying out a dynamic 

audio-tactile interaction task in order to assess the extension of PPS in a more 

functionally and ecologically valid condition. We measured reaction time (RTs) to a 

tactile stimulus at the hand while dynamic sounds were presented, giving the 

impression of a sound source either approaching, or receding from the subject’s hand. 

Tactile stimulation was delivered at different temporal delays from the onset of the 

sound, such that it occurred when the sound source was perceived at varying distances 

from the body. Subjects were asked to respond as rapidly as possible to the tactile 

stimulation, trying to ignore the sound. Since we have repeatedly demonstrated that 

sounds boost tactile RTs when presented close to the body, and not at a distance 

(Serino et al., 2007; Serino, Canzoneri, & Avenanti, 2011), we predicted that RTs to 

tactile stimuli would progressively decrease as a function of the sound source’s 
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perceived approach; and conversely, that they would increase as a function of the 

sound source’s perceived recession. The function describing the relationship between 

tactile RTs and the perceived position of sounds in space at the occurrence of the 

tactile stimulation can be used to study the shape of PPS representation and to locate 

its boundaries along a continuum between near and far space. 

 

4.2 Experiment 4.1 

4.2.1 Methods 

 
Participants 

Seventeen healthy subjects (16 females, mean age 23.2 years, range: 20-26) 

participated in the study. All participants were right-handed and had normal hearing 

and touch. All subjects (students at the University of Bologna) gave their written 

informed consent to participate in the study, which was approved by the Ethical 

Committee of Department of Psychology, University of Bologna, and was performed 

in accordance with the Declaration of Helsinki. 

 

Procedures and materials 

Audio-tactile interaction task  

During the task, subjects were blindfolded and sat down with their right arm resting 

palm down on a table beside them. During each trial, a sound (pink noise) was 

presented for 3000 ms. Two types of sound were used, which we term from here 

onwards as IN and OUT sounds. The sounds were generated by two loudspeakers: one 

was placed on the table in the proximity of the hand, while the other one was placed 

on the floor, at a distance of ~100 cm from the near loudspeaker (i.e. far from the 
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hand). Auditory stimuli were samples of pink-noise, at 44.1 kHz. Sound intensity was 

manipulated by using the SOUNDFORGE 4.5 software (Sonic Foundry, Madison, 

WI), so that IN sounds had exponentially rising acoustic intensity from 55 to 70 dB 

Sound Pressure Level (SPL) as measured with an audiometer at the position of 

subjects’ ears, while OUT sounds had exponentially falling acoustic intensity from 70 

to 55 dB. Each sound is a combination of two identical samples of pink noise, one of 

increasing (for the IN sound) and the other one of decreasing (for the OUT sound) 

intensity, emitted by the near and the far loudspeaker. Both loudspeakers were 

activated simultaneously, but in case of the IN sound the far loudspeaker activated at 

the maximum intensity and then its intensity decreased up to silence along the trial, 

whereas the near loudspeaker activated at the minimum intensity (not perceived), and 

then its intensity increased up to the maximum value along the trial. In order to 

generate the OUT sound, the same setting was used, with reversed intensities and 

timing for the near and far loudspeaker. In this way, IN sounds gave the impression of 

a sound source moving from the far to the near loudspeaker, i.e., towards the subject’s 

body, while OUT sounds gave the impression of a sound source moving in the 

opposite direction. Although other cues, such as frequency spectrum, reverberant 

energy and inter-aural level differences, are normally used by the auditory system to 

determine the spatial position of a sound, dynamic change in sound intensity seems to 

provide the most critical information for determining the position and direction of a 

moving auditory source (Seifritz, Neuhoff, Bilecen, Scheffler, Mustovic, et al., 2002; 

Middlebrooks & Green, 1991). 

Along with the auditory stimulation, in the 60% of trials subjects were also presented 

with a tactile stimulus, delivered by means of a constant-current electrical stimulator 

(DS7A, Digitimer, Hertfordshire, United Kingdom), via a pair of neurological 
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electrodes (Neuroline, Ambu, Ballerup, Denmark) placed on the hairy surface of the 

right index. The electrical stimulus was a single, constant voltage, rectangular 

monophasic pulse. Before the experiment, the intensity of the tactile stimulus was set 

to be clearly above thresholds, individually for each subject, as follows:  intensity of 

the stimulator was set at the minimum value and then progressively increased until the 

subject referred to clear perceive the stimulation. Then, the subject was presented 

with a series of 10 stimuli, at that level of stimulation, intermingled with 5 catch 

trials, and asked to report when he/she felt the tactile stimulus. If the subject did not 

perfectly perform (i.e. if he/she omitted some stimuli or answered to catch trials), 

intensity was further increased by 5 mA, and the procedure was repeated. Intensity for 

the tested subjects ranged between 60 and 90 mA, depending on subjects’ individual 

thresholds. Stimulus duration was equal to 100 µsec. Along the experiment, the 

remaining trials (40% out of total) were catch trials with auditory stimulation only. 

Subjects were asked to respond vocally to the tactile target, when present, saying 

“TAH” as fast as possible, trying to ignore the auditory stimulus. Tactile RTs were 

recorded by means of a voice-activated relay. A PC running C.I.R.O. software 

(www.cnc.unibo.psice.unibo/ciro) was used to control the presentation of the stimuli 

and to record responses. 

For each trial, the sound was preceded and followed by 1000 ms of silence. Temporal 

delays for the tactile stimulus were set as follows: T1, tactile stimulation administered 

at 300 ms after the sound onset (corresponding to 1300 ms from the beginning of the 

trial); T2, at 800 ms from sound onset (at 1800 ms from trial beginning); T3, at 1500 

ms from sound onset (at 2500 ms from trial beginning); T4, at 2200 ms from sound 

onset (at 3200 ms from trial beginning); and T5, at 2700 ms from sound onset (at 

3700 ms from trial beginning). Thus, the critical manipulation was that the tactile 
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stimulus was delivered at different temporal delays (from T1 to T5) from the onset of 

the auditory stimulus, for both IN and OUT sounds. In this way, tactile stimulation 

occurred when the sound source was perceived at different locations with respect to 

the body: i.e., close to the body, at high temporal delays for the IN sound and at low 

temporal delays for the OUT sound; and far from the body, at low temporal delays for 

the IN sound and at high temporal delays for the OUT sound. 
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Figure 4. 1 
A. Experimental set up. Subjects received a tactile stimulus at their hand while task-irrelevant sounds 
either approached to or receded from the hand. Tactile stimuli were delivered at different temporal 
delays from sound onset (from T1 to T5), so that they were processed when sounds were perceived at a 
different distance from the hand.  
B. Sound localisation experiment results. The graph shows subject’s mean responses indicating the 
perceived position of sound in space when they receive a tactile stimulus at different temporal delays 
from sound onset, from T1 to T5. Filled line refers to IN sound condition, hatched line refers to OUT 
sound condition. Error bars denote S.E.M. A repeated measure ANOVA with Sound (IN, OUT) and 
Temporal Delay (from T1 to T5) confirmed that IN and OUT were perceived as an approaching and 
receding auditory stimuli, respectively, as clearly shown by the significant two-way interaction 
[F(4,24)=304.30, p <0.00001]. 

 

 

Finally, in order to measure RTs in unimodal tactile condition (without any sound), 

tactile stimulation could be also delivered during the silence periods, preceding or 

following sound administration, namely at 300 ms (T0) and at 4600 ms (T6) after the 

beginning of the trial (see Figure 4.1A). The total experiment consisted in a random 

combination of 8 target stimuli for each temporal delay, for the IN and OUT sounds, 

resulting in a total of 112 trials with a tactile target, randomly intermingled with 76 

catch trials. Trials were equally divided in two blocks, lasting about 8 minutes each. 

In order to demonstrate that subjects actually perceived the sound source at different 

locations according to different temporal delays (from T1 to T5) for the IN and the 

OUT sound, we ran a sound localisation experiment on 7 naïve subjects. During the 

sound localisation experiment subjects were blindfolded and sat down with their right 

arm resting palm down on a table beside them. They received a tactile stimulation on 

the forearm at one of the different temporal delays in a series of 80 trials, randomly 

presented. At the end of each trial, they were asked to verbally indicate the perceived 

position of the sound in space when they had felt the tactile stimulus, on a scale from 

1 (very close) to 100 (very far). Participants were explicitly invited to use the entire 

range between 1 and 100, taking in account also for small differences in the perceived 

position of sound. Subjects’ responses and statistical analyses, reported in Figure 1B, 
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clearly show that for the IN sound, subjects progressively perceived the sound closer 

to their body when the tactile stimulus was administered at successive temporal 

delays from T1 to T5. The pattern of responses was reversed for the OUT sound, 

when the sound was perceived in spatial positions progressively farther from the body 

from T1 to T5. The results of this control experiment confirmed that IN and OUT 

sounds were perceived respectively as approaching and receding auditory stimuli, and 

that, when subjects received tactile stimulation at different temporal delays, the sound 

was perceived at a different distance from their body. 

4.2.2 Results  

 
Since tactile stimuli were administered well above threshold, subjects were extremely 

accurate in performing the task, as rate of false alarms and omissions was very low, 

i.e., 0.25% and 1.75% respectively. Thus, the performance was analysed in term of 

reaction time only. Mean RTs to tactile targets were calculated for every temporal 

delay, from T0 to T6, separately for IN and OUT sounds. RTs exceeding more than 2 

standard deviations from the mean RT were considered outliers and trimmed from the 

analyses (1.6% of trials on average in all conditions). The relationship between RTs to 

the tactile target and the different temporal delays at which the tactile stimulus was 

administered (from T0 to T6) is represented in Figure 4.2 for the IN (filled line) and 

the OUT (hatched line) sound. Two different effects are visible: for the IN sound, RTs 

progressively decreased as temporal delays increased, i.e. as the perceived sound 

approached the body; and vice versa for the OUT sound: RTs progressively increased 

as temporal delays increased, i.e. as the perceived sound receded from the body. 

However, the shape of the relationship between RTs and Sound position does not 

appear exactly the same for the two classes of sounds.  

 



	
   100	
  

 

Figure 4.2. Effects of IN and OUT sounds on tactile processing. Mean RTs (and S.E.M.) to the tactile 
target at different temporal delays (from T0 to T6) for IN (filled line) and OUT (hatched line) sounds. 
The shaded region indicates the duration of the sounds. 
 

 

These effects were confirmed by an ANOVA on tactile RTs with the within subjects 

factors of Sound (IN, OUT) and Temporal Delay (T0, T1, T2, T3, T4, T5, T6). The 

two-way interaction Sound x Temporal Delay was significant [F(6,96)=7.88; 

p<0.0001]. In order to analyse this interaction, we performed two separate ANOVAs 

for IN and OUT sounds with Temporal Delay as within-subjects factor. In case of the 

IN sound, the ANOVA revealed a significant main effect of Temporal Delay 

[F(6,96)=8.46, p<0.0001]. Newman-Keuls post-hoc tests showed that RTs at T1 

(when sounds were perceived far from the body; mean RTs=478 ms, S.E.M.=±18) 

and T2 (463 ms±15) were significantly slower compared to RTs at T3 (when sounds 

were perceived close to the body; 428 ms±14), T4 (420 ms±15) and T5 (398 ms±15; 

all ps<0.05). RTs at T1 and T2 were not significantly different from each other 
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(p=0.73), as well RTs at T3, T4 and T5 were not significantly different from each 

other (all ps>0.10). RTs in the unimodal conditions (i.e., when tactile stimuli were 

delivered at T0, before sound onset and at T6, after sound offset) were significantly 

slower as compared to RTs at T3, T4 and T5 (all ps<0.05), i.e. when the sound was 

perceived close to the body. In addition, RTs at T0 and T6 were not different from 

each other (RTs at T0=467 ms±17 and T6=465 ms±23, p=0.95), therefore excluding 

the possibility that subjects were generically faster at late delays in each trial just 

because they paid more attention as the probability of receiving a stimulation 

increased along the trial duration.  

In the case of the OUT sound, the main effect of Temporal Delay was significant 

[F(6,96)=5.97, p<0.0001], as it was for the IN sound. RTs at T5 (454 ms±15), and T4 

(458 ms±17) - when the sound was perceived far from the body - were slower than 

RTs at T3 (429 ms±15), T2 (435 ms±15) and T1 (432 ms±16) - when sounds were 

perceived close to the body. The pattern of results therefore showed a similar trend as 

for the IN sound. However, the differences between RTs at higher temporal delays 

(T5 and T4) and RTs at lower temporal delays (T1-T3) were statistically significant 

with simple comparisons (two-tailed t-tests, ps<0.05), but did not resist to Newman-

Keuls corrections for multiple comparisons (all ps>0.16). RTs in the two unimodal 

conditions were not different from each other (RTs at T0=477 ms±18 and T6=476 

ms±17, p=0.55), but were significantly slower as compared to the other conditions (all 

ps <0.05, Newman-Keuls corrected). 

Taken together, these results suggest that tactile processing is modulated by co-

occurrence of dynamic sounds, depending on the position of sounds in space, as far as 

sounds were perceived at a limited distance from the body, and such distance can be 

considered as the boundary of PPS representation around the hand.   In addition, the 
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relationship between the spatial position of sounds in space and their effect on tactile 

RTs seems stronger when an approaching, rather than when a receding sound, was 

presented. 

In order to further investigate the differential effects of the two types of dynamic 

sounds on tactile processing, we studied mathematical functions describing the 

relationship between tactile RTs and timing at which tactile stimuli were delivered. 

We compared two possible functions, a sigmoidal function and a linear function. In 

order to compute the mathematical functions, the time of tactile stimulation was 

referred to the sound onset for both types of sounds (IN and OUT sounds), so that 

experimental time T1 corresponds to 300 ms, T2 to 800 ms, T3 to 1500 ms, T4 to 

2200 ms and T5 to 2700 ms. The sigmoidal function was described by the following 

equation: ( )
( )

( ) bcxx

bcxx
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e

eyy
xy

−

−

+

⋅+
=

1  
where x represents the independent variable 

(i.e., the timing of touch delivery in ms), y the dependent variable (i.e., the reaction 

time), ymin and ymax the lower and upper saturation levels of the sigmoid, xc the 

value of the abscissa at the central point of the sigmoid (i.e., the value of x at which  

y = (ymin+ ymax)/2) and b establishes the slope of the sigmoid at the central point. 

The linear function was described by the following equation: ( ) xkyxy ⋅+= 0 ; where 

x and y have the same meaning as above, y0 represents the intercept at x = 0 and k is 

the slope of the linear function. For each subject, the two functions were fitted to the 

averaged tactile RTs at the five timing of tactile delivery, separately for the IN and the 

OUT sound, in the least-squares sense. In the linear model, the estimated parameters 

were the intercept (y0) and the slope (k). In the sigmoidal model, we analogously 

limited the estimated parameters to two, as in the linear function, in order to directly 

compare the root mean square error (RMSE), as an index of best fit between the two 
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models. To this end, for each set of data, values of the parameters ymin and ymax 

were assigned a priori equal to the minimum and maximum values of the data set 

(independently calculated for each subject), and the estimated parameters were the 

central position of the sigmoid (xc) and the slope of the sigmoid at the central point 

(b). For the IN sound, RMSE was significantly lower for the sigmoidal function 

(19.60 ms) than for the linear function (22.54 ms; t(16)=-2.43, p<0.05), indicating that 

the empirical data were better represented by the former than by the latter function 

(see Table 4.1). This finding suggests that the effect of IN sounds on tactile 

processing did not increase linearly along a continuum from far to near space as the 

sound approaches the body. Instead, there was a critical spatial range, located between 

T2 and T3, after which auditory stimuli from the outside began interacting with tactile 

stimuli on the body surface, fastening tactile RTs. We can consider such spatial range 

as the boundary of audio-tactile PPS representation around the hand (see Figure 4.3).   

In the case of the OUT sound the function linking tactile RTs and the perceived 

position of sounds in space did not fit the data as well as that for the IN sound. 

Indeed, RMSE for the sigmoidal function (20.59 ms) were not significantly different 

from those for the linear function (20.70 ms; t(16)=-0.19; p=0.85). Moreover, the 

slope of the sigmoidal function computed for the OUT sound was significantly flatter 

(0.03 ms) compared to that computed for the IN sound (-0.15 ms; p<0.05). These 

results suggest that the effect of sound on tactile RTs depends not only on the 

perceived position of sound in space, but also on the perceived direction of sound 

motion, with a stronger effect for IN sounds than for OUT sounds. 
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SIGMOIDAL FUNCTION 

 

LINEAR FUNCTION 

  

CENTRAL 

POSITION 

(ms) 

 

SLOPE 

 

 

RMSE 

(ms) 

 

INTERCEPT  

(ms) 

 

 

 

SLOPE 

 

 

RMSE 

(ms) 

IN 1439.22 -0.15 19.60 486 -0.03 22.54 

OUT 1425.02 0.03 20.59 426 0.02 20.70 

 

Table 4.1 Estimated parameters and Root Mean Square Errors for the sigmoidal function (central 
position and slope, on the left) and the linear function (intercept and slope, on the right) fitting the 
relationship between tactile RTs and timing of touch delivery - 300 ms, 800 ms, 1500 ms, 2200 ms, 
2700 ms, corresponding to the five different perceived positions of the sounds - both for IN and OUT 
sound. 

 

Figure 4.3. Best fitting function for the relationship between sound position in space and tactile 
processing. Data from a paradigmatic subject are reported. Figure 4.3 plots mean RTs (and S.E.M.)  at 
different times of tactile stimulus delivery and the best fitting sigmoidal functions for IN (filled line) 
and OUT (hatched line) sounds.  
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4.3 Discussion 

 
In this study, we developed a new dynamic paradigm to study PPS representation. 

Our results show that an auditory stimulus speeds up the processing of a tactile 

stimulus at the hand, if the sound is administered within a limited distance from the 

hand. By using dynamic sounds we were able to study such critical distance along a 

continuous spatial range, spanning near and far space, thus estimating the boundaries 

of PPS representation.  

Previous studies have shown that auditory stimuli affect the perception of tactile 

stimuli, both in terms of detection ability (Ro, Hsu, Yasar, Elmore, & Beauchamp, 

2009) and RTs (Zampini et al., 2007; Tajadura-Jimenez et al., 2009; Serino et al., 

2007; Bassolino et al., 2010). However, whether, and to what extent audio-tactile 

interactions are modulated by the spatial features of the stimuli is still a debated issue. 

Some studies (Zampini et al., 2007; Lloyd, Merat, Mc Glone, & Spence, 2003; 

Murray et al., 2005; Zampini et al., 2005) have suggested that the spatial links 

between auditory and tactile signals may be weaker than those existing between other 

modality pairings involving vision, such as audio-visual (Spence & Driver, 1996) and 

visuo-tactile (Spence, Pavani, & Driver, 2000; 2004) interactions. Indeed, some 

authors reported a facilitation effect not only when auditory and tactile stimuli are 

delivered to the same location, but also when they are widely separated (Zampini et 

al., 2007; Murray et al., 2005; see also Yau, Olenczak, Dammann, & Bensmaia, 2009; 

Gillmeister & Eimer, 2007). In contrast, other studies have supported the hypothesis 

that spatial factors, such as the stimulus distance from the body, are also important in 

auditory-tactile interactions, as they showed stronger auditory–tactile effects for 

stimuli arising from the same sector of space (Tajadura-Jimenez et al., 2009; 

Kitagawa et al., 2005; Occelli, O’Brien, Spence, & Zampini, 2010). 



	
   106	
  

The auditory system has a lower spatial acuity than the visual system, thus the 

modulation of tactile processing in relation to auditory stimuli might be less sensitive 

to spatial factors, compared with visual stimulation. However, if spatial features of 

auditory stimulation are stressed by using dynamic sounds, as in the present 

experiment, spatially dependent auditory-tactile interactions can be revealed. It is 

worth also noting that most previous evidence of space-dependent modulation of 

auditory-tactile interactions in monkeys (Graziano et al., 1999; Schlack, Sterbing-

D’Angelo, Hartung, Hoffmann, & Bremmer, 2005) concerns stimuli administered 

close to the head, and especially in the rear space. Also in humans, evidence 

concerning spatially dependent audio-tactile interactions is more common for the 

peri-head space than in the peri-hand space (see Occelli et al., 2011, for a review), 

although a number of studies reported different forms of audio-tactile interaction 

around the hand (Bruns & Roder, 2010; Soto-Faraco & Deco, 2009; see also Serino et 

al., 2011, as reported in Chapter 3). This might have occurred because localisation of 

auditory stimuli with respect to the head is simpler and more precise than that with 

respect to the hand, due to the nature of computation required to localize sounds in 

space. Nevertheless, localisation of sounds around the hand is necessary under 

specific conditions.  For instance, when you hear a bee approaching your right hand 

you do not withdraw your head or your left hand, but you do withdraw your right 

hand. In cases such as this, auditory-tactile interaction in the peri-hand space is likely 

to be modulated as a function of the position of sounds in space, as we demonstrated 

in the present study.  

Here we proposed that the speeding effect on RTs due to sounds processed in the near 

space might arise from the integration of multisensory (auditory and tactile) inputs 

within the same spatial representation (i.e. within PPS around the hand), as previously 
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shown with a different paradigm in the previous study (see Chapter 3). A similar 

mechanism can explain results from the present study.  

The novelty of the present approach is that by using dynamic stimuli, approaching or 

receding from the body, we could measure multisensory interaction around the body 

along a continuum between far and near space, rather than as a comparison between a 

series of fixed locations. This approach offers a series of advantages in comparison to 

previous behavioural approaches, which compared the effects on tactile processing of 

visual (Macaluso & Maravita, 2010) or auditory (Occelli et al., 2011) stimuli 

presented in two fixed locations. First, we measured the extension of PPS in a more 

ecologically valid condition, mimicking dynamic stimulations of everyday life. 

Second, this paradigm directly resembles the stimulations used in monkey 

neurophysiology to study PPS bimodal or trimodal neurons, where a visual or an 

auditory stimulus was presented, as approaching to or receding from the animal’s 

body part where the neuron’s tactile receptive field was located (Fogassi et al., 1996; 

Graziano et al., 1999; Duhamel et al., 1997; Schlack et al., 2005). Our approach also 

fits well with the notion that bimodal and trimodal neurons in monkeys’ premotor 

(Graziano et al., 1994; 1997a; 1999; Fogassi et al., 1996) and parietal cortices 

(Duhamel et al., 1997; Colby et al., 1993) and multisensory responses in human 

homologues areas (Bremmer et al., 2001; Makin et al., 2007) are particularly sensitive 

to dynamic stimuli.  

Interestingly, the present results also suggest that, among dynamic stimuli, 

approaching sounds have a stronger spatially-dependent effect on tactile processing, 

compared with receding sounds. Indeed, the sigmoidal function, describing the 

relationship between tactile RTs and timing at which tactile stimuli were delivered, 

had a better fit and was significantly steeper for the IN sound than for the OUT sound.  
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These findings fit perfectly with the sensory-motor function of PPS representation 

(Graziano & Cooke, 2006): a stimulus possibly colliding with the body implies faster 

and more accurate processing, as it is likely to require a rapid motor response, in order 

to avoid a potential harm. This notion is supported by electrophysiological evidence 

in monkeys showing that direct electrical stimulation of the areas containing bimodal 

and trimodal PPS neurons evokes in anesthetized animals fast motor responses, 

resembling defensive and avoidance reactions to threatening stimuli in everyday life 

contexts (Graziano et al., 2002; Cooke et al., 2003; Stepniewska et al., 2005). The 

existence of a similar sensory-to-motor coding of PPS in humans is supported by two 

recent TMS studies showing that processing visual (Makin et al., 2009) or auditory 

(Serino et al., 2009) stimuli within or outside the PPS around the hand differently 

affects the representation of hand muscles in the cortico-spinal tract.          

In sum, the present study provides an effective and ecologically valid approach to 

measure the extent of PPS representation. The function describing the relationship 

between tactile processing and the position of sounds in space along a spatial 

continuum can be used to localize the boundaries of PPS representation. This method 

can be used to study plasticity of PPS representation in different contexts and 

following different types of short-term and long-term experiences (Longo & Serino, 

2012). In the next studies included in this thesis, we will show how this task has been 

applied to study changes in PPS representation following tool-use (Chapter 5), 

multisensory stimulation (Chapter 6), amputation (Chapter 7) or social interaction 

(Chapter 8). 
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CHAPTER FIVE: PLASTIC MODIFICATION OF BODY 

AND PERIPERSONAL SPACE REPRESENTATION 

AFTER TOOL USE 

	
  
	
  
[Canzoneri, E., Ubaldi, S., Rastelli, V., Finisguerra, A., Bassolino, M., & Serino, A. 

Tool-use reshapes the boundaries of body and peripersonal space representations. 

Under revision] 

	
  
	
  
 

5.1 Introduction 

 
In order to interact with objects in space, in either reaching an interesting stimulus or 

avoiding potential harm, the human brain needs to integrate information about the 

position and shape of body parts and information about the position and movements 

of objects in relation to the body. This bodily and spatial information are strictly 

linked, since the brain needs to represent the space around us mainly with reference to 

the body. 

On the one hand, the brain holds an accurate multisensory representation of the body 

(Body Representation - BR). On the other hand, the representation of the space 

immediately surrounding the body (Peripersonal Space - PPS) is enabled by 

integration of tactile and proprioceptive information concerning specific body parts 

and visual and/or acoustic inputs related to objects presented in a limited portion of 

space surrounding the same body parts (see Chapter 1).  

A critical property of PPS representation is that it is dynamically modified through 

experience: using a tool to reach objects in far space extends the limits of PPS 
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representation. In monkeys, Iriki and colleagues (1996) showed that hand-centred 

visual RFs of neurons located in the intraparietal sulcus elongated after a training 

period of using a rake to retrieve pieces of food placed at a distance. Further 

neuropsychological studies on extinction patients demonstrated that after using a tool 

to reach distant objects, crossmodal extinction for a tactile stimulus presented on the 

contralesional hand increased when a visual stimulus was presented at the tip of the 

tool, as compared to before tool-use (Farnè et al., 2005b; Farnè & Làdavas, 2000; see 

also Maravita et al., 2001). In healthy subjects, tool-use may increase the impact of 

far visual distracters on tactile discrimination (Holmes et al., 2004; Maravita et al., 

2002). An extension of the limits of multisensory integration from the PPS to the 

tool’s action space has been shown also in healthy subjects after short (Serino et al., 

2007) and long-term (Serino et al., 2007; Bassolino et al., 2010) tool-use experiences. 

Taken together these studies show that the extent of PPS representation is 

dynamically shaped as a function of where subjects act upon external objects, i.e. 

their action-space (Gallese & Sinigaglia 2010; but see Holmes et al., 2007b, and 

Holmes 2012, for a different interpretation of these effects).  

Some authors (i.e. Iriki et al., 1996; Maravita & Iriki, 2004) have proposed that the 

extension of PPS after tool-use reflects a plastic modification in BR, such that the tool 

is incorporated as a part of the body (Berlucchi & Aglioti, 1997; Critchley, 1979; 

Head & Holmes, 1911; Holmes & Spence, 2006; Maravita, 2006). BR indeed should 

be plastic enough to update accordingly to slow and fast changes the body undergoes 

with time. However, the majority of these previous studies testing the effects of tool-

use showed a modification in the effect of visual and/or auditory stimuli presented 

near or far from the body (at the tip of the tool) on processing of simultaneously 

presented tactile stimuli; they did not directly show a change in the representation of 
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the body itself after tool-use. Instead, in these studies, tool incorporation has been 

only indirectly demonstrated through perceptual changes in PPS representations. 

