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Abstract

The development of a multibody model of a motorbike engine cranktrain is

presented in this work, with an emphasis on flexible componentmodel reduction.

A modelling methodology based upon the adoption of non-ideal joints at

interface locations, and the inclusion of component flexibility, is developed:

both are necessary tasks if one wants to capture dynamic effects which arise in

lightweight, high-speed applications.

With regard to the first topic, both a ball bearingmodel and a journal bearing

model are implemented, in order to properly capture the dynamic effects of the

main connections in the system: angular contact ball bearings are modelled

according to a five-DOF nonlinear scheme in order to grasp the crankshaft main

bearings behaviour, while an impedance-based hydrodynamic bearing model

is implemented providing an enhanced operation prediction at the conrod big

end locations.

Concerning the second matter, flexible models of the crankshaft and the

connecting rod are produced. The well-established Craig-Bampton reduction

technique is adopted as a general framework to obtain reduced model represen-

tations which are suitable for the subsequent multibody analyses. A particular

component mode selection procedure is implemented, based on the concept of

Effective Interface Mass, allowing an assessment of the accuracy of the reduced

models prior to the nonlinear simulation phase. In addition, a procedure to

alleviate the effects of modal truncation, based on the Modal Truncation Aug-

mentation approach, is developed. In order to assess the performances of the

proposed modal reduction schemes, numerical tests are performed onto the

crankshaft and the conrod models in both frequency and modal domains.

A multibody model of the cranktrain is eventually assembled and simulated

using a commercial software. Numerical results are presented, demonstrating

the effectiveness of the implemented flexible model reduction techniques. The

advantages over the conventional frequency-based truncation approach are

discussed.
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Chapter 1

Introduction

Modern powertrain design is facing increasingly strict requirements in terms

of emissions, fuel consumption, noise and vibration levels. In recent years, this

trend is extending towards the motorcycle industry, in which competitive design

focused on achieving a high power-to-weight ratio calls for optimized engine

components. This in turn requires the adoption of a multidisciplinary approach

early in the conception phase, and the use of advanced simulation tools which

help the analysts in gaining a deeper insight into the physical phenomena associ-

ated with the engine operation.

1.1 Cranktrain dynamics simulation

Concerning structural design aspects, modern analysis techniques involve the

adoption ofmultibody simulation tools, which allow an accurate prediction of

loads acting on the system components at operational speed, thus improving

the subsequent stress and fatigue life analysis.

Several approaches are described in literature dealing with multibody mod-

elling of internal combustion engine powertrains. Some papers deal with the

construction of fully coupled cranktrain models through the use of commercial

multibody dynamics codes, which provide a general modelling platform for

mechanical systems, see e.g. [10, 12, 25, 26, 28, 66, 71, 72, 82, 83]: the system

equations of motion are in this case automatically generated by the software

kernel, and solved by means of some standard integration scheme. As an alter-

native, some studies describe the development of specialized modelling codes,

see e.g. [14, 24, 27, 47, 58, 61, 68, 69, 70]: the system equations of motion are

retrieved analytically and implemented in specific computational algorithms.
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2 INTRODUCTION

In this work, the former approach has been followed to investigate the elas-

todynamic behaviour of the cranktrain of a Ducati L-twin, four strokes engine,

having a displacement of 1.2 litres, capable of delivering 180 horsepower.

In the context of multibody modelling, the definition of a system made up

of rigid links connected to each other via kinematic joints typically represents

the first step in the process; in fact, commercial multibody software platforms

offer both geometry and joint libraries, permitting the analyst to set up a basic

dynamic model with little time and effort. Clearly, this modelling approach is

affected by some important limitations: first of all, the adoption of rigid bod-

ies in combination with kinematic joints prevents some interface loads to be

evaluated whenever the mechanism under study exhibits some static indetermi-

nacy; furthermore, any dynamic amplification effect, which might significantly

affect the actual loads, is evidently lost. These shortcomings can be eliminated

by embracing a refined modelling methodology, based upon the introduction of

non-ideal joints at interface locations, and the inclusion of component flexibility.

In this study both a ball bearing model and a journal bearing model have

been implemented, starting from available literature descriptions, in order to

properly capture the dynamic effects of the main connections in the system

under study: in fact, the crankshaft is supported by four main journals, three of

which equipped with ball bearings, the other one with a bush bearing, while the

two connecting rods act on the crankpin through hydrodynamically lubricated

journal bearings.

Several ball bearing models are found in literature, mainly referring to dif-

ferent approaches: a numerical approach, see e.g. [2, 13, 20, 48, 51], for which the

discrete ball-race loads are summed numerically, and an analytical approach,

cf. [41, 49], for which the summation of ball-race loads is replaced by an integra-

tion. While the former is considered superior in terms of accuracy, the latter is

often more accessible for designers who want to include bearing models in their

application codes in order to predict bearing performances without having to

perform heavy numerical calculations.

The angular contact ball bearing model proposed in [41] is adopted here: the

model provides a nonlinear definition of loads and moments acting on the inner

ring taking into account five relative race displacements, i.e. three translations

and two tilting angles; a full coupling between those is considered.

Concerning journal bearings, their importance in rotating and reciprocating

machine applications is proved by the huge number of papers published on this

subject. Numerical methods, especially the Finite Element Method (FEM), are

widely used to analyse journal bearings including oil feed holes and grooves,

and geometry effects like taper and misalignment; such methods, see e.g. [6,
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9, 27, 36, 56, 57], are probably the most accurate and versatile, but they tend

to be expensive and not always practical. Often, designers use less expensive,

approximate analytical methods, cf. [7, 8, 15, 35, 46]; amongst those, the mobility

method and its dual counterpart, the impedance method, are the most popular.

The impedance description as proposed in [15] for plain, circumferentially-

symmetric fluid journal bearings is taken here as reference. Such a model pro-

vides a dynamic nonlinear definition of the bearing reaction force as a function

of the journal motion, being particularly suited for transient simulation work.

The adopted formulation is a combination of the two asymptotic short bearing

and long bearing solutions [65], and performs well for general finite-length bear-

ings at both large and small eccentricity ratios; furthermore, since the pressure

distributions are not calculated, the method permits very efficient computation.

Specific computational routines have been produced concerning both bear-

ing types, and embedded into the adopted multibody solver.

As mentioned, another key aspect in obtaining realistic results from multi-

body dynamic simulations is the inclusion of component flexibility: this is a

necessary task if one wants to capture dynamic effects which arise in lightweight,

high-speed applications.

Different techniques exist to incorporate body flexibility in multibody mod-

els [75, 80]; among those, the Floating Frame of Reference formulation is certainly

the most widely used, and is currently implemented in several commercial multi-

body dynamics software packages. The assumption here is that the deformation

of the generic flexible body keeps small with respect to a body local reference

frame, which in turn undergoes large, nonlinear motion relative to an inertial

global reference frame; such hypothesis of linear body flexibility allows linear

model reduction techniques to be exploited to reduce the number of coordinates

required to describe the component deformation, thus reducing the needed

computational effort.

In particular, Component Mode Synthesis (CMS) techniques can be em-

ployed to describe body deformation as a linear combination of a number of

mode shapes: this task is accomplished by means of some coordinate trans-

formation, from physical to modal domain, which can include different kind

of modes [16, 17], i.e. eigenmodes, constraint modes, attachment modes, etc.

With this respect, several schemes were proposed by a number of authors in

the past, see e.g. [18, 42, 45, 50, 62, 73, 74]; due to a simple, straightforward for-

mulation of the reduction process, combined with good overall performance,

the Craig-Bampton (CB) approach [18] has gained increasing popularity among

the structural dynamics community, and is nowadays the most widely used

reduction method for flexible multibody dynamics applications.



4 INTRODUCTION

Such method has been employed here as a general framework to obtain

reduced model representations for both the crankshaft and the connecting rods

involved in the cranktrain under study.

1.2 Focus of the thesis

Model reduction through CMS implies that the full set of physical coordinates

is reduced to a smaller set of generalized coordinates, giving rise to a modal
selection problem. Clearly, the two most important aspects of such a problem

are model order and model accuracy: an optimal reduction would result in the

minimal set of component modes which ensures acceptable accuracy in the

simulation results. Despite modal selection being an important concern in CMS

techniques, and CB in particular, not many papers exist on the subject, and the

standard practice consists in using some frequency-based criterion to select

mode shapes to retain in the reduced representation of a component.

In the present work, a different approach is proposed: the mode selection

procedure is carried out in accordance with a modal ordering scheme based

upon Effective Interface Mass (EIM), which determines the contribution of

each mode shape to the dynamic loads at the interface, providing a rigorous

measure ofmodal dynamic importance.The EIM approachwas introduced in the

mid-nineties [54, 55], with main focus on dynamic substructuring and control-

structure interaction applications; an extension towards multibody dynamics is

presented here.

The dual aspect of modal selection ismodal truncation: modes which are not

retained in the reduced representation of a component are simply discarded. This

might lead to inaccurate representation of the applied loading, both concerning

its time dependency and its spatial dependency [21]: while the first concern

is usually addressed by including in the reduced representation a number of

modes spanning a multiple of the frequency range of interest, the latter is often

ignored. Some techniques were proposed in the past to tackle this problem,

being the Mode Acceleration method [19] the most popular one: such method,

however, acts only at the physical response recovery stage, and does not provide

any enhancement to the modal representation of the component.

In the present study, the Modal Truncation Augmentation (MTA) tech-

nique [21, 23, 31] is adopted to augment the CB reduction transformation matrix

with a set of pseudo-eigenvectors, which provide a quasi-static correction for

low-frequency excitation, as well as a dynamic correction for high-frequency

excitation. Unlike Mode Acceleration, the enhancement impacts the dynamic

characteristics of the reduced flexible component, thus resulting attractive for
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multibody dynamics applications.

Both the EIM and the MTA techniques have been implemented as specific

routines within the adopted FE commercial code, and used to obtain reduced

models of both the crankshaft and the connecting rod employed for the subse-

quent multibody dynamic simulations.

1.3 Outline of the dissertation

This thesis is organized as follows.

Chapter 1 introduces the thesis by presenting the subject, highlighting the
main focus and clarifying the organization of the text.

Chapter 2 presents the ball bearing and journal bearing models employed

for simulation purposes, describing the theoretical developments of the models

and providing some details about their specific implementation in the multibody

dynamics software.

Chapter 3 discusses the component model reduction techniques which are

used to obtain reduced flexible component models of the crankshaft and the

connecting rod. The theoretical developments of the CB, EIM andMTAmethods

are provided, along with the details about their practical implementation in

the FE code. The assessment of the reduced models through numerical tests

performed onto the single components is eventually described.

Chapter 4 presents the development of the multibody model of the engine

cranktrain. A brief theoretical overview about the Floating Frame of Reference

formulation in flexible multibody dynamics is provided first. The multibody

model assembly is then described, and the specific simulation results are dis-

cussed demonstrating the benefits of the adopted model reduction techniques.

Chapter 5 provides some concluding remarks and suggestions for future

research.





Chapter 2

Bearingmodelling

The use of ideal joints, i.e. kinematic constraints, is a standard practice in multi-

body dynamics simulation, especially when commercial software platforms are

employed for the purpose: these usually provide ready-to-use joint libraries

from which the user selects the most suitable ones for his specific application,

allowing for an express model deployment. Whenever accuracy is a major con-

cern, however, this modelling approach is somewhat restrictive, and the use of

non-ideal joints, i.e. force constraints, should be taken into consideration for

the main connections in the system. Clearly this requires the additional effort of

implementing joint models, which can be an expensive activity depending on

the complexity of the involved theoretical background; furthermore, dynamic

simulations including such kind of models can be costly, thus a cost-benefit

analysis should always be made to choose adequate modelling strategies.

In this study both a ball bearingmodel and a journal bearingmodel have been

implemented, starting from available literature descriptions, in order to properly

capture the dynamic effects of the main connections in the cranktrain under

study, cf. Chapter 4: in fact, the crankshaft is supported by four main journals,

three of which equipped with ball bearings, the other one with a bush bearing,

while the two connecting rods act on the crankpin through hydrodynamically

lubricated journal bearings.

2.1 Ball bearingmodelling

Several ball bearing models are found in literature, mainly referring to different

approaches: a numerical approach, see e.g. [2, 13, 20, 48, 51], for which the discrete

ball-race loads are summed numerically, and an analytical approach, cf. [41,

49], for which the summation of ball-race loads is replaced by an integration.

7



8 BEARING MODELLING

While the former is considered superior in terms of accuracy, the latter is often

more accessible for designers who want to include bearing models in their

application codes in order to predict bearing performances without having to

performheavy numerical calculations.Themethod proposed byHernot et al. [41]

is adopted here, this consisting actually in a matrix formulation of Houpert’s

uniform analytical approach [49], based on a first-order development of the

ball-race Hertzian deformation.

Hertzian theory refers to the localized stresses that develop as the generic

bearing ball comes in contact with the inner and outer raceways, slightly de-

forming under the imposed loads. Such deformations, assumed as elastic, are

small compared to the dimensions of the contact area, which, in turn, is consid-

ered to be small with respect to the radii of curvature of the contacting bodies.

No deformation of the inner and outer rings occur, except at the balls contact

area: the stiffness of the whole bearing can be seen as a result of the stiffnesses

associated to each ball-raceway contact. The load on each rolling element is

assumed to be normal to the contacting surfaces, and the effects of surface shear

stresses are neglected: the direction of such load identifies the contact angle,
that defines the ability of angular contact bearings to support thrust loads and

that does not usually exceed 40 degrees. Such angle is assumed as a constant

throughout the mentioned references [41, 49]: any variation caused by imposed

loads or centrifugal effects is ignored. In very high speed applications, though,

such hypothesis becomes too strict, and models taking into account a contact

angle variation must be employed [3, 59, 60].

The model presented here provides a nonlinear definition of loads and mo-

ments acting on the inner ring taking into account five relative race displace-

ments, i.e. three translations and two tilting angles; a full coupling between those

is considered. No radial clearances within the bearing, nor thermal effects are

included; furthermore, the influence of the lubrication film is ignored.