Three recent papers demonstrated a specific change in BR following tool-use. Despite 

the little agreement in literature about the number and types of body representations in 

the brain (see also Chapter 1, Paragraph 1.2.4), in line with the dyadic view of body 

representations (that opposes Body Schema and Body Image) there is a general 

consensus in defining the Body Schema as the body representation for action: this 

representation stores the information about the body that is relevant for appropriate 

motor control, as the position of different body parts in space and relative to each 

other, and their size, by integrating multiple sensory inputs. The Body Image instead 

is generally defined as a Body Representation for perception. The existence of two 

separated body representations for action and perception is supported also by recent 

behavioral data showing that the different body representations could be selectively 

updated according to the nature of a task (motor VS perceptual; Kammers et al., 2009; 

Kammers, Kootker, Hogendoorn, & Dijkerman, 2010). In line with this view in a 

recent study, Cardinali and colleagues (Cardinali et al., 2011) tested whether the 

effects of tool-use on body representation was specific for tasks requiring a motor 

response (pointing to a body part) or a perceptual judgements (localising a body part 

on a ruler) to indirectly estimate the represented length of their arm, in order to 

investigate whether plasticity after tool-use occurred on a representation of the body 

used for action (i.e., the so-called Body Schema) or for perception (i.e., the so-called 

Body Image; see Dijkerman & de Haan, 2007; de Vignemont, 2010; Gallagher, 1986; 

see also Chapter 2). They found that perception of forearm length increased after tool-

use for both tasks, but only when the input for the task (which body part was to 

localise) was given tactilely (by touching the target body part) and not verbally (by 
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naming the target body part). Results from the present study provided evidence of a 

selective update of body representation after tool-use depending on the appropriate 

combination between the task modality (motor VS perceptual) and the sensory 

modality of the input, revealing that a critical role is played by tactile information in 

updating the Body Schema. Interestingly, these findings also suggest that although 

their functions and properties are different, Body Schema and Body Image are 

interconnected and might influence each other (Cardinali et al., 2011).  

Sposito and colleagues (Sposito et al., 2012) demonstrated a change in the internal 

representation of body part size (i.e. the forearm) following a training with a 

functional tool. Interestingly, the length of the tool and the extent to which action 

capability was influenced affected the occurrence of plastic changes in body 

representation, resulting in an increased in the perceived forearm’s length after tool-

use. Cardinali and colleagues (2009a) showed that also kinematics of arm movements 

during hand grasping changed after pincers were used to grasp objects. This effect 

was also associated with a change in the localisation of tactile stimuli on the arm. 

The motor and somatosensory effects of tool-use here reviewed suggested that tool-

use could influence the perceived representation of the internal size of body parts. 

However, these findings cannot demonstrate a direct link between the effects of tool-

use on PPS representation and the modification in body representation, because in the 

cited literature these tasks have been specifically designed to investigate changes in 

body metrics only.  

The aim of the present study is to directly test whether using a functional tool to act 

upon objects at a distance concurrently affects both space and body representation in 

the same sample of subjects, using different tasks that specifically tap into PPS 

representation and body representation, by considering features that mainly define 
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these representations. In order to assess the extension of the multisensory PPS 

representation in a functionally and ecologically valid condition, we used a new 

audio-tactile interaction task recently developed by our group (Canzoneri, Magosso, 

& Serino, 2012; see Chapter 4). In order to measure the extension of Body 

Representation, we assessed the perceived dimensions of the forearm by using two 

different tasks. In a tactile distance perception task, participants received two pairs of 

tactile stimuli, one on the forehead (as a reference body part) and one on the forearm 

(target body part), and they were asked to judge whether the distance between the two 

stimuli was larger on the forehead or on the forearm. This task allowed assessing 

implicitly the internal representation of body part size. In a body-landmarks 

localisation task, instead, participants were asked to localise two anatomical 

landmarks, specifically the wrist and the elbow, by verbally indicating when a moving 

marker overlapped with the felt position of these occluded body parts. This task 

explicitly assesses a representation of the arm metric properties without involving any 

tactile signals or a comparison between two different body parts (see also Longo & 

Haggard, 2010; Cardinali et al., 2011; Lopez, Schreyer, Preuss, & Mast, 2012). In line 

with the dyadic view of body representations, the perception of body parts size is 

considered a component of Body Schema, in that information about the dimensions of 

the different body parts is critical in order to control the body in interaction with the 

environment. We are aware that, in the view of the triadic taxonomy of body 

representations (i.e. Body Schema, Body Structural Description and Body Semantics, 

see Schwoebel & Coslett, 2005; Sirigu, Grafman, Bressler, & Sunderland, 1991), 

some authors propose that this kind of information is processed by the so-called Body 

Structural Description, i.e. a visuo-spatial map of the body. In addition, Longo and 

Haggard (2010; 2011) proposed that there is a specific model of the body in the brain 
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(i.e. body-model, see Longo & Haggard, 2010; 2011), containing information about 

the size and dimension of body parts. However, since at the moment, the exact 

number and functions of different body representations is matter of debate (see 

Kammers et al., 2010), in the present work I will adopt the more neutral term Body 

Representation (BR). 	
  

 

In Experiment 5.1, participants performed the audio-tactile interaction task and the 

tactile distance perception task, before and after a training session with a tool. In 

Experiment 5.2, in order to provide further evidence for a change in the internal 

representation of the arm size, participants performed the tactile distance perception 

task and the body-landmarks localisation task after the same training with a tool as the 

one used in Experiment 5.1. Finally, in order to demonstrate that any change in PPS 

and BR was actually due to tool-use, and not to a generic effect of movement, 

attention, or simply to repetition of the tasks, in Experiment 5.3 we evaluated both 

PPS representation and BR with the same tasks used in Experiment 5.1 before and 

after a control training, consisting in pointing to objects placed in different positions 

in far space. 

 

5.2 Experiment 5.1 

	
  
In this experiment we measured PPS representation by means of the audio-tactile 

interaction task, and BR, by means of the tactile distance perception task, before and 

after a training session, consisting in using a tool with the right arm to retrieve objects 

placed in different positions in far space for 20 minutes (Tool-use training). 
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5.2.1 Methods 

	
  
Participants 
	
  
Twelve healthy subjects (11 females, mean age 25 years) participated in the study. All 

subjects were right-handed and had normal hearing and touch. All subjects, students 

at the University of Bologna, gave their informed consent to participate in the study, 

which was performed in accordance with the Declaration of Helsinki. 

 

Materials and procedures 

Audio-tactile interaction task  

Procedures for this task were the same to those previously explained in Chapter 4, 

Paragraph 4.2.1, except for the tactile stimulation that was administered on the hairy 

surface of the forearm. 

 

Tactile distance perception task 

Blindfolded subjects were lain down with their right arm resting in a prone position. 

In order to set the spatial distance between stimuli administered on the forehead and 

on the forearm, we initially measured the two-point discrimination threshold (2pdt) on 

the forearm, both for transversal and longitudinal orientations by using a staircase 

method. Subjects were tactilely stimulated with needles (diameter 5 mm) mounted on 

a calliper. Either double (67%) or single posts (33%) were administered at random. 

Only double posts were used to compute the staircase. The starting double posts 

separation was 40 mm, clearly above the 2pdt. The separation was then reduced 

progressively by 50% after each set of three successive correct responses. When 

subjects made an error, the separation was subsequently increased to midpoint of the 

current (erroneous) trial and the immediately preceding (correct) trial. This procedure 
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was terminated at the shortest separation at which subject clearly perceived two posts. 

We then confirmed this 2pdt estimate by delivering five double posts at this 

separation randomly intermixed with five single posts. If subjects scored between 

7/10 and 9/10 correct, the threshold estimate was accepted for experimental testing. 

Otherwise, the procedure was repeated. For each subject, 2pdts were measured both 

for transversal and longitudinal orientation on the forearm, and the corresponding 

individual 2pdt was used to set the distance between the pairs of posts used during the 

tactile distance task. Three different inter-point distances were used: at the 2pdt, 1.5 

the 2pdt, and twice the 2pdt.  

On each trial of the tactile distance perception task, subjects were touched with a pair 

of posts on the forehead and immediately later with a pair of posts on the forearm. 

Subjects made un-timed two-alternative forced-choice judgments of whether the two 

posts felt farther apart on the forehead or on the forearm, responding verbally. The 

task comprised a total of 36 trials: for 12 trials, the inter-point distance for the pair of 

posts on the forehead and on the forearm was the same (i.e., at the 2pdt, at 1.5 the 

2pdt or twice the 2pdt); for 12 trials, the inter-point distance was longer for the pair of 

posts on the forearm; vice-versa for the remaining 12 trials (i.e., the difference 

between the two distances could be half the forearm threshold or equal to the 

threshold). An experimenter administered stimuli manually for approximately one 

second, with an inter-stimulus-interval of one second between taps on the forehead 

and the forearm (See Figure 5.1B). Subjects were blindfolded throughout the 

procedure. In order to assess both the perceived width and the perceived length of the 

forearm, tactile stimuli were applied in two different orientations, transversally and 

longitudinally to the forearm axis. Subjects performed the task for transversal and 

longitudinal orientations, before and after tool-use, in blocked sessions, run in 
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counterbalanced order.  

 

Tool use training  

The tool-use training was adapted from Serino and colleagues (2007). The tool used 

was a 1 mt wooden stick of a 2.5 cm diameter plus a 10 cm handle. A 21 x 10 x 1 cm 

plastic plate was fixed on the distal part of the tool. The tool’s weight was around 1 

kilo. The training consisted in using the tool to find and retrieve 10 x 3 x 3 cm 

parallelepiped targets randomly placed in each trial in one out 30 different locations 

on the floor. Possible locations were chose on two a 3 by 5 matrix, one for each side 

of space: there were 3 possible longitudinal distances from the body (at 50 cm, at 80 

cm and at 110 cm), and 5 transversal positions on the left and 5 on the right of the 

participants, covering a space ranging from 50 to 110 cm in front of the subject and 

up to 140 cm to the right and to the left of the subject’s feet. Participants performed 

the task blindfolded. They comfortably sit on a chair in the middle of the experimental 

room. They hold the tool with the right hand and they were asked to place the left arm 

on the leg during the training. On each trial, participants hold the tool in a starting 

position, with the tip of the tool placed on the floor close to their feet. At the 

beginning of the trail the experimenter placed one of the target objects on the floor, 

avoiding making any sound that could cue the subjects toward the object location. 

Participants were instructed to explore the space around them, making a continuous 

fluid movement starting from the left to the right space until they found the object. 

Once they found it, they drag it until their foot. Then the experimenter removed the 

target object and positioned another one. Participants were instructed to place the arm 

back on the initial position at the end of each trial, until the following trial started. 
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The experimenter monitored the correct execution of tool-use training. On average, 

during each session of 20 minutes training, participants retrieved 65 target objects. 

 

 

 

Figure 5.1 
A. Experimental set up for the audio-tactile interaction task. 
B. Experimental set up for the tactile distance perception task. 
C. Experimental set up for the localisation task. 
 

 

Design 

We measured PPS representation and BR before and after a training session, 

consisting in using a tool with the right arm to retrieve objects placed in different 
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positions in far space for 20 minutes The PPS assessment was intermingled with BR 

assessment. The order of task administration was as follows. Before tool-use, half 

subjects performed the audio-tactile interaction task first and then the tactile distance 

perception task, and vice versa for the remaining subjects. Then each subject 

performed two sessions of 20 minutes training with a 1 m long stick, consisting in 

using this tool to find objects placed on the floor at various locations (within a space 

from 50 to 110 cm in front of the subject and up to 140 cm to the right and to the left 

of the subject’s feet). Each session was intermingled with an assessment session. In 

the assessment performed after the first training session, half subjects were tested with 

the audio-tactile interaction task and the other half with the tactile distance perception 

task. In the assessment performed after the second training session, subjects 

previously tested with the audio-tactile interaction task were tested with the tactile 

distance perception task; vice-versa for the second half of subjects. In this way, each 

post-tool-use assessment with the PPS representation and the BR task was 

immediately preceded by the same amount of tool-use (i.e. 20 minutes), and the order 

of PPS or BR assessment after tool-use was counterbalanced between subjects. 

Subjects were blindfolded during both the experiment and the training. 

5.2.2 Results  

Audio-tactile interaction task 

In order to study the relationship between RTs and the different perceived positions of 

sound in space as a proxy of PPS extension, we calculated tactile RTs both for IN and 

OUT sounds at the different temporal delays at which tactile stimulation was 

administered. RTs exceeding more than 2 standard deviations from the mean RT were 

considered outliers and trimmed from the analyses (1.5% of trials). At every temporal 

delay, from T1 to T5, sound is perceived in a different position of space with respect 
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to the stimulated body part. Given the equivalent segmentation of the different 

temporal delays (see Canzoneri et al., 2012) from T1 to T5, there was a spatial 

correspondence between the perceived position of IN and OUT sounds at T1 IN and 

T5 OUT (farthest distance from the body) and at T2 IN and T4 OUT (far distance), 

T3 IN and T3 OUT (intermediate distance), T4 IN and T2 OUT (close distance), T5 

IN and T1 OUT (closest distance). This assumption was confirmed by a sound 

localisation experiment run with the same set up and published in Canzoneri and 

colleagues (2012; see Chapter 4). We averaged tactile RTs for these couples of delays 

and analysed RTs as a function of the five possible perceived distances, from D1, 

farthest distance, to D5, closest distance, in a unique function. 

Since tactile stimuli were administered well above threshold, subjects were extremely 

accurate in performing the task, as rate of false alarms and omissions was very low, 

i.e., 0.06% and 2.88% respectively. Thus, the performance was analysed in term of 

reaction time only. The ANOVA conducted on RTs with Condition (Before tool-use, 

After tool-use) and Distance (from D1 to D5) as within subjects factors showed a 

significant two-way interaction [F(4,44)=3.15, p<0.05]. As Figure 5.2 shows, before 

tool-use, the function describing the relationship between tactile RTs and the position 

of sound in space shows that tactile RTs progressively sped up as the perceived 

sounds’ distance from the body decreased. In particular, RTs at D1 (mean RTs 

±S.E.M, 477 ms ±30) and D2 (481 ms ±28) - when sounds were perceived far from 

the body - were significantly longer compared to RTs at D3 (450 ms ±29), D4 (444 

ms ±27) and D5 (444 ms ±30; all ps<0.02, Newman-Keuls corrected) - when sounds 

were perceived close to the body. This spatial modulation of tactile perception due to 

sound position captures the boundaries of PPS representation before tool-use (see 

Canzoneri et al., 2012 for similar results). Those boundaries were extended after tool-
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use, as shown by a change in the shape of the function describing the relationship 

between sound position and tactile RTs. After tool-use, RTs at D2 were no more 

significantly different than RT at D3, D4 and D5 (all ps>0.72). Thus, the critical 

spatial range where sounds became effective in modulating tactile RTs shifted to 

include positions more distant from the forearm, i.e. around D2, whereas it was 

located around D3 before tool-use. Indeed, RTs at D2, and not at any other distance, 

were significantly faster after tool-use compared to before tool-use (p<0.05).  

Results from the present experiment are in line with several pieces of evidence in the 

literature, showing that using a tool affected PPS representation. Previous studies in 

monkeys (Iriki et al., 1996), healthy human subjects (Maravita et al., 2002; Serino et 

al., 2007; Bassolino et al., 2010) and neuropsychological patients (Farnè & Làdavas, 

2000; Farnè et al., 2005a; Maravita et al., 2002) have shown that after tool-use, visual 

or auditory stimuli presented in the far space, at the tip of the tool, interact with 

somatosensory stimuli on the hand holding the tool (see Farnè & Làdavas, 2000; 

Làdavas & Serino, 2008; Maravita, 2006; Maravita & Iriki, 2004). These effects have 

been interpreted by the majority of the authors as evidence of extension of PPS 

representation to envelop the space in which the tool is used (see Maravita, Spence, & 

Driver, 2003). Alternatively, some authors interpret similar effects as a consequence 

of a shift of crossmodal spatial attention (maybe due to motor preparation, see 

Holmes et al., 2007a; Yau et al., 2009; see also Holmes, 2012), from the space around 

the body to that around the tip of the tool, rather than as a change in PPS 

representation. In order to exclude that the present results were due only to a generic 

shift of attention towards the far space we conducted Experiment 5.3 (see below).  
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Figure 5.2. Experiment 5.1 results. 
A. Tool-use extends PPS representation. 
Audio tactile interaction task results. Mean (and S.E.M.) RTs at different perceived sound distances 
from D1- farthest - to D5- closest - (corresponding to different times of tactile stimulus delivery), and 
best fitting sigmoidal functions describing the relationship between RTs and sound distance, Before 
tool-use (filled line) and After tool-use (dotted line). 
Individual data were averaged and the mean RTs were fitted with a sigmoidal function with least 
squares regression; the parameters estimated in the best-fitting procedure were the central point of the 
sigmoid and the slope of the sigmoid at the central point. The central point of the sigmoidal function 
shifted towards the far space (715 ms) after tool-use as compared to before tool-use (1399 ms), 
showing that, after tool-use, auditory signals affected tactile processing at earlier temporal delays, i.e. 
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at farther distances from the subject’s body. The Figure reports the sigmoidal function fitted after 
averaging RTs at each distance from individual subjects. 
B. Tool-use affects the internal representation of arm shape. 
Tactile distance perception task results. The graph shows mean P-Forearm (and S.E.M.) both for 
longitudinal and transversal orientations, Before tool-use (white columns) and After tool-use (grey 
columns). 
 

Tactile distance perception task 

For each subject we calculated the mean probability of reporting the distance on the 

forearm as longer for all the combinations of inter-point distances (P-Forearm). All 

these probabilities were compared before and after tool-use, for longitudinal and 

transversal orientations, in order to assess the respective perceived length and width 

of the forearm. Since an equal number of stimuli on the forearm and on the forehead 

had greater relative inter-stimulus distance, a-priori P-Forearm of an unbiased 

perceiver was expected to equal 50%. We predicted, instead, that P-Forearm would 

vary depending on the perceived size of the stimulated forearm, 

The ANOVA conducted on the mean P-Forearm with Condition (Before tool-use and 

After tool-use) and Orientation (Longitudinal and Transversal) as within-subjects 

factors showed a significant main effect of Orientation [F(1,11)=24.06, p<0.01]. 

Subjects systematically perceived greater distance between the two stimuli on the 

forearm in the Transversal (P-Forearm mean ±S.E.M, 55% ±2) than in the 

Longitudinal orientation (41% ±2), showing that subjects normally underestimate 

tactile distance along the longitudinal axis of the forearm. This effect is already 

known and it is probably due to the organization and shapes of tactile receptive fields 

along the forearm surface (Longo & Haggard, 2011). More importantly, for the aim of 

the present experiment, the pattern of responses changed when P-Forearm was 

compared before and after tool-use, as revealed by the significant two-way interaction 

[F(1,11)=11.79, p<0.01]. In the Longitudinal orientation, P-forearm decreased after 

tool-use (38% ±2) as compared to before tool-use (44% ±2, p<0.05). Conversely, in 
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the Transversal orientation, P-Forearm significantly increased after tool-use (57% ±3) 

as compared to before tool-use (53% ±2, p<0.05). Since the effect of tool-use training 

was opposite for Transversal and Longitudinal orientation, the main effect of 

Condition was not significant [F(1,11)=0.3, p=0.59]. 

In summary, the present results show that after tool-use subjects perceived the 

distance between the two stimuli as shorter in the longitudinal orientation and longer 

in the transversal orientation. It is currently accepted that tactile signals are processed 

with reference to an implicit representation of the body (see Longo et al., 2010; 

Medina & Coslett, 2010). Some authors also showed that such representation can by 

modified by manipulating visual (Taylor-Clarke et al., 2004), proprioceptive (de 

Vignemont et al., 2005) or acoustic (Tajadura-Jiménez et al., 2012) body-related 

inputs. Accordingly to these studies, an increase in perceived tactile distances is 

interpreted as an increase in the represented size of the body part tactilely stimulated. 

A different body of literature in the field of haptic perception, however, offered an 

opposite interpretation of similar effects. Other authors have indeed shown that the 

size of graspable objects is scaled relative to the size of the hand used to grasp them, 

such that the hand is used as a “perceptual ruler” to measure object’s size: the larger 

the hand is perceived as being, the smaller the object placed in the hand is judged; a 

“complementary” effect, so to speak (Action Specific Perception perspective; 

Linkenauger, Ramenzoni, & Proffitt, 2010; Linkenauger, Witt, & Proffitt, 2011). This 

kind of effect is reminiscent of experiences reported by individuals with a 

neurological condition, called “Alice in Wonderland” syndrome, in which patients 

experience, for instance, growth of their body followed by shrinkage of the world 

around them (Todd, 1955; Linkenauger et al., 2010). Effects of re-scaling distance 

perception as a function of the perceived body size have been also recently shown 
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after illusions of ownership of virtual bodies: when participants experienced a tiny 

body as their own, they perceived objects to be larger and farther away and, 

conversely, when they experienced a large-body illusion, they perceived objects to be 

smaller and nearer (van der Hoort, Guterstam, & Ehrsson, 2011).  

We are inclined to interpret the results from the present experiment more in line with 

this last account, proposing that perception of the distance between two tactile stimuli 

is rescaled on the basis of the context in which they are presented, accordingly to a 

context dependent bias: the same distance is perceived as wider when presented in a 

smaller context as compared to when presented in a wider context. This context-

dependent effect is well documented in the field of visual perception, such as, for 

instance, in the Ebbinghaus illusion (1897), where the same central circle is perceived 

as smaller or bigger when presented against a background of bigger or smaller 

surrounding circles, respectively. In order to demonstrate such a context-dependent 

bias in the case of distance perception, we conducted a visual-analogue and a tactile-

analogue of the present tactile distance perception task. In the visual distance 

experiment, 9 naïve subjects underwent a computerized visual task. During the 

experimental sessions patients sat in a dimly lit and sound attenuated room in front of 

a 17” PC monitor (refresh rate 60 Hz) at a distance of 57 cm. Stimulus presentation 

and response recording was controlled by a PC running C.I.R.O software 

(http://www.cnc.unibo.psice.unibo/ciro). Participants were presented with two red 

dots on a white background rectangle projected on the computer screen for 300 ms, 

followed by a black screen lasting 500 ms. Then a second pair of red dots on a white 

rectangle appeared for 300 ms. Subjects were asked to judge whether the distance 

between the two red dots was longer in the first or in the second visual stimulus, 

ignoring the background rectangle and responding verbally. The distance between the 
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two dots was systematically manipulated so as to mimic the tactile distance 

perception task. The length of the background rectangle was also manipulated so as to 

mimic the perceived dimensions of the forearm. In this way, in different trials subjects 

were asked to compare two dots whose distance was actually different, or two dots 

whose distance was equal, but which were placed on a different context (see Figure 

5.3 legend for details on the experimental procedure). If the context-dependent bias 

applies as we predicted, subjects’ responses should be influenced by the dimension of 

the background rectangle so that the inter-point distance between a pair of dots 

presented on a shorter rectangle should be perceived longer than the same inter-point 

distance between a pair of dots presented on a longer rectangle. The results confirmed 

this prediction. For each subject we calculated the probability of reporting a longer 

distance between the two dots in the second stimulus (P-Second) when: a) the Inter-

point Distance was kept constant and the length of background rectangle was 

manipulated (being longer in the first visual stimulus, longer in the second visual 

stimulus, or equivalent in the two visual stimuli); b) the size of the background 

rectangle (Background Size) was kept constant and the inter-point distance was 

manipulated (being longer in the first visual stimulus, longer in the second visual 

stimulus, or equivalent in the two visual stimuli). The ANOVA with Inter-point 

Distance and Background Size as within-subjects factors showed a significant two-

way interaction [F(1,8)=397.72, p<0.01)]. Even when the inter-point distance was 

equal for the two visual stimuli, P-Second was lower when the background rectangle 

of the second visual stimulus was longer (P-Second mean ±S.E.M, 58% ±6), than 

when the background rectangle of the second visual stimulus was shorter (75% ±7, 

p<0.01). Instead, when the inter-point distance was actually manipulated, and the size 

of the background rectangle was constant, P-Second was correctly higher when the 
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inter-point distance was longer in the second visual stimulus (97% ±1) than in the first 

visual stimulus (3% ±1, p<0.01), confirming that subjects were correctly performing 

the task. Thus, the dimension of the background rectangle clearly affects distance 

perception, as predicted by the context dependent bias, replicating the results obtained 

by Taylor-Clarke and colleagues (2004) in a visual analogue of the tactile distance 

perception task.  

In order to demonstrate that the context-dependent hypothesis applies also in the case 

of tactile stimulation, we also run a tactile distance experiment, in which 16 new 

participants were tactilely stimulated by two posts, longitudinally applied on their left 

forearm (reference body part) and, 2 seconds later, by two posts longitudinally 

applied on their right forearm (target body part). In two-thirds of trials, target stimuli 

on the right arm was preceded by a “context stimulation” in which the borders of a 

rectangular box was applied on the right arm for 1 second and then removed, just 

before administration of the target stimuli. Target posts were administered in the 

middle of the skin surface previously framed by the rectangular box (see Figure 5.3 

legend for details on the experimental procedure). The experiment was conducted in 3 

randomized conditions of context stimulation, i.e., by using a short (12 cm long X 5 

cm wide) rectangular box, a long (18 cm long X 5 cm wide), or no box. The short and 

the long rectangular boxes were used to differently prime the space on the forearm 

where tactile posts were referenced. Participants made un-timed two-alternative 

forced-choice judgments of whether the two points felt farther apart on the reference 

or on the target forearm, responding verbally, while being asked to ignore the context 

stimulation. An experimenter administered the stimuli manually and recorded the 

response. Participants were blindfolded throughout the procedure.  
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For each subject we calculated the probability of reporting a longer distance between 

the two posts in the second stimulus of the target forearm (P-Second). An ANOVA on 

P-Second with the factors Context Stimulation (short, long or no rectangle) and Inter-

point Distance, showed a significant two-way interaction [F(4,60)=4.13, p<0.01]. In 

line with the context-dependent bias hypothesis, and with the results of the visual 

analogue task, we found that in case of uncertainty about the inter-point difference 

between stimuli applied on the two arms (in conditions of no inter-point difference), 

the administration of the rectangular box biased subjects’ perception so that distance 

between posts applied on the target arm was underestimated (P-Second mean ±S.E.M, 

18% ±3.3), when the stimuli were preceded by the long rectangular box, priming a 

longer arm surface, and over-estimated (24% ±4, p<0.05), when the stimuli were 

preceded by the short rectangular box, priming a shorter arm surface. As for the visual 

distance experiment, subjects’ perception was accurate, when inter-point distance was 

actually manipulated: P-Second was correctly higher when the inter-point distance 

was longer on the target (68% ±6) than on the reference (40% ±6, p<0.01) arm. 

Therefore, the results of the two control experiments on visual and tactile distance 

perception support the context-dependent bias hypothesis.  
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Figure 5.3. Visual-analogue and tactile-analogue of the tactile distance perception task. 
A. Schematic representation of stimuli (on the left) and trial structure (on the right) in the visual 
analogue of the tactile distance perception task. 
a) Example of a trial with same inter-point distance and different background rectangle length between 
the first and the second visual stimulus. 
b) Example of a trial with same background rectangle length and different inter-point distance between 
the first and the second visual stimulus. 
B. Results of the visual analogue of the tactile distance perception task. 
A 3 by 3 combination of inter-point distances (4, 5.5 and 7 cm) and rectangle length (16, 17 and 18 cm) 
was used. In 36 trials, the size of the background rectangle was different between the first and the 
second visual stimulus (case a) – being longer for the first visual stimulus in half trials and longer for 
the second visual stimulus in the remaining trials - while keeping constant the inter-point distance. In 
36 trials the distance between the two points was different between the first and the second visual 
stimulus (case b) - being longer for the first visual stimulus in half trials and longer for the second 
visual stimulus in the remaining trials - while keeping constant the background rectangle. In the 
remaining 8 trials, the background rectangle and the inter-point distance were the same for the first and 
the second visual stimulus. Each participant performed two blocks of 80 trials each. 
The graph shows the Probability of reporting longer the distance between the two dots in the second 
stimulus (P-Second; Error bars denote S.E.M.), when the size of the background rectangle (on the left) 
or the inter-point distance (on the right) was manipulated.  
C. Schematic representation of stimuli (on the left) and trial structure (on the right) in the control tactile 
distance perception task.  
a) Examples of a trial with Short context stimulation on the Target arm 
b) Example of a trial with Long context stimulation on the Target arm. 
D. Results of the control tactile distance perception task. 
For 12 trials, the inter-point distance for the pair of posts on the reference and on the target arm was the 
same (i.e., at 4 cm); for 8 trials, the inter-point distance was longer for the pair of posts on the reference 
(5 cm) than for those on the target arm (3 cm); vice-versa for the remaining trials (i.e., 3 cm on the 
reference and 5 cm on the target arm). A total of 84 trials (3 difference distance by 3 context 
stimulation) were administered in random order, within a single experimental block. 
The graph shows the Probability of reporting longer the distance between two posts on the Target arm 
(P-Second, error bars denote S.E.M), when the size of the background rectangle (on the left) or the 
inter-point distance (on the right) was manipulated.  
 

If we translate these effects to the results of the tactile distance perception task run 

before and after tool-use, these findings support the view that after tool-use subjects 

more frequently perceived the distance between two points longitudinally applied on 

their forearm as shorter because they perceived their forearm as longer than compared 

to before tool-use. A reversed effect was found for the distance between stimuli 

applied transversally: subjects more frequently perceived the distance between the 

two points on the forearm as wider after tool-use, because the forearm was perceived 

as narrower in comparison to before tool-use. 
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In summary, results from the first experiment demonstrated that tool-use induces 

plastic change in not only in PPS representation, but also in the BR, compatibly with 

an internal representation of a longer arm after tool-use. 

 

5.3 Experiment 5.2 

	
  
In order to give further support to data from the tactile distance perception task and 

actually demonstrate that tool-use resulted in an increase of the perceived length of 

the forearm, in Experiment 5.2 we evaluated the perceived dimension of the forearm 

before and after a training with a tool by using both the tactile distance perception 

task and a body-landmarks localisation task, explicitly assessing the perceived 

location of the forearm extremities, the wrist and the elbow. The distance between the 

two locations was computed to quantify the perceived length of the forearm.  

5.3.1 Methods 

	
  
Participants 

Nine healthy subjects (4 females, mean age 28 years) participated in the study. All 

subjects were right-handed and had normal vision and touch. All subjects gave their 

informed consent to participate in the study, which was performed in accordance with 

the Declaration of Helsinki. 

 

Materials and procedures 

Tactile distance perception task 

The task was the same as for Experiment 5.1, except that participants performed the 

task only for longitudinal orientation, in order to assess the perceived arm length. 

 



	
   132	
  

Body-landmarks localisation task 

Subjects were instructed to verbally indicate when a moving marker reached the felt 

position of two occluded body parts, i.e., the wrist (specifically, the ulnar styloid) and 

the tip of the elbow joint (i.e. the olecranon). Before the task, the experimenter 

explicitly showed these anatomical landmarks on her body. Subjects sat down with 

their right arm passively placed by the experimenter on a table in a prone position. 

The forearm was aligned with the shoulder joint. In order to avoid movement, for all 

the task duration, the arm was fixated on the table with tape. To prevent participants 

from viewing the forearm during the task, a rectangular black box (90 cm long X 50 

cm wide) was placed over the arm. The box covered the entire width of the table. On 

each trial, the experimenter verbally cued the participant as to which landmark to 

judge. Then, the experimenter manually moved a retro-reflective marker over the 

surface of the box, along the longitudinal axis of the forearm. The retro-reflective 

marker (1.5 cm in diameter) was stuck on the tip of a black cane 50 cm long (See 

Figure 5.1C). On different trials, run in randomized order, the marker was moved in 

two different directions, either approaching to (moving in a distal to proximal 

direction) or receding  (moving in a distal to proximal direction) from subjects’ body. 

Participants were instructed to say “Stop” when the retro-reflective marker was 

perceived just above the felt position of the target anatomical landmark. At that verbal 

signal the experimenter ended the movement leaving the marker where indicated by 

the participant. The participant was allowed to further adjust the final position of the 

marker, by verbally asking the experimenter to move it backward or forward. When 

the participant confirmed the final position, the marker’s location was recorded 

through an optical motion capture system (Vicon). 
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After the last trial, to record the actual positions of the elbow and the wrist, the box 

was removed, participants were blindfolded and two retro-reflective markers (1 cm in 

diameter) were placed on the anatomical landmarks. The task comprised 20 trials, 10 

for each body landmark, with an equal number of trials moving in the IN and OUT 

directions. 

The distance between the mean estimated positions of the wrist and the elbow was 

considered a measure of the perceived forearm length. Additionally, we checked the 

position error between the mean estimated location of each target landmark and its 

actual position. A custom MATLAB (Mathworks, Natick, MA) script was employed 

to analyze data. 

 

Design 

The tactile distance perception task and the body landmarks localisation task were 

run before and after a training session, consisting in using a tool with the right arm to 

retrieve objects placed in different positions in far space for 20 minutes. The structure 

of the Experiment was the same as for Experiment 5.1. 

5.3.2 Results  

Tactile distance perception task 

In order to test whether the implicitly perceived arm length changed before and after 

tool-use, mean P-Forearm from the two sessions was compared with a paired sample 

t-test. P-forearm significantly decreased after tool-use (49% ±3) as compared to 

before tool-use (53% ±2; t(8)=2.47, p<0.05), in line with results from Experiment 5.1. 

According to a context-dependent bias, these results confirm that after tool-use the 

distance between points of contact on the forearm surface is systematically 

underestimated, suggesting an increased in the perceived length of the forearm. 
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Body-landmarks localisation task 

To compare the perceived arm length before and after tool-use, we calculated the 

perceived arm length as the difference between the perceived position of the elbow 

and the wrist (E-W Distance). A repeated measure ANOVA was performed on E-W 

Distance, with Condition (Before tool-use, After tool-use) and Movement Direction 

(Distal-to-Proximal, Proximal-to-Distal) as within-subject factors. The main effect of 

Condition was significant [F(1,8)=5.80, p<0.05], showing that E–W distance 

significantly increased after the training with the tool (Before tool-use=23.57±1.8 cm; 

After tool-use=24.70± 1.7 cm). This effect was independent from movement direction 

as the two-way interaction Condition X Movements Direction was not significant 

(p=0.7). These results suggest that after tool-use the forearm was perceived as longer 

than before tool-use. 

A repeated measure ANOVA was also run on wrist and elbow position error (i.e. the 

difference between the mean estimated location of each landmark and its actual 

position) with Condition (Before tool-use, After tool-use), Movements Direction 

(Distal-to-Proximal, Proximal-to-Distal) and Landmarks (Elbow, Wrist) as within-

subject factors. Results showed a significant Condition X Landmarks interaction 

[F(1,8)=5.53, p<0.05]. This effect was due to a change in the perceived location of the 

wrist, rather then the elbow. Indeed, after tool-use the wrist was perceived farther 

from the body farther from the body than before (Before tool-use=-2.25±1.5, After 

tool-use=-.72±1.5), while the elbow position did not significantly change (Before 

tool-use=-1.39±0.9, After tool-use=1.05±1; p=0.38, Newman-Keuls corrected). This 

effect was again independent from the direction of the movement, as the three-way 

interaction was not significant (p=0.69).  
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Figure 5.4 Experiment 5.2 results, body landmarks localisation task. Tool-use affects the 
perceived length of the forearm 
A. The graph shows mean length estimation Before tool-use (white columns) and After tool-use (grey 
columns). 
B. The graph shows mean wrist (on the left) and elbow (on the right) position errors Before tool-use 
(white columns) and After tool-use (grey columns). 
 

 

In order to verify whether and to what extent the measures obtained from these 

experiments are related, we calculated an index of change for both the tactile distance 

perception task and the body landmark localisation task, by normalizing the scores 



	
   136	
  

from the two tasks and subtracting the Before Tool-use scores from the After tool-use 

data for each participant, in order to allow a more direct comparison between the two 

Experiments. We then performed a correlation analysis between these two indexes. 

Results did not indicate any significant correlation (r=.33, p=.38).  

Results from the tactile distance perception in Experiment 5.2 were in line with 

results from the same task in Experiment 5.1, showing that after tool-use participants 

underestimated the tactile distance between two taps administered on the trained 

forearm. At the same time, results from the localisation task showed an increase in the 

distance between the perceived location of the wrist and the elbow after tool-use, 

compatible with an increase in the perceived forearm length after the training. 

Numerically, the increase was around 1.1 cm. Considering that subjects used a 100cm 

tool during the training, one might suggest that 1% of the tool length was “embodied” 

into the arm representation after tool use. However, at the moment we cannot 

establish whether that value has a perceptual valence, or it simply depends on the 

sensitivity of the task used to measure the effect of tool-use. One way to answer this 

question would be testing the effects of using tools of different lengths: for instance, 

using a 200cm tools should lead to a ~2cm of elongation. At the best of our 

knowledge, nobody tested whether plastic effects of tool use on BR actually depend 

on the physical size of the tool. Only Sposito and colleagues (2012) compared the 

effect of using a long vs. a short (20 cm), functionally useless, stick, and found that 

only the former, but not the latter, tool affected the perceived length of the forearm. 

But, no data are available on whether a longer tool, which would allow acting on 

further portions of space, would actually make the subjects feeling their arm even 

longer.  
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The present findings are in line with results of Cardinali and colleagues after a 

training with a long mechanical grabber (Cardinali et al., 2009a; but see also Cardinali 

et al., 2011). Moreover, findings from the present experiment demonstrated that the 

change in the perceived length of the forearm was not due to a subjective 

proprioceptive shift of the whole arm towards the far space, since only the wrist, but 

not the elbow, was perceived farther from the body (see also Sposito et al., 2012). In 

summary, these findings confirm the results from the Experiment 5.1, and provide 

strong evidence for an actual extension of the perceived length of the arm after tool-

use. 

  

5.4 Experiment 5.3 

	
  
In order to demonstrate that any change in PPS representation and BR was actually 

due to tool-use, and not to a generic effect of movement, attention, or simply to 

repetition of the tasks, in Experiment 5.3 we evaluated both PPS representation with 

the audio-tactile interaction task and BR with the tactile distance perception task 

before and after a control training, consisting in pointing to objects placed in different 

positions in far space (Pointing task). Subjects were asked to point with their right 

hand towards objects placed in the same location, just as in the tool-use experiments, 

however no tool was used. We predicted that the pointing task, that drives subjects’ 

attention towards the far space during the training, but does not involve any tool-

mediated interaction between the subject’s body and objects in far space, affects 

neither PPS representation nor BR. 
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5.4.1 Methods 

Participants 

Twelve healthy subjects (all females, mean age 25 years) participated in the study. All 

subjects were right-handed and had normal hearing and touch. All subjects, students 

at the University of Bologna, gave their informed consent to participate in the study, 

which was performed in accordance with the Declaration of Helsinki. 

 

Materials and procedures 

The audio-tactile interaction task and the tactile distance task were the same as used 

for Experiment 5.1. 

 

Design 

The structure of the experiment was the same as for Experiment 5.1, except for the 

training session, which consisted in a 20 minute pointing task: blindfolded subjects sit 

on chair with their left arm relaxed, while they held in the right hand a 15 cm long 

handle, of the same weight as the tool. In this way, fatigue effects due to holding the 

handle or the tool were similar between Experiment 5.3 and Experiment 5.1. During 

the training session, in each trial the experimenter touched an object placed on the 

floor, at a random location in far space, with the tip of the stick used for the previous 

experiments. In this way a sound was generated, comparable to that made by the 

subjects in Experiment 5.1 when they touched the object with the tool. Subjects were 

asked to point the handle towards the perceived location of the sound. 
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5.4.2 Results  

	
  
Audio tactile interaction task 

False alarm and omission rates were extremely low, i.e. 0.76% and 1.57% 

respectively. We analysed mean RTs to tactile targets (after outliers removal, see 

Experiment 5.1 for procedure) administered when sounds were perceived at different 

distances from the body. The ANOVA conducted on tactile RTs with Condition 

(Before pointing, After pointing) and Distance (from D1 to D5) showed a significant 

main effect of Distance [F(4,44)=25.79, p<0.01]. The pattern of results, shown in 

Figure 5.5, mirrors the same effect found in Experiment 5.1 before tool-use: as sound 

distance from the body decreased, RTs progressively shortened. Newman-Keuls post-

hoc comparisons confirmed this effect, since RTs at D1 (Mean RTs ±S.E.M, 429 ms 

±26) and D2 (414 ms ±27), when the sound was perceived far from the body, were 

slower compared to RTs at D3 (397 ms ±25), D4 (398 ms ±26) and D5 (390 ms ±25, 

all ps <0.01), when the sound was perceived close to the body. Importantly, the space 

dependent modulation of RTs due to sound position was not different before and after 

the training session, as the two-way interaction was not significant [F(4,44)=1.87, 

p=0.13)], as well as the main effect of Condition [F(1,11)=.99, p=0.34)]. Thus, no 

extension effect of the boundaries of PPS representation was found after the pointing 

training session. 
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Figure 5.5 Experiment 5.3 results. 
A. Pointing task does not affect PPS representation. 
Audio tactile interaction task results. Mean (and S.E.M.) RTs at different perceived sound distances 
(from D1 - farthest - to D5 - closest), corresponding to different time of tactile stimulus delivery and 
best fitting sigmoidal functions describing the relationship between RTs and sound distance, Before 
pointing (filled line) and After pointing (dotted line). The central point of the sigmoidal function can be 
taken as a measure of the critical distance where sounds affect tactile RTs on the forearm, and therefore 
can be considered an index of the boundary of PPS. As shown in the Figure, there is no shift of the 
central point of the sigmoidal function After pointing (989 ms) as compared to Before pointing (1082 
ms).  
B. Pointing task does not affect the internal representation of arm shape. 
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Tactile distance perception task results. The graph shows mean (and S.E.M.) P-Forearm both for 
longitudinal and transversal orientations, Before pointing (white columns) and After pointing (grey 
columns). 
 

Tactile distance perception task 

A Repeated Measure ANOVA was conducted on the mean P-Forearm with Condition 

(Before pointing and After pointing) and Orientation (Transversal and Longitudinal) 

as within-subjects factors. The main effect of Orientation was significant 

[F(1,11)=29.58, p<0.01], mirroring the same trend found in Experiment 5.1 (P-

forearm for Transversal orientation=57%±1; P-forearm for Longitudinal 

orientation=44%±1) and again in line with the results obtained by Longo and Haggard 

(2011). Importantly, the interaction Condition X Orientation was not significant 

[F(1,11)=.91, p=0.36], suggesting that the pointing task did not affect subjects’ 

performance in the tactile distance perception task, and therefore subjects’ perception 

of length or width of their arm. 

 

5.5 General Discussion 

	
  
In the present study we investigated whether PPS and BR changed in parallel after 

using a tool, extending action-space from the space immediately surrounding the body 

to the far space. In order to dynamically assess PPS representation we used a new 

audio-tactile interaction task developed by our group (Canzoneri et al., 2012; see 

Chapter 4): we have recently shown that tactile RTs coupled to moving sounds 

progressively speeded up to the extent that the sound source was perceived close to 

the body. The function describing the relationship between tactile RTs and the 

position of sounds in space can be used to localize the boundaries of PPS 

representation, and in this study has been used to measure plasticity of PPS 
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representation after a short-term tool-use experience. Results from Experiment 5.1 

show that after tool-use, the boundaries of PPS representation shifted to include 

farther locations, so that an auditory stimulus presented in a far position, where the 

tool has been used, was recoded as it were closer to the body, and therefore interacted 

with a tactile stimulus delivered on the arm. This effect was associated with a change 

in the representation of the arm shape: after tool-use, subjects perceived the distance 

between the two stimuli delivered on the forearm longitudinally to the arm axis as 

significantly shorter and perceived the distance between two stimuli delivered 

transversally on the forearm as significantly longer. Moreover, when asked to localize 

the position of their wrist and elbow, they localized those body landmarks farther 

apart between each other after tool-use. Taken together, these findings are compatible 

with an extension of perceived arm length after tool-use, assessed by means of two 

independent tasks.	
   As the body changes continuously in position and dimensions 

throughout life, its brain representations need to be updated in order to correctly 

interact with the external world. The concept of body representations nowadays 

encompasses different concepts, with rather specific plastic properties. In line with a 

“dyadic view” of body representations, most authors usually make a distinction 

between Body Image and Body Schema (see de Vignemont, 2010; Dijkerman & de 

Haan, 2007; Gallagher, 2005; Cardinali et al., 2011). Body Schema is an implicit, on-

line adapted representation of body parts size and position for action, whereas Body 

Image is a more explicit, off-line updated, representation of body appearance for 

perception (see Dijkerman & de Haan, 2007; De Vignemont, 2010; Carruthers, 2008; 

Gallagher, 1986). Accordingly, it has been proposed that these two representations 

can also be updated selectively depending on different types of experiences (de 

Vignemont & Farnè, 2010; Kammers, de Vignemont, Verhagen, & Dijkerman, 2009). 



	
   143	
  

For instance, recent works on the effect of tool-use tried to disentangle the effects of 

tool-use on the body schema and the body image (see Cardinali et al., 2012; Sposito et 

al., 2012). 

Some authors proposed instead a triadic taxonomy of body representations, whereby, 

maintaining the classic concept of Body Schema, the concept of Body Image is 

further divided into a Body Structural Description, more related to perception, and 

Body Semantics, interfacing with Language (see e.g., Schwoebel & Coslett, 2005; 

Sirigu et al., 1991). Reminiscing of the concept of Body Structural Description, 

Longo and Haggard (2010; 2011) recently proposed that there is a specific model of 

the body in the brain (which they call “body-model”), containing information about 

the size and shape of body parts.  

At the moment, the exact number and functions of different body representations is 

matter of debate (see Kammers et al., 2010). For this reason, in the present study, we 

deliberately decide to not enter into this debate, but to adopt the more neutral and 

generic term of Body Representations, being well aware of potentially including in 

this way rather different levels of body-related information processing in the brain. 

Having said that, we used both the tactile distance perception task (Experiment 5.1 

and 5.2) and the body landmark localisation task (Experiment 5.2) to assess a 

multisensory, high-level, mental representation of the body, processing several 

sensory cues to represent the size and shape of different parts of the body. We believe 

that the modification of BR after tool-use is strictly dependent on the sensory 

consequences of action: because, thanks to tool-use, we act on a portion of space 

exceeding the normal limits of our physical body, our brain start processing 

multisensory inputs related to one’s own body, but arising from a distal portion of 

space. For instance, tactile and proprioceptive cues processed at the upper limb via the 
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tool handle, refers to objects contacting the tip of the tool. Such contacts also generate 

sensory feedback in other modalities, e.g. auditory feedback, as in the present 

experiments, when subjects were blindfolded, but also visual feedback in everyday 

life tool-use activities. We believe that this action-dependent extension of the space, 

where body-related sensory information arises from, is the trigger for the changes in 

body representation and PPS representation documented by the present experiments. 

This proposal has been recently introduced by our group in the context of a neural 

network model designed to account for plasticity in PPS representation (Magosso et 

al., 2010; see also Chapter 6). 

 In sum, the present study demonstrates a plastic modification of both body and space 

representations, suggesting that a tool, extending the action-space of the body 

(Gallese & Sinigaglia 2010), is incorporated into BR and affects both the spatial 

perception of the body itself and of objects presented in space. 

A control experiment confirmed that these effects were actually due to tool-use, and 

were not due to the simple repetitions of the tasks or to a general attentional effect 

(see Holmes, 2012). Subjects performed a pointing training task, involving the same 

shift of attention towards far space as in the tool-use training task, but not involving 

any interaction between the body and far space. No changes in the audio-tactile 

interaction tasks and in the tactile distance perception task were found after the 

pointing task, indicating that both PPS representation and the BR were unaffected.  

The correspondence between the extension effect for PPS and the perceived arm 

length suggest that body and PPS representations strongly overlap. This is not 

surprising considering that the receptive fields of bimodal neurons representing PPS 

around different body parts are anchored to specific body parts (Graziano & Cooke, 

2006). Moreover, brain systems involved in PPS representation and BR are localized 
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within the same fronto-parietal areas, encompassing the ventral premotor cortex and 

the posterior parietal cortex, both in monkeys (Duhamel et al., 1998; Graziano et al., 

2000; Graziano et al., 1997a) and in humans (Bremmer et al., 2001; Filimon, Nelson, 

Huang, & Sereno, 2009; Makin et al., 2007; Sereno & Huang, 2006; Serino et al., 

2011; Blanke, 2012). Thus, a similar fronto-parietal network might represent both the 

body surface and the visual and/or auditory space surrounding the body. PPS and BR 

also have a closely related role in action execution (Brozzoli et al., 2009; Gallese & 

Sinigaglia, 2010; Graziano & Cooke, 2006): in order to reach and manipulate an 

object, or in order to avoid contact with a harm, the brain needs to compute 

information about the position, shape, and movement of the object in space, and 

concurrently about the position, shape and dimensions of the body part potentially 

interacting with it. Moreover it has been demonstrated that the physical dimensions of 

the body (the arm length, in this case) determines the location of the boundary 

between near and far space (Longo & Lourenco, 2007). Our study provides 

experimental evidence of a further level of overlap between PPS and BR, i.e. their 

plastic properties.  

Such overlap can be interpreted in three ways: it might be the case that the extension 

of PPS representation directly depends on the plastic change of BR, such that the 

elongation of the perceived size of the forearm extends the representation of the space 

around it (Maravita & Iriki, 2004). Alternatively, the two plastic phenomena might be 

simply associated, without any causal relationship between them. A third 

interpretation is possible, i.e., that the concept of PPS overlap with those levels of BR 

oriented to action, so that PPS and BR both define a unique representation of the body 

in space (for comments see Cardinali, Brozzoli, & Farnè, 2009b; Gallese & 

Sinigaglia, 2010). The present study, by providing evidence for an overlap of plastic 
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properties of PPS and BR might support this third view, although it cannot causally 

confirm it.  
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CHAPTER SIX: A NEURAL NETWORK UNDERLYING 

EXTENSION OF PERIPERSONAL SPACE  

 

 

6.1 Introduction 

In the previous chapter we provided further evidence of plasticity of PPS 

representation induced by tool-use. Nevertheless, the underlying neural mechanisms 

of these plasticity processes are still largely unknown. The pioneering work of Iriki 

and colleagues (1996) specifically demonstrated that after tool use, visual receptive 

field (RFs) of bimodal neurons at the level of the intraparietal sulcus elongated and 

became responsive to stimuli presented at the tip of the tool. 

Few neurophysiological studies in recent years suggest that these effects of tool-use 

training on the extension of the visual RFs could be explained by morphological 

changes at the level of synapses connection within the parietal lobe. More specifically, 

Ishibashi and colleagues (Ishibashi, Hihara, Takahashi, Heike, Yokota, & Iriki, 2002) 

suggested that the mechanism underlying this phenomenon could be the creation of 

new synaptic connections from the visual related areas cortex in the parietal cortex 

with the somatosensory neurons in the intraparietal sulcus (Ishibashi et al., 2002; 

Hihara, Notoya, Tanaka, Ichinose, Ojima, Obayashi, Fujii, & Iriki, 2006). Recently, a 

tentative has been made in order to create a theoretical model describing these neural 

mechanisms, taking advantages of computation neural network modelling. 

Neural network models are information elaboration systems aimed at simulating 

neuron behaviour in a realistic way. Neural network models and computer simulation 

techniques represent a useful tool to investigate the mechanisms underlying PPS 
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representation plasticity. Magosso and colleagues (Magosso et al., 2010c) presented a 

neural network model that simulates visuo-tactile integrative properties of multimodal 

neurons underling PPS representation around the hand. As a novelty, this model can 

be also used to simulate dynamic proprieties of PPS representation. The model 

originally proposed is composed of two networks (one per hemisphere), and it 

described visuo-tactile interaction around right and left hands. Each network is 

composed of three areas of neurons: two unimodal areas (visual and tactile) projecting 

to a third multimodal visuo-tactile area. In the model the two hemispheres are 

interconnected by inhibitory synapses. Thanks to the shape of the receptive fields and 

the arrangement of synaptic connections between unimodal and multimodal areas, 

neurons from the latter areas mimic neural responses of biological neurons in the 

primate brain, that is they respond more strongly to stimuli coming from a limited 

region of space around the hand. Each neuron has its own receptive field, reproduced 

in the model by means of a Gaussian function. The unimodal tactile area contains a 

matrix of neurons whose RF cover the whole hand. The visual unimodal area contains 

a matrix of neurons whose RF fields cover a space of approximately 1 mt around the 

hand. In both unimodal areas, the RFs are in hand-centred coordinates. In terms of 

brain structures, the tactile unimodal area might roughly correspond to high-order 

unisensory somatosensory (e.g., SI-SII) cortices, while the visual unimodal areas 

might correspond to high-order visual areas (e.g., areas MT and MST) in the parietal 

lobe (Boussaoud, Ungerleider, & Desimone, 1990; Cavada & Goldman-Rakic, 1989; 

Lewis & Van Essen, 2000; Maunsell & van Essen, 1983). According to the model, the 

multimodal area receives feed-forward projections from the two unimodal areas. The 

multimodal area corresponds to multisensory regions in the premotor or parietal 

cortex (Duhamel et al., 1998; Graziano et al., 1997a; Rizzolatti et al., 1981), deputed 
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in coding PPS representation both in monkeys and in humans. In order to simulate 

PPS representation, projections from unimodal visual areas to multimodal areas are 

weighted so that neurons with visual RFs on and just immediately around the hand 

have stronger connections to the multisensory areas than neurons with RFs placed far 

from the hand. The strength of synaptic connections from the visual to the 

multisensory area decades as a function of distance of the visual RF from the hand. 

As a consequence, both a tactile stimulus at the hand and a visual stimulus close to the 

hand can activate the multisensory area, whereas a visual stimulus from the far space 

cannot. As a consequence, normally, responses from multisensory neurons are limited 

to stimulation arising from the space around the hand.  