2.1.1 Theoretical background

In order to clarify how the matrix formulation has been obtained in [41], the

2-degrees-of-freedom (2-DOF) ball bearing model is reviewed first. This model

neglects any misalignment between inner and outer ring axes, which are thus

considered to remain parallel under load. Such load, which can be expressed as a

superposition of a thrust load Fa and a radial load Fr , determines a displacement

of the inner ring with respect to the outer ring, which will be considered as fixed

hereinafter. The variation of the distance between inner and outer ring can be

approximated as a combination of an axial displacement, δa , and a displacement
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Figure 2.1 Angular contact ball bearing parameters, adapted from [41]

along the radial load direction, δr , as:

dψ ≈ δa sin α + δr cos α cosψ (2.1)

where α is the bearing contact angle, see Figure 2.1, while ψ defines the generic

rolling element angular position with respect to the radial load direction. This ap-

proximation ignores any contact angle variation, which is commonly acceptable

for bearing analysis provided that both δa and δr are very small when compared

to the overall bearing dimensions. The ball-race deflection is given by:

δψ = max (0, dψ) (2.2)

since compression only occurs for positive values of dψ.
The ball-raceway contact load Q is estimated using the traditional Hertzian

load-deflection relationship:

Q = kδn (2.3)

where k is a factor depending on the contact geometry and the material elastic

constants. The exponent n only depends upon the contact geometry: for ball

bearings, where point contact can be assumed, n = 3⁄2 . The contact load at any

angular position is then given by:

Qψ = k [max (0, dψ)]
n

(2.4)
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which can be rearranged as:

Qψ = kdψ [max (0, dψ)]
n−1

(2.5)

This simple step is crucial towards the definition of a matrix formulation of the

problem.

For static equilibrium to exist, the summation of rolling element forces in

each direction must equal the applied load in that direction:

Fa =
2π

∑
ψ=0

Qψ sin α (2.6a)

Fr =
2π

∑
ψ=0

Qψ cosψ cos α (2.6b)

If equation (2.5) is used instead of (2.4), then the previous can be rearranged in

matrix format as:

{Fa
Fr
} = [K11 K12

K12 K22

]{δa
δr
} (2.7)

with:

K11 =
2π

∑
ψ=0

k [max (0, dψ)]
n−1

sin
2
α (2.8a)

K12 =
2π

∑
ψ=0

k [max (0, dψ)]
n−1

cosψ sin α cos α (2.8b)

K22 =
2π

∑
ψ=0

k [max (0, dψ)]
n−1

cos
2
ψ cos

2
α (2.8c)

Since the angular position of the balls changes during normal operation,

the stiffness of the bearing also changes continuously in real-life applications.

In order to avoid taking into account the angular position of each ball, which

would result in an increased model complexity, it is possible to use the integral

form of Sjoväll [39, 77]: this prevents summing the discrete rolling element loads,

by making the assumption that the angular position of the rolling elements

with respect to each other is always maintained due to a rigid, ideal cage. The

expressions of the bearing stiffnessmatrix elements in (2.8)may then be rewritten

as:

K11 = Kε sin
2
α Jaa (ε) (2.9a)
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K12 = Kε sin α cos α Jra (ε) (2.9b)

K22 = Kε cos
2
α Jrr (ε) (2.9c)

being Kε a stiffness dimensional factor:

Kε = Zk (δa sin α + δr cos α)n−1 (2.10)

Here, Z is the number of rolling elements. The integrals in (2.9) can be expressed

as:

Jaa (ε) =
1

2π
∫

2π

0
H (ε) dψ (2.11a)

Jra (ε) =
1

2π
∫

2π

0
H (ε) cosψdψ (2.11b)

Jrr (ε) =
1

2π
∫

2π

0
H (ε) cos2 ψdψ (2.11c)

where:

H (ε) = [max(0, 1 − 1 − cosψ
2ε

)]
n−1

(2.12)

The load distribution factor ε is defined as:

ε = 1

2
(1 + δa tan α

δr
) (2.13)

The integrals in (2.11) may be evaluated numerically for any value of ε; Hernot

proposed approximate equations which precisely fit these numerical results [41],

and which allow an easier implementation.

Let’s now extend the explained concepts to the 5-DOFmodel. In this case the

distance variation between inner and outer race has been calculated by Houpert

[49] by taking into account five relative displacements, i.e. three translations and

two tilting angles. The exact relationship is rather cumbersome, but Houpert

used a first-order development to obtain a simplified relationship:

dφ ≈ δx sin α + ∆y cos α cosφ + ∆z cos α sinφ (2.14)

where ∆y , ∆z are the equivalent radial displacement components along the global

y and z axes:

∆y = δy − δθzRi tan α (2.15a)

∆z = δz + δθyRi tan α (2.15b)
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Figure 2.2 Coordinate system used for the 5-DOF model, adapted from [41]

Here, Ri is the mean inner race radius1, while φ is the generic rolling element

angular position with respect to the y axis, see Figure 2.2. The equivalent radial

displacement can be expressed as:

∆r =
√

∆2
y + ∆2

z (2.16)

so that (2.14) can be rewritten:

dφ ≈ δx sin α + ∆r cos α cos (φ − φr) (2.17)

In the previous, φr represents the direction of the maximum radial displacement

and is defined as:

φr =
⎧⎪⎪⎨⎪⎪⎩

arctan (∆z/∆y) , ∆y ≥ 0
arctan (∆z/∆y) + π, ∆y < 0

(2.18)

Note that there is a complete analogy between (2.17) and (2.1).

The static equilibrium between rolling element forces and applied loads now

holds:

Fx =
2π

∑
φ=0

Qφ sin α (2.19a)

Fy =
2π

∑
φ=0

Qφ cosφ cos α (2.19b)

1
Houpert derived expression (2.14) by using the mean inner race radius R i , see Figure 2.1,

while Hernot uses the radius of the intersection between the contact cone and the inner raceway

median plane, RI , throughout [41]. The former has been taken here as reference, but it seems

reasonable that both might be used without substantial differences, due to close numerical values.
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Fz =
2π

∑
φ=0

Qφ sinφ cos α (2.19c)

My = FzRi tan α (2.19d)

Mz = −FyRi tan α (2.19e)

where the ball-raceway contact load distribution Qφ has been introduced. By

expressing it in a similar fashion to that in (2.5) allows to rearrange (2.19) in

matrix format, in complete analogy with the described two-DOF bearing model.

The load-displacement relationship becomes:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx
Fy
Fz
My
Mz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K11 K12 K13 K14 K15

K22 K23 K24 K25

K33 K34 K35

Sym K44 K45

K55

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δx
δy
δz
δθy
δθz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20)

with:

K11 = Kε sin
2
α Jaa(ε) (2.21a)

K12 = Kε sin α cos α cosφr Jra(ε) (2.21b)

K13 = Kε sin α cos α sinφr Jra(ε) (2.21c)

K14 = K13Ri tan α (2.21d)

K15 = −K12Ri tan α (2.21e)

K22 = Kε cos
2
α [sin2 φr Jaa(ε) + cos 2φr Jrr(ε)] (2.21f)

K23 = Kε cos
2
α sin 2φr [Jrr(ε) −

1

2
Jaa(ε)] (2.21g)

K24 = K23Ri tan α (2.21h)

K25 = −K22Ri tan α (2.21i)

K33 = Kε cos
2
α [cos2 φr Jaa(ε) − cos 2φr Jrr(ε)] (2.21j)

K34 = K33Ri tan α (2.21k)

K35 = −K23Ri tan α (2.21l)

K44 = K33R
2
i tan

2
α (2.21m)

K45 = −K23R
2
i tan

2
α (2.21n)

K55 = K22R
2
i tan

2
α (2.21o)

The integral function expressions in (2.11) are still valid, as well as the stiffness

dimensional factor in (2.10) and the load distribution factor in (2.13), provided
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that the axial and radial displacements δa and δr are now replaced by the corre-

sponding variables δx and ∆r .

2.1.2 Model implementation

The described 5-DOF bearing model has been implemented in ADAMS by using

the field element, which computes forces and moments acting between any

two markers, i.e. reference frames, based upon their relative displacements and

velocities. Full 6-by-6 stiffness and damping matrices can be defined for the

purpose; preloads are allowed, as well.

In the present case, dealing with a nonlinear model, the mentioned matrices

need to be computed bymeans of a fiesub user-written subroutine; this has been
coded in Fortran, and its basic functioning is briefly depicted in the following.

Model parameters are the angular bearing contact angle α, the mean inner

race radius Ri , obtained from pure geometrical considerations, the number of

rolling elements Z, as from the bearing specifications, and the load-deflection

factor k, which can be approximated as2:

k ≈ 105D1/2
(2.22)

being D the rated ball diameter. The presented formulation has been enriched

by adding damping, so that (2.20) becomes, using compact notation:

F = K (δ + cδ̇) (2.23)

resulting in a proportional damping formulation; the damping constant c is a
user-defined parameter.

Model inputs are the relative displacements and velocities of the markers
attached to the inner and outer rings3, δ and δ̇, evaluated at each simulation

timestep, from which the equivalent radial displacement ∆r and its direction

φr are readily computed, along with the load distribution factor ε. The stiffness

dimensional factor and the load distribution integrals are then computed accord-

ing to (2.10) and (2.11), respectively; attention has been paid to the definition of

2
Such approximation holds true, according to [41], for 7200 and 7300 angular contact ball

bearing series; for other bearing types information should be gathered from available literature,

or directly from the manufacturer.
3
The field element only allows the angle about the z axis to become arbitrarily large during

a simulation, the others having to remain smaller than 10 degrees: to keep the original formulation

as in [41], an input and output “switch” has been implemented, mapping the ADAMS model

coordinates to the reference frame used in the bearing model definition, cf. Figure 2.2. Obviously,

the markers in the model have to be oriented accordingly, i.e. z along the axial direction and x, y
in the radial ones.
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those cases which might give rise to numerical issues, e.g. ∆r = 0 or ε ≤ 0, for
which the proper values are simply assigned to the aforementioned variables.

The stiffness matrix elements are eventually computed according to (2.21), and

use to calculate the force vector F. In addition to the force vector components,

the fiesub element requires as output arguments the derivatives of those with

respect to both the displacement variables in δ and the velocity variables in

δ̇; these partial derivatives have been evaluated analytically with the aid of a

symbolic math manipulation software, and included in the Fortran code.

2.2 Journal bearingmodelling

Concerning journal bearings, their importance in rotating and reciprocating

machine applications is proved by the huge number of papers published on

this subject. Numerical methods, especially the Finite Element Method, are

widely used to analyse journal bearings including oil feed holes and grooves,

and geometry effects like taper and misalignment; such methods, see e.g. [6,

9, 27, 36, 56, 57], are probably the most accurate and versatile, but they tend

to be expensive and not always practical. Often, designers use less expensive,

approximate analytical methods, cf. [7, 8, 15, 35, 46]; amongst those, themobility
method and its dual counterpart, the impedancemethod, are the most popular.

The concept ofmobility was introduced by Booker [7] to address the problem

of determining the motion of the bearing journal given the applied force: such

approach is applicable for bearings for which the external load is known and

dominant with respect to the inertia effects of the rotor, and found its preferred

field of application in the analysis of journal bearings employed in reciprocating

machines, such as internal combustion engines. The dual concept of impedance

was later introduced by Childs et al. [15] to solve the problem of determining

the bearing reaction force given the position and velocity of the journal: this

approach is more suited to those problems where the stiffness and inertia prop-

erties of the rotor must be accounted for, resulting preferred in rotordynamic

analysis.

The impedance description as proposed in [15] for plain, circumferentially-

symmetric fluid journal bearings is taken here as reference. Such a model pro-

vides a dynamic nonlinear definition of the bearing reaction force as a function

of the journal motion, being particularly suited for transient simulation work.

The adopted formulation is a combination of the two asymptotic short and long

solutions [65], and performs well for general finite-length bearings at both large

and small eccentricity ratios; furthermore, since the pressure distributions are

not calculated, the method permits very efficient computation.
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2.2.1 Theoretical background

This section briefly presents the theoretical development of the impedance

method [15].

The hydrodynamic lubrication theory is based on the well-known Reynolds

equation. If variations of viscosity are ignored, and if the lubricant is assumed as

incompressible, such equation simplifies to:

∂
∂θ
(h3 ∂p

∂θ
) + R2 ∂

∂z
(h3 ∂p

∂z
) = 12µR2

C2
[ε̇ cos θ + ε (β̇ − ω) sin θ] (2.24)

where θ and z are the angular and the axial cylindrical coordinates, respectively.

R and C are the rated bearing radius and radial clearance, respectively, ε is the

eccentricity ratio, i.e. the journal center eccentricity e normalized to the radial

clearance, while h is the normalized film thickness defined as:

h = 1 + ε cos θ (2.25)

The angle β defines the direction of eccentricity, see Figure 2.3, while ω is the aver-

age angular velocity of journal and sleeve with respect to a grounded, stationary

frame:

ω = 1

2
(ω j + ωs) (2.26)

Figure 2.3 Kinematic variables for impedance and mobility definitions, adapted
from [15]
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Finally, µ and p are the fluid viscosity and film pressure, respectively.

Considering now an observer pinned to the sleeve center and rotating at

the angular velocity ω, the actual journal center velocity ė and the velocity Vs
apparent to the observer are related by the simple kinematic expression:

Vs = ė − ω × e (2.27)

where the vector notation has been introduced; the symbol × indicates cross
product. Since the average angular velocity of journal and sleeve apparent to

the observer would vanish identically, the generation of pressure would seem

to be related solely to the apparent velocity Vs in exactly the same way as for

a non-rotating journal: such velocity Vs is henceforth called effective squeeze
velocity, and the corresponding pressure equals the pressure generated by the

combined effect of the actual squeeze velocity ė and the wedge effect due to the
rotation of journal and sleeve, cf. Figure 2.4.

The Reynolds equation (2.24) might be rewritten in terms of the effective

squeeze velocity as:

∂
∂θ
(h3 ∂p

∂θ
) + R2 ∂

∂z
(h3 ∂p

∂z
) = 12µVsR

2

C3
cos (α + θ) (2.28)

where α represents the attitude angle of the eccentricity vector with respect to

the effective squeeze velocity vector, see Figure 2.3. An analytical solution of

(2.28) for arbitrary geometry cylindrical bearings is not feasible. Most frequently,

numerical methods are employed to solve such equation and to obtain the perfor-

mance characteristics of bearing configurations of particular interest. However,

approximate analytical solutions can be obtained by a direct integration of (2.28)

under different assumptions.