 

 

Figure 6.1 Schematic diagram describing the general structure of the model presented by Magosso and: 
colleagues: it represents the network for each hemisphere and the synaptic connections among regions 
of neurons within each hemisphere and between them. Meaning of the symbols: superscript L, R=left 
and right hemisphere; superscript t, v=tactile and visual; I=inhibitory interneuron; Λ=lateral synapses 
within the unimodal areas; W=feedforward synapses from unimodal neurons to the multimodal neuron; 
B=feedback synapses from the multimodal neuron to unimodal neurons; Γ= inhibitory synapses from 
the inhibitory interneuron to unimodal areas; X=cross-connections between the hemispheres, linking 
the multimodal neuron within one hemisphere to the inhibitory interneuron in the other hemisphere. 
Adapted from Magosso et al., Neuropsychologia, 2010. 
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This model has been used to simulate the effect of tool use on PPS representation. 

From a sensory point of view, a training with a tool consists in getting tactile 

information on the hand transmitted by the tool handle, and simultaneously visual 

and/or auditory information from the space were the tool is actively used. In keeping 

with this line of reasoning, tool-use training has been mimicked by applying both a 

tactile and a visual input to the network. The tactile input represents the portion of the 

hand stimulated while a subject holds the tool during the training. The visual input 

during tool-use represents the region of the visual space functionally relevant for the 

tool-use, that is the area where the tool was used. As activity with a 1mt tool is 

simulated, visual input activate neurons from the unisensory visual areas with RF 

allocated far from the hand. Both tactile and visual inputs project to the multisensory 

area. During the training, the simultaneous activation of synapses from tactile-to-

multisensory and from visual-to-multisensory neurons, thanks to a Hebbian-like 

mechanism, makes that synapses between tactile and multisensory neurons centred on 

the hand and visual and multisensory neurons centred on the far space reinforces. 

Operationally, the weight of synaptic projections from the visual area responding to 

far stimuli to the multisensory areas is strengthened and therefore the visual RF of 

multisensory neurons enlarges to cover the far space. Indeed, computer simulations of 

the effects of tool-use show that, after the training, differently than before the training, 

multisensory neurons also respond to a visual stimulus administered in the far space 

(Magosso et al., 2010c). Therefore, according to this neural network model, the 

extension effect on PPS due to tool-use does not depend on the tool itself, but it raises 

because of a pairing of a tactile stimuli at the hand (via the tool handle) with 

synchronized visual stimuli from the far space (via the tip of the tool). Thus, it is 
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possible to predict that simple pairing tactile near stimuli and visual far stimuli, 

independently from any tool-use, would be sufficient to extend PPS representation. 

 

To test this prediction, in this experiment we assessed PPS representation before and 

after an audio-tactile stimulation training: subjects received a tactile stimulus at the 

hand while a concurrent auditory stimulus was synchronously presented in the far 

space for 15 minutes. As a control condition, participants PPS representation was also 

measured before and after an asynchronous training consisting in tactile stimuli 

delivered at the hand and auditory far stimuli, with a randomized temporal delay 

between the two. In order to measure the extension of PPS before and after auditory-

tactile stimulation, we took advantage from the new audio-tactile interaction task 

described in the previous chapters. We decided to use an auditory training, instead of 

a visual training, as that simulated in the neural network model by Magosso and 

colleagues, because the method developed to measure PPS representation was based 

on audio-tactile stimulation. 

 

6.2 Experiment 6.1 

6.2.1 Methods 

	
  
Participants 

Sixteen healthy subjects (12 females, age ranging between 23 and 26 years) 

participated in the study. All subjects were right-handed and had normal hearing and 

touch. All subjects, students at the University of Bologna, gave their informed consent 

to participate in the study, which was performed in accordance with the Declaration 

of Helsinki. 
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Materials and procedures 

Audio-tactile interaction task  

The audio tactile-interaction task was the same as Experiment 4.1, Chapter 4. In this 

experiment the tactile stimulation was administered on the ventral part of the right 

index finger. Participants comfortably placed their right hand on he table beside them. 

The two loudspeakers were placed on the table beside participants, one close to the 

tactilely stimulated hand, the other one at ≈ 100 cm, i.e. in the far space. 

 

Figure 6.1 Experimental paradigm for the audio-tactile interaction task. 
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Synchronous Audio-tactile Training 

During the training participants were blindfolded and sat down with their right arm 

resting palm down on a table beside them. Participants received different trains of 

audio-tactile stimuli. Each train consisted of ten tactile stimuli and ten auditory 

stimuli, synchronously presented. Tactile stimulation was administered through two 

solenoids applied at the tip of the right index finger (M & E Solve, Rochester, UK; 

http://www.me-solve.co.uk). The auditory stimulation consisted in an ecologic sound 

(the tapping of a pencil on a table) previously recorded. In this way, audio and tactile 

stimulation used for the training (i.e. ecological sounds and vibro-tactile stimulation) 

was different from that used for measuring PPS representation (i.e. white noise and 

electrocutaneous stimulation).  

Sound was presented through two loudspeakers, placed on the table at a distance of ≈ 

100 cm from participants’ hand. A PC running C.I.R.O. software 

(www.cnc.unibo.psice.unibo/ciro) was used to control the presentation of the stimuli. 

During the training participants received 23 trains of stimuli, interleaved with 22 

interstimulus intervals. Each train lasted 5000 ms. The inter stimuli interval randomly 

varied between 4000 and 6000 ms. In order to control for participants’ attention 

during the training, 5 auditory stimuli (a “beep”) were randomly presented during the 

inter stimuli intervals. Participants were asked to respond to the” beep” stimuli by 

tapping their foot on the floor. Before the training, participants were presented to the 

different tactile and auditory stimuli used, so they could easily recognize them during 

the task. Each training session lasted around 5 minutes. 

Asynchronous Auditory Training 

The same auditory and tactile stimuli used for the synchronous training were used. 

Each train consisted of ten tactile stimuli, ten auditory stimuli and two pauses, for a 
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total duration of 6000 ms each. The training was the same as for the synchronous 

condition, but in the asynchronous condition auditory and tactile stimuli were 

presented asynchronously, with a randomized temporal delay between the two. This 

way, neither a spatial (tactile stimulus at the hand and auditory stimulus in the far 

space) nor a temporal coincidence was present between auditory and tactile events. 

Subjects were blindfolded during both the experiment and the training. 

 

Design 

Participants performed both the Synchronous and the Asynchronous auditory training 

in two different days. In each day of testing, we measured PPS representation before 

and after the training sessions. In Day 1, before tool-use participants performed the 

audio-tactile interaction task to assess PPS representation in a baseline condition. 

Then, they performed two sessions of the synchronous auditory training. Each session 

was intermingled with an assessment session, consisting of one block of the audio-

tactile interaction task. On a different day, participants underwent the same procedure 

with the asynchronous training. The order of synchronous or asynchronous training 

was counterbalanced between subjects. 

 

6.2.2 Results 

	
  
Participants were extremely accurate in responding to the “beep” stimuli during both 

the synchronous and asynchronous training, meaning that they paid attention during 

the training (mean accuracy 97% and 98% respectively). In order to study the 

relationship between RTs and the different perceived position of sound in space as a 

proxy of PPS representation, we calculated tactile RTs both for IN and OUT sounds at 

the different temporal delays at which tactile stimulation was administered. RTs 
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exceeding more than 2 standard deviations from the mean RT were considered 

outliers and trimmed from the analyses. At every temporal delay, from T1 to T5, 

sound is perceived in a different position of space with respect to the stimulated body 

part. Given the equivalent segmentation of the different temporal delays from T1 to 

T5, there was a spatial correspondence between the perceived position of IN and OUT 

sounds at T1 IN and T5 OUT (farthest distance from the body) and at T2 IN and T4 

OUT (far distance), T3 IN and T3 OUT (intermediate distance), T4 IN and T2 OUT 

(close distance), T5 IN and T1 OUT (closest distance). We analysed RTs as a 

function of the five possible perceived distances, from D1, the farthest distance 

(corresponding to T1 for the IN sound and T5 for the OUT sound), to D5, closest 

distance (T5 for the IN sound and T1 for the OUT sound) both for IN and OUT sound. 

We entered tactile RTs in a repeated measures ANOVA with Training (Synchronous, 

Asynchronous), Condition (Before Training, After Training), Sound (IN, OUT) and 

Distance (from D1 to D5) as within subjects factors, and Order (Synchronous-

Asynchronous; Asynchronous-Synchronous) as between subject-factor. 

Results show a significant interaction Training X Condition X Order [F(1,14)=5.73, 

p<0.05] and a trend in the Training x Condition interaction [F(1,14)=3.91, p=0.06]. In 

order to explore how the different training (Synchronous, Asynchronous) affected 

participants’ responses in the audio-tactile interaction task, we then conducted two 

separate ANOVAs for the two trainings. 

 

Synchronous Auditory Training 

The ANOVA conducted on RTs with Condition (Before Training, After Training), 

Sound (IN, OUT) and Distance (from D1 to D5) as within subjects factors showed a 

significant three-way interaction [F(4,60)=2.57, p<0.05]. As the present task is 
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especially sensitive to approaching as compared to receding sounds (see Chapter 4), 

here we focused on results concerned IN sounds. OUT sounds data are presented in 

Table 6.1. Before Training, for the IN sound the function describing the relationship 

between tactile RTs and the perceived position of sound in space showed that tactile 

RTs progressively sped up as the perceived sounds’ distance from the body decreased 

(See Figure 6.3). In particular, RTs at D1 (mean RTs ±S.E.M; 517 ms ±23) and D2 

(497 ms ±24) - when sounds were perceived far from the body - were significantly 

slower as compared to D3 (464 ms ±22), D4 (459 ±23 ms) and D5 (455 ms ±26, all 

ps<0.01, Newman-Keuls corrected) - when sounds were perceived close to the body. 

The spatial modulation of tactile perception due to sound position indicates that the 

boundaries of PPS representation before the training could be localized between D2 

and D3, in line with previous results with the same paradigm (see Experiment 5.1, 

Chapter 5). Interestingly those boundaries were extended after the Synchronous 

training, as shown by a change in the shape of the function describing the relationship 

between the perceived sound position and tactile RTs. After the training, indeed, RTs 

at D2 (470 ms ±23), previously associated with a perceived far position in space, were 

no more significantly different as compared to RTs in D3 (450 ms ±22), D4 (439 ms 

±22) and D5 (439 ms ±22). Thus, the critical spatial range where sounds became 

effective in modulating tactile RTs shifted to include positions more distant from the 

hand, i.e. between D2 and D1, whereas it was located between D3 and D2 before the 

training. Indeed, RTs at D2, and not at any other distance, were significantly faster 

after training as compared to before training (p<0.02). 
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Figure 6.3 Audio tactile interaction task results for the IN sound, Synchronous condition. Mean (and 
S.E.M.) RTs at different perceived sound distances from D1- farthest - to D5- closest - (corresponding 
to different times of tactile stimulus delivery), Before training (filled line) and After training (dotted 
line).  
 

 

 

OUT sound D1 D2 D3 D4 D5 

Before 

Training 
505 ms ±27 474 ms ±24 460 ms ±25 476 ms ±25 477 ms ±26 

After 

Training 
466 ms ± 26 451 ± 23 447 ± 23 457 ± 23 445 ± 23 

 

Table 6.1 Audio tactile interaction task results for the OUT sound, Synchronous condition. Mean 
(and S.E.M.) RTs at different perceived sound distances from D1- farthest - to D5- closest - 
(corresponding to different times of tactile stimulus delivery). For the OUT sound the pattern of results 
was similar to that for the IN sound, with a critical difference. As for the IN sound, results showed a 
speeding up effect of tactile RTs as soon as the sound approached the body. However, the spatial 
distance where sounds became effective in modulating tactile RTs was different as compared to the IN 
sound. Before Training tactile RTs at D1 were significantly slower as compared to RTs at D2, D3, D4, 
and D5. After the training, however, RTs at D1 was no longer different from RTs at every others 
perceived distance (all ps>0.59), confirming a shift in the spatial range where sounds are effective in 
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modulating tactile RTs towards the far space, i.e. around D1, when it was located around D2 before the 
training. Indeed, RTs at D1 and not at any other distance were significantly faster after training as 
compared to before training (p<0.01). The different modulation of tactile RTs due to sound processing 
between IN and OUT sound can be explained with a stronger effect of approaching sounds in 
modulating tactile processing as compared to receding sound (see Chapter 4 of this dissertation). These 
results are in keeping with several studies both in primates and in humans, showing that approaching 
stimuli have been shown to be particularly relevant at different levels of information processing as 
compared to receding stimuli (Hall & Moore, 2003). 
 
 

Asynchronous Auditory Training 

We analysed RTs as a function of the five possible perceived distances, from D1, 

farthest distance, to D5, closest distance both for IN and OUT sound, as for the 

synchronous training. The ANOVA conducted on RTs with Condition (Before 

Training, After Training), Sound (IN, OUT) and Distance (from D1 to D5) as within 

subjects factors showed a significant Sound X Distance interaction [F(4,60)=6.85, 

p<0.05]. The pattern of results both for IN and OUT sounds mirrors the same effect 

found for the Synchronous training before training: as sound distance from the body 

decreased, RTs progressively shortened. Newman-Keuls post-hoc comparisons 

confirmed this effect: for the IN sound tactile RTs at D1 (Mean RTs ± S.E.M, 484 ms 

±24) and D2 (481 ms ±26), when the sound was perceived far from the body, were 

slower compared to RTs at D3 (444 ms ±25), D4 (440 ms ±28) and D5 (433 ms, ±25, 

all ps <0.01), when the sound was perceived close to the body. For the OUT sound, 

the pattern of results was similar (see Table 6.2 caption). Importantly, the space 

dependent modulation of RTs due to sound position was not different before and after 

the training session, as the three-way interaction Condition X Time X Distance was 

not significant [F(4,60)=0.39, p=0.82], as well as the main effect of Condition 

[F(1,15)=1.98, p=0.18]. 
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Figure 6.4 Audio tactile interaction task results for the IN sound, Asynchronous condition. Mean (and 
S.E.M.) RTs at different perceived sound distances from D1 - farthest - to D5 - closest - (corresponding 
to different times of tactile stimulus delivery), Before Training (filled line) and After Training (hatched 
line). Results for the IN sound clearly showed that the pattern of responses did not change Before and 
After Training: indeed, both Before and After Training tactile RTs at D1 and D2 when the sound was 
perceived far from the body, were slower compared to RTs at D3, D4 and D5. 
 
 
 
 
 
OUT sound D1 D2 D3 D4 D5 

Before 

Training 
466 ms ±22 443 ms ±22 426 ms ±21 447 ms ±20 449 ms ±23 

After 

Training 
485 ms ± 27 471 ± 31 457 ± 32 474 ms ± 30 451± 29 

 

Table 6.2 Audio tactile interaction task results for the OUT sound, Asynchronous condition. Mean 
(and S.E.M.) RTs at different perceived sound distances from D1- farthest - to D5- closest - 
(corresponding to different times of tactile stimulus delivery), Before and After Training. Results 
showed that for the OUT sound, the pattern of results was similar: RTs at D1 (476 ms ±25) were 
significantly lower as compared to RTs at D2 (457 ms ±26), D3 (441 ms ±27), D4 (460 ms ±25) and 
D5 (450 ms ±26). 
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6.3 Discussion 

Results from the present study demonstrated that a training consisting in a 

synchronous presentation of tactile stimuli at the hand and auditory stimuli in the far 

space was able to modify the boundaries of the PPS representation around the hand. 

In order to measure the extension of PPS, we used the task previously developed by 

our group and presented in Chapter 4 of this dissertation. By means of this task we 

measured multisensory interaction around the body along a continuum between far 

and near space in order to identify the boundary of PPS representation. We 

demonstrated that the boundary of PPS was pushed farther in space after a 

synchronous audio-tactile training, suggesting an extension of PPS representation 

after such training (see also Chapter 5). The temporal coincidence between the tactile 

stimulus at the hand and the auditory stimulus from the far space during the training is 

necessary to promote an extension of PPS representation, since the asynchronous 

training did not affect PPS representation.  

In the last decade neurophysiological, neuropsychological and behavioural studies 

have investigated the dynamic changes in multisensory representation of peripersonal 

space due to tool-use. These studies data demonstrate that our perception of the 

peripersonal space is not static, but it can be modified by experience and specifically 

by a training with a tool that projects the possibility of acting farther in space. 

However, the mechanism underlying the extension of PPS after tool-use is largely 

unknown. In the present study we tested the prediction generated by a neural network 

model developed by Magosso and colleagues (2010) to explain this mechanism. The 

model predicts that the modification of peri-hand space arises from a strengthening of 

synapses between visual neurons centred on the far space and multisensory neurons, 
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due to the coupling of tactile signals from the hand and visual signals from the far 

space, by means of Hebbian-like mechanism. As a consequence, visual receptive field 

of multisensory neurons extends towards the far space. Results from the present study 

after an auditory tactile training are in line with the results predicted by this neural 

network model. Moreover, these results are in line with results from Iriki and 

colleagues (1996) in monkeys, showing that hand-centred visual RFs of neurons 

located in the intraparietal sulcus elongated after a training period of using a rake to 

retrieve pieces of food placed in the far space. This effect has been attributed to the 

formation of new functional synapses from high-order visual areas to the intraparietal 

cortex (Hihara et al., 2006; Ishibashi et al., 2002).  

Interestingly, the current results, as predicted by the neural network model, 

demonstrated that a change in peri-hand space mimicking that obtained after tool-use 

(see Chapter 5 of this dissertation) can be evoked also when a tool is not actually used 

or even present in the subject’s hand. A key factor, instead, is feeding the neural 

network with the same sensory stimulation produced by tool-use activity, i.e. the 

auditory stimulation due to the sound produced by the tool when hitting an object 

placed in the far space and the concurrent tactile stimulation at the hand due to 

handling the tool: tactile unimodal stimuli at the hand and auditory unimodal stimuli 

in the far space send feed forward synapses to bimodal neurons. The synapses linking 

unimodal to bimodal neurons are reinforced following a Hebbian rule during such 

training. The reinforcement of these synapses, that were latent before the experiment, 

is compatible with an extension of audio-tactile peri hand space, with a far auditory 

stimulus re-codified as being closer to the body. 

In the literature it has been suggested that an active experience with the tool is critical 

in promoting an extension effect on PPS, since a prolonged but passive exposure to 
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the tool failed to elongate the peri-hand space (Maravita et al., 2001). Then, the 

extension of the possibility of acting in the far space has been considered a key factor 

in promoting PPS extension. This interpretation fits well with the original definition 

of tool given from Benjamin Beck (see Chapter 2) and adapted from Holmes and 

colleagues (see Holmes et al., 2006; 2007a), saying that only objects that physically 

act upon another object can be considered tools. Results from several studies 

supported the idea that only a tool that physically and functionally connects near and 

far space, allocating processes of multisensory stimuli where the goal of the action is, 

can extend PPS space. This idea was partially disconfirmed by a recent study of 

Bassolino and colleagues (2010), in which authors demonstrated that using a mouse, a 

technological device which establishes a virtual – but not physical - connection 

between near and far space (Goldenberg & Iriki, 2007), could extend PPS. However, 

the study of Bassolino and colleagues still supported the idea that the that the 

functional attributes of a tool are critical in promoting a remapping of far space as 

near: a mouse promoted an extension effect on PPS in the portion of space where the 

effect of action was realized, that is the monitor of the computer in this study, thus 

pointing out the critical role of the motor aspect of the tool in the plasticity of the 

PPS. 

Results from the present study instead are new in suggesting that the motor aspect of 

tool-use is not so critical in promoting plastic reorganization of spatial 

representations: neither a functional, nor a physical interaction between near and far 

space is necessarily required to determine an extension of PPS. According to the 

results of the present study, supported by the neural network model, tool-use extends 

PPS representation because it provides the brain with a tactile stimulation at the hand 

and a synchronous multisensory stimulation in the far space. Due to neuronal 
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plasticity based on Hebbian mechanism, multisensory areas associate two stimuli as 

they occur from the same space.  

A similar multisensory mechanism might underlie the Rubber Hand Illusion (RHI). In 

RHI experiments, a realistic fake hand can be perceived as a part of one’s own body if 

concurrent visuo-tactile stimulation is seen on the fake hand and felt on one’s own 

hand, hidden from view (see also Chapter 1). Makin and colleagues (2008) suggested 

that the illusory body parts ownership that people experience during the RHI might 

involve bimodal and/or trimodal neurons at the level of the premotor and parietal 

cortices that normally respond only to stimuli presented within one’s own PPS. It has 

been proposed that during the RHI just seeing the rubber hand being stimulated and 

experiencing a synchronous tactile stimulation on one’s own hand triggers a shift of 

the receptive field of bimodal neurons towards the fake body part (see also Blanke, 

2012, for a review). This effect might generate a change in body perception that is the 

rubber hand is perceived as the real hand. 

This interpretation of the RHI is in line with a recent fMRI study of Brozzoli and 

colleagues (Brozzoli, Gentile, & Ehrsson, 2012). In this study the authors tested how 

activity of premotor and parietal cortices in humans coding the PPS varies in response 

to visual stimuli presented close to the subject’s real hand or to a rubber hand, placed 

several cm away from it. They found that only after that subjects experienced 

ownership for the rubber hand, through induction of the RHI, PPS areas responded 

also to stimuli presented close to the rubber hand. These findings suggest that visual 

RF of multisensory neurons extended to incorporate the rubber hand into PPS 

representation. Findings from the present study suggest that ownership for the rubber 

is not a necessary condition to trigger PPS expansion; rather, synchronicity between 

tactile stimulation at the hand and auditory or visual stimulation from a space location 
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other than that of the hand seems the critical factor.     

A final remark it that in the present experiment we demonstrated a change in the 

auditory PPS around the hand after a synchronized auditory-tactile training. A still 

open question is whether a visuo-tactile training would be able to dynamically modify 

the representation of the auditory space around the hand, or whether instead these 

mechanisms operate only within the same modality (auditory-auditory; or visual-

visual). Indeed, the model proposed by Magosso and colleagues (Magosso et al., 

2010c) simulated the activity of two unimodal (visual and tactile) areas, connected to 

a third multimodal area. Several pieces of evidence both in primates and in humans 

(see Chapter 1) demonstrated that also auditory information are coded within the PPS. 

Moreover results from the present study supported the idea that this neural network 

model could be updated with a third unimodal auditory area. However, it is still 

unclear whether a visual training, promoting the strengthening of the synaptic 

connections between visual neurons centred on the far space and multisensory 

neurons, by means of Hebbian-like mechanism, could extend an auditory 

representation of PPS. If this is the case, we could suppose the existence in the model 

of trimodal neurons that, during the training, receive information from visual neurons 

and send feedback synapses to unimodal auditory neurons. This interesting hypothesis 

deserves to be investigated in future studies. 
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CHAPTER SEVEN: PLASTIC MODIFICATION OF 

BODY AND PERIPERSONAL SPACE 

REPRESENTATION AFTER AMPUTATION 

	
  
	
  
	
  
	
  
[Canzoneri, E., Marzolla, M., Amoresano, A., Verni, G., & Serino, A. Amputation 

and prosthesis implantation shape body and peripersonal space representations. Under 

revision.] 

	
  
 

 

7.1 Introduction 

Result from the studies of the present work, as presented in Chapter 5, as well as 

several studies reviewed in the Introduction of this dissertation (see Chapter 2), 

demonstrated that both multisensory BR and PPS representations functionally 

changed and adapted after a training with a tool that extended the possibility of 

interacting with external stimuli beyond the limits of the physical body. Given the 

plasticity of these two forms of representation, we asked whether and how BR and 

PPS modify when the possibility of acting changes in the opposite direction, i.e. 

towards limitation, as it happens after upper limb amputation that, by modifying the 

physical structure of the body, dramatically limited the possibility of acting in the 

body space. From this point of view amputation represents a unique possibility to 

study brain plasticity due to the sudden lost of a part of the body. 

Unimodal somatosensory and motor body representations directly depend on the 
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structure of the physical body. Indeed, a large body of evidence shows that when a 

sudden change in the physical body occurs, such as in the case of traumatic 

amputation, extensive changes in unimodal body representations in MI and SI also 

occur (Buonomano & Merzenich, 1998; Chen, Classen, Yaseen, Hallett, & Cohen, 

1998; Reilly & Sirigu, 2008; Borsook et al., 1998). Little is known however about the 

extent to which multimodal body and space representations are dependent on the 

structure of the physical body, and how plastic these representations are following 

changes in body structure. Indeed, much less information is available about the effects 

of amputation on BR (see e.g. Nico, Daprati, Rigal, Parsons, & Sirigu, 2004 or 

Ehrsson, Rosen, Stockselius, Ragno, Kohler, & Lundborg, 2008) or on PPS 

representation (see e.g. Makin, Wilf, Schwartz, & Zohary, 2010). Therefore, the first 

aim of the present study is to investigate the effects of a sudden change in the 

structure of the physical body, such as after amputation of an upper limb, on a critical 

feature of BR, i.e., the perceived dimension of the residual body part, and on the 

extension of PPS around the affected body part. 

In amputee patients, the consequences of amputation are partially palliated by means 

of prosthesis implantation. Prostheses are artificial devices that on the one hand have 

the same role as a tool in expanding the functional potential of the physical body. On 

the other hand, in addition to tools, upper limb prostheses can also visually and 

aesthetically replace the amputated body part. Little is known on whether and how 

partially restoring the function and structure of the physical body by means of 

prosthesis implantation affects BRs and PPS representations. Thus, the second aim of 

the present study is to assess changes on the perceived dimensions of the stump and 

on the extension of the PPS around the upper limb, in individuals who use a 

prosthesis to compensate for upper limb loss.  
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To these aims, we recruited a group of 10 patients who underwent traumatic 

amputation of one upper limb at least 24 months before testing, and were implanted 

with and normally used a functional prosthesis. Patients performed a tactile distance 

perception task in order to assess the perceived length of the stump and of the healthy 

arm (see Experiment 7.1) and an audio-tactile interaction task in order to measure the 

extent of PPS representation around the stump and the healthy limb (see Experiment 

7.2). The comparison between the results for the two hemisomata provided evidence 

about the effects of amputation. The same experiments were also run while patients 

were or were not wearing their prosthesis during testing, and the results from these 

two conditions were compared in order to study the effect of prosthesis implantation 

on body and PPS representations. 

7.2 Methods 

Amputee participants 

Ten volunteers participated in the study (8 males and 2 females, mean age 45 years, 

range 21-66 years), recruited at the INAIL Prostheses Centre, Budrio, Bologna 

(http://www.inail-ricerca.it/index.aspx). They were healthy with the sole exception 

being that they had all one upper limb amputated either below or above the elbow, 

following a traumatic accident. Eight patients had their right arm amputated and the 

other two had their left arm amputated. Before the accident all patients were right-

handed. The inclusion criterion was that they must have been using a functional 

prosthesis at least 4–8 h daily for 5–7 days per week for at least 1 year. At the 

moment of testing, five patients had been using kinematic prostheses and the other 

five had been using myoelectric prostheses, from a variable period of time ranging 

from 2 to 42 years (mean=15.5; S.E.M.=±4.16). Functional prostheses were 
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cosmetically designed, so they resembled arm appearance. Patients’ demographic and 

clinical data are reported in Table 7.1. 

Control participants 

Twenty-nine healthy volunteers (22 females and 7 males, mean age 26.4 years, range  

19-62 years) participated in the study in three different experiments as a control group.  

 

 

Table 7.1 Patients’ demographic and clinical data  

 

!

Patient Age Gender Handiness Amputation 

side, level 

Prosthesis 

type 

Years since 

amputation 

Phantom 

limb 

symptoms 
P1 41 F Dx Right, above 

elbow 

Kinematic 2 Yes 

P2 56 M Dx Left, above 

elbow 

Myoelectric 21 Yes 

P3 50 M Dx Right, above 

elbow 

Myoelectric 18 No 

P4 30 M Dx Right, below 

elbow 

Kinematic 1.5 No 

P5 21 F Dx Right, below 

elbow 

Kinematic 2.5 Yes 

P6 38 M Dx Right, below 

elbow 

Myoelectric 18 No 

P7 66 M Dx Right, below 

elbow 

Myoelectric 16 Yes 

P8 62 M Dx Right, below 

elbow 

Myoelectric 42 No 

P9 41 M Dx Right, below 

elbow 

Kinematic 4 No 

P10 43 M Dx Left, above 

elbow 

Kinematic 3 Yes 
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All subjects gave their informed consent to participate in the study, which was 

performed in accordance with the Declaration of Helsinki. 

 

Experimental procedure: overall structure 

Amputee patients participated in two experiments, assessing BRs (Experiment 7.1) 

and PPS representations (Experiment 7.2A), performed in a single 2-hour and a half 

session. Between the first and the second experiment participants had a 15 min break. 

Seven out of ten patients participated in Experiment 7.1: two patients were excluded 

because of the very high level of the amputation (above the elbow), thus not allowing 

administering tactile stimuli of sufficient dimensions (see Experiment 7.1 methods), 

because the prosthesis covered most of the stump surface. One patient could not 

perform the experiment for matter of time. All patients participated in Experiment 

7.2A. 

Patients performed Experiment 7.1 and Experiment 7.2A in three different 

experimental conditions: stimuli were administered on the healthy limb (Healthy limb 

condition), on the amputated limb without prosthesis (Without-prosthesis condition) 

and on the amputated limb with prosthesis (With-prosthesis condition). In the healthy 

limb condition, tactile stimulation was administered on the upper part of the non-

affected limb, corresponding to the stump. In the with- and without-prosthesis 

conditions, tactile stimulation was administered on the stump on the more distal skin 

region reachable when the prosthesis was on. Tactile stimulation was never 

administered to scar tissue of the stump, to avoid any confounding effect due to loss 

of tactile sensitivity caused by peripheral deficits. The different experimental 

conditions were run in a counter-balanced between-subjects order for each experiment. 
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Seven healthy subjects (five males and two females, mean age 33.7 years, range 25-

62 years) were recruited as a control group for Experiment 7.1 and other ten healthy 

subjects (all females, mean age 22.1 years, range 19-24 years) for Experiment 7.2. 

Twelve naïve healthy subjects (two males and ten females, mean age 23.4 years, 

range 20-26 years) participated in Experiment 7.2B on PPS representation (see below). 

All healthy subjects from the control group performed the tasks on their right upper 

arm, on a skin region matching the site of stump stimulation used for amputee patients. 

 

Materials and procedure 

Experiment 7.1: Tactile distance perception task 

In order to assess the perceived length of the arm, we used the tactile distance 

perception task previously described in Chapter 5. Subjects received two pairs of 

tactile stimuli, one pair on the forehead (serving as a reference body part) and one pair 

on the upper arm (target body part), and they were asked to judge whether the 

distance between the two stimuli was longer on the forehead or on the arm. The 

perceived size of tactile stimuli touching the body depends on the perceived 

dimension of the body part tactilely stimulated (see de Vignemont, Majid, Jola, & 

Haggard, 2009; Longo et al., 2010; Medina & Coslett, 2010; Spitoni, Galati, 

Antonucci, Haggard, & Pizzamiglio, 2010: Longo & Haggard, 2011), and is 

influenced by visual (Taylor-Clarke et al., 2004) or proprioceptive (de Vignemont et 

al., 2005) information about the stimulated body part. Thus, the tactile distance 

perception task can be used as an indirect measure of the internal representation of 

body part size. In particular, we posit that perception of the distance between two 

tactile stimuli is rescaled on the basis of the context in which they are presented, 

according to a context-dependent bias: the same distance is perceived as longer when 
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presented in a smaller context as compared to when presented in a bigger context. 

This context-dependent effect is well documented in the field of visual perception, 

(e.g., the Ebbinghaus illusion, 1897), and haptic perception (e.g., Linkenauger et al., 

2010; Linkenauger et al., 2011) and we have recently confirmed this effect for a 

visual and a tactile distance perception task (Canzoneri, Ubaldi, Rastelli, Finisguerra, 

Bassolino & Serino, under revision; see Chapter 5). 

In the present experiment, we administered the tactile distance perception task, with 

tactile stimuli longitudinally delivered on the upper arm, along the arm axis, in order 

to measure the perceived length of the arm. In amputees, the task was performed in 3 

blocked conditions, run in counterbalanced between-subjects order, on the healthy 

limb and on the stump, with or without the prosthesis.  

 

Experiment 7.2: Audio-tactile interaction task 

In order to assess PPS representation, we used here the audio-tactile interaction task 

previously presented in Chapter 4. We measured vocal reaction time (RTs) to a tactile 

stimulus administered either on the upper arm in the healthy arm condition or on the 

stump in the with and without prosthesis condition, while task-irrelevant dynamic 

sounds were presented, giving the impression of a sound source either approaching, or 

receding, from the subject’s limb. On different trials, tactile stimulation was delivered 

at different temporal delays from the onset of the sound, such that it occurred when 

the sound source was perceived at varying distance from the body. Subjects were 

asked to respond as rapidly as possible to the tactile stimulation, trying to ignore the 

sound.  
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Figure 7.1 Experimental set up for Experiment 2 and Experiment 2B. 

 

 

We have repeatedly demonstrated that sounds boost tactile RTs when presented close 

to the body and not at a distance (Serino et al., 2007; Bassolino et al., 2010; Serino et 

al., 2011) and we have recently found that tactile RTs coupled to moving sounds 

progressively speeded up, to the extent that the sound source was perceived as 

approaching the body, and conversely slowed down, to the extent that the sound 

source was perceived as receding from the body (Canzoneri et al., 2012; See Chapter 

4). According to these effects, the function describing the relationship between tactile 

RTs and the perceived position of sounds in space at the occurrence of the tactile 
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stimulation can be used to measure the extension of PPS along a continuum between 

near and far space. 

7.3 Results 

Experiment 7.1: tactile distance perception task 

 
For each subject, we calculated the mean probability of reporting the distance on the 

upper arm as longer for all combinations of inter-point distances (P-Arm).  A priori P-

Arm is 50%, given the same number of longer stimuli administered of the forehead or 

on the arm. Recent findings indicate that subjects normally underestimate tactile 

distance along the arm axis, because of the distribution of tactile receptive fields on 

the arm surface (Longo & Haggard, 2011; Cody, Garside, Lloyd, & Poliakoff, 2008). 

Critically, based on probabilistic or physiological considerations, P-Arm should be 

constant for the different experimental conditions of stimulation on the healthy limb 

and on the amputated limb, both with and without prosthesis. We predicted that P-

Arm would vary depending on the perceived size of the stimulated arm. Specifically, 

in line with the context-dependent bias hypothesis (see Methods), the same tactile 

distance would be perceived as longer when presented on a body part perceived as 

shorter, as compared to when presented on body part perceived as longer. In other 

words, higher or lower P-Arm would indicate, respectively, that the upper arm is 

perceived as shorter or as longer.  

First of all, we compared mean P-Arm between the amputees’ healthy arm and the 

right arm of healthy controls, by means of an independent samples t-test. Results 

showed that scores did not differ significantly between the two groups [t(12)=1.42, 

p=0.18]. Scores were below 50%, as expected according to Longo and Haggard 

(2011), for both the amputees’ healthy arm (Mean P-Arm, ±S.E.M., 45%, ±4%) and 
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for healthy controls (37%, ±3%). These results suggest that amputation of one upper 

limb did not affect the implicitly perceived length of the healthy arm.  

In order to study the effect of amputation and prosthesis implantation on perceived 

arm length, we compared mean P-Arm between the healthy and the amputated limbs 

of patients, by means of a repeated measure ANOVA with Condition (Healthy Arm, 

With-prosthesis and Without-prosthesis) as within-subjects factor. The main factor of 

Condition was significant [F(2,12)=11.77; p<0.01]. In order to study the effect of 

amputation, we compared P-Arm for the healthy arm and the Without-prosthesis 

conditions: P-Arm was significantly higher when patients performed the task on the 

affected limb, while not wearing the prosthesis (61%, ±5%), as compared to the 

healthy arm (45%, ±4%; p<0.01; Newman-Keuls corrected). In line with the context-

dependent hypothesis (see Chapter 5), this result suggests that amputation reduces the 

perceived length of the remaining part of the affected limb. Critically, when patients 

performed the task with the stump, but while wearing their prosthesis, P-Arm is 

significantly lower (52%, ±6%) compared to the Without Prosthesis condition (61%, 

±5%; p<0.05 - Newman-Keuls corrected). These results suggest that wearing the 

prosthesis increased the perceived length of the stump, making it more similar to the 

perception of the healthy arm, such that the prosthesis partially replaced the missing 

limb. P-Arm was not statistically different between the healthy arm and the stump 

while patients wore the prosthesis (p=0.07). 
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Figure 7.2. Experiment 7.1 results. The graph shows mean P-Arm for healthy controls (white column), 
amputee healthy arm (black column), amputated arm without prosthesis (hatched column) and 
amputated arm with prosthesis (grey column). Error bars denote S.E.M. 
 

As this was a relatively unselected group of amputees, some patients verbally reported 

variable phantom limb pain and phantom limb sensations, whereas other patients did 

not refer any phantom limb phenomena at the time of the testing. Thus, in order to 

consider any possible effect of phantom limb sensations on the perceived length of the 

stump, we divided patients in two groups, one comprising four patients, who had 

experienced variable phantom limb sensations from the moment of the amputation 

until the moment of the test, and the other one, comprising three patients, who had not 

experienced any phantom limb sensations for at least 1 year previous to the time of 

testing. Due to the small sample size of the group, we used non-parametric tests. 

Mann-Whitney U analyses showed that P-Arm was not different between the two 

groups both in the With prosthesis condition (U=4, p=0.48) and in the Without 

prosthesis Condition (U=6, p=1), thus not showing any effect of phantom limb 

sensations of the perceived size of stump. 
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Experiment 7.2A: audio-tactile interaction task 

 
As tactile stimulation was set clearly above threshold, false alarms and omissions 

were rare (on average: 0.86% and 2.87%, per subject, per condition, respectively). 

Thus, performance was studies in terms of RTs only. In order to study the relationship 

between RTs and perceived sound position as a proxy of PPS extension, we 

calculated mean RTs to tactile target both for IN and OUT sounds at the various 

temporal delays at which tactile stimulation was administered. RTs exceeding more 

than 2 standard deviations from the mean RTs were considered outliers and trimmed 

from the analyses (on average: .81% of trials per subject per condition). At every 

temporal delay, from T1 to T5, sounds are perceived as being at a different position in 

space with respect to the stimulated body part (see Canzoneri et al., 2012). Given the 

symmetric shape of the two waveforms for the IN and OUT sounds, and the 

equivalent segmentation of the different temporal delays from T1 to T5, there was a 

spatial correspondence between the perceived position of IN and OUT sounds at T1 

IN and T5 OUT (farthest distance from the body), at T2 IN and T4 OUT (far distance), 

T3 IN and T3 OUT (intermediate distance), T4 IN and T2 OUT (close distance), and 

T5 IN and T1 OUT (closest distance). We averaged tactile RTs for these couples of 

delays and analysed RTs as a function of the five possible perceived distances, from 

D1, farthest distance, to D5, closest distance, in a unique function. 

First of all, in order to study PPS representation around the healthy limb, we 

compared tactile RTs at each distance, from D1 to D5, when stimulation was 

administered to the amputees’ healthy arm and to the arm of healthy controls. A 

repeated measures ANOVA with Distance (D1, D2, D3, D4, D5) as the within subject 

factor and Group (Amputees Healthy Arm - Controls) as the between subject factor 

revealed a significant main effect of Distance [F(4,72)=17.31, p<0.001], showing that 
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tactile RTs progressively speeded up as the perceived sound approached the body (see 

Figure 7.3). Newman-Keuls post-hoc tests confirmed that RTs at D1 (Mean RTs 

±S.E.M., D1=440 ms ±16) and D2 (430 ms ±17) – when the sound was perceived as 

being far from the body – were significantly slower as compared to RTs at D3 (414 

ms ±16), D4 (402 ms ±16) and D5 (404 ms ±16; all ps<0.01) – when the sound was 

perceived as being close to the body. This pattern of results was equivalent between 

patients and healthy controls. Indeed, neither the main effect of Group [F(1,18)=0.81, 

p=0.38] nor the Distance X Group interaction [F(4,72)=0.32, p=0.86] were significant. 

Taken together these results suggest that there is a critical spatial range (in this case 

between D2 and D3) within which auditory stimuli begin interacting with tactile 

stimuli administered on the body surface, resulting in quicker tactile RTs. This spatial 

range could be considered as the boundaries of the PPS. Certainly, the present results 

suggest that the boundaries of PPS representation around the upper limb do not differ 

between healthy controls and amputees, for what concerned the non-affected side of 

the body. 

In order to study the effect of amputation and prosthesis implantation on PPS 

representation, we compared the results between patients’ healthy and amputated arm, 

while wearing or not wearing their prosthesis. We entered tactile RTs in a repeated 

measure ANOVA with Condition (Healthy Arm, With-prosthesis and Without-

prosthesis) and Distance (D1, D2, D3, D4, D5) as the within subject factors. The main 

effect of Distance was significant [F(4,36)=19.92, p<0.001], resembling the pattern of 

responses found for the healthy arm and for controls: RTs became faster when the 

sound was perceived as being closer to the body (see Figure 7.4). Critically, the main 

effect of Condition was also significant [F(2,18)=3.64, p<0.05]. 
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Figure 7.3. Experiment 7.2A results for healthy controls and amputee healthy arm. Mean RTs at 
different perceived sound distances (from D1 - farthest - to D5 - closest), corresponding to different 
time of tactile stimulus delivery and best fitting sigmoidal functions describing the relationship 
between RTs and sound distance, for healthy controls (grey line) and for amputee healthy arm (black 
line). Error bars denote S.E.M. 

 

A Newman-Keuls post-hoc test showed that when patients performed the task without 

the prosthesis, RTs were slower (418 ms, ±29) as compared to when they performed 

the task with the healthy arm (404 ms, ±29; p<0.05; one-tailed). When patients 

performed the task with the amputated arm, RTs were faster when they wore the 

prosthesis (398 ms ±26) as compared to when they did not wear the prosthesis 

(p<0.05). RTs were not significantly different between the Healthy Arm and the 

With-prosthesis conditions (p=0.45). Taken together these results suggest that 

amputation affected PPS representation around the stump, as compared to the non-

affected limb, but wearing a prosthesis compensated this effect, making PPS 

representation around the stump more similar to PPS representation around the 

healthy arm. The two-way Distance X Condition interaction was not significant 

[F(8,72)=1.13, p=0.35], suggesting that the modulation of RTs depending on the 

perceived position of sound in space did not differ between the different conditions. 
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Figure 7.4. Experiment 7.2A results. Mean RTs at different perceived sound distances (from D1 - 
farthest - to D5 - closest), corresponding to different time of tactile stimulus delivery and best fitting 
sigmoidal functions describing the relationship between RTs and sound distance, for amputee healthy 
arm (black line), amputated arm without-prosthesis (dotted line) and amputated arm with-prosthesis 
(grey line). Error bars denote S.E.M. 

 

As for Experiment 7.1, in order to consider any possible effect of phantom limb 

syndrome on PPS representation, we compared results in the PPS task between 

patients with (5 patients) or without (5 patients) phantom limb sensations. Mann-

Whitney U analyses showed that mean RTs to tactile stimuli did not differ between 

the two groups in the With-prosthesis (U=8, p=0.35) and in the Without-prosthesis 

(U=9, p=0.46) conditions.  

Experiment 7.2B 

	
  
In order to interpret the differential effect on RTs found between the with- and 

without prosthesis conditions in the entire patient sample, we hypothesized that, when 

patients did not wear the prosthesis, sound position was codified with respect to the 

stump, which represented the boundaries of the physical body; instead, when patients 

wore the prosthesis, the perceived position of sound in space was re-calibrated with 
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respect to the prosthetic hand, such that the prosthetic hand itself represented the new 

body boundary. In this way, a sound perceived as being distant with respect to the 

stump without the prosthesis, was represented as closer to the body when the 

prosthesis was on, because it was closer to the prosthetic hand. In other words, tactile 

stimulation was coded with respect to the stump in the without-prosthesis condition 

and with respect to the prosthetic hand in the with-prosthesis condition. This 

recalibration resulted in a general reduction of RTs in every temporal delay, i.e., at 

each sound distance from the body. In order to test this hypothesis, we ran a further 

experiment in a group of twelve naïve, healthy subjects (Experiment 7.2B). The task 

was the same as for the previous experiment, but while sound positions were kept in a 

constant relationship to the upper arm (i.e. the near loudspeaker was close to the 

upper arm and the far loudspeaker was at 100 cm), tactile targets were administered in 

two different experimental conditions: either to the arm (Upper Arm condition), or to 

the hand (Hand condition). Thus we simulated, respectively, the stump stimulation in 

the without-prosthesis condition and the recoding of tactile stimulation to the 

prosthetic hand in the with-prosthesis condition in amputee patients.  

Subjects performed two blocks for each experimental condition (Upper Arm and 

Hand condition), ran in a counterbalanced order. False alarms and omissions were 

rare (on average: 0.45 and 1.89%, per subject, per condition, respectively). Mean RTs 

(after trimming outliers, .54% of trails per subject per condition) to tactile stimulation 

were entered in a repeated measures ANOVA with Condition (Upper Arm – Hand) 

and Distance (from D1 to D5), as within subject factors, and Order of administration 

(Upper Arm – Hand; Hand – Upper Arm) as between subject factor. As in the 

previous experiment, the main effect of Distance was significant [F(4,40)=11.63, 

p<0.0001], replicating the modulation of tactile RTs depending on the position of 
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sound in space (see Figure 7.5), while the Condition X Distance interaction was not 

significant F(4,40)=1.56, p=0.20]. Critically, the main effect of Condition was 

significant [F(1,10)=5.34, p<0.05]. Newman-Keuls post-hoc tests showed that when 

subjects performed the task while receiving the tactile stimulation on the hand they 

were generally faster (Mean RTs ± S.E.M, 353 ms ±15) in every temporal delay as 

compared to when they received the tactile stimulation on the upper arm (370 ms, 

±21).  

 

 

Figure 7.5. Experiment 7.2B results. Mean RTs at different perceived sound distances (from D1 - 
farthest - to D5 - closest), corresponding to different time of tactile stimulus delivery and best fitting 
sigmoidal functions describing the relationship between RTs and sound distance, for Upper Arm 
condition (black line) and Hand condition (dotted line). Error bars denote S.E.M. 
 

 

These results suggest that when the tactile stimulation was administered at the hand, 

while the near sound source was placed close to the upper arm, sounds were 

processed as if they were closer to the boundaries of the stimulated limb, i.e., the hand, 

resulting in a general reduction of tactile RTs in every temporal delay as compared to 
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when tactile stimuli were administered at the upper arm. This effect suggests that the 

perceived position of sound was computed with respect to the part of the limb 

tactilely stimulated, thus being salient to the task, and clearly resembles the effect 

found in amputee patients when task was performed while wearing, as compared to 

not wearing, the prosthesis. 

 

7.4 Discussion 

Two main results have been obtained by the present study. First, a modification in the 

physical structure of the body, such as limb loss due to traumatic amputation, affects 

high-order multisensory representations of the body and of the space around the body. 

Second, such effects are, at least partially, compensated by prosthesis implantation 

substituting the lost body part. Results from Experiment 7.1 show that, following 

amputation, the implicitly perceived length of the residual part of the upper arm 

decreased, such that patients perceived their stump as shorter as compared to the 

healthy arm. Wearing a prosthesis increased the perceived length of the arm, making 

the perception of the stump length more similar to that of the healthy arm. Results 

from Experiment 7.2 show that amputation and prosthesis implantation also affected 

the representation of PPS around the stump. We showed that task-irrelevant sounds 

boosted tactile RTs in so far as they were perceived as being closer to the stimulated 

body part, both in healthy controls and in amputees tested on their healthy arm. This 

multisensory effect was reduced when amputated patients were tested on their 

amputated arm (without-prosthesis); in this condition patients showed slower RTs as 

compared to conditions involving healthy arm assessment or healthy controls, 

suggesting that after amputation, the boundaries of PPS shifted towards the stump. 

However, when the task was administered on the stump while patients wore their 
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prosthesis, there was again the same speeding effect on tactile RTs depending on the 

position of sounds in space, as for the healthy limb and in controls, suggesting that 

prosthesis implantation restored the boundaries of PPS so that they included the 

prosthetic hand. 

Until now, an extensive body of evidence has demonstrated that amputation leads to a 

modification in unimodal motor and somatosensory representations of the body in the 

brain, both in monkeys (Wu & Kaas, 1999; Merzenich, Nelson, Stryker, Cynader, 

Schoppmann, & Zook, 1984; Buonomano & Merzenich, 1998) and in humans (Chen 

et al., 1998; Reilly & Sirigu, 2008; Borsook et al., 1998; Ramachandran & Hirstein, 

1998; Serino & Haggard, 2010) suggesting a strong dependency of unimodal body 

representations on the structure of the physical body. Phantom limb phenomena, such 

as tactile sensations arising from the missing limb or feeling of moving the amputated 

limb, occur at one point in almost every individual suffering amputation and offer a 

striking example of the link between plasticity in primary cortical body 

representations and body experience (Karl, Birbaumer, Lutzenberger, Cohen, & Flor,  

2001; see Ramachandran, 1993 and Serino & Haggard, 2010 for reviews). 

Interestingly, phantom limb phenomena are not limited to a sensory or motor percepts 

originating from the missing body part (Hunter et al., 2003; Kooijman et al., 2000), 

but are often referred by patients as conscious awareness of the presence - implying 

position, shape and size - of the missing limb (Flor et al., 2006; Hunter et al., 2003). 

The complexity and richness of these phantom limb phenomena is hardly explainable 

as resulting only from cortical reorganization in unimodal primary cortices. Rather, 

they suggest an involvement of multisensory body representations, which integrate 

the continuous flow of information from different sensory modalities in order to give 

raise to the experience of the body and its parts (Blanke & Metzinger, 2009; Petkova 
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et al., 2011a; Ionta et al., 2011). Yet surprisingly little is known about the extent to 

which multisensory body and space representations are dependent on the structure of 

the physical body and are affected by limb loss. By showing that upper limb 

amputation changes the perceived dimension of the residual limb and alters 

multisensory integration in the space surrounding the limb, the present study offers 

evidence of plasticity in multisensory body representations following a change in the 

physical structure of the body. 

The present results also provide new insights about the direction of these effects:  

shrinkage of a part of the physical body following amputation resulted in contraction 

of multisensory body and space representations; when they did not wear their 

prosthesis, amputee patients perceived their stump as shorter and PPS representation 

around the stump shrunk. Previous studies provided evidence of plastic modifications 

of both body and PPS representations in the direction of extension. It is well known 

that PPS representation, normally limited around the body, extends toward far space 

after using a tool in order to reach for distant objects (Farnè et al., 2005b; Farnè & 

Làdavas, 2000; Maravita et al., 2001 Holmes et al., 2004; Maravita et al., 2002). More 

recently, it has been shown that tool-use also affects the perception of the body itself, 

as it changes arm motor kinematics and increases the perceived dimension of the limb 

operating the tool (Cardinali et al., 2009a; Canzoneri, Ubaldi, Rastelli, Finisguerra, 

Bassolino, & Serino, Tool use shapes the boundaries of both body and peripersonal 

space representations, under revision; see Chapter 5). Interestingly, there is much less 

evidence of contraction of body and PPS representation (e.g., see Di Russo et al., 

2006; Longo, Kammers, Gomi, Tsakiris, & Haggard, 2009). Since development tends 

in the direction of growing and cannot normally be reversed, it makes sense that 

extension phenomena are more common and more easily demonstrated than 
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contraction phenomena. Limb loss represents a rare mean to study plasticity in body 

representations in the direction of shrinkage. Wearing a prosthesis, however, partially 

replaces the physical presence of the amputated limb and partially re-establishes its 

function of acting in space. 

The second main finding of the present study is that while wearing a functional 

prosthesis, long-term prosthesis-users, such as the patients of the present sample, 

perceive their stump as longer and the boundaries of PPS representation shifted to 

include the region around their prosthetic hand. In order to interpret these plasticity 

effects in multimodal body and space representations after amputation (in the 

direction of contraction) and prosthesis implantation (in the direction of extension) we 

refer to the well-documented sensory-to-motor functions of BRs and PPS 

representations. The body is the medium through which we interact with external 

stimuli, and such interactions normally occur in the space immediately surrounding 

the body. It is well known that both in monkeys (Graziano & Cooke, 2006) and in 

humans (Serino et al., 2009; Makin et al., 2009) multisensory fronto-parietal areas 

responding selectively to stimuli within PPS are directly linked to the motor system in 

order to trigger fast and appropriate motor reactions to stimuli potentially interacting 

with body. In the same way, information related to the size and position of different 

body parts is critical for action upon external objects. Consistent with this view, we 

show that when the possibility of acting with a limb is limited, due to amputation, BR 

and PPS representations contract, whereas when such possibility is, at least partially, 

restored by using a functional prosthesis, BRs and PPS representations extend, such 

that they incorporate the prosthesis into the representation of the upper limb. 

The prosthesis’ function of restoring the possibility of the body to act in its space in 

amputees resembles that of a tool in extending the reachable space of healthy subjects. 
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However a prosthesis is more than a tool, in that the majority of the prosthetic limbs, 

differentially from tools, also mimic the visual appearance of a limb. The prostheses 

used by the present sample of patients were artificial devices that faithfully 

reproduced the exterior appearance of a real arm and hand; they were also controlled 

mioelectrically or kinematically by residual muscles in order to allow quite complex 

limb movements, such as precision grip through thumb opposition and wrist rotation. 

Since prosthetic limbs share more features with an anatomical limb as compared to 

tools, prosthesis-use and tool-use could have differential effects on the plasticity of 

body representations. In particular, distinction has been proposed between the effects 

of body extension (e.g., in the case of tool-use) and body incorporation (e.g., in the 

case of prosthesis-use) (De Preester & Tsakiris, 2009; see also Giummarra et al., 

2008). It is still not clear, however, whether and to what extent a prosthetic limb can 

be embodied such that it becomes in some sense indistinguishable from a real body 

part. We did not directly test the subjective experience of prosthesis embodiment, but 

the present results suggest that although the effect of prosthesis implantation might 

overcome that of tool-use, prosthetic limbs cannot be totally conceived as a real part 

the body, at least because they are known to be attachments that can be taken off. 

Accordingly, our data show that in amputee patients, two different body 

representations coexisted and were differentially activated when patients did or did 

not wear their prosthesis. Indeed, the perceived length of the stump and the extension 

of PPS immediately shrunk or elongated, depending on whether the prosthesis was 

respectively on or off. The coexistence of multiple body representations depending on 

different body states (with or without a tool) resembles other forms of plasticity 

shown after long-term tool-use experiences (Serino et al., 2007; Bassolino et al., 2010; 

see Longo & Serino, 2012). 
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A final critical feature in which most commonly used prostheses and a real part of the 

body differ is in providing afferent sensory information from the limb to the brain. 