Figure 2.4 Squeeze (left) and wedge (right) fluid film effects, adapted from [30]
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The Ocvirk solution is obtained by ignoring the pressure variations in the

circumferential direction, and solving for p(θ, z) with the axial boundary con-

dition of zero relative pressure at both bearing ends. Integrating axially yields

the following average axial film pressure:

p (θ) = −µVsL
2

h3C3
cos (α + θ) (2.29)

being L the bearing axial length. The pressure is seen to be positive between the

angles:

θ1 =
π

2
− α (2.30a)

θ2 = θ1 + π (2.30b)

The assumption is made that the pressure gradient along θ is negligible with

respect to that along z, which is equivalent to consider the bearing as infinitely

short: the model is also referred to as short bearing solution, and is generally

applicable for narrow bearings characterized by slenderness ratios, i.e. length-to-

diameter, up to 0.5.

The Sommerfeld solution is obtained by neglecting the pressure variations

in the axial direction, and solving for p (θ) with the boundary condition of

2π-periodicity with respect to θ and the requirement that the positive pressure

sector extends over π radians, providing:

p (θ) = −6µVsR
2

h2C3
(cos α cos θ − b sin α sin θ) (2 + ε cos θ) (2.31)

where

b = 2

2 + ε2
(2.32)

The positive pressure sector lies between the angles defined by:

tan θ1 =
1

b tan α
(2.33a)

θ2 = θ1 + π (2.33b)

The assumption here is that the fluid pressure is constant along z and that leakage
at bearing ends is negligible, which is equivalent to consider the bearing as

infinitely long: the model is also referred to as long bearing solution, and applies

for slenderness ratios greater than 2. An extension is provided by the Warner-

Sommerfeld model, which is obtained by multiplying the Sommerfeld pressure
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distribution by an end-leakage function varying only in the axial direction:

the effects of both circumferential and axial pressure variations are considered,

generally leading to more satisfactory results.

These asymptotic solutions have demonstrated a restricted range of appli-

cation. For short bearings the Ocvirk solution has proven to be accurate in

defining the direction of the bearing reaction, but predicts an erroneously large

magnitude especially at large eccentricity ratios. The Sommerfeld model, as well

as the Warner-Sommerfeld one, provides an improved definition of the bearing

reaction magnitude for long bearings and high eccentricity ratios, but leads to

inaccurate definition of its direction. The fact that their ranges of application

do not coincide, allows the two models to be combined in such a way to obtain

approximate solutions valid for general finite-length bearings at both small and

large eccentricity ratios.

The forces acting on the journal can now be derived by integrating the ob-

tained pressure distribution, e.g. (2.29, 2.31). This integration can be performed

over the entire angular domain, leading to a complete film condition (Sommer-
feld, or full, or 2π boundary condition) which justifies the presence of negative

pressures within the fluid film, or only over the positive portion of the pressure

distribution, leading to a ruptured film condition (Gümbel, or half, or π boundary
condition) that prevents the development of negative pressures, see Figure 2.5:

while the former neglects any phase effects, the latter provides an approximate

model for cavitation and tends to be more generally applicable, leading to more

realistic predictions. Actually, the π boundary condition is not correct as it vio-

lates the continuity of the flow across the cavitation boundary; other boundary

condition sets which remove this inconsistency exist, see [79], but they tend to

be much more sophisticated and cumbersome to implement in practice.

Integration of the pressure distribution yields the components of the force

F acting from the fluid film on the journal. The impedance method permits

Figure 2.5 Complete (left) and ruptured (right) film conditions, adapted from [30]
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to avoid such integration to compute the reaction force, removing the need of

calculating the actual pressure distribution. The dimensionless impedance vector

is defined by:

W = (C/R)
3

2µL

FL
Vs

(2.34)

where the vector FL is the force applied from the journal to the fluid film, as

opposed to the mentioned bearing reaction force, F = −FL. For the sake of
completeness, let’s recall the mobility definition, as well:

M = 2µL

(C/R)3
Vs

FL
(2.35)

From the previous, impedance andmobility appear as the dimensionless counter-

parts of force and effective squeeze velocity, respectively; clearly, theirmagnitudes

are reciprocal.

Several analytic mobility and impedance definitions were derived in the past,

either analytically or by fitting numerical results, relating to either short, long or

finite-length bearings under complete or ruptured fluid film conditions. By using

these definitions, it is a simple matter to compute the journal velocity starting

from the knowledge of applied force and eccentricity (mobility approach), or the

bearing reaction force starting from journal position and velocity (impedance

approach). Transformation from amobility definition to an impedance definition

can be carried out by the following relationships:

tan α = −
Mβ (ε, γ)
Mε (ε, γ)

(2.36)

tan γ = −
Wβ (ε, α)
Wε (ε, α)

(2.37)

together with the reciprocity relation between mobility and impedance magni-

tudes. The angle γ defines the orientation of the eccentricity with respect to the

impedance vector, see Figure 2.3.

In the present work, a π finite-lenght impedance description has been used

[15], which is based on a mobility definition obtained as a weighted sum of the

Ocvirk and Sommerfeld solutions, and which provides good approximation

for all eccentricities and L/D ratios. The amplitude of the impedance vector is

expressed as:

W = [0.15 (E2 + G2)1/2 (1 − ε cos γ)3/2]
−1

(2.38)
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where:

E = 1 + 2.12Q (2.39a)

G = 3ε sin γ (1 + 3.6Q)
4 (1 − ε cos γ)

(2.39b)

Q = 1 − ε cos γ
(L/D)2

(2.39c)

The angle γ can be obtained from the approximate solution:

γ ≈
⎛
⎝
1 − ε cos α√

1 − η2
⎞
⎠
(arctanA + arcsin η − π η

2 ∣η∣
) − arcsin η + α (2.40)

being:

η = ε sin α (2.41a)

A =
4 (1 + 2.12B)

√
1 − η2

3η (1 + 3.6B)
(2.41b)

B = 1 − ε2

(L/D)2
(2.41c)

Further details can be found in reference [15].

2.2.2 Model implementation

The described bearing model has been implemented in ADAMS by using the

gforce element, which allows defining functions that represent the three trans-

lational and three rotational vector components of a generalized force vector

acting between any two defined markers. Since, in the present case, the force ex-

pressions require a quite cumbersome definition, their computation is performed

through a gfosub user-written subroutine; this has been coded in Fortran, and

its basic functioning is briefly depicted in the following.

Model parameters are the bearing axial length L, the bearing diameter D

and the radial clearance C, along with the dynamic viscosity of the lubricant µ

evaluated at operating temperature (the algorithm neglects any thermal effects).

Inputs of themodel are the displacements and velocities of the journal relative

to the sleeve, evaluated at each integration step, as well as the angular velocities

of both journal and sleeve, expressed with respect to a grounded, stationary

reference marker.
The eccentricity vector in bothmagnitude ε and direction β is computed first,

along with the average angular velocity ω. The effective squeeze velocity vector
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is then computed according to (2.27), from which magnitude Vs and direction ζ

are readily available. The angle defining the eccentricity vector with respect to

the effective squeeze velocity vector can thus be evaluated according to Figure

2.3 as:

α = β − ζ (2.42)

The angle γ defining the orientation of the eccentricity vector with respect to

the impedance vector is now computed according to (2.40, 2.41), so that the

impedance vector magnitude can now be derived as in (2.38, 2.39). The direction

of the impedance vector with respect to the pure-squeeze-velocity vector is

defined by the angle:

ψ = α − γ (2.43)

Now that the impedance vector is known in both magnitude and direction, the

force on the journal can be computed according to (2.34).

It is worth mentioning that the described model cannot handle impacts

between the journal and the bearing surface: if that circumstance occurs during

the simulation run, the process is stopped and a warning message is issued. Such

limitation could be overcome by implementing some dry contact model, along

with a proper transitionmechanism between that and the adopted hydrodynamic

force model, see e.g. [29, 30].



Chapter 3

Component model reduction

In multibody systems, the inclusion of component flexibility is a necessary task

if one wants to capture dynamic effects which arise in high-speed applications.

According to the widespread floating frame of reference approach [76], the mo-

tion of each flexible body is subdivided into a reference motion, which can be

described according to rigidmultibody formalism, and a deformation.The Finite

Element Method (FEM) is commonly used to describe such deformation; since

small displacements and rotations are assumed to occur about the floating frame,

linear methods borrowed from structural dynamics can be exploited, such as

Component Mode Synthesis (CMS) techniques, in order to reduce the number

of coordinates required to describe the component deformation. This task is

accomplished by means of some coordinate transformation, from physical to
modal domain, which involves the definition of proper component mode shapes;

the reduction basis can include any sort of modes [16, 17], i.e. eigenmodes, con-

straint modes, attachment modes, etc., which were combined in several ways

by a number of authors in the past [18, 42, 45, 50, 62, 73, 74]. Due to a simple,

straightforward formulation of the reduction process, combined with good over-

all performance, the Craig-Bampton (CB) approach [18] has been widely used in

structural dynamics, and is largely the most popular CMS method amongst the

multibody dynamics community. This method is available in most commercial

FE codes, and is generally considered as a standard for inclusion of component

flexibility into multibody simulation work. Therefore, it has been employed as a

general framework for component model reduction in the present study.

Until some kind of loading is applied, either transient or frequency response,

it is very difficult to predict whichmodeswill play a dominant role in the response

of the structure. Model reduction, however, implies that the full set of physical

coordinates is reduced to a smaller set of generalized coordinates, giving rise

23
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to amodal selection problem. Clearly, the two most important aspects of such a

problem aremodel order andmodel accuracy: an optimal reduction would result

in the minimal set of component modes which ensures acceptable accuracy in

the simulation results. Despite modal selection being an important concern in

CMS techniques, and CB in particular, not many papers exist on the subject.

Spanos et al. [78] developed a two-stage mode selection procedure derived from

balanced realization theory [67]: the CB representation of the component is

generated first, then brought to diagonal form and eventually further reduced

via balancing; this is performed by using Gregory’s [37] modal ranking criterion

derived for lightly damped structures with well separated modal frequencies. In

the present work, a selection procedure carried out in accordance with a modal

ordering scheme based on Effective Interface Mass (EIM) is adopted. The EIM

approach was introduced by Kammer et al. [54] in the mid-nineties, with main

focus on dynamic substructuring and control-structure interaction applications;

an extension towards multibody dynamics is proposed here.

The dual aspect of modal selection ismodal truncation: component modes

which are not retained in the reduced representation are simply discarded. This

might lead to inaccurate representation of the applied loading, both concerning

its time dependency and its spatial dependency [21]: while the first concern

is usually addressed by including in the reduced representation a number of

modes spanning a multiple of the frequency range of interest, the latter is often

ignored. Some techniques were proposed in the past to tackle this problem,

being the Mode Acceleration (MA) method [19] the most popular one: such

method, however, acts only at the physical response recovery stage, and does not

provide any enhancement to the modal representation of the component. In the

present study, the Modal Truncation Augmentation (MTA) technique [21, 23, 31]

is adopted to augment the CB reduction transformation matrix with a set of

pseudo-eigenvectors, which provide a quasi-static correction for low-frequency

excitation, as well as a dynamic correction for high-frequency excitation. Un-

like MA, the enhancement impacts the dynamic characteristics of the reduced

component, thus resulting attractive for multibody dynamics applications.

3.1 Theoretical background

3.1.1 The Craig-Bampton approach

This section briefly presents the theoretical development of the Craig-Bampton

(CB) reduction method [18].
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The equilibrium equation for the free-free, undamped structure holds:

Mü +Ku = f (3.1)

whereM and K are the FE mass and stiffness matrices, respectively, and f is the
external force vector. The physical degrees of freedom (DOFs) are partitioned

into two complementary sets, the interface DOFs (subscript a, “active”) and the

interior DOFs (subscript o, “omitted"):

[Maa Mao
Moa Moo

]{üaüo
} + [Kaa Kao

Koa Koo
]{uauo

} = {fa0} (3.2)

Here, it has been assumed that external loads, i.e. external forces/torques, are

applied only at the interface DOFs; clearly this requires a proper a-set definition.
The following coordinate transformation is then introduced:

{uauo
} = [ I 0

ψoa ϕoq
]{uaq } (3.3)

in which ψoa is a matrix of shapes obtained considering the lower partition of

the static portion of (3.2) and solving for the o-set displacements:

uo = −K−1ooKoa ua = ψoa ua (3.4)

while ϕoq is a matrix of shape vectors satisfying the o-set eigenproblem:

Koo ϕoq =Moo ϕoq Ω (3.5)

For the sake of compactness, we are now dropping the subscripts defining the

dimensions of the matrices ψoa and ϕoq, which will be simply identified by ψ
and ϕ, respectively, in the following.

The first Na columns of the transformationmatrix in (3.3) represent the static

deformation shapes of the component when subjected to unit displacements at

each of the a-set DOFs, the other being restrained; these are termed constraint
modes in literature, and constitute the basis for the Guyan static condensation

technique [38]. The last No columns are fixed-interface normal modes, i.e. eigen-
vectors, representing the dynamics of the substructure interior relative to the

interface; the corresponding eigenvalues, i.e. the squared eigenfrequencies, are

collected in the diagonal matrix Ω. As one might notice, the generalized coordi-

nate vector comprises both physical displacements, ua , andmodal displacements,

q; the fact that interface DOFs are retained in the reduced representation greatly

facilitates component coupling, this being probably amajor reason for the success

of the CB method.
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Introducing the transformation (3.3) into (3.2), and pre-multiplying by the

transpose of the transformation matrix, the CB substructure representation is

obtained:

[Ms −PT

−P I ]{
üa
q̈ } + [

Ks 0
0 Ω]{

ua
q } = {

fa
0} (3.6)

where the fixed-interface modes have been normalized with respect to the o-set
mass matrix. The following positions hold:

Ms =Maa +Mao ψ+ψTMoa +ψTMoo ψ (3.7a)

Ks = Kaa +Kao ψ (3.7b)

P = −ϕT (Moo ψ+Moa) (3.7c)

beingMs and Ks the statically reduced mass and stiffness matrices, respectively;

the matrix P is a modal participation factor matrix, containing themultiplication

factors for the acceleration inputs at the interface DOFs governing the response

of the fixed interface modal coordinates, cf. (3.8).

Most often, the dynamic behaviour of the FE component in a certain fre-

quency range of interest can be captured using a much smaller number of gener-

alized coordinates compared with the original number of physical coordinates:

there lies model reduction. The selection of modes to include in the CB trans-

formation matrix (3.3) plays a central role in the application of the method. The

definition of the constraint modes directly comes from the coordinate parti-

tioning process, which in turn is dependent upon the choice of interface DOFs;

usually, these are selected as those where constraints or external loads are applied.

On the other hand, the choice of fixed-interface normal modes to retain in the

reduced representation is somewhat arbitrary, the standard practice consisting

in truncating the solution at a certain cut-off frequency, defined as a multiple of

the maximum frequency of interest. A different approach is used here, and will

be reviewed in the next section.

3.1.2 The Effective Interface Mass concept

As mentioned, one of the key problems associated with CMS techniques is the

determination of which mode shapes are dynamically important. A measure

which is of great interest in structural dynamics is the contribution of each mode

shape to the dynamic loads at the substructure interfaces: dynamically important

modes contribute significantly to the interface loads and should then be retained

in the reduced representation of the component.
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The Effective Mass (EM) concept has been extensively used in structural

dynamics to identify the important modes, based upon how much the mass

associated with each mode contributes to the rigid body mass properties of the

structure: it tends to spot global, low-frequency modes involving a substantial

part of the structural mass. The Effective Interface Mass (EIM) constitutes a

generalization of the EM: unlike EM, which determines the contribution of

each mode shape to the resultant loads at the interface when the interior of

the structure is given a rigid body displacement, the EIM determines modal

contributions to interface loads under more general displacements of the interior,

providing a more complete measure of dynamic importance.

Both techniques only work for constrained structures, and thus fixed-inter-

face mode shapes; in the case where the interface DOFs are just sufficient to

restrain rigid-body motion, i.e. statically determinate, the EIM reduces to the

EM measure. A generalization of EM for free structures can be found in [52, 53].

Let’s now provide a brief overview about the EIM concept, redirecting to [54,

55] for a more in-depth explanation. Recalling the CB equation of motion (3.6),

its lower partition holds:

q̈ +Ωq = P üa (3.8)

Considering a generic row-partition of (3.8), the time-domain response of the

i-th fixed-interface mode to the a-set inputs can be computed as:

qi = ω−1i Pi ∫
t

0
üa (τ) sin [ωi (t − τ)] dτ = ω−1i Pi vi (3.9)

being ωi the i-th mode eigenfrequency; the convolution integral has been de-

noted here as vi . The corresponding modal acceleration holds:

q̈i = ω−1i Pi v̈i (3.10)

Now considering the upper partition of (3.6),

Ms üa +Ks ua = fa + PT q̈ (3.11)

one recognizes the product PT q̈ as representing the portion of the load at the

interface due to the response of the fixed-interface modes. Using (3.10), this can

be expressed as:

PT q̈ =
No

∑
i=1

PT
i q̈i =

No

∑
i=1

ω
−1
i PT

i Pi v̈i (3.12)
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The norm of the matrix product PT
i Pi gives thus a relative measure of the contri-

bution of the i-th fixed-interface mode to the loads at the interface; summing all
the contributions produces the so-called Reduced Interior Mass (RIM) matrix:

M =
No

∑
i=1

Mi =
No

∑
i=1

PT
i Pi = PT P (3.13)

Substituting (3.7c) into (3.13) and bearing in mind that mass-normalization has

been enforced, provides after some simple manipulation a closed form relation

for the RIM matrix:

M =Mao ψ+ψTMoa +ψTMoo ψ+MaoM−1ooMoa (3.14)

It is worth noting that such expression can be computed based solely upon the

partitioned FE mass and stiffness matrices, and is thus totally independent of

any eigenvalue solution. By using some appropriate matrix norm, e.g. the trace

norm, it can be used as an absolute reference with respect to which the dynamic

importance of each mode shape can be computed.

The EIM value of the i-th fixed-interface mode is hence introduced:

Ei =
Tr (Mi)
Tr (M)

(3.15)

In order to avoid misleading results due to the usage of different units corre-

sponding to the translational and rotational terms of the RIM matrix diagonal,

it is suggested to always partition both P andM according to the defined transla-

tional and rotational interface DOFs (a-set), and to apply (3.15) separately for

each partition, then averaging the results to obtain a proper, single EIM value

for each fixed-interface mode.

By summing the so-obtained values, a measure of dynamic completeness of

a reduced representation in which Nk normal modes are retained is given by:

Ẽk =
Nk

∑
i=1

Ei (3.16)

This provides a very useful guideline for mode selection: in fact, one can set

a required level of dynamic completeness for the reduced model by simply

specifying a threshold value for the EIM cumulative sum (3.16); this implicitly

defines how many normal modes, and possibly which ones, should be retained,

thus completing the CB mode set selection procedure.
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In addition, a normalized EIM distribution matrix [54], representing the

contribution of each fixed-interface mode to the loads at each interface DOF,

can be computed as:

E = P2 [IDiag (M)]−1 (3.17)

Here, P2 indicates a term-by-term square of the modal participation factor

matrix, while the Diag operator returns a column vector holding the diagonal

elements of the argument matrix: the term in square brackets actually represents

the inverse of the diagonal matrix containing the terms from the diagonal ofM.

3.1.3 TheModal Truncation Augmentation technique

In this section, a brief explanation is provided about the application of theModal

Truncation Augmentation (MTA) technique to the CB reductionmethod [23, 31].

Let’s first recall the fixed-interface eigenvalue problem mentioned in (3.5):

Koo ϕ =Moo ϕΩ (3.18)

When normal modes are mass-normalized, the flexibility matrix associated to

the structure interior can be expressed as:

G = K−1oo = ϕΩ−1 ϕT
(3.19)

Since not allmodes are retained in the reduced component representation, the

complete modal basis can be divided into kept modes (subscript k) and deleted,
or truncated, modes (subscript d). Equation (3.19) can thus be expressed as:

G = Gk +Gd = ϕk Ω
−1
k ϕT

k +ϕd Ω
−1
d ϕT

d (3.20)

The portion of the flexibility matrix not represented by the kept modes is called

the residual flexibility matrix; combining (3.18, 3.19, 3.20) that can be obtained

as:

Gd = G −Gk = K−1oo (I −Moo ϕk ϕ
T
k ) (3.21)

Let’s now consider the CB transformation equation (3.3). The interior ac-

celerations are simply obtained by taking the second time derivative of the

corresponding displacements:

üo = ψ üa + ϕk q̈k (3.22)
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Using (3.8) this can be expressed as:

üo = ψ üa + ϕk P üa − ϕk Ωk qk (3.23)

Going back to the equation of motion in physical coordinates as expressed

in (3.2), considering the second row partition and solving for the interior-DOF

displacements one obtains:

uo = −K−1oo (Moa üa +Moo üo +Koa ua) (3.24)

Substituting (3.23) into (3.24) and using (3.7c, 3.21) gives after some simple ma-

nipulation:

uo = ψ ua +ϕk qk + χ üa (3.25)

where the matrix χ is a matrix of static displacement vectors associated with

the internal inertia loads due to unit accelerations at each interface DOF while

keeping the other interface DOFs constrained:

χ = −Gd (Moo ψ+Moa) (3.26)

These vectors are finally orthogonalized with respect to the interior mass

and stiffness matrices by solving an eigenvalue problem:

Kχ µ =Mχ µ Λ (3.27)

whereMχ and Kχ are computed ahead as:

Mχ = χTMoo χ (3.28a)

Kχ = χTKoo χ (3.28b)

The matrix holding the Modal Truncation Vectors (MTV) can now be defined:

γ = χ µ (3.29)

If mass normalization is enforced for the eigenvectors µ in (3.27), then the

following holds:

γTMoo γ = µT χTMoo χ µ = µTMχ µ = I (3.30a)

γTKoo γ = µT χTKoo χ µ = µTKχ µ = Λ (3.30b)

The MTVs in γ can then be depicted as pseudo-eigenvectors associated with

the squared pseudo-eigenfrequencies in Λ. They are consistent with the mass-

normalized eigenmodes in ϕk , cfr. (3.18), and orthogonal to those with respect
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to the interior mass and stiffness matrices, being related to the deleted modes ϕd :

they can thus be regarded as high-frequency fixed-interface correction modes.

The augmented CB coordinate transformation can then be written as:

{uauo
} = [ I 0 0

ψ ϕk γ]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ua
qk
qγ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(3.31)

Note that, while the size of the problemhas increased by the number of additional

modal coordinates qγ, its topology is completely unaltered, cfr. (3.3): that makes

the method quite appealing, since the only additional effort is represented by the

computation of the truncated displacement vector matrix χ, according to (3.26),
and the subsequent solving of the eigenvalue problem in (3.27). Concerning the

latter, it is worth clarifying that the number of MTVs is, in general, equal to

the number of the interface DOFs defined for the structure: usually, especially

in multibody dynamics applications, these are much fewer than the interior

DOFs, so that solving the problem defined in (3.27) normally requires a small

computational effort when compared to the eigenproblem related to the structure

interior, cf. (3.18).

3.2 Model reduction implementation

3.2.1 Preprocessing

Finite Element models of the crankshaft and the connecting rod have been

produced first, these representing the major components in the system. Since

Nastran has been employed as FE software, Nastran terminology will be used in

the following.

In both cases, the geometry has been simplified at the beginning of the

process by removing all those features, as small fillets, which do not contribute

significantly to the dynamic behaviour of the components, in order to make

the meshing process as simple as possible and to speed up the modal reduction

phase, by limiting the involved number of elements. Such a step is crucial when

several modal reduction alternatives need to be investigated, as in the present

research work, but should be avoided whenever the objective of the multibody

modelling activity is to evaluate stresses on the components: in fact, this could

be performed soon after the nonlinear simulation stage on the same component

models by using modal-based stress recovery methodologies.

Second order tetrahedral elements (TET10) have been used for meshing

purposes, those leading to better stiffness estimation with respect to their first

order counterparts (TET4).
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Figure 3.1 Crankshaft FE model. Interface DOF numbering is evidenced.

Particular care has been taken in the definition of interface DOFs. As dis-

cussed, in the CB technique a constraint mode is added to the reduced model

representation for each of those DOFs: if all DOFs associated to all nodes lying

on the interface surfaces of the considered component were placed in the a-set,
then the dimension of the reduced solution would become unsuitable for non-

linear simulation purposes. Some sort of interface reduction is then required in

order to minimize the total number of constraint modes. A common solution to

this problem is based on the definition of condensation nodes, whose DOFs are

placed in the a-set, which are linked to their corresponding interface surface

nodes by means of multipoint constraint elements. Two kind of such elements

are available in Nastran: RBE2 are rigidmultipoint constraints which connect the

interface surface nodes to the condensation node such that they are constrained

to move as a rigid system, while RBE3 are interpolationmultipoint constraints

which define the displacement and the rotation of the condensation node as a

weighted average of the motion of the interface surface nodes. Whereas RBE2,
introducing artificial numerical stiffness, might result in an overestimation of

the stiffness associated to the interface boundary conditions, RBE3might lead to

an underestimation, since interface surface deformation is permitted: the analyst

is then required to properly choose between the two based upon the nature of
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Figure 3.2 Connecting rod FE model. Interface DOF numbering is evidenced.

the various interfaces in the system.

In the present work, a total of eight condensation nodes were defined for the

crankshaft, while two were identified for the connecting rod, see Figures 3.1, 3.2.

RBE2 were used at the main bearing interfaces, since the crankshaft is somehow

stiffened at those locations by the presence of the ball bearing inner rings. RBE2
were also used at the interfaces between the crankshaft and the two pinions, as

well as at the crankshaft-flywheel interface, since pre-stressed contacts increase

the stiffness at those locations1. On the other hand, RBE3 were adopted at the big
end and small end interfaces, both on the crankshaft and on the conrod, since

the clearance there allows considering the interface surfaces to deform almost

independently from each other.

In each case, the condensation node has been placed at the center of the cor-

responding interface surface. For RBE3, the user is required to provide weighting
factors for each interface surface node, which should be proportional to the part

of the interface surface represented by each of those nodes. In order to avoid this

time-consuming and mistake-prone activity, the interface surfaces have been

meshed regularly, so that a unitary weighting factor can simply be assigned to

1
Such behaviour has been evidenced by performing experimental modal analysis on a simi-

lar crankshaft, in several configurations, and by comparing the results with the corresponding

numerical ones.
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all interface grid points connected to the same condensation node.

It is worth mentioning that each condensation node should be chosen to be

independent in order to allow for component coupling once model reduction is

performed; while being standard for RBE2, in case of an RBE3 the user is required
to explicitly define the element dependent DOFs, via the UM option, which allow

to fully describe the rigid bodymotion of the interface surface [40]. In the present

work, this task has been addressed by using the AUTOMSET parameter, which on

one hand prevents the user to have full control on the multipoint constraint

definition, on the other allowing a much easier implementation with satisfactory

results.

Lumped inertia elements (CONM2) have been employed tomodel the flywheel

and the two pinions attached to the crankshaft; mass properties of these com-

ponents have been retrieved from their corresponding CAD representations.

The same elements have been employed to model the balancing pads on the

crankshaft, whose masses have been assigned so as to obtain a primary balance

for the L-twin cranktrain under analysis.

Figures 3.1, 3.2 show the obtained crankshaft and conrodmodels, respectively,

along with an indication of the interface DOF numbering2, which will be useful

in the remainder of the chapter.

3.2.2 The Craig-Bamptonmethod in Nastran

Nastran provides an easy method to generate a reduced representation required

by the ADAMS solver, namely a Modal Neutral File (MNF), starting from a

FE model. A standard normal modes analysis solution sequence (SOL 103) is
normally used, which needs to be complemented with two specific entries: the

ADAMSMNF FLEXBODY=YES in the case control section causes the MNF file to be

generated, while the DTI,UNITS in the bulk data section is used to specify the

unit system to be used within the ADAMS environment.