Although the vast majority of current prosthetic limbs (including those used by the 

present sample of patients) allow a rather sophisticated level of motor control, they do 

not normally include any means of providing somatosensory feedback. Incoming 

afferent information from the body surface is a fundamental cue for the sense of body 

ownership (see Serino & Haggard, 2010; Tsakiris, 2010). Recent findings suggest that 

providing amputees with somatosensory feedback from prosthetic limbs might induce 

a stronger sense of body ownership (Ehrsson et al., 2008) and contribute to better 

acceptance and incorporation of the prosthesis into their body representation 

(Marasco, Kim, Colgate, Peshkin, & Kuiken, 2011; Mulvey, Fawkner, Radford, & 

Johnson, 2009). Understanding the mechanisms of prostheses embodiment and 

identifying key features of prosthetic devices favouring prosthesis-use and acceptance 

are key issues for rehabilitation of limb loss and the new field of neuroprosthetics. 

The present study might contribute to research in this field: on the one hand, it 

demonstrates striking effects of amputation and prosthesis implantation on the 

perception of body part size and on multisensory integration in the space around the 

body; and, on the other hand, it proposes sensitive and easy-to-apply tasks to measure 

the effects of using prosthetic devices on BRs and PPS representation. 
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CHAPTER EIGHT: SOCIAL MODULATION OF 

PERIPERSONAL SPACE BOUNDARIES 

 
[This research has been published in: Teneggi, C., Canzoneri, E., di Pellegrino, G., 

Serino, A. (2013) Social Modulation of Peripersonal Space Boundaries. Curr Bio, 

23(5), 406-11]. 

 

 

 

“My body appears to me as an attitude directed towards a certain 

existing or possible task… its spatiality is not, like that of external 

objects or like that of “spatial sensations”, a spatiality of position, 

but a spatiality of situation.”  

(Merleau-Ponty, The Phenomenology 

of Perception, 1962; pp. 114–115) 

 

8.1 Introduction 

In Chapter 1 and Chapter 2 several studies were reviewed showing how, in a variety 

of species including humans, multisensory stimuli are integrated in a limited space 

surrounding the body, i.e. within the Peripersonal Space representation. Critically, 

evidence from neurophysiology, neuropsychology and behavioral studies 

demonstrated that this representation is plastic, since it extends after using a tool to 

reach objects placed in the far space (see Chapter 2). Most of the previous cited 

studies investigated how PPS representation is shaped as a consequence of using a 
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tool to interact with external objects. Although within the PPS other human beings 

represent the most “salient” and important stimuli we can interact with, less is known 

about how other people could affect PPS representation. In order to investigate this 

issue, in the present study we tested how PPS changes as a function of the presence of 

(Experiment 8.1), and the interaction with (Experiment 8.2 and 8.3), others. In order 

to measure the extent of peripersonal space representation we used the audio-tactile 

interaction task presented in previous chapter of this thesis (see Chapter 4, 5, 6 and 7). 

Participants performed a tactile detection task on their face while concurrent task-

irrelevant sounds approached toward or receded from their face. Because a sound 

affects touch when occurring within PPS, by using this task we measured the critical 

distance from the subjects’ bodies, where sounds affected tactile RTs, along a 

continuum between near and far space: this point can be considered as the boundary 

of PPS representation. 

In Experiment 8.1A, participants performed the audio-tactile interaction task in two 

experimental conditions, facing either a mannequin (Mannequin condition), or another 

person (Other condition). The other person and the mannequin were placed at a 

distance of 100 cm from the participant, i.e. close to a far loudspeaker where 

approaching sounds originated from and receding sound terminated. If PPS 

representation is sensitive to social factors, a change in the extent of PPS boundaries is 

expected when participants face the other person as compared to when they face a 

mannequin. We anticipated that this was our actual finding. Then, in order to support 

the above conclusion, we run a series of control experiments to exclude confounding 

factors. First, in order to demonstrate that the paradigm used in the present study 

specifically measured a body-centred representation of PPS, in Experiment 8.1B a new 

group of participants performed the same audio-tactile interaction task facing either a 
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mannequin or another person, as for Experiment 8.1A, with a critical manipulation: 

participants were placed at an intermediate position between the near and far 

loudspeaker (at 50 cm from both), so that the distance between their body and the 

source of far sounds was halved, while the other (or the mannequin) occupied the same 

position close to the far loudspeaker. If the present task specifically assesses a body 

centred representation of PPS, in Experiment 8.1B the speeding effect on tactile RTs 

due to sounds occurrence should be less dependent on the positions of sounds in space, 

in comparison to Experiment 8.1A. 

Second, in order to demonstrate that that the social modulation of audio tactile 

interaction shown in Experiment 8.1A and 8.1B was specifically related to PPS 

representation, and was not a general crossmodal effect, in Experiment 8.1C a new 

group of participants performed an audio-visual interaction task while facing either 

another person, or a mannequin. We postulated that if the spatial modulation of 

multisensory interaction due to the presence of the other is a distinctive hallmark of a 

change in the representation of the space around the body, no spatially-dependent 

modulation of sensory processing should be found when participants process sensory 

stimuli not related to their body - “disembodied” –, e.g., visual stimuli.  

In Experiment 8.2 participants performed the audio-tactile task before and after 

playing a modified version of the Mutual Advantage Game (McCabe, Rassenti, & 

Smith, 1996; see Procedures below). Subjects were confronted either with a fair and 

cooperatively acting confederate or with a confederate who was unfair and acted not 

cooperatively, in order to verify whether the perceived feelings about the other person 

affected PPS representation.  
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8.2 Experiment 8.1 

8.2.1 Methods 

 
Participants  

Fifty students, all females, to avoid effects due to gender differences, participated in 

Experiment 8.1A (N=18, mean age=25.7 ±1 years, mean years of schooling=16 ±.43), 

Experiment 8.1B (N=18, mean age=26) and Experiment 8.1C (N=14; mean age=24). 

All participants were healthy and reported no history of psychiatric illness or 

neurologic disorder, and no problem of hearing, vision and touch. Participants were 

all blind regarding the nature of the experiments. All subjects gave their informed 

consent to participate in the study, which was approved by the local ethics committee 

in accordance with the Declaration of Helsinki. 

 

Materials  

Audio-tactile interaction task 

The audio-tactile interaction task was the same as previously described for Chapter 4 

(see Figure 8.1). During the task subjects were comfortably seated during the 

experiment beside a table, which the audio-tactile apparatus was mounted on. A black 

paperboard box (100 cm high, 120 cm long) was positioned on the table beside them, 

in order to cover two loudspeakers, one placed close to the participants’ right cheek 

(at ~5 cm), the other one placed at a distance of ~100 cm from the near loudspeaker 

(at the same elevation), thus far from the participant’s head. The two loudspeakers 

were hidden from view in order to prevent subjects from visually locating the origin 

of the sounds presented during the experiment. Tactile stimulus was administered on 

participants’ right cheek. 
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Figure 8.1 Experimental paradigm 

 

Each experimental condition consisted in a random combination of 8 target stimuli for 

each temporal delay from T1 to T5, for the IN and OUT sounds, resulting in a total of 

80 trials with a tactile target, randomly intermingled with 24 catch trials. Trials were 

equally divided in two blocks, lasting about 5 minutes each. 

In order to demonstrate subjects actually perceived the sound source at different 

locations according to different temporal delays (from T1 to T5) for the IN and the 

OUT sound, we ran a sound localisation experiment on 18 naïve subjects. Subjects 

were blindfolded and received a tactile stimulation on their right cheek at one of the 

different temporal delays in a series of 80 trials, randomly presented. At the end of 
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each trial, they were asked to verbally indicate the perceived position of the sound in 

space when they had felt the tactile stimulus, on a scale from 1 (very close) to 100 

(very far). Participants were explicitly invited to use the entire range between 1 and 

100, taking in account also for small differences in the perceived position of sound. A 

repeated measure ANOVA with the factors Sound (IN, OUT) and Temporal Delay 

(from T1 to T5) showed a significant two-way interaction [F(4,68)=256, p<0.0001]. 

Figure 8.2 clearly shows that, for the IN sound, subjects progressively perceived the 

sound closer to their body when the tactile stimulus was administered at successive 

temporal delays from T1 to T5. The pattern of responses was completely reversed for 

the OUT sound, when the sound was perceived in spatial positions progressively 

farther from the body from T1 to T5. Post-hoc comparisons (Newman-Keuls 

corrected) confirmed that localisation judgments for each temporal delay were 

significantly different from both the immediately successive and the immediately 

preceding one (all ps<0.01). Localisation judgments were also compared between IN 

and OUT sounds at spatially corresponding temporal delays: i.e. T1 IN ≈ T5 OUT; T2 

IN ≈ T4 OUT; T3 IN ≈ T3 OUT; T4 IN ≈ T2 OUT; T5 IN ≈ T1 OUT. There was a 

significant difference in perceptual judgments only for the comparison between T5 IN 

and T1 OUT (p<0.05): at the temporal intervals corresponding to the closest distance 

from the body, subjects perceived the OUT sound more proximal than the IN sound. 

No other significant differences between perceptual judgments for IN and OUT at 

corresponding temporal delays were found (all ps>0.12).  
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Figure 8.2. Sound localisation experiment results. 

 

Audio-visual interaction task 

The experimental set up was the same as for Experiment 8.1A, except that here 

participants were requested to respond as fast as possible to a visual stimulus (i.e., the 

illumination of an LED; diameter 40 mm; onset duration 100 ms), while ignoring 

dynamic sounds. No tactile stimulation was delivered. The visual target was placed 

between the participant and the mannequin/other, at a distance of 60 cm from the 

participant, aligned along the direction of gaze of the participant, who was instructed 

to look at the face of the mannequin/other during the task. The 60 cm distance was 

chosen in order to present the visual target clearly outside the participant’s visual PPS 

(which in monkeys has been shown to extend for ~30 cm; (Rizzolatti et al., 1981b), as 

well as outside the other’s PPS, while being clearly visible to the participant. 

As in Experiment 8.1A, the near and the far loudspeakers, placed respectively at the 

participant’s and the mannequin/other locations, generated illusory dynamic sounds, 

giving the impression of a sound source either approaching to or receding from the 

participant. Visual targets were administered at 5 different temporal delays from 
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sound onset, implying that they were processed when sounds were perceived at 5 

possible different distances from the subject (ranging from D1, very far, to D5, very 

close). Given the location of the LED, sounds were perceived at approximately the 

same location of the visual target when this was delivered at D3 (see Sound 

Localisation experiment, Figure 8.2). 

 

Procedure 

In Experiment 8.1A, participants performed the audio-tactile interaction task 

assessing PPS representation in two within-subjects conditions, facing either a 

mannequin (Mannequin condition), or another person (Other condition). The other 

person was an actor, a female, of approximately the same age as the participants, 

unknown to the participants. Subjects were told the actor was another student 

involved in another experiment. Two different actors were used, one for each half of 

participants, in order to avoid any idiosyncratic effects due to the actor’s appearance. 

The mannequin was a human-like torso (with head), made of white expanded 

polystyrene (length: 93 cm; shoulder-to-shoulder width: 43 cm), seated on a chair in 

front of the subjects. Schematic eyes and mouth were drawn on the mannequin head, 

to identify its face. In Experiment 8.1A, the other person and the mannequin were 

placed at a distance of 100 cm from the participant, i.e., close to a far loudspeaker 

from where approaching sounds originated and receding sounds terminated. During 

the task subjects were instructed to gaze at the mannequin’s or the other’s face. The 

order of administration of the Mannequin and the Other condition was 

counterbalanced between subjects. After the experiment participants also completed 

an Italian (Bonino, Lo Coco, & Tani, 1998) version of the Interpersonal Reactivity 

Index (IRI) (Davis, 1966), in order to exclude that results were contaminated by inter-
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group differences in empathy. IRI is a 28-item self-report survey that consists of four 

subscales, namely Perspective Taking (PT, that assess the tendency to spontaneously 

imagine and assume the cognitive perspective of another person), Fantasy scale (FS, 

that assess the tendency to project oneself into the place of fictional characters in 

books and movies), Empathic Concern (EC, that assess the tendency to feel sympathy 

and compassion for others in need) and Personal Distress (PD, that assess the extent 

to which an individual feels distress as a result of witnessing another's emotional 

distress). PT and FS assess cognitive components of empathy, while EC and PD 

correspond to the notions of other-oriented and self- oriented empathy-related 

emotional reactions. 

 

In Experiment 8.1B, the procedure for similar to that of Experiment 8.1A, except that 

participants were placed at an intermediate position between the near and far 

loudspeaker (at 50 cm from both), so that the distance between their body and the 

source of far sounds was halved, while the Other (or the Mannequin) occupied the 

same position close to the far loudspeaker. As for Experiment 8.1A, the other person 

was an actor, a female, of approximately the same age as the participants, unknown to 

the participants. Subjects were told the actor was another student involved in another 

experiment. At the end of the experiment, as for Experiment 8.1A, subjects performed 

a sound localisation task, in which were asked to indicate on a scale from 1 (at the 

position of the near loudspeaker) to 100 (at the position of the far loudspeaker) where 

they perceived the moving sound at the time of tactile stimulation. Subjects occupied 

a position corresponding to 50 in this scale. Results from this task are shown in Table 

8.2, revealing that, accordingly to the experimental manipulation of this experiment, 

sounds were perceived closer to the subjects’ body, as compared to Experiment 8.1A.   
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Data analysis and sigmoid fitting 

Vocal responses to tactile (Experiment 8.1A and 8.1B) and visual (Experiment 8.1C) 

stimuli were recorded by means of a voice-activated relay, and stored for off line 

analyses. RTs for trials from the same condition were then averaged for statistical 

analyses. For Experiment 8.1A, mean RTs to the tactile target at the different time 

intervals (for IN sounds only) were also fitted to a sigmoidal function described by 

the following equation: ( )
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, where x represents the 

independent variable (i.e., the timing of touch delivery in ms), y the dependent 

variable (i.e., the reaction time), ymin and ymax the lower and upper saturation levels 

of the sigmoid, xc the value of the abscissa at the central point of the sigmoid (i.e., the 

value of x at which y = (ymin+ ymax)/2) and b establishes the slope of the sigmoid at 

the central point. 

 

8.2.2 Results 

 
Experiment 8.1A. PPS Representation as a Function of the Presence of Others 

Because of the titration of tactile stimuli, error rates were extremely low (Other 

condition: mean omissions=3%, ±.1; mean false alarms=.4%, ±.001; Mannequin 

condition: mean omissions=2%, ±.008; mean false alarms=.4%, ±.004.) and therefore 

the performance was analysed in terms of RTs only. 

Mean RTs to the tactile stimulus administered at the different perceived sound 

distances were calculated for IN and OUT sounds and compared between the two 

conditions of facing the other or the mannequin, by means of an ANOVA with factors 

Distance (D1–D5, with D1 = farthest Distance and D5 = closest Distance), Sound (IN, 
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OUT), and Condition (Other, Mannequin). The critical three-way interaction was 

significant [F(4, 44)=2.70; p<0.05]. Thus, two separated ANOVAs were conducted 

for IN and OUT sounds, with the factors Distance and Condition. For the IN sound, 

the interaction Distance by Condition was significant [F(4,44)=4.54; p<0.01], 

suggesting that RTs were differently modulated depending on the perceived position 

of sound in space, as a function of whether subjects faced the mannequin or the other 

person. As Figure 8.3 shows, in the Mannequin condition RTs were significantly 

faster when concurrent sounds were perceived at D2, D3, D4, and D5, as compared to 

when sounds were perceived at D1 (p<0.001 in all cases, Newman-Keuls corrected; 

effect present in 14 out of 18 subjects). Thus, the estimated PPS boundaries were 

located between D1 and D2. In contrast, in the Other condition, RTs were faster when 

sounds were perceived at D3, D4, and D5, as compared to when sounds were 

perceived at D2 and D1 (p<0.05 in all cases, Newman-Keuls corrected; effect present 

in 15 out of 18 subjects), thus indicating that PPS boundaries were located between 

D2 and D3, that is, in a spatial position closer to the subject as compared to in the 

Mannequin condition. Indeed, RTs at D2 and D3 were faster in the Mannequin than in 

the Other condition (p<0.05 in all cases). No change in RTs was instead found for the 

farthest (D1, p=0.68) or the closest (D4 and D5, p>0.18 in all cases) distances. No 

significant effects were found in the case of OUT sounds, indicating that RTs in this 

condition were less affected by the position of sounds in space (see Table 8.1). 
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Figure 8.3. The figure shows mean RTs at different perceived sound distances (for the IN sound; see 
Table 8.1 for the OUT sound), corresponding to different times of tactile stimulus delivery, when 
participants faced the other person or the mannequin (error bars represent S.E.M.). RTs at the different 
temporal delays have been fit with a sigmoid function. The sigmoid central point curve was computed 
as a measure of the temporal delay, i.e., the distance, at which sounds start affecting RTs and was 
analyzed in order to quantify PPS boundaries. The sigmoid central point was higher in the Other (1.566 
ms) as compared to the Mannequin (1.384 ms) condition (t[15]=21.6; p<0.05, one-tailed; two subjects 
were not included in the analysis due to bad fitting), meaning that PPS boundaries were closer to the 
participants when they faced the other person than when they faced the mannequin. 
 

Results from the sound localisation experiment (see Methods) excluded that that the 

differential effect found for IN and OUT sounds was due to differences in the way 

subjects localized the two sound sources at corresponding temporal delays.  

Rather, the stronger spatially dependent effect shown for the IN sound is coherent 

with previous findings showing higher relevance of looming stimuli for PPS neurons 

(Canzoneri et al., 2012; Tajadura-Jimenez, Väljamäe, Asutay, &Vastfjall, 2010; Hall 

& Moore, 2003; Fogassi et al., 1996). In sum, these findings show that PPS 

representation shrank when the far space was occupied by another person, as 
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compared to when it was occupied by an artificial body-like object, suggesting that 

one’s own PPS accommodates in the presence of others. 

We also investigated whether the extent of PPS representation correlated with traits of 

personality assessed by means of the IRI questionnaire.  By using partial correlation 

analyses analysis, we investigated the relation between the score of participants’ at the 

different four subscales of IRI and an esteem of PPS boundaries in the Other 

condition. In order to quantify PPS boundaries, the sigmoid central point curve was 

computed as a measure of the temporal delay, i.e. the distance, at which sounds start 

affecting RTs. Results showed that score of the PD subscale correlated positively with 

the boundaries of PPS in the Other condition (r=0.59, p<0.03, two-tailed; see Figure 

8.4): the higher the score in the PD subscale, the closer to the body the PPS 

boundaries. No other significant correlation was found with the other IRI subscales 

(FS: r=0.06, p=0.82; PT: r=-0.13, p=.65; EC: r=-0.18, p=0.52). 

 

 

 
Figure 8.4 The graph shows the relationship between the participants’ score at the IRI’s PD subscale 
and the Central point of the sigmoid function. Two subjects were not included in the analysis due to 
bad fitting, while another subject was excluded because she did not complete the questionnaire at the 
end of the experiment. 
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Table 8.1 RTs (±S.E.M.) in ms to tactile targets associated with receding sound (OUT), perceived at 
different distance from the body (from D1, very far to D5, very close), for Experiment 8.1A and 
Experiment 8.2. 
 

Experiment 8.1B 

If the present audio-tactile interaction task specifically assesses a body centred 

representation of PPS, in Experiment 8.1B, the speeding effect on tactile RTs due to 

sounds occurrence should be less dependent on the positions of sounds in space, in 

comparison to Experiment 8.1A. To test this prediction, mean RTs to the tactile 

stimulus administered at the different perceived sound distances were calculated for 

IN sounds, and compared between Experiment 8.1B and Experiment 8.1A. RTs were 

entered in an ANOVA with factors Distance (D1-D5), and Condition (Other, 

Mannequin) as within subject factors and Experiment (Experiment 8.1A, Experiment 

8.1B) as between subject factors. The critical three-way interaction was significant 

[F(4,136)=2.4, p<0.05], suggesting that RTs were differently modulated in the two 

Experiments, depending on the perceived position of sounds in space, as a function of 

whether subjects faced the mannequin or the other person. In Experiment 8.1A in the 

Mannequin condition, RTs were significantly faster when concurrent sounds were 

perceived at D2, D3, D4 and D5, as compared to when sounds were perceived at D1 

(all ps<0.05, Newman-Keuls corrected), far from the subject’s body, thus the PPS 
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boundary was localized between D1 and D2. Instead, in Experiment 8.1B, when the 

participant was closer to the origin of far sounds, RTs to tactile stimuli administered 

together with sounds at D1 were not slower than RTs coupled with sounds at D2, D3 

and D4 (all ps>0.10) suggesting that all sound distances were now included within 

PPS. In contrast, a modulation of tactile RTs due to sounds position in space was 

instead found in Experiment 8.1B in the Other condition: RTs at D4 and D5 were 

significantly faster than RTs at D1, D2 and D3 (all ps<0.05). Thus, a PPS boundary 

could be identified in the Other condition and this was located between D3 and D4, 

confirming the main finding from Experiment 8.1A that the presence of other induced 

a shrinkage in PPS representation.  

 

Figure 8.5 Experiment 8.1B results. The figure shows mean RTs at different perceived sound 
distances (for the IN sound; for the OUT sound results see Table 8.2), corresponding to different times 
of tactile stimulus delivery, when participants faced the other person or the mannequin (error bars 
represent S.E.M.). 
 

 



	
   203	
  

 

 
 Condition D1 D2 D3 D4 D5 

a) Experiment 

8.1B 

 

Other 

Mannequin 

552±25 

534±21 

556±21 

546±22 

542±22 

526±23 

550±19 

530±18 

553±19 

538±20 

b) Sound localisation experiment 67±6 67±5 59±4 44±3 36±3 

 

Table 8.2. Experiment 8.1B. OUT sound and Sound Localisation Experiment results 
a) RTs (±S.E.M.) in ms to tactile targets associated with receding sounds (OUT), at the different 
sounds distances, when the participant was placed at 50 cm (instead that a 100 cm) from the origin of 
far sounds.  
b) Responses from the sound localisation task. At the end of the experiment, subjects were asked to 
indicate on a scale from 1 (at the position of the near loudspeaker) to 100 (at the position of the far 
loudspeaker) when they perceived the moving sound at the time of tactile stimulation. Subjects 
occupied a position corresponding to 50 in this scale.   
 

Interestingly, however, PPS boundaries were located at a different location in 

Experiment 8.1B as compared to Experiment 8.1A, when tactile RTs were faster for 

sounds at D3, D4 and D5, as compared to sounds at D2 and D1 (all ps<0.05, 

Newman-Keuls corrected), indicating that PPS boundaries were located between D2 

and D3. Taken together results from Experiment 8.1B confirm that the modulation of 

tactile processing due to the position of sounds depends on the location of the 

subject’s in space. The effect vanishes if subjects are placed closer to the origin of far 

sounds in presence of a mannequin. However, in presence of the other, PPS further 

contract as to accommodate in relationship to the space of the other, and a new PPS 

boundary emerges.  

Experiment 8.1C 

If the spatial modulation of multisensory interaction due to the presence of the other is 

a distinctive hallmark of a change in the representation of the space around the body, 

no spatially-dependent modulation of sensory processing should be found here when 

participants process sensory stimuli not related to their body - “disembodied” –, e.g., 
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visual stimuli. Accuracy was extremely high (average=98%, S.E.M.=±0.004), 

meaning that subjects could see and paid attention to the visual stimulus during the 

task. Mean RTs to the visual stimulus administered at the different perceived sound 

distances were calculated for IN and OUT sounds, in the Mannequin and in the Other 

conditions, and entered in a repeated measure ANOVA with factors Sound (IN, 

OUT), Distance (D1-D5) and Condition (Other, Mannequin). The main effect of 

Distance was significant [F(4,48)=5.63, p<0.01]. Newman-Keuls post-hoc 

comparisons showed that RTs to the visual target were significantly faster when the 

sound was perceived at D3 (486 ms ±17) than when the sound was perceived at D1 

(504 ms ±17), D2 (501 ms ±17), D5 (501 ms ±21; all ps<0.01) and marginally faster 

than when the sound was perceived at D4 (495 ms ±18, p=0.06).  

 

 

Table 8.3 The table shows a) RTs (±S.E.M.) in ms to visual stimulus associated with approaching 
sounds (IN) and receding sounds (OUT), at the different sounds distances for Experiment 8.1C; b) 
Responses from a sound localisation task conducted as those described for Experiment 8.1A. 
 

 

Given the spatial location of the LED, sounds were perceived at approximately the 

same location of the visual target when this was delivered at D3 (see Sound 
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Localisation experiment, Table 8.3, panel b). The present finding reflects a well-

known principle of multisensory integration, that is auditory and visual stimuli are 

more effectively integrated when stimuli from both modalities are spatio-temporally 

coincident. The main effect of Condition was also significant [F(1,12)=11.12, 

p<0.01], showing that RTs were generally faster when participants faced the 

mannequin (488 ms ±17) than when they faced another person (509 ms ±19). The 

same main effect of Condition was present also in Experiment 8.1A, with faster RTs 

in the Mannequin (442 ms ±25) than in the Other (463 ±24) condition [F(1,17)=7.61, 

p<0.05]. An inhibitory effect on RTs due to the presence of others has been already 

reported in Social cognition literature. Critically, however, in Experiment 8.1C, when 

target visual stimuli were unrelated to participant’s body, the inhibitory effect due to 

the presence of the other on visual RTs was totally independent from the perceived 

position of sounds in space, and it did not affect the position in space where sounds 

affected visual processing as compared to the Mannequin condition. Indeed, neither 

the two-way Condition X Distance interaction nor the three-way Condition X Sound 

X Distance interactions were significant (p=0.60 and 0.86 respectively). In contrast, 

the key finding of Experiment 8.1A was that the presence of the other, as compared to 

the mannequin condition, changed the position in space where sounds affected tactile 

processing at the participant’s body that is the boundaries of PPS. 

 

8.3 Experiment 8.2 

8.3.1 Methods 

 
Participants 

Thirty-two students, all females, to avoid effects due to gender differences, 
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participated in Experiment 8.2 (Cooperative game condition: N=16, mean age=20.69 

±.41, mean years of schooling=14.81, ±.39; Non-cooperative condition: N=16, mean 

age=20.87 ±.44, mean years of schooling=15, ±.39). All participants were healthy and 

reported no history of psychiatric illness or neurologic disorder, and no problem of 

hearing, and touch. Participants were all blind regarding the nature of the 

experiments, and none had experienced an economic game previously. All subjects 

gave their informed consent to participate in the study, which was approved by the 

local ethics committee in accordance with the Declaration of Helsinki. 

 

Materials  

Audio-tactile interaction task 

The same audio-tactile interaction task as described for Experiment 8.1A was used. 

Procedure 

In Experiment 8.2, participants performed the audio-tactile task before and after 

playing a one-shot bargaining game with a human partner (i.e., an actor previously 

unknown to the participant) via a computer interface. There were two treatment 

conditions of the game: Cooperative and Non-cooperative condition. Half of the 

participants were randomly assigned to the Cooperative condition and the other half 

to the Non-cooperative condition. Two female subjects acted as confederate (player 

B). The two confederates were used equally often across the experiment, 

counterbalancing the role (Cooperative or Non-cooperative) across subjects. The 

experiment was run in individual sessions. On entering the laboratory, participants 

were greeted by an experimenter who informed them that they would participate in 

two separate and unrelated studies: one designed to evaluate tactile perception and the 

other to study economic decision-making. In the ostensible first study, participants 
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were told that they would be asked to respond to tactile stimuli delivered on their 

face. In the supposedly second study, participants were told they would be paired with 

another participant to decide how to divide a sum of money. The experimenter also 

informed that, because the tactile task required two sessions separated by a brief 

interval (i.e., the first experiment), they would be asked to complete the second 

experiment in between these two sessions. 