An EIGRL card has to be specified with the required number of normal

modes to include in the CB solution. An equal number of scalar points (SPOINT)
are usually defined3, and referenced by a QSET1 entry. An ASET1 entry specifies

2
In Nastran, DOFs 1, 2, 3 represent translations along the x, y, z axes, respectively, while DOFs

4, 5, 6 represent rotations about those.
3
Nastran recommends to specify 6 more scalar points with respect to the desired number

of normal modes [64]: this causes 6 additional modes, which are referred to as inertia-relief
modes or residual vectors, to be included in the coordinate transformation matrix used for model

reduction. The process, however, is not very well documented and the mentioned modes are not

directly recognizable as inertia-relief modes, inertia-relief attachment modes, or residual inertia-
relief attachment modes as described in [16, 17]. These modes have not been employed in the

present work.
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which DOFs of which nodes are defined as interface DOFs, so that both con-

straint modes and fixed-interface normal modes can be computed (see Section

3.1.1); for both the crankshaft and the conrod models, all DOFs associated to

each condensation node have been referenced by such entry.

It is worth mentioning that, in order to obtain a simplified representation

for the mass matrix of the generic flexible component, which is based on the

definition of nine inertia invariants computed before integrating the equations

of motion, ADAMS requires the adoption of a lumped mass formulation for the

starting FE model [63, 64]. This assumption will be used in the remainder of the

chapter.

It is important to consider that the CB mode set obtained by the raw union

of the Na constraint modes and the Nk selected normal modes is not suitable

for direct use in a multibody system simulation performed with ADAMS [63]:

the CB modes are not an orthogonal set of modes, as evidenced by the fact

that the reduced mass and stiffness matrices in (3.6) are not diagonal, so that

coupling between the reducedmodel coordinates exists. Furthermore, since rigid-

body modes are a special case of constraint modes, obtained when the interface

DOFs are just sufficient to restrain rigid-body motion, embedded in the CB

transformation matrix (3.3) are 6 rigid-body modes, which should be removed

since ADAMS provides its own large-motion DOFs. An orthogonalization of

the CB mode set is hence applied, by solving the eigenvector problem:

KCB τ =MCB τ Θ (3.32)

where the new Na +Nk orthogonal modes and the associated eigenfrequencies

squared are collected in the matrices τ and Θ, respectively. The 6 rigid-body

modes now explicitly appear in τ and can be easily disabled.

The resulting generalized coordinates are nomore directly split into the phys-

ical displacements related to the constraint modes and the modal displacements

associated with the normal modes. A physical description of the modes in τ is
difficult: the physical meaning of the constraint modes is lost, but it can generally

be observed that the first elastic mode shapes and their corresponding natural

frequencies are basically identical to the mode shapes and natural frequencies of

the original system analysed in free-free boundary conditions.

3.2.3 Implementation of the EIM concept

Nastran provides the user with a variety of solution sequences, as the mentioned

SOL 103, consisting of a series of statements written in a proprietary language

with its own compiler and grammatical rules, known as Direct Matrix Abstrac-

tion Program (DMAP). Each solution sequence consists of a series of functional
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Figure3.3 EIMvalues and EIMcumulative sumcurves related to the fixed-interface
normal modes of the crankshaft model.

modules, each having a unique name and a specific function, which are executed

sequentially and which perform the operations required by the type of analysis

the solution sequence relates to. The user is allowed to modify prewritten solu-

tion sequences using DMAP, by introducing scripts which are normally referred
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Figure 3.4 The crankshaft fixed-interface mode shape #1, holding the largest EIM
value: torsional mode involving the flywheel (not shown).

to as alters.
In the present work, the discussed modal selection procedure based upon

EIM was accomplished by exploiting this particular feature.

A first SOL 103 run is used to compute and export the modal participation

factor P and RIM matrices: this has been obtained by altering the subDMAP

SEMR3 to compute the RIM according to (3.14), by using the MPYADmodule, then

printing both matrices in ASCII format via the OUTPUT4 statement.

These matrices are loaded by a Matlab script and used to compute the EIM

values. Both P and M are partitioned according to the defined translational

(subscript t) and rotational (subscript r) interface DOFs; recalling (3.15), two

vectors containing the EIM values are simply computed as:

Et =
1

Tr (Mt)
Diag (Pt PT

t ) (3.33a)

Er =
1

Tr (Mr)
Diag (Pr PT

r ) (3.33b)

An average of translational and rotational results is then computed, providing a

single EIM value for each fixed-interface mode:

E = 1

2
Et +

1

2
Er (3.34)

An equal weight has been assigned to translational and rotational interface
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Figure3.5 EIMvalues and EIMcumulative sumcurves related to the fixed-interface
normal modes of the conrod model.

DOFs; if needed, this can be easily modified by changing the weighting factors

appearing in the previous equation.

A cumulative sum of the obtained EIM values is then computed and plotted

by considering different modal ordering schemes, based upon increasing eigen-



Model reduction implementation 39

Figure 3.6 The conrod fixed-interface mode shape #7, holding the largest EIM
value: flexural mode.

frequency (EF) and decreasing EIM value, respectively. This results very useful

in determining a dynamic completeness level associated to a certain number

of retained normal modes: by defining a target level of such dynamic complete-

ness, e.g. 90%, the analyst has a direct indication of how many normal modes

to include in the reduced component representation, for either chosen modal

ordering scheme.

The EIM normalized distribution is computed according to (3.17), as well,

and plotted as colormap plots: this helps the analyst in visualizing which modes

contribute significantly to the loads at each interface DOF.

Figures 3.3, 3.5 show the EIM values related to 80 fixed-interface normal

modes as computed for both the described crankshaft and connecting rod mod-

els, along with the associated cumulative sum curves; Figures 3.7, 3.8 show the

related EIM distribution matrices.

For the crankshaft model, one can observe that the first 18 modes in terms of

EF are also those holding the highest EIM values, at the same time contributing

a level of EIM cumulative sum approximately equal to 90%: for such level of

dynamic completeness, thus, both the EIM-based and the EF-based modal

selection criteria eventually lead to the samemodal base. The computation of the

EIM values is not useless in such a case, since the EIM cumulative sum can be

used as a general modal completeness indicator whether the EIM-based mode
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selection criterion is adopted or not.

From a practical point of view, a second, standard Nastran run is enough, in

such a case, to obtain the desired MNF: the user is only required to specify the

number of roots resulting from the chosen threshold of dynamic completeness.

Regarding the connecting rod, the desired 90% level in terms of EIM cu-

mulative sum is achieved by including the 42 highest EIM-valued modes in

the modal base. An equal number of modes sorted based upon increasing EF

contribute a significantly lower percentage of EIM cumulative sum in this case,

namely 72%; on the other hand, one should retain a significantly larger number

of modes, namely 62, in order to reach the specified target when adopting an

EF-based selection: it is evident that the mode set chosen based upon EIM values

constitutes the minimal set providing any specified dynamic completeness level

expressed in terms of EIM cumulative sum. The computation of the EIM values

is very useful in such a case, providing the analyst a way to identify specific

modes to be retained and allowing a first assessment of the reduced component

performance prior to the multibody simulation phase.

Whenever the EIM-basedmode selection is employed, the chosenmodes are

processed by another Matlab script that creates a partitioning vector in ASCII

format used in the subsequent Nastran run. This run is characterized by a dif-
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ferent setup with respect to the former: the number of SPOINT, which is still

equal to the number of modes specified in the EIGRL card, is determined by

the highest mode, in terms of EF, which has to be retained, while a number of

SPOINT equal to the required modes only is referenced now by the QSET1 entry.
A DMAP alter has been written, and is called by this Nastran run, which alters

the CMPMODE subDMAP by partitioning, via PARTN, the computed eigenvector

and eigenvalue matrices ϕ andΩ, see (3.5), with the supplied partitioning vector,

and by equivalencing the original matrices to the partitions which have to be

retained through EQUIVX: such operation basically removes those modes char-

acterized by low EIM values, as computed in the previous steps, as well as the

corresponding frequencies. Other minor modifications are made, in order to

make the dimensions of all the involved matrices consistent.

3.2.4 Implementation of theMTA concept

In order to investigate the dynamic performances of the MTA approach, a pro-

cedure to complement a standard CB reduced solution with MTVs has been

implemented, as well.

A first, standard SOL 103 run is used to compute and export the matrices

holding the MTVs and their corresponding frequencies. This has been obtained
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by altering the subDMAP SEMR3, where the required matrices are available.

Recalling equations (3.21, 3.26), the matrix of static truncated displacement

vectors can be rearranged as:

χ = −K−1ooMoo ψ−K−1ooMoo ϕk P (3.35)

where the hypothesis of lumped mass has been made. Both terms on the right-

hand-side of (3.35) are computed by using the FBS and MPYADmodules, since

the needed matrices are already being used within the subDMAP and do not

need any further effort. Once χ has been computed, the matricesMχ and Kχ are

obtained according to (3.28) through SMPYAD; these matrices are then used to

solve the eigenvalue problem in (3.27) via the LANCZOSmodule, obtaining the

eigenvector and eigenvalue matrices µ and Λ, respectively. The MPYAD statement

is again used to compute the matrix γ holding the MTVs, see (3.29).

Both γ and Λ matrices are then printed onto an ASCII file, via OUTPUT4,
which is required as the input of a second Nastran run. In this case, the number

of SPOINT, which are all referenced by the QSET1 entry, are set as the sum of the

required number of normal modes in EIGRL and the desired number of MTVs.

Note that the full set ofMTVs, i.e. thematrix γ, ismade up by a number of vectors

which equals the number of interface DOFs defined for the structure, while the

analyst might want to complement the standard CB reduced representation

of a component with a smaller number of vectors. In this respect, Fransen

[31] proposed an interface reduction method based on solving the eigenvalue

problem associated to the static (Guyan) partition of the CB representation

(3.6). A simpler approach is adopted here: an alter to the subDMAP CMPMODE
is provided, which, after having loaded the computed matrices via INPUTT4,
appends γ to ϕk through APPEND, and truncates the resulting matrix to the

previously defined number of scalar points by means of the MATMOD module.

The same principle is used to obtain the augmented eigenvalue matrix, but the

process is made slightly more intricate in this case by the fact that both Ω and Λ
are diagonal matrices, so the latter one cannot just be appended to the former as

done for the eigenvectors: the statements DIAGONAL, TRNSP, APPEND and MATMOD
have been employed to obtain a correct solution. Only the specified number of

MTVs, associated to the lowest pseudo-eigenfrequencies, are retained in this

manner. The augmented matrices are assigned the native names by the EQUIVX
statement, so that Nastran solver can recognize them in the remainder of the

reduction process. Other minor operations are also performed, in order to make

the dimensions of all relevant matrices consistent.
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3.3 Assessment of the reduced component models

3.3.1 Validation in the frequency domain

In order to compare models obtained by using the described approaches, some

numerical investigations have been performed prior to the multibody simulation

phase onto the component models obtained in the previous steps.

The first step in the process has consisted in the implementation of a Matlab

script used to convert the CB representation of a model to its state-space coun-
terpart, this resulting very convenient for the subsequent frequency domain

analyses. The state-space representation of a generic dynamic system holds:

ẋ = Ax+Bu (3.36a)

y = Cx+Du (3.36b)

in which the output vector y is linked to the input vector u through a number of

state variables collected in the vector x, which represent the entire state of the

system at any given time. Matrices A and B are the state and the input matrices,

respectively, while C andD are the output and the feedthroughmatrices.

Let’s now recall the CB equation of motion (3.6):

[Ms −PT

−P I ]{
üa
q̈ }+ [

0 0
0 2ζΩ1/2]{

u̇a
q̇ }+ [

Ks 0
0 Ω]{

ua
q } = [

I
0] fa (3.37)

which has been enriched here by introducing modal damping. The diagonal

matrix ζ collects the modal damping coefficients associated to the retained

modes; a scalar could also be employed in the case of constant modal damping.

Equation (3.37) can be synthesized as follows:

MCB ẍ +CCB ẋ +KCB x = L1 fa (3.38)

from which the state equation (3.36a) is readily obtained as:

{ẋẍ} = [
0 I

−M−1CBKCB −M−1CB CCB

]{xẋ} + [
0

M−1CB L1
] fa (3.39)

The observation equation (3.36b) can be written in a general form as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

y1
y2
y3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
⎡⎢⎢⎢⎢⎢⎣

L2 0
0 L2

−L2M−1CBKCB −L2M−1CB CCB

⎤⎥⎥⎥⎥⎥⎦
{xẋ} +

⎡⎢⎢⎢⎢⎢⎣

0
0

L2M−1CB L1

⎤⎥⎥⎥⎥⎥⎦
fa (3.40)
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in which y1 is the displacement-based output, y2 is the velocity-based output,

y3 is the acceleration-based output. The matrix L2 is a Boolean matrix defining

whether physical, modal, or both kind of coordinates are desired in output.

Taking the Laplace transform of (3.36) gives after some simple manipulation

the following expression for the Transfer Function (TF) matrix:

H(s) = C(sI −A)−1B +D (3.41)

being s the Laplace variable. The TF evaluated along the frequency axis (s = jω)
is the well-known Frequency Response Function (FRF).

The desired state-space matrices have been computed according to (3.39,

3.40), starting from the CB matrices exported in ASCII format by a former

Nastran run. After the continuous-time state-space model has been created via

the Matlab function ss, the desired FRF matrix can be easily computed through

the freqresp command, upon the definition of the frequency band of interest.

In the present work, the whole FRF matrices for interface force input and

interface acceleration output have been synthesized for both the crankshaft and

the connecting rod models. In both cases, several models, each obtained by

using a specific reduction strategy, have been tested against a reference model

including a large modal base.