Subjects participated in a modified version of a behavioural Mutual Advantage Game 

(McCabe et al., 1996), in which two human players, A and B, interact with each other 

to earn real stakes. Participants were informed that they would be playing with the 

partner (i.e., one of the two actors) they faced during the tactile perception task. They 

received written instructions about the nature and rules of the bargaining game, and 

the experimenter verbalized the instructions to ensure that participants understood 

them. In the instructions, it was emphasized that participants would play the game 

only once with their opponent player, and that they were randomly assigned the role 

of player A and B, respectively. In fact, participants were always assigned to the role 

of player A, while the confederates were always assigned to the role of player B. 

Participants were also informed that monetary sum earned during the game would be 

used to purchase different commercial products (i.e., USB keys, mobile phones credit, 

drinks, clocks, pens, books) at the end of the experiment, of monetary value 

corresponding to the outcome earned during the game. 

The game took place in a quiet room in which an opaque, removable partition wall 

was used to create two separate settings. On either side of the wall, we placed a desk 

with a computer. Participants sat at one desk in front of the computer, while at the 

other sat the confederate. In the game, player A (the participant) moved always first 

by choosing either “left” or “right”. For half participants, if she chose “left” (defect), 
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she earned €7 for herself, giving €3 to player B, and the game was over. Alternatively, 

player A could chose “right” (cooperate), putting player B (the confederate actor) on 

the move. Player B could either reciprocate cooperation, taking an option paying €10 

to both players, or defect, earning €7 for herself and giving €3 to player A. For the 

other half of participants, the correspondence between sides and choices was reversed. 

If players defected, they could purchase with their income whatever product they 

wanted. If players cooperated, they had to agree with their partner on which product 

to purchase. Half of the participants were confronted with a fair and cooperatively 

acting confederate (player B), and the other half were confronted with a confederate 

who was unfair and acted not cooperatively. Two out of 32 participants (players A) 

decided to defect (earning €7 for themselves and giving €3 to their partners) in the 

first decision of the game. These two subjects were excluded from the experiment, 

and replaced with two other participants. Thus, all 32 subjects included in Experiment 

8.2 chose to cooperate with their partner. 

Before participants left the laboratory, they purchased a different product accordingly 

to the monetary outcome earned during the game. They were then questioned for 

suspicion during stepwise debriefing. Accordingly to their report, no participant 

guessed the actual purpose of the study. Participants also expressed no suspicion 

regarding the cooperative or not cooperative behaviour of player B during the 

bargaining game. At the end of their experimental session, subjects involved in the 

economic game were invited to fill in a questionnaire, aimed at verifying that the 2 

different game conditions (Cooperative and Non-cooperative) induced different 

subjective feelings about the confederate. Participants were asked to answer, on a 

scale ranging from 1 (not at all) to 7 (very much), to the questions reported in the first 

column of Table 8.4. 
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8.3.2 Results 

 
As for Experiment 8.1, error rates were extremely low (Cooperative game condition: 

mean omissions=3.75%, ±.75; mean false alarms=.5%, ±.52; Non- cooperative game 

condition: mean omissions=3.59%, ±.83; mean false alarms=.8%, ±.42), so the 

performance was analysed in term of tactile RTs only. 

In order to test how PPS representation varied before and after the game, as a function 

of the partner’s game behaviour, we ran an ANOVA on mean tactile RTs with the 

within-subjects factors of Distance (D1-D5), Sound (IN, OUT), Session (before and 

after the game), and the between-subjects factor Condition (Cooperative and Non 

cooperative). The four-way interaction was significant (F[4,120]=2.45; p<0.05). Thus, 

we conducted separate ANOVAs, one for each Condition. 

In the Non-cooperative game group, for the IN Sound, the main effects of Distance 

(F[4,60]=21.63, p<0.00001) and Session (F[1,15]=13.12; p<0.01) were significant, 

but not the two-way interaction (p=0.10). Both before and after the game, RTs 

recorded when sounds were perceived at the farthest distances (i.e., D1 and D2) were 

significantly slower than those for sounds at the closest distances (i.e., D3, D4, and 

D5, p<0.001 in all cases, Newman-Keuls corrected), thus suggesting that PPS 

boundaries were located approximately at the same spatial range as in Experiment 

8.1A, in the Other condition. RTs for all sound distances were speeded up after the 

Non-cooperative game as compared to before the game. Importantly, the critical point 

where sounds affected RTs did not change before and after the game (see Figure 

8.6A). In the case of the OUT sounds, only a significant effect of Session 

(F[1,15]=7.82; p<0.05) was found, showing, again, a general speeding effect in RTs 

after the Non-cooperative game (see Table 8.1). 

A different pattern of results was found in the Cooperative game condition. In case of 
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IN sounds, the two-way interaction Distance by Session was significant (F[4,60]=4.20; 

p<0.01). As Figure 8.6 shows, before the game, RTs varied as a function of the 

position of sounds in space, with slower RTs for the farther distances (D1 and D2), as 

compared to the closer distances (D3, D4, D5; p<0.001 in all cases, Newman-Keuls 

corrected). Thus, the estimated boundary of PPS was located between D2 and D3. On 

the contrary, after the game, PPS boundaries between near and far space vanished; 

there was no significant difference between RTs at any sound distance (p>0.12 in all 

cases). Such an effect was due to faster RTs associated to sounds perceived at the 

farthest distances (i.e., D1 and D2) after the game as compared to before the game 

(p<0.001 in all cases). No change in RTs was instead found for closest sound 

distances (D3, D4, and D5; p>0.20 in all cases). Thus, after the Cooperative 

interaction, audio tactile integration increased for stimuli presented at the space 

occupied by the Other (far distances), and not for stimuli presented within one’s own 

PPS (close distances). As a consequence, there were no more detectable PPS 

boundaries between the self and the other after the game: the participant’s PPS had 

extended as far as to include the space around the partner. No significant effect of 

Session (p=0.19) or Interaction (p=0.86) was found for the OUT sound (see Table 

8.1). 
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Figure 8.6 The figure shows mean RTs at different perceived sound distances (for the IN sound; see 
Table 8.1 for the OUT sound), corresponding to different times of tactile stimulus delivery (error bars 
represent S.E.M.). (A) and (B) show, respectively, the results from the Non-cooperative game 
condition and from the Cooperative game condition, before and after the game. RTs at the different 
temporal delays have been fit with a sigmoid function. In the Non-cooperative game group, RTs were 
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generically faster at any sound distances after the game than before the game, but PPS boundaries did 
not shift. The central sigmoid central point did not differ between the two sessions (before the 
game=1.467 ms; after the game=1.443 ms; t(13)=0.32, p=0.76; two subjects were excluded due to bad 
fitting). In the Cooperative game group, RTs were faster after the game than before the game only at 
the farthest sound distances (D1 and D2), that is at the space occupied by the cooperative other. 
 

 

Results from the present Experiment suggested that, after a cooperative interaction, 

PPS boundaries between the self and the other merged, since after the game the PPS 

boundaries could not longer be reliably established. In order to confirm that the 

cooperative game resulted in an extension of PPS space boundaries up to include the 

other, and not in a generic weakening of audio-tactile interaction, in Experiment 8.3 

we tested audio-tactile interaction in a wider spatial range, including portion of space 

beyond the cooperative Other. If the effects we found in Experiment 8.2 reflected an 

extension in PPS representation, we did expect a change in audio-tactile interactions 

in the space occupied by the Other (confirming results from Experiment 8.2), but not 

at farther location (i.e. beyond the actor). 

 

8.4 Experiment 8.3 

8.4.1 Methods 

 
Participants 
 

Twenty students, all females, to avoid effects due to gender differences, participated 

in Experiment 8.3 (N=20, mean age=23.68 ±.63, mean years of schooling=16.21 

±.57). All participants were healthy and reported no history of psychiatric illness or 

neurologic disorder, and no problem of hearing, vision and touch. Participants were 

all blind regarding the nature of the experiments, and none had experienced an 

economic game previously. All subjects gave their informed consent to participate in 
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the study, which was approved by the local ethics committee in accordance with the 

Declaration of Helsinki. 

 

Audio-tactile interaction task 

In Experiment 8.3 participants performed the same audio-tactile interaction task as 

previously described for both Experiment 8.1A and 8.2, but in this case a wider 

spatial range was used.  

To this aim, near and far loudspeakers were separated by 2 m and 7 instead of 5 

temporal delays were used, so that sounds were perceived at seven different spatial 

positions. The participant was placed at the location of the near loudspeaker, whereas 

the actor was placed at 1 m from the participant, thus midway between the two 

loudspeakers. Only IN sounds were used. Sound duration was 4000 ms (instead of 

3000 ms, as in Experiment 8.1A and 8.2). For each trial, the sound was preceded and 

followed by 500 ms of silence. Temporal delays for Experiment 8.3 were set so that 

tactile stimulation occurred: 250 ms after the IN sound onset (corresponding to 750 

ms from the beginning of the trial) at D-2; at 750 ms from sound onset at D-1; at 1300 

ms from sound onset at D1; at 1800 ms from sound onset ad D2; at 2500 ms from 

sound onset at D3; at 3200 ms from sound onset at D4; and at 3700 ms from sound 

onset at D5. Temporal delays were chosen so that the last five delays (D1–D5) 

corresponded to time intervals used in the previous experiments, whereas D-1 and D-

2 occurred earlier along in the trial. In this way, when the tactile stimulus was 

administered at D-2 and D-1, the sound was perceived at further locations, as 

compared to the other intervals, beyond the actor. 
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Experimental Procedure 

In Experiment 8.3, participants were confronted only with a fair and cooperatively 

acting confederate. The procedure for the Mutual Advantage Game was the same as 

for Experiment 8.2. 

 

8.4.2 Results 

 
Error rates were extremely low (mean omissions=4.01, ±.77; mean false alarms=.6%), 

so the performance was analysed in terms of RTs only. An ANOVA with the factors 

Distance and Session (before and after the game) showed a significant two-way 

interaction [F(6,114)=2.21; p<0.05]: at D1, RTs after the game were faster than 

before the game (p<0.05; p>0.10 for all other comparisons, Newman-Keuls corrected), 

confirming that, after the Cooperative interaction, audio tactile interaction increased 

for sounds presented at the position occupied by the Other. Crucially, RTs were 

modulated by the spatial location of sounds both before and after the game. However, 

the critical point where sounds began affecting tactile RTs was located at a further 

distance after the game than before the game (see Figure 8.7 and legend for statistical 

analysis). These results, together with those from Experiment 8.2, indicate that PPS 

boundaries extended, after the Cooperative interaction, to include the space occupied 

by the Other. 
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Figure 8.7 Mean RTs at the seven different perceived sound distances, before and after the game, are 
reported (error bars represent S.E.M.). RTs at the different temporal delays are fit with a sigmoid 
function. The sigmoid central point curve was computed as a measure of the temporal delay, i.e., the 
distance at which sounds start affecting RTs, and was analyzed in order to quantify PPS boundaries. 
The sigmoid central point was lower (1.731 ms) after the game than before the game (1.911 ms); 
(t[19]=2.10; p<0.05, one-tailed), indicating that PPS boundaries extended toward the space occupied 
by the cooperative other. 
 
 
 
 

 

Table 8.4 Mean ratings ± S.E.M. at the questionnaire after the bargaining game from participants 
taking part to Experiment 8.2, Cooperative and Non-cooperative conditions, and Experiment 8.3 
(Cooperative condition). These ratings show that the experimental manipulation (e.g., partners’ playing 
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strategy during the economic game) affected participants’ perceptions of fairness. Specifically, 
participants rated cooperative partners as being significantly fairer, more likeable, and more similar to 
them than non-cooperative partners. Moreover, they felt significantly less angry at cooperative than at 
non-cooperative partners. Between-groups comparisons for the Cooperative and Non-cooperative 
conditions of Experiment 8.2 are also reported. 

 

8.5 General Discussion 

Results from the present study shows that PPS representation not only is sensitive to 

the presence of others but also is shaped by interactions with others and, more 

specifically, by valuation of other people’s behaviour during the interaction.  

Previous studies highlighted the behavioral function of PPS representation, which has 

been conceived as a space of interaction critical for triggering defensive (Graziano & 

Cooke, 2006; Serino et al., 2009) or approaching (Rizzolatti et al., 1981; Brozzoli et 

al., 2009) behaviors. Most studies on PPS tested subjects processing artificial stimuli 

in neutral environments in absence of co-specifics. This is surprising, because the 

others often represent the most behaviorally relevant stimuli in the environment. Few 

previous findings suggest a “social” modulation of PPS representation. In monkey, 

bimodal neurons in the posterior parietal cortex respond to tactile stimuli on the 

animal’s body and to visual stimuli presented close to the experimenter’s body (Ishida, 

Nakajima, Inase, & Murata, 2010). Homologous areas in humans respond to tactile 

stimuli on one’s own face and to visual stimuli approaching another person’s face 

(Cardini, Costantini, Galati, Romani, Làdavas, & Serino, 2011). Thus, some PPS 

neurons process events occurring not only within one’s own PPS but also within the 

PPS of others. Heed and colleagues (Heed, Habets, Sebanz, & Knoblich, 2010) 

recently showed that multisensory integration is modulated as a function of the 

presence and activities of others within one’s own PPS. The present data extend 

previous findings by showing that the presence of others also in the extrapersonal 
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space shapes PPS representation, such that the presence of others structures the 

representation of space around oneself. As Deleuze said: ‘‘the other is neither an 

object in my field of perception, nor a subject who perceives me: it is first and 

foremost a structure of the perceptual field, without which this field as an ensemble 

would not function as it does’’ (see Deleuze, 1969, pp. 356–357). 

The role of others in modulating spatial representation is particularly evident if PPS is 

conceived as a space of interaction. Results from experiment 8.2 and 8.3 showed that 

not only the presence of others but also the nature of interaction with others shapes 

PPS representation. 

Previous evidence shows a link between PPS representation and individuals’ 

emotional states (e.g., claustrophobic fear; Lourenco, Longo, & Pathman, 2011). 

Results from the present study are new in showing a direct link between PPS 

representation and feelings generated by interaction with others. After an unfair, 

uncooperative interaction, subjects were generically faster to respond to tactile stimuli, 

independently from the position of concurrent sounds in space. Such a general 

speeding effect seems not directly related to spatial processing and is likely to depend 

on increased arousal following a socially unacceptable behaviour of the other 

(Anderson, 2005). Prior evidence indicates that perceived unfairness of treatment 

arouses negative emotions (Dawes, Fowler, Johnson, McElreath, & Smirnov, 2007; 

Singer, Seymour, O’Doherty, Stephan, Dolan, & Frith, 2006), increases skin 

conductance responses (van ’t Wout, Kahn, Sanfey, & Aleman, 2006), and activates 

the insula (Sanfey, Rilling, Aronson, Nystrom, & Cohen, 2003) and the amygdala 

(Baumgartner, Heinrichs, Vonlanthen, Fischbacher, & Fehr, 2008), brain areas 

consistently implicated in mediating negative emotional reactions and modulating 

arousal. Instead, after a fair, cooperative interaction, PPS boundaries between the self 
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and the other merged. Such effect can be interpreted in the light of the nature of the 

interaction experience. According to Bakan, cooperative interactions are characterized 

by the concept of communion: ‘‘communion arises from strivings to integrate the self 

in a larger social unit through caring for others’’ (Bakan, 1966). The change in PPS 

representation found following the cooperative interaction seems to reflect Bakan’s 

definition, grounded at the level of sensory-motor processes underlying spatial 

representations. As a consequence of cooperative, communal interaction, the 

boundaries of space within which external stimuli are more efficiently processed in 

order to implement defensive behavior (Graziano & Cooke, 2006) shifted beyond the 

space occupied by the cooperative other. 

The present findings highlight a strong relationship between basic sensorimotor 

functions and complex social representations. They are consistent with approaches to 

cognition suggesting that mental processes are situated and embodied in our physical 

experiences (Barsalou, 2008; Gibbs, 2006; Niedenthal, Barsalou, Winkielman, 

Krauth-Gruber, & Ric, 2005; Wilson, 2002; Gallagher, 2005). In this view, high-level 

social and cognitive representations (e.g., cooperation) are immersed or recoded into 

the physical and perceptual experiences of the body, thereby providing concrete and 

rich feelings that facilitate prediction, evaluation, and social behaviour.  
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CHAPTER NINE: GENERAL DISCUSSION 
 

 

 

 

A successful interaction with objects in the environment typically requires integrating 

information concerning the object-location with the shape, dimension and position of 

body parts in space. The former information is coded in a multisensory representation 

of the space around the body, a representation of peripersonal space (PPS), whereas 

the latter is enabled by an online, constantly updated, action-orientated multisensory 

representation of the body (BR) that is critical for action. 

A general aim of this thesis was to investigate function and properties of multisensory 

representation of body and space in humans, by focusing on plastic properties of these 

two representations. We asked whether and how different kinds of experience which 

may change the function, structure and context of the physical body, affect body and 

PPS representation. We began investigating the neural correlates of a multisensory 

PPS representation in humans in Chapter 3. In Chapter 4, we presented a new audio-

tactile paradigm (Canzoneri et al., 2012), developed to measure the extent of PPS 

representation. In the second part of this dissertation, we applied that and other tasks 

to measure changes in PPS and BR as a function of different types of the experiences, 

such as tool-use (Chapter 5), multisensory stimulation (Chapter 6) amputation and 

prosthesis implantation (Chapter 7) and social interactions (Chapter 8).  
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9.1 Studying multisensory PPS in humans through audio-tactile 

interaction. 

  

In monkeys, PPS representation is enabled by multisensory system responding to 

tactile, visual and auditory information on and close to the body. In the case of audio-

tactile stimulation, Graziano and colleagues (Graziano et al., 1999; Graziano & 

Gandhi, 2000) and Schlack and colleagues (2005) showed that some multimodal 

neurons in the ventral premotor cortex and in the ventral parietal sulcus respond to 

tactile stimuli given on the controlateral side of the moneys’ head and to an auditory 

stimulus presented close (within 30 cm) but not far from the head. Audio-tactile 

responses were stronger for sounds coming from behind the monkey’s head. An 

interaction between auditory and tactile stimuli around the head has been 

demonstrated in neuropsychological patients suffering from cross-modal extinction 

(Farnè & Làdavas, 2000), as well as in healthy subjects, both for back (Kitigawa et 

al., 2005) and front space (Zampini et al., 2005; see Occelli et al., 2011, for a review). 

In the first part of this dissertation we investigated properties and neural correlates of 

audio-tactile representation of PPS around the hand in healthy human by means of 

two behavioral paradigms that use respectively static (Chapter 3) and dynamic 

(Chapter 4) auditory stimuli. In Chapter 3 (Experiment 3.1A and 3.1B) participants 

were asked to respond to a tactile stimulus at the hand while an ecologic static sound 

(a burst of white noise) was presented either close to the hand or far from it. Results 

confirmed that sounds boosted the processing of tactile stimuli presented to the hand 

as compared to when tactile stimuli only were presented. Critically, the audio–tactile 

interaction effect was stronger when sounds were presented in the space around the 

hand rather than in the far space. These results are in line with previous studies of our 
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group (Serino et al., 2007; Bassolino et al., 2010) revealing audio-tactile interaction 

processes around the hand. In Experiment 3.1B we also investigated whether this 

audio-tactile integrative effect is related to a hand-centered representation of the PPS 

and not to a general proximity of the sound to the body. To this aim, we manipulated 

the relative distance between the hand and the sound sources, while keeping constant 

the distance from the body, by asking participants to retract and place their hand far 

from the source of the near sound. Results showed that in this posture, the speeding 

effect associated to near sounds disappeared, thus confirming that the audio–tactile 

interaction effect was dependent on hand location. Hence, the sound’s proximity to 

the hand (and the tactile stimulus), not to the subject in general, was critical for 

modulating tactile processing. These results are in line with several studies both in 

monkeys and in humans revealing how multisensory information are integrated in the 

PPS in a body part centred frame of reference.  

In Chapter 4 we presented a new paradigm, which applies dynamic instead of static 

auditory stimulation, with the aim of assessing the extension of PPS in a more 

functionally and ecologically valid condition. We measured reaction time (RTs) to a 

tactile stimulus at the hand while dynamic sounds were presented, giving the 

impression of a sound source either approaching, or receding from the subject’s hand. 

Tactile stimulation was delivered at different temporal delays from the onset of the 

sound, such that it occurred when the sound source was perceived at varying distances 

from the body. Results showed that RTs to tactile stimuli at the hand progressively 

decreased as a function of the sound source’s perceived approach, and conversely 

they increased as a function of the sound source’s perceived recession.  

Similar results were obtained in Chapter 8, when audio-tactile interaction was studied 

in the space around the head. Tactile stimuli at the face were modulated by the 
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perceived position of a looming sound in space, in line with the results we obtained 

with the same paradigm around the hand. However, differently from hand stimulation, 

tactile processing at the face was not modulated by the position in space of receding 

sounds. I will extensively discuss this important difference in Paragraph 4. 

Results from Experiment 8.2B and 8.2C further demonstrated that this audio-tactile 

paradigm specifically assessed a body-centred representation of the PPS. Indeed, 

results from Experiment 8.2B showed that by manipulating the position of the body in 

space with respect to the perceived sound position, tactile RTs were no longer 

modulated by the position of sound in space. This result confirmed that the 

modulation of tactile processing due to the position of sounds depends on the location 

of the subject’s in space. The effect vanishes if subjects are placed closer to the origin 

of far sounds in presence of a mannequin. Moreover, results from Experiment 8.2C 

further confirmed that the modulation of audio tactile interaction we found by using 

this paradigm was related to PPS representation, and was not a general crossmodal 

effect: when participants responded to target visual stimuli, unrelated to participant’s 

body, in presence of a Mannequin, RTs to a visual “disembodied” stimulus were not 

affected by the perceived position of sound in space in the same way as tactile RTs.  

Critically, RTs were faster only at D3, when sounds were perceived at approximately 

the same location of the visual target. These findings reflect a well-known principle of 

multisensory integration, that is auditory and visual stimuli are more effectively 

integrated when stimuli from both modalities are spatio-temporally coincident. 

Taken together, results both from Experiment 3.1, and Experiment 8.1 demonstrated 

the existence of an auditory PPS representation in humans that has been tested both 

around the hand and the face in two different experiments. The present results also 

show that 1) audio–tactile interaction is sensitive to the position of body parts (the 
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hand) in space; 2) is sensitive to the location of the whole body in space; 3) is specific 

for “embodied” multisensory effects implying tactile stimulation. 

The present audio-tactile interaction effects are in keeping with previous studies 

showing that auditory stimuli affect the perception of tactile stimuli, both in terms of 

detection ability (e.g., Ro et al., 2009) and RTs (e.g., Zampini et al., 2007). Notably, 

evidence indicates that these audio–tactile interactions require a multisensory 

integrative mechanism rather than a simple summation of unisensory signals (Murray 

et al., 2005). Moreover, Serino and colleagues (Serino et al., 2009) previously showed 

that task-irrelevant sounds presented near the hand transiently increased the 

excitability of hand representation in the motor cortex and that this effect was specific 

to a hand-centered, not a body-centered, reference frame. We propose that the 

facilitation effect due to near sounds on tactile processing arises from the summation 

of multisensory inputs within the same spatial representation, that is, within 

representation of PPS around the hand. Thus, if one interferes with activity of putative 

areas integrating multisensory stimuli in PPS, such facilitation effect should be 

abolished. This prediction has been tested in Experiment 3.2 and I will discuss it in 

the following Paragraph 9.2. I will conclude my presentation of the functional 

properties of PPS representations by extensively discussing the difference in PPS 

representation assessed by using static (Chapter 3) or dynamic (Chapter 4 and 8) 

auditory stimuli.   

 

9.2 Neural correlates of PPS representation: a (multi) sensory-motor 

system to represent the space around the body.   

	
  
In Experiment 3.2 we demonstrated also that virtual lesions to the ventral premotor 
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cortex (vPMc) and the posterior parietal cortex (PPc), but not to the primary visual 

cortex (V1) – serving as a control site - disrupted audio-tactile interaction 

mechanisms around the hand. These results provide the first empirical evidence for a 

necessary role for vPMc and PPc in representing multisensory PPS around the hand. 

In a recent study Avenanti and colleagues (Avenanti, Annella, & Serino, 2012) 

specifically investigated the selective role of vPMc and of PPc in fronto-parietal 

networks representing PPS representation. In this study the authors combined the use 

of the transcranial direct current stimulation (tDCS) - in order to perturb the activity 

of those two target areas - with the TMS technique, used to measure the excitability of 

the motor system. Specifically, a single-pulse TMS was applied over the hand 

representation in the primary motor cortex in order to induce motor-evoked potentials 

(MEPs) from hand muscles, so to measure the excitability of the hand motor 

representation. MEPs were compared when a sound was presented either close to the 

hand or far apart, at a 1mt distance (see also Serino et al., 2009). In a control (sham 

tDCS condition), results showed an inhibitory effect of MEPs when an auditory 

stimulus is presented close to the hand rather than at a distance, suggesting that, when 

the peri-hand space representation is activated, a freezing-like response of the motor 

system was evoked. Importantly, the differential effect of near and far sounds on 

MEPs was abolished after inhibitory tDCS over PMc, showing that this area plays a 

critical role in the motor coding of sensory events occurring within the PPS. 

Interestingly, when tDCS was applied over the PPc, the results were similar to what 

happened in the shame tDCS condition. Results from this study expanded results 

presented in this dissertation in Chapter 3. Indeed, results from Experiment 3.2 

suggested that these two regions were similarly involved in a multisensory 

representation of PPS. Critically, these two nodes of the fronto-parietal network 
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representing PPS seem instead to have partially dissociable functions, with PMc being 

more involved in mapping sensory representations of space onto the motor system 

(Avenanti et al., 2012). These results supported the idea that the brain has evolved an 

efficient sensorimotor mechanism, mapping sensory stimuli in the space immediately 

surrounding the body onto potential motor responses (Graziano & Cooke, 2006; 

Rizzolatti et al., 1997; Serino et al., 2009; Makin et al., 2009). These results are in line 

with the well-known sensory-to-motor function of PPS representation (see also 

Paragraph 1.1.2). These findings are also consistent with the notion of the existence of 

a series of parieto-frontal circuits in the monkeys brain involving a series of sensory 

to motor transformations. In monkeys, the areas around the intraparietal sulcus (IPS; 

Grefkes & Fink, 2007) can be divided in several distinct cortical areas named after 

their topographical position (see Figure 9.1): the anterior intraparietal area (area AIP), 

the ventral intraparietal area (area VIP), the medial intraparietal area (area MIP), the 

lateral intraparietal area (LIP) and the caudal intraparietal area (area CIP). Like the 

posterior parietal cortex, in the macaque’s brain also the motor cortex is formed by 

anatomically and functionally distinct areas (areas F1, F2, F3, F4, and F5) that appear 

to play different roles in motor control (see Figure 9.1): these areas receive their 

predominant cortical inputs from the previously cited areas around IPS in the parietal 

lobe (see Matelli & Luppino, 2001, for a review). The specificity of these parieto 

frontal circuits depends on the preferred type of stimulus and behavior of the neurons.  

• MIP-F2: F2 neurons are thought to respond to somatosensory and 

proprioceptive stimuli, while bimodal neurons identified in the MIP area are 

strongly activated when the monkey reaches for a visual target. So, this circuit 

has an important role in planning, execution and monitoring of reaching 

movements.  
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• LIP–FEF. These neurons mainly respond to visual stimuli in an eye centred 

frame of reference. This circuit is thought to code for eye movements. 

• AIP-F5. This circuit is involved in the creation of a representation of the 

object that is useful in order to select the most appropriate way to grasp it. 

Indeed, neurons in F5 neurons typically code goal-directed motor acts, while 

AIP neurons frequently discharge during the manipulation of objects both in 

dark and light condition. 

• VIP-F4. Neurons in this areas share a lot of properties that have been 

extensively reviewed in Chapter 1 of the present dissertation. Indeed, in these 

areas we can find bimodal neurons with large somatosensory RFs located on 

the face, trunk, arms and hands and corresponding visual RFs generally 

limited in depth around the tactile RFs. This circuit is thought to encode for 

PPS in a body part-centered frame of reference and to transform the position 

of object in space into appropriate movements toward them. 

Interestingly, the equivalent of this last circuit in humans seem to be represented by 

the vPMc and of PPc circuit described in Experiment 3.2 (see Chapter 3; Bremmer et 

al., 2001; see also Grefkes & Fink, 2005, for a review), demonstrating the existence in 

the human brain of a parieto-frontal circuit deputed to the special coding for stimuli 

presented close to the body in order to plan a proper and rapid motor reaction towards 

a potentially interesting stimulus or a potential aversive one.  
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Figure 9.1 Mesial and lateral views of the macaque brain showing the parcellations of the frontal 
motor cortex and of the posterior parietal cortex. Adapted from Matelli & Luppino, 2001. 
 

9.3 A dynamic representation of the space around the body    

	
  
In Chapter 4 we investigated the properties of PPS representation by developing a 

new audio-tactile paradigm. Given the high relevance of moving objects to the PPS 

system, we propose that using dynamic, instead of static auditory stimuli could be a 

more powerful way to assess the extension of PPS representation in humans in a more 

functionally and ecologically valid condition. We had already shown that an auditory 

stimulus speeds up the processing of a tactile stimulus at the hand, if the sound is 

administered within a limited distance from the hand (see Serino et al. 2007 and 

Experiment 3.1). Critically, by using dynamic sounds we were able to study such 
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critical distance along a continuous spatial range, spanning near and far space, thus 

estimating the boundaries of PPS representation.  

Interestingly, our results also suggest that, among dynamic stimuli, approaching 

sounds have a stronger spatially dependent effect on tactile processing as compared 

with receding sounds. Indeed, when PPS representation was assessed around the 

hand, the function describing the relationship between tactile RTs and timing at which 

tactile stimuli were delivered was significantly steeper for approaching than for the 

receding sounds. Such difference was even stronger in the case of peri-face PPS: 

results from Chapter 8 showed that while looming sounds modulated tactile 

processing with a clear spatial pattern, receding sounds had no effect. Taken together, 

results on the peri-hand PPS and peri-face PPS suggest that while both approaching 

and receding sounds activate PPS around the hand, only the former and not the latter 

type of sounds activates PPS around the face. This difference can be explained 

considering the different motor functions of the two body parts: we normally use our 

hands to grab receding objects, while we hard use our face for that.  

The stronger effect on PPS representation found for looming sounds is in keeping 

with several studies showing that primates sensory systems are particularly sensitive 

to approaching stimuli. Indeed, an attentional bias toward approaching stimuli was 

shown in monkeys, both in visual and auditory domains, as compared with receding 

stimuli (Maier, Neuhoff, Logothetis, & Ghazanfar, 2004; Maier & Ghazanfar, 2007; 

Ghazanfar, Neuhoff, & Logothetis, 2002; Schiff, 1965; Bach, Schachinger, Neuhoff, 

Esposito, Di Salle, et al., 2008). In addition, bimodal and/or trimodal neurons in 

multisensory brain areas in the ventral premotor cortex and in the posterior parietal 

cortex in monkeys were shown to respond preferentially to approaching visual 

(Duhamel et al., 1997; Colby et al., 1993; Bremmer et al., 2002) and auditory 
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(Graziano et al., 1999; Maier et al., 2004) stimuli as compared to receding stimuli. At 

a behavioural level, human subjects show a perceptual bias to detect an approaching, 

rather than a receding, stimulus (Cappe, Thut, Romei, & Murray, 2009; Leo, Romei, 

Freeman, Ladavas, & Driver, 2011; Cappe, Thelen, Romei, Thut, & Murray, 2012). 

Human listeners also underestimate time of contact with the body of an approaching 

sound as compared to a receding sound (Seifrtiz et al., 2002; Neuhoff, 1998). 

Moreover, audio-visual integration is stronger for approaching than for static or 

receding stimuli (Cappe et al., 2009; 2012; Romei, Murray, Cappe, & Thut, 2009). 

Thus, approaching stimuli have been shown to be particularly relevant at different 

levels of information processing (Hall & Moore, 2003). Our results provide a further 

level of evidence for this argument by showing a stronger effect of approaching 

sounds in modulating tactile processing.  

In future studies it might be interesting to study the effect of other possible sound 

trajectories on PPS representation. For instance it is well know that sound localisation 

is more precise for side-to-side trajectories than for frontal trajectory, because in the 

former case, cues based on interaural differences are stronger (Middlebrooks & 

Green, 1991). So, it is possible that, using this paradigm, the function describing the 

relationship between tactile RTs and sound positions is more sensitive along side-to-

side trajectories that along the frontal direction. It is also possible that the critical 

position in space where sounds begin affecting tactile RTs is localized at a different 

distance from the body for side-to-side as compared to frontal directions. Indeed, PPS 

could differently extend in the front space where both hands can immediately and 

coordinately act, as compared to the space aside the body, where bimanual actions do 

not occur. It is worth noting, however, that in the everyday life we are more likely to 
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interact with stimuli presented in the frontal space. For this reason, in this study we 

decided to test audio-tactile interactions on a frontal plane. 

To sum up, the present task provides an effective, sensitive and ecologically valid 

approach to measure the extent of PPS representation. The function describing the 

relationship between tactile processing and the position of sounds in space along a 

spatial continuum can be used to localize the boundaries of PPS representation. We 

show that such a relationship is better described by a sigmoidal (rather than linear) 

function, meaning that RTs sharply decreased as a sound crosses a spatial limit, over 

which the addition of an auditory stimulus speeds up the detection of a tactile 

stimulus administered on the body. Such spatial limit can be considered as the 

boundary of PPS representation. This paradigm has been used in this dissertation to 

study plasticity of PPS representation in different contexts and following different 

types of short term and long term experiences. In the second part of this dissertation, 

plastic properties of PPS and BR after different experiences have been investigated. 

 

9.4 Plasticity in PPS and BR: tool-use 

	
  
In Chapter 5 we investigated whether using a functional tool to act upon objects at a 

distance concurrently affects both space and body representation in the same sample 

of subjects, using different tasks that specifically tap into PPS representation and BR. 

Results from Experiment 5.1 show that after tool-use, the boundaries of PPS 

representation shifted to include farther locations of space. This effect was associated 

with a change in the representation of the arm shape: after tool-use, subjects perceived 

the distance between two stimuli delivered on their forearm longitudinally to the arm 

axis as significantly shorter and perceived the distance between two stimuli delivered 
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transversally on the forearm as significantly longer. Moreover, when asked to localize 

the position of their wrist and elbow, they localized those body landmarks farther 

apart between each other after tool-use. Taken together, these findings are compatible 

with an extension of perceived arm length after tool-use, assessed by means of two 

independent tasks. The results confirmed evidence in the literature showing that PPS 

is dynamically shaped as a function of the experience (Maravita et al., 2002, Serino et 

al., 2007; Gallese & Sinigaglia, 2010) but critically, they are also new in showing a 

parallel effect on plastic properties of BR and PPS. 

9.5 Mechanism of plasticity in PPS representation  

	
  
The modification of BR and PPS after tool-use seems to be strictly dependent on the 

sensory consequences of action: thanks to tool-use, participants acted on a portion of 

space exceeding the normal limits of our physical body. As a consequence, their brain 

started processing multisensory inputs related to one’s own body, but arising from a 

distal portion of space. For instance, tactile and proprioceptive cues processed at the 

upper limb via the tool handle refers to objects contacting the tip of the tool. Such 

contacts also generate sensory feedback in other modalities, e.g. auditory feedback, as 

in the present experiments, when subjects were blindfolded, but also visual feedback 

in everyday life tool-use activities. We believe that this action-dependent extension of 

the space, where body-related sensory information arises from, is the trigger for the 

changes in body representation and PPS representation documented by the 

experiments presented in Chapter 5. This proposal has been recently introduced by 

our group in the context of a neural network model designed to account for plasticity 

in PPS representation (Magosso et al., 2010c), and it was specifically tested, for what 

concerns the PPS, in Chapter 6 of the present dissertation. Results from Experiment 
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6.1 demonstrated that a training consisting in a synchronous presentation of tactile 

stimuli at the hand and auditory stimuli in the far space was able to modify the 

boundaries of the audio-tactile representation of the peri-hand space. Interestingly, the 

current results, as predicted by the neural network model, demonstrated that a change 

in peri-hand space mimicking that obtained after tool-use (see Chapter 5 of this 

dissertation) can be evoked also when a tool is not actually used or even present in the 

subject’s hand. A key factor in promoting an extension on PPS representation, 

instead, seem to be feeding the neural network with the same sensory stimulation 

produced by tool-use activity, i.e. the auditory stimulation due to the sound produced 

by the tool when hitting an object placed in the far space and the concurrent tactile 

stimulation at the hand due to handling the tool. According to the neural network 

model proposed by Magosso and colleagues (2010c), tactile unimodal stimuli at the 

hand and auditory unimodal stimuli in the far space send feed forward synapses to 

bimodal neurons. The synapses linking unimodal to bimodal neurons are reinforced 

following a Hebbian rule during such training. The reinforcement of these synapses, 

that were just latent before the experiment, results in an extension of audio-tactile peri 

hand space, with a far auditory stimulus re-codified as being closer to the body. 

Results from the present study are new in suggesting that the motor aspect of tool-use 

is not so critical in promoting plastic reorganization of spatial representations: neither 

a functional, nor a physical interaction between near and far space are necessarily 

required to determine an extension of PPS.  
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Figure 9.2 Audio-tactile interaction task. Results from Experiment 5.1 (panel A) and Experiment 6.1, 
synchronous condition. Graphs reveal extension effect on PPS representation both After tool-use 
(Experiment 5.1) and After a synchronous training (Experiment 6.1) 
 

According to the interpretation of results from the present study, supported by the 

neural network model, tool-use extends PPS representation because it is an 

experimental condition that provides the brain with a tactile stimulation at the hand 
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and a synchronous multisensory stimulation in the far space. It has been proposed that 

a similar multisensory mechanism plays an important role in eliciting the Rubber 

Hand Illusion (RHI): during the RHI just seeing the rubber hand being stimulated and 

experiencing a synchronous tactile stimulation may lead to a shift of the receptive 

field towards the fake body part (see also Blanke et al., 2012 for a review), leading to 

a change in body perception, that is the rubber hand is perceived as the real hand. 

 

 

 

9.6 Plasticity in PPS and BR: amputation 

	
  
Most evidence of plasticity in PPS and BR following tool use (Serino et al., 2007, 

Cardinali et al., 2011; Sposito et al., 2012) or multisensory illusions (de Vignemont, 

2005; Taylor Clarke et al., 2004; Tajadura Jimenez et al., 2012) demonstrates 

extension effects. Effects of contraction are, instead, rarely reported (see e.g. Longo et 

al., 2009). This asymmetry in extension vs. contraction effects makes sense in the 

view that the body normally grows, but not, or minimally (with aging), shrinks. 

Extension effects in PPS and BR after tool-use are strictly dependent by projecting the 

possibility of action beyond the limit of the physical body. In Chapter 7, in order to 

study whether PPS and BR are also plastic in the direction of contraction, we tested 

how BR and PPS dynamically change when the possibility of acting in space is 

dramatically reduced, such as after upper limb amputation. We also asked whether 

such effects are reversible, by means of prosthesis implantation, which partially 

restore the possibility of acting in space. Results showed that amputation reduces the 

perceived length of the remaining part of the affected limb and, accordingly, affected 

PPS representation around the stump. Wearing the prosthesis restored both BR and 
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PPS around the healthy limb, making these representations more similar as compared 

to the one of the healthy limb. These results are interesting for three reasons. First, 

they show that shrinkage of a part of the physical body following amputation resulted 

in contraction of multisensory BR and PPS; when they did not wear their prosthesis, 

amputee patients perceived their stump as shorter and PPS representation around the 

stump shrunk. Second, until now an extensive body of evidence has demonstrated a 

strong relationship between a modification of the physical body and unimodal body 

representations (see Chapter 2). Surprisingly, little is known about the extent to which 

multisensory body and space representations are dependent on the structure of the 

physical body and are affected by limb loss. Results from the present study 

demonstrated that a change in the physical body structure similarly affected high-level 

multisensory body and space representation. Critically, prosthesis implantation, by 

restoring the possibility of acting in space, partially compensated the effects of 

amputation on BR and PPS. Finally, results from the present study showed parallel 

effects on BR and PPS also after amputation and prostheses implantation, as 

previously demonstrated in Chapter 5 after tool-use. The correspondence between the 

plastic properties of these two representations under different kinds of experiences 

suggests that BR and PPS representations strongly overlap. This is not surprising, 

considering the several level of overlapping of these two representations, both at level 

of neural representation (see Chapter 3 of the present dissertation; Bolognini & 

Maravita, 2007; Azanon et al., 2010) and action execution.  I will discuss extensively 

this point in the next section. 
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9.7 PPS and BR: a representation of the body in space 

It is matter of debate how much PPS and BR are dissociable or rather represent a 

unique representation of the body in space for action. Our data from the study 

presented in Chapter 5 show an overlap of plastic properties of PPS and BR.  Such 

overlap can be interpreted in three ways. First, it might be the case that the 

modification of PPS representation directly depends on the plastic change of BR. In 

other words, a “longer” arm would imply a more extended PPS around it, while a 

“shorter” arm would imply a reduced PPS representation. Conversely, an opposite 

relationship between the two effects, for instance that the arm is perceived as longer, 

because the PPS around it has extended (see Experiment 5.1), appears less likely. 

Second, the two plastic phenomena might be simply associated, sharing the properties 

of being body-related, without any causal relationship between them. A third 

interpretation is possible, i.e., that the representation of the size and position of body 

parts devoted to action, i.e. BR, and that of the space immediately surrounding the 

same body parts actually consist in a unique representation of the body in space (for 

comments see Cardinali et al. 2009b; Gallese & Sinigaglia, 2010). Results from the 

studies presented in Chapter 5 and 7, by providing evidence for similar plastic effects 

on PPS and BR, support this third view, in favour of a unified body and space 

representation. However, this evidence is not sufficient to definitively conclude that 

PPS and BR consist, as showing an association does not necessarily imply any causal 

relationship. Interestingly, our group (Bassolino, Finisguerra, Canzoneri, Serino, & 

Pozzo, in preparation) investigated in healthy subjects the effect of both motion 

deprivation of one arm (through an immobilization procedure) and the compensatory 

overuse of the other arm on BR (by using the same tactile distance perception task 

and body landmark localisation task as Chapter 5 of this dissertation) and PPS (by 
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using the audio-tactile interaction task). Results showed dissociated effects on BR and 

PPS: indeed, after immobilization, the representation of PPS around the immobilized 

arm was reduced, while the representation of the perceived dimension of the arm was 

not affected. Such asymmetrical effects between PPS and the perceived length on the 

arms are new in suggesting a different role of action on space and body 

representations. Future studies are needed to theoretically and experimentally 

investigate possible consistency or dissociation between body and space 

representation. 

 

9.8 Extension or incorporation effects? 

	
  
Another interesting question is whether the effect of using a tool to extend the normal 

limits of the physical body and that of wearing a prosthesis to partially restore the 

integrity of the body result in analogous plastic phenomena or consist in different 

processes. Since prosthetic limbs share more features with an anatomical limb as 

compared to tools, prosthesis-use and tool-use could have differential effects on the 

plasticity of body representations. In particular in the literature a distinction has been 

proposed between the effects of body extension (in the case of tool-use) and those of 

body incorporation (in the case of prosthesis-use; De Preester & Tsakiris, 2009; see 

also Giummarra et al., 2008). It is still not clear, however, whether and to what extent 

a prosthetic limb can be embodied such that it becomes in some sense 

indistinguishable from a real body part. We did not directly test the subjective 

experience of prosthesis embodiment in our study on amputee (see Mayer, Kudar, 

Bretzet, & Tihanyi, 2008). However, some interesting comparisons between the 

effects of tools (Chapter 5) and prostheses use (Chapter 7) are possible, thanks to the 
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fact that we used the same tasks to investigate plastic changes in BR and PPS in the 

two conditions. In particular, as far as PPS is concerned, we found a different 

modulation of tactile stimuli due to the sound processing in the case of tool-use as 

compared in the case of prosthesis use. In the study presented in Chapter 5, after tool-

use there was a recoding of a portion of far space (where participants acted with the 

tool) as near. More precisely, in case of tool-use we observed a speeding up of tactile 

RTs only in a portion of space that was perceived as far before tool-use (i.e. at D2), 

corresponding to the portion of space where the tool was used. In case of prosthesis 

implantation in amputees, instead, results from the audio-tactile interaction task 

showed a speeding up effect at every perceived distance of the sound from the body 

(see Figure 9.3.). The first result (in case of tool-use) is more compatible with an 

extension effect, while the second result results is coherent with a shift of PPS 

representation from the stump (in the without prosthesis condition) to the prosthetic 

limb (in the with prosthesis condition), up to incorporate the prosthesis in its 

representation. This interpretation has been confirmed by a control Experiment on 

healthy subjects (see Experiment 7.2B), in which we tactilely stimulated either the 

hand or the upper arm, while dynamic sounds moved between the far space and the 

arm. When tactile stimulation was presented at the upper arm, the results resembled 

those found in the amputees in the without prosthesis condition (see Figure 9.3). 

Instead, when tactile stimulation was administered at the hand, we observed a 

speeding up effect of tactile RTs at every temporal delay, similarly to what we found 

in amputees when they wore their prosthesis. Taken together these results suggest that 

in amputee a tactile stimuli at the stump was automatically referred to the prosthetic 

arm, such as it becomes the new boundary of their body. It is tempting to conclude 

that prosthesis implantation in this study is compatible with a body incorporation 
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process, which is different from a body extension processes triggered by tool use.  

 

Figure 9.3 
A. Chapter 5, Experiment 5.1 results. Mean RTs at different perceived sound distances (from D1 - 
farthest - to D5 - closest), corresponding to different time of tactile stimulus delivery and best fitting 
sigmoidal functions describing the relationship between RTs and sound distance, before tool-use (black 
line) and after tool-use (dotted line). Error bars denote S.E.M. 
B. Chapter 7, Experiment 7.2A results. Mean RTs at different perceived sound distances (from D1 - 
farthest - to D5 - closest), corresponding to different time of tactile stimulus delivery and best fitting 
sigmoidal functions describing the relationship between RTs and sound distance, without prosthesis 
(dotted line) and with prosthesis (grey line) conditions. Error bars denote S.E.M. 
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C. Chapter 7, Experiment 7.2B results. Mean RTs at different perceived sound distances (from D1 - 
farthest - to D5 - closest), corresponding to different time of tactile stimulus delivery and best fitting 
sigmoidal functions describing the relationship between RTs and sound distance, Upper Arm (dotted 
line) and Hand (grey line) conditions. Error bars denote S.E.M. 
 

However, it is worth reminding that the present study did not specifically tested, for 

instance, the feeling of body ownership when patients wore their prosthesis. 

Interestingly, this aspect has been investigated by Ehrsson and colleagues (2008) by 

using the Rubber Hand Illusion. In this study, the authors tested whether it was 

possible to elicit the Rubber Hand illusion in a group of upper limb amputee by 

providing a tactile stimulation of the stump in synchrony with a visual tactile 

stimulation at the prosthetic hand. Results showed that the RHI was effective also in 

this case, since participants perceived an illusory sensation of perceiving touch on the 

artificial hand, rather than on the stump, accompanied by a feeling of ownership of 

the rubber hand. 

 

 
 

9.9 PPS as a social interface  

 
Most of the studies previously presented in this dissertation investigated how the 

representation of the space around the body changes as a function of interaction with 

an artificial object. By using a tool, for instance the distinction between a near space - 

where I can normally act - and the far space – where I can act with the tool - is 

altered. Critically, in everyday life the distinction between near and far space is 

meaningful not only in terms of possibility of object interaction, but mainly in terms 

of social interaction. In Chapter 8 we investigated how PPS representation was 

shaped both by presence and behaviours of other individuals. We used the same 

audio-tactile interaction task previously described, but in this case we investigated 
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audio-tactile interaction around the face where people were facing either a mannequin 

or another person. Results from Experiment 8.1 showed that PPS boundaries shrink 

when subjects face another individual, as compared to a mannequin, placed in far 

space. This effect is sensitive to the physical distance between the subject and the 

other individual, since if the distance between them was reduced, the PPS boundaries 

changed accordingly. Experiment 8.2 and 8.3 showed that after playing an economic 

game with another person, PPS boundaries between self and other merge, but only if 

the other behaved cooperatively. 

Philosophical considerations as well as neurophysiology, neuropsychology, and 

behavioral evidence converged in showing that the PPS representation is a space of 

fundamental importance for the individual, being the space where every interaction 

with the external world take place. It worth noting, however, that the relevance of 

space for both animals and humans is particularly inherent in social interaction, since 

many of our most meaningful interactions take place with objects with an high 

emotional and motivational significance, such as other human beings. In cognitive 

psychology most of the study on PPS had focused in showing how multisensory 

stimuli that fell within or outside the PPS are processed. Until now, as far as we know, 

only few studies in the literature have investigated social modulation of PPS 

representation. In monkey, bimodal neurons in the posterior parietal cortex respond to 

tactile stimuli on the animal’s body and to visual stimuli presented close to the 

experimenter’s body (Ishida et al., 2010). Homologous areas in humans respond to 

tactile stimuli on one’s own face and to visual stimuli approaching another person’s 

face (Cardini et al., 2011). Thus, some PPS neurons process events occurring not only 

within one’s own PPS but also within the PPS of others. Heed and colleagues (2010) 

recently showed that multisensory integration is modulated as a function of the 
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presence and activities of others within one’s own PPS. Data from the present study 

here presented in Chapter 8 are new, since they extend previous findings by showing 

that the presence of others also in the extrapersonal space shapes PPS representation, 

such that the presence of others structures the representation of space around oneself. 

Moreover we also demonstrated a correlation between personality traits and the 

extension of PPS in social interaction. Individual differences in the size of near space, 

where participants were facing another person in the Other condition (Experiment 

8.1A) were related to individual differences in own feelings of fear, apprehension and 

discomfort in presence of other people as assessed by the Personal Distress subscale 

of the IRI questionnaire. People with a higher score at the Personal Distress subscale 

also perceived the boundaries of PPS as closer to the body when facing another 

person as compared to when facing a mannequin.  

These results suggest that PPS can be conceived as a social space, in which distance 

has a particular meaning in terms of the kind of interaction allowed. In social 

psychology, the concept of a space where social interaction takes place is usually 

referred as “Personal Space” (Hall, 1963). An intriguing hypothesis is that the concept 

of Peripersonal Space, as intended in neuroscience, and the concept of Personal Space, 

as intended in a social psychology, do actually represent the same psychological 

entity. In the social psychology literature the space around the body, the Personal 

Space, has been defined as the “area individuals maintain around themselves into 

which others cannot intrude without arousing discomfort or even withdrawal” 

(Hayduk, 1978, 1983; see also Lloyd, 2008, for a review). So, the Personal Space is 

conceived as an emotional zone around the human body that people feel like “their 

space” (Tajadura-Jiménez, Pantelidou, Rebacz, Västfjäll, & Tsakiris, 2011), and it is 

meaningful only in terms of social interaction. Hall specifically distinguished four 



	
   243	
  

different spatial zones as a way of placing spatial boundaries on interpersonal 

behaviour (see Figure 9.4): an intimate zone, used in very close relationships only; a 

personal zone, that correspond to the space of interaction with the other; social zone, 

that corresponds to a portion of space where more formal interactions take place and 

public zone, which is the distance kept from public figures (Hall, 1966; see Lloyd, 

2008, for a review). A similar distinction between different sectors of space was first 

applied by Hediger (1950) to the animal behavior (see Graziano & Cooke, 2006 and 

Lloyd, 2008, for reviews). Hediger identified what he called a flight zone, a margin of 

safety around the animal’s body: when a threatening object enters this flight zone, the 

animal escapes. In this sense, if we consider the Personal Space as a defensive zone, 

an overlapped can be found with the concept of PPS, given the sensory to motor 

function of PPS representation.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4 Diagram of Edward T. Hall's personal reaction bubbles. Adapted from Hall, The Hidden 
Dimension, 1966. 
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As demonstrated in this dissertation (see Chapter 3 and Paragraph 3 of the present 

Chapter), the human brain has evolved an adaptive mechanism that preferentially 

code for stimuli presented within and entering the PPS and map them onto the motor 

system in order to prepare an appropriate and rapid motor response.  

Several studies in the literature, extensively reviewed in the present dissertation, 

demonstrate that PPS representation is not static, but it is dynamically updated 

through experiences. Similarly, also the representation of “Personal Space” in a more 

social context is not static, but can be updated by emotional states. A study of 

Tajadura-Jimenez and colleagues (Tajadura-Jiménez et al., 2011) specifically 

demonstrated that the extent of “Personal Space” is modified by the emotional 

valence of the music (positive VS negative) that people listened through personal 

music player when being in a social context. The extent of Personal Space in this 

study was measured as the distance where participants began to feel uncomfortable 

with the presence of another person. Specifically, their results showed that when 

participants listened to “positive” music (delivered through headphones), the Personal 

Space shrunk, allowing others to get closer. Instead, when participants listened to 

“negative” music, delivered through loudspeakers, the Personal Space expanded.  

Taken together these results suggested that at a theoretical level an overlapping 

between the concept of Peripersonal Space in neuroscience and Personal Space in 

social psychology is possible: a common point seems to be that the social distance, 

that is the interpersonal distance that is considered acceptable, is not always rigidly 

fixed but is partially determined not only by participants internal feeling, but also by 

the social context (Hall, 1966; Tajadura-Jimenez et al., 2011). Interestingly, results 

from the study presented in this dissertation are new in showing a direct link between 



	
   245	
  

the extension of PPS representation and feelings generated not only by an internal 

state (such as happened in Tajadura-Jimenez and colleagues’ study), but also by 

interaction with others. 

 

In conclusion the present dissertation revealed how different types of experiences 

shape body and space representation. Specifically, we demonstrated how, in several 

contexts, changes in the structure or in the function of the physical body plastically 

modify mental representations of the body and of the PPS.  An interaction between a 

perceptual representation of the body in space and high-level representations in a 

social context also demonstrated that other individuals shape PPS representation. 

Such plasticity suggests that our sense of body in space is not given at once, but it is 

constantly constructed and adapted through experience.       	
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