In order to retrieve the necessary quantitative information, a standard cor-

relation index, namely the Frequency Response Assurance Criterion (FRAC)

[43, 44], has been employed to compare the synthesized FRFs:

FRACi j =
∣HT

i j(ω)Ĥ∗i j(ω)∣
2

(HT
i j(ω)H∗i j(ω)) (ĤT

i j(ω)Ĥ∗i j(ω))
(3.42)

Here,Hi j and Ĥi j are column vectors, whose length equals the number of spectral

lines, representing the FRFs between any output-input DOF couple i j, associated
to different reduced models; both are evaluated over the same frequency range

Model As Bs Cs

Normal modes 80 18 12
EF-sorted EIM-sorted EF-sorted

MTVs - - 6
Constraint modes 48 48 48

Total CB modes 128 66 66

Table 3.1 Features of the tested crankshaft models.
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Figure 3.9 FRAC matrices as computed in the frequency range 0-10 kHz, related
to the reduced crankshaft models Bs (a), and Cs (b).
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with the same frequency resolution. The asterisk represents complex conjugate,

while, as usual, the capital T indicates transpose. A FRAC value of 1 indicates
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Figure 3.10 FRAC matrices computed in the frequency range 0-10 kHz, related to
the reduced conrod models Br (a), Cr (b), and Dr (c); note the different color scale.

identical FRFs; on the other hand, the FRAC will approach 0 in case of signifi-

cantly different FRFs, expressing that there is little correlation between the two

functions. Computing such correlation index for each couple of FRFs, one ends

up with a square matrix of FRAC values having as much rows and columns as

the number of interface DOFs, i.e. the size of the FRF matrices.

Concerning the crankshaft, two different models, including 18 between

eigenmodes and pseudo-eigenmodes, and denoted as Bs , Cs , were tested against

a reference model, As, including 80 normal modes; model features are reported

Model Ar Br Cr Dr

Normal modes 80 42 30 42
EF-sorted EIM-sorted EF-sorted EF-sorted

MTVs - - 12 -
Constraint modes 12 12 12 12

Total CB modes 92 54 54 54

Table 3.2 Features of the tested conrod models.
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in Table 3.1. It is worth recalling that, for this particular model, having chosen

a target level of dynamic completeness of 90% in terms of EIM cumulative

sum, both the EIM-based and the EF-based modal selection criteria lead to the

same modal base, the 18 highest EIM-valued modes being at the same time the

lowest-EF ones, see Figure 3.3.

Figure 3.9 shows the computed FRAC matrices, related to the mentioned

reduced crankshaftmodels, for FRFs evaluated in the frequency range 0−10 kHz.

Both models exhibit a good correspondence with the reference in this frequency

range, being model Bs slightly superior to model Cs.

As for the conrod, three models, including 42 between eigenmodes and

pseudo-eigenmodes, and denoted as Br , Cr , Dr , were tested against a reference

model, Ar , including 80 normal modes; model features are summarized in

Table 3.2.
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Figure 3.11 Comparison between FRFs corresponding to the different conrod
models.
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Figure 3.10 presents the computed FRAC matrices, related to the mentioned

reduced conrod models, for FRFs evaluated in the frequency range 0 − 10 kHz.

While model Br shows acceptable correspondence with model Ar , model Cr
fits almost perfectly the reference, with FRAC values far above 0.9 for every

input-output couple. Model Br demonstrates superior performance in compar-

ison with model Dr , as a consequence of the fact that the most dynamically

important modes with respect to interface forces are retained. As an example,

the synthesized FRFs for input-output DOF couple 9-1 are shown in Figure 3.11.

3.3.2 Validation in themodal domain

Another kind of test has been performed onto the aforementioned reduced mod-

els of the crankshaft and the connecting rod, in order to evaluate the correspon-

dence of the associated orthogonalized CB modes, and related eigenfrequencies,

to those of the two models chosen as reference. A standard shape correlation

index, namely theModal Assurance Criterion (MAC) [1, 44], has been employed

for the purpose:

MACi j =
∣ΦT

i Φ̂ j∣
2

(ΦT
i Φi) (Φ̂T

j Φ̂ j)
(3.43)

where Φ and Φ̂ are the modal matrices having as columns the deformation

shapes obtained by expanding the associated orthogonalized CB modes (3.32)

back to physical coordinates. The MAC takes values from 0, representing no

correspondence between the compared shapes, to 1, representing a perfect cor-

respondence. Computing such correlation index for each mode couple i j, one
ends up with a matrix of MAC values, whose dimensions equal the number of

modes of the compared models, showing which shape vectors in Φ̂, associated

to the reference model in this case, are preserved inΦ, representing the reduced

model.

The MAC alone does not provide any indication about the frequency of

the compared modes; therefore, it has been complemented here with a simple

eigenfrequency correlation index, sometimes referred to as Natural Frequency

Difference (NFD), defined as:

NFDi j =
∣ωi − ω̂ j∣

ω̂ j
(3.44)

where ωi and ω̂ j are the two eigenfrequencies corresponding to the eigenmodes

Φi and Φ̂ j. Obviously, the lower the NFD, the higher the correspondence be-

tween eigenfrequencies. In order to allow for a correct interpretation of the
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results, the NFD has been computed only for correlated mode pairs whose

MAC exceeds 0.8: the analyst has thus a clear indication about frequency shifts

occurring due to reduced model completeness.

Figures 3.12 and 3.13 show the MAC and NFD matrices related to the crank-

shaft models Bs and Cs , respectively, computed by taking model As as reference;

matrices shown here are truncated, due to poor correlation concerning the

highest modes of reference model As. Again, model Bs appears to be slightly

superior with respect to model Cs, even if the two look indeed very close: this

is proved by the large correspondence evidenced by MAC and NFD values

obtained through a direct comparison of the two models, see Figure 3.14.

Concerning the connecting rod models, the MAC and NFD matrices com-

puted for models Br , Cr and Dr with model Ar as reference, are shown in Figures

3.15, 3.16 and 3.17, respectively. Model Dr keeps acceptable correspondence with

the reference for approximately the first 50 modes, even if some lower frequency

ones are clearly missing and some eigenfrequency differences are evidenced by

the NFD, as well. Model Cr shows a much improved low frequency behaviour,

with very high MAC and low NFD values for the first 40 orthogonal modes,

approximately. While both models Cr and Dr tend to emphasize low frequency

modes, model Br exhibits a clear deviation towards higher frequency ones, some

of which are preserved at the expense of some lower frequency lack; in addition,

unlike model Dr , most of the correlated mode pairs have very low NFD values.
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Figure 3.12 MAC (a) and percentage NFD (b) matrices related to crankshaft
models As , Bs . Rigid-body modes (1-6) are excluded from the comparison.
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Figure 3.13 MAC (a) and percentage NFD (b) matrices related to crankshaft
models As , Cs . Rigid-body modes (1-6) are excluded from the comparison.
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Figure 3.14 MAC (a) and percentage NFD (b) matrices related to crankshaft
models Bs , Cs . Rigid-body modes (1-6) are excluded from the comparison.
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Figure 3.15 MAC (a) and percentage NFD (b) matrices related to conrod models
Ar , Br . Rigid-body modes (1-6) are excluded from the comparison.
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Figure 3.16 MAC (a) and percentage NFD (b) matrices related to conrod models
Ar , Cr . Rigid-body modes (1-6) are excluded from the comparison.
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Figure 3.17 MAC (a) and percentage NFD (b) matrices related to conrod models
Ar , Dr . Rigid-body modes (1-6) are excluded from the comparison.



Chapter 4

Flexible multibodymodelling

Modern powertrain design is facing increasingly strict requirements in terms

of emissions, fuel consumption, noise and vibration levels. In recent years, this

trend is extending towards the motorcycle industry, in which competitive design

focused on achieving a high power-to-weight ratio calls for optimized engine

components. This in turn requires the adoption of a multidisciplinary approach

early in the conception phase, and the use of advanced simulation tools which

help the analyst in gaining a deeper insight into the physical phenomena associ-

ated with the engine operation. Concerning structural design aspects, modern

analysis techniques involve the adoption of multibody simulation tools, which

allow an accurate prediction of loads acting on the system components at opera-

tional speed, thus improving the subsequent stress and fatigue life analysis.

Several approaches are described in literature dealing with multibody mod-

elling of internal combustion (IC) engine powertrains. Some papers deal with

the construction of fully coupled cranktrain models through the use of commer-

cial multibody dynamics codes, which provide a general modelling platform

for mechanical systems, see e.g. [10, 12, 25, 26, 28, 66, 71, 72, 82, 83]: the system

equations of motion are in this case automatically generated by the software

kernel, and solved by means of some standard integration scheme. As an alterna-

tive, some studies describe the development of specialized modelling codes, see

[14, 24, 27, 47, 58, 61, 68, 69, 70]: the system equations of motion are retrieved

analytically and implemented in specific computational algorithms. In this work,

the former approach has been followed to investigate the elastodynamic be-

haviour of a motorbike engine cranktrain. The modelling activity is supported by

means of ADAMS multibody simulation software: this package offers standard

performance in terms of results accuracy versus simulation time, also allowing

for a seamless integration with other simulation tools, e.g. Finite Element (FE)

57
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codes, and a straightforward procedure in defining customized subroutines.

In the context of multibody modelling, the definition of a system made up

of rigid links connected to each other via kinematic joints typically represents

the first step in the process; in fact, commercial multibody software platforms

offer both CAD interfaces and joint libraries, permitting the analyst to set up a

basic dynamic model with little time and effort. Clearly, this modelling approach

is affected by some important limitations: first of all, the adoption of rigid bod-

ies in combination with kinematic joints prevents some interface loads to be

evaluated whenever the mechanism under study exhibits some static indetermi-

nacy; furthermore, any dynamic amplification effect, which might significantly

affect the actual loads, is evidently lost. These shortcomings can be eliminated

by embracing a refined modelling methodology, based upon the introduction of

non-ideal joints at interface locations, and the inclusion of component flexibility.

Both strategies have been implemented in the present simulation work, adopting

the bearing models and the flexible component reduction schemes depicted in

the previous chapters.

4.1 Theoretical background

4.1.1 Flexible body kinematics

Among the methods available for the description of motion of flexible multibody

systems [75, 80], the floating frame of reference formulation is certainly the most

widely used, and is currently implemented in several commercial multibody

dynamics software packages. Since ADAMS has been used for the present sim-

ulation work, this section briefly describes how the equations of motion are

retrieved by using such formulation [63, 76].

The basic idea behind the floating frame of reference formulation is that the

configuration of the generic deformable body within the multibody system can

be described by separating the large, nonlinear displacement of a coordinate

system attached to the body, and the small, linear deformations occurring about

that reference frame. Location and orientation of such frame with respect to the

global coordinate system are defined by:

qbr = {
Rb

θb
} (4.1)

where Rb is a set of Cartesian coordinates that define the location of the body

reference frame, expressed in the global coordinate system, and θb is a set of
rotational coordinates that describe the orientation of the selected body. We
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are now dropping the superscript identifying body b; we will refer to the same

flexible body in the remainder, unless specified.

The global position of the i-th arbitrary grid point on the body can be written
as:

ri = R+Au (4.2)

where u is the vector representing the local position of the point, expressed in

the local reference frame; for the sake of clarity, vectors whose components are

expressed in the local reference frame are underlined in this section. Matrix A is

the transformation matrix from the local reference frame to ground; this can

be expressed by using different orientation parameter sets, such as Euler angles,
Euler parameters, or Rodriguez parameters [76]. Since the considered body is

flexible, the local position of the generic grid point i can in turn be expressed as:

u = uo + u f = uo +ΦRi q f (4.3)

beinguo the position of the point in the undeformed state andu f the translational

deformation vector; this latter is the product ofΦRi , which is a slice of the modal

matrix which corresponds to the translational DOFs associated to the node,

and the vector of generalized elastic coordinates q f . This latter is added to the

generalized reference coordinates in (4.1) to obtain the flexible body generalized
coordinates:

q = {qrq f
} =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R
θ
q f

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(4.4)

Combining (4.2, 4.3) the global position of the considered point holds:

ri = R+A (uo + u f ) (4.5)

which differentiated with respect to time yields its global velocity:

ṙi = Ṙ + Ȧu +A u̇ f (4.6)

Introducing the angular velocity of the body, the time derivative of the rotation

matrix can be expressed as:

Ȧ = A ω̃ (4.7)

where ω is the angular velocity vector defined in the local coordinate system,

and the tilde denotes the skew operator:

ω̃ =
⎡⎢⎢⎢⎢⎢⎣

0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0

⎤⎥⎥⎥⎥⎥⎦
(4.8)
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The equation (4.6) can therefore be rewritten as:

ṙi = Ṙ +A ω̃u +A u̇ f = Ṙ −A ũω +A u̇ f (4.9)

Introducing the relationship between the angular velocity and the time derivative

of the orientation states,

ω = Bθ̇ (4.10)

the matrix B being a transformation matrix depending on the orientation pa-

rameters, and using (4.3), equation (4.9) can be rewritten as:

ṙi = Ṙ −A ũBθ̇ +AΦRi q̇ f (4.11)

which can be easily rearranged in matrix format:

ṙi = [I −A ũB AΦRi]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ṙ
θ̇
q̇ f

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= Li q̇ (4.12)

Concerning orientation, as the body deforms the generic frame attached

to the considered node i rotates relative to the body reference frame. In com-

plete analogy with the translational deformations u f , these small angles can be

expressed using modal superposition as:

ϑi = Φθi q f (4.13)

in which Φθi is a slice of the modal matrix which corresponds to the rotational

DOFs associated to node i. The angular velocity of the considered frame with

respect to the body reference frame can be obtained by simply taking the time

derivative of (4.13), obtaining:

ϑ̇i = Φθi q̇ f (4.14)

Summing this angular velocity to the angular velocity of the body reference

frame yields the angular velocity with respect to the global coordinate system:

ωi = ω + ϑ̇i = Bθ̇ +Φθi q̇ f (4.15)

which can easily be rearranged as a function of the body generalized coordinates

as:

ωi = [0 B Φθi]
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ṙ
θ̇
q̇ f

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= Ni q̇ (4.16)

We will use the obtained expressions for the definition of the body kinetic

energy in the following sections.
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4.1.2 Kinematic constraints

In multibody systems, the individual bodies cannot generally move freely, being

linked to each other by a number of joints, and being subjected to specified

motion trajectories: in fact, the generalized coordinates are related by a number

of constraint equations.

Constraints can be holonomic, if they impose restrictions on the positions of

the individual bodies in the system, or nonholonomic, if they restrict the possible
values of their velocities. Considering the former case, the constraint equations

can be written in the following vector form:

C (q, t) = 0 (4.17)

where C is the vector of constraint functions that depend on the system general-

ized coordinates and possibly on time. The previous constitutes a set of nonlinear

algebraic constraint equations.

For a virtual change in the system generalized coordinates δq, equation
(4.17) gives:

Cq δq = 0 (4.18)

where Cq is the system Jacobian matrix containing the partial derivatives of the
constraint functions with respect to the generalized coordinates. Considering

linearly independent constraint functions, such matrix has full row rank.

Differentiating (4.17) with respect to time yields the kinematic equation that

relates the generalized velocities of the multibody system:

Cq q̇ = −Ct (4.19)

being Ct the partial derivative of the vector of constraint functions with respect

to time.

Differentiating (4.19) with respect to time yields the kinematic equation

relating the generalized accelerations:

Cq q̈ = −Ctt −2Cqt q̇ − (Cq q̇)q q̇ (4.20)

with a clear meaning of the subscripts. The right-hand side of (4.20) will be

referred to asQc in the following.

4.1.3 Flexible body dynamics

The governing equations for the generic flexible body are derived fromLagrange’s

equations, which can be expressed as:

d
dt
(∂T

∂q̇
)
T

− (∂T
∂q
)
T

+CT
q λ = Q (4.21)
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where T is the kinetic energy of the body, λ is the vector of Lagrange multipliers
used to determine the generalized constraint reaction forces CT

q λ, andQ is the

vector of generalized forces, i.e. the forces acting on the body projected onto the

generalized coordinates.

In the lumped mass formulation the total mass of the body is distributed

among the grid points of the FE model. The kinetic energy associated with node

i having a nodal mass mi and a nodal inertia tensor Ii is given as:

Ti =
1

2
mi ṙTi ṙi +

1

2
ωT
i Iiωi (4.22)

Using (4.12, 4.16) this can be rewritten as:

Ti =
1

2
q̇T (mi LTi Li +NT

i IiNi) q̇ (4.23)

The kinetic energy of the considered flexible body is evaluated by summing the

contributions of all nodes:

T = 1

2
q̇T [∑

i
(mi LTi Li +NT

i IiNi)] q̇ =
1

2
q̇TM (q) q̇ (4.24)

where the mass matrix of the flexible body,M (q), has been introduced; its de-

pendency upon the generalized coordinates is evidenced. An extended definition

is obtained by substituting the expressions Li , Ni as in (4.12, 4.16), obtaining a

symmetric 3 × 3 block matrix which is synthesized as follows here:

M (q) =
⎡⎢⎢⎢⎢⎢⎣

MRR MRθ MR f
Mθθ Mθ f

Sym M f f

⎤⎥⎥⎥⎥⎥⎦
(4.25)

As usual, the subscripts R, θ and f denote translational, rotational and modal

DOF, respectively. The submatrices in (4.25) can be expressed in terms of 9

inertia invariants [63], as:

MRR = I1I (4.26a)

MRθ = −A
̃[I2 + I3

jq j]B (4.26b)

MR f = AI3
(4.26c)

Mθθ = BT [I7 − [I8
j + I8T

j ] q j − I9
jkq jqk]B (4.26d)

Mθ f = BT [I4 + I5
jq j] (4.26e)

M f f = I6
(4.26f)
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The inertia invariants can be computed in advance by the FE software, based on

the information about the nodal masses and inertias, their undeformed locations,

and the flexible component modes. In particular, invariants I1 and I7 represent

the mass and the inertia, respectively, of the flexible body, while invariant I6

represents the modal mass; disabling this latter causes ADAMS to consider the

body as rigid.

By using (4.24), the Lagrange’s equations (4.21) can be rewritten as:

Mq̈ + Ṁq̇ − [ ∂
∂q
( 1
2
q̇TMq̇)]

T

+CT
q λ = Q (4.27)

Collecting the centrifugal and the Coriolis force components into the quadratic

velocity vectorQv , yields:

Mq̈ +CT
q λ = Q +Qv (4.28)

Concerning the generalized forces acting on the flexible body, these can be

evaluated by considering the associated virtual work, due to a virtual displace-
ment in the body generalized coordinates.

The virtual work of the external forces acting on the body can be written as:

δWe = QT
e δq = [Q

T
R QT

θ
QT

f ] δq (4.29)

beingQR andQθ the generalized forces associated, respectively, with the trans-

lational and rotational coordinates of the selected body, whileQ f is the vector

of generalized forces associated with the elastic coordinates of the body. The

procedure to obtain such generalized forces is to substitute in the expression of

the virtual work associated to the considered action the position vector of its

point of application in terms of generalized coordinates.

The virtual work due to the elastic forces can be written as a function of the

generalized stiffness matrix associated with the elastic coordinates of the body

K f f , as:

δWs = −qTf K f f δq f (4.30)

Since only the modal coordinates contribute to the elastic energy, the previous

can be rewritten as:

δWs = − [RT θT qTf ]
⎡⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 K f f

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

δR
δθ
δq f

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= −qTK δq (4.31)

where the generalized stiffness matrix of the body has been denoted as K.
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The virtual work of all forces acting on the body can be written by summing

(4.29, 4.31) as:

δW = δWe + δWs = QTδq (4.32)

where the vector of generalized forces has been introduced:

Q = Qe −Kq (4.33)

Substituting this expression in (4.28) and rearranging, gives the equations

of motion of the flexible body:

Mq̈ +Kq+CT
q λ = Qe +Qv (4.34)

This represents a system of second-order differential equations, whose solution

has to satisfy the algebraic constraint equations describing mechanical joints, as

well as imposed motions: equations (4.34) and (4.17) form a set of differential-

algebraic equations (DAE) that have to be solved simultaneously. A common

strategy consists in combining equations (4.20, 4.34), which gives:

[M CT
q

Cq 0 ]{
q̈
λ} = {

Qe +Qv −Kq
Qc

} (4.35)

In general, a closed-form solution of such a system of equations is difficult to

obtain, and numerical methods are employed for the purpose. Furthermore,

since the constraint equations have been differentiated twice, equation (4.35)

satisfies the constraint equations only at the acceleration level, leading to error

accumulation in both position and velocity constraints. This problem can be

addressed by applying some constraint stabilization method, see e.g. [4], which

reduces the violations in the kinematic constraint equations.

A different solution strategy consists in converting the DAE set to ordinary

differential equations (ODE), which can be achieved through coordinate parti-

tioning [76, 81], for which a wider choice of numerical integration schemes is

available.

4.2 Multibodymodel assembly

4.2.1 System description

As mentioned, this chapter discusses the development of a multibody model of

the cranktrain of a Ducati L-twin, four strokes IC engine, having a displacement

of 1.2 litres, capable of delivering 180 horsepower. Figure 4.1 shows a schematic
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Figure 4.1 The assembled cranktrain model. The flywheel and the two pinions
are modelled as concentrated inertias, but they are represented here for reference.

of the mechanism. The main component in the system is a single throw, steel

crankshaft supported by four main journals, three of which equipped with ball

bearings (the two central ones and the external main bearing 1), the other one

with a bush bearing (external main bearing 2). The shaft carries a flywheel, and

the two pinions 1 and 2 that transmit power to the valvetrain and the geartrain,

respectively. Two titanium alloy connecting rods, arranged in a 90○ V configura-

tion, act on the crankpin through hydrodynamically lubricated journal bearings.

Wrist pins connect the two pistons to the respective conrods.

Just to provide a clue about the dimensions of the system, it is worth men-

tioning that the crankshaft length is approximately 300 mm, while the conrod

length is about 120 mm. The overall mass of the crankshaft equipped with the

flywheel and the two pinions is approximately 7.5 kg, whereas the conrods and

the pistons weigh, respectively, 0.35 kg and 0.50 kg each, approximately. Other

data cannot be published, being confidential information of the manufacturer.

4.2.2 Preliminary simulations

The first step in the modelling process has been the definition of a multi-rigid-

body model of the system, which has been assembled in ADAMS/View.
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Both the crankshaft and the connecting rod reduced components, as de-

scribed in Section 3.2.1, have been imported and assembled by means of kine-

matic joints. Component flexibility has initially been disabled by disabling the

inertia invariant 6, see (4.26), for both parts, in order to debug the initial model

by comparing results with those provided by the manufacturer, obtained by

means of numerical models based on classical formulations, cf. [5]. It is worth

recalling that the crankshaft FEmodel includes the flywheel and the two pinions,

modelled as lumped inertias, as well as the balancing pads; in a similar way, the

connecting rod FE model is equipped with the big end bearing shells and the

small end bush, along with the two screws holding the bearing cap.

Both pistons, and the related wrist pins, have been imported as CAD data;

proper density values have been assigned to those components, in order for their

inertial properties to be correctly described.

Great care has been taken to build a single DOF system: joints and joint

primitives were arranged with such purpose, preventing the software to detect,

and remove, any redundant constraints. In particular, a spherical joint and
an inline joint primitive have been employed to restrain the crankshaft at

both central main bearings, while cylindrical joints have been used at the

crankshaft-conrod interfaces.

Model inputs are the combustion forces acting on both pistons, see Figure 4.2,

resulting from an experimental test campaign, and the torques acting on the two

pinions driving the valvetrain and the geartrain: the former was estimated by

the manufacturer by means of some numerical model of the valvetrain, while

the latter was obtained by simply enforcing periodic speed oscillations over the

engine cycle. All these data have been imported into ADAMS and converted to

continuous, periodic functions of the crank angle, through the spline element;

these functions are referenced by sforce elements, for the combustion forces

applied to both pistons, and gforce elements, for the torques, and the associated

forces, applied to the crankshaft.

The dynamic simulations have been performed by initially applying a kine-

matic constraint to the crankshaft, via the motion element, making its angular

velocity rise smoothly from zero to the rated value of 10,000 rpm. Such con-

straint, introduced in order to avoid numerical instability issues at the beginning

of the simulation, is disabled after few cycles, and from this time on the system

is driven by the applied forces and torques.

Estimates of the loads acting on both the connecting rod and the crankshaft

were retrieved as a result of this first dynamic model, and compared to those

provided by the manufacturer and employed in the design phase, confirming an

appropriate model setup.
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Figure 4.2 Combustion force magnitudes acting on the two pistons. Values are
normalized for confidentiality reasons.

The described model, which will be referred as model 0 in the following,

shows some evident limitations. Firstly, loads at two out of four main bearing

locations cannot be evaluated, since static indeterminacy of the assembly cannot

be treated with a purely kinematic approach: the constraints associated with the

external main bearings have therefore been ignored. Secondly, the elastodynamic

effects, which might have a major impact on the estimated loads, provided the

high rotational speed of the engine, are completely neglected.

These drawbacks can be removed by introducing non-ideal joints at the

main interface locations, and by modelling component flexibility. Both proce-

dures concur towards the definition of a more realistic model, which should be

capable of predicting the interactions between the components in the system

with improved accuracy, and have been exploited in the present study.

4.3 Multibody simulations

4.3.1 Model implementation

The discussed bearing models, see Chapter 2, have been included to describe the

main bearing and big end bearing dynamics.

Ball bearings at main bearing locations have been modelled through field
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elements, referencing the described fiesub Fortran subroutine, acting between

the flexible crankshaft and the ground; each of those employs a set of bearing-

specific parameters, which have been retrieved from the manufacturer. In partic-

ular, two angular contact bearings, featuring a contact angle of 15○, are employed

at central main bearings, while a single-row radial bearing is used at the external

main bearing 1: this has been modelled by exploiting the same fiesub subrou-
tine, by simply setting up a value of 0○ for the contact angle. The same radial

bearing model has been employed at the external main bearing 2, as well, in

order to prevent the adoption of any contact model, at the same time removing

the need for a purely kinematic joint.

Journal bearings at big end bearing locations have beenmodelled via gforce
elements, referencing the illustrated gfosub Fortran subroutine. Since both

components linked by such elements, i.e. the crankshaft and the connecting rod,

have been defined as flexible, and provided that the reaction force from a gforce
element cannot act on a flexible body, two massless links1 have been introduced,

connected to the conrods with fixed joints, and used as reaction-force bodies

for the definition of the bearing elements. Again, the journal bearing model

employs a set of user-parameters, some of which have been directly provided by
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Figure 4.3 Force magnitude at the central main bearing 1 as computed for model
A and model 0, normalized over the peak load value of model A.

1
A massless link, also called a dummy body, is a link with zero or an insignificant amount of

both mass and inertia, which can be used to facilitate the creation of a model.
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Figure 4.4 Deviations exhibited by models B, C (a) and D, E (b) relative to model A,
concerning the reaction force evaluated at the central main bearing 1.

the manufacturer. It is worth recalling that the implemented model is a 2-DOF,

purely radial model: an inplane joint primitive has therefore been defined for

each big end bearing in order to prevent any relative axial displacement between
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the conrods and the crankshaft, removing the need of adopting any contact

models.

As a further step, component flexibility for both the crankshaft and the

connecting rod reduced models has been enabled. With this respect, a partial

coupling formulation has been employed, consisting in disabling inertia invari-

ants 5 and 9, cf. (4.26). These provide a second-order correction to the flexible

body inertia tensor, and impose the greatest computational overhead on the

evaluation of the flexible body equations of motion: in most cases, disabling

them reduces CPU time significantly while having minor impact on the results.

Note that ADAMS/Flex disables inertia invariants 3 and 4 by default, being their

magnitudes small in most situations; since non-standard procedures for model

reduction have been implemented in the present work, these invariants have

been enabled using a customized invariant formulation.

The substitution of the ideal, kinematic joints with the described bearing

models, along with the introduction of the flexibility of the main components in

the system, revealed a dramatic impact on the dynamics of the cranktrain. As an

example, Figures 4.3, 4.5 compare the reaction forces acting on the central main

bearing 1 and on the big end bearing 1, respectively, of such complete model,

denoted as model A in the following sections, with those retrieved from the

dynamic simulations performed onto model 0: considerable differences show up,

with peaks well above 30%, demonstrating that the adopted modelling strategies

are crucial for the present application.

4.3.2 Simulation results

The performances of the proposed model reduction techniques have been evalu-

ated by simulating several versions of the described cranktrain model. A refer-

encemodel, denoted asmodel A, has been obtained by including those crankshaft
and connecting rod models denoted as As and Ar , respectively, in Section 3.3,

both retaining 80 normal modes sorted by increasing frequency in the related

CB reduced representations. In the same manner, amodel B has been built in-

corporating models Bs and Br of Section 3.3, related to the crankshaft and the

conrod respectively, which were obtained by retaining those normal modes

holding the highest EIM values allowing to hit the target of 90% of dynamic

completeness in terms of EIM cumulative sum: this resulted in the selection of

18 eigenmodes for the crankshaft and 42 eigenmodes for the conrod. Amodel C
has been generated, as well, including crankshaft model Cs and conrod model

Cr , cf. Section 3.3, having the same model order as Bs and Br , respectively, but

including a number of MTVs, 6 for the crankshaft and 12 for the conrod, in the

reduced representations.
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In order to provide some terms of comparison, two additional models were

developed by following a different approach for component model reduction:

starting from those employed in model A, the crankshaft and conrod reduced

models were obtained in this case by truncating their corresponding orthog-

onalized CB representations, see Section 3.2.2, at a certain cut-off frequency,

according to a practice which is commonly used by multibody dynamics ana-

lysts. The frequency cut-off value has been set at 20 kHz in one case, at 30 kHz in

the other, obtaining the models which will be referred to asmodel D andmodel
E, respectively, in the remainder. It should be noted that a dynamic completeness

level expressed in terms of EIM cumulative sum cannot be computed in these

cases, since truncation acts directly onto the orthogonalized CB mode set.

It is worth stressing that models A through E are identical to each other, ex-

cept for the reduced flexible crankshaft and connecting rodmodels they integrate;

model features are summarized in Table 4.1.

Estimates of the loads acting on the connecting rods and the crankshaft were

retrieved as a first result of the simulations. Relative deviations were evaluated

for models B through E with respect to model A over a mean engine cycle, i.e.

two crankshaft full revolutions, obtained by averaging 10 consecutive cycles

extracted after the transient initialization effects have properly faded. In each

case these errors were normalized based upon the peak load value as estimated

for model A, in order to assign a lower importance to deviations occurring at

low magnitudes.

As an example, Figure 4.3 shows the normalized force magnitude acting on

the central main bearing 1, as evaluated for model A. The relative deviations

exhibited by models B through E are shown in Figure 4.4. As for models B and C,

these deviations are very small, keeping well below 1% in both cases; concerning

Model A B C D E F G

crankshaft
orth. modes 128 66 66 128 128 57 57
cut-off [kHz] - - - 20 30 - -
active modes 122 60 60 38 59 51 51

conrod
orth. modes 92 54 54 92 92 35 35
cut-off [kHz] - - - 20 30 - -
active modes 86 48 48 14 27 29 29

cranktrain active modes 294 156 156 66 113 109 109

Table 4.1 Number of active modes in the simulated multibody models. Note that
embedded in the orthogonalized CB modes are 6 rigid-body modes, which need to
be removed since ADAMS provides its own large-motion DOFs.
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this particular result, model C seems to be slightly superior to model B. On the

other hand, it looks evident that models D, E perform much worse than models

B, C, actually exhibiting considerable deviations from the reference; as expected,

deviations associated to model E are smaller than those related to model D.

Looking at the peak load values, these are perfectly captured by models B, C,

with errors having an order of magnitude of 0.1%, while they are significantly

misestimated by models D, E. It is worth mentioning that these are essential

input data for a proper design of components subjected to dynamic loads.

In a similar fashion, Figures 4.5, 4.6 show the normalized force magnitude

computed for model A at the big end bearing 1 and the normalized deviations

exhibited by models B through E, respectively. Once again, while the differences

between models B, C and model A are very small, and less than 1%, models D, E

reveal substantial deviations from the reference.

Similar results hold for the loads acting at other interface locations, as well:

the RMS value of the relative percentage deviation was used here as a simple

and effective metrics to measure the result accuracy of models B through E with

respect to the reference model A. Table 4.2 sums up these values, concerning

the reaction forces at the crankshaft and conrod interface locations.

Clearly, models B, C outperform models D, E, resulting in all cases closer to

model A, which in turn involves amore complete flexible component description
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Figure 4.5 Force magnitude at the big end bearing 1 as computed for model A
and model 0, normalized over the peak load value of model A.
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Figure 4.6 Deviations exhibited by models B, C (a) and D, E (b) relative to model A,
concerning the reaction force evaluated at the big end bearing 1.

and as such is supposed to better represent the real behaviour of the system.

It should be noted that, for all the models, the largest errors are those related

to loads acting on the external main bearings, which likely present a greater
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sensitivity to high frequency dynamic effects than the other interface locations.

In addition to the interface forces, some kinematic results were investigated

in order to further evaluate the performance of the adopted model reduction

schemes. Figure 4.7 shows the normalized minimum oil film thickness experi-

enced at big end bearing 1 as computed for model A, while Figure 4.8 shows

the relative deviations related to models B through E: analogous conclusions to

those withdrawn so far can be extracted. A similar trend showed up for all the

inspected kinematic quantities.

In order to further assess the performances of the proposed component

model reduction techniques, two more multibody models were produced in the

same fashion as models B and C. A first model has been obtained by setting a

threshold of cumulative EIM sum at 75% for both the reduced crankshaft and

connecting rod models: that still appears to be a reasonable level of dynamic

completeness, at the same time being significantly lower than that used so far,

thus appearing suitable for a consistent results comparison. Such a model, that

will be referred to asmodel F in the following, includes 9 and 23 normal modes

for the crankshaft and conrod models, respectively. A second cranktrain model,

having the samemodel order, has been built and simulated: such model, denoted

as model G, includes 6 normal modes plus 3 MTVs for the crankshaft, and 11

normal modes plus 12 MTVs for the connecting rod. Features of models F, G are

reported in Table 4.1.

Estimates of the interface loads, as well as bearing kinematic quantities, were

evaluated for both models, and relative deviations were computed with respect

to model A in the samemanner described above; in particular, the RMS values of

the relative deviations concerning the loads at the interface locations of interest

are reported in Table 4.2. As expected, model F and model G exhibit a poorer

Model B C D E F G

Central main bearing 1 0.06 0.04 10.1 2.5 1.9 1.8
Central main bearing 2 0.09 0.06 9.8 3.0 1.7 1.6
External main bearing 1 0.13 0.10 23.8 5.8 4.6 4.5
External main bearing 2 0.53 0.34 19.4 8.4 5.7 5.5
Conrod 1 big end 0.16 0.14 3.8 1.7 1.3 1.3
Conrod 1 small end 0.09 0.06 2.2 1.1 1.0 0.9
Conrod 2 big end 0.15 0.15 3.0 1.4 1.4 1.4
Conrod 2 small end 0.08 0.05 1.7 1.0 1.1 1.1

Table 4.2 RMS values of the relative percentage deviations, computed for models
B through G with respect to model A, concerning load magnitudes at the crankshaft
and conrod interfaces.
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accuracy with respect to models B and C, respectively, in virtue of the lower

dynamic completeness associated with the featured flexible members. Compared

to models D and E, however, they show a higher precision, which is particularly

evident when considering the main bearing deviations.

Concerning computational cost, Table 4.3 reports the CPU time required

by the simulations involving models B through G, normalized with respect to

model A: this latter results to be much heavier with respect to the other models

simulated here, the reason being the largemodal basis associated with the flexible

components it incorporates. For the sake of completeness, it is worthmentioning

that simulations have been performed using the stabilized-index-two GSTIFF
integrator [32, 33, 34], available in ADAMS/Solver.

4.3.3 Discussion

In most cases, a model including a large number of modes, as the reference

model A herein, might result too expensive for a practical use in the design

process, where the requirement of optimized component design paralleled with

the need of meeting tight deadlines calls for efficient simulation models.

Simulation efficiency is the principal motivation behind the commonly

used practice consisting in truncating the modal basis of the components of

interest according to an arbitrary cut-off frequency: models D, E were obtained

by adopting such approach for both the crankshaft and the connecting rod

flexible models. Results show that the chosen cut-off frequency heavily affects

accuracy, which represents the other major requirement a simulation model

should satisfy. A good dose of experience is required to properly choose such

parameter, allowing the analyst to be confident in the results of his simulations;

this might not always be the case, especially for components and/or systems he

might not be familiar with.

The EIM-based approach, adopted here to obtain models B and F, allows

overcoming these drawbacks: relying on a quantitative assessment of the dy-

namic completeness of a reduced representation of the flexible bodies at issue,

it directly provides an indication of model effectiveness, referring in particular

to the capability in predicting accurate interface loads. This represents a major

Model B C D E F G

Normalized CPU time 0.37 0.23 0.12 0.17 0.27 0.16

Table 4.3 Normalized CPU time required by the simulated models B through G,
computed with respect to model A.
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advantage over the more traditional truncation-based approach: a guideline

for the normal modes selection is delivered, providing a direct insight on the

reduced component performance prior to the multibody simulation phase.

Of course, engineering judgementmust still play an important part in the pro-

cess, particularly when defining the target levels of EIMdynamic completeness of

the involved flexible components: this has an important impact on themultibody

model performance, as evidenced by comparing results related tomodels B and F.

These include flexible reduced components associated to dynamic completeness

levels of 90% and 75%, respectively, in terms of EIM cumulative sum: the former

one provides very accurate results, while the latter results in fairly good accuracy

combined with a shorter simulation time.

It is worth emphasizing that the importance of the elastodynamic behaviour

of different components on the global system dynamics is different, so that the

experienced analyst might decide to set a high level of dynamic completeness

for the dominant members, and a lower level for the less contributing ones, thus

achieving the better compromise between accuracy and computational cost.

Concerning this aspect, the usage of MTVs appears to be advantageous

for the present application case, providing comparable result accuracy with

reduced computational overhead when compared to the method based upon
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Figure 4.7 Minimum oil film thickness, normalized over radial clearance, at the
big end bearing 1. Such quantity cannot be evaluated for model 0, since the bearing
is modelled as a cylindrical kinematic joint in that case.
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Figure 4.8 Deviations exhibited by models B, C (a) and D, E (b) relative to model A,
concerning the minimum oil film thickness evaluated at the big end bearing 1.

EIM, cf. Tables 4.2, 4.3. With respect to this latter, however, no information about

the number of modes to include in the reduced representations of the flexible

components is provided, so that the mentioned advantages might result partly
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compromised.

This is not the case if, as shown in the present study, the MTA technique

is combined with the EIM concept: the latter can be used to define how many

normal modes, and possibly which ones, should be retained in order to reach a

specified level of dynamic completeness for the considered flexible component; a

number of normal modes, potentially those associated to the highest frequencies,

may then be replaced with an equal number of MTVs, which compensate the

effects of modal truncation with improved efficiency.



Chapter 5

Conclusions

The development of a flexiblemultibodymodel of amotorcycle engine cranktrain

has been presented in this thesis, with a particular emphasis on the adopted

component model reduction methods.

5.1 Main contributions

Two bearing models, one concerning angular contact ball bearings, the other

referring to hydrodynamic bearings, have been implemented starting from avail-

able literature descriptions, in order to properly capture the dynamic behaviour

of the main connections in the system under study, i.e. the crankshaft main

bearings and the connecting rod big end bearings. Both the theoretical back-

ground of the models and the details about their specific implementation as

computational routines within the adopted multibody simulation software have

been provided.

Two techniques for model reduction, operating onto the well-established

Craig-Bampton methodology, have been implemented: the Effective Interface

Mass (EIM) concept provides a useful guideline for the selection of component

normal modes to include in a reduced representation based upon their con-

tribution to the dynamic loads at the interface, while the Modal Truncation

Augmentation (MTA) approach alleviates the effects of modal truncation by

enriching the reduction basis with pseudo-eigenvectors without affecting the

topology of the reduced model. After a concise theoretical overview about these

methods, the procedure adopted to obtain reduced representations of both the

crankshaft and the connecting rod has been described in detail, with an ex-

planation of the reduction routines which have been implemented within the

adopted Finite Element code. The obtained reduced models have been subjected
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to numerical testing against reference models, before the multibody simulation

phase, in order to asses the performance of the adopted techniques. Standard fre-

quency response and modal correlation criteria have been used for the purpose,

showing that both methods lead to more accurate models when compared with

the standard Craig-Bampton reduction scheme, provided the same model order.

A multibody model devoted to the dynamic simulation of a motorcycle

engine cranktrain has eventually been produced. The first step in the process

has consisted in the definition of a system made up of rigid links connected to

each other via kinematic joints; the main limitations of such model have been

discussed, and overtaken by introducing both the mentioned bearing models

and the flexible reduced crankshaft and conrod models. With this respect, a

brief theoretical overview about the Floating Frame of Reference formulation

for the description of flexible multibody systems is presented. The performances

of the proposed reduction techniques have been further evaluated by comparing

several versions of the cranktrain model: dynamic simulations prove that model

reduction based on EIM leads to more accurate results with respect to the

traditional frequency-based truncation approach, provided that a consistent

level of dynamic completeness is chosen for each flexible reduced component in

the system; the MTA method provides the same high-level of results accuracy,

given the same model order, bringing in this case a further advantage in terms

of computational cost of the simulations.

5.2 Future research

Some recommendations for future research on the presented subjects is provided

in the following.

Regarding the application of the EIM approach, some strategy to identify in a

systematic fashion appropriate levels of dynamic completeness for the reduction

of the components used for multibody system simulation would be beneficial,

especially concerning computational efficiency aspects.

Concerning the application of the MTA method, the definition of some

interface reduction technique would result in a more efficient and systematic

way for the identification of the pseudo-eigenvectors needed to complement the

Craig-Bampton reduced representation of flexible components, especially for

those characterized by a large number of interface nodes.

With reference to both model reduction techniques, a common implemen-

tation of the described Finite Element routines would make the advantages of

both methods directly available for the analyst who wishes to include optimal

reduced flexible component models in his multibody simulations.
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Concerning the assessment of the adopted model reduction techniques, on

the multibody simulation side, a further step consists in the evaluation of the

stresses experienced by the flexible components in the system, which should be

accomplished in order to extend the performance evaluation of the proposed

methodologies.

With regard to the particular application, the cranktrain multibody model

should be complemented by integrating a reduced flexible model of the engine

block, in order to provide a more complete simulation platform for design

optimization, concerning both durability and NVH issues.
